     suivant: Integration by parts : monter: Integration précédent: Discrete summation: sum   Table des matières   Index

## Riemann sum : sum_riemann

sum_riemann takes two arguments : an expression depending of two variables and the list of the name of these two variables.
sum_riemann(expression(n,k),[n,k]) returns in the neighboorhoud of n = + an equivalent of expression(n, k) (or of expression(n, k) or of expression(n, k)) when the sum is looked as a Riemann sum associated to a continue function defined on [0,1] or returns "it is probably not a Riemann sum" when the resarch is unavailing.
Exercise 1
Suppose Sn =  .
Compute Sn.
Input :
sum_riemann(k^2/n^3,[n,k])
Output :
1/3
Exercise 2
Suppose Sn =  .
Compute Sn.
Input :
sum_riemann(k^3/n^4,[n,k])
Output :
1/4
Exercise 3
Compute ( + + ... + ).
Input :
sum_riemann(1/(n+k),[n,k])
Output :
log(2)
Exercise 4
Suppose Sn =  .
Compute Sn.
Input :
sum_riemann(32*n^3/(16*n^4-k^4),[n,k])
Output :
2*atan(1/2)+log(3)

giac documentation written by Renée De Graeve and Bernard Parisse