next up previous contents index
suivant: Discrete summation: sum monter: Integration précédent: Integration   Table des matières   Index


Antiderivative and definite integral : integrate int Int

integrate (or int) compute the primitive or a definite integral. A difference between the two commands is that, if you input quest(), just after the evaluation of integrate, the answer is written with the $ \int$ symbol.

integrate (or int or Int) takes one, two or four arguments.

Int is the inert form of integrate, it prevents evaluation for example to avoid a symbolic computation that might not be successfull if you just want a numeric evaluation.
Input :

evalf(Int(exp(x^2),x,0,1))
Or :
evalf(int(exp(x^2),x,0,1))
Output :
1.46265174591

Exercise 1
Let

f (x) = $\displaystyle {\frac{{x}}{{x^2-1}}}$ + ln($\displaystyle {\frac{{x+1}}{{x-1}}}$)

Find a primitive of f.
Input :
int(x/(x^2-1)+ln((x+1)/(x-1)))
Output :
x*log((x+1)/(x-1))+log(x^2-1)+1/2*log(2*x^2/2-1)
Or define the function f, input :
f(x):=x/(x^2-1)+ln((x+1)/(x-1))
then input :
int(f(x))
Output of course the same result.
Warning
For Xcas, log is the natural logarithm (like ln), as log10 is 10-basis logarithm

Exercise 2
Compute :

$\displaystyle \int$$\displaystyle {\frac{{2}}{{x^6+2 \cdot x^4+x^2}}}$ dx

Input :
int(2/(x^6+2*x^4+x^2))
Output :
2*((3*x^2+2)/(-(2*(x^3+x)))+-3/2*atan(x))

Exercise 3
Compute :

$\displaystyle \int$$\displaystyle {\frac{{1}}{{\sin(x)+\sin(2 \cdot x )}}}$ dx

Input :
integrate(1/(sin(x)+sin(2*x )))
Output :
(1/-3*log((tan(x/2))^2-3)+1/12*log((tan(x/2))^2))*2


next up previous contents index
suivant: Discrete summation: sum monter: Integration précédent: Integration   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse