suivant: Intervals
monter: Taylor and asymptotic expansions
précédent: Résidu d'une expression en
Table des matières
Index
Padé expansion: pade
pade takes 4 arguments
- an expression,
- the variable name the expression depends on,
- an integer n or a polynomial N,
- an integer p.
pade returns a rationnal fraction P/Q such that degree(P)< p and
P/Q = f(mod xn+1) or
P/Q = f(mod N).
In the first case, it means that P/Q and f have the same
Taylor expansion at 0 up to order n.
Input :
pade(exp(x),x,5,3)
Or :
pade(exp(x),x,x^
6,3)
Output :
(3*x^
2+24*x+60)/(-x^
3+9*x^
2-36*x+60)
To verify input :
taylor((3*x^
2+24*x+60)/(-x^
3+9*x^
2-36*x+60))
Output :
1+x+1/2*x^
2+1/6*x^
3+1/24*x^
4+1/120*x^
5+x^
6*order_size(x)
which is the 5th-order series expansion of exp(x) at x = 0.
Input :
pade((x^
15+x+1)/(x^
12+1),x,12,3)
Or :
pade((x^
15+x+1)/(x^
12+1),x,x^
13,3)
Output :
x+1
Input :
pade((x^
15+x+1)/(x^
12+1),x,14,4)
Or :
pade((x^
15+x+1)/(x^
12+1),x,x^
15,4)
Output :
(-2*x^
3-1)/(-x^
11+x^
10-x^
9+x^
8-x^
7+x^
6-x^
5+x^
4- x^
3-x^
2+x-1)
To verify, input :
series(ans(),x=0,15)
Output :
1+x-x^
12-x^
13+2x^
15+x^
16*order_size(x)
then input :
series((x^
15+x+1)/(x^
12+1),x=0,15)
Output :
1+x-x^
12-x^
13+x^
15+x^
16*order_size(x)
These two expressions have the same 14th-order series expansion at x = 0.
suivant: Intervals
monter: Taylor and asymptotic expansions
précédent: Résidu d'une expression en
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse