suivant: 3-d graph with rainbow
monter: Graph of a function
précédent: 2-d graph
Table des matières
Index
3-d graph
plotfunc takes two main arguments : an expression of two
variables or a list of several expressions of two variables and the list of
these two variables, where each variable may be replaced by
an equality variable=interval to specify the range for this variable
(if not specified, default values are taken from the graph configuration).
plotfunc accepts two optional arguments to specify
the discretisation step in x and in y by
xstep=... and ystep=....
Alternatively one can specify the number of points used for the
representation of the function with nstep=
(instead of xstep
and
ystep).
plotfunc draws the surface(s) defined by z = the first argument.
Input :
plotfunc( x^
2+y^
2,[x,y])
Output :
A 3D graph of z=x^
2+y^
2
Input :
plotfunc(x*y,[x,y])
Output :
The surface z=x*y, default ranges
Input :
plotfunc([x*y-10,x*y,x*y+10],[x,y])
Output :
The surfaces z=x*y-10, z=x*y and z=x*y+10
Input :
plotfunc(x*sin(y),[x=0..2,y=-pi..pi])
Output :
The surface z = x*y for the specified ranges
Now an example where we specify the x and y discretisation step
with xstep
and ystep
. Input :
plotfunc(x*sin(y),[x=0..2,y=-pi..pi],xstep=1,ystep=0.5)
Output :
A portion of surface z = x*y
Alternatively we may specify
the number of points used for the representation of the
function with nstep
instead of xstep
and ystep
, input :
plotfunc(x*sin(y),[x=0..2,y=-pi..pi],nstep=300)
Output :
A portion of surface z = x*y
Remarks
- Like any 3-d scene, the viewpoint may be modified by rotation
around the x axis, the y axis or the
z axis, either by dragging the mouse inside the graphic
window (push the mouse outside the parallelepiped used for
the representation), or with the shortcuts
x, X, y, Y, z and Z.
- If you want to print a graph or get a LATEX translation, use the graph
menu
Menu
print
Print(with
Latex)
suivant: 3-d graph with rainbow
monter: Graph of a function
précédent: 2-d graph
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse