next up previous contents index
suivant: LCM of two polynomials monter: Arithmetic and polynomials précédent: GCD of two polynomials   Table des matières   Index


Choosing the GCD algorithm of two polynomials : ezgcd heugcd modgcd psrgcd

ezgcd heugcd modgcd psrgcd denotes the gcd (greatest common divisor) of two univariate or multivariate polynomials with coefficients in $ \mathbb {Z}$ or $ \mathbb {Z}$[i] using a specific algorithm : Input :
ezgcd(x^2-2*x*y+y^2-1,x-y)
or
heugcd(x^2-2*x*y+y^2-1,x-y)
or
modgcd(x^2-2*x*y+y^2-1,x-y)
or
psrgcd(x^2-2*x*y+y^2-1,x-y)
Output :
1
Input :
ezgcd((x+y-1)*(x+y+1),(x+y+1)^2)
or
heugcd((x+y-1)*(x+y+1),(x+y+1)^2)
or
modgcd((x+y-1)*(x+y+1),(x+y+1)^2)
Output :
x+y+1
Input :
psrgcd((x+y-1)*(x+y+1),(x+y+1)^2)
Output :
-x-y-1
Input :
ezgcd((x+1)^4-y^4,(x+1-y)^2)
Output :
"GCD not successfull Error: Bad Argument Value"
But input :
heugcd((x+1)^4-y^4,(x+1-y)^2)
or
modgcd((x+1)^4-y^4,(x+1-y)^2)
or
psrgcd((x+1)^4-y^4,(x+1-y)^2)
Output :
x-y+1


next up previous contents index
suivant: LCM of two polynomials monter: Arithmetic and polynomials précédent: GCD of two polynomials   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse