Symbolic algebra and Mathematics with Xcas

Renée De Graeve, Bernard Parisse
University of Grenoble I
Corrected by Jay Belanger
Optimization section written by Luka Marohni¢

(© 2002, 2007 Renée De Graeve, Bernard Parisse
renee.degraeve@wanadoo. fr
bernard.parisse@ujf-grenoble. fr

Contents

1 Index 17

2 The CAS functions 27

2.1 Symbolic constants : e pi infinity i 27

22 Booleans 27

2.2.1 The values of aboolean: true false 27

222 Tests:==, !=, >, >=, <, =< 27

2.2.3 Boolean operators : or xor and not 28

2.2.4 Transform a boolean expression to a list : exp2list .. 29

2.2.5 Evaluate booleans: evalb 29

2.3 BitwiSe OpPerators i e e e e e e e e 30

2.3.1 Operators bitor, bitxor, bitand 30

2.3.2 Bitwise Hamming distance : hamdist 31

24 Strings e e e e e e 31

24.1 Characterandstring: " 31
2.4.2 First character, middle and end of a string : head mid

tall .. e 32

2.4.3 Concatenation of a sequence of words : cumSum 32

244 ASCII code of acharacter: ord 33

245 ASCllcodeofastring:asc. 33

2.4.6 String defined by the ASCII codes of its characters : char 34

247 Find a character in a string : inString 34

2.4.8 Concatobjectsintoastring: cat 35

249 Addanobjecttoastring: + 35

2.4.10 Transform an integer into a string : cat + 36

2.4.11 Transform a string into a number : expr 36

2.5 Write an integer in base b: convert 38

2.6 Integers (and Gaussian Integers) 38

2.6.1 The factorial : factorial 39

262 GCD:gcd igcd . oo v v i v i e e 39

263 GCD:Gcd . v v v vt e e 40

2.64 GCDofalistofintegers: 1gcd 40

2.6.5 The least common multiple: 1cm 41

2.6.6 Decomposition into prime factors : ifactor. 41

2.6.7 Listof prime factors : ifactors 41

2.6.8 Matrix of factors : maple_ifactors 42

2.6.9 The divisors of anumber : idivis divisors 42

2.7

2.8

2.9

CONTENTS

2.6.10 The integer Euclidean quotient : iquo intDiv 43
2.6.11 The integer Euclidean remainder : irem remain smod
mods mod % e e 43
2.6.12 Euclidean quotient and euclidean remainder of two inte-
ersS: 1QUOTEemM . . . v v vt vt e e 44
2.6.13 Testofevenness:even 45
2.6.14 Testofoddness: odd 45
2.6.15 Test of pseudo-primality : is_pseudoprime 45
2.6.16 Test of primality : is_prime isprime isPrime .. 46
2.6.17 The smallest pseudo-prime greater than n : nextprime . 47
2.6.18 The greatest pseudo-prime less than n : prevprime . . . 47
2.6.19 The n-th prime number : ithprime 48
2.6.20 Bézout’s Identity : iegcd igcdex 48
2.6.21 Solving au+bv=cin Z: iabcuv 48
2.6.22 Chinese remainders : ichinrem, ichrem 49
2.6.23 Chinese remainders for lists of integers : chrem 50
2.6.24 Solvinga? +b? =pinZ:pa2b2 51
2.6.25 The Euler indicatrix : euler phi 52
2.6.26 Legendre symbol : legendre_symbol 52
2.6.27 Jacobi symbol : jacobi_symbol 53
Combinatorial analysis 54
2.7.1 Factorial : factorial ! 54
2.7.2 Binomial coefficients : binomial comb nCr 54
2.7.3 Permutations : perm nPr 54
274 Randomintegers: rand 54
Rationals L 55
2.8.1 Transform a floating point number into a rational : exact
float2rational 55
2.8.2 Integer and fractional part : propfrac propFrac. .. 56
2.8.3 Numerator of a fraction after simplification : numer
getNum e e 56
2.8.4 Denominator of a fraction after simplification : denom
getDenoOm . . v v v v e e e e e e e e e e e e e e 57
2.8.5 Numerator and denominator of a fraction : £2nd fxnd . 57
2.8.6 Simplification of a pair of integers : simp2 57
2.8.7 Continued fraction representation of areal : dfc 58
2.8.8 Transform a continued fraction representation into a real :
dfc2f ..o 60
2.8.9 The n-th Bernoulli number : bernoulli 61
2.8.10 Access to PARI/GP commands: pari 61
Realnumbers 62
2.9.1 Eval a real at a given precision : evalf and Digits,
DIGITS o i i i it i e e e e e e e e e e e e 62
2.9.2 Usual infixed functionsonreals: +,—,x,/, "~ 63
2.9.3 Usual prefixed functions onreals : rdiv 65
294 n-throot: root 65
29.5 Errorfunction:erf 66
2.9.6 Complementary error function: erfc 67

CONTENTS 5

2.10

2.11

2.12

29.7 Thel function: Gamma 67
29.8 ThepBfunction:Beta 68
2.9.9 Derivatives of the DiGamma function: Psi 69
2.9.10 The ¢ function: Zeta 69
2.9.11 Airy functions : Airy_AiandAiry_Bi. 70
Permutations o 71
2.10.1 Random permutation : randperm 71
2.10.2 Decomposition as a product of disjoint cycles :

PErmu2CyCles . . v v v v i e e e e e e e 71
2.10.3 Product of disjoint cycles to permutation: cycles2permu 72
2.10.4 Transform a cycle into permutation : cycle2perm ... 72
2.10.5 Transform a permutation into a matrix : permu2mat .. 73
2.10.6 Checking for a permutation : is_permu 73
2.10.7 Checking foracycle: is_cycle. 73
2.10.8 Product of two permutations : plop2 74
2.10.9 Composition of a cycle and a permutation : clop2 74
2.10.10 Composition of a permutation and a cycle : ploc2 74
2.10.11 Product of two cycles : cloc2 75
2.10.12 Signature of a permutation : signature 75
2.10.13 Inverse of a permutation : perminv 75
2.10.14 Inverse of acycle : cycleinv 76
2.10.15 Order of a permutation : permuorder 76
2.10.16 Group generated by two permutations : groupermu . . . 76
Complexnumbers, 76
2.11.1 Usual complex functions : +, —, *, /, "~ 77
2.11.2 Real part of a complex number : re real 77
2.11.3 Imaginary part of a complex number : im imag 77
2.11.4 Write acomplex as re (z) +ixim(z) : evalc 77
2.11.5 Modulus of a complex number: abs 78
2.11.6 Argument of a complex number : arg 78
2.11.7 The normalized complex number : normalize unitV 78
2.11.8 Conjugate of a complex number : conj 78
2.11.9 Multiplication by the complex conjugate :

mult_c_conjugate 79
2.11.10 Barycenter of complex numbers : barycentre 79
Algebraic eXpressions e 80
2.12.1 Evaluate anexpression: eval 80
2.12.2 Evaluate algebraic expressions : evala 80
2.12.3 Prevent evaluation : quote hold " 80
2.12.4 Force evaluation : unquote 81
2.12.5 Distribution : expand fdistrib. 81
2.12.6 Canonical form : canonical form. 81
2.12.7 Multiplication by the conjugate quantity :

mult_conjugate o oo 82
2.12.8 Separation of variables : split 82
2.12.9 Factorization: factor 83
2.12.10 Complex factorization : cFactor 84

2.12.11 Zeros of an expression : zeros 85

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

CONTENTS

2.12.12 Complex zeros of an expression : cZeros 86
2.12.13 Normal form : normal 87
2.12.14 Simplify : simplify L. 87
2.12.15 Normal form for rational fractions : ratnormal 88
2.12.16 Substitute a variable by a value : subst 88
2.12.17 Substitute a variable by a value (Maple and Mupad com-
patibility) : subs oL o L 89
2.12.18 Evaluate a primitive at boundaries: preval 90
2.12.19 Sub-expression of an expression : part 91
Valuesof w,, o o e 91
2.13.1 Array of values of a sequence : tablefunc 91
2.13.2 Table of values and graph of a recurrent sequence : tableseq
andplotseqg e 92
Operators or infixed functions 92
2.14.1 Usual operators :+, -, =, /, =~ 93
2.14.2 Xcas operatorso e e e e e e e e e 93
2.14.3 Define an operator: user_operator 93
Functions and expressions with symbolic variables 94
2.15.1 The difference between a function and an expression . . . 94
2.15.2 Transform an expression into a function : unapply ... 95
2.15.3 Top and leaves of an expression : sommet feuille op 96
Functions 97
2.16.1 Context-dependent functions. 97
2.16.2 Usualfunctions 99
2.16.3 Defining algebraic functions 100
2.16.4 Composition of two functions: @ 102
2.16.5 Repeated function composition: @@ 102
2.16.6 Define a function with the history : as_function_of . 103
Derivation and applications. 104
2.17.1 Functional derivative : function_diff 104
2.17.2 Lengthofanarc: arcLen 106

2.17.3 Maximum and minimum of an expression: fMax fMin . 107
2.17.4 Table of values and graph : tablefunc and plotfunc 107

2.17.5 Derivative and partial derivative 108
Integration L L 110
2.18.1 Antiderivative and definite integral : integrate int

INt . e 110
2.18.2 Discrete summation: sum 112
2.18.3 Riemann sum: sum_riemann 114
2.18.4 Integration by parts : ibpdv and ibpu 115
2.18.5 Change of variables : subst 117
Limitso 118
2.19.1 Limits: Iimit 118
2.19.2 Integral and limit 120
Rewriting transcendental and trigonometric expressions 120
2.20.1 Expand a transcendental and trigonometric expression :

texpand tExpand 120

2.20.2 Combine terms of the same type : combine 122

CONTENTS 7

2.21

2.22

2.23

Trigonometry 123
2.21.1 Trigonometric functions 123
2.21.2 Expand a trigonometric expression : trigexpand ... 123
2.21.3 Linearize a trigonometric expression : t1in 124
2.21.4 Puttogether sine and cosine of the same angle : tcollect
tCollect . . v . v i i i e e 124
2215 Simplify : simplifyo 125
2.21.6 Transform arccos into arcsin : acos2asin. 125
2.21.7 Transform arccos into arctan : acos2atan. 125
2.21.8 Transform arcsin into arccos : asin2acos 125
2.21.9 Transform arcsin into arctan : asin2atan 126
2.21.10 Transform arctan into arcsin : atan2asin 126
2.21.11 Transform arctan into arccos : atan2acos 126
2.21.12 Transform complex exponentials into sin and cos : sincos
eXP2Erig @ v v e e e 126
2.21.13 Transform tan(X) into sin(x)/cos(x) : tan2sincos ... 127

2.21.14 Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos2 127

2.21.15 Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin2 128

2.21.16 Rewrite sin, cos, tan in terms of tan(x/2) : halftan . .. 128

2.21.17 Rewrite trigonometric functions as function of tan(x/2) and
hyperbolic functions as function of exp(x):

halftan_hyp2exp 128
2.21.18 Transform inverse trigonometric functions into logarithms

tatrig2ln oL 129
2.21.19 Transform trigonometric functions into complex exponen-

tials: trig2exp 129

2.21.20 Simplify and express preferentially with sine : trigsin. 130
2.21.21 Simplify and express preferentially with cosine : trigcos 130
2.21.22 Simplify and express preferentially with tangents : trigtan130
2.21.23 Rewrite an expression with different options : convert

CONVETrtir . . v v v v i st e e e e e e 131
Fourier transformation 132
2.22.1 Fourier coefficients : fourier_ an and fourier_bn

O TOUTX1er CN v v v v v e e i e e e e e e e e 132
2.22.2 Discrete Fourier Transform 135
2.22.3 Fast Fourier Transform: £ft 140
2.22.4 Inverse Fast Fourier Transform : ifft 141
2225 Anexercisewith fft 141
Exponentials and Logarithms 143
2.23.1 Rewrite hyperbolic functions as exponentials : hyp2exp 143
2.23.2 Expand exponentials : expexpand 143
2.23.3 Expand logarithms : 1nexpand. 143
2.23.4 Linearize exponentials: 1in. 143
2.23.5 Collect logarithms : 1ncollect 144
2.23.6 Expand powers : powexpando 144
2.23.7 Rewrite a power as an exponential : pow2exp 144
2.23.8 Rewrite exp(n*In(x)) as a power : exp2pow 145

2.23.9 Simplify complex exponentials : tsimplify 145

CONTENTS

224 Polynomials 145
2.24.1 Convert to a symbolic polynomial : r2e poly2symb . 146
2.24.2 Convert from a symbolic polynomial : e2r symb2poly 147

2.24.3 Coefficients of a polynomial: coeff coeffs. 147
2.24.4 Polynomial degree : degree 148
2.24.5 Polynomial valuation : valuation ldegree 148
2.24.6 Leading coefficient of a polynomial : 1coeff 149
2.24.7 Trailing coefficient degree of a polynomial : tcoeff . . 149
2.24.8 Evaluation of a polynomial : peval polyEval 150
2.24.9 Factorize " in a polynomial : factor_xn 150
2.24.10 GCD of the coefficients of a polynomial : content . .. 150
2.24.11 Primitive part of a polynomial : primpart 151
2.24.12 Factorization : collect 151
2.24.13 Factorization : factor factoriser 152
2.24.14 Square-free factorization : sqrfree 153
2.24.15 List of factors : factors 154
2.24.16 Evaluate a polynomial : horner 154
2.24.17 Rewrite in terms of the powers of (x-a) : ptayl 155
2.24.18 Compute with the exact root of a polynomial : rootof . 155
2.24.19 Exact roots of a polynomial : roots 156
2.24.20 Coefficients of a polynomial defined by its roots : pcoef £
pcoef ... e 157
2.24.21 Truncate of order n : truncate 157
2.24.22 Convert a series expansion into a polynomial : convert
convertir L o 157
2.24.23 Random polynomial : randpoly randPoly. 158
2.24.24 Change the order of variables : reorder 158
2.2425Random list: ranmo 159
2.24.26 Lagrange’s polynomial : lagrange interp 159
2.24.27 Natural splines: spline. 160
2.24.28 Rational interpolation : thiele 162
2.25 Arithmetic and polynomials 163
2.25.1 The divisors of a polynomial : divis 163
2.25.2 Euclideanquotient: quo 164
2.25.3 Euclidean quotient: QUO 164
2.254 Euclidean remainder : rem. 165
2.25.5 Euclidean remainder: Rem 166
2.25.6 Quotient and remainder : quorem divide 166

2.25.7 GCD of two polynomials with the Euclidean algorithm: gcd167
2.25.8 GCD of two polynomials with the Euclidean algorithm : Gcd167
2.25.9 Choosing the GCD algorithm of two polynomials : ezgcd

heugcd modged psrged . . . oo 168
2.25.10 LCM of two polynomials : 1cm 169
2.25.11 Bézout’s Identity : egcd gcdex 170
2.25.12 Solving au+bv=c over polynomials: abcuv 170
2.25.13 Chinese remainders : chinrem 171

2.25.14 Cyclotomic polynomial : cyclotomic 172

CONTENTS 9

2.26

2.27

2.28

2.29

2.30

2.31

2.25.15 Sturm sequences and number of sign changes of P on (a, 0]

TSTUrM Lo e 173
2.25.16 Number of zeros in [a,b) : sturmab 173
2.25.17 Sturm sequences : sturmseq 174
2.25.18 Sylvester matrix of two polynomials : sylvester ... 175
2.25.19 Resultant of two polynomials : resultant 176
Orthogonal polynomials 179
2.26.1 Legendre polynomials: legendre 179
2.26.2 Hermite polynomial : hermite 180
2.26.3 Laguerre polynomials: laguerre 180

2.26.4 Tchebychev polynomials of the first kind: tchebyshevl 181
2.26.5 Tchebychev polynomial of the second kind: tchebyshev2182

Grobner basis and Grobner reduction 182
2.27.1 Grobnerbasis: gbasis 182
2.27.2 Grobner reduction : greduce 183
2.27.3 Build a polynomial from its evaluation : genpoly 184
Rational fractions, 185
2.28.1 Numerator: getNum 185
2.28.2 Numerator after simplification : numer 186
2.28.3 Denominator : getDenom 186
2.28.4 Denominator after simplification : denom 186
2.28.5 Numerator and denominator : f2nd fxnd 187
2.28.6 Simplify : simp2 187
2.28.7 Common denominator : comDenom 187
2.28.8 Integer and fractional part : propfrac 188
2.28.9 Partial fraction expansion : partfrac 188
Exactroots of apolynomial 188
2.29.1 Exact bounds for complex roots of a polynomial :
complexroot e e e 188

2.29.2 Exact bounds for real roots of a polynomial : realroot 189
2.29.3 Exact values of rational roots of a polynomial :

rationalrooto 190
2.29.4 Exact values of the complex rational roots of a polynomial

:crationalrooto 191
Exactrootsandpoles 191
2.30.1 Roots and poles of a rational function : froot 191
2.30.2 Rational function given by roots and poles : fcoeff . . . 192
Computing in Z/pZ orin Z/pZ[x] 192
2.31.1 Expand and reduce : normal 193
2.31.2 AdditioninZ/pZorinZ/pZ[x] : + 193
2.31.3 Subtractionin Z/pZ orin Z/pZ[zx]: —. 194
2.31.4 Multiplicationin Z/pZ orin Z/pZ[x] : » 194
2.31.5 Euclideanquotient: quo 195
2.31.6 Euclideanremainder: rem. 195
2.31.7 Euclidean quotient and euclidean remainder : quorem . . 195
2.31.8 DivisioninZ/pZorin Z/pZ[x]: / 196
2319 PowerinZ/pZ andin Z/pZ[z]: ~ 196

2.31.10 Compute ™ mod p: powmod powermod 197

10

2.32

2.33

2.34

2.35

2.36

2.37

CONTENTS
231.11Inversein Z/pZ : inv inverseor/ 197
2.31.12 Rebuild a fraction from its value modulo p : fracmod . . 197
231.13GCDInZ/pZx] :gcd . « v v v v v 198
2.31.14 Factorization over Z /pZ[z| : factor factoriser .. 198
2.31.15 Determinant of a matrix in Z/pZ : det 198
2.31.16 Inverse of a matrix with coefficients in Z/pZ: inv inversel99
2.31.17 Row reduction to echelon form in Z/pZ : rref 199
2.31.18 Construction of a Galois field : GF 200
2.31.19 Factorize a polynomial with coefficients in a Galois field :
factor e 201
Compute in Z/pZ|x] using Maple syntax 202
2.32.1 Euclidean quotient: QuUo 202
2.32.2 Euclidean remainder: Rem 202
2323 GCDInZ/pZ[x]: Ged. . . o o oo v i 203
2.32.4 Factorization in Z/pZ[z] : Factor 204
2.32.5 Determinant of a matrix with coefficients in Z/pZ : Det . 204
2.32.6 Inverse of amatrix in Z/pZ : Inverse 205
2.32.7 Row reduction to echelon form in Z/pZ : Rref 205
Taylor and asymptotic expansions 206
2.33.1 Division by increasing power order : divpc 206
2.33.2 Taylor expansion: taylor 206
2.33.3 Series expansion : series 207
2.33.4 The residue of an expression at a point : residue 209
2.33.,5 Padéexpansion: pade 210
Intervals 211
2.34.1 Definition of aninterval : al..a2 211
2.34.2 Boundaries of an interval : 1left right 212
2.34.3 Center of an interval : interval2center 213
2.34.4 Intervals defined by their center : center2interval . 213
Sequences e e e e e 214
2.35.1 Definition: seqg[] ()« . oo 214
2.35.2 Concattwo SeqUENCeS : , . « . « ¢ v v v v e u e 214
2.35.3 Getanelementofasequence: [] 214
2.35.4 Sub-sequenceofasequence: [] 215
2.35.5 Make asequenceoralist: seq $............. 215
2.35.6 Transform a sequence intoalist: [] nop 218
2.35.7 The + operator applied on sequences 219
Sets . .. 219
2.36.1 Definition: set [] v v i e 219
2.36.2 Union of two sets or of two lists : union 220
2.36.3 Intersection of two sets or of two lists : intersect . . . 220
2.36.4 Difference of two sets or of two lists : minus 221
Listsand vectors e 221
2.37.1 Definition Lo 221
2.37.2 Get an element or a sub-listofalist: at [] 222
2.37.3 Extractasub-list:mid. 222
2.37.4 Get the firstelementof alist: head 223

2.37.5 Remove an element in a list : suppress 223

CONTENTS 11

2.37.6 Remove the firstelement: tail 223
2.37.7 Reverse orderinalist: revlist 224
2.37.8 Reverse a list starting from its n-th element : rotate .. 224
2.37.9 Permuted list from its n-th element : shift 225
2.37.10 Modify an elementinalist: subsop 225
2.37.11 Transform a list into a sequence : op makesuite ... 226
2.37.12 Transform a sequence into a list : makevector [] ... 226
2.37.13 Lengthof alist: size nops length 227
2.37.14 Sizesof alistof lists : sizes 227
2.37.15 Concatenate two lists or a list and an element : concat
augment e e e e e e e e 227
2.37.16 Append an element at the end of a list : append 228
2.37.17 Prepend an element at the beginning of a list : prepend . 229
237.18Sort: sort e e e e 229
2.37.19 Sort a list by increasing order : SortA 230
2.37.20 Sort a list by decreasing order : SortD 230
2.37.21 Select the elements of alist : select 231
2.37.22 Remove elements of a list : remove 231
2.37.23 Testif a value isin a list : member 232
2.37.24 Testif avalueisinalist: contains 232
2.37.25 Sum of list (or matrix) elements transformed by a function
Tcount L. L. e e e e 232

2.37.26 Number of elements equal to a given value : count_eq . 234
2.37.27 Number of elements smaller than a given value : count_inf234
2.37.28 Number of elements greater than a given value : count_sup234

2.37.29 Sum of elements of a list: sum add 234
2.37.30 Cumulated sum of the elements of a list : cumSum 235
2.37.31 Product : product mul 235
2.37.32 Apply a function of one variable to the elements of a list :
map apply of 237
2.37.33 Apply a bivariate function to the elements of two lists : zip 238
2.37.34 Make a list with zeros : newList 239
2.37.35 Make a list with a function : makelist 239
2.37.36 Make a random vector or list : randvector 240
2.37.37 List of differences of consecutive terms : deltalist . . 240
2.37.38 Make a matrix with alist: 1ist2mat 241
2.37.39 Make a list with a matrix : mat2list 241
2.38 Functions forvectors 241
2.38.1 Norms of a vector : maxnorm llnorm l2norm norm 241
2.38.2 Normalize a vector : normalize unitV 242
2.38.3 Term by term sum of two lists : + .+ 242
2.38.4 Term by term difference of two lists: — .— 243
2.38.5 Term by term productof two lists : .» 244
2.38.6 Term by term quotient of two lists: ./ 244
2.38.7 Scalarproduct: scalar_product * dotprod dot
dotP scalar_ Product 244
2.38.8 Cross product: cross crossP crossproduct . .. 245

2.39 Statistics functions : mean, variance, stddev, stddevp,median, quantile,quartiles,!

CONTENTS

2.40 Table with strings as indexes : table 248
241 UsualmatriX 0 v ot e e e e e e 248
2.41.1 Identity matrix : idn identity 249
2.41.2 Zero matriX : newMat matrix 249
2.41.3 Random matrix : ranm randMat randmatrix ... 249
2.41.4 Diagonal of a matrix or matrix of a diagonal : BlockDiagonal
Aiag . v e e 250
2.41.5 Jordanblock : JordanBlock 251
2.41.6 Hilbert matrix : hilbert 251
2.41.7 Vandermonde matrix : vandermonde 251
2.42 Arithmeticand matrix 251
2.42.1 Evaluateamatrix: evalm. 251
2.42.2 Addition and subtraction of two matrices : + — .+ .- . 252
2.42.3 Multiplication of two matrices : » &% 252
2.42.4 Addition of elements of a column of a matrix : sum. . . . 252

2.42.5 Cumulated sum of elements of each column of a matrix :
CUMSUIM v v v v v e e e e e e e e e e e e e e e e e e 253

2.42.6 Multiplication of elements of each column of a matrix :
ProducCt . . . v o i e e e e e e 253
2427 Powerofamatrix:” & 253
2.42.8 Hadamard product : hadamard product 253
2.42.9 Hadamard product (infixed version): .* 254
2.42.10 Hadamard division (infixed version): ./ 254
2.42.11 Hadamard power (infixed version): .~ 254
2.42.12 Extracting element(s) of a matrix: [] at 255
2.42.13 Modify an element or a row of a matrix : subsop 258

2.42.14 Extract rows or columns of a matrix (Maple compatibility)
trow col L. e 260

2.42.15 Remove rows or columns of a matrix : delrows delcols261
2.42.16 Extract a sub-matrix of a matrix (TI compatibility) : subMat 261

2.42.17 Add arow to another row : rowAdd 262
2.42.18 Multiply a row by an expression : mRow 262
2.42.19 Add k times a row to an another row : mRowAdd 263
2.42.20 Exchange two rows : rOwWSWap « v« o 263
2.42.21 Make a matrix with a list of matrices : blockmatrix . . 263
2.42.22 Make a matrix from two matrices : semi_augment . . . 264
2.42.23 Make a matrix from two matrices : augment concat . 265
2.42.24 Build a matrix with a function : makemat 266
24225 Define amatrix : matrix 266
2.42.26 Append a column to a matrix : border 267
2.42.27 Count the elements of a matrix verifying a property : count 267
2.42.28 Count the elements equal to a given value : count_eq . 267

2.42.29 Count the elements smaller than a given value : count_inf268
2.42.30 Count the elements greater than a given value : count_sup268
2.42.31 Statistics functions acting on column matrices : mean,
stddev,variance,median, quantile,quartiles,
boxwhisker 268
2.42.32 Dimension of amatrix : dim 270

CONTENTS 13

243

2.44

2.45

2.46

247

2.48

2.42.33 Number of rows : rowdim rowDim nrows 271
2.42.34 Number of columns : coldim colDim ncols 271
Linearalgebra 271
2.43.1 Transpose of a matrix : tran transpose 271
2432 Inverseof amatrix: inv / 271
2433 Traceof amatrix: traceo v v v v .. 272
2.43.4 Determinant of amatrix : det 272
2.43.5 Determinant of a sparse matrix : det_minor 272
243.6 Rankofamatrix: rank 273
2.43.7 Transconjugate of amatrix : trn 273
2.43.8 Equivalent matrix : changebase 273
2.43.9 Basis of a linear subspace : basis 274
2.43.10 Basis of the intersection of two subspaces : ibasis ... 274
2.43.11 Image of a linear function : image 274
2.43.12 Kernel of a linear function : kernel nullspace ker 274
2.43.13 Kernel of a linear function : Nullspace 275

2.43.14 Subspace generated by the columns of a matrix : colspace275
2.43.15 Subspace generated by the rows of a matrix : rowspace 276

Linear Programmation 276
2.44.1 Simplex algorithm: simplex_reduce 276
2.44.2 Solving general linear programming problems: 1psolve 279
2.44.3 Solving transportation problems: tpsolve 284
Nonlinear optimization 285
2.45.1 Global extrema: minimize maximize. 285
2452 Local extrema: extrema 288
2.45.3 Minimax polynomial approximation: minimax 290
Different matrixnorm L. 290
2.46.1 % matrix norm : norm 12norm 290
2.46.2 [°° matriXx norm : Maxnorm oo ooowou ... 291
2.46.3 Matrix row norm : rownorm rowNOrm 291
2.46.4 Matrix column norm : colnorm colNorm 291
Matrix reduction Lol 292
2.47.1 Eigenvalues: eigenvals 292
2.47.2 FEigenvalues: egvl eigenvalues eigVl 292
2.47.3 Eigenvectors : egv eigenvectors eigenvects

elgVe . . . 293
2.47.4 Rational Jordan matrix : rat_jordan 293
2.47.5 Jordan normal form: jordan 296
2.47.6 Characteristic polynomial : charpoly 297
2.47.7 Characteristic polynomial using Hessenberg algorithm :

pcar_hessenberg 298
2.47.8 Minimal polynomial : pmin 298
2479 Adjoint matrix : adjoint_matrix 299
2.47.10 Companion matrix of a polynomial : companion 300
2.47.11 Hessenberg matrix reduction : hessenberg 301
2.47.12 Hermite normal form : ihermite 301
2.47.13 Smith normal form : ismith 302
Isometries 302

14

2.49

2.50

2.51

2.52

2.53

2.54

CONTENTS
2.48.1 Recognize anisometry: isom. 302
2.48.2 Find the matrix of an isometry : mkisom 303
Matrix factorizationso 304
2.49.1 Cholesky decomposition : cholesky 304
2.49.2 QR decomposition: gro 305
2.49.3 QR decomposition (for TI compatibility) : QR 306
2494 LUdecomposition: 1uo v v v v v v .. 306
2.49.5 LU decomposition (for TI compatibility) : LU 307
2.49.6 Singular value decomposition: svd 308
2.49.7 Shortbasisofalattice: 111 309
Quadraticforms e 310
2.50.1 Matrix of a quadratic form: g2a 310
2.50.2 Transform a matrix into a quadratic form: a2q 310
2.50.3 Reduction of a quadratic form : gauss 310
2.50.4 Gram-Schmidt orthonormalization : gramschmidt . . . 311
2.50.5 Graphofaconic: conique. 311
2.50.6 Conic reduction : conique_reduite 312
2.50.7 Graph of a quadric : quadrique 313
2.50.8 Quadric reduction : quadrique_reduite 313
Multivariate calculus L oL 315
2.51.1 Gradient: derive deriver diff grad 315
2.51.2 Laplacian: laplacian. 315
2.51.3 Hessian matrix : hessian 316
2.51.4 Divergence: divergence 316
2.51.5 Rotational : curl 317
2.51.6 Potential : potential 317
2.51.7 Conservative flux field : vpotential 317
Equations 318
2.52.1 Define anequation: equal 318
2.52.2 Transform an equation into a difference : equal2diff . 318
2.52.3 Transform an equation into a list : equal2list 318

2.52.4 The left member of an equation : 1left gauche lhs . 318
2.52.5 The right member of an equation : right droit rhs 319

2.52.6 Solving equation(s): solve 319
2.52.7 EquationsolvinginC: cSolve. 321
Linearsystems, 322
2.53.1 Matrix of asystem: syst2mat 322
2.53.2 Gauss reduction of amatrix : ref 323
2.53.3 Gauss-Jordan reduction: rref gaussjord. 323
2.53.4 Solving A*X=B:simult 325
2.53.5 Step by step Gauss-Jordan reduction of a matrix : pivot 325
2.53.6 Linear system solving: 1insolve 326
2.53.7 Finding linear recurrences : reverse_rsolve 326
Differential equations, 328
2.54.1 Solving differential equations : desolve deSolve

dsolve e 328

2.54.2 Laplace transform and inverse Laplace transform: laplace
11aplace . v v i e e e e e e e e 335

CONTENTS 15

2.55 Otherfunctions oo 337
2.55.1 Replace small values by 0: epsilon2zero 337
2.55.2 List of variables : lname indets 338
2.55.3 List of variables and of expressions : 1var 338
2.55.4 List of variables of an algebraic expressions: algvar . . 339
2.55.5 Testif a variable is in an expression: has 339
2.55.6 Numeric evaluation: evalf 340

2.55.7 Rational approximation : float2rational exact . 340

3 Graphs 341

3.1 Graph and geometric objects attributes 341
3.1.1 Individual attributes 341
3.1.2 Global attributes oo 342

3.2 Graphofafunction: plotfunc funcplot DrawFunc Graph343
321 2-dgraph 343
322 3-dgraph 344
3.2.3 3-d graph with rainbow colors 345
324 4dgraph. o 346

3.3 2d graph for Maple compatibility : plot 346

3.4 3d surfaces for Maple compatibility plot3d 347

3.5 Graphofaline and tangenttoagraph 348
35.1 Drawaline: line 348
3.5.2 Draw an 2D horizontal line : LineHorz 349
3.5.3 Draw a?2D vertical line : Linevert 349
354 Tangenttoa?2D graph: LineTan. 349
3.5.5 Tangenttoa?2D graph: tangent 350
3.5.6 Intersection of a 2D graph with the axis 350

3.6 Graph of inequalities with 2 variables : plotinequation inequationplot351

3.7 Graph of the area below a curve : plotarea areaplot 351

3.8 Contour lines: plotcontour contourplot
DrwCLOUT + v v v v v e e e e e e e e e e e e e e e 352

3.9 2-d graph of a 2-d function with colors : plotdensity densityplot353

3.10 Implicit graph: plotimplicit implicitplot 353
3.10.1 2Dimplicitcurveo 354
3.10.2 3Dimplicitsurface 355
3.10.3 Implicit differentiation : implicitdiff 355

3.11 Parametric curves and surfaces : plotparam paramplot DrawParm357
3.11.1 2D parametric Curve v v oot 357

3.11.2 3D parametric surface : plotparam paramplot DrawParm358
3.12 Curve defined in polar coordinates : plotpolar polarplot

DrawPol courbe_polaire 359
3.13 Graph of arecurrent sequence : plotseq segplot graphe_suite359
3.14 Tangentfield: plotfield fieldplot 360

3.15 Plotting a solution of a differential equation : plotode odeplot 360

3.16 Interactive plotting of solutions of a differential equation : interactive_plotode
interactive_odeplot 361

3.17 Animated graphs (2D,3Dor "4D") 361
3.17.1 Animation of a 2D graph: animate 362

16 CONTENTS
3.17.2 Animation of a 3D graph : animate3d 362

3.17.3 Animation of a sequence of graphic objects : animation 362

4 Numerical computations 367
4.1 Floating point representation. 367
4.1.1 Digits 367

4.1.2 Representation by hardware floats 368

4.1.3 Examples of representations of normalized floats 368

4.1.4 Difference between the representation of (3.1-3) and of 0.1 369

4.2 Approx. evaluation : evalf approxandDigits 370
4.3 Numerical algorithms 0oL 371
4.3.1 Approximate solution of an equation : newton 371

4.3.2 Approximate computation of the derivative number : nDeriv371
4.3.3 Approximate computation of integrals : romberg nInt 372

4.3.4 Approximate solution of y’=f(t,y) : odesolve 372
4.3.5 Approximate solution of the system v’=f(t,v) : odesolve 374
4.4 Solve equations with fsolve nSolve. 375
44.1 fsolveornSolve withtheoptionbisection_solver375
442 fsolve or nSolve with the option brent_solver . 375
443 fsolve or nSolve with the option falsepos_solver 376
444 fsolve or nSolve with the option newton_solver . 376
445 fsolveor nSolve with the option secant_solver . 376
446 fsolveornSolve withtheoption steffenson_solver377
4.5 Solve systems with fsolve 377
4.5.1 fsolve withthe option dnewton_solver 377
45.2 fsolve withthe option hybrid_solver 377
453 fsolve with the option hybrids_solver 378
454 fsolve with the option newtonj_solver 378
455 fsolve withthe option hybridj_solver 378
456 fsolve withthe option hybridsj_solver 378
4.6 Numeric roots of a polynomial : proot 378
4.7 Numeric factorization of a matrix : cholesky gr lu svd .. 379
5 Unit objects and physical constants 381
5.1 Unitobjects o e 381
5.1.1 Notation of unitobjects 381
5.1.2 Computing withunits 382
5.1.3 Convert units into MKSA units : mksa 382
5.1.4 Convertunits : convert 383
5.1.5 Factorize aunit: ufactor 383
5.1.6 Simplify aunit: usimplify 383
5.1.7 Unitprefixes 384
52 Constants e e e e e 384
5.2.1 Notation of physical constants 384

5.2.2 Constants Library 384

Chapter 1

Index

17

Index

,28 " 31
”, 80
98 a2q, 310
+’,77,93,97 abcuv, 170
’-, 717,93, 97 about, 135
'/, 98 abs, 78, 99
0,214 acos, 99, 123
* 08, 194, 244, 252 acos2asin, 125
+, 35, 36,77,93, 97, 193, 219, 242, 252 acos2atan, 125
+,-,%/,, 63 acosh, 99
+infinity, 27 acot, 123
, 214 acsc, 123
-,77,93,97, 194, 243, 252 add, 234
->, 94 adjoint_matrix, 299
-infinity, 27 Airy_Ai, 70
¥ 244, 254 Airy_Bi, 70
+, 242,252 algvar, 339
.-, 243,252 and, 28
., 211, 215 animate, 362
J, 244, 254 animate3d, 362
S, 254 animation, 362
/, 98, 196, 197, 271 append, 228
=,94 apply, 237
<, 27 approx, 370
<=,27 arccos, 99, 123
==, 27 arccosh, 99
>, 27 arcLen, 106
>=, 27 arcsin, 99, 123
[1, 212,214, 215, 218, 221, 226 arcsinh, 99
93, 102 arctan, 99, 123
$, 93, 109, 215 arctanh, 99
%, 44, 93,192, 202 areaplot, 351
Yo{ %}, 219 arg, 78
&*, 252 as_function_of, 103
&&, 28 asc, 33
&, 253 asec, 123
~, 717,93, 196, 253 asin, 99, 123
_, 381, 384 asin2acos, 125
1,54 asin2atan, 126
1=,27,28 asinh, 99

18

INDEX

assume, 134, 135 colnorm, 291

at, 222, 255 color, 341

atan, 99, 123 , 375

atan2acos, 126 colspace, 275
atan2asin, 126 comb, 54

atanh, 99 combine, 122
atrig2ln, 129 comDenom, 187
augment, 227, 265 companion, 300

complexroot, 188

barycentre, 79 concat, 227, 265

base, 38
. confrac, 58
basis, 274 .
. conique, 311
bernoulli, 61 . .
conique_reduite, 312
Beta, 68 coni. 78
Binary, 93 "

contains, 232
content, 150
contourplot, 352

binomial, 54
bisection_solver, 375

bitand, 30 convert, 38, 131, 157, 383
bitor, 30 ’

. convertir, 131, 157
bitxor, 30 123
black, 341 €08, 2. 131
BlockDiagonal, 250 COSL 00
blockmatrix, 263 cosh,

cot, 123

blue, 341 232, 267
border, 267 count, ’

count_eq, 234, 267
count_inf, 234, 268
count_sup, 234, 268

boxwhisker, 245, 268
brent_solverbrent_solver, 375

cloc2, 75 courbe_polaire, 359
clop2, 74 crationalroot, 191
canonical_form, 81 cross, 245

cat, 35, 36 crossP, 245

ceil, 99 crossproduct, 245
ceiling, 99 csc, 123
center2interval, 213 cSolve, 321
cFactor, 84 cumSum, 32, 235, 253
changebase, 273 curl, 317

char, 34 cyan, 341

charpoly, 297 cycle2perm, 72
chinrem, 171 cycleinv, 76
cholesky, 304 cycles2permu, 72
chrem, 50 cyclotomic, 172
coeff, 147 cZzeros, 86

coeffs, 147

col, 260 degree, 148
colDim, 271 delcols, 261
coldim, 271 Delete, 93

collect, 151 delrows, 261

colNorm, 291 deltalist, 240

20 INDEX

denom, 57, 186 equal?list, 318
densityplot, 353 erf, 66
derive, 108, 315 erfc, 67
deriver, 108, 315 euler, 52
deSolve, 328 eval, 80
desolve, 328 evala, 80
Det, 204 evalb, 29
det, 198, 272 evalc, 77
det_minor, 272 evalf, 55, 62, 340, 370
dfc, 58 evalm, 251
dfc2f, 60 even, 45
diag, 250 exact, 55, 340
diff, 108, 315 exp, 99
DIGITS, 62, 370 exp, 122, 131
Digits, 62, 370 exp2list, 29
dim, 270 exp2pow, 145
display, 341 exp2trig, 126
divergence, 316 expand, 81
divide, 166 expexpand, 143
divis, 163 expln, 131
divisors, 42 expr, 36
divpc, 206 extrema, 288
dnewton_solverdnewton_solver, 377 ezged, 168
dot, 244
dotP, 244 f2nd, 57, 187
dotprod, 244 Factor, 204
DrawFunc, 343 factor, 83, 152, 198, 201
DrawParm, 357, 358 factor_xn, 150
DrawPol, 359 factorial, 39, 54
droit, 319 factoriser, 152, 198
DrwCtour, 352 factors, 154
dsolve, 328 FALSE, 27

false, 27
e, 27 falsepos_solverfalsepos_solver, 376
e2r, 147 fcoeft, 192
eged, 170 fdistrib, 81
egv, 293 feuille, 96, 212
egvl, 292 fft, 140
eigenvals, 292 fieldplot, 360
eigenvalues, 292 filled, 341
eigenvectors, 293 float2rational, 55, 340
eigenvects, 293 floor, 99
eigVc, 293 fMax, 107
eigVl, 292 fMin, 107
epsilon, 337 fourier_an, 132
epsilon2zero, 337 fourier_bn, 132
equal, 318 fourier_cn, 133

equal2diff, 318 fPart, 99

INDEX

frac, 99

fracmod, 197
frames, 362, 362
froot, 191

fsolve, 375, 377
fullparfrac, 131
funcplot, 343
function_diff, 104
fxnd, 57, 187

Gamma, 67
gauche, 318
gauss, 310
gaussjord, 323
gbasis, 182

Gcd, 40, 167, 203
gcd, 39, 167, 198
gcdex, 170
genpoly, 184
getDenom, 57, 186
getNum, 56, 185
GF, 200

grad, 315
gramschmidt, 311
Graph, 343
graphe_suite, 359
greduce, 183
green, 341
groupermu, 76

hadamard, 253
halftan, 128
halftan_hyp2exp, 128
hamdist, 31

has, 339

hasard, 54

head, 32, 223
hermite, 180
hessenberg, 301
hessian, 316

i, 27

iabcuv, 48
ibasis, 274
ibpdv, 115
ibpu, 116
ichinrem, 49
ichrem, 49
id, 99
identity, 249
idivis, 42
idn, 249
ieged, 48
ifactor, 41
ifactors, 41
ifft, 141
iged, 39
igcdex, 48
ihermite, 301
ilaplace, 335
im, 77

imag, 77
image, 274
implicitplot, 353
indets, 338
inequationplot, 351
infinity, 27
inString, 34
Int, 110

int, 110
intDiv, 43
integer, 132
integrate, 110

interactive_odeplot, 361
interactive_plotode, 361

interp, 159
intersect, 220
interval2center, 213
inv, 197, 199, 271
Inverse, 205

21

heugcd, 168 inverse, 199
hilbert, 251 iPart, 99
hold, 80 iquo, 43
horner, 154 iquorem, 44
hybrid_solverhybrid_solver, 377 irem, 43
hybridj_solverhybridj_solver, 378 is_cycle, 73
hybrids_solverhybrids_solver, 378 is_permu, 73

hybridsj_solverhybridsj_solver, 378 is_prime, 46
hyp2exp, 143 is_pseudoprime, 45

22

ismith, 302
isom, 302
ithprime, 48

jacobi_symbol, 53
jordan, 296
JordanBlock, 251

ker, 274
kernel, 274

I1norm, 242
12norm, 242, 290
lagrange, 159
laguerre, 180
laplace, 335
laplacian, 315
Icm, 41, 169
Icoeff, 149
ldegree, 148
left, 212, 318
legendre, 179
legendre_symbol, 52
length, 227
lgcd, 40

lhs, 318

limit, 118, 120
lin, 143

line, 348
LineHorz, 349
LineTan, 349
LineVert, 349
linsolve, 326
list2mat, 241
111, 309

In, 99

In, 122, 131
Iname, 338
Incollect, 144
Inexpand, 143
log, 99

log, 122
log10, 99
logb, 99
Ipsolve, 279
LU, 307

lu, 306

Ivar, 338

INDEX

magenta, 341
makelist, 239
makemat, 266
makesuite, 226
makevector, 226
map, 237
maple_ifactors, 42
mat2list, 241
matrix, 266
matrix, 131

max, 99
maximize, 285
maxnorm, 241, 291
mean, 245, 268
median, 245, 268
member, 232

mid, 32, 222

min, 99

minimax, 290
minimize, 285
minus, 221
mkisom, 303
mksa, 382

mod, 44, 202
modgcd, 168
mods, 44

mRow, 262
mRowAdd, 263
mul, 235
mult_c_conjugate, 79
mult_conjugate, 82

ncols, 271

nCr, 54

nDeriv, 371

newList, 239

newMat, 249

newton, 371
newton_solvernewton_solver, 376
newtonj_solvernewtonj_solver, 378
nextprime, 47

nlnt, 372

nop, 218

nops, 227

norm, 241, 290

normal, 87, 193, 194, 196
normalize, 78, 242

not, 28

INDEX

nPr, 54

nrows, 271
nSolve, 375
nstep, 343
Nullspace, 275
nullspace, 274
numer, 56, 186

odd, 45

odeplot, 360
odesolve, 372, 374
of, 237

op, 96, 212, 226

or, 28

ord, 33

order_size, 206, 207

ploc2, 74

plop2, 74

pa2b2, 51

pade, 210
paramplot, 357, 358
parfrac, 131

pari, 61

part, 91

partfrac, 188
partfrac, 131

pcar, 297
pcar_hessenberg, 298
pcoef, 157

pcoeff, 157

perm, 54

perminv, 75
permu2cycles, 71
permu2mat, 73, 306
permuorder, 76
peval, 150

phi, 52

pi, 27

pivot, 325

plot, 346

plot3d, 347
plotarea, 351
plotcontour, 352
plotdensity, 353
plotfield, 360
plotfunc, 107, 343
plotimplicit, 353
plotinequation, 351

plotode, 360
plotparam, 357, 358
plotpolar, 359
plotseq, 92, 359
pmin, 298
point_milieu, 351
polarplot, 359
poly2symb, 146
polyEval, 150
polynom, 131, 157
potential, 317
pow2exp, 144
powermod, 197
powexpand, 144
powmod, 197
prepend, 229
preval, 90
prevprime, 47
primpart, 151
product, 235, 253
proot, 378
propFrac, 56
propfrac, 56, 188
Psi, 69

psrged, 168
ptayl, 155

purge, 135

g2a, 310

QR, 306

qr, 305
quadrique, 313

quadrique_reduite, 313

quantile, 245, 268
quartiles, 245, 268
Quo, 164, 202
quo, 164, 195
quorem, 166, 195
quote, 31, 80

r2e, 146

rand, 54
randMat, 249
randmatrix, 249
randperm, 71
randPoly, 158
randpoly, 158
randvector, 240
rank, 273

23

24

ranm, 159, 249
rat_jordan, 293
rationalroot, 190
ratnormal, 88

rdiv, 65

re, 77

real, 77

realroot, 189
rectangle_droit, 351
rectangle_gauche, 351
red, 341

ref, 323

Rem, 166, 202
rem, 165, 195
remain, 43

remove, 231
reorder, 158
residue, 209
resoudre, 84, 315, 350
resultant, 176
reverse_rsolve, 326
revlist, 224

rhs, 319

right, 212, 319
romberg, 372

root, 65

rootof, 155

roots, 156

rotate, 224

round, 99

row, 260

rowAdd, 262
rowDim, 271
rowdim, 271
rowNorm, 291
rownorm, 291
rowspace, 276
rowSwap, 263
Rref, 205

rref, 199, 323

scalar_product, 244
scalarProduct, 244
sec, 123

secant_solversecant_solver, 376

select, 231
semi_augment, 264
seq, 215

seq(], 214
segplot, 359
series, 207

set[], 219

shift, 225

sign, 99
signature, 75
simp2, 57, 187
simplex_reduce, 276
simplify, 87, 125
simult, 325

sin, 99, 123

sin, 122, 131
sincos, 126
sincos, 131
sinh, 99

size, 227

sizes, 227

smod, 44

solve, 84, 315, 319, 350
sommet, 96, 212
sort, 229

SortA, 230
SortD, 230
spline, 160

split, 82

sq, 99

sqrfree, 153
sqrt, 99

stddev, 245, 268
stddevp, 245

INDEX

steffenson_solversteffenson_solver, 377

string, 131

sturm, 173
sturmab, 173
sturmseq, 174
subMat, 261

subs, 89

subsop, 225, 258
subst, 88

sum, 112, 234, 252
sum_riemann, 114
suppress, 223

svd, 308

sylvester, 175
symb2poly, 147
syst2mat, 322

INDEX

table, 248
tablefunc, 91, 107
tableseq, 92

tail, 32, 223

tan, 99, 123

tan, 131
tan2cossin2, 128
tan2sincos, 127
tan2sincos2, 127
tangent, 350
tanh, 99

taylor, 206
tchebyshevl, 181
tchebyshev2, 182
tcoeff, 149
tCollect, 124
tcollect, 124
tExpand, 120
texpand, 120
thiele, 162

tlin, 124
tpsolve, 284
trace, 272

tran, 271
transpose, 271
trapeze, 351
trig, 122
trig2exp, 129
trigcos, 130
trigexpand, 123
trigsin, 130
trigtan, 130

trn, 273

TRUE, 27

true, 27

trunc, 99
truncate, 157
tsimplify, 145

ufactor, 383
unapply, 95
unfactored, 353
union, 220
unitV, 78, 242
unquote, 81
user_operator, 93
usimplify, 383

valuation, 148

25

vandermonde, 251
variance, 245, 268
vpotential, 317

white, 341

xor, 28
xstep, 343

yellow, 341
ystep, 343

zeros, 85
zeta, 69
zip, 238
zstep, 343

26

INDEX

Chapter 2

The CAS functions

2.1 Symbolic constants : ¢ pi infinity i

e is the number exp(1);

pi is the number 7.
infinity is unsigned co.
+infinity is 4o0.
—infinityis —oo.

i is the complex number 4.

2.2 Booleans

2.2.1 The values of a boolean : true false

The value of a boolean is t rue or false.
The synonyms are :

true or TRUE or 1,

false or FALSE or 0.

Tests or conditions are boolean functions.

222 Tests:==, !'=, >, >=, <, =<

==, =, > , <, =< are infixed operators.
==D tests the equality between a and b and returns 1 if a is equal to b and 0
otherwise.
a!=b returns 1 if a and b are different and 0 otherwise.
a>=Db returns 1 if a is greater than or equal to b and 0 otherwise.
a>Db returns 1 if a is strictly greater than b and 0 otherwise.
a<=Db returns 1 if a is less than or equal to b and 0 otherwise.
a<b returns 1 if a is strictly less than b and 0 otherwise.
To write an algebraic function having the same resultasanif...then...else,
we use the boolean function ifte.

For example :

>=

14

f(x):=ifte (x>0, true, false)

27

28 CHAPTER 2. THE CAS FUNCTIONS

defines the boolean function f suchthat £ (x) = trueifz € (0;+oo[and £ (x)=false

if z € (—o0;0].
Input :
£(0)==0
Output :
1
Look out !

a=b is not a boolean !!!!
a==Db is a boolean.

2.2.3 Boolean operators : or xor and not

or (or | |), xor, and (or &&) are infixed operators.
not is a prefixed operators.
If a and b are two booleans :

(a or b) (a || b) returns 0 (or false)if a and b are equal to O and returns
1 (or true) otherwise.

(a xor Db) returns 1 if a is equal to 1 and b is equal to O or if a is equal to 0 and
b is equal to 1 and returns O if a and b are equal to O or if a and b are equal to 1 (it
is the "exclusive or").

(a and b) or (a && Db) returns 1 (or true) if a and b are equal to 1 and 0
(or false) otherwise.
not (a) returns 1 (or true)if a is equal to O (or false), and O (or false) if
aisequal to 1 (or true).

Input :
1>=0 or 1<0
Output :
1
Input :
1>=0 xor 1>0
Output :
0
Input :
1>=0 and 1>0
Output :
1
Input :
not (0==0)
Output :

2.2. BOOLEANS 29

2.2.4 Transform a boolean expression to a list : exp21ist

exp2list returnsthelist [expr0, exprl] when the argumentis (var=expr0)
or (var=exprl).

exp2list is used in TI mode for easier processing of the answer to a solve
command.

Input :
exp2list ((x=2) or (x=0))
Output :
[2,0]
Input :
exp2list ((x>0) or (x<2))
Output :
[0,2]
In TI mode input :
exp2list (solve ((x—1)*(x-2)))
Output :

(1,2]

2.2.5 Evaluate booleans : evalb

Inside Maple, evalb evaluates an boolean expression. Since Xcas evaluates
booleans automatically, evalb is only here for compatibility and is equivalent
toeval

Input :
evalb (sgrt (2)>1.41)
or :
sqrt (2)>1.41
Output :
1
Input :
evalb (sgrt (2)>1.42)
or :
sqrt (2)>1.42
Output :

30 CHAPTER 2. THE CAS FUNCTIONS

2.3 Bitwise operators

2.3.1 Operators bitor, bitxor, bitand

The integers may be written using hexadecimal notation Ox... for example Ox1f
represents 16+15=31 in decimal. Integers may also be output in hexadecimal no-
tation (click on the red CAS status button and select Base (Integers)).
bitor is the logical inclusive or (bitwise).

Input :
bitor (0x12, 0x38)
or:
bitor(18,56)
Output :
58
because :

18 is written 0x12 in base 16 or 0b010010 in base 2,
56 1s written 0x38 in base 16 or 0b111000 in base 2,
hence bitor (18, 56) is 0111010 in base 2 and so is equal to 58.

bitxor is the logical exclusive or (bitwise).

Input :
bitxor (0x12, 0x38)
or :
bitxor (18, 56)
Output :
42
because :

18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0b111000 in base 2,
bitxor (18,56) is written 0101010 in base 2 and so, is equal to 42.

bitand is the logical and (bitwise).

Input :
bitand (0x12, 0x38)
or :
bitand(18,56)
Output :
16
because :

18 is written 0x12 in base 16 and 0b010010 in base 2,
56 1s written 0x38 in base 16 and 0b111000 in base 2,
bitand (18, 56) is written 0010000 in base 2 and so is equal to 16.

2.4. STRINGS 31

2.3.2 Bitwise Hamming distance : hamdist

The Hamming distance is the number of differences of the bits of the two argu-
ments.

Input :
hamdist (0x12, 0x38)
or :
hamdist (18, 56)
Output :
3
because :

18 is written 0x12 in base 16 and 0b010010 in base 2,
56 is written 0x38 in base 16 and 0111000 in base 2,
hamdist (18,56) isequal to 1+0+1+0+1+0 and so is equal to 3.

2.4 Strings

2.4.1 Character and string : "

" is used to delimit a string. A character is a string of length one.

Do not confuse " with ’ (or quote) which is used to avoid evaluation of an expres-
sion . For example, "a" returns a string of one character but ” a’ or quote (a)
returns the variable a unevaluated.

When a string is input in a command line, it is evaluated to itself hence the
output is the same string. Use + to concatenate two strings or a string and another
object.

Example :
Input :

"Hello"

"Hello" is the input and also the output.
Input :

"Hello"+", how are you?"
Output :
"Hello, how are you?"

Index notation is used to get the n-th character of a string, (as for lists). Indices
begin at 0 in Xcas mode, 1 in other modes.

Example :

Input :

"Hello"[1]

Output :

32 CHAPTER 2. THE CAS FUNCTIONS

2.4.2 First character, middle and end of a string : head mid tail

e head (s) returns the first character of the string s.
Input :

head ("Hello")
Output :
" H Al

e mid (s, p, q) returns the part of the string s of size g beginning with the
character at index p.
Remember that the first index is 0 in Xcas mode.
Input :

mid("Hello", 1, 3)
Output :
n e l l n

e tail (s) returns the string s without its first character.
Input :

tail ("Hello")
Output :

"ello"

2.4.3 Concatenation of a sequence of words : cumSum

cumSum works on strings like it does on expressions by doing partial concatena-
tion.

cumSum takes as argument a list of strings.

cumSum returns a list of strings where the element of index k is the concatenation
of the strings with indices 0 to & .

Input :

cumSum ("Hello, ","is ", "that ", "you?")
Output :

"Hello, ","Hello, is ","Hello, is that ","Hello, 1is
that you?

2.4. STRINGS 33

2.4.4 ASCII code of a character : ord

ord takes as argument a string s (resp. a list 1 of strings).
ord returns the ASCII code of the first character of s (resp. the list of the ASCII
codes of the first character of the elements of 1).

Input :
ord("a")
Output :
97
Input :
ord ("abcd")
Output :
97
Input :
ord(["abcd", "cde"])
Output :
[97,99]
Input :
ord(["a","b","c","d"])
Output :

[97,98,99,100]

2.4.5 ASCII code of a string : asc

asc takes as argument a string s.
asc returns the list of the ASCII codes of the characters of s.

Input :
asc ("abcd")
Output :
[97,98,99,100]
Input :
asc("a")
Output :

34 CHAPTER 2. THE CAS FUNCTIONS

2.4.6 String defined by the ASCII codes of its characters : char

char takes as argument a list 1 of ASCII codes.
char returns the string whose characters have as ASCII codes the elements of the
list 1.

Input :
char([97,98,99,100])
Output :
"abcd"
Input :
char (97)
Output :
wam
Input :
char (353)
Output :
mam
because:
353 — 256 = 97.

2.4.7 Find a character in a string : inString

inString takes two arguments : a string S and a character c.
inString tests if the character c is in the string S.

inString returns the index of its first occurrence or —1 if ¢ is not in S.
Input :

inString ("abcded", "d")

Output :
3
Input :
inString ("abcd", "e")
Output :

2.4. STRINGS 35

2.4.8 Concat objects into a string : cat

cat takes as argument a sequence of objects.
cat concatenates these objects into a string.

Input :
cat ("abcd", 3, "d")
Output :
"abcd3d"
Input :
c:=5
cat ("abcd",c,"e")
Output :
"abcdbe"
Input :
purge (c)
cat (15, ¢, 3)
Output :
"15c3"

2.4.9 Add an object to a string : +

+ is an infixed operator (resp. ’ +’ is a prefixed operator).

If + (resp. ’+’) takes as argument a string (resp. a sequence of objects with a
string as first or second argument), the result is the concatenation of these objects
into a string.

warning

+is infixed and ’ +’ is prefixed.

Input :

14 +/ ("abcd" , 3, "d")
Output :
'labcd’|+3+"d"
Output :
"abcd3d"
Input :

36 CHAPTER 2. THE CAS FUNCTIONS

Then input:
"abcd"+c+"e"
or :
7+ ("abcd", c, "d")
Output :

"abcdbe"

2.4.10 Transform an integer into a string : cat +

Use cat with the integer as argument, or add the integer to an empty string
Input :

""+123
or:
cat (123)
Output :
"i23"

2.4.11 Transform a string into a number : expr
Use expr, the parser with a string representing a number.

e For integers, enter the string representing the integer without leading O for
basis 10, with prefix 0x for basis 16, 0 for basis 8 or Ob for basis 2. Input :

expr ("123")
Output :
123
Input :
expr ("0123")
Output :
83
because :
1%824+2%x8+3=283
Input :

expr ("0x12f")

2.4. STRINGS 37

Output :

303

Because : 1% 162 + 2% 16 + 15 = 303

e For decimal numbers, use a string with a . or e inside.

Input :
expr("123.4567")
Output :
123.4567
Input :
expr ("123e-5")
Output :

0.00123

e Note that expr more generally transforms a string into a command if the
command exists.

Input :
expr ("a:=1")
Output :
1
Then, input :
a
Output :

38 CHAPTER 2. THE CAS FUNCTIONS

2.5 Write an integer in base b: convert

convert or convertir can do different kind of conversions depending on the
option given as the second argument.

To convert an integer n into the list of its coefficients in base b, the option is
base. The arguments of convert or convertir are an integer n, base and
b, the value of the basis.
convert or convertir returns the list of coefficients in a b basis of the integer
n.

Input :

convert (123, base, 8)
Output :
[3,7,1]

To check the answer, input expr ("0173") orhorner (revlist ([3,7,11),8)
or convert ([3,7,1],base, 8), the outputis 123
Input :

convert (142, base, 12)
Output :
[10,11]

To convert the list of coefficients of an integer n in base b, the option is also
base. convert or convertir returns the integer n.

Input :
convert ([3,7,1],base, 8)
or:
horner (revlist ([3,7,11),8)
Output :
123
Input :
convert ([10,11],base, 12)
or :
horner (revlist ([10,11]1),12)
Output :

142

2.6 Integers (and Gaussian Integers)

For all functions in this section, you can use Gaussian integers (numbers of the
form a + b, where @ and b are in Z) in place of integers.

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 39

2.6.1 The factorial : factorial

Xcas can manage integers with unlimited precision, such as the following:
Input :

factorial (100)
Output :

9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
697920827223758251185210916864000000000000000000000000

2.6.2 GCD:gcd igcd

gcd or igcd denotes the ged (greatest common divisor) of several integers (for
polynomials, see also 2.25.7).
gcd or 1gcd returns the GCD of integers.

Input :
gcd (18, 15)

Output :

3
Input :

gcd(18,15,21,36)

Output :

3
Input :

gcd([18,15,21,36])

Output :

3

We can also put as parameters two lists of same size (or a matrix with 2 rows), in
this case gcd returns the greatest common divisor of the elements with same index
(or in the same column).

Input :

gcd([6,10,121,[21,5,81)
or:

ged([[6,10,12],[21,5,81])
Output :

[3,5,4]

40 CHAPTER 2. THE CAS FUNCTIONS

An example
Find the greatest common divisor of 4n + 1 and 5n + 3 whenn € N.
Input :

f(n) :=gcd (4*n+1,5+xn+3)

Then, input :

essai (n) :={
local j,a,L;
L:=NULL;
for (j:=-n;j<n; j++) |
a:=£f£(3);
if (a'=1) {
L:=L,[]j,al;

}

return L;

}

Then, input :

essai (20)
Output :
[_161 7]/ [_917]1 [_217]1 [517]1 [1217]1 [1917]

So we now have to prove that :
Ifn # 5+k«7 (for k € Z), 4n+1 and 5n+3 are mutually prime, and n = 5+k*7
(for k € Z), then the greatest common divisor of 4n + 1 and 5n + 3 is 7.

2.6.3 GCD:Gcd

Gced is the inert form of gcd. See the section ?? for polynomials with coefficients
in Z/pZ for using this instruction.
Input :

Gcd (18,15)
Output :

gcd (18, 15)

2.6.4 GCD of alist of integers : 1gcd

lgcd has alist of integers (or of a list of polynomials) as argument.

lgcd returns the gcd of all integers of the list (or the gcd of all polynomials of
the list).

Input :

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 41

lgcd([18,15,21,36])

Output :

Remark
1gcd does not accept two lists (even if they have the same size) as arguments.
2.6.5 The least common multiple : 1cm

1cm returns the least common multiple of two integers (or of two polynomials, see
also 2.25.10).
Input :

lem(18,15)
Output :

90

2.6.6 Decomposition into prime factors : i factor

ifactor has an integer as parameter.
ifactor decomposes an integer into its prime factors.

Input :
ifactor (90)
Output :
2%37°2%5
Input :
ifactor (-90)
Output :

(=1) *2x372%5

2.6.7 List of prime factors : ifactors

ifactors has an integer (or a list of integers) as parameter.

ifactors decomposes the integer (or the integers of the list) into prime factors,
but the result is given as a list (or a list of lists) in which each prime factor is
followed by its multiplicity.

Input :

ifactors (90)
Output :

(2,1,3,2,5,1]

42 CHAPTER 2. THE CAS FUNCTIONS

Input :
ifactors (-90)
Output :
[-1,1,2,1,3,2,5,1]
Input :
ifactor ([36,52])
Output :

(t2,2,3,2],102,2,13,1]]

2.6.8 Matrix of factors : maple_ifactors

maple_ifactors has an integer n (or a list of integers) as parameter.
maple_1ifactors decomposes the integer (or the integers of the list) into prime
factors, but the output follows the Maple syntax :

it is a list with +1 or -1 (for the sign) and a matrix with 2 columns and where the
lines are the prime factors and their multiplicity (or a list of lists...).

Input :

maple_ifactors (90)

Output :

(1, 002,11,03,2],[5,11]]
Input :

maple_ifactor ([36,52])
Output :

(1,002,231, 03,2111, (1, 012,21, [13,1111]]

2.6.9 The divisors of a number : idivis divisors

idivis or divisors gives the list of the divisors of a number (or of a list of
numbers).

Input :
idivis (36)
Output :
(1,2,4,3,6,12,9,18,36]
Input :
idivis ([36,22])
Output :

((1,2,4,3,6,12,9,18,36]1,1[1,2,11,22]]

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 43

2.6.10 The integer Euclidean quotient : iquo intDiv

iquo (or intDiv) returns the integer quotient g of the Euclidean division of two
integers a and b given as arguments. (a = b g+ r with 0 < r < b).

For Gaussian integers, we choose ¢ so that b * ¢ is as near by a as possible and it
can be proved that 7 may be chosen so that |r|? < |b|?/2.

Input :

iquo (148, 5)
Output :
29

iquo works with integers or with Gaussian integers.

Input :
iquo (factorial (148), factorial (145)+2)
Output :
3176375
Input :
iquo (25+12%1i,5+7*1)
Output :

3-2%1
Herea —bxq=—4+iand | —4+i]> =17 < |5+ 7*i|?/2 =74/2 =37

2.6.11 The integer Euclidean remainder: irem remain smod mods

¢

mod %

irem (or remain) returns the integer remainder r from the Euclidean division of
two integers a and b given as arguments (@ = b ¢+ r with 0 < r < b).

For Gaussian integers, we choose ¢ so that b * ¢ is as near to a as possible and it
can be proved that » may be chosen so that |r|? < [b[?/2.

Input :

irem(148,5)
Output :
3

irem works with long integers or with Gaussian integers.
Example :

irem(factorial (148), factorial (45)+2)

Output :

44 CHAPTER 2. THE CAS FUNCTIONS

111615339728229933018338917803008301992120942047239639312
Another example
irem (254+12x1i,5+7%*1)
Output :
—-4+1

Herea —b*q=—4+iand | —4+i> =17 < |5+ 7*i]?/2 =74/2 =37
smod or mods is a prefixed function and has two integers a and b as arguments.

smod or mods returns the symmetric remainder s of the Euclidean division of the

arguments a and b (a = b * ¢ + s with —b/2 < s < b/2).

Input :

smod (148, 5)
Output :
-2

mod (or %) is an infixed function and has two integers a and b as arguments.
mod (or %) returns r%b of Z/bZ where r is the remainder of the Euclidean division
of the arguments a and b.

Input :
148 mod 5
or :
148 % 5
Output :
3% 5

Note that the answer 3 % 5 is not an integer (3) but an element of Z/57 (see 2.31
to have the possible operations in Z/572).

2.6.12 Euclidean quotient and euclidean remainder of two integers :
iquorem

iquorem returns the list of the quotient ¢ and the remainder r of the Euclidean
division between two integers a and b given as arguments (a = b *x ¢ + r with
0<r<b).

Input :

iquorem(148,5)
Output :

[29, 3]

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 45

2.6.13 Test of evenness : even

even takes as argument an integer n.
even returns 1 if n is even and returns O if n is odd.

Input :
even (148)
Output :
1
Input :
even (149)
Output :

2.6.14 Test of oddness : odd

odd takes as argument an integer n.
odd returns 1 if n is odd and returns 0 if n is even.

Input :
odd (148)
Output :
0
Input :
odd (149)
Output :
1

2.6.15 Test of pseudo-primality : is_pseudoprime

If is_pseudoprime (n) returns 2 (true), then n is prime.

If it returns 1, then n is pseudo-prime (most probably prime).

If it returns O, then n is not prime.

DEFINITION: For numbers less than 10'4, pseudo-prime and prime are equivalent.
But for numbers greater than 10'4, a pseudo-prime is a number with a large prob-
ability of being prime (cf. Rabin’s Algorithm and Miller-Rabin’s Algorithm in the
Algorithmic part (menu Help->Manuals->Programming)).

Input :

is_pseudoprime (100003)

Output :

46 CHAPTER 2. THE CAS FUNCTIONS

Input :
is_pseudoprime (9856989898997)

Output :

2
Input :

is_pseudoprime (14)

Output :

0
Input :

is_pseudoprime (9856989898997789789)

Output :

2.6.16 Test of primality : is_prime isprime isPrime

is_prime (n) returns 1 (true) if n is prime and O (false) if n is not prime.
isprime returns true or false.

Use the command pari ("isprime",n, 1) to have a primality certificate (see
the documentation PARI/GP with the menu Help—->Manuals—->PARI-GP) and
pari ("isprime",n, 2) touse the APRCL test.

Input :
is_prime (100003)
Output :
1
Input :
isprime (100003)
Output :
true
Input :
is_prime (98569898989987)
Output :
1
Input :

is_prime(14)

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 47

Output :
0
Input :
isprime (14)
Output :
false
Input :

pari("isprime", 9856989898997789789,1)

This returns the coefficients giving the proof of primality by the p — 1 Selfridge-
Pocklington-Lehmer test :

(r2,2,11,119,2,11,1941,2,11,11873,2,11,[94907,2,11]1
Input :
isprime (9856989898997789789)
Output :

true

2.6.17 The smallest pseudo-prime greater than n : nextprime

nextprime (n) returns the smallest pseudo-prime (or prime) greater than n.
Input :

nextprime (75)
Output :

79

2.6.18 The greatest pseudo-prime less than n : prevprime

prevprime (n) returns the greatest pseudo-prime (or prime) less than n.
Input :

prevprime (75)
Output :

73

48 CHAPTER 2. THE CAS FUNCTIONS

2.6.19 The n-th prime number : ithprime

ithprime (n) returns the n-th prime number less than 10000 (current limita-
tion).

Input :
ithprime (75)
Output :
379
Input :
ithprime (1229)
Output :
9973
Input :
ithprime (1230)
Output :

ithprime (1230)

because ithprime (1230) is greater than 10000.

2.6.20 Bézout’s Identity : iegcd igcdex

iegcd(a,b) or igcdex (a, b) returns the coefficients of the Bézout’s Identity
for two integers given as arguments.

iegcd(a,b) or igcdex (a,b) returns [u, v, d] such that au+bv=d and
d=gcd (a,b).

Input :

iegcd (48, 30)
Output :
[2,-3,6]
In other words :
2484+ (-3)-30=6
2.6.21 Solving au+bv=cin Z: iabcuv

iabcuv (a, b, ¢) returns [u, v] so that au+bv=c.
c must be a multiple of gcd (a, b) for the existence of a solution.
Input :

iabcuv (48,30, 18)
Output :
[61_9]

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 49

2.6.22 Chinese remainders : ichinrem, ichrem

ichinrem([a,p], [b,gq]) orichrem([a,p], [b,qg]) returnsalist [c, lcm(p, q)]
of 2 integers.
The first number c is such that

VkeZ, d=c+kxlem(p,q)
has the properties
d=a (modp), d=b (modq)

If p and g are coprime, a solution d always exists and all the solutions are congru-
ent modulo p*q.

Examples :
Solve :

x = 3(modb)

z = 9 (mod 13)
Input :

ichinrem([3,5],[9,13])
or :
ichrem ([3,5],[19,13])

Output :

[-17,65]

so x=-17 (mod 65)
We can also input :

ichrem(3%5,9%13)

Output :
-17%65

Solve :

x = 3(mod5)

x = 4(mod?7)

z = 1(mod?9)
First input :

tmp:=ichinrem([3,5],[4,7])
or:
tmp:=ichrem([3,5],[4,7])

Output :

[-17,35]

50 CHAPTER 2. THE CAS FUNCTIONS

Then input :
ichinrem([1, 9], tmp)
or:
ichrem([1,9], tmp)
Output :

[-17,315]

hence x=—-17 (mod 315)
Alternative input:

ichinrem ([3%5,4%7,1%9])
Output :
-17%315

Remark
ichrem(orichinrem)may be used to find the coefficients of a polynomial whose
equivalence classes are known modulo several integers, for example find ax + b
modulo 315 = 5 X 7 x 9 under the assumptions:

a= 3 (mod5) b= 1 (mod5)
a= 4(mod7) , b= 2 (modT7)
a= 1(mod?9) b= 3(mod9)
Input :
ichrem((3x+1) %5, (4x+2)%7, (x+3)%9)
Output :

(-17%315%x x+156%315
hence a=-17 (mod 315) and b=156 (mod 315).

2.6.23 Chinese remainders for lists of integers : chrem

chrem takes as argument 2 lists of integers of the same size.
chrem returns a list of 2 integers.
For example, chrem ([a, b, c], [p, g, r]) returns the list [x, lcm (p, g, 1)]
where x=a mod p and x=b mod gand x=c mod r.
A solution x always exists if p, g, r are mutually primes, and all the solutions
are equal modulo pxgxr.
BE CAREFUL with the order of the parameters, indeed :
chrem([a,b], [p,g])=ichrem([a,p]l, [b,q])=
ichinrem([a,p], [b,q])
Examples :
Solve :
= 3 (mod5)
{ x = 9 (mod 13)

Input :

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 51

chrem([3,9],[5,131])

Output :

[-17,65]
s0, x=—17 (mod 65)
Solve :

x = 3 (mod 5)

= 4 (mod 6)

x= 1 (mod?9)
Input :

chrem([3,4,1],[5,6,9])

Output :

[28,90]

so x=28 (mod 90)

Remark

chrem may be used to find the coefficients of a polynomial whose equivalence
classes are known modulo several integers, for example find ax + b modulo 315 =
5 X 7 x 9 under the assumptions:

a= 3 (mod5) b= 1 (mod 5)
a= 4(mod?7) , b= 2(mod7)
a= 1(mod?9) = 3 (mod9)
Input :
chrem([3x+1,4x+2,x+31,1[5,7,91)
Output :

[-17x+156,315]

hence, a=-17 (mod 315) and b=156 (mod 315).

2.6.24 Solving a®> + > = pinZ: pa2b2

pa2b2 decompose a prime integer p congruent to 1 modulo 4, as a sum of squares
: p = a® + b%. The result is the list [a,b].
Input :

pa2b2 (17)
Output :
(4,1]

indeed 17 = 42 + 12

52 CHAPTER 2. THE CAS FUNCTIONS

2.6.25 The Euler indicatrix : euler phi

euler (or phi) returns the Euler indicatrix for a integer.

euler (n) (or phi (n))is equal to the number of integers less than n and prime
with n.

Input :

euler (21)
Output :
12

In other words E={2,4,5,7,8,10,11,13,15,16,17,19} is the set of integers less than
21 and coprime with 21. There are 12 members in this set, hence Cardinal(E)=12.
Euler has introduced this function to generalize the little Fermat theorem:

If a and n are mutually prime then acuer() = 1 mod n

2.6.26 Legendre symbol : 1egendre_symbol

If n is prime, we define the Legendre symbol of a written (%) by :
a 0 ifa=0 modn

(—)z 1 ifa # 0 mod n and if a = b mod n

—1 ifa # 0 mod n and if a # b* mod n

Some properties

e If nis prime :

(p) . <q> = (—1)172;1.(—1)(171 if p and ¢ are odd and positive
q p

legendre_symbol takes two arguments a and n and returns the Legendre sym-

bol ().
Input :
legendre_symbol (26,17)
Output :
1
Input :

legendre_symbol (27,17)

2.6. INTEGERS (AND GAUSSIAN INTEGERS) 53

Output :
-1
Input :
legendre_symbol (34,17)
Output :

2.6.27 Jacobi symbol : jacobi_symbol

If n is not prime, the Jacobi symbol of a, denoted as (%), is defined from the

Legendre symbol and from the decomposition of n into prime factors. Let
n = pit.ppk

where p; is prime and «; is an integer for j = 1..k. The Jacobi symbol of a is

defined by :
-GG
n Y4 T\

jacobi_symbol takes two arguments a and n, and it returns the Jacobi symbol

()

Input :
jacobi_symbol (25,12)
Output :
1
Input :
jacobi_symbol (35,12)
Output :
-1
Input :
jacobi_symbol (33,12)
Output :

54 CHAPTER 2. THE CAS FUNCTIONS

2.7 Combinatorial analysis

2.7.1 Factorial : factorial !

factorial (prefix) or ! (postfix) takes as argument an integer n.
factorial (n) orn! returns n!.

Input :
factorial (10)
or
10!
Output :
3628800

2.7.2 Binomial coefficients : binomial comb nCr

comb or nCr or binomial takes as argument two integers n and p.
comb (n,p) ornCr (n,p) orbinomial (n, p) returns (Z) = Cﬁ.
Input :

comb (5, 2)
Output :
10

Remark

binomial (unlike comb, nCr) may have a third real argument, in this case
binomial (n, p,a) returns (Z) aP(1—a)"P.

2.7.3 Permutations : perm nPr

perm or nPr takes as arguments two integers n and p.
perm (n, p) ornPr (n, p) returns Py.
Input :

perm(5,2)
Output :

20

2.7.4 Random integers : rand

rand takes as argument an integer n or no argument.

e rand (n) returns a random integer p such that 0 < p < n.
Input :

rand (10)

2.8. RATIONALS 55

Output for example :
8

e rand () returns a random integer p such that 0 < p < 23! (or on 64 bits
architecture 0 < p < 263).
Input :

rand ()
Output for example :

846930886

2.8 Rationals

2.8.1 Transform a floating point number into a rational : exact
float2rational

float2rational or exact takes as argument a floating point number d and
returns a rational number g close to d such that abs (d—q) <epsilon. epsilon
is defined in the cas configuration (Cfg menu) or with the cas_setup com-
mand.
Input :

float2rational (0.3670520231)

Output when epsilon=1e-10:

127/346

Input :

evalf (363/28)
Output :

12.9642857143
Input :

float2rational (12.9642857143)

Output :

363/28
If two representations are mixed, for example :
1/24+0.7
the rational is converted to a float, output :
1.2
Input :
1/2+float2rational (0.7)
Output :
6/5

56 CHAPTER 2. THE CAS FUNCTIONS

2.8.2 Integer and fractional part : propfrac propFrac
propfrac (A/B) or propFrac (A/B) returns
q—|—% with 0 <r <b

A
ifE = %with ged(a,b) = 1and a = bg + r.

For rational fractions, cf. 2.28.8.

Input :
propfrac(42/15)
Output :
2+4/5
Input :
propfrac (43/12)
Output :

3+7/12
2.8.3 Numerator of a fraction after simplification : numer
getNum

numer or getNum takes as argument a fraction and returns the numerator of this
fraction after simplification (for rational fractions, see 2.28.2).

Input :
numer (42/12)
or:
getNum(42/12)
Output :
-

To avoid simplifications, the argument must be quoted (for rational fractions see
2.28.1).

Input :

numer (742/127")
or:

getNum(’42/12")
Output :

42

2.8. RATIONALS 57

2.8.4 Denominator of a fraction after simplification : denom getDenom

denom or getDenom takes as argument a fraction and returns the denominator of
this fraction after simplification (for rational fractions see 2.28.4).
Input :

denom (42/12)
or:
getDenom (42/12)
Output :
2

To avoid simplifications, the argument must be quoted (for rational fractions see
2.28.3).

Input :
denom (' 42/12")
or:
getDenom (' 42/12")
Output :

12

2.8.5 Numerator and denominator of a fraction : £2nd fxnd

f2nd (or £xnd) takes as argument a fraction and returns the list of the numera-
tor and denominator of this fraction after simplification (for rational fractions see
2.28.5).

Input :

f2nd (42/12)
Output :
[7,2]

2.8.6 Simplification of a pair of integers : simp?2

simp2 takes as argument two integers or a list of two integers which represent a
fraction (for two polynomials see 2.28.6).

simp2 returns the list of the numerator and the denominator of an irreducible
representation of this fraction (i.e. after simplification).

Input :
simp2 (18,15)
Output :
[6,5]
Input :
simp2([42,12])
Output :

(7,2]

58 CHAPTER 2. THE CAS FUNCTIONS

2.8.7 Continued fraction representation of a real : dfc

dfc takes as argument a real or a rational or a floating point number a and an
integer n (or areal epsilon).
dfc returns the list of the continued fraction representation of a of order n (or
with precision epsilon i.e. the continued fraction representation which approx-
imates a or evalf (a) with precision epsilon, by default epsilon is the
value of the epsilon defined in the cas configuration with the menu C£g»-Cas
Configuration).
convert with the option confrac has a similar functionality: in that case the
value of epsilon is the value of the epsilon defined in the cas configuration
with the menu Cfgp»Cas Configuration (see 2.21.23) and the answer may
be stored in an optional third argument.

Remarks

o If the last element of the result is a list, the representation is ultimately peri-
odic, and the last element is the period. It means that the real is a root of an
equation of order 2 with integer coefficients.

o if the last element of the result is not an integer, it represents a remainder r
(a=a0+1/....4 1/an + 1/r). Be aware that this remainder has lost most
of its accuracy.

If dfc(a)=[a0,al, a2, [b0,bl]] that means :

a:a0+a1+a2+1 11
bo+bl+%
If dfc (a)=[a0,al, a2, r] that means :
azaO—I—*1
a1+a2+%
Input :
dfc(sgrt (2),5)
Output :
[1,2,12]]
Input :
dfc(evalf (sgrt (2)),1le-9)
or :
dfc(sqgrt (2),1le-9)
Output :

(,2,2,2,2,2,2,2,2,2,2,2,2]

Input :

2.8. RATIONALS 59

convert (sqrt (2) ,confrac, ' dev’)
Output (if in the cas configuration epsilon=1e-9):
(1,2,2,2,2,2,2,2,2,2,2,2,2]
and [1,2,2,2,2,2,2,2,2,2,2,2,2] is stored in dev.

Input :

dfc(9976/6961,5)
Output :

[1,2,3,4,5,43/7]
Input to verify:

1+1/(2+41/ (3+1/(4+1/(5+7/43))))
Output :
9976/6961

Input :

convert (9976/6961, confrac,’1’)
Output (if in the cas configuration epsilon=1e-9):
[1r 2/ 3/ 4/ 5/ 6/ 7]

and [1,2,3,4,5,6,7] isstoredin 1

Input :
dfc (pi, 5)
Output :
[3,7,15,1,292, (-113%pi+355)/(33102xpi-103993)]
Input :

dfc(evalf (pi), 5)
Output (if floats are hardware floats, e.g. for Digits=12) :
[3,7,15,1,292,1.57581843574]
Input :
dfc(evalf (pi),1le-9)
or:
dfc (pi, 1e-9)
or (if in the cas configuration epsilon=1e-9):
convert (pi, confrac,’11’)
Output :

[3,7,15,1,292]

60 CHAPTER 2. THE CAS FUNCTIONS

2.8.8 Transform a continued fraction representation intoareal : dfc2f
dfc2f takes as argument a list representing a continued fraction, namely
e a list of integers for a rational number

e a list whose last element is a list for an ultimately periodic representation,
i.e. a quadratic number, that is a root of a second order equation with integer
coefficients.

e or a list with a remainder r as last element (a = a0+ 1/.... + 1/an + 1/r).

dfc2f returns the rational number or the quadratic number with the argument as
continued fraction representation.
Input :

dfc2f ([1,2,[2]])
Output :
1/(1/ (1l+sqrt (2))+2) +1

After simplification with normal :

sgrt (2)

Input :
dfc2f([1,2,3])
Output :
10/7
Input :
normal (dfc2f([3,3,6,[3,611]1))

Output :

sgrt (11)
Input :

dfc2f([1,2,3,4,5,6,71)

Output :

9976/6961
Input to verify :
1+1/(2+1/ (3+1/ (4+1/ (5+1/ (6+1/7)))))
Output :
9976/6961

Input :

2.8. RATIONALS 61

dfc2f([1,2,3,4,5,43/71])
Output :
9976/6961
Input to verify :
1+1/(2+1/ (3+1/ (4+1/(5+7/43))))
Output :

9976/6961

2.8.9 The n-th Bernoulli number : bernoulli

bernoulli takes as argument an integer n.
bernoulli returns the n-th Bernoulli number B(n).
The Bernoulli numbers are defined by :

t_ *f B(n).,
et —1 n!
n=0

Bernoulli polynomials By, are defined by :

1
Bo=1, By(z)= kB 1(z). / Bi(z)dz = 0
0
and the relation B(n) = B,,(0) holds.
Input :
bernoulli (6)
Output :

1/42

2.8.10 Access to PARI/GP commands: pari

e pari with a string as first argument (the PARI command name) execute the
corresponding PARI command with the remaining arguments. For exam-
ple pari ("weber", 1+1) executes the PARI command weber with the
argument 1+1.

e pari without argument exports all PARI/GP functions

— with the same command name if they are not already defined inside
Xcas

— with their original command name with the prefix pari_

For example, after calling pari (),pari_weber (1+i) orweber (1+1)
will execute the PARI command weber with the argument 1+1.

The documentation of PARI/GP is available with the menu Help->Manuals.

62 CHAPTER 2. THE CAS FUNCTIONS

2.9 Real numbers

2.9.1 Eval areal at a given precision : evalf and Digits,DIGITS

e A real number is an exact number and its numeric evaluation at a given pre-
cision is a floating number represented in base 2.
The precision of a floating number is the number of bits of its mantissa,
which is at least 53 (hardware float numbers, also known as doub1e). Float-
ing numbers are displayed in base 10 with a number of digits controlled by
the user either by assigning the Digits variable or by modifying the Cas
configuration. By default Digits is equal to 12. The number of digits dis-
played controls the number of bits of the mantissa, if Digits is less than 15,
53 bits are used, if Digits is strictly greater than 15, the number of bits is a
roundoff of Digits times the log of 10 in base 2.

e An expression is coerced into a floating number with the evalf command.
evalf may have an optional second argument which will be used to evalu-
ate with a given precision.

e Note that if an expression contains a floating number, evaluation will try
to convert other arguments to floating point numbers in order to coerce the
whole expression to a single floating number.

Input :
1+1/2

Output :

3/2
Input :

1.0+1/2

Output :

1.5
Input:

exp (pi*xsqrt (20))

Output :

exp (pi*x2xsqrt (5))
With evalf, input:
evalf (exp (pi*2+sgrt (5)))
Output :
1263794.75367

Input :

2.9. REAL NUMBERS 63

1.1720
Output :
6.72749994933
Input :
sgrt (2) 21
Output :

sqrt (2) *2710
Input for a result with 30 digits :
Digits:=30
Input for the numeric value of ™V 163:
evalf (exp (pi*xsgrt (163)))
Output :
0.262537412640768743999999999985¢e138

Note that Digits is now set to 30. If you don’t want to change the value of
Digits you may input

evalf (exp (pi*sqgrt (163)),30)

2.9.2 Usual infixed functionsonreals: +,—, x, /, ~

+,—,*,/," are the usual operators to do additions, subtractions, multiplica-
tions, divisions and for raising to a power.

Input :
3+2
Output :
5
Input :
3-2
Output :
1
Input :
3%2
Output :

64 CHAPTER 2. THE CAS FUNCTIONS

Input :
3/2
Output :
3/2
Input :
3.2/2.1
Output :
1.52380952381
Input :
372
Output :
9
Input :
3.27°2.1
Output :
11.5031015682
Remark

You may use the square key or the cube key if your keyboard has one, for example
: 32 returns 9.
Remark on non integral powers

e If z is not an integer, then a” = exp(z In(a)), hence a” is well-defined only
for @ > 0 if x is not rational. If x is rational and a < 0, the principal
determination of the logarithm is used, leading to a complex number.

. 1 .
e Hence be aware of the difference between {/a and a» when n is an odd
integer.
For example, to draw the graph of y = v/z3 — 22, input :

plotfunc (ifte (x>0, (x*3-x2) " (1/3),
—(x72-x"3)"(1/3)),x,xstep=0.01)

You might also input :
plotimplicit (y*"3=x"3-x"2)

but this is much slower and much less accurate.

2.9. REAL NUMBERS 65

2.9.3 Usual prefixed functions on reals : rdiv

rdiv is the prefixed form of the division function.

Input :
rdiv (3, 2)
Output :
3/2
Input :
rdiv(3.2,2.1)
Output :

1.52380952381

2.9.4 n-throot: root

root takes two arguments : an integer n and a number a.
root returns the n-th root of a (i.e. al/ ™). If a < 0, the n-th root is a complex
number of argument 27 /n.

Input :
root (3, 2)
Output :
27 (1/3)
Input :
root (3,2.0)

Output :

1.259921049892
Input :

root (3, sqrt (2))
Output :

27 (1/6)

66 CHAPTER 2. THE CAS FUNCTIONS

2.9.5 Error function : erf

erf takes as argument a number a.
erf returns the floating point value of the error function at z = a, where the error

function is defined by :
2 [T
erf(z) = — / et
VT Jo

The normalization is chosen so that:

erf(+o0) =1, erf(—oc0) = —1

since :
—+o00

/ e Cdt = ﬁ

0 2
Input :

erf (1)

Output :

0.84270079295
Input :

erf (1/(sgrt(2)))*1/2+0.5

Output :

0.841344746069
Remark

The relation between er £ and normal_cdf is:

1_cdf(z) = ¢ + gert(-)
norma C - er ——
- V2
Indeed, making the change of variable ¢t = u * /2 in
normal_cdf(z) / e P2t
gives :
vz 1 T
normal_cdf(z) = = + / e du = - + erf(—)
\/>

Check :

normal_cdf (1)=0.841344746069

2.9. REAL NUMBERS 67

2.9.6 Complementary error function: erfc

erfc takes as argument a number a.
erfc returns the value of the complementary error function at x = a, this function
is defined by :

2 [T
efe() = —= / et =1 — erf()
7T X

Hence erfc(0) = 1, since :

+o0
/ et = ﬁ
0

2
Input :
erfc(1l)
Output :
0.15729920705
Input :
1- erfc(l/(sqgrt(2)))*1/2
Output :
0.841344746069
Remark

The relation between erfc and normal_cdfis:

)

normal_cdf(z)=1-— ierfc(

Sl

Check :
normal_cdf (1)=0.841344746069

2.9.7 TheT function : Gamma

Gamma takes as argument a number a.
Gamma returns the value of the I" function in a, defined by :

“+o0
I'(x) :/ et ldt, ifx >0
0

If z is a positive integer, I' is computed by applying the recurrence :
MNz+1)=z«x[(x), T1)=1

Hence :
I'(n+1) =n!

Input :

Gamma (5)

68 CHAPTER 2. THE CAS FUNCTIONS

Output :
24

Input :

Gamma (0.7)
Output :

1.29805533265

Input :

Gamma (-0.3)
Output :

-4.32685110883
Indeed : Gamma (0.7)=-0.3*Gamma (-0.3)

Input :
Gamma (=1.3)
Output :
3.32834700679
Indeed Gamma (0.7)=-0.3xGamma (-0.3)=(-0.3) *(-1.3) *Gamma (-1.3)

2.9.8 The function : Beta

Beta takes as argument two reals a, b.
Bet a returns the value of the 8 function at a, b € R, defined by :

1
- 1 D)= I(y)
(@9) 0 () Iz +y)
Remarkable values :

1 1
L,1)=1 1) =— 2) = ——
LD =1,)=, n2) = oo
Beta (x,y) is defined for x and y positive reals (to ensure the convergence of the
integral) and by prolongation for x and y if they are not negative integers.

Input :

Beta (5, 2)

Output :
1/30

Input :

Beta (x,vy)
Output :

Gamma (x) *Gamma (y) /Gamma (x+y)
Input :
Beta(5.1,2.2)

Output :

0.0242053671402

2.9. REAL NUMBERS 69

2.9.9 Derivatives of the DiGamma function : Psi

Psi takes as arguments a real a and an integer n (by default n = 0).

Psi returns the value of the n-th derivative of the DiGamma function at z = a,
where the DiGamma function is the first derivative of In(I'(x)). This function is
used to evaluated sums of rational functions having poles at integers.

Input :

Psi(3,1)
Output :
pi~2/6-5/4

If n=0, you may use Psi (a) instead of Psi (a, 0) to compute the value of
the DiGamma function at x = a.

Input :
Psi (3)
Output :
Psi(1)+3/2
Input :
evalf (Psi(3))
Output :

.922784335098

2.9.10 The ¢ function : Zeta

Zeta takes as argument a real x.

Zetareturns forxz > 1:
+oo 1
(2)=) —

ne
n=1

and for < 1 its meromorphic continuation.

Input :

Zeta (2)
Output :

pit2/6
Input :

Zeta (4)
Output :

pi~4/90

70 CHAPTER 2. THE CAS FUNCTIONS

2.9.11 Airy functions : Airy_Ai and Airy_Bi

Airy_Ai and Airy_Bi take as arguments a real x.
Airy_Aiand Airy_Bi are two independent solutions of the equation

' —xxy=0
They are defined by :

Airy_Ai(z) = (1/7) /000 cos(t3/3 + x x t)dt

Airy_Bi(z) = (1/n) /Ooo(e_ts/?’ +sin(t3/3 + x x t))dt

Properties :
Airy_Ai(x) = Airy_Ai(0) * f(z) + Airy_Ai'(0) * g(x)
Airy_Bi(x) = V3(Airy_Ai(0) * f(z) — Airy_Ai'(0) * g(x))

where f and g are two entire series solutions of
w' —zxw=0

more precisely :

S T(k+3)\ o
fle) = ZBk(08) (3k)!

1
k=0 3
glz) = ii’)k (F(ﬁ(g)i)) (;flj:y
k=0 3 '
Input :
Airy_Ai (1)
Output :
0.135292416313
Input :
Airy Bi (1)
Output :
1.20742359495
Input :
Airy_Ai (0)
Output :
0.355028053888
Input :
Airy_Bi(0)
Output :

0.614926627446

2.10. PERMUTATIONS 71

2.10 Permutations

A permutation p of size n is a bijection from [0..n — 1] on [0..n — 1] and is repre-
sented by the list : [p(0),p(1),p(2)...p(n — 1)].

For example, the permutation p represented by [1, 3,2, 0] is the application from
[0,1,2,3] on [0, 1,2, 3] defined by :

A cycle c of size p is represented by the list [ag, ..., ap—1] (0 < ap < n —1)itis
the permutation such that

c(a;) = ajpq for (i =0..p—2), c(ap—1) =ap, c(k) =k otherwise

A cycle cis represented by a list and a cycle decomposition is represented by a list
of lists.

For example, the cycle ¢ represented by the list [3, 2, 1] is the permutation ¢ defined
by ¢(3) = 2, ¢(2) =1, ¢(1) = 3, ¢(0) = 0 (i.e. the permutation represented by
the list [0, 3, 1, 2]).

2.10.1 Random permutation : randperm

randperm takes as argument an integer n.
randperm returns a random permutation of [0..n — 1].
Input :

randperm(3)
Output :
[2,0,1]
2.10.2 Decomposition as a product of disjoint cycles :
permuzcycles

permu2cycles takes as argument a permutation.
permu2cycles returns its decomposition as a product of disjoint cycles.
Input :

permu2cycles([1,3,4,5,2,0])
Output :
[[0,1,3,51,1[2,4]]

In the answer the cycles of size 1 are omitted, except if n — 1 is a fixed point of the
permutation (this is required to find the value of n from the cycle decomposition).
Input :

permu2cycles([0,1,2,4,3,5])
Output :

([5]1,13,4]]

72 CHAPTER 2. THE CAS FUNCTIONS

Input :
permu2cycles ([0,1,2,3,5,41)
Output :

([4,5]]

2.10.3 Product of disjoint cycles to permutation: cycles2permu

cycles2permu takes as argument a list of cycles.

cycles2permu returns the permutation (of size n chosen as small as possible)
that is the product of the given cycles (it is the inverse of permu2cycles).
Input :

cycles2permu([[1,3,5],1[2,411)

Output :

[0,3,4,5,2,1]
Input :

cycles2permu([[2,4]])

Output :

[0,1,4,3,2]
Input :

cycles2permu([[5],12,411)

Output :

(0,1,4,3,2,5]

2.10.4 Transform a cycle into permutation : cycle2perm

cycle2perm takes on cycle as argument.

cycle2perm returns the permutation of size n corresponding to the cycle given
as argument, where n is chosen as small as possible (see also permu2cycles
and cycles2permu).

Input :

cyclel2perm([1,3,5])
Output :

[01312151411]

2.10. PERMUTATIONS 73

2.10.5 Transform a permutation into a matrix : permu2mat

permu2mat takes as argument a permutation p of size n.

permu2mat returns the matrix of the permutation, that is the matrix obtained by
permuting the rows of the identity matrix of size n with the permutation p.

Input :

permuZ2mat ([2,0,1])
Output :

(eo,0,11,11,0,01,00,1,0]]

2.10.6 Checking for a permutation : is_permu

is_permu is a boolean function.

is_permu takes as argument a list.

is_permu returns 1 if the argument is a permutation and returns O if the argument
is not a permutation.

Input :
is_permu([2,1,3])
Output :
0
Input :
is_permu([2,1,3,01])
Output :

2.10.7 Checking for acycle: is_cycle

is_cycle is a boolean function.
is_cycle takes a list as argument.
is_cycle returns 1 if the argument is a cycle and returns O if the argument is not

a cycle.
Input :
is_cycle([2,1,3])
Output :
1
Input :
is_cycle([2,1,3,2])

Output :

74 CHAPTER 2. THE CAS FUNCTIONS

2.10.8 Product of two permutations : plop?2

plop?2 takes as arguments two permutations.
plop2 returns the permutation obtained by composition :

1Starg o 2ndarg

Input :
plop2([(3,4,5,2,0,11,[2,0,1,4,3,51)
Output :
[5,3,4,0,2,1]
Warning

Composition is done using the standard mathematical notation, that is the permu-
tation given as the second argument is performed first.

2.10.9 Composition of a cycle and a permutation : clop?2

clop? takes as arguments a cycle and a permutation.
clop?2 returns the permutation obtained by composition :

1Starg o 2ndarg

Input :
clop2([3,4,5]1,12,0,1,4,3,5])
Output :
[2,0,1,5,4,3]
Warning

Composition is done using the standard mathematical notation, that is the permu-
tation given as the second argument is performed first.

2.10.10 Composition of a permutation and a cycle : ploc?2

ploc? takes as arguments a permutation and a cycle.
ploc2 returns the permutation obtained by composition :

1Starg o 2ndarg

Input :
ploc2([3,4,5,2,0,11,12,0,11)
Output :
(4,5,3,2,0,1]
Warning

Composition is done using the standard mathematical notation, that is the cycle
given as second argument is performed first.

2.10. PERMUTATIONS 75

2.10.11 Product of two cycles : cloc?

cloc2 takes as arguments two cycles.
cloc?2 returns the permutation obtained by composition :

1Starg oond

arg
Input :
cloc2(I[3,4,51,12,0,11)
Output :
[1,2,0,4,5,3]
Warning

Composition is done using the standard mathematical notation, that is the cycle
given as second argument is performed first.

2.10.12 Signature of a permutation : signature

signature takes as argument a permutation.
signature returns the signature of the permutation given as argument.
The signature of a permutation is equal to :

o 1 if the permutation is equal to an even product of transpositions,

e -1 if the permutation is equal to an odd product of transpositions.

The signature of a cycle of size k is : (—1)**1,
Input :

signature([3,4,5,2,0,11)
Output :

-1

Indeed permu2cycles([(3,4,5,2,0,1]1)=[10,3,2,5,1,411.

2.10.13 Inverse of a permutation : perminv

perminv takes as argument a permutation.

perminv returns the permutation that is the inverse of the permutation given as
argument.

Input :

perminv ([1,2,0])
Output

[2,0,1]

76 CHAPTER 2. THE CAS FUNCTIONS

2.10.14 Inverseof acycle: cycleinv

cycleinv takes as argument a cycle.
cycleinv returns the cycle that is the inverse of the cycle given as argument.
Input :

cycleinv([2,0,1])
Output

(1,0,2]

2.10.15 Order of a permutation : permuorder

permuorder takes as argument a permutation.
permuorder returns the order k of the permutation p given as argument, that is
the smallest integer m such that p™ is the identity.

Input :
permuorder ([0,2,11)
Output
2
Input :
permuorder ([3,2,1,4,0])
Output

2.10.16 Group generated by two permutations : groupermu

groupermu takes as argument two permutations a and b.
groupermnu returns the group of the permutations generated by a and b.
Input :

groupermu([0,2,1,3]1,103,1,2,0])
Output

(eo,2,1,3J1,103,1,2,01,10,1,2,3],[3,2,1,0]]

2.11 Complex numbers

Note that complex numbers are also used to represent a point in the plane or a 1-d
function graph.

2.11. COMPLEX NUMBERS 77

2.11.1 Usual complex functions : +, -, «, /, ~

+,-,%,/," arethe usual operators to perform additions, subtractions, multipli-
cations, divisions and for raising to an integer or a fractional power.
Input :

(1+2x1) "2
Output :

—3+4 %1

2.11.2 Real part of a complex number : re real

re (or real) takes as argument a complex number (resp. a point A).

re (or real) returns the real part of this complex number (resp. the projection on
the x axis of A).

Input :

re (3+4x1)

Output :

2.11.3 Imaginary part of a complex number : im imag

im (or imag) takes as argument a complex number (resp. a point A).

im (or imaqg) returns imaginary part of this complex number (resp. the projection
on the y axis of A).

Input :

im(3+4%1)

Output :

2.11.4 Write a complex as re (z) +ixim(z) : evalc

evalc takes as argument a complex number z.
evalc returns this complex number, written as re (z) +i*im(z).
Input :

evalc (sqrt (2) xexp (ixpi/4))

Output :

1+1

78 CHAPTER 2. THE CAS FUNCTIONS

2.11.5 Modulus of a complex number : abs

abs takes as argument a complex number.
abs returns the modulus of this complex number.
Input :

abs (3+4x1)

Output :

2.11.6 Argument of a complex number : arg

arg takes as argument a complex number.
arg returns the argument of this complex number.
Input :

arg (3+4x1)

Output :

atan (4/3)

2.11.7 The normalized complex number : normalize unitV

normalize or unitV takes as argument a complex number.
normalize or unitV returns the complex number divided by the modulus of
this complex number.
Input :
normalize (3+4x%1)

Output :

(3+4%1) /5

2.11.8 Conjugate of a complex number : conj

conj takes as argument a complex number.
conj returns the complex conjugate of this complex number.
Input :

conj(3+4x1i)

Output :

3-4%1i

2.11. COMPLEX NUMBERS 79

2.11.9 Multiplication by the complex conjugate :
mult_c_conjugate

mult_c_conjugate takes as argument an complex expression.

If this expression has a complex denominator, mult_c_conjugate multiplies
the numerator and the denominator of this expression by the complex conjugate of
the denominator.

If this expression does not have a complex denominator, mult_c_conjugate
multiplies the numerator and the denominator of this expression by the complex
conjugate of the numerator.

Input :
mult_c_conjugate ((2+1)/ (2+3*1))
Output :
(2+1) * (243% (=1)) / ((243% (1)) » (2+3* (=1)))
Input :
mult_c_conjugate ((2+1i) /2)
Output :

(2+1) % (2+=1) / (2% (2+-1))

2.11.10 Barycenter of complex numbers : barycentre

See also : ?? and ??.
barycentre takes as argument two lists of the same size (resp. a matrix with
two columns):

o the elements of the first list (resp. column) are points A; or complex numbers
a; (the affixes of the points),

e the elements of the second list (resp. column) are real coefficients a; such

that) a; # 0.

barycentre returns the barycenter point of the points A; weighted by the real
coefficients ay;. If)~ oj = 0, barycentre returns an error.
Warning To have a complex number in the output, the input must be :

affix (barycentre(...,...)) because barycentre(...,...) re-
turns a point, not a complex number.
Input :

affix (barycentre([1+i,1-1],[1,11))
or:
affix(barycentre([[1+i,1],[1-1,1]1]))

Output :

80 CHAPTER 2. THE CAS FUNCTIONS

2.12 Algebraic expressions

2.12.1 Evaluate an expression : eval

eval is used to evaluate an expression. Since Xcas always evaluate expressions
entered in the command line, eval is mainly used to evaluate a sub-expression in
the equation writer.

Input :
a:=2

Output :

2
Input :

eval (2+3x*a)
or
2+3%*a

Output :

8

2.12.2 Evaluate algebraic expressions : evala

In Maple, evala is used to evaluate an expression with algebraic extensions. In
Xcas, evala is not necessary, it behaves like eval.

2.12.3 Prevent evaluation : quote hold

A quoted subexpression (either with 7 or with the quote or hold) command will
not be evaluated.

Remark a:=quote (a) (ora:=hold (a))is equivalent to purge (a) (for the
sake of Maple compatibility). It returns the value of this variable (or the hypothesis
done on this variable).

Input :
a:=2;quote (2+3xa)
or
a:=2;"2+3xa’
Output :

(2,2+3*a)

2.12. ALGEBRAIC EXPRESSIONS 81

2.12.4 Force evaluation : unquote

unquote is used to evaluate inside a quoted expression.

For example in an affectation, the variable is automatically quoted (not evaluated)
so that the user does not have to quote it explicitly each time he want to modify its
value. In some circumstances, you might however want to evaluate it.

Input:

purge (b) ;a:=b;unquote (a) :=3
Output :

b contains 3, hence a evals to 3

2.12.5 Distribution : expand fdistrib

expand or fdistrib takes as argument an expression.
expand or £distrib returns the expression where multiplication is distributed
with respect to the addition.

Input :
expand ((x+1) * (x=2))
or:
fdistrib ((x+1) x (x-2))
Output :

XN2-2%xX+x—2

2.12.6 Canonical form : canonical_ form

canonical_form takes as argument a trinomial of second degree.
canonical_form returns the canonical form of the argument.
Example :

Find the canonical form of :

x2—6x—|—1

Input :
canonical form(x"2-6+x+1)
Output :

(x-3)"2-8

82 CHAPTER 2. THE CAS FUNCTIONS

2.12.7 Multiplication by the conjugate quantity :
mult_conjugate

mult_conjugate takes as argument an expression with a denominator or a nu-
merator supposed to contain a square root :

o if the denominator contains a square root,
mult_conjugate multiplies the numerator and the denominator of the
expression by the conjugate quantity of the denominator.

e otherwise, if the numerator contains a square root,
mult_conjugate multiplies the numerator and the denominator of this
expression by the conjugate quantity of the numerator.

Input :
mult_conjugate ((2+sqgrt (2))/ (2+sgrt (3)))
Output :
(2+sgrt (2)) x (2-sqgrt (3)) / ((2+sgrt (3)) » (2—sqrt (3)))
Input :

mult_conjugate ((2+sqrt (2))/ (sqgrt (2)+sgrt (3)))

Output :
(2+sqrt (2)) * (-sqrt (2) +sqrt (3)) /
((sqrt (2) +sqrt (3)) x (=sqrt (2) +sqrt (3)))
Input :
mult_conjugate ((2+sqgrt (2)) /2)
Output :

(2+sgrt (2)) * (2=sqrt (2))/ (2% (2—-sgrt (2)))

2.12.8 Separation of variables : split

split takes two arguments : an expression depending on two variables and the
list of these two variables.

If the expression may be factorized into two factors where each factor depends only
on one variable, split returns the list of this two factors, otherwise it returns the
list [0].

Input :

split ((x+1)x(y-2), [x,v¥])
or:
split (xxy—2+x+y-2, [X,V])

Output :

2.12. ALGEBRAIC EXPRESSIONS 83

[x+1,y-2]
Input :
split ((x"2*y"2-1,[x,v])

Output :

2.12.9 Factorization: factor

factor takes as argument an expression.

factor factorizes this expression on the field of its coefficients, with the addition
of ¢ in complex mode. If sgrt is enabled in the Cas configuration, polynomials
of order 2 are factorized in complex mode or in real mode if the discriminant is
positive.

Examples

1. Factorize z* — 1 over Q.
Input :

factor (x74-1)
Output :
(x72+1) *» (x+1) * (x—-1)

The coefficients are rationals, hence the factors are polynomials with ratio-
nals coefficients.

2. Factorize z* — 1 over Q[i]
To have a complex factorization, check complex in the cas configuration
(red button displaying the status line).
Input :
factor (x74-1)
Output :

—1x (—x+—-1)* (1*x+1) * (—x+1) *x (x+1)

3. Factorize z* + 1 over Q
Input :

factor (x74+1)
Output :

x~4+1

84 CHAPTER 2. THE CAS FUNCTIONS

Indeed z* + 1 has no factor with rational coefficients.

4. Factorize z* + 1 over Q[i]
Check complex in the cas configuration (red button rouge displaying the
status line).
Input :

factor (x"4-1)
Output :
(x"2+1) * (x"2+-1)

5. Factorize z* + 1 over R.
You have to provide the square root required for extending the rationals. In
order to do that with the help of Xcas, first check complex in the cas
configuration and input :

solve (x"4+1, x)

Output :

[sgrt (2)/2+ (1) »sqrt (2) /2, sqgrt (2) /2+ (i

) * (= (sqrt (2)/
—-sqgrt (2) /2+ (i) xsqgrt (2) /2, —-sqrt (2) /2+ (1)

(2)),
* (= (sqrt(2)/2))]

*
)

The roots depends on v/2. Uncheck complex mode in the Cas configuration
and input :

factor (x"4+1,sqgrt(2))
Output :
(x"24+sgrt (2) *x+1) * (x"2+ (= (sgrt (2))) *x+1)

To factorize over C, check complex in the cas configuration or input
cFactor (x"4+1,sqrt (2)) (cf cFactor).

2.12.10 Complex factorization : cFactor

cFactor takes as argument an expression.

cFactor factorizes this expression on the field Q[¢] C C (or over the complexi-
fied field of the coefficients of the argument) even if you are in real mode.
Examples

1. Factorize z* — 1 over Z[i].
Input :

2.12. ALGEBRAIC EXPRESSIONS 85

cFactor (x74-1)
Output :
—((x+-1)* ((—1)*x+1)* ((—1)»x+1)*(x+1))

2. Factorize x* + 1 over Z[i].
Input :

cFactor (x"™4+1)
Output :
(x"2+1) * (x72+-1)

3. For a complete factorization of z* + 1, check the sqrt box in the Cas config-
uration or input :

cFactor (x"4+1, sgrt (2))

Output :

SQrt (2) x1/2* (sqrt (2) *x+1-1) * (sqrt (2) xx—1+1) »rsqrt (2) *
1/2% (sqgrt (2) *x+1+1) * (sgrt (2) *x—-1-1)
2.12.11 Zeros of an expression : zeros

zeros takes as argument an expression depending on z.

zeros returns a list of values of z where the expression vanishes. The list may

be incomplete in exact mode if the expression is not polynomial or if intermediate
factorizations have irreducible factors of order strictly greater than 2.

In real mode, (complex box unchecked in the Cas configuration or complex_mode :=0),
only reals zeros are returned. In (complex_mode:=1) reals and complex zeros

are returned. See also cZeros to get complex zeros in real mode.

Input in real mode :

zeros (x"2+4)

Output :

Input in complex mode :
zeros (x"2+4)
Output :
[—2%i,2%1]

Input in real mode :

86 CHAPTER 2. THE CAS FUNCTIONS

zeros (1n (x) ~"2-2)

Output :

lexp (sqrt (2)),exp (- (sqrt(2)))]
Input in real mode :

zeros (In(y)"2-2,y)

Output :

[exp (sqrt (2)),exp (- (sqrt(2)))]
Input in real mode :

zeros (xx (exp (X)) "2-2xx—2* (exp (x)) ~2+4)

Output :

[[log(sqrt(2)),2]

2.12.12 Complex zeros of an expression : cZeros

cZeros takes as argument an expression depending on z.

cZeros returns a list of complex values of = where the expression vanishes. The
list may be incomplete in exact mode if the expression is not polynomial or if
intermediate factorizations have irreducible factors of order strictly greater than 2.
Input in real or complex mode :

czZeros (x"2+4)

Output :
[—2%1,2%1]
Input :
cZeros (1n(x)"2-2)

Output :

[exp (sqrt (2)),exp (- (sqrt(2)))]
Input :

cZeros (1ln(y)"2-2,y)

Output :

[exp (sqrt (2)),exp (- (sqrt (2)))]
Input :

cZeros (xx (exp (x)) "2-2+x—2+% (exp (X)) ~2+4)

Output :

[log(sgrt(2)),log(-sgrt(2)),2]

2.12. ALGEBRAIC EXPRESSIONS 87

2.12.13 Normal form : normal

normal takes as argument an expression. The expression is considered as a ra-
tional fraction with respect to generalized identifiers (either true identifiers or tran-
scendental functions replaced by a temporary identifiers) with coefficients in QQ or
Q[] or in an algebraic extension (e.g. Q[v/2]). normal returns the expanded irre-
ducible representation of this rational fraction. See also ratnormal for pure ra-
tional fractions or simplify if the transcendental functions are not algebraically

independent.
Input :
normal ((x—1) % (x+1))
Output :
x"2-1
Remarks

e Unlike simplify, normal does not try to find algebraic relations between
transcendental functions like cos(z)? + sin(z)? = 1.

e [t is sometimes necessary to run the normal command twice to get a fully
irreducible representation of an expression containing algebraic extensions.

2.12.14 Simplify : simplify

simplify simplifies an expression. It behaves like normal for rational frac-
tions and algebraic extensions. For expressions containing transcendental func-
tions, simplify tries first to rewrite them in terms of algebraically independent
transcendental functions. For trigonometric expressions, this requires radian mode
(check radian in the cas configuration or input angle_radian:=1).

Input :

simplify ((x—1)*(x+1))

Output :
x"2-1
Input :
simplify (3-54*sqrt (1/162))
Output :
—-3%sgrt (2)+3
Input :
simplify ((sin(3*x)+sin(7*x))/sin (5xx))

Output :

4% (cos (x))"2-2

88 CHAPTER 2. THE CAS FUNCTIONS

2.12.15 Normal form for rational fractions : ratnormal

ratnormal rewrites an expression using its irreducible representation. The ex-
pression is viewed as a multivariate rational fraction with coefficients in Q (or
Q[é]). The variables are generalized identifiers which are assumed to be alge-
braically independent. Unlike with normal, an algebraic extension is considered
as a generalized identifier. Therefore ratnormal is faster but might miss some
simplifications if the expression contains radicals or algebraically dependent tran-
scendental functions.

Input :
ratnormal ((x*3-1)/(x"2-1))
Output :
(x"2+x+1) / (x+1)
Input :
ratnormal ((-2x"3+3x"2+5x-6) / (x"2-2x+1))
Output :

(=2*x"2+x+6) / (x-1)

2.12.16 Substitute a variable by a value : subst
subst takes two or three arguments :

e an expression depending on a variable, an equality (variable=value of sub-
stitution) or a list of equalities.

e an expression depending on a variable, a variable or a list of variables, a
value or a list of values for substitution.

subst returns the expression with the substitution done. Note that subst does
not quote its argument, hence in a normal evaluation process, the substitution vari-
able should be purged otherwise it will be replaced by its assigned value before
substitution is done.

Input :

subst (a”2+1, a=2)
or :
subst (a”2+1,a, 2)
Output (if the variable a is purged else first input purge (a)):
5
Input :
subst (a”2+b, [a,b]l, [2,1])

or:

2.12. ALGEBRAIC EXPRESSIONS 89

subst (a”2+b, [a=2,b=1])
Output (if the variables a and b are purged else first input purge (a, b)) :
5

subst may also be used to make a change of variable in an integral. In this
case the integrate command should be quoted (otherwise, the integral would
be computed before substitution) or the inert form Int should be used. In both
cases, the name of the integration variable must be given as argument of Int or
integrate even you are integrating with respect to x.

Input :

subst (’ integrate (sin (x"2) *x,x,0,pi/2)’,x=sqrt (t))
or :
subst (Int (sin(x"2) *x,x,0,pi/2),x=sqgrt (t))
Output

integrate (sin(t)*sqrt (t)«1/2*«1/t*sqgrt(t),t,0, (pi/2)"2)

Input :
subst (" integrate (sin(x"2) *x,x)’ ,x=sqgrt (t))
or :
subst (Int (sin (x"2) *x, X) , x=sqrt (t))
Output

integrate (sin(t)*sqgrt (t)«1/2+«1/t*sqgrt (t),t)

2.12.17 Substitute a variable by a value (Maple and Mupad compati-
bility) : subs

In Maple and in Mupad, one would use the subs command to substitute a vari-
able by a value in an expression. But the order of the arguments differ between
Maple and Mupad. Therefore, to achieve compatibility, Xcas subs command
arguments order depends on the mode

e InMaple mode, subs takes two arguments : an equality (variable=substitution
value) and the expression.
To substitute several variables in an expression, use a list of equality (vari-
able names = substitution value) as first argument.

e In Mupad or Xcas or TI, subs takes two or three arguments : an expres-
sion and an equality (variable=substitution value) or an expression, a variable
name and the substitution value.

To substitute several variables, sulbs takes two or three arguments :

— an expression of variables and a list of (variable names = substitution
value),

90 CHAPTER 2. THE CAS FUNCTIONS

— an expression of variables, a list of variables and a list of their substi-
tution values.

subs returns the expression with the substitution done. Note that subs does not
quote its argument, hence in a normal evaluation process, the substitution variable
should be purged otherwise it will be replaced by its assigned value before substi-
tution is done.

Input in Maple mode (if the variable a is purged else input purge (a)) :

subs (a=2,a"2+1)
Output
27°2+1
Inputin Maple mode (if the variables a and b are purged else input purge (a, b)):

subs ([a=2,b=1],a"2+b)

Output :
272+1
Input :
subs (a”2+1, a=2)
or :

subs (a®2+1,a, 2)
Output (if the variable a is purged else input purge (a)) :
5

Input :

subs (a”2+b, [a=2,b=1])
or:

subs (a®2+b, [a,b], [2,1])
Output (if the variables a and b are purged else input purge (a, b)) :

27°2+1

2.12.18 Evaluate a primitive at boundaries: preval

preval takes three arguments : an expression F depending on the variable x, and
two expressions a and b.

preval computes Fl,—p — Flp—q.

preval is used to compute a definite integral when the primitive F' of the inte-
grand f is known. Assume for example thatF : =int (£, x),thenpreval (F, a, b)
is equivalent to int (£, x, a, b) but does not require to compute again F from £

if you change the values of a or b.

Input :

preval (x"2+x,2,3)

Output :

2.13. VALUES OF Uy 91

2.12.19 Sub-expression of an expression : part

part takes two arguments : an expression and an integer n.
part evaluate the expression and then returns the n-th sub-expression of this ex-
pression.

Input :
part (x"2+x+1,2)
Output :
X
Input :
part (x"2+ (x+1) * (y—-2)+2,2)
Output :
(x+1) * (y=2)
Input :
part ((x+1)*(y=-2)/2,2)

Output :

y—2

2.13 Values of u,,

2.13.1 Array of values of a sequence : tablefunc

tablefunc is a command that should be used inside a spreadsheet (opened with
Alt+t), it returns a template to fill two columns, with the table of values of a
function. If the step value is 1, tablefunc (ex, n,n0,1), where ex is an
expression depending on n, will fill the spreadsheet with the values of the sequence
Uy =ex forn=n0, n0+1, n0O+2,.....

Example : display the values of the sequence u,, = sin(n)
Select a cell of a spreadsheet (for example C0) and input in the command line :

tablefunc(sin(n),n,0,1)
Output :

two columns : n and sin(n)

e in the column C: the variable name n, the value of the step (this value should
be equal to 1 for a sequence), the value of n0 (here 0), then a recurrence
formula (C2+CS1, ..).

e in the column D: sin (n), "Tablefunc", then a recurrence formula.

e For each row, the values of the sequence u, = sin(n) correspond to the val-
ues of n starting from n=n0 (here 0).

92 CHAPTER 2. THE CAS FUNCTIONS

2.13.2 Table of values and graph of a recurrent sequence : tableseq
and plotseq

tableseq is a command that should be used inside a spreadsheet (opened with
Alt+t), it returns a template to fill one column with ug, uy4+1 = £(uy) (One-term
recurrence) or more generally ug, ..., Uk, Upig+1 = f(Un, Upt1,-ees Uptk). The
template fills the column starting from the selected cell, or starting from O if the
whole column was selected.
See also plotseq (section 3.13) for a graphic representation of a one-term recur-
rence sequence.

Examples :

e display the values of the sequence uy = 3.5, u,, = sin(u,—_1)

Select a cell of the spreadsheet (for example B0) and input in the command
line :

tableseqg(sin(n),n,3.5)
Output :

a column with sin(n), n, 3.5 and the formula
evalf (subst (B$0,BS1,B2))

You get the values of the sequence up = 3.5, u, = sin(up—_1) in the column
B.

e display the values of the Fibonacci sequence ug = 1,u; = 1 upy2 = up +
Un+1
Select a cell, say B0, and input in the command line

tableseq(x+ty, [x,y], [1,1])

This fills the B column sheet with

row | B

X+y

gllw| Nk o
N[X

2.14 Operators or infixed functions

An operator is an infixed function.

2.14. OPERATORS OR INFIXED FUNCTIONS 93

~

2.14.1 Usual operators :+, -, *, /,
+, -, *, /, ° are the operators to do additions, subtractions, multiplica-
tions, divisions and for raising to a power.

2.14.2 Xcas operators

e S is the infixed version of seq, for example :
(2°k)$ (k=0..3)= seq(2"k,k=0..3)=(1,2,4,8) (do not forget
to put parenthesis around the arguments),

e mod or % to define a modular number,
e (@ to compose functions for example : (f@g) (x)=f (g (x)),

e @@ tocompose a function many times (like a power, replacing multiplica-
tion by composition), for example : (fQ@3) (x)=f (f (£ (x))),

e minus union intersect to getthe difference, the union and the inter-
section of two sets,

e —> to define a function,

e := => to store an expression in a variable (it is the infixed version of sto
and the argument order is permuted for :=), for example : a:=2 or 2=>a
orsto(2,a).

e =< to store an expression in a variable, but the storage is done by reference
if the target is a matrix element or a list element. This is faster if you modify
objects inside an existing list or matrix of large size, because no copy is
made, the change is done in place. Use with care, all objects pointing to this
matrix or list will be modified.

2.14.3 Define an operator: user_operator
user_operator takes as argument :

e a string : the name of the operator,

e a function of two variables with values in R or in true, false,

e an option Binary for the definition or Delete to delete this definition.

user_operator returns 1 if the definition is done and else returns 0.
Example 1

Let Rbedefinedon Rbyx Ry =xxy+z + .

To define the law R, input :

user_operator ("R", (x,y) —>x*xy+x+y,Binary)

Output :

Input :

94 CHAPTER 2. THE CAS FUNCTIONS

5 R 7

Do not forget to put spaces around R.
Output :

47

Example 2
Let .S be defined on N by :
for x and y integers, z S y <=> x and y are not coprime.
To define the law S, input :

user_operator ("S", (x,y)->(gcd(x,y)) '=1,Binary)
Output :
1
Input :
58S 7
Do not forget to put spaces around S.
Output :
0
Input :
8 s 12
Do not forget to put spaces around S.
Output :
1

2.15 Functions and expressions with symbolic variables

2.15.1 The difference between a function and an expression

A function f is defined for example by :

f(x):=x"2-1lorby f:=x->x"2-1

that is to say, for all , f(z) is equal to the expression 22 — 1. In that case, to have
the value of f for x = 2, input :f (2).

But if the input is g: =x~2-1, then g is a variable where the expression 22 — 1 is
stored. In that case, to have the value of g for x = 2, input : subst (g, x=2) (g
is an expression depending on x).

When a command expects a function as argument, this argument should be

either the definition of the function (e.g. x—>x"2-1) or a variable name assigned
to a function (e.g. f previously defined by e.g. £ (x) :=x"2-1).
When a command expects an expression as argument, this argument should be
either the definition of the expression (for example x"~2-1), or a variable name
assigned to an expression (e.g. g previously defined, for example, by g:=x"2-1),
or the evaluation of a function. e.g. £ (x) if £ is a previously defined function, for
example, by f (x) :=x"2-1).

2.15. FUNCTIONS AND EXPRESSIONS WITH SYMBOLIC VARIABLES 95

2.15.2 Transform an expression into a function : unapply

unapply is used to transform an expression into a function.

unapply takes two arguments an expression and the name of a variable.

unapply returns the function defined by this expression and this variable.
Warning when a function is defined, the right member of the assignment is

not evaluated, hence g:=sin (x+1); f (x) :=g does not defined the function

f & — sin(x + 1) but defines the function f : x — g. To defined the former

function, unapply should be used, like in the following example:

Input :

g:= sin(x+1l); f:=unapply (g, x)
Output :
(sin(x+1), (x)->sin(x+1))

hence, the variable g is assigned to a symbolic expression and the variable f is
assigned to a function.

Input :
unapply (exp (x+2) , x)
Output :
(x) —>exp (x+2)
Input :
f:=unapply(lagrange([1,2,3],[4,8,12]),x%)
Output :
(x) —>4+4% (x-1)
Input :
f:=unapply (integrate(log(t),t,1,x),x)
Output :
(x) —>x*x1log(x)-x+1
Input :
f:=unapply(integrate(log(t),t,1,x),x)
f(x)
Output :

x*xlog (x)—x+1

Remark Suppose that f is a function of 2 variables f : (z,w) — f(z,w), and
that g is the function defined by g : w — h,, where h,, is the function defined by
h(z) = f(z, w).

unapply is also used to define g with Xcas.

Input :

96 CHAPTER 2. THE CAS FUNCTIONS

f(x,wW) :=2*xX+wW
g (w) :=unapply (f (x,w), X)
g(3)

Output :

xX—>2-x+3

2.15.3 Top and leaves of an expression : sommet feuille op

An operator is an infixed function : for example '+’ is an operator and ’sin’ is a
function.

An expression can be represented by a tree. The top of the tree is either an operator,
or a function and the leaves of the tree are the arguments of the operator or of the
function (see also 2.37.11).

The instruction sommet (resp. feuille (or op)) returns the top (resp. the list of
the leaves) of an expression.

Input :
sommet (sin (x+2))
Output :
"sin’
Input :
sommet (x+2+*y)
Output :
"
Input :
feuille (sin (x+2))
or :
op(sin (x+2))
Output :
X+2
Input :
feuille (x+2xy)
or :

op (x+2xy)

Output :

2.16. FUNCTIONS 97

(x,2*y)

Remark
Suppose that a function is defined by a program, for example let us define the pgcd
function :

pgcd(a,b) :={local r; while (b!=0)
{r:=irem(a,b);a:=b;b:=r;} return a;}

Then input :
sommet (pgcd)
Output :
"program’

Then input :

feuille (pgcd) [0]
Output :

(a,b)

Then input :

feuille (pgcd) [1]
Output :

(0,0) or (15,25) if the last input was pgcd(l5,25)

Then input :
feuille (pgcd) [2]
Output :
The body of the program : {local r;....return(a);}

2.16 Functions

2.16.1 Context-dependent functions.
Operators + and -

+ (resp. —) is an infixed function and * +’ (resp. ’ —') is a prefixed function. The
result depends on the nature of its arguments.
Examples with + (all examples except the last one work also with — instead of +) :

e input (1,2)+(3,4) or (1,2,3)+4 or 1+2+3+4 or *+’(1,2,3,4), output 10,
e input 1+i+2+3%*i or *+’(1,1,2,3*1), output 3+4*i,

e input [1,2,3]+[4,1] or [1,2,3]+[4,1,0] or ’+°([1,2,3].[4,1]), output [5,3,3],

98

CHAPTER 2. THE CAS FUNCTIONS

input [1,2]+[3,4] or *+°([1,2],[3.4]), output [4,6],

input [[1,2],[3,4]]+ [[1,2],[3.4]], output [[2,4],[6,8]],

input [1,2,3]+4 or *+°([1,2,3],4), output poly1[1,2,7],
input [1,2,3]+(4,1) or +°([1,2,3],4,1), output poly1[1,2,8],

input "Hel"+"lo" or *+’("Hel","lo"), output "Hello".

Operator

x 18 an infixed function and ’ +’ is a prefixed function. The result depends on the
nature of its arguments.
Examples with * :

e input (1,2)*(3,4) or (1,2,3)*4 or 1*¥2*3*4 or **°(1,2,3,4), output 24,

input 1*1*2*3*j or *°(1,1,2,3*1), output -6,

input [10,2,3]*[4,1] or [10,2,3]*[4,1,0] or **°([10,2,3],[4,1]), output 42 (scalar
product),

input [1,2]*[3,4] or **°([1,2],[3,4]), output 11 (scalar product),
input [[1,2],[3,4]1* [[1,2],[3,4]], output [[7,10],[15,22]],

input [1,2,3]*4 or **’([1,2,3],4), output [4,8,12],

input [1,2,3]1*(4,2) or **’([1,2,3],4,2) or [1,2,3]*8, output [8,16,24],

input (1,2)+i*(2,3) or 14+2+i*2*3, output 3+6*i.

Operator /

/ is an infixed function and ’ /” is a prefixed function. The result depends of the
nature of its arguments.
Examples with / :

input [10,2,3]/[4,1], output invalid dim

input [1,2]/[3,4] or */°([1,2],[3,4]), output [1/3,1/2],

input 1/[[1,2],[3,4]] or */’(1,[[1,2],[3,4]], output [[-2,1],[3/2,(-1)/2]],
input [[1,2],[3,4]1*1/ [[1,2],[3,4]], output [[1,0],[0,1]],

input [[1,2],[3,4]]/ [[1,2],[3.4]], output [[1,1],[1,1]] (division term by term),

2.16. FUNCTIONS 99

2.16.2 Usual functions

e max takes as argument two real numbers and returns their maximum,
e min takes as argument two real numbers and returns their minimum,

e abs takes as argument a complex number and returns the modulus of the
complex parameter (the absolute value if the complex is real),

e sign takes as argument a real number and returns its sign (+1 if it is positive,
0 if it is null, and -1 if it is negative),

e floor (or iPart) takes as argument a real number r, and returns the
largest integer < 7,

e round takes as argument a real number and returns its nearest integer,

e ceil or ceiling takes as argument a real number and returns the smallest
integer > r

e frac (or fPart) takes as argument a real number and returns its fractional
part,

e trunc takes as argument a real number and returns the integer equal to the
real without its fractional part,

e 1idis the identity function,

e sq is the square function,

e sgrt is the squareroot function,

e exp is the exponential function,

e logor 1n is the natural logarithm function,
e 10gl0 is the base-10 logarithm function,

e logb is the logarithm function where the second argument is the base of the
logarithm: 1ogb (7,10)=10gl0(7)=1og(7)/log(10),

e sin (resp. cos, tan) is the sinus function, cosinus function, tangent func-
tion,

e cot, sec, csc arethe cotangent, secant, cosecant function

e asin(orarcsin),acos (orarccos),atan(orarctan),acot, asec,
acsc are the inverse trigonometric functions (see section 2.21.1 for more
info on trigonometric functions)

e sinh (resp. cosh, tanh) is the hyperbolic sinus function, cosinus func-
tion, tangent function,

e asinh or arcsinh (resp. acosh or arccosh, atanh or arctanh)is
the inverse function of sinh (resp. cosh, tanh)

100 CHAPTER 2. THE CAS FUNCTIONS

2.16.3 Defining algebraic functions
Defining a function from R” to R
Forp=1,e.g for f : () = x *sin(z), input :
f(x):=x*sin (x)
or:
fi=x->x*xsin(x)
Output :
(x) —>x*sin (x)
If p>1,eg. for f : (x,y) — x *sin(y), input :
f(x,y) :=xxsin(y)
or:
f:=(x,y)—>x*sin(y)
Output :
(x,y)—>x*xsin (y)

Warning !!! the expression after —> is not evaluated. You should use unapply
if you expect the second member to be evaluated before the function is defined.

Defining a function from RP? to R?

For example:

e To define the function h : (x,y) — (z * cos(y), x * sin(y)).
Input :

h(x,y) :=(xxcos (y),x*sin(y))
Output :
(XI Y)_>{
x*Ccos (y) ,x*sin (y);

}"

o To define the function h : (x,y) — [z * cos(y), z * sin(y)].
Input :

h(x,y) :=[xxcos (y),x*sin(y)];
or:

h:=(x,y)->[x*cos (y),x*xsin(y)];

2.16. FUNCTIONS 101

or :
h(x,y) :={[x*cos(y),x*sin(y)]};
or:
h:=(x,y)->return[x*cos (y),x*sin(y)];
or:
h(x,y) :={return [xxcos(y),x*sin(y)]1;}
Output :

(x,y)—>{return([xxcos (y),x*sin(y)]1);}

Warning !!! The expression after —> is not evaluated.

Defining families of function from R”~! to R? using a function from R? to RY

Suppose that the function f : (z,y) — f(x,y) is defined, and we want to define a
family of functions g(¢) such that g(t)(y) := f(t,y) (i.e. t is viewed as a parame-
ter). Since the expression after —> (or : =) is not evaluated, we should not define
g(t)by g (t) :=y—>f (t, y), we have to use the unapply command.

For example, assuming that f : (x,y) — zsin(y) and g(¢t) : y — f(t,y),
mput :

f(x,y) :=xxsin(y);g(t) :=unapply (f(t,y),vy)

Output :
((x,y)—>x*sin(y), (t)-—>unapply (£(t,y),y))
Input :
g(2)
Output :
y->2- sin(y)
Input :
g(2) (1)
Output :
2- sin (1)

Next example, suppose that the function h : (z,y) — [z * cos(y), x *sin(y)] is
defined, and we want to define the family of functions k(t) having ¢ as parameter
such that k() (y) := h(t,y). To define the function h(z,y), input :

h(x,y) :=(x*xcos (y),x*sin(y))

102 CHAPTER 2. THE CAS FUNCTIONS

To define properly the function k(t), input :

k(t) :=unapply (h(x,t), x)

Output :
(t)—>unapply (h(x,t), x)
Input :
k(2)
Output :
(X)—>(x*cos (2),x*sin(2))
Input :
k(2) (1)

Output :

(2%cos (1l),2xsin (1))

2.16.4 Composition of two functions: @

With Xcas, the composition of functions is done with the infixed operator Q.
Input :

(sg@sin+id) (x)

Output :
(sin(x)) "2+x
Input :
(sin@sin) (pi/2)
Output :

sin (1)

2.16.5 Repeated function composition: @@

With Xcas, the repeated composition of a function with itself n» € N times is done
with the infixed operator @@.

Input :
(sin@@E3) (x)
Output :
sin(sin(sin(x)))
Input :
(sin@Q2) (pi/2)
Output :

sin (1)

2.16. FUNCTIONS 103

2.16.6 Define a function with the history : as_function_of

If an entry defines the variable a and if a later entry defines the variable b (supposed
to be dependent on a), then c:=as_function_of (b, a) will define a function
c such that c (a) =b.

Input :
a:=sin(x)
Output :
sin (x)
Input :
b:=sqrt (1+a"2)
Output :
sqgrt (1+sin(x) *2)
Input :
c:=as_function_of (b, a)

Output :
(a) —>

{ local NULL;
return (sqrt (1+a”2));

}

Input :
c (%)
Output :
sgrt (1+x"2)
Input :
a:=2
Output :
2
Input :
b:=1+a"2
Output :
5

Input :

104 CHAPTER 2. THE CAS FUNCTIONS

c:=as_function_of (b, a)
Output :

(a) —>

{ local NULL;
return (sqrt (1+a”2));
}

Input :

Output :
1+x72

Warning !!
If the variable b has been assigned several times, the first assignment of b following
the last assignment of a will be used. Moreover, the order used is the order of
validation of the commandlines, which may not be reflected by the Xcas interface
if you reused previous commandlines.
Input for example :
a:=2 then
b:=2xa+1 then
b:=3*a+2 then
c:=as_function_of (b, a)
Output :

(a)—> {local NULL; return(2+xa+l);}

i.e. c(x) isequal to 2xx+1.

But, input :
a:=2 then
b:=2xa+1 then
a:=2 then

b:=3xa+2 then
c:=as_function_of (b, a)
Output :

(a)=> {local NULL; return(3*a+2);}

i.e. ¢ (x) isequal to 3xx+2.
Hence the line where a is defined must be reevaluated before the good definition
of b.

2.17 Derivation and applications.

2.17.1 Functional derivative : function diff

function_diff takes a function as argument.
function_diff returns the derivative function of this function.
Input :

2.17. DERIVATION AND APPLICATIONS. 105

function_diff (sin)

Output :
(Y xY)—->cos ("' xV)
Input :
function_diff (sin) (x)
Output :
cos (X)
Input :
f(x):=x"2+x*Cco0Os (xX)
function_diff (f)
Output :
(Y xY)—>2+" xYtcos (Y xVH+Y xYx(—(sin(' xY)))
Input :
function_diff (f) (x)
Output :

Ccos (X)+xX* (—(sin(x)))+2*x

To define the function g as f’, input :

g:=function_diff (f)

The function_diff instruction has the same effect as using the expression
derivative in conjunction with unapply :

g:=unapply (diff (f(x),x),x)

g (x)
Output :
coS (X)+x* (—(sin(x)))+2+*x
Warning !!!
In Maple mode, for compatibility, D may be used in place of function_diff.

For this reason, it is impossible to assign a variable named D in Maple mode
(hence you can not name a geometric object D).

106 CHAPTER 2. THE CAS FUNCTIONS

2.17.2 Lengthof an arc: arcLen

arcLen takes four arguments : an expression ex (resp. a list of two expressions
[ex]1, ex2]), the name of a parameter and two values a and b of this parameter.
arcLen computes the length of the curve define by the equation y = f(x) = ex
(resp. by x = exl,y = ex2) when the parameter values varies from a to b, using
the formula arcLen (f (x), x,a,b)=

integrate (sqrt (diff (f (x),x)"2+1),x,a,b)

or

integrate(sqrt (diff(x(t),t)"2+diff(y(t),t)"2),t,a,b).

Examples

e Compute the length of the parabola y = z? from 2z = 0 to = = 1.

Input :
arclLen (x"°2,x%x,0,1)
or
arcLen([t,t"2],t,0,1)
Output :

-1/4%log(sgrt (5)-2)-(-(sqrt(5)))/2

e Compute the length of the curve y = cosh(x) from x = 0 to x = In(2).
Input :

arcLen (cosh(x),x,0,1log(2))
Output :
3/4

e Compute the length of the circle x = cos(t),y = sin(¢) from t = 0 to
t=2x%m.
Input :

arcLen([cos(t),sin(t)],t,0,2%pi)
Output :

2xpi

2.17. DERIVATION AND APPLICATIONS. 107

2.17.3 Maximum and minimum of an expression: fMax fMin

fMax and £Min take one or two arguments : an expression of a variable and the
name of this variable (by default x).

fMax returns the abscissa of a maximum of the expression.

fMin returns the abscissa of a minimum of the expression.

Input :
fMax (sin (%), x)
or :
fMax (sin(x))
or:
fMax (sin(y), V)
Output :
pi/2
Input :
fMin (sin (xX), x)
or :
fMin (sin (x))
or :
fMin (sin(y),vy)
Output :
-pi/2
Input :
fMin (sin (x) "2, X)
Output :

2.17.4 Table of values and graph : tablefuncand plotfunc

tablefunc is a special command that should be run from inside the spreadsheet.
It returns the evaluation of an expression ex depending on a variable = for x =
X0, xo+ h,y....:

tablefunc(ex, x,x_0,h) ortablefunc (ex, x)

108 CHAPTER 2. THE CAS FUNCTIONS

In the latter case, the default value for xq is the default minimum value of = from
the graphic configuration and the default value for the step h is 0.1 times the dif-
ference between the default maximum and minimum values of = (from the graphic
configuration).

Example: type A1t +t to open a spreadsheet if none are open. Then select a cell
of the spreadsheet (for example CO) and to get the table of "sinus", input in the
command line of the spreadsheet :

tablefunc (sin (x), x)
This will fill two columns with the numeric value of x and sin (x) :

e in the first column the variable x, the value of the step h (1.0), the minimum
value of x (-5.0), then a formula, for example =C2+C$1, and the remaining
rows of the column is filled by pasting this formula.

e in the next column the function sin (x), the word "Tablefunc", a formula,
for example =evalf (subst (D$0,C$0,C2)), and the remaining rows
of the column are filled by pasting this formula.

Hence the values of sin (x) are on the same rows as the values of x. Note that
the step and begin value and the expression may be easily changed by modifying
the correspondent cell.

The graphic representation may be plotted with the plot func command (see
3.2.1).

2.17.5 Derivative and partial derivative

diff or derive may have one or two arguments to compute a first order deriva-
tive (or first order partial derivative) of an expression or of a list of expressions, or
several arguments to compute the n-th partial derivative of an expression or list of
expressions.

Derivative and first order partial derivative : diff derive deriver

diff (or derive) takes two arguments : an expression and a variable (resp.
a vector of variable names) (see several variable functions in 2.51). If only one
argument is provided, the derivative is taken with respect to x

diff (or derive) returns the derivative (resp. a vector of derivatives) of the
expression with respect to the variable (resp. with respect to each variable) given
as second argument.

Examples :
e Compute :
O(zy?23 + xyz)
0z
Input :

diff (x*y"2x2"3+x*y*2,2Z)

Output :

2.17. DERIVATION AND APPLICATIONS. 109

XAy 24 3x2N2+X*Y

e Compute the 3 first order partial derivatives of x * 42 % 23 + % y * 2.
Input :

diff (x*y"2%z"3+x*y, [X,V,2])
Output :

[y2%x273+y*xz, X*x2xy*z2"3+xX*2, X Yy 2+3%xz2"2+x*y]

Derivative and n-th order partial derivative : diff derive deriver

derive (or diff) may take more than two arguments : an expression and the
names of the derivation variables (each variable may be followed by $n to indicate
the number 7 of derivations).
diff returns the partial derivative of the expression with respect to the variables
given after the first argument.

The notation $ is useful if you want to derive k times with respect to the same
variable, instead of entering k times the same variable name, one enters the variable
name followed by $k, for example x$3 instead of (x, x, x). Each variable may
be followed by a $, for example diff (exp (x*y), x$3,y$2, z) is the same as
diff (exp(x*y),X,X,X,Y,Y,2)

Examples
e Compute :
0% (zy?2® + xyz)
0x0z
Input :
diff (x*y" 2%z 3+xX*xy*2Z, %X, Z)
Output :
Y2x3%xz"2+y
e Compute :
03 (zy?2® + xyz)
0rd?%2
Input :
diff (x*y"2%2"3+xX*xy*2Z2,X,2Z,2)
or:

diff (x*y"2xz2"3+x*y*z,x,252)

Output :

110 CHAPTER 2. THE CAS FUNCTIONS

V2% 3%2%z

e Compute the third derivative of :

b
2%+ 2
Input :
normal (diff ((1)/ (x"24+2),x%x,%X, X))
or:
normal (diff ((1)/ (x"2+2),%x$3))
Output :
(=24%x"3+48%%) / (x"8+8%x"6+24xx"4+32+x"2+16)
Remark

e Note the difference between diff (f, x,y) anddiff (f, [x,vy]) :

diff(f,z,y) returns (;1(82 and
diff(f,[z,y]) returns [86()?, aa(j;)]

e Never define a derivative function with £1 (x) :=diff (£ (x), x). Indeed,
x would mean two different things Xcas is unable to deal with: the variable
name to define the f; function and the differentiation variable. The right way
to define a derivative is either with function_diff or:

fl:=unapply (diff (f (x),x),x)

2.18 Integration

2.18.1 Antiderivative and definite integral : integrate int Int

integrate (or int) computes a primitive or a definite integral. A difference
between the two commands is that if you input quest () just after the evaluation
of integrate, the answer is written with the | symbol.

integrate (or int or Int) takes one, two or four arguments.

e with one or two arguments
an expression or an expression and the name of a variable (by default x),
integrate (or int) returns a primitive of the expression with respect to
the variable given as second argument.
Input :

integrate (x"2)

2.18. INTEGRATION 111

Output :
x"3/3
Input :
integrate (t"2,t)
Output :

t~3/3

with four arguments :

an expression, a name of a variable and the bounds of the definite integral,
integrate (or int) returns the exact value of the definite integral if the
computation was successful or an unevaluated integral otherwise.

Input :

integrate(x"2,x,1,2)
Output :
7/3
Input :
integrate (1/ (sin(x)+2),x,0,2*pi)
Output after simplification (with the simplify command) :

2xpixsqrt (3)/3

Int is the inert form of integrate, it prevents evaluation for example to

avoid a symbolic computation that might not be successful if you just want a nu-
meric evaluation.

Input :

evalf (Int (exp(x"2),x,0,1))
or :

evalf (int (exp (x°2),x%x,0,1))
Output :

1.46265174591
Exercise 1
Let
fla) = " ()

r—1

Find a primitive of f.
Input :

112 CHAPTER 2. THE CAS FUNCTIONS

int (x/ (x"2-1)+1n((x+1)/ (x=1)))
Output :
x*1log ((x+1)/ (x-1))+log (x"2-1)+1/2x1log (2%x~2/2-1)
Or define the function f, input :

f(x):=x/(x"2-1)+1In((x+1)/ (x-1))

then input :
int (£(x))
Output of course the same result.
Warning
For Xcas, 1og is the natural logarithm (like 1n), as 10g10 is 10-basis logarithm
Exercise 2
Compute :
2
d
/m6+2-x4+x2 v
Input :
int (2/ (x76+2xx"4+x72))
Output :

2% ((3*x7242) /(= (2% (x"3+x)))+-3/2xatan (x))

Exercise 3
Compute :
1
/ - ; dx
sin(x) + sin(2 - x)
Input :
integrate (1/ (sin(x)+sin(2xx)))

Output :

(1/-3xlog((tan(x/2))"2-3)+1/12x1log((tan(x/2))"2))*2

2.18.2 Discrete summation: sum

sum takes two or four arguments :

e four arguments
an expression, the name of the variable (for example n), and the bounds (for
example a and b).
sum returns the discrete sum of this expression with respect to the variable
from a to b.
Input :

sum(1l,k,-2,n)

2.18. INTEGRATION 113

Output :

n+tl+2
Input :

normal (sum (2+xk-1,%k,1,n))
Output :
n*2
Input :
sum(l/ (n™2),n,1,10)
Output :
1968329/1270080
Input :
sum(1l/(n”2),n,1,+(infinity))

Output :

pit2/6
Input :

sum(l/ (n~"3-n),n,2,10)

Output :

27/110
Input :

sum(1l/(n*3-n),n,1,+(infinity))

Output :

1/4

This result comes from the decomposition of 1/(n*3 — n).
Input :

partfrac(l/(n"3-n))

Output :

114

CHAPTER 2. THE CAS FUNCTIONS

1/(2x(n+1))-1/n+1/ (2% (n-1))

Hence :
A i A R s T |
= on n:ln+1 2 n:2n—|—1 N
N N—2 N—2
1 1 1 1 1
- — i 14+ = -
2 2 1=t () = gt 2)
n=2 n=0 =2
N N—2
1 1 1 1 1 1
2*nzz:2n+1_2*(7§n+1+N+N+l)
After simplification by nN:}Q, it remains :
1+1*(1+1) 1+1*(1+ 1)_1 1
2 2 22 N 2 ‘N N+1’ 4 2N(N+1)
Therefore :

— for N = 10 the sumis equal to: 1/4 —1/220 = 27/110

— for N = 400 the sum is equal to : 1/4 because 3N

#1) approaches
zero when N approaches infinity.

two arguments

an expression of one variable (for example f) and the name of this variable
(for example x).

sum returns the discrete antiderivative of this expression, i.e. an expression
G such that G|x:n+l — G|x:n = f‘z:n

Input :

sum(1l/ (x* (x+1)),x)
Output :

-1/x

2.18.3 Riemann sum : sum_riemann

sum_riemann takes two arguments : an expression depending on two variables
and the list of the name of these two variables.

sum_riemann (expression(n, k), [n,k]) returns in the neighborhood of
n = +o0 an equivalent of 37", expression(n, k) (or of .7 expression(n, k)
or of 371 expression(n, k)) when the sum is looked on as a Riemann sum asso-
ciated to a continuous function defined on [0,1] or returns "it is probably
not a Riemann sum" when the no result is found.

Exercise 1

Suppose S, = Z —.

n3
k=1

Compute lim S),.

n—-4o0o

Input :

sum_riemann (k*2/n”3, [n,k])

2.18. INTEGRATION 115

Output :
1/3

Exercise 2
Suppose S, = Z
k=1

Compute lim S,.
n—-+o0o

nt’

Input :
sum_riemann (k*3/n"4, [n,k])
Output :
1/4
Exercise 3

C te li
Ompuen—lffoo(n—kl +n—|—2+ +n+n

).

Input :

sum_riemann (1/ (n+k), [n,k])
Output :

log(2)

Exercise 4 .

32n3
Suppose Sn = ; m
Compute lim S,.

n—-+4oo
Input :
sum_riemann (32*xn"3/(16*n~4-k*4), [n,k])

Output :

2+«atan (1/2)+1log(3)

2.18.4 Integration by parts : ibpdv and ibpu
ibpdv

ibpdv is used to search the primitive of an expression written as u(z).v(x).
ibpdv takes two arguments :

e anexpression u(x)*v'(x) and v(z) (or a list of two expressions [F'(x), u(z)x*
V()] and v(x)),

e or an expression g(x) and O (or a list of two expressions [F'(z), g(x)] and 0).
ibpdv returns :

o ifv(z) # 0, thelist [u(x)v(z), —v(x)u' (z)] (or [F(z)4u(z)v(x), —v(z)u/()]),

116 CHAPTER 2. THE CAS FUNCTIONS

e if the second argument is zero, a primitive of the first argument g(z) (or
F(x)+a primitive of g(x)) :
hence, ibpdv (g (x), 0) returns a primitive G (x) of g (x) or
ibpdv ([F(x),g(x)],0) returns F (x) +G (x) where diff (G (x)) =g (x).

Hence, ibpdv returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpdvs successively.

When the answer of ibpdv (u(x) *v’ (x),Vv(x)) is computed, to obtain a
primitive of u(z)v’(z), it remains to compute the integral of the second term of
this answer and then, to sum this integral with the first term of this answer : to do
this, just use ibpdv command with the answer as first argument and a new v(z)
(or 0 to terminate the integration) as second argument.

Input :
ibpdv (1n(x), x)
Output :
[x 1In(x),-1]
then
ibpdv([x 1n(x),-11,0)
Output :
-x+x 1n(x)

Remark

When the first argument of ibpdv is a list of two elements, ibpdv works only on
the last element of this list and adds the integrated term to the first element of this
list. (therefore it is possible to do several ibpdvs successively).

For example :

ibpdv ((log(x))"2,x) = [xx(log(x))"2,-(2+1log(x))]

it remains to integrate — (2+«1og (x)), the input :

ibpdv (ans (), x) orinput :

ibpdv ([x* (log(x)) "2, - (2x1log(x))], x)

Output :

[x* (log (x)) "2+xx (- (2x1log(x))),2]

and it remains to integrate 2, hence input ibpdv (ans (), 0) or

ibpdv ([x* (log(x)) "2+x* (= (2*«1log(x))),2]1,0).

Output : x* (log (%)) *2+x* (= (2*x1og (X))) +2*x

ibpu

ibpu is used to search the primitive of an expression written as u(z).v'(x) ibpu
takes two arguments :

e anexpression u(x)*v'(x) and u(x) (or alist of two expressions [F(x), u(x)x*
v'(z)] and u(z)),

e an expression g(z) and 0 (or a list of two expressions [F'(z), g(z)] and 0).

2.18. INTEGRATION 117

ibpu returns :

o if u(xz) # 0, the list [u(z) x v(z), —v(z) * u/(x)] (or returns the list [F'(z) +
u(z) xv(z), —v(z) * u'(z))),

e if the second argument is zero, a primitive of the first argument g(x) (or
F(x)+a primitive of g(x)):
ibpu (g (x),0) returns G (x) where diff (G (x))=g(x) or
ibpu ([F(x),g(x)],0) returnsF (x) +G (x) wherediff (G (x)) =g (x).

Hence, ibpu returns the terms computed in an integration by parts, with the pos-
sibility of doing several ibpus successively.

When the answer of 1bpu (u (x) *v’ (x),u(x)) is computed, to obtain a prim-
itive of u(z)v'(x), it remains to compute the integral of the second term of this
answer and then, to sum this integral with the first term of this answer : to do this,
just use ibpu command with the answer as first argument and a new u(x) (or 0 to
terminate the integration) as second argument.

Input :
ibpu(ln(x),1ln(x))

Output :

[x*x1n(x),-1]
then

ibpu([x*x1ln(x),-11,0)

Output :

—-xX+x*1n (x)
Remark

When the first argument of ibpu is a list of two elements, ibpu works only on
the last element of this list and adds the integrated term to the first element of this
list. (therefore it is possible to do several ibpus successively).

For example :

ibpu((log(x))"2,log(x)) = [xx(log(x))"2,-(2+log(x))]

it remains to integrate — (2x1og (x)), hence input :

ibpu (ans (), log(x)) orinput:

ibpu ([x* (log(x)) "2, -(2*log(x))],log(x))

Output :

[x* (log(x)) "2+xx (- (2*1log(x))),2]

it remains to integrate 2, hence input :

ibpu (ans (), 0) orinput:

ibpu ([x* (Log (x)) *2+x* (- (2%xLlog(x))),2],0).

Output : x* (log (x)) "2+x* (= (2x1og(x))) +2*x

2.18.5 Change of variables : subst

See the subst command in the section 2.12.16.

118 CHAPTER 2. THE CAS FUNCTIONS

2.19 Limits

2.19.1 Limits: 1imit

limit computes the limit of an expression at a finite or infinite point. It is also
possible with an optional argument to compute a one-sided limit (1 for the right
limit and -1 for the left limit).

limit takes three or four arguments :

an expression, the name of a variable (for example x), the limit point (for example
a) and an optional argument, by default 0, to indicate if the limit is unidirectional.
This argument is equal to —1 for a left limit (x<a) or is equal to 1 for a right limit
(x>a) or is equal to O for a limit.

limit returns the limit of the expression when the variable (for example x) ap-
proaches the limit point (for example a).

Remark

It is also possible to put x=a as argument instead of x, a, hence : 1imit takes also
as arguments an expression depending of a variable, an equality (variable =value
of the limit point) and perhaps 1 or -1 to indicate the direction.

Input :

limit(1/x,x%,0,-1)

or:
limit (1/x,x=0,-1)
Output :
—(infinity)
Input :
limit (1/x,x,0,1)
or:
limit (1/x,x=0,1)
Output :
+(infinity)
Input :
limit (1/x,x,0,0)
or :
limit (1/x,x%,0)
or :

limit (1/x,x=0)

Output :

2.19. LIMITS 119

infinity
Hence, abs (1/x) approaches +o0o when x approaches 0.
Exercises :

e Find for n > 2, the limit when x approaches 0 of :

ntan(z) — tan(nx)

sin(nz) — nsin(z)

Input :
limit ((n*tan(x)-tan(n*x))/ (sin(n*x)-n*sin(x)),x=0)
Output :

2

e Find the limit when z approaches +o0 of :

r+\x+Vr -V

Input :
limit (sgrt (x+sgrt (x+sgrt (x)))—-sgrt (x),x=+infinity)
Output :

1/2

o Find the limit when z approaches 0 of :

V1+z+22/2 —exp(z/2)

(1 — cos(z)) sin(x)

Input :

limit ((sqgrt (1+x+x"2/2)-exp(x/2))/((l-cos(x))*sin(x)),x,0)

Output :
-1/6
Remark
To compute limits, it is better sometimes to quote the first argument.

Input :
limit (" (2xx-1)xexp (1/(x-1))’,x=+infinity)

Note that the first argument is quoted, because it is better that this argument is not
simplified (i.e. not evaluated).
Output :

+(infinity)

120 CHAPTER 2. THE CAS FUNCTIONS

2.19.2 Integral and limit

Just two examples :

e Find the limit, when a approaches +oo, of :
a
1
2 X

limit (integrate(1/(x"2),x,2,a),a,+(infinity))

Input :

Output (if a is assigned then input purge (a)) :
1/2

o Find the limit, when a approaches +o0, of :

/2“(x +ln(w+1))dx

2 -1 z—1

Input :

limit (integrate (x/ (x"2-1)+log((x+1)/(x-1)),x%x,2,a),
a,t(infinity))

Output (if a is assigned then input purge (a)) :

+(infinity)

2.20 Rewriting transcendental and trigonometric expres-
sions

2.20.1 Expand a transcendental and trigonometric expression : texpand
tExpand

texpand or tExpand takes as argument an expression containing transcenden-

tal or trigonometric functions.

texpand or tExpand expands these functions, like simultaneous calling expexpand,
lnexpand and trigexpand, for example, In(z™) becomes nln(z), exp(nz)
becomes exp(x)”, sin(2x) becomes 2sin(x) cos(z)...

Examples :

e 1. Expand cos(x + y).
Input :

texpand (cos (x+y))

2.20. REWRITING TRANSCENDENTAL AND TRIGONOMETRIC EXPRESSIONS121

Output :
cos (x) *cos (y) —sin (x) *sin (y)

2. Expand cos(3z).

Input :
texpand (cos (3*x))
Output :
4% (cos (x))” 3-3*cos (x)
3. Expand sin(3 * x) + sin(7 * a:)
sin(5 *)
Input :

texpand ((sin (3*x)+sin(7%x))/sin (5xx))
Output
/ (16% (cos (x)) "4
+(64*(cos(x))A6—
))"2-1)*sin(x)/
X)) 2+1)/sin(x)

(4% (cos(x))"2-1) * (sin (x)
12* (cos (x))A2+1))/sin()
80 (cos (x)) "4+24« (cos (x
(16* (cos (x))"4-12+* (cos (

Output, after a simplification with normal (ans ()) :
4% (cos(x))"2-2

e 1. Expand exp(z + y).
Input :

texpand (exp (x+y))
Output :
exp (x) xexp (y)

2. Expand In(z x y).
Input :

texpand (log (x*y))
Output :
log (k) +1log (y)
3. Expand In(z™).

Input :
texpand (1ln(x"n))
Output :
n*xln(x)
4. Expand In((e?) + exp(2 * In(2)) + exp(In(3) + In(2))).
Input :

texpand (log(e”2)+exp (2x1log(2)) texp (log(3)+log(2)))

122 CHAPTER 2. THE CAS FUNCTIONS

Output :
6+3%2
Or input :
texpand (log (e”2)+exp (2+x1log(2)))+
Incollect (exp (log(3)+tlog(2)))
Output :

12

e Expand exp(x + y) + cos(z + y) + In(3z?).
Input :

texpand (exp (x+y) tcos (x+y) +1n (3*x"2))
Output :

cos (x) *cos (y) —sin (x) xsin (y) texp (x) rexp (y) +
In(3)+2*1n(x)
2.20.2 Combine terms of the same type : combine

combine takes two arguments : an expression and the name of a function or class
of functions exp, 1log, 1n, sin,cos,trig.

Whenever possible, combine put together subexpressions corresponding to the
second argument:

e combine (expr,ln) or combine (expr, log) gives the same result
as Incollect (expr)

e combine (expr,trig) orcombine (expr, sin) orcombine (expr, cos)
gives the same result as tcollect (expr).

Input :
combine (exp (x) *exp (y) +sin (x) xcos (x) +1n (x) +1n(y) , exp)
Output :
exp (x+y) +sin (x) xcos (x) +1n (x) +1n (y)

Input :

combine (exp (x) xexp (y) +sin (x) xcos (x) +1n (x) +1n(y), trig)
or

combine (exp (x) *exp (y) +sin (x) *cos (x) +1n (x) +1n(y), sin)
or

combine (exp (x) xexp (y) +sin (x) *cos (x) +1n (x) +1n (y), cos)

Output :

2.21. TRIGONOMETRY 123

exp (y) *exp (x) + (sin (2*x)) /2+1n (x) +1n(y)
Input :
combine (exp (x) xexp (y) +sin (x) xcos (x) +1n (x) +1n(y), 1n)
or
combine (exp (x) *exp (y) +sin (x) xcos (x) t1n (x) +1n(y), log)
Output :

exp (x) *exp (y) +sin (x) *cos (x) +1n (x*y)

2.21 Trigonometry
2.21.1 Trigonometric functions
e sin is the sine function,
e cos is the cosine function,
e tan is the tangent function (tan (x)= sin (x)/cos (x)),
e cot is the cotangent function (cot (x) = cos (x) /sin(x)),
e sec is the secant function (sec (x) = 1/cos (x)),
e csc is the cosecant function (csc (x) = 1/sin(x)),

® asin or arcsin, acos or arccos, atan or arctan, acot, asec,
acsc are the inverse trigonometric functions. The latter are defined by:

1. asec(x) = acos(1l/x),

2. acsc(x) = asin(1l/x),

3. acot (x) atan(1/x).

2.21.2 Expand a trigonometric expression : t rigexpand

trigexpand takes as argument an expression containing trigonometric func-
tions.

trigexpand expands sums, differences and products by an integer inside the
trigonometric functions

Input :

trigexpand (cos (x+y))
Output :

cos (x) *cos (y) —sin (x) xsin (y)

124 CHAPTER 2. THE CAS FUNCTIONS

2.21.3 Linearize a trigonometric expression : t 1in

t 1in takes as argument an expression containing trigonometric functions.

t1lin linearizes products and integer powers of the trigonometric functions (e.g.
in terms of sin(n * x) and cos(n * x))

Examples

e Linearize cos(z) * cos(y).
Input :

tlin(cos (x)*cos (y))
Output :
1/2xcos (x-y)+1/2*cos (x+y)

e Linearize cos(x)3.

Input :
tlin(cos (x)"3)
Output :
3/4xcos (x)+1/4%xcos (3*x)

e Linearize 4 cos(z)? — 2.
Input :

tlin(4xcos (x)"2-2)
Output :
2+%C0S (2+*X)

2.21.4 Put together sine and cosine of the same angle : tcollect
tCollect

tcollect or tCollect takes as argument an expression containing trigono-
metric functions.

tcollect first linearizes this expression (e.g. in terms of sin(n * x) and cos(n *
x)), then, puts together sine and cosine of the same angle.

Input :
tcollect (sin(x) +cos (X))
Output :
sqrt (2) xcos (x—pi/4)
Input :
tcollect (2#sin(x) *cos (x)+cos (2*x))
Output :

sqgrt (2) xcos (2+x-pi/4)

2.21. TRIGONOMETRY 125

2.21.5 Simplify : simplify

simplify simplifies the expression.

As with all automatic simplifications, do not expect miracles, you will have to use
specific rewriting rules if it does not work.

Input :

simplify ((sin(3*x)+sin(7+x))/sin(5%x))
Output :
4% (cos (x))"2-2
Warning simplify is more efficient in radian mode (check radian in the
cas configuration or input angle_radian:=1).
2.21.6 Transform arccos into arcsin : acos2asin

acos2asin takes as argument an expression containing inverse trigonometric
functions.

. ™
acos2asin replaces arccos(z) by 5 arcsin(z) in this expression.

Input :
acos2asin (acos (x)+asin(x))
Output after simplification :

pi/2

2.21.7 Transform arccos into arctan : acos2atan

acos2atan takes as argument an expression containing inverse trigonometric
functions.

T o .
acos2atan replaces arccos(x) by 5 arctan() in this expression.

T
V1—22
Input :

acos2atan (acos (x))
Output :

pi/2—-atan(x/sqrt (1-x"2))

2.21.8 Transform arcsin into arccos : asin2acos

asin2acos takes as argument an expression containing inverse trigonometric
functions.

asin2acos replaces arcsin(x) by g — arccos(z) in this expression.

Input :

asin2acos (acos (x)+asin(x))
Output after simplification :

pi/2

126 CHAPTER 2. THE CAS FUNCTIONS

2.21.9 Transform arcsin into arctan : asin2atan

asin2atan takes as argument an expression containing inverse trigonometric
functions.

asin2atan replaces arcsin(x) by arctan() in this expression.

T
V1—22
Input :

asinZ2atan (asin(x))

Output :

atan (x/sqrt (1-x72))

2.21.10 Transform arctan into arcsin : atan2asin
atan2asin takes as argument an expression containing inverse trigonometric

T
V1+ 22

functions. atan2asin replaces arctan(z) by arcsin() in this expres-

sion.
Input :

atanZ2asin (atan(x))
Output :

asin (x/sqgrt (1+x"2))

2.21.11 Transform arctan into arccos : atan2acos

atan2acos takes as argument an expression containing inverse trigonometric
functions.

s o .
atan2acos replaces arctan(z) by 5 arccos() in this expression.

x
V14 x2
Input :
atan2acos (atan(x))

Output :

pi/2-acos (x/sqrt (1+x"2))
2.21.12 Transform complex exponentials into sin and cos : sincos

exp2trig

sincos or exp2trig takes as argument an expression containing complex ex-
ponentials.

sincos or exp2trig rewrites this expression in terms of sin and cos.

Input :

sincos (exp (1*x))
Output :

cos (xX)+ (1) *sin(x)

2.21. TRIGONOMETRY 127

Input :
exp2trig(exp (—ixx))
Output :
cos (x)+ (1) *(—(sin(x)))
Input :

simplify (sincos (((1)* (exp ((1)*x))"2-1)/ (2xexp ((1)*x))))

or:

simplify (exp2trig (((1)* (exp ((1)*x))"2-1)/ (2xexp ((1)*x))))
Output :

-sin (x)

2.21.13 Transform tan(x) into sin(x)/cos(x) : tan2sincos

tan2sincos takes as argument an expression containing trigonometric func-
tions.

sin(x) . . .
tan2sincos replaces tan(z) by L in this expression.
cos(x)
Input :
tan2sincos (tan(2xx))
Output :

sin(2+«x) /cos (2*x)

2.21.14 Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos?2

tan2sincos?2 takes as argument an expression containing trigonometric func-
tions.

tan2si 2 replaces tan(x) b sin(2z) in this expression
an2sincos an(x —_— .
P Y1+ cos(2x) P
Input :
tanZ2sincos?2 (tan(x))
Output :

sin(2*x)/ (1l+cos (2xx))

128 CHAPTER 2. THE CAS FUNCTIONS

2.21.15 Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin?2

tan2cossin?2 takes as argument an expression containing trigonometric func-
tions.

, 1 —cos(2x) . . ,
tan2cossin?2 replaces tan(x) by ————=, in this expression.
sin(2x)
Input :
tan2cossin2 (tan(x))
Output :

(1-cos (2*x)) /sin (2xx)

2.21.16 Rewrite sin, cos, tan in terms of tan(x/2) : halftan

halftan takes as argument an expression containing trigonometric functions.
halftan rewrites sin(x), cos(x) and tan(z) in terms of tan(%).
Input :

halftan(sin (2*x)/ (1l+cos (2+x)))
Output :

2xtan (2*x/2)/ ((tan (2+«x/2))"2+1)/
(1+(1-(tan(2xx/2))"2) / ((tan(2*x/2))"2+1))

Output, after simplification with normal (ans ()) :
tan (x)
Input :
halftan(sin (x) "2+cos (x) "2)
Output :

(2xtan(x/2)/ ((tan(x/2))"2+1)) "2+
((1-(tan(x/2))"2)/ ((tan(x/2))"2+1))"2

Output, after simplification with normal (ans ()) :

1

2.21.17 Rewrite trigonometric functions as function of tan(x/2) and
hyperbolic functions as function of exp(x):
halftan_hypZ2exp

halftan_hyp2exp takes as argument a trigonometric and hyperbolic expres-

sion.

halftan_hyp2exp rewrites sin(x), cos(z), tan(x) in terms of tan(§) and sinh(z), cosh(x), tanh(z
in terms of exp(x).

Input :

2.21. TRIGONOMETRY 129

halftan_hyp2exp (tan(x) +tanh (x))
Output :

(2xtan(x/2))/ ((1-(tan(x/2))"2))+(((exp(x))"2-1))/
(((exp(x))"2+1))

Input :
halftan_hyp2exp (sin(x) *2+cos (x) *2-sinh (x) "2+cosh (x) *2)
Output, after simplification with normal (ans ()) :

2

2.21.18 Transform inverse trigonometric functions into logarithms :
atrig2ln

atrig2ln takes as argument an expression containing inverse trigonometric func-
tions.

atrig2ln rewrites these functions with complex logarithms.

Input :

atrig2ln(asin(x))
Output :
ixlog(x+sqgrt (x"2-1))+pi/2
2.21.19 Transform trigonometric functions into complex exponentials
ttrig2exp

trig2exp takes as argument an expression containing trigonometric functions.
trig2exp rewrites the trigonometric functions with complex exponentials (WITH-
OUT linearization).

Input :
trigZ2exp (tan(x))
Output :
((exp ((1)*x))"2-1)/ ((1)*((exp((1)*x))"2+1))
Input :
trig2exp (sin(x))
Output :

(exp ((1)*x)-1/(exp ((1)*x)))/(2%1)

130 CHAPTER 2. THE CAS FUNCTIONS

2.21.20 Simplify and express preferentially with sine : t rigsin

trigsin takes as argument an expression containing trigonometric functions.
trigsin simplify this expression with the formula :

sin(x . . .
sin(z)? + cos(x)? = 1, tan(z) = (()) and tries to rewrite the expression only
os(z
with sine.
Input :
trigsin(sin(x) *4+cos (x)"2+1)
Output :

sin(x) "4-sin(x) "2+2

2.21.21 Simplify and express preferentially with cosine : t rigcos

trigcos takes as argument an expression containing trigonometric functions.
trigcos simplifies this expression with the formula :

sin(x . . .
sin(z)? + cos(x)? = 1, tan(z) = ((; and tries to rewrite the expression only
cos(z
with cosine.
Input :
trigcos (sin(x) *4+cos (x)"2+1)
Output :

cos (x) "—-cos (x) "242

2.21.22 Simplify and express preferentially with tangents : trigtan

trigtan takes as argument an expression containing trigonometric functions.
trigtan simplifies this expression with the formula :

sin(x . . .
sin(z)? + cos(x)? = 1, tan(z) = ((; and tries to rewrite the expression only
cos(x
with tangents.
Input :
trigtan(sin (x) "4+cos (x)"2+1)
Output :

((tan(x)) "2/ (1+(tan(x))"2))"2+1/ (1+(tan(x)"2)+1
Output, after simplification with normal :

(2xtan (x) “4+3xtan(x) *2+2) / (tan (x) "4+2*tan(x)) "2+1)

2.21. TRIGONOMETRY 131

2.21.23 Rewrite an expression with different options : convert convertir

convert takes two arguments an expression and an option.
convert rewrites this expression applying rules depending on the option. Valid
options are :

e sin converts an expression like trigsin.

e cos converts an expression like t rigcos.

e sincos converts an expression like sincos.
e trig converts an expression like sincos.

e tan converts an expression like halftan.

e exp converts an expression like t rig2exp.

e 1n converts an expression like t rig2exp.

e expln converts an expression like t rig2exp.
e string converts an expression into a string.

e matrix converts a list of lists into a matrix.

e polynom converts a Taylor series into a polynomial by removing the re-
mainder (cf 2.24.22).

e parfrac or partfrac or fullparfrac converts a rational fraction
into its partial fraction decomposition (2.28.9).

convert can also :
e convert units, for example convert (1000_g,_kg)=1.0_kg (cf5.1.4).

e write areal as a continued fraction : convert (a, confrac,’ £fc’) writes
a as a continued fraction stored in fc. Do not forget to quote the last argu-
ment if it was assigned.

For example, convert (1.2, confrac,’ fc’)=[1,5] and fc contains
the continued fraction equal to 1.2 (cf 2.8.7).

o transform an integer into the list of its digits in a base, beginning with the
units digit (and reciprocally)

- convert (n,base,b) transforms the integer n into the list of its
digits in base b beginning with the units digit.
For example, convert (123,base, 10)=[3,2,1] and recipro-
cally

— convert (1, base, b) transforms the list 1 into the integer n which
has 1 as list of its digits in base b beginning with the units digit.
For example, convert ([3,2,1],base, 10)=123 (cf 2.5).

132 CHAPTER 2. THE CAS FUNCTIONS

2.22 Fourier transformation

2.22.1 Fourier coefficients: fourier anand fourier_ _bnor fourier_cn

Let f be a T-periodic continuous functions on R except maybe at a finite number
of points. One can prove that if f is continuous at x, then;

a = 2mnx 2mnx
0 .
flz) = 5 —l—nzlancos(T) + by, sin(T)
+oo
2imTnx
= Cne T
n=—oo

where the coefficients a,,, b,,n € N, (or ¢,,, n € Z) are the Fourier coefficients of
f. The commandsfourier_an and fourier_bn or fourier_cn compute
these coefficients.

fourier_an

fourier_an takes four or five arguments : an expression expr depending on a
variable, the name of this variable (for example z), the period 7', an integer n and
areal a (by default a = 0).

fourier_an (expr, x, T, n, a) returns the Fourier coefficient a,, of a function
f of variable x defined on [a,a + T') by f(z) = expr and such that f is periodic
of period T":

2mnx

T

ap = ;/{;HT f(x) cos()dx

To simplify the computations, one should input assume (n, integer) before
calling fourier_an to specify that n is an integer.

Example Let the function f, of period T' = 2, defined on [-1, 1) by f(x) = 2.
Input, to have the coefficient ay :

fourier_an(x"2,x,2,0,-1)
Output :
1/3
Input, to have the coefficient a,, (n # 0) :
assume (n, integer) ; fourier_an(x*2,x,2,n,-1)
Output :

4% (=1)"n/ (pi”2*n"2)

fourier_bn

fourier_bn takes four or five arguments : an expression expr depending on a
variable, the name of this variable (for example z), the period 7', an integer n and
areal a (by default a = 0).

2.22. FOURIER TRANSFORMATION 133

fourier_bn (expr, x, T, n, a) returns the Fourier coefficient b,, of a function
f of variable x defined on [a,a + T') by f(z) = expr and periodic of period T":

9 a+T 2
by, = T/a f(x)sin(?SU)d;U

To simplify the computations, one should input assume (n, integer) before
calling fourier_bn to specify that n is an integer.
Examples

e Let the function f, of period T' = 2, defined on [—1,1) by f(z) = 22.
Input, to have the coefficient b,, (n # 0) :

assume (n, integer) ; fourier_bn (x*2,x,2,n,-1)
Output :
0

e Let the function f, of period T' = 2, defined on [—1,1) by f(z) = 3.
Input, to have the coefficient b; :

fourier_bn(x"3,x,2,1,-1)
Output :

(2%pin2-12) /pi~3

fourier_cn

fourier_cn takes four or five arguments : an expression expr depending of a
variable, the name of this variable (for example x), the period T, an integer n and

areal a (by default a = 0).
fourier_cn (expr, x, T, n, a) returns the Fourier coefficient ¢,, of a function f

of variable = defined on [a,a + T") by f(z) = expr and periodic of period 7T":

]. a+T —2iTnx
cn:T/a fl@e T dx

To simplify the computations, one should input assume (n, integer) before
calling fourier_cn to specify that n is an integer.
Examples

e Find the Fourier coefficients ¢, of the periodic function f of period 2 and
defined on [—1,1) by f(x) = 2.
Input, to have ¢y :

fourier_cn(x"2,x,2,0,-1)

Output:

134

CHAPTER 2. THE CAS FUNCTIONS

1/3
Input, to have ¢, :

assume (n, integer)
fourier_cn(x"2,x,2,n,-1)

Output:
2% (=1)"n/ (pi~2*n"2)
Find the Fourier coefficients ¢,, of the periodic function f, of period 2, and
defined on [0, 2) by f(z) = 2.
Input, to have ¢ :
fourier_cn(x"2,x,2,0)
Output:
4/3

Input, to have ¢, :

assume (n, integer)
fourier_cn(x"2,x,2,n)
Output:
((2%1) *pi*n+2)/ (pi”2+n"2)
Find the Fourier coefficients ¢, of the periodic function f of period 27 and
defined on [0, 27) by f(z) = 2%

Input :
assume (n, integer)
fourier_cn(x"2,x,2*pi,n)
Output :
((2%1) *pi*n+2) /n"2

If you don’t specify assume (n, integer), the output will not be simpli-
fied :

2.22. FOURIER TRANSFORMATION 135

((2x1) *»pin2+xn"2+exp ((—1) *n*2xpil) +2*pisnrxexp ((—1) *nx2*pi) +
(—1) *exp ((i) *n*x2xpi) +i) / (pi*n~"3)

You might simplify this expression by replacing exp ((-1) xnx2+pi) by
1, input :

subst (ans () ,exp ((—-1) *»n*2xpi)=1)
Output :
((2%1) *xpit2*n"2+2xpi*n+-i+i) /pi/n"3
This expression is then simplified with normal, the final output is :

((2*1) xpi*n+2)/n"2

2inm + 2
n2
input assume (n, integer) before calling fourier_cn.

We must also compute ¢,, for n = 0, input :

Hence for n # 0, ¢,, = . As shown in this example, it is better to

fourier_cn(x"2,x,2xpi,0)

Output :
4xpin2/3
4 2
Hence forn =0, ¢y = %
Remarks :

e Input purge (n) to remove the hypothesis done on n.

e Input about (n) or assume (n), to know the hypothesis done on the vari-
able n.

2.22.2 Discrete Fourier Transform

Let N be an integer. The Discrete Fourier Transform (DFT) is a transformation Fy
defined on the set of periodic sequences of period [V, it depends on a choice of a
primitive N-th root of unity wy. If the DFT is defined on sequences with complex
coefficients, we take: i
wWN = €N

If x is a periodic sequence of period N, defined by the vector x = [z, 1, ... N _1]
then Fiy(z) = y is a periodic sequence of period NV, defined by:

N-1 '

(FNwy (:c))k =yp = Z xjw]:,kﬂ, k=0.N—-1

j=0
where wy is a primitive N-th root of unity. The discrete Fourier transform may
be computed faster than by computing each y;, individually, by the Fast Fourier
Transform (FFT). Xcas implements the FFT algorithm to compute the discrete
Fourier transform only if N is a power of 2.

136 CHAPTER 2. THE CAS FUNCTIONS

The properties of the Discrete Fourier Transform

The Discrete Fourier Transform F)y is a bijective transformation on periodic se-
quences such that

1
1
Nwn NFN,wX,I
1
= —F C
N N on

ie.:
1 Nl
—1 k-j
(Fy (), = N Z zjwy’
j=0
Inside Xcas the discrete Fourier transform and its inverse are denote by £ft and
ifft:
£t (x)=Fy(z), 1£ft (x)=Fy'(2)

Definitions
Let x and y be two periodic sequences of period N.

e The Hadamard product (notation -) is defined by:
(T Y)p = TkYk

e the convolution product (notation) is defined by:

N—

(@*y) = D Tiyhj

J]=

—_

Properties :

NxFy(x-y) = Fn(x)* Fn(y)
Fy(xxy) = Fy(x)-Fn(y)

Applications

1. Value of a polynomial
Define a polynomial P(z) = Z;V:_Ol cjz? by the vector of its coefficients
¢ := [ep, c1, ..cN—1], Where zeroes may be added so that N is a power of 2.

e Compute the values of P(x) at

—2tkm
N

z = a), =wy" = exp(), k=0.N-1

This is just the discrete Fourier transform of ¢ since

N-1

Pla) = > ¢j(wif) = Fx(o)
=0

Input, for example :

2.22. FOURIER TRANSFORMATION 137

P(x) :=x+x"2; w:=1
Here the coefficients of P are [0,1,1,0], N = 4 and w = exp(2in/4) =
7.
Input :
ffe([0,1,1,0])
Output :
[2,-1-1,0,-1+i]
hence

1)=2,

i)=P (w"-1)=-1-1,
1)=P (w"-2)=0,

) =P (w"=3)=-1+1.

e Compute the values of P(z) at

P (
P (=
P (-
P (1

T =b,=wh = exp(zdm)7 E=0.N—-1
N
This is N times the inverse fourier transform of ¢ since
N-1
Plax) = Y ¢j(wh) = NFy' (o)
§=0

Input, for example :

P(x):=x+x"2and w:=1
Hence, the coefficients of P are [0,1,1,0], N = 4and w = exp(2in/4) =
7.

Input :

4«ifft ([0,1,1,071)
Output :
[2,-1+i,0,-1-1]
hence :

- P(1)=2,

- P(1)=P(w"1l)=-1+1,

(-1

) =P (w"2) =0,
- P(-1i)=P(w"3)=-1-1.

We find of course the same values as above...

2. Trigonometric interpolation
Let f be periodic function of period 27, assume that f(2k7w/N) = f for
k = 0..(N — 1). Find a trigonometric polynomial p that interpolates f at
x = 2km /N, thatis find p;, j = 0..N — 1 such that

T) = z_: pjexp(ijz), plzk) = fi
=0

Replacing zj, by its value in p(x) we get:

N-—1

2kzﬂ'
Zp] N) fk
7=0

138

CHAPTER 2. THE CAS FUNCTIONS

In other words, (f%) is the inverse DFT of (py), hence

(pk) = %FN((fx))

If the function f is real, p_; = Py, hence depending whether /V is even or
odd:

X
2
N
p(x) = po+2%R(prexp(ikx)) + %(p% exp(i%))
k=0
N—-1

-

p(r) = po+2R() prexp(ikz))

i
o

. Fourier series

Let f be a periodic function of period 27, such that

2km
f(xk) =Yk, Tk = T’ k=0.N—-1
Suppose that the Fourier series of f converges to f (this will be the case if
for example f is continuous). If N is large, a good approximation of f will

be given by:
Z cn exp(in)

<n<

w2
w2

Hence we want a numeric approximation of

2
Cn = % ; f(t)exp(—int)dt

The numeric value of the integral fo% f(t) exp(—int)dt may be computed
by the trapezoidal rule (note that the Romberg algorithm would not work
here, because the Euler Mac Laurin development has its coefficients equal to
zero, since the integrated function is periodic, hence all its derivatives have
the same value at 0 and at 27). If &, is the numeric value of ¢,, obtained by
the trapezoidal rule, then

.1 o Nl (2,nk7r) N e N

T op N L IREPITETGT), Ty = s
k=0

Indeed, since xj, = 2knw /N and f(z)) = yx:
. nkm
fxg) exp(—inxg) = yk exp(—2zT),
nNm
f(0) exp(0) = f(2m) exp(—2i) = Yo =ynN

N

Hence :

- - - 1
[007 ~-Cg_170g+1, --CN—1] = NFN([:UO,yl-ny(Nfl)])

since

2.22. FOURIER TRANSFORMATION 139

e ifn>0,¢, =y,
o ifn <0¢, =YntN

e wy = exp(3F), then wh = wieh

Properties

e The coefficients of the trigonometric polynomial that interpolates f at
x = 2km/N are
Pn = Cn N <n< N
’ 2 = 2
e If f is a trigonometric polynomial P of degree m < &, then

m—1

f(t)y=P(t) = > cpexp(2ikrt)

k=—m
the trigonometric polynomial that interpolate f = P is P, the numeric
approximation of the coefficients are in fact exact (¢,, = ¢;).

e More generally, we can compute ¢, — ¢j.
Suppose that f is equal to its Fourier series, i.e. that :

+oo +oo
flt) = Z Cm exp(2immt), Z lem| < o0
Then :
2km = =
flag) = f=y) =w = D> cmwk, Z yrwy "
m=—00 k;:

Replace y;, by its value in ¢:

N-1 4o

k: 0 m=—o00

If m # n (mod N), wy ™™ is an N-th root of unity different from 1,

hence:

N-1
PR SV

k=0

Therefore, if m—n is amultiple of N (m = n+[-N)then) 2501

N, otherwise S8 "' w N(m_”) = 0. By reversing the two sums, we get

1 X
S SR e
mf—oo
+00
= D)
l=—00

= ..Cp—2.N +Cp—N +Cp + CnyN + Cnya.N +

Conclusion: if |n| < N/2, ¢, — ¢, is a sum of ¢; of large indexes (at
least N /2 in absolute value), hence is small (depending on the rate of
convergence of the Fourier series).

kE(m—m)

140 CHAPTER 2. THE CAS FUNCTIONS

Example Input :

f(t) :=cos(t)+cos (2*t)
x:=f (2xk*p1/8)S$(k=0..7)

Then :

x={2,sqrt(2)/2,-1, (-sqrt (2) /2,0, (-sqrt (2))/2,-1,sqrt (2) /2}
fft(x)=[0.0,4.0,4.0,0.0,0.0,0.0,4.0,4.0]

After a division by N = 8, we get

co=0,c1 =4.0/8,¢c0 =4.0/8,c3 = 0.0,
C_y4 = 0.0,0_3 = 0.0, C_9 = 4.0/8, =C-1 = 4.0/8
Hence by, = 0 and ay, = c_j + ci isequal to 1 if £ = 1,2 and O otherwise.
4. Convolution Product
If P(x) = Z?:_& a;z? and Q(z) = Z?’:_Ol b;x? are given by the vector
of their coefficients a = [ag, a1, ..a,—1] and b = [bg, b1, ..b;—1], Wwe may
compute the product of these two polynomials using the DFT. The product
of polynomials is the convolution product of the periodic sequence of their
coefficients if the period is greater or equal to (n + m). Therefore we com-
plete a (resp. b) with m + p (resp. n + p) zeros, where p is chosen such

that N = n + m + p is a power of 2. If a = [ag,a1,..ap—1,0..0] and
b= [bo, b, ..bpm_1, 0..0], then:

n+m—1

P(z)Q(z) = Z (a*b)x

J=0

We compute Fiy(a), Fy(b), then ab = Fy'(Fx(a)- Fx (b)) using the prop-
erties

NEN(z-y) = Fn(2z) * En(y), Fn(zxy) = Fn(z)- Fn(y)

2.22.3 Fast Fourier Transform : £ft
f £t takes as argument a list (or a sequence) [ao, ..ay—1| where N is a power of two.

£ £t returns the list [bg, ..by_1] such that, for k=0. .N-1

N—1
££t([ag, .ay_1])[k] = bx = Y xjwy
j=0

where wyy is a primitive N-th root of the unity.
Input :

fft(0,1,1,0)
Output :
(2.0, -1-i, 0.0, -1+1i]

2.22. FOURIER TRANSFORMATION 141

2.22.4 Inverse Fast Fourier Transform : 1 fft

i fft takes as argument a list [bo, ..by_1] where N is a power of two.
i £ £t returns the list [a, ..ay—1] such that

fft([ao,..an—1]) = [bo, ..by—1]
Input :

ifft([2,-1-1,0,-1+1])
Output :

(0.0, 1.0, 1.0, 0.0]

2.22.5 An exercise with £ft

Here are the temperatures 7, in Celsius degree, at time ¢ :

t| 0 3 6 9 12 15 19 21
T|11 10 17 24 32 26 23 19

What was the temperature at 13h45 ?
Here N = 8 = 2 * m. The interpolation polynomial is

1 wkt
p(t) = ip—m(exp(22@) + exp(QZ—) §+1pk exp QZﬂ)

and
N—
Z Ty exp(21—
k:

Input :

q:=1/8«fft([11,10,17,24,32,26,23,19])

Output :
g:=[20.25,-4.48115530061+1.72227182413%1,-0.375+0.875%1,
-0.768844699385+0.222271824132x1,0.5,
-0.768844699385-0.222271824132%1,
-0.375-0.875%1,-4.48115530061-1.72227182413%*1]

hence:

po = 20.25

p1 = —4.48115530061 + 1.72227182413 x4 = p_1,

p2 = 0375+ 0.875 % i = pz,

p3 = —0.768844699385 4 0.222271824132 x ¢ = p_3,

® D_y4 = 0.5

142 CHAPTER 2. THE CAS FUNCTIONS

Indeed
1 1
¢ = lao, --an—1] = [po, Py 1, P, p1] = HEN([yo, - yn—1]) = LEEE(y)
Input :
pp:=[ql4],ql5],ql6]l,ql7],ql0],ql1l],ql2],q[3]]
Here, pr, = pplk + 4] for k = —4...3. It remains to compute the value of the
interpolation polynomial at point t0 = 13.75 = 55/4.
Input:

t0(J) :=exp (2xi*pix (13+3/4)/24%7)
TO:=1/2+pp[0]* (£0(4)+t0(-4))+sum(ppl[ij+4]1+t0(j),], -3,3)
evalf (re(T0))
Output :

29.4863181684

The temperature is predicted to be equal to 29.49 Celsius degrees.

Input :
ql:=I[ql41/2,9[3]1,ql2],9l[1],9l0]1/2]
a:=t0 (1) (ora:=—exp (i*xpix*x7/48))
g(x):=r2e(ql, x)
evalf (2«re(g(a)))
or:

2.0xre(q[0]1/2+g[1]1+t0(1)+gq[2]*t0(2)+g[3]1*t0(3)+g[4]/2«t0(4))
Output :

29.4863181684

Remark
Using the Lagrange interpolation polynomial (the polynomial is not periodic), in-
put:

11:=[(0,3,6,9,12,15,18,21]
12:=[11,10,17,24,32,26,23,19]
subst (lagrange (11,12,1343/4) ,x=13+3/4)

Output :

8632428959
286654464

~ 30.1144061688

2.23. EXPONENTIALS AND LOGARITHMS 143

2.23 Exponentials and Logarithms

2.23.1 Rewrite hyperbolic functions as exponentials : hyp2exp

hyp2exp takes as argument an hyperbolic expression.

hyp2exp rewrites each hyperbolic functions with exponentials (as a rational frac-
tion of one exponential, i.e. WITHOUT linearization).

Input :

hyp2exp (sinh (x))
Output :

(exp (x) -1/ (exp(x)))/2

2.23.2 Expand exponentials : expexpand

expexpand takes as argument an expression with exponentials.
expexpand expands this expression (rewrites exp of sums as product of exp).
Input :

expexpand (exp (3*x) texp (2*x+2))
Output :

exp (x) "3+exp (x) "2+exp (2)

2.23.3 Expand logarithms : 1nexpand

1nexpand takes as argument an expression with logarithms.
1nexpand expands this expression (rewrites In of products as sum of In).
Input :

Inexpand (1In (3*%x"2)+1n (2xx+2))
Output :

In(3)+2*1n(x)+1ln(2)+1ln(x+1)

2.23.4 Linearize exponentials : 1in

1in takes as argument an expression with exponentials.

1in rewrites hyperbolic functions as exponentials if required, then linearizes this
expression (i.e. replace product of exponentials by exponential of sums).
Examples

e Input:
lin (sinh (x) *2)
Output :

1/4xexp (2+x)+1/-2+1/4%exp (= (2xx))

144 CHAPTER 2. THE CAS FUNCTIONS

e Input:
lin((exp(x)+1)"3)
Output :
exp (3*x) +3*xexp (2*x) +3*xexp (x) +1

2.23.5 Collect logarithms : 1ncollect

Incollect takes as argument an expression with logarithms.

Incollect collects the logarithms (rewrites sum of In as In of products). It
may be a good idea to factor the expression with factor before collecting by
lncollect).

Input :
lncollect (In(x+1)+1n(x—-1))
Output :
log ((x+1) x (x-1))
Input :
Incollect (exp (In(x+1)+1In(x-1)))
Output :

(x+1) * (x—-1)

Warning!!! For Xcas, 1og=1n (use 10g10 for 10-base logarithm).

2.23.6 Expand powers : powexpand

powexpand rewrites a power of a sum as a product of powers.
Input :

powexpand (a” (x+y))
Output :
atx*xa’ty
2.23.7 Rewrite a power as an exponential : pow2exp

pow2exp rewrites a power as an exponential.
Input :

pow2exp (a” (x+y))
Output :

exp ((x+y) *1n(a))

2.24. POLYNOMIALS 145

2.23.8 Rewrite exp(n*In(x)) as a power : exp2pow

exp2pow rewrites expression of the form exp(n * In(z)) as a power of .
Input :

exp2pow (exp (nx1n(x)))
Output :

XN

Note the difference with Incollect :

Incollect (exp(nxln(x))) = exp(nxlog(x))
Incollect (exp(2*x1ln(x))) = exp(2xlog(x))
expl2pow (exp (2x1ln(x))) = x"2

But :

Incollect (exp (ln(x)+1In(x))) = x"2
exp2pow (exp (ln(x)+1ln(x))) = x*(1+1)

2.23.9 Simplify complex exponentials : t simplify

tsimplify simplifies transcendental expressions by rewriting the expression
with complex exponentials.

It is a good idea to try other simplification instructions and call tsimplify if
they do not work.

Input :

tsimplify ((sin (7*x)+sin (3*x))/sin (5%x))
Output :

((exp ((1)*x))"4+1)/ (exp((1)+*x))"2

2.24 Polynomials

A polynomial of one variable is represented either by a symbolic expression or by
the list of its coefficients in decreasing powers order (dense representation). In the
latter case, to avoid confusion with other kinds of list

e use polyl[...] asdelimiters in inputs
e check for || [in Xcas output.

Note that polynomials represented as lists of coefficients are always written in de-
creasing powers order even if increasing power is checked in cas configu-
ration.

A polynomial of several variables is represented

e by a symbolic expression

e or by a dense recursive 1-d representation like above

146 CHAPTER 2. THE CAS FUNCTIONS

e or by a sum of monomials with non-zero coefficients (distributed sparse rep-
resentation).
A monomial with several variables is represented by a coefficient and a
list of integers (interpreted as powers of a variable list). The delimiters
for monomials are $$%{ and $%%}, for example 3x2y is represented by
$%$%{3, [2,11%%%} with respect to the variable list [x, v]).

2.24.1 Convert to a symbolic polynomial : r2e poly2symb

r2e or poly2symb takes as argument

e a list of coefficients of a polynomial (by decreasing order) and a symbolic
variable name (by default x)

e or a sum of monomials $%% {coeff, [nl,....nk] %%%} and a vector
of symbolic variables [x1, ..., xk].

r2e or poly2symb transforms the argument into a symbolic polynomial.
Example with univariate polynomials, input :

r2e([lr Or_l] IX)

or :
rz2e([1,0,-11])
or :
poly2symb ([1,0,-1],x)
Output :

x*xx—1
Example with sparse multivariate polynomials, input:

poly2symb ($%%{1, [2]%%%}+5%%{-1, [0]%%%}, [x])

or:
r2e (%$%%{1, [2]1%%%}+%%%{-1, [0]%%%}, [x])
Output
x"2-1
Input

poly2symb ($%%{1, [2,0]%%%}+%3%%{-1,[1,1]%%%}+%%%{2,[0,1]1%%%}, [x,v])
Output :

XN2-x*y+2*y

2.24. POLYNOMIALS 147

2.24.2 Convert from a symbolic polynomial : e2r symb2poly

e2r or symb2poly takes as argument a symbolic polynomial and either a sym-
bolic variable name (by default x) or a list of symbolic variable names.

e2r or symb2poly transforms the polynomial into a list (dense representation of
the univariate polynomial, coefficients written by decreasing order) or into a sum
of monomials (sparse representation of multivariate polynomials).

Input :

e2r (x"~2-1)
or:
symb2poly (x"2-1)
or:
symb2poly (y*2-1,vy)
or :
e2r(y"2-1,vy)
Output :
11,0,-1]
Input :
e2r (x"2-x*xy+y, [x,vy])
or:
symb2poly (x"2-xxy+2*y, [xX,y])

Output :

$%%{1,[2,0]%%%}+%%%{-1,[1,1]1%%%}+%%%{2,[0,1]1%%%}

2.24.3 Coefficients of a polynomial: coeff coeffs

coeff or coeffs takes three arguments : the polynomial, the name of the vari-
able (or the list of the names of variables) and the degree (or the list of the degrees
of the variables).

coeff or coeffs returns the coefficient of the polynomial of the degree given
as third argument. If no degree was specified, coe f s return the list of the coeffi-
cients of the polynomial, including O in the univariate dense case and excluding 0
in the multivariate sparse case.

Input :

coeff (—x"M4+3xxxy"2+x,%x,1)
Output :

3xy"2+1

148 CHAPTER 2. THE CAS FUNCTIONS

Input :
coeff (—x"4+3x*xy"2+%x,Vy,2)
Output :
3*x
Input :
coeff (—x"4+3x*xy"2+x, [x,v],[1,2])
Output :

2.24.4 Polynomial degree : degree

degree takes as argument a polynomial given by its symbolic representation or
by the list of its coefficients.

degree returns the degree of this polynomial (highest degree of its non-zero
monomials).

Input :
degree (x"3+x)
Output :
3
Input :
degree([1,0,1,01)
Output :

2.24.5 Polynomial valuation : valuation ldegree

valuation or 1ldegree takes as argument a polynomial given by a symbolic
expression or by the list of its coefficients.

valuation or ldegree returns the valuation of this polynomial, that is the
lowest degree of its non-zero monomials.

Input :
valuation (x"3+x)
Output :
1
Input :
valuation([1,0,1,0])
Output :

2.24. POLYNOMIALS 149

2.24.6 Leading coefficient of a polynomial : 1coeff

lcoeff takes as argument a polynomial given by a symbolic expression or by the
list of its coefficients.

lcoeff returns the leading coefficient of this polynomial, that is the coefficient
of the monomial of highest degree.

Input :
lcoeff([2,1,-1,01)
Output :
2
Input :
lcoeff (3*xx"2+5%x, X)
Output :
3
Input :
lcoeff (3+x"2+5+x+y"2,y)
Output :

5%x

2.24.7 Trailing coefficient degree of a polynomial : tcoeff

tcoeff takes as argument a polynomial given by a symbolic expression or by the
list of its coefficients.

tcoeff returns the coefficient of the monomial of lowest degree of this polyno-
mial (t coef f=trailing coefficient).

Input :
tcoeff([2,1,-1,01)
Output :
-1
Input :
tcoeff (3*x"2+5xx, X)
Output :
5
Input :
tcoeff (3xx"2+5+x+y"2,V)
Output :

3xx"2

150 CHAPTER 2. THE CAS FUNCTIONS

2.24.8 Evaluation of a polynomial : peval polyEval

peval or polyEval takes as argument a polynomial p given by the list of its
coefficients and a real a .

peval or polyEval returns the exact or numeric value of p (a) using Horner’s
method.

Input :
peval ([1,0,-11,sqgrt(2))
Output :
sqrt (2) xsqgrt (2) -1
Then :
normal (sqgrt (2) xsgrt (2)-1)
Output :
1
Input :
peval([1,0,-11,1.4)
Output :

0.96

2.24.9 Factorize 2" in a polynomial : factor_xn

factor_xn takes as argument a polynomial P.

factor_xn returns the polynomial P written as the product of its monomial of
largest degree =™ (n=degree (P)) with a rational fraction having a non-zero fi-
nite limit at infinity.

Input :

factor xn (—x"4+3)
Output :

XM x (=1+3%x"—4)

2.24.10 GCD of the coefficients of a polynomial : content

content takes as argument a polynomial P given by a symbolic expression or by
the list of its coefficients.

content returns the content of P, that is the GCD (greatest common divisor) of
the coefficients of P.

Input :

content (6*xx"2-3%*x+9)
or:

content ([6,-3,9]1,x%))
Output :

2.24. POLYNOMIALS 151

2.24.11 Primitive part of a polynomial : primpart

primpart takes as argument a polynomial P given by a symbolic expression or
by the list of its coefficients.

primpart returns the primitive part of P, that is P divided by the GCD (greatest
common divisor) of its coefficients.

Input :
primpart (6x72-3x+9)
or:
primpart ([6,-3,9],x))
Output :

2+%X"2-x+3

2.24.12 Factorization : collect

collect takes as argument a polynomial or a list of polynomials and optionally
an algebraic extension like sgrt (n) (for y/n).

collect factorizes the polynomial (or the polynomials in the list) on the field of
its coefficient (for example Q) or on the smallest extension containing the optional
second argument (e.g. Q[/n]). In complex mode, the field is complexified.
Examples :

e Factorize x> — 4 over the integers, input :
collect (x72-4)
Output in real mode :
(x—2) * (x+2)
e Factorize 22 + 4 over the integers, input :
collect (x72+4)
Output in real mode :
x"2+4
Output in complex mode :
(Xx+2%1) * (x—2+%1)
e Factorize 22 — 2 over the integers, input :
collect (x7°2-2)

Output in real mode :

152 CHAPTER 2. THE CAS FUNCTIONS

x"2-2
But if you input :
collect (sgrt (2) » (x"2-2))
Output :
sgrt (2) » (x—sgrt (2)) » (x+sqgrt (2))

e Factorize over the integers :

22— 222 +1and 2 — 2

Input :
collect ([x"3-2%*x"2+1,x"2-x])
Output :
[(x=1) * (x"2-x-1),x* (x—1)]
But, input :
collect ((x"3-2%x"2+41) xsqgrt (5))
Output :

((19%sgrt (5)—-10) « ((sgrt (5)+15) *x+7+xsgrt (5)—-5)
((sgrt (5)+25) *x—-13*sqgrt (5)—-15) » (x-1)) /6820

Or, input :
collect (x"3-2xx"2+1,sqgrt (5))
Output :

((2xsgrt (5)-19) x ((sgrt (5) +25) »x—
13%xsqgrt (5)-15) * (=x+1) * ((sgrt (5)+15) xx+7xsqgrt (5)-5)) /6820

2.24.13 Factorization : factor factoriser

factor takes as argument a polynomial or a list of polynomials and optionally an
algebraic extension, e.g. sqrt (n).

factor factorizes the polynomial (or the polynomials in the list) on the field of
its coefficients (the field is complexified in complex mode) or on the smallest ex-
tension containing the optional second argument. Unlike collect, factor will
further factorize each factor of degree 2 if Sqgrt is checked in the cas configura-
tion (see also 2.12.9). You can check the current configuration in the status button
under Xcas and change the configuration by hitting this status button.

Input :

2.24. POLYNOMIALS 153

factor (x"2+2xx+1)

Output :
(x+1) "2
Input :
factor (x"4-2xx"2+1)
Output :
(—x+1) 2% (x+1) "2
Input :

factor (x"3-2xx"2+1)
Output if Sgrt is not checked in the cas configuration :
(x=1) *x (x"2-x-1)
Output if Sgrt is checked in the cas configuration :
(x=1) » (x+ (sqrt (5)-1) /2) * (x+ (-sgrt (5)-1) /2)
Input :
factor (x"3-2xx"2+1, sqrt (5))
Output :

((2xsqrt (5)-19) * ((sgrt (5) +15) »x+
Txsqrt (5) =5) * (—x+1) * ((sgrt (5) +25) *xx—-13xsqrt (5)-15)) /6820

Input :
factor (x*2+1)
Output in real mode :
x"2+1
Output in complex mode :

((—1) *x+1) % ((1) *x+1)

2.24.14 Square-free factorization : sqrfree

sqrfree takes as argument a polynomial.

sqgrfree factorizes this polynomial as a product of powers of coprime factors,
where each factor has roots of multiplicity 1 (in other words, a factor and its deriva-
tive are coprime).

Input :
sqrfree ((x"2-1) % (x-1) » (x+2))
Output :
(X"243xx+2) * (x=1) "2
Input :
sgrfree ((x"2-1) "2 (x-1) x (x+2) "2)
Output :

(x"24+3*x+2) *x (x—1) "3

154 CHAPTER 2. THE CAS FUNCTIONS

2.24.15 List of factors : factors

factors has either a polynomial or a list of polynomials as argument.
factors returns a list containing the factors of the polynomial and their expo-
nents.

Input :
factors (x"2+2xx+1)
Output :
[x+1,2]

Input :

factors (x"4-2+xx"2+1)
Output :

[x+1,2,x-1,2]
Input :
factors ([x"3-2%x"2+1,x"2-x])
Output :
[[x-1,1,x"2-x-1,11,[x,1,x-1,11]

Input :

factors ([x"2,x"2-11])
Output :

[[XIZ]I [X+1r llx_ll 1]1

2.24.16 Evaluate a polynomial : horner

horner takes two arguments : a polynomial P given by its symbolic expression
or by the list of its coefficients and a number a.
horner returns P (a) computed using Horner’s method.

Input :

horner (x"2-2xx+1, 2)
or:

horner ([1,-2,11,2)
Output :

2.24. POLYNOMIALS 155

2.24.17 Rewrite in terms of the powers of (x-a) : ptayl

ptayl is used to rewrite a polynomial P depending of x in terms of the powers of
(x—a) (ptayl means polynomial Taylor)

ptayl takes two arguments: a polynomial P given by a symbolic expression or
by the list of its coefficients and a number a.

ptayl returns the polynomial Q such that Q (x—a) =P (x)

Input :

ptayl (x"2+2+x+1,2)

Output, the polynomial Q:

XN2+6%x+9
Input :
ptayl([1,2,1],2)
Output :
[1,6,9]
Remark

P (x)=0Q(x-a)

i.e. for the example :
2 +2r+1=(x—-2)2+6(x—2)+9

2.24.18 Compute with the exact root of a polynomial : rootof

Let P and @ be two polynomials given by the list of their coefficients then rootof (P, Q)
gives the value P(a)) where « is the root of) with largest real part (and largest
imaginary part in case of equality).
In exact computations, Xcas will rewrite rational evaluations of rootof as a
unique rootof with degree(P) <degree(Q). If the resulting rootof is the solu-
tion of a second degree equation, it will be simplified.

Example
Let a be the root with largest imaginary part of Q(z) = x* + 1022 + 1 (all roots
of () have real part equal to 0).

1
e Compute —. Input :
o
normal (1/rootof ([1,0],[1,0,10,0,11))

P(x) = zisrepresented by [1,0] and a by rootof ([1,0],[1,0,10,0,11).
Output :

rootof([[-1,0,-10,0]1,11,0,10,0,111)
1.e.:

1
—=-a®—10a
o

156 CHAPTER 2. THE CAS FUNCTIONS
e Compute 2. Input :
normal (rootof ([1,01,[1,0,10,0,11)"2)
or (since P(x) = z? is represented by [1,0,0]) input
normal (rootof ([1,0,0]1,[1,0,10,0,11))
Output :
-5-2%sgrt (6)

2.24.19 Exact roots of a polynomial : roots

roots takes as arguments a symbolic polynomial expression and the name of its
variable.

root s returns a 2 columns matrix : each row is the list of a root of the polynomial
and its multiplicity.
Examples

e Find the roots of P(z) = 2° — 22* + 23.
Input :

roots (x"5-2+«x"4+x"3)
Output :
[[8+3xsgrt(7),11, [8-3*xsqgrt(7),1]1,[0,3]]

e Find the roots of #10 — 152% + 902% — 2702* 4 40522 — 243 = (22 — 3)5.
Input :

roots (x"10-15xx"8+90xx"6-270xx"4+405+%x"2-243)
Output :
[[sgrt (3),5], [-(sgrt(3)),5]]

e Find the roots of t3 — 1.
Input :

roots (t"3-1,t)

Output :

[[(=1+(1)*sqrt(3))/2,1], [(-1-(1)*sqrt(3))/2,1],[1,1]1]

2.24. POLYNOMIALS 157

2.24.20 Coefficients of a polynomial defined by its roots : pcoeff
pcoef

pcoeff (or pcoef) takes as argument a list of the roots of a polynomial P.
pcoeff (or pcoef) returns a univariate polynomial having these roots, repre-
sented as the list of its coefficients by decreasing order.

Input :

pcoef ([1,2,0,0,3])
Output :
[11_61 111_61 OI O]

ie. (z—1)(x —2)(z?)(x — 3) = 2% — 62* + 112 — 622

2.24.21 Truncate of order n : truncate

truncate takes as argument, a polynomial and an integer n.

truncate truncates this polynomial at order n (removing all terms of order
greater or equal to n+1).

truncate may be used to transform a series expansion into a polynomial or to
compute a series expansion step by step.

Input :
truncate ((1+x+x"2/2)"3,4)
Output :
(9*x"4+16+x"3+18*x"2+12xx+4) /4
Input :
truncate (series(sin(x)),4)
Output :

(-x"3—(—-6)%*x)/6

Note that the returned polynomial is normalized.

2.24.22 Convert a series expansion into a polynomial : convert convertir

convert, with the option polynom, converts a Taylor series into a polynomial.
It should be used for operations like drawing the graph of the Taylor series of a
function near a point.

convert takes two arguments : an expression and the option polynom.
convert replaces the order_size functions by O inside the expression.

Input :

convert (taylor (sin(x)),polynom)
Output :

x+1/-6xx"34+41/120%x"5+x"6%0

158 CHAPTER 2. THE CAS FUNCTIONS

Input :
convert (series(sin(x),x=0,6),polynom)
Output :

X+1/-6%xx"3+1/120xx"5+x"7%0

2.24.23 Random polynomial : randpoly randPoly

randpoly (or randPoly) takes two arguments: the name of a variable (by de-
fault x) and an integer n (the order of the arguments is not important).
randpoly returns a polynomial with respect to the variable given argument (or x
if none was provided), of degree the second argument, having as coefficients ran-
dom integers evenly distributed on -99..4+99.

Input :

randpoly (t, 4)
Output for example:
—8*xt"4-87xt"3-52xt"2+94xt+80
Input :
randpoly (4)
Output for example:
TO0*x"4-46%x"3-T*xx"2-24xx+52
Input :
randpoly (4, u)
Output for example:

2+xuN4+33xu”3-6+xu"2-92*xu-12

2.24.24 Change the order of variables : reorder

reorder takes two arguments : an expression and a vector of variable names.
reorder expands the expression according to the order of variables given as sec-
ond argument.

Input :
reorder (x"2+2xx*xa+a”"2+z"2-x*z, [a,x,z])
Output :
at2+2xaxx+tx"2—x*xz+z2"2
Warning :

The variables must be symbolic (if not, purge them before calling reorder)

2.24. POLYNOMIALS 159

2.24.25 Random list : ranm

ranm takes as argument an integer n.

ranm returns a list of n random integers (between -99 and +99). This list can be
seen as the coefficients of an univariate polynomial of degree n—1 (see also 2.41.3
and ?7?).

Input :

ranm(3)
Output :

[68,-21,56]

2.24.26 Lagrange’s polynomial : lagrange interp

lagrange takes as argument two lists of size n (resp. a matrix with two rows and
n columns) and the name of a variable var (by default x).

The first list (resp. row) corresponds to the abscissa values x; (kK = 1..n), and the
second list (resp. row) corresponds to ordinate values y, (kK = 1..n).

lagrange returns a polynomial expression P with respect to var of degree n—1,
such that P(x;) = y;.

Input :

lagrange ([[1,3],10,111)
or:

lagrange ([1,3]1,10,11)
Output :

(x-1)/2
sincemQ;l:Oforx:1,and332;1:1f0rx:3.
Input :

lagrange ([1,3]1,10,11,v)
Output :

(y-1)/2

Warning

f:=lagrange([1,21, [3,4]1,y) doesnotreturn a function but an expression
with respect to y. To define f as a function, input

f:=unapply (lagrange ([1,2]1,[3,4],x),x)

Avoid f (x) :=lagrange([1,2], [3,4],x) since the Lagrange polynomial
would be computed each time £ is called (indeed in a function definition, the sec-
ond member of the assignment is not evaluated). Note also that

g(x) :=lagrange ([1,2], [3,4]) would not work since the default argu-
ment of 1agrange would be global, hence not the same as the local variable used
for the definition of g.

160 CHAPTER 2. THE CAS FUNCTIONS

2.24.27 Natural splines: spline
Definition

Let 0, be a subdivision of a real interval [a, b] :
a=x9, Ti1, .., Tp=2>=
s is a spline function of degree [, if s is a function from [a, b] to R such that :
e s has continuous derivatives up to the order [— 1,

e on each interval of the subdivision, s is a polynomial of degree less or equal
than /.

Theorem

The set of spline functions of degree [on o, is an R-vector subspace of dimension
n+1L.
Proof

On [a, z1], s is a polynomial A of degree less or equal to [, hence on [a,z1], s =

A(z) = ag + a1z + ...a;2" and A is a linear combination of 1, z, ...a".

On [z1,x2], s is a polynomial B of degree less or equal to [, hence on [z, z2],
s = B(x) = by + b1z + ...bjz'.
s has continuous derivatives up to order [— 1, hence :

VO<j<i—1, BY(z)— AW (z1) =0

therefore B(z) — A(z) = ay(x — x1)! or B(z) = A(z) + oy (2 — x1)".

Define the function :
B 0 on [a,z]
(@)= { (z—=z1)' on [x1,})
Hence :
8|[a,es) = @0 + @17 + ! + arq(z)

On [z2, x3], s is a polynomial C' of degree less or equal than [, hence on [z2, x3),
s=C(z) = co+ c1x + ...l
s has continuous derivatives until [— 1, hence :

VO<j<i-1, CY(zy)— BYW(z3) =0
therefore C'(z) — B(x) = as(z — 22)! or C(z) = B(z) + ag(x — z2)".

Define the function :

00(2) = { 0 on [a,a)

(x —22)! on [z2,b]

Hence : s ;) = ao + a1 + gt + a1qr(2) + asge()
And so on, the functions are defined by :

: 0 on [a,x]
<9 1<n-— . = >
s el { (=)' on [e;0]
hence,
8|[a,p) = a0 + @17 + et + o () + oo F An_1gn—1 ()

and s is a linear combination of n + [independent functions 1, z, ..2!, q1, ..¢n—1.

2.24. POLYNOMIALS 161

Interpolation with spline functions

If we want to interpolate a function f on o, by a spline function s of degree [, then
s must verify s(z;) = yr = f(xy) forall 0 < k < n. Hence there are n + 1
conditions, and [— 1 degrees of liberty. We can therefore add [— 1 conditions,
these conditions are on the derivatives of s at a and b.

Hermite interpolation, natural interpolation and periodic interpolation are three
kinds of interpolation obtained by specifying three kinds of constraints. The unic-
ity of the solution of the interpolation problem can be proved for each kind of
constraints.

If lis odd (I = 2m — 1), there are 2m — 2 degrees of freedom. The constraints
are defined by :

e Hermite interpolation

vi<j<m—1, s9(a)=f9a),s? () = fV)

e Natural interpolation

Vm<j<2m—2, s9(a)=s590b)=0

e periodic interpolation
Vi<j<2m—2, sU(a)=s9(b)
If [is even (I = 2m), there are 2m — 1 degrees of liberty. The constraints are
defined by :
e Hermite interpolation
Vi<j<m-—1, s9(a)=f9), s b)) =0 @)

and

e Natural interpolation
vm<j<2m—2, s9(a)=s9b)=0

and
s(2m_1)(a) =0

e Periodic interpolation

Vi<j<2m—1, s9(a)=sY(b)

A natural spline is a spline function which verifies the natural interpolation con-
straints.
spline takes as arguments a list of abscissa (by increasing order), a list of
ordinates, a variable name, and a degree.
spline returns the natural spline function (with the specified degree and crossing
points) as a list of polynomials, each polynomial being valid on an interval.
Examples:

162 CHAPTER 2. THE CAS FUNCTIONS

1. a natural spline of degree 3, crossing through the points xg = 0,y = 1,
1 =1,y1 =3 and 22 = 2,y = 0, input :

spline ((0,1,2],[1,3,0],%,3)

Output is a list of two polynomial expressions of x :
[—5%23/4+13xx /441, Bx(x—1)3/4—15%(x—1)*/4+(xz—1)/—2+3]
defined respectively on the intervals [0, 1] and [1, 2].

2. a natural spline of degree 4, crossing through the points x9 = 0,39 = 1,
r1=1,y1 =3, 22 =2,y2 = 0and x3 = 3,y3 = —1, input :

Spline([ol 1! 2/ 3] ’ [11 3! Or_l] r Xy 4)

Output is a list of three polynomial functions of x :

[(—62 % 2% + 304 % x) /121 + 1,

(201 % (z —1)* — 248 % (z — 1) = 372 (x — 1)2 + 56 * (x — 1)) /121 + 3,
(—139 % (z — 2)* + 556 % (x — 2)> + 90 % (z — 2)* + —628 % (x — 2))/121]
defined respectively on the intervals [0, 1], [1,2] and [2, 3].

3. The natural spline interpolation of cos on [0, 7/2, 37/2], input :
spline ([0,pi/2,3%pi/2],cos([0,pi/2,3xpi/2]),x,3)

Output :
(3% 7+ (—Tx72) o+ 4x2%) x 1/3)/ (%),

(15 % 73 4 (=46 * 72) % 2 4 36 * m* 2% — 8 x %) % 1/12)/(73)]

2.24.28 Rational interpolation : thiele

thiele takes as the first argument a matrix data of type n X 2 where that i-th
row holds coordinates z and y of ¢-th point, respectively. The second argument
is v, which may be an identifier, number or any symbolic expression. Function
returns R(v) where R is the rational interpolant. Instead of a single matrix data,
two vectors x = (1, z2,...,xy,) andy = (Y1, 92, ..., Yyn) may be given (in this
case, v is given as the third argument).

This method computes Thiele interpolated continued fraction based on the con-
cept of reciprocal differences.

It is not guaranteed that R is continuous, i.e. it may have singularities in the
shortest segment which contains all components of x.

2.25. ARITHMETIC AND POLYNOMIALS 163

Examples
Input :
thiele([[1,3],1[2,41,14,5]1,105,8]1],x%)
Output :
(19%x72-45%x-154) / (18%xx-78)
Input :
thiele([1,2,al,13,4,51,3)

Output :

(13xa-29) / (3xa-17)

In the following example, data is obtained by sampling the function f(x) =
(1—az%)el ",

Input :

data_x:=[-1,-0.75,-0.5,-0.25,0,
0.25,0.5,0.75,1,1.25,1.5,1.75,2];
data_y:=[0.0,2.83341735599,2.88770329586,
2.75030303645,2.71828182846,2.66568510781,
2.24894558809,1.21863761951,0.0,-0.555711613283,
-0.377871362418,-0.107135851128,-0.01367822948337];
thiele(data_x,data_y, x)

Output :

(-1.55286115659«x"76+5.87298387514xx"5-5.4439152812%x"4
+1.68655817708xx"3-2.40784868317%x"2-7.55954205222*x
+9.40462512097)/ (x76-1.24295718965%x"5-1.33526268624+x"4
+4.03629272425%x"73-0.885419321xx"2-2.77913222418%x
+3.45976823393)

2.25 Arithmetic and polynomials

Polynomials are represented by expressions or by list of coefficients by decreas-
ing power order. In the first case, for instructions requiring a main variable (like
extended gcd computations), the variable used by default is z if not specified. For
modular coefficients in Z/nZ, use $ n for each coefficient of the list or apply it
to the expression defining the polynomial.

2.25.1 The divisors of a polynomial : divis

divis takes as argument a polynomial (or a list of polynomials) and returns the
list of the divisors of the polynomial(s).
Input :

divis (x"4-1)

164 CHAPTER 2. THE CAS FUNCTIONS

Output :

[1,x"2+1,x+1, (x"2+1) * (x+1),x-1, (x"24+1) x (x-1),
(x+1) *(x=1), (x72+1) » (x+1) » (x—-1)]

Input :
divis ([x"2,x"2-1])
Output :

[([1,%x,x72], [1,x+1,x-1, (x+1)*(x-1)]]

2.25.2 [Euclidean quotient : quo

quo returns the euclidean quotient g of the Euclidean division between two polyno-
mials (decreasing power order). If the polynomials are represented as expressions,
the variable may be specified as a third argument.

Input :
quo (x"2+2xx +1,x)
Output :
X+2
Input :
quo (y"2+2xy +1,vy,V)
Output :

y+2

In list representation, the quotient of 22 + 2z + 4 by 22 + 2 + 2 one can also input

quo ([1,2,4],[1,1,2])

Output :

that is to say the polynomial 1.

2.25.3 Euclidean quotient : Quo

Quo is the inert form of quo.

Quo returns the euclidean quotient between two polynomials (decreasing power
division) without evaluation. It is used when Xcas is in Maple mode to compute
the euclidean quotient of the division of two polynomials with coefficients in Z /pZ
using Maple-like syntax.

In Xcas mode, input :

Quo (x"2+2*x+1, x)

2.25. ARITHMETIC AND POLYNOMIALS 165

Output :
quo (x"2+2+x+1, x)

In Maple mode, input :

QuO (X" 3+43xx,2*x"24+6*x+5) mod 5
Output :

- (2) *x+1

The division was done using modular arithmetic, unlike with

quo (X"3+3*xx,2*xx"2+6+x+5) mod 5
where the division is done in Z[X| and reduced after to:

3*%x-9

If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g. by :

quo ((x"343xx)% 5, (2x72+6x+5) %5)

2.25.4 Euclidean remainder : rem
rem returns the euclidean remainder between two polynomials (decreasing power
division). If the polynomials are represented as expressions, the variable may be
specified as a third argument.
Input :
rem(x"3-1,x"2-1)
Output :
x-1
To have the remainder of 22 + 2z + 4 by 2 + = + 2 we can also input :
rem([1,2,4],[1,1,2])
Output :

(1,2]

i.e. the polynomial = + 2.

166 CHAPTER 2. THE CAS FUNCTIONS

2.25.5 Euclidean remainder: Rem

Rem is the inert form of rem.

Rem returns the euclidean remainder between two polynomials (decreasing power
division) without evaluation. It is used when Xcas is in Maple mode to compute
the euclidean remainder of the division of two polynomials with coefficients in
7./ pZ using Maple-like syntax.

In Xcas mode, input :

Rem (x"3-1,x"2-1)
Output :
rem(x"3-1,x"2-1)
In Maple mode, input :
Rem (X" 3+3xx,2+xx"24+6*x+5) mod 5
Output :
2%
The division was done using modular arithmetic, unlike with
rem(xX"3+3*xx,2+xx"2+6*x+5) mod 5
where the division is done in Z[X | and reduced after to:
12%x
If Xcas is not in Maple mode, polynomial division in Z/pZ[X] is done e.g. by :

rem((x"3+3xx)% 5, (2x72+6x+5)%5)

2.25.6 Quotient and remainder : quorem divide

quorem (or divide) returns the list of the quotient and the remainder of the
euclidean division (by decreasing power) of two polynomials.

Input :
quorem([1,2,4],[1,1,2])
Output :
[polyl[1],polyl[l,2]]
Input :
quorem (x*3-1,x"2-1)
Output :

[x,x-1]

2.25. ARITHMETIC AND POLYNOMIALS 167

2.25.7 GCD of two polynomials with the Euclidean algorithm: gcd

gcd denotes the gcd (greatest common divisor) of two polynomials (or of a list of
polynomials or of a sequence of polynomials) (see also 2.6.2 for GCD of integers).

Examples
Input :
gcd (x"242+x+1,x72-1)
Output :
x+1
Input :

gcd(x"2-2%x+1,x"3-1,x"2-1,x"2+x-2)

or

gcd ([x"2-2+xx+1,x"3-1,x"2-1,x"2+x-2])
Output :

x-1
For polynomials with modular coefficients, input e.g. :

gcd ((x72+2%x+1) mod 5, (x72-1) mod 5)

Output :
X % 5

Note that :

gcd (x*2+2xx+1,x"2-1) mod 5
will output :
1

since the mod operation is done after the GCD is computed in Z[X].

2.25.8 GCD of two polynomials with the Euclidean algorithm : Gcd

Gcd is the inert form of gcd. Ged returns the ged (greatest common divisor)
of two polynomials (or of a list of polynomials or of a sequence of polynomials)
without evaluation. It is used when Xcas is in Maple mode to compute the ged of
polynomials with coefficients in Z/pZ using Maple-like syntax.

Input in Xcas mode :

Ged (x"3-1,x"2-1)
Output :
gcd (x"3-1,x72-1)
Input in Maple mode :
Gecd (x"2+42%xX,x"2+6*x+5) mod 5

Output :

168 CHAPTER 2. THE CAS FUNCTIONS
2.25.9 Choosing the GCD algorithm of two polynomials : ezgcd heugcd
modgcd psrgcd

ezgcd heugcd modgcd psrgcd denote the ged (greatest common divisor)
of two univariate or multivariate polynomials with coefficients in Z or Z[i] using a
specific algorithm :

e ezgcd ezged algorithm,
e heugcd heuristic ged algorithm,
e modgcd modular algorithm,

e psrgcd sub-resultant algorithm.

Input :
ezgcd (X"2-2xx*xy+y"2-1,x-Yy)
or:
heugcd (x"2-2xx*xy+y"2-1, x-y)
or:
modgcd (X"2-2xx*xy+y"2-1,x-Vy)
or :
psrgcd(x"2-2*xxy+y"2-1,x-Vy)
Output :
1
Input :
ezgced ((x+y—1) * (x+y+1), (x+y+1)"2)
or:
heugcd ((x+y—1) * (x+y+1), (x+y+1)"2)
or :
modgcd ((x+y—1) * (x+y+1), (x+y+1)"2)
Output :
x+y+1
Input :
psrgcd ((x+y—1) x (x+y+1), (x+ty+1) "2)
Output :

-x-y-1

2.25. ARITHMETIC AND POLYNOMIALS 169

Input :

ezgcd ((x+1)"4-y™4, (x+1-y) "2)
Output :

"GCD not successful Error: Bad Argument Value"

But input :

heugcd ((x+1) "4-y"4, (x+1-y)"2)
or:

modgced ((x+1) "4-y™4, (x+1-y) "2)
or:

psrgcd ((x+1) "-y™4, (x+1-y)"2)
Output :

x—-y+1

2.25.10 LCM of two polynomials : 1cm

1lcm returns the LCM (Least Common Multiple) of two polynomials (or of a list
of polynomials or of a sequence of polynomials) (see 2.6.5 for LCM of integers).
Input :

lem (X7 242+x+1,x72-1)

Output :
(x+1) *(x72-1)
Input :
lem(x, x"2+2+x+1,x72-1)
or
lem([x, X7 2+2+x+1,x72-11)
Output :

(x"24x) * (x~2-1)

170 CHAPTER 2. THE CAS FUNCTIONS

2.25.11 Bézout’s Identity : egcd gcdex

This function computes the polynomial coefficients of Bézout’s Identity (also known
as Extended Greatest Common Divisor). Given two polynomials A(z), B(x),
egcd computes 3 polynomials U(z), V(x) and D(x) such that :

U(z) * A(z) + V(z) * B(z) = D(z) = GCD(A(z), B(z))

egcd takes 2 or 3 arguments: the polynomials A and B as expressions in terms of
a variable, if the variable is not specified it will default to x. Alternatively, A and
B may be given as list-polynomials.

Input :
egcd (x"2+2+xx+1,x"2-1)
Output :
[1,-1,2xx+2]
Input :
egced([1,2,1]1,1[1,0,-11)
Output :
(111, [-11,102,2]]
Input :
egcd(y"2-2xy+1,y"2-y+2,vy)
Output :
[y=2,-y+3,4]
Input :
egcd([1,-2,11,1[1,-1,21)
Output :

((1,-21,0-1,3]1,04]]

2.25.12 Solving au+bv=c over polynomials: abcuv

abcuv solves the polynomial equation
C(z) =U(x) x A(x) + V(z) * B(x)

where A, B, C are given polynomials and U and V' are unknown polynomials. C'
must be a multiple of the gcd of A and B for a solution to exist. abcuv takes 3
expressions as argument, and an optional variable specification (which defaults to
x) and returns a list of 2 expressions (U and V). Alternatively, the polynomials
A, B, C' may be entered as list-polynomials.

Input :

2.25. ARITHMETIC AND POLYNOMIALS 171

abcuv (x"2+2+x+1 ,x"2-1,x+1)

Output :
[1/2,1/-2]
Input :
abcuv (x"24+2xx+1 ,x"2-1,x"3+1)
Output :
[1/2xx"2+1/-2xx+1/2,-1/2+x"2-1/-2%x-1/2]
Input :
abcuv([1,2,11,1(,0,-11,11,0,0,11)

Output :

[polyl[1/2,1/-2,1/2],polyl[1/-2,1/2,1/-2]]

2.25.13 Chinese remainders : chinrem

chinrem takes two lists as argument, each list being made of 2 polynomials (ei-
ther expressions or as a list of coefficients in decreasing order). If the polynomials
are expressions, an optional third argument may be provided to specify the main
variable, by default x is used. chinrem ([A, R], [B, Q]) returns the list of two
polynomials P and S such that :

S=RQ, P=A (modR), P=B (modQ)

If R and Q are coprime, a solution P always exists and all the solutions are congru-
ent modulo S=R=Q. For example, assume we want to solve :

{ P(z)= =z mod (2% + 1)
P(z)= -1 mod (2% —1)
Input :
chinrem(([[1,01,(2,0,271,[1,-11,([1,0,-111)
Output :
(r1/-2,1,1/-21,11,0,0,0,-111
or:
chinrem([x,x"2+1], [x-1,x"2-11)

Output :

[1/-2xx"2+x+1/-2,x"4-1]
hence P(z) = —962_22'36—’_1 (mod z* — 1)

Another example, input :

172 CHAPTER 2. THE CAS FUNCTIONS

chinrem(([1,2],(1,0,10],0(1,1],(1,1,101)

Output :
((-1,-1,0,171,11,1,2,1,171]
or:
chinrem([y+2,y"*2+1], [y+1,y"2+y+1],vy)
Output :

[-y"3-y"2+1,y M 4+y"3+2%y"2+y+1]

2.25.14 Cyclotomic polynomial : cyclotomic

cyclotomic takes an integer n as argument and returns the list of the coefficients
of the cyclotomic polynomial of index n. This is the polynomial having the n-th
primitive roots of unity as zeros (an n-th root of unity is primitive if the set of its
powers is the set of all the n-th roots of unity).

For example, let n = 4, the fourth roots of unity are: {1,7, —1, —i} and the
primitive roots are: {i, —i}. Hence, the cyclotomic polynomial of index 4 is (z —
i).(z + 1) = 2% + 1. Verification:

cyclotomic (4)
Output :
[1,0,1]
Another example, input :
cyclotomic (5)
Output :
[1,1,1,1,1]

Hence, the cyclotomic polynomial of index 5 is 24 + 23 + 22 4+ + 1 which divides
2° —1since (z — 1) * (z*+ 23+ 22 + 2+ 1) =25 — 1.
Input :

cyclotomic (10)

Output :
[1,-1,1,-1,1]
Hence, the cyclotomic polynomial of index 10 is z* — 23 + 22 — 2 + 1 and
(= Dx(+Ds(@? -2 +22 —x+1)=2"-1

Input :

cyclotomic (20)
Output :

(1,0,-1,0,1,0,-1,0,1]

Hence, the cyclotomic polynomial of index 20 is ® — 2% + 2* — 22 4+ 1 and

(@0 =D x (@2 + D) x@® -2+t -2 +1) =22 —1

2.25. ARITHMETIC AND POLYNOMIALS 173

2.25.15 Sturm sequences and number of sign changes of P on (a, 0] :
sturm

sturm takes two or four arguments : P a polynomial expression or P/() a rational
fraction and a variable name or P a polynomial expression, a variable name and
two real or complex numbers a and b.

If sturm takes two arguments, st urm returns the list of the Sturm sequences
and multiplicities of the square-free factors of P (or P/Q) (in this case sturm
behaves like sturmseq).

If sturm takes four arguments, it behaves like sturmab :

e if a and b are reals, st urm returns the number of sign changes of P on (a, b]

e if ¢ or b are complex, sturm returns the number of complex roots of P in
the rectangle having a and b as opposite vertices.

Input :
sturm(2+*x"3+2, x)
Output :
(2,111,0,0,11,13,0,01,-91,1]

Input :

sturm ((2xx"3+2) / (x+2) , x)
Output :

(2,111,0,0,11,13,0,01,-91,1, 111,211,111

Input :

sturm(x"2* (x*34+2) ,x,-2,0)
Output :

2.25.16 Number of zeros in [a,b) : sturmab

sturmab takes four arguments: a polynomial expression P, a variable name and
two real or complex numbers a and b

e if ¢ and b are reals, sturmab returns the number of sign changes of P
on (a, b]. In other words, it returns the number of zeros in [a,b) of the
polynomial P/G where G = ged(P, diff(P)).

e if a or b are complex, sturmab returns the number of complex roots of P
in the rectangle having a and b as opposite vertices.

Input :

sturmab (x"2+% (x"3+2) ,x%x,-2,0)

174 CHAPTER 2. THE CAS FUNCTIONS

Output :

1
Input :

sturmab (x~3-1,x,-2-1, 5+31)

Output :

3
Input :

sturmab (x*3-1,x, -1, 5+31)

Output :

Warning !!!!

P is defined by its symbolic expression.
Input :

sturmab ([1,0,0,2,0,0],x%x,-2,0),
Output :

Bad argument type.

2.25.17 Sturm sequences : sturmseq

sturmseq takes as argument, a polynomial expression P or a rational fraction
P/@Q and returns the list of the Sturm sequences of the square-free factors of odd
multiplicity of P (or of P/@). For F' a square-free factor of odd multiplicity, the
Sturm sequence R1, Ry, ... is made from F, F’ by a recurrence relation :

e Ry is the opposite of the euclidean division remainder of F' by F’ then,
e Ry is the opposite of the euclidean division remainder of F’ by Ry,
° ..

e and so on until R = 0.

Input :
sturmseq (2xx"3+2)
or
sturmseq (2*«y~3+2,vy)
Output :

[21 [[1101011]1 [31 010]1_9]11]

The first term gives the content of the numerator (here 2), then the Sturm sequence
(in list representation) [x3 + 1,322, —-9].
Input :

2.25. ARITHMETIC AND POLYNOMIALS 175

sturmseq ((2+xx"34+2) / (3*x"2+2) , x)
Output :
(2,rr11,0,0,11,13,0,0J],-%91,1,11,[[3,0,2]1,16,01,-72]]

The first term gives the content of the numerator (here 2), then the Sturm sequence
of the numerator ([[1,0,0,1],[3,0,0],-9]), then the content of the denominator (here
1) and the Sturm sequence of the denominator ([[3,0,2],[6,0],-72]). As expressions,
(23 + 1,322, —9] is the Sturm sequence of the numerator and [322 + 2, 6z, —72] is
the Sturm sequence of the denominator.

Input :
sturmseq ((x"~3+1) "2, x)
Output :
[1,1]
Indeed F' = 1.
Input :
sturmseq (3* (3*xx"3+1) / (2+xx+2) , x)

Output :

[31 [[3101011]1 [91010]1781]12/ [[lrl]rl]]

The first term gives the content of the numerator (here 3),

the second term gives the Sturm sequence of the numerator (here 3x~3+1, 9x"2,
-81),

the third term gives the content of the denominator (here 2),

the fourth term gives the Sturm sequence of the denominator (x+1, 1).

Warning !!!!

P is defined by its symbolic expression.

Input :

sturmseqg([1,0,0,1],x)
Output :

Bad argument type.

2.25.18 Sylvester matrix of two polynomials : sylvester

sylvester takes two polynomials as arguments.

sylvester returns the Sylvester matrix S of these polynomials.

If A(z) = > 1=y a;z’ and B(z) = > ;¢ bix" are 2 polynomials, their Sylvester
matrix S is a square matrix of size m+n where m=degree (B (x)) and n=degree (A (x)).
The m first lines are made with the A(z) coefficients, so that :

$11 =Gn $12=ap-1 “** Sint1) = a0 0 0
s91=0 spp=an - Sy =1 So(ny2) =ao -+ 0

Sml — 0 Sm2 — 0 s Sm(n+1) = Qm—1 3m(n+2) = Qm—92 - ag

176 CHAPTER 2. THE CAS FUNCTIONS

and the n further lines are made with the B(z) coefficients, so that :

SmaD)l =bm Smin2 =bm-1 Simy)(m+1) = bo o - 0
Smam)1 =0 Stman2 =0 - Smin)my1) =bn-1 bn—2 -+ bo
Input :

sylvester (x"3-p*x+tq, 3*x"2-p, X)
Output :

[[11 Or_prql O] 14 [Or 1/ Ol_prq] ’ [31 Or_pr OI O] ’
[OI 3/ Orfpl O] ’ [OI Or 31 Olfp]]

Input :

det([[lr O/_p/qr O] ’ [O/ 1/ O/_p/q] ’ [3/ O/_p/ OI O] ’
[OI 3/ Ol_pl O] 7 [Or Ol 3/ O/_p]])

Output :

—4xp"3-27xg"2

2.25.19 Resultant of two polynomials : resultant

resultant takes as argument two polynomials and returns the resultant of the
two polynomials.

The resultant of two polynomials is the determinant of their Sylvester matrix S.
The Sylvester matrix S of two polynomials A(z) = > i=¢ a;x' and B(z) =
Yoizy bix' is a square matrix with m + n rows and columns; its first m rows
are made from the coefficients of A(X):

S11 =Qp 812 = Gp_1 " -* Sl(n+l) = ap 0 . 0
Sml = 0 Sm2 = 0 tee Sm(n-i-l) = Um—1 3m(n+2) = am—-2 - ag

and the following n rows are made in the same way from the coefficients of B(x) :

S(mt)l =bm S(mi1)2 =bm-1 " Smi1)m+1) = bo 0o - 0

Stmam)1 =0 Smin2=0 - Smin)(mt1) =bn-1 bp—2 - bo

If A and B have integer coefficients with non-zero resultant r, then the poly-
nomials equation
AU+ BV =r

has a unique solution U, V' such that degree(U) <degree(B) and degree(V') <degree(A),
and this solution has integer coefficients.
Input :

2.25. ARITHMETIC AND POLYNOMIALS 177

resultant (x*3-p*x+g, 3*x"2-p, X)
Output :
—4xp"3-27xg"2

Remark
discriminant(P)=resultant(P,P’).

An example using the resultant
Let, F'1 and F'2 be 2 fixed points in the plane and A, a variable point on the circle
of center F'1 and radius 2a. Find the cartesian equation of the set of points M,
intersection of the line £'1 A and of the perpendicular bisector of F'2A.

Geometric answer :

MF1+MF2=MF1+MA=F1A=2a

hence M is on an ellipse with focus F'1, F'2 and major axis 2a.
Analytic answer : In the Cartesian coordinate system with center F'1 and x-axis
having the same direction as the vector F'1F'2, the coordinates of A are :

A = (2acos(d),2asin(f))

where 6 is the (Ox, OA) angle. Now choose ¢t = tan(6#/2) as parameter, so that

the coordinates of A are rational functions with respect to t. More precisely :
1—¢? 2t

a ,2a
1+¢27 142

A = (az,ay) = (2)
If F1F2 = 2c and if [is the midpoint of AF2, since the coordinates of F'2 are
F2 = (2¢,0), the coordinates of 1

1—¢2 2t

I =(c+azr/2;ay/2) = (c+ am;am)

IM is orthogonal to AF2, hence M = (z;y) satisfies the equation eql = 0 where
eql := (z —ix) * (ax — 2% ¢) + (y — iy) *x ay
But M = (z,y) is also on F'1A, hence M satisfies the equation eq2 = 0

eq2 :=y/x — ay/ax

The resultant of both equations with respect to t resultant (eql, eq2,t) is
a polynomial eq3 depending on the variables x, y, independent of ¢ which is the
cartesian equation of the set of points M when ¢ varies.

Input :

ax:=2+ax* (1-t"2)/ (1+t"2);ay:=2*ax2*t/ (1+t"2);
ix:=(ax+2xc)/2; iy:=(ay/2)
eql:=(x—-1ix)* (ax—2*c)+ (y—1iy) ray
eq2:=y/x—-ay/ax
factor (resultant (eql,eqg2,t))

178 CHAPTER 2. THE CAS FUNCTIONS

Output gives as resultant :

—(64- (x2+y?) - (x2-a2—x%-c2+-2-x-a%-c+2-x-c3—at+2-a%. 2+
a2.y2 — c%))

The factor —64 - (x2 + y?) is always different from zero, hence the locus equation
of M :

x%a? — x?c? + —2xa’c + 2xc® — a* + 2a%c? + agy2 —-ct=o0

If the frame origin is O, the middle point of £'1F'2, we find the cartesian equation
of an ellipse. To make the change of origin F'1M = F' 10+ OM, input :

2

normal(subst(x?-a% —x?-c?+ —2-x-a?-c+2-x-c®—a*+2-a%- c*+

a2 'y2 - C4, [X7Y] = [C +X7Y]))
Output :
—c2>kX2—|—c2*a2+X2*a2—a4+a2>kY2

2

orif b = a? — ¢?, input :

normal(subst(—c?*X? + c?xa? +X?xa? —a* +a?x Y% c? =a? — b?))

Output :
—a?xb%+a?x Y2 +b% xX?
that is to say, after division by a? * b2, M verifies the equation :
X2 y?
el
Another example using the resultant
Let F'1 and F'2 be fixed points and A a variable point on the circle of center F'1
and radius 2a. Find the cartesian equation of the hull of D, the segment bisector of
F2A.
The segment bisector of F'2A is tangent to the ellipse of focus F'1, F'2 and
major axis 2a.
In the Cartesian coordinate system of center F'1 and z-axis having the same
direction than the vector F'1F'2, the coordinates of A are :

A = (2acos();2asin(0))

where 6 is the (Ox, O A) angle. Choose ¢ = tan(6/2) as parameter such that the
coordinates of A are rational functions with respect to . More precisely :

11— 0y 2t
Ny 1ye
If F1F2 = 2c¢ and if [is the middle point of AF2:

A = (az;ay) = (2)

1 —¢2 2t
F2=(26,0), I=(c+az/2ay/2) = (c+a—giar7)

2.26. ORTHOGONAL POLYNOMIALS 179

Since D is orthogonal to AF'2, the equation of D is eql = 0 where
eql := (z —ix) * (ax — 2% ¢) + (y — iy) * ay

So, the hull of D is the locus of M, the intersection point of D and D’ where D’
has equation eq2 := dif f(eql,t) = 0. Input :

ax:=2*ax* (1-t"2)/(1+t"2);ay:=2*a*2*t/ (1+t"2);
ix:=(ax+2xc)/2; iy:=(ay/2)
egl:=normal ((x—ix) x (ax—2%*c) + (y—iy) *ay)
eqg2:=normal (diff (eqgl,t))
factor (resultant (egl,eqg2,t))

Output gives as resultant :

(—(64-272)) - (x"24+y"2) - (x"2-a"2—x"2-¢c"24+ —2-x-a"2-c+
2-x-c"3—a”4+2-a”2-c"2+a”2-y"2—cr4)

The factor —64 - (x2 + y?) is always different from zero, therefore the locus equa-
tion is :
x?a? — x?c? + —2xa’c + 2xc® —a* +2a%c? + %yl —ct =0
If O, the middle point of F'1F2, is chosen as origin, we find again the cartesian
equation of the ellipse :
X2 y?
R

2.26 Orthogonal polynomials

2.26.1 Legendre polynomials: 1egendre

legendre takes as argument an integer n and optionally a variable name (by de-
fault).

legendre returns the Legendre polynomial of degree m : it is a polynomial
L(n, x), solution of the differential equation:

(2 = 1)y — 22y —n(n+1)y=0
The Legendre polynomials verify the following recurrence relation:

2n —1 —
n xL(n—l,x)—n

LO0,2) =1, L(,2)=x, Linz)— L n—2,2)

These polynomials are orthogonal for the scalar product :
+1
< f.g>= f(x)g(x) dx
1

Input :
legendre (4)

Output :

180 CHAPTER 2. THE CAS FUNCTIONS

(35%x"4+-30%*x"2+3)/8
Input :
legendre (4,vy)
Output :

(35xy™4+-30xy"2+3) /8

2.26.2 Hermite polynomial : hermite

hermite takes as argument an integer n and optionally a variable name (by de-
fault).

hermite returns the Hermite polynomial of degree n.

If H(n,x) denotes the Hermite polynomial of degree n, the following recurrence
relation holds:

HO,z)=1, H(l,z)=2zx, H(n,x)=2cH(n—-1,2)—2(n—1)H(n—2,x)

These polynomials are orthogonal for the scalar product:

—+00 5
< fg>= / f(@)g(z)e " da

—o0
Input :
hermite (6)

Output :

64xx"6+-480%xx"4+720%xx"2-120
Input :

hermite (6,vV)

Output :

64xy"6+-480xy"4+720xy"2-120

2.26.3 Laguerre polynomials: 1laguerre

laguerre takes as argument an integer n and optionally a variable name (by
default x) and a parameter name (by default a).

laguerre returns the Laguerre polynomial of degree n and of parameter a.

If L(n,a,z) denotes the Laguerre polynomial of degree n and parameter a, the
following recurrence relation holds:

2n+a—1—2x

L(0,a,z) =1, L(1,a,x2)=1+4a—z, L(n,a,x)=——¥—"L(n—1,a,2)—

n
These polynomials are orthogonal for the scalar product
+o0
< f,g>= f(x)g(x)ze *dx
0

Input :

n+a—1

n

L(n-

2.26. ORTHOGONAL POLYNOMIALS 181

laguerre (2)

Output :

(a™2+-2%a*xx+3*xa+x"2+-4+xx+2) /2
Input :

laguerre(2,v)

Output :

(a”2+-2xaxy+3xa+y" " 2+-4xy+2) /2
Input :

laguerre(2,vy,b)

Output :

(b 2+ -2xb*y+3+b+y " 2+-4xy+2) /2

2.26.4 Tchebychev polynomials of the first kind: t chebyshevl

tchebyshevl takes as argument an integer n and optionally a variable name (by
default x).

tchebyshevl returns the Tchebychev polynomial of first kind of degree n.

The Tchebychev polynomial of first kind T'(n,) is defined by

T(n,x) = cos(n arccos(x))
and satisfy the recurrence relation:
T00,z)=1, T(l,z)=z, T(n,z)=22T(n—1,z)—T(n—2,x)
The polynomials T'(n,) are orthogonal for the scalar product

@)@,

DR B
Input :
tchebyshevl (4)
Output :
8*x"4+-8xx"2+1
Input :
tchebyshevl (4,v)
Output :
8xy A+—8xyr2+1
Indeed
cos(4r) = Re((cos(z) + isin(z))?)

= cos(x)? — 6. cos(z)(1 — cos(x)?) + ((1 — cos(x)?)?
= T(4,cos(x))

182 CHAPTER 2. THE CAS FUNCTIONS

2.26.5 Tchebychev polynomial of the second kind: t chebyshev?2

tchebyshev2 takes as argument an integer n and optionally a variable name (by
default x).

tchebyshev2 returns the Tchebychev polynomial of second kind of degree n.
The Tchebychev polynomial of second kind U (n, x) is defined by:

Uln.z) = sin((n + 1). arccos(x))

sin(arccos(x))

or equivalently:
sin((n 4+ 1)z) = sin(z) x U(n, cos(x))

Then U (n, x) satisfies the recurrence relation:
U0,2) =1, U(l,x)=2z, U(n,z)=22Un-—1,z)—U(n—2,x)

The polynomials U (n, x) are orthogonal for the scalar product

+1

< fg>= f(z)g(z) V1 — 22dx

Input :
tchebyshev2 (3)
Output :
8*xx"3+-4xx
Input :
tchebyshev2 (3, v)
Output :
8xy”3+—4*y
Indeed:

sin(4x) = sin(z) * (8 * cos(z)® — 4 cos(x)) = sin(x) * U(3, cos(z))

2.27 Grobner basis and Grobner reduction
2.27.1 Grobner basis : gbasis
gbasis takes at least two arguments

e a vector of multivariate polynomials

e a vector of variables names,

2.27. GROBNER BASIS AND GROBNER REDUCTION 183

Optional arguments may be used to specify the ordering and algorithms. By de-
fault, the ordering is lexicographic (with respect to the list of variable names or-
dering) and the polynomials are written in decreasing power orders with respect to
this order. For example, the output will be like ... + z2y*23 + 22y32* + ... if the
second argument is [z, y, z] because (2,4,3) > (2,3,4) but the output would be
like ... + 22y32% + 22y*23 + ... if the second argument is [x, z, y].
gbasis returns a Grobner basis of the polynomial ideal spanned by these polyno-
mials.

Property
If [is an ideal and if (Gj)rex is a Grobner basis of this ideal I then, if F is a
non-zero polynomial in I, the greatest monomial of F' is divisible by the greatest
monomial of one of the G. In other words, if you do an euclidean division of
F # 0 by the corresponding G, take the remainder of this division, do again the
same and so on, at some point you get a null remainder.

Input :

gbasis ([2xx*xy-y"2,x"2-2+x*y], [X,V])
Output :
[44x"2+=4%y "2, 2xx*xy-V" 2, (3*%y"3) 1]
As indicated above, gbasis may have more than 2 arguments :

e plex (lexicographic only), tdeg (total degree then lexicographic order),
revlex (total degree then inverse lexicographic order), to specify an order
on the monomials (plex is the order by default),

e with_cocoa=true or with_cocoa=false, if you want to use the
CoCoA library to compute the Grobner basis (recommended, requires that
CoCoA support compiled in)

e with_ f5=true or with_f5=false for using the F5 algorithm of the
CoCoA library . In this case the specified order is not used (the polynomials
are homogenized).

Input :

gbasis ([x1+x24+4x3, x1*x2+x1*x3+x2*x3,x1*x2*x3-1],
[x1,x2,x3],tdeg,with_cocoa=false)

Output

[x373-1, x2"2-x2+xx3-x3"2,x1+x2+x3]

2.27.2 Grobner reduction : greduce

greduce has three arguments : a multivariate polynomial, a vector made of poly-
nomials which is supposed to be a Grobner basis, and a vector of variable names.
greduce returns the reduction of the polynomial given as first argument with re-
spect to the Grobner basis given as the second argument. It is O if and only if the
polynomial belongs to the ideal.

Input :

184 CHAPTER 2. THE CAS FUNCTIONS

greduce (x*xy-1, [X"2-y"2,2%xxy-y*2,y"3], [x,vy])
Output :
yr2-2

that is to say zy — 1 = 1(y*> — 2) mod I where I is the ideal generated by the
Grobner basis [22 — y2, 22y — y?, y3], because > — 2 is the euclidean division
remainder of 2(xy — 1) by G = 2xy — 3%

Like gbasis (cf. 2.27.1), greduce may have more than 3 arguments to
specify ordering and algorithm if they differ from the default (lexicographic order-

ing).
Input :

greduce (x1"2xx372, [x3"3-1, -x2"2-x2*xx3-x3"2,x1+x2+x3],
[x1,x2,x3],tdeq)

Output

X2

2.27.3 Build a polynomial from its evaluation : genpoly

genpoly takes three arguments : a polynomial P with n — 1 variables, an integer
b and the name of a variable var.

genpoly returns the polynomial () with n variables (the P variables and the
variable var given as second argument), such that :

e subst (Q, var=b) ==
e the coefficients of () belongs to the interval (—b/2 , b/2]

In other words, P is written in base b but using the convention that the euclidean
remainder belongs to | —b/2 ; b/2] (this convention is also known as s-mod repre-
sentation). Input :

genpoly (61, 6, x)
Output :
2+xx7N2-2xx+1

Indeed 61 divided by 6 is 10 with remainder 1, then 10 divided by 6 is 2 with
remainder -2 (instead of the usual quotient 1 and remainder 4 out of bounds),

61 =2%6%—2%6+1
Input :
genpoly (5, 6, x)

Output :

2.28. RATIONAL FRACTIONS 185

Indeed: 5=6—1
Input :

genpoly (7,6, x)
Output :
x+1

Indeed : 7T=6+1
Input :

genpoly (7+xy+5, 6, x)
Output :
X*y+x+y—1

Indeed: zxy+ax+y—1=ylxa+1)+ (x—1)
Input :

genpoly (7«y+5%xz°2, 6, x)
Output :
X*Y+X*z2+y—2z

Indeed: zxy+axxz+y—z=yx(x+1)+z%(zx—-1)

2.28 Rational fractions

2.28.1 Numerator : getNum

getNum takes as argument a rational fraction and returns the numerator of this
fraction. Unlike numer, getNum does not simplify the fraction before extracting
the numerator.

Input :
getNum ((x*2-1)/(x-1))
Output :
x"2-1
Input :
getNum ((x"2+2+x+1) / (x*2-1))
Output :

XN 2+2+x+1

186 CHAPTER 2. THE CAS FUNCTIONS

2.28.2 Numerator after simplification : numer

numer takes as argument a rational fraction and returns the numerator of the irre-
ducible representation of this fraction (see also 2.8.3).

Input :
numer ((x"2-1)/ (x-1))
Output :
x+1
Input :
numer ((x"24+2+x+1)/(x"2-1))
Output :

x+1

2.28.3 Denominator : getDenom

getDenom takes as argument a rational fraction and returns the denominator of
this fraction. Unlike denom, getDenom does not simplify the fraction before
extracting the denominator.

Input :
getDenom ((x"2-1)/(x-1))
Output :
x—1
Input :
getDenom ((x"2+2*x+1) / (x*2-1))
Output :

x"2-1

2.28.4 Denominator after simplification : denom

denom (or getDenom) takes as argument a rational fraction and returns the de-
nominator of an irreducible representation of this fraction (see also 2.8.4).
Input :

denom ((x"2-1)/(x-1))

Output :
1
Input :
denom ((x"2+2+x+1) / (x"2-1))
Output :

2.28. RATIONAL FRACTIONS 187

2.28.5 Numerator and denominator : £2nd fxnd

f2nd (or £xnd) takes as argument a rational fraction and returns the list of the
numerator and the denominator of the irreducible representation of this fraction
(see also 2.8.5).

Input :
f2nd ((x72-1)/ (x-1))
Output :
[x+1,1]
Input :
f2nd ((x"2+2+x+1) / (x"°2-1))
Output :

[x+1,x-1]

2.28.6 Simplify : simp2

simp?2 takes as argument two polynomials (or two integers see 2.8.6). These two
polynomials are seen as the numerator and denominator of a rational fraction.
simp2 returns a list of two polynomials seen as the numerator and denominator
of the irreducible representation of this rational fraction.

Input :

simp2 (x*3-1,x"2-1)
Output :

[x"2+4x+1,x+1]

2.28.7 Common denominator : comDenom

comDenom takes as argument a sum of rational fractions.

comDenom rewrite the sum as a unique rational fraction. The denominator of
this rational fraction is the common denominator of the rational fractions given as
argument.

Input :

comDenom (x—-1/ (x-1)-1/(x"2-1))
Output :

(x"3+=-2xx-2) / (x"2-1)

188 CHAPTER 2. THE CAS FUNCTIONS

2.28.8 Integer and fractional part : propfrac

propfrac takes as argument a rational fraction.

propfrac rewrites this rational fraction as the sum of its integer part and proper
fractional part.

propfrac (A (x) /B (x)) writes the fraction % (after reduction), as :

R
Q(z) + ng where R(z) = 0 or 0 < degree(R(z)) < degree(B(x))
Input :
propfrac ((5+x+3) * (x-1) / (x+2))
Output :

5%#x=12+21/ (x+2)

2.28.9 Partial fraction expansion : partfrac

partfrac takes as argument a rational fraction.

partfrac returns the partial fraction expansion of this rational fraction.

The part frac command is equivalent to the convert command with parfrac
(orpartfracor fullparfrac) as option (see also 2.21.23).

Example :

Find the partial fraction expansion of :

=23+ 1
x4 — 23 + 222 — 2+ 1

Input :
partfrac ((x"5-2+x"34+1)/ (X"4-2xx"3+2xx"2-2%x+1))
Output in real mode :
X+2-1/ (2% (x=1)) +(x=3)/ (2% (x"2+1))
Output in complex mode:

X+2+ (=142%1) / ((2=2x1) % ((1) *x+1))+1/ (2% (-x+1))+

(=1-2%1)/ ((2-2x1) » (x+1))

2.29 Exact roots of a polynomial

2.29.1 Exact bounds for complex roots of a polynomial :
complexroot

complexroot takes 2 or 4 arguments : a polynomial and a real number € and
optionally two complex numbers «, 3.
complexroot returns a list of vectors.

e If complexroot has 2 arguments, the elements of each vector are

2.29. EXACT ROOTS OF A POLYNOMIAL 189

— either an interval (the boundaries of this interval are the opposite ver-
tices of a rectangle with sides parallel to the axis and containing a com-
plex root of the polynomial) and the multiplicity of this root.

Let the interval be [a; + b1, ag + ibo] then |a; — as| < €, |by —ba| < €
and the root a + b verifies a1 < a < agand by < b < bs.

— or the value of an exact complex root of the polynomial and the multi-
plicity of this root

o If complexroot has4 arguments, complexroot returns a list of vectors
as above, but only for the roots lying in the rectangle with sides parallel to
the axis having «, 8 as opposite vertices.

To find the roots of 3 + 1, input:
complexroot (x*3+1,0.1)

Output :

[[-1,11,[[(4-7%1)/8, (8-13%1i) /161,11, [[(8+13*1)/16, (4+7%1)/8]1,11]
Hence, for 23 + 1 :

e -1 is aroot of multiplicity 1,

e 1/2+i*b is a root of multiplicity 1 with —7/8 < b < —13/16,

e 1/2+i*cis a root of multiplicity 1 with 13/16 < ¢ < 7/8.

To find the roots of 23 +1 lying inside the rectangle of opposite vertices —1, 142xi,
input:

complexroot (x*3+1,0.1,-1,1+2%1)
Output :

[([-1,1],[[(8+13%1)/16, (4+7x1)/8],1]]

2.29.2 Exact bounds for real roots of a polynomial : realroot

realroot has 2 or 4 arguments : a polynomial and a real number € and optionally
two reals numbers «, 5.
realroot returns a list of vectors.

e If realroot has 2 arguments, the elements of each vector are

— either a real interval containing a real root of the polynomial and the
multiplicity of this root. Let the interval be [a1, as] then |a; — ag| < €
and the root a verifies a1 < a < as.

— or the value of an exact real root of the polynomial and the multiplicity
of this root.

190 CHAPTER 2. THE CAS FUNCTIONS

e [f realroot has4 arguments, realroot returns a list of vectors as above,

but only for the roots inside the interval [« /3].
To find the real roots of 2% + 1, input:
realroot (x*3+1, 0.1)
Output :
([-1,1]]
To find the real roots of 2% — 22 — 2z + 2, input:
realroot (x"3-x"2-2*xx+2, 0.1)
Output :
((1,11,00(-3)/2,(-45)/321,11,1[[45/32,3/2]1,11]1
To find the real roots of 23 — 22 — 2x + 2 in the interval [0; 2], input:
realroot (x"3-x"2-2xx+2, 0.1,0,2)
Output :
[(r1,11,0011/8,23/161,111
2.29.3 Exact values of rational roots of a polynomial :
rationalroot

rationalroot takes 1 or 3 arguments : a polynomial and optionally two real
numbers «, 3.

e If rationalroot has 1 argument, rationalroot returns the list of the
value of the rational roots of the polynomial without multiplicity.

e [f rationalroot has 3 arguments, rat ionalroot returns only the ra-
tional roots of the polynomial which are in the interval [a, (].

To find the rational roots of 2 * 2% — 3 * 22 — 8 x x + 12, input:

rationalroot (2*xx"3-3xx"2-8*xx+12)
Output :

[2,3/2,-2]
To find the rational roots of 2 x 3 — 3 % 22 — 8 x x + 12 in [1; 2], input:
rationalroot (2#x"3-3xx"2-8*xx+12,1,2)
Output :
[2,3/2]

To find the rational roots of 2 * 2% — 3 * 22 + 8 x — 12, input:

rationalroot (2*x"3-3xx"2+8*x-12)

2.30. EXACT ROOTS AND POLES 191

Output :
[3/2]
To find the rational roots of 2 * 2 — 3 x 22 + 8 x x — 12, input:
rationalroot (2*x"3-3xx"2+8%x-12)
Output :
[3/2]

To find the rational roots of (3 x —2)% % (22 +1) = 18 %23 — 15% 2% —4x x4+ 4,
input:

rationalroot (18*x"3-15%x"2-4xx+4)
Output :
[(-1)/2,2/3]
2.29.4 Exact values of the complex rational roots of a polynomial :
crationalroot

crationalroot takes 1 or 3 arguments : a polynomial and optionally two com-
plex numbers «, 3.

e If crationalroot has 1 argument, crationalroot returns the list of
the complex rational roots of the polynomial without multiplicity.

e if crationalroot has 3 arguments, crationalroot returns only the
complex rational roots of the polynomial which are in the rectangle with
sides parallel to the axis having [« 3] as opposite vertices.

To find the rational complex roots of (z2+4)* (22 —3) = 2%23 322 +8x2—12,
input :

crationalroot (2*xx"3-3*x"2+8%x-12)
Output :

[2%1i,3/2,-2%1]

2.30 Exact roots and poles

2.30.1 Roots and poles of a rational function : froot

froot takes a rational function F'(z) as argument.

froot returns a vector whose components are the roots and the poles of Fz],
each one followed by its multiplicity.

If Xcas can not find the exact values of the roots or poles, it tries to find approxi-
mate values if F'(x) has numeric coefficients.

Input :

192 CHAPTER 2. THE CAS FUNCTIONS

froot ((x"5-2*xx"4+x"3)/ (x-2))
Output :
[1121 Or 3, 2,_1]

x® = 2.0 + 23)

Hence, for F'(x) = 5
Tz —

e 1 is aroot of multiplicity 2,
e () is a root of multiplicity 3,
e 2is a pole of order 1.
Input :
froot ((x"3-2xx"2+1)/(x-2))
Output :
[1,1, (1+sqrt(5))/2,1, (l-sqrt(5))/2,1,2,-1]

Remark : to have the complex roots and poles, check Complex in the cas con-
figuration (red button giving the state line).
Input :

froot ((x"°2+1)/ (x-2))
Output :

[_j-/ 1/ j—/ 1/ 21_1]

2.30.2 Rational function given by roots and poles : fcoeff

fcoeff has as argument a vector whose components are the roots and poles of a
rational function F'[z], each one followed by its multiplicity.

fcoeff returns the rational function F(x).

Input :

fcoeff([1,2,0,3,2,-11])
Output :

(x=1) "2*xx"3/ (x-2)

2.31 Computing in Z/pZ or in Z /pZ|z]
The way to compute over Z/pZ or over Z/pZ|x] depends on the syntax mode :

e In Xcas mode, an object n over Z/pZ is written n%p. Some examples of
input for

- an integer n in Z/13Z
n:=12%13.

2.31. COMPUTING INZ/PZ OR INZ/PZ[X] 193

— avector VinZ/137Z
V:=[1,2,3]%130rv:=[1%13,2%13,3%13].
- amatrix A in Z/13Z

A:=[[1,2,3]1,1[2,3,4]1%130r
A:=[[1%13,2%13,3%13],[[2%13,3%13,4%13]].

a polynomial A in Z/13Z[x] in symbolic representation
A:=(2+xx"2+3*x-1) %13 or
A:=2%13%x"2+3%13xx-1%13.

a polynomial A in Z/13Z[z] in list representation
A:=polyl[l,2,3]%130orA:=polyl[1%13,2%13,3%13].

To recover an object o with integer coefficients instead of modular coeffi-
cients, input o % 0. For example, input 0:=4%7 and o0%0,then output is
-3.

e In Maple mode, integers modulo p are represented like usual integers in-
stead of using specific modular integers. To avoid confusion with normal
commands, modular commands are written with a capital letter (inert form)
and followed by the mod command (see also the next section).

Remark
e For some commands in Z/pZ or in Z/pZ[z], p must be a prime integer.
e The representation is the symmetric representation :
11%13 returns —2%13.
2.31.1 Expand and reduce : normal

normal takes as argument a polynomial expression.
normal expands and reduces this expression in Z/pZ|x].
Input :

normal (((2*x"24+12)x(5%*x—-4))%13)
Output :

(—3%13) *x"3+(5%13) *x"2+ (-5%13) »x+4%13

2.31.2 Additionin Z/pZ or in Z/pZ[z] : +

+ adds two integers in Z/pZ, or two polynomials in Z/pZ[x]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

3%13+10%13
Output :
0%13

For polynomials with coefficients in Z/pZ, input :

194 CHAPTER 2. THE CAS FUNCTIONS

normal ((11*x+5)% 13+ (8%*x+6)%13)
or

normal (11% 13%*x+5%13+8% 13xx+6%13)
Output :

(6%13) »x+-2%13

2.31.3 Subtraction in Z/pZ or in Z /pZ[x] : -

— subtracts two integers in Z/pZ or two polynomials in Z/pZ[z]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

31%13-10%13
Output :
-5%13
For polynomials with coefficients in Z/pZ, input :
normal ((11xx+5) %13-(8*x+6) %13)
or:
normal (11% 13*x+5%13-8% 13xx+6%13)

Output :

(3%13) »x+-1%13

2.31.4 Multiplication in Z/pZ or in Z /pZ|x] : *

» multiplies two integers in Z/pZ or two polynomials in Z/pZ[z]. For polynomial
expressions, use the normal command to simplify.
For integers in Z/pZ, input :

31%13+x10%13
Output :
-2%13
For polynomials with coefficients in Z/pZ, input :
normal ((11*x+5)%13% (8xx+6)% 13)
or:
normal ((11% 13xx+5%13)* (8% 13xx+6%13))

Output :

(—=3%13) *x"2+(2%13) *x+4%13

2.31. COMPUTING INZ/PZ OR INZ/PZ[X] 195

2.31.5 Euclidean quotient : quo

quo takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x
or to an optional third argument.

quo returns the quotient of the euclidean division of A by B in Z/pZ]x].

Input :

quo ((x"3+x72+1) %13, (2*x"2+4)%13)

or:
quo ((x"3+x"2+1,2xx"2+4) %13)
Output:
(—6%13) *x+-6%13
Indeed 3 +2%+1 = (29524—4)(%“)4-5% 4 and —3*4 = —6%2 = 1 mod 13.

2.31.6 Euclidean remainder : rem

rem takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x
or to an optional third argument.

rem returns the remainder of the euclidean division of A by B in Z/pZ[z].

Input :

rem((x"3+x"72+1) %13, (2xx"2+4) %13)
or:
rem ((x"3+x"2+1,2xx"2+4)%13)
Output:

(—2%13) »x+-1%13

r+1, bxr—4

Indeed 2° +2?+1 = (227 +4)(5)+ and —3%4 = —6%2 =1 mod 13.

2.31.7 Euclidean quotient and euclidean remainder : quorem

quorem takes as arguments two polynomials A and B with coefficients in Z/pZ,
where A and B are list polynomials or symbolic polynomials with respect to x or
to an optional third argument.

quorem returns the list of the quotient and remainder of the euclidean division of
Aby Bin Z/pZx] (see also 2.6.12 and 2.25.6).

Input :

quorem ((x"3+x"2+1) %13, (2*x"2+4)%13)
or :

quorem ((X" "3+x"2+1,2*xx"2+4)%13)

196 CHAPTER 2. THE CAS FUNCTIONS

Output:

[(-6%13) *x+-6%13, (-2%13) »x+-1%13]

1 S5r — 4
Indeedx3+:p2+1:(2m2+4)(m;—)+

and —3*4=-6%2=1 mod 13.

2.31.8 Divisionin Z/pZ or in Z/pZ[z] : /

/ divides two integers in Z/pZ or two polynomials A and B in Z/pZ|x].
For polynomials, the result is the irreducible representation of the fraction % in

Z/pZ[z].
For integers in Z/pZ, input :

5%13/2% 13
Since 2 is invertible in Z/13Z, we get the output :
-4%13
For polynomials with coefficients in Z/pZ, input :
(2+x"2+5) %13/ (5%x72+2%x-3) %13
Output :

((6%13) *x+1%13) / ((2%13) *x+2%13)

2319 PowerinZ/pZ and in Z/pZ|x] : ~

To compute a to the power n in Z/pZ, we use the operator ~. Xcas implementa-
tion is the binary power algorithm.

Input :
(5%13) "2
Output :
-1%13

To compute A to the power n in Z/pZ[x], we use the operator ~ and the normal
command .
Input :

normal (((2+*x+1)%13)"5)

Output :

(6%13) *x"5+ (2%13) *»x"4+ (2%13) *x" 3+ (1%13) »x"2+ (-3%13) »x+1%13

because 10 = —3 (mod 13), 40 = 1 (mod 13), 80 = 2 (mod 13), 32 =
6 (mod 13).

2.31. COMPUTING INZ/PZ OR INZ/PZ[X] 197

2.31.10 Compute a” mod p: powmod powermod

powmod (or powermod) takes as argument a, n, p.
powmod (or powermod) returns a” mod pin [0;p — 1].

Input :
powmod (5,2,13)
Output :
12
Input :
powmod (5, 2,12)
Output :

2.31.11 InverseinZ/pZ: inv inverse or /

To compute the inverse of an integer n in Z/pZ, input 1/n%p or inv (n%p) or
inverse (n%p).

Input :
inv (3%13)
Output :
-4%13

Indeed 3 x —4 = —12 =1 (mod 13).

2.31.12 Rebuild a fraction from its value modulo p : fracmod

fracmod takes two arguments, an integer n (representing a fraction) and an inte-
ger p (the modulus).
If possible, £f racmod returns a fraction a/b such that

—§<a§g, 0§b<g, nxb=a (mod p)
In other words n = a/b (mod p).
Input :
fracmod(3,13)
Output :
-1/4
Indeed : 3% —4 = —12 = 1 (mod 13), hence 3 = —1/4%13.
Input :
fracmod (13,121)
Output :

-4/9
Indeed : 13 x =9 = —117 = 4 (mod 121) hence 13 = —4/9%13.

198 CHAPTER 2. THE CAS FUNCTIONS

2.31.13 GCDinZ/pZ[z] : gcd

gcd takes as arguments two polynomials with coefficients in Z/pZ (p must be
prime).

gcd returns the GCD of these polynomials computed in Z/pZ[x] (see also 2.25.7
for polynomials with non modular coefficients).

Input :
gcd ((2+x72+5) %13, (5*xx"2+2%x-3)%13)
Output :
(-4%13) »x+5%13
Input :
ged((x"2+2xx+1,x"2-1)) mod 5)
Output :

x%5

Note the difference with a gcd computation in Z[X | followed by a reduction mod-
ulo 5, input:

gcd (x"2+2+x+1,x72-1) mod 5
Output :

2.31.14 Factorization over Z/pZ|x] : factor factoriser

factor takes as argument a polynomial with coefficients in Z/pZ][zx].
factor factorizes this polynomial in Z/pZ[z| (p must be prime).
Input :

factor ((-3*x"3+5%xx"2-5xx+4)%13)
Output :
((1%13) *x+-6%13) % ((-3%13) *»x"2+-5%13)

2.31.15 Determinant of a matrix in Z/pZ : det

det takes as argument a matrix A with coefficients in Z/pZ.
det returns the determinant of this matrix A.
Computations are done in Z/pZ by Gauss reduction.

Input :
det ([[1,2,9]1%13,1[3,10,01%13,[3,11,11%131)
or:
det([[1,2,9],13,10,01,1[3,11,1]11%13)
Output :

5%13

hence, in Z/13Z, the determinant of A = [[1,2,9],[3,10,0], [3, 11, 1]] is 5%13 (in
7, det (B)=31).

2.31. COMPUTING INZ/PZ OR INZ/PZ[X] 199

2.31.16 Inverse of a matrix with coefficientsin Z/pZ : inv inverse

inverse (or inv) takes as argument a matrix A in Z/pZ.
inverse (or inv) returns the inverse of the matrix A in Z/pZ.
Input :

inverse([[1,2,91%13,[3,10,01%13,([3,11,11%131)

or:
inv([[1,2,91%13,[3,10,01%13,([3,11,11%131)
or :
inverse([[1,2,9],[3,10,01,[3,11,1]11%13)
or :
inv([[1,2,9]1,[3,10,0],13,11,1]11%13)
Output :

[[2%13,-4%13,-5%13],[2%13,0%13,-5%13],
[-2%13,-1%13,6%13]]

it is the inverse of A = [[1,2,9],[3,10,0], [3,11,1]] in Z/13Z.

2.31.17 Row reduction to echelon form in Z/pZ : rref

rref finds the row reduction to echelon form of a matrix with coefficients in
Z]pZ.

This may be used to solve a linear system of equations with coefficients in
Z./pZ by rewriting it in matrix form (see also 2.53.3) :

AxX=B

rref takes as argument the augmented matrix of the system (the matrix obtained
by augmenting matrix A to the right with the column vector B).

rref returns a matrix [A1l,B1] : Al has 1 on its principal diagonal, and zeros
outside, and the solutions in Z/pZ, of :

Al«X=B1l
are the same as the solutions of:
AxX=B
Example, solve in Z/137Z
{ r+ 2y =9
3-z4+10-y = 0
Input :
rref([[1, 2, 91%13,[3,10,0]1%131])
or:
rref ([[1, 2, 91,103,10,011)%13
Output :

[[1%13,0%13,3%13],[0%13,1%13,3%13]1]
hence x=3%13 and y=3%13.

200 CHAPTER 2. THE CAS FUNCTIONS

2.31.18 Construction of a Galois field : GF

GF takes as arguments a prime integer p and an integer n > 1.

GF returns a Galois field of characteristic p having p™ elements.

Elements of the field and the field itself are represented by GF (. ..) where . ..
is the following sequence:

e the characteristic p (px = 0),

e an irreducible primitive minimal polynomial generating an ideal I in Z/pZ[X],
the Galois field being the quotient of Z/pZ[X] by I,

e the name of the polynomial variable, by default x,

e a polynomial (a remainder modulo the minimal polynomial) for an element
of the field (field elements are represented with the additive representation)
or undef for the field itself.

You should give a name to this field (for example G: =GF (p, n)), in order to build
elements of the field from a polynomial in Z/pZ[X], for example G (x*3+x) .
Note that G (x) is a generator of the multiplicative group G*.

Input :

G:=GF (2, 8)
Output :
GF (2,x7"8-x"6-x"4-x"3-x"2-x-1,x,undef)

The field G has 28 = 256 elements and x generates the multiplicative group of this
field ({1, z, 22, ...22%4}).
Input :

G(x"9)
Output :

GF (2,x"8-x"6-x"4-x"3-x"2-%x-1,%x,x"7+x"5+x"4+x"3+x"2+x)
indeedz® =28 +2* + 23+ 22+ + 1, hence 2° = " + 2° + 2* + 23 + 22 + x.
Input :

G(x)"255
Output should be the unit, indeed:
GF (2,x"8-x"6—-x"4-x"3-x"2-x-1,%,1)

As one can see in these examples, the output contains many times the same in-
formation that you would prefer not to see if you work many times with the same
field. For this reason, the definition of a Galois field may have an optional argu-
ment, a variable name which will be used thereafter to represent elements of the
field. Since you will also most likely want to modify the name of the indeterminate,
the field name is grouped with the variable name in a list passed as third argument
to GF. Note that these two variable names must be quoted.

Example,

Input :

2.31. COMPUTING IN Z/PZ OR IN Z) PZ[X] 201

G:=GF (2,2, ["w',’G"]):; G(w"2)

Output :
Done, G(w+1)
Input :
G(w"3)
Output :
G(1)

Hence, the elements of GF (2, 2) are G(0) ,G(1),G(w),G(w"2)=G (w+1).
We may also impose the irreducible primitive polynomial that we wish to use,
by putting it as second argument (instead of n), for example :

G:=GF (2,w"8+w"6+w"3+w"2+1, ["w',’G"])

If the polynomial is not primitive, Xcas will replace it automatically by a primitive
polynomial, for example :
Input :

G:=GF (2,w"8+w"7+w"5+w+1, ["w',’'G"])
Output :
G:=GF (2,w"8-w"6-w"3-w"2-1, ["w',’G"],undef)

2.31.19 Factorize a polynomial with coefficients in a Galois field :
factor

factor can also factorize a univariate polynomial with coefficients in a Galois
field.
Input for example to have G=Fj:

G:=GF (2,2, ['w","G"])
Output :
GF (2,w"2+w+1, [w,G],undef)
Input for example :
a:=G(w)
factor (a®2+x"2+1)
Output :

(G(w+l)) * (xtG(w+1l)) "2

202 CHAPTER 2. THE CAS FUNCTIONS

2.32 Compute in Z/pZ[x] using Maple syntax

2.32.1 Euclidean quotient : Quo

Quo is the inert form of quo.

Quo returns the euclidean quotient between two polynomials without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the euclidean
quotient of the division of two polynomials with coefficients in Z/pZ.

Input in Xcas mode:

Quo ((x"3+x"2+1) mod 13, (2*x72+4) mod 13)
Output :
quo ((x"3+x72+1) %13, (2*x"2+4) %13)
you need to eval (ans ()) to get:
(—6%13) »x+-6%13

Input in Maple mode :

Quo (x"3+x"2+1,2+x"2+4) mod 13
Output :

(—6) *x—6

Input in Maple mode :

Quo (X" 2+2+*x,x"2+6*x+5) mod 5

Output :

2.32.2 Euclidean remainder: Rem

Rem is the inert form of rem.

Rem returns the euclidean remainder between two polynomials without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the euclidean
remainder of the division of two polynomials with coefficients in Z/pZ.

Input in Xcas mode :

Rem ((x"3+x"2+1) mod 13, (2+xx"2+4) mod 13)
Output :
rem((x"3+x"72+1) %13, (2xx"2+4) %13)
you need to eval (ans ()) to get:
(—2%13) »x+-1%13
Input in Maple mode :

Rem (X" 3+x"2+1,2+*x"24+4) mod 13

2.32. COMPUTE IN Z/PZ[X] USING MAPLE SYNTAX 203

Output :
(-2) »x-1
Input in Maple mode :
Rem (x"2+2*x,x"2+6*x+5) mod 5
Output :

1*x

2323 GCDinZ/pZ[z] : Ged

Gcd is the inert form of gcd.
Gcd returns the ged (greatest common divisor) of two polynomials (or of a list of
polynomials or of a sequence of polynomials) without evaluation.
It is used in conjunction with mod in Maple syntax mode to compute the gcd of
two polynomials with coefficients in Z/pZ with p prime (see also 2.25.7).
Input in Xcas mode :
Ged ((2*x72+5,5*x7"2+2+x-3) %13)

Output :

gcd ((2*x7245) %13, (5*xx"2+2%xx-3)%13)
you need to eval (ans ()) to get:

(1%13) »x+2%13

Input in Maple mode :

Gecd (2+xx72+5,5+%x7"2+2+xx-3) mod 13

Output :
1xx+2
Input:
Gecd (x7"2+2+xX,x"2+6*x+5) mod 5
Output :

1*x

204 CHAPTER 2. THE CAS FUNCTIONS

2.32.4 Factorization in Z /pZ|z| : Factor

Factor is the inert form of factor.

Factor takes as argument a polynomial.

Factor returns factor without evaluation. It is used in conjunction with mod
in Maple syntax mode to factorize a polynomial with coefficients in Z/pZ where
p must be prime.

Input in Xcas mode :

Factor ((—3xx"3+5%x"2-5xx+4) %13)
Output :

factor ((=3*x"3+5%x"2-5xx+4)%13)
you need to eval (ans ()) to get:

((1%13) *x+-6%13) * ((—3%13) *x"2+-5%13)
Input in Maple mode :
Factor (-3*x"3+5%x"2-5xx+4) mod 13

Output :

—3% (1*xx—6) * (1*xx"2+6)

2.32.5 Determinant of a matrix with coefficients in Z/pZ : Det

Det is the inert form of det.

Det takes as argument a matrix with coefficients in Z/pZ.

Det returns det without evaluation. It is used in conjunction with mod in Maple
syntax mode to find the determinant of a matrix with coefficients in Z/pZ.

Input in Xcas mode :

Det ([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1] mod 131])
Output :

det ([[1%13,2%13,-4%13],[3%13,-3%13,0%131,
[3%13,-2%13,1%13]1])

you need to eval (ans ()) to get:
5%13

hence, in Z/13Z, the determinant of A = [[1,2,9], [3, 10, 0], [3,11, 1]] is 5%13 (in
Z, det (A) =31).
Input in Maple mode :

Det([[1,2,9],13,10,01,([3,11,1]1]) mod 13

Output :

2.32. COMPUTE IN Z/PZ[X] USING MAPLE SYNTAX 205

2.32.6 Inverse of a matrixin Z/pZ : Inverse

Inverse is the inert form of inverse.

Inverse takes as argument a matrix with coefficients in Z /pZ.

Inverse returns inverse without evaluation. It is used in conjunction with
mod in Maple syntax mode to find the inverse of a matrix with coefficients in
Z]pZ.

Input in Xcas mode :

Inverse([[1,2,9] mod 13,[3,10,0] mod 13,[3,11,1]
modl3])

Output :

inverse ([[1%13,2%13,9%13],[3%13,10%13,0%13],
[3%13,11%13,1%1311)

you need to eval (ans ()) toget:

[[2%13,-4%13,-5%13],[2%13,0%13,-5%13],
[-2%13,-1%13,6%13]]

which is the inverse of A = [[1,2,9],[3,10,0],[3,11, 1]] in Z/13Z.
Input in Maple mode :

Inverse([[1,2,9],13,10,01,[3,11,1]]) mod 13
Output :
[[21_41_51 ’ [21 01_5] 14 [_21_11 6]]

2.32.7 Row reduction to echelon form in Z/pZ : Rref

Rref is the inert form of rref.

Rref returns rref without evaluation. It is used in conjunction with mod in
Maple syntax mode to find the row reduction to echelon form of a matrix with
coefficients in Z/pZ (see also 2.53.3).

Example, solve in Z/137Z

z+ 2y =9
3-24+10-y = 0

Input in Xcas mode :
Rref ([[1,2,9] mod 13,[3,10,0] mod 13])
Output :
rref ([[1%13, 2%13, 9%131,[3%13,10%13,0%1311)
you need to eval (ans ()) toget:
[[1%13,0%13,3%13],[0%13,1%13,3%13]]

and conclude that x=3%13 and y=3%13.
Input in Maple mode :

Rref([[1,2,9],103,10,0]1,[3,11,1]]) mod 13
Output :
(r1,0,01,10,1,01,100,0,171]

206 CHAPTER 2. THE CAS FUNCTIONS

2.33 Taylor and asymptotic expansions

2.33.1 Division by increasing power order : divpc

divpc takes three arguments : two polynomials expressions A, B depending on
x, such that the constant term of B is not 0, and an integer n.

divpc returns the quotient () of the division of A by B by increasing power order,
with degree(Q) < n or @ = 0. In other words, @ is the Taylor expansion of

order n of 5 in the vicinity of x = 0.
Input :

divpc (1+x72+x"3,1+x"2,5)
Output :
-x"5+x"3+1

Note that this command does not work on polynomials written as a list of coeffi-
cients.
2.33.2 Taylor expansion : taylor
taylor takes from one to four arguments :

e an expression depending of a variable (by default x),

e an equality variable=value (e.g. x = a) where to compute the Taylor expan-
sion, by default x=0,

e an integer n, the order of the series expansion, by default 5

e a direction -1, 1 (for unidirectional series expansion) or 0 (for bidirec-
tional series expansion) (by default 0).

Note that the syntax ..., x,n,a, ... (instead of ..., x=a,n,...) is also
accepted.

taylor returns a polynomial in x—a, plus a remainder of the form:

(x—a) "n*order_size (x—a)

where order_size is a function such that,

Vr >0, lim z"order_size(z) = 0
z—0

For regular series expansion, order_size is a bounded function, but for non
regular series expansion, it might tend slowly to infinity, for example like a power
of In(x).

Input :

taylor (sin(x),x=1,2)
Or (be careful with the order of the arguments !) :
taylor(sin(x),x,2,1)

Output :

2.33. TAYLOR AND ASYMPTOTIC EXPANSIONS 207
sin(l)+cos(l)*(x=1)+ (= (1/2xsin(1l))) (x-1) "2+
(x—1) "3*«order_size (x-1)

Remark
The order returned by taylor may be smaller than n if cancellations between
numerator and denominator occur, for example

23 + sin(z)3
x — sin(x)

)

taylor(

Input :
taylor (x"3+sin (x) *3/ (x—-sin(x)))
The output is only a 2nd-order series expansion :
6+—27/10xx"2+x"3*xorder_size (x)

Indeed the numerator and denominator valuation is 3, hence we lose 3 orders. To
get order 4, we should use n = 7.
Input :

taylor (x"3+sin (x) "3/ (x-sin(x)),x=0,7)
Output is a 4th-order series expansion :

6+-27/10%x"2+x"3+711/1400+xx"4+x"5*xorder_size (x)

2.33.3 Series expansion : series
series takes from one to four arguments :
e an expression depending of a variable (by default x),

e an equality variable=value (e.g. x = a) where to compute the series expan-
sion, by default x=0,

e an integer n, the order of the series expansion, by default 5

e a direction -1, 1 (for unidirectional series expansion) or 0 (for bidirec-
tional series expansion) (by default 0).

Note that the syntax ..., x,a,n, ... (instead of ..., x=a,n,...) is also
accepted.
series returns a polynomial in x—a, plus a remainder of the form:

(x—a) "n*order_size (x—a)
where order_size is a function such that,

Vr >0, lim z"order_size(z) = 0
z—0

The order returned by series may be smaller than n if cancellations between
numerator and denominator occur.
Examples :

208

CHAPTER 2. THE CAS FUNCTIONS

e series expansion in the vicinity of x=0

23 + sin(z)3

Find an series expansion of
x — sin(x)

in the vicinity of x=0.

Input :
series (x*3+sin(x) "3/ (x—-sin(x)))
Output is only a 2nd-order series expansion :
6+-27/10%xx"2+x"3*order_size (x)
We have lost 3 orders because the valuation of the numerator and denomina-
tor is 3. To get a 4-th order expansion, we must therefore take n = 7.
Input :
series (x"3+sin(x) "3/ (x-sin(x)),x=0,7)
or:
series (x"3+sin(x) "3/ (x-sin(x)),x,0,7)
Output is a 4th-order series expansion :
6+-27/10%x"2+x"3+711/1400xx"4+ x"5xorder_size (x)
series expansion in the vicinity of x=a
Find a series 4th-order expansion of cos(2z)? in the vicinity of z = 5
Input:
series (cos (2xx)"2,x=pi/6, 4)
Output :
1/4+ (= (4%sqrt (3))) /4* (x—pi/6)+ (4%3-4) /4% (x-pi/6) "2+

32xsqrt (3) /3/4% (x—pi/6) "3+ (-16x3+16) /3/4x (x—-pi/6) "4+
(x—pi/6)"5*order_size (x—pi/6)

e series expansion in the vicinity of x=+00 or x=-00

1. Find a Sth-order series expansion of arctan(z) in the vicinity of x=+00.
Input :

series(atan(x),x=+infinity, 5)
Output :

pi/2-1/x+1/3*(1/x)"3+1/=-5%(1/x) "5+
(1/x)"~6*xorder_size (1l/x)

Note that the expansion variable and the argument of the order_size

functionis h = — =, 400 0.
T

2.33. TAYLOR AND ASYMPTOTIC EXPANSIONS 209

2. Find a series 2nd-order expansion of (2z — 1)eﬁ in the vicinity of
X=+00Q.
Input :

series ((2xx-1)*exp (1/ (x-1)),x=+infinity, 3)
Output is only a Ist-order series expansion :
2+xx+1+2/x+ (1/x) *2*xorder_size (1/x)
To get a 2nd-order series expansion in 1/z, input:
series ((2+x-1)+exp(1l/(x-1)),x=+infinity, 4)
Output :
2+xx+1+2/x+17/6%x (1/x) "2+ (1/x) *3xorder_size (1/x)

3. Find a 2nd-order series expansion of (22 — 1)6ﬁ in the vicinity of
X=—00.
Input :
series ((2xx-1)xexp (1/ (x-1)),x=-infinity,4)
Output :

2% (—x)+1-2% (-1/x)+17/6%x (-1/x) "2+
(-1/x)"3*order_size (-1/x)

e unidirectional series expansion.
The fourth parameter indicates the direction :
— 1 to do an series expansion in the vicinity of z = a with x > a,
— -1 to do an series expansion in the vicinity of x = a with z < a,

— 0 to do an series expansion in the vicinity of x = a with x # a.

For example, find a 2nd-order series expansion of (1279;)% in the vicinity of
— 0t
IxnputO : '
series ((1+x)"(1/x)/x"3,x=0,2,1)
Output :

exp (1) /x"3+ (- (exp(l)))/2/x"2+1/x*order_size (x)

2.33.4 The residue of an expression at a point : residue

residue takes as argument an expression depending on a variable, the variable
name and a complex a or an expression depending on a variable and the equality :
variable_name=a. residue returns the residue of this expression at the point a.
Input :

residue (cos (x) /x"3,x,0)

210 CHAPTER 2. THE CAS FUNCTIONS

or:
residue (cos (x) /x"3, x=0)
Output :
(-1)/2

2.33.5 Padé expansion: pade
pade takes 4 arguments
e an expression,
o the variable name the expression depends on,
e an integer n or a polynomial N,
e an integer p.

pade returns a rational fraction P/Q such that degree (P) < p and P/Q = f
(mod 2™*!) or P/Q = f (mod N). In the first case, it means that P/Q and f
have the same Taylor expansion at O up to order n.

Input :
pade (exp (x) ,%x,5,3)
or :
pade (exp (x) ,x,x"6, 3)
Output :

(3xx724+424xx+60) / (-x"3+9%x"2-36%x+60)
To verify input :
taylor ((3*x"2+24%x+60) / (-x"3+9xx"2-36*x+60))

Output :

14x+1/2%x"2+1/6%xx"34+1/24xx"44+41/120xx"5+x"6*xorder_size (x)

which is the Sth-order series expansion of exp (x) at z = 0.

Input :
pade ((x*15+x+1) / (x*12+1) ,x,12,3)
or:
pade ((x"15+x+1) / (x*12+1) ,x,x"13,3)
Output :

x+1

Input :

2.34. INTERVALS 211

pade ((x*15+x+1) / (x~12+1) ,x,14,4)
or:

pade ((x"15+x+1) / (x~12+1),%x,x"15,4)
Output :

(—2*x73-1)/ (—x711+x"10-x"9+x"8—x"T7+xXx"6—x"5+x"4—
X "3-x"2+x-1)

To verify, input :

series (ans (), x=0,15)

Output :
1+x—-x"12-x"1342x"15+x"16*x0order_size (x)
then input :
series ((x"15+x+1)/ (x~12+41),x=0,15)
Output :

1+x—x"12-x"13+x"15+x"16*0order_size (x)

These two expressions have the same 14th-order series expansion at z = 0.

2.34 Intervals

2.34.1 Definition of an interval : a1..a?2

An interval is represented by two real numbers separated by . ., for example

1..4
1.2..sqgrt (2)

Input :

B:=1.2..s9rt (2)

Warning!
The order of the boundaries of the interval is significant. For example, if you input

then B and C are different, B==C returns O.

212 CHAPTER 2. THE CAS FUNCTIONS

2.34.2 Boundaries of an interval : 1eft right

left (resp. right) takes as argument an interval.
left (resp. right) returns the left (resp. right) boundary of this interval.
Note that . . is an infixed operator, therefore:

e sommet (1..5) isequal to /..’ and feuille(l..5) is equal to
(1,5).

o the name of the interval followed by [0] returns the operator . .

o the name of the interval followed by [1] (or the 1eft command) returns

the left boundary.
e The name of the interval followed by [2] (or the right command) returns
the right boundary.
Input :
(3..5) [0]
or:
sommet (3..5)
Output :
Input :
left (3..5)
or:
(3..5) [1]
or:
feuille(3..5) [0]
or:
op(3..5) [0]
Output :
3
Input :
right (3..5)
or:

or:

2.34. INTERVALS 213

feuille(3..5) [1]

or:

Output :

Remark
left (resp. right) returns also the left (resp. right) member of an equation (for
example left (2+x+1=x+2) returns 2xx+1).

2.34.3 Center of an interval : interval2center

interval2center takes as argument an interval or a list of intervals.
interval2center returns the center of this interval or the list of centers of
these intervals.

Input :
interval2center(3..5)
Output :
4
Input :
interval2center([2..4,4..6,6..101])
Output :

[3,5,8]

2.34.4 Intervals defined by their center : center2interval

center2interval takes as argument a vector V of reals and optionally a real
as second argument (by default V(0] - (V[1]-VI[0]) /2).
center2interval returns a vector of intervals having the real values of the first
argument as centers, where the value of the second argument is the left boundary
of the first interval.

Input :

center2interval ([3,5,8])
Or (since the default value is 3-(5-3)/2=2) :

center2interval ([3,5,81,2)

Output :
[2..4,4..6,6..10]
Input :
center2interval ([3,5,8],2.5)
Output :

[2.5..3.5,3.5..6.5,6.5..9.5]

214 CHAPTER 2. THE CAS FUNCTIONS

2.35 Sequences

2.35.1 Definition : seqg[] ()

A sequence is represented by a sequence of elements separated by commas, without

delimiters or with either () or seq[...] asdelimiters, for example
(1,2,3,4)
seqll,2,3,4]
Input :
A:=(1,2,3,4) orA:=seq[l,2,3,4]
B:=(5,6,3,4) orB:=seq[5,6,3,4]
Remarks

e The order of the elements of the sequence is significant. For example, if
B:=(5,6,3,4) andC:=(3,4,5, 6), then B==C returns O.

e (see also 2.35.5)
seq([0,2])=(0,0) and seq([0,1,1,5])=[0,0,0,0,0] but
seq[0,2]1=(0,2) and seq[0,1,1,5]=(0,1,1,5)
2.35.2 Concat two sequences : ,

The infix operator , concatenates two sequences.

Input :
A:=(1,2,3,4)
B:=(5,6,3,4)
A,B
Output :

(1,2,3,4,5,6,3,4)

2.35.3 Get an element of a sequence : []

The elements of a sequence have indexes beginning at 0 in Xcas mode or 1 in
other modes.

A sequence or a variable name assigned to a sequence followed by [n] returns the
element of index n of the sequence.

Input :

(0,3,2) [1]

Output :

2.35. SEQUENCES 215

2.35.4 Sub-sequence of a sequence : []

A sequence or a variable name assigned to a sequence followed by [nl..n2]
returns the sub-sequence of this sequence starting at index n1 and ending at index
n2.

Input :

(0,1,2,3,4)[1..3]
Output :

(1,2,3)

2.35.5 Make a sequence or alist : seg $

seq takes two, three, four or five arguments : the first argument is an expression
depending of a parameter (for example j7) and the remaining argument(s) describe
which values of j will be used to generate the sequence. More precisely j is as-
sumed to move from a to b:

e with a default step of 1 or -1: j=a..b or j, a..b (Maple-like syntax),
j, a, b (TI-like syntax)

e or with a specific step: j=a. .b, p (Maple-like syntax), j, a, b, p (TI-like
syntax).

If the Maple-like syntax is used, seq returns a sequence, if the TI-like syntax is
used, seq returns a list.

$ is the infixed version of seq when seq has only two arguments and always
returns a sequence.
Remark:

e In Xcas mode, the precedence of $ is not the same as for example in
Maple, in case of doubt put the arguments of $ in parenthesis. For exam-
ple, the equivalent of seq (372, j=-1..3) is (§J*2)$(j=-1..3) and
returns (1,0,1,4,9). The equivalent of seqg (4, 3) is 4$3 and returns
(4,4,4).

e With Maple syntax, j,a..b, p is not valid. To specify a step p for the
variation of j from a to b, use j=a..b, p or use the TI syntax j,a,b,p
and get the sequence from the list with op (. . .).

In summary, the different way to build a sequence are :
e with Maple-like syntax

1. seqghas two arguments, either an expression depending on a parameter
(for example j) and 7 = a..b where a and b are reals, or a constant
expression and an integer n.
seq returns the sequence where j is replaced in the expression by a,
a—+1,..bif b > aandbya,a—1,.,bif b < a, or seq returns the
sequence made by copying the constant n times.

216

CHAPTER 2. THE CAS FUNCTIONS

2. seq has three arguments, an expression depending on a parameter (for

example j) and j = a..b, p where a, b are reals and p is a real number.
seq returns the sequence where j is replaced in the expression by a,
a+ p,....,bif b > aand by a, a — p,....,b if b < a.

Note that j, a..b is also valid but j, a..b, p is not valid.

e TI syntax

1. seq has four arguments, an expression depending on a parameter (for

example j), the name of the parameter (for example j), a and b where
@ and b are reals.

seq returns the list where j is replaced in the expression by a, a+1,...,b
ifb >aandbya,a—1,.,bif b < a.

. seq has five arguments, an expression depending on a parameter (for

example j), the name of the parameter (for example j), a, b and p where
a, b and p are reals.

seq returns the list where j is substituted in the expression by a, a +
pratkxpat+ksxp<b<a+(k+1)xpora+kxp>0b>
a+ (k+ 1) % p). By default, p=1if b > a and p=-1if b < a.

Note that in Maple syntax, seqg takes no more than 3 arguments and returns a
sequence, while in TT syntax, seq takes at least 4 arguments and returns a list.
Input to have a sequence with same elements :

or:

or:

Output :

seq(t, 4)

seqg(t,k=1..4)

tsS4

(t,t,t,t)

Input to have a sequence :

or:

or:

Output :

seqg(j”~3,3=1..4)

(373)s$(3=1..4)

seqg(3”~3,3,1..4)

(1,8,27,64)

Input to have a sequence :

2.35. SEQUENCES

Output :

Or to have a list,
Input :

Output :

Input :

Output :

Input :

or

Output :

Input :

Output :

Input :

Output :

Examples

217

seqg(j”~3,3=-1..4,2)

(=1,1,27)

seq(3*3,3,1,4)

[1,8,27,64]

seq(3”3,3,0,5,2)

[0,8,64]

Seq(jASI jl5l 01_2)

seq(3"3,3,5,0,2)

[125,27,1]

seq(3j~3,3,1,3,0.5)

[1,3.375,8,15.625,27]

seq(3*3,3,1,3,1/2)

[1,27/8,8,125/8,27]

e Find the third derivative of In(t), input:

Output :

diff (log(t),ts$3)

218 CHAPTER 2. THE CAS FUNCTIONS

—((=(2xt)) /t"4)
e Input:
1:=[02,3],[5,11,[7,2]]
seqg((1[k][0]1)$(1[k]1[1]),k=0 .. size(l)-1)
Output :
2,2,2,seql5]1,7,7
then eval (ans ()) returns:
2,2,2,5,7,7
o Input to transform a string into the list of its characters :

f (chn) :={

local 1;

l:=size(chn);

return seqg(chnf3jl,3,0,1-1);
}

then input:
f ("abracadabra")
Output :
["a", "b", "r", "a", "C", "a", "d", "a", "b", "r", "a"]
2.35.6 Transform a sequence intoalist: [] nop

To transform a sequence into list, just put square brackets ([1) around the sequence
or use the command nop.

Input :
[seq(3"3,J=1..4)]
or :
seq(3™3,3,1,4)
or:
[(J73)$(J=1..4)]
Output :
[1,4,9,16]
Input :
nop(l,4,9,16)
Output :

(1,4,9,16]

2.36. SETS 219

2.35.7 The + operator applied on sequences

The infixed operator +, with two sequences as argument, returns the total sum of
the elements of the two sequences.

Note the difference with the lists, where the term by term sums of the elements of
the two lists would be returned.

Input :

(1,2,3,4,5,6)+(4,3,5)
or:

"+ ((1,2,3,4,5,6),(4,3,5))
Output :
33

But input :

[1,2,3,4,5,6]+[4,3,5]
Output :

[5,5,8,4,5,6]

Warning

When the operator + is prefixed, it has to be quoted (* +").

2.36 Sets

2.36.1 Definition : set []

To define a set of elements, put the elements separated by a comma, with % {
%}orset[...] asdelimiters.
Input :

${1,2,3,4%}
set[1,2,3,4]

In the Xcas answers, the set delimiters are displayed as [and | in order not to
confuse sets with lists. For example, [1,2,3] is the set ${1, 2, 3%}, unlike [1,2,3]
(normal brackets) which is the list [1,2, 3].

Input :
A:=%{1,2,3,4%}orA:=set[1,2,3,4]
Output :
[1,2,3,4]
Input :

B:=%{5,5,6,3,4%}orB:=set[5,5,6,3,4]

Output :

220 CHAPTER 2. THE CAS FUNCTIONS

[5,6,3,4]

Remark

The order in a set is not significant and the elements in a set are all distinct. If you
inputB:=%{5,5,6,3,4%}and C:=%{3,4,5, 3, 6%}, then B==C will return
1.

2.36.2 Union of two sets or of two lists : union

union is an infixed operator.
union takes as argument two sets or two lists, union returns the union set of the

arguments.
Input :

set[1,2,3,4] union set[5,6,3,4]
or :

%${1,2,3,4%} union %{5,6,3,4%}
Output :

[1,2,3,4,5,6]
Input :
[1,2,3] union [2,5,6]

Output :

[1,2,3,5,6]

2.36.3 Intersection of two sets or of two lists : intersect

intersect is an infixed operator.
intersect takes as argument two sets or two lists.
intersect returns the intersection set of the arguments.

Input :

set[1l,2,3,4] intersect set[5,6,3,4]
or :

%${1,2,3,4%} intersect %{5,6,3,4%}
Output :

[3,4]
Input :
[1,2,3,4] intersect [5,6,3,4]

Output :

[3,4]

2.37. LISTS AND VECTORS 221

2.36.4 Difference of two sets or of two lists : minus

minus is an infixed operator.
minus takes as argument two sets or two lists.
minus returns the difference set of the arguments.

Input :

set[1,2,3,4] minus set[5,6,3,4]
or:

%${1,2,3,4%} minus %{5,6,3,4%}
Output :

[1,2]
Input :
[1,2,3,4] minus [5,6,3,4]

Output :

[1,2]

2.37 Lists and vectors

2.37.1 Definition

A list (or a vector) is delimited by [1, its elements must be separated by commas.
For example, [1, 2, 5] is a list of three integers.

Lists can contain lists (for example, a matrix is a list of lists of the same size).
Lists may be used to represent vectors (list of coordinates), matrices, univariate
polynomials (list of coefficients by decreasing order).

Lists are different from sequences, because sequences are flat : an element of
a sequence cannot be a sequence. Lists are different from sets, because for a list,
the order is important and the same element can be repeated in a list (unlike in a
set where each element is unique).

In Xcas output :

e vector (or list) delimiters are displayed as [1],
e matrix delimiters are displayed as [],

e polynomial delimiters are displayed as [[,

e set delimiters are displayed as [|.

The list elements are indexed starting from O in Xcas syntax mode and from 1
in all other syntax modes.

222 CHAPTER 2. THE CAS FUNCTIONS

2.37.2 Get an element or a sub-listof alist : at []
Get an element

The n-th element of a list 1 of size s is addressed by 1 [n] where n is in [0..s — 1]
or [1..s]. The equivalent prefixed function is at, which takes as argument a list and
an integer n.

at returns the element of the list at index n.

Input :
[0,1,2]1[1]
or:
at([0,1,2],1)
Output :

Extract a sub-list

Iflisalist of size s, 1 [n1l..n2] returns the list extracted from 1 containing the
elements of indexes n; to ny where 0 < n; < ng < s (in Xcas syntax mode) or
0 < n1; < ng < sin other syntax modes. The equivalent prefixed function is at
with a list and an interval of integers (nl. .n2) as arguments.

See also : mid, section 2.37.3.

Input :
[0,1,2,3,4111..3]
or:
at([0,1,2,3,41,1..3)
Output :
[1,2,3]
Warning

at can not be used for sequences, index notation must be used, asin (0,1,2,3,4,5) [2.

2.37.3 Extract a sub-list : mid

See also : at section 2.37.2.

mid is used to extract a sub-list of a list.

mid takes as argument a list, the index of the beginning of the sub-list and the
length of the sub-list.

mid returns the sub-list.

Input :

mid([(0,1,2,3,4,5],2,3)

Output :

.31,

2.37. LISTS AND VECTORS 223

[1,2,3]
Warning
mid can not be used to extract a subsequence of a sequence, because the arguments

of mid would be merged with the sequence. Index notation must be used, like
eg.(0,1,2,3,4,5)[2..3].

2.37.4 Get the first element of a list : head

head takes as argument a list.
head returns the first element of this list.
Input :
head ([0,1,2,3])

Output :

a:=head ([0,1,2,3]) does the same thingasa:=[0,1,2,3][0]

2.37.5 Remove an element in a list : suppress

suppress takes as argument a list and an integer n.
suppress returns the list where the element of index n is removed.
Input :

suppress([3,4,2],1)

Output :

[3,2]

2.37.6 Remove the first element : tail

tail takes as argument a list. tail returns the list without its first element.
Input :

tail([0,1,2,3])
Output :
[1,2,3]

l:=tail([0,1,2,3]) doesthesame thingasl:=suppress([0,1,2,31,0)

224 CHAPTER 2. THE CAS FUNCTIONS

2.37.7 Reverseorderinalist: revlist

revlist takes as argument a list (resp. sequence).
revlist returns the list (resp. sequence) in the reverse order.
Input :

revlist ([0,1,2,3,4])

Output :
[4,3,2,1,0]
Input :
revlist([0,1,2,3,4],3)
Output :

3/ [011121314]

2.37.8 Reverse a list starting from its n-th element : rotate

rotate takes as argument a list and an integer n (by default n=-1).

rotate rotates the list by n places to the left if n>0 or to the right if n<0. Ele-
ments leaving the list from one side come back on the other side. By default n=-1
and the last element becomes first.

Input :
rotate ([0,1,2,3,47)
Output :
[4,0,1,2,3]
Input :
rotate([0,1,2,3,41,2)
Output :
[2,3,4,0,1]
Input :
rotate ([0,1,2,3,41,-2)
Output :

(3,4,0,1,2]

2.37. LISTS AND VECTORS 225

2.37.9 Permuted list from its n-th element : shift

shift takes as argument a list 1 and an integer n (by default n=-1).

shift rotates the list to the left if n>0 or to the right if n<0. Elements leaving
the list from one side are replaced by unde f on the other side.

Input :

shift([0,1,2,3,41])

Output :
[undef, 0,1, 2, 3]

Input :

shift([0,1,2,3,41,2)
Output :

[2,3,4,undef, undef]

Input :

shift([0,1,2,3,4],-2)
Output :

[undef,undef, 0,1, 2]

2.37.10 Modify an element in a list : subsop

subsop modifies an element in a list. subsop takes as argument a list and an
equality (an index=a new value) in all syntax modes, but in Maple syntax mode
the order of the arguments is reversed.

Remark If the second argument is k=NULL’, the element of index k is removed
of the list.

Input in Xcas mode (the index of the first element is 0) :

subsop ([0,1,2],1=5)
or:

L:

[0,1,2];L[1]:=5
Output :
[0,5,2]
Input in Xcas mode (the index of the first element is 0) :
subsop ([0,1,2],’1=NULL’")
Output :
[0,2]

Input in Mupad TI mode (the index of the first element is 1) :

226 CHAPTER 2. THE CAS FUNCTIONS

subsop ([0,1,2],2=5)
or:

L:

[0,1,2]1;L[2]:=5
Output :
[0,5,2]

In Maple mode the arguments are permuted and the index of the first element is 1.
Input :

subsop (2=5, [0,1,2])
or :

L:=[0,1,2];L[2]:=5
Output :

(0,5,2]

2.37.11 Transform a list into a sequence : op makesuite

op or makesuite takes as argument a list.
op or makesuite transforms this list into a sequence.
See 2.15.3 for other usages of op.

Input :
op ([0,1,2])
or:
makesuite ([0,1,2])
Output :

(0,1,2)

2.37.12 Transform a sequence into a list : makevector []

Square brackets put around a sequence transform this sequence into a list or vec-
tor. The equivalent prefixed function is makevector which takes a sequence as

argument.
makevector transforms this sequence into a list or vector.
Input :

makevector (0,1, 2)
Output :

(0,1,2]

Input :

2.37. LISTS AND VECTORS 227

a:=(0,1,2)
Input :
[a]
or :
makevector (a)
Output :

(0,1,2]

2.37.13 Lengthofalist: size nops length

size or nops or length takes as argument a list (resp. sequence).
size or nops or length returns the length of this list (resp. sequence).
Input :

nops ([3,4,2])

or:

size([3,4,2]1)
or :

length([3,4,2])
Output :

2.37.14 Sizes of a list of lists : sizes

sizes takes as argument a list of lists.
sizes returns the list of the lengths of these lists.
Input :

sizes([[3,4],[2]])
Output :

(2,1]

2.37.15 Concatenate two lists or a list and an element : concat augment

concat (or augment) takes as argument a list and an element or two lists.
concat (or augment) concats this list and this element, or concats these two
lists.

Input :

concat ([3,4,2]1,1[1,2,4])

or:

228 CHAPTER 2. THE CAS FUNCTIONS

augment ([3,4,2]1,1[1,2,4])

Output :
[3,4,2,1,2,4]
Input :
concat ([3,4,2],5)
or :
augment ([3,4,2],5)
Output :

[3,4,2,5]
Warning If you input :
concat ([[3,4,2]1]1,1[11,2,411])
or
augment ([[3,4,21]1,[11,2,411)
the output will be:

(03,4,2,1,2,4]]

2.37.16 Append an element at the end of a list : append

append takes as argument a list and an element.
append puts this element at the end of this list.

Input :
append([3,4,2]1,1)
Output :
[3,4,2,1]
Input :
append ([1,2]1,([3,4])
Output :

(1,2,103,4]]

2.37. LISTS AND VECTORS 229

2.37.17 Prepend an element at the beginning of a list : prepend

prepend takes as argument a list and an element.
prepend puts this element at the beginning of this list.

Input :
prepend([3,4,2],1)
Output :
[1,3,4,2]
Input :
prepend([1,2],[3,4])
Output :

(03,41,1,2]

2.37.18 Sort: sort

sort takes as argument a list or an expression.

e For a list,
sort returns the list sorted in increasing order.
Input :
sort ([3,4,2]1)
Output :

[2,3,4]

e For an expression,
sort sorts and collects terms in sums and products.

Input :
sort (exp (2x1n (X)) +xX*y—X+y*X+2*X)
Output :
2xx*ytexp (2x1n (X)) +x
Input :
simplify (exp (2+1n (X)) +x*xy—xX+y*xX+2*X)
Output :

XN2+24x*y+X

230 CHAPTER 2. THE CAS FUNCTIONS

sort accepts an optional second argument, which is a bivariate function return-
ing 0 or 1. If provided, this function will be used to sort the list, for example
(x,y) —>x>=y may be used as second argument to sort the list in decreasing or-
der. This may also be used to sort list of lists (that sort with one argument does
not know how to sort).

Input :

sort ([3,4,2], (X,y)—>x>=Y)
Output :

[4,3,2]

2.37.19 Sort a list by increasing order : SortA

SortA takes as argument a list.
SortA returns this list sorted by increasing order.
Input :

SortA([3,4,2])
Output :
[2,3,4]

SortA may have a matrix as argument and in this case, SortA modifies the order
of columns by sorting the first matrix row by increasing order.
Input :

SortA([[3,4,2],[6,4,5]])
Output :

[([2,3,4],[5,6,4]]

2.37.20 Sort a list by decreasing order : SortD

SortD takes a list as argument.
SortD returns this list sorted by decreasing order.
Input :

SortD([3,4,2])
Output :
[2,3,4]

SortD may have a matrix as argument and in this case, SortD modifies the order
of columns by sorting the first matrix row by decreasing order.
Input :

SortD([[3,4,2],16,4,5]1)
Output :

[[4,3,2],14,6,5]]

2.37. LISTS AND VECTORS 231

2.37.21 Select the elements of a list : select

select takes as arguments : a boolean function f and a list L.
select selects in the list I, the elements ¢ such that £ (c) ==true.
Input :

select (x—>(x>=2),1[0,1,2,3,1,51)
Output :

(2,3,5]

2.37.22 Remove elements of a list : remove

remove takes as argument : a boolean function f and a list L.
remove removes in the list L, the elements c such that £ (c) ==true.
Input :

remove (x—> (x>=2),[0,1,2,3,1,5])
Output :
[0,1,1]

Remark The same applies on strings, for example, to remove all the "a" of a string:
Input :

ord("a")
Output :
97

Input :
f (chn) :={

local l:=length(chn)-1;

return remove (x—> (ord(x)==97),seq(chnlk],k,0,1));
}
Then, input :

f ("abracadabra")

Output :

["b", "r", "c", "d", "b", "r"]
To get a string, input :

char (ord (["b", """, "c","d","b","x"])
Output :

"brcdbr"

232 CHAPTER 2. THE CAS FUNCTIONS

2.37.23 Test if a value is in a list : member

member takes as argument a value c and a list (or a set) L.

member is a function that tests if ¢ is an element of the list L.

member returns O if ¢ is not in L, or a strictly positive integer which is 1 plus the
index of the first occurrence of ¢ in L.

Note the order of the arguments (required for compatibility reasons)

Input :

member (2, [0,1,2,3,4,2]1)

Output :
3
Input :
member (2,%{0,1,2,3,4,2%})
Output :

2.37.24 Testif a valueisinalist: contains

contains takes as argument a list (or a set) L and a value c.

contains tests if c is an element of the list L.

contains returns O if ¢ is not in L, or a strictly positive integer which is 1+the
index of the first occurrence of c in L.

Input :
contains ([0,1,2,3,4,21,2)
Output :
3
Input :
contains (%{0,1,2,3,4,2%},2)
Output :

2.37.25 Sum of list (or matrix) elements transformed by a function :
count

count takes as argument : a real function £ and a list 1 of length n (or a matrix A
of dimension p*q).

count applies the function to the list (or matrix) elements and returns their sum,
ie. :

count (f,1) returns £ (1 [0])+£(1[1])+...+f(1[n-1]) or

count (f£,A) returns £ (A[0,0])+....+f(A[p-1,9-11).

If £ is a boolean function count returns the number of elements of the list (or of
the matrix) for which the boolean function is true.

Input :

2.37. LISTS AND VECTORS 233

count ((x)->x,[2,12,45,3,7,781)
Output :
147

because : 2+12+45+3+7+78=147.

Input :
count ((x)->x<12,1[2,12,45,3,7,781)
Output :
3
Input :
count ((x) ->x==12,1[2,12,45,3,7,781])
Output :
1
Input :
count ((x)->x>12,1[2,12,45,3,7,781)
Output :
2
Input :
count (x->x"2,[3,5,1])
Output :

35

Indeed 32 + 52 + 1! = 35.

Input :

count (id, [3,5,1])
Output :

9

Indeed, id is the identity functions and 3+5+1=9.
Input :

count (1, [3,5,11)
Output :

3

Indeed, 1 is the constant function equal to 1 and 1+1+1=3.

234 CHAPTER 2. THE CAS FUNCTIONS

2.37.26 Number of elements equal to a given value : count_eq

count_eq takes as argument : a real and a real list (or matrix).

count_eq returns the number of elements of the list (or matrix) which are equal
to the first argument.

Input :

count_eqg(l2,[2,12,45,3,7,78])

Output :

2.37.27 Number of elements smaller than a given value : count_inf

count_inf takes as argument : a real and a real list (or matrix).

count_inf returns the number of elements of the list (or matrix) which are
strictly less than the first argument.

Input :

count_inf (12, [2,12,45,3,7,781])

Output :

2.37.28 Number of elements greater than a given value : count_sup

count_sup takes as argument : a real and a real list (or matrix).

count_sup returns the number of elements of the list (or matrix) which are
strictly greater than the first argument.

Input :

count_sup(1l2,[2,12,45,3,7,781])

Output :

2.37.29 Sum of elements of a list : sum add

sum or add takes as argument a list 1 (resp. sequence) of reals.
sum or add returns the sum of the elements of 1.
Input :

sum(2,3,4,5,6)
Output :

20

2.37. LISTS AND VECTORS 235

2.37.30 Cumulated sum of the elements of a list : cumSum

cumSum takes as argument a list 1 (resp. sequence) of numbers or of strings.
cumSum returns the list (resp. sequence) with same length as 1 and with k-th
element the sum (or concatenation) of the elements 1[0], .., 1[k].

Input :

cumSum (sqrt (2),3,4,5,6)
Output :
sgrt (2),3+sqrt (2),3+sqgrt (2) +4, 3+sqrt (2) +4+5,
3+sgrt (2) +4+5+6
Input :
normal (cumSum (sqgrt (2),3,4,5,6))
Output :

sqrt (2),sqrt (2)+3,sqrt (2)+7,sqrt (2)+12, sgrt (2) +18

Input :

cumSum(1.2,3,4.5,6)
Output :

1.2,4.2,8.7,14.7

Input :

cumSum ([0,1,2,3,471)
Output :

[0,1,3,6,10]
Input :
cumSum ("a", "b","c", "d")

Output :

"a","ab", "abc", "abcd"
Input :

cumSum ("a", "ab", "abc", "abcd")

Output :

ngn , "aab" , "sababc" , "sababcabcd"

2.37.31 Product: product mul
See also 2.37.31, 2.42.6 and 2.42.8).

236 CHAPTER 2. THE CAS FUNCTIONS

Product of values of an expression : product

product (expr,var,a,b,p) ormul (expr,var, a,b, p) returns the prod-
uct of values of an expression ex when the variable var goes from a to b with a
step p (by default p=1) : this syntax is for compatibility with Maple.

Input :

product (x"2+1,x,1,4)
or:
mul (x"2+1,x%x,1,4)
Output :
1700

Indeed 2 x5 % 10 % 17 = 1700

Input :
product (x~2+1,x,1,5,2)
or:
mul (x*2+1,x%x,1,5,2)
Output :

520

Indeed 2 * 10 * 26 = 520

Product of elements of a list : product

product or mul takes as argument a list 1 of reals (or floating numbers) or two
lists of the same size (see also 2.37.31, 2.42.6 and 2.42.8).

e if product or mul has alist 1 as argument, product or mul returns the
product of the elements of 1.

Input :
product ([2,3,41])
or :
mul ([2,3,4])
Output :
24
Input :

product ([[2,3,4],[5,6,7]1])

2.37. LISTS AND VECTORS 237

Output :
[10,18,28]

e if product or mul takes as arguments 11 and 12 (two lists or two matri-
ces), product or mul returns the term by term product of the elements of

11 and 12.
Input :
product ([2,3,41,[5,6,71)
or :
mul ([2,3,4]1,[5,6,7])
Output :
[10,18,28]
Input :

product ([[2,3,4]1,[5,6,711,1102,3,41,105,6,711)
or:
mul([[2,3,4]1,[5,6,711,10102,3,41,105,6,711)
Output :

[[4,9,16],1[25,36,49]]
2.37.32 Apply a function of one variable to the elements of a list : map
apply of

map or apply or of applies a function to a list of elements.

of is the prefixed function equivalent to the parenthesis : Xcas translates £ (x)
internally to of (£, x). It is more natural to call map or apply than of. Be
careful with the order of arguments (that is required for compatibility reasons).
Note that apply returns a list ([]) even if the second argument is not a list.
Input :

apply (x->x72,[3,5,11)
or :
of (x—>x"2,13,5,11)
or :
map([3,5,1],x—>x"2)

or first define the function h(x) = 2, input :

238 CHAPTER 2. THE CAS FUNCTIONS

h(x) :=x"2
then :
apply (h, [3,5,1])
or:
of (h, [3,5,11])
or:
map ([3,5,1],h)
Output :
[9,25,1]
Next example, define the function g(z) = [z, 22, 23], input :
g:=(x)-—>[x,x"2,x"3]
then :
apply (g, [3,5,11)
or:
of(g,[3,5,11])
or:
map([3,5,1]1,9)
Output :

(03,9,271,105,25,125},[1,1,1]]
Warning!!! first purge x if x is not symbolic.

Notethatif 11,12, 13 arelists sizes ([11,12,13]) isequivalenttomap (size, [11,12,13]).

2.37.33 Apply a bivariate function to the elements of two lists : zip

z1p applies a bivariate function to the elements of 2 lists.

Input :
zip (' sum’, [a,b,c,d], [1,2,3,4])
Output :
[a+l,b+2,c+3,d+4]
Input :
zip ((x,y)->x"2+y"~2,[4,2,11,13,5,11)
or :

fi=(x,y)-—>x"2+y"2

2.37. LISTS AND VECTORS 239

then,

zip (£, [4,2,11,13,5,1])
Output :

[25,29,2]

Input :

fi=(x,y)—>[x"2+y"2,x+y]
then :

zip(£,[4,2,1]1,1[3,5,1])
Output :

(025,71,129,7],[2,2]]

2.37.34 Make a list with zeros : newList

newList (n) makes a list of n zeros.
Input :

newList (3)
Output :
(0,0,0]

2.37.35 Make a list with a function : makelist

makelist takes as argument a function f, the bounds a, b of an index variable
and a step p (by default 1 or -1 depending on the bounds order).

makelist makes the list [f (a), f (a+p) ...f (a+tk*p)] with k such that :
a<a+ksp<b<a+(k+1)*xpora>a+kxp>b>a+(k+1)xp.
Input :

makelist (x->x"2,3,5)
or
makelist (x->x"2,3,5,1)
or first define the function h(z) = x2 by h (x) :=x"2 then input
makelist (h,3,5,1)

Output :
[9,16,25]
Input :
makelist (x->x"2,3,6,2)
Output :

[9,25]

Warning!!! purge x if x is not symbolic.

240 CHAPTER 2. THE CAS FUNCTIONS

2.37.36 Make a random vector or list : randvector

randvector takes as argument an integer n and optionally a second argument,
either an integer k or the quoted name of a random distribution law (see also
2.24.25,2.37.36 and ??).

randvector returns a vector of size n containing random integers uniformly
distributed between -99 and +99 (default), or between 0 and k£ — 1 or containing
random integers according to the law put between quotes.

Input :

randvector (3)
Output :

[-54,78,-29]
Input :
randvector (3, 5)
or:
randvector (3, rand(5)’)
Output :
[1,2,4]
Input :
randvector (3, '’ randnorm (0, 1) ")

Output :

[1.39091705476,-0.136794772167,0.187312440336]
Input :
randvector (3,2..4)
Output :

[3.92450003885,3.50059241243,2.7322040787]

2.37.37 List of differences of consecutive terms : deltalist

deltalist takes as argument a list.

deltalist returns the list of the difference of all pairs of consecutive terms of
this list.

Input :

deltalist ([5,8,1,9])
Output :

[31_71 8]

2.38. FUNCTIONS FOR VECTORS 241

2.37.38 Make a matrix withalist : 1ist2mat

list2mat takes as argument a list 1 and an integer p.

list2mat returns a matrix having p columns by cutting the list 1 in rows of
length p. The matrix is filled with Os if the size of 1 is not a multiple of p.

Input :

list2mat ([5,8,1,9,5,61,2)

Output :
[15,81,101,91,1[5,6]]
Input :
list2mat ([5,8,1,91,3)
Output :
[([5,8,11,19,0,011
Remark

Xcas displays matrix with [and] and lists with [and | as delimiters (the vertical
bar of the brackets are thicker for matrices).
2.37.39 Make a list with a matrix : mat21ist

mat21ist takes as argument a matrix.
mat21ist returns the list of the coefficients of this matrix.
Input :

mat2list ([[5,8]1,[1,911)
Output :

[5,8,1,9]

2.38 Functions for vectors

2.38.1 Norms of a vector : maxnorm llnorm l2norm norm
The instructions to compute the different norm of a vector are :

e maxnorm returns the [°° norm of a vector, defined as the maximum of the
absolute values of its coordinates.
Input :

maxnorm([3,-4,2])

Output :

Indeed : x=3, y=-4, z=2and 4=max (|x|,|yl,1z]).

242 CHAPTER 2. THE CAS FUNCTIONS

e 1lnorm returns the {* norm of a vector defined as the sum of the absolute
values of its coordinates.
Input :

llnorm([3,-4,2])

Output :

Indeed : x=3, y=-4, z=2and 9=|x|+|y|+]|z].

e normor 12norm returns the /2 norm of a vector defined as the square root
of the sum of the squares of its coordinates.
Input :

norm([3,-4,21)
Output :
sgrt (29)

Indeed : x=3, y=-4, z=2and?29 = |z|? + |y|> + |z|%

2.38.2 Normalize a vector : normalize unitV

normalize or unitV takes as argument a vector.

normalize or unitV normalizes this vector for the 2 norm (the square root of
the sum of the squares of its coordinates).

Input :

normalize([3,4,5])
Output :
[3/(5*sqrt(2)),4/ (5*sqrt (2)),5/ (5xsqrt (2))]

Indeed : x=3, y=4, z=5and50 = |z|2 + |y|? + |z|>.

2.38.3 Term by term sum of two lists : + .+

The infixed operator + or .+ and the prefixed operator ’ +’ returns the term by
term sum of two lists.

If the two lists do not have the same size, the smaller list is completed with zeros.
Note the difference with sequences : if the infixed operator + or the prefixed oper-
ator ' +' takes as arguments two sequences, it merges the sequences, hence return
the sum of all the terms of the two sequences.

Input :

(1,2,3]+[4,3,5]

or:

2.38. FUNCTIONS FOR VECTORS 243

(1,2,3] .+[4,3,5]

or:
"+ ([1,2,31,14,3,51)
or:
"+ (001,2,31,04,3,5]1])
Output :
[5,5,8]
Input :
[1,2,3,4,5,6]1+[4,3,5]
or:
"+ ([1,2,3,4,5,6]1,104,3,5])
or:
"+"([[1,2,3,4,5,61,1[4,3,511)
Output :

(5,5,8,4,5,6]
Warning !
When the operator + is prefixed, it should be quoted (* +”).
2.38.4 Term by term difference of two lists : — . -

The infixed operator — or .- and the prefixed operator / —’ returns the term by
term difference of two lists.

If the two lists do not have the same size, the smaller list is completed with zeros.
Input :

[11 2! 3]_[41 3, 5]

or:
[1,2,31 .+ [4,3,5]
or:
r-r(11,2,31,14,3,51)
or:
=" (rr1,2,31,04,3,511)
Output :

[_31_11_2]

Warning !
When the operator - is prefixed, it should be quoted (" -).

244 CHAPTER 2. THE CAS FUNCTIONS

2.38.5 Term by term product of two lists : . »

The infixed operator . * returns the term by term product of two lists of the same
size.
Input :

(1,2,3] .» [4,3,5]
Output :

(4,6,15]

2.38.6 Term by term quotient of two lists : . /

The infixed operator . / returns the term by term quotient of two lists of the same
size.
Input :

(1,2,31 ./ [4,3,5]
Output :

(1/4,2/3,3/5]

2.38.7 Scalar product: scalar_product * dotprod dot dotP
scalar_Product

dot or dotP or dotprod or scalar_product or scalarProduct or the
infixed operator * takes as argument two vectors.

dot or dotP or dotprod or scalar_product or scalarProduct or x
returns the scalar product of these two vectors.

Input :

dot ([1,2,31,14,3,51)
or :

scalar_product ([1,2,31,[4,3,5])
or :
[1,2,31x[4,3,5]

or:

%’ ([1,2,31,14,3,5])
Output :

25

Indeed 25=1%4+2x3+3%5.

Note that » may be used to find the product of two polynomials represented
as list of their coefficients, but to avoid ambiguity, the polynomial lists must be
polylf[...].

2.39. STATISTICS FUNCTIONS :MEAN, VARIANCE, STDDEV, STDDEVP,MEDIAN, QUANTILE, QUARTIL

2.38.8 Cross product : cross crossP crossproduct

cross or crossP or crossproduct takes as argument two vectors.

cross or crossP or crossproduct returns the cross product of these two
vectors.

Input :

cross([1,2,3],1[4,3,2])
Output :
[-5,10,-5]

Indeed: —5=2%2—-3%3,10=—-1%2+4%3, -5=1*x3—-2x4.

2.39 Statistics functions : mean, variance, stddev,
stddevp,median, quantile, quartiles, boxwhisker

The functions described here may be used if the statistics series is contained in a
list. See also section 2.42.31 for matrices and chapter ?? for weighted lists.

e mean computes the arithmetic mean of a list

Input :
mean ([3,4,2])
Output :
3
Input :
mean([1,0,17)
Output

2/3
e stddev computes the standard deviation of a population, if the argument is
the population.
Input :
stddev ([3,4,2])
Output :

sqrt (2/3)

e stddevp computes an unbiased estimate of the standard deviation of the
population, if the argument is a sample. The following relation holds:

246

CHAPTER 2. THE CAS FUNCTIONS

stddevp (1) "2=size (1) *stddev (1) "2/ (size(1)-1).
Input :
stddevp ([3,4,2])

Output :

variance computes the variance of a list, that is the square of stddevp
Input :

variance ([3,4,2])
Output :
2/3

median computes the median of a list.
Input :

median([0,1,3,4,2,5,6])

Output :

quantile computes the deciles of a list given as first argument, where the
decile is the second argument.
Input :

quantile([0,1,3,4,2,5,6],0.25)

Output the first quartile :

Input :
quantile([0,1,3,4,2,5,61,0.5)

Output the median :

Input :

quantile([0,1,3,4,2,5,6]1,0.75)

2.39. STATISTICS FUNCTIONS :MEAN, VARIANCE, STDDEV, STDDEVP,MEDIAN, QUANTILE, QUARTIL
Output the third quartile :
[4.0]

e quartiles computes the minimum, the first quartile, the median, the third
quartile and the maximum of a list.
Input :

quartiles([0,1,3,4,2,5,6])
Output :
([[0.0],[1.0],([3.0],([4.0],[6.0]]

e boxwhisker draws the whisker box of a statistics series stored in a list.
Input :

boxwhisker ([0,1,3,4,2,5,6])
Output

the graph of the whisker box of this statistic

list
Example
Define the list A by:
A:=[0,1,2,3,4,5,6,7,8,9,10,11]
Outputs :

1. 11/2 formean (A)

2. sqrt (143/12) for stddev (A)

3. 0 formin (&)

4. [1.0] forquantile(A,0.1)

5. [2.0] forquantile (A, 0.25)

6. [5.0] formedian (A) orfor quantile (A, 0.5)
7. [8.0] forquantile (A, 0.75)

8. [9.0] forquantile (A, 0.9)

9. 11 formax (A7)

10. [[0.0]1,[2.0],[5.0],18.0],[11.0]] forquartiles (A)

248 CHAPTER 2. THE CAS FUNCTIONS

2.40 Table with strings as indexes : table

A table is an associative container (or map), it is used to store information asso-

ciated to indexes which are much more general than integers, like strings or se-

quences. It may be used for example to store a table of phone numbers indexed by

names.

In Xcas, the indexes in a table may be any kind of Xcas objects. Access is done

by a binary search algorithm, where the sorting function first sorts by t ype then

uses an order for each type (e.g. < for numeric types, lexicographic order for

strings, etc.)

table takes as argument a list or a sequence of equalities index_name=element_value.
table returns this table.

Input :
T:=table (3=-10,"a"=10, "b"=20, "c"=30, "d"=40)
Input :
T["b"]
Output :
20

Input :

T[3]
Output :

-10
Remark
If youassign T[n] := ... where T is a variable name and n an integer

e if the variable name was assigned to a list or a sequence, then the n-th ele-
ment of T is modified,

e if the variable name was not assigned, a table T is created with one entry
(corresponding to the index n). Note that after the assignation T is not a list,
despite the fact that n was an integer.

2.41 Usual matrix

A matrix is represented by a list of lists, all having the same size. In the Xcas
answers, the matrix delimiters are [] (bold brackets). For example, [1,2,3] is the
matrix [[1,2,3]] with only one row, unlike [1,2,3] (normal brackets) which is the
list [1,2,3].

In this document, the input notation ([[1,2,3]]) will be used for input and output.

2.41. USUAL MATRIX 249

2.41.1 Identity matrix: idn identity

idn takes as argument an integer n or a square matrix.
idn returns the identity matrix of size n or of the same size as the matrix argument.
Input :

idn (2)
Output :
([(1,0],(00,11]
Input :
idn (3)
Output :

(t1,0,01,10,1,0],00,0,17]]

2.41.2 Zero matrix : newMat matrix

newMat (n,p) ormatrix (n, p) takes as argument two integers.
newMat (n, p) returns the zero matrix with n rows and p columns.
Input :

newMat (4, 3)
Output :

(co,o0,01,00,0,01,00,0,01,[0,0,0]]

2.41.3 Random matrix : ranm randMat randmatrix

ranm or randMat or randmatrix takes as argument an integer n or two inte-
gers n, m and optionally a third argument, either an integer k or the quoted name
of a random distribution law (see also 2.24.25, 2.37.36 and ??).

ranm returns a vector of size n or a matrix of size n X m containing random inte-
gers uniformly distributed between -99 and +99 (default), or between 0 and k£ — 1
or a matrix of size n X m containing random integers according to the law put
between quotes.

Input :
ranm(3)
Output :
[-54,78,-29]
Input :
ranm (2, 4)
Output :

[(27,-29,37,-66],[-11,76,65,-3311

250 CHAPTER 2. THE CAS FUNCTIONS

Input :
ranm (2,4, 3)

or :

ranm(2,4, " rand (3)")
Output :

(r0,1,1,01,10,1,2,07]
Input :

ranm (2,4, " randnorm (0, 1))

Output :

[[1.83785427742,0.793007112053,-0.978388964902,-1.88602023857],
[-1.50900874199,-0.241173369698,0.311373795585,-0.532752431454]]

Input :
ranm(2,4,2..4)

Output :

[[2.00549363438,3.03381264955,2.06539073586,2.048443212177,
[3.88383254968,3.28664474655,3.76909781061,2.39113253355]]

2.41.4 Diagonal of a matrix or matrix of a diagonal : BlockDiagonal
diag

diagorBlockDiagonal takes as argument a matrix A or a list /.
diag returns the diagonal of A or the diagonal matrix with the list / on the diagonal
(and O elsewhere).

Input :
diag([[1,2],[3,4]1)
Output :
[1,4]
Input :
diag([1,4])
Output :

(01,0],[0,4]]

2.42. ARITHMETIC AND MATRIX 251

2.41.5 Jordan block : JordanBlock

JordanBlock takes as argument an expression a and an integer 7.
JordanBlock returns a square matrix of size n with a on the principal diagonal,
1 above this diagonal and 0 elsewhere.

Input :

JordanBlock (7, 3)
Output :

(c7,1,0J,10,7,11,00,0,7]]

2.41.6 Hilbert matrix : hilbert

hilbert takes as argument an integer n.
hilbert returns the Hilbert matrix.
A Hilbert matrix is a square matrix of size n whose elements a; . are :

1 .
aj,k:m, 0<5,0<k
Input :
hilbert (4)
Output :

(r,1/2,1/3,1/41,11/2,1/3,1/4,1/51,(1/3,1/4,1/5,1/6],
[1/4,1/5,1/6,1/711

2.41.7 Vandermonde matrix : vandermonde

vandermonde takes as argument a vector whose components are denoted by z;
forj =0..n — 1.

vandermonde returns the corresponding Vandermonde matrix (the k-th row of
the matrix is the vector whose components are J:f" fort =0.n—land k = 0..n—1).
Warning !

The indices of the rows and columns begin at 0 with Xcas.

Input :

vandermonde ([a, 2, 3])
Output (if a is symbolic else purge(a)) :

(r1,1,11,[a,2,3], [axa,4,9]]

2.42 Arithmetic and matrix

2.42.1 Evaluate a matrix : evalm

evalmisused in Maple to evaluate a matrix. In Xcas, matrices are evaluated by
default, the command evalm is only available for compatibility, it is equivalent to
eval.

252 CHAPTER 2. THE CAS FUNCTIONS

2.42.2 Addition and subtraction of two matrices: + - .+ .-

The infixed operator + or .+ (resp. — or . —) are used for the addition (resp. sub-
traction) of two matrices.

Input :
((1,21,103,41]1 + [[5,6],[7,8]]
Output :
[[6,8]1,[10,12]]
Input :
((1,21,103,41]1 - [[5,6],[7,8]]
Output :
[[-4,-4],[-4,-4]]
Remark

+ can be used as a prefixed operator, in that case + must be quoted (" +*).
Input :

"+ (001,21, 03,411, 005,61, 07,811, 0(2,2],(3,3]1)
Output :

(08,1071, [13,15]]

2.42.3 Multiplication of two matrices : ~ &«

The infixed operator * (or &) is used for the multiplication of two matrices.
Input :

(t1,2],03,41] = [[5,6],[7,8]]
or:

(0(1,21,103,41] &~ [[5,6],[7,8]]
Output :

[[19,22],[43,50]]

2.42.4 Addition of elements of a column of a matrix : sum

sum takes as argument a matrix A.

sum returns the list whose elements are the sum of the elements of each column of
the matrix A.

Input :

sum ([[1,2],[3,411)
Output :

[4,6]

2.42. ARITHMETIC AND MATRIX 253

2.42.5 Cumulated sum of elements of each column of a matrix : cumSum

cumSum takes as argument a matrix A.

cumSum returns the matrix whose columns are the cumulated sum of the elements
of the corresponding column of the matrix A.

Input :

cumSum ([[1,2],[3,4]1,[5,6]11)
Output :
((1,2],04,6],[9,12]]

since the cumulated sums are : 1, 1+3=4, 1+3+5=9 and 2, 2+4=6, 2+4+6=12.

2.42.6 Multiplication of elements of each column of a matrix : product

product takes as argument a matrix A.

product returns the list whose elements are the product of the elements of each
column of the matrix A (see also 2.37.31 and 2.42.8).

Input :

product ([[1,2],([3,4]11])
Output :
[3,8]

2.42.7 Power of a matrix : ~ &

The infixed operator ~ (or & ") is used to raise a matrix to an integral power.
Input :

((1,21,103,41]1 ~ 5
or:
[[1,2],03,4]1] & 5
Output :
[[1069,1558],[2337,3406]1

2.42.8 Hadamard product : hadamard product

hadamard (or product) takes as arguments two matrices A and B of the same
size.

hadamard (or product) returns the matrix where each term is the term by term
product of A and B.

Input :

hadamard([[1, 2]1,[3,411,[[5, 61,17, 811)
Output :
[[5,12]1,121,32]]
See also 2.37.31 and 2.42.6 for product.

254 CHAPTER 2. THE CAS FUNCTIONS

2429 Hadamard product (infixed version): . *

. = takes as arguments two matrices or two lists A and B of the same size.
. = is an infixed operator that returns the matrix or the list where each term is the
term by term product of the corresponding terms of A and B.

Input :
(1, 21,103,411 .~ [[5 6],[7, 8]]
Output :
[[5,12]1,121,32]]1
Input :
[1,2,3,4] .% [5,6,7,8]
Output :

[5,12,21,32]

2.42.10 Hadamard division (infixed version): . /

. / takes as arguments two matrices or two lists A and B of the same size.

./ is an infixed operator that returns the matrix or the list where each term is the
term by term division of the corresponding terms of A and B.

Input :

(ry, 21,103,411 ./ [[5 61,07, 8]]
Output :

([1/5,1/31,13/7,1/2]1]

2.42.11 Hadamard power (infixed version): .~

.~ takes as arguments a matrix or a list A and a real b.
.~ is an infixed operator that returns the matrix or the list where each term is the
corresponding term of A raised to the power b.
Input :
(r1, 21,103,411 .7 2
Output :

[([1,4],19,16]]

2.42. ARITHMETIC AND MATRIX 255

2.42.12 Extracting element(s) of amatrix: [] at

Recall that a matrix is a list of lists with the same size.

Input :
A:=[[3,4,5],11,2,6]]
Output :
[[3,4,5],11,2,61]
The prefixed function at or the index notation [...] is used to access to an

element or a row or a column of a matrix:

e To extract an element, put the matrix and then, between square brackets put
its row index, a comma, and its column index. In Xcas mode the first index
is 0, in other modes the first index is 1.

Input :
[[3,4,5]1,11,2,6]111[0,1]

or:

A[O0,1]
or:

A[0][1]
or:

at (A, [0,1])
Output :
4

e To extract a row of the matrix A, put the matrix and then, between square
brackets put the row index, input :

(03,4,5],[1,2,6]]1[0]

or:

or:
at (A, 0)

Output :

256

CHAPTER 2. THE CAS FUNCTIONS

[3,4,2]

e To extract a part of a row, put two arguments between the square brackets :

the row index and an interval to designate the selected columns.
Input :

A[1,0..2]
Output :
[1,2,6]
Input :
A[l,1..2]
Output :
[2,6]

To extract a column of the matrix A, first transpose A (transpose (A))
then extract the row like above.

Input :
tran(A) [1]
or:
at (tran(A), 1)
Output :

(4,2]

To extract a part of a column of the matrix A as a list, put two arguments
between the square brackets : an index interval to designate the selected
rows and the column index.

Input :

Output :

This may be used to extract a full column, by specifying all the rows as an
index interval.
Input :

2.42. ARITHMETIC AND MATRIX 257

Output :

[4,2]

e To extract a sub-matrix of a matrix, put between the square brackets two
intervals : one interval for the selected rows and one interval for the selected
columns.

To define the matrix A, input :

A:=[[3,4,5],1[1,2,6]]

Input :

A[0..1,1..2]
Output :

[[4,5],[2,6]]
Input :

A[0..1,1..1]
Output :

(041, 12]]

Remark If the second interval is omitted, the sub-matrix is made with the
consecutive rows given by the first interval.
Input :

Output :

([1,2,6]]

You may also assign an element of a matrix using index notation, if you assign
with := a new copy of the matrix is created and the element is modified, if you
assign with =<, the matrix is modified in place.

258 CHAPTER 2. THE CAS FUNCTIONS

2.42.13 Modify an element or a row of a matrix : subsop

subsop modifies an element or a row of a matrix. It is used mainly for Maple
and MuPAD compatibility. Unlike := or =<, it does not require the matrix to be
stored in a variable.

subsop takes two or three arguments, these arguments are permuted in Maple
mode.

1. Modify an element

e In Xcas mode, the first index is O
subsop has two (resp. three) arguments: a matrix A and an equality
[r, c]=v (resp. a matrix A, a list of indexes [r, c], a value v).
subsop replaces the element A [r, c] by v.
Input in Xcas mode :

subsop ([[4,5],[2,61]1,[1,01=3)
or:
subsop ([[4,5],[2,61]1,[1,01,3)
Output :
[[4,5],[3,6]1]

Remark

If the matrix is stored in a variable, for example A:=[[4, 5], [2,6]]1,
it is easier to input A[1, 0] : =3 which modifies A into the matrix
[[4,5],[3,6]1].

e InMupad, TI mode, the firstindex is 1
subsop has two (resp. three) arguments: a matrix A and an equality
[r, c]=v (resp. a matrix A, a list of index [r, c], a value v).
subsop replaces the element A [r, c] by v.
Input in Mupad, TI mode:

subsop ([[4,5],[2,6]1,[2,1]=3)

or:
subsop ([[4,5],[2,611,1[2,11,3)
Output :
[([4,5],[3,6]]
Remark

If the matrix is stored in a variable, forexample A:=[[4, 51, [2, 611,
it is easier to input A[2, 1] : =3 which modifies A into the matrix
[[4,5],[3,6]].

e In Maple mode, the arguments are permuted and the first index is 1
subsop has two arguments: an equality [r, c]=v and a matrix A.
subsop replaces the element A [r, c] by v.

Input in Maple mode

subsop ([2,1]=3, [[4,5],[2,6]])

2.42. ARITHMETIC AND MATRIX 259

Output :
[[4,5],[3,6]]
Remark
If the matrix is stored in a variable, forexample A:=[[4, 5], [2, 611,
it is easier to input A[2, 1] : =3 which modifies A into the matrix

[[4,5],[3,6]].
2. Modify a row

e in Xcas mode, the first index is 0
subsop takes two arguments : a matrix and an equality (the index of
the row to be modified, the = sign and the new row value).
Input in Xcas mode :

subsop ([[4,5],[2,6]],1=[3,3])

Output :
[[4,5],[3,3]]
Remark
If the matrix is stored in a variable, forexample A:=[[4, 5], [2, 611,
is is easier to input A[1] : =[3, 3] which modifies A into the matrix

(04,5],1[03,3]].

e In Mupad, TI mode, the firstindex is 1
subsop takes two arguments : a matrix and an equality (the index of
the row to be modified, the = sign and the new row value).
Input in Mupad, TI mode:

subsop ([[4,5],[2,61],2=1[3,31)

Output :
[[4,5],[3,3]]
Remark
If the matrix is stored in a variable, forexample A:=[[4, 51, [2, 611,

it is easier to input A[2] :=[3, 3] which modifies A into the matrix
[([4,5],[3,3]1.

e in Maple mode, the arguments are permuted and the first index is 1 :
subsop takes two arguments : an equality (the index of the row to be
modified, the = sign and the new row value) and a matrix.

Input in Maple mode :

subsop (2=[3,3], [[4,5],[2,6]])

Output :
[(04,51,103,3]]
Remark
If the matrix is stored in a variable, for example A:=[[4, 5], [2, 611,

it is easier to input A[2] :=[3, 3] which modifies A into the matrix
[[4,5],[3,31]1].

260 CHAPTER 2. THE CAS FUNCTIONS

Remark
Note also that subsop with a ' n=NULL’ argument deletes row number n. In
Xcas mode input :

subsop ([[4,5],[2,6]],"1=NULL")
Output :

([4,5]]

2.42.14 Extract rows or columns of a matrix (Maple compatibility) :
row col

row (resp. col) extracts one or several rows (resp. columns) of a matrix.

row (resp. col) takes 2 arguments : a matrix A, and an integer n or an interval
ni..ng.

row (resp. col) returns the row (resp. column) of index n of A, or the sequence
of rows (resp. columns) of index from 74 to ny of A.

Input :
row([[1,2,3],([4,5,61,(7,8,9]11,1)
Output :
[4,5,6]
Input :
row([[1,2,3],([4,5,6]1,(7,8,9]1,0..1)
Output :
([1,2,31,14,5,61)
Input :
col([[1,2,3]1,14,5,61,17,8,911,1)
Output :
[2,5,8]
Input :
col([[1,2,3],1[4,5,61,17,8,9]11,0..1)
Output :

([1,4,7,12,5,8])

2.42. ARITHMETIC AND MATRIX 261

2.42.15 Remove rows or columns of a matrix : delrows delcols

delrows (resp. delcols) removes one or several rows (resp. columns) of a
matrix.

delrows (resp. delcols) takes 2 arguments : a matrix A, and an interval
ni..ng.

delrows (resp. delcols) returns the matrix where the rows (resp. columns) of
index from n1 to ny of A are removed.

Input :

delrows([[1,2,3]1,[4,5,61,17,8,911,1..1)
Output :

[11,2,31,17,8,911

Input :

delrows([[1,2,3]1,(4,5,61,17,8,911,0..1)
Output :

(17,8,911

Input :

delcols([[1,2,3],(4,5,61,17,8,91]1,1..1)
Output :

((1,31,04,61,[7,9]]

Input :

delcols([[1,2,31,1[4,5,61,[7,8,911,0..1)
Output :

([3],[6],[9]]

2.42.16 Extract a sub-matrix of a matrix (TI compatibility) : subMat

subMat takes 5 arguments : a matrix A, and 4 integers nl1, ncl, nl2, nc2, where
nll is the index of the first row, ncl is the index of the first column, nl2 is the
index of the last row and nc2 is the index of the last column.

subMat (A, nll,ncl,nl2, nc2) extracts the sub-matrix of the matrix A with
first element A[nl11, ncl] andlastelement A[nl2,nc2].

Define the matrix A :

A:=[[3,4,5],[1,2,6]]
Input :
subMat (A,0,1,1,2)

Output :

262 CHAPTER 2. THE CAS FUNCTIONS

[[4,5]1,1[2,6]]
Input :
subMat (A,0,1,1,1]
Output :
([4],[2]]

By default ni1 = 0, ncl = 0, ni2=nrows (A) -1 and nc2=ncols (A)-1
Input :

subMat (A, 1)

or:
subMat (A, 1, 0)
or:
subMat (A,1,0,1)
or:
subMat (A,1,0,1,2)
Output :

[([1,2,6]]

2.42.17 Add a row to another row : rowAdd

rowAdd takes three arguments : a matrix A and two integers n1 and n2.
rowAdd returns the matrix obtained by replacing in A, the row of index n2 by the
sum of the rows of index nl and n2.

Input :

rowAdd ([[1,2],1[3,41]1,0,1)
Output :

([1,2],[4,6]]

2.42.18 Multiply a row by an expression : mRow

mRow takes three arguments : an expression, a matrix A and an integer n.

mRow returns the matrix obtained by replacing in A, the row of index n by the
product of the row of index n by the expression.

Input :

mRow (12, [[1,2],[3,4]1],1)
Output :

([1,2],1[36,48]]

2.42. ARITHMETIC AND MATRIX 263

2.42.19 Add % times a row to an another row : mRowAdd

mRowAdd takes four arguments : a real k, a matrix A and two integers n1 and n2.
mRowAdd returns the matrix obtained by replacing in A, the row of index n2 by
the sum of the row of index n2 and k times the row of index n1.

Input :

mRowAdd (1.1, [[5,7],[3,4]1,11,211,1,2)
Output :

[05,7],03,4],[4.3,6.4]]

2.42.20 Exchange two rows : rowSwap

rowSwap takes three arguments : a matrix A and two integers nl and n2.
rowSwap returns the matrix obtained by exchanging in A, the row of index n1
with the row of index n2.

Input :

rowSwap ([[1,2],[3,4]],0,1)
Output :

([3,4],[1,2]]

2.42.21 Make a matrix with a list of matrices : blockmatrix

blockmatrix takes as arguments two integers n, m and a list of size n x m of
matrices of the same dimension p X ¢ (or more generally such that the m first
matrices have the same number of rows and ¢ columns, the m next rows have the
same number of rows and ¢ columns, and so on ...). In both cases, we have n blocks
of ¢ columns.

blockmatrix returns a matrix having ¢ columns by putting these n blocks one
under another (vertical gluing). If the matrix arguments have the same dimension
p X q, the answer is a matrix of dimension p * n X g * m.

Input :
blockmatrix (2,3, [idn(2),idn (2),1idn (2),
idn(2),idn(2),idn(2)1)
Output :
[[1,0,1,0,1,0], [Olllollloll]l
(t,o0,1,0,1,01,10,1,0,1,0,17]]
Input :

blockmatrix (3,2, [1dn(2),idn (2),
idn(2),1idn(2),idn(2),idn (2)])

Output :

264 CHAPTER 2. THE CAS FUNCTIONS

[[1101110]1 [Ollloll]l
(,0o,1,90J,f00,1,0,13,(2,0,1,0],[0,1,0,1]]

Input :
blockmatrix (2,2, [idn(2), newMat (2, 3),
newMat (3,2),1dn (3) 1)
Output :
[[lIOIOIOIO]I [Olllololo]l [OIOI:I-IOIO]I
(6,0,0,1,01,10,0,0,0,11]
Input :
blockmatrix (3,2, [idn(l), newMat (1,4),
newMat (2,3),idn (2) ,newMat (1,2), [[1,1,1111])
Output :

(s, 9,9,090,0J,10,0,0,1,01, 10,0,0,0,11, (0,0,1,1,1]]

Input :

then :
blockmatrix (2,3, [2%A,3%A,4xA,5%B, newMat (2,4), 6%B])
Output :
[((2,2,3,3,4,41,12,2,3,3,4,41,
[5,0,0,0,0,61,[5,0,0,0,0,6]]

2.42.22 Make a matrix from two matrices : semi_augment

semi_augment concat two matrices with the same number of columns.
Input :

semi_augment ([[3,4],(2,1],[0,1]],([([1,2],1[4,5]])

Output :

(c3,41,102,11,10,11,[1,2],[4,5]]
Input :

semi_augment ([[3,4,2]1]1,[[1,2,411)
Output :

[(03,4,2],11,2,4]]

Note the difference with concat.
Input :

2.42. ARITHMETIC AND MATRIX 265

concat ([[3,4,2]1]1,[11,2,4]]
Output :
[((3,4,2,1,2,4]]

Indeed, when the two matrices A and B have the same dimension, concat makes
a matrix with the same number of rows as A and B by gluing them side by side.
Input :

concat ([[3,4],[2,1],(0,11],[[1,2],[4,5]]

Output :
(t3,41,12,11, 10,11, 11,21, [4,5]]
but input :
concat ([[3,4]1,(2,111,1[[1,2]1,1[4,51]11]
Output :

(03,4,1,21,102,1,4,5]]

2.42.23 Make a matrix from two matrices : augment concat

augment or concat concats two matrices A and B having the same number of
rows, or having the same number of columns. In the first case, it returns a matrix
having the same number of rows as A and B by horizontal gluing, in the second
case it returns a matrix having the same number of columns by vertical gluing.
Input :

augment ([[3,4,5],12,1,011,1[1[1,2],1[4,511)
Output :
[[3,4,5,1,21,12,1,0,4,5]1
Input :
augment ([[3,41,(2,1],10,11]1,1(1,2],[4,5]11)

Output :
(03,41,12,11,10,11, 11,21, [4,5]]
Input :
augment ([[3,4,2]11,[[1,2,4]]
Output :

(03,4,2,1,2,4]]

Note that if A and B have the same dimension, augment makes a matrix with the
same number of rows as A and B by horizontal gluing, in that case you must use
semi_augment for vertical gluing.

Input :

augment ([[3,471, (2,111, ([[1,2],(4,511])
Output :
(03,4,1,21,02,1,4,5]11]

266 CHAPTER 2. THE CAS FUNCTIONS

2.42.24 Build a matrix with a function : makemat
makemat takes three arguments :

e afunction of two variables j and k which should return the value of a; ;, the
element of row index j and column index k of the matrix to be built.

e two integers n and p.

makemat returns the matrix A = (ajx) (j = 0.n —land &k = 0..p — 1) of
dimension n X p.
Input :

makemat ((J,k)->3+k, 4, 3)
or first define the h function:
h(j,k):=j+k
then, input:
makemat (h, 4, 3)
Output :
[10,1,21,11,2,31,102,3,4]1,103,4,5]1

Note that the indices are counted starting from 0.

2.42.25 Define a matrix : matrix
matrix takes three arguments :
e two integers n and p.

e a function of two variables j and k which should return the value of a; , the
element of row index j and column index k of the matrix to be build.

matrix returns the matrix A = (CLM) (y = 1.n and kK = 1..p) of dimension
n x p.
Input :

matrix (4,3, (j,k)-—>3+k)
or first define the h function:
h(j,k):=j+k
then, input:
matrix (4, 3,h)
Output :
[[2,3,41,13,4,5]1,104,5,6]1,105,6,7]1

Note the argument order and the fact that the indices are counted starting from 1.
If the last argument is not provided, it defaults to 0.

2.42. ARITHMETIC AND MATRIX 267

2.42.26 Append a column to a matrix : border

border takes as argument a matrix A of dimension p * ¢ and a list b of size p (i.e.
nrows (A)=size (b)).

border returns the matrix obtained by appending t ran (b) as last column to the
matrix A, therefore:

border (A,b)=tran([op(tran(A)),b]l)=tran (append(tran(A),b))

Input :
border([[1,2,4]1,1[3,4,511,106,71)
Output :
[([1,2,4,6]1,1[3,4,5,7]]
Input :

border([[1,2,3,4],[4,5,6,8],17,8,9,1011,[1,3,5])
Output :
(c,2,3,4,11,[4,5,6,8,31,17,8,9,10,5]]

2.42.27 Count the elements of a matrix verifying a property : count

count takes as arguments : a real function £ and a real matrix A of dimension

p*q (resp. alist 1 of size n).

countreturns £ (A[0,0])+..f£(A[p-1,g-11) (resp. £(1[0])+..£(1[n-11))
Hence, if £ is a boolean function, count returns the number of elements of the
matrix A (resp. the list 1) verifying the property £.

Input :
count (x->x, [[2,12], [45,31,17,7811)
Output :
147
indeed: 2+12+45+3+7+78=147.
Input :
count (x->x<10,[[2,12],[45,31,1[7,7811)

Output :

2.42.28 Count the elements equal to a given value : count_eqg

count_eq takes as arguments: a real and a real list or a real matrix.

count_eq returns the number of elements of the list or matrix equal to the first
argument.

Input :

count_eq(l2,[[2,12,45],1[3,7,7811)
Output :

268 CHAPTER 2. THE CAS FUNCTIONS

2.42.29 Count the elements smaller than a given value : count_inf

count_inf takes as arguments: a real and a real list or a real matrix.
count_inf returns the number of elements of the list or matrix which are strictly
less than the first argument.

Input :

count_inf (12, [2,12,45,3,7,781])

Output :

2.42.30 Count the elements greater than a given value : count_sup

count__sup takes as arguments: a real and a real list or a real matrix.

count_ sup returns the number of elements of the list or matrix which are strictly
greater to the first argument.

Input :

count_sup(12,[[2,12,45],1[3,7,7811)

Output :

2.42.31 Statistics functions acting on column matrices : mean, stddev,
variance,median,quantile,quartiles,boxwhisker

The following functions work on matrices, acting column by column:
e mean computes the arithmetic means of the statistical series stored in the
columns of a matrix.
Input :
mean([[3,4,2]1,11,2,611])
Output is the vector of the means of each column :
[2,3,4]
Input :
mean([([1,0,0],10,1,01,[0,0,117)
Output
[1/3,1/3,1/3]
e stddev computes the standard deviations of the population statistical series

stored in the columns of a matrix.
Input :

2.42. ARITHMETIC AND MATRIX 269

stddev ([[3,4,2]1,[1,2,611)
Output is the vector of the standard deviations of each column :
[1,1,2]
e variance computes the variances of the statistical series stored in the
columns of a matrix.
Input :
variance ([[3,4,21,[1,2,61])
Output is the vector of the variance of each column :
[1,1,4]
e median computes the medians of the statistical series stored in the columns

of a matrix.
Input :

median([[6,0,1,3,4,2,5],10,1,3,4,2,5,61,11,3,4,2,5,6,01,
(3,4,2,5,6,0,11,14,2,5,6,0,1,31,12,5,6,0,1,3,411)
Output is the vector of the median of each column :
[3,3,4,4,4,3,4]
e quantile computes the deciles as specified by the second argument of the

statistical series stored in the columns of a matrix.
Input :

quantile([[6,0,1,3,4,2,5],(0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3I4I21516IOI]—]I[4I2I5I6IOI113]I[2151610111314]]IO'25)
Output is the vector of the first quartile of each column :

(1,1,2,2,1,1,1]
Input :
quantile([[6,0,1,3,4,2,5],(0,1,3,4,2,5,6],[1,3,4,2,5,6,0],
[3141215161011]1[4121516101113]1[2151610111314]]10'75)

Output is the vector of the third quartile of each column :

[3,3,4,4,4,3,4]

270

CHAPTER 2. THE CAS FUNCTIONS

quartiles computes the minima, the first quartiles, the medians, the third
quartiles and the maxima of the statistical series stored in the columns of a
matrix.
Input :

quartiles([[6,
4 4,2,5,6,0,1,371,
,3,411)

Output is a matrix, its first row is the minima of each column, its second row
is the fist quartiles of each column, its third row the medians of each column,
its fourth row the third quartiles of each column and its last row the maxima
of each column:

[[OIOI:I-IOIOIOIO]I [llllZIZIlllll]l [2121313121213]1
[3131414141314]I [6151616161616]]

boxwhisker draws the whisker boxes of the statistical series stored in the
columns of a matrix .
Input :

boxwhisker([[6,0,1,3,4,2,5]1,10,1,3,4,2,5,61,
[ll3l4l2,5l IO]I[3I 4 I5I IOI]I
[4121516101113]1[215’610111314]])

Output :

the drawing of the whisker boxes of the
statistical series of each column of the matrix
argument

2.42.32 Dimension of a matrix : dim

dim takes as argument a matrix A.
dim returns the list of the number of rows and columns of the matrix A.
Input :

dim([[1,2,3],([3,4,5]])

Output :

(2,3]

(0,1,3,4,2,5,6]1,11,3,4,2,5,6,01,

2.43. LINEAR ALGEBRA 271

2.42.33 Number of rows : rowdim rowDim nrows

rowdim (or rowDim or nrows) takes as argument a matrix A.
rowdim (or rowDim or nrows) returns the number of rows of the matrix A.
Input :

rowdim([[1,2,3],[3,4,5]])
or:
nrows ([[1,2,3],[3,4,5]])

Output :

2.42.34 Number of columns : coldim colDim ncols

coldim (or colDim or ncols) takes as argument a matrix A.
coldim (or colDim or ncols) returns the number of columns of the matrix A.
Input :

coldim([[1,2,3],([3,4,5]])
or:
ncols([[1,2,3],1[3,4,5]1])

Output :

2.43 Linear algebra

2.43.1 Transpose of a matrix : tran transpose

tranor transpose takes as argument a matrix A.
tran or transpose returns the transpose matrix of A.
Input :

tran([[1,2],[3,4]1])
Output :

(01,31,102,4]]

2.43.2 Inverse of a matrix: inv /

inv takes as argument a square matrix A.
inv returns the inverse matrix of A.
Input :

inv ([[1,2],[3,4]])

or:

272 CHAPTER 2. THE CAS FUNCTIONS

1/111,21,103,411)
or:
A:=[[1,2]1,13,411;1/A
Output :
([-2,11,13/2,1/-21]

2.43.3 Trace of a matrix : trace

trace takes as argument a matrix A.
trace returns the trace of the matrix A, that is the sum of the diagonal elements.
Input :

trace([[1,2],1[3,411])
Output :

2.43.4 Determinant of a matrix : det

det takes as argument a matrix A.
det returns the determinant of the matrix A.

Input :
det ([[1,2],[3,4]])
Output :
-2
Input :
det (idn(3))
Output :

2.43.5 Determinant of a sparse matrix : det_minor

det_minor takes as argument a matrix A.
det_minor returns the determinant of the matrix A computed by expanding the
determinant using Laplace’s algorithm.

Input :
det_minor([[1,2],1[3,411)
Output :
-2
Input :
det_minor (idn (3))
Output :

2.43. LINEAR ALGEBRA 273

2.43.6 Rank of a matrix : rank

rank takes as argument a matrix A.
rank returns the rank of the matrix A.

Input :
rank ([[1,2],[3,411)
Output :
2
Input :
rank ([[1,2],1[2,411)
Output :

2.43.7 Transconjugate of a matrix : trn

trn takes as argument a matrix A.

trn returns the transconjugate of A (i.e. the conjugate of the transpose matrix of
A).

Input :

trn([[1, 1+1],[1, 1-1i]])
Output after simplification:

([-1i,1],[1-1,1+1]]

2.43.8 Equivalent matrix : changebase

changebase takes as argument a matrix A and a change-of-basis matrix P.
changebase returns the matrix B such that B = P~1AP.

Input :

changebase ([[1,2],13,411,[11,01,1[0,111)
Output :

([1,2],([3,4]]

Input :

changebase ([[1,1],10,111,([[1,21,1[3,411)
Output :

[[-5,-81,19/2,7]]

Indeed :

AR R

274 CHAPTER 2. THE CAS FUNCTIONS

2.43.9 Basis of a linear subspace : basis

basis takes as argument a list of vectors generating a linear subspace of R".
basis returns a list of vectors, that is a basis of this linear subspace.
Input :

basis([[1,2,3],11,1,1],[2,3,4]1)
Output :

[[1101_1]1 [01112]]

2.43.10 Basis of the intersection of two subspaces : ibasis

ibasis takes as argument two lists of vectors generating two subspaces of R".
ibasis returns a list of vectors, that is a basis of the intersection of these two
subspaces.

Input :

ibasis([[1,2]]1,[[2,41])
Output :

([1,2]]

2.43.11 Image of a linear function : image

image takes as argument the matrix of a linear function f with respect to the
canonical basis.

image returns a list of vectors that is a basis of the image of f.

Input :

image([[1,1,2],12,1,3],[3,1,4]1])
Output :

[[_11 Or 1] ’ [01_11_2]]

2.43.12 Kernel of a linear function : kernel nullspace ker

ker (or kernel or nullspace) takes as argument the matrix of an linear func-
tion f with respect to the canonical basis.

ker (or kernel or nullspace) returns a list of vectors that is a basis of the
kernel of f.

Input :

ker([[1,1,2],102,1,3],13,1,4]])
Output :
([(1,1,-17]

The kernel is generated by the vector [1,1,-1].

2.43. LINEAR ALGEBRA 275

2.43.13 Kernel of a linear function : Nullspace

Warning This function is useful in Maple mode only (hit the state line red button
then Prog style, then choose Maple and Apply).

Nullspace is the inert form of nullspace.

Nullspace takes as argument an integer matrix of a linear function f with re-
spect to the canonical basis.

Nullspace) followed by mod p returns a list of vectors that is a basis of the
kernel of f computed in Z/pZ[X].

Input :
Nullspace([[1,1,2]1,12,1,31,13,1,411)
Output :
nullspace([[1,1,2],12,1,3]1,13,1,411)
Input (in Maple mode):
Nullspace ([[1,2],[3,1]]) mod 5
Output :

[2,-1]
In Xcas mode, the equivalent input is :
nullspace ([[1,2],[3,1]1] % 5)
Output :
[2% 5,-1]

2.43.14 Subspace generated by the columns of a matrix : colspace

colspace takes as argument the matrix A of a linear function f with respect to
the canonical basis.

colspace returns a matrix. The columns of this matrix are a basis of the subspace
generated by the columns of A.

colspace may have a variable name as second argument, where Xcas will store
the dimension of the subspace generated by the columns of A.

Input :
colspace([[1,1,2]1,12,1,31,13,1,411)

Output :

((-1,01,10,-11,[1,-21]
Input :

colspace([[1,1,2]1,12,1,31,13,1,4]1],dimension)

Output :

((-1,01,10,-11,11,-21]
Then input:

dimension

Output :

276 CHAPTER 2. THE CAS FUNCTIONS

2.43.15 Subspace generated by the rows of a matrix : rowspace

rowspace takes as argument the matrix A of a linear function f with respect to
the canonical basis.

rowspace returns a list of vectors that is a basis of the subspace generated by the
rows of A.

rowspace may have a variable name as second argument where Xcas will store
the dimension of the subspace generated by the rows of A.

Input :
rowspace ([[1,1,2],(2,1,3],13,1,411])
Output :
((-1,0,-11,10,-1,-171]
Input :

rowspace([[1,1,2],12,1,31,[3,1,4]],dimension)

Output :
([[(-1,0,-11,10,-1,-171]
Then input:
dimension
Output :
2

2.44 Linear Programmation

Linear programming problems are maximization problem of a linear functionals
under linear equality or inequality constraints. The most simple case can be solved
directly by the so-called simplex algorithm. Most cases require to solve an auxil-
iary linear programming problem to find an initial vertex for the simplex algorithm.

2.44.1 Simplex algorithm: simplex_reduce

The simple case
The function simplex_reduce makes the reduction by the simplex algorithm
to find :

max(c.x), Axz<b, z>0,b>0

where ¢, x are vectors of R™, b > 0 is a vector in RP and A is a matrix of p rows
and n columns.

simplex_reduce takes as argument A, b, c and returns max (c.x), the aug-
mented solution of x (augmented since the algorithm works by adding rows(A)
auxiliary variables) and the reduced matrix.

2.44. LINEAR PROGRAMMATION 277

Example
Find
(X,Y) > 0
max(X + 2Y) where ¢ —3X +2Y < 3
X+Y < 4
Input :
simplex_reduce ([[-3,2],[1,1]],([3,4]1,[1,2])
Output :

7,01,3,0,01,((0,1,1/5,3/5,3],[1,0,(-1)/5,2/5,1],
(0,0,1/5,8/5,7]]

Which means that the maximum of X+2Y under these conditions is 7, it is obtained

for X=1, Y=3 because [1, 3,0, 0] is the augmented solution and the reduced

matrix is :

(io,1,1/5,3/5,31,11,0, (-1)/5,2/5,11, 1[0,0,1/5,8/5,7]1].
A more complicated case that reduces to the simple case

With the former call of simplex_reduce, we have to :

e rewrite constraints to the form x; > 0,
e remove variables without constraints,
e add variables such that all the constraints have positive components.

For example, find :

r < 1
y = 2
min(2z +y—2z+4) where { z+3y—2z = 2 (2.1)
20 —y+2z < 8
—r+y < 5

Letz=1—-X,y=Y +2,2=5— X + 3Y the problem is equivalent to finding
the minimum of (—2X +Y — (5 — X 4+ 3Y) 4 8) where :

X > 0
Y > 0
20-X)— (Y +2)45-X+4+3Y < 8
—-1-X)+Y+2) < 5
or to find the minimum of :
X >0
Y > 0
(-X —2Y +3) where 3X 42y < 3
X+Y < 14

i.e. to find the maximum of —(—X — 2Y + 3) = X + 2Y — 3 under the same
conditions, hence it is the same problem as to find the maximum of X + 2Y seen
before. We found 7, hence, the result here is 7-3=4.

278 CHAPTER 2. THE CAS FUNCTIONS

The general case
A linear programming problem may not in general be directly reduced like above
to the simple case. The reason is that a starting vertex must be found before ap-
plying the simplex algorithm. Therefore, simplex_reduce may be called by
specifying this starting vertex, in that case, all the arguments including the starting
vertex are grouped in a single matrix.

We first illustrate this kind of call in the simple case where the starting point
does not require solving an auxiliary problem. If A has p rows and n columns and
if we define :

B:=augment (A, idn (p)); C:=border (B, b);
d:=append (-c, 0$ (p+1)); D:=augment (C, [d]);
simplex_reduce may be called with D as single argument.

For the previous example, input :

2));

A:=[[-3,2]1,[1,1]]1;B:=augment (A, idn(2));
); D:=augment (C, [[-1,-2,0,0,011)

C:=border (B, [3,4]

HereC=[[-3,2,1,0,31,101,1,0,1,471]
andD:[[_312111 013]1 [111101114]1 [_11_2101010]]
Input :

simplex_reduce (D)

Output is the same result as before.

Back to the general case.
The standard form of a linear programming problem is similar to the simplest case
above, but with Az = b (instead of Ax < b) under the conditions = > 0. We may
further assume that b > 0 (if not, one can change the sign of the corresponding
line).

e The first problem is to find an = in the Ax = b,x > 0 domain. Let m
be the number of lines of A. Add artificial variables y1, ..., y,, and max-
imize —) y; under the conditions Az = b,z > 0,y > 0 starting with
initial value 0 for x variables and y = b (to solve this with Xcas, call
simplex_reduce with a single matrix argument obtained by augment-
ing A by the identity, b unchanged and an artificial ¢ with O under A and
1 under the identity). If the maximum exists and is O, the identity subma-
trix above the last column corresponds to an z solution, we may forget the
artificial variables (they are O if the maximum is 0).

e Now we make a second call to simplex_reduce with the original c and
the value of x we found in the domain.

e Example : find the minimum of 2z + 3y — z + ¢t with x,y, 2, > O and :

—r—y+t = 1
y—z+t = 3

This is equivalent to find the opposite of the maximum of —(2x+ 3y —z+1).
Let us add two artificial variables y; and yo,

2.44. LINEAR PROGRAMMATION 279

simplex_reduce([[-1,-1,0,1,1,0,17,
[Or lI_lI 1/ OI lr 3] ’
(0,0,0,0,1,1,011)

Output: optimum=0, artificial variables=0, and the matrix

~1/2 0 —1/2 1 1/2 1/2 2
1/2 1 —1/2 0 —1/2 1/2 1
o 0 0 0 1 1 0

Columns 2 and 4 are the columns of the identity (in lines 1 and 2). Hence
x = (0,1,0,2) is an initial point in the domain. We are reduced to solve the
initial problem, after replacing the lines of Az = b by the two first lines of
the answer above, removing the last columns corresponding to the artificial
variables. We add c.z as last line

simplex_reduce([[-1/2,0,-1/2,1,2],
[1/2111_1/21 Oll]l [21 31_11 1/ O] J)

Output: maximum=-5, hence the minimum of the opposite is 5, obtained for
(0,1,0,2), after replacement t = 0,y =1, z = 0 and t = 2.

For more details, search google for simplex algorithm.

2.44.2 Solving general linear programming problems: 1psolve

Linear programming problems where a multivariate linear function should be max-
imized or minimized subject to linear equality or inequality constraints, as well as
mixed integer problems, can be solved with the function 1psolve. It takes (at
most) four arguments, in the following order :

e obj : symbolic expression representing the objective function

e constr (optional) : list of linear constraints which may be equalities or
inequalities or bounded expressions entered as expr=a. .b

e bd (optional) : sequence of expressions of type var=a. . b specifying that
the variable var is bounded with a below and with b above

e opts (optional) : sequence of opt ion=value parameters, where option
may be one of assume, 1p_maximize, lp_variables, lp_integervariables,
lp_binaryvariables,lp_nodelimit, lp_depthlimit, 1p_method,
lp_initialpoint or lp_integertolerance

The return value is in the form [optimum, soln] where optimum is the min-
imum/maximum value of the objective function and soln is a list of coordinates
corresponding to the point at which the optimal value is attained. If there is no
feasible solution, an empty list is returned. When the objective function is un-
bounded, opt imum is returned as +oo (for maximization problems) or —oo (for
minimization problems). In these cases soln is generally meaningless.

If ob7j is given as constant (for example, zero) then only a feasible point is
returned as a list, if one exists. If the problem is infeasible, an empty list is returned.

280 CHAPTER 2. THE CAS FUNCTIONS

This may be used as a test to check whether a set of linear constraints is feasible or
not.

The given objective function is minimized by default. To maximize it, include
the option 1p_maximize [=true].

By default, all variables are considered continuous and unrestricted in sign.

Problems with continuous variables

For example, to solve the problem specified in (2.1), input :

constr:=[x<=1,y>=2,x+3y-2z=2, 3x-y+z<=8, -x+y<=5];
lpsolve (2x+y—-z+4, constr)

Output :
[-4, [x=0,y=5,2z=131]1]

Therefore, the minimum value of f(z,y,2) = 22 +y— z+4 is equal to —4 under

the given constraints. The optimal value is attained at point (z,y, z) = (0,5, 13).
Constraints may also take the form expr=a. .b for bounded linear expres-

sions.

Input :

lpsolve (x+2y+3z, [x+y=1..5,y+z+1=2..4,x>=0,y>=0])
Output :
[_21 [X:Or Y:5, 22_4]]

Use the assume=1p_nonnegative option to specify that all variables are
nonnegative. That is easier than entering the nonnegativity constraints explicitly.
Input:

lpsolve (-x-y, [y<=3x+1/2,y<=-5x+2],
assume=1lp_nonnegative)

Output:
[-5/4, [x=3/16,y=17/16]]

Bounds can be added separately for some variables. They are entered after the
list of constraints.
Input :

constr:=[5x-10y<=20,2z-3y=6, —x+3y<=3];
lpsolve (-6x+4y+z,constr,x=1..20,y=0..1inf)

Output :

[-133/2, [x=18,y=7,2=27/2]]

2.44. LINEAR PROGRAMMATION 281

Choosing a suitable solving method. The method used by solver can be speci-
fied using the option :

lp_method=lp_simplexor lp_interiorpoint

Simplex method, specified by 1p_simplex, is exact. lp_interiorpoint
specifies interior point method, which is inexact. More precisely, the method used
in this case is primal-dual affine scaling method. By default, simplex method is
used.

The initial point for affine scaling algorithm is computed automatically by de-
fault. If a specific point is required, use the option :

lp_initialpoint=<list of coordinates>

Be aware that affine scaling method may fail due to rounding errors or an ill-chosen
initial point. Simplex method is much more reliable, especially for (mixed) integer
problems which are discussed in the next section. However, interior point method
is useful for larger problems and problems with inexact coefficients, because sim-
plex method may fail to find initial feasible solution due to rounding errors. For
example, consider the following problem :

minimize 1.06x1 + 0.56 2 + 3.0 x3 + 2703.5 x4 + 4368.23 x5
subjectto 1.06x1 + 0.015x3 > 729824.87

0.56 2 + 0.649 x3 > 1522188.03

x3 > 1680.05

x4 > 60.0

x5 > 4.0

Trying to solve using simplex method fails, but switching to affine scaling leads to
the correct solution.
Input :

lpsolve (1.06x1+0.56x2+3x3+2703.50x4+4368.23x5,
[1.06x1+0.015x3>=729824.87,0.56x2+0.649%x3>=1522188.03,
x3>=1680.05,x4>=60,x5>=4],assume=1p_nonnegative,
method=1lp_interiorpoint)

Output :
[2435620.4168, [x1=688490.25401,x2=2716245.852717,
x3=1680.05000032,x4=60.0000000003,x5=4.00000000017]]
Integer programming

Use the assume=integer or assume=1p_integer option to solve integer
programming problems. The function 1psolve uses branch and bound method
and applies suitable Gomory mixed integer (GMI) cuts in such cases. The numbers
of investigated subproblems and added GMI cuts is printed out before the function
returns. To limit branch and bound tree depth, use the option :

lp_depthlimit=<positive integer>

282 CHAPTER 2. THE CAS FUNCTIONS

To limit number of subproblems to be investigated, use the option :
lp_nodelimit=<positive integer>

If one of these options is enabled, the solution is not guaranteed to be optimal.
Input :

lpsolve (-5x-T7y, [1x+y<=35, -x+3y<=6], assume=integer)
Output :
[-41, [x=4,y=3]]

Use the option assume=1p_binary to specify that all variables are binary,
i.e. the only allowed values are O and 1. Binary variables usually represent t rue
and false values, giving them a certain meaning in logical context.
Input :

lpsolve (8x1+11x2+6x3+4x4, [5x1+7x2+4x3+3x4<=14],
assume=1lp_binary, lp_maximize)

Output :
[21, [x1=0,x2=1,x3=1,x4=1]]
Options

lp_integervariables=<list of integer variables>
and

lp_binaryvariables=<list of binary variables>
are used for specifying mixed integer/binary programming problems. Also, the

lp_variables=<list of continuous variables>

option may be used, which overrides integer and binary settings. For example,
a linear programming problem with mostly integer variables may be specified
using the option assume=integer and specifying continuous variables with
lp_variables, which overrides the global integer setting.

Input :
lpsolve (x+3y+3z, [x+3y+2z<=7,2x+2y+z<=11],
assume=1lp_nonnegative, lp_maximize,
lp_integervariables=[x,z])
Output:

[10, [x=0,y=1/3,2=3]1]

Use the assume=1p_nonnegint or assume=nonnegint option to get
nonnegative integer values.
Input :

lpsolve (2x+5y, [3x-y=1,x-y<=5], assume=nonnegint)

2.44. LINEAR PROGRAMMATION 283

Output :
(12, [x=1,y=2]]

The option 1p_integertolerance=<positive number> canbe used
to specify the precision of integer variables. Letting € denote the integer tolerance,
every value x such that |z — k| < € for some k € Z is treated as an integer.

Note that (currently) only simplex method is used in combination with branch
and bound method.

Entering linear programs in matrix form

The function 1psolve supports entering linear programming problems in matrix
form, which is convenient for problems with relatively large number of variables
and/or constraints.

To enter a problem in matrix form, obj must be a vector of coefficients c
and constr, which is mandatory this case, must be a list [A, b, A4, be,], Where
A, A, are matrices and b, b, are vectors of reals. By default, the function min-
imizes ¢! x subject to Ax < b and A.;x = bg,. If a problem does not contain
equality constraints, parameters A, and b., may be omitted. For a problem that
does not contain inequality constraints, empty lists must be passed as A and b.

The parameter bd is entered as a list of two vectors b; and b,, of the same
length as the vector ¢ such that b; < x < b,. For unbounded variables use
+infinityor—-infinity.

When specifying mixed problems in matrix form, variables are entered as the
corresponding indexes, which are 1-based, i.e. the first variable has index 1, the
second variable has index 2 and so on. Other options for 1psolve are passed to
a problem in matrix form in the same way as if it was in symbolic form.

Input :

c:=[-2,1];A:=[[-1,1],(1,1],[-1,0],([0,-111;
b:=[3,5,0,0];1lpsolve(c, [A,Db])

Output :
[-10, [5,0]]
Input :
c:=[-2,5,-3];bl:=[2,3,1];bu:=[6,10,3.57;
lpsolve(c, [], [bl,bul)
Output :
[-7.5,[6.0,3.0,3.511
Input :

c:=[4,5];Aeq:=[[-1,1.5],[-3,2]];beq:=[2,3];
lpsolve(c, [[1, []1,Req, beq])

Output :

284 CHAPTER 2. THE CAS FUNCTIONS

[5.2,[-0.2,1.2]]
Input :

C::[21_31_5];A::[[_5141_5]/ [2/517]/ [21_3/4]];
b:=[3,1,-2];1psolve(c, [A,b],1lp_integervariables=[1,3])

Output :

[191 [113/41_1]]

2.44.3 Solving transportation problems: tpsolve

The objective of a transportation problem is to minimize the cost of distributing a
product from m sources to n destinations. It is determined by three parameters :

e supply vector s = (1, 82, ..., Sn), Where s, € Z, s > 0 is the maximum
number of units that can be delivered from k-th source for k =1,2,...,m,

e demand vector d = (dy,ds,...,d,), where dj, € Z, dj, > 0 is the minimum
number of units required by k-th destination for k = 1,2,...,n,

e cost matrix C = [¢jj]mxn, Where ¢;; € R, ¢;; > 0 is the cost of transporting
one unit of product from i-th source to j-th destination for: = 1,2,...,m
andj=1,2,...,n.

The optimal solution is represented as matrix X* = [mfj]mxn, where m;-kj is num-
ber of units that must be transported from i-th source to j-th destination for ¢ =
1,2,....mandj=1,2,...,n.

Function tpsolve accepts three arguments: supply vector, demand vector
and cost matrix, respectively. It returns a sequence of two elements: the total
(minimal) cost ¢ = > %, > 77, ¢;; «f; of transportation and the optimal solution
X*.

Input :

s:=[12,17,11];d:=[10,10,10,101;
c:=[[50,75,30,45],[65,80,40,601, [40,70,50,5511;
tpsolve(s,d,C)

Output :
2020,0(0,0,2,10],(0,9,8,0],([10,1,0,071]

If total supply and total demand are equal, i.e. if 3 1", s; = 77 d; holds,
transportation problem is closed or balanced. If total supply exceeds total demand
or vice versa, the problem is unbalanced. The excess supply/demand is covered by
adding a dummy demand/supply point with zero cost of “transportation” from/to
that point. Function tpsolve handles such cases automatically.

Input :

s:=[7,10,8,8,9,6];d:=[9,6,12,8,10];
C:=[[36,40,32,43,29]1,[28,27,29,40,38],134,35,41,29,317],
[41,42,35,27,36]1,[25,28,40,34,381,[31,30,43,38,4011;
tpsolve (s,d,C)

2.45. NONLINEAR OPTIMIZATION 285

Output :

1275’ [[OIOIZIOI5] 4 [OIOI:I-OIOIO]I [OIOIOIOISJ r
t6,0,0,s8,0J,09,0,0,0,01,10,6,0,0,0]]

Sometimes it is desirable to forbid transportation on certain routes. That is usu-
ally achieved by setting very high cost to these routes, represented by symbol M.
If tpsolve detects a symbol in the cost matrix, it interprets it as M and assigns
100 times larger cost than the largest numeric element of C to the corresponding
routes, which forces the algorithm to avoid them.

Input :
s:=[95,70,165,165],;d:=[195,150,30,45,751;
C:=[[1l5,M,45,M,0],[12,40,M,M,07,
[0,15,25,25,01,[M,0,M,12,01]
tpsolve (s,d,C)
Output :

2820,1120,0,0,0,75],170,0,0,0,07,
[105,0,30,30,0],10,150,0,15,01]

2.45 Nonlinear optimization

2.45.1 Global extrema: minimize maximize

The function minimize takes four arguments :
e obj : univariate or multivariate expression
e constr (optional) : list of equality and inequality constraints
e vars : list of variables

e location (optional) : option keyword which may be coordinates,
locus orpoint

The expression obj is minimized on the domain specified by constraints and/or
bounding variables, which can be done as specifying e.g. x=a . .b in vars. The
domain must be closed and bounded and ob j must be continuous in every point of
it. Else, the final result may be incorrect or meaningless.

Constraints may be given as equalities or inequalities, but also as expressions
which are assumed to be equal to zero. If there is only one constraint, the list
delimiters may be dropped. The same applies to the specification of variables.

minimize returns minimal value. If it could not be obtained, it returns unde f.
If 1location is specified, the list of points where the minimum is achieved is also
returned as the second member in a sequence. Keywords 1ocus, coordinates
and point all have the same effect.

The function maximize takes the same parameters as minimize. The dif-
ference is that it computes global maximum of ob j on the specified domain.

286

Examples

Input :

Output :

Input :

Output :

Input :

Output :

Input :

Output :

Input :

CHAPTER 2. THE CAS FUNCTIONS

minimize (sin(x), [x=0..41])

sin (4)

minimize (asin(x),x=-1..1)

-pi/2

minimize (x"4-x"2,x=-3..3,locus)

-1/4, [-sqrt (2) /2]

minimize (x—-abs (x),x=-1..1)

minimize (when (x==0,0,exp (-1/x"2)),x=-1..1)

Output :

Input :

minimize (sin (x)+cos (x),x=0..20,coordinates)

Output :

Input :

—-sqrt (2), [5*pi/4,13xpi/4,21*pi/4]

minimize (x"2-3x+ty"24+3y+3, [x=2..4,y=—-4..-2],point)

Output :

Input :

-1, 0102,-2]]

2.45. NONLINEAR OPTIMIZATION

obj:=sqrt (x"2+y"2)-z;
constr:=[x"2+y"2<=16,x+y+z=10];
minimize (obj, constr, [x,v,2])

Output :
—4xsqrt (2) -6

Input :

minimize (x"2x (y+1) -2y, [y<=2,sqrt (1+x"2)<=y], [x,y])

Output :
-4
Input :
maximize (cos (x),x=1..3)
Output :
cos (1)
Input :
obj:=piecewise (x<=-2,x+6,x<=1,x"2,3/2-x/2);
maximize (obj,x=-3..2)
Output :
4
Input :
maximize (x«y*z, x "2+2xy"2+3xz"2<=1, [X,Vy,2])
Output :
sqrt (2) /18
Input :

maximize (xxy, [x+y"2<=2,x>=0,y>=0], [x,y], locus)

Output :
4xsqgrt (6) /9, [[4/3,s9rt (6) /311
Input :
maximize (y"2-x"2xy,y<=x, [x=0..2,y=0..2])
Output :
4/27
Input :

assume (a>0) ;
maximize (X"2xy"2xz"2,x"2+y"2+z"2=a"2, [X,v,2])

Output :
are6/27

287

288 CHAPTER 2. THE CAS FUNCTIONS

2.45.2 Local extrema: extrema

Local extrema of a univariate or multivariate differentiable function under equality
constraints can be obtained by using function ext rema which takes four argu-
ments :

e expr : differentiable expression
e constr (optional) : list of equality constraints
e vars : list of variables

e order_size=<positive integer> (optional) : upper bound for the
order of derivatives examined in the process (defaults to 5)

Function returns sequence of two lists of points: local minima and maxima, re-
spectively. Saddle and unclassified points are reported in the message area. Also,
information about possible (non)strict extrema is printed out.

A single constraint/variable can be specified without list delimiters. A con-
straint may be specified as an equality or expression which is assumed to be equal
to zero.

Number of constraints must be strictly less than number of variables. Addition-
ally, denoting k-th constraint by g (z1,z2,...,2,) = 0 fork = 1,2,...,m and
letting g = (91,92, - - -, gm), Jacobian matrix of g has to be full rank (i.e. equal to
m), since implicit differentiation is performed.

Variables may be specified with bounds, e.g. x=a. .b, which is interpreted
as ¢ € (a,b). For semi-bounded variables one can use —infinity for a or
+infinity forb. Also, parameter vars may be entered ase.g. [x1=al, x2=a2, ..., xn=an],
in which case the critical point close to a = (a1, as, ..., a,) is computed numeri-
cally, applying an iterative method with initial point a.

If order_size=<n> is specified as the fourth argument, derivatives up to or-
der n are inspected to find critical points and classify them. For order_size=1
the function returns a single list containing all critical points found. The default is
n = 5. If some critical points are left unclassified one might consider repeating the
process with larger value of n, although the success is not guaranteed.

Examples
Input :
extrema (-2+cos (x)—cos (x) "2, x)
Output :
(0], [pi]
Input :
extrema (x/2-2*sin(x/2) ,x=-12..12)

Output :

[2xpi/3,-10%pi/31, [10%pi/3,-2xpi/3]

2.45. NONLINEAR OPTIMIZATION 289

Input :

assume (a>=0) ; extrema (x"2+a*x, X)
Output :

[-a/2],[]
Input :
extrema (exp (x"2-2x) *1n(x) *1n (1-x),x=0.5)
Output :
[1,[0.277769149124]
Input :
extrema (x"3-2xxy+3y™4, [x,Vv])

Output :

[[12~(1/5) /3, (127(1/5))"2/6]11,[]
Input :

assume (a>0) ;extrema (x/a”2+a*y"2, x+ty=a, [x,v])
Output :
[[(2%a™4-1)/(2%a"3),1/(2%xa"3)1]1, []
Input :

extrema (x"2+y"2,x*xy=1, [x=0..1inf,y=0..inf])

Output :
(01,171, 1]
Input :
extrema (x274-x1"4-x2"8+x1"10, [x1,x2])
Output :
[[6250"~(1/6) /5,01, [-6250"(1/6) /5,011, []
Input :

extrema (x*y*z, x+y+z=1, [X,y,z],order_size=1)
Output :

(r1,o,01,10,1,07],1(0,0,17,([1/3,1/3,1/3]]

290 CHAPTER 2. THE CAS FUNCTIONS

2.45.3 Minimax polynomial approximation: minimax

The function minimax is called by entering :
minimax (expr,var=a..b,n, [limit=m])

where expr is an univariate expression (e.g. f(x)) to approximate, var is a vari-
able (e.g. x), [a,b] C R and n € N. Expression expr must be continuous on
[a, b]. The function returns minimax polynomial (e.g. p(x)) of degree n or lower
that approximates expr on [a, b]. The approximation is found by applying Remez
algorithm.

If the fourth argument is specified, m is used to limit the number of iterations
of the algorithm. It is unlimited by default.

The largest absolute error of the approximation p(z), i.e. maxg<z<p | f(2) —
p(x)|, is printed in the message area.

Since the coefficients of p are computed numerically, one should avoid setting
n unnecessary high as it may result in a poor approximation due to the roundoff
errors.
Input :

minimax (sin(x),x=0..2%pi, 10)
Output :

5.8514210172e-06+0.999777263385xx+0.00140015265723xx"2
—-0.170089663733%x"3+0.0042684304696*x"4+
0.00525794766407xx"5+0.00135760214958%x"6
-0.000570502074548*x"7+6.07297119422e-05%xx"8
-2.14787414001e-06%xx"9-2.97767481643e-15%x"10

The largest absolute error of this approximation is 5.85234008632 x 1075,

2.46 Different matrix norm

2.46.1 [? matrix norm : norm l12norm

norm (or 12norm) takes as argument a matrix A = a; ;, (see also 2.38.1).

norm (or 12norm) returns Z a?.k.
\/ gk

Input :

norm([[1,2],[3,-4]])
or:

12norm([[1,2]1,([3,-411)
Output :

sgrt (30)

2.46. DIFFERENT MATRIX NORM 291

2.46.2 [°° matrix norm : maxnorm

maxnorm takes as argument a matrix A = a; ;, (see also 2.38.1).
maxnorm returns max(|a;|).
Input :

maxnorm([[1,21,103,-411)

Output :

2.46.3 Matrix row norm : rownorm rowNorm

rownorm (or rowNorm) takes as argument a matrix A = a; .
rownorm (or rowNorm) returns maxk(zj]aj’k]).

Input :

rownorm ([[1,2], [3,-4]1)
or:

rowNorm([[1,2],[3,-4]])
Output :

Indeed : max(1+2,3+4) =7

2.46.4 Matrix column norm : colnorm colNorm

colnorm (or colNorm) takes as argument a matrix A = a; .
colnorm (or colNorm) returns max; () . (|ajkl)).

Input :

colnorm(([[1,2],[3,-411])
or:

colNorm ([[1,2]1,([3,-411)
Output :

Indeed : max(1+3,2+4) =6

292 CHAPTER 2. THE CAS FUNCTIONS

2.47 Matrix reduction

2.47.1 Eigenvalues: eigenvals

eigenvals takes as argument a square matrix A of size n.
eigenvals returns the sequence of the n eigenvalues of A.
Remark : If A is exact, Xcas may not be able to find the exact roots of the
characteristic polynomial, eigenvals will return approximate eigenvalues of A
if the coefficients are numeric or a subset of the eigenvalues if the coefficients are

symbolic.
Input :

eigenvals([[4,1,-2]1,11,2,-11,12,1,011)
Output :

(2,2,2)

Input :

eigenvals([[4,1,0],([1,2,-11,12,1,011)
Output :

(0.324869129433,4.21431974338,1.46081112719)

2.47.2 Eigenvalues: egvl eigenvalues eigV1l

egvl (or eigenvalues eigVl) takes as argument a square matrix A of size
n.

egvl (or eigenvalues eigV1l) returns the Jordan normal form of A.
Remark : If A is exact, Xcas may not be able to find the exact roots of the char-
acteristic polynomial, eigenvalues will return an approximate diagonalization
of A if the coefficients are numeric.

Input :
egvl([[4,1,-2],[1,2,-11,12,1,011)
Output :
((2,1,01,10,2,11,10,0,2]]
Input :
egvl([[4,1,0],11,2,-11,12,1,011)
Output :

[[0.324869129433,0,0]1,10,4.21431974338,0],[0,0,1.46081112719]]

2.47. MATRIX REDUCTION 293

2.47.3 Eigenvectors: egv eigenvectors eigenvects
eigVc

egv (or eigenvectors eigenvects eigVc) takes as argument a square
matrix A of size n.

If A is a diagonalizable matrix, egv (oreigenvectors eigenvects eigVc)
returns a matrix whose columns are the eigenvectors of the matrix A. Otherwise,
it will fail (see also jordan for characteristic vectors).

Input :
egv([[1,1,3],(1,3,11,[3,1,1]])
Output :
((-1,1,11,12,1,01,[-1,1,-11]
Input :
egv([[4,1,-2],[1,2,-11,12,1,011)
Output :

"Not diagonalizable at eigenvalue 2"
In complex mode, input :
egv([[2,0,0]1,10,2,-11,102,1,211)
Output :

[OI lr O] 14 [_11_21_1] 14 [lr Or_l]]

2.47.4 Rational Jordan matrix : rat_jordan

rat_jordan takes as argument a square matrix A of size n with exact coeffi-
cients.
rat_ jordan returns :

e in Xcas, Mupad or TI mode
a sequence of two matrices : a matrix P (the columns of P are the eigen-
vectors if A is diagonalizable in the field of its coefficients) and the rational
Jordan matrix J of A, that is the most reduced matrix in the field of the
coefficients of A (or the complexified field in complex mode), where

J=P AP
e in Maple mode
the Jordan matrix J of A. We can also have the matrix P verifying J =

P~1AP in a variable by passing this variable as second argument, for exam-
ple

Iat_jordan([[ll Or O] ’ [1121_1]1 [Or O,l]] I,P,)

Remarks

294 CHAPTER 2. THE CAS FUNCTIONS

e the syntax Maple is also valid in the other modes, for example, in Xcas
mode input

rat_jordan([[4,1,1],111,4,1]1,11,1,411,'P")
Output :
rr1,-1,1/21,11,0,-11,101,1,1/211
then P returns
[[6,0,01,10,3,01,10,0,311

o the coefficients of P and J belongs to the same field as the coefficients of A.
For example, in Xcas mode, input :

rat_jordan([[lr Orl] ’ [0121_1] ’ [11_11 l]])

Output :

[[ll 112]1 [OI Ol_l]l [01112]]1 [[OIOI_]—]I [1101_3]1 [OI 114]]

Input (put —pcar (...) because the argument of companion is a unit
polynomial (see 2.47.10)

companion(-pcar([[1,0,1],10,2,-11,11,-1,111,%),x%)
Output :
[(0,0,-11,11,0,-31,10,1,4]]
Input :
rat_jordan([[1,0,0],[0,1,171,11,1,-111)

Output :

((-1,0,01,11,1,121,10,0,111,1011,0,01,10,0,21,10,1,011
Input :
factor(pcar([[1,0,0],([0,1,1],[1,1,-111,x%))
Output :
—(x-1)*(x"2-2)

Input :

2.47. MATRIX REDUCTION 295

companion ((x*2-2),x)
Output :
(10,21, 01,01]

e When A is symmetric and has eigenvalues with an multiple order, Xcas re-
turns orthogonal eigenvectors (not always of normequal to 1)i.e. tran (P) «P
is a diagonal matrix where the diagonal is the square norm of the eigenvec-
tors, for example :

rat_jordan([[4,1,1],([1,4,1],[1,1,411])

returns :

[[11_111/2]/[1101_1]1[11111/2]]1[[61010]/[01310]/[01013]]

Input in Xcas, Mupad or TI mode :
rat_jordan([[1,0,0],11,2,-11,10,0,111)

Output :

(o,1,01,1,0,11,10,1,111,1[2,0,01,10,1,01,10,0,111

Input in Xcas, Mupad or TI mode :
rat_jordan([[4,1,-2],1[1,2,-1]1,1[2,1,011)

Output :

rrri,2,11,10,1,01,11,2,011,112,1,01,10,2,11,10,0,2111

In complex mode and in Xcas, Mupad or TI mode , input :

rat_jordan([[2,0,0],1[0,2,-11,102,1,211)

Output :

[[11010]1[_21_11_1]1[O/_i/i]]/[[21010]1[012_i10]1[01012+i]]
Input in Maple mode :

rat_jordan([[lrolo]/[1/2/—1];[01011]]/'P')

Output :
[[2,0,01,10,1,01,[0,0,111
then input :
P
Output :

(co,1,01,11,0,11,00,1,1]1]]

296 CHAPTER 2. THE CAS FUNCTIONS

2.47.5 Jordan normal form : jordan

jordan takes as argument a square matrix A of size n.
jordan returns :

e in Xcas, Mupad or TT mode
a sequence of two matrices : a matrix P whose columns are the eigenvectors
and characteristic vectors of the matrix A and the Jordan matrix J of A
verifying J = P71 AP,

e in Maple mode
the Jordan matrix J of A. We can also have the matrix P verifying J =
P! AP in a variable by passing this variable as second argument, for exam-
ple

jordan([[1,0,0],(0,1,1],[1,1,-11],"P")

Remarks

e the Maple syntax is also valid in the other modes, for example, in Xcas
mode input :

jordan([[4,1,1],(1,4,1],[1,1,4]],'P")
Output :
[[11_111/2]1[1101_1]1[11111/2]]
then P returns
(re,o,01,10,3,0],00,0,3]]

e When A is symmetric and has eigenvalues with multiple orders, Xcas re-
turns orthogonal eigenvectors (not always of normequal to 1) i.e. tran (P) xP
is a diagonal matrix where the diagonal is the square norm of the eigenvec-
tors, for example :

jordan([[4,1,1],11,4,1],[1,1,4]])

returns :

[[11_111/2]/[1101_1]1[111/1/2]]1[[61010]/[01310]/[01013]]

Input in Xcas, Mupad or TI mode :
jordan([[llolo]l[Ollll]l[llll_l]])

Output :

[[l,0,0],[O,l,l],[l,l,—l]],[[—1,0,0],[1,1,1],[O,—sqrt(Z)—l,sqrt(Z)—l]

2.47. MATRIX REDUCTION 297

Input in Maple mode :

jordan([[l,O, O]I [Olll 11/ [1111_1]])

Output :
((1,0,01,[0,-(sgrt(2)),0],[0,0,sqgrt (2)]]
then input :
P
Output :

[[-1,0,01,11,1,11,1[0,-sgrt(2)-1,sqgrt(2)-111
Input in Xcas, Mupad or TI mode :
jordan([[4,1,-2]1,11,2,-11,12,1,011)
Output :
rrri,2,11,10,1,01,11,2,011,112,1,0]1,10,2,11,10,0,2111]
In complex mode and in Xcas, Mupad or TI mode , input :
jordan([[2,0,01,10,2,-11,12,1,211)

Output :

[[11 Or O] ’ [72171171] ’ [Orfj-ri]]r [[21 Or O] ’ [O,Z*i, O] ’ [OI 012+lj]

2.47.6 Characteristic polynomial : charpoly

charpoly (or pcar) takes one or two argument(s), a square matrix A of size n
and optionally the name of a symbolic variable.

charpoly returns the characteristic polynomial P of A written as the list of its
coefficients if no variable name was provided or written as an expression with
respect to the variable name provided as second argument.

The characteristic polynomial P of A is defined as

P(z) = det(zI — A)
Input :
charpoly([[4,1,-2],1[1,2,-11,12,1,0]1)
Output :
[1,-6,12,-8]

Hence, the characteristic polynomial of this matrix is > — 622 + 12z — 8 (in-
put normal (poly2symb ([1,-6,12,-8],x)) to getits symbolic represen-
tation).
Input :

purge (X) :; charpoly([[4,1,-2],[1,2,-1],12,1,0]],X)
Output :
X*"3-6xX"2+12%X-8

298 CHAPTER 2. THE CAS FUNCTIONS

2.47.7 Characteristic polynomial using Hessenberg algorithm :
pcar_hessenberg

pcar_hessenberg takes as argument a square matrix A of size n and optionally
the name of a symbolic variable.

pcar_hessenberg returns the characteristic polynomial P of A written as the
list of its coefficients if no variable was provided or written in its symbolic form
with respect to the variable name given as second argument, where

P(z) = det(z — A)

The characteristic polynomial is computed using the Hessenberg algorithm (see
e.g. Cohen) which is more efficient (O(n3) deterministic) if the coefficients of A
are in a finite field or use a finite representation like approximate numeric coeffi-
cients. Note however that this algorithm behaves badly if the coefficients are e.g.

in Q.

Input :
pcar_hessenberg([[4,1,-2],1[1,2,-1],[2,1,0]1] % 37)
Output :
[1 % 37 ,-6% 37,12 % 37,-8 % 37]
Input :

pcar_hessenberg([[4,1,-2]1,1[1,2,-1],102,1,0]] % 37,%)
Output :
X"3-6 %37 *x"2+12 % 37 xx-8 % 37
Hence, the characteristic polynomial of [[4,1,-2],[1,2,-1],[2,1,0]] in Z/37Z is

° — 622 + 122 — 8

2.47.8 Minimal polynomial : pmin

pmin takes one (resp. two) argument(s): a square matrix A of size n and optionally
the name of a symbolic variable.

pmin returns the minimal polynomial of A written as a list of its coefficients if
no variable was provided, or written in symbolic form with respect to the variable
name given as second argument. The minimal polynomial of A is the polynomial
P having minimal degree such that P(A) = 0.

Input :
pmin ([[1,0], [0,1]])
Output :
[1,-1]
Input :

pmin([[1,0],[0,1]],x)

2.47. MATRIX REDUCTION 299

Output :
x=1

Hence the minimal polynomial of [[1,0],[0,1]] is x—1.

Input :
emin([[2,1,0],[0,2,0]1,10,0,211)
Output :
[1,-4,4]
Input :
epmin([([2,1,0],[0,2,0],10,0,2]11,x)
Output :

X"2—4*x+4

Hence, the minimal polynomial of [[2,1,0],[0,2,0],[0,0,2]] is 22— 4 + 4.

2.47.9 Adjoint matrix : adjoint_matrix

adjoint_matrix takes as argument a square matrix A of size n.
adjoint_matrix returns the list of the coefficients of P (the characteristic
polynomial of A), and the list of the matrix coefficients of) (the adjoint matrix of
A).

The comatrix of a square matrix A of size n is the matrix B defined by Ax B =
det(A) x I. The adjoint matrix of A is the comatrix of I — A. It is a polynomial
of degree n — 1 in = having matrix coefficients. The following relation holds:

P(x) x I =det(zl — A)l = (z] — A)Q(x)

Since the polynomial P(x) x I — P(A) (with matrix coefficients) is also divisible
by x x I — A (by algebraic identities), this proves that P(A) = 0. We also have
Q(z) = I x 2" !+ ...+ By where By = is the comatrix of A (up to the sign if
n is odd).

Input :

adjoint_matrix([[4,1,-21,[1,2,-11,102,1,011)
Output :

[[11_61121_8]1
[[[11010]1[Olllo]l[ololl]]l [[_2111_2]1
[11_41_1]1[2111_6]]1 [[11_213]1[_21412]1[_31_217]]]]

Hence the characteristic polynomial is :
Plz)=a2%—6x2”>4+12x2—8
The determinant of A is equal to —P(0) = 8. The comatrix of A is equal to :

B =Q(0) =[[1,-2,3],[-2,4,2],[-3,-2,7]]

300 CHAPTER 2. THE CAS FUNCTIONS

Hence the inverse of A is equal to :
1/8 % [[1,-2,3],[-2,4,2],[-3,—-2,7]]
The adjoint matrix of A is :
([22—2z+1,2—2, —22+3], [z—2,22 —da+4, —2+2], [22—3,2—2, 2> —62+7]|
Input :
adjoint_matrix([[4,1]1,[1,2]11)
Output :
(tx,-6,71,0001,0],(00,111,0[-2,11,[1,-4]11]

Hence the characteristic polynomial P is :

Px)=a>-6x2+7
The determinant of A is equal to +P(0) = 7. The comatrix of A is equal to

Q(0) = —[[=2,1],[1, —4]]

Hence the inverse of A is equal to :

—1/7 % [[-2,1],[1, —4]]
The adjoint matrix of A is :

=[x —2,1],[1,z — 4]]

2.47.10 Companion matrix of a polynomial : companion

companion takes as argument an unitary polynomial P and the name of its vari-
able.

companion returns the matrix whose characteristic polynomial is P.

If P(x) = 2" +a,_12" ' +...4a_12+ao, this matrix is equal to the unit matrix of
size n—1 bordered with [0, 0.., 0, —ag] as first row, and with [—ag, —aq, ..., —an—1]
as last column.

Input :

companion (x"2+5x-7, x)

Output :
[00,71,[1,-51]
Input :
companion (x"4+3x"3+2x"2+4x-1, x)
Output :

[[Or Or Oll] ’ [11 Or 01_4] ’ [Orlr 01_2] ’ [OI 0111_3]]

2.47. MATRIX REDUCTION 301

2.47.11 Hessenberg matrix reduction : hessenberg

hessenberg takes as argument a matrix A.

hessenberg returns a matrix B equivalent to A where the coefficients below the
sub-principal diagonal are zero. B is a Hessenberg matrix.

Input :

hessenberg([1[3,2,2,2,21,1(2,1,2,-1,-11,12,2,1,-1,1],
[21_11_11 3/ l]l [21_11 1/ 112]])

Output :
[rs,8,5,10,21,12,1,1/2,-5,-11,10,2,1,8,21,
(0,0,1/2,8,11,110,0,0,-26,-311
Input
A:=[1[3,2,2,2,21,12,1,2,-1,-11,12,2,1,-1,11,

[21_11_11311]1 [21_11111121] i
B:= hessenberg(A) :; pcar(A); pcar (B)

Output: [1,-7,-66,-24].

2.47.12 Hermite normal form : ihermite

ihermite takes as argument a matrix A with coefficients in Z.
ihermite returns two matrices U and B such that B=UxA, U is invertible in Z
(det(U) = +1) and B is upper-triangular. Moreover, the absolute value of the
coefficients above the diagonal of B are smaller than the pivot of the column divided
by 2.

The answer is obtained by a Gauss-like reduction algorithm using only opera-
tions of rows with integer coefficients and invertible in Z.
Input :

A:=[[9,-36,30],[-36,192,-1801]1, [30,-180,18011;
U,B:=ihermite (A)

Output :

[(9,-36,30],[-36,192,-180], [30,-180,18011,
(r1s,9,71,1(6,4,31,(20,15,12]],([3,0,30},[0,12,01, [0,0,60]]

Application: Compute a Z-basis of the kernel of a matrix having integer
coefficients
Let M be a matrix with integer coefficients.
Input :

(U,A) :=ihermite (transpose (M)).

This returns U and A such that A=Uxtranspose (M) hence

transpose (A) =Mxtranspose (U).

The columns of transpose (A) which are identically O (at the right, coming
from the rows of A which are identically O at the bottom) correspond to columns

302 CHAPTER 2. THE CAS FUNCTIONS

of transpose (U) which form a basis of Ker (M) . In other words, the rows of
A which are identically O correspond to rows of U which form a basis of Ker (M) .
Example

LetM:=[[1,4,71,102,5,81,13,6,9]11. Input

U,A:=ihermite (tran (M))
Output

1,0],(04,-1,01,[-1,2,-1]] and

U:=[[-3,
A:=[[1,-1,-31,1[0,3,6],[0,0,0]]

Since A[2]=[0,0,01], aZ-basis of Ker (M) isU[2]=[-1,2,-1].
Verification MxU[2]=[0,0,0].
2.47.13 Smith normal form : ismith

ismith takes as argument a matrix with coefficients in Z.

ismith returns three matrices U, B and V such that B=UxA*V, U and V are in-
vertible in Z, B is diagonal, and B[i, 1] divides B[i+1, i+1]. The coefficients
B[i, 1] are called invariant factors, they are used to describe the structure of finite
abelian groups.

Input :

A:=[[9,-36,30],[-36,192,-180]1, [30,-180,18011;
U,B,V:=ismith (A)

Output :

({(-3,0,11,16,4,31,[20,15,12]1,
res,o,01,10,12,01,10,0,6011,
[[11241_30]1 [Or 1/ O]I [OI Or l]]

The invariant factors are 3, 12 and 60.

2.48 Isometries

2.48.1 Recognize an isometry : isom

isom takes as argument the matrix of a linear function in dimension 2 or 3.
isomreturns :

o if the linear function is a direct isometry,
the list of the characteristic elements of this isometry and +1,

o if the linear function is an indirect isometry,
the list of the characteristic elements of this isometry and -1

o if the linear function is not an isometry,
[07.

Input :

2.48. ISOMETRIES 303

isom([[0,0,1],(0,1,01,[1,0,011)
Output :
(11,0,-11,-11

which means that this isometry is a 3-d symmetry with respect to the plane z — 2z =
0.
Input :

isom(sqgrt (2)/2«[[1,-1]1,[1,111])
Output :
[pi/4,1]

.. . . 7T
Hence, this isometry is a 2-d rotation of angle T
Input :

isom([[0,0,1],10,1,0],(0,0,111)
Output :
(0]

therefore this transformation is not an isometry.

2.48.2 Find the matrix of an isometry : mkisom

mkisom takes as argument :

o In dimension 3, the list of characteristic elements (axis direction, angle for a
rotation or normal to the plane for a symmetry) and +1 for a direct isometry
or —1 an indirect isometry.

e In dimension 2, a characteristic element (an angle or a vector) and +1 for a
direct isometry (rotation) or —1 for an indirect isometry (symmetry).

mk i som returns the matrix of the corresponding isometry.
Input :

mkisom([[-1,2,-1],pi]l,1)
Output the matrix of the rotation of axis [—1, 2, —1] and angle 7:
[[-2/3,-2/3,1/31,1-2/3,1/3,-2/31,11/3,-2/3,-2/31]
Input :
mkisom([pi]l,-1)
Output the matrix of the symmetry with respect to O :
((-1,0,01,10,-1,01,[0,0,-111]

Input :

304 CHAPTER 2. THE CAS FUNCTIONS

mkisom([1,1,1],-1)
Output the matrix of the symmetry with respect to the plane z + y + 2 = 0:
(r1/3,-2/3,-2/31,1-2/3,1/3,-2/31,1-2/3,-2/3,1/31]
Input :
mkisom([[1,1,1],pi/3],-1)

Output the matrix of the product of a rotation of axis [1, 1, 1] and angle § and of a
symmetry with respect to the plane x +y + z = 0:

(ro,-1,01,100,0,-11,1-1,0,011
Input :
mkisom(pi/2,1)
Output the matrix of the plane rotation of angle 7 :
[00,-11,1[1,0]]
Input :
mkisom([1,2],-1)

Output matrix of the plane symmetry with respect to the line of equation = + 2y =
0:

([3/5,-4/51,1-4/5,-3/511

2.49 Matrix factorizations

Note that most matrix factorization algorithms are implemented numerically, only
a few of them will work symbolically.

2.49.1 Cholesky decomposition : cholesky

cholesky takes as argument a square symmetric positive definite matrix M of
size n.

cholesky returns a symbolic or numeric matrix P. P is a lower triangular matrix
such that :

tran (P) *P=M
Input :
cholesky ([[1,11,[1,511)
Output :
(11,01, 01,2]]

Input :

2.49. MATRIX FACTORIZATIONS 305

cholesky ([[3,1],[1,4]1])

Output :
[[sgrt(3),0], [(sqrt(3))/3, (sqrt(33))/31]
Input :
cholesky ([[1,11,1[1,41])
Output :

([1,0],[1,sqrt(3)]]

Warning If the matrix argument A is not a symmetric matrix, cholesky does
not return an error, instead cholesky will use the symmetric matrix B of the the
quadratic form g corresponding to the (non symmetric) bilinear form of the matrix

A.

Input :

cholesky ([[1,-1],[-1,411)
or:

cholesky ([[1,-31,11,411)
Output :

([1,0],[-1,sqrt(3)]]

2.49.2 QR decomposition : gr

gr takes as argument a numeric square matrix A of size n.

gr factorizes numerically this matrix as) * R where () is an orthogonal matrix
(¢Q * Q = I)and R is an upper triangular matrix. gr (A) returns only R, run
0=Axinv (R) to get Q.

Input :

ar ([[3,5],[4,5]])
Output is the matrix R :

([=5,-71,10,-11]
Input :

ar ([[1,2],[3,4]1])
Output is the matrix R :

[[-3.16227766017,-4.42718872424]1,[0,-0.6324555320341]]

306 CHAPTER 2. THE CAS FUNCTIONS

2.49.3 QR decomposition (for TI compatibility) : OR

OR takes as argument a numeric square matrix A of size n and two variable names,
varl and var2.

OR factorizes this matrix numerically as () * R where () is an orthogonal matrix
(tQ * (Q = I) and R is an upper triangular matrix. QR (A, varl,var2) returns
R, stores Q=Axinv (R) invarl and R in var?2.

Input :

QR([[3,5],[4,5]],Q,R)
Output the matrix R :
([=5,-71,10,-11]

Then input :

Output the matrix Q :

[[-0.6,-0.8],[-0.8,0.61]1

2.49.4 LU decomposition : 1u

1u takes as argument a square matrix A of size n (numeric or symbolic).
lu (A) returns a permutation p of 0..n — 1, a lower triangular matrix L, with 1s on
the diagonal, and an upper triangular matrix U, such that :

e Px A= LxU where P is the permutation matrix associated to p (that may
be computed by P : =permu2mat (p)),

e the equation A x x = B is equivalent to :

LxUxx = PxB = p(B) where p(B) = [bp(O)a bp(l)”bp(nfl)]a B = [b(), bl..bn_1]

The permutation matrix P is defined from p by :
Pli,p(i)] =1, Pli,j]=0ifj # p(i)

In other words, it is the identity matrix where the rows are permuted according
to the permutation p. The function permu2mat may be used to compute P
(permu2mat (p) returns P).

Input :

(p,L,U):=1u([[3.,5.1,14.,5.11)
Output :
(1,01,1[1,0],[0.75,111,1104,5]1,10,1.25]]
Here n = 2, hence :
P0,p(0)] = P[0,1] =1, P[L,p(1)] = R[1,0] =1, P ={[0,1],[1,0]]

Verification :
Input :

2.49. MATRIX FACTORIZATIONS 307

permuzmat (p) *A; LxU
Output:
([(4.0,5.01,[13.0,5.011,114.0,5.01,[3.0,5.011]

Note that the permutation is different for exact input (the choice of pivot is the
simplest instead of the largest in absolute value).

Input :
lu(l[1,2]1,[3,411)
Output :
(1,01,00%,0],(03,111,10[1,2],10,-2]]
Input :
lu([[1.0,2],1([3,411])
Output :

[(1,01,[[1,0],[0.333333333333,111,1[[3,4],
[0,0.666666666667]]
2.49.5 LU decomposition (for TI compatibility) : LU

LU takes as argument a numeric square matrix A of size n and three variable names,
varl, var2 and var3.
LU (A,varl,var2,var3) returns P, a permutation matrix, and stores :

e a lower triangular matrix L, with 1 on the diagonal, in varl,

e an upper triangular matrix U in var?2,

e the permutation matrix P, result of the command LU, in var3.
These matrices are such that

the equation A x x = Bisequivalentto L x U xx = P x B.

Input :
Lu([[(3,5],14,511,L,U,P)
Output :
(00,11,01,01]
Input :
L
Output :

((1,0]1,10.75,1]]

Input :

308 CHAPTER 2. THE CAS FUNCTIONS

U
Output :
[[4,5]1,[0,1.25]]
Input :
P
Output :

(00,11, [01,0]]

2.49.6 Singular value decomposition : svd

svd (singular value decomposition) takes as argument a numeric square matrix of
size n.

svd (A) returns an orthogonal matrix U, the diagonal s of a diagonal matrix S
and an orthogonal matrix QQ (‘@ * Q = I) such that :

A=US"Q
Input :
svd([[1,2],1([3,4]1])
Output :

[[-0.404553584834,-0.9145142956771, [-0.914514295677,
0.404553584834]], [5.46498570422,0.3659661906267,
[[-0.576048436766,0.81741556047], [-0.81741556047,

-0.5760484367661] 1]

Input :
(U,;s,0Q) :=svd([[3,5],14,5]])
Output :

[[-0.672988041811,-0.739653361771]1, [-0.739653361771,
0.672988041811]11,[8.6409011028,0.5786433544977],
[[-0.576048436766,0.81741556047], [-0.81741556047,
-0.57604843676611]

Verification :
Input :

Uxdiag(s) xtran (Q)
Output :

[[3.0,5.0],[4.0,5.0]]

2.49. MATRIX FACTORIZATIONS 309

2.49.7 Short basis of a lattice : 111

111 takes as argument an invertible matrix M with integer coefficients.
111 returns (S, A, L, O) such that:

e the rows of S is a short basis of the Z-module generated by the rows of M,

e A is the change-of-basis matrix from the short basis to the basis defined by
the rows of M (A« M = S),

e [is a lower triangular matrix, the modulus of its non diagonal coefficients
are less than 1/2,

e (O is a matrix with orthogonal rows such that L « O = §.
Input :
(S,A,L,0):=111(M:=[[2,1],11,211)
Output :

[[_11111[211]11 [[_lrl]r[lro]]r [[l,O],[l/—Z,lJ],
[[(-1,11,13/2,3/21]

Hence :

S=[[-1,1],[2,1]]

A=[[-1,1],[1,0]]

L=[[1,0],[1/-2,11]
o=[[-1,11,103/2,3/21]

Hence the original basisis v1=[2,1], v2=[1,2]
and the short basisis wl=[-1,1], w2=[2,1].
Since wl=-v1+v2 and w2=v1 then:
A:=[[-1,11,1[1,0]1],A*M==S and L*0O==S.
Input :

(S,A,L,O0):=111([[3,2,1]1,11,2,31,12,3,111)
Output :
Ss=[{[-1,1,0],[-1,-1,2],13,2,11]
A= [[-1,0,1],10,1,-11,11,0,01]
L= [[1,0,0],(0,1,0],[(-1)/2,(-1)/2,1]]
o= [[-1,1,0],[-1,-1,2],1[2,2,2]]
Input :
M:=[[3,2,1],11,2,31,12,3,11]

Properties :
Ax«M==S and L+O==

310 CHAPTER 2. THE CAS FUNCTIONS

2.50 Quadratic forms

2.50.1 Matrix of a quadratic form : g2a

g2a takes two arguments : the symbolic expression of a quadratic form ¢ and a
vector of variable names.

g2a returns the matrix A of q.

Input :

g2a (2*x*y, [x,v])

Output :

(00,11,11,0]]

2.50.2 Transform a matrix into a quadratic form : a2qg

a2q takes two arguments : the symmetric matrix A of a quadratic form ¢ and a
vector of variable names of the same size.
a2q returns the symbolic expression of the quadratic form gq.

Input :
a2q([[0,11,[1,0]1,[x,v])
Output :
24X %y
Input :
a2q([[1,2],(02,4]],[x,v])
Output :

XN 2+4+xxy+HAxy "2

2.50.3 Reduction of a quadratic form : gauss

gauss takes two arguments : a symbolic expression representing a quadratic form
q and a vector of variable names.
gauss returns ¢ written as sum or difference of squares using Gauss algorithm.
Input :

gauss (2xx*y, [x,v])
Output :

(y+x)"2/2+ (= (y=x)"2) /2

2.50. QUADRATIC FORMS 311

2.50.4 Gram-Schmidt orthonormalization : gramschmidt

gramschmidt takes one or two arguments :

e a matrix viewed as a list of row vectors, the scalar product being the canoni-
cal scalar product, or

e a list of elements that is a basis of a vector subspace, and a function that
defines a scalar product on this vector space.

gramschmidt returns an orthonormal basis for this scalar product.
Input :

normal (gramschmidt ([[1,1,1],[0,0,1],([0,1,011))
Or input :
normal (gramschmidt([[1,1,1],[0,0,1],[0,1,0]],dot))

Output :

) /3, (sqrt (3)) /31, [(=(sqrt (6))) /6,

[[(sqrt(3)) /3, (sqgrt (3))
(6))/31, [(=(sqrt(2)))/2, (sqrt(2))/2,0]1]

(= (sqgrt (6))) /6, (sqrt

Example
We define a scalar product on the vector space of polynomials by:

1
P.Q= / P@)Q()da

Input :
gramschmidt ([1, 1+x], (p,q) —>integrate (p*q,x,-1,1))

Or define the function p_scal, input :
p_scal (p,q) :=integrate (pxq, x,-1,1)
then input :

gramschmidt ([1, 1+x],p_scal)
Output :
[1/(sqgrt(2)), (1+x-1) /sqgrt (2/3)]

2.50.5 Graph of a conic : conique

conique takes as argument the equation of a conic with respect to z, y. You may
also specify the names of the variables as second and third arguments or as a vector
as second argument.

conique draws this conic.

Input :

conique (2+x"2+2+x+y+2+xy"2+6%Xx)
Output :

the graph of the ellipsis of center -2+i and equation
24X N 242+ XAy +2xy N 2+6+x=0

Remark :
See also conique_reduite for the parametric equation of the conic.

312 CHAPTER 2. THE CAS FUNCTIONS

2.50.6 Conic reduction : conique_reduite

conique_reduite takes two arguments : the equation of a conic and a vector
of variable names.
conique_reduite returns a list whose elements are:

e the origin of the conic,
e the matrix of a basis in which the conic is reduced,
e (O or 1 (0 if the conic is degenerate),
o the reduced equation of the conic
e a vector of its parametric equations.
Input :

conique_reduite (24x"2+2xx*y+2xy"2+5+x+3, [x,Vv])

Output :
[[-5/3,5/61,1[-1/(sart(2)),1/(sqrt(2))1,[-1/(sqrt(2)),
-1/ (sgqrt(2))11,1,3*xx"2+y"2+=-7/6, [[(-10+5%1) /6+
(1/ (sgrt(2))+ (l)/(sqrt(2))) ((sgrt (14) xcos(t'))/6+
((1) *sgrt (42) xsin(tY))/6)," t',0,2+pi, (2+xpi) /60111

Which means that the conic is not degenerate, its reduced equation is
3224+ 142 —7/6=0

its origin is —5/3+5x1/6, its axes are parallel to the vectors (—1, 1) and (—1, —1).
Its parametric equation is

—10+5%i (14+14) (V14x*cos(t) +ix 42 sin(t))

*
Y 6
where the suggested parameter values for drawing are ¢ from O to 27 with t step=
27/60.
Remark :

Note that if the conic is degenerate and is made of 1 or 2 line(s), the lines are not
given by their parametric equation but by the list of two points of the line.
Input :

conique_reduite (x"2-y"2+3*x+y+2)
Output :

[(((-3)/2,1/21,111,0],10,11],0,x%;2-y"2,
[[(=1+42%1)/(1-1), (1+2%1)/(1-1)],
[(=1+2x1)/(1-1), (=1)/(1-1)11]]

2.50. QUADRATIC FORMS 313

2.50.7 Graph of a quadric : quadrique

quadrique takes as arguments the expression of a quadric with respect to z, y, 2.
You may also specify the variables as a vector (second argument) or as second, third
and fourth arguments.

quadrique draws this quadric.

Input :

quadrique (7T*x"2+4xy"2+4 42" 2+4xx*xy—
44x*2=2%y*72—4xxX+5+%y+4x2-18)

Output :

the drawing of the ellipsoid of equation
TxXN2+ 4%y N 2+4%x 2" 2+ 4% X*x V=4 *xx2—=2xy*Z2—4*X+5xy+4x2z-18=0

See also quadrique_reduite for the parametric equation of the quadric.

2.50.8 Quadric reduction : quadrique_reduite

quadrique_reduite takes two arguments : the equation of a quadric and a
vector of variable names.
quadrique_reduite returns a list whose elements are:

e the origin,

e the matrix of a basis where the quadric is reduced,

0 or 1 (0 if the quadric is degenerate),

the reduced equation of the quadric
e a vector with its parametric equations.

Warning ! u, v will be used as parameters of the parametric equations : these vari-
ables should not be assigned (purge them before calling quadrique_reduite).
Input :

quadrique_reduite (7+*x"2+4xy"2+4%z"2+
Adxx*xy—4+xxz2=2xy*2—4xxX+5xy+4xz-18)

Output is a list containing :
e The origin (center of symmetry) of the quadric
[11/27, (-26) /27, (-29) /541,
e The matrix of the basis change:
[[(sart(6)) /3, (sqrt (5))/5, (- (sgrt(30))) /151,
[(sqrt (6)) /6,0, (sqrt (30))/6],

[(=(sqrt(6)))/6, (2xsqrt(5))/5, (sqrt (30))/30]1,

e 1 hence the quadric is not degenerated

314 CHAPTER 2. THE CAS FUNCTIONS

e the reduced equation of the quadric :
0, 9+x"24+3%y"24+3%272+(-602) /27,
e The parametric equations (in the original frame) are :

[[(sqgrt (6) *sqrt (602/243) xsin (u) xcos (v)) /3+
(sgrt (5) *sqrt (602/81) *sin (u) xsin(v)) /5+
((—(sgrt (30)))*sqrt (602/81) xcos (u))/15+11/27,
(sgrt (6) xsqgrt (602/243) *sin (u) xcos (v)) /6+
(sqgrt (30) xsqgrt (602/81) xcos (u)) /6+(-26) /27,
((—(sgrt (6))) +sqrt (602/243) xsin(u) xcos (v))/6+
(2xsqrt (5) *sqrt (602/81) *sin (u) *sin(v))/5+
(sgrt (30) xsqrt (602/81) xcos (u)) /30+(-29) /541, u=(0
pi),v=(0.. (2+xpi)) ,ustep=(pi/20),

vstep=((2xpi) /20) 1]

Hence the quadric is an ellipsoid and its reduced equation is :

9s x4+ 3% y? + 3% 2%+ (—602)/27 =0

after the change of origin [11/27, (—26) /27, (—29)/54], the matrix of basis change
Pis:
[V6 V5 V30]
3) 15
V6o, V30
6
V6 2v5 V30
L 6) 0

Its parametric equation is :

V64/ 8% sin(u) cos(v) v54/ %2 sin(u) sin(v) V304/82 cos(u) 11
e 3 " 5 i to7
V6,/5% sin(u) cos(v) v304/ %2 cos(u)) 96
v= 6 " 6 T
—V64/5%2 xsin(u) cos(v) 25,/ B2 sin(u)sin(v) V30,/82 cos(u) 99
o 6 - 5 * % T
Remark :

Note that if the quadric is degenerate and made of 1 or 2 plane(s), each plane is

not given by its parametric equation but by the list of a point of the plane and of a
normal vector to the plane.
Input :

quadrique_reduite (x"2-y"24+3xx+ty+2)
Output :
(r(-3rsz2,1/2,01,111,0,0},(0,1,01,[0,0,-11],0,x"2-y"2,

[hyperplan([1,1,0],[(-3)/2,1/2,01),
hyperplan([1,-1,0],[(-3)/2,1/2,0]1)]]

2.51. MULTIVARIATE CALCULUS 315

2.51 Multivariate calculus

2.51.1 Gradient: derive deriver diff grad

derive (or diff or grad) takes two arguments : an expression F' of n real
variables and a vector of these variable names.

derive returns the gradient of F', where the gradient is the vector of all partial
derivatives, for example in dimension n = 3

grad(F) = (5, 500 5
Example
Find the gradient of F(z,y, z) = 222y — 225
Input :
derive (2xx"2xy-x*2z"3, [x,v,2])

or:

diff (2xx"2xy-x*x2"3, [x,Vv,2])
or:

grad (2xx"2xy-x*z"3, [x,v,z])
Output :

[2%24xxy—2"3,2%x72,—(x*%3%x2"2)]
Output after simplification with normal (ans ()) :
[Axx*y—2"3,2%xx"2, = (3xx%2"2)]
To find the critical points of F(x,y, z) = 222y — xz3, input :
solve (derive (2+xx"2+y-x%z"3, [X,v,2]),[x,v,2])
Output :
(00,y,0]]

2.51.2 Laplacian: laplacian

laplacian takes two arguments : an expression F' of n real variables and a vec-
tor of these variable names.

laplacian returns the Laplacian of F), that is the sum of all second partial deriva-
tives, for example in dimension n = 3:

_O°F 0*F O°F

V3(F
(F) 0x2 + Oy? * 022
Example
Find the Laplacian of F(x,y, 2) = 222y — z2°.
Input :
laplacian (2*xx"2xy-x*xz"3, [x,y,2])
Output :

4xy+—6xx*2Z

316 CHAPTER 2. THE CAS FUNCTIONS

2.51.3 Hessian matrix : hessian

hessian takes two arguments : an expression F' of n real variables and a vector
of these variable names.

hessian returns the hessian matrix of F', that is the matrix of the derivatives of
order 2.

Example
Find the hessian matrix of F(z,y, z) = 222y — x2°3.
Input :
hessian (2xx"2xy-xxz"3 , [X,vy,2])
Output :

[[4*y,4xx,—(3%x272)],[2%2xx%x,0,0],[-(3%2"2),0,x*3%x2*x2z]]
To have the hessian matrix at the critical points, first input :
solve (derive (2xx"2xy-x*2z"3, [x,v,2]), [x,v,z])
Output is the critical points :
[[0,y,0]]
Then, to have the hessian matrix at this points, input :

subst ([[4*xy,4xx,—(3x2"2)], [2%x2%x,0,07,
[_(3*ZA2),O,6*X*Z]]I[XIYIZ]I[OIYIO])

Output :
[[4*YI4*OI_(3*OA2)]I[4*01010]1[_(3*0A2)10,6*O*O]]
and after simplification :

((4*y,0,0],00,0,01,00,0,07]]

2.51.4 Divergence : divergence

divergence takes two arguments : a vector field of dimension n depending on
n real variables.

divergence returns the divergence of F' that is the sum of the derivative of the
k-th component with respect to the k-th variable. For example in dimension n = 3:

, 0A 0B 0C
divergence ([A,B,Cl, [x,v,2])=+ — + —
or Oy 0z
Input :
divergence ([x*z,-y"2,2xx"y], [x,¥,2])
Output :

Z+=2%y

2.51. MULTIVARIATE CALCULUS 317

2.51.5 Rotational : curl

curl takes two arguments : a 3-d vector field depending on 3 variables.
curl returns the rotational of the vector, defined by:

1([A,B,Cl, I]H@—@QﬁgZ@_%]
cur r 5y r Xy Yr21)= ay 0z’ 0z or’ Ox 8@

Note that n must be equal to 3.
Input :

curl ([xxz,-y"2,2xx"y], [x,y,2])
Output :
[2xx"yx1log (x) ,x=2xy*x" (y—=1),0]

2.51.6 Potential : potential

potential takes two arguments : a vector field 7 in R™ with respect to n real
variables and the vector of these variable names.
potential returns, if it is possible, a function U such that grad(U) = V. When

it is possible, we say that 7 derives the potential U, and U is defined up to a
constant.

potential is the reciprocal function of derive.

Input :

potential ([2xx*y+3,x"2-4%xz,-4*y], [X,V,2])
Output :
24y *xX"2/ 243xx+ (X"2-4%2-2+x"2/2) *y

Note that in R? a vector 7 is a gradient if and only if its rotational is zero i.e. if
curl (V) =0. In time-independent electro-magnetism, V =FE is the electric field
and U is the electric potential.

2.51.7 Conservative flux field : vpotential

vpotential takes two arguments : a vector field ? in R™ with respect to n real
variables and the vector of these variable names.

vpotential returns, if it is possible, a vector U such that curl(ﬁ) — V. When
it is possible we say that 7 is a conservative flux field or a solenoidal field. The
general solution is the sum of a particular solution and of the gradient of an arbi-
trary function, Xcas returns a particular solution with zero as first component.
vpotential is the reciprocal function of curl.

Input :

vpotential ([2xx*xy+3,x"2-4xz,-2*y*xz], [x,V,2])
Output :
[0, (—(2xy)) *z*x, =xX"3/3= (= (4%2)) *x+3*y]

In R3, a vector field 7 is a rotational if and only if its divergence is zero
(divergence (V, [x,y, z])=0). In time-independent electro-magnetism, 7:
is the magnetic field and U = X is the potential vector.

318 CHAPTER 2. THE CAS FUNCTIONS

2.52 Equations

2.52.1 Define an equation : equal

equal takes as argument the two members of an equation.
equal returns this equation. It is the prefixed version of =
Input :

equal (2x-1, 3)
Output :
(2xx-1)=3

We can also directly write (2+x-1)=3.

2.52.2 Transform an equation into a difference : equal2diff

equal2diff takes as argument an equation.
equal2diff returns the difference of the two members of this equation.
Input :

equal2diff (2x-1=3)
Output :

2+xx—-1-3

2.52.3 Transform an equation into a list : equal2list

equal2list takes as argument an equation.
equal2list returns the list of the two members of this equation.
Input :

equal2list (2x-1=3)
Output :

[2%x-1, 3]

2.52.4 The left member of an equation: 1eft gauche lhs

left or 1lhs takes as argument an equation or an interval.

left or lhs returns the left member of this equation or the left bound of this
interval.

Input :

left (2x-1=3)
Or input:
lhs (2x-1=3)

Output :

2.52. EQUATIONS 319

2xx-=1
Input :
left (1..3)
Or input:
lhs(1..3)
Output :
1

2.52.5 The right member of an equation : right droit rhs

right or rhs takes as argument an equation or an interval.
right or rhs returns the right member of this equation or the right bound of this
interval.

Input :
right (2x-1=3)
or :
rhs (2x-1=3)
Output :
3
Input :
right (1..3)
or :
rhs(1..3)
Output :
3

2.52.6 Solving equation(s): solve

solve solves an equation or a system of polynomial equations. It takes 2 argu-
ments:

e Solving an equation
solve takes as arguments an equation between two expressions or an ex-
pression (=0 is omitted), and a variable name (by default x).
solve solves this equation.

e Solving a system of polynomial equations
solve takes as arguments two vectors : a vector of polynomial equations
and a vector of variable names.
solve solves this polynomial equation system.

320 CHAPTER 2. THE CAS FUNCTIONS

Remarks:

e In real mode, solve returns only real solutions. To have the complex so-
lutions, switch to complex mode, e.g. by checking Complex in the cas
configuration, or use the cSolve command.

e For trigonometric equations, solve returns by default the principal solu-
tions. To have all the solutions check A11_trig_sol in the cas configu-
ration.

Examples :

e Solvez?*—1=3
Input :

solve (x"4-1=3)
Output in real mode :
[sqrt (2),-(sqrt(2))]
Output in complex mode :
[sqrt (2),-(sqrt(2)), (1) *sqrt (2),-((1) xsqrt (2))]

e Solve exp(z) = 2
Input :

solve (exp (x)=2)
Output in real mode :
[log(2)]

e Findz,ysuchthatx +y=1,2—y =0
Input :

solve ([x+y=1, x-v], [x,v])
Output :
[[1/2,1/2]]

e Find z,y suchthat 22 +y = 2,2 + 3% = 2
Input :

solve ([x"24+y=2,x+y"2=2]1, [x,v])
Output :

([-2,-2],[1,1], [(=sqrt (5)+1)/2, (1+sqrt(5)) /2],

2.52. EQUATIONS 321

[(sqrt(5)+1)/2, (1-sqrt (5))/2]]

e Find z,y, z such that 22 — 32 = 0,22 — 22 =0
Input :

solve ([x"2-y"2=0,x"2-2"2=0], [x,¥,2])
Output :
[Ix,x,x], [x,-%,-x], [x,-%,x], [X,%x,-%X]]

e Solve cos(2xx) =1/2
Input :

solve (cos (2*xx)=1/2)
Output :
(pi/6, (-pi) /6]
Output with A11_trig_sol checked :
[(6xpi*n_0+pi) /6, (6*pixn_0-pi) /6]

e Find the intersection of a straight line (given by a list of equations) and a
plane.
For example, let D be the straight line of cartesian equations [y —z = 0, z —
x = 0] and let P the plane of equation z—1+y+2z = 0. Find the intersection
of D and P.
Input :

solve ([[y-2z=0,z-x=0],x-1+y+z=0], [x,vy,2])
Output :

[([1/3,1/3,1/3]]

2.52.7 Equation solving in C : cSolve

cSolve takes two arguments and solves an equation or a system of polynomial
equations.

e solving an equation
cSolve takes as arguments an equation between two expressions or an ex-
pression (=0 is omitted), and a variable name (by default x).
cSolve solves this equation in C even if you are in real mode.

e solving a system of polynomial equations
cSolve takes as arguments two vectors : a vector of polynomial equations
and a vector of variable names.
cSolve solves this equation system in C even if you are in real mode.

322 CHAPTER 2. THE CAS FUNCTIONS

Input :
cSolve (x74-1=3)
Output :
[sart (2),-(sqrt(2)), (1) *sqrt (2), - ((1) xsqrt (2))]
Input :
cSolve ([-x"2+y=2,x"2+y], [x,v])
Output :

[[i,1],[-1,1]]

2.53 Linear systems

In this paragraph, we call the "augmented matrix" of the system A - X = B (or
matrix "representing” the system A- X = B), the matrix obtained by gluing the col-
umn vector B or — B to the right of the matrix A, as withborder (A, tran (B)).

2.53.1 Matrix of a system : syst2mat

syst2mat takes two vectors as arguments. The components of the first vector are
the equations of a linear system and the components of the second vector are the
variable names.

syst2mat returns the augmented matrix of the system AX = B, obtained by
gluing the column vector — B to the right of the matrix A.

Input :
systlZ2mat ([x+y,x-y-2], [x,vy])
Output :
[f1,1,01,11,-1,-211
Input :
syst2mat ([x+y=0, x-y=21, [X,V])
Output :

[[lrlro]r [11_11_2]]

Warning !!!
The variables (here x and y) must be purged.

2.53. LINEAR SYSTEMS 323

2.53.2 Gauss reduction of a matrix : ref

ref is used to solve a linear system of equations written in matrix form:
AxX=B

The argument of ref is the augmented matrix of the system (the matrix obtained
by augmenting the matrix A to the right with the column vector B).

The result is a matrix [A1l, B1] where A1l has zeros under its principal diagonal,
and the solutions of:

AlxX=B1l
are the same as the solutions of:
AxX=B
For example, solve the system :
{ 3z+y = -2
3z +2y = 2
Input :
ref([[3,1,-21,103,2,211)
Output :
(r1,1/3,-2/31,10,1,411
Hence the solution is y = 4 (last row) and x = —2 (substitute y in the first row).

2.53.3 Gauss-Jordan reduction: rref gaussjord

rref solves a linear system of equations written in matrix form (see also 2.31.17)

AxX=B
rref takes one or two arguments.

e If rref has only one argument, this argument is the augmented matrix of
the system (the matrix obtained by augmenting matrix A to the right with the
column vector B).

The result is a matrix [A1l,B1] : Al has zeros both above and under its
principal diagonal and has 1 on its principal diagonal, and the solutions of:

Al +xX=B1l
are the same as :

AxX=B

324 CHAPTER 2. THE CAS FUNCTIONS

For example, to solve the system:

{3x+y = -2
3z +2y = 2
Input :
rref ([[3,1,-21,13,2,2]1)
Output :
[[1,0,-21,10,1,4]]
Hence x = —2 and y = 4 is the solution of this system.

rref can also solve several linear systems of equations having the same
first member. We write the second members as a column matrix.
Input :

rref([[3r 11_21 1]/ [3121212]])
Output :
[[11 01_21 O] ’ [Or ll 4/ l]]

Which means that (z = —2 and y = 4) is the solution of the system

r+y = -2
3x+2y = 2

and (x = 0 and y = 1) is the solution of the system

3zr+y =1
3x+2y =

e If rref has two parameters, the second parameter must be an integer k,
and the Gauss-Jordan reduction will be performed on (at most) the first &
columns.

Input :

rref ([[3,1,-2,1],1(3,2,2,2]11,1)
Output :

[[3111_211] ’ [0111411]]

2.53. LINEAR SYSTEMS 325

2.53.4 Solving A*X=B : simult

simult is used to solve a linear system of equations (resp. several linear systems
of equations with the same matrix A) written in matrix form (see also 2.31.17) :

AxX=b (resp. AxX=B)

simult takes as arguments the matrix A of the system and the column vector (i.e.
a one column matrix) b of the second member of the system (resp. the matrix B
whose columns are the vectors b of the second members of the different systems).
The result is a column vector solution of the system (resp. a matrix whose columns
are the solutions of the different systems).

For example, to solve the system :

{Sx—i-y = -2
3r+2y = 2
Input :
simult ([[3,1],([3,2]11,[0[-21,12]1)
Output :
([=-2],[4]]
Hence x = —2 and y = 4 is the solution.
Input :
simult ([[3,1],1[3,21],[[-2,1],[2,2]])
Output :
((-2,01,[4,1]]
Hence x = —2 and y = 4 is the solution of
{3x+y = -2
3z +2y = 2

whereas x = 0 and y = 1 is the solution of

3r+y =1
3x+2y = 2

2.53.5 Step by step Gauss-Jordan reduction of a matrix : pivot

pivot takes three arguments : a matrix with n rows and p columns and two
integers [and csuch that 0 <1 <n,0<c<pand 4;. # 0.

pivot (A, 1, c) performs one step of the Gauss-Jordan method using A[1, c]
as pivot and returns an equivalent matrix with zeros in the column c of A (except
at row [).

Input :

pivot ([[1,2],[3,4],[5,611,1,1)

326 CHAPTER 2. THE CAS FUNCTIONS

Output :
[((-2,01,13,41,12,0]]
Input :
pivot ([[1,2]1,[3,41,[5,6]1]1,0,1)
Output :

((1,21,12,0],[4,0]]

2.53.6 Linear system solving: 1insolve

linsolve is used to solve a system of linear equations.

linsolve has two arguments: a list of equations or expressions (in that case the
convention is that the equation is expression = 0), and a list of variable names.
linsolve returns the solution of the system in a list.

Input :

linsolve ([2*xty+z=1,xty+2*z=1,x+2*xy+z=4], [X,Vv,2])
Output :
[1/_21 5/21 1/_2]

Which means that

is the solution of the system :

2c+y+2z =1
z+y+2z =1
r+2y+z =4
2.53.7 Finding linear recurrences : reverse_rsolve

reverse_rsolve takes as argument a vector v = [vp...v2,—1] made of the first
2n terms of a sequence (v,,) which is supposed to verify a linear recurrence relation
of degree smaller than n

Ty *Upyk + ... Fxo*xvp =0

where the x; are n + 1 unknowns.
reverse_rsolve returns the list = [z, ..., o] of the ; coefficients (if z,, #
0 it is reduced to 1).

In other words reverse_rsolve solves the linear system of n equations :

Tp*Up+...+x0xv9g = 0
Ty *Upyk + ...+ 20xvp = 0

Ty * Von_1+ ... +tTo*xvp_1 = 0

2.53. LINEAR SYSTEMS 327

The matrix A of the system has n rows and n + 1 columns :

A = [[vo, v1...00], [V1, V2, ..Op—1], ooy [Un—1, Un-. V2 —1]]
reverse_rsolve returns the list x = |2y, ...x1, zo] with z,, = 1 and z is the
solution of the system A x revlist(z).

Examples

o Find a sequence satisfying a linear recurrence of degree at most 2 whose first
elements 1, -1, 3, 3.

Input :
reverse_rsolve ([1,-1,3,3])
Output :
[1,-3,-6]
Hence xy = —6, x1 = —3, xo = 1 and the recurrence relation is

V42 — 3Ug41 — 60 =0

Without reverse_rsolve, we would write the matrix of the system :
[((1,-1,31,[-1,3,3]1] and use the rref command :

rref ([[1,-1,3]1,[-1,3,311])

Outputis [[1,0,6],[0,1,3]1] hence xg = —6 and =1 = —3 (because
T — 1).

¢ Find a sequence satisfying a linear recurrence of degree at most 3 whose first
elements are 1, -1, 3, 3,-1, 1.

Input :
reverse_rsolve([1l,-1,3,3,-1,1])
Output :
(1, (-1)/2,1/2,-1]
Hence so, xg = —1, 21 = 1/2, 29 = —1/2, x3 = 1, the recurrence relation

1S

1 1
Uk+3 — 5 Uk+2 + 5 Uk+1 T Uk = 0

Without reverse_rsolve, we would write the matrix of the system :
(r1,-1,3,31,1-1,3,3,-11,1[3,3,-1,111.

Using rref command, we would input :
rref([[1,-1,3,3],(-1,3,3,-11,1[3,3,-1,111)

Output is [1,0,0,11,1[0,1,0,1/-21,10,0,1,1/2]11 hence xg =
—1,z1 = 1/2 and x5 = —1/2 because z3 = 1),

328 CHAPTER 2. THE CAS FUNCTIONS

2.54 Differential equations

This section is limited to symbolic (or exact) solutions of differential equations.
For numeric solutions of differential equations, see cdesolve. For graphic rep-
resentation of solutions of differential equations, see plotfield, plotode and
interactive_plotode.

2.54.1 Solving differential equations : desolve deSolve
dsolve

desolve (or deSolve) can solve :

o linear differential equations with constant coefficients,

o first order linear differential equations,

e first order differential equations without v,

o first order differential equations without z,

o first order differential equations with separable variables,

e first order homogeneous differential equations (y' = F(y/x)),

o first order differential equations with integrating factor,

e first order Bernoulli differential equations (a(x)y’ + b(z)y = c(z)y™),

e first order Clairaut differential equations (y = = x ¢’ + f(y)).
desolve takes as arguments :

o if the independent variable is the current variable (here supposed to be z),

— the differential equation (or the list of the differential equation and of
the initial conditions)
— the unknown (usually y).
In the differential equation, the function ¥ is denoted by y, its first derivative
y/ is denoted by y’, and its second derivative '’ is written y”.

For example desolve (y”+2*y’ +y,y) or
desolve ([y"+2xy"+y,y (0)=1,y" (0)=01],y).

o if the independent variable is not the current variable, for example ¢ instead
of z,

— the differential equation (or the list of the differential equation and of
the initial conditions),
— the variable, e.g. t

— the unknown as a variable y or as a function y (t) .

2.54. DIFFERENTIAL EQUATIONS 329

In the differential equation, the function y is denoted by y(¢), its derivative
y/ is denoted by diff (y (t), t), and its second derivative 3’ is denoted
bydiff(y(t),ts$2).

For example :

desolve (diff (y(t),t$2)+2+diff (v (L), t)+y
desolve (diff (y(t),t$2)+2+xdiff(y(t),t)+y(t),t,y);and

o
b
o
o
=

desolve ([diff (y(t),t$2)+2«diff (v (t),t)+y(t),
y(0)=1,y’" (0)=0],y(t)); or

desolve ([diff (y(t),t$2)+2«diff (v (t),t)+y(t),
y(0)=1,y" (0)=01],t,vy);

If there is no initial conditions (or one initial condition for a second order equation),
desolve returns the general solution in terms of constants of integration c_0,
c_1,where y (0)=c_0and y’ (0)=c_1, or a list of solutions.

Examples

e Examples of second linear differential equations with constant coefficients.

1. Solve :
y" +y = cos(z)

Input (typing twice prime for yv"):
desolve (y"+y=cos (x),V)
or input :
desolve ((diff (diff(y))+y)=(cos(x)),Vy)
Output :
c_0xcos (x)+ (x+2*xc_1)*sin(x)/2

c_0, c_1 arethe constants of integration: y (0)=c_Oandy’ (0)=c_1.
If the variable is not x but t, input :

desolve (derive (derive (y(t),t),t)+y(t)=cos(t),t,vy)
Output :
c_0*xcos (t)+(t+2*xc_1)/2*xsin(t)

c_0, c_1 arethe constants of integration: y (0)=c_Oandy’ (0)=c_1.

2. Solve :
y" +y = cos(z), y(0)=1
Input :
desolve ([y”+y=cos (x),y(0)=1],y)
Output :

[cos(x)+(x+2%c_1)/2%sin (x)]

330 CHAPTER 2. THE CAS FUNCTIONS

the components of this vector are solutions (here there is just one com-
ponent, so we have just one solution depending of the constant c__1).

3. Solve :
y" +y=cos(z) (y(0))* =1
Input :
desolve ([y”+y=cos (x),y (0) "2=1],y)
Output :

[-cos (x)+ (x+2xc_1) /2xsin(x),cos (xX)+(x+2xc_1)/2*sin(x)]

each component of this list is a solution, we have two solutions depend-
ing on the constant c_1 (y'(0) = ¢;) and corresponding to y(0) = 1
and to y(0) = —1.

4. Solve :
y" +y=cos(z), (y(0)*=1 ¢ (0)=1

Input :

desolve ([y”+y=cos (x),y(0)"2=1,y’ (0)=1],y)
Output :
[-cos (xX)+ (x+2) /2*sin(x),cos(x)+(x+2) /2xsin(x)]

each component of this list is a solution (we have two solutions).

5. Solve :
y'+2y +y=0
Input :
desolve (y"+2xy’ +y=0,vy)
Output :

(xxc_O0+x*c_1+c_0) xexp (—x)

the solution depends of 2 constants of integration: c_0, c_1(y(0)=c_0
and y’ (0)=c_1).

6. Solve :
Y — 6y + 9y = ze®®
Input:
desolve (y"—6*xy’' +9xy=(x*xexp (3*x) ,V)
Output :

(x73+ (= (18%x)) *c_0+6*x*xc_1+6xc_0)+x1/6*+exp (3*x)

the solution depends on 2 constants of integration: c_0, c_1(y (0)=c_0
and y’ (0)=c_1).

e Examples of first order linear differential equations.

2.54. DIFFERENTIAL EQUATIONS 331

1. Solve :
zy +y—322=0
Input :
desolve (xxy’ +y—-3xx"2,V)
Output :
(3%1/3xx"3+c_0) /x
2. Solve:
v +xxy=0,90)=1
Input :
desolve ([y’+x*y=0, y(0)=11),vy)
or :
desolve ((y’+x*y=0) && (y(0)=1),vy)
Output :
[1/ (exp (1/2%x"2))]
3. Solve :
z(z? — 1)y +2y =0
Input :
desolve (x* (x"2-1) *y' +2*xy=0,vV)
Output :
(c_0)/ ((x"2-1)/(x"2))
4. Solve :
z(x? — 1)y + 2y = 2
Input :
desolve (x* (X"2=1) xy" +2xy=x"2,V)
Output :

(In(x)+c_0)/ ((x"2-1)/(x"2))
5. If the variable is ¢ instead of x, for example :
t#* = 1)y (t) + 2y(t) = *
Input :
desolve (t* (£"2-1)*diff(y(t),t)+2xy (t)=(t"2),y(t))

Output :

(In(t)+c_0)/ ((£*2-1)/(t"2))

332 CHAPTER 2. THE CAS FUNCTIONS

6. Solve :
z(z® — 1)y +2y =2%,y(2) =0

Input :

desolve ([x* (x"2-1) »y' +2xy=x"2,y (0)=1],vVv)

Output :
[(In(x)-1In(2))*x1/(x"2-1) *x"2]
7. Solve :
l+a2y) —z—y=+1+2a2
Input :

desolve (y’ *sqgrt (1+x"2) —x-y—sqrt (1+x"2),vy)
Output :
(—c_0+1n(sgrt (x"2+1) -x))/ (x—sgrt (x*2+1))

e Examples of first differential equations with separable variables.

1. Solve :
v =2y
Input :
desolve (y'=2*sqrt (y),y)
Output :
[x"2+-2xx*Cc_0+c_0"2]
2. Solve :
zy' In(z) —y(3In(z) +1) =0
Input :
desolve (x*y’ *1n(x)— (3x1n(x)+1) xy,y)
Output :

c_0xx"3*x1n(x)

e Examples of Bernoulli differential equations a(x)y'+b(x)y = ¢(x)y™ where
n is a real constant.
The method used is to divide the equation by ™, so that it becomes a first
order linear differential equation in u = 1/y" 1.

1. Solve:
xy’+2y+xy2 =0
Input :
desolve (x*y' +2xy+x*y"~2, V)
Output :

[1/ (exp(2*x1n(x))* (=1/x+c_0)) 1]

2.54. DIFFERENTIAL EQUATIONS 333

2. Solve :
xy — 2y = :cy?’
Input :
desolve (x*y' —2xy-xX*xy"3,Y)
Output :

[((=2%1/5%x"5+c_0)*exp (- (4*log(x))))"(1/-2),

—((-2*%1/5xx"5+c_0) xexp (- (4*1log(x))))" (1/-2)]

3. Solve:
22y — 2y = 336(4/”3)@/3
Input :
desolve (x*xy’ —2xy—-xxexp (4/x) *y"3,y)
Output :

[((=2%1n(x)+c_0)*exp (= (4% (-(1/x))))) " (1/=-2),
—(((=2%1n(x)+c_0)xexp (= (4% (=(1/x))))) " (1/=-2))]

e Examples of first order homogeneous differential equations (y' = F(y/z),
the method of integration is to search ¢ = y/x instead of y).

1. Solve:
32y = y(32® — y°)
Input :
desolve (3*xx"3+xdiff (y)=((3*x"2-y"2) xy),VY)
Output :

[0,pnt [c_O*exp ((3%x1/2) /(" £**2)),"
tYxc_Oxexp ((3*1/2)/(* £¥°2)) 1]

hence the solutions are y = 0 and the familiy of curves of parametric
equation x = cgexp(3/(2t?)),y = t * co exp(3/(2t?)) (the parameter
is denoted by * t “ in the answer).

2. Solve:
vy =y + Va? +y?
Input :
desolve (x*y’' =y+sqrt (x"2+y"2),V)
Output :

[(1) *x, (1) *x,pnt[c_0/ (sgrt (¥ t*"2+1)-> tY), ("
tYxc_0)/ (sgqrt (t ¥ 2+1)-" tVY) 1]

334 CHAPTER 2. THE CAS FUNCTIONS

hence the solutions are :
Y =1,y = —iT
and the family of curves of parametric equations
r=c/(VE+1-t)y=txe/(VE+1-1)
(the parameter is denoted by ' t * in the answer).

e Examples of first order differential equations with an integrating factor. By
multiplying the equation by a function of z, y, it becomes a closed differen-

tial form.
1. Solve :
vy +x
Input :
desolve (y*xy’ +x,Vy)
Output :

[sgrt (-2%c_0-x"2),—(sgrt (-2*xc_0-x"2))]

In this example, zdx + ydy is closed, the integrating factor was 1.

2. Solve :
2eyy + 2?2 — 1y + a2 =0
Input :
desolve (2+«xxy*y' +x"2-y"2+a”*2,vy)
Output :

[sgrt (a”™2-x"2-c_1*x),—(sgrt (a”™2-x"2-c_1*x))]
In this example, the integrating factor was 1/z2.

e Example of first order differential equations without .
Solve :
(+y) ' +y +3y=0
This kind of equation cannot be solved directly by Xcas, we explain how to
solve them with its help. The idea is to find a parametric representation of
F(u,v) = 0 where the equation is F(y,y’) = 0, Letu = f(t),v = g(t) be
such a parametrization of F' = 0, then y = f(t) and dy/dz = ' = g(t).
Hence
dy/dt = f'(t) =y = dx/dt = g(t) * dz/dt

The solution is the curve of parametric equations z(t),y(t) = f(t), where
x(t) is solution of the differential equation g(t)dx = f'(t)dt.
Back to the example, we put y + v’ = ¢, hence:

y=—t—8xtt y =dy/de=3xt+8xt? dy/dt=—1—-32xt

therefore
(Bxt+8xth) xdr = (—1—32xt3)dt

Input :

2.54. DIFFERENTIAL EQUATIONS 335
desolve ((3*t+8xt™4) »diff(x(t),t)=(-1-32+xt"3),x(t))
Output :

—11%x1/9%1n(8*xt"3+3)+1/-9%1n(t"3)+c_0
eventually the solution is the curve of parametric equation :
z(t) = —11%1/9%In(8xt3+3)+1/ —9xIn(t3) + ¢, y(t) = —t—8xt!
e Examples of first order Clairaut differential equations (y = x x ¢y’ + f(¥/)).

The solutions are the lines D,, of equation y = max + f(m) where m is a
real constant.

1. Solve :
zy' +y° —y=0

Input :

desolve (xxy’ +y’ *3-y),vy)
Output :

c_0*x+c_0"3

2. Solve:

N T
Input :

desolve ((y—x*xy’ —sqgrt (a”"2+b"2xy’" "2),vy)
Output :

c_0Oxx+sgrt (a”2+b"2xc_0"2)

2.54.2 Laplace transform and inverse Laplace transform : 1aplace
ilaplace

laplace and ilaplace take one, two or three arguments : an expression and
optionally the name(s) of the variable(s).

The expression is an expression of the current variable (here) or an expression of
the variable given as second argument.

laplace returns the Laplace transform of the expression given as argument and
ilaplace the inverse Laplace transform of the expression given as argument.
The result of 1aplace or ilaplace is expressed in terms of the variable given
as third argument if supplied or second argument if supplied or = otherwise.

The Laplace transform (1aplace) and inverse Laplace transform (i Laplace)
are useful to solve linear differential equations with constant coefficients. For ex-
ample :

yn+py +qy = f(z)

y(0) =a, y/(0) =b

336 CHAPTER 2. THE CAS FUNCTIONS

Denoting by £ the Laplace transform, the following relations hold :

+oo
L)) = A ey () du

o)) = ;%Cgmaaw

where C'is a closed contour enclosing the poles of g.
Input :

laplace(sin(x))

The expression (here sin(z)) is an expression of the current variable (here =) and
the answer will also be an expression of the current variable x.
Output :

1/ ((—x)"2+1)
or:
laplace(sin(t),t)

here the variable name is ¢ and this name is also used in the answer.
Output :

1/ ((-t)"2+1)
Or input :
laplace(sin(t),t, s)

here the variable name is ¢ and the variable name of the answer is s.
Output:

1/ ((-s)"2+1)

The following properties hold :

Ly)(x) = —y(0)+z.L(y)(x)
Ly")(x) = —y(0)+z.L(Y)(x)
= =4/ (0) — z.y(0) + 2%.L(y)(x)
Ifyr(z) + py/(z) + qy(x) = f(z), then:
L(f)x) = LG +py +qy)(x)
= —/(0) —ay(0) + 2L (y)(x) — py(0) + pzL(y)(z)) + ¢L(y)(x)
(2° + pz +) L(y)(x) — ' (0) — (z + p)y(0)

Therefore, if a = y(0) and b = y/(0), we have
L(f)(x) = (@® +pz +q).L(y)(z) — (z +p)a—b
and the solution of the differential equation is :

y(x) = L7H(L(f) (@) + (@ +pla+b)/(@® + pz + q))

2.55. OTHER FUNCTIONS 337

Example :
Solve :

yn — 6yl +9y = ze3%, y(0) =c 0, y/(0)=c_1

Here, p = —6, ¢ = 9.

Input :
laplace (xxexp (3*x))
Output :
1/(x” 2-6xx+9)
Input :

ilaplace ((1/ (x"2-6xx+9) + (x-6) *c_0+c_1)/ (x"2-6xx+9))
Output :
(216%xx73-3888+x*Cc_0+1296*x*xc_1+1296+c_0) rexp (3*x) /1296
After simplification and factorization (fact or command) the solution y is :
(—18*c_0+x+6xc_0+x"3+6*x+xCc_1) xrexp (3xx) /6
Note that this equation could be solved directly. Input :
desolve (y"-6*y' +9xy=x*xexp (3*x),V)
Output :

exp (3*x) * (=18xc_0xx+6+xc_0+x"3+6*x*c_1)/6

2.55 Other functions

2.55.1 Replace small values by 0: epsilon2zero

epsilon2zero takes as argument an expression of x.

epsilon2zero returns the expression where the values of modulus less than
epsilon are replaced by zero. The expression is not evaluated.

The epsilon valueis defined in the cas configuration (by default epsilon=1e-10).
Input :

epsilon2zero (le-13+x)

Output (with epsilon=1e-10):
0+x
Input :
epsilon2zero((le—-13+x)*x100000)
Output (with epsilon=1e-10):
(0+x) 100000

Input :

epsilon2zero (0.001+x)
Output (with epsilon=0.0001):

0.001+x

338 CHAPTER 2. THE CAS FUNCTIONS

2.55.2 List of variables : 1name indets

lname (or indets) takes as argument an expression.
lname (or indets) returns the list of the symbolic variable names used in this

expression.
Input :

lname (x*y*sin (x))
Output :

(x,¥]
Input :
a:=2;assume (b>0) ;assume (c=3) ;

lname (a*x"2+b*x+c)

Output :

[x,b,c]

2.55.3 List of variables and of expressions : 1var

lvar takes as argument an expression.

lvar returns a list of variable names and non-rational expressions such that its
argument is a rational fraction with respect to the variables and expressions of the
list.

Input :
lvar (xxyxsin (x) "2)
Output :
[x,y,sin(x)]
Input :
lvar (x+xy*sin(x) *2+1n(x) xcos (y))

Output :

[x,V,51in(x),1ln(x),cos(y)]
Input :

lvar (y+xxsqrt (z) +ty*sin (x))
Output :

[x,¥,s9rt (z),sin(x)]

2.55. OTHER FUNCTIONS 339

2.55.4 List of variables of an algebraic expressions: algvar

algvar takes as argument an expression.

algvar returns the list of the symbolic variable names used in this expression.
The list is ordered by the algebraic extensions required to build the original expres-
sion.

Input :
algvar (yt+xxsqgrt (z))
Output :
(ly,x],[z]]
Input :
algvar (y*sqgrt (x) xsgrt (z))
Output :
(lyl,[z], [x]]
Input :
algvar (yxsqgrt (xxz))
Output :
[[yl,[x,2]]
Input :
algvar (y+x*sqgrt (z) +y*sin (x))
Output :

[[x,y,8in(x)], [2]]

2.55.5 Testif a variable is in an expression : has

has takes as argument an expression and the name of a variable.
has returns 1 if this variable is in this expression, and else returns 0.
Input :

has (xxy*sin (x),y)

Output :
1
Input :
has (x*yxsin (x), z)
Output :

340 CHAPTER 2. THE CAS FUNCTIONS

2.55.6 Numeric evaluation : evalf

evalf takes as argument an expression or a matrix.
evalf returns the numeric value of this expression or of this matrix.
Input :

evalf (sqrt (2))

Output :
1.41421356237
Input :
evalf ([[1l,sgrt(2)1,1[0,111)
Output :

[[1.0,1.41421356237]1,[0.0,1.011

2.55.7 Rational approximation : float2rational exact

float2rational (or exact) takes as argument an expression.
float2rational returns arational approximation of all the floating point num-
bers 7 contained in this expression, such that |r — float2rational(r)| < e,
where € is defined by epsilon inthe cas configuration (C£g menu, or cas_setup
command).

Input :
float2rational (1.5)
Output :
3/2
Input :
float2rational (1.414)
Output :
707/500

Input :

float2rational (0.156381102937%2)
Output :

5144/16447
Input :
float2rational (1.41421356237)
Output :
114243/80782

Input :

float2rational (1.41421356237"2)
Output :

Chapter 3

Graphs

Most graph instructions take expressions as arguments. A few exceptions (mostly
Maple-compatibility instructions) also accept functions. Some optional arguments,
like color, thickness, can be used as optional attributes in all graphic in-
structions. They are described below.

3.1 Graph and geometric objects attributes

There are two kinds of attributes: global attributes of a graphic scene and individual
attributes.

3.1.1 Individual attributes

Graphic attributes are optional arguments of the form display=value, they
must be given as the last argument of a graphic instruction. Attributes are ordered
in several categories: color, point shape, point width, line style, line thickness,
legend value, position and presence. In addition, surfaces may be filled or not, 3-d
surfaces may be filled with a texture, 3-d objects may also have properties with
respect to the light. Attributes of different categories may be added, e.g.
plotfunc (22 +y?, [x,y],display=red+line_width_3+filled)

e Colors display=orcolor=

— black,white, red, blue, green, magenta, cyan, yellow,
— a numeric value between 0 and 255,

— anumeric value between 256 and 256+7%16+14 for a color of the rain-
bow,

— any other numeric value smaller than 65535, the rendering is not guar-
anteed to be portable.

e Point shapes display= one of the following value rhombus_point
plus_point square_point cross_point triangle_point star_point
point_point invisible_point

e Point width: display= one of the following value point_width_n
where n is an integer between 1 and 7

341

342 CHAPTER 3. GRAPHS

e Line thickness: thickness=n or display=line_width_n where n
is an integer between 1 and 7 or

e Line shape: display=one of the following values dash_line solid_line
dashdot_line dashdotdot_line cap_flat_line cap_square_line
cap_round_line

e Legend, value: legend="1legendname"; position: display= one of
quandrantl quadrant2 quadrant3 quadrant4 corresponding to
the position of the legend of the object (using the trigonometric plane con-
ventions). The legend is not displayed if the attribute display=hidden_name
is added

e display=filled specifies that surfaces will be filled,

e gl_texture="picture_filename" is used to fill a surface with a
texture. Cf. the interface manual for a more complete description and for
gl_material= options.

Examples
Input :
polygon(-1,-1,1,2x1i, legend="P")
Input :
point (1+i, legend="hello")
Input :

A:=point (1+i);B:=point (-1);display(D:=droite (A,B),hidden_name)
Input :

color (segment (0, 1+1i), red)
Input :

segment (0, 1+i,color=red)

3.1.2 Global attributes
These attributes are shared by all objects of the same scene
e title="titlename" defines the title
e labels=["xname", "yname", "zname"]: names of the z, y, z axis

e gl_x_axis_name="xname",gl_y_axis_name="yname",gl_z_axis_name="":
individual definitions of the names of the x, y, z axis

e legend=["xunit","yunit", "zunit"]: units for the x, y, z axis

e gl_x_axis_unit="xunit",gl_y_axis_unit="yunit",gl_z_axis_unit="":
individual definition of the units of the x, y, z axis

3.2. GRAPH OF A FUNCTION :PLOTFUNC FUNCPLOT DRAWFUNC GRAPH343

e axes=true or false show or hide axis
e gl_texture="filename": background image

e gl_x=xmin..xmax, gl_y=ymin..ymax, gl_z=zmin..zmax: set
the graphic configuration (do not use for interactive scenes)

e gl_xtick=,gl_ytick=, gl_ztick=: setthe tick mark for the axis
e gl_shownames=true or false: show or hide objects names

e gl_rotation=[x,y, z]: defines the rotation axis for the animation ro-
tation of 3-d scenes.

e gl_quaternion=[x,vy, z,t]: defines the quaternion for the visualiza-
tion in 3-d scenes (do not use for interactive scenes)

e a few other OpenGL light configuration options are available but not de-
scribed here.

Examples
Input :

legend=["mn", "kg"]

Input :

title="median_line";triangle(-1-i,1,1+1i);median_line(-1-1i,1,1+i);median_line
Input :

labels=["u","v"];plotfunc (u+l,u)

3.2 Graphofafunction: plotfunc funcplot DrawFunc
Graph
3.2.1 2-d graph

plotfunc (f (x),x) draws the graph of y = f(z) for z in the default inter-
val, plotfunc (f (x),x=a..b) draws the graph of y = f(x) fora < z < b.
plotfunc accepts an optional xstep=. .. argument to specify the discretiza-
tion step in .

Input :

plotfunc (x*2-2)
or :
plotfunc(a®2-2,a=-1..2)
Output :

the graph of y=x"2-2

344 CHAPTER 3. GRAPHS

Input :
plotfunc (x"2-2,x,xstep=1)
Output :

a polygonal line which is a bad representation of
y=x"2-2

It is also possible to specify the number of points used for the representation of the
function with nstep= instead of xstep=. For example, input :

plotfunc (x*2-2,x=-2..3,nstep=30)

3.2.2 3-d graph

plotfunc takes two main arguments : an expression of two variables or a list
of several expressions of two variables and the list of these two variables, where
each variable may be replaced by an equality variable=interval to specify the range
for this variable (if not specified, default values are taken from the graph configura-
tion). plot func accepts two optional arguments to specify the discretization step
inz and in y by xstep=... and ystep=. . .. Alternatively one can specify the
number of points used for the representation of the function with nstep= (instead
of xstep and ystep).

plotfunc draws the surface(s) defined by z = the first argument.

Input :

plotfunc(x"2+y"2, [x,y])

Output :
A 3D graph of z=x"2+y"2
Input :
plotfunc (x*y, [x,vy])
Output :
The surface z=x*y, default ranges
Input :
plotfunc ([x*xy—-10, x*y,xxy+10], [x,v])
Output :
The surfaces z=xxy-10, z=xxy and z=x*y+10
Input :
plotfunc (xxsin(y), [x=0..2,y=-pi..pil])
Output :

The surface z=x*y for the specified ranges

3.2. GRAPH OF A FUNCTION :PLOTFUNC FUNCPLOT DRAWFUNC GRAPH345

Now an example where we specify the x and y discretization step with xstep and
ystep.
Input :
plotfunc (x*sin(y), [x=0..2,y=-pi..pi]l,xstep=1,ystep=0.5)
Output :
A portion of surface z=xx*y
Alternatively we may specify the number of points used for the representation of
the function with nstep instead of xstep and ystep.
Input :
plotfunc(x*sin(y), [x=0..2,y=-pi..pi],nstep=300)
Output :
A portion of surface z=xx*y
Remarks
e Like any 3-d scene, the viewpoint may be modified by rotation around the x
axis, the y axis or the z axis, either by dragging the mouse inside the graphic
window (push the mouse outside the parallelepiped used for the representa-

tion), or with the shortcuts x, X, v, Y, z and Z.

o If you want to print a graph or get a ISIEX translation, use the graph menu
Menupprint»Print (with Latex)

3.2.3 3-d graph with rainbow colors

plotfunc represents a pure imaginary expression i «E of two variables with a
rainbow color depending on the value of z=E. This gives an easy way to find points
having the same third coordinate.

The first arguments of plot func must be i xE instead of E, the remaining argu-
ments are the same as for a real 3-d graph (cf 3.2.2) Input :

plotfunc (ixx*sin(y), [x=0..2,y=-pi..pi])
Output :
A piece of the surface z=xxsin(y) with rainbow colors
Remark

If you want the graphic in LaTeX, you have to use :
Menubprint»Print (with Latex).

346 CHAPTER 3. GRAPHS

3.2.4 4-d graph.

plotfunc represents a complex expression E (such that re (E) is not identically
0 on the discretization mesh) by the surface z=abs (E) where arg (E) defines the
color from the rainbow. This gives an easy way to see the points having the same
argument. Note that if re (E) ==0 on the discretization mesh, it is the surface
z=E/1 that is represented with rainbow colors (cf 3.2.3).

The first argument of plotfunc is E, the remaining arguments are the same as
for a real 3-d graph (cf 3.2.2).

Input :

plotfunc ((x+ixy) "2, [x,v])
Output :

A graph 3D of z=abs((x+ixy)”*2 with the same color for
points having the same argument

Input :
plotfunc ((x+ixy) "2x, [x,y], display=filled)
Output :
The same surface but filled

We may specify the range of variation of x and y and the number of discretization

points.
Input :
plotfunc ((x+ixy) "2, [x=-1..1,y=-2..2],
nstep=900,display=filled)
Output :

The specified part of the surface with z between -1
and 1, y between -2 and 2 and with 900 points

3.3 2d graph for Maple compatibility : plot

plot (f (x),x) draws the graph of y = f(x). The second argument may specify
the range of values x=xmin. .xmax. One can also plot a function instead of an
expression using the syntax plot (f, xmin. .xmax). plot accepts an optional
argument to specify the step used in x for the discretization with xstep= or the
number of points of the discretization with nstep=.

Input :

plot (x72-2, x)
Output :
the graph of y=x"2-2

Input :

3.4. 3D SURFACES FOR MAPLE COMPATIBILITY PLOT3D 347

plot (x*2-2,xstep=1)

or :
plot (x*2-2,x,xstep=1)
Output :
a polygonal line which is a bad representation of
y=x"2-2
Input!

plot (x7"2-2,x=-2..3,nstep=30)

3.4 3d surfaces for Maple compatibility plot 3d

plot3d takes three arguments : a function of two variables or an expression of

two variables or a list of three functions of two variables or a list of three expres-

sions of two variables and the names of these two variables with an optional range

(for expressions) or the ranges (for functions).

plot3d(f(x,vy),x,y) (rtesp. plot3d([f(u,v),g(u,v),h(u,v)1,u,v))
draws the surface z = f(z,y) (resp. z = f(u,v),y = g(u,v),z = h(u,v)). The

syntax plot3d(f (x,y),x=x0..x1,y=y0..yl) orplot3d(f,x0..x1,y0..y1)
specifies which part of surface will be computed (otherwise default values are taken

from the graph configuration).

Input :
plot3d(x*y,x,V)
Output :
The surface z=x*y

Input :

plot3d([v*cos (u),vxsin(u),v],u,v)
Output :

The cone x =wvxcos(u),y =v*sin(u),z =v
Input :

plot3d([v*xcos (u),vxsin(u),v],u=0..pi,v=0..3)

Output :

A portion of the cone x =wvx*cos(u),y=uvx*sin(u),z="wv

348 CHAPTER 3. GRAPHS

3.5 Graph of a line and tangent to a graph

3.5.1 Drawaline: 1line

See also : ?? and ?? for line usage in geometry and see ?? and ?? for axis.
line takes as argument cartesian equation(s) :

e in 2D: one line equation,
e in 3D: two plane equations.

line defines and draws the corresponding line.

Input :
line (2+xy+x—-1=0)
Output :
the line 2xy+x-1=0
Input :
line (y=1)
Output :
the horizontal line y=1
Input :
line (x=1)
Output :
the vertical line x=1
Input :
line (x+2+y+z-1=0, z=2)
Output :
the line x+2xy+1=0 in the plane z=2
Input :
line (y=1,x=1)
Output :
the vertical line crossing through (1,1,0)

Remark

line defines an oriented line :

3.5. GRAPH OF A LINE AND TANGENT TO A GRAPH 349

e when the 2D line is given by an equation, it is rewritten as "left_member-
right_member=ax+by+c=0", this determines its normal vector [a,b] and
the orientation is given by the vector [b, —a]) (or its orientation is defined
by the 3D cross product of its normal vectors (with third coordinate 0) and
the vector [0,0,1]).

For example 1ine (y=2+x) defines the line —2x+y=0 with as direction
the vector [1,2] (or cross([-2,1,0],[0,0,11)=[1,2,0]).

e when the 3D line is given by two plane equations, its direction is defined
by the cross product of the normals to the planes (where the plane equation
is rewritten as "left_member-right_member=ax+by+cz+d=0", so that the
normal is [a, b, c]).

For example the 1ine (x=y, y=z) is the line x—y=0, y—z=0 and its di-
rection is :
cross([1l,-1,0],[0,1,-1])=[1,1,1].

3.5.2 Draw an 2D horizontal line : LineHorz

LineHorz takes as argument an expression a.
LineHorz draws the horizontal line y = a.
Input :

LineHorz (1)
Output :

the line y=1

3.5.3 Draw a 2D vertical line : LineVert

LineVert takes as argument an expression a.
LineVert draws the vertical line z = a.
Input :

LineVert (1)
Output :

the line x=1

3.5.4 Tangent to a 2D graph : LineTan

LineTan takes two arguments : an expression F, of the variable x and a value
20 of z.

LineTan draws the tangent at x = z0 to the graph of y = F,.

Input :

LineTan (1ln(x),1)
Output :

the line y=x-1

350 CHAPTER 3. GRAPHS

Input :
equation(LineTan (1ln(x),1))
Output :

y=(x-1)

3.5.5 Tangent to a 2D graph : tangent

See also : ?? for plane geometry and ?? for 3D geometry.

tangent takes two arguments : a geometric object and a point A.

tangent draws tangent(s) to this geometric object crossing through A. If the ge-
ometric object is the graph G of a 2D function, the second argument is either, a real
number x0, or a point A on G. In that case tangent draws a tangent to this graph
G crossing through the point A or through the point of abscissa x0.

For example, define the function g

g(x) :=x"2
then the graph G={ (x,vy) € RZ, y=g (x) } of g and a point A on the graph G:

G:=plotfunc(g(x),x);
A:=point (1.2,g9(1.2));

If we want to draw the tangent at the point A to the graph G, we will input:
T:=tangent (G, A)
or:
T:=tangent (G, 1.2)
For the equation of the tangent line, input :

equation (T)

3.5.6 Intersection of a 2D graph with the axis

e The ordinate of the intersection of the graph of f with the y-axis is returned
by :

£(0)

indeed the point of coordinates (0, f(0)) is the intersection point of the graph
of f with the y-axis,

e Finding the intersection of the graph of f with the z-axis requires solving
the equation f(x) = 0.
If the equation is polynomial-like, solve will find the exact values of the
abscissa of these points. Input:

solve (f (x),x)

Otherwise, we can find numeric approximations of these abscissa. First look
at the graph for an initial guess or a range with an intersection and refine
with fsolve.

3.6. GRAPH OF INEQUALITIES WITH 2 VARIABLES : PLOTINEQUATION INEQUATIONPLOT351

3.6 Graph of inequalities with 2 variables : plotinequation
inequationplot

plotinequation ([fl (x,y)<al,...fk(x,y)<ak], [x=x1..x2,y=yl..y2])
draws the points of the plane whose coordinates satisfy the inequalities of 2 vari-
ables :
fl(z,y) < al
, 1< <22yl <y <y2
fk(z,y) < ak

Input :

plotinequation (x*2-y"2<3,
[x==-2..2,y=-2..2],xstep=0.1,ystep=0.1)

Output :

the filled portion enclosing the origin and limited by
the hyperbola x"2-y*2=3

Input :

plotinequation ([x+y>3,x"2<y],
[x-2..2,y=-1..10],xstep=0.2,ystep=0.2)

Output :

the filled portion of the plane defined by
—2<x<2,y<10,x+y>3,y>x"2

Note that if the ranges for x and y are not specified, Xcas takes the default values
of X—, X+, Y-, Y+ defined in the general graphic configuration (Cfg»Graphic
configuration).

3.7 Graph of the area below acurve: plotarea areaplot

e With two arguments, plotarea shades the area below a curve.
plotarea (f (x),x=a..b) draws the area below the curve y = f(z) for
a < x < b, 1i.e. the portion of the plane defined by the inequalities a < x < b
and 0 <y < f(x) or0 >y > f(x) according to the sign of f(z) .

Input :

plotarea(sin(x),x=0..2xpi)
Output :

the portion of plane locates in the two arches of
sin (x)

352

CHAPTER 3. GRAPHS

e With four arguments, plotarea represents a numeric approximation of the

area below a curve, according to a quadrature method from the following list:
trapezoid, rectangle_left, rectangle_right,middle_point.
Forexampleplotarea (f (x) ,x=a..b,n, trapezoid) draws the area
of n trapezoids : the third argument is an integer n, and the fourth argument
is the name of the numeric method of integration when [a, b] is cut into n
equal parts.
Input :

plotarea((x*2,x=0..1,5,trapezoid)

If you want to display the graph of the curve in contrast (e.g. in bold red),
input :

plotarea (x*2,x=0..1,5,trapezoid);
plot (x72,x=0..1,display=red+line_width_3)

Output :

the 5 trapezoids used in the trapezoid method to
approach the integral

Input :
plotarea ((x"2,x=0..1,5,middle_point)
Or with the graph of the curve in bold red, input :

plotarea (x*2,x=0..1,5,middle_point);
plot (x72,x=0..1,display=red+line_width_3)

Output :

the 5 rectangles used in the middle_point method
to approach the integral

3.8 Contour lines: plotcontour contourplot

DrwCtour

plotcontour (f (x,vy), [x,y]) (or DrwCtour (f(x,y), [x,y]) or
contourplot (f(x,y), [x,y])) draws the contour lines of the surface de-
fined by z = f(x,y) forz = —10, 2 = -8, .., 2 =0, 2 = 2, .., z = 10. You may
specify the desired contour lines by a list of values of z given as third argument.
Input :

plotcontour (x"2+y*2, [x=-3..3,y=-3..31,11,2,31,
display=[green, red,black]+[filled$3])

Output :

3.9. 2-D GRAPH OF A 2-D FUNCTION WITH COLORS : PLOTDENSITY DENSITYPLOT353

the graph of the three ellipses x*"2-y*2=n for n=1,2,3;
the zones between these ellipses are filled with the
color green,red or black

Input :
plotcontour (x"2-v"*2, [x,V])
Output :
the graph of 11 hyperbolas x"2-y”*2=n for n=-10,-8,..10

If you want to draw the surface in 3-d representation, input plot func (£ (x,vy), [X,v]),
see 3.2.2):

plotfunc(x*2-y*2, [X,vy])
Output :

A 3D representation of z=x"2+y”"2

3.9 2-dgraph of a 2-d function with colors: plotdensity
densityplot

plotdensity (f(x,y), [x,y]) ordensityplot (f(x,vy), [x,y]) draws
the graph of z = f(x,y) in the plane where the values of z are represented by the
rainbow colors. The optional argument z=zmin. . zmax specifies the range of 2
corresponding to the full rainbow, if it is not specified, it is deduced from the min-
imum and maximum value of f on the discretization. The discretization may be
specified by optional xstep=... and ystep=... or nstep=. .. arguments.
Input :

plotdensity (x"2-y"2, [x=-2..2,y=-2..2],
xstep=0.1,ystep=0.1)

Output :

A 2D graph where each hyperbola defined by x"2-y"2=z
has a color from the rainbow

Remark : A rectangle representing the scale of colors is displayed below the graph.

3.10 Implicit graph: plotimplicit implicitplot

plotimplicitorimplicitplot draws curves or surfaces defined by an im-
plicit expression or equation. If the option unfactored is given as last argument,
the original expression is taken unmodified. Otherwise, the expression is normal-
ized, then replaced by the factorization of the numerator of its normalization.

Each factor of the expression corresponds to a component of the implicit curve
or surface. For each factor, Xcas tests if it is of total degree less or equal to 2, in
that case conic or quadric is called. Otherwise the numeric implicit solver is
called.

Optional step and ranges arguments may be passed to the numeric implicit
solver, note that they are dismissed for each component that is a conic or a quadric.

354 CHAPTER 3. GRAPHS

3.10.1 2D implicit curve

e plotimplicit (f (x,y),x,y) draws the graphic representation of the
curve defined by the implicit equation f(z,y) = 0 when z (resp. y) is in
WX~-, WX+ (resp. in WY—-, WY+) defined by cfg,

e plotimplicit (f(x,y),x=0..1,y=-1..1) draws the graphic rep-
resentation of the curve defined by the implicit equation f(x,y) = 0 when
0<zr<land -1 <y <1

It is possible to add two arguments to specify the discretization steps for x and y
with xstep=... and ystep=. ...

Input :
plotimplicit (x"2+y"2-1,x,V)
or:
plotimplicit (x"2+y"2-1,x,y,unfactored)
Output :
The unit circle
Input :

plotimplicit (x"2+y"2-1,x%,y,xstep=0.2,ystep=0.3)

or:
plotimplicit (x"2+y"2-1, [x,y],xstep=0.2,ystep=0.3)

or:

plotimplicit (x"2+y"2-1, [x,V],

xstep=0.2,ystep=0.3,unfactored)
Output :

The unit circle
Input :
plotimplicit (x"2+y"2-1,x=-2..2,y=-2..2,
xstep=0.2, ystep=0.3)

Output :

The unit circle

3.10. IMPLICIT GRAPH: PLOTIMPLICIT IMPLICITPLOT 355

3.10.2 3D implicit surface

e plotimplicit (f(x,vy,z),x,y,z) draws the graphic representation
of the surface defined by the implicit equation f(x,y, z) = 0,

e plotimplicit (f(x,y,z),x=0..1,y=—-1..1,z=-1..1) drawsthe
surface defined by the implicit equation f(z,y,2) = 0, where 0 < z < 1,
—-1<y<land -1 <2< 1.

It is possible to add three arguments to specify the discretization steps used for x,
y and z with xstep=...,ystep=... and zstep=....
Input :

plotimplicit (x"2+y"2+z°2-1,x,Vv, 2z,
xstep=0.2,ystep=0.1, zstep=0.3)

Input :
plotimplicit (x"2+y"2+z"°2-1,x,v, 2,
xstep=0.2,ystep=0.1, zstep=0.3,unfactored)
Output :
The unit sphere
Input :

plotimplicit (x"2+y"2+z"2-1,x=-1..1,y=-1..1,z=-1..1)
Output :

The unit sphere

3.10.3 Implicit differentiation : implicitdiff

implicitdiff is called with one of the following three sets of parameters :
1. expr, constr, depvars,diffvars
2. constr, [depvars],y,diffvars
3. expr, constr, vars, order_size=k, [pt]

Details on parameters :

e expr : differentiable expression f(z1, 22, ..., ZTn, Y1,Y2s- - - Ym)

e constr : (list of) equality constraint(s) g;(1,...,Tn,Y1,---,Ym) = 0 or
vanishing expression(s) g;, where: = 1,2,...,m

e depvars : (list of) dependent variable(s) y1,¥2,- - ., Ym, €ach of which

may be entered as a symbol, e.g. v i, or a function of independent variable(s),
e.g. yi(xl,x2,..,xn)

e diffvars : sequence of variables x;,, x;,, ..., x; with respect to which
is expr differentiated

356 CHAPTER 3. GRAPHS

e vars : independent and dependent variables entered as symbols in single
list such that dependent variables come last, e.g. [x1, .., xn,vy1l, .., ym]

e v : (list of) dependent variable(s) y;,, ¥j,, - - -, y5, that need to be differenti-

ated
Dependent variables y1, y2,. .., yn are implicitly defined with m constraints in
constr. By implicit function theorem, the Jacobian matrix of g = (g1, g2, ..., gm)

has to be full rank.

When calling implicitdiff, first two sets of parameters are used when
specific partial derivative is needed. In the first case, expr is differentiated with
respectto diffvars.

Input :

implicitdiff (x*y, -2x"3+15x"2xy+11y"3-24y=0,vy (x),x)
Output :
(2+x"3=5+x"2xy+11xy"3-8xy) / (5xx"2+11+y"2-8)

In the second case (elements of) v is differentiated. If v is a list of symbols, a list
dy

containing their derivatives will be returned. The following examples compute =
Input :
implicitdiff (x"2xy+y"2=1,vy, X)
Output :
—24x*y/ (X"242%y)
Input :

implicitdiff ([x"2+y=2z,x+y*z=1], [y(X),z(x)],y,X)

Output :
(=2xxxy-1)/ (y+2)
In the next example, g—g and g—; are computed.
Input :
implicitdiff ([-2x*xz+y"2=1,x"2-exp(x*xz)=y],
[y (x),z(x)],[y,z],%)
Output :

[2xx/ (yxexp (x*z)+1),
(2%x*y—y*z*xexp (X*z) —2z) / (Xxxy*exp (x*z) +x)]

For the third case of input syntax, all partial derivatives of order equal to
order_size, i.e. k, are computed. If £ = 1 they are returned in a single list,
which represents the gradient of expr with respect to independent variables. For
k = 2 the corresponding hessian matrix is returned. When £ > 2, a table with
keys in form [k1,%2,..,kn], where Y ;" | k; = k, is returned. Such key cor-
responds to

ok f
Ot dxk2 ... fuhn

Input :

3.11. PARAMETRIC CURVES AND SURFACES :PLOTPARAM PARAMPLOT DRAWPARM357

fi=xxy*z; g:=-2x"3+15x"2xy+11y"3-24y=0;
implicitdiff(f,qg, [x,z,y],order_size=1)

Output :
[(2%xX"3%x2=5%xx"2xy*z2+11xy"3%z2—-8*y*z)/ (5xx"2+11xy"2-8),
X*V]
Input :
implicitdiff(f,g,order_size=2,[1,-1,0])
Output :

[(64/9,-2/31,[-2/3,0]]

In the next example, the value of % is computed at point (z = 0,y = 0, 2).
Input :

pd:=implicitdiff(f,qg, [x,2z,y],order_size=4,[0,z,0]);
pd[4,0]

Output :

—2%Z

3.11 Parametric curves and surfaces: plotparam paramplot
DrawParm

3.11.1 2D parametric curve

plotparam([f(t),g(t)],t) or plotparam (f (t)+ixg(t),t) (resp.
plotparam (f (t)+ixg(t),t=t1l..t2)) draws the parametric representa-
tion of the curve defined by x = f(t),y = g(t) with the default range of values of
t (resp. for t1 <t < t2).

The default range of values is taken as specified in the graphic configuration (t -
and t+, cf. ??). plotparam accepts an optional argument to specify the dis-
cretization step for £ with t step=.

Input :

plotparam(cos (x)+i*xsin (x), x)
or :

plotparam([cos (x),sin(x)],x)
Output :

The unit circle
If in the graphic configuration t goes from -4 to 1, input :
plotparam(sin(t)+ixcos (t))

or:

358 CHAPTER 3. GRAPHS

plotparam(sin(t)+i*xcos(t),t=-4..1)
or:

plotparam(sin(x)+i*xcos (x),x=-4..1)
Output :

the arc (sin(-4)+i*cos(—-4),sin(l)+ixcos(1l)) of the
unit circle

If in the graphic configuration t goes from -4 to 1, input :
plotparam(sin(t)+ixcos(t),t,tstep=0.5)
or :
plotparam(sin(t)+i*xcos(t),t=-4..1,tstep=0.5)
Output :

A polygon approaching the arc
(sin(—-4)+i*cos(—-4),sin(l)+i*cos (1)) of the unit circle

3.11.2 3D parametric surface: plotparam paramplot DrawParm

plotparam takes two main arguments, a list of three expressions of two vari-
ables and the list of these variable names where each variable name may be re-
placed by variable=interval to specify the range of the parameters. It accepts an
optional argument to specify the discretization steps of the parameters u and v
with ustep=... and vstep=. ...
plotparam([f(u,v),g(u,v),h(u,v)], [u,v]) draws the surface de-
fined by the first argument : =z = f(u,v),y = g(u,v),z = h(u,v), where u
and v ranges default to the graphic configuration.

Input :

plotparam([v*cos (u),vxsin(u),v], [u,Vv])
Output :
The cone x =v*cos(u),y =v*sin(u),z =v

To specify the range of each parameters, replace each variable by an equation vari-
able=range, like this:

plotparam([v*cos (u),vxsin(u),v], [u=0..pi,v=0..31)
Output :
A portion of the cone x=wvxcos(u),y =vx*sin(u),z="v

Input :

plotparam([v*cos (u),vxsin(u),v], [u=0..pi,v=0..3],ustep=0.5,vstep=0.5)
Output :

A portion of the cone x=wvx*cos(u),y =vx*sin(u),z="v

3.12. CURVE DEFINED IN POLAR COORDINATES :PLOTPOLAR POLARPLOT DRAWPOL COURBE_POLZ

3.12 Curve defined in polar coordinates : plotpolar
polarplot DrawPol courbe_polaire

Let E; be an expression depending on the variable .

plotpolar (F;, t) draws the polar representation of the curve defined by p =
E, for 6 = t, that is in cartesian coordinates the curve (E; cos(t), Fysin(t)). The
range of the parameter may be specified by replacing the second argument by
t=tmin..tmax. The discretization parameter may be specified by an optional
tstep=... argument.

Input

plotpolar (t,t)
Output :
The spiral p=t is plotted
Input
plotpolar (t,t,tstep=1)
or:
plotpolar(t,t=0..10,tstep=1)

Output :

A polygon line approaching the spiral p=t is plotted

3.13 Graphof arecurrent sequence: plotseqg segplot
graphe_suite

Let f(z) be an expression depending on the variable = (resp. f(t) an expression
depending on the variable t).

plotseq(f(z),a,n) (resp. plotseq(f(t), t=a, n)) draws the line y = x,
the graph of y = f(z) (resp. y = f(t)) and the n first terms of the recurrent
sequence defined by : ugp = a, u, = f(u,—1). The a value may be replaced by
a list of 3 elements, [a,z_,x] where z_..z will be passed as z range for the
graph computation.

Input :

plotseqg(sgrt (1+x),x=[3,0,5],5)
Output :

the graph of y=sqrt (1+x), of y=x and of the 5 first
terms of the sequence u_0=3 and u_n=sqgrt (l+u_(n-1))

360 CHAPTER 3. GRAPHS

3.14 Tangent field : plotfield fieldplot

e Let f(t,y) be an expression depending on two variables ¢ and y, then :
plotfield (f(t,y), [t,y])

draws the tangent field of the differential equation y' = f(¢,y) where y is a
real variable and where ¢ is the abscissa,

e Let IV be a vector of two expressions depending on 2 variables x, y but inde-
pendent of the time ¢, then

plotfield (v, [x,v])

draws the vector field V,

e The range of values of ¢,y or of =, y can be specified with
t=tmin..tmax, x=xmin..xmax, y=ymin..ymax
in place of the variable name.

e The discretization may be specified with optional arguments xstep=. . .,
ystep=....

Input :
plotfield(4xsin(txy), [t=0..2,y=-3..71])
Output :

Segments with slope 4xsin(t*xy), representing tangents,
are plotting in different points

With two variables x, ¥, input :

plotfield (5+[-y,x], [x=—1..1,y=—-1..11])

3.15 Plotting a solution of a differential equation : plotode
odeplot

Let f(t,y) be an expression depending on two variables ¢ and y.

e plotode (f(t,y), [t,y], [t0,y0]) draws the solution of the differen-
tial equation ' = f(¢,y) crossing through the point (t0,y0) (i.e. such

that y(to) = yo)

e By default, ¢ goes in both directions. The range of value of ¢ may be specified
by the optional argument t=tmin. .tmax.

e We can also represent, in the space or in the plane, the solution of a differ-
ential equation y' = f(¢,y) where y = (X,Y) is a vector of size 2. Just
replace y by the variable names X, Y and the initial value yo by the two
initial values of the variables at time %.

3.16. INTERACTIVE PLOTTING OF SOLUTIONS OF A DIFFERENTIAL EQUATION : INTERACTIVE_PLO'

Input :
plotode (sin(txy), [t,y], [0,1])
Output :
The graph of the solution of y’=sin(t,y) crossing through the point (0,1)
Input :

S:=odeplot ([h-0.3xh*p, 0.3xh*p-pl,
(t,h,p],[0,0.3,0.7])

Output, the graph in the space of the solution of :
[h,p]' = [h —0.3h xp,0.3h xp —p| [h,p](0) = [0.3,0.7]
To have a 2-d graph (in the plane), use the option plane

S:=odeplot ([h-0.3xh*p, 0.3xh*p-pl,
[t,h,p], [0,0.3,0.7],plane)

To compute the values of the solution, see the section ??.

3.16 Interactive plotting of solutions of a differential equa-
tion: interactive_plotode interactive_odeplot

Let f(t,y) be an expression depending on two variables ¢ and y.
interactive_plotode (f(t,y), [t,y]) draws the tangent field of the dif-
ferential equation y' = f(¢,y) in a new window. In this window, one can click on
a point to get the plot of the solution of ' = f (¢, y) crossing through this point.
You can further click to display several solutions. To stop press the Esc key.
Input :

interactive_plotode (sin(txy), [t,v])
Output :

The tangent field is plotted with the solutions of
y’=sin(t,y) crossing through the points defined by
mouse clicks

3.17 Animated graphs (2D, 3D or ''4D"")

Xcas can display animated 2D, 3D or "4D" graphs. This is done first by computing
a sequence of graphic objects, then after completion, by displaying the sequence in
a loop.

e To stop or start again the animation, click on the button »| (at the left of
Menu).

e The display time of each graphic object is specified in animate of the graph
configuration (c£g button). Put a small time, to have a fast animation.

e If animate is 0, the animation is frozen, you can move in the sequence of
objects one by one by clicking on the mouse in the graphic scene.

362 CHAPTER 3. GRAPHS

3.17.1 Animation of a 2D graph : animate

animate can create a 2-d animation with graphs of functions depending on a pa-
rameter. The parameter is specified as the third argument of animate, the number
of pictures as fourth argument with £ rame s=number, the remaining arguments are
the same as those of the plot command, see section 3.3, p. 346.

Input :

animate (sin(a*x),x=-pi..pi,a=-2..2,frames=10,color=red)
Output :

a sequence of graphic representations of y=sin(ax) for
11 values of a between -2 and 2

3.17.2 Animation of a 3D graph : animate3d

animate3d can create a 3-d animation with function graphs depending on a pa-
rameter. The parameter is specified as the third argument of animate3d, the
number of pictures as fourth argument with f rame s=number, the remaining ar-
guments are the same as those of the plot func command, see section 3.2.2, p.
344,

Input :

animate3d (x"2+a*xy"2, [x=-2..2,y=-2..2],a=-2..2,
frames=10,display=red+filled)

Output :

a sequence of graphic representations of z=x"2+taxy"2
for 11 values of a between -2 and 2

3.17.3 Animation of a sequence of graphic objects : animation

animation animates the representation of a sequence of graphic objects with
a given display time. The sequence of objects depends most of the time on a
parameter and is defined using the seq command but it is not mandatory.
animation takes as argument the sequence of graphic objects.

To define a sequence of graphic objects with seq, enter the definition of the graphic
object (depending on the parameter), the parameter name, its minimum value, its
maximum value maximum and optionally a step value.

Input :

animation (seq(plotfunc(cos (a*x),x),a,0,10))
Output :

The sequence of the curves defined by y = cos(azx), for
a=0,1,2.10

Input :

3.17. ANIMATED GRAPHS (2D, 3D OR "4D") 363

animation (seq(plotfunc(cos(a*x),x),a,0,10,0.5))

or:
animation (seqg(plotfunc(cos(a*x),x),a=0..10,0.5))
Output :
The sequence of the curves defined by y = cos(az), for
a=0,0.5,1,1.5..10
Input :

animation (seqg(plotfunc([cos (a*x),sin(axx)],x=0..2%pi/a),
a,1,10))

Output :

The sequence of two curves defined by y = cos(az) and
y =sin(az), for a=1.10 and for z=0.27/a

Input :

animation (seqg(plotparam([cos (axt),sin(a*t)],
t=0..2xpi),a,1,10))

Output :

The sequence of the parametric curves defined by
x = cos(at) and y =sin(at), for a=1..10 and for t=0.27

Input :

animation (seqg(plotparam([sin(t),sin(a*xt)],
t,0,2+pi,tstep=0.01),a,1,10))

Output :

The sequence of the parametric curves defined by
x =sin(t),y = sin(at), for a=0.10 and t=0.27

Input :
animation (seqg(plotpolar (1-ax0.01xt"2,
t,0,5%pi, tstep=0.01),a,1,10))
Output :
The sequence of the polar curves defined by
p=1—ax0.01%t?, for a=0.10 and t=0.57
Input :

plotfield(sin(xx*y), [x,v]);
animation (seqg(plotode (sin(x*y), [x,v],[0,a]l),a,-4,4,0.5))

364 CHAPTER 3. GRAPHS

Output :

The tangent field of y’=sin(xy) and the sequence of
the integral curves crossing through the point (0,a) for
a=-4,-3.5...3.5,4

Input :

animation (seq(display (square (0,1+ixa),filled),a,-5,5))

Output :
The sequence of the squares defined by the points 0
and 1+i*a for a= —5..5
Input :
animation (seq(droite([0,0,01,[1,1,al),a,-5,5))
Output :
The sequence of the lines defined by the points
[0,0,0] and [1,1,a] for a= —5..5
Input :
animation (seqg(plotfunc(x*2-y*a, [x,y]),a=1..3))
Output :

The sequence of the "3D" surface defined by x2—y“, for
a=1..3 with rainbow colors

Input :

animation (seqg(plotfunc((x+ix*y)*a, [x,V],
display=filled),a=1..10)

Output :

The sequence of the "4D" surfaces defined by (z+ix*xy)?,
for a=0..10 with rainbow colors

Remark We may also define the sequence with a program, for example if we
want to draw the segments of length 1, v/2...4/20 constructed with a right triangle
of side 1 and the previous segment (note that thereisa c:=evalf (..) statement
to force approx. evaluation otherwise the computing time would be too long) :

seg(n) :={

local a,b,c, j,aa,bb,L;
a:=1;

b:=1;

L:=[point (1)1,
for(j:=1; j<=n; j++) {
:=append (L, point (at+ixb));

3.17. ANIMATED GRAPHS (2D, 3D OR "4D") 365

c:=evalf (sgrt (a”2+b"2));
aa:=a;
bb:=b;
a:=aa-bb/c;
b:=bb+aa/c;
}
L;
}

Then input :
animation (seg(20))

We see, each point, one to one with a display time that depends of the animate
value in cfg.
or:

:=seg (20); s:=segment (0,L[k])S$(k=0..20)

We see 21 segments.
Then, input :

animation (s)

We see, each segment, one to one with a display time that depends of the animate
value in cfgq.

366 CHAPTER 3. GRAPHS

Chapter 4

Numerical computations

Real numbers may have an exact representation (e.g. rationals, symbolic expres-
sions involving square roots or constants like m, ...) or approximate representation,
which means that the real is represented by a rational (with a denominator that
is a power of the basis of the representation) close to the real. Inside Xcas, the
standard scientific notation is used for approximate representation, that is a man-
tissa (with a point as decimal separator) optionally followed by the letter e and an
integer exponent.

Note that the real number 10~# is an exact number but 1e —4 is an approximate
representation of this number.

4.1 Floating point representation.

In this section, we explain how real numbers are represented.

4.1.1 Digits

The Digits variable is used to control how real numbers are represented and also
how they are displayed. When the specified number of digits is less or equal to 14
(for example Digits:=14), then hardware floating point numbers are used and
they are displayed using the specified number of digits. When Digits is larger
than 14, Xcas uses the MPFR library, the representation is similar to hardware
floats (cf. infra) but the number of bits of the mantissa is not fixed and the range of
exponents is much larger. More precisely, the number of bits of the mantissa of a
created MPFR floatis ceil (Digits*log(10)/log(2)).

Note that if you change the value of Digits, this will affect the creation of
new real numbers compiled from command lines or programs or by instructions
like approx, but it will not affect existing real numbers. Hence hardware floats
may coexist with MPFR floats, and even in MPFR floats, some may have 100 bits
of mantissa and some may have 150 bits of mantissa. If operations mix different
kinds of floats, the most precise kind of floats are coerced to the less precise kind
of floats.

367

368 CHAPTER 4. NUMERICAL COMPUTATIONS

4.1.2 Representation by hardware floats
A real is represented by a floating number d, that is
d=2%+(14+m), 0<m<1,-2"<a<2®

Ifa >1—210 thenm > 1 /2, and d is a normalized floating point number,
otherwise d is denormalized (o = 1 — 2'Y). The special exponent 2!V is used to
represent plus or minus infinity and NaN (Not a Number). A hardware float is
made of 64 bits:

o the first bit is for the sign of d (0 for +” and 1 for ’-")

o the 11 following bits represents the exponent, more precisely if « denotes
the integer from the 11 bits, the exponent is o + 29 — 1,

o the 52 last bits codes the mantissa m, more precisely if M denotes the integer
from the 52 bits, then m = 1/2 + M /253 for normalized floats and m =
M /23 for denormalized floats.

Examples of representations of the exponent:

e a=0iscodedby 011 1111 1111

e o = 11is coded by 100 0000 0000

e o = 41is coded by 100 0000 0011

e o = His coded by 100 0000 0100

e oo =—1liscodedby 011 1111 1110

e o= —4iscoded by 011 1111 1011

e a = —biscoded by 011 1111 1010

e o =2"0iscoded by 111 1111 1111

e a =271 1is coded by 000 0000 000

Remark: 2752 = (0.2220446049250313¢ — 15

4.1.3 [Examples of representations of normalized floats

e 3.1:
‘We have :

1 1 1
5 2*5 ﬁ‘i‘?‘i‘ﬁ%—....)
1 o, 1 1
= 2x(1+ 5T 2(24*k+1 + 24*k+2))
k=1

1 1
31 = 2x(14+=+4—+

hence « = land m = § + 220:1(24%“ + 24++2) Hence the hexadecimal
and binary representation of 3.1 is:

4.1. FLOATING POINT REPRESENTATION. 369

40 (01000000), 8 (00001000), cc (11001100), cc (11001100),
cc (11001100), cc (11001100), cc (11001100), cd (11001101),

the last octet is 1101, the last bit is 1, because the following digit is 1 (upper
rounding).

e 3.:
We have 3 = 2x(1+1/2). Hence the hexadecimal and binary representation
of 3 is:

40 (01000000), 8 (00001000), O (0O0OOOOOCOO), O (00O0O00000),
0 (00000000), O (0O0O0OOOOCOCO), O (00O0O00000), O (00000000)

4.1.4 Difference between the representation of (3.1-3) and of 0.1

e representation of 0.1 :
We have :

o0

1 1 1 1 1 1 1
— o4 =274 —
k=0

hence« = 1andm = %—i— Yoy (24% + 24++1) therefore the representation
of 0.1 is

3f (00111111), b9 (10111001), 99 (10011001), 99 (10011001),
99 (10011001), 99 (10011001), 99 (10011001), 9a (10011010),

the last octet is 1010, indeed the 2 last bits 01 became 10 because the fol-
lowing digit is 1 (upper rounding).

e representation of a:=3.1-3 :
Computing a is done by adjusting exponents (here nothing to do), then sub-
tract the mantissa, and adjust the exponent of the result to have a normalized
float. The exponent is & = —4 (that corresponds at 2 + 27°) and the bits cor-
responding to the mantissa begin at 1/2 = 2 % 27 : the bits of the mantissa
are shifted to the left of 5 positions and we have :

3f (00111111), bS (10111001), 99 (10011001), 99 (10011001),
99 (10011001), 99 (10011001), 99 (10011001), 9%9a (10100000),

Therefore @ > 0.1 and a — 0.1 = 1/2°0 4 1/25! (since 100000-11010=110)

Remark
This is the reason why

floor(1/(3.1-3))

returns 9 and not 10 when Digits:=14.

370 CHAPTER 4. NUMERICAL COMPUTATIONS

4.2 Approx. evaluation : evalf approxandDigits

evalf or approx evaluates to a numeric approximation (if possible).
Input :

evalf (sqrt (2))

Output, if in the cas configuration (Cfg menu) Digits=7 (that is hardware
floats are used, and 7 digits are displayed) :

1.414214

You can change the number of digits in a command line by assigning the variable
DIGITS orDigits. Input:

DIGITS:=20

evalf (sgrt (2))

Output :
1.4142135623730950488
Input :
evalf (107-5)
Output :
le-05
Input :
evalf (10715)
Output :
le+15
Input :
evalf (sgrt (2))=10"-5
Output :

1.41421356237e-05

4.3. NUMERICAL ALGORITHMS 371

4.3 Numerical algorithms

4.3.1 Approximate solution of an equation : newton

newton takes as arguments : an expression ex, the variable name of this ex-
pression (by default x), and three values a (by default a=0), eps (by default
eps=1le-8)and nbiter (by default nbiter=12).

newton (ex, x,a,eps,nbiter) computes an approximate solution x of the
equation ex=0 using the Newton algorithm with starting point x=a. The maxi-
mum number of iterations is nbiter and the precision is eps.

Input :

newton (x"2-2,x,1)

Output :

1.41421356237
Input :

newton (x"2-2,x,-1)

Output :

-1.41421356237
Input :

newton (cos (x) -x, %X, 0)

Output :

0.739085133215

4.3.2 Approximate computation of the derivative number : nDeriv

nDeriv takes as arguments : an expression ex, the variable name of this expres-
sion (by default x), and h (by default h=0.001).

nDeriv (ex, x, h) computes an approximated value of the derivative of the ex-
pression ex at the point x and returns :

(f (x+h) -f (x+h)) /2xh

Input :
nDeriv(x"2, xX)
Output :
((x+0.001)"2-(x+-0.001)"2)*500.0
Input :

subst (nDeriv (x"2, x),x=1)

Output :

372 CHAPTER 4. NUMERICAL COMPUTATIONS

2
Input :
nDeriv (exp (x” 2),x,0.00001)
Output :
(exp ((xt1le-05)"2) —exp ((x+-1e-05)"2))x50000
Input :
subst (exp (nDeriv(x" 2),x,0.00001),x=1)

Output :

5.43656365783

which is an approximate value of 2e=5.43656365692.

4.3.3 Approximate computation of integrals : romberg nInt

romberg or nInt takes as arguments : an expression ex, the variable name of
this expression (by default x), and two real values a, b.

romberg (ex, x,a,b) ornInt (ex, x, a,b) computes an approximated value
of the integral fab ex dx using the Romberg method. The integrand must be suffi-
ciently regular for the approximation to be accurate. Otherwise, romberg returns
a list of real values, that comes from the application of the Romberg algorithm (the
first list element is the trapezoid rule approximation, the next ones come from the
application of the Euler-MacLaurin formula to remove successive even powers of
the step of the trapezoid rule).

Input :

romberg (exp (x°2) ,%x,0,1)
Output :
1.46265174591

4.3.4 Approximate solution of y’=f(t,y) : odesolve

e Let f be a function from R? to R.
odesolve (f(t,y), [t,y], [t0,y0],tl) or
odesolve (f(t,y),t=t0..tl,vy,vy0) or
odesolve (t0..tl1,f,vy0) or
odesolve (£0..t1, (t,y)—>f(t,vy),y0)
returns an approximate value of y(¢1) where y(t) is the solution of:

y,<t> - f(tvy(t))v y(tO) =0

e odesolve accepts an optional argument for the discretization of t (t step=value).
This value is passed as initial tstep value to the numeric solver from the GSL
(Gnu Scientific Library), it may be modified by the solver. It is also used to
control the number of iterations of the solver by 2+ (t1-t0) /tstep (if
the number of iterations exceeds this value, the solver will stops at a time
t < tl).

4.3. NUMERICAL ALGORITHMS 373

e odesolve accepts curve as an optional argument. In that case, odesolve
returns the list of all the [, [y(¢)]] values that were computed.

Input :
odesolve (sin(t*y), [t,y], [0,1],2)
or:
odesolve (sin(t*y),t=0..2,vy,1)
or:

odesolve (0..2, (t,y)—>sin(txy), 1)
or define the function :

f(t,y):=sin(t*y)

and input :
odesolve (0..2,£f,1)

Output :

[1.82241255675]
Input :

odesolve(0..2,f,1,tstep=0.3)

Output :

[1.82241255675]
Input :

odesolve (sin(t*y),t=0..2,y,1,tstep=0.5)

Output :

[1.82241255675]
Input :

odesolve (sin(t*y),t=0..2,vy,1,tstep=0.5,curve)

Output :

[[0.760963063136, [1.30972370515]11,[1.39334557388,[1.86417104853]111

374 CHAPTER 4. NUMERICAL COMPUTATIONS

4.3.5 Approximate solution of the system v’=f(t,v) : odesolve

e If v is a vector of variables [x1, .., zn] and if f is given by a vector of expres-
sions [el, ...,en] depending on ¢ and of [z1, .., xn], if the initial value
of v at t 0 is the vector [z10, ..., zn0] then the instruction

odesolve([el,..,en],t=t0..t1, [x1,...,xn],
[x10,...,xn0])

returns an approximated value of v at ¢ = ¢t1. With the optional argument
curve, odesolve returns the list of the intermediate values of [¢,v(t)]
computed by the solver.

Example, to solve the system

(1) = ()
y(t) = x(t)
Input :
odesolve ([-y,x],t=0..pi, [x,v], [0,1])
Output :

[-1.79045146764e-15,-1]

e If f is a function from R x R” to R".
odesolve (t0..tl, (t,v)->f(t,v),v0) or
odesolve (t0..tl, £f,v0)
computes an approximate value of v(¢1) where the vector v(¢) in R™ is the
solution of

V'(t) = f(t,v(t)),v(t0) = v0

With the optional argument curve, odesolve returns the list of the inter-
mediate value [¢, v(¢)] computed by the solver.

Example, to solve the system :

Input :
odesolve (0. .pi, (t,v)—>[-vI[1],vI[0]],[0,11)
Or define the function:
f(t,v):=[-v[1],vI[O0]]

then input :

4.4. SOLVE EQUATIONS WITH FSOLVE NSOLVE 375

odesolve(0..pi, £, [0,1])
Output :
[-1.79045146764e-15,-1]
Alternative input :
odesolve (0..pi/4,£f,[0,1], curve)
Output :

[[0.1781,([-0.177159948386,0.98418207293611,
[0.3781,[-0.369155338156,0.92936770780511,
[0.5781,[-0.54643366953,0.837502384954]1,
[0.7781,[-0.701927414872,0.712248484906]11

4.4 Solve equations with fsolve nSolve

fsolve or nSolve solves numeric equations (unlike solve or proot, itis not
limited to polynomial equations) of the form:

f(x)=0, z€la,b|

fsolve or nSolve accepts a last optional argument, the name of an iterative
algorithm to be used by the GSL solver. The different methods are explained in the
following section.

44.1 fsolve or nSolve with the option bisection_solver

This algorithm of dichotomy is the simplest but also generically the slowest. It
encloses the zero of a function on an interval. Each iteration, cuts the interval into
two parts. We compute the middle point value. The function sign at this point,
gives us the half-interval on which the next iteration will be performed.

Input :

fsolve((cos(x))=x,x,-1..1,bisection_solver)
Output :
[0.739085078239,0.739085137844]

44.2 fsolve or nSolve with the option brent_solver

The Brent method interpolates of f at three points, finds the intersection of the
interpolation with the x axis, computes the sign of f at this point and chooses the
interval where the sign changes. It is generically faster than bisection.

Input :

fsolve ((cos(x))=x,x,-1..1,brent_solver)
Output :
[0.73908513321 5,0.739085133215]

376 CHAPTER 4. NUMERICAL COMPUTATIONS

443 fsolve or nSolve with the option falsepos_solver

The "false position" algorithm is an iterative algorithm based on linear interpolation
: we compute the value of f at the intersection of the line (a, f(a)), (b, f(b)) with
the x axis. This value gives us the part of the interval containing the root, and on
which a new iteration is performed.

The convergence is linear but generically faster than bisection.

Input :

fsolve((cos(x))=x,x,-1..1,falsepos_solver)
Output :
[0.739085133215,0.739085133215]

44.4 fsolve or nSolve with the option newton_solver

newton_solver is the standard Newton method. The algorithm starts at an
initial value z(, then we search the intersection ; of the tangent at zq to the graph
of f, with the z axis, the next iteration is done with x; instead of xy. The z;
sequence is defined by

f(@n)

Ty = Lo, Tp4+l = Tn — f/(l‘)
n

If the Newton method converges, it is a quadratic convergence for roots of multi-
plicity 1.
Input :

fsolve ((cos (x))=x,x,0,newton_solver)

Output :
0.739085133215

4.4.5 fsolve or nSolve with the option secant_solver

The secant method is a simplified version of the Newton method. The computation
of x1 is done using the Newton method. The computation of f/(z,),n > 1 is
done approximately. This method is used when the computation of the derivative
is expensive:

f(xz)

o= s — p_ f@i) = f(@ie1)
Ti+1l = T4 ést) fest - (fL‘z — wz’—l)
The convergence for roots of multiplicity 1 is of order (1 + v/5)/2 ~ 1.62....
Input :

fsolve((cos(x))=x,x%x,-1..1,secant_solver)
Output :
[0.739085078239,0.739085137844]
Input :
fsolve ((cos (x))=x,x,0,secant_solver)
Output :

0.739085133215

4.5. SOLVE SYSTEMS WITH FSOLVE 377

4.4.6 fsolve or nSolve with the option steffenson_solver

The Steffenson method is generically the fastest method.

It combines the Newton method with a "delta-two" Aitken acceleration : with the
Newton method, we obtain the sequence x; and the convergence acceleration gives
the Steffenson sequence

R; = x; — ($i+1 - xz‘)Q
(Tiyo — 2541 + 4)
Input :
fsolve (cos (x)=x,x,0,steffenson_solver)
Output :

0.739085133215

4.5 Solve systems with fsolve
Xcas provides six methods (inherited from the GSL) to solve numeric systems of
equations of the form f(z) = 0:

e Three methods use the jacobian matrix f’(z) and their names are terminated
with j_solver.

e The three other methods use approximation for f/(x) and use only f.
All methods use an iteration of Newton kind
Tn+l = Tn — f,(lin)il * f(zn)

The four methods hybridx_solver use also a method of gradient descent when
the Newton iteration would make a too large step. The length of the step is com-
puted without scaling for hybrid_solver and hybridj_solver or with
scaling (computed from f/(z,,)) forhybrids_solverandhybridsj_solver.

4.5.1 fsolve with the option dnewton_solver
Input :
fsolve ([x"2+y-2,x+ty"2-2],[x,vy],[2,2],dnewton_solver)

Output :
[1.0,1.0]

4.5.2 fsolve with the option hybrid_solver
Input :
fsolve ([x"2+y—-2,x+y"2-2],[x,v],[2,2],
cos (x)=x,x%x,0,hybrid_solver)
Output :
[1.0,1.0]

378 CHAPTER 4. NUMERICAL COMPUTATIONS

4.5.3 fsolve with the option hybrids_solver
Input :

fsolve ([x"2+ty—-2,x+y"2-2],[x,v],[2,2],hybrids_solver)
Output :

[1.0,1.0]

454 fsolve with the option newtonj_solver
Input :

fsolve ([x"2+y-2,x+ty"2-2],[x,y],[0,0],newton]j_solver)
Output :

[1.0,1.0]

4.5.5 fsolve with the option hybridj_solver
Input :

fsolve ([x"2+y-2,x+y~2-21, [x,v], [2,2],hybridj_solver)
Output :

[1.0,1.0]

4.5.6 fsolve with the option hybridsj_solver
Input :

fsolve ([x"2+y-2,x+y~2-21, [%,v], [2,2],hybridsj_solver)
Output :

[1.0,1.0]

4.6 Numeric roots of a polynomial : proot

proot takes as argument a squarefree polynomial, either in symbolic form or as a
list of polynomial coefficients (written by decreasing order).

proot returns a list of the numeric roots of this polynomial.

To find the numeric roots of P(z) = 3 + 1, input :

proot ([1,0,0,11)
or:
proot (x"3+1)

Output :

4.7. NUMERIC FACTORIZATION OF A MATRIX : CHOLESKY QR LU SVD379

[0.540.866025403784%1,0.5-0.866025403784%1,-1.0]
To find the numeric roots of 2> — 3, input :
proot ([1,0,-31)
or:
proot (x°2-3)
Output :

[1.73205080757,-1.73205080757]

4.7 Numeric factorization of a matrix : cholesky gr
lu svd

Matrix numeric factorizations of
e Cholesky,
e QR,
o LU,
e svd,

are described in section 2.49.

380 CHAPTER 4. NUMERICAL COMPUTATIONS

Chapter 5

Unit objects and physical
constants

The Phys menu contains:
e the physical constants (Constant sub-menu),
e the unit conversion functions (Unit_convert sub-menu),
e the unit prefixes (Unit_prefix sub-menu)

e the unit objects organized by subject

5.1 Unit objects

5.1.1 Notation of unit objects

A unit object has two parts : a real number and a unit expression (a single unit or
a multiplicative combination of units). The two parts are linked by the character _
("underscore"). For example 2_m for 2 meters. For composite units, parenthesis
must be used, e.g. 1_ (mxs).

If a prefix is put before the unit then the unit is multiplied by a power of 10. For
example k or K for kilo (indicate a multiplication by 10%), D for deca (indicate a
multiplication by 10), d for deci (indicate a multiplication by 10~ !) etc...

Input :

10.5_m
Output :
a unit object of value 10.5 meters
Input :
10.5_km
Output :

a unit object of value 10.5 kilometers

381

382 CHAPTER 5. UNIT OBJECTS AND PHYSICAL CONSTANTS

5.1.2 Computing with units

Xcas performs usual arithmetic operations (+, -, ¥, /, *) on unit objects. Different
units may be used, but they must be compatible for + and -. The result is an unit
object

e for the multiplication and the division of two unit objects _ul and _u2 the
unit of the result is written _ (ul+u2) or _ (ul/u2).

o for an addition or a subtraction of compatible unit objects, the result is ex-
pressed with the same unit as the first term of the operation.

Input :
1 m+100_cm
Output :
2_m
Input :
100_cm+1_m
Output :
200_cm
Input :
1_m+x100_cm
Output :
1 _m"2

5.1.3 Convert units into MKSA units : mksa

mksa converts a unit object into a unit object written with the compatible MKSA
base unit.
Input :

mksa (15_C)

Output :

15 (s+*A)

5.1. UNIT OBJECTS 383

5.1.4 Convert units : convert

convert convert units : the first argument is an unit object and the second argu-
ment is the new unit (which must be compatible).

Input :
convert (1_h,_s)
Output :
3600_s
Input :
convert (3600_s,_h)
Output :

5.1.5 Factorize a unit : ufactor

ufactor factorizes a unit in a unit object : the first argument is a unit object and
the second argument is the unit to factorize.

The result is an unit object multiplied by the remaining MKSA units.

Input :

ufactor (3_J,_W)

Output :
3 _(Wxs)
Input :
ufactor (3_W,_J)
Output :

3_(J/s)

5.1.6 Simplify a unit : usimplify

usimplify simplifies a unit in an unit object.
Input :

usimplify (3_ (Wxs))

Output :

384 CHAPTER 5. UNIT OBJECTS AND PHYSICAL CONSTANTS

5.1.7 Unit prefixes

You can insert a unit prefix in front of a unit to indicate a power of ten.
The following table gives the available prefixes:

Prefix | Name | (*10") n || Prefix | Name | (*10%) n
Y yota 24 || d deci -1
Z zeta 21 || c cent -2
E exa 18 | m mili -3
P peta 15 || mu micro -6
T tera 12 || n nano -9
G giga 91 p pico -12
M mega 6| f femto -15
korK | kilo 31 a atto -18
horH | hecto 21z zepto -21
D deca 1y yocto -24

Remark
You cannot use a prefix with a built-in unit if the result gives another built-in unit.
For example, 1_a is one are, but 1_Pa is one pascal and not 10" 15_a.

5.2 Constants

5.2.1 Notation of physical constants

If you want to use a physical constants inside Xcas, put its name between two char-
acters __ ("underscore"). Don’t confuse physical constants with symbolic constants,
for example, e, 7 are symbolic constants as _c_, _NA__ are physical constants.
Input :

Output speed of light in vacuum :
299792458_mxs”-1
Input :
NA
Output Avogadro’s number :

6.0221367e23_gmol"-1

5.2.2 Constants Library

The physical constants are in the Phys menu, Constant sub-menu. The follow-
ing table gives the Constants Library :

5.2. CONSTANTS 385
Name Description
NA Avogadro’s number
k. Boltzmann constant
Y Molar volume
R Universal gas constant
StdT Standard temperature
Stdp Standard pressure
sigma Stefan-Boltzmann constant
Cc Speed of light in vacuum
epsilon0 Permitivity of vacuum
mu0 Permeability of vacuum
g Acceleration of gravity
G Gravitational constant
h Planck’s constant
_hbar__ Dirac’s constant
a Electron charge
_me__ Electron rest mass
gme g/me (Electron charge/mass)
mp Proton rest mass
_mpme__ mp/me (proton mass/electron mass)
alpha Fine structure constant
phi Magnetic flux quantum
F Faraday constant
Rinfinity | Rydberg constant
a0 Bohr radius
muB Bohr magneton
muN Nuclear magneton
lambdaO Photon wavelength (ch/e)
fo Photon frequency (e/h)
_lambdac__ Compton wavelength
rad 1 radian
twopi 2*pi radians
angl 180 degrees angle
c3 Wien displacement constant
kqg k/q (Boltzmann/electron charge)
epsilonOqg | epsilon0/q (permitivity /electron charge)
gepsilon0 | g*epsilon0 (electron charge *permitivity)
epsilonsi | Silicium dielectric constant
epsilonox | Bioxyd of silicium dielectric constant
I0 Reference intensity

To have the value of a constant, input the constant name in the command line of
Xcas and evaluate with enter (don’t forget to put _ at the beginning and at the
end of the constant name).

	Index
	The CAS functions
	Symbolic constants : e pi infinity i
	Booleans
	The values of a boolean : true false
	Tests : ==, !=, >, >=, <, =<
	Boolean operators : or xor and not
	Transform a boolean expression to a list : exp2list
	Evaluate booleans : evalb

	Bitwise operators
	Operators bitor, bitxor, bitand
	Bitwise Hamming distance : hamdist

	Strings
	Character and string : "
	First character, middle and end of a string : head mid tail
	Concatenation of a sequence of words : cumSum
	ASCII code of a character : ord
	ASCII code of a string : asc
	String defined by the ASCII codes of its characters : char
	Find a character in a string : inString
	Concat objects into a string : cat
	Add an object to a string : +
	Transform an integer into a string : cat +
	Transform a string into a number : expr

	Write an integer in base b: convert
	Integers (and Gaussian Integers)
	The factorial : factorial
	GCD : gcd igcd
	GCD : Gcd
	GCD of a list of integers : lgcd
	The least common multiple : lcm
	Decomposition into prime factors : ifactor
	List of prime factors : ifactors
	Matrix of factors : maple_ifactors
	The divisors of a number : idivis divisors
	The integer Euclidean quotient : iquo intDiv
	The integer Euclidean remainder : irem remain smod mods mod %
	Euclidean quotient and euclidean remainder of two integers : iquorem
	Test of evenness : even
	Test of oddness : odd
	Test of pseudo-primality : is_pseudoprime
	Test of primality : is_prime isprime isPrime
	The smallest pseudo-prime greater than n : nextprime
	The greatest pseudo-prime less than n : prevprime
	The n-th prime number : ithprime
	Bézout's Identity : iegcd igcdex
	Solving au+bv=c in Z: iabcuv
	Chinese remainders : ichinrem, ichrem
	Chinese remainders for lists of integers : chrem
	Solving a2+b2=p in Z : pa2b2
	The Euler indicatrix : euler phi
	Legendre symbol : legendre_symbol
	Jacobi symbol : jacobi_symbol

	Combinatorial analysis
	Factorial : factorial !
	Binomial coefficients : binomial comb nCr
	Permutations : perm nPr
	Random integers : rand

	Rationals
	Transform a floating point number into a rational : exact float2rational
	Integer and fractional part : propfrac propFrac
	Numerator of a fraction after simplification : numer getNum
	Denominator of a fraction after simplification : denom getDenom
	Numerator and denominator of a fraction : f2nd fxnd
	Simplification of a pair of integers : simp2
	Continued fraction representation of a real : dfc
	Transform a continued fraction representation into a real : dfc2f
	The n-th Bernoulli number : bernoulli
	Access to PARI/GP commands: pari

	Real numbers
	Eval a real at a given precision : evalf and Digits, DIGITS
	Usual infixed functions on reals : +,-,*,/,^
	Usual prefixed functions on reals : rdiv
	n-th root : root
	Error function : erf
	Complementary error function: erfc
	The function : Gamma
	The function : Beta
	Derivatives of the DiGamma function : Psi
	The function : Zeta
	Airy functions : Airy_Ai and Airy_Bi

	Permutations
	Random permutation : randperm
	Decomposition as a product of disjoint cycles : permu2cycles
	Product of disjoint cycles to permutation: cycles2permu
	Transform a cycle into permutation : cycle2perm
	Transform a permutation into a matrix : permu2mat
	Checking for a permutation : is_permu
	Checking for a cycle : is_cycle
	Product of two permutations : p1op2
	Composition of a cycle and a permutation : c1op2
	Composition of a permutation and a cycle : p1oc2
	Product of two cycles : c1oc2
	Signature of a permutation : signature
	Inverse of a permutation : perminv
	Inverse of a cycle : cycleinv
	Order of a permutation : permuorder
	Group generated by two permutations : groupermu

	Complex numbers
	Usual complex functions : +,-,*,/,^
	Real part of a complex number : re real
	Imaginary part of a complex number : im imag
	Write a complex as re(z)+i*im(z) : evalc
	Modulus of a complex number : abs
	Argument of a complex number : arg
	The normalized complex number : normalize unitV
	Conjugate of a complex number : conj
	Multiplication by the complex conjugate : mult_c_conjugate
	Barycenter of complex numbers : barycentre

	Algebraic expressions
	Evaluate an expression : eval
	Evaluate algebraic expressions : evala
	Prevent evaluation : quote hold '
	Force evaluation : unquote
	Distribution : expand fdistrib
	Canonical form : canonical_form
	Multiplication by the conjugate quantity : mult_conjugate
	Separation of variables : split
	Factorization : factor
	Complex factorization : cFactor
	Zeros of an expression : zeros
	Complex zeros of an expression : cZeros
	Normal form : normal
	Simplify : simplify
	Normal form for rational fractions : ratnormal
	Substitute a variable by a value : subst
	Substitute a variable by a value (Maple and Mupad compatibility) : subs
	Evaluate a primitive at boundaries: preval
	Sub-expression of an expression : part

	Values of un
	Array of values of a sequence : tablefunc
	Table of values and graph of a recurrent sequence : tableseq and plotseq

	Operators or infixed functions
	Usual operators :+, -, *, /, ^
	Xcas operators
	Define an operator: user_operator

	Functions and expressions with symbolic variables
	The difference between a function and an expression
	Transform an expression into a function : unapply
	Top and leaves of an expression : sommet feuille op

	Functions
	Context-dependent functions.
	Usual functions
	Defining algebraic functions
	Composition of two functions: @
	Repeated function composition: @@
	Define a function with the history : as_function_of

	Derivation and applications.
	Functional derivative : function_diff
	Length of an arc : arcLen
	Maximum and minimum of an expression: fMax fMin
	Table of values and graph : tablefunc and plotfunc
	Derivative and partial derivative

	Integration
	Antiderivative and definite integral : integrate int Int
	Discrete summation: sum
	Riemann sum : sum_riemann
	Integration by parts : ibpdv and ibpu
	Change of variables : subst

	Limits
	Limits : limit
	Integral and limit

	Rewriting transcendental and trigonometric expressions
	Expand a transcendental and trigonometric expression : texpand tExpand
	Combine terms of the same type : combine

	Trigonometry
	Trigonometric functions
	Expand a trigonometric expression : trigexpand
	Linearize a trigonometric expression : tlin
	Put together sine and cosine of the same angle : tcollect tCollect
	Simplify : simplify
	Transform arccos into arcsin : acos2asin
	Transform arccos into arctan : acos2atan
	Transform arcsin into arccos : asin2acos
	Transform arcsin into arctan : asin2atan
	Transform arctan into arcsin : atan2asin
	Transform arctan into arccos : atan2acos
	Transform complex exponentials into sin and cos : sincos exp2trig
	Transform tan(x) into sin(x)/cos(x) : tan2sincos
	Rewrite tan(x) with sin(2x) and cos(2x) : tan2sincos2
	Rewrite tan(x) with cos(2x) and sin(2x) : tan2cossin2
	Rewrite sin, cos, tan in terms of tan(x/2) : halftan
	Rewrite trigonometric functions as function of tan(x/2) and hyperbolic functions as function of exp(x): halftan_hyp2exp
	Transform inverse trigonometric functions into logarithms : atrig2ln
	Transform trigonometric functions into complex exponentials : trig2exp
	Simplify and express preferentially with sine : trigsin
	Simplify and express preferentially with cosine : trigcos
	Simplify and express preferentially with tangents : trigtan
	Rewrite an expression with different options : convert convertir

	Fourier transformation
	Fourier coefficients : fourier_an and fourier_bn or fourier_cn
	Discrete Fourier Transform
	Fast Fourier Transform : fft
	Inverse Fast Fourier Transform : ifft
	An exercise with fft

	Exponentials and Logarithms
	Rewrite hyperbolic functions as exponentials : hyp2exp
	Expand exponentials : expexpand
	Expand logarithms : lnexpand
	Linearize exponentials : lin
	Collect logarithms : lncollect
	Expand powers : powexpand
	Rewrite a power as an exponential : pow2exp
	Rewrite exp(n*ln(x)) as a power : exp2pow
	Simplify complex exponentials : tsimplify

	Polynomials
	Convert to a symbolic polynomial : r2e poly2symb
	Convert from a symbolic polynomial : e2r symb2poly
	Coefficients of a polynomial: coeff coeffs
	Polynomial degree : degree
	Polynomial valuation : valuation ldegree
	Leading coefficient of a polynomial : lcoeff
	Trailing coefficient degree of a polynomial : tcoeff
	Evaluation of a polynomial : peval polyEval
	Factorize xn in a polynomial : factor_xn
	GCD of the coefficients of a polynomial : content
	Primitive part of a polynomial : primpart
	Factorization : collect
	Factorization : factor factoriser
	Square-free factorization : sqrfree
	List of factors : factors
	Evaluate a polynomial : horner
	Rewrite in terms of the powers of (x-a) : ptayl
	Compute with the exact root of a polynomial : rootof
	Exact roots of a polynomial : roots
	Coefficients of a polynomial defined by its roots : pcoeff pcoef
	Truncate of order n : truncate
	Convert a series expansion into a polynomial : convert convertir
	Random polynomial : randpoly randPoly
	Change the order of variables : reorder
	Random list : ranm
	Lagrange's polynomial : lagrange interp
	Natural splines: spline
	Rational interpolation : thiele

	Arithmetic and polynomials
	The divisors of a polynomial : divis
	Euclidean quotient : quo
	Euclidean quotient : Quo
	Euclidean remainder : rem
	Euclidean remainder: Rem
	Quotient and remainder : quorem divide
	GCD of two polynomials with the Euclidean algorithm: gcd
	GCD of two polynomials with the Euclidean algorithm : Gcd
	Choosing the GCD algorithm of two polynomials : ezgcd heugcd modgcd psrgcd
	LCM of two polynomials : lcm
	Bézout's Identity : egcd gcdex
	Solving au+bv=c over polynomials: abcuv
	Chinese remainders : chinrem
	Cyclotomic polynomial : cyclotomic
	Sturm sequences and number of sign changes of P on (a, b] : sturm
	Number of zeros in [a,b) : sturmab
	Sturm sequences : sturmseq
	Sylvester matrix of two polynomials : sylvester
	Resultant of two polynomials : resultant

	Orthogonal polynomials
	Legendre polynomials: legendre
	Hermite polynomial : hermite
	Laguerre polynomials: laguerre
	Tchebychev polynomials of the first kind: tchebyshev1
	Tchebychev polynomial of the second kind: tchebyshev2

	Gröbner basis and Gröbner reduction
	Gröbner basis : gbasis
	Gröbner reduction : greduce
	Build a polynomial from its evaluation : genpoly

	Rational fractions
	Numerator : getNum
	Numerator after simplification : numer
	Denominator : getDenom
	Denominator after simplification : denom
	Numerator and denominator : f2nd fxnd
	Simplify : simp2
	Common denominator : comDenom
	Integer and fractional part : propfrac
	Partial fraction expansion : partfrac

	Exact roots of a polynomial
	Exact bounds for complex roots of a polynomial : complexroot
	Exact bounds for real roots of a polynomial : realroot
	Exact values of rational roots of a polynomial : rationalroot
	Exact values of the complex rational roots of a polynomial : crationalroot

	Exact roots and poles
	Roots and poles of a rational function : froot
	Rational function given by roots and poles : fcoeff

	Computing in Z/pZ or in Z/pZ[x]
	Expand and reduce : normal
	Addition in Z/pZ or in Z/pZ[x] : +
	Subtraction in Z/pZ or in Z/pZ[x] : -
	Multiplication in Z/pZ or in Z/pZ[x] : *
	Euclidean quotient : quo
	Euclidean remainder : rem
	Euclidean quotient and euclidean remainder : quorem
	Division in Z/pZ or in Z/pZ[x] : /
	Power in Z/pZ and in Z/pZ[x] : ^
	Compute an -5mumod5mu- p : powmod powermod
	Inverse in Z/pZ : inv inverse or /
	Rebuild a fraction from its value modulo p : fracmod
	GCD in Z/pZ[x] : gcd
	Factorization over Z/pZ[x] : factor factoriser
	Determinant of a matrix in Z/pZ : det
	Inverse of a matrix with coefficients in Z/pZ : inv inverse
	Row reduction to echelon form in Z/pZ : rref
	Construction of a Galois field : GF
	Factorize a polynomial with coefficients in a Galois field : factor

	Compute in Z/pZ[x] using Maple syntax
	Euclidean quotient : Quo
	Euclidean remainder: Rem
	GCD in Z/pZ[x] : Gcd
	Factorization in Z/pZ[x] : Factor
	Determinant of a matrix with coefficients in Z/pZ : Det
	Inverse of a matrix in Z/pZ : Inverse
	Row reduction to echelon form in Z/pZ : Rref

	Taylor and asymptotic expansions
	Division by increasing power order : divpc
	Taylor expansion : taylor
	Series expansion : series
	The residue of an expression at a point : residue
	Padé expansion: pade

	Intervals
	Definition of an interval : a1..a2
	Boundaries of an interval : left right
	Center of an interval : interval2center
	Intervals defined by their center : center2interval

	Sequences
	Definition : seq[] ()
	Concat two sequences : ,
	Get an element of a sequence : []
	Sub-sequence of a sequence : []
	Make a sequence or a list : seq $
	Transform a sequence into a list : [] nop
	The + operator applied on sequences

	Sets
	Definition : set[]
	Union of two sets or of two lists : union
	Intersection of two sets or of two lists : intersect
	Difference of two sets or of two lists : minus

	Lists and vectors
	Definition
	Get an element or a sub-list of a list : at []
	Extract a sub-list : mid
	Get the first element of a list : head
	Remove an element in a list : suppress
	Remove the first element : tail
	Reverse order in a list : revlist
	Reverse a list starting from its n-th element : rotate
	Permuted list from its n-th element : shift
	Modify an element in a list : subsop
	Transform a list into a sequence : op makesuite
	Transform a sequence into a list : makevector []
	Length of a list : size nops length
	Sizes of a list of lists : sizes
	Concatenate two lists or a list and an element : concat augment
	Append an element at the end of a list : append
	Prepend an element at the beginning of a list : prepend
	Sort : sort
	Sort a list by increasing order : SortA
	Sort a list by decreasing order : SortD
	Select the elements of a list : select
	Remove elements of a list : remove
	Test if a value is in a list : member
	Test if a value is in a list : contains
	Sum of list (or matrix) elements transformed by a function : count
	Number of elements equal to a given value : count_eq
	Number of elements smaller than a given value : count_inf
	Number of elements greater than a given value : count_sup
	Sum of elements of a list : sum add
	Cumulated sum of the elements of a list : cumSum
	Product : product mul
	Apply a function of one variable to the elements of a list : map apply of
	Apply a bivariate function to the elements of two lists : zip
	Make a list with zeros : newList
	Make a list with a function : makelist
	Make a random vector or list : randvector
	List of differences of consecutive terms : deltalist
	Make a matrix with a list : list2mat
	Make a list with a matrix : mat2list

	Functions for vectors
	Norms of a vector : maxnorm l1norm l2norm norm
	Normalize a vector : normalize unitV
	Term by term sum of two lists : + .+
	Term by term difference of two lists : - .-
	Term by term product of two lists : .*
	Term by term quotient of two lists : ./
	Scalar product : scalar_product * dotprod dot dotP scalar_Product
	Cross product : cross crossP crossproduct

	Statistics functions : mean,variance,stddev, stddevp,median,quantile,quartiles,boxwhisker
	Table with strings as indexes : table
	Usual matrix
	Identity matrix : idn identity
	Zero matrix : newMat matrix
	Random matrix : ranm randMat randmatrix
	Diagonal of a matrix or matrix of a diagonal : BlockDiagonal diag
	Jordan block : JordanBlock
	Hilbert matrix : hilbert
	Vandermonde matrix : vandermonde

	Arithmetic and matrix
	Evaluate a matrix : evalm
	Addition and subtraction of two matrices : + - .+ .-
	Multiplication of two matrices : * &*
	Addition of elements of a column of a matrix : sum
	Cumulated sum of elements of each column of a matrix : cumSum
	Multiplication of elements of each column of a matrix : product
	Power of a matrix : ^ &^
	Hadamard product : hadamard product
	Hadamard product (infixed version): .*
	Hadamard division (infixed version): ./
	Hadamard power (infixed version): .^
	Extracting element(s) of a matrix : [] at
	Modify an element or a row of a matrix : subsop
	Extract rows or columns of a matrix (Maple compatibility) : row col
	Remove rows or columns of a matrix : delrows delcols
	Extract a sub-matrix of a matrix (TI compatibility) : subMat
	Add a row to another row : rowAdd
	Multiply a row by an expression : mRow
	Add k times a row to an another row : mRowAdd
	Exchange two rows : rowSwap
	Make a matrix with a list of matrices : blockmatrix
	Make a matrix from two matrices : semi_augment
	Make a matrix from two matrices : augment concat
	Build a matrix with a function : makemat
	Define a matrix : matrix
	Append a column to a matrix : border
	Count the elements of a matrix verifying a property : count
	Count the elements equal to a given value : count_eq
	Count the elements smaller than a given value : count_inf
	Count the elements greater than a given value : count_sup
	Statistics functions acting on column matrices : mean, stddev, variance, median, quantile, quartiles, boxwhisker
	Dimension of a matrix : dim
	Number of rows : rowdim rowDim nrows
	Number of columns : coldim colDim ncols

	Linear algebra
	Transpose of a matrix : tran transpose
	Inverse of a matrix : inv /
	Trace of a matrix : trace
	Determinant of a matrix : det
	Determinant of a sparse matrix : det_minor
	Rank of a matrix : rank
	Transconjugate of a matrix : trn
	Equivalent matrix : changebase
	Basis of a linear subspace : basis
	Basis of the intersection of two subspaces : ibasis
	Image of a linear function : image
	Kernel of a linear function : kernel nullspace ker
	Kernel of a linear function : Nullspace
	Subspace generated by the columns of a matrix : colspace
	Subspace generated by the rows of a matrix : rowspace

	Linear Programmation
	Simplex algorithm: simplex_reduce
	Solving general linear programming problems: lpsolve
	Solving transportation problems: tpsolve

	Nonlinear optimization
	Global extrema: minimize maximize
	Local extrema: extrema
	Minimax polynomial approximation: minimax

	Different matrix norm
	l2 matrix norm : norm l2norm
	l matrix norm : maxnorm
	Matrix row norm : rownorm rowNorm
	Matrix column norm : colnorm colNorm

	Matrix reduction
	Eigenvalues : eigenvals
	Eigenvalues : egvl eigenvalues eigVl
	Eigenvectors : egv eigenvectors eigenvects eigVc
	Rational Jordan matrix : rat_jordan
	Jordan normal form : jordan
	Characteristic polynomial : charpoly
	Characteristic polynomial using Hessenberg algorithm : pcar_hessenberg
	Minimal polynomial : pmin
	Adjoint matrix : adjoint_matrix
	Companion matrix of a polynomial : companion
	Hessenberg matrix reduction : hessenberg
	Hermite normal form : ihermite
	Smith normal form : ismith

	Isometries
	Recognize an isometry : isom
	Find the matrix of an isometry : mkisom

	Matrix factorizations
	Cholesky decomposition : cholesky
	QR decomposition : qr
	QR decomposition (for TI compatibility) : QR
	LU decomposition : lu
	LU decomposition (for TI compatibility) : LU
	Singular value decomposition : svd
	Short basis of a lattice : lll

	Quadratic forms
	Matrix of a quadratic form : q2a
	Transform a matrix into a quadratic form : a2q
	Reduction of a quadratic form : gauss
	Gram-Schmidt orthonormalization : gramschmidt
	Graph of a conic : conique
	Conic reduction : conique_reduite
	Graph of a quadric : quadrique
	Quadric reduction : quadrique_reduite

	Multivariate calculus
	Gradient : derive deriver diff grad
	Laplacian : laplacian
	Hessian matrix : hessian
	Divergence : divergence
	Rotational : curl
	Potential : potential
	Conservative flux field : vpotential

	Equations
	Define an equation : equal
	Transform an equation into a difference : equal2diff
	Transform an equation into a list : equal2list
	The left member of an equation : left gauche lhs
	The right member of an equation : right droit rhs
	Solving equation(s): solve
	Equation solving in C : cSolve

	Linear systems
	Matrix of a system : syst2mat
	Gauss reduction of a matrix : ref
	Gauss-Jordan reduction: rref gaussjord
	Solving A*X=B : simult
	Step by step Gauss-Jordan reduction of a matrix : pivot
	Linear system solving: linsolve
	Finding linear recurrences : reverse_rsolve

	Differential equations
	Solving differential equations : desolve deSolve dsolve
	Laplace transform and inverse Laplace transform : laplace ilaplace

	Other functions
	Replace small values by 0: epsilon2zero
	List of variables : lname indets
	List of variables and of expressions : lvar
	List of variables of an algebraic expressions: algvar
	Test if a variable is in an expression : has
	Numeric evaluation : evalf
	Rational approximation : float2rational exact

	Graphs
	Graph and geometric objects attributes
	Individual attributes
	Global attributes

	Graph of a function : plotfunc funcplot DrawFunc Graph
	2-d graph
	3-d graph
	3-d graph with rainbow colors
	4-d graph.

	2d graph for Maple compatibility : plot
	3d surfaces for Maple compatibility plot3d
	Graph of a line and tangent to a graph
	Draw a line : line
	Draw an 2D horizontal line : LineHorz
	Draw a 2D vertical line : LineVert
	Tangent to a 2D graph : LineTan
	Tangent to a 2D graph : tangent
	Intersection of a 2D graph with the axis

	Graph of inequalities with 2 variables : plotinequation inequationplot
	Graph of the area below a curve : plotarea areaplot
	Contour lines: plotcontour contourplot DrwCtour
	2-d graph of a 2-d function with colors : plotdensity densityplot
	Implicit graph: plotimplicit implicitplot
	2D implicit curve
	3D implicit surface
	Implicit differentiation : implicitdiff

	Parametric curves and surfaces : plotparam paramplot DrawParm
	2D parametric curve
	3D parametric surface : plotparam paramplot DrawParm

	Curve defined in polar coordinates : plotpolar polarplot DrawPol courbe_polaire
	Graph of a recurrent sequence : plotseq seqplot graphe_suite
	Tangent field : plotfield fieldplot
	Plotting a solution of a differential equation : plotode odeplot
	Interactive plotting of solutions of a differential equation : interactive_plotode interactive_odeplot
	Animated graphs (2D, 3D or "4D")
	Animation of a 2D graph : animate
	Animation of a 3D graph : animate3d
	Animation of a sequence of graphic objects : animation

	Numerical computations
	Floating point representation.
	Digits
	Representation by hardware floats
	Examples of representations of normalized floats
	Difference between the representation of (3.1-3) and of 0.1

	Approx. evaluation : evalf approx and Digits
	Numerical algorithms
	Approximate solution of an equation : newton
	Approximate computation of the derivative number : nDeriv
	Approximate computation of integrals : romberg nInt
	Approximate solution of y'=f(t,y) : odesolve
	Approximate solution of the system v'=f(t,v) : odesolve

	Solve equations with fsolve nSolve
	fsolve or nSolve with the option bisection_solver
	fsolve or nSolve with the option brent_solver
	fsolve or nSolve with the option falsepos_solver
	fsolve or nSolve with the option newton_solver
	fsolve or nSolve with the option secant_solver
	fsolve or nSolve with the option steffenson_solver

	Solve systems with fsolve
	fsolve with the option dnewton_solver
	fsolve with the option hybrid_solver
	fsolve with the option hybrids_solver
	fsolve with the option newtonj_solver
	fsolve with the option hybridj_solver
	fsolve with the option hybridsj_solver

	Numeric roots of a polynomial : proot
	Numeric factorization of a matrix : cholesky qr lu svd

	Unit objects and physical constants
	Unit objects
	Notation of unit objects
	Computing with units
	Convert units into MKSA units : mksa
	Convert units : convert
	Factorize a unit : ufactor
	Simplify a unit : usimplify
	Unit prefixes

	Constants
	Notation of physical constants
	Constants Library

