** suivant:** Step by step Gauss-Jordan
** monter:** Linear systems
** précédent:** Gauss-Jordan reduction: rref gaussjord
** Table des matières**
** Index**

##

Solving A*X=B : `simult`

`simult` is used to solve a linear system of equations (resp.
several linear systems of equations with the same matrix `A`) written
in matrix form (see also 1.31.17) :
`A*X=b (resp A*X=B)`

`simult` takes as arguments the matrix `A` of the system and the
column vector (i.e. a one column matrix) `b` of the second
member of the system (resp.
the matrix `B` whose columns are the
vectors `b` of the second members of the different systems).

The result is a column vector, solution of the system (resp. a matrix
whose columns are the solutions of the different systems).

For example, to solve the system :

input :
`simult([[3,1],[3,2]],[[-2],[2]])`

Output :
`[[-2],[4]]`

Hence *x* = - 2 and *y* = 4 is the solution.

Input :
`simult([[3,1],[3,2]],[[-2,1],[2,2]])`

Output :
`[[-2,0],[4,1]]`

Hence *x* = - 2 and *y* = 4 is the solution of

whereas *x* = 0 and *y* = 1 is the solution of

** suivant:** Step by step Gauss-Jordan
** monter:** Linear systems
** précédent:** Gauss-Jordan reduction: rref gaussjord
** Table des matières**
** Index**
giac documentation written by Renée De Graeve and Bernard Parisse