next up previous contents index
suivant: Series expansion : series monter: Taylor and asymptotic expansions précédent: Division by increasing power   Table des matières   Index


Taylor expansion : taylor

taylor takes from one to four arguments : Note that the syntax ...,x,n,a,... (instead of ...,x=a,n,...) is also accepted.
taylor returns a polynomial in x-a, plus a remainder of the form:
(x-a)^n*order_size(x-a)
where order_size is a function such that,

\begin{displaymath}\forall r>0, \quad \lim_{x\rightarrow 0} x^r \mbox{order\_size}(x) = 0 \end{displaymath}

For regular series expansion, order_size is a bounded function, but for non regular series expansion, it might tend slowly to infinity, for example like a power of ln(x).
Input :
taylor(sin(x),x=1,2)
Or (be carefull with the order of the arguments !) :
taylor(sin(x),x,2,1)
Output :
sin(1)+cos(1)*(x-1)+(-(1/2*sin(1)))*(x-1)^2+ (x-1)^3*order_size(x-1)
Remark
The order returned by taylor may be smaller than n if cancellations between numerator and denominator occur, for example

taylor($\displaystyle {\frac{{x^3+\sin(x)^3}}{{x-\sin(x)}}}$)

Input :
taylor(x^3+sin(x)^3/(x-sin(x)))
The output is only a 2nd-order series expansion :
6+-27/10*x^2+x^3*order_size(x)
Indeed the numerator and denominator valuation is 3, hence we loose 3 orders. To get order 4, we should ask n = 7, input :
taylor(x^3+sin(x)^3/(x-sin(x)),x=0,7)
Output is a 4th-order series expansion :
6+-27/10*x^2+x^3+711/1400*x^4+x^5*order_size(x)


next up previous contents index
suivant: Series expansion : series monter: Taylor and asymptotic expansions précédent: Division by increasing power   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse