next up previous contents index
suivant: Airy functions : Airy_Ai monter: Real numbers précédent: Derivatives of the DiGamma   Table des matières   Index


The $ \zeta$ function : Zeta

Zeta takes as argument a real x.
Zeta returns for x > 1 :

$\displaystyle \zeta$(x) = $\displaystyle \sum_{{n=1}}^{{+\infty}}$$\displaystyle {\frac{{1}}{{n^x}}}$

and for x < 1 it's meromorphic continuation.
Input :
Zeta(2)
Output :
pi^2/6
Input :
Zeta(4)
Output :
pi^4/90



giac documentation written by Renée De Graeve and Bernard Parisse