suivant: Gröbner basis and Gröbner
monter: Orthogonal polynomials
précédent: Tchebychev polynomials of first
Table des matières
Index
Tchebychev polynomial of second kind: tchebyshev2
tchebyshev2 takes as argument an integer n and optionnally
a variable name (by default x).
tchebyshev2 returns the Tchebychev polynomial of second kind
of degree n.
The Tchebychev polynomial of second kind U(n, x) is defined by:
U(
n,
x) =
or equivalently:
sin((n + 1)x) = sin(x)*U(n, cos(x))
The U(n, x) verifies the recurrence relation:
U(0, x) = 1, U(1, x) = 2x, U(n, x) = 2xU(n - 1, x) - U(n - 2, x)
The polynomials U(n, x) are orthogonal for the scalar product
<
f,
g > =
f (
x)
g(
x)
dx
Input :
tchebyshev2(3)
Output :
8*x^
3+-4*x
Input :
tchebyshev2(3,y)
Output :
8*y^
3+-4*y
Indeed:
sin(4.x) = sin(x)*(8*cos(x)3 -4.cos(x)) = sin(x)*U(3, cos(x))
giac documentation written by Renée De Graeve and Bernard Parisse