next up previous contents index
suivant: Laplacian : laplacian monter: Multivariate calculus précédent: Multivariate calculus   Table des matières   Index


Gradient : derive deriver diff grad

derive (or diff or grad) takes two arguments : an expression F of n real variables and a vector of these variable names.
derive returns the gradient of F, where the gradient is the vector of all partial derivatives, for exmple in dimension n = 3

$\displaystyle \overrightarrow{\mbox{grad}}(F)= [\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z}] $

Example
Find the gradient of F(x, y, z) = 2x2y - xz3.
Input :
derive(2*x^2*y-x*z^3,[x,y,z])
Or :
diff(2*x^2*y-x*z^3,[x,y,z])
Or :
grad(2*x^2*y-x*z^3,[x,y,z])
Output :
[2*2*x*y-z^3,2*x^2,-(x*3*z^2)]
Output after simplification with normal(ans()) :
[4*x*y-z^3,2*x^2,-(3*x*z^2)]
To find the critical points of F(x, y, z) = 2x2y - xz3, input :
solve(derive(2*x^2*y-x*z^3,[x,y,z]),[x,y,z])
Output :
[[0,y,0]]



giac documentation written by Renée De Graeve and Bernard Parisse