next up previous contents index
suivant: Taylor and asymptotic expansions monter: Compute in /p[x] using précédent: Inverse of a matrix   Table des matières   Index


Row reduction to echelon form in $ \mathbb {Z}$/p$ \mathbb {Z}$ : Rref

Rref is the inert form of rref.
Rref returns rref without evaluation. It is used in conjonction with mod in Maple syntax mode to find the row reduction to echelon form of a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$ (see also 1.52.3).
Example, solve in $ \mathbb {Z}$/13$ \mathbb {Z}$

$\displaystyle \left\{\vphantom{\begin{array}{lcr}\ \ x\ +\ \ 2 \cdot y & = &9 \\  3 \cdot x +10 \cdot y & =& 0 \end{array}}\right.$$\displaystyle \begin{array}{lcr}\ \ x\ +\ \ 2 \cdot y & = &9 \\  3 \cdot x +10 \cdot y & =& 0 \end{array}$

Input in Xcas mode :
Rref([[1,2,9] mod 13,[3,10,0] mod 13])
Output :
rref([[1%13, 2%13, 9%13],[3%13,10%13,0%13]])
you need to eval(ans()) to get :
[[1%13,0%13,3%13],[0%13,1%13,3%13]]
and conclude that x=3%13 and y=3%13.
Input in Maple mode :
Rref([[1,2,9],[3,10,0],[3,11,1]]) mod 13
Output :
[[1,0,0],[0,1,0],[0,0,1]]



giac documentation written by Renée De Graeve and Bernard Parisse