suivant: Approximate computation of integrals
monter: Numerical algorithms
précédent: Approximate solution of an
Table des matières
Index
Approximate computation of the derivative number : nDeriv
nDeriv takes as arguments : an expression ex, the variable
name of this expression (by default x), and h (by default
h=0.001).
nDeriv(ex,x,h) computes an approximated value of the derivative of the
expression ex at the point x and returns :
(f(x+h)-f(x+h))/2*h
Input :
nDeriv(x^
2,x)
Output :
((x+0.001)^
2-(x+-0.001)^
2)*500.0
Input :
subst(nDeriv(x^
2,x),x=1)
Output :
2
Input :
nDeriv(exp(x^
2),x,0.00001)
Output :
(exp((x+1e-05)^
2)-exp((x+-1e-05)^
2))*50000
Input :
subst(exp(nDeriv(x^
2),x,0.00001),x=1)
Output :
5.43656365783
which is an approximate value of 2e=5.43656365692.
giac documentation written by Renée De Graeve and Bernard Parisse