next up previous contents index
suivant: Inverse of a matrix monter: Compute in /p[x] using précédent: Factorization in /p[x] :   Table des matières   Index

Determinant of a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$ : Det

Det is the inert form of det.
Det takes as argument a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$.
Det returns det without evaluation. It is used in conjonction with mod in Maple syntax mode to find the determinant of a matrix with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$.
Input in Xcas mode :
Det([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod 13])
Output :
det([[1%13,2%13,-4%13],[3%13,-3%13,0%13], [3%13,-2%13,1%13]])
you need to eval(ans()) to get :
hence, in $ \mathbb {Z}$/13$ \mathbb {Z}$, the determinant of A = [[1, 2, 9],[3, 10, 0],[3, 11, 1]] is 5%13 (in $ \mathbb {Z}$ det(A)=31).
Input in Maple mode :
Det([[1,2,9],[3,10,0],[3,11,1]]) mod 13
Output :

giac documentation written by Renée De Graeve and Bernard Parisse