
Mathématiques des odes orreteurs d'erreurs(Codage et tolérane aux pannes)(Master-2 de mathématiques (M2P),"Cryptologie, Séurité et Codage d'Information",2009/2010)
A. A. Panthihkine

Institut Fourier, B.P.74, 38402 St.�Martin d'Hères, FRANCEe-mail : panhish@mozart.ujf-grenoble.fr, FAX : 33 (0) 4 76 51 44 78

panchish
Text Box
2013-2014)

RésuméL'objetif du présent ours n'est pas de proposer un exposé exhaustif de la théoriedes odes orreteurs d'erreurs. Tout d'abord pare que la tâhe est bien trop om-plexe, ensuite ar la jeunesse de la théorie et son important développement atuel larendent en perpétuel mouvement. Le but est ii d'introduire les onepts, prinipeset méthodes de base de l'étude des odes orreteurs d'erreurs, ainsi que de faireentrevoir ertaines pistes permettant l'élaboration de odes performants.La théorie des odes orreteurs d'erreurs se base pour l'essentiel sur l'étude desorps �nis, ertains rappels onernant es derniers sont donnés dans Annexe A.On donnera les dé�nitions des prinipaux objets et grandeurs liés aux odesorreteurs d'erreurs. Les parties suivantes présenteront des lasses de odes parti-ulières, leurs propriétés et des proédures de déodage.Ce ours introduit les outils utilisés pour assurer la transmission d'informationsorretes sur des supports introduisant des erreurs. Les fondements mathématiquespermettant la onstrution de odes ave un rendement garanti sont présentés, enpartiulier les odes yliques et les odes géométriques de Goppa. Les appliationsdans l'industrie onernent le disque ompat, le Minitel, la transmission d'imagespar satellite, sont mentionnées.
2

panchish
Inserted Text
PLANNING des séances partie Alexei Pantchichkine:- le mardi 28/01 : 8h -13h (3 séances, D 117)- le mercredi 12/02 : 8h - 13h (2 séances CM + 1 séance TD, D 117)- le mercredi 19/02 : 8h - 13h (3 séances TD, D 211)partie Jean-Louis Roch:- le mardi 4/02 : 11h30 -13h (1 séance CM, D 207, JL Roch)- le mardi 11/02 : 8h -11h15 (2 séances CM + TD, D 211, JL Roch)- le mardi 18/02 : 8h - 11h15 (2 séances CM + TD, D 211, JL Roch)partie Jean-Marc Brossier :- le mercredi 29/01 : 9h45- 13h (2 séances CM, D 117, JM Brossier)- le mardi 4/02 : 8h - 11h15 (2 séances CM, D 211, JM Brossier), - le mercredi 5/02 : 8h -9h30 (1 séance TD, D 117, JM Brossier)EXAMEN le mardi 25/02 9h - 12h , D 211

Table des matières1 Transmission d'information, odage et deodage optimal 301.1 Prinipe de transmission d'information . 301.2 Hypothèses sur un anal bruité . 321.3 Généralités sur les odes . 331.4 Codage et deodage optimal sur un anal bruité 381.5 Théorème de Shannon (1948) . 452 Distane de Hamming, rendement et vitesse de transmission 502.1 Capaité de orretion et rayon de reouvrement 502.2 Borne de Hamming et borne de Singleton 532.3 Bonnes familles des odes et problèmes asymptotiques. 562.4 Borne de Hamming et borne de Singleton asymptotiques 573 Codes linéaires et odes yliques. Matrie génératrie et syndrome 713.1 Codes linéaires . 713.2 Détetion et orretion d'erreurs, déodage 773.3 Classe des odes de Hamming . 863.4 Énumération de poids et l'identité de MaWilliams 893.5 Codes yliques . 953.6 Construtions . 963

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

3.6.1. Constrution par polyn�me générateur 963.6.2. Constrution par polyn�me orreteur 984 Polyn�mes loateurs d'erreurs. Appliation au déodage 1084.1 Constrution de odes yliques à partir des raines. 1084.2 Exemples : odes de Golay . 1124.2.1. Code G23 . 1124.2.2. Code G24 . 1324.2.3. Code G11 . 1334.2.4. Code G12 . 1414.3 Loateurs d'erreurs . 1424.4 Déodage des odes yliques . 1434.4.1. Exemples de deodage des odes yliques 1475 Codes BCH et odes de Reed-Solomon. Codage et déodage 1545.1 Classe des odes BCH (Bose, Ray-Chaudhuri et Hoquenghem) 1545.2 Codes de Reed-Solomon . 1675.3 Deuxième désription des odes de Reed-Solomon 1695.4 Problèmes de déodage. 1715.4.1. Déodage BCH . 1785.5 Algorithme de Berlekamp-Massey . 180
4

panchish
Text Box
- le mercredi 12/02 /20148h - 13h (2 séances CM + 1 séance TD, D 117)

panchish
Line

panchish
Text Box
- le mercredi 19/02 : 8h - 13h (3 séances TD, D 211)

6 Bornes de Plotkin et de Gilbert-Varshamov 2046.1 Rendement, taux de orretion et domaine de odes 2046.2 Borne de Plotkin . 2106.3 Borne de Gilbert-Varshamov . 2196.4 Borne de la géométrie algébrique (sans démonstration) 2267 Codes géométriques de Goppa. Systèmes a�nes et ourbes algébriques2347.1 Systèmes a�nes et systèmes projetifs . 2347.1.1. Systèmes a�nes. 2347.1.2. Systèmes projetifs. 2377.2 Codes géométriques . 2397.3 Codes de Goppa rationnels . 2427.3.1. Constrution des bonnes familles 2487.4 Déodage des odes de Goppa rationnels 2527.5 Espae projetif Pn, variétés algébriques 2557.6 Codes provenants des ourbes algébriques 2647.6.1. P-onstrution . 2657.6.2. Borne de la géométrie algébrique 2677.7 Généralités sur les diviseurs . 2707.7.1. Di�érentielles et alul de l(A) . 2727.8 Courbes sur les orps �nis . 274
5

panchish
Text Box
Notions des codesgéométriques etleurs familles

panchish
Text Box
- le mercredi 19/02 : 8h - 13h (3 séances, D 211)

7.9 Théorème de Riemann-Roh sur un orps K, genre 2747.10 Codes géométriques de Goppa : L-onstrution. 2777.11 Codes géométriques de Goppa : Ω-onstrution. 2868 Exeries de préparation à l'exemen 2888.1 Estimation des sommes binomiales. 2888.2 Enadrement de la probabilité du deodage erroné. 2888.3 Codes de Golay et empilement de sphères. 2898.4 Désription géométrique des odes de Reed-Solomon 2898.5 Codes de Reed-Muller d'ordre 1. 2918.6 Exemples de deodage des odes yliques. 2938.7 Codes de Reed-Solomon . 2978.8 Déodage des odes de Goppa rationnels. 2988.9 Codes de Hermite. 3018.10 Exemen du 13 janvier 2003, 10h-13h, Salle 014 3038.11 Exemen du 17 déembre 2003, 16h30-18h30, Salle 014 3068.12 Contr�le ontinu du jeudi 2 déembre 2004, 8h00�10h00, AMPHI 308A Annexe : Rappels sur les orps �nis 309A.1 Struture . 310A.2 Polyn�mes sur les orps �nis . 311
6

Cours N
◦1(disponible sur : http ://www-fourier.ujf-grenoble.fr/�panhish /SCCI).IntrodutionCe ours introduit les outils utilisés pour assurer la transmission d'informations or-retes sur des supports introduisant des erreurs. Dans une première partie, les fondementsmathématiques permettant la onstrution de odes ave un rendement garanti sont pré-sentés, en partiulier les odes yliques. Dans les appliations pratiques, notamment eninformatique et téléommuniations, des variantes de es odes sont utilisées.Les appliations des odes orreteurs d'erreurs dans l'industrie onernent le disqueompat, le Minitel, la transmission d'images par satellite, . . . (voir Chapitre XV de[Pa-Wo℄).

7

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

Bases mathématiques :1. Transmission d'information, odage et deodage optimal sur un anal bruité. Codes derépétition pure.2. Distane de Hamming, rendement et vitesse de transmission, distane relative, bornede Hamming. Codes de Hamming.3. Codes linéaires et odes yliques. Matrie génératrie et alul du syndrome d'erreur.4. Polyn�mes loateurs d'erreurs. Appliation au déodage.5. Codes de Reed-Solomon et odes BCH. Codage et déodage.6. Bornes de Plotkin et de Gilbert-Varshamov.7. Codes géométriques de Goppa et ourbes algebriques sur les orps �nis.

8

panchish
Sticky Note
Notions (si le temps le permet)

panchish
Line

A l'ère de l'information, un dé� important à relever est elui de faire voyager elle-idans de bonnes onditions, 'est à dire de faire en sorte que le transport de l'informationn'en altère pas le ontenu. Auun anal de transmission n'étant parfait, il va don falloir�protéger� l'information pour qu'elle demeure exploitable. Les outils pour y parvenir sontles odes orreteurs d'erreurs, théorie réente de par la modernité de ses motivations.Pour montrer de quoi il s'agit on ommene par un exemple de réalisation e�etived'une proedure de odage orreteur d'erreur, voir [Pa-Wo℄, Chapitre X. Le 19.01.1972 lasonde spatiale "MARINER-9" transmettait une photo du "Grand anyon" de la planèteMars. La très grande qualité de ette photo avait été obtenue en protégeant la transmissionontre les erreurs énentuelles au moyen du "Code orreteur de Reed-Muller d'ordre 1 etde longueur 32".

9

On "disrétise" le problème : la photo est déoupée en petits retangles haun d'entreeux étant assimilé à un point muni d'un "niveau d'énergie". Il existe en tout 64 niveauxd'énergie, on a don besoin de 64 messages à transmettre, haun représenté par unesuession de 6 "bits" (symboles 0 et 1). Pour pouvoir orriger les erreurs de transmissionon represente haque message u de 6 bits par une suite plus longe E(u) de 32 bits :
u = (α1, α2, α3, α4, α5, α6) 7→ E(u), F6

2 → F
32
2 ,

10

obtenue des ombinaisons linéaires mod 2 des lignes Ai de la matrie
α1

α2

α3

α4

α5

α6

1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

(∗)

F
6
2 ∋ u = (α1, α2, α3, α4, α5, α6)

E7→E(u) := A1α1+A2α2+A3α3+A4α4+A5α5+A6α6 ∈ F
32
2On obtient une appliation

E : F
6
2 → F

32
2 ,et on transmit le message E(u). Cette transmission a la redondane = 32 − 6=26, leoe�ient de redondane= 32/6.

11

Pour dérire les mots du ode C = Im(E), on indexe les olonnes A(j) de la matrie(*) par les points x = (x1, x2, x3, x5) de l'espae a�ne F
5
2 (il'y en a 32) :

j = 1↔ (0, 0, 0, 0, 0), j = 2↔ (0, 0, 0, 0, 1), . . . , j = 32↔ (1, 1, 1, 1, 1)(on onsidère l'ériture binaire du nombre j − 1) :
j − 1 = x5 + 2x4 + 4x3 + 8x2 + 16x1, xi = 0 ou 1,alors

j ∈ {1, 2, · · · , 32} ←→ (x1, x2, x3, x4, x5) mod 2 ∈ F
5
2.Ensuite, on onsidère haque ligne Ai de la matrie (*) omme la fontion indiatrie d'unepartie de F

5
2 :

(1, 1) ↔ {(∗, ∗, ∗, ∗, ∗) ∈ F
5
2} = F

5
2(l'espae F

5
2 tout entier) ,

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) ↔ {(1, ∗, ∗, ∗, ∗) ∈ F
5
2}(l'hyperplan {x1 = 1}, ar la partie orrespondant de F

5
2 ommene par le numero j =

17↔ (1, 0, 0, 0, 0). Puis
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) ↔ {(∗, 1, ∗, ∗, ∗) ∈ F

5
2}12

(l'hyperplan {x2 = 1}, les deux moreaux de la partie orrespondant de F5
2 ommenentpar le numero j = 9↔ (0, 1, 0, 0, 0) et le numero j = 25↔ (1, 1, 0, 0, 0)) et.On véri�e que les parties de F

5
2 obtenues de toutes les ombinaisons linéaires de Asont : l'espae F

5
2 tout entier, ∅, tous les hyperplans a�nes linéaires

f(x1, x2, x3, x4, x5) = 1 de l'espae a�ne F
5
2(d◦(f) = 1).En e�et la première ligne A1 représente la fontion onstante f : F5

2 → F2 :
A1 ←→ f ≡ 1, f : F

5
2 → F2,la ligne A2 représente la fontion f(x1, x2, x3, x5) = x1

A2 ←→ f(x1, x2, x3, x4, x5) = x1 "le premier hi�re" de j − 1 mod 2 ∈ F2,

A3 ←→ f(x1, x2, x3, x4, x5) = x2 "le seond hi�re" de j − 1 mod 2 ∈ F2,

A4 ←→ f(x1, x2, x3, x4, x5) = x3 "le troisième hi�re" de j − 1 mod 2 ∈ F2,

A5 ←→ f(x1, x2, x3, x4, x5) = x4 "le quatrième hi�re" de j − 1 mod 2 ∈ F2,

A6 ←→ f(x1, x2, x3, x4, x5) = x5 "le dernier hi�re" de j − 1 mod 2 ∈ F2.Cei implique que la ombinaison linéaire représant la fontion
α1A1+α2A2+α3A3+α4A4+α5A5+α6A6 ←→ f = α1+α2x1+α3x2+α4x3+α5x4+α6x5.13

(la fontion indiatrie de la partie
f(x1, x2, x3, x4, x5) = 1 de l'espae a�ne F

5
2).On sait que l'intersetion de deux hyperplans di�érents dans F
5
2 ontient au plus 8 élé-ments, don les mots du ode sont bien eartés : pour obtenir un mot à partir d'un autre,il faut hanger au moins 16 symboles (soit 16 soit tous les 32). C'est-à-dire, que le odeorrige jusqu'à 7 erreurs de transmission : dans e as le résultat c′1 de la transmissiond'un mot c1 ne peut pas être obtenu d'un autre mot c2 (sinon on pourrait obtenir c2 àpartir de c1 en hangeant ≤ 14 position.Déodage d'un mot reçu y ∈ F

32
2 vu omme une fontion y = y(x1, x2, x3, x4, x5) sur

F
5
2 : si y était un mot de ode, on pourrait le herher sous la forme suivante :

ỹ(x1, x2, x3, x4, x5) = α1 + α2x1 + α3x2 + α4x3 + α5x4 + α6x5, (0.1)alors

α1 = f(0, 0, 0, 0, 0) = y1,
α1 + α2 = f(1, 0, 0, 0, 0) = y17,
α1 + α3 = f(0, 1, 0, 0, 0) = y9,
α1 + α4 = f(0, 0, 1, 0, 0) = y5,
α1 + α5 = f(0, 0, 0, 1, 0) = y3,
α1 + α6 = f(0, 0, 0, 0, 1) = y2.14

panchish
Sticky Note
(naïf)

Dans e as on véri�e si le mot de ode ỹ(x1, x2, x3, x4, x5) oïnide ave y, 'est à dire,si l'identité (0.2) soit satisfaite en tous les autres 26 points (26 = 32 − 6 onditions àvéri�er !) Sinon, on onsidère toutes les 64 ombinaisons linéaires
y′(x1, x2, x3, x4, x5) = β1 + β2x1 + β3x2 + β4x3 + β5x4 + β6x5, (0.2)et on hoisit parmi telle que le di�érene e = e(x1, x2, x3, x4, x5) = y−y′ soit un mot avele nombre minimum des valeurs non nulles. Ce mot représente "l'erreur de transmission".Alors

y(x1, x2, x3, x4, x5) = β1 + β2x1 + β3x2 + β4x3 + β5x4 + β6x5 + e(x1, x2, x3, x4, x5)et on obtient le déodage u′ du mot d'information u :
u′ = (β1, β2, β3, β4, β5, β6).Dans toute la suite les mots c d'un même ode C auront la même longueur n :

c ∈ C ⊂ Fn.De tels mots sont appelés "odes en blos" opposés aux "odes de longueur variable" ou"odes onvolutionnels" dont nous ne parlerons pas.
15

Trois programmes de alul en Maple pour trouver un deodaged'un mot reçu ydisponibles à l'adresse ahée : http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-maple,dans les �hiers 4mag-03linsolv.mws, 4mag-01hi�.mws, 4mag-02hi�.mws).Pour travailler ave es �hiers, on peut :1) les ouvrir ave Netsape,2) "enregistrer sous . . ." omme un �hier .mws,3) taper "xmaple" pour l'ouvrir ave une version de Maple.
Résolution d'un système linéaire mod 2(4mag-03linsolv.mws)

> restart :with(LinearAlgebra):
> y:=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1℄;
> alpha:=vetor(6):
> print('alpha=[alpha[1℄,alpha[2℄,alpha[3℄,alpha[4℄,alpha[5℄,alpha[6℄℄'):

y := [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
α = [α1, α2, α3, α4, α5, α6]

16

{VERSION 6 0 "IBM INTEL NT" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0
1 0 0 0 0 1 }{CSTYLE "2D Output" -1 20 "Times" 0 1 0 0 255 1 0 0 2 2
2 2 0 0 0 1 }{CSTYLE "_cstyle7" -1 205 "Times" 0 1 0 0 0 0 0 0 0 2 2
2 0 0 0 1 }{CSTYLE "_cstyle16" -1 213 "Times" 0 1 0 0 0 0 0 0 0 2 2 2
0 0 0 1 }{CSTYLE "_cstyle17" -1 222 "Times" 1 18 0 0 0 1 2 1 2 2 2 2
0 0 0 1 }{CSTYLE "_cstyle18" -1 223 "Courier" 1 12 255 0 0 1 2 1 2 2
1 2 0 0 0 1 }{CSTYLE "_cstyle19" -1 224 "Courier" 0 1 255 0 0 1 0 1 0
2 1 2 0 0 0 1 }{CSTYLE "_cstyle20" -1 225 "Times" 1 12 0 0 0 1 2 2 2
2 2 2 0 0 0 1 }{CSTYLE "_cstyle21" -1 226 "Courier" 1 12 255 0 0 1 2
1 2 2 1 2 0 0 0 1 }{CSTYLE "_cstyle22" -1 227 "Courier" 0 1 255 0 0 1
0 1 0 2 1 2 0 0 0 1 }{CSTYLE "_cstyle23" -1 228 "Times" 1 12 0 0 0 1
2 2 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle24" -1 229 "Times" 0 1 0 0 0 0 0
0 0 2 2 2 0 0 0 1 }{CSTYLE "" 228 256 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0
0 0 }{CSTYLE "" -1 257 "" 1 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }{PSTYLE "N
ormal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1
1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1
{CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0
0 1 0 1 0 2 2 0 1 }{PSTYLE "_pstyle18" -1 217 1 {CSTYLE "" -1 -1 "Time
s" 1 18 0 0 0 1 2 1 2 2 2 2 1 1 1 1 }1 1 0 0 8 4 2 0 2 0 2 2 0 1 }
{PSTYLE "_pstyle19" -1 218 1 {CSTYLE "" -1 -1 "Courier" 1 12 255 0 0
1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle21
" -1 220 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }
1 1 0 0 3 3 2 0 2 0 2 2 0 2 }{PSTYLE "_pstyle22" -1 221 1 {CSTYLE ""
-1 -1 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2
0 2 2 0 1 }{PSTYLE "_pstyle23" -1 222 1 {CSTYLE "" -1 -1 "Courier" 1
12 255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }
{PSTYLE "_pstyle24" -1 223 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2
2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle25"
-1 224 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1
1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle26" -1 225 1 {CSTYLE "" -1
-1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2
0 1 }{PSTYLE "_pstyle27" -1 226 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0
1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle28
" -1 227 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }
1 1 0 0 0 0 1 0 1 0 2 2 0 1 }}
{SECT 0 {PARA 217 "" 0 "" {TEXT 222 39 "R\351solution d'un syst\350me \+
lin\351aire mod 2." }}{EXCHG {PARA 218 "> " 0 "" {MPLTEXT 1 223 9 "res
tart :" }{MPLTEXT 1 224 20 "with(LinearAlgebra):" }}}{EXCHG {PARA 218
"> " 0 "" {MPLTEXT 1 223 157 "y:=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1];\nalpha:=vector(6):\nprint('alpha=[alpha[
1],alpha[2],alpha[3],alpha[4],alpha[5],alpha[6]]'" }{MPLTEXT 1 224 2 "
):" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"yG7B\"\"\"F&\"\"!F'F'F'F'F'F
'F'F'F'F'F'F'F'F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#/%&alphaG7(&F$6#\"\"\"&F$6#\"\"#&F$6#\"\"$&F$6#\"\"%&F$
6#\"\"&&F$6#\"\"'" }}}{PARA 220 "" 0 "" {TEXT 225 269 "La matrice C du
 syst\350me est\nalpha1 = f(0, 0, 0, 0, 0) = y1,\nalpha1 + alpha2 = f(
1, 0, 0, 0, 0) = y17,\nalpha1 + alpha3 = f(0, 1, 0, 0, 0) = y9,\nalpha
1 + alpha4 = f(0, 0, 1, 0, 0) = y5,\nalpha1 + alpha5 = f(0, 0, 0, 1, 0
) = y3,\nalpha1 + alpha6 = f(0, 0, 0, 0, 1) = y2 \nest" }}{EXCHG
{PARA 221 "> " 0 "" {MPLTEXT 1 226 107 "C := matrix([[1,0,0,0,0,0],\n[
1,1,0,0,0,0],[1,0,1,0,0,0],[1,0,0,1,0,0],[1,0,0,0,1,0],[1,0,0,0,0,1]] \+
mod 2) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"CGK%'matrixG6#7(7(\"\"
\"\"\"!F+F+F+F+7(F*F*F+F+F+F+7(F*F+F*F+F+F+7(F*F+F+F*F+F+7(F*F+F+F+F*F
+7(F*F+F+F+F+F*Q(pprint06\"" }}}{PARA 220 "" 0 "" {TEXT 225 35 "Idem p
our un vecteur second membre." }}{EXCHG {PARA 221 "> " 0 "" {MPLTEXT
1 226 52 "b := vector([y[1],y[17],y[9],y[5],y[3],y[2]]mod 2) ;" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"bGK%'vectorG6#7(\"\"\"F)\"\"!F*F*F
)Q(pprint16\"" }}}{PARA 220 "" 0 "" {TEXT 225 45 "Linsolve(...) mod 2 \+
permet de r\351soudre mod 2:" }}{EXCHG {PARA 221 "> " 0 "" {MPLTEXT 1
226 29 "alpha := Linsolve(C,b) mod 2;" }}{PARA 11 "" 1 "" {XPPMATH 20
"6#>%&alphaGK%'vectorG6#7(\"\"\"\"\"!F)F)F)F*Q(pprint26\"" }}}{PARA
220 "" 0 "" {TEXT 225 34 "V\351rification. Calcul de C*alpha-b." }}
{EXCHG {PARA 221 "> " 0 "" {MPLTEXT 1 226 32 "zerov := evalm(C &* alph
a - b) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&zerovGK%'vectorG6#7(\"
\"!F)\"\"#F*F*F)Q(pprint36\"" }}}{PARA 220 "" 0 "" {TEXT 225 109 "Les \+
termes du vecteur obtenu ne sont pas \253 r\351duits \273 \340 leur fo
rme canonique mod 2. Pour obtenir la r\351duction." }}{EXCHG {PARA
221 "> " 0 "" {MPLTEXT 1 226 40 "map(item -> Expand(item) mod 2, zerov
) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#K%'vectorG6#7(\"\"!F'F'F'F'F'Q(
pprint46\"" }}}{EXCHG {PARA 222 "> " 0 "" {MPLTEXT 1 227 0 "" }}}
{EXCHG {PARA 223 "" 0 "" {TEXT 256 22 "Application du codage:" }}}
{EXCHG {PARA 222 "> " 0 "" {MPLTEXT 1 227 681 "A[1]:=\nvector([\n1, 1,
 1, \+
1, 1, 1, 1, 1, 1, 1\n]);\nA[2]:=vector([\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);
\nA[3]:=vector([\n0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0
, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]);\nA[4]:=vector([\n0, 0, 0
, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,
 0, 0, 1, 1, 1, \n1]);\nA[5]:=vector([\n0, 0, 1, 1, 0, 0, 1, 1, 0, 0, \+
1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]);\nA
[6]:=vector([\n0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1\n]);" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#>&%\"AG6#\"\"\"K%'vectorG6#7BF'F'F'F'F'F'F'F'F'F'F'F'F'
F'F'F'F'F'F'F'F'F'F'F'F'F'F'F'F'F'F'F'Q(pprint56\"" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>&%\"AG6#\"\"#K%'vectorG6#7B\"\"!F,F,F,F,F,F,F,F,F,F,
F,F,F,F,F,\"\"\"F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-Q(pprint66\"" }}{PARA
11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"$K%'vectorG6#7B\"\"!F,F,F,F,F,F
,F,\"\"\"F-F-F-F-F-F-F-F,F,F,F,F,F,F,F,F-F-F-F-F-F-F-F-Q(pprint76\"" }
}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"%K%'vectorG6#7B\"\"!F,F,
F,\"\"\"F-F-F-F,F,F,F,F-F-F-F-F,F,F,F,F-F-F-F-F,F,F,F,F-F-F-F-Q(pprint
86\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"&K%'vectorG6#7B\"
\"!F,\"\"\"F-F,F,F-F-F,F,F-F-F,F,F-F-F,F,F-F-F,F,F-F-F,F,F-F-F,F,F-F-Q
(pprint96\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"AG6#\"\"'K%'vector
G6#7B\"\"!\"\"\"F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,F-F,
F-F,F-Q)pprint106\"" }}}{EXCHG {PARA 223 "" 0 "" {TEXT 228 127 "Applic
ation du codage: y=E(alpha)=alpha*A= alpha[1]*A[1]+alpha[2]*A[2]+alpha
[3]*A[3]+alpha[4]*A[4]+alpha[5]*A[5]+alpha[6]*A[6]:" }}}{EXCHG {PARA
218 "> " 0 "" {MPLTEXT 1 224 43 "yt:=evalm(sum(alpha[i]*A[i], i=1..6))
:\nyt:=" }{MPLTEXT 1 223 33 "map(item -> Expand(item) mod 2,yt" }
{MPLTEXT 1 224 3 ");\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#ytGK%'vec
torG6#7B\"\"\"F)\"\"!F*F*F*F)F)F*F*F)F)F)F)F*F*F)F)F*F*F*F*F)F)F*F*F)F
)F)F)F*F*Q)pprint116\"" }}}{EXCHG {PARA 218 "> " 0 "" {MPLTEXT 1 224
20 "et:=evalm(y-yt):et:=" }{MPLTEXT 1 223 37 "map(item -> Expand(item)
 mod 2, et) ;" }{MPLTEXT 1 224 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#
>%#etGK%'vectorG6#7B\"\"!F)F)F)F)F)\"\"\"F*F)F)F*F*F*F*F)F)F)F)F*F*F*F
*F)F)F*F*F)F)F)F)F*F*Q)pprint126\"" }}}{EXCHG {PARA 222 "> " 0 ""
{MPLTEXT 1 227 7 "et[18];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}
}{EXCHG {PARA 0 "" 0 "" {TEXT 257 37 "CALCUL DU POIDS de la diff\351re
nce y-yt" }}}{EXCHG {PARA 218 "> " 0 "" {MPLTEXT 1 224 68 "wt:=0:\nfor
 j from 1 to 32 do \n#print('j'=j,'et[j]'=evalm(et[j])); " }
{MPLTEXT 1 223 4 "\nif " }{MPLTEXT 1 224 26 "yt[j]-y[j] mod 2<>0 then \+
 " }{MPLTEXT 1 223 17 "wt:=wt+1 fi; od;" }{MPLTEXT 1 224 59 "\nprint(
'wt'=wt);# on obtient le poids de la diff\351rence y-yt" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#/%#wtG\"#9" }}}{EXCHG {PARA 223 "" 0 "" {TEXT
228 88 "Utilisation de la multiplication des matrices: alpha par A (po
ur obtenir un mot de code)" }}}{EXCHG {PARA 222 "> " 0 "" {MPLTEXT 1
227 619 "A:=array(1..6,1..32,[\n[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],\n[\n0, 0, \+
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
, 1, 1, 1, 1, 1, 1],\n[\n0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, \+
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1],\n[\n0, 0, 0, 0, 1,
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \+
1, 1, 1, \n1],\n[\n0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, \+
0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],\n[\n0, 1, 0, 1, 0, 1, 0,
 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \+
0, 1\n]\n]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AGK%'matrixG6#7(7B
\"\"\"F*7B
\"\"!F,F,F,F,F,F,F,F,F,F,F,F,F,F,F,F*F*F*F*F*F*F*F*F*F*F*F*F*F*F*F*7BF
,F,F,F,F,F,F,F,F*F*F*F*F*F*F*F*F,F,F,F,F,F,F,F,F*F*F*F*F*F*F*F*7BF,F,F
,F,F*F*F*F*F,F,F,F,F*F*F*F*F,F,F,F,F*F*F*F*F,F,F,F,F*F*F*F*7BF,F,F*F*F
,F,F*F*F,F,F*F*F,F,F*F*F,F,F*F*F,F,F*F*F,F,F*F*F,F,F*F*7BF,F*F,F*F,F*F
,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*F,F*Q)pprint136\"" }}}
{EXCHG {PARA 218 "> " 0 "" {MPLTEXT 1 224 25 "ys:=evalm(alpha&*A):\nys
:=" }{MPLTEXT 1 223 33 "map(item -> Expand(item) mod 2,ys" }{MPLTEXT
1 224 2 ");" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#ysGK%'vectorG6#7B\"
\"\"F)\"\"!F*F*F*F)F)F*F*F)F)F)F)F*F*F)F)F*F*F*F*F)F)F*F*F)F)F)F)F*F*Q
)pprint146\"" }}}{EXCHG {PARA 222 "> " 0 "" {MPLTEXT 1 227 0 "" }}}
{EXCHG {PARA 223 "" 0 "" {TEXT 228 15 "V\351rification: " }}}{EXCHG
{PARA 218 "> " 0 "" {MPLTEXT 1 224 20 "yzero:=evalm(ys-yt):" }
{MPLTEXT 1 223 37 "\nmap(item -> Expand(item) mod 2,yzero" }{MPLTEXT
1 224 2 ");" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#K%'vectorG6#7B\"\"!F'F'
F'Q)pprint156
\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 93 "#####################
########################## EXEMPLE DE CODAGE\nalpha1:=[1, 1, 0, 0, 1, \+
0];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'alpha1G7(\"\"\"F&\"\"!F'F&F'
" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 60 "y1:=evalm(alpha&*A):\ny
1:=map(item -> Expand(item) mod 2,y1);" }}{PARA 11 "" 1 "" {XPPMATH
20 "6#>%#y1GK%'vectorG6#7B\"\"\"F)\"\"!F*F*F*F)F)F*F*F)F)F)F)F*F*F)F)F
*F*F*F*F)F)F*F*F)F)F)F)F*F*Q)pprint356\"" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 109 "e1:=vector([1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]);" }}{PARA 11
"" 1 "" {XPPMATH 20 "6#>%#e1GK%'vectorG6#7B\"\"\"\"\"!F*F*F*F*F)F*F*F*
F*F*F*F*F*F)F*F*F*F*F*F*F)F*F*F*F*F*F*F*F*F)Q)pprint366\"" }}}{EXCHG
{PARA 0 "> " 0 "" {MPLTEXT 1 0 159 "wt:=0:\nfor j from 1 to 32 do \n
#print('j'=j,'e1[j]'=evalm(e1[j])); \nif e1[j] mod 2<>0 then wt:=wt+1
 fi; od;\nprint('wt'=wt);# on obtient le poids d'erreur e1" }}{PARA
11 "" 1 "" {XPPMATH 20 "6#/%#wtG\"\"&" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 17 "y2:=evalm(y1+e1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#
>%#y2GK%'vectorG6#7B\"\"#\"\"\"\"\"!F+F+F+F)F*F+F+F*F*F*F*F+F*F*F*F+F+
F+F+F)F*F+F+F*F*F*F*F+F*Q)pprint376\"" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 40 "\ny2:=map(item -> Expand(item) mod 2,y2);" }}{PARA 0
"> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#y2GK%
'vectorG6#7B\"\"!\"\"\"F)F)F)F)F)F*F)F)F*F*F*F*F)F*F*F*F)F)F)F)F)F*F)F
)F*F*F*F*F)F*Q)pprint386\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0
67 "### EXEMPLE DE DECODAG
E" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 172 "Chiffres:= proc(d::
nonnegint,l::nonnegint,n::nonnegint)\nlocal i,m, v;\nv:=vector(l);\nm
:=n;\nfor i from 0 to l-1 do\nv[l-i]:=modp(m,d);m:=floor(m/d); od;\nre
turn v;\nend proc:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 1003 "###
##\nyp:=ve
ctor(32):beta:=vector(6):wp:=vector(64):\nprint('j-1=x[1]+2*x[2]+4*x[3
]+8*x[4]+16*x[5]',\n'b-1=beta[1]+2*beta[2]+4*beta[3]+8*beta[4]+16*beta
[5]+32*beta[6]'):\nprint('x=[x[1],x[2],x[3],x[4],x[5]]',\n'beta=[beta[
1],beta[2],beta[3],beta[4],beta[5],beta[6]]',\n'yp[j]=beta[1]+beta[2]*
x[1]+beta[3]*x[2]+beta[4]*x[3]+beta[5]*x[4]+beta[6]*x[5] mod 2'):\nfor
 b from 1 to 64 do\nbeta:=evalm(Chiffres(2,6, b-1));\nwp[b]:=0:\nfor j
 from 1 to 32 do \nx:=evalm(Chiffres(2,5, j-1));\n#print('j'=j, [x[1],
x[2],x[3],x[4],x[5]]);\nyp[j]:=beta[1]+beta[2]*x[1]+beta[3]*x[2]+beta[
4]*x[3]+beta[5]*x[4]+beta[6]*x[5] mod 2:\nif yp[j]-y2[j] mod 2<>0 then
 wp[b]:=wp[b]+1 fi; od;\nif b=1 then minw:=wp[1];\nprint('b'=b);\npr
int ('wp[b]'=evalm(wp[b]), 'beta'=evalm(Chiffres(2,6, b-1)),'yp'=evalm
(yp));\nfi; \n#print('b'=b, 'yp'=evalm(yp));\nif minw>wp[b] then minw:
=wp[b];\nprint('b'=b);\nprint ('wp[b]'=evalm(wp[b]),\n 'beta'=evalm(Ch
iffres(2,6, b-1)),'yp'=evalm(yp));\nfi;\n od:" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6$/,&%\"jG\"\"\"F&!\"\",,&%\"xG6#F&F&*&\"\"#F&&F*6#F-F&F&
*&\"\"%F&&F*6#\"\"$F&F&*&\"\")F&&F*6#F1F&F&*&\"#;F&&F*6#\"\"&F&F&/,&%
\"bGF&F&F',.&%%betaGF+F&*&F-F&&FCF/F&F&*&F1F&&FCF3F&F&*&F6F&&FCF8F&F&*
&F:F&&FCF<F&F&*&\"#KF&&FC6#\"\"'F&F&" }}{PARA 11 "" 1 "" {XPPMATH 20 "
6%/%\"xG7'&F$6#\"\"\"&F$6#\"\"#&F$6#\"\"$&F$6#\"\"%&F$6#\"\"&/%%betaG7
(&F6F'&F6F*&F6F-&F6F0&F6F3&F66#\"\"'/&%#ypG6#%\"jG-%$modG6$,.F8F(*&F9F
(F&F(F(*&F:F(F)F(F(*&F;F(F,F(F(*&F<F(F/F(F(*&F=F(F2F(F(F+" }}{PARA 11
"" 1 "" {XPPMATH 20 "6#/%\"bG\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6
%/&%#wpG6#%\"bG\"#:/%%betaGK%'vectorG6#7(\"\"!F/F/F/F/F/Q)pprint396\"/
%#ypGKF,6#7BF/
F/F/F/Q)pprint40F1" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"bG\"\"#" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6%/&%#wpG6#%\"bG\"#6/%%betaGK%'vectorG6#
7(\"\"!F/F/F/F/\"\"\"Q)pprint416\"/%#ypGKF,6#7BF/F0F/F0F/F0F/F0F/F0F/F
0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0Q)pprint42F2" }}{PARA 11 ""
1 "" {XPPMATH 20 "6#/%\"bG\"#Z" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/&%#
wpG6#%\"bG\"\"&/%%betaGK%'vectorG6#7(\"\"\"\"\"!F/F/F/F0Q)pprint436\"/
%#ypGKF,6#7BF/F/F0F0F0F0F/F/F0F0F/F/F/F/F0F0F/F/F0F0F0F0F/F/F0F0F/F/F/
F/F0F0Q)pprint44F2" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}
{PARA 224 "" 0 "" {TEXT 205 0 "" }}{PARA 225 "" 0 "" {TEXT 213 0 "" }}
{PARA 226 "" 0 "" {TEXT 229 0 "" }}{PARA 227 "" 0 "" {TEXT -1 0 "" }}}
{MARK "37 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1
2 33 1 1 }

panchish
File Attachment
4mag-03linsolv.mws

α1 = f(0, 0, 0, 0, 0) = y1,
α1 + α2 = f(1, 0, 0, 0, 0) = y17,
α1 + α3 = f(0, 1, 0, 0, 0) = y9,
α1 + α4 = f(0, 0, 1, 0, 0) = y5,
α1 + α5 = f(0, 0, 0, 1, 0) = y3,
α1 + α6 = f(0, 0, 0, 0, 1) = y2.

> C := matrix([[1,0,0,0,0,0℄,
> [1,1,0,0,0,0℄,[1,0,1,0,0,0℄,[1,0,0,1,0,0℄,[1,0,0,0,1,0℄,[1,0,0,0,0,1℄℄mod 2) ;

C :=

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

• Idem pour un veteur seond membre.
> b := vetor([y[1℄,y[17℄,y[9℄,y[5℄,y[3℄,y[2℄℄mod 2) ;17

b := [1, 1, 0, 0, 0, 1]

• Linsolve(. . .) mod 2 permet de résoudre mod 2 :
> alpha := Linsolve(C,b) mod 2;

α := [1, 0, 1, 1, 1, 0]Véri�ation. Calul de Cα− b.
> zerov := evalm(C &* alpha - b) ;

zerov := [0, 0, 2, 2, 2, 0]

• Les termes du veteur obtenu ne sont pas � réduits � à leur forme anonique mod2. Pour obtenir la rédution.
> map(item -> Expand(item) mod 2, zerov) ;

[0, 0, 0, 0, 0, 0]

18

Appliation du odage : y = E(α) = α ∗ A = α[1] ∗ A[1] + α[2] ∗ A[2] + α[3] ∗ A[3] +
α[4] ∗A[4] + α[5] ∗A[5] + α[6] ∗A[6] :

> A[1℄:=
> vetor([
> 1,1, 1, 1, 1, 1, 1, 1, 1, 1
> ℄);
> A[2℄:=vetor([
> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1℄);
> A[3℄:=vetor([
> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,0, 1, 1, 1, 1, 1, 1, 1, 1℄);
> A[4℄:=vetor([
> 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,1, 0, 0, 0, 0, 1, 1, 1,
> 1℄);
> A[5℄:=vetor([
> 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,1, 0, 0, 1, 1, 0, 0, 1, 1℄);
> A[6℄:=vetor([
> 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0, 1, 0, 1, 0, 1
> ℄); 19

A1 := [1, 1]
A2 := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
A3 := [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
A4 := [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]
A5 := [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
A6 := [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

> yt:=evalm(sum(alpha[i℄*A[i℄, i=1..6)):
> yt:=map(item -> Expand(item) mod 2,yt);

yt := [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0]

> et:=evalm(y-yt):et:=map(item -> Expand(item) mod 2, et) ;
et := [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1]

> et[18℄;
0

> wt:=0:
> for j from 1 to 32 do
> #print('j'=j,'et[j℄'=evalm(et[j℄));
> if yt[j℄-y[j℄ mod 2<>0 then wt:=wt+1 fi; od;
> print('wt'=wt);

wt = 14

20

Utilisation de la multipliation des matries : α par A
> A:=array(1..6,1..32,[
> [1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1℄,
> [
> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1℄,
> [
> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,0, 1, 1, 1, 1, 1, 1, 1, 1℄,
> [
> 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,1, 0, 0, 0, 0, 1, 1, 1,
> 1℄,
> [
> 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,1, 0, 0, 1, 1, 0, 0, 1, 1℄,
> [
> 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,1, 0, 1, 0, 1, 0, 1, 0, 1
> ℄
> ℄); 21

A :=

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

> ys:=evalm(alpha&*A):
> ys:=map(item -> Expand(item) mod 2,ys);

ys := [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0]Véri�ation :
> yzero:=evalm(ys-yt):
> map(item -> Expand(item) mod 2,yzero);

[0, 0]

22

Comparaison des deux déodages y′
= yp et ỹ = yt, et alul dupoids d'erreur (4mag-01hi�.mws)

> restart;
> Chiffres:= pro(d::nonnegint,l::nonnegint,n::nonnegint)
> loal i,m, v;
> v:=vetor(l);
> m:=n;
> for i from 0 to l-1 do
> v[l-i℄:=modp(m,d);m:=floor(m/d); od;
> return v;
> end pro:
> evalm(Chiffres(2,12, 4095));

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

> evalm(Chiffres(7,5,700));
[0, 2, 0, 2, 0]

23

{VERSION 6 0 "IBM INTEL NT" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 2
1 2 0 0 0 1 }{CSTYLE "2D Output" -1 20 "Times" 0 1 0 0 255 1 0 0 2 2
2 2 0 0 0 1 }{CSTYLE "_cstyle6" -1 208 "Times" 0 1 0 0 0 0 0 0 0 2 2
2 0 0 0 1 }{CSTYLE "_cstyle32" -1 214 "Times" 0 1 0 0 0 0 0 0 0 2 2 2
0 0 0 1 }{CSTYLE "_cstyle25" -1 222 "Times" 1 18 0 0 0 1 2 1 2 2 2 2
0 0 0 1 }{CSTYLE "_cstyle23" -1 224 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0
0 0 1 }{CSTYLE "_cstyle15" -1 232 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0
0 1 }{CSTYLE "_cstyle33" -1 240 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2
0 0 0 1 }{CSTYLE "_cstyle35" -1 242 "Courier" 1 12 255 0 0 1 2 1 2 2
1 2 0 0 0 1 }{CSTYLE "_cstyle36" -1 243 "Courier" 0 1 255 0 0 1 0 1 0
2 1 2 0 0 0 1 }{CSTYLE "_cstyle37" -1 244 "Times" 0 1 0 0 0 0 0 0 0 2
2 2 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0
0 0 1 2 2 2 2 2 2 0 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Mapl
e Output" -1 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1
}3 3 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle42" -1 241 1 {CSTYLE "
" -1 -1 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 1 0 0 1 }1 1 0 0 0 0 2 0
2 0 2 2 -1 1 }{PSTYLE "_pstyle43" -1 242 1 {CSTYLE "" -1 -1 "Times" 1
18 0 0 0 1 2 1 2 2 2 2 0 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE
"_pstyle44" -1 243 1 {CSTYLE "" -1 -1 "Courier" 0 1 255 0 0 1 0 1 0 2
1 2 0 0 0 1 }1 1 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle46" -1 245
1 {CSTYLE "" -1 -1 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 1 0 0 1 }1 1 0
0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle47" -1 246 1 {CSTYLE "" -1 -1
"Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1 }0 0 0 -1 -1 -1 2 0 2 0 2 2
-1 1 }{PSTYLE "_pstyle48" -1 247 1 {CSTYLE "" -1 -1 "Times" 0 1 0 0 0
0 0 0 0 2 2 2 0 0 0 1 }0 0 0 -1 -1 -1 2 0 2 0 2 2 -1 1 }{PSTYLE "_psty
le49" -1 248 1 {CSTYLE "" -1 -1 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0
1 }0 0 0 -1 -1 -1 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle50" -1 249 1
{CSTYLE "" -1 -1 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1 }0 0 0 -1 -1
-1 2 0 2 0 2 2 -1 1 }{PSTYLE "_pstyle51" -1 250 1 {CSTYLE "" -1 -1 ""
0 1 0 0 0 0 0 0 0 2 2 2 0 0 0 1 }0 0 0 -1 -1 -1 2 0 2 0 2 2 -1 1 }
{PSTYLE "_pstyle52" -1 251 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 2
2 2 0 0 0 1 }0 0 0 -1 -1 -1 1 0 1 0 2 2 -1 1 }}
{SECT 0 {EXCHG {PARA 241 "> " 0 "" {MPLTEXT 1 240 0 "" }}}{EXCHG
{PARA 242 "" 0 "" {TEXT 222 34 "Source Worksheet: 4mag-01chiff.mws" }
{TEXT 222 0 "" }}}{EXCHG {PARA 243 "> " 0 "" {MPLTEXT 1 0 8 "restart;
" }{MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 241 "> " 0 "" {MPLTEXT 1 240 58 "
Chiffres:= proc(d::nonnegint,l::nonnegint,n::nonnegint)" }{MPLTEXT
1 240 0 "" }{MPLTEXT 1 240 14 "\nlocal i,m, v;" }{MPLTEXT 1 240 0 "" }
{MPLTEXT 1 240 14 "\nv:=vector(l);" }{MPLTEXT 1 240 0 "" }{MPLTEXT 1
240 6 "\nm:=n;" }{MPLTEXT 1 240 0 "" }{MPLTEXT 1 240 23 "\nfor i from \+
0 to l-1 do" }{MPLTEXT 1 240 0 "" }{MPLTEXT 1 240 37 "\nv[l-i]:=modp(m
,d);m:=floor(m/d); od;" }{MPLTEXT 1 240 0 "" }{MPLTEXT 1 240 10 "\nret
urn v;" }{MPLTEXT 1 240 0 "" }{MPLTEXT 1 240 10 "\nend proc:" }
{MPLTEXT 1 240 0 "" }}}{EXCHG {PARA 241 "> " 0 "" {MPLTEXT 1 240 28 "e
valm(Chiffres(2,12, 4095));" }{MPLTEXT 1 240 0 "" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#K%'vectorG6#7.\"\"\"F'F'F'F'F'F'F'F'F'F'F'Q(pprint26\"
" }}}{EXCHG {PARA 241 "> " 0 "" {MPLTEXT 1 240 25 "evalm(Chiffres(7,5,
700));" }{MPLTEXT 1 240 0 "" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#K%'vect
orG6#7'\"\"!\"\"#F'F(F'Q(pprint36\"" }}}{EXCHG {PARA 245 "> " 0 ""
{MPLTEXT 1 242 69 "y:=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1];" }{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 31 "\nyp:=vec
tor(32):yt:=vector(32):" }{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 49 "\npr
int ('j-1=x[1]+2*x[2]+4*x[3]+8*x[4]+16*x[5]'," }{MPLTEXT 1 242 0 "" }
{MPLTEXT 1 242 32 "\n'x=[x[1],x[2],x[3],x[4],x[5]]'," }{MPLTEXT 1 243
0 "" }{MPLTEXT 1 243 20 "\n'yp[j]=x[1] mod 2'," }{MPLTEXT 1 242 0 "" }
{MPLTEXT 1 242 2 "\n'" }{MPLTEXT 1 243 31 "yt[j]=1+x[2]+x[3]+x[4] mod \+
2'):" }{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 13 "\nwp:=0:wt:=0:" }
{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 23 "\nfor j from 1 to 32 do " }
{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 30 "\nx:=evalm(Chiffres(2,5, j-1))
:" }{MPLTEXT 1 243 0 "" }{MPLTEXT 1 243 25 "\nyt[j]:=1+x[2]+x[3]+x[4] \+
" }{MPLTEXT 1 242 6 "mod 2:" }{MPLTEXT 1 243 1 " " }{MPLTEXT 1 243 0 "
" }{MPLTEXT 1 243 13 "\nyp[j]:=x[1] " }{MPLTEXT 1 242 6 "mod 2:" }
{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 4 "\nif " }{MPLTEXT 1 243 26 "yt[j
]-y[j] mod 2<>0 then " }{MPLTEXT 1 242 13 "wt:=wt+1 fi;" }{MPLTEXT
1 242 0 "" }{MPLTEXT 1 242 4 "\nif " }{MPLTEXT 1 243 26 "yp[j]-y[j] mo
d 2<>0 then " }{MPLTEXT 1 242 14 "wp:=wp+1 fi; " }{MPLTEXT 1 242 0 "
" }{MPLTEXT 1 242 13 "\nprint ('j'=j" }{MPLTEXT 1 243 1 "," }{MPLTEXT
1 242 28 "x=evalm(Chiffres(2,5, j-1))," }{MPLTEXT 1 243 59 "'y[j]'=y[j
],'yp[j]'=yp[j],'yt[j]'=yt[j], 'wp'=wp,'wt'=wt):" }{MPLTEXT 1 242 0 "
" }{MPLTEXT 1 242 4 "\nod:" }{MPLTEXT 1 242 0 "" }{MPLTEXT 1 242 20 "
\nprint ('y'=" }{MPLTEXT 1 243 3 "y):" }{MPLTEXT 1 242 18 "pri
nt ('yp'=evalm(" }{MPLTEXT 1 243 5 "yp)):" }{MPLTEXT 1 242 18 "print (
'yt'=evalm(" }{MPLTEXT 1 243 5 "yt)):" }{MPLTEXT 1 243 0 "" }}{PARA
11 "" 1 "" {XPPMATH 20 "6#>%\"yG7B\"\"\"F&\"\"!F'F'F'F'F'F'F'F'F'F'F'F
'F'F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&" }}{PARA 11 "" 1 "" {XPPMATH 20 "6
&/,&%\"jG\"\"\"F&!\"\",,&%\"xG6#F&F&*&\"\"#F&&F*6#F-F&F&*&\"\"%F&&F*6#
\"\"$F&F&*&\"\")F&&F*6#F1F&F&*&\"#;F&&F*6#\"\"&F&F&/F*7'F)F.F2F7F;/&%#
ypG6#F%-%$modG6$F)F-/&%#ytGFC-FE6$,*F&F&F.F&F2F&F7F&F-" }}{PARA 11 ""
1 "" {XPPMATH 20 "6)/%\"jG\"\"\"/%\"xGK%'vectorG6#7'\"\"!F,F,F,F,Q(ppr
int46\"/&%\"yG6#F$F%/&%#ypGF2F,/&%#ytGF2F%/%#wpGF%/%#wtGF," }}{PARA
11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"\"#/%\"xGK%'vectorG6#7'\"\"!F,F,F,\"
\"\"Q(pprint56\"/&%\"yG6#F$F-/&%#ypGF3F,/&%#ytGF3F-/%#wpGF%/%#wtGF," }
}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"\"$/%\"xGK%'vectorG6#7'\"\"!F
,F,\"\"\"F,Q(pprint66\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/
%#wtGF," }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"\"%/%\"xGK%'vectorG
6#7'\"\"!F,F,\"\"\"F-Q(pprint76\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%
#wpG\"\"#/%#wtGF," }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"\"&/%\"xG
K%'vectorG6#7'\"\"!F,\"\"\"F,F,Q(pprint86\"/&%\"yG6#F$F,/&%#ypGF3F,/&%
#ytGF3F,/%#wpG\"\"#/%#wtGF," }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG
\"\"'/%\"xGK%'vectorG6#7'\"\"!F,\"\"\"F,F-Q(pprint96\"/&%\"yG6#F$F,/&%
#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtGF," }}{PARA 11 "" 1 "" {XPPMATH
20 "6)/%\"jG\"\"(/%\"xGK%'vectorG6#7'\"\"!F,\"\"\"F-F,Q)pprint106\"/&%
\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%#wtGF-" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6)/%\"jG\"\")/%\"xGK%'vectorG6#7'\"\"!F,\"\"\"F-F-Q)ppr
int116\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%#wtGF<" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"\"*/%\"xGK%'vectorG6#7'\"\"!\"
\"\"F,F,F,Q)pprint126\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/
%#wtGF<" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#5/%\"xGK%'vectorG6
#7'\"\"!\"\"\"F,F,F-Q)pprint136\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%
#wpG\"\"#/%#wtGF<" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#6/%\"xGK
%'vectorG6#7'\"\"!\"\"\"F,F-F,Q)pprint146\"/&%\"yG6#F$F,/&%#ypGF3F,/&%
#ytGF3F-/%#wpG\"\"#/%#wtG\"\"$" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"
jG\"#7/%\"xGK%'vectorG6#7'\"\"!\"\"\"F,F-F-Q)pprint156\"/&%\"yG6#F$F,/
&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"\"%" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6)/%\"jG\"#8/%\"xGK%'vectorG6#7'\"\"!\"\"\"F-F,F,Q)pprint
166\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"\"&" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#9/%\"xGK%'vectorG6#7'\"\"!\"
\"\"F-F,F-Q)pprint176\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/
%#wtG\"\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#:/%\"xGK%'vecto
rG6#7'\"\"!\"\"\"F-F-F,Q)pprint186\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F
,/%#wpG\"\"#/%#wtG\"\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#;/
%\"xGK%'vectorG6#7'\"\"!\"\"\"F-F-F-Q)pprint196\"/&%\"yG6#F$F,/&%#ypGF
3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"\"'" }}{PARA 11 "" 1 "" {XPPMATH 20 "
6)/%\"jG\"#</%\"xGK%'vectorG6#7'\"\"\"\"\"!F-F-F-Q)pprint206\"/&%\"yG6
#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"\"'" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6)/%\"jG\"#=/%\"xGK%'vectorG6#7'\"\"\"\"\"!F-F-F,Q)pprint
216\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"\"'" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#>/%\"xGK%'vectorG6#7'\"\"\"\"
\"!F-F,F-Q)pprint226\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%
#wtG\"\"(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#?/%\"xGK%'vector
G6#7'\"\"\"\"\"!F-F,F,Q)pprint236\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-
/%#wpG\"\"#/%#wtG\"\")" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#@/%
\"xGK%'vectorG6#7'\"\"\"\"\"!F,F-F-Q)pprint246\"/&%\"yG6#F$F,/&%#ypGF3
F,/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"\"*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6
)/%\"jG\"#A/%\"xGK%'vectorG6#7'\"\"\"\"\"!F,F-F,Q)pprint256\"/&%\"yG6#
F$F,/&%#ypGF3F,/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"#5" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6)/%\"jG\"#B/%\"xGK%'vectorG6#7'\"\"\"\"\"!F,F,F-Q)pprint
266\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"#5" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#C/%\"xGK%'vectorG6#7'\"\"\"\"
\"!F,F,F,Q)pprint276\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%
#wtG\"#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#D/%\"xGK%'vectorG
6#7'\"\"\"F,\"\"!F-F-Q)pprint286\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F-/
%#wpG\"\"#/%#wtG\"#6" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#E/%\"
xGK%'vectorG6#7'\"\"\"F,\"\"!F-F,Q)pprint296\"/&%\"yG6#F$F,/&%#ypGF3F,
/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"#7" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%
\"jG\"#F/%\"xGK%'vectorG6#7'\"\"\"F,\"\"!F,F-Q)pprint306\"/&%\"yG6#F$F
,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"#7" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6)/%\"jG\"#G/%\"xGK%'vectorG6#7'\"\"\"F,\"\"!F,F,Q)pprint
316\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%#wtG\"#7" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#H/%\"xGK%'vectorG6#7'\"\"\"F,
F,\"\"!F-Q)pprint326\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/%#wpG\"\"#/%
#wtG\"#7" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#I/%\"xGK%'vectorG
6#7'\"\"\"F,F,\"\"!F,Q)pprint336\"/&%\"yG6#F$F,/&%#ypGF3F,/&%#ytGF3F,/
%#wpG\"\"#/%#wtG\"#7" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%\"jG\"#J/%\"
xGK%'vectorG6#7'\"\"\"F,F,F,\"\"!Q)pprint346\"/&%\"yG6#F$F,/&%#ypGF3F,
/&%#ytGF3F-/%#wpG\"\"#/%#wtG\"#8" }}{PARA 11 "" 1 "" {XPPMATH 20 "6)/%
\"jG\"#K/%\"xGK%'vectorG6#7'\"\"\"F,F,F,F,Q)pprint356\"/&%\"yG6#F$F,/&
%#ypGF2F,/&%#ytGF2\"\"!/%#wpG\"\"#/%#wtG\"#9" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#/%\"yG7B\"\"\"F&\"\"!F'F'F'F'F'F'F'F'F'F'F'F'F'F&F&F&F&
F&F&F&F&F&F&F&F&F&F&F&F&" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%#ypGK%'v
ectorG6#7B\"\"!F)F)F)F)F)F)F)F)F)F)F)F)F)F)F)\"\"\"F*F*F*F*F*F*F*F*F*F
*F*F*F*F*F*Q)pprint366\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%#ytGK%'v
ectorG6#7B\"\"\"F)\"\"!F*F*F*F)F)F*F*F)F)F)F)F*F*F)F)F*F*F*F*F)F)F*F*F
)F)F)F)F*F*Q)pprint376\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "
" }}}{PARA 246 "" 0 "" {TEXT 208 0 "" }}{PARA 246 "" 0 "" {TEXT 208 0
"" }}{PARA 246 "" 0 "" {TEXT 208 0 "" }}{PARA 246 "" 0 "" {TEXT 208 0
"" }}{PARA 246 "" 0 "" {TEXT 208 0 "" }}{PARA 247 "" 0 "" {TEXT 232 0
"" }}{PARA 248 "" 0 "" {TEXT 224 0 "" }}{PARA 249 "" 0 "" {TEXT 214 0
"" }}{PARA 250 "" 0 "" {TEXT 244 0 "" }}{PARA 251 "" 0 "" {TEXT -1 0 "
" }}}{MARK "6 0 11" 2 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS
0 1 2 33 1 1 }

panchish
File Attachment
4mag-01chiff.mws

> y:=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1℄;
> yp:=vetor(32):yt:=vetor(32):
> print ('j=x[1℄+2*x[2℄+4*x[3℄+8*x[4℄+16*x[5℄',
> 'x=[x[1℄,x[2℄,x[3℄,x[4℄,x[5℄℄',
> 'yp[j℄=x[1℄ mod 2',
> '
> yt[j℄=1+x[2℄+x[3℄+x[4℄ mod 2'):
> wp:=0:wt:=0:
> for j from 1 to 32 do
> x:=evalm(Chiffres(2,5, j-1)):
> yt[j℄:=1+x[2℄+x[3℄+x[4℄
> mod 2:
> yp[j℄:=x[1℄
> mod 2:
> if
> yt[j℄-y[j℄ mod 2< > 0 then
> wt:=wt+1 fi;
> if yp[j℄-y[j℄ mod 2<>0 then wp:=wp+1 fi;
> print ('j'=j,x=evalm(Chiffres(2,5, j-1)),'y[j℄'=y[j℄,'yp[j℄'=yp[j℄,'yt[j℄'=yt[j℄,'wp'=wp,'wt'=wt):
> od:
> print ('y'=y):print ('yp'=evalm(yp)):print ('yt'=evalm(yt)):24

y := [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

j = 1, x = [0, 0, 0, 0, 0], yj = 1, ypj = 0, ytj = 1, wp = 1, wt = 0
j = 2, x = [0, 0, 0, 0, 1], yj = 1, ypj = 0, ytj = 1, wp = 2, wt = 0
j = 3, x = [0, 0, 0, 1, 0], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 0
j = 4, x = [0, 0, 0, 1, 1], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 0
j = 5, x = [0, 0, 1, 0, 0], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 0
j = 6, x = [0, 0, 1, 0, 1], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 0
j = 7, x = [0, 0, 1, 1, 0], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 1
j = 8, x = [0, 0, 1, 1, 1], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 2
j = 9, x = [0, 1, 0, 0, 0], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 2
j = 10, x = [0, 1, 0, 0, 1], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 2
j = 11, x = [0, 1, 0, 1, 0], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 3
j = 12, x = [0, 1, 0, 1, 1], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 4
j = 13, x = [0, 1, 1, 0, 0], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 5
j = 14, x = [0, 1, 1, 0, 1], yj = 0, ypj = 0, ytj = 1, wp = 2, wt = 6
j = 15, x = [0, 1, 1, 1, 0], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 6
j = 16, x = [0, 1, 1, 1, 1], yj = 0, ypj = 0, ytj = 0, wp = 2, wt = 6
j = 17, x = [1, 0, 0, 0, 0], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 6
j = 18, x = [1, 0, 0, 0, 1], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 6
j = 19, x = [1, 0, 0, 1, 0], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 7

25

j = 20, x = [1, 0, 0, 1, 1], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 8
j = 21, x = [1, 0, 1, 0, 0], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 9
j = 22, x = [1, 0, 1, 0, 1], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 10
j = 23, x = [1, 0, 1, 1, 0], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 10
j = 24, x = [1, 0, 1, 1, 1], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 10

j = 25, x = [1, 1, 0, 0, 0], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 11
j = 26, x = [1, 1, 0, 0, 1], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 12
j = 27, x = [1, 1, 0, 1, 0], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 12
j = 28, x = [1, 1, 0, 1, 1], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 12
j = 29, x = [1, 1, 1, 0, 0], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 12
j = 30, x = [1, 1, 1, 0, 1], yj = 1, ypj = 1, ytj = 1, wp = 2, wt = 12
j = 31, x = [1, 1, 1, 1, 0], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 13
j = 32, x = [1, 1, 1, 1, 1], yj = 1, ypj = 1, ytj = 0, wp = 2, wt = 14
y = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
yp = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
yt = [1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0]

26

Un programme pour un deodage exaustif de y (4mag-02hi�.mws)
> restart;
> Chiffres:= pro(d::nonnegint,l::nonnegint,n::nonnegint)
> loal i,m, v;
> v:=vetor(l);
> m:=n;
> for i from 0 to l-1 do
> v[l-i℄:=modp(m,d);m:=floor(m/d); od;
> return v;
> end pro:
> evalm(Chiffres(2,12, 4095));

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

> evalm(Chiffres(7,5,700));
[0, 2, 0, 2, 0]véri�ation :2*7+2*7^3=700 ?

> 2*7+2*7^3=700;
700 = 700

27

{VERSION 6 0 "IBM INTEL NT" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 2
1 2 0 0 0 1 }{CSTYLE "2D Output" -1 20 "Times" 0 1 0 0 255 1 0 0 2 2
2 2 0 0 0 1 }{CSTYLE "_cstyle8" -1 205 "Times" 1 18 0 0 0 1 2 2 2 2 2
2 0 0 0 1 }{CSTYLE "_cstyle6" -1 207 "Times" 0 1 0 0 0 0 0 0 0 2 2 2
0 0 0 1 }{CSTYLE "_cstyle22" -1 214 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0
0 0 1 }{CSTYLE "_cstyle15" -1 221 "Times" 0 1 0 0 0 0 0 0 0 2 2 2 0 0
0 1 }{CSTYLE "_cstyle23" -1 229 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2
0 0 0 1 }{CSTYLE "_cstyle24" -1 230 "Times" 1 12 0 0 0 1 2 2 2 2 2 2
0 0 0 1 }{CSTYLE "_cstyle25" -1 231 "Times" 1 12 0 0 0 1 2 2 2 2 2 2
0 0 0 1 }{CSTYLE "_cstyle26" -1 232 "Courier" 1 12 255 0 0 1 2 1 2 2
1 2 0 0 0 1 }{CSTYLE "_cstyle27" -1 233 "Courier" 0 1 255 0 0 1 0 1 0
2 1 2 0 0 0 1 }{CSTYLE "_cstyle29" -1 235 "Times" 0 1 0 0 0 0 0 0 0 2
2 2 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0
0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple
 Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1
1 1 1 }3 3 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle29" -1 228 1
{CSTYLE "" -1 -1 "Times" 1 18 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0
0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle30" -1 229 1 {CSTYLE "" -1 -1 "Cour
ier" 1 12 255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }
{PSTYLE "_pstyle31" -1 230 1 {CSTYLE "" -1 -1 "Courier" 1 12 255 0 0
1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle33
" -1 232 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }
1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle34" -1 233 1 {CSTYLE ""
-1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2
2 0 1 }{PSTYLE "_pstyle35" -1 234 1 {CSTYLE "" -1 -1 "Courier" 1 12
255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_
pstyle37" -1 236 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2
1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle38" -1 237 1
{CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0
0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle39" -1 238 1 {CSTYLE "" -1 -1 "Time
s" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }
{PSTYLE "_pstyle40" -1 239 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2
2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle41"
-1 240 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1
1 0 0 0 0 1 0 1 0 2 2 0 1 }}
{SECT 0 {EXCHG {PARA 228 "" 0 "" {TEXT 205 34 "Source Worksheet: 4mag-
02chiff.mws" }}}{EXCHG {PARA 229 "> " 0 "" {MPLTEXT 1 0 8 "restart;" }
}}{EXCHG {PARA 230 "> " 0 "" {MPLTEXT 1 229 162 "Chiffres:= proc(d::
nonnegint,l::nonnegint,n::nonnegint)\nlocal i,m, v;\nv:=vector(l);\nm
:=n;\nfor i from 0 to l-1 do\nv[l-i]:=modp(m,d);m:=floor(m/d); od;\nre
turn v;" }{MPLTEXT 1 229 10 "\nend proc:" }}}{EXCHG {PARA 230 "> " 0 "
" {MPLTEXT 1 229 28 "evalm(Chiffres(2,12, 4095));" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#K%'vectorG6#7.\"\"\"F'F'F'F'F'F'F'F'F'F'F'Q)pprint146\"
" }}}{EXCHG {PARA 230 "> " 0 "" {MPLTEXT 1 229 25 "evalm(Chiffres(7,5,
700));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#K%'vectorG6#7'\"\"!\"\"#F'F(
F'Q)pprint156\"" }}}{EXCHG {PARA 232 "" 0 "" {TEXT 230 29 "v\351rifica
tion :2*7+2*7^3=700?" }}}{EXCHG {PARA 230 "> " 0 "" {MPLTEXT 1 229
14 "2*7+2*7^3=700;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/\"$+(F$" }}}
{EXCHG {PARA 233 "" 0 "" {TEXT 231 63 "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" }}}{EXCHG {PARA 234 "> " 0 ""
{MPLTEXT 1 232 469 "y:=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1];\n#y:=[1,1,0,0,0,1,0,0,1,1,1,1,0,0,1,0,1,1,1,1,0,0,
1,0,1,1,1,1,0,0,1,0];\n#y:=[1,1,1,1,0,1,0,0,1,1,1,1,0,0,1,0,1,1,1,1,0,
0,1,0,1,1,1,1,0,0,1,0];\nyp:=vector(32):beta:=vector(6):wp:=vector(64)
:\nprint('j-1=x[1]+2*x[2]+4*x[3]+8*x[4]+16*x[5]',\n'b-1=beta[1]+2*beta
[2]+4*beta[3]+8*beta[4]+16*beta[5]+32*beta[6]'):\nprint('x=[x[1],x[2],
x[3],x[4],x[5]]',\n'beta=[beta[1],beta[2],beta[3],beta[4],beta[5],beta
[6]]'," }{MPLTEXT 1 233 8 "\n'yp[j]=" }{MPLTEXT 1 232 73 "beta[1]+beta
[2]*x[1]+beta[3]*x[2]+beta[4]*x[3]+beta[5]*x[4]+beta[6]*x[5] " }
{MPLTEXT 1 233 8 "mod 2'):" }{MPLTEXT 1 232 161 "\nfor b from 1 to 64 \+
do\nbeta:=evalm(Chiffres(2,6, b-1));\nwp[b]:=0:\nfor j from 1 to 32 do
 \nx:=evalm(Chiffres(2,5, j-1));\n#print('j'=j, [x[1],x[2],x[3],x[4],x
[5]]);" }{MPLTEXT 1 233 8 "\nyp[j]:=" }{MPLTEXT 1 232 72 "beta[1]+beta
[2]*x[1]+beta[3]*x[2]+beta[4]*x[3]+beta[5]*x[4]+beta[6]*x[5]" }
{MPLTEXT 1 233 1 " " }{MPLTEXT 1 232 10 "mod 2:\nif " }{MPLTEXT 1 233
26 "yp[j]-y[j] mod 2<>0 then " }{MPLTEXT 1 232 23 "wp[b]:=wp[b]+1 fi
; od;" }{MPLTEXT 1 233 39 "\nif b=1 then minw:=wp[1];\nprint('b'=b);"
}{MPLTEXT 1 232 22 "\nprint ('wp[b]'=evalm(" }{MPLTEXT 1 233 15 "wp[b]
), 'beta'=" }{MPLTEXT 1 232 24 "evalm(Chiffres(2,6, b-1)" }{MPLTEXT 1
233 2 ")," }{MPLTEXT 1 232 14 "'yp'=evalm(yp)" }{MPLTEXT 1 233 7 ");\n
fi; " }{MPLTEXT 1 232 31 "\n#print('b'=b, 'yp'=evalm(yp));" }{MPLTEXT
1 233 46 "\nif minw>wp[b] then minw:=wp[b];\nprint('b'=b);" }{MPLTEXT
1 232 22 "\nprint ('wp[b]'=evalm(" }{MPLTEXT 1 233 16 "wp[b]),\n 'beta
'=" }{MPLTEXT 1 232 24 "evalm(Chiffres(2,6, b-1)" }{MPLTEXT 1 233 2 ")
," }{MPLTEXT 1 232 14 "'yp'=evalm(yp)" }{MPLTEXT 1 233 12 ");\nfi;\n o
d:\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"yG7B\"\"\"F&\"\"!F'F'F'F'F
'F'F'F'F'F'F'F'F'F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&F&" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6$/,&%\"jG\"\"\"F&!\"\",,&%\"xG6#F&F&*&\"\"#F&&F*6#F-F&F&
*&\"\"%F&&F*6#\"\"$F&F&*&\"\")F&&F*6#F1F&F&*&\"#;F&&F*6#\"\"&F&F&/,&%
\"bGF&F&F',.&%%betaGF+F&*&F-F&&FCF/F&F&*&F1F&&FCF3F&F&*&F6F&&FCF8F&F&*
&F:F&&FCF<F&F&*&\"#KF&&FC6#\"\"'F&F&" }}{PARA 11 "" 1 "" {XPPMATH 20 "
6%/%\"xG7'&F$6#\"\"\"&F$6#\"\"#&F$6#\"\"$&F$6#\"\"%&F$6#\"\"&/%%betaG7
(&F6F'&F6F*&F6F-&F6F0&F6F3&F66#\"\"'/&%#ypG6#%\"jG-%$modG6$,.F8F(*&F9F
(F&F(F(*&F:F(F)F(F(*&F;F(F,F(F(*&F<F(F/F(F(*&F=F(F2F(F(F+" }}{PARA 11
"" 1 "" {XPPMATH 20 "6#/%\"bG\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6
%/&%#wpG6#%\"bG\"#=/%%betaGK%'vectorG6#7(\"\"!F/F/F/F/F/Q)pprint246\"/
%#ypGKF,6#7BF/
F/F/F/Q)pprint25F1" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/%\"bG\"\"#" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6%/&%#wpG6#%\"bG\"#;/%%betaGK%'vectorG6#
7(\"\"!F/F/F/F/\"\"\"Q)pprint266\"/%#ypGKF,6#7BF/F0F/F0F/F0F/F0F/F0F/F
0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0F/F0Q)pprint27F2" }}{PARA 11 ""
1 "" {XPPMATH 20 "6#/%\"bG\"#<" }}{PARA 11 "" 1 "" {XPPMATH 20 "6%/&%#
wpG6#%\"bG\"\"#/%%betaGK%'vectorG6#7(\"\"!\"\"\"F/F/F/F/Q)pprint286\"/
%#ypGKF,6#7BF/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F/F0F0F0F0F0F0F0F0F0F0F0F0F0
F0F0F0Q)pprint29F2" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}
{PARA 236 "" 0 "" {TEXT 207 0 "" }}{PARA 236 "" 0 "" {TEXT 207 0 "" }}
{PARA 236 "" 0 "" {TEXT 207 0 "" }}{PARA 236 "" 0 "" {TEXT 207 0 "" }}
{PARA 236 "" 0 "" {TEXT 207 0 "" }}{PARA 236 "" 0 "" {TEXT 207 0 "" }}
{PARA 236 "" 0 "" {TEXT 207 0 "" }}{PARA 236 "" 0 "" {TEXT 207 0 "" }}
{PARA 237 "" 0 "" {TEXT 221 0 "" }}{PARA 238 "" 0 "" {TEXT 214 0 "" }}
{PARA 239 "" 0 "" {TEXT 235 0 "" }}{PARA 240 "" 0 "" {TEXT -1 0 "" }}}
{MARK "8 0 4" 23 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1
2 33 1 1 }

panchish
File Attachment
4mag-02chiff.mws

> y:=[1,1,1,1,0,1,0,0,1,1,1,1,0,0,1,0,1,1,1,1,0,0,1,0,1,1,1,1,0,0,1,0℄;
> yp:=vetor(32):be:=vetor(6):wp:=vetor(64):
> print('j=x[1℄+2*x[2℄+4*x[3℄+8*x[4℄+16*x[5℄',
> 'b=be[1℄+2*be[2℄+4*be[3℄+8*be[4℄+16*be[5℄+32*be[6℄'):
> print('x=[x[1℄,x[2℄,x[3℄,x[4℄,x[5℄℄',
> 'be=[be[1℄,be[2℄,be[3℄,be[4℄,be[5℄,be[6℄℄',
> 'yp[j℄=be[1℄+be[2℄*x[1℄+be[3℄*x[2℄+be[4℄*x[3℄+be[5℄*x[4℄+be[6℄*x[5℄ mod2'):
> for b from 1 to 64 do
> be:=evalm(Chiffres(2,6, b-1));
> wp[b℄:=0:
> for j from 1 to 32 do
> x:=evalm(Chiffres(2,5, j-1));
> yp[j℄:=be[1℄+be[2℄*x[1℄+be[3℄*x[2℄+be[4℄*x[3℄+be[5℄*x[4℄+be[6℄*x[5℄ mod2:
> if yp[j℄-y[j℄ mod 2<>0 then wp[b℄:=wp[b℄+1 fi; od;
> #print ('yp'=evalm(yp));
> #'y[j℄'=y[j℄,'yp[j℄'=yp[j℄,'wp[b℄'=wp[b℄):
> if b=1 then minw:=wp[1℄;
> print('b'=b);
> print ('wp[b℄'=evalm(wp[b℄), 'be'=evalm(Chiffres(2,6, b-1)),'yp'=evalm(yp));
> fi;
> if minw>wp[b℄ then minw:=wp[b℄;
> print('b'=b);
> print ('wp[b℄'=evalm(wp[b℄), 'be'=evalm(Chiffres(2,6, b-1)),'yp'=evalm(yp));fi;
> od: 28

y := [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0]
j = x1 + 2 x2 + 4 x3 + 8 x4 + 16 x5, b = be1 + 2 be2 + 4 be3 + 8 be4 + 16 be5 + 32 be6

b = 1
wpb = 20, be = [0, 0, 0, 0, 0, 0], yp = [0, 0]

b = 2
wpb = 18, be = [0, 0, 0, 0, 0, 1], yp = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
b = 3
wpb = 14, be = [0, 0, 0, 0, 1, 0], yp = [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
b = 4
wpb = 12, be = [0, 0, 0, 0, 1, 1], yp = [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0]

b = 37
wpb = 4, be = [1, 0, 0, 1, 0, 0], yp = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

29

Résultat :le veteur u′ = be = [1, 0, 0, 1, 0, 0], obtenu à partir du mot
y′ = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0],est le déodage herhé du mot reçu y. Il orrespond à b = 37, et le poids d'erreur y − y′est égal à 4.1 Transmission d'information, odage et deodage op-timal sur un anal bruitéCodes de répétition pure.1.1 Prinipe de transmission d'informationOn souhaite transmettre des informations via un anal de transmission. Celui-i nepouvant être parfait, l'information reçue par le destinataire peut être inexploitable ouerronée. Pour réduire au maximum la probabilité d'erreur, on onstruit une proédure deodage-déodage de l'information à transmettre qui, au prix d'éléments transmis supplé-mentaires, va permettre de déteter puis de orriger les altérations du message dues à

30

l'imperfetion du anal. On se base pour ei essentiellement sur l'étude des orps �nis etdes polyn�mes sur eux-i.L'objet de la théorie de l'information est la désription et l'étude des systèmes de om-muniations, où l'information est onsidérée omme une grandeur mathématique, à partirdu travail de Claude Shannon (1948) "The mathematial theory of ommuniation".Le modèle général d'un système de ommuniation omportant une protetion ontreles erreurs de transmission est le suivant :SOURCEmessage àtransmettre
a emis −→

ENCODEURmessageodé
c emis −→ ↓

CANALde transmission e (erreur)←− BRUITDESTINARAIREmessagedéodé a′
←

DECODEURmessage
c′ = c + e reçu ←− ↓Par� "soure" on nomme tout organe ou dispositif émettant un message,31

� "enodeur" un organe qui assoie au message un signal de forme onvenable� "anal" le milieu utilisé pour transmettre le signal� "deodeur" l'organe de restitution du message à partir du signal reçu� "destinataire" la personne ou appareil qui exploite e message1.2 Hypothèses sur un anal bruitéLe message à transmettre est un blo de symboles tous issus d'un même alphabet. Onformule deux hypothèses fondamentales :- Les perturbations de symboles au ours de la transmission sont indépendantes deuxà deux et de même probabilité p.- Le bruit du anal peut substituer un symbole à un autre, mais ne peut en adjoindreou en supprimer. Le message reçu est ainsi de même longueur que le message émis.

32

1.3 Généralités sur les odesDéfinition 1.1 (a) Soit F un ensemble de ardinal q, M,n deux entiers stritementpositifs. On appelle ode C sur l'alphabet F de longueur n blo-par-blo toute partie C ⊂ Fnde ardinal Card (C) = M .(b) Un ode C ⊂ Fn est dit q-aire si C = ImE pour une appliation injetive
E : F k −→ FnL'élément E(u), pour un u de F k est appelé un mot ode, k est dit la dimension du ode,

n est sa longueur. Dans e as Card (C) = qkDéfinition 1.2 (a) Soit F un ensemble �ni non vide et n entier stritement positif.L'appliation d : Fn × Fn −→ N

(a, b) 7→ Card {i ∈ {1, . . . , n} | ai 6= bi}ave a = (a1, · · · , an) et b = (b1, · · · , bn) est la distane de Hamming sur Fn.(b) Soit F un orps �ni. L'appliation w : Fn → N

a 7→ d(a, 0) = Card {i ∈ {1, . . . , n} | ai 6= 0}est le poids de Hamming. 33

Remarque 1.3 : La distane de Hamming sur Fn est bien une distane sur Fn. En e�et,on a :
d(a, b) = 0⇐⇒ (ai = bi; 1 ≤ i ≤ n)⇐⇒ a = b

d(a, b) = d(b, a) pour tous a, b pour tous En

d(a, c) ≤ d(a, b) + d(b, c) pour tous a, b, c pour tous En.

34

Définition 1.4 Soit C = ImE un ode q-aire, i.e., l'image d'une appliation injetive
E : F k → Fn, où #F = q.(a) On appelle éart ou "distane" de C le nombre

d = d(C) = min
x,y∈F k

x 6=y

d(E(x), E(y))

Soit C = ImE un ode q-aire, E : F k → Fn de distane d. Dans e as on dit que C estun [n, k, d]q-ode.(b) On appelle vitesse de transmission (le "rendement" ou "information rate" en an-glais) de C le rapport R = k/n() 1/R est le oe�ient de redondane de C.(d) δ = d/n est la distane relative (ou le "taux de orretion") de CSoit x = (x1, . . . , xn) le mot transmis par le anal. Le mot reçu y = (y1, y2, . . . , yn),eventuellement entahé d'erreurs, di�ère de x en d(x, y) positions.Lorsque on suppose qu'il n'y a pas plus de t erreurs ommises, d(x, y) ≤ t, on pourraretrouver x à la ondition que haque mot erroné reçu ne puisse provenir que d'un seulmot du ode.
35

Définition 1.5 Un ode de longueur n sur l'alphabet F véri�e la ondition de deodaged'ordre t si pour tout y ∈ Fn il existe au plus un mot x ∈ C ⊂ Fn tel que d(x, y) ≤ t.Dans e as les boules
B(x, t) = {y ∈ Fn | d(x, y) ≤ t} ⊂ Fn(pour la distane de Hamming) sont deux-à-deux disjointes.Théorème 1.6 Un ode C peut orriger t erreurs si son éart d est tel que d ≥ 2t + 1.Preuve Si c est envoyé et y reçu, tels que d(y, c) ≤ t, tout mot ode c′ de C est tel que

d(c, c′) ≥ 2t + 1. Or, d est une distane, don
d(y, c′) ≥ d(c, c′)− d(c, y)

d(y, c′) ≥ t + 1

C peut don orriger t erreurs. Les boules B(c, t) sont don deux-à-deux disjointes.

36

Définition 1.7 (a) Un déodage de E est une appliation
D : Fn → F ktelle que D ◦ E = IdF k .(b) On dit que D est standard ("de vraisemblene maximale") si

∀y ∈ Fn∀u ∈ F k, d(E(u), y) ≥ d(E(D(y)), y)'est-à-dire que E(D(y)) se trouve parmi les mots de odes E(u) les plus prohes de y.Remarque 1.8 L'existene d'un déodage est garantie par l'injetivité de E.

37

1.4 Codage et deodage optimal sur un anal bruitéOn onsidère les problèmes mathématiques de transmission d'information (vue ommeune longue suite
F kN ∋ a = (a1, . . . , ak, ak+1, . . . , akN),où

u1 = (a1, . . . , ak), u2 = (ak+1, · · · , a2k), · · · , uN = (ak(N−1)+1, · · · , akN−1, akN),ave les blos d'information u1, . . . uN . On transmet l'information blo-par-blo a l'aidedu ode
a 7→ EN (a) = (E(u1), . . . , E(uN)) ∈ FnNave les hypothèses 1.2 :

EN (a) 7→ ẼN (a) ∈ FnNIl est possible de diminuer onsiderablement la proportion d'erreures de transmissiond'information ave des bons odes.

38

panchish
Inserted Text
efficient, faultless transmission of binary data over a noisy channel

Le nombre total d'erreurs dans haque blo Ẽ(ui) est d'espérane d'une distributionpolynomiale, don e nombre est ≤ (p + ε)n pour tout ε, ave n assez grand, et ave unegrande probabilité souhaitée ≥ 1− ε1 (très prohe à 1). Une bonne mesure de qualité deode est la distane relative (où "taux de orretion") :
δ =

d

n
, et on suppose que p est assez petit : p <

δ

2
.Don pour un hoix de ε et de n on peut supposer aussi que p ≤ δ

2 − ε− 1
n . Dans e as

(p + ε)n ≤ (
δ

2
− 1

n
)n =

d

2
− 1 ≤ t =

[
d− 1

2

]

,et toutes les erreurs de transmission serons orrigées par le ode C.C'est-à-dire, DN ◦ EN (a) = a, si p < δ
2 et n assez grand, ave une probabilité souhaité

≥ 1− ε1 très prohe à 1.Don le suès du deodage des mots ẼN (a) ∈ FnN dépend du fait si δ est assez grand
p ≤ δ

2 mais aussi depend du fait que de la vitesse de transmission R = kN
nN (le rendement)est su�sante R > R0 pour transmettre un mot de ode de longueur n avant que le motsuivant soit fabriqué.C'est pourquoi on est obligé d'utiliser des odes longs, ave n ≈ 300 ∼ 1000.

39

RappelsDéfinition 1.4 Soit C = ImE un ode q-aire, i.e., l'image d'une appliation injetive
E : F k → Fn, où #F = q. On appelle éart ou "distane" de C le nombre

d = d(C) = min
x,y∈F k

x 6=y

d(E(x), E(y))Dans e as on dit que C est un [n, k, d]q-ode.Définition 1.9 Une famille {Ci} des [ni, ki, di]q-odes est dite bonne s'il existe et si sontpositives toutes les deux limites
lim

i→∞

ki

ni
= R > 0, lim

i→∞

di

ni
= δ > 0,Ave toute bonne famille on peut faire tendre vers 1 la probabilité d'une transmissionorrete ayant en même temps la vitesse de transmission su�sante R > R0 pour pouvoirtransmettre un mot de ode de longueur n avant qu'un mots suivant soit fabriqué. Enréalité, on utilise R0 ≈ 0, 1 ∼ 0, 95.Illustration de l'idée :pour pouvoir reonnaître les erreures d'impression pendant la leture on utilise un bonvoabulaire où les mots sont éartés : il n'y a qu'un seul mot qui resemble au mot imprimé40

panchish
Text Box
[n,k,d]_q-codes et bonnes familles

(erroné).Un proédé ourant du "bit de parité", permet dans le as d'une erreur de la "dététer"(sans la orriger !) Pour ela on attribue à un mot d'information binaire u = (u1, . . . , uk)la somme des oordonnées : E : F
k
2 → F

k+1
2 ,

x = E(u) = (u1, . . . , uk, xk+1), où xk+1 = u1 + · · ·+ uk ∈ F2.Une autre méthode est elle de répétition :
Em : F k → F km,elle onsiste à envoyer m fois le même mot : n = mk. La suite de odes {Cm = Em} estmauvaise : le rendement tend vers zéro : km

nm
=

1

m
→ 0.

41

En réalité, si une soure produit r symboles par minute, il y a une restrition sur lavitesse : un anal peut transmettre seulement m0r symboles par minute, m0 ≈ 1, 1 ∼ 10don il faut que n ≤ km0, k
n ≥ 1

m0
. On voit don que la répétition est inutile à ause dela restrition sur la longuer

k = 1,
k

n
≥ 1

m0
⇒ n ≤ m0.

42

Définition 1.9 (rappel) Une famille {Ci} des [ni, ki, di]q-odes est dite bonne s'il existeet si sont positives toutes les deux limites
lim

i→∞

ki

ni
= R > 0, lim

i→∞

di

ni
= δ > 0,Ave toute bonne famille on peut faire tendre vers 1 la probabilité d'une transmissionorrete ayant en même temps la vitesse de transmission su�sante R > R0.Le suès du deodage des mots Ẽ(u) ∈ Fn dépend du fait que δ = d

n est assezgrand : δ
2 > p, où p = ps est la probabilité des perturbations de symboles au ours de latransmission.En même temps, on demand que de la vitesse de transmission R = k

n (le rendement)soit su�sante R > R0 pour transmettre un mot de ode de longueur n avant que le motsuivant soit fabriqué (on utilise R0 ≈ 0, 1 ∼ 0, 95).En�n, on est obligé d'utiliser des odes longs, ave n ≈ 300 ∼ 1000, pour que le nombretotal d'erreurs dans haque blo Ẽ(u) soit ≤ (p+ ε)n ave n assez grand et ε < δ
2 −p− 1

n .

43

Codes de répétition pureSoit p = ps la probabilité des perturbations de symboles au ours de la transmission.On onsidère F = {0, 1} et l'appliation E : F → Fn du odage de répitition pure. Calulerla probabilité P du deodage erroné.(a) Montrer que
P =

∑

0≤l<n/2

(
n

l

)

(1− p)lpn−l = O(pn/2) lorsque p→ 0.En déduire, qu'on ne peut pas obtenir une très petite probabilité du deodage erroné àause de la restrition n ≤ m0.(b) Pour tout p < 1
8 , enadrer P (voir [vLi℄, p.24, et la setion suivante).

44

1.5 Théorème de Shannon (1948)Ce résultat a�rme l'existene de bonne transmission d'information à l'aide d'une familleonvenable des odes longs. Shannon a onsidéré un anal binaire bruité (q = 2), voir [Sha℄.Soit PC = M−1
n

Mn∑

i=1

Pi la probabilité de deodage inorrete par un mot du ode C ⊂ F
n
2où Pi est la probabilité de deodage erroné d'un mot E(ui) ∈ C.Notation : on pose P ∗(Mn, n, p) = la valeur minimale de la probabilité de deodageinorrete par un mot sur tous les odes C ⊂ Fn

2 du ardinal Card (C) = Mn ('est à dire,que k = [Rn]),
P ∗(Mn, n, p) = min

C
Card (C)=Mn

(PC = M−1
n

Mn∑

i=1

Pi).

45

Pour formuler le théorème de Shannon, on utilise la fontion d'entropie H(p) dé�niepour 0 < p < 1 par l'égalité : 0 < H(p) = −p log2 p− (1− p) log2(1− p) < 1.Théorème 1.10 (Shannon) On suppose que p < 1/2, et soit R un nombre stritementpositif tel que
0 < R < 1 + p log2 p + (1− p) log2(1− p) < 1,et on pose Mn := 2[Rn]. Soit P ∗(Mn, n, p)= la valeur minimale de la probabilité de deo-dage inorrete par un mot sur tous les odes C ⊂ F

n
2 du ardinal Card (C) = Mn :

P ∗(Mn, n, p) = min
C

Card (C)=Mn

(PC = M−1
n

Mn∑

i=1

Pi)Alors P ∗(Mn, n, p)→ 0 si n→∞ .(voir [vLi℄, p.27 pour une preuve détaillée, basée sur la théorie de probabilité).

46

panchish
Inserted Text
Théorèmes de ShannonSon nom est associé à plusieurs théorèmes, le Théorème d'échantillonnage de Nyquist-Shannon sur l'échantillonnage (aussi appelé critère de Shannon), le premier théorème de Shannon sur la limite théorique de la compression, le deuxième théorème de Shannon sur la capacité d'un canal de transmission.

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

ESSENTIALS OF
ERROR-CONTROL
CODING

Jorge Castiñeira Moreira

University of Mar del Plata, Argentina

Patrick Guy Farrell

Lancaster University, UK

iii

OTE/SPH OTE/SPH

JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

ii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

ESSENTIALS OF
ERROR-CONTROL
CODING

i

OTE/SPH OTE/SPH

JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

ii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

ESSENTIALS OF
ERROR-CONTROL
CODING

Jorge Castiñeira Moreira

University of Mar del Plata, Argentina

Patrick Guy Farrell

Lancaster University, UK

iii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Copyright C© 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or

otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,

without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the

Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19

8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and

product names used in this book are trade names, service marks, trademarks or registered trademarks of their

respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-02920-6 (HB)

ISBN-10 0-470-02920-X (HB)

Typeset in 10/12pt Times by TechBooks, New Delhi, India.

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, England.

This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two

trees are planted for each one used for paper production.

iv

http://www.wiley.com

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

We dedicate this book to

my son Santiago José,

Melisa and Belén,

Maria, Isabel, Alejandra and Daniel,

and the memory of my Father.

J.C.M.

and to all my families and friends.

P.G.F.

v

OTE/SPH OTE/SPH

JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

vi

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Contents

Preface xiii

Acknowledgements xv

List of Symbols xvii

Abbreviations xxv

1 Information and Coding Theory 1
1.1 Information 3

1.1.1 A Measure of Information 3

1.2 Entropy and Information Rate 4

1.3 Extended DMSs 9

1.4 Channels and Mutual Information 10

1.4.1 Information Transmission over Discrete Channels 10

1.4.2 Information Channels 10

1.5 Channel Probability Relationships 13

1.6 The A Priori and A Posteriori Entropies 15

1.7 Mutual Information 16

1.7.1 Mutual Information: Definition 16

1.7.2 Mutual Information: Properties 17

1.8 Capacity of a Discrete Channel 21

1.9 The Shannon Theorems 22

1.9.1 Source Coding Theorem 22

1.9.2 Channel Capacity and Coding 23

1.9.3 Channel Coding Theorem 25

1.10 Signal Spaces and the Channel Coding Theorem 27

1.10.1 Capacity of the Gaussian Channel 28

1.11 Error-Control Coding 32

1.12 Limits to Communication and their Consequences 34

Bibliography and References 38

Problems 38

vii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

viii Contents

2 Block Codes 41
2.1 Error-Control Coding 41

2.2 Error Detection and Correction 41

2.2.1 Simple Codes: The Repetition Code 42

2.3 Block Codes: Introduction and Parameters 43

2.4 The Vector Space over the Binary Field 44

2.4.1 Vector Subspaces 46

2.4.2 Dual Subspace 48

2.4.3 Matrix Form 48

2.4.4 Dual Subspace Matrix 49

2.5 Linear Block Codes 50

2.5.1 Generator Matrix G 51

2.5.2 Block Codes in Systematic Form 52

2.5.3 Parity Check Matrix H 54

2.6 Syndrome Error Detection 55

2.7 Minimum Distance of a Block Code 58

2.7.1 Minimum Distance and the Structure of the H Matrix 58

2.8 Error-Correction Capability of a Block Code 59

2.9 Syndrome Detection and the Standard Array 61

2.10 Hamming Codes 64

2.11 Forward Error Correction and Automatic Repeat ReQuest 65

2.11.1 Forward Error Correction 65

2.11.2 Automatic Repeat ReQuest 68

2.11.3 ARQ Schemes 69

2.11.4 ARQ Scheme Efficiencies 71

2.11.5 Hybrid-ARQ Schemes 72

Bibliography and References 76

Problems 77

3 Cyclic Codes 81
3.1 Description 81

3.2 Polynomial Representation of Codewords 81

3.3 Generator Polynomial of a Cyclic Code 83

3.4 Cyclic Codes in Systematic Form 85

3.5 Generator Matrix of a Cyclic Code 87

3.6 Syndrome Calculation and Error Detection 89

3.7 Decoding of Cyclic Codes 90

3.8 An Application Example: Cyclic Redundancy Check Code for the Ethernet Standard 92

Bibliography and References 93

Problems 94

4 BCH Codes 97
4.1 Introduction: The Minimal Polynomial 97

4.2 Description of BCH Cyclic Codes 99

4.2.1 Bounds on the Error-Correction Capability of a BCH Code: The Vandermonde
Determinant 102

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Contents ix

4.3 Decoding of BCH Codes 104

4.4 Error-Location and Error-Evaluation Polynomials 105

4.5 The Key Equation 107

4.6 Decoding of Binary BCH Codes Using the Euclidean Algorithm 108

4.6.1 The Euclidean Algorithm 108

Bibliography and References 112

Problems 112

5 Reed–Solomon Codes 115
5.1 Introduction 115

5.2 Error-Correction Capability of RS Codes: The Vandermonde Determinant 117

5.3 RS Codes in Systematic Form 119

5.4 Syndrome Decoding of RS Codes 120

5.5 The Euclidean Algorithm: Error-Location and Error-Evaluation Polynomials 122

5.6 Decoding of RS Codes Using the Euclidean Algorithm 125

5.6.1 Steps of the Euclidean Algorithm 127

5.7 Decoding of RS and BCH Codes Using the Berlekamp–Massey Algorithm 128

5.7.1 B–M Iterative Algorithm for Finding the Error-Location Polynomial 130

5.7.2 B–M Decoding of RS Codes 133

5.7.3 Relationship Between the Error-Location Polynomials of the Euclidean and
B–M Algorithms 136

5.8 A Practical Application: Error-Control Coding for the Compact Disk 136

5.8.1 Compact Disk Characteristics 136

5.8.2 Channel Characteristics 138

5.8.3 Coding Procedure 138

5.9 Encoding for RS codes CRS(28, 24), CRS(32, 28) and CRS(255, 251) 139

5.10 Decoding of RS Codes CRS(28, 24) and CRS(32, 28) 142

5.10.1 B–M Decoding 142

5.10.2 Alternative Decoding Methods 145

5.10.3 Direct Solution of Syndrome Equations 146

5.11 Importance of Interleaving 148

Bibliography and References 152

Problems 153

6 Convolutional Codes 157
6.1 Linear Sequential Circuits 158

6.2 Convolutional Codes and Encoders 158

6.3 Description in the D-Transform Domain 161

6.4 Convolutional Encoder Representations 166

6.4.1 Representation of Connections 166

6.4.2 State Diagram Representation 166

6.4.3 Trellis Representation 168

6.5 Convolutional Codes in Systematic Form 168

6.6 General Structure of Finite Impulse Response and Infinite Impulse Response FSSMs 170

6.6.1 Finite Impulse Response FSSMs 170

6.6.2 Infinite Impulse Response FSSMs 171

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

x Contents

6.7 State Transfer Function Matrix: Calculation of the Transfer Function 172

6.7.1 State Transfer Function for FIR FSSMs 172

6.7.2 State Transfer Function for IIR FSSMs 173

6.8 Relationship Between the Systematic and the Non-Systematic Forms 175

6.9 Distance Properties of Convolutional Codes 177

6.10 Minimum Free Distance of a Convolutional Code 180

6.11 Maximum Likelihood Detection 181

6.12 Decoding of Convolutional Codes: The Viterbi Algorithm 182

6.13 Extended and Modified State Diagram 185

6.14 Error Probability Analysis for Convolutional Codes 186

6.15 Hard and Soft Decisions 189

6.15.1 Maximum Likelihood Criterion for the Gaussian Channel 192

6.15.2 Bounds for Soft-Decision Detection 194

6.15.3 An Example of Soft-Decision Decoding of Convolutional Codes 196

6.16 Punctured Convolutional Codes and Rate-Compatible Schemes 200

Bibliography and References 203

Problems 205

7 Turbo Codes 209
7.1 A Turbo Encoder 210

7.2 Decoding of Turbo Codes 211

7.2.1 The Turbo Decoder 211

7.2.2 Probabilities and Estimates 212

7.2.3 Symbol Detection 213

7.2.4 The Log Likelihood Ratio 214

7.3 Markov Sources and Discrete Channels 215

7.4 The BCJR Algorithm: Trellis Coding and Discrete Memoryless Channels 218

7.5 Iterative Coefficient Calculation 221

7.6 The BCJR MAP Algorithm and the LLR 234

7.6.1 The BCJR MAP Algorithm: LLR Calculation 235

7.6.2 Calculation of Coefficients γi (u′, u) 236

7.7 Turbo Decoding 239

7.7.1 Initial Conditions of Coefficients αi−1(u′) and βi (u) 248

7.8 Construction Methods for Turbo Codes 249

7.8.1 Interleavers 249

7.8.2 Block Interleavers 250

7.8.3 Convolutional Interleavers 250

7.8.4 Random Interleavers 251

7.8.5 Linear Interleavers 253

7.8.6 Code Concatenation Methods 253

7.8.7 Turbo Code Performance as a Function of Size and Type of Interleaver 257

7.9 Other Decoding Algorithms for Turbo Codes 257

7.10 EXIT Charts for Turbo Codes 257

7.10.1 Introduction to EXIT Charts 258

7.10.2 Construction of the EXIT Chart 259

7.10.3 Extrinsic Transfer Characteristics of the Constituent Decoders 261

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Contents xi

Bibliography and References 269

Problems 271

8 Low-Density Parity Check Codes 277
8.1 Different Systematic Forms of a Block Code 278

8.2 Description of LDPC Codes 279

8.3 Construction of LDPC Codes 280

8.3.1 Regular LDPC Codes 280

8.3.2 Irregular LDPC Codes 281

8.3.3 Decoding of LDPC Codes: The Tanner Graph 281

8.4 The Sum–Product Algorithm 282

8.5 Sum–Product Algorithm for LDPC Codes: An Example 284

8.6 Simplifications of the Sum–Product Algorithm 297

8.7 A Logarithmic LDPC Decoder 302

8.7.1 Initialization 302

8.7.2 Horizontal Step 302

8.7.3 Vertical Step 304

8.7.4 Summary of the Logarithmic Decoding Algorithm 305

8.7.5 Construction of the Look-up Tables 306

8.8 Extrinsic Information Transfer Charts for LDPC Codes 306

8.8.1 Introduction 306

8.8.2 Iterative Decoding of Block Codes 310

8.8.3 EXIT Chart Construction for LDPC Codes 312

8.8.4 Mutual Information Function 312

8.8.5 EXIT Chart for the SND 314

8.8.6 EXIT Chart for the PCND 315

8.9 Fountain and LT Codes 317

8.9.1 Introduction 317

8.9.2 Fountain Codes 318

8.9.3 Linear Random Codes 318

8.9.4 Luby Transform Codes 320

8.10 LDPC and Turbo Codes 322

Bibliography and References 323

Problems 324

Appendix A: Error Probability in the Transmission of Digital Signals 327

Appendix B: Galois Fields GF(q) 339

Answers to Problems 351

Index 357

OTE/SPH OTE/SPH

JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Preface

The subject of this book is the detection and correction of errors in digital information. Such
errors almost inevitably occur after the transmission, storage or processing of information in
digital (mainly binary) form, because of noise and interference in communication channels,
or imperfections in storage media, for example. Protecting digital information with a suitable
error-control code enables the efficient detection and correction of any errors that may have
occurred.

Error-control codes are now used in almost the entire range of information communication,
storage and processing systems. Rapid advances in electronic and optical devices and systems
have enabled the implementation of very powerful codes with close to optimum error-control
performance. In addition, new types of code, and new decoding methods, have recently been
developed and are starting to be applied. However, error-control coding is complex, novel and
unfamiliar, not yet widely understood and appreciated. This book sets out to provide a clear
description of the essentials of the topic, with comprehensive and up-to-date coverage of the
most useful codes and their decoding algorithms. The book has a practical engineering and
information technology emphasis, but includes relevant background material and fundamental
theoretical aspects. Several system applications of error-control codes are described, and there
are many worked examples and problems for the reader to solve.

The book is an advanced text aimed at postgraduate and third/final year undergraduate
students of courses on telecommunications engineering, communication networks, electronic
engineering, computer science, information systems and technology, digital signal processing,
and applied mathematics, and for engineers and researchers working in any of these areas. The
book is designed to be virtually self-contained for a reader with any of these backgrounds.
Enough information and signal theory, and coding mathematics, is included to enable a full
understanding of any of the error-control topics described in the book.

Chapter 1 provides an introduction to information theory and how it relates to error-control
coding. The theory defines what we mean by information, determines limits on the capacity of
an information channel and tells us how efficient a code is at detecting and correcting errors.
Chapter 2 describes the basic concepts of error detection and correction, in the context of the
parameters, encoding and decoding of some simple binary block error-control codes. Block
codes were the first type of error-control code to be discovered, in the decade from about 1940
to 1950. The two basic ways in which error coding is applied to an information system are
also described: forward error correction and retransmission error control. A particularly useful
kind of block code, the cyclic code, is introduced in Chapter 3, together with an example of
a practical application, the cyclic redundancy check (CRC) code for the Ethernet standard. In
Chapters 4 and 5 two very effective and widely used classes of cyclic codes are described,

xiii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xiv Preface

the Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon (RS) codes, named after their
inventors. BCH codes can be binary or non-binary, but the RS codes are non-binary and are
particularly effective in a large number of error-control scenarios. One of the best known of
these, also described in Chapter 5, is the application of RS codes to error correction in the
compact disk (CD).

Not long after the discovery of block codes, a second type of error-control codes emerged,
initially called recurrent and later convolutional codes. Encoding and decoding even a quite
powerful convolutional code involves rather simple, repetitive, quasi-continuous processes,
applied on a very convenient trellis representation of the code, instead of the more complex
block processing that seems to be required in the case of a powerful block code. This makes it
relatively easy to use maximum likelihood (soft-decision) decoding with convolutional codes,
in the form of the optimum Viterbi algorithm (VA). Convolutional codes, their trellis and state
diagrams, soft-decision detection, the Viterbi decoding algorithm, and practical punctured
and rate-compatible coding schemes are all presented in Chapter 6. Disappointingly, however,
even very powerful convolutional codes were found to be incapable of achieving performances
close to the limits first published by Shannon, the father of information theory, in 1948. This
was still true even when very powerful combinations of block and convolutional codes, called
concatenated codes, were devised. The breakthrough, by Berrou, Glavieux and Thitimajshima
in 1993, was to use a special kind of interleaved concatenation, in conjunction with iterative
soft-decision decoding. All aspects of these very effective coding schemes, called turbo codes
because of the supercharging effect of the iterative decoding algorithm, are fully described in
Chapter 7.

The final chapter returns to the topic of block codes, in the form of low-density parity check
(LDPC) codes. Block codes had been found to have trellis representations, so that they could
be soft-decision decoded with performances almost as good as those of convolutional codes.
Also, they could be used in effective turbo coding schemes. Complexity remained a problem,
however, until it was quite recently realized that a particularly simple class of codes, the LDPC
codes discovered by Gallager in 1962, was capable of delivering performances as good or better
than those of turbo codes when decoded by an appropriate iterative algorithm. All aspects of
the construction, encoding, decoding and performance of LDPC codes are fully described in
Chapter 8, together with various forms of LDPC codes which are particularly effective for use
in communication networks.

Appendix A shows how to calculate the error probability of digital signals transmitted over
additive white Gaussian noise (AWGN) channels, and Appendix B introduces various topics
in discrete mathematics. These are followed by a list of the answers to the problems located
at the end of each chapter. Detailed solutions are available on the website associated with this
book, which can be found at the following address:

http://elaf1.fi.mdp.edu.ar/Error Control

The website also contains additional material, which will be regularly updated in response
to comments and questions from readers.

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Acknowledgements

We are very grateful for all the help, support and encouragement we have had during the writing
of this book, from our colleagues past and present, from many generations of research assistants
and students, from the reviewers and from our families and friends. We particularly thank
Damian Levin and Leonardo Arnone for their contributions to Chapters 7 and 8, respectively;
Mario Blaum, Rolando Carrasco, Evan Ciner, Bahram Honary, Garik Markarian and Robert
McEliece for stimulating discussions and very welcome support; and Sarah Hinton at John
Wiley & Sons, Ltd who patiently waited for her initial suggestion to bear fruit.

xv

OTE/SPH OTE/SPH

JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xvi

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

List of Symbols

Chapter 1

α probability of occurrence of a source symbol (Chapter 1)
δ, ε arbitrary small numbers
σ standard deviation
�(α) entropy of the binary source evaluated using logs to base 2
B bandwidth of a channel
C capacity of a channel, bits per second
c code vector, codeword
Cs capacity of a channel, bits per symbol
d, i, j, k, l, m, n integer numbers
Eb average bit energy
Eb/N0 average bit energy-to-noise power spectral density ratio
H (X) entropy in bits per second
H (Xn) entropy of an extended source
H (X/y j) a posteriori entropy
H (X/Y) equivocation
H (Y/X) noise entropy
Hb(X) entropy of a discrete source calculated in logs to base b
I (xi , y j) mutual information of xi , y j

I (X, Y) average mutual information
Ii information of the symbol xi

M number of symbols of a discrete source
n length of a block of information, block code length
N0/2 noise power spectral density
nf large number of emitted symbols
p error probability of the BSC or BEC
P power of a signal
P(xi) = Pi probability of occurrence of the symbol xi

P(xi/y j) backward transition probability
P(xi , y j) joint probability of xi , y j

P(X/Y) conditional probability of vector X given vector Y
Pij = P(y j/xi) conditional probability of symbol y j given xi , also transition probability

of a channel; forward transition probability
Pke error probability, in general k identifies a particular index

xvii

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xviii List of Symbols

PN noise power
Pch transition probability matrix
Qi a probability
R information rate
rb bit rate
s, r symbol rate
S/N signal-to-noise ratio
T signal time duration
Ts sampling period
W bandwidth of a signal
x variable in general, also a particular value of random variable X
X random variable (Chapters 1, 7 and 8), and variable of a polynomial

expression (Chapters 3, 4 and 5)
x(t), s(t) signals in the time domain
xi value of a source symbol, also a symbol input to a channel
xk = x(kTs) sample of signal x(t)
||X|| norm of vector X
y j value of a symbol, generally a channel output

Chapter 2

A amplitude of a signal or symbol
Ai number of codewords of weight i
D stopping time (Chapter 2); D-transform domain variable
d(ci , c j) Hamming distance between two code vectors
Di set of codewords
dmin minimum distance of a code
e error pattern vector
F a field
f (m) redundancy obtained, code C0, hybrid ARQ
G generator matrix
gi row vector of generator matrix G
gij element of generator matrix
GF(q) Galois or finite field
H parity check matrix
h j row vector of parity check matrix H
k, n message and code lengths in a block code
l number of detectable errors in a codeword
m random number of transmissions (Chapter 2)
m message vector
N integer number
P(i, n) probability of i erroneous symbols in a block of n symbols
P parity check submatrix
pij element of the parity check submatrix
pprime prime number

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

List of Symbols xix

Pbe bit error rate (BER)
Pret probability of a retransmission in ARQ schemes
PU(E) probability of undetected errors
Pwe word or code vector error probability
q power of a prime number pprime

q(m) redundancy obtained, code C1, hybrid ARQ
r received vector
Rc code rate
S subspace of a vector space V (Chapter 2)
S syndrome vector (Chapters 2–5, 8)
si component of a syndrome vector (Chapters 2–5, 8)
Sd dual subspace of the subspace S
t number of correctable errors in a codeword
td transmission delay
Tw duration of a word
u = (u1, u2, . . . un−1) vector of n components
V a vector space
Vn vector space of dimension n
w(c) Hamming weight of code vector c

Chapter 3

αi primitive element of Galois field GF(q) (Chapters 4 and 5,
Appendix B)

β i root of minimal polynomial (Chapters 4 and 5, Appendix B)
c(X) code polynomial
c(i)(X) i-position right-shift rotated version of the polynomial c(X)
e(X) error polynomial
g(X) generator polynomial
m(X) message polynomial
p(X) remainder polynomial (redundancy polynomial in systematic form)

(Chapter 3),
pi (X) primitive polynomial
r level of redundancy and degree of the generator polynomial

(Chapters 3 and 4 only)
r (X) received polynomial
S(X) syndrome polynomial

Chapter 4

βl , α
jl error-location numbers

	i (X) minimal polynomial
μ(X) auxiliary polynomial in the key equation
σ (X) error-location polynomial (Euclidean algorithm)
τ number of errors in a received vector

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xx List of Symbols

e jh value of an error
jl position of an error in a received vector
qi , ri , si , ti auxiliary numbers in the Euclidean algorithm (Chapters 4

and 5)
ri (X), si (X), ti (X) auxiliary polynomials in the Euclidean algorithm (Chapters 4

and 5)
W (X) error-evaluation polynomial

Chapter 5

ρ a previous step with respect to μ in the Berlekamp–Massey
(B–M) algorithm

σ
(μ)
BM(X) error-location polynomial, B–M algorithm, μth iteration

dμ μth discrepancy, B–M algorithm

lμ degree of the polynomial σ
(μ)
BM(X), B–M algorithm

m̂ estimate of a message vector
sRS number of shortened symbols in a shortened RS code
Z (X) polynomial for determining error values in the B–M algorithm

Chapter 6

Ai number of sequences of weight i (Chapter 6)
Ai, j,l number of paths of weight i , of length j , which result from

an input of weight l
bi (T) sampled value of bi (t), the noise-free signal, at time instant T
C(D) code polynomial expressions in the D domain
ci i th branch of code sequence c
ci n-tuple of coded elements
Cm(D) multiplexed output of a convolutional encoder in the D domain
c ji j th code symbol of ci

C (j)(D) output sequence of the j th branch of a convolutional encoder,
in the D domain

c(j)
i = (c(j)

0 , c(j)
1 , c(j)

2 , . . .) output sequence of the j th branch of a convolutional encoder
df minimum free distance of a convolutional code
dH Hamming distance
G(D) rational transfer function of polynomial expressions in the D

domain
G(D) rational transfer function matrix in the D domain

G(j)
i (D) impulse response of the j th branch of a convolutional

encoder, in the D domain

g(j)
i = (g(j)

i0 , g(j)
i1 , g(j)

i2 , . . .) impulse response of the j th branch of a convolutional encoder
[GF(q)]n extended vector space

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

List of Symbols xxi

H0 hypothesis of the transmission of symbol ‘0’
H1 hypothesis of the transmission of symbol ‘1’
J decoding length
K number of memory units of a convolutional encoder
K + 1 constraint length of a convolutional code
Ki length of the i th register of a convolutional encoder
L length of a sequence
M(D) message polynomial expressions in the D domain
mi k-tuple of message elements
n A constraint length of a convolutional code, measured in bits
Pp puncturing matrix

S(D) state transfer function
si (k) state sequences in the time domain
si (t) a signal in the time domain
Si (D) state sequences in the D domain
Sj = (s0 j , s1 j , s2 j , . . .) state vectors of a convolutional encoder
sr received sequence
sri i th branch of received sequence sr

sr, j i j th symbol of sri

T (X) generating function of a convolutional code
T (X, Y, Z) modified generating function
ti time instant
Tp puncturing period

Chapter 7

αi (u) forward recursion coefficients of the BCJR algorithm
βi (u) backward recursion coefficients of the BCJR algorithm
λi (u), σi (u, u′), γi (u′, u) quantities involved in the BCJR algorithm
μ(x) measure or metric of the event x
μ(x, y) joint measure for a pair of random variables X and Y
μMAP(x) maximum a posteriori measure or metric of the event x
μML(x) maximum likelihood measure or metric of the event x
μY mean value of random variable Y
π (i) permutation
σ 2

Y variance of a random variable Y
A random variable of a priori estimates
D random variable of extrinsic estimates of bits
E random variable of extrinsic estimates
E (i) extrinsic estimates for bit i
histE (ξ/X = x) histogram that represents the probability density function
I {.} interleaver permutation pE (ξ/X = x)
IA, I (X ; A) mutual information between the random variables A and X
IE , I (X ; E) mutual information between the random variables E and X

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xxii List of Symbols

IE = Tr(IA, Eb/N0) extrinsic information transfer function
J (σ) mutual information function
JMTC number of encoders in a multiple turbo code
J−1(IA) inverse of the mutual information function
L(x) metric of a given event x
L(bi) log likelihood ratio for bit bi

L(bi/Y), L(bi/Y n
1) conditioned log likelihood ratio given the received

sequence Y , for bit bi

Lc measure of the channel signal-to-noise ratio
LcY (j) channel information for a turbo decoder, j th iteration
Le(bi) extrinsic log likelihood ratio for bit bi

L (j)
e (bi) extrinsic log likelihood ratio for bit bi , j-th iteration

L (j)(bi/Y) conditioned log likelihood ratio given the received
sequence Y , for bit bi , j th iteration

MI × NI size of a block interleaver
nY random variable with zero mean value and variance σ 2

Y
p(x) probability distribution of a discrete random variable
p(X j) source marginal distribution function
pA(ξ/X = x) probability density function of a priori estimates A for X = x
pE (ξ/X = x) probability density function of extrinsic estimates E for

X = x
pMTC the angular coefficient of a linear interleaver
R j (Y j/X j) channel transition probability
sMTC linear shift of a linear interleaver

S j
i = {Si , Si+1, . . . , Sj } generic vector or sequence of states of a Hidden Markov

source
u current state value
u′ previous state value
X = Xn

1 = {X1, X2, . . . , Xn} vector or sequence of n random variables

X j
i = {Xi , Xi+1, . . . , X j } generic vector or sequence of random variables

Chapter 8

δQij difference of coefficients Qx
ij

δRij difference of coefficients Rx
ij

A and B sparse submatrices of the parity check matrix H (Chapter 8)

A(i t)
ij a posteriori estimate in iteration number it

d decoded vector

d̂ estimated decoded vector
d j symbol nodes
d (i)

c number of symbol nodes or bits related to parity check
node hi

d (j)
v number of parity check equations in which the bit or

symbol d j participates

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

List of Symbols xxiii

dp message packet code vector
dpn message packet in a fountain or linear random code
Ex number of excess packets of a fountain or linear random

code
f+(|z1|, |z2|), f−(|z1|, |z2|) look-up tables for an LDPC decoder implementation with

entries |z1|, |z2|
f x

j a priori estimates of the received symbols

Gfr fragment generator matrix
{Gkn} generator matrix of a fountain or linear random code
hi parity check nodes
IE,SND(IA, dv, Eb/N0, Rc) EXIT chart for the symbol node decoder
IE,PCND(IA, dc) EXIT chart for the parity check node decoder
L(b1 ⊕ b2), L(b1)[⊕]L(b2) LLR of an exclusive-OR sum of two bits

Lch = L (0)
ch channel LLR

L (it)
ij LLR that each parity check node hi sends to each symbol

node d j in iteration number it∣∣L Qx
ij

∣∣, ∣∣L f x
j

∣∣, ∣∣L Rx
ij

∣∣, ∣∣L Qx
j

∣∣ L values for Qx
ij, f x

j , Rx
ij , Qx

j , respectively

|Lz| an L value, that is, the absolute value of the natural log
of z

M(j) set of indexes of all the children parity check nodes
connected to the symbol node d j

M(j)\i set of indexes of all the children parity check nodes
connected to the symbol node d j with the exclusion of
the child parity check node hi

N (i) set of indexes of all the parent symbol nodes connected to
the parity check node hi

N (i)\ j set of indexes of all the parent symbol nodes connected to
the parity check node hi with the exclusion of the
parent symbol node d j

Nt number of entries of a look-up table for the logarithmic
LDPC decoder

Qx
j a posteriori probabilities

Qx
ij estimate that each symbol node d j sends to each of its

children parity check nodes hi in the sum–product
algorithm

Rx
ij estimate that each parity check node hi sends to each of its

parent symbol nodes d j in the sum–product algorithm
s number of ‘1’s per column of parity check matrix H

(Chapter 8)
tp transmitted packet code vector
tpn transmitted packet in a fountain or linear random code
v number of ‘1’s per row of parity check matrix H (Chapter 8)
z positive real number such that z ≤ 1

Z (it)
ij LLR that each symbol node d j sends to each parity check

node hi in iteration number it

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xxiv List of Symbols

Appendix A

τ time duration of a given pulse (Appendix A)
ak amplitude of the symbol k in a digital amplitude modulated signal
NR received noise power
p(t) signal in a digital amplitude modulated transmission
Q(k) normalized Gaussian probability density function
T duration of the transmitted symbol in a digital

amplitude-modulated signal
SR received signal power
U threshold voltage (Appendix A)
x(t), y(t), n(t) transmitted, received and noise signals, respectively

Appendix B

φ(X) minimum-degree polynomial
F field
f (X) polynomial defined over GF(2)
Gr group

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

Abbreviations

ACK positive acknowledgement
APP a posteriori probability
ARQ automatic repeat request
AWGN additive white Gaussian noise
BCH Bose, Chaudhuri, Hocquenghem (code)
BCJR Bahl, Cocke, Jelinek, Raviv (algorithm)
BEC binary erasure channel
BER bit error rate
BM/B–M Berlekamp–Massey (algorithm)
BPS/bps bits per second
BSC binary symmetric channel
ch channel
CD compact disk
CIRC cross-interleaved Reed–Solomon code
conv convolutional (code)
CRC cyclic redundancy check
dec decoder
deg degree
DMC discrete memoryless channel
DMS discrete memoryless source
DRP dithered relatively prime (interleaver)
enc encoder
EFM eight-to-fourteen modulation
EXIT extrinsic information transfer
FCS frame check sequence
FEC forward error correction
FIR finite impulse response
FSSM finite state sequential machine
GF Galois field
HCF/hcf highest common factor
IIR infinite impulse response
ISI inter-symbol interference
lim limit
LCM/lcm lowest common multiple
LDPC low-density parity check (code)

xxv

OTE/SPH OTE/SPH
JWBK102-FM JWBK102-Farrell June 19, 2006 18:0 Char Count= 0

xxvi Abbreviations

LLR log likelihood ratio
LT Luby transform
MAP maximum a posteriori probability
ML maximum likelihood
MLD maximum likelihood detection
mod modulo
MTC multiple turbo code
NAK negative acknowledgement
NRZ non-return to zero
ns non-systematic
opt optimum
PCND parity check node decoder
RCPC rate-compatible punctured code(s)
RLL run length limited
RS Reed–Solomon (code)
RSC recursive systematic convolutional (code/encoder)
RZ return to zero
SND symbol node decoder
SOVA soft-output Viterbi algorithm
SPA sum–product algorithm
VA Viterbi algorithm

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

1
Information and Coding Theory

In his classic paper ‘A Mathematical Theory of Communication’, Claude Shannon [1] intro-
duced the main concepts and theorems of what is known as information theory. Definitions
and models for two important elements are presented in this theory. These elements are the
binary source (BS) and the binary symmetric channel (BSC). A binary source is a device that
generates one of the two possible symbols ‘0’ and ‘1’ at a given rate r, measured in symbols
per second. These symbols are called bits (binary digits) and are generated randomly.

The BSC is a medium through which it is possible to transmit one symbol per time unit.
However, this channel is not reliable, and is characterized by the error probability p (0 ≤ p ≤
1/2) that an output bit can be different from the corresponding input. The symmetry of this
channel comes from the fact that the error probability p is the same for both of the symbols
involved.

Information theory attempts to analyse communication between a transmitter and a receiver
through an unreliable channel, and in this approach performs, on the one hand, an analysis of
information sources, especially the amount of information produced by a given source, and, on
the other hand, states the conditions for performing reliable transmission through an unreliable
channel.

There are three main concepts in this theory:

1. The first one is the definition of a quantity that can be a valid measurement of information,
which should be consistent with a physical understanding of its properties.

2. The second concept deals with the relationship between the information and the source that
generates it. This concept will be referred to as source information. Well-known information
theory techniques like compression and encryption are related to this concept.

3. The third concept deals with the relationship between the information and the unreliable
channel through which it is going to be transmitted. This concept leads to the definition of
a very important parameter called the channel capacity. A well-known information theory
technique called error-correction coding is closely related to this concept. This type of
coding forms the main subject of this book.

One of the most used techniques in information theory is a procedure called coding, which is
intended to optimize transmission and to make efficient use of the capacity of a given channel.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

1

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

2 Essentials of Error-Control Coding

Table 1.1 Coding: a codeword for each message

Messages Codewords

s1 101

s2 01

s3 110

s4 000

In general terms, coding is a bijective assignment between a set of messages to be transmitted,
and a set of codewords that are used for transmitting these messages. Usually this procedure
adopts the form of a table in which each message of the transmission is in correspondence
with the codeword that represents it (see an example in Table 1.1).

Table 1.1 shows four codewords used for representing four different messages. As seen in
this simple example, the length of the codeword is not constant. One important property of a
coding table is that it is constructed in such a way that every codeword is uniquely decodable.
This means that in the transmission of a sequence composed of these codewords there should
be only one possible way of interpreting that sequence. This is necessary when variable-length
coding is used.

If the code shown in Table 1.1 is compared with a constant-length code for the same case,
constituted from four codewords of two bits, 00, 01, 10, 11, it is seen that the code in Table 1.1
adds redundancy. Assuming equally likely messages, the average number of transmitted bits
per symbol is equal to 2.75. However, if for instance symbol s2 were characterized by a
probability of being transmitted of 0.76, and all other symbols in this code were characterized
by a probability of being transmitted equal to 0.08, then this source would transmit an average
number of bits per symbol of 2.24 bits. As seen in this simple example, a level of compression is
possible when the information source is not uniform, that is, when a source generates messages
that are not equally likely.

The source information measure, the channel capacity measure and coding are all related
by one of the Shannon theorems, the channel coding theorem, which is stated as follows:

If the information rate of a given source does not exceed the capacity of a given channel,
then there exists a coding technique that makes possible transmission through this unreliable
channel with an arbitrarily low error rate.

This important theorem predicts the possibility of error-free transmission through a noisy or
unreliable channel. This is obtained by using coding. The above theorem is due to Claude
Shannon [1, 2], and states the restrictions on the transmission of information through a noisy
channel, stating also that the solution for overcoming those restrictions is the application of
a rather sophisticated coding technique. What is not formally stated is how to implement this
coding technique.

A block diagram of a communication system as related to information theory is shown in
Figure 1.1.

The block diagram seen in Figure 1.1 shows two types of encoders. The channel encoder
is designed to perform error correction with the aim of converting an unreliable channel into

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 3

Source
encoder

Noisy channel

Source
decoder

Channel
decoder

Destination

Source Channel
encoder

Figure 1.1 A communication system: source and channel coding

a reliable one. On the other hand, there also exists a source encoder that is designed to make
the source information rate approach the channel capacity. The destination is also called the
information sink.

Some concepts relating to the transmission of discrete information are introduced in the
following sections.

1.1 Information

1.1.1 A Measure of Information

From the point of view of information theory, information is not knowledge, as commonly
understood, but instead relates to the probabilities of the symbols used to send messages
between a source and a destination over an unreliable channel. A quantitative measure of
symbol information is related to its probability of occurrence, either as it emerges from a
source or when it arrives at its destination. The less likely the event of a symbol occurrence,
the higher is the information provided by this event. This suggests that a quantitative measure
of symbol information will be inversely proportional to the probability of occurrence.

Assuming an arbitrary message xi which is one of the possible messages from a set a given
discrete source can emit, and P(xi) = Pi is the probability that this message is emitted, the
output of this information source can be modelled as a random variable X that can adopt any of
the possible values xi , so that P(X = xi) = Pi . Shannon defined a measure of the information
for the event xi by using a logarithmic measure operating over the base b:

Ii ≡ − logb Pi = logb

(
1

Pi

)
(1)

The information of the event depends only on its probability of occurrence, and is not
dependent on its content.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

4 Essentials of Error-Control Coding

The base of the logarithmic measure can be converted by using

loga(x) = logb(x)
1

logb(a)
(2)

If this measure is calculated to base 2, the information is said to be measured in bits. If the
measure is calculated using natural logarithms, the information is said to be measured in nats.
As an example, if the event is characterized by a probability of Pi = 1/2, the corresponding
information is Ii = 1 bit. From this point of view, a bit is the amount of information obtained
from one of two possible, and equally likely, events. This use of the term bit is essentially
different from what has been described as the binary digit. In this sense the bit acts as the unit
of the measure of information.

Some properties of information are derived from its definition:

Ii ≥ 0 0 ≤ Pi ≤ 1

Ii → 0 if Pi → 1

Ii > I j if Pi < Pj

For any two independent source messages xi and x j with probabilities Pi and Pj respectively,
and with joint probability P(xi , x j) = Pi Pj , the information of the two messages is the addition
of the information in each message:

Ii j = logb
1

Pi Pj
= logb

1

Pi
+ logb

1

Pj
= Ii + I j

1.2 Entropy and Information Rate

In general, an information source generates any of a set of M different symbols, which are
considered as representatives of a discrete random variable X that adopts any value in the range
A = {x1, x2, . . . , xM}. Each symbol xi has the probability Pi of being emitted and contains
information Ii . The symbol probabilities must be in agreement with the fact that at least one
of them will be emitted, so

M∑
i=1

Pi = 1 (3)

The source symbol probability distribution is stationary, and the symbols are independent
and transmitted at a rate of r symbols per second. This description corresponds to a discrete
memoryless source (DMS), as shown in Figure 1.2.

Each symbol contains the information Ii so that the set {I1, I2, . . . , IM} can be seen as a
discrete random variable with average information

Hb(X) =
M∑

i=1

Pi Ii =
M∑

i=1

Pi logb

(
1

Pi

)
(4)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 5

Discrete
memoryless
source

xi , x j , ...

Figure 1.2 A discrete memoryless source

The function so defined is called the entropy of the source. When base 2 is used, the entropy
is measured in bits per symbol:

H (X) =
M∑

i=1

Pi Ii =
M∑

i=1

Pi log2

(
1

Pi

)
bits per symbol (5)

The symbol information value when Pi = 0 is mathematically undefined. To solve this
situation, the following condition is imposed: Ii = ∞ if Pi = 0. Therefore Pi log2

(
1
/

Pi
) = 0

(L’Hopital’s rule) if Pi = 0. On the other hand, Pi log
(
1
/

Pi
) = 0 if Pi = 1.

Example 1.1: Suppose that a DMS is defined over the range of X, A = {x1, x2, x3, x4}, and
the corresponding probability values for each symbol are P(X = x1) = 1/2, P(X = x2) =
P(X = x3) = 1/8 and P(X = x4) = 1/4.

Entropy for this DMS is evaluated as

H (X) =
M∑

i=1

Pi log2

(
1

Pi

)
= 1

2
log2(2) + 1

8
log2(8) + 1

8
log2(8) + 1

4
log2(4)

= 1.75 bits per symbol

Example 1.2: A source characterized in the frequency domain with a bandwidth of W =
4000 Hz is sampled at the Nyquist rate, generating a sequence of values taken from the range
A = {−2, −1, 0, 1, 2} with the following corresponding set of probabilities

{
1
2
, 1

4
, 1

8
, 1

16
, 1

16

}
.

Calculate the source rate in bits per second.
Entropy is first evaluated as

H (X) =
M∑

i=1

Pi log2

(
1

Pi

)
= 1

2
log2(2) + 1

4
log2(4) + 1

8
log2(8)

+2 × 1

16
log2(16) = 15

8
bits per sample

The minimum sampling frequency is equal to 8000 samples per second, so that the information
rate is equal to 15 kbps.

Entropy can be evaluated to a different base by using

Hb(X) = H (X)

log2(b)
(6)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

6 Essentials of Error-Control Coding

Entropy H (X) can be understood as the mean value of the information per symbol provided
by the source being measured, or, equivalently, as the mean value experienced by an observer
before knowing the source output. In another sense, entropy is a measure of the randomness
of the source being analysed. The entropy function provides an adequate quantitative measure
of the parameters of a given source and is in agreement with physical understanding of the
information emitted by a source.

Another interpretation of the entropy function [5] is seen by assuming that if n � 1 symbols
are emitted, nH (X) bits is the total amount of information emitted. As the source generates
r symbols per second, the whole emitted sequence takes n/r seconds. Thus, information will
be transmitted at a rate of

nH (X)

(n/r)
bps (7)

The information rate is then equal to

R = r H (X) bps (8)

The Shannon theorem states that information provided by a given DMS can be coded using
binary digits and transmitted over an equivalent noise-free channel at a rate of

rb ≥ R symbols or binary digits per second

It is again noted here that the bit is the unit of information, whereas the symbol or binary
digit is one of the two possible symbols or signals ‘0’ or ‘1’, usually also called bits.

Theorem 1.1: Let X be a random variable that adopts values in the range A = {x1 ,
x2, . . . , xM} and represents the output of a given source. Then it is possible to show that

0 ≤ H (X) ≤ log2(M) (9)

Additionally,

H (X) = 0 if and only if Pi = 1 for some i

H (X) = log2(M) if and only if Pi = 1
/

M for every i (10)

The condition 0 ≤ H (X) can be verified by applying the following:

Pi log2(1/Pi) → 0 if Pi → 0

The condition H (X) ≤ log2(M) can be verified in the following manner:
Let Q1, Q2, . . . , QM be arbitrary probability values that are used to replace terms 1/Pi by

the terms Qi/Pi in the expression of the entropy [equation (5)]. Then the following inequality
is used:

ln(x) ≤ x − 1

where equality occurs if x = 1 (see Figure 1.3).

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 7

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
–2

–1.5

–1

–0.5

0

0.5

1

x

y1,
y2

y2=ln(x)

y1=x–1

Figure 1.3 Inequality ln(x) ≤ x − 1

After converting entropy to its natural logarithmic form, we obtain

M∑
i=1

Pi log2

(
Qi

Pi

)
= 1

ln(2)

M∑
i=1

Pi ln

(
Qi

Pi

)
and if x = Qi

/
Pi ,

M∑
i=1

Pi ln

(
Qi

Pi

)
≤

M∑
i=1

Pi

(
Qi

Pi
− 1

)
=

M∑
i=1

Qi −
M∑

i=1

Pi (11)

As the coefficients Qi are probability values, they fit the normalizing condition
∑M

i=1 Qi ≤ 1,

and it is also true that
∑M

i=1 Pi = 1.
Then

M∑
i=1

Pi log2

(
Qi

Pi

)
≤ 0 (12)

If now the probabilities Qi adopt equally likely values Qi = 1
/

M,

M∑
i=1

Pi log2

(
1

Pi M

)
=

M∑
i=1

Pi log2

(
1

Pi

)
−

M∑
i=1

Pi log2(M) = H (X) − log2(M) ≤ 0

H (X) ≤ log2(M) (13)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

8 Essentials of Error-Control Coding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

H(X)

Figure 1.4 Entropy function for the binary source

In the above inequality, equality occurs when log2

(
1
/

Pi
) = log2(M), which means that Pi =

1
/

M .
The maximum value of the entropy is then log2(M), and occurs when all the symbols

transmitted by a given source are equally likely. Uniform distribution corresponds to maximum
entropy.

In the case of a binary source (M = 2) and assuming that the probabilities of the symbols
are the values

P0 = α P1 = 1 − α (14)

the entropy is equal to

H (X) = �(α) = α log2

(
1

α

)
+ (1 − α) log2

(
1

1 − α

)
(15)

This expression is depicted in Figure 1.4.
The maximum value of this function is given when α = 1 − α, that is, α = 1/2, so that the

entropy is equal to H (X) = log2 2 = 1 bps. (This is the same as saying one bit per binary digit
or binary symbol.)

When α → 1, entropy tends to zero. The function �(α) will be used to represent the entropy
of the binary source, evaluated using logarithms to base 2.

Example 1.3: A given source emits r = 3000 symbols per second from a range of four
symbols, with the probabilities given in Table 1.2.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 9

Table 1.2 Example 1.3

xi Pi Ii

A 1/3 1.5849

B 1/3 1.5849

C 1/6 2.5849

D 1/6 2.5849

The entropy is evaluated as

H (X) = 2 × 1

3
× log2(3) + 2 × 1

6
× log2(6) = 1.9183 bits per symbol

And this value is close to the maximum possible value, which is log2(4) = 2 bits per symbol.
The information rate is equal to

R = r H (X) = (3000)1.9183 = 5754.9 bps

1.3 Extended DMSs

In certain circumstances it is useful to consider information as grouped into blocks of symbols.
This is generally done in binary format. For a memoryless source that takes values in the
range {x1, x2, . . . , xM}, and where Pi is the probability that the symbol xi is emitted, the order
n extension of the range of a source has Mn symbols {y1, y2, . . . , yMn}. The symbol yi is
constituted from a sequence of n symbols xi j . The probability P(Y = yi) is the probability of
the corresponding sequence xi1, xi2, . . . , xin:

P(Y = yi) = Pi1, Pi2, . . . , Pin (16)

where yi is the symbol of the extended source that corresponds to the sequence xi1, xi2, . . . , xin.
Then

H (Xn) =
∑
y=xn

P(yi) log2

1

P(yi)
(17)

Example 1.4: Construct the order 2 extension of the source of Example 1.1, and calculate its
entropy.

Symbols of the original source are characterized by the probabilities P(X = x1) =
1/2, P(X = x2) = P(X = x3) = 1/8 and P(X = x4) = 1/4.

Symbol probabilities for the desired order 2 extended source are given in Table 1.3.
The entropy of this extended source is equal to

H (X2) =
M2∑
i=1

Pi log2

(
1

Pi

)
= 0.25 log2(4) + 2 × 0.125 log2(8) + 5 × 0.0625 log2(16)

+4 × 0.03125 log2(32) + 4 × 0.015625 log2(64) = 3.5 bits per symbol

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

10 Essentials of Error-Control Coding

Table 1.3 Symbols of the order 2 extended source and their probabilities for Example 1.4

Symbol Probability Symbol Probability Symbol Probability Symbol Probability

x1x1 0.25 x2x1 0.0625 x3x1 0.0625 x4x1 0.125

x1x2 0.0625 x2x2 0.015625 x3x2 0.015625 x4x2 0.03125

x1x3 0.0625 x2x3 0.015625 x3x3 0.015625 x4x3 0.03125

x1x4 0.125 x2x4 0.03125 x3x4 0.03125 x4x4 0.0625

As seen in this example, the order 2 extended source has an entropy which is twice that of the
entropy of the original, non-extended source. It can be shown that the order n extension of a
DMS fits the condition H (Xn) = nH (X).

1.4 Channels and Mutual Information

1.4.1 Information Transmission over Discrete Channels

A quantitative measure of source information has been introduced in the above sections. Now
the transmission of that information through a given channel will be considered. This will
provide a quantitative measure of the information received after its transmission through that
channel. Here attention is on the transmission of the information, rather than on its generation.

A channel is always a medium through which the information being transmitted can suffer
from the effect of noise, which produces errors, that is, changes of the values initially transmit-
ted. In this sense there will be a probability that a given transmitted symbol is converted into
another symbol. From this point of view the channel is considered as unreliable. The Shannon
channel coding theorem gives the conditions for achieving reliable transmission through an
unreliable channel, as stated previously.

1.4.2 Information Channels

Definition 1.1: An information channel is characterized by an input range of symbols
{x1, x2, . . . , xU }, an output range {y1, y2, . . . , yV } and a set of conditional probabilities
P(y j/xi) that determines the relationship between the input xi and the output y j . This con-
ditional probability corresponds to that of receiving symbol y j if symbol xi was previously
transmitted, as shown in Figure 1.5.

The set of probabilities P(y j/xi) is arranged into a matrix Pch that characterizes completely
the corresponding discrete channel:

Pi j = P(y j/xi)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 11

x1

y1

y2

y3

x2

P (y3 / x2)

P (y1 / x1)

P (y1 / x2)

P (y2 / x1)

P (y2 / x2)

P (y3 / x1)

Figure 1.5 A discrete transmission channel

Pch =

⎡⎢⎢⎢⎢⎣
P(y1/x1) P(y2/x1) · · · P(yV /x1)

P(y1/x2) P(y2/x2) · · · P(yV /x2)

...
...

...

P(y1/xU) P(y2/xU) · · · P(yV /xU)

⎤⎥⎥⎥⎥⎦ (18)

Pch =

⎡⎢⎢⎢⎢⎣
P11 P12 · · · P1V

P21 P22 · · · P2V

...
...

...

PU1 PU2 · · · PU V

⎤⎥⎥⎥⎥⎦ (19)

Each row in this matrix corresponds to an input, and each column corresponds to an output.
Addition of all the values of a row is equal to one. This is because after transmitting a symbol
xi , there must be a received symbol y j at the channel output.

Therefore,

V∑
j=1

Pi j = 1, i = 1, 2, . . . , U (20)

Example 1.5: The binary symmetric channel (BSC).
The BSC is characterized by a probability p that one of the binary symbols converts into the

other one (see Figure 1.6). Each binary symbol has, on the other hand, a probability of being
transmitted. The probabilities of a 0 or a 1 being transmitted are α and 1 − α respectively.

According to the notation used,

x1 = 0, x2 = 1 and y1 = 0, y2 = 1

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

12 Essentials of Error-Control Coding

0

p

p

1

0

1

1 – p

1 – p

P(0) = α

P(1) = 1– α

Figure 1.6 Binary symmetric channel

The probability matrix for the BSC is equal to

Pch =
[

1 − p p
p 1 − p

]
(21)

Example 1.6: The binary erasure channel (BEC).
In its most basic form, the transmission of binary information involves sending two different

waveforms to identify the symbols ‘0’ and ‘1’. At the receiver, normally an optimum detection
operation is used to decide whether the waveform received, affected by filtering and noise in
the channel, corresponds to a ‘0’ or a ‘1’. This operation, often called matched filter detection,
can sometimes give an indecisive result. If confidence in the received symbol is not high, it
may be preferable to indicate a doubtful result by means of an erasure symbol. Correction of
the erasure symbols is then normally carried out by other means in another part of the system.

In other scenarios the transmitted information is coded, which makes it possible to detect if
there are errors in a bit or packet of information. In these cases it is also possible to apply the
concept of data erasures. This is used, for example, in the concatenated coding system of the
compact disc, where on receipt of the information the first decoder detects errors and marks
or erases a group of symbols, thus enabling the correction of these symbols in the second
decoder. Another example of the erasure channel arises during the transmission of packets
over the Internet. If errors are detected in a received packet, then they can be erased, and
the erasures corrected by means of retransmission protocols (normally involving the use of a
parallel feedback channel).

The use of erasures modifies the BSC model, giving rise to the BEC, as shown in Figure 1.7.
For this channel, 0 ≤ p ≤ 1 / 2, where p is the erasure probability, and the channel model has

two inputs and three outputs. When the received values are unreliable, or if blocks are detected

p

p
0

1

0

1
1− p

1− p

?

P (0) = α

P (1) = 1− α

x1

x2

y1

y2

y3

Figure 1.7 Binary erasure channel

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 13

to contain errors, then erasures are declared, indicated by the symbol ‘?’. The probability
matrix of the BEC is the following:

Pch =
[

1 − p p 0
0 p 1 − p

]
(22)

1.5 Channel Probability Relationships

As stated above, the probability matrix Pch characterizes a channel. This matrix is of order
U × V for a channel with U input symbols and V output symbols. Input symbols are char-
acterized by the set of probabilities {P(x1), P(x2), . . . , P(xU)}, whereas output symbols are
characterized by the set of probabilities {P(y1), P(y2), . . . , P(yV)}.

Pch =

⎡⎢⎢⎢⎣
P11 P12 · · · P1V

P21 P22 · · · P2V
...

...
...

PU1 PU2 PU V

⎤⎥⎥⎥⎦
The relationships between input and output probabilities are the following: The symbol y1

can be received in U different ways. In fact this symbol can be received with probability P11 if
symbol x1 was actually transmitted, with probability P21 if symbol x2 was actually transmitted,
and so on.

Any of the U input symbols can be converted by the channel into the output symbol y1.
The probability of the reception of symbol y1, P(y1), is calculated as P(y1) = P11 P(x1) +
P21 P(x2) + · · · + PU1 P(xU). Calculation of the probabilities of the output symbols leads to
the following system of equations:

P11 P(x1) + P21 P(x2) + · · · + PU1 P(xU) = P(y1)
P12 P(x1) + P22 P(x2) + · · · + PU2 P(xU) = P(y2)

...

P1V P(x1) + P2V P(x2) + · · · + PU V P(xU) = P(yV)

(23)

Output symbol probabilities are calculated as a function of the input symbol probabilities
P(xi) and the conditional probabilities P(y j/xi). It is however to be noted that knowledge of
the output probabilities P(y j) and the conditional probabilities P(y j/xi) provides solutions
for values of P(xi) that are not unique. This is because there are many input probability
distributions that give the same output distribution.

Application of the Bayes rule to the conditional probabilities P(y j/xi) allows us to determine
the conditional probability of a given input xi after receiving a given output y j :

P(xi/y j) = P(y j/xi)P(xi)

P(y j)
(24)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

14 Essentials of Error-Control Coding

1/4

1

0

7/8

1/8

3/4
0

1

X Y

P (0) = 4/5

P (1) = 1/5

Figure 1.8 Example 1.7

By combining this expression with expression (23), equation (24) can be written as

P(xi/y j) = P(y j/xi)P(xi)∑U
i=1 P(y j/xi)P(xi)

(25)

Conditional probabilities P(y j/xi) are usually called forward probabilities, and conditional
probabilities P(xi/y j) are known as backward probabilities. The numerator in the above ex-
pression describes the probability of the joint event:

P(xi , y j) = P(y j/xi)P(xi) = P(xi/y j)P(y j) (26)

Example 1.7: Consider the binary channel for which the input range and output range are in
both cases equal to {0, 1}. The corresponding transition probability matrix is in this case equal to

Pch =
[

3/4 1/4
1/8 7/8

]
Figure 1.8 represents this binary channel.

Source probabilities provide the statistical information about the input symbols. In this case
it happens that P(X = 0) = 4/5 and P(X = 1) = 1/5. According to the transition probability
matrix for this case,

P(Y = 0/X = 0) = 3/4 P(Y = 1/X = 0) = 1/4
P(Y = 0/X = 1) = 1/8 P(Y = 1/X = 1) = 7/8

These values can be used to calculate the output symbol probabilities:

P(Y = 0) = P(Y = 0/X = 0)P(X = 0) + P(Y = 0/X = 1)P(X = 1)

= 3

4
× 4

5
+ 1

8
× 1

5
= 25

40

P(Y = 1) = P(Y = 1/X = 0)P(X = 0) + P(Y = 1/X = 1)P(X = 1)

= 1

4
× 4

5
+ 7

8
× 1

5
= 15

40

which confirms that P(Y = 0) + P(Y = 1) = 1 is true.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 15

These values can be used to evaluate the backward conditional probabilities:

P(X = 0/Y = 0) = P(Y = 0/X = 0)P(X = 0)

P(Y = 0)
= (3/4)(4/5)

(25/40)
= 24

25

P(X = 0/Y = 1) = P(Y = 1/X = 0)P(X = 0)

P(Y = 1)
= (1/4)(4/5)

(15/40)
= 8

15

P(X = 1/Y = 1) = P(Y = 1/X = 1)P(X = 1)

P(Y = 1)
= (7/8)(1/5)

(15/40)
= 7

15

P(X = 1/Y = 0) = P(Y = 0/X = 1)P(X = 1)

P(Y = 0)
= (1/8)(1/5)

(25/40)
= 1

25

1.6 The A Priori and A Posteriori Entropies

The probability of occurrence of a given output symbol y j is P(y j), calculated using expression
(23). However, if the actual transmitted symbol xi is known, then the related conditional
probability of the output symbol becomes P(y j/xi). In the same way, the probability of a
given input symbol, initially P(xi), can also be refined if the actual output is known. Thus,
if the received symbol y j appears at the output of the channel, then the related input symbol
conditional probability becomes P(xi/y j).

The probability P(xi) is known as the a priori probability; that is, it is the probability that
characterizes the input symbol before the presence of any output symbol is known. Normally,
this probability is equal to the probability that the input symbol has of being emitted by the
source (the source symbol probability). The probability P(xi/y j) is an estimate of the symbol
xi after knowing that a given symbol y j appeared at the channel output, and is called the a
posteriori probability.

As has been defined, the source entropy is an average calculated over the information of a
set of symbols for a given source:

H (X) =
∑

i

P(xi) log2

[
1

P(xi)

]

This definition corresponds to the a priori entropy. The a posteriori entropy is given by the
following expression:

H (X/y j) =
∑

i

P(xi/y j) log2

[
1

P(xi/y j)

]
i = 1, 2, . . . , U (27)

Example 1.8: Determine the a priori and a posteriori entropies for the channel of
Example 1.7.

The a priori entropy is equal to

H (X) = 4

5
log2

(
5

4

)
+ 1

5
log2(5) = 0.7219 bits

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

16 Essentials of Error-Control Coding

Assuming that a ‘0’ is present at the channel output,

H (X/0) = 24

25
log2

(
25

24

)
+ 1

25
log2 (25) = 0.2423 bits

and in the case of a ‘1’ present at the channel output,

H (X/1) = 8

15
log2

(
15

8

)
+ 7

15
log2

(
15

7

)
= 0.9968 bits

Thus, entropy decreases after receiving a ‘0’ and increases after receiving a ‘1’.

1.7 Mutual Information

According to the description of a channel depicted in Figure 1.5, P(xi) is the probability that
a given input symbol is emitted by the source, P(y j) determines the probability that a given
output symbol y j is present at the channel output, P(xi , y j) is the joint probability of having
symbol xi at the input and symbol y j at the output, P(y j/xi) is the probability that the channel
converts the input symbol xi into the output symbol y j and P(xi/y j) is the probability that xi

has been transmitted if y j is received.

1.7.1 Mutual Information: Definition

Mutual information measures the information transferred when xi is sent and y j is received,
and is defined as

I (xi , y j) = log2

P(xi/y j)

P(xi)
bits (28)

In a noise-free channel, each y j is uniquely connected to the corresponding xi , and so they
constitute an input–output pair (xi , y j) for which P(xi/y j) = 1 and I (xi , y j) = log2

1
P(xi)

bits;
that is, the transferred information is equal to the self-information that corresponds to the input
xi .

In a very noisy channel, the output y j and the input xi would be completely uncorrelated, and
so P(xi/y j) = P(xi) and also I (xi , y j) = 0; that is, there is no transference of information. In
general, a given channel will operate between these two extremes.

The mutual information is defined between the input and the output of a given channel.
An average of the calculation of the mutual information for all input–output pairs of a given
channel is the average mutual information:

I (X, Y) =
∑
i, j

P(xi , y j)I (xi , y j) =
∑
i, j

P(xi , y j) log2

[
P(xi/y j)

P(xi)

]
bits per symbol (29)

This calculation is done over the input and output alphabets. The average mutual information
measures the average amount of source information obtained from each output symbol.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 17

The following expressions are useful for modifying the mutual information expression:

P(xi , y j) = P(xi/y j)P(y j) = P(y j/xi)P(xi)

P(y j) =
∑

i

P(y j/xi)P(xi)

P(xi) =
∑

j

P(xi/y j)P(y j)

Then

I (X, Y) = ∑
i, j

P(xi , y j)I (xi , y j)

= ∑
i, j

P(xi , y j) log2

[
1

P(xi)

]
− ∑

i, j
P(xi , y j) log2

[
1

P(xi/y j)

]
(30)

∑
i, j

P(xi , y j) log2

[
1

P(xi)

]
= ∑

i

[∑
j

P(xi/y j)P(y j)

]
log2

1

P(xi)∑
i

P(xi) log2

1

P(xi)
= H (X)

I (X, Y) = H (X) − H (X/Y)

(31)

where H (X
/

Y) = ∑
i, j P(xi , y j) log2

1
P(xi /y j)

is usually called the equivocation.

In a sense, the equivocation can be seen as the information lost in the noisy channel, and
is a function of the backward conditional probability. The observation of an output symbol y j

provides H (X) − H (X/Y) bits of information. This difference is the mutual information of
the channel.

1.7.2 Mutual Information: Properties

Since

P(xi/y j)P(y j) = P(y j/xi)P(xi)

the mutual information fits the condition

I (X, Y) = I (Y, X)

And by interchanging input and output it is also true that

I (X, Y) = H (Y) − H (Y/X) (32)

where

H (Y) =
∑

j

P(y j) log2

1

P(y j)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

18 Essentials of Error-Control Coding

which is the destination entropy or output channel entropy:

H (Y/X) =
∑
i, j

P(xi , y j) log2

1

P(y j/xi)
(33)

This last entropy is usually called the noise entropy.
Thus, the information transferred through the channel is the difference between the output

entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is
the difference between the number of bits needed for determining a given input symbol before
knowing the corresponding output symbol, and the number of bits needed for determining
a given input symbol after knowing the corresponding output symbol, I (X, Y) = H (X) −
H (X/Y).

As the channel mutual information expression is a difference between two quantities, it
seems that this parameter can adopt negative values. However, and in spite of the fact that for
some y j , H (X/y j) can be larger than H (X), this is not possible for the average value calculated
over all the outputs:∑

i, j

P(xi , y j) log2

P(xi/y j)

P(xi)
=

∑
i, j

P(xi , y j) log2

P(xi , y j)

P(xi)P(y j)

then

−I (X, Y) =
∑
i, j

P(xi , y j) log2

P(xi)P(y j)

P(xi , y j)
≤ 0

because this expression is of the form

M∑
i=1

Pi log2

(
Qi

Pi

)
≤ 0 (34)

which is the expression (12) used for demonstrating Theorem 1.1. The above expression can
be applied due to the factor P(xi)P(y j), which is the product of two probabilities, so that it
behaves as the quantity Qi , which in this expression is a dummy variable that fits the condition∑

i Qi ≤ 1.
It can be concluded that the average mutual information is a non-negative number. It can

also be equal to zero, when the input and the output are independent of each other.
A related entropy called the joint entropy is defined as

H (X, Y) = ∑
i, j

P(xi , y j) log2

1

P(xi , y j)

= ∑
i, j

P(xi , y j) log2

P(xi)P(y j)

P(xi , y j)
+ ∑

i, j
P(xi , y j) log2

1

P(xi)P(y j)

(35)

Then the set of all the entropies defined so far can be represented in Figure 1.9. The circles define
regions for entropies H (X) and H (Y), the intersection between these two entropies is the mutual
information I (X, Y), while the differences between the input and output entropies are H (X/Y)
and H (Y/X) respectively (Figure 1.9). The union of these entropies constitutes the joint entropy
H (X, Y).

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 19

H (X)
H (Y)

I (X,Y)

H (X/Y) H (Y/X)

Figure 1.9 Relationships among the different entropies

Example 1.9: Entropies of the binary symmetric channel (BSC).
The BSC is constructed with two inputs (x1, x2) and two outputs (y1, y2), with alphabets

over the range A = {0, 1}. The symbol probabilities are P(x1) = α and P(x2) = 1 − α, and
the transition probabilities are P(y1/x2) = P(y2/x1) = p and P(y1/x1) = P(y2/x2) = 1 − p
(see Figure 1.10). This means that the error probability p is equal for the two possible symbols.
The average error probability is equal to

P = P(x1)P(y2/x1) + P(x2)P(y1/x2) = αp + (1 − α)p = p

The mutual information can be calculated as

I (X, Y) = H (Y) − H (Y/X)

The output Y has two symbols y1 and y2, such that P(y2) = 1 − P(y1). Since

P(y1) = P(y1/x1)P(x1) + P(y1/x2)P(x2)
= (1 − p)α + p(1 − α)
= α − pα + p − pα = α + p − 2αp

(36)

the destination or sink entropy is equal to

H (Y) = P(y1) log2

1

P(y1)
+ [1 − P(y1)] log2

1

[1 − P(y1)]
= � [P(y1)]

= � (α + p − 2αp)

(37)

p

p

1− p

1− p

x1

x2

X Y

P(x1) = α

P(x2) = 1 − α

y1

y2

Figure 1.10 BSC of Example 1.9

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

20 Essentials of Error-Control Coding

The noise entropy H (Y/X) can be calculated as

H (Y/X)=
∑
i, j

P(xi , y j) log2

1

P(y j/xi)

=
∑
i, j

P(y j/xi)P(xi) log2

1

P(y j/xi)

=
∑

i

P(xi)

[∑
j

P(y j/xi) log2

1

P(y j/xi)

]

= P(x1)

[
P(y2/x1) log2

1

P(y2/x1)
+ P(y1/x1) log2

1

P(y1/x1)

]
+P(x2)

[
P(y2/x2) log2

1

P(y2/x2)
+ P(y1/x2) log2

1

P(y1/x2)

]
= α

[
p log2

1

p
+ (1 − p) log2

1

(1 − p)

]
+ (1 − α)

[
(1 − p) log2

1

(1 − p)
+ p log2

1

p

]
= p log2

1

p
+ (1 − p) log2

1

(1 − p)
= �(p) (38)

Note that the noise entropy of the BSC is determined only by the forward conditional probabili-
ties of the channel, being independent of the source probabilities. This facilitates the calculation
of the channel capacity for this channel, as explained in the following section.

Finally,

I (X, Y) = H (Y) − H (Y/X) = �(α + p − 2αp) − �(p) (39)

The average mutual information of the BSC depends on the source probability α and on the
channel error probability p.

When the channel error probability p is very small, then

I (X, Y) ≈ �(α) − �(0) ≈ �(α) = H (X)

This means that the average mutual information, which represents the amount of information
transferred through the channel, is equal to the source entropy. On the other hand, when the
channel error probability approaches its maximum value p ≈ 1/2, then

I (X, Y) = �(α + 1/2 − α) − �(1/2) = 0

and the average mutual information tends to zero, showing that there is no transference of
information between the input and the output.

Example 1.10: Entropies of the binary erasure channel (BEC).
The BEC is defined with an alphabet of two inputs and three outputs, with symbol prob-

abilities P(x1) = α and P(x2) = 1 − α, and transition probabilities P(y1/x1) = 1 − p and
P(y2/x1) = p, P(y3/x1) = 0 and P(y1/x2) = 0, and P(y2/x2) = p and P(y3/x2) = 1 − p.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 21

Now to calculate the mutual information as I (X, Y) = H (Y) − H (Y/X),the following val-
ues are determined:

P(y1) = P(y1/x1)P(x1) + P(y1/x2)P(x2) = α(1 − p)

P(y2) = P(y2/x1)P(x1) + P(y2/x2)P(x2) = p

P(y3) = P(y3/x1)P(x1) + P(y3/x2)P(x2) = (1 − α)(1 − p)

In this way the output or sink entropy is equal to

H (Y) = P(y1) log2

1

P(y1)
+ P(y2) log2

1

P(y2)
+ P(y3) log2

1

P(y3)

= α(1 − p) log2

1

α(1 − p)
+ p log2

1

p
+ (1 − α)(1 − p) log2

1

(1 − α)(1 − p)

= (1 − p)�(α) + �(p)

The noise entropy H (Y/X) remains to be calculated:

H (Y/X) =
∑
i, j

P(y j/xi)P(xi) log2

1

P(y j/xi)
= p log2

1

p
+ (1 − p) log2

1

(1 − p)
= �(p)

after which the mutual information is finally given by

I (X, Y) = H (Y) − H (Y/X) = (1 − p)�(α)

1.8 Capacity of a Discrete Channel

The definition of the average mutual information allows us to introduce the concept of channel
capacity. This parameter characterizes the channel and is basically defined as the maximum
possible value that the average mutual information can adopt for a given channel:

Cs = max
P(xi)

I (X, Y) bits per symbol (40)

It is noted that the definition of the channel capacity involves not only the channel itself but
also the source and its statistical properties. However the channel capacity depends only on
the conditional probabilities of the channel, and not on the probabilities of the source symbols,
since the capacity is a value of the average mutual information given for particular values of
the source symbols.

Channel capacity represents the maximum amount of information per symbol transferred
through that channel.

In the case of the BSC, maximization of the average mutual information is obtained by
maximizing the expression

Cs = max
P(xi)

I (X, Y) = max
P(xi)

{H (Y) − H (Y/X)}
= max

P(xi)
{�(α + p − 2αp) − �(p)} = 1 − �(p) = 1 − H (p)

(41)

which is obtained when α = 1 − α = 1/2.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

22 Essentials of Error-Control Coding

If the maximum rate of symbols per second, s, allowed in the channel is known, then the
capacity of the channel per time unit is equal to

C = sCs bps (42)

which, as will be seen, represents the maximum rate of information transference in the channel.

1.9 The Shannon Theorems

1.9.1 Source Coding Theorem

The source coding theorem and the channel coding (channel capacity) theorem are the two
main theorems stated by Shannon [1, 2]. The source coding theorem determines a bound on the
level of compression of a given information source. The definitions for the different classes of
entropies presented in previous sections, and particularly the definition of the source entropy,
are applied to the analysis of this theorem.

Information entropy has an intuitive interpretation [1, 6]. If the DMS emits a large number
of symbols nf taken from an alphabet A = {x1, x2, . . . , xM} in the form of a sequence of
nf symbols, symbol x1 will appear nf P(x1) times, symbol x2, nf P(x2) times, and symbol
xM , nf P(xM) times. These sequences are known as typical sequences and are characterized by
the probability

P ≈
M∏

i=1

[P(xi)]
nf P(xi) (43)

since

P(xi) = 2log2[P(xi)]

P ≈
M∏

i=1

[P(xi)]
nf P(xi) =

M∏
i=1

2log2[P(xi)]nf P(xi) =
M∏

i=1

2nf log2[P(xi)]P(xi)

= 2
nf

M∑
i=1

p(xi) log2[P(xi)]

= 2−nf H (X)

(44)

Typical sequences are those with the maximum probability of being emitted by the infor-
mation source. Non-typical sequences are those with very low probability of occurrence. This
means that of the total of Mnf possible sequences that can be emitted from the information
source with alphabet A = {x1, x2, . . . , xM}, only 2nf H (X) sequences have a significant proba-
bility of occurring. An error of magnitude ε is made by assuming that only 2nf H (X) sequences
are transmitted instead of the total possible number of them. This error can be arbitrarily small
if nf → ∞. This is the essence of the data compression theorem.

This means that the source information can be transmitted using a significantly lower number
of sequences than the total possible number of them.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 23

If only 2nf H (X) sequences are to be transmitted, and using a binary format of representing in-
formation, there will be nf H (X) bits needed for representing this information. Since sequences
are constituted of symbols, there will be H (X) bits per symbol needed for a suitable represen-
tation of this information. This means that the source entropy is the amount of information per
symbol of the source.

For a DMS with independent symbols, it can be said that compression of the information
provided by this source is possible only if the probability density function of this source is
not uniform, that is, if the symbols of this source are not equally likely. As seen in previous
sections, a source with M equally likely symbols fits the following conditions:

H (X) = log2 M, 2nf(X) = 2nf log2 M = Mnf (45)

The number of typical sequences for a DMS with equally likely symbols is equal to the
maximum possible number of sequences that this source can emit.

This has been a short introduction to the concept of data and information compression.
However, the aim of this chapter is to introduce the main concepts of a technique called
error-control coding, closely related to the Shannon channel coding (capacity) theorem.

1.9.2 Channel Capacity and Coding

Communication between a source and a destination happens by the sending of information from
the former to the latter, through a medium called the communication channel. Communication
channels are properly modelled by using the conditional probability matrix defined between
the input and the output, which allows us to determine the reliability of the information arriving
at the receiver. The important result provided by the Shannon capacity theorem is that it is
possible to have an error-free (reliable) transmission through a noisy (unreliable) channel,
by means of the use of a rather sophisticated coding technique, as long as the transmission
rate is kept to a value less than or equal to the channel capacity. The bound imposed by this
theorem is over the transmission rate of the communication, but not over the reliability of the
communication.

In the following, transmission of sequences or blocks of n bits over a BSC is considered. In
this case the input and the output are n-tuples or vectors defined over the extensions Xn and
Y n respectively. The conditional probabilities will be used:

P(X/Y) =
n∏

i=1

P(xi/y j)

Input and output vectors X and Y are words of n bits. By transmitting a given input vector X,
and making the assumption that the number of bits n is relatively large, the error probability p
of the BSC determines that the output vector Y of this channel will differ in np positions with
respect to the input vector X.

On the other hand, the number of sequences of n bits with differences in np positions is
equal to (

n
np

)
(46)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

24 Essentials of Error-Control Coding

By using the Stirling approximation [6]

n! ≈ nn e−n
√

2πn (47)

it can be shown that (
n
np

)
≈ 2n�(p) (48)

This result indicates that for each input block of n bits, there exists 2n�(p) possible output
sequences as a result of the errors introduced by the channel.

On the other hand, the output of the channel can be considered as a discrete source from
which 2nH (Y) typical sequences can be emitted. Then the amount

M = 2nH (Y)

2n�(p)
= 2n[H (Y)−�(p)] (49)

represents the maximum number of possible inputs able to be transmitted and to be converted
by the distortion of the channel into non-overlapping sequences.

The smaller the error probability of the channel, the larger is the number of non-overlapping
sequences. By applying the base 2 logarithmic function,

log2 M = n [H (Y) − �(p)]

and then

Rs = log2 M

n
= H (Y) − �(p) (50)

The probability density function of the random variable Y depends on the probability density
function of the message and on the statistical properties of the channel. There is in general
terms a probability density function of the message X that can maximize the entropy H (Y).
If the input is characterized by a uniform probability density function and the channel is a
BSC, the output has a maximum entropy, H (Y) = 1. This makes the expression (50) adopt its
maximum value

Rs = 1 − �(p) (51)

which is valid for the BSC.
This is indeed the parameter that has been defined as the channel capacity. This will therefore

be the maximum possible transmission rate for the BSC if error-free transmission is desired
over that channel. This could be obtained by the use of a rather sophisticated error coding
technique.

Equation (51) for the BSC is depicted in Figure 1.11.
The channel capacity is the maximum transmission rate over that channel for reliable trans-

mission. The worst case for the BSC is given when p = 1/2 because the extreme value p = 1
corresponds after all to a transmission where the roles of the transmitted symbols are inter-
changed (binary transmission).

So far, a description of the channel coding theorem has been developed by analysing the
communication channel as a medium that distorts the sequences being transmitted.

The channel coding theorem is stated in the following section.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

CS

Figure 1.11 Channel capacity for the BSC

1.9.3 Channel Coding Theorem

The channel capacity of a discrete memoryless channel is equal to

Cs = max
P(xi)

I (X, Y) bits per symbol (52)

The channel capacity per unit time C is related to the channel capacity Cs by the expression
C = sCs. If the transmission rate R fits the condition R < C , then for an arbitrary value ε > 0,
there exists a code with block length n that makes the error probability of the transmission
be less than ε. If R > C then there is no guarantee of reliable transmission; that is, there is
no guarantee that the arbitrary value of ε is a bound for the error probability, as it may be
exceeded. The limiting value of this arbitrary constant ε is zero.

Example 1.11: Determine the channel capacity of the channel of Figure 1.12 if all the input
symbols are equally likely, and

P(y1/x1) = P(y2/x2) = P(y3/x3) = 0.5

P(y1/x2) = P(y1/x3) = 0.25

P(y2/x1) = P(y2/x3) = 0.25

P(y3/x1) = P(y3/x2) = 0.25

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

26 Essentials of Error-Control Coding

x1

x2

x3

y1

y2

y3

X Y

Figure 1.12 Example 1.11

The channel capacity can be calculated by first determining the mutual information and then
maximizing this parameter. This maximization consists of looking for the input probability
density function that makes the output entropy be maximal.

In this case the input probability density function is uniform and this makes the output
probability density function be maximum. However this is not always the case. In a general
case, the probability density function should be selected to maximize the mutual information.
For this example,

H (Y/X) = P(x1)H (Y/X = x1) + P(x2)H (Y/X = x2) + P(x3)H (Y/X = x3)

and

H (Y/X = x1) = H (Y/X = x2) = H (Y/X = x3) = 1

4
log2(4) + 1

4
log2(4) + 1

2
log2(2)

= 0.5 + 0.5 + 0.5 = 1.5

H (Y/X) = 1.5

Therefore,

I (X, Y) = H (Y) − 1.5

The output entropy is maximal for an output alphabet with equally likely symbols, so that

H (Y) = 1

3
log2(3) + 1

3
log2(3) + 1

3
log2(3) = log2(3) = 1.585

Then

Cs = 1.585 − 1.5 = 0.085 bits per symbol

This rather small channel capacity is a consequence of the fact that each input symbol has a
probability of 1/2 of emerging from the channel in error.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 27

1.10 Signal Spaces and the Channel Coding Theorem

The theory of vector spaces can be applied to the field of the communication signals and is a
very useful tool for understanding the Shannon channel coding theorem [2, 5, 6].

For a given signal x(t) that is transmitted through a continuous channel with a bandwidth
B, there is an equivalent representation that is based on the sampling theorem:

x(t) =
∑

k

xk sinc(2Bt − k) (53)

where

xk = x(kTs) and Ts = 1
/

2B (54)

with xk = x(kTs) being the samples of the signal obtained at a sampling rate 1
/

Ts.

Signals are in general power limited, and this power limit can be expressed as a function of
the samples xk as

P = x2 = x2
k (55)

Assuming that the signal has duration T , this signal can be represented by a discrete number
of samples n = T

/
Ts = 2BT . This means that the n numbers x1, x2, . . . , xn represent this

signal. This is true because of the sampling theorem, which states that the signal can be
perfectly reconstructed if this set of n samples is known. This set of numbers can be thought
of as a vector, which becomes a vectorial representation of the signal, with the property of
allowing us a perfect reconstruction of this signal by calculating

x(t) =
∑

k

x(kTs) sinc(fst − k)

fs = 1

Ts

≥ 2W (56)

where W is the bandwidth of the signal that has to fit the condition

W ≤ B ≤ fs − W (57)

This vector represents the signal x(t) and is denoted as X = (x1, x2, . . . , xn) with n = 2BT =
2W T . The reconstruction of the signal x(t), based on this vector representation [expression
(53)], is given in terms of a signal representation over a set of orthogonal functions like the
sinc functions. The representative vector is n dimensional. Its norm can be calculated as

||X||2 = x2
1 + x2

2 + · · · + x2
n =

n∑
i=1

x2
i (58)

If the number of samples is large, n � 1, and

1

n
||X||2 = 1

n

n∑
i=1

x2
i = x2

k = P (59)

||X|| =
√

n P =
√

2 BTP (60)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

28 Essentials of Error-Control Coding

nPN|||| =N
nP|||| =X

Figure 1.13 Vector representation of signals

so the norm of the vector is proportional to its power. By allowing the components of the vector
X vary through all their possible values, a hypersphere will appear in the corresponding vector
space. This hypersphere is of radius ||X||, and all the possible vectors will be enclosed by this
sphere. The volume of this hypersphere is equal to Vol,n = Kn||X||n.

As noise is also a signal, it can adopt a vector representation. This signal is usually passed
through a filter of bandwidth B and then sampled, and so this set of samples constitutes a
vector that represents the filtered noise. This vector will be denoted as N = (N1, N2, . . . , Nn),
and if PN is the noise power, then this vector has a norm equal to ||N|| = √

n PN. Thus, signals
and noise have vector representation as shown in Figure 1.13.

Noise in this model is additive and independent of (uncorrelated with) the transmitted signals.
During transmission, channel distortion transforms the input vector X into an output vector Y
whose norm will be equal to ||Y|| = ||X + N|| = √

n(P + PN) [2] (see Figure 1.14). (Signal
and noise powers are added as they are uncorrelated.)

1.10.1 Capacity of the Gaussian Channel

The Gaussian channel resulting from the sampling of the signals is a discrete channel, which
is described in Figure 1.15.

The variable N represents the samples of a Gaussian variable and is in turn a Gaussian
random variable with squared variance PN. The signal has a power P. If all the variables are
represented by vectors of length n, they are related by

Y = X + N (61)

nP

nPN

n (P + PN)

Figure 1.14 Vector addition of signals and noise

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 29

X
Y = X + N

N

Gaussian channel, signals
represented by real numbers

n
1 n

i =1
Σ X 2i P≤

Figure 1.15 Gaussian channel

If the number of samples, n, is large, the noise power can be calculated as the average of the
noise samples:

1

n

n∑
i=1

N 2
i = 1

n

n∑
i=1

|Y − X|2 ≤ PN (62)

which means that

|Y − X|2 ≤ n PN (63)

This can be seen as the noise sphere representing the tip of the output vector Y around the
transmitted (or true) vector X, whose radius is

√
n PN, which is proportional to the noise power

at the input. Since noise and transmitted signals are uncorrelated,

1

n

n∑
i=1

y2
i = 1

n

n∑
i=1

x2
i + 1

n

n∑
i=1

N 2
i ≤ P + PN (64)

Then

|Y|2 ≤ n(P + PN) (65)

and the output sequences are inside n-dimensional spheres of radius
√

n(P + PN) centred at
the origin, as shown in Figure 1.16.

X

Sphere of
radius

nPN

n-dimensional
sphere of radius

n(P + PN)

Figure 1.16 A representation of the output vector space

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

30 Essentials of Error-Control Coding

Figure 1.16 can be understood as follows. The transmission of the input vector X gen-
erates an associated sphere whose radius is proportional to the noise power of the channel,√

n PN. In addition, output vectors generate the output vector space, a hypersphere with radius√
n(P + PN). The question is how many spheres of radius

√
n PN can be placed, avoiding

overlapping, inside a hypersphere of radius
√

n(P + PN)?
For a given n-dimensional hypersphere of radius Re, the volume is equal to

Vol,n = Kn Rn
e (66)

where Kn is a constant and Re is the radius of the sphere. The number of non-overlapped
messages that are able to be transmitted reliably in this channel is [2, 6]

M = Kn [n(P + PN)]n/2

Kn(n PN)n/2
=

(
P + PN

PN

)n/2

(67)

The channel capacity, the number of possible signals that can be transmitted reliably, and
the length of the transmitted vectors are related as follows:

Cs = 1

n
log2(M) = 1

n

n

2
log2

(
1 + P

PN

)
= 1

2
log2

(
1 + P

PN

)
(68)

A continuous channel with power spectral density N0/2, bandwidth B and signal power P
can be converted into a discrete channel by sampling it at the Nyquist rate. The noise sample
power is equal to

PN =
∫ B

−B
(N0/2) d f = N0 B (69)

Then

Cs = 1

2
log2

(
1 + P

N0 B

)
(70)

A given signal with bandwidth W transmitted through this channel and sampled at the
Nyquist rate will fulfil the condition W = B, and will be represented by 2W = 2B samples
per second.

The channel capacity per second is calculated by multiplying Cs, the capacity per symbol
or sample, by the number of samples per second of the signal:

C = 2BCs = B log2

(
1 + P

N0 B

)
bps (71)

This Shannon equation states that in order to reliably transmit signals through a given channel
they should be selected by taking into account that, after being affected by noise, at the channel
output the noise spheres must remain non-overlapped, so that each signal can be properly
distinguished.

There will be therefore a number M of coded messages of length T , that is, of M coded
vectors of n components each, resulting from evaluating how many spheres of radius

√
n PN

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 31

can be placed in a hypersphere (output vector space) of radius
√

n(P + PN), where

M =
[√

n(P + PN)√
n PN

]n

=
(

1 + P

PN

)n/2

Assuming now that during time T , one of μ possible symbols is transmitted at r symbols
per second, the number of different signals that can be constructed is

M = μrT (72)

In the particular case of binary signals, that is for μ = 2, the number of possible non-
overlapped signals is M = 2rT .

The channel capacity, as defined by Shannon, is the maximum amount of information that
can be transmitted per unit time. The Shannon theorem determines the amount of information
that can be reliably transmitted through a given channel. The number of possible messages of
length T that can be reliably transmitted is M.From this point of view, the combination of source
and channel can be seen as a discrete output source Y with an alphabet of size M. The maximum
entropy of this destination source (or information sink) is achieved when all the output symbols
are equally likely, and this entropy is equal to log2 M , which is in turn the amount of information
provided at this sink. The maximum rate measured in symbols per second is then equal to(
1
/

T
)

log2 M. The channel capacity is measured as the limiting value of this maximum rate
when the length of the message tends to infinity:

C = lim
T →∞

1

T
log2 M bps (73)

Then, taking into account previous expressions,

C = lim
T →∞

1

T
log2 M = lim

T →∞
1

T
log2(μrT) = lim

T →∞
rT

T
log2 μ = r log2 μ bps (74)

This calculation considers the channel to be noise free. For instance, in the case of the binary
alphabet, μ = 2 and C = r. The number of distinguishable signals for reliable transmission is
equal to

M ≤
(

1 + P

PN

)n/2

with n = 2BT (75)

C = lim
T →∞

1

T
log2 M = lim

T →∞
1

T
log2

(
1 + P

PN

)n / 2
= 2BT

2T
log2

(
1 + P

PN

)
= B log2

(
1 + P

PN

)
bps

(76)

Example 1.12: Find the channel capacity of the telephony channel, assuming that the min-
imum signal-to-noise ratio of this system is

(
P

/
PN

)
dB

= 30 dB and the signal and channel
transmission bandwidths are both equal to W = 3 kHz.

As (P/PN)dB = 30 dB and (P/PN) = 1000

C = 3000 log2(1 + 1000) ≈ 30 kbps

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

32 Essentials of Error-Control Coding

Binary
source
encoder

Binary to M-
ary
converter

BSC
encoder

BSC
channel

Source

Figure 1.17 An encoder for the BSC

1.11 Error-Control Coding

Figure 1.17 shows the block diagram of an encoding scheme. The source generates information
symbols at a rate R. The channel is a BSC, characterized by a capacity Cs = 1 − �(p) and a
symbol rate s. Mutual information is maximized by previously coding the source in order to
make it have equally likely binary symbols or bits. Then, an encoder takes blocks of bits and
converts them into M-ary equally likely symbols [1, 2] that carry log2 M bits per symbol each. In
this way, information adopts a format suitable for its transmission through the channel. The BSC
encoder represents each symbol by a randomly selected vector or word of n binary symbols.

Each binary symbol of the vector of length n carries an amount of information equal
to log2 M

/
n. Since s symbols per second are transmitted, the encoded source information

rate is

R = s log2 M

n
(77)

The Shannon theorem requires that

R ≤ C = sCs

which in this case means that

log2 M

n
≤ Cs

log2 M ≤ nCs (78)

M = 2n(Cs−δ) (79)

0 ≤ δ < Cs (80)

δ can be arbitrarily small, and in this case R → C.

Assume now that the coded vectors of length n bits are in an n-dimensional vector space. If the
vector components are taken from the binary field, the coordinates of this vector representation
adopt one of the two possible values, one or zero. In this case the distance between any two
vectors can be evaluated using the number of different components they have. Thus, if c is a
given vector of the code, or codeword, and c′ is a vector that differs in l positions with respect
to c, the distance between c and c′ is l, a random variable with values between 0 and n. If
the value of n is very large, vector c′ is always within a sphere of radius d < n. The decoder
will decide that c has been the transmitted vector when receiving c′ if this received vector
is inside the sphere of radius d and none of the remaining M − 1 codewords are inside that

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 33

sphere. Incorrect decoding happens when the number of errors produced during transmission
is such that the received vector is outside the sphere of radius d and lies in the sphere of another
codeword different from c. Incorrect decoding also occurs even if the received vector lies in
the sphere of radius d, but another codeword is also inside that sphere. Then, the total error
probability is equal to [5]

Pe = Ple + Pce (81)

where Ple is the probability of the fact that the received vector is outside the sphere of radius d
and Pce is the probability that two or more codewords are inside the same sphere. It is noted that
this event is possible because of the random encoding process, and so two or more codewords
can be within the same sphere of radius d.

Ple is the probability of the error event l ≥ d. Transmission errors are statistically indepen-
dent and happen with a probability p < 1/2, and the number of errors l is a random variable
governed by the binomial distribution

l = np, σ 2 = n(1 − p)p (82)

If the sphere radius is adopted as

d = nβ, p < β < 1/2 (83)

it is taken as slightly larger than the number of expected errors per word. The error probability
Ple is then equal to

Ple = P (l ≥ d) ≤
(

σ

d − l

)2

= p(1 − p)

n(β − p)2
(84)

and if the conditions expressed in (83) are true, then Ple → 0 as n → ∞.

On the other hand, in order to estimate the error probability, a number m is defined to
describe the number of words or vectors contained within the sphere of radius d surrounding a
particular one of the M codewords. As before, Shannon assumed a random encoding technique
for solving this problem. From this point of view, the remaining M − 1 codewords are inside the
n-dimensional vector space, and the probability that a randomly encoded vector or codeword
is inside the sphere containing m vectors is

m

2n
(85)

Apart from the particular codeword selected, there exist M − 1 other code vectors, so that
using equation (79)

Pce = (M − 1) m 2−n < M m 2−n < m 2−n 2n(Cs−δ)

= m 2−n 2n[1−�(p)−δ] = m 2−n[�(p)+δ]
(86)

All the m vectors that are inside the sphere of radius d, defined around the codeword c, have
d different positions with respect to the codeword, or less. The number of possible codewords
with d different positions with respect to the codeword is equal to

(n
d

)
. In general, the number

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

34 Essentials of Error-Control Coding

m of codewords inside the sphere of radius d is

m =
d∑

i=0

(
n
i

)
=

(
n
0

)
+

(
n
1

)
+ · · · +

(
n
d

)
, d = nβ (87)

Among all the terms in the above expression, the term
(n

d

)
is the largest, and it can be

considered as a bound on the sum of the d + 1 other terms as follows:

m ≤ (d + 1)

(
n
d

)
= n!

(n − d)!d!
(d + 1) (88)

Since d = nβ, and by using the Stirling approximation for the factorial number n! (n! ≈
nn e−n

√
2πn if n � 1),

m ≤ (d + 1)

(
n
d

)
= 2n�(β) nβ + 1√

2πnβ(1 − β)

and by combining it with expression (86),

Pce ≤ nβ + 1√
2πnβ(1 − β)

2−n[δ+�(p)−�(β)] = nβ + 1√
2πnβ(1 − β)

2−n{δ−[�(β)−�(p)]} (89)

The above expression says that the random coding error probability Pce tends to zero if δ >

�(β) − �(p), which is a function of the parameter p, the error probability of the BSC, and if
n → ∞. Once again the error probability tends to zero if the length of the codeword tends to
infinity. The value of the parameter δ is the degree of sacrifice of the channel capacity, and it
should fit the condition 0 ≤ δ < Cs.

Finally, replacing the two terms of the error probability corresponding, respectively, to the
effect of the noise and to the random coding [5], we obtain

Pe = Ple + Pce ≤ p(1 − p)

n(β − p)2
+ nβ + 1√

2πnβ(1 − β)
2−n{δ−[�(β)−�(p)]} (90)

For a given value of p, if β is taken according to expression (83), and fitting also the condition
δ > �(β) − �(p), then δ′ = δ − [�(β) − �(p)] > 0 and the error probability is

Pe = Ple + Pce ≤ K1

n
+ √

nK2 2−nK3 + K4√
n

2−nK3 (91)

where K1, K2, K3 and K4 are positive constants. The first and third terms clearly tend to zero

as n → ∞, and the same happens with the term
√

nK2 2−nK3 =
√

nK2

2nK3
if it is analysed using the

L’Hopital rule. Hence, Pe → 0 as long as n → ∞, and so error-free transmission is possible
when R < C.

1.12 Limits to Communication and their Consequences

In a communication system operating over the additive white Gaussian noise (AWGN) channel
for which there exists a restriction on the bandwidth, the Nyquist and Shannon theorems are
enough to provide a design framework for such a system [5, 7].

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 35

M-ary
encoder

Signal
generator

Channel,
C

x(t) y(t)

C = B log2(1 + S / N)

Signal
detector

M-ary
decoder

Source

R = (log2 M) / T

M = 2RT

Figure 1.18 An ideal communication system

An ideal communication system characterized by a given signal-to-noise ratio P
PN

= S
N and

a given bandwidth B is able to perform error-free transmission at a rate R = B log2(1 + S/N).
The ideal system as defined by Shannon is one as seen in Figure 1.18 [5].

The source information is provided in blocks of duration T and encoded as one of the M
possible signals such that R = log2 M

/
T . There is a set of M = 2RT possible signals. The

signal y(t) = x(t) + n(t) is the noisy version of the transmitted signal x(t), which is obtained
after passing through the band-limited AWGN channel. The Shannon theorem states that

lim
Pe→0

lim
T →∞

log2 M

T
= B log2

(
1 + S

N

)
(92)

The transmission rate of the communication system tends to the channel capacity, R → C ,
if the coding block length, and hence the decoding delay, tends to infinity, T → ∞. Then,
from this point of view, this is a non-practical system.

An inspection of the expression C = B log2 (1 + S/N) leads to the conclusion that both the
bandwidth and the signal-to-noise ratio contribute to the performance of the system, as their
increase provides a higher capacity, and their product is constant for a given capacity, and so
they can be interchanged to improve the system performance. This expression is depicted in
Figure 1.19.

For a band-limited communication system of bandwidth B and in the presence of white
noise, the noise power is equal to N = N0 B, where N0 is the power spectral density of the
noise in that channel. Then

C

B
= log2

(
1 + S

N0 B

)
There is an equivalent expression for the signal-to-noise ratio described in terms of the

average bit energy Eb and the transmission rate R.

If R = C then

Eb

N0

= S

N0 R
= S

N0C
(93)

C

B
= log2

(
1 + Eb

N0

C

B

)
, 2C/B = 1 + Eb

N0

(
C

B

)
(94)

Eb

N0

= B

C

(
2C/B − 1

)
(95)

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

36 Essentials of Error-Control Coding

0 2 4 6 8 10 12 14 16 18 20
10−1

1

10

S/N (dB)

C/B bps/Hz

1

2

4

Realisable region

Figure 1.19 Practical and non-practical operation regions

The Shannon limit can be now analysed from equation

C

B
= log2

(
1 + Eb

N0

C

B

)
(96)

making use of the expression

lim
x→0

(1 + x)1/x = e

where x = Eb

N0

(
C
B

)
.

Since log2(1 + x) = x 1
x log2(1 + x) = x log2

[
(1 + x)1/x

]
[7],

C

B
= C

B

Eb

N0

log2

(
1 + Eb

N0

C

B

)N0 B/C Eb

⇒ 1 = Eb

N0

log2

(
1 + Eb

N0

C

B

)N0 B/C Eb
(97)

If C
B → 0, obtained by letting B → ∞,

Eb

N0

= 1

log2 (e)
= 0.693

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 37

or (
Eb

N0

)
dB

= −1.59 dB (98)

This value is usually called the Shannon limit. This is a performance bound on the value of
the ratio Eb

/
N0, using a rather sophisticated coding technique, and for which the channel

bandwidth and the code length n are very large. This means that if the ratio Eb

/
N0 is kept

slightly higher than this value, it is possible to have error-free transmission by means of the
use of such a sophisticated coding technique.

From the equation

2C/B = 1 + Eb

N0

(
C

B

)
(99)

a curve can be obtained relating the normalized bandwidth B/C (Hz/bps) and the ratio Eb

/
N0.

For a particular transmission rate R,

2R/B ≤ 1 + Eb

N0

(
R

B

)
(100)

Eb

N0

≥
(

B

R

) (
2R/B − 1

)
(101)

Expression (100) can be also depicted, and it defines two operating regions, one of practical
use and another one of impractical use [1, 2, 5, 7]. This curve is seen in Figure 1.20, which
represents the quotient R/B as a function of the ratio Eb/N0. The two regions are separated by
the curve that corresponds to the case R = C [equation (99)]. This curve shows the Shannon
limit when R/B → 0. However, for each value of R/B, there exists a different bound, which
can be obtained by using this curve.

Eb/N0 (dB)

0.10

1

10

100

R/B

−10 10 20 30 40 50

Practical region

Non-practical
region

Bound –
1.59 dB

0

Figure 1.20 Practical and non-practical operation regions. The Shannon limit

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

38 Essentials of Error-Control Coding

Bibliography and References

[1] Shannon, C. E., “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27,
pp. 379–423, 623–656, July and October 1948.

[2] Shannon, C. E., “Communications in the presence of noise,” Proc. IEEE, vol. 86, no. 2,
pp. 447–458, February 1998.

[3] McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, Massachusetts,
1977.

[4] Abramson, N., Information Theory and Coding, McGraw-Hill, New York, 1963.
[5] Carlson, B., Communication Systems: An Introduction to Signals and Noise in Electrical

Communication, 3rd Edition, McGraw-Hill, New York, 1986.
[6] Proakis, J. G. and Salehi, M., Communication Systems Engineering, Prentice Hall, New

Jersey, 1993.
[7] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall, New

York, 1993.
[8] Proakis, J. G., Digital Communications, 2nd Edition, McGraw-Hill, New York, 1989.
[9] Adámek, J., Foundations of Coding: Theory and Applications of Error-Correcting Codes

with an Introduction to Cryptography and Information Theory, Wiley Interscience, New
York, 1991.

�

Problems

1.1 A DMS produces symbols with the probabilities as given in Table P.1.1.

Table P.1.1 Probabilities of the

symbols of a discrete source

A 0.4

B 0.2

C 0.2

D 0.1

E 0.05

F 0.05

(a) Find the self-information associated with each symbol, and the entropy of
the source.

(b) Calculate the maximum possible source entropy, and hence determine the
source efficiency.

1.2 (a) Calculate the entropy of a DMS that generates five symbols {A, B, C, D, E }
with probabilities PA = 1/2, PB = 1/4, PC = 1/8, PD = 1/16 and PE =
1/16.

(b) Determine the information contained in the emitted sequence DADED.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

Information and Coding Theory 39

1.3 Calculate the source entropy, the transinformation I (X, Y) and the capacity of
the BSC defined in Figure P.1.1.

p = 0.25 p = 0.25

0

1

P(0) = α = 0.2

P(1) = 1− α = 0.8

1 − p = 0.75

1 − p = 0.75

Figure P.1.1 A binary symmetric channel

1.4 Show that for the BSC, the entropy is maximum when all the symbols of the
discrete source are equally likely.

1.5 An independent-symbol binary source with probabilities 0.25 and 0.75 is trans-
mitted over a BSC with transition (error) probability p = 0.01. Calculate the equiv-
ocation H (X/Y) and the transinformation I (X, Y).

1.6 What is the capacity of the cascade of BSCs as given in Figure P.1.2?

0

0.1 0.1 0.1 0.1

0.9 0.9

0.90.9
1

0

1

P(0) = α

P(1) = 1 − α

Figure P.1.2 A cascade of BSCs

1.7 Consider a binary channel with input and output alphabets {0, 1} and the transi-
tion probability matrix:

Pch =
[
3/5 2/5
1/5 4/5

]
Determine the a priori and the two a posteriori entropies of this channel.

1.8 Find the conditional probabilities P(xi /yj) of the BEC with an erasure probabil-
ity of 0.469, when the source probabilities are 0.25 and 0.75. Hence find the
equivocation, transinformation and capacity of the channel.

1.9 Calculate the transinformation and estimate the capacity of the non-symmetric
erasure channel given in Figure P.1.3.

OTE/SPH OTE/SPH
JWBK102-01 JWBK102-Farrell June 17, 2006 17:55 Char Count= 0

40 Essentials of Error-Control Coding

0.1

0

11−α = 0.7

α = 0.3 0

1

E

x1

x2

0.9

0.8

0.2

Figure P.1.3 A non-symmetric erasure channel

1.10 Figure P.1.4 shows a non-symmetric binary channel. Show that in this case
I (X, Y) = � [q + (1 − p − q)α] − α�(p) − (1 − α)�(q).

P(0) = α

P(1) = 1 − α

0

1

0

1

p

q

1− p

1− q

Figure P.1.4 A non-symmetric binary channel

1.11 Find the transinformation, the capacity and the channel efficiency of the sym-
metric erasure and error channel given in Figure P.1.5.

0.9

0.9

0.08

0.08

00

1

E

0.02

0.02

11− α = 0.75

α = 0.25

Figure P.1.5 A symmetric erasure and error channel

1.12 Consider transmission over a telephone line with a bandwidth B = 3 kHz. This
is an analogue channel which can be considered as perturbed by AWGN, and
for which the power signal-to-noise ratio is at least 30 dB.
(a) What is the capacity of this channel, in the above conditions?
(b) What is the required signal-to-noise ratio to transmit an M-ary signal able to

carry 19,200 bps?

1.13 An analogue channel perturbed by AWGN has a bandwidth B = 25 kHz and a
power signal-to-noise ratio SNR of 18 dB. What is the capacity of this channel
in bits per second?

�

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

2
Block Codes

2.1 Error-Control Coding

One of the predictions made in the Shannon channel coding theorem is that a rather sophisticated
coding technique can convert a noisy channel (unreliable transmission) into an error-free
channel (reliable transmission).

Demonstration of the theorem about the possibility of having error-free transmission is
done by using a coding technique of a random nature [1, 3]. In this technique, message
words are arranged as blocks of k bits, which are randomly assigned codewords of n bits,
n > k, in an assignment that is basically a bijective function characterized by the addition
of redundancy. This bijective assignment allows us to uniquely decode each message. This
coding technique is essentially a block coding method. However, what is not completely
defined in the theorem is a constructive method for designing such a sophisticated coding
technique.

There are basically two mechanisms for adding redundancy, in relation to error-control
coding techniques [4]. These two basic mechanisms are block coding and convolutional coding.
This chapter is devoted to block coding.

Errors can be detected or corrected. In general, for a given code, more errors can be detected
than corrected, because correction requires knowledge of both the position and the magnitude
of the error.

2.2 Error Detection and Correction

For a given practical requirement, detection of errors is simpler than the correction of errors.
The decision for applying detection or correction in a given code design depends on the
characteristics of the application. When the communication system is able to provide a full-
duplex transmission (that is, a transmission for which the source and the destination can
communicate at the same time, and in a two way mode, as it is in the case of telephone
connection, for instance), codes can be designed for detecting errors, because the correction is
performed by requiring a repetition of the transmission. These schemes are known as automatic
repeat reQuest (ARQ) schemes.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

41

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

42 Essentials of Error-Control Coding

In any ARQ system there is the possibility of requiring a retransmission of a given message.
There are on the other hand communication systems for which the full-duplex mode is not
allowed. An example of one of them is the communication system called paging, a sending of
alphanumerical characters as text messages for a mobile user. In this type of communication
system, there is no possibility of requiring retransmission in the case of a detected error, and so
the receiver has to implement some error-correction algorithm to properly decode the message.
This transmission mode is known as forward error correction (FEC).

2.2.1 Simple Codes: The Repetition Code

One of the simplest ways of performing coding is to repeat a transmitted symbol n times. If
this transmission uses a binary alphabet then the bit ‘1’ is usually represented by a sequence
of n ‘1’s, while the bit ‘0’ is represented by a sequence of n ‘0’s.

If errors happen randomly and with an error probability Pe = p [as happens in the case of
the binary symmetric channel (BSC)], the binomial distribution describes the probability of
having i errors in a word of n bits:

P(i, n) =
(

n
i

)
pi (1 − p)n−i ∼=

(
n
i

)
pi p � 1(

n
i

)
= n!

i!(n − i)!

(1)

Usually the value of p is small enough to validate the approximation made in equation (1). On
the other hand and for the same reason, it will be also true that if p � 1, then the probability
of having i errors is higher than that of having i + 1 errors; that is, P(i + 1, n) � P(i, n).

For the particular case of a repetition code with n = 3 for instance, the codewords are (111)
and (000). Usually, the former represents the bit ‘1’ and the latter represents the bit ‘0’. An
error-detection rule will be that the reception of any of the possible three-bit words different
from the codewords (six in total) will be considered as an error event. Thus, error detection is
possible, and for instance the reception of the word (110) can be considered as an error event.
Since codewords and, in general, binary words can be represented as vectors in a vector space,
coding can be understood as a procedure in which the messages are represented by codewords
selected from an expanded vector space. Thus, coding basically means an expansion of the
dimension of the message vector space from which some vectors are selected as codewords,
while other vector are not. In this example there are eight vectors in the expanded vector space,
from which only two are selected as codewords. The remaining six possible received patterns
are considered error patterns. It can be said that this code can detect error patterns of one or
two errors. By considering that the probability of having one error is higher than that of having
two errors, the patterns

(110), (101) and (011)

will be considered as transmitted sequences of three ‘1’s that, affected by noise, suffered from
one error. According to this rule, the decoder will decide that by receiving these words, the
transmitted codeword was (111), and the transmitted message was ‘1’. In the same way, the
patterns

(001), (010) and (100)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 43

will be considered as sequences of three ‘0’s that, affected by noise, suffered from one error.
According to this rule, the decoder will decide that on receiving these words, the transmitted
codeword was (000), and the transmitted message was ‘0’. This decoding rule cannot correct
two-error patterns.

If this code is used in an error-detection scheme, a pattern of three errors cannot be detected,
because such an error event means that, for instance, a sequence of three ‘0’s is converted into a
sequence of three ‘1’s, which is a valid codeword, and vice versa. When receiving this pattern,
the decoder can only assume that it is a valid codeword, thus being unable to detect this error
event. The word error probability (Pwe) for this case can be evaluated as

Pwe = P(3, 3) = p3

If this code is used in an error-correction mode, a two-error pattern event makes the decoder
fail, and so the word error probability is given by the following expression:

Pwe = P(2, 3) + P(3, 3) = 3p2(1 − p) + p3= 3p2 − 2p3

In all the cases, Pe = p is the error probability the communication system has without the
use of coding. For the BSC, this probability is that of a given bit being converted into its
complement. After the application of coding, Pwe measures the error probability per word. In
general, this error probability will be smaller than the error probability of the uncoded system.
However, the use of coding involves the transmission of redundancy, which means that the
transmission rate has deteriorated. At the end of this chapter, consideration will be given to
making a fair comparison between the coded and uncoded cases (see Section 2.11.1).

The code rate is defined as the ratio between the number of information bits and the number
of coded bits:

Rc = k

n
(2)

Repetition codes have a large error-detection/correction capability, but a very small code
rate. In this book some other coding techniques will be analysed that provide an error-correction
capability similar to the repetition code, but with a better code rate. They will be thus considered
as better coding techniques than repetition coding. The repetition code is a nice example that
shows the difference between error detection and correction.

2.3 Block Codes: Introduction and Parameters

Block coding of information is organized so that the message to be transmitted, basically
presented in binary format, is grouped into blocks of k bits, which are called the message bits,
constituting a set of 2k possible messages. The encoder takes each block of k bits, and converts
it into a longer block of n > k bits, called the coded bits or the bits of the codeword. In this
procedure there are (n − k) bits that the encoder adds to the message word, which are usually
called redundant bits or parity check bits. As explained in the previous chapter, error-control
coding requires the use of a mechanism for adding redundancy to the message word. This
redundancy addition (encoding operation) can be performed in different ways, but always in a
way that by applying the inverse operation (decoding) at the decoder the message information
can be successfully recovered.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

44 Essentials of Error-Control Coding

The final step in the decoding process involves the application of the decoding procedure, and
then the discarding of the redundancy bits, since they do not contain any message information.
These types of codes are called block codes and are denoted by Cb(n, k). The rate of the code,
Rc = k/n, is a measure of the level of redundancy applied in a given code, being the ratio of the
coded bits that represent information or message bits. This is closely related to the increased
bandwidth needed in the transmission when coding is used.

If for example a block code with code rate Rc = 2/3 is utilized, then it should be taken
into account that in the same time T during which in the uncoded scheme the two signals
representing the two message bits are transmitted, there now will be in the coded case three
signals transmitted, so that each signal has a duration that changes from being T/2 for the
uncoded case to T/3 for the coded case. This means that the spectral occupancy is higher
in the coded case. Equivalently, storing coded digital information will require more physical
space than that of the uncoded information. Thus an important practical consideration is to
keep the code rate at a reasonable level, even though in general it leads to a trade-off with
respect to the error-correction capability of the code.

Since the 2k messages are converted into codewords of n bits, this encoding procedure can
be understood as an expansion of the message vector space of size 2k to a coded vector space
of larger size 2n , from which a set of 2k codewords is conveniently selected. Block codes can
be properly analysed by using vector space theory.

2.4 The Vector Space over the Binary Field

A vector space is essentially a set of vectors ruled by certain conditions, which are verified
by performing operations over these vectors, operations that are usually defined over a given
field F .

The vector space V consists of a set of elements over which a binary operation called
addition, denoted by the symbol ⊕, is defined. If F is a field, the binary operation called
product, denoted by the symbol •, is defined between an element of the field F and the vectors
of the space V . Thus, V is a vector space that is said to be defined over the field F [4–9].

The following conditions are verified for a given vector space:� V is a commutative group for the binary operation of addition.� For any a ∈ F and any u ∈ V , a • u ∈ V .� For any u, v ∈ V and any a, b ∈ F , a • (u + v) = a • u + a • v

and also (a + b) • (u) = a • u + b • u.� For any u ∈ V and any a, b ∈ F , (a • b) • u = a • (b • u).� If 1 is the unit element in F then 1 • u = u for any u ∈ V .

It is also true that for this type of vector space

� For any u ∈ V , if 0 is the zero element in F , 0 • u = 0.� For any scalar c ∈ F , c • 0 = 0.� For any scalar c ∈ F and any vector u ∈ V , (−c) • u = c • (−u) = −(c • u)
where (−c) • u = c • (−u) is the additive inverse of c • u.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 45

A very useful vector space for the description of block codes is the vector space defined
over the binary field, or Galois field GF(2). Galois fields GF(q) are defined for all the prime
numbers q and their powers. The binary field GF(2) is a particular case of a Galois field for
which q = 2. Consider an ordered sequence of n components (a0, a1, . . . , an−1) where each
component ai is an element of the field GF(2), that is, an element adopting one of the two
possible values 0 or 1. This sequence will be called an n-component vector. There will be total
of 2n vectors. The corresponding vector space for this set of vectors will be denoted as Vn .

The binary addition operation ⊕ is defined for this vector space as follows: if u =
(u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1) are vectors in Vn , then

u ⊕ v = (u1 ⊕ v1, u2 ⊕ v2, . . . , un ⊕ vn) (3)

where ⊕ is the classic modulo-2 addition. Since the sum vector is also an n-component vector,
this vector also belongs to the vector space Vn , and so the vector space is said to be closed
under the addition operation ⊕. The addition of any two vectors of a given vector space is also
another vector of the same vector space.

Operations defined over the binary field are modulo-2 addition and multiplication. They are
described as follows:

Modulo-2 addition

0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

Modulo-2 multiplication

0 • 0 = 0

0 • 1 = 0

1 • 0 = 0

1 • 1 = 1

Vn is a commutative group under the addition operation. The all-zero vector 0 = (0, 0, . . . , 0)
is also in the vector space and is the identity for the addition operation:

u ⊕ 0 = (u1 ⊕ 0, u2 ⊕ 0, . . . , un ⊕ 0) = u (4)

and

u ⊕ u = (u1 ⊕ u1, u2 ⊕ u2, . . . , un ⊕ un) = 0 (5)

Each vector of a vector space defined over the binary field is its own additive inverse. It can
be shown that the vector space defined over GF(2) is a commutative group, so that associative
and commutative laws are verified. The product between a vector of the vectorial space u ∈ V
and a scalar of the binary field a ∈ GF(2) can be defined as

a • u = (a • u1, a • u2, . . . , a • un−1) (6)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

46 Essentials of Error-Control Coding

where a • ui is a modulo-2 multiplication. It can be shown that the addition and scalar multi-
plication fit the associative, commutative and distributive laws, so that the set of vectors Vn is
a vector space defined over the binary field GF(2).

Example 2.1: The vector space of vectors with four components consists of 24 = 16 vectors:

V4 = {(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111),
(1000), (1001), (1010), (1011), (1100), (1101), (1110), (1111)}

The addition of any two of these vectors is another vector in the same vector space:

(1011) ⊕ (0010) = (1001)

For each vector of this vector space, there are only two scalar multiplications:

0 • (1011) = (0000)
1 • (1011) = (1011)

2.4.1 Vector Subspaces

For a given set of vectors forming a vector space V defined over a field F , it is possible to
find a subset of vectors inside the vector space V , which can obey all the conditions for also
being a vector space. This subset S is called a subspace of the vector space V . This non-empty
subset S of the vector space V is a subspace if the following conditions are obeyed:

� For any two vectors in S, u, v ∈ S, the sum vector (u + v) ∈ S.� For any element of the field a ∈ F and any vector u ∈ S, the scalar multiplication a • u ∈ S.

Example 2.2: The following subset is a subspace of the vector space V4:

S = {(0000), (1001), (0100), (1101)}

On the other hand, if {v1, v2, . . . , vk} is a set of vectors of the vector space V defined over
F and a1, a2, . . . , ak are scalar numbers of the field F , the sum

a1 • v1 ⊕ a2 • v2 ⊕ · · · ⊕ ak • vk (7)

is called a linear combination of the vectors {v1, v2, . . . , vk}. Addition of linear combina-
tions and multiplication of a linear combination by an element of the field F are also linear
combinations of the vectors {v1, v2, . . . , vk}.

Theorem 2.1: If {v1, v2, . . . , vk} are k vectors in V defined over F , the set of all the linear
combinations of {v1, v2, . . . , vk} is a subspace S of V .

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 47

Example 2.3: By considering two vectors (1001) and (0100) of the vector space V4, their
linear combinations form the same subspace S as shown in the above example:

0 • (1001) ⊕ 0 • (0100) = (0000)
0 • (1001) ⊕ 1 • (0100) = (0100)
1 • (1001) ⊕ 0 • (0100) = (1001)
1 • (1001) ⊕ 1 • (0100) = (1101)

A set of k vectors {v1, v2, . . . , vk} is said to be linearly dependent if and only if there exist
k scalars of the field F , not all equal to zero, such that a linear combination is equal to the
all-zero vector:

a1 • v1 ⊕ a2 • v2 ⊕ · · · ⊕ ak • vk = 0 (8)

If the set of vectors is not linearly dependent, then this set is said to be linearly independent.

Example 2.4: Vectors (1001), (0100) and (1101) are linearly dependent because

1 • (1001) ⊕ 1 • (0100) ⊕ 1 • (1101) = (0000)

A set of vectors is said to generate a vector space V if each vector in that vector space is a
linear combination of the vectors of the set.

In any vector space or subspace there exists a set of at least Bli linearly independent vectors
that generate such a vectorial space or subspace.

For a given vector space Vn defined over GF(2), the following set of vectors

e0 = (1, 0, . . . 0)
e1 = (0, 1, . . . , 0)
...

en−1 = (0, 0, . . . , 1)

(9)

is the set of vectors ei that have a non-zero component only at position i . This set of vectors is
linearly independent. Any vector of the vector space can be described as a function of this set:

(a0, a1, . . . , an−1) = a0 • e0 + a1 • e1 + · · · + an−1 • en−1 (10)

This set of linearly independent vectors
{
e0, e1, . . . , en−1

}
generates the vector space Vn ,

whose dimension is n. If k < n, the set of linearly independent vectors {v1, v2, . . . , vk} gener-
ates the vector space S of Vn through all their possible linear combinations:

c = m1 • v1 ⊕ m2 • v2 ⊕ · · · ⊕ mk • vk (11)

The subspace formed is of dimension k and it consists of 2k vectors. The number of com-
binations is 2k because the coefficients mi ∈ GF(2) adopt only one of the two possible values
0 or 1.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

48 Essentials of Error-Control Coding

Another interesting operation to be considered is the inner product between two vectors.
Given the vectors u = (u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1), the inner product is de-
fined as

u ◦ v = u0 • v0 ⊕ u1 • v1 ⊕ · · · ⊕ un−1 • vn−1 (12)

where additions and multiplications are done modulo 2.
This product obeys the commutative, associative and distributive laws. If u ◦ v = 0 then it

is said that vectors u = (u1, u2, . . . , un−1) and v = (v1, v2, . . . , vn−1) are orthogonal.

2.4.2 Dual Subspace

If S is a k-dimensional subspace of the n-dimensional vector space Vn , the set Sd of vectors v
for which for any u ∈ S and v ∈ Sd, u ◦ v = 0 is called the dual subspace of S. It is possible
to demonstrate that this set is also a subspace of Vn . Moreover, it can also be demonstrated
that if the subspace S is of dimension k, the dual subspace Sd is of dimension (n − k). In other
words,

dim(S) + dim(Sd) = n (13)

Example 2.5: For the vector space V4 over GF(2), the following set of vectors S =
{(0000), (0011), (0110), (0100), (0101), (0111), (0010), (0001)} is a three-dimensional sub-
space of V4 for which the one-dimensional subspace Sd = {(0000), (1000)} is the dual subspace
Sd of S.

2.4.3 Matrix Form

The linearly independent vectors that generate a given space or subspace can be organized as
row vectors of a matrix. Such a matrix of size k × n is defined over GF(2), and is a rectangular
array of k rows and n columns:

G =

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦ (14)

Each entry of this matrix belongs to the binary field GF(2), gi j ∈ GF(2). Each of its rows can be
understood as a vector of dimension 1 × n. If the k rows of this matrix are linearly independent,
they can be considered as a basis that generates 2k possible linear combinations that, as a set,
becomes a k-dimensional vector subspace of the vector space Vn . This subspace is called the
row space of G. It is possible to perform linear operations and permutations between rows, or
sum of rows, over the matrix G but the subspace generated by the modified matrix G’ is the
same as that generated by the matrix G.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 49

Example 2.6: In the following matrix G, the third row is replaced by the addition of the
second and third rows, and the first and second rows are permuted, generating the matrix G′:

G =
⎡⎣1 0 1 1 0

0 1 0 0 1
1 1 0 1 1

⎤⎦ G ′ =
⎡⎣0 1 0 0 1

1 0 1 1 0
1 0 0 1 0

⎤⎦
Both matrices generate the same subspace, which is the following three-dimensional sub-

space of the vector space V5:

0 • (10110) ⊕ 0 • (01001) ⊕ 0 • (11011) = (00000)
0 • (10110) ⊕ 0 • (01001) ⊕ 1 • (11011) = (11011)
0 • (10110) ⊕ 1 • (01001) ⊕ 0 • (11011) = (01001)
1 • (10110) ⊕ 0 • (01001) ⊕ 0 • (11011) = (10110)
0 • (10110) ⊕ 1 • (01001) ⊕ 1 • (11011) = (10010)
1 • (10110) ⊕ 1 • (01001) ⊕ 0 • (11011) = (11111)
1 • (10110) ⊕ 0 • (01001) ⊕ 1 • (11011) = (01101)
1 • (10110) ⊕ 1 • (01001) ⊕ 1 • (11011) = (00100)

2.4.4 Dual Subspace Matrix

For the vector subspace S, which is the row space of the matrix G that has k linearly independent
rows, if Sd is the dual subspace, the dimension of this dual subspace is n − k. Matrix G can be
described more compactly if its rows are denoted as row vectors of dimension 1 × n:

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ (15)

Let h0, h1, . . . , hn−k−1 be the linearly independent row vectors of a matrix for which Sd is
the row subspace. These vectors generate Sd. Therefore, a matrix H of dimension (n − k) × n
can be constructed using the vectors h0, h1, . . . , hn−k−1 as row vectors:

H =

⎡⎢⎢⎢⎣
h0

h1
...

hn−k−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h00 h01 · · · h0,n−1

h10 h11 · · · h1,n−1

...
...

...
hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1

⎤⎥⎥⎥⎦ (16)

The row space of H is Sd, the dual subspace of S, which in turn is the row space of G. Since
each row vector gi of G is a vector in S, and each row vector h j of H is a vector in Sd, the inner
product between them is zero, gi ◦ h j = 0. The row space of G is the dual space of the row
space of H. Thus for each matrix G of dimension k × n with k linearly independent vectors,
there exists a matrix H of dimension (n − k) × n with n − k linearly independent vectors, so
that for each row vector gi of G and each row vector h j of H it is true that gi ◦ h j = 0 [4].

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

50 Essentials of Error-Control Coding

Example 2.7: Given the matrix

G =
⎡⎣1 0 1 1 0

0 1 0 0 1
1 1 0 1 1

⎤⎦
its rows generate a subspace consisting of the following vectors:

S = {(00000), (11011), (10110), (01001), (10010), (11111), (01101), (00100)}
The matrix

H =
[

0 1 0 0 1
1 0 0 1 0

]
has row vectors that generate the row space Sd consisting of the following vectors:

Sd = {(00000), (01001), (10010), (11011)}
which is the dual space of S. It is indeed verified that gi ◦ h j = 0:

(10110) ◦ (01001) = 0
(10110) ◦ (10010) = 0
(01001) ◦ (01001) = 0
(01001) ◦ (10010) = 0
(11011) ◦ (01001) = 0
(11011) ◦ (10010) = 0

2.5 Linear Block Codes

The above considerations regarding vector space theory will be useful for the description of
a block code. Message information to be encoded is grouped into a k-bit block constituting
a generic message m = (m0, m1, . . . , mk−1) that is one of 2k possible messages. The encoder
takes this message and generates a codeword or code vector c = (c0, c1, . . . , cn−1) of n com-
ponents, where normally n > k; that is, redundancy is added. This procedure is basically a
bijective assignment between the 2k vectors of the message vector space and 2k of the 2n

possible vectors of the encoded vector space.
When k and n are small numbers, this assignment can be done by means of a table, but

when these numbers are large, there is a need to find a generating mechanism for the encoding
process. Given this need, linearity of the operations in this mechanism greatly simplifies the
encoding procedure.

Definition 2.1: A block code of length n and 2k message words is said to be a linear block
code Cb(n, k) if the 2k codewords form a vector subspace, of dimension k, of the vector space
Vn of all the vectors of length n with components in the field GF(2) [3, 4, 6].

Encoding basically means to take the 2k binary message words of k bits each, and assign to
them some of the 2n vectors of n bits. This is a bijective function. Since usually k < n, there

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 51

are more vectors of n bits than those of k bits, and so the selection of the vectors of n bits
has to be done using the lowest level of redundancy while maximizing the distance among the
codewords.

The set of 2k codewords constitute a vector subspace of the set of words of n bits. As a
consequence of its definition, a linear block code is characterized by the fact that the sum of
any of two codewords is also a codeword.

2.5.1 Generator Matrix G

Since a linear block code Cb(n, k) is a vector subspace of the vector space Vn , there will be
k linearly independent vectors that in turn are codewords g0, g1, . . . , gk−1, such that each
possible codeword is a linear combination of them:

c = m0 • g0 ⊕ m1 • g1 ⊕ · · · ⊕ mk−1 • gk−1 (17)

These linearly independent vectors can be arranged in a matrix called the generator
matrix G:

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦ (18)

This is a matrix mechanism for generating any codeword. For a given message vector m =
(m0, m1, . . . , mk−1), the corresponding codeword is obtained by matrix multiplication:

c = m ◦ G = (m0, m1, . . . , mk−1) ◦

⎡⎢⎢⎢⎣
g00 g01 · · · g0,n−1

g10 g11 · · · g1,n−1

...
...

...
gk−1,0 gk−1,1 · · · gk−1,n−1

⎤⎥⎥⎥⎦

= (m0, m1, . . . , mk−1) ◦

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ = m0 • g0 ⊕ m1 • g1 ⊕ · · · ⊕ mk−1 • gk−1

(19)

Note that the symbol ‘◦’ represents the inner product between vectors or matrices, whereas the
symbol ‘•’ represents the multiplication by a scalar in the field GF(2) of a vector of the vector
space or subspace used.

The rows of the generator matrix G generate the linear block code Cb(n, k), or, equivalently,
the k linearly independent rows of G completely define the code.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

52 Essentials of Error-Control Coding

Table 2.1 Codewords of a linear block code Cb(7, 4)

Message Codewords

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1

0 0 1 0 1 1 1 0 0 1 0

0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 1 0 0 0 1 1 0

0 1 1 1 0 0 1 0 1 1 1

1 0 0 0 1 1 0 1 0 0 0

1 0 0 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 1 0

1 0 1 1 1 0 0 1 0 1 1

1 1 0 0 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1

Example 2.8: Consider the following generator matrix of size 4 × 7 and obtain the codeword
corresponding to the vector message m = (1001):

G =

⎡⎢⎢⎣
g0

g1

g2

g3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
The corresponding codeword is

c = m ◦ G = 1 • g0 ⊕ 0 • g1 ⊕ 0 • g2 ⊕ 1 • g3 = (1101000) ⊕ (1010001) = (0111001)

Table 2.1 shows the code generated by the generator matrix G of this example.

2.5.2 Block Codes in Systematic Form

In Table 2.1 it can be seen that the last four bits of each codeword are the same as the message
bits; that is, the message appears as it is, inside the codeword. In this case, the first three bits are
the so-called parity check or redundancy bits. This particular form of the codeword is called
systematic form. In this form, the codewords consist of the (n − k) parity check bits followed by
the k bits of the message. The structure of a codeword in systematic form is shown in Figure 2.1.

n − k parity check bits k message bits

Figure 2.1 Systematic form of a codeword of a block code

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 53

In the convention selected in this book, the message bits are placed at the end of the codeword,
while the redundancy bits are placed at the beginning of the codeword, but this can be done
the other way round. However, the choice of convention does not modify the properties of a
given block code, although some mathematic expressions related to the code will of course
adopt a different form in each case. In the current bibliography on error-correcting codes, the
systematic form can be found adopting both of the two conventions described above.

A systematic linear block code Cb(n, k) is uniquely specified by a generator matrix of the
form

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1

p10 p11 · · · p1,n−k−1

...
...

...
pk−1,0 pk−1,1 · · · pk−1,n−k−1︸ ︷︷ ︸

submatrix P k × (n − k)

1 0 0 · · ·
0 1 0 · · ·
...

...
...

0 0 0 · · ·︸ ︷︷ ︸
submatrix I k × k

0
0
...
1

⎤⎥⎥⎥⎦ (20)

which, in a compact notation, is

G = [P Ik] (21)

In systematic block coding, it is possible to establish an analytical expression between
the parity check and the message bits. If m = (m0, m1, . . . , mk−1) is the message vector and
c = (c0, c1, . . . , cn−1) the coded vector, the parity check bits can be obtained as a function of
the message bits using the following expression:

cn−k+i = mi

c j = m0 • p0 j + m1 • p1 j + · · · + mk−1 • pk−1, j 0 ≤ j < n − k
(22)

These n − k equations are called the parity check equations.

Example 2.9: Consider the generator matrix of the linear block code Cb(7, 4), presented in
the previous example, and state the parity check equations for the following case:

c = m ◦ G = (m0, m1, m2, m3) ◦

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
Then the parity check equations adopt the form

c0 = m0 ⊕ m2 ⊕ m3

c1 = m0 ⊕ m1 ⊕ m2

c2 = m1 ⊕ m2 ⊕ m3

c3 = m0

c4 = m1

c5 = m2

c6 = m3

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

54 Essentials of Error-Control Coding

2.5.3 Parity Check Matrix H

As explained in previous sections, the generator matrix G contains k linearly independent
vectors that generate the vector subspace S of the vector space Vn , which is in turn associated
with a dual vector subspace Sd of the same vector space Vn that is generated by the rows of a
matrix H. Each vector of the row space of the matrix G is orthogonal to the rows of the matrix
H and vice versa.

The 2n−k linear combinations of the matrix H generate the dual code Cbd(n, n − k), which
is the dual subspace of the code Cb generated by the matrix G. The systematic form of the
parity check matrix H of the code Cb generated by the generator matrix G is

H =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1︸ ︷︷ ︸
submatrix I (n − k) × (n − k)

p00 p10 · · · pk−1,0

p01 p11 · · · pk−1,1

...
...

...
p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

submatrix PT (n − k) × k

= [
In−k PT

]
(23)

where PT is the transpose of the parity check submatrix P. The matrix H is constructed so that
the inner product between any row vector gi of G and any row vector h j of H is zero:

gi ◦ h j = pi j ⊕ pi j = 0 (24)

This condition can be summarized in the matrix expression

G ◦ HT = 0 (25)

It can also be verified that the parity check equations can be obtained from the parity check
matrix H, so that this matrix also specifies completely a given block code. Since a codeword
in systematic form is expressed as

c = (c0, c1, . . . , cn−k−1, m0, m1, . . . , mk−1) (26)

then since

c ◦ HT = m ◦ G ◦ HT = 0 (27)

for the row j of H,

c j ⊕ p0 j • m0 ⊕ p1 j • m1 ⊕ · · · ⊕ pk−1, j • mk−1 = 0 (28)

or, equivalently,

c j = p0 j • m0 ⊕ p1 j • m1 ⊕ · · · ⊕ pk−1, j • mk−1 0 ≤ j < n − k (29)

Example 2.10: Determine the parity check matrix H for the linear block code Cb(7, 4) gen-
erated by the generator matrix

G =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 55

Since

G =

⎡⎢⎢⎣
1 1 0
0 1 1
1 1 1
1 0 1︸ ︷︷ ︸
submatrix P

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

submatrix I

the parity check matrix H is constructed using these submatrices:

H =
⎡⎣1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
A practical implementation of these codes could be done using combinational logic for the
parity check equations.

2.6 Syndrome Error Detection

So far the definitions for the generator and the parity check matrices of a given block code
have been presented. The codeword c = (c0, c1, . . . , cn−1) is such that its components are taken
from the binary field GF(2), ci ∈ GF(2). As a consequence of its transmission through a noisy
channel, this codeword could be received containing some possible errors. The received vector
can therefore be different from the corresponding transmitted codeword, and it will be denoted
as r = (r0, r1, . . . , rn−1), where it is also true that ri ∈ GF(2).

An error event can be modelled as an error vector or error pattern e = (e0, e1, . . . , en−1),
whose components are also defined over the binary field, ei ∈ GF(2), and which is related to
the codeword and received vectors as follows:

e = r ⊕ c (30)

The error vector has non-zero components in the positions where an error has occurred.
Once the error vector is determined, a task to be performed by the decoder, it is possible to
do a correction of the received vector in order to determine an estimate of the valid codeword,
and this can be done by using the expression

c = r ⊕ e (31)

Since any codeword should obey the condition

c ◦ HT = 0

an error-detection mechanism can be implemented based on the above expression, which adopts
the following form:

S = r ◦ HT = (s0, s1, . . . , sn−k−1) (32)

This vector is called the syndrome vector. The detection operation is performed over the
received vector, so that if this operation results in the all-zero vector, then the received vector
is considered to be a valid codeword; if otherwise, the decoder has detected errors.

Since r = c ⊕ e,

S = r ◦ HT = (c ⊕ e) ◦ HT = c ◦ HT ⊕ e ◦ HT = e ◦ HT (33)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

56 Essentials of Error-Control Coding

If the error pattern is the all-zero vector, then the syndrome vector will also be an all-zero
vector, and thus the received vector is a valid codeword. When the syndrome vector contains at
least one non-zero component, it will be detecting the presence of errors in the received vector.
There is however a possibility that the syndrome vector can be the all-zero vector in spite of
the presence of errors in the received vector. This is in fact possible if the error pattern is equal
to a codeword; that is, if the number and positions of the errors are such that the transmitted
codeword is converted into another codeword. This error pattern will not be detected by the
syndrome operation. This is what is called an undetected error pattern, and as such is not within
the error-correction capability of the code.

As said above, the undetected error patterns are characterized by satisfying the condition
S = e ◦ HT = 0; that is, these are the error patterns that are equal to one of the codewords
(e = c). There will be therefore 2k − 1 undetectable non-zero error patterns.

According to the expression for calculating the syndrome vector, each of its bits can be
evaluated as follows:

s0 = r0 ⊕ rn−k • p00 ⊕ rn−k+1 • p10 ⊕ · · · ⊕ rn−1 • pk−1,0

s1 = r1 ⊕ rn−k • p01 ⊕ rn−k+1 • p11 ⊕ · · · ⊕ rn−1 • pk−1,1

...
sn−k−1 = rn−k−1 ⊕ rn−k • p0,n−k−1 ⊕ rn−k+1 • p1,n−k−1 ⊕ · · · ⊕ rn−1 • pk−1,n−k−1

(34)

The dimension of the syndrome vector is 1 × (n − k).

Example 2.11: For the same linear block code Cb(7, 4), as seen in previous examples, obtain
the analytical expressions for the syndrome vector’s bits.

If r = (r0, r1, r2, r3, r4, r5, r6)
then

S = (s0, s1, s2) = (r0, r1, r2, r3, r4, r5, r6) ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 1 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
s0 = r0 ⊕ r3 ⊕ r5 ⊕ r6

s1 = r1 ⊕ r3 ⊕ r4 ⊕ r5

s2 = r2 ⊕ r4 ⊕ r5 ⊕ r6

The syndrome vector does not depend on the received vector, but on the error vector. Thus,
solving the following system of equations

s0 = e0 ⊕ en−k • p00 ⊕ en−k+1 • p10 ⊕ · · · ⊕ en−1 • pk−1,0

s1 = e1 ⊕ en−k • p01 ⊕ en−k+1 • p11 ⊕ · · · ⊕ en−1 • pk−1,1

...
sn−k−1 = en−k−1 ⊕ en−k • p0,n−k−1 ⊕ en−k+1 • p1,n−k−1 ⊕ · · · ⊕ en−1 • pk−1,n−k−1

(35)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 57

will allow us to evaluate the error vector, which in turn will allow us to do an estimation of
a valid codeword. However, this set of (n − k) equations does not have a unique solution,
but exhibits 2k solutions. This is due to the fact that there are 2k error patterns that produce
the same syndrome vector. In spite of this, and because the noise power normally acts with
minimum effect, the error pattern with the least number of errors will be considered to be the
true solution of this system of equations.

Example 2.12: For the linear block code Cb(7, 4) of the previous example, a transmitted
codeword c = (0011010) is affected by the channel noise and received as the vector r =
(0001010). The calculation of the syndrome vector results in the vector S = (001), which in
terms of the system of equations (35) becomes

0 = e0 ⊕ e3 ⊕ e5 ⊕ e6

0 = e1 ⊕ e3 ⊕ e4 ⊕ e5

1 = e2 ⊕ e4 ⊕ e5 ⊕ e6

There are 24 = 16 different error patterns that satisfy the above equations (see Table 2.2).
Since errors in a codeword of n bits are governed by the binomial distribution, the error

pattern with i errors is more likely than the error pattern of i + 1 errors, which means that
for channels like the BSC, the error pattern with the smallest number of non-zero components
will be considered as the true error pattern. In this case the error pattern e = (0010000) is
considered, among the 16 possibilities, to be the true error pattern, and so

c = r ⊕ e = (0011010) = (0001010) ⊕ (0010000)

Table 2.2 Error patterns that satisfy the equations of Example 2.12

e0 e1 e2 e3 e4 e5 e6

0 0 1 0 0 0 0

1 1 1 1 0 0 0

1 0 0 0 0 0 1

0 1 0 1 0 0 1

0 0 0 1 0 1 0

1 1 0 0 0 1 0

0 1 1 0 0 1 1

1 0 1 1 0 1 1

0 1 0 0 1 0 0

1 0 0 1 1 0 0

1 1 1 0 1 0 1

0 0 1 1 1 0 1

1 0 1 0 1 1 0

0 1 1 1 1 1 0

1 1 0 1 1 1 1

0 0 0 0 1 1 1

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

58 Essentials of Error-Control Coding

2.7 Minimum Distance of a Block Code

The minimum distance dmin is an important parameter of a code, especially for a block code.
Before defining this parameter, other useful definitions related to the minimum distance are
first provided [3, 4].

Definition 2.2: The number of non-zero components ci
= 0 of a given vector c =
(c0, c1, . . . , cn−1) of size (1 × n) is called the weight, or Hamming weight, w(c), of that vector.
In the case of a vector defined over the binary field GF(2), the weight is the number of ‘1’s in
the vector.

Definition 2.3: The Hamming distance between any two vectors c1 = (
c01, c11, . . . , cn−1,1

)
and c2 = (

c02, c12, . . . , cn−1,2

)
, d(c1, c2), is the number of component positions in which the

two vectors differ.
For instance, if c1 = (0011010) and c2 = (1011100), then d(c1, c2) = 3.

According to the above definitions, it can be verified that

d(ci , c j) = w(ci ⊕ c j) (36)

For a given code, the minimum value of the distance between all possible pairs of codewords
can be calculated. This minimum value of the distance evaluated over all the codewords of the
code is called the minimum distance of the code, dmin:

dmin = min
{
d(ci , c j); ci , c j ∈ Cb; ci
= c j

}
(37)

Since, in general, block codes are designed to be linear, the addition of any two code vectors
is another code vector. From this point of view, any codeword can be seen as the addition
of at least two other codewords. Since the Hamming distance is the number of positions in
which two vectors differ, and on the other hand the weight of the sum of two vectors is the
Hamming distance between these two vectors, then the weight of a codeword is at the same time
the distance between two other vectors of that code. Thus, the minimum value of the weight
evaluated over all the codewords of a code, excepting the all-zero vector, is the minimum
distance of the code:

dmin = min
{
w(ci ⊕ c j); ci , c j ∈ Cb; ci
= c j

} = min {w(cm); cm ∈ Cb; cm
= 0} (38)

Therefore, the minimum distance of a linear block code Cb(n, k) is the minimum value of the
weight of the non-zero codewords of that code.

As an example, the linear block code analysed in previous examples has minimum distance
dmin = 3, because this is the minimum value of the weight evaluated over all the non-zero
codewords of this code (see Table 2.1).

2.7.1 Minimum Distance and the Structure of the H Matrix

There is an interesting relationship between the minimum distance dmin of a code and its parity
check matrix H.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 59

Theorem 2.2: Consider a linear block code Cb(n, k) completely determined by its parity
check matrix H. For each codeword of Hamming weight pH, there exist pH columns of the
parity check matrix H that when added together result in the all-zero vector. In the same way,
it can be said that if the parity check matrix H contains pH columns that when added give the
all-zero vector, then there is in the code a vector of weight pH [4].

In order to see this, parity check matrix H is described in the following form:

H = [
h0, h1, . . . , hn−1

]
(39)

where hi is the i th column of this matrix. If a codeword c = (c0, c1, . . . , cn−1) has a weight
pH, then there exist pH non-zero components in that vector ci1 = ci2 = · · · = cipH

= 1, for
which 0 ≤ i1 < i2 < · · · < i pH

≤ n − 1.
Since

c ◦ HT = 0

then

c0 • h0 ⊕ c1 • h1 ⊕ · · · ⊕ cn−1 • hn−1

= ci1 • hi1 ⊕ ci2 • hi2 ⊕ · · · ⊕ cipH
•hipH

= hi1 ⊕ hi2 ⊕ · · · ⊕ hipH = 0
(40)

Similarly, the second part of the theorem can be demonstrated.

The following corollary is then derived:

Corollary 2.7.1: For a linear block code Cb(n, k) completely determined by its parity check
matrix H, the minimum weight or minimum distance of this code is equal to the minimum
number of columns of that matrix which when added together result in the all-zero vector 0.

Example 2.13: For the linear block code Cb(7, 4), as seen in previous examples, whose parity
check matrix is of the form

H =
⎡⎣ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
determine the minimum distance of this code.

It can be seen that the addition of the first, third and seventh column results in the all-zero
vector 0. Hence, and because the same result cannot be obtained by the addition of only two
columns, the minimum distance of this code is dmin = 3.

2.8 Error-Correction Capability of a Block Code

The minimum distance of a code is the minimum number of components changed by the
effect of the noise that converts a code vector into another vector of the same code. If having
transmitted the codeword c the noise transforms this vector in the received vector r, the distance
between c and r is the weight of the error pattern d(c, r) = w(e) = l, that is, the number of

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

60 Essentials of Error-Control Coding

positions that change their value in the original vector c due to the effects of noise. If the noise
modifies dmin positions, then it is possible in the worst case that a code vector is transformed
into another vector of the same code, so that the error event is undetectable. If the number of
positions the noise alters is dmin − 1, it is guaranteed that the codeword cannot be converted
into another codeword. Thus, the error-detection capability of a linear block code Cb(n, k) of
minimum distance dmin is dmin − 1. This is evaluated for the worst case, that is, for the case
in which the error event of dmin bits happens over a codeword that has a Hamming weight
dmin. However, there could be other detectable error patterns of the weight dmin. Based on this
analysis, the error-detection capability of a code can be measured by means of the probability
that the code fails to determine an estimate of the codeword from the received vector, which is
evaluated using the weight distribution function of the code. Since a detection failure happens
when the error pattern is equal to a non-zero codeword,

PU(E) =
n∑

i=1

Ai pi (1 − p)n−i (41)

where Ai is the number of codewords of weight i and p is the error probability for the BSC,
for which this analysis is valid. When the minimum distance is dmin, the values of A1 to Admin−1

are all zero.

Example 2.14: For the linear block code Cb(7, 4), previously analysed values of the weight
distribution function are equal to

A0 = 1, A1 = A2 = 0, A3 = 7, A4 = 7, A5 = A6 = 0, A7 = 1

The probability of an undetected error is therefore

PU(E) =
n∑

i=1

Ai pi (1 − p)n−i = 7p3(1 − p)4 + 7p4(1 − p)3 + p7 ≈ 7p3

where the approximation is based on the error probability for the BSC being a small number
p � 1.

In order to determine the error-correction capability of a linear block code Cb(n, k), an
integer number t that fits the condition

2t + 1 ≤ dmin ≤ 2t + 2 (42)

will represent the number of bits that can be corrected.
If having transmitted a codeword c1 the noise effects transform this vector into the received

vector r , then with respect to another codeword c2 the following inequality will be true:

d(c1, r) + d(c2, r) ≥ d(c1, c2) (43)

By assuming an error pattern of t ′ errors, d(c1, r) = t ′. As c1 and c2 are codewords,
d(c1, c2) ≥ dmin ≥ 2t + 1 and

d(c2, r) ≥ 2t + 1 − t ′ (44)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 61

By adopting t ′ ≤ t ,

d(c2, r) > t (45)

This means that for an error pattern of weight t or less, the distance between any other codeword
c2 and the received vector r is higher than the distance between the codeword c1 and the
received vector r , which is t ′ ≤ t . This also means that the probability P(r/c1) is higher than
the probability P(r/c2) for any other codeword c2. This is the process of maximum likelihood
decoding, and in this operation the received vector r is decoded as the codeword c1. This way
the code is able to successfully decode any error pattern of weight t = ⌊ dmin−1

2

⌋
, where �

means the largest integer number no greater than dmin−1
2

.
As happened in the detection of errors, for the correction of errors there are more possible

correctable patterns than those determined by the number t . For a linear block code Cb(n, k)
able to correct up to t errors, there are 2n−k correctable error patterns including the error
patterns of t or fewer errors.

If a linear block code Cb(n, k), able to correct all the error patterns of weight t or less, is
used in a transmission over the BSC with error probability p, the error probability of the coded
system is given by

Pwe =
n∑

i=t+1

(
n
i

)
pi (1 − p)n−i (46)

In hybrid systems, where errors are in part corrected, and in part detected, these codes are
utilized in such a way that error patterns of weight λ are corrected and error patterns of weight
l > λ are detected. If the error pattern is of weight λ or less, the system corrects it, and if the
error pattern is of weight larger than λ, but less than l + 1, the system detects it. This is possible
if dmin ≥ l + λ + 1.

If for example the minimum distance of a linear block code Cb(n, k) is dmin = 7, this code
can be used for correcting error patterns of weight λ = 2 or less and detecting error patterns
of weight l = 4 or less.

2.9 Syndrome Detection and the Standard Array

A linear block code Cb(n, k) is constructed as a bijective assignment between the 2k message
vectors and the set {c1, c2, . . . , c2k }. Each of these vectors is transmitted through the channel
and converted into a received vector r that can be any vector of the 2n vectors of the vector space
Vn defined over the binary field GF(2). Any decoding technique is essentially a decision rule,
based on the vector space Vn being partitioned into 2k possible disjoint sets D1, D2, . . . , D2k

such that the vector ci is in the set Di . There is a unique correspondence between the set Di

and the vector ci . If the received vector is in Di , it will be decoded as ci .
The standard array is a method for doing this operation [4, 6]. The array is constructed in

the following way:
A row containing the codewords, including and starting from the all-zero vector (0, 0, . . . , 0),

is constructed. This row contains 2k vectors taken from the whole set of 2n possible vectors.

c1 = (0, 0, . . . , 0) c2 c3 . . . c2k (47)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

62 Essentials of Error-Control Coding

Then an error pattern e2 is selected and placed below c1 (the all-zero vector), and then the sum
vector ci ⊕ e2 is placed below ci . This is done with all the error patterns taken from the vector
space that have to be allocated, a total of 2n−k vectors.

c1 = (0, 0, . . . , 0) c2 . . . ci . . . c2k

e2 c2 ⊕ e2 . . . ci ⊕ e2 . . . c2k ⊕ e2
...
e2n−k c2 ⊕ e2n−k . . . ci ⊕ e2n−k . . . c2k ⊕ e2n−k

(48)

In this array the sum of any two vectors in the same row is a code vector. There are only 2n/2k

disjoint rows in this array. These rows are the so-called cosets of the linear block code Cb(n, k).
The vector that starts each coset is called the leader of that coset, and it can be any vector of
that row.

Example 2.15: For the linear block code Cb(5, 3) generated by the matrix given below,
determine the standard array.

G =
⎡⎣0 1 0 0 1

1 0 1 1 0
1 0 0 1 0

⎤⎦
There are in this case 2k = 23 = 8 columns and 2n−k = 22 = 4 rows in the standard array.
Table 2.3 shows the standard array for the code of Example 2.15.

The standard array can also be seen as constituted of 2k disjoint columns, and in each of these
columns are 2n−k vectors having as the first vector a code vector. These 2k disjoint columns
D1, D2, . . . , D2k can be used in a decoding procedure. If having transmitted a codeword ci ,
the received vector is r, this received vector will be in Di if the error pattern that occurred is its
coset leader. In this case the received vector will be successfully decoded. If the error pattern
is not a coset leader, a decoding error happens. Due to this, the 2n−k coset leaders including
the all-zero pattern are the correctable error patterns. It can be deduced that a linear block code
Cb(n, k) can correct 2n−k error patterns.

In order to minimize the error probability, all the correctable error patterns, which are the
coset leaders, will have to be the most likely patterns. In the case of a transmission over the
BSC, the most likely patterns are those of the lowest possible weight. Thus, each coset leader
will be of the lowest possible weight among the vectors of that row. The decoding in this
case will be maximum likelihood decoding, that is, minimum distance decoding, so that the
decoded code vector is at minimum distance with respect to the received vector.

Table 2.3 Standard array for the code of Example 2.15

0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 0

0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0

0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 63

In conclusion it can be said that a linear block code Cb(n, k) is able to detect 2n − 2k error
patterns and correct 2n−k error patterns.

It can also be said that
For a linear block code Cb(n, k) with minimum distance dmin, all the vectors of weight

t = ⌊ dmin−1
2

⌋
or less can be used as coset leaders. This is in agreement with the fact that not

all the weight t + 1 error patterns can be corrected, even when some of them can be. On the
other hand, all the vectors of the same coset have the same syndrome, whereas syndromes for
different cosets are different.

By taking a coset leader as the vector ei , any other vector of that coset is the sum of the
leader vector and the code vector ci . For this case, the syndrome is calculated as

(ci ⊕ ei) ◦ HT = ci ◦ HT ⊕ ei ◦ HT = ei ◦ HT (49)

The syndrome of any vector of the coset is equal to the syndrome of the leader of that coset.
Syndromes are vectors with (n − k) components that have a bijective assignment with the
cosets. For each correctable error pattern, there is a different syndrome vector. This allows
us to implement simpler decoding by constructing a table where correctable error patterns
and their corresponding syndrome vectors are arranged, so that when the decoder makes the
syndrome calculation and knows the syndrome vector, it can recognize the corresponding error
pattern. Thus, the decoder is able to correct the received vector by adding the error pattern to that
received vector. Thus syndrome decoding consists of the following steps: With the information
provided by the table S → e, the syndrome vector is calculated as a function of the received
vector using S = r ◦ HT; then the decoder resorts to the table to identify which error pattern
ei corresponds to the calculated syndrome vector and finally corrects the received vector by
doing ci = r ⊕ ei . This procedure can be used when the table S → e is of a reasonable size to
be implemented in practice.

Example 2.16: For the linear block code Cb(7, 4) with parity check matrix

H =
⎡⎣ 1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
there are 24 = 16 code vectors and 27−4 = 8 cosets, or correctable error patterns. The minimum
distance has also been calculated and is equal to dmin = 3 and so this code is able to correct
any pattern of one error. In this case the total number of correctable error patterns is equal to
the number of error patterns the code can correct, and there are seven correctable error patterns
and the all-zero error pattern, as the possible patterns. The table S → e for this code is seen in
Table 2.4.

As an example, assume that the transmitted code vector was c = (1010001) and after the
transmission of this vector the received vector is r = (1010011), then the syndrome vector
in this case is r ◦ HT = (111) and so the leader of the corresponding coset is (0000010) and
c = (1010001) = (1010011) ⊕ (0000010).

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

64 Essentials of Error-Control Coding

Table 2.4 Error patterns and their corresponding

syndrome vectors, Example 2.16

Error patterns Syndromes

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 0 1

2.10 Hamming Codes

A widely used class of linear block codes is the Hamming code family [11]. For any positive
integer m ≥ 3, there exists a Hamming code with the following characteristics:

Length n = 2m − 1
Number of message bits k = 2m − m − 1
Number of parity check bits n − k = m
Error-correction capability t = 1, (dmin = 3)

The parity check matrix H of these codes is formed of the non-zero columns of m bits, and
can be implemented in systematic form:

H = [Im Q]

where the identity submatrix Im is a square matrix of size m × m and the submatrix Q consists
of the 2m − m − 1 columns formed with vectors of weight 2 or more.

For the simplest case, for which m = 3,

n = 23 − 1 = 7

k = 23 − 3 − 1 = 4

n − k = m = 3

t = 1(dmin = 3)

H =
⎡⎣1 0 0 1 0 1 1

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎦
which is the linear block code Cb(7, 4) that has been analysed previously in this chapter. The
generator matrix can be constructed using the following expression for linear block codes of
systematic form:

G = [
QT I2m−m−1

]

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 65

In the parity check matrix H, the sum of three columns can result in the all-zero vector, and it is
not possible for the sum of two columns to give the same result, and so the minimum distance
of the code is dmin = 3. This means that they can be used for correcting any error pattern of
one error, or detecting any error pattern of up to two errors. In this case there are also 2m − 1
correctable error patterns and on the other hand there exist 2m cosets, so that the number of
possible correctable error patterns is the same as the number of different cosets (syndrome
vectors). The codes with this characteristic are called perfect codes. The code of Example 2.10
is a Hamming code.

2.11 Forward Error Correction and Automatic Repeat ReQuest

2.11.1 Forward Error Correction

Communication systems that use the FEC approach are not able to request a repetition of
the transmission of coded information. Due to this, all the capability of the code is used for
error correction. The source information generates a binary signal representing equally likely
symbols at a rate rb. The encoder takes a group of k message bits, and adds to it n − k parity
check bits. This is the encoding procedure for a linear block code Cb(n, k) whose code rate is
Rc = k/n, with Rc < 1. Figure 2.2 shows a block diagram of an FEC communication system.

The transmission rate r over the channel has to be higher than the source information rate rb:

r =
(n

k

)
rb = rb

Rc

(50)

The code used in the FEC system is characterized by having a minimum distance dmin =
2t + 1. The performance is evaluated of a communication system perturbed by additive white
Gaussian noise (AWGN) in the channel, leading to an error probability p � 1. The source
(uncoded) information has an average bit energy Eb, so that the average bit energy for a coded
bit is reduced to Rc Eb. The ratio Eb/N0 is equal to(

Eb

N0

)
C

= Rc Eb

N0

= Rc

(
Eb

N0

)
(51)

As seen in Chapter 1, the quotient between the average bit energy Eb and the power spectral
density N0 plays an important role in the characterization of communication systems, and it
will be used a basic parameter for comparison proposes.

In this section the difference between the coded and uncoded cases is analysed.

Encoder Transm. Channel + Receiver Decoder

Pe = p

r = rb

r = rb/RcRc = k /n Gn(f) = No/2

Figure 2.2 Block diagram of an FEC system

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

66 Essentials of Error-Control Coding

There are two error probability definitions: the message bit error rate (BER) or bit error
probability, denoted here as Pbe, and the word error probability, denoted as Pwe. A given linear
block code can correct error patterns of weight t , or less, in a block or codeword of n bits. The
word error probability is bounded by

Pwe ≤
n∑

i=t+1

P(i,n) (52)

Assuming that the error probability of the channel is small, p � 1, the following approxi-
mation can be made:

Pwe
∼= P(t + 1,n) ∼=

(
n

t + 1

)
pt+1 (53)

This basically means that the words that the code cannot correct have t + 1 errors. Since the
codeword is truncated after decoding, in each uncorrected word there are

(
k
n

)
(t + 1) message

bit errors, on average. If a large number N � 1 of words are transmitted, then Nk information
source or message bits are transmitted, and the bit error probability is equal to

Pbe =
(

k
n

)
(t + 1) NPwe

kN
= 1

n
(t + 1) Pwe (54)

Pbe
∼=

(
n − 1

t

)
pt+1 (55)

For a communication system designed to operate over the AWGN channel, for which the
power spectral density is Gn(f) = N0/2, and for which binary polar format and matched
filtering are applied, the error probability Pe is given by (see Appendix 1)

Pe = Q

(√
2

Eb

N0

)
(56)

and then

p = Q

(√
2

(
Eb

N0

)
C

)
= Q

(√
2Rc

Eb

N0

)
(57)

The bit error probability for an FEC system is then

Pbe
∼=

(
n − 1

t

) [
Q

(√
2Rc

Eb

N0

)]t+1

(58)

An uncoded communication system has an error probability

Pbe
∼= Q

(√
2

Eb

N0

)
(59)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 67

Expressions (58) and (59) allow us to do a comparison between the coded and uncoded
cases. This comparison will indicate if there is an improvement or not when using FEC error-
control coding, with respect to the uncoded case. This comparison depends on the values of t
and Rc, characteristic parameters of the code being used. Even for a good code, if the amount
of noise power present in the channel is very large, the coded case usually performs worse
than the uncoded case. However, for a reasonable level of noise power, the coded case is better
than the uncoded one if a good code is used. Now it is clear why the comparison between the
coded and uncoded case is not fair if it is done as in Section 2.2.1, in which the repetition code
was introduced, because in that comparison the rate of the code, 1/3, had not been taken into
account. The triple repetition of a bit means that the energy per information (message) bit is
three times higher, and this should be taken into account if a fair comparison is intended.

Example 2.17: The triple repetition code
By making use of expressions (58) and (59) determine if the triple repetition code has a

good performance in comparison with the uncoded case, by plotting the bit error probability
as a function of the parameter Eb/N0 for both cases.

In Figure 2.3 the bit error probability curve (dotted) describes the performance of the rep-
etition code with n = 3 [theoretical estimation using (58)], and a simulation curve (dashed),
with respect to uncoded binary transmission (solid curve), in both cases using polar format
(A = ±1). This shows that the repetition code with n = 3 is even worse than uncoded trans-
mission. This is because the code rate of the repetition code is very small with respect to its
error-correction capability.

In the chapters which follow, more efficient codes than the repetition code will be introduced.

Uncoded binary

Three-time repetition code, theoretical curve

Hard-decision decoding of a triple repetition code, simulation

−2 0 2 4 6 8 10 12

100

10−1

10−2

10−3

10−4

10−5

10−6

Eb/N0 (dB)

Pbe

Figure 2.3 Bit error probability for the three-time repetition code

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

68 Essentials of Error-Control Coding

2.11.2 Automatic Repeat ReQuest

ARQ communication systems are based on the detection of errors in a coded block or frame and
on the retransmission of the block or frame when errors have been detected. In this case a two-
way channel is needed in order to request retransmissions. For a given code, the error-detection
capability possible in an ARQ system is higher than the error-correction capability of its FEC
counterpart, because the error-control capability of the code is spent only on detection, while
the correction requires not only the detection but also the localization of the errors. On the
other hand, there is an additional cost in an ARQ system, which is the need for a retransmission
link. There are also additional operations for the acknowledgement and repetition processes
that reduce the transmission rate of the communication system. A block diagram of an ARQ
system is seen in Figure 2.4.

Each codeword is stored in the transmitter buffer and then transmitted. This codeword can
be affected by noise, so that at the receiving end the decoder analyses if the received vector
belongs or not to the code. A positive acknowledgement (ACK) is transmitted by the receiver
if the received vector or word is a codeword; that is, the decoder did not detect any error in that
vector. Otherwise the decoder transmits a negative acknowledgement (NAK) if the decoder
identifies that the received vector has some errors, and is not a code vector. Upon reception
of a NAK message at the transmitter, the corresponding block in the transmitter buffer is
retransmitted.

An ARQ system has a reduced transmission rate with respect to an FEC system as a result
of the retransmission process. In all of this, it is considered that the error probability over the
retransmission channel is negligible. This means that the ACK and NAK messages do not
suffer from errors in their transmission. In this way, every word found to have transmission
errors is successfully corrected by means of one or more retransmissions. In this case all the
error-control capability is spent on error detection, so that dmin = l + 1, and the system is able
to detect any error pattern of up to l errors. The error probability is determined by the event of
an undetected error pattern, that is, an error pattern with dmin = l + 1 or more errors:

Pwe =
n∑

i=l+1

P(i,n) ∼= P(l + 1,n) ∼=
(

n
l + 1

)
pl+1 (60)

Two-way channel

Data
transmission

Positive or negative
acknowledgement

ACK/NAK

Encoder

Transmitter
buffer

Decoder

Receiver
buffer

Figure 2.4 Block diagram of an ARQ system

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 69

Then the bit error probability is

Pbe =
(

l + 1

n

)
Pwe

∼=
(

n − 1
l

)
pl+1 (61)

These expressions are similar to those given for the FEC system, and are obtained by replacing
t by l.

Retransmissions happen with a certain probability. Retransmission is not required when the
receiver has received a valid codeword, an event with probability P(0, n), or when the number
of errors in the received vector produces an undetectable error pattern, an event with probability
Pwe. Therefore, the retransmission probability Pret is given by [3]

Pret = 1 − (P(0, n) + Pwe) (62)

Since usually Pwe � P(0, n),

Pret
∼= 1 − P(0, n) = 1 − (1 − p)n ∼= np (63)

2.11.3 ARQ Schemes

2.11.3.1 Stop and wait

The stop-and-wait scheme is such that the transmission of a block or word requires the reception
of an acknowledgement (ACK or NAK) of the previous word. The transmitter does not send
the following word until the present word has arrived. Figure 2.5 shows the operation of a
stop-and-wait ARQ scheme. This scheme requires storage of only one word at the transmitter,
which means that the transmitter buffer is of minimum size, but the stopping time D could be
very long, and it is related to the transmission delay of the system, td, where D ≥ 2td.

Transmitter Receiver

1

2

2

2

2

1

ACK

NAK

Figure 2.5 Stop-and-wait ARQ scheme

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

70 Essentials of Error-Control Coding

Transmitter Receiver

4

1

4

2

3

3

4

1

4

2

3

3

Discarded

ACK

ACK

ACK

NAK

Figure 2.6 A go-back-N ARQ scheme

2.11.3.2 Go-back N

The go-back-N scheme involves a continuous transmission of words. When the receiver sends
a NAK, the transmitter goes back to the corresponding word, stored in the transmitter buffer,
and restarts the transmission from that word. This requires the storage of N words in the
transmitter buffer, where N is determined by the round-trip delay of the system. The receiver
discards the N − 1 words received after detecting one with errors in spite of the possibility of
their being correctly received, in order to preserve the order of the word sequence. Thus the
receiver needs to store only one word. Figure 2.6 describes the process.

Figure 2.6 shows a go-back-N ARQ scheme with N = 2. Both the received word in which
errors have been detected and the one which follows it are discarded.

2.11.3.3 Selective repeat

The selective-repeat scheme is the most efficient ARQ scheme in terms of transmission rate,
but has the largest memory requirement. When a NAK arrives, the transmitter resends only
the corresponding word, and the order of correctly received words is then re-established at the
receiver. Figure 2.7 illustrates the selective-repeat ARQ scheme.

In order to properly analyse the overall code rate or efficiency, Rc, of these ARQ schemes,
it is necessary to take into account their statistics and delay times.

Transmitter Receiver

5

1

4

2

3

3

1

4

2

3

3

ACK

ACK

ACK

ACK

NAK

Figure 2.7 Selective-repeat ARQ scheme

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 71

2.11.4 ARQ Scheme Efficiencies

To determine the transmission efficiency of the ARQ transmission schemes, the effect of the
repetitions or retransmissions in each type of scheme needs to be evaluated.

In schemes based on the retransmission of single words (or blocks, packets or frames),
the total number of retransmissions is a random variable m determined by the retransmission
probability

P(m = 1) = 1 − Pret, P(m = 2) = Pret(1 − Pret), etc.

The average number of transmissions of a word in order for it to be accepted as correct is

m̄ = 1(1 − Pret) + 2Pret(1 − Pret) + 3P2
ret(1 − Pret) + · · ·

= (1 − Pret)(1 + 2Pret + 3P2
ret + · · ·)

= 1

1 − Pret

(64)

On average the system must transmit nm̄ bits to send k message bits. The efficiency therefore
is

R
′
c = k

nm̄
= k

n
(1 − Pret) = k

n
(1 − p)n (65)

The transmission bit rate rb and r are related by

r = rb

R ′
c

(66)

The probability of error p is calculated using the appropriate expression [as in equation (57),
for example] with R

′
c instead of Rc.

The previous expressions apply to systems where single words are retransmitted. In the
form described by equations (65) and (66), they characterize the selective-repeat ARQ scheme.
However, in the case of the stop-and-wait scheme, the transmission rate is reduced by the factor

Tw

Tw+D , where D ≥ 2td. The duration td is the channel delay, and Tw is the duration of the word
or packet, and so

Tw = n

r
≤ k

rb

(67)

Therefore the efficiency of the stop-and-wait ARQ scheme is

R
′
c = k

n

(1 − Pret)

(1 + D/Tw)
≤

(
k

n

)
(1 − Pret)(
1 + 2tdrb

k

) (68)

The ratio D/Tw can be expressed as a function of fixed parameters of the system:

D

Tw

≥ 2tdrb

k
(69)

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

72 Essentials of Error-Control Coding

A go-back-N ARQ scheme does not suffer from wasted transmitter stop times, but has to
restart transmission when there are errors. For this case the average number of transmissions
of a word is

m̄ = 1(1 − Pret) + (1 + N)Pret(1 − Pret) + (1 + 2N)P2
ret(1 − Pret) + · · ·

= (1 − Pret)[1 + Pret + P2
ret + P3

ret + · · · + NPret(1 + 2Pret + 3P2
ret + · · ·)]

= (1 − Pret)

[
1

1 − Pret

+ NPret

(1 − Pret)
2

]
= 1 + NPret

1 − Pret

(70)

and so the transmission rate is modified by the factor

R
′
c = k

n

(1 − Pret)

(1 − Pret + NPret)
≤

(
k

n

)
(1 − Pret)(

1 − Pret + (
2tdrb

k

)
Pret

) (71)

which involves use of the expression

N ≥ 2td
Tw

(72)

Unlike in the case of a selective-repeat scheme, stop-and-wait and go-back-N schemes
exhibit transmission efficiencies that depend on the channel delay. Thus the efficiency R

′
c in

these latter cases is considered to be acceptable if 2tdrb � k. Even if 2tdrb > k, go-back-N
scheme operates better than stop-and-wait scheme if p is small.

Figure 2.8 shows the efficiencies relative to k/n of the three ARQ schemes. Selective repeat
is the most efficient, assuming infinite transmitter memory. Go-back N also has good efficiency
if the channel delay is not too large. Channel delay is seen to have a significant effect on the
efficiency of the stop-and-wait scheme, becoming unacceptably low if the delay is too long.
Selective repeat is the best option in scenarios where high-transmission rates over channels
with large delays is required [4].

2.11.5 Hybrid-ARQ Schemes

Up to now the characteristics of FEC and ARQ coding schemes have been described. Their
essential difference resides in the possibility of having or not a return link for the transmission of
ACK or NAK and to request a retransmission. From the operational point of view, FEC schemes
having a constant coding rate, but not a return link over which to request a retransmission,
must decode using only the received vector. As previously remarked, given a particular code
with minimum distance dmin, the number of errors it is capable of correcting, t = ⌊ dmin−1

2

⌋
, is

less than the number it is capable of detecting, l = dmin − 1. In terms of the most recent and
efficient coding techniques, like turbo and low-density parity check codes, it is necessary to
use relatively long block lengths in order to obtain efficient and powerful error correction, and
the complexity of the decoding operation is normally high.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 73

Probability p

10−8 10−7 10−6 10−5 10−4 10−3 10−2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

Efficiency

Infinite
memory
selective
repeat

Stop and wait,
td=10−2

Stop and
wait, td=1

Stop and wait,
td=10−1

Go-back N,
N=128, N=32 and
N=4

Figure 2.8 Efficiency relative to k/n for stop-and-wait, go-back-N and selective-repeat ARQ schemes,

with rb = 262, k = 262, n = 524; N = 4, 32 and 128 (go-back N); and for td = 10−2, 10−1 and 1 (stop

and wait)

On the other hand, ARQ systems have a coding rate that varies with the channel noise
conditions. In addition, even the detection of very few errors leads to a retransmission and
hence a loss of efficiency. In this sense, FEC systems maintain their code rate while cor-
recting small numbers of errors without needing retransmissions. However, there exists the
possibility of erroneous decoding if the number of errors exceeds the correction capability
of the code, and so the possibility of retransmission can lead to ARQ schemes being more
reliable.

Depending therefore on the state of the channel, one or other of the systems will be more
efficient. This suggests that where possible a combination of the two techniques might operate
more efficiently than either on its own. This combination of ARQ and FEC schemes is called
hybrid ARQ. Here the FEC is used to correct small numbers of errors, which also will normally
occur most often. Given that correction of only a small number of errors per word or packet is
intended, the corresponding code can be quite simple. The FEC attempts correction of a word,
and if the syndrome evaluated over the corrected word indicates that it is a valid codeword, then
it is accepted. If the syndrome indicates that errors are detected in the corrected word, then it
is highly likely that there were more errors in the received word than the FEC could correct,
and ARQ is used to ask for a retransmission.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

74 Essentials of Error-Control Coding

There are two forms of hybrid ARQ, called type 1 and type 2. Hybrid-ARQ type 1 is typically
based on a block code that is designed partly to correct a small number of errors and partly
to detect a large number of errors, as determined by the expression dmin ≥ l + λ + 1. So for
example a code with minimum distance dmin = 11 could be used to correct patterns of up to
λ = 3 errors, and also to detect any pattern of up to l = 7 errors. It should be remembered that
l > λ always applies in the above expression.

As will be seen in the following chapters, block codes can often be decoded by solving a
system of equations. Appropriate construction of the system of equations allows the number of
errors in correctable error patterns to be controlled, permitting correction of all patterns of up to
λ errors. The code can also have additional capability devoted to error detection. The decoder
therefore attempts to correct up to λ errors per block or packet, and recalculates the syndrome
vector of the decoded word. If the syndrome is equal to zero, the word is accepted, and if not,
a retransmission is requested. In general, compared to a purely ARQ scheme (non-hybrid), the
code rate Rc in a hybrid scheme will be less than that for a non-hybrid scheme. This reduces
the efficiency at low-error probabilities. However, at high-error probabilities the efficiency of
a non-hybrid scheme decreases more rapidly than that of a hybrid scheme as the error rate
increases.

Hybrid-ARQ-type 2 schemes generate an improvement in transmission efficiency by send-
ing parity bits for error correction only when they are needed. This technique involves two
kinds of codes, one a code C0(n, k) which has high rate and is used for error detection only,
and the other a 1/2-rate code C1(2k, k) which has the property that the information bits can
be obtained from the parity bits by a process of inversion, and for that reason it is called
an invertible code. In what follows, a codeword will be represented in its systematic form
as a vector where the parity bits are denoted as a function of the message (information)
bits:

c = (f (m0, m1, . . . , mk−1), m0, m1, . . . , mk−1) = (f (m), m)

The operation of the hybrid-ARQ-type 2 scheme can be seen in Figures 2.9 and 2.10. In these
figures the notation used is, for example, that c̃ = (

f̃ (m), m̃
)

is the received version (affected by
the channel and so possibly containing errors) of c = (f (m), m). Also, f (m) is the redundancy
obtained using code C0, while q(m) is that using C1. The hybrid-ARQ-type 2 scheme operates
by repeatedly iterating between the two alternatives described in the flow charts of Figures 2.9
and 2.10, respectively. In this iteration the transmission or retransmission is affected by sending
the codeword produced by code C0 from the message itself, m, or by sending the redundancy
(parity bits) of the codeword produced by code C1, q(m), respectively. The receiver stores the
received versions of the message (information bits) or the redundancy (parity bits), respectively,
depending on which alternative is being carried out. Having the message bits and the parity
bits generated by code C1, the decoder in the receiver can apply error correction. As the
redundancy and the message have the same number of bits, the retransmission does not lead to
a loss of efficiency over a system that always retransmits the message m while also permitting
an additional decoding process for more effective overall error control. The process continues
until the message bits are correctly decoded. For more details of hybrid-ARQ schemes, and
particularly of the invertible codes used in type 2, the reader is referred to the book by Lin and
Costello [4].

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

No

No

No

Calculation of codeword
c0 = (f (m),m)
using code C0

Message for
transmission m

Calculation of redundancy
q(m) using code C1,

stored but not transmitted

m is accepted

The transmitter sends
c0q = (f (q(m)),q(m))
using code C0

q (m) is accepted,
m is q −1(q(m))

q (m) and m estimate m
using code C1

m is accepted

Yes

Yes

Yes

Second iteration alternative

First iteration
alternative

m discarded, q (m) stored,
NAK sent

s1= syndrome (q(m), m) = 0?

sqq = syndrome (c0q) = 0?

s0 = syndrome (c0) = 0?

c0q = (f (q(m)),q(m))

c0 = (f (m),m)

 NAK sent and m
stored

Figure 2.9 First alternative of the hybrid-ARQ-type 2 iterative scheme

75

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

76 Essentials of Error-Control Coding

Yes

Yes

Calculation of codeword
c0 = (f (m),m)
using code C0

Message for
transmission m

Calculation of redundancy
q(m)
using code C1

m is accepted,
ACK sent

No

No

First iteration alternative

Second iteration
alternative

c0 = (f (m),m)

s0 = syndrome (c0) = 0
m is accepted,

q(m) is discarded

q(m) and m used to correct
errors with code C1

s1= syndrome (q(m),m) = 0

q(m) is discarded, m is
stored, NAK sent

Figure 2.10 Second alternative of the hybrid-ARQ-type 2 iterative scheme

Bibliography and References

[1] Shannon, C. E., “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27,
pp. 379–423, 623–656, July and October 1948.

[2] Shannon, C. E., “Communications in the presence of noise,”Proc. IEEE, vol. 86, no. 2,
pp. 447–458, February 1998.

[3] Carlson, B., Communication Systems. An Introduction to Signals and Noise in Electrical
Communication, 3rd Edition, McGraw-Hill, New York, 1986.

[4] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs, New Jersey, Ed. 1983 and 2004.

[5] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 77

[6] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

[7] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[8] Peterson, W. W. and Weldon, E. J., Jr., Error-Correcting Codes, 2nd Edition, MIY Press,

Cambridge, Massachusetts, 1972.
[9] Hillma, A. P. and Alexanderson, G. L., A First Undergraduate Course in Abstract Algebra,

2nd Edition, Wadsworth, Belmont, California, 1978.
[10] Allenby, R. B. J., Rings, Fields and Groups: An Introduction to Abstract Algebra, Edward

Arnold, London, 1983.
[11] Hamming, R. W., “Error detecting and error correcting codes,” Bell Syst. Tech. J., vol. 29,

pp. 147–160, April 1950.
[12] Proakis, J. G. and Salehi, M., Communication Systems Engineering, Prentice Hall,

Englewood Cliffs, New Jersey, 1993.
[13] Proakis, J. G., Digital Communications, 2nd Edition, McGraw-Hill, New York, 1989.
[14] McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, Massachusetts,

1977.
[15] Adámek, J., Foundations of Coding: Theory and Applications of Error-Correcting Codes

with an Introduction to Cryptography and Information Theory, Wiley Interscience, New
York, 1991.

[16] Slepian, D., “Group codes for the Gaussian channel,” Bell Syst. Tech. J., vol. 47, pp. 575–
602, 1968.

[17] Caire, G. and Biglieri, E., “Linear block codes over cyclic groups,” IEEE Trans. Inf.
Theory, vol. 41, no. 5, pp. 1246–1256, September 1995.

[18] Forney, G. D., Jr., “Coset codes–part I: Introduction and geometrical classification,”IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 1123–1151, September 1988.

�

Problems

2.1 For the triple repetition block code Cb(3, 1) generated by using the parity check
submatrix P = [1 1], construct the table of all the possible received vectors
and calculate the corresponding syndrome vectors S = r • HT to determine cor-
rectable and detectable error patterns, according to the error-correction capabil-
ity of the code.

2.2 The minimum Hamming distance of a block code is dmin = 11. Determine the
error-correction and error-detection capability of this code.

2.3 (a) Determine the minimum Hamming distance of a code of code length n that
should detect up to six errors and correct up to four errors per code vector,
in a transmission over a BSC. (b) If the same block code is used on a binary
erasure channel, how many erasures in a block can it detect, and how many can
it correct? (c) What is the minimum block length that a code with this minimum
Hamming distance can have?

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

78 Essentials of Error-Control Coding

2.4 A binary block code has code vectors in systematic form as given in Table P.2.1.

Table P.2.1 A block code table

0 0 0 0 0 0

0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 1 1 0

1 1 0 0 0 1

1 0 1 1 0 1

0 1 1 0 1 1

0 0 0 1 1 1

(a) What is the rate of the code?
(b) Write down the generator and parity check matrices of this code in systematic

form.
(c) What is the minimum Hamming distance of the code?
(d) How many errors can it correct, and how many can it detect?
(e) Compute the syndrome vector for the received vector r = (101011) and

hence find the location of any error.

2.5 (a) Construct a linear block code Cb(5, 2), maximizing its minimum Hamming
distance.

(b) Determine the generator and parity check matrices of this code.

2.6 A binary linear block code has the following generator matrix in systematic form:

G =
⎡⎣1 1 0 1 1 0 0 1 1 0 1 0 0

1 0 1 1 0 1 0 1 0 1 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 1

⎤⎦
(a) Find the parity check matrix H and hence write down the parity check equa-

tions.
(b) Find the minimum Hamming distance of the code.

2.7 The generator matrix of a binary linear block code is given below:

G =
[
1 1 0 0 1 1 1 0
0 0 1 1 1 1 0 1

]

(a) Write down the parity check equations of the code.
(b) Determine the code rate and minimum Hamming distance.
(c) If the error rate at the input of the decoder is 10−3, estimate the error rate at

the output of the decoder.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

Block Codes 79

2.8 The Hamming block code Cb(15, 11) has the following parity check submatrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) Construct the parity check matrix of the code.
(b) Construct the error pattern syndrome table.
(c) Apply syndrome decoding to the received vector r = (011111001011011).

2.9 A binary Hamming single-error-correcting code has length n = 10. What is
(a) the number of information digits k;
(b) the number of parity check digits n − k;
(c) the rate of the code;
(d) the parity check equation;
(e) the code vector if all the information digits are ‘1’s and
(f) the syndrome if an error occurs at the seventh digit of a code vector?

2.10 Random errors with probability p = 10−3 on a BSC are to be corrected by a
random-error-control block code with n = 15, k = 11 and dmin = 3. What is the
overall throughput rate and block error probability after decoding, when the code
is used
(a) in FEC mode and
(b) in retransmission error correction (ARQ) mode?

2.11 An FEC scheme operates on an AWGN channel and it should perform with a
bit error rate Pbe < 10−4, using the minimum transmitted power. Options for this
scheme are the block codes as given in Table P.2.2.

Table P.2.2 Options for Problem 2.11

n k dmin

31 26 3

31 21 5

31 16 7

(a) Determine the best option if minimum transmitted power is required.
(b) Calculate the coding gain at the desired Pbe with respect to uncoded trans-

mission.

OTE/SPH OTE/SPH
JWBK102-02 JWBK102-Farrell June 17, 2006 18:2 Char Count= 0

80 Essentials of Error-Control Coding

2.12 An ARQ scheme operates on an AWGN channel and it should perform with a
bit error rate Pbe < 10−5. Options for this scheme are the block codes as given
in Table P.2.3.
(a) Determine for each case the required value of r b/r .
(b) Determine for each case the required value of Eb/N0.

Table P.2.3 Options for Problem 2.12

n k dmin

12 11 2

15 11 3

16 11 4

2.13 Show that the generator matrix of a linear block error-correcting code can be
derived from the parity check equations of the code.

�

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

3
Cyclic Codes

Cyclic codes are an important class of linear block codes, characterized by the fact of being
easily implemented using sequential logic or shift registers.

3.1 Description

For a given vector of n components, c = (c0, c1, . . . , cn−1), a right-shift rotation of its compo-
nents generates a different vector. If this right-shift rotation is done i times, a cyclically rotated
version of the original vector is obtained as follows:

c(i) = (cn−i , cn−i+1, . . . , cn−1, c0, c1, . . . , cn−i−1)

A given linear block code is said to be cyclic if for each of its code vectors the i th cyclic
rotation is also a code vector of the same code [1–3]. Also, remember that being a linear block
code, the sum of any two code vectors of a cyclic code is also a code vector. As an example,
the linear block code Cb(7, 4) described in Chapter 2 is also a cyclic linear block code.

3.2 Polynomial Representation of Codewords

Codewords of a given cyclic code Ccyc(n, k) can be represented by polynomials. These poly-
nomials are defined over a Galois field GF(2m), being of particular interest those defined over
the binary field GF(2).

A polynomial is an expression in a variable X , constituted of terms of the form ci Xi , where
the coefficients ci belong to the field GF(2m) over which the polynomial is defined, and the
exponent i is an integer number that corresponds to the position of the coefficient or element in
a given code vector. A polynomial representation c(X) of a code vector c = (c0, c1, . . . , cn−1)
is then of the form

c(X) = c0 + c1 X + · · · + cn−1 Xn−1 ci ∈ GF(2m) (1)

Operations with polynomials defined over a given field are the same as usual, but following
the operation rules defined over that field. If cn−1 = 1, the polynomial is called monic. In

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

81

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

82 Essentials of Error-Control Coding

the case of polynomials defined over the binary field GF(2), the operations are addition and
multiplication modulo 2, described in the previous chapter. The addition of two polynomials
defined over GF(2), c1(X) and c2(X), is therefore the modulo-2 addition of the coefficients
corresponding to the same term Xi , that is, those with the same exponent (or at the same
position in the code vector). If

c1(X) = c01 + c11 X + · · · + cn−1,1 Xn−1

and

c2(X) = c02 + c12 X + · · · + cn−1,2 Xn−1 (2)

then the addition of these two polynomials is equal to

c1(X) ⊕ c2(X) = c01 ⊕ c02 + (c11 ⊕ c12) X + · · · + (
cn−1,1 ⊕ cn−1,2

)
Xn−1 (3)

In this case, the degree of the polynomial, which is the highest value of the exponent over
the variable X , is n − 1. However the addition of any two polynomials can also be calculated
using expression (3) even when the degrees of the polynomials are not the same.

The multiplication of two polynomials is done using multiplication and addition modulo 2.
The multiplication of polynomials c1(X) and c2(X), c1(X) • c2(X), is calculated as

c1(X) • c2(X) = c01 • c02 + (c01 • c12 ⊕ c02 • c11) X + · · · + (
cn−1,1 • cn−1,2

)
X2(n−1)

(4)

Operations in expressions (3) and (4) are all additions and multiplications modulo 2. Addition
and multiplication of polynomials obey the commutative, associative and distributive laws.

It is also possible to define division of polynomials. Let c1(X) and c2(X) be two polynomials
defined over the binary field, both of the form of equation (2), and where c2(X) �= 0, a non-zero
polynomial. The division operation between these two polynomials is defined by the existence
of two unique polynomials of the same binary field q(X) and r (X), called the quotient and the
remainder, respectively, which fit the following equation:

c1(X) = q(X) • c2(X) ⊕ r (X) (5)

Additional properties of polynomials defined over the Galois field GF(2m) can be found in
Appendix B.

In the following, and for notational simplicity, addition and multiplication will be denoted
by ‘+’ and ‘.’, instead of being denoted by the modulo-2 operation symbols ‘⊕’ and ‘•’.

The polynomial description defined over a given Galois field, and, in particular, when it is the
binary field, allows us a more suitable analysis of a cyclic code Ccyc(n, k). In this polynomial
representation, the variable X is used in its exponential form X j , where j identifies the position
of ‘1’s in the code vector equivalent to the polynomial. This is the same as saying that if the
term X j exists in the polynomial corresponding to a given code vector, there is a one ‘1’ in
position j of that code vector or codeword, while if it does not exist, this position is occupied by
a zero ‘0’. Therefore, the polynomial expression c(X) of a code vector c = (c0, c1, . . . , cn−1)
is of the form of equation (1)

c(X) = c0 + c1 X + · · · + cn−1 Xn−1

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 83

Thus, a polynomial for a code vector of n components is a polynomial of degree n − 1
or less. Codewords of a given cyclic code Ccyc(n, k) will be equivalently referred to as code
vectors or code polynomials.

3.3 Generator Polynomial of a Cyclic Code

The i-position right-shift rotation of a code vector c has the following polynomial expression:

c(i)(X) = cn−i + cn−i+1 X + · · · + cn−i−1 Xn−1 (6)

The relationship between the i-position right-shift rotated polynomial c(i)(X) and the original
code polynomial c(X) is of the form

Xi c(X) = q(X)(Xn + 1) + c(i)(X) (7)

The polynomial expression for the i-position right-shift rotated polynomial c(i)(X) of the
original code polynomial c(X) is then equal to

c(i)(X) = Xi c(X) mod (Xn + 1) (8)

Mod is the modulo operation defined now over polynomials; that is, it is calculated by taking
the remainder of the division of Xi c(X) and Xn + 1.

Among all the code polynomials of a given cyclic code Ccyc(n, k), there will be a certain
polynomial of minimum degree [1]. This polynomial will have minimum degree r , so that in
its polynomial expression the term of the form Xr will exist; that is, the coefficient cr will
be equal to ‘1’. Therefore, this polynomial will be of the form g(X) = g0 + g1 X + · · · + Xr .
If there is another polynomial with minimum degree, this polynomial would be of the form
g1(X) = g10 + g11 X + · · · + Xr . However, because the cyclic code Ccyc(n, k) is a linear block
code, the sum of these two code polynomials should belong to the code, and this sum will
end up being a polynomial of degree (r − 1), which contradicts the initial assumption that
the minimum possible degree is r . Therefore, the non-zero minimum-degree code polynomial
of a given cyclic code Ccyc(n, k) is unique. It is possible to demonstrate that in the non-zero
minimum-degree polynomial of a given cyclic code Ccyc(n, k), g0 = 1. Then, the expression
for such a non-zero minimum-degree polynomial of a given cyclic code Ccyc(n, k) is

g(X) = 1 + g1 X + · · · + gr−1 Xr−1 + Xr (9)

On the other hand, polynomials of the form Xg(X), X2g(X), . . . , Xn−r−1g(X) are all poly-
nomials of degree less than n, and so by using expression (7) to express Xi g(X), it can be seen
that division of each of these polynomials by the polynomial Xn + 1 will result in a quotient
equal to zero, q(X) = 0, which means that

Xg(X) = g(1)(X)
X2g(X) = g(2)(X)
...
X (n−r−1)g(X) = g(n−r−1)(X)

(10)

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

84 Essentials of Error-Control Coding

So these polynomials are right-shift rotations of the minimum-degree polynomial, and are also
code polynomials. Since a cyclic code Ccyc(n, k) is also a linear block code, linear combinations
of code polynomials are also code polynomials, and therefore

c(X) = m0g(X) + m1 Xg(X) + · · · + mn−r−1 Xn−r−1g(X)

c(X) = (
m0 + m1 X + · · · + mn−r−1 Xn−r−1

)
g(X) (11)

In expression (11), g(X) is the non-zero minimum-degree polynomial of the cyclic code
Ccyc(n, k), described in equation (9). Expression (11) determines that a code polynomial c(X)
is a multiple of the non-zero minimum-degree polynomial g(X). This property is very useful
for the encoding and decoding of a cyclic code Ccyc(n, k). Coefficients mi , i = 0, 1, 2, . . . ,

n − r − 1, in expression (11) are elements of GF(2); that is, they are equal to zero or one. Then
there will be 2n−r polynomials of degree n − 1 or less that are multiples of g(X). These are
all the possible linear combinations of the initial set of code polynomials so that they form a
cyclic code Ccyc(n, k). For a bijective assignment between the message and the coded vector
spaces, there should be 2k possible linear combinations. Therefore, 2n−r = 2k or r = n − k.
In other words, r , the degree of the non-zero minimum-degree polynomial, is also the number
of redundancy bits the code adds to the message vector.

The non-zero minimum-degree polynomial is then of the form

g(X) = 1 + g1 X + · · · + gn−k−1 Xn−k−1 + Xn−k (12)

Summarizing, in a linear cyclic code Ccyc(n, k), there is a unique non-zero minimum-degree
code polynomial, and any other code polynomial is a multiple of this polynomial.

The non-zero minimum-degree polynomial is of degree r , and any other code polynomial
of the linear cyclic code Ccyc(n, k) is of degree n − 1 or less, and so

c(X) = m(X)g(X) = (
m0 + m1 X + · · · + mk−1 Xk−1

)
g(X) (13)

where mi , i = 0, 1, 2, . . . , k − 1, are the bits of the message vector to be encoded. Since the
non-zero minimum-degree code polynomial completely determines and generates the linear
cyclic code Ccyc(n, k), it is called the generator polynomial.

Example 3.1: Determine the code vectors corresponding to the message vectors m0 =
(0000), m1 = (1000), m2 = (0100) and m3 = (1100) of the linear cyclic code Ccyc(7, 4) gen-
erated by the generator polynomial g(X) = 1 + X + X3.

The corresponding code vectors and code polynomials are listed in Table 3.1.

Table 3.1 Code polynomials of a linear cyclic code Ccyc(7, 4)

Message m Code vectors c Code polynomials c(X)

0000 0000000 0 = 0g(X)

1000 1101000 1 + X + X 3 = 1g(X)

0100 0110100 X + X 2 + X 4 = Xg(X)

1100 1011100 1 + X 2 + X 3 + X 4 = (1 + X)g(X)

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 85

There are two important relationships between the generator polynomial g(X) and the
polynomial Xn + 1. The first one is that if g(X) is a generator polynomial of a given linear
cyclic code Ccyc(n, k), then g(X) is a factor of Xn + 1.

The demonstration of this is as follows: If the generator polynomial of degree r is multiplied
by Xk , it converts into a polynomial of degree n, because n = k + r . By applying equation
(8), and dividing Xk g(X) by Xn + 1, the quotient q(X) is equal to one, because these are two
monic polynomials of the same degree. Thus

Xk g(X) = (Xn + 1) + g(k)(X) = (Xn + 1) + a(X)g(X)(
Xk + a(X)

)
g(X) = (Xn + 1) (14)

since g(k)(X) is a code polynomial as it is a kth right-shift rotation of g(X). Thus, g(X) is a
factor of Xn + 1.

The same can be stated in reverse; that is, if a polynomial of degree r = n − k is a factor of
Xn + 1, then this polynomial generates a linear cyclic code Ccyc(n, k).

Any polynomial factor of Xn + 1 can generate a linear cyclic code Ccyc(n, k).

3.4 Cyclic Codes in Systematic Form

So far, the encoding procedure for a linear cyclic code Ccyc(n, k) has been introduced as a
multiplication between the message polynomial m(X) and the generator polynomial g(X), and
this operation is sufficient to generate any code polynomial of the code. However, this encoding
procedure is essentially non-systematic. Given a polynomial that fits the conditions for being
the generator polynomial of a linear cyclic code Ccyc(n, k), and if the message polynomial is
of the form

m(X) = m0 + m1 X + · · · + mk−1 Xk−1 (15)

then the systematic version of the linear cyclic code Ccyc(n, k) can be obtained by performing
the following operations [1–3]:

The polynomial Xn−km(X) = m0 Xn−k + m1 Xn−k+1 + · · · + mk−1 Xn−1 is first formed, and
then divided by the generator polynomial g(X):

Xn−km(X) = q(X)g(X) + p(X) (16)

Here p(X) is the remainder polynomial of the division of equation (16), which has degree
n − k − 1 or less, since the degree of g(X) is n − k. By reordering equation (16), we obtain

Xn−km(X) + p(X) = q(X)g(X)

where it is seen that the polynomial Xn−km(X) + p(X) is a code polynomial because it is a
factor of g(X). In this polynomial, the term Xn−km(X) represents the message polynomial right-
shifted n − k positions, whereas p(X) is the remainder polynomial of this division and acts as
the redundancy polynomial, occupying the lower degree terms of the polynomial expression
in X . This procedure allows the code polynomial to adopt the systematic form

c(X) = Xn−km(X) + p(X)

= p0 + p1 X + · · · + pn−k−1 Xn−k−1 + m0 Xn−k + m1 Xn−k+1 + · · · + mk−1 Xn−1

(17)

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

86 Essentials of Error-Control Coding

that when expressed as a code vector is equal to

c = (p0, p1, . . . , pn−k−1, m0, m1, . . . , mk−1) (18)

Example 3.2: For the linear cyclic code Ccyc(7, 4) generated by the generator polynomial
g(X) = 1 + X + X3, determine the systematic form of the codeword corresponding to the
message vector m = (1010).

The message polynomial is m(X) = 1 + X2, and as n − k = 7 − 4 = 3, the polynomial
X3m(X) = X3 + X5 is calculated. The polynomial division is done as follows:

X5 + X3 | X3 + X + 1
X5 + X3 + X2 X2

− − − − − − −
X2 = p(X)

Then

c(X) = p(X) + X3m(X) = X2 + X3 + X5

and so

c = (0011010)

Table 3.2 shows the linear cyclic code Ccyc(7, 4) generated by the polynomial g(X) =
1 + X + X3, which is the same as that introduced in Chapter 2 as the linear block code Cb(7, 4).

Table 3.2 Linear cyclic code Ccyc(7, 4)

generated by the polynomial

g(X) = 1 + X + X 3

Message m Code vector c

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 0 0 0 1

0 0 1 0 1 1 1 0 0 1 0

0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 1 0 0 0 1 1 0

0 1 1 1 0 0 1 0 1 1 1

1 0 0 0 1 1 0 1 0 0 0

1 0 0 1 0 1 1 1 0 0 1

1 0 1 0 0 0 1 1 0 1 0

1 0 1 1 1 0 0 1 0 1 1

1 1 0 0 1 0 1 1 1 0 0

1 1 0 1 0 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 87

3.5 Generator Matrix of a Cyclic Code

As seen in previous sections, a linear cyclic code Ccyc(n, k) generated by the generator polyno-
mial g(X) = 1 + g1 X + · · · + gn−k−1 Xn−k−1 + Xn−k is spanned by the k code polynomials,
g(X), Xg(X), . . . , Xn−k g(X), which can be represented as row vectors of a generator matrix
of dimension k × n:

G =

⎡⎢⎢⎢⎢⎣
g0 g1 g2 · · · gn−k 0 0 · · · 0

0 g0 g1 · · · gn−k−1 gn−k 0 · · · 0

...
...

...
...

...

0 0 · · · g0 g1 g2 · · · gn−k

⎤⎥⎥⎥⎥⎦ (19)

where g0 = gn−k = 1.

This generator matrix is not of systematic form. In general, and by operating over the rows
of this matrix, a systematic form generator matrix can be obtained.

Example 3.3: For the linear cyclic code Ccyc(7, 4) generated by the polynomial g(X) =
1 + X + X3, determine the corresponding generator matrix and then convert it into a systematic
generator matrix.

In this case the matrix is of the form

G =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦
Linear row operations over this matrix can be carried out to obtain a systematic form of the

generator matrix. These row operations are additions and multiplications in the binary field
GF(2). Thus, and by replacing the third row by the addition of the first and third rows, the
matrix becomes

G ′ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦
And replacing the fourth row by the addition of the first, second and fourth rows, the matrix
becomes

G
′′ =

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤⎥⎥⎦
This last modified matrix G

′′
generates the same code as that of the generator matrix G, but the

assignment between the message and the code vector spaces is different in each case. Observe
that the modified and systematic generator matrix G

′′
is the same as that of the linear block

code Cb(7, 4) introduced in Chapter 2.

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

88 Essentials of Error-Control Coding

Summarizing, the systematic form of a linear cyclic code Ccyc(n, k) and its corresponding
expressions are obtained by calculating the following:

The polynomial Xn−k+i , i = 0, 1, 2, . . . , k − 1, is divided by the generator polynomial
g(X):

Xn−k+i = qi (X)g(X) + pi (X) (20)

where pi (X) is the remainder of the division and

pi (X) = pi0 + pi1 X + · · · + pi,n−k−1 Xn−k−1 (21)

Since Xn−k+i + pi (X) = qi (X)g(X) is multiple of g(X), it is a code polynomial. Its coeffi-
cients can be ordered into a matrix

G =

⎡⎢⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1 1 0 0 · · · 0

p10 p11 · · · p1,n−k−1 0 1 0 · · · 0

...
... · · · ...

...
...

... · · · ...

pk−1,0 pk−1,1 · · · pk−1,n−k−1 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎦ (22)

This matrix is a generator matrix for the linear cyclic code Ccyc(n, k) in systematic form.
Similarly, the corresponding parity check matrix H can also be found as follows:

H =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0 0 p00 p10 · · · pk−1,0

0 1 · · · 0 0 p01 p11 · · · pk−1,1

...
...

...
...

...
...

...

0 0 · · · 0 1 p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎥⎦ (23)

Example 3.4: The polynomial X7 + 1 can be factorized as follows:

X7 + 1 = (1 + X)(1 + X + X3)(1 + X2 + X3)

Since n = 7, both the polynomials g2(X) = 1 + X + X3 and g3(X) = 1 + X2 + X3, which
are of degree r = n − k = 3, generate cyclic codes Ccyc(7, 4). In the same way, the polynomial
g4(X) = (1 + X)(1 + X + X3) = 1 + X2 + X3 + X4 generates a cyclic code Ccyc(7, 3).

The decomposition into factors of X7 + 1 is unique, and is of the form seen above, so that
the different cyclic codes of length n = 7 can be identified and generated.

The cyclic code generated by the polynomial g1(X) = 1 + X is a linear block code of even
parity. This is because its generator matrix is of the form

G1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 89

which can be converted by Gaussian elimination (the general form of the process introduced
in Example 3.3) into a matrix of systematic form

G ′
1 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
where it is seen that the sum of any number of rows results in a codeword with an even number
of ‘1’s.

The generator polynomial g2(X) = 1 + X + X3 corresponds to a cyclic Hamming code,
as introduced in Example 3.2. The generator polynomial g3(X) = 1 + X2 + X3 is also the
generator polynomial of a cyclic Hamming code whose generator matrix in systematic form
is equal to

G ′
3 =

⎡⎢⎢⎣
1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

⎤⎥⎥⎦
In this generator matrix, the submatrix P has at least two ‘1’s in each row, which makes it a
generator matrix of a Hamming code Cb(7, 4).

Both the generator polynomials g4(X) = (1 + X)(1 + X + X3) = 1 + X2 + X3 + X4 and
g5(X) = (1 + X)(1 + X2 + X3) = 1 + X + X2 + X4 generate cyclic codes Ccyc(7, 3).

Finally, the generator polynomial g6(X) = (1 + X + X3)(1 + X2 + X3) = 1 + X + X2 +
X3 + X4 + X5 + X6 corresponds to a repetition code Ccyc(7, 1) with a generator matrix of
the form

G7 = [
1 1 1 1 1 1 1

]
3.6 Syndrome Calculation and Error Detection

As defined in Chapter 2 for block codes, the received vector, which is the transmitted vector
containing possible errors, is r = (r0, r1, . . . , rn−1). This is a vector with elements of the
Galois field GF(2), which can also have a polynomial representation

r (X) = r0 + r1 X + r2 X2 + · · · + rn−1 Xn−1 (24)

Dividing this polynomial by g(X) gives

r (X) = q(X)g(X) + S(X) (25)

where the remainder of this division is a polynomial of degree n − k − 1 or less. Since a
code polynomial is a multiple of g(X), then if the remainder of the division (25) is zero, the
received polynomial is a code polynomial. If the division (25) has a non-zero polynomial as
the remainder, then the procedure detects a polynomial that does not belong to the code. The

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

90 Essentials of Error-Control Coding

syndrome vector is again a vector of n − k components that are at the same time the coefficients
of the polynomial S(X) = s0 + s1 X + · · · + sn−k−1 Xn−k−1.

The following theorem can be stated for the syndrome polynomial:

Theorem 3.1: If the received polynomial r (X) = r0 + r1 X + r2 X2 + · · · + rn−1 Xn−1 gener-
ates the syndrome polynomial S(X), then a cyclic shift (rotation) of the received polynomial
r (1)(X) generates the syndrome polynomial S(1)(X).

From equation (7),

Xr (X) = rn−1(Xn + 1) + r (1)(X) (26)

or

r (1)(X) = rn−1(Xn + 1) + Xr (X) (27)

If this expression is divided by g(X),

f (X)g(X) + t(X) = rn−1g(X)h(X) + X [q(X)g(X) + S(X)] (28)

where t(X) is the syndrome polynomial of r (1)(X). Reordering this equation, we get

X S(X) = [f (X) + rn−1h(X) + Xq(X)] g(X) + t(X) (29)

which means that t(X) is the remainder of the division of XS(X) by g(X), and so t(X) =
S(1)(X). This procedure can be extended by induction in order to determine that S(i)(X) is the
syndrome polynomial of r (i)(X).

As in the case of any block code, if c(X) = c0 + c1 X + · · · + cn−1 Xn−1 is a code polynomial
and e(X) = e0 + e1 X + · · · + en−1 Xn−1 is the error pattern in polynomial form, then

r (X) = c(X) + e(X) = q(X)g(X) + S(X) (30)

and

e(X) = c(X) + q(X)g(X) + S(X)

= f (X)g(X) + q(X)g(X) + S(X) (31)

= [f (X) + q(X)] g(X) + S(X)

If the received polynomial r (X) is divided by the generator polynomial g(X), the remainder
obtained by this operation is the corresponding syndrome polynomial S(X).

3.7 Decoding of Cyclic Codes

The decoding of cyclic codes can be implemented in the same way as for block codes. A
table S → e identifying the relationship between the syndromes and the error patterns can be
constructed first, and then the syndrome polynomial is evaluated for the received polynomial
r (X) by dividing this polynomial by the generator polynomial g(X) to obtain the syndrome
polynomial. The constructed table allows us to identify the error pattern that corresponds to

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 91

Table 3.3 Single error patterns and their syndromes for the cyclic linear block code Ccyc(7, 4)

Error patterns (polynomial form) Syndrome polynomials Vector Form

e6(X) = X 6 S(X) = 1 + X 2 101

e5(X) = X 5 S(X) = 1 + X + X 2 111

e4(X) = X 4 S(X) = X + X 2 011

e3(X) = X 3 S(X) = 1 + X 110

e2(X) = X 2 S(X) = X 2 001

e1(X) = X 1 S(X) = X 010

e6(X) = X 0 S(X) = 1 100

the calculated syndrome, according to equation (31). The following is an example based on
the cyclic code Ccyc(7, 4).

Example 3.5: The cyclic linear block code Ccyc(7, 4) generated by the polynomial g(X) =
1 + X + X3, which has a minimum Hamming distance dmin = 3, can correct any single error
pattern. There are seven patterns of this kind. Table 3.3 shows single error patterns and their
corresponding syndromes for this cyclic linear block code. The all-zero pattern corresponds
to the decoding of a code polynomial (i.e., the no-error case).

As in the block code case, once the syndrome has been calculated and the corresponding
error pattern found from the table, then the error-correction procedure is to add the error
pattern to the received vector. Of course, if an error-pattern polynomial has the form of a code
polynomial, then it will be undetectable and therefore uncorrectable, as both the syndrome and
the error pattern will be null vectors.

Theorem 3.1 is the basis of several other decoding algorithms for cyclic codes [1]. One
of them is the Meggitt algorithm [5]. This decoder is based on the relationship between the
cyclically shifted versions of a given codeword and their corresponding shifts in the received
vector. It operates in a bit-by-bit mode, so that it first determines if the most significant bit
contains an error or not, and then cyclically shifts the received vector and the correspond-
ing syndrome in order to analyse the following bits of the received vector. The algorithm
decides whether the most significant bit contains an error, or not, by determining if the syn-
drome evaluated over the received polynomial corresponds to a syndrome for the error pattern
with an error in the most significant bit. If this is the case, the algorithm changes that bit,
and then accordingly modifies the corresponding syndrome. By continuing to cyclically shift
the modified received vector and syndrome, errors will be corrected as they are shifted into
the most significant position. The algorithm accepts the received vector or polynomial as a
code vector or polynomial if at the end of all the modifications the final version of the syndrome
polynomial is the zero polynomial. Since the decoder operates only on the most significant
bit, it is necessary to store only the syndromes corresponding to errors in that bit (as well as in
other bits if correcting multiple errors), thus reducing the size of the table S → e.

As a result of this interesting property, which allows the cyclic decoding to be performed in
a bit-by-bit mode, and with cyclic shifts of the received vector, cyclic codes are particularly
useful for the correction of burst errors, either clustered within a given code vector or affecting

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

92 Essentials of Error-Control Coding

the first and the final parts of a code vector. In this case the error pattern is of the form
e(X) = X j B(X), where 0 ≤ j ≤ n − 1, and B(X) is a polynomial of degree equal to or less
than n − k − 1, which will not contain g(X) as a factor.

A modification of the Meggitt decoder is the error-trapping decoder. This algorithm is
particularly efficient in the correction of single error patterns, double error patterns in some
codes and burst errors. Its efficiency falls for other error patterns. The error-trapping decoder
can be applied to error patterns with certain properties, such as a sequence of n − k bits or
less placed the most significant positions of the received vector. In this case it is possible to
show that the error polynomial e(X) is equal to Xk S(n−k)(X), where S(n−k)(X) is the syndrome
polynomial of the received polynomial r (X) shifted by n − k positions. This property makes
easier the correction of such an error pattern, because it is necessary to calculate only S(n−k)(X)
and then add Xk S(n−k)(X) to r (X) . In the same way, it is possible to perform the decoding
of error patterns of size n − k or less even when they do not occur in the most significant
positions of the code vector, hence the name of the error-trapping algorithm. It can be shown
that, for a given cyclic code, capable of correcting error patterns of t random errors or less,
error-trapping happens if the weight of the syndrome vector is less than or equal to t . Details
of this algorithm can be found in [1].

3.8 An Application Example: Cyclic Redundancy Check Code
for the Ethernet Standard

One of the most interesting applications of cyclic codes is the cyclic redundancy check (CRC)
code utilized in the Ethernet protocol. The redundancy calculated by the systematic procedure
of cyclic coding is placed in the so-called frame check sequence (FCS) field, which follows
the data block in the data frame of that protocol. The cyclic code used in this case is a cyclic
code that adds 32 redundancy bits, and its corresponding polynomial generator is

g(X) = X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

One interesting property of cyclic block codes is that the number of parity check bits the
code adds to the message vector is equal to the degree of the generator polynomial. Thus,
and independently of the size of the data packet to be transmitted, the CRC for the standard
Ethernet, for instance, always adds 32 bits of redundancy.

In the case of the standard protocol Ethernet, the data packet size varies from k = 512
to k = 12,144 bits. The k information bits are the first part of the whole message, and are
considered as a polynomial m(X), which is followed by the n − k = 32 redundancy bits that
result from the division of the shifted message polynomial Xn−km(X) by g(X). The receiver
does the same operation on the message bits, so that if the redundancy calculated at the
receiver is equal to the redundancy sent in the FCS, then the packet is accepted as a valid one.
A retransmission of the packet is required if the recalculated redundancy is different from the
contents of the FCS.

Consider a simple example of this procedure, using the cyclic block code Ccyc(7, 4) in-
troduced in Example 3.3. Assume that the message m = (1010) has to be transmitted. After
encoding this message, the resulting code vector is c = (0011010), where the redundancy is in
bold. One way of performing the decoding of this code vector is to recalculate at the receiver
the redundancy obtained by encoding the message vector m = (1010), and by verifying that

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 93

Table 3.4 Minimum Hamming distance for different packet

configurations in the standard protocol Ethernet

Code length n Minimum Hamming distance dmin

3007–12,144 4

301–3006 5

204–300 6

124–203 7

90–123 8

this redundancy is equal to (001). An equivalent decoding method consists of evaluating the
syndrome vector over the whole code vector c = (0011010), in order to verify if this syndrome
vector is the all- zero vector. In the case of the Ethernet protocol, the decoding is performed
as in the former case.

The code length can be variable in the Ethernet protocol, as we have seen. This makes the
error-detection capability also variable with the code length. In [6] the values of the minimum
Hamming distance as a function of the code length are presented, in the case of the standard
Ethernet protocol. Table 3.4 determines the minimum Hamming distance as a function of the
code length.

This means that, depending on the packet length, three to seven random errors will always
be detectable, as well as certain patterns of much larger numbers of random errors and many
burst error patterns (in fact, any error pattern which is not a codeword).

Bibliography and References

[1] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[2] Carlson, B., Communication Systems: An Introduction to Signals and Noise in Electrical
Communication, 3rd Edition, McGraw-Hill, New York, 1986.

[3] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

[4] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[5] Meggitt, J. E., “Error correcting codes and their implementation,” IRE Trans. Inf. Theory,

vol. IT-7, pp. 232–244, October 1961.
[6] Adámek, J., Foundations of Coding: Theory and Applications of Error-Correcting Codes

with an Introduction to Cryptography and Information Theory, Wiley Interscience, New
York, 1991.

[7] Peterson, W. W. and Wledon, E. J., Jr., Error-Correcting Codes, 2nd Edition, MIY Press,
Cambridge, Massachusetts, 1972.

[8] McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, Massachusetts,
1977.

[9] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, The Netherlands, 1977.

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

94 Essentials of Error-Control Coding

[10] Baldini, R., Coded Modulation Based on Ring of Integers, PhD Thesis, University of
Manchester, Manchester, 1992.

[11] Baldini, R. and Farrell, P. G., “Coded modulation based on rings of integers modulo-q.
Part 1: Block codes,” IEE Proc. Commun., vol. 141, no. 3, pp.129–136, June 1994.

[12] Piret, P., “Algebraic construction of cyclic codes over Z with a good Euclidean minimum
distance,” IEEE Trans. Inf. Theory, vol. 41, no. 3, May 1995.

[13] Hillma, A. P. and Alexanderson, G. L., A First Undergraduate Course in Abstract Algebra,
2nd Edition, Wadsworth, Belmont, California, 1978.

[14] Allenby, R. B. J., Rings, Fields and Groups: An Introduction to Abstract Algebra, Edward
Arnold, London, 1983.

�

Problems

3.1 Determine if the polynomial 1 + X + X 3 + X 4 is a generator polynomial of a
binary linear cyclic block code with code length n ≤ 7.

3.2 Verify that the generator polynomial g(X) = 1 + X + X 2 + X 3 generates a binary
cyclic code Ccyc(8, 5) and determine the code polynomial for the message vector
m = (10101) in systematic form.

3.3 A binary linear cyclic code Ccyc(n, k) has code length n = 7 and generator poly-
nomial g(X) = 1 + X 2 + X 3 + X 4.
(a) Find the code rate, the generator and parity check matrices of the code in

systematic form, and its Hamming distance.
(b) If all the information symbols are ‘1’s, what is the corresponding code vector?
(c) Find the syndrome corresponding to an error in the first information symbol,

and show that the code is capable of correcting this error.

3.4 Define what is meant by a cyclic error-control code.

3.5 A binary linear cyclic block code Ccyc(n, k) has code length n = 14 and generator
polynomial g(X) = 1 + X 3 + X 4 + X 5.
(a) If all the information symbols are ‘1’s, what is the corresponding code vector?
(b) Find the syndrome corresponding to an error in the last information symbol.

Is this code capable of correcting this error?
(c) Can cyclic codes be non-linear?

3.6 (a) Determine the table of code vectors of the binary linear cyclic block code
Ccyc(6, 2) generated by the polynomial g(X) = 1 + X + X 3 + X 4.

(b) Calculate the minimum Hamming distance of the code, and its error-
correction capability.

OTE/SPH OTE/SPH
JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

Cyclic Codes 95

3.7 A binary linear cyclic block code with a code length of n = 14 has the generator
polynomial g(X) = 1 + X 2 + X 6.
(a) Determine the number of information and parity check bits in each code

vector.
(b) Determine the number of code vectors in the code.
(c) Determine the generator and parity check matrices of the code.
(d) Determine the minimum Hamming distance of the code.
(e) Determine the burst error-correction capability of the code.
(f) Describe briefly how to encode and decode this code.

3.8 For a given binary linear cyclic block code Ccyc(15, 11) generated by the poly-
nomial g(X) = 1 + X + X 4,
(a) determine the code vector in systematic form of the message vector m =

(11001101011) and
(b) decode the received vector r = (000010001101011).

�

OTE/SPH OTE/SPH

JWBK102-03 JWBK102-Farrell June 19, 2006 18:5 Char Count= 0

96

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

4
BCH Codes

BCH (Bose, Chaudhuri [1], Hocquenghem [2]) codes are a class of linear and cyclic block
codes that can be considered as a generalization of the Hamming codes, as they can be designed
for any value of the error-correction capability t . These codes are defined in the binary field
GF(2), and also in their non-binary version, over the Galois field GF(q). Included in this latter
case is the most relevant family of non-binary codes, which is the family of Reed–Solomon
codes [3], to be presented in Chapter 5.

4.1 Introduction: The Minimal Polynomial

As seen in the previous chapter, cyclic codes are linear block codes with the special property that
cyclically shifted versions of code vectors are also code vectors. As a special case introduced
as an example of a linear block code, the Hamming code Ccyc(7, 4) has also been shown to be
a cyclic code generated by the generator polynomial g(X) = 1 + X + X3.

Cyclic codes have the property that the code vectors are generated by multiplying the
message polynomial m(X) by the generator polynomial g(X). In fact, in the non-systematic
form the message polynomial m(X) is multiplied by the generator polynomial g(X), and in
the systematic form there is an equivalent polynomial q(X) that is multiplied by the generator
polynomial g(X). Being a polynomial, g(X) has to have roots that are in number equal to its
degree. A generator polynomial with coefficients over GF(2) need not have all of its roots
belonging to this field, as some of the roots can be elements of the extended field GF(2m). This
concept is described and clarified in Appendix B, in which an example of the extended field
GF(23) = GF(8) is introduced.

As an example, the Hamming code Ccyc(7, 4) introduced in Chapters 2 and 3 is analysed
here, in order to see which are the roots of its generator polynomial g(X) = g1(X). Since any
code vector is generated by multiplying a given message vector by this generator polynomial,
any code vector, seen as a code polynomial, will have at least the same roots as this generator
polynomial, g(X) = g1(X). This allows us to construct a system of syndrome equations, as
the roots of the code polynomials are known. Taking into account the example in Table B.3
of Appendix B, for the case of the extended Galois field GF(8), it is seen that α, which is a
primitive element of that field, is also a root of the primitive polynomial p(X) = 1 + X + X3,

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

97

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

98 Essentials of Error-Control Coding

which should not be confused with the generator polynomial of the code under analysis, g1(X).
However, in this particular case, they are the same. Therefore it is possible to say that α is a
root of g1(X) because, from Table B.3,

g1(α) = 1 + α + α3 = 1 + α + 1 + α = 0

If α is a root of g1(X), then it is also a root of any code polynomial g1(X) of the Hamming
code Ccyc(7, 4), and this allows us to state a first syndrome equation s1 = r (α). As the degree
of the generator polynomial is 3, there are still two other roots to be found for this polynomial.
By substituting the element α2 of the extended field GF(8), it is found that

g1(α2) = 1 + α2 + α6 = 1 + α2 + 1 + α2 = 0

This verifies that α2 is a root of the generator polynomial g1(X) of the Hamming code
Ccyc(7, 4), and so it is also a root of any code polynomial of this code, allowing us to form a
second syndrome equation s2 = r (α2). By substituting all the elements of the extended field,
it is possible to identify that α4 is the third root of the generator polynomial g1(X) of the Ham-
ming code Ccyc(7, 4), and also to state that 1, α3, α5 and α6 are not roots of that polynomial.
Since α, α2 and α4 are roots of the polynomial g1(X),

g1(X) = (X + α)(X + α2)(X + α4)

= X3 + (α + α2 + α4)X2 + (α3 + α5 + α6)X + 1

= X3 + X + 1

By substituting in the expression for a received polynomial the roots α and α2, for instance,
it is possible to find a system of two equations that allows the solution of two unknowns, which
are the position and the value of a single error in that polynomial.

In order to correct an error pattern containing two errors, for instance, it would be necessary
to have a system of at least four equations, to solve for the positions and values of the two
errors. This would be the case of a linear block code able to correct error patterns of size t = 2.
In the case of the Hamming code Ccyc(7, 4), there is just one additional root, α4, associated
with the additional equation s4 = r (α4), making only three in all. This is not enough to allow the
construction of a set of four equations, the minimal requirement for correcting error patterns of
size t = 2. This is in agreement with the fact that this Hamming code Ccyc(7, 4), characterized
by a minimum Hamming distance dmin = 3, can correct only error patterns of size t = 1.

The other elements of the extended field GF(8), α3, α5 and α6, which were found not to be
roots of the generator polynomial g1(X) of the Hamming code Ccyc(7, 4), can however be the
roots of another polynomial, and thus

g2(X) = (X + α3)(X + α5)(X + α6)

= X3 + (α3 + α5 + α6)X2 + (α + α2 + α4)X + 1

= X3 + X2 + 1

This polynomial also generates a linear cyclic block code Ccyc(7, 4), as seen in Example 3.4 in
Chapter 3, because this polynomial is a factor of X7 + 1. In fact both polynomials g1(X) and
g2(X) are factors of X7 + 1, and the remaining polynomial that gives the whole factorization

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 99

of X7 + 1 is g3(X) = X + 1, whose unique root is the element 1 of the extended field GF(8).
In this way, all the non-zero elements of the extended field GF(8) are roots of X7 + 1.

The polynomial g1(X) = �1(X) is called the minimal polynomial of the elements α, α2

and α4, and it is essentially a polynomial for which these elements are roots [4]. In the same
way, g2(X) = �2(X) is called the minimal polynomial of the elements α3, α5 and α6, and
g3(X) = �3(X) is the minimal polynomial of the element 1.

Since, for instance, the Hamming code Ccyc(7, 4) has a generator polynomial with just three
roots, and is not able to guarantee the correction of any error pattern of size t = 2, it would be
possible to add the missing root, α3, by forming a generator polynomial as the multiplication of
g1(X) = �1(X) and g2(X) = �2(X). However, it could be more appropriate to take the lowest
common multiple (LCM) of these two polynomials, in order to avoid multiple roots, which
will only add redundancy without improving the error-correction capability of the code. Note
that the degree of the generator polynomial is the level of redundancy added by the coding
technique. Therefore, in this particular case, the minimum common multiple of g1(X) = �1(X)
and g2(X) = �2(X) will form a generator polynomial with roots α, α2, α3, α4, α5 and α6,
so that α5 and α6 are also added automatically. Then the resulting generator polynomial is of
the form

g4(X) = �1(X)�2(X)

= (X3 + X + 1)(X3 + X2 + 1)

= X6 + X5 + X4 + X3 + X2 + X + 1

which is, as has been seen in Chapter 3, Example 3.4, the generator polynomial of a cyclic
repetition code with n = 7, Ccyc(7, 1), whose minimum Hamming distance is dmin = 7, able
to correct any error pattern of size t = 3 or less. This is in agreement with the fact that, in this
case, there is a system of six equations that allows us to determine the positions and values
of up to three errors in a given codeword, as a consequence of its generator polynomial g4(X)
having as roots the elements α, α2, α3, α4, α5 and α6.

This introduction leads to a more formal definition of a BCH code.

4.2 Description of BCH Cyclic Codes

As said in the above sections, BCH codes are a generalization of Hamming codes, and they
can be designed to be able to correct any error pattern of size t or less [1, 2, 4]. In this sense
the generalization of the Hamming codes extends the design of codes for t = 1 (Hamming
codes) to codes for any desired higher value of t (BCH codes). The design method is based on
taking an LCM of appropriate minimal polynomials, as described in the previous section for
a particular example.

For any positive integer m ≥ 3 and t < 2m−1, there exists a binary BCH code CBCH(n, k)
with the following properties:

Code length n = 2m − 1
Number of parity bits n − k ≤ mt
Minimum Hamming distance dmin ≥ 2t + 1
Error-correction capability t errors in a code vector

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

100 Essentials of Error-Control Coding

These codes are able to correct any error pattern of size t or less, in a code vector of length
n, n = 2m − 1.

The generator polynomial of a BCH code is described in terms of its roots, taken from the
Galois field GF(2m). If α is a primitive element in GF(2m), the generator polynomial g(X) of a
BCH code for correcting t errors in a code vector of length n = 2m − 1 is the minimum-degree
polynomial over GF(2) that has α, α2, . . . , α2t as its roots:

g(αi) = 0, i = 1, 2, . . . , 2t (1)

It also true that g(X) has αi and its conjugate as its roots (see Appendix B). On the other
hand, if �i (X) is the minimal polynomial of αi then the LCM of �1(X), �2(X), . . . , �2t (X)
is the generator polynomial g(X):

g(X) = LCM {�1(X), �2(X), . . . , �2t (X)} (2)

However, and due to repetition of conjugate roots, it can be shown that the generator poly-
nomial g(X) can be formed with only the odd index minimal polynomials [4]:

g(X) = LCM {�1(X), �3(X), . . . , �2t−1(X)} (3)

Since the degree of each minimal polynomial is m or less, the degree of g(X) is at most mt .
As BCH codes are cyclic codes, this means that the value of n − k can be at most mt .

The Hamming codes are a particular class of BCH codes, for which the generator polynomial
is g(X) = �1(X). A BCH code for t = 1 is then a Hamming code. Since α is a primitive element
of GF(2m), then �1(X) is a polynomial of degree m.

Example 4.1: Let α be a primitive element of GF(24), as seen in Table B.4 of the Appendix B,
then 1 + α + α4 = 0. From Table B.5 (Appendix B), the minimal polynomials of α, α3 and
α5 are, respectively,

�1(X) = 1 + X + X4

�3(X) = 1 + X + X2 + X3 + X4

�5(X) = 1 + X + X2

A BCH code for correcting error patterns of size t = 2 or less, and with block length
n = 24 − 1 = 15, will have the generator polynomial

g(X) = LCM {�1(X), �3(X)}
Since �1(X) and �3(X) are two irreducible and distinct polynomials,

g(X) = �1(X)�3(X)

= (1 + X + X4)(1 + X + X2 + X3 + X4)

= 1 + X4 + X6 + X7 + X8

This is the BCH code CBCH(15, 7) with minimum Hamming distance dmin ≥ 5. Since the
generator polynomial is of weight 5, the minimum Hamming distance of the BCH code which
this polynomial generates is dmin = 5.

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 101

In order to increase the error-correction capability to any error pattern of size t = 3 or less,
the corresponding binary BCH code is CBCH(15, 5) with minimum distance dmin ≥ 7, which
can be constructed using the generator polynomial

g(X) = �1(X)�3(X)�5(X)

= (1 + X + X4)(1 + X + X2 + X3 + X4)(1 + X + X2)

= 1 + X + X2 + X4 + X5 + X8 + X10

This generator polynomial is of weight 7, and so it generates a BCH code of minimum Hamming
distance dmin = 7.

As a result of the definition of a linear binary block BCH code CBCH(n, k) for correcting
error patterns of size t or less, and with code length n = 2m − 1, it is possible to affirm that
any code polynomial of such a code will have α, α2, . . . , α2t and their conjugates as its
roots. This is so because any code polynomial is a multiple of the corresponding generator
polynomial g(X), and also of all the minimal polynomials �1(X), �2(X), . . . , �2t (X). Any
code polynomial c(X) = c0 + c1 X + . . . + cn−1 Xn−1 of CBCH(n, k) has primitive element αi

as a root:

c(αi) = c0 + c1α
i + · · · + cn−1α

i(n−1) = 0 (4)

In matrix form,

(c0, c1, . . . , cn−1) ◦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

αi

α2i

...

α(n−1)i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (5)

The inner product of the code vector (c0, c1, . . . , cn−1) and the vector of roots
(
1, αi ,

α2i , . . . , α(n−1)i
)

is equal to zero. The following matrix can then be formed:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 α3 · · · αn−1

1 α2 (α2)2 (α2)3 · · · (α2)n−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

...
...

...
...

...

1 α2t (α2t)2 (α2t)3 · · · (α2t)n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

If c is a code vector, it should be true that

c ◦ H T = 0 (7)

From this point of view, the linear binary block BCH code CBCH(n, k) is the dual row space of
the matrix H, and this matrix is in turn its parity check matrix. If for some i and some j , α j is the
conjugate of αi , then c(α j) = 0. This means that the inner product of c = (c0, c1, . . . , cn−1)

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

102 Essentials of Error-Control Coding

with the i th row of H is zero, so that these rows can be omitted in the construction of the
matrix H, which then adopts the form

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 α3 · · · αn−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

1 α5 (α5)2 (α5)3 · · · (α5)n−1

...
...

...
...

...

1 α2t−1 (α2t−1)2 (α2t−1)3 · · · (α2t−1)n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Each element of the matrix H is an element of GF(2m), which can be represented as an
m-component vector taken over GF(2), arranged as a column, which allows us to construct the
same matrix in binary form.

Example 4.2: For the binary BCH code CBCH(15, 7) of length n = 24 − 1 = 15, able to
correct any error pattern of size t = 2 or less, and α being a primitive element of GF(24), the
parity check matrix H is of the form

H =
[

1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α3 α6 α9 α12 α0 α3 α6 α9 α12 α0 α3 α6 α9 α12

]

which can be described in binary form by making use of Table B.4 of Appendix B:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

· · ·
1

· · ·
0

· · ·
0

· · ·
0

· · ·
1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2.1 Bounds on the Error-Correction Capability of a BCH Code:
The Vandermonde Determinant

It can be shown that a given BCH code must have minimum distance dmin ≥ 2t + 1, so that
its corresponding parity check matrix H has 2t + 1 columns that sum to the zero vector. BCH
codes are linear block codes, and so the minimum distance is defined by the non-zero code
vector of minimum weight. Should there exist a non-zero code vector of weight pH ≤ 2t , with

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 103

non-zero elements c j1, c j2, . . . , cjp
H

, then

(c j1, c j2, . . . , cjpH
) ◦

⎡⎢⎢⎢⎢⎣
α j1 (α2) j1 · · · (α2t) j1

α j2 (α2) j2 (α2t) j2

...
...

...

αjpH (α2)jpH · · · (α2t)jpH

⎤⎥⎥⎥⎥⎦ = 0 (9)

By making use of
(
α2t

)ji = (
αji

)2t
and as pH ≤ 2t , we obtain

(c j1, c j2, . . . , cjpH
) ◦

⎡⎢⎢⎢⎢⎣
α j1 (α j1)2 · · · (α j1)pH

α j2 (α j2)2 (α j2)pH

...
...

...

αjpH (αjpH)2 · · · (αjpH)pH

⎤⎥⎥⎥⎥⎦ = 0 (10)

which becomes a pH × pH matrix that fits the result indicated in equation (10) only if its
determinant is zero:

∣∣∣∣∣∣∣∣∣∣

α j1 (α j1)2 · · · (α j1)pH

α j2 (α j2)2 (α j2)pH

...
...

...

αjpH (αjpH)2 · · · (αjpH)pH

∣∣∣∣∣∣∣∣∣∣
= 0 (11)

Extracting a common factor from each row, we get

α(j1+ j2+ ···+jpH)

∣∣∣∣∣∣∣∣∣∣

1 α j1 · · · (α j1)(pH−1)

1 α j2 (α j2)(pH−1)

...
...

...

1 αjpH · · · (αjpH)(pH−1)

∣∣∣∣∣∣∣∣∣∣
= 0 (12)

This determinant is called the Vandermonde determinant, and is a non-zero determinant [4, 5].
Thus, the initial assumption that pH ≤ 2t is not valid, and the minimum Hamming distance of
a binary BCH code is then equal to 2t + 1 or more. Demonstration of the non-zero property
of the Vandermonde determinant is delayed until the next chapter, on Reed–Solomon codes.
The parameter 2t + 1 is called the designed distance of a BCH code, but the actual minimum
distance can be higher.

Binary BCH codes can also be designed with block lengths less than 2m − 1, in a similar
way to that described for BCH codes of length equal to 2m − 1. If β is an element of order n
in the GF(2m), then n is a factor of 2m − 1. Let g(X) be a minimum-degree binary polynomial

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

104 Essentials of Error-Control Coding

that has β, β2, . . . , β2t as its roots. Let �1(X), �2(X), . . . , �2t (X) be minimal polynomials
of β, β2, . . . , β2t , respectively. Then

g(X) = LCM {�1(X), �2(X), . . . , �2t (X)} (13)

Since βn = 1, β, β2, . . . , β2t are roots of Xn + 1. Therefore the cyclic code generated by
g(X) is a code of code length n. It can be shown, in the same way as for binary BCH codes of
code length n = 2m − 1, that the number of parity check bits is not greater than mt , and that
the minimum Hamming distance is at least dmin ≥ 2t + 1.

The above analysis provides us a more general definition of a binary BCH code [4]. If β

is an element of GF(2m) and u0 a positive integer, then the binary BCH code with a designed
minimum distance d0 is generated by the minimum-degree generator polynomial g(X) that
has as its roots powers of the element β, β, βn0+1, . . . , βn0+d0−2, with 0 ≤ i < d0 − 1:

g(X) = LCM
{
�1(X), �2(X), . . . , �d0−2(X)

}
(14)

Here, �i (X) is the minimal polynomial of βu0+i and ni is its order. The constructed binary
BCH code has a code length equal to n:

n = LCM
{
n1, n2, . . . , nd0−2

}
(15)

The designed binary BCH code has minimum distance d0, a maximum number m (d0 − 1)
of parity check bits, and is able to correct any error pattern of size

⌊ d0−1
2

⌋
.

When u0 = 1 then d0 = 2t + 1, and if β is a primitive element of GF(2m) then the code
length of the binary BCH code is n = 2m − 1. In this case the binary BCH code is said to be
primitive. When u0 = 1 and with d0 = 2t + 1, if β is not a primitive element of GF(2m) then
the code length of the binary BCH code is not 2m − 1, but is equal to the order of β. In this case
the binary BCH code is said to be non-primitive. The requirement that the (d0 − 1) powers of
β have to be roots of the generator polynomial g(X) ensures that the binary BCH code has a
minimum distance of at least d0.

4.3 Decoding of BCH Codes

The code polynomial, the error polynomial and the received polynomial are related by the
following expression:

r (X) = c(X) + e(X) (16)

Syndrome decoding can be used with BCH codes, as they are linear cyclic block codes.
Recall that, for a given code polynomial c(X), c(αi) = 0, and that this is equivalent to

c ◦ H T = 0 (17)

Combining this expression with that used to calculate the syndrome vector,

S = (s0, s1, . . . , s2t) = r ◦ H T

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 105

and the following set of equations is obtained:

si = r (αi) = e(αi) = r0 + r1(αi) + · · · + rn−1(αi)n−1 (18)

with 1 ≤ i ≤ 2t.
These equations allow us to calculate the i th component of the syndrome vector by replacing

the variable X with the root αi in the received polynomial r (X). The syndrome vector consists
of elements of the Galois field GF(2m). Another method of evaluating these elements proceeds
in the following way: The received polynomial is first divided by �i (X), which is the minimal
polynomial corresponding to the root αi , so that �i (α

i) = 0, and then

r (X) = ai (X)�i (X) + bi (X) (19)

which gives, when substituting αi ,

r (αi) = bi (α
i) (20)

Example 4.3: For the binary linear cyclic block code BCH CBCH(15, 7) able to correct any
error pattern of size 2 or less, and if the received vector is of the form r = (100000001000000),
which in polynomial form is equal to r (X) = 1 + X8, determine the syndrome vector.

The above method leads to

s1 = r (α) = 1 + α8 = α2

s2 = r (α2) = 1 + α = α4

s3 = r (α3) = 1 + α9 = 1 + α + α3 = α7

s4 = r (α4) = 1 + α2 = α8

4.4 Error-Location and Error-Evaluation Polynomials

Rearranging equation (16), the code polynomial c(X) is related to the received polynomial
r (X) and the error polynomial e(X) as follows:

c(X) = r (X) + e(X) (21)

All these polynomials are defined with coefficients over GF(2). Let us assume that the error
vector contains τ non-zero elements, representing an error pattern of τ errors placed at positions
X j1, X j2, . . . , X jτ , where 0 ≤ j1 < j2 < · · · < jτ ≤ n − 1.

The error-location number is then defined as

βl = α jl (22)

where l = 1, 2, 3, . . . ,τ .
The syndrome vector components are calculated, as was stated in previous sections, by

replacing the variable X in the received polynomial r (X) with the roots αi , i = 1, 2, . . . , 2t .
It is then true that

si = r (αi) = c(αi) + e(αi) = e(αi) (23)

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

106 Essentials of Error-Control Coding

Thus, a system of 2t equations can be formed as follows:

s1 = r (α) = e(α) = e j1β1 + e j2β2 + · · · + e jτ βτ

s2 = r (α2) = e(α2) = e j1β
2
1 + e j2β

2
2 + · · · + e jτ β

2
τ

...

s2t = r (α2t) = e(α2t) = e j1β
2t
1 + e j2β

2t
2 + · · · + e jτ β

2t
τ

(24)

Variables β1, β2, . . . , βτ are unknown. An algorithm that solves this set of equations is a
decoding algorithm for a binary BCH code. The unknown variables are the positions of the
errors. There are 2k different solutions for these equations, but in the random error case only
the solution with the minimum weight will be the true solution.

In order to decode a binary BCH code, it is convenient to define the following polynomials:
The error-location polynomial is defined as

σ (X) = (X − α− j1)(X − α− j2) · · · (X − α− jτ) =
τ∏

l=1

(X − α− jl) (25)

and the error-evaluation polynomial is

W (X) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(X − α−ji) (26)

This last polynomial is needed only for non-binary (q ≥ 3) BCH codes, because in the binary
case the error values are always 1. The error values can be calculated from

e jl = W (α− jl)

σ ′(α− jl)
(27)

where σ ′(X) is the derivative of the polynomial σ (X) with respect to X . Polynomials σ (X)
and W (X) are relative prime, since from the way they are defined, they do not have roots in
common. Certainly, if α−jh is a root of σ (X), then

W (α−jh) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(α−jh − α−ji) = ejh

τ∏
i=1
i �=l

(α−jh − α−ji) �= 0

On the other hand, the derivative of the error-location polynomial is equal to

σ
′
(X) =

τ∑
l=1

τ∏
i=1
i �=l

(X − α−ji) (28)

By replacing X with the root value α−jh,

σ
′
(α−jh) =

τ∏
i=1
i �=l

(α−jh − α−ji) (29)

So from the above equations,

ejh = W (α−jh)

σ ′(α−jh)

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 107

Polynomials σ (X) and W (X) allow us to calculate the positions of the errors and to deter-
mine their values by using expression (27). Additionally, the syndrome polynomial of degree
deg{S(X)} ≤ 2t − 1 is defined as

S(X) = s1 + s2 X + s3 X2 + · · · + s2t X2t−1 =
2t−1∑
j = 0

s j + 1 X j (30)

If S(X) = 0 then the received polynomial is a code polynomial or contains an uncorrectable
error pattern.

4.5 The Key Equation

There exists a relationship between the polynomials σ (X), S(X) and W (X) which is called the
key equation, whose solution is a decoding algorithm for a BCH code. The following theorem
states this relationship:

Theorem 4.1: There exists a polynomial μ(X) such that the polynomials σ (X), S(X) and
W (X) fit the key equation

σ (X)S(X) = −W (X) + μ(X)X2t (31)

This is the same as saying that

{σ (X)S(X) + W (X) } mod (X2t) = 0 (32)

In the expression that defines the syndrome polynomial S(X),

S(X) =
2t−1∑
j= 0

s j+1 X j =
2t−1∑
j= 0

(
τ∑

i=1

ejiα
ji(j+1)

)
X j =

τ∑
i=1

ejiα
ji

2t−1∑
j= 0

(αji X) j

S(X) =
τ∑

i=1

ejiα
ji

(
αji X

)2t − 1(
αji X

) − 1
=

τ∑
i=1

eji

(
αji X

)2t − 1

X − α−ji
(33)

and then

σ (X)S(X) =
τ∑

i=1

eji

(
αji X

)2t − 1

X − α−ji

τ∏
l=1

(X − α− jl) =
τ∑

i=1

eji
[
(αji X)2t − 1

] τ∏
i=1
i �=l

(X − α− jl)

= −
τ∑

i=1

eji

τ∏
i=1
i �=l

(X − α− jl) +
⎡⎣ τ∑

i=1

ejiα
ji(2t)

τ∏
i=1
i �=l

(X − α− jl)

⎤⎦ X2t (34)

= −W (X) + μ(X)X2t

The key equation offers a decoding method for BCH codes. In order to solve this equation,
the Euclidean algorithm, which applies not only to numbers but also to polynomials, is utilized

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

108 Essentials of Error-Control Coding

[5]. A more detailed explanation of the key equation will be developed in Chapter 5 on Reed–
Solomon codes. This equation is also involved in other decoding algorithms for binary BCH
codes, and for Reed–Solomon codes. One of them is the Berlekamp–Massey algorithm [8, 9],
which will be described in Chapter 5.

4.6 Decoding of Binary BCH Codes Using the Euclidean Algorithm

For two given numbers A and B, the Euclidean algorithm determines the highest common
factor (HCF) of these two numbers, C = HCF(A, B). It also finds two integer numbers, or
for our purpose, two polynomials S and T , such that

C = SA + TB (35)

This algorithm is useful for solving the key equation that involves the polynomials

−μ(X)X2t + σ (X)S(X) = −W (X) (36)

where X2t plays the role of A and the syndrome polynomial S(X) plays the role of B.

4.6.1 The Euclidean Algorithm

Let A and B be two integer numbers such that A ≥ B, or equivalently let A and B be two
polynomials such that deg(A) ≥ deg(B). The initial conditions are r−1 = A and r0 = B. In a
recursive calculation, and in the i th recursion, the value ri is obtained as the remainder of the
division of ri−2 by ri−1; that is,

ri−2 = qiri−1 + ri (37)

where ri < ri−1 or, for polynomials, deg(ri) < deg(ri−1).
The recursive equation is then

ri = ri−2 − qiri−1 (38)

Expressions for si and ti can also be obtained as

ri = si A + ti B (39)

The recursion (38) is also valid for these coefficients:

si = si−2 − qi si−1

ti = ti−2 − qi ti−1 (40)

Then

r−1 = A = (1)A + (0)B

r0 = B = (0)A + (1)B
(41)

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 109

The initial conditions are

s−1 = 1, t−1 = 0 (42)

Example 4.4: Apply the Euclidean algorithm to the numbers A = 112 and B = 54.

112/54 = 2, remainder 4

4 = 112 + (−2) × 54

r1 = r−1 − q1r0

r−1 = 112, r0 = 54, r1 = 4

54/4 = 13, remainder 2

2 = 54 + (−13) × 4

r2 = r0 − q2r1

r2 = 2

4/2 = 2, remainder 0

Therefore, 2 is the HCF of 112 and 54.
A more suitable way of implementing this algorithm is by constructing a table like Table 4.1.
The HCF is 2 because the remainder in the next step in the table is 0. In each step of the

recursion, it happens that

112 = (1) × 112 + (0) × 54

54 = (0) × 112 + (1) × 54

4 = (1) × 112 + (−2) × 54

2 = (−13) × 112 + (27) × 54

Now Euclidean algorithm is applied to the key equation

−μ(X)X2t + σ (X)S(X) = −W (X)

The polynomials involved are X2t and S(X), and the i th recursion is of the form

ri (X) = si (X)X2t + ti (X)S(X) (43)

Table 4.1 Euclidean algorithm for evaluating the HCF of two integer numbers

i ri = ri−2 − qiri−1 qi si = si−2 − qi si−1 ti = ti−2 − qi ti−1

−1 112 – 1 0

0 54 – 0 1

1 4 2 1 −2

2 2 13 −13 27

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

110 Essentials of Error-Control Coding

Multiplying equation (43) by λ, we obtain

λri (X) = λsi (X)X2t + λti (X)S(X) = −W (X) = −μ(X)X2t + σ (X)S(X) (44)

where

deg (ri (X)) ≤ t + 1. (45)

Thus,

W (X) = −λri (X)

σ (X) = λti (X) (46)

where λ is a constant that makes the resulting polynomial be a monic polynomial.

Example 4.5: For the binary linear cyclic block BCH code CBCH(15, 7) with t = 2 and for
the received vector r = (100000001000000), which in polynomial form is equal to r (X) =
1 + X8 (from Example 4.3), determine, by using the Euclidean algorithm, the decoded code
polynomial.

The syndrome vector components were calculated in Example 4.3:

s1 = r (α) = α2

s2 = r (α2) = α4

s3 = r (α3) = α7

s4 = r (α4) = α8

Therefore the syndrome polynomial is

S(X) = α8 X3 + α7 X2 + α4 X + α2

Note that while operating over the extended Galois field GF(q), where q = 2m , the additive
inverse of any element of that field is that same element (see Appendix B), and the minus signs
in equations (36), (44) and (46) convert into plus signs. The Euclidean algorithm is applied by
constructing Table 4.2.

When the degree of the polynomial in column ri (X) is lower than the degree of the polynomial
in column ti (X), the recursion is halted. In this case,

ri (X) = α5

ti (X) = α11 X2 + α5 X + α3

Table 4.2 Euclidean algorithm for the key equation, Example 4.5

i ri = ri−2 − qiri−1 qi ti = ti−2 − qi ti−1

−1 X 2t = X 4 – 0

0 S(X) = α8 X 3 + α7 X 2 + α4 X + α2 – 1

1 α4 X 2 + α13 X + α8 α7 X + α6 α7 X + α6

2 α5 α4 X + α8 α11 X 2 + α5 X + α3

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 111

The polynomial ti (X) is multiplied by an element λ ∈ GF(24), which is conveniently selected
to convert this polynomial into a monic polynomial. This value of λ is λ = α4. Therefore,

W (X) = −λri (X) = λri (X) = α4α5 = α9

and

σ (X) = λti (X) = α4
(
α11 X2 + α5 X + α3

) = X2 + α9 X + α7

The following step consists of substituting in turn all the elements of the corresponding
Galois field in the error-location polynomial, in order to determine its roots. This procedure
is known as the Chien search [6]. Thus, variable X in the error-location polynomial σ (X) is
replaced with 1, α, α2, . . . , αn−1, where n = 2m − 1. Since αn = 1 and α−h = αn−h , then if
αh is a root of the error-location polynomial σ (X), αn−h is the corresponding error-location
number, which determines that bit rn−h is in error. In the binary case this information is enough
to do the error correction, because if the bit rn−h is in error, then its value is inverted to correct
it.

Performing the above Chien search, the roots of the error-location polynomials are found to
be α− j1 = 1 and α− j2 = α7. Then, and since

α0 = α− j1 = α−0

j1 = 0

and

α7 = α− j2 = α−8

j2 = 8

Errors are located in positions j1 = 0 and j2 = 8. Values of the errors are determined by
evaluating the derivative of the error-location polynomial

σ
′
(X) = α9

Then, and by applying expression (27),

e j1 = W (α− j1)

σ ′(α− j1)
= W (α0)

σ ′(α0)
= α9

α9
= 1

e j2 = W (α− j2)

σ ′(α− j2)
= W (α7)

σ ′(α7)
= α9

α9
= 1

The result is obvious as this BCH code is a binary code, and so errors are always of value 1.
The error polynomial is therefore

e(X) = X0 + X8 = 1 + X8

After the correction of the received polynomial, done by using equation (21), the decoded
polynomial is the zero polynomial, that is, the all-zero vector.

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

112 Essentials of Error-Control Coding

Bibliography and References

[1] Bose, R. C. and Ray-Chaudhuri, D. K., “On a class of error correcting binary group
codes,” Inf. Control., vol. 3, pp. 68–79, March 1960.

[2] Hocquenghem, A., “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147–156, 1959.
[3] Reed, I. S. and Solomon, G., “Polynomial codes over certain finite fields,” J. Soc. Ind.

Appl. Math., vol. 8, pp. 300–304, 1960.
[4] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,

Prentice Hall, Englewood Cliffs, New Jersey, 1983.
[5] Blaum, M., A Course on Error Correcting Codes, 2001.
[6] Chien, R. T., “Cyclic decoding procedure for the Bose–Chaudhuri–Hocquenghem codes,”

IEEE Tans. Inf. Theory, vol. IT-10, pp. 357–363, October 1964.
[7] Forney, G. D., Jr., “On decoding BCH codes,” IEEE Trans. Inf. Theory, vol. IT-11, pp. 59–

557, October 1965.
[8] Berlekamp, E. R., “On decoding binary Bose–Chaudhuri–Hocq uenghem codes,” IEEE

Trans. Inf. Theory, vol. IT-11, pp. 577–580, October 1965.
[9] Massey, J. L., “Step-by-step decoding of the Bose–Chaudhuri–Hocq uenghem codes,”

IEEE Trans. Inf. Theory, vol. IT-11, pp. 580–585, October 1965.
[10] Sloane, N. J. A. and Peterson, W. W., The Theory of Error-Correcting Codes, North-

Holland, Amsterdam, The Netherlands, 1998.
[11] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[12] Perterson, W. W. and Wledon, E. J., Jr., Error-Correcting Codes, 2nd Edition, MIY Press,

Cambridge, Massachusetts, 1972.
[13] Wicker, S. B. and Bhargava, V. K., Reed–Solomon Codes and Their Applications, IEEE

Press, New York, 1994.
[14] Shankar, P., “On BCH codes over arbitrary integer rings,” IEEE Trans. Inf. Theory, vol.

IT-25, pp. 480–483, 965–975, July 1979.

�

Problems

4.1 Verify that the polynomial p(X) = 1 + X2 + X5 is an irreducible polynomial. It
can also be a primitive polynomial. What are the conditions for this to happen?

4.2 Construct the Galois field GF(25) generated by p(X) = 1 + X2 + X5, showing a
table with the polynomial and binary representations of its elements.

4.3 Determine the minimal polynomials of the elements of the Galois field GF(25)
constructed in Problem 4.2.

4.4 Determine the generator polynomial of the binary BCH code CBCH(31, 16) able
to correct error patterns of size t = 3 or less.

OTE/SPH OTE/SPH
JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

BCH Codes 113

4.5 Determine the generator polynomial of a binary BCH code of code length n = 31
able to correct error patterns of size t = 2 or less. Also, determine the value of
k and the minimum Hamming distance of the code.

4.6 A binary cyclic BCH code CBCH(n, k) has code length n = 15 and generator
polynomial g(X) = (X + 1)(1 + X + X4)(1 + X + X2 + X3 + X4).
(a) What is the minimum Hamming distance of the code?
(b) Describe a decoding algorithm for this code, and demonstrate its operation

by means of an example.
Note: Use the Galois field GF(24) shown in Appendix B, Table B.4.

4.7 (a) Show that the shortest binary cyclic BCH code with the generator polyno-
mial g(X) = (1 + X + X4)(1 + X + X2 + X3 + X4) has code length n = 15
and minimum Hamming distance dmin = 5.

(b) Describe the Meggitt or an algebraic decoding method for the above code.
(c) Use the decoding method you have described to show how errors in the first

two positions of a received vector would be corrected.

4.8 Use the BCH bound to show that the minimum Hamming distance of the cyclic
code with block length n = 7 and g(X) = (X + 1)(1 + X + X3) is 4.
(a) What is the minimum Hamming distance if n = 14 and why?

4.9 The binary cyclic BCH code CBCH(15, 7) is able to correct error patterns of
size t = 2 or less, and has a generator polynomial of the form g(X) = (1 + X +
X4)(1 + X + X2 + X3 + X4) = 1 + X4 + X6 + X7 + X8, which operates over the
Galois field GF(24) (Appendix B, Table B.4).

Assume that the received vector is r = (100000001000000) and decode it
using the Euclidean algorithm.

4.10 Show that for a double-error-correcting cyclic code,

s3 = s2
1 + s2

1βl + s1β
2
l where βl = α jl

and hence find the errors in the received vector r = (000100111111011), given
that the transmitted vector is from the cyclic BCH code CBCH(15, 7) generated
by g(X) = (1 + X + X4)(1 + X + X2 + X3 + X4).

4.11 For the binary BCH code CBCH(31, 21), obtained in Problem 4.5, perform the
decoding of the received polynomials:
(a) r1(X) = X7 + X30;
(b) r2(X) = 1 + X17 + X28.

�

OTE/SPH OTE/SPH

JWBK102-04 JWBK102-Farrell June 19, 2006 18:6 Char Count= 0

114

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

5
Reed–Solomon Codes

Reed–Solomon (RS) codes are a class of linear, non-binary, cyclic block codes [1]. This class is a
subfamily of the family of the linear, non-binary, cyclic BCH codes which form a generalization
over the Galois field GF(q) of the binary BCH codes introduced in Chapter 4 [2, 3]. Here q is
a power of a prime number pprime, q = pm

prime, where m is a positive integer. These non-binary
BCH codes are usually called q-ary codes since they operate over the alphabet of q elements
of the Galois field GF(q), with q > 2. In this sense these codes are different from binary codes,
which have elements taken from the binary field GF(2). This is why q-ary codes are also called
non-binary codes. All the concepts and properties verified for binary BCH codes are also valid
for these non-binary codes.

5.1 Introduction

A block code Cb(n, k) defined over GF(q) is a subspace of dimension k of the vector space
Vn of vectors of n components, where the components are elements of GF(q). A cyclic q-ary
code over GF(q) is generated by a generator polynomial of degree n − k whose coefficients
are elements of GF(q). This generator polynomial is a factor of Xn − 1. The encoding of q-ary
codes is similar to the encoding of binary BCH codes.

Binary BCH codes can be generalized to operate over the Galois field GF(q):
For any two positive integer numbers v and t , there exists a q-ary code of code length n =
qv − 1, able to correct any error pattern of size t or less, which is constructed with at least
2vt parity check elements. If α is a primitive element of the Galois field GF(qv), the generator
polynomial of a q-ary BCH code able to correct any error pattern of size t or less is the
minimum-degree polynomial with coefficients from GF(q) that has α, α2, . . . , α2t as its roots.
If φi (X) is the minimal polynomial of αi [2], then

g(X) = LCM {φ1(X), φ2(X), . . . , φ2t (X)} (1)

The degree of each minimal polynomial is v or less. The degree of the generator polynomial
g(X) is at most 2vt , which means that the maximum number of parity check elements is 2vt . In
the case of q = 2, the definition corresponds to the binary BCH codes presented in Chapter 4.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

115

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

116 Essentials of Error-Control Coding

A special subfamily of q-ary BCH codes is obtained when v = 1, and they are the so-called
Reed–Solomon codes, named in honour of their discoverers.

An RS code CRS(n, k) able to correct any error pattern of size t or less is defined over the
Galois field GF(q), and it has as parameters

Code length n = q − 1
Number of parity check elements n − k = 2t
Minimum distance dmin = 2t + 1
Error-correction capability t element errors per code vector

Ifα is a primitive element of GF(q) thenαq−1 = 1. An RS code CRS(n, k) of length n = q − 1
and dimension k is the linear, cyclic, block RS code generated by the polynomial

g(X) = (X − α)
(
X − α2

) · · · (X − αn−k
)

= (X − α)
(
X − α2

) · · · (X − α2t
)

(2)

= g0 + g1 X + g2 X2 + · · · + g2t−1 X2t−1 + g2t X2t

The difference with respect to the definition given for a binary BCH code is that coefficients
gi of this generator polynomial belong to the extended Galois field GF(q). On the other hand,
the minimal polynomials are of the simplest form, �i (X) = X − αi .

The most useful codes, in practice, of this class are defined over Galois fields of the form
GF(2m), that is, finite fields with elements that have a binary representation in the form of a
vector with elements over GF(2). Each element αi is root of the minimal polynomial X − αi

so that X − αi is a factor of Xn − 1. As a consequence of this, g(X) is also a factor of Xn − 1
and hence it is the generator polynomial of a cyclic code with elements taken from GF(2m).
Since operations are defined over GF(2m), where the additive inverse of a given element is that
same element, addition and subtraction are the same operation, and so to say that αi is a root
of X − αi is the same as to say that it is a root of X + αi .

An RS code can be equivalently defined as the set of code polynomials c(X) over GF(q) of
degree deg{c(X)} ≤ n − 1 that have α, α2, . . . , αn−k as their roots [3]. Therefore c(X) ∈ CRS

if and only if

c(α) = c(α2) = c(α3) = · · · = c(α2t) = 0 where deg {c(X)} ≤ n − 1 (3)

This definition is in agreement with the fact that the corresponding generator polynomial has
α, α2, . . . , αn−k as its roots, and that any code polynomial is generated by multiplying a given
message polynomial by the generator polynomial. Then if

c(X) = c0 + c1 X + · · · + cn−1 Xn−1 ∈ CRS,

it is true that

c(αi) = c0 + c1α
i + · · · + cn−1(αi)n−1 = c0 + c1α

i + · · · + cn−1α
(n−1)i = 0, (4)

1 ≤ i ≤ n − k

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 117

5.2 Error-Correction Capability of RS Codes:
The Vandermonde Determinant

Equation (4) states that the inner product between the code vector (c0, c1, . . . , cn−1) and the root
vector (1, αi , α2i , . . . , α(n−1)i) is zero, for 1 ≤ i ≤ n − k. This condition can be summarized
in the form of a matrix, which is the parity check matrix H:

H =

⎡⎢⎢⎢⎢⎢⎣
1 α α2 α3 · · · αn−1

1 α2 (α2)2 (α2)3 · · · (α2)n−1

1 α3 (α3)2 (α3)3 · · · (α3)n−1

...
...

...
...

...
1 αn−k (αn−k)2 (αn−k)3 · · · (αn−k)n−1

⎤⎥⎥⎥⎥⎥⎦ (5)

In this matrix any set of n − k or fewer columns is linearly independent. In order to show this,
consider a set of n − k columns i1, i2, . . . , in−k with 0 ≤ i1 < i2 < · · · < in−k ≤ n − 1. It will
be convenient to use the modified notation α j = αi j , where 1 ≤ j ≤ n − k. The set of columns
i1, i2, . . . , in−k is linearly independent if and only if the following determinant is zero [2]:∣∣∣∣∣∣∣∣∣

α1 α2 · · · αn−k

(α1)2 (α2)2 · · · (αn−k)2

...
...

...

(α1)n−k (α2)n−k · · · (αn−k)n−k

∣∣∣∣∣∣∣∣∣ �= 0 (6)

This determinant can be converted into

α1α2 . . . αn−k

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α1 α2 · · · αn−k
...

...
...

(α1)n−k−1 (α2)n−k−1 · · · (αn−k)n−k−1

∣∣∣∣∣∣∣∣∣ (7)

= α1α2 . . . αn−k V (α1, α2, . . . , αn−k) �= 0

where V (α1, α2, . . . , αn−k) is the so-called Vandermonde determinant. Since αi �= 0, it will be
sufficient to prove that if V (α1, α2, . . . , αn−k) �= 0, then the n − k columns of the matrix H are
linearly independent. For n − k = 2 [3],∣∣∣∣ 1 1

α1 α2

∣∣∣∣ = α2 − α1 �= 0

If the polynomial

f (X) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
X α2 · · · αn−k
...

...
...

Xn−k−1 (α2)n−k−1 · · · (αn−k)n−k−1

∣∣∣∣∣∣∣∣∣ (8)

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

118 Essentials of Error-Control Coding

is constructed, it can be seen that αi is root of that polynomial for 2 ≤ i ≤ n − k, since two
columns of this determinant will be equal when X is replaced by αi , resulting in f (αi) = 0.
Therefore,

f (X) = c(X − α2)(X − α3) · · · (X − αn−k) = (−1)n−k−1 c
n−k∏
j=2

(α j − X) (9)

where c is a constant. Now

f (α1) = V (α1, α2, . . . , αn−k) (10)

and, by using determinant properties, the constant c can be obtained:

c = (−1)n−k−1

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α2 α3 · · · αn−k
...

...
...

(α2)n−k−2 (α3)n−k−2 · · · (αn−k)n−k−2

∣∣∣∣∣∣∣∣∣ (11)

= (−1)n−k−1 V (α2, α3, . . . , αn−k)

Then, by induction, the value of c can be finally determined as

c = (−1)n−k−1
n−k∏

2≤i< j≤n−k

(α j − αi) (12)

By replacing X with α1 and including the value of the constant c from the above equation,
we obtain

V (α1, α2, . . . , αn−k) =
∏

1≤i< j≤n−k

(α j − αi) (13)

Since αi = α ji and as α is a primitive element of GF(q), then it is also true that αi �=
α j if i �= j so that V (α1, α2, . . . , αn−k) �= 0. As a consequence of this, there are n − k + 1
columns that are linearly dependent; that is, there are n − k + 1 columns that added result
in the all-zero vector. Therefore the minimum distance of an RS code CRS(n, k) is equal to
d min = n − k + 1 = 2t + 1.

Another conclusion derived from the above analysis is that RS codes are maximum separable
distance codes, since their minimum distance meets the Singleton bound dmin ≤ n − k + 1 with
equality.

Example 5.1: Construct the Galois field GF(23) generated by the irreducible polynomial
pi (X) = 1 + X2 + X3.

If α is a primitive element of GF(23), then pi (α) = 1 + α2 + α3 = 0, or α3 = 1 + α2. The
Galois field GF(23) can be constructed, utilizing the above expression. Thus, for instance,
α4 = αα3 = α(1 + α2) = α + α3 = 1 + α + α2. Table 5.1 shows the polynomial and binary
forms of the elements of the Galois field GF(23) generated by the irreducible polynomial
pi (X) = 1 + X2 + X3.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 119

Table 5.1 Galois field GF(23) generated by pi (X) = 1 + X 2 + X 3

Exponential form Polynomial form Binary form

0 0 0 0 0

1 1 1 0 0

α α 0 1 0

α2 α2 0 0 1

α3 1 + α2 1 0 1

α4 1 + α + α2 1 1 1

α5 1 + α 1 1 0

α6 α + α2 0 1 1

If this Galois field is compared with that introduced in Appendix B, generated by pi (X) =
1 + X + X3, then it is seen that the differences are in the polynomial and binary representations
for each element.

Example 5.2: Construct the generator polynomial of an RS code CRS(7, 5) that operates over
the Galois field GF(23), which has pi (X) = 1 + X2 + X3 as its primitive polynomial.

Since this RS code has n − k = 2, it is able to correct any error pattern of size t = 1.
The corresponding generator polynomial is

g(X) = (X + α)(X + α2) = X2 + (α + α2)X + α3 = X2 + α6 X + α3

5.3 RS Codes in Systematic Form

An RS code generated by a given generator polynomial of the form of (2) is a linear and cyclic
block RS code CRS(n, n − 2t) consisting of code polynomials c(X) of degree n − 1 or less. All
these polynomials are formed with coefficients that are elements of the Galois field GF(2m).
Code polynomials are multiples of the generator polynomial g(X), thus containing all its roots.

A message polynomial is of the form

m(X) = m0 + m1 X + · · · + mk−1 Xk−1 (14)

This message polynomial is also formed with coefficients that are elements of GF(2m). The
systematic form for these codes is obtained in the same way as for binary BCH codes, that is,
by obtaining the remainder p(x) of the division of Xn−km(X) by g(X):

Xn−km(X) = q(X)g(X) + p(X) (15)

Example 5.3: Determine the code vector in systematic form for the RS code of Example 5.2
when the message to be transmitted is (001 101 111 010 011).

The message is converted into its polynomial form:

m(X) = α2 + α3 X + α4 X2 + αX3 + α6 X4

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

120 Essentials of Error-Control Coding

Then

Xn−km(X) = X7−5m(X)

= X2
[
α2 + α3 X + α4 X2 + αX3 + α6 X4

]
= α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

In systematic form,

α6 X6 + αX5 + α4 X4 + α3 X3 + α2 X2 |X2 + α6 X + α3

α6 X6 + α5 X5 + α2 X4 α6 X4 + X3 + α3 X2 + α2 X

X5 + α5 X4 + α3 X3+α2 X2

X5 + α6 X4 + α3 X3

α3 X4 + 0X3 + α2 X2

α3 X4 + α2 X3 + α6 X2

α2 X3 + αX2

α2 X3 + αX2 + α5 X

p(X) = α5 X

The code polynomial is then

c(X) = α5 X + α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

which in vector form is equal to

(000 110 001 101 111 010 011)

It can be verified that this is a code vector or code polynomial by replacing the variable X in
c(X) with the roots α and α2, to see that the result is zero:

c(α) = α6 + α4 + α6 + α + α6 + α5 = α + α5 + α4 + α6 = 1 + 1 = 0

c(α2) = 1 + α6 + α2 + α5 + α4 + α4 = 1 + α6 + α2 + α5 = α4 + α4 = 0

5.4 Syndrome Decoding of RS Codes

After encoding a given message, the code polynomial

c(X) = c0 + c1 X + · · · + cn−1 Xn−1

is transmitted and affected by noise, and converted into a received polynomial of the form

r (X) = r0 + r1 X + · · · + rn−1 Xn−1

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 121

which is related to the error polynomial e(X) = e0 + e1 X + · · · + en−1 Xn−1 and the code
polynomial c(X) as follows:

r (X) = c(X) + e(X) (16)

Let us assume that the error polynomial contains τ non-zero elements, which means that
during transmission τ errors occurred, placed at positions X j1 , X j2 , . . . , X jτ , where 0 ≤ j1 <

j2 < · · · < jτ ≤ n − 1. In the case of a non-binary code defined over GF(2m), all the vectors
involved, the code vector, the received vector and the error vector, are formed from elements
of that field. In this case the error-correction procedure requires not only knowledge of the
position of the errors but also their values in GF(2m).

Let us again define the error-location number as

βi = α ji where i = 1, 2, 3, . . . , τ (17)

The syndrome calculation is performed in the same way as for the binary BCH codes, and it
implies the evaluation of the received polynomial r (X), replacing the variable X by the roots
αi , i = 1, 2, . . . , 2t . Once again

r (αi) = c(αi) + e(αi) = e(αi) (18)

A system of equations is then formed with these expressions:

s1 = r (α) = e(α) = e j1β1 + e j2β2 + · · · + e jτ βτ

s2 = r (α2) = e(α2) = e j1β
2
1 + e j2β

2
2 + · · · + e jτ β

2
τ (19)

...

s2t = r (α2t) = e(α2t) = e j1β
2t
1 + e j2β

2t
2 + · · · + e jτ β

2t
τ

In the particular case of RS codes CRS(n, n − 2) that are able to correct any error pattern of
size t = 1, syndrome calculation involves only two equations, which leads to a rather simple
solution

s1 = r (α) = e(α) = e j1β1 = e j1α
j1

s2 = r (α2) = e(α2) = e j1β
2
1 = e j1α

2 j1
(20)

Then

e j1α
2 j1

e j1α j1
= α j1 = s2

s1

s1 = e j1α
j1 = e j1

s2

s1

(21)

e j1 = s2
1

s2

This system has two equations and is able to determine two unknown variables, which are the
error location and the error value.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

122 Essentials of Error-Control Coding

Example 5.4: For the case of the RS code of Example 5.3, assume that the received vector is
r = (000 101 111 111 011) = (0 α5 α2 α3 α4 α4 α6). Determine the position and value of the
single error that happened during transmission, and the corrected code polynomial.

s1 = r (α) = α6 + α4 + α6 + α + α2 + α5 = α2 + α6 = α

s2 = r (α2) = 1 + α6 + α2 + α5 + 1 + α4 = 1 + α4 = α6

α j1 = s2

s1

= α6

α
= α5

e j1 = s2
1

s2

= α2

α6
= α−4 = α3

Hence the error-location polynomial is

e(X) = α3 X5

c(X) = e(X) + r (X)

= α5 X + α2 X2 + α3 X3 + α4 X4 + (α4 + α3)X5 + α6 X6

= α5 X + α2 X2 + α3 X3 + α4 X4 + αX5 + α6 X6

5.5 The Euclidean Algorithm: Error-Location and
Error-Evaluation Polynomials

As a result of the non-binary nature of these codes, there is a need to determine both the
locations and the values of the errors, so that the following two polynomials are defined [2, 3].

The error-location polynomial is

σ (X) = (X − α− j1)(X − α− j2) · · · (X − α− jτ) =
τ∏

l=1

(X − α− jl) (22)

and the error-evaluation polynomial is

W (X) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(X − α− ji)

.

(23)

It can be shown that the error value is equal to

e jl = W (α− jl)

σ ′(α− jl)
(24)

where σ ′(X) is the derivative of the error-location polynomial σ (X).

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 123

Polynomials σ (X) and W (X) are relative prime, since, in the way they are defined, they do
not have any root in common. Therefore, if α− jh is a root of σ (X), then

W (α− jh) =
τ∑

l=1

e jl

τ∏
i=1
i �=l

(α− jh − α− ji) = e jh

τ∏
i=1
i �=l

(α− jh − α− ji) �= 0

On the other hand, the derivative with respect to X of the polynomial σ (X), σ ′(X), is equal
to

σ ′(X) =
τ∑

l=1

τ∏
i=1
i �=l

(X − α− ji) (25)

By substituting for the variable X the value of the root α− jh , we get

σ ′(α− jh) =
τ∏

i=1
i �=h

(α− jh − α− ji) (26)

Thus, from the above equations,

e jh = W (α− jh)

σ ′(α− jh)

Roots of the polynomial σ (X) determine the positions of the errors, and then polynomial
W (X) and equation (24) can be used to determine the values of the errors.

An additional polynomial, S(X), called the syndrome polynomial, whose degree is
deg{S(X)} ≤ n − k − 1, is also defined as

S(X) = s1 + s2 X + s3 X2 + · · · + sn−k Xn−k−1 =
n−k−1∑

j=0

s j+1 X j (27)

If S(X) = 0 then the corresponding received polynomial is a code polynomial belonging to
the RS code, i.e., r (X) ∈ CRS(n, k), unless an uncorrectable error pattern has occurred.

As in the case of binary BCH codes, there is a relationship among the polynomials σ (X),
S(X) and W (X), which is called the key equation, whose solution is a decoding method for an
RS code. The following theorem states this relationship:

Theorem 5.1: There exists a polynomial μ(X), such that polynomials σ (X), S(X) and W (X)
satisfy the key equation

σ (X)S(X) = −W (X) + μ(X)Xn−k (28)

This theorem has already been demonstrated in Chapter 4, for binary BCH codes.
As an example, consider the family of RS codes CRS(n, n − 4) that are able to correct any

error pattern of size t = 2 or less. Errors are in positions j1 and j2, such that

0 ≤ j1 < j2 ≤ n − 1

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

124 Essentials of Error-Control Coding

The received polynomial is evaluated for the roots, leading to a system of four equations,
with four unknown variables, which are the positions and the values of the two errors:

s1 = r (α) = e(α) = e j1α
j1 + e j2α

j2

s2 = r (α2) = e(α2) = e j1α
2 j1 + e j2α

2 j2

s3 = r (α3) = e(α3) = e j1α
3 j1 + e j2α

3 j2

s4 = r (α4) = e(α4) = e j1α
4 j1 + e j2α

4 j2

This system of four equations is non-linear, but solvable. The polynomials σ (X) and W (X)
are calculated as follows:

σ (X) = (X − α− j1)(X − α− j2)

and

W (X) = e j1 (X − α− j2) + e j2 (X − α− j1)

These are co-prime polynomials for which 1 is the highest common factor. Roots of σ (X) are
different from roots of W (X). The values of the errors are

e j1 = W (α− j1)

σ ′(α− j1)
and e j2 = W (α− j2)

σ ′(α− j2)

σ
′
(X) = (X − α− j1) + (X − α− j2)

Then

σ
′
(α− j1) = α− j1 − α− j2

σ
′
(α− j2) = α− j2 − α− j1

and

W (α− j1) = e j1 (α− j1 − α− j2)

W (α− j2) = e j2 (α− j2 − α− j1)

The syndrome polynomial is of the form

S(X) = s1 + s2 X + s3 X2 + s4 X3

=
3∑

j=0

s j+1 X j

=
3∑

j=0

[
e j1α

(j+1) j1 + e j2α
(j+1) j2

]
X j

= e j1α
j1

3∑
j=0

(α j1 X) j + e j2α
j2

3∑
j=0

(
α j2 X

) j

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 125

and by using the expression
∑τ

j=0 X j = X τ+1−1
X−1

,

S(X) = e j1α
j1

(α j1 X)4 − 1

α j1 X − 1
+ e j2α

j2
(α j2 X)4 − 1

α j2 X − 1
= e j1

α4 j1 X4 − 1

X − α− j1
+ e j2

α4 j2 X4 − 1

X − α− j2

S(X) = − e j1

X − α− j1
− e j2

X − α− j2
+ X4

[
e j1

α4 j1

X − α− j1
+ e j2

α4 j2

X − α− j2

]
Multiplying S(X) by σ (X),

σ (X)S(X) = −e j1 (X − α− j2) − e j2 (X − α− j1) + X4μ(X) = −W (X) + X4μ(X)

which is the key equation corresponding to this example.

5.6 Decoding of RS Codes Using the Euclidean Algorithm

A simple example of the use of the Euclidean algorithm for factorizing two integer numbers
was introduced in the previous chapter. This algorithm is now utilized for solving the key
equation in the decoding of RS codes [3]. The key equation is of the form

σ (X)S(X) − μ(X)Xn−k = −W (X)

The algorithm is applied to the polynomials Xn−k and S(X) so that the i th recursion is

ri (X) = si (X)Xn−k + ti (X)S(X) (29)

and

deg{ri (X)} ≤
⌊n − k

2

⌋
+ 1 (30)

On the other hand,

W (X) = −λri (X) (31)

σ (X) = λti (X)

where λ is a constant that converts the polynomial into a monic polynomial.

Example 5.5: For the RS code CRS(7, 3) defined over GF(23), generated by the primitive
polynomial pi (X) = 1 + X2 + X3, and for the received vector r = (000 000 011 000 111 000
000), determine using the Euclidean algorithm the error polynomial and the decoded vector.

According to the received vector, the received polynomial is equal to

r (X) = α6 X2 + α4 X4

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

126 Essentials of Error-Control Coding

Table 5.2 Euclidean algorithm for solving the key equation, Example 5.5

i ri = ri−2 − qiri−1 qi ti = ti−2 − qi ti−1

−1 Xn−k = X 4 0

0 S(X) = α4 X 3 + α4 X 2 + α6 X 1

1 α3 X 2 + α2 X α3 X + α3 α3 X + α3

2 α4 X αX + α5 α4 X 2 + α3 X + α5

The syndrome vector components are

s1 = r (α) = α + α = 0

s2 = r (α2) = α3 + α5 = α6

s3 = r (α3) = α5 + α2 = α4

s4 = r (α4) = 1 + α6 = α4

The syndrome polynomial is then

S(X) = α6 X + α4 X2 + α4 X3

The Euclidean algorithm is applied using Table 5.2.
If the degree of the polynomial in the column ri (X) is less than the degree of the polynomial

in the column ti (X), then the recursion is halted. It also happens that α4 X is a factor of
α3 X2 + α2 X . Then

W1(X) = α4 X

σ1(X) = α4 X2 + α3 X + α5

The polynomial so obtained,σ1(X), is multiplied by an element of the Galois fieldλ ∈ GF(23)
in order to convert it into a monic polynomial. This value of λ is λ = α3. Then

W (X) = λW1(X) = α3α4 X = X

and

σ (X) = λσ1(X) = α3
(
α4 X2 + α3 X + α5

) = X2 + α6 X + α

The Chien search [5] (as described in Chapter 4) is then used to determine the roots of this
error-location polynomial.

These roots are found to be α3 and α5. Therefore,

α3 = α− j1 = α−4

j1 = 4

and

α5 = α− j2 = α−2

j2 = 2

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 127

Errors are thus located at positions j1 = 4 and j2 = 2. The derivative of the error-location
polynomial is

σ ′(X) = α6

and so the error values are

e j1 = W (α− j1)

σ ′(α− j1)
= W (α3)

σ ′(α3)
= α3

α6
= α−3 = α4

e j2 = W (α− j2)

σ ′(α− j2)
= W (α5)

σ ′(α5)
= α5

α6
= α−1 = α6

The error polynomial is then

e(X) = α6 X2 + α4 X4

so that the received vector is corrected by adding to it the error pattern, and thus the decoded
vector is finally the all-zero vector.

5.6.1 Steps of the Euclidean Algorithm

For an RS code CRS(n, k) with error-correction capability t , where 2t ≤ n − k, and for a
received polynomial r (X), application of the Euclidean algorithm involves the following steps
[3]:

1. Calculate the syndrome vector components s j = r (α j), 1 ≤ j ≤ n − k, and then construct
the syndrome polynomial

S(X) =
n−k∑
j=1

s j X j+1 (32)

2. If S(X) = 0 then the corresponding received vector is considered to be a code vector.
3. If S(X) �= 0 then the algorithm is initialized as

r−1(X) = Xn−k

r0 = S(X)

t−1(X) = 0 (33)

t0(X) = 1

i = −1

4. Recursion parameters are determined as

ri (X) = ri−2(X) − q(X)ri−1(X) (34)

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

128 Essentials of Error-Control Coding

and

ti (X) = ti−2(X) − q(X)ti−1(X) (35)

This recursion proceeds as long as deg (ri (X)) ≥ t.
5. When deg (ri (X)) < t , the recursion halts and a number λ ∈ GF(2m) is obtained and so

λti (X) becomes a monic polynomial. Then

σ (X) = λti (X) (36)

and

W (X) = −λri (X) (37)

6. Roots of the polynomial σ (X) are obtained by using the Chien search.
7. Error values are calculated using

e jh = W (α− jh)

σ ′(α− jh)

8. The error polynomial is constructed using

e(X) = e j1 X j1 + e j2 X j2 + · · · + e jτ X jτ (38)

9. Error correction is verified, such that if

e(αi) �= r (αi) for any i (39)

then error correction is discarded since (39) means that the number of errors was over the
error-correction capability of the code.

If

e(αi) = r (αi) for all i (40)

then

c(X) = r (X) + e(X)

5.7 Decoding of RS and BCH Codes Using the
Berlekamp–Massey Algorithm

The Berlekamp–Massey (B–M) algorithm [2, 6, 7] is an alternative algebraic decoding algo-
rithm for RS and BCH codes. In the case of binary BCH codes, there is no need to calculate the
error values, as it is enough to determine the positions of the errors to perform error correction
in GF(2). This is different from the case of non-binary BCH codes and RS codes, where both
error location and error values have to be determined to perform error correction.

In the case of BCH codes, equations (16) and (18) of Chapter 4 are still valid; that is,
syndrome decoding involves the calculation of the 2t components of the syndrome vector

S = (s1, s2, . . . , s2t)

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 129

Syndrome vector components can be calculated by replacing the variable X with the different
roots αi , i = 1, 2, . . . , 2t , in the expression of the received polynomial r (X). As both RS and
BCH codes are linear, the syndrome depends only on the error event. Assume that the error
pattern contains τ errors in positions X j1 , X j2 , . . . , X jτ , so that the error pattern in polynomial
form is

e(X) = X j1 + X j2 + · · · + X jτ

Since syndrome components can be evaluated as a function of the error pattern,

s1 = α j1 + α j2 + · · · + α jτ

s2 = (α j1)2 + (α j2)2 + · · · + (α jτ)2 (41)

...

s2t = (α j1)2t + (α j2)2t + · · · + (α jτ)2t

The α ji values are unknown. Any algorithm able to find a solution to this system of equations
can be considered as a decoding algorithm for BCH codes. Equation (19) is the equivalent
system of equations for RS codes.

A procedure to calculate values α j1 , α j2 , . . . , α jτ allows us to determine the error positions
j1, j2, . . . , jτ which in the case of binary BCH codes constitute enough information to perform
error correction. The so-called error-location numbers are usually defined as

βi = α ji

By using this definition the system of equations (41) looks like the system of equations (24)
of Chapter 4. Indeed, in the case of binary BCH codes, coefficients eji are all equal to unity,
e ji = 1, giving

s1 = β1 + β2 + · · · + βτ

s2 = (β1)2 + (β2)2 + · · · + (βτ)2 (42)

...

s2t = (β1)2t + (β2)2t + · · · + (βτ)2t

The error-location polynomial can have a slightly different definition with respect to expres-
sion (22), which is the following:

σBM(X) = (1 + β1 X)(1 + β2 X) . . . (1 + βτ X) (43)

= σ + σ1 X + · · · + στ X τ

Roots of this polynomial are β−1
1 , β−1

2 , . . . , β−1
τ , the inverses of the error-location numbers.

This is a modified definition of the error-location polynomial with respect to the definition
given for the decoding of RS codes using the Euclidean algorithm, as a tool for solving the key
equation. This modified definition is however more suitable for the description of the B–M
algorithm.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

130 Essentials of Error-Control Coding

Coefficients of this modified polynomial can be expressed in the following manner:

σ0 = 1

σ1 = β1 + β2 + · · · + βτ

σ2 = β1β2 + β2β3 + · · · + βτ−1βτ (44)

...

στ = β1β2 . . . βτ

This set of equations is known as the elementary symmetric functions and is related to the
system of equations (42) as follows:

s1 + σ1 = 0

s2 + σ1s1 = 0

s3 + σ1s2 + σ2s1 + σ3 = 0 (45)

...

sτ+1 + σ1sτ + · · · + στ−1s2 + στ s1 = 0

These equations are called Newton identities [2]. Thus, for instance,

s2 + σ1s1 = (β1)2 + (β2)2 + · · · + (βτ)2 + (β1 + β2 + · · · + βτ)(β1 + β2 + · · · + βτ) = 0

since in GF(2m) the products βiβ j + β jβi = 0. The remaining Newton identities can be derived
in the same way.

5.7.1 B–M Iterative Algorithm for Finding the Error-Location Polynomial

The decoding procedure based on the B–M algorithm is now introduced [6, 7]. Demonstration
of its main properties can be found in [4]. The algorithm basically consists of finding the
coefficients of the error-location polynomial, σ1, σ2, . . . , στ , whose roots then determine the
error positions.

The B–M algorithm starts with the evaluation of the 2t syndrome vector components S =
(s1, s2, . . . , s2t), which then allow us to find the coefficients σ1, σ2, . . . , στ of the error-location
polynomial, whose roots are the inverses of the error-location numbers β1, β2, . . . , βτ . In the
case of a binary BCH code, the final step is to perform error correction at the determined
error positions, and in the case of an RS code or a non-binary BCH code, the error values at
those positions have to be calculated, in order to finally perform error correction. As indicated
above, the core of the B–M algorithm is an iterative method for determining the error-location
polynomial coefficients σ1, σ2, . . . , στ .

The algorithm proceeds as follows [2]: The first step is to determine a minimum-degree
polynomial σ

(1)
BM(X) that satisfies the first Newton identity described in (45). Then the second

Newton identity is tested. If the polynomial σ
(1)
BM(X) satisfies the second Newton identity in

(45), then σ
(2)
BM(X) = σ

(1)
BM(X). Otherwise the decoding procedure adds a correction term to

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 131

σ
(1)
BM(X) in order to form the polynomial σ

(2)
BM(X), able to satisfy the first two Newton identities.

This procedure is subsequently applied to find σ
(3)
BM(X), and the following polynomials, until

determination of the polynomial σ
(2t)
BM (X) is complete. Once the algorithm reaches this step, the

polynomial σ
(2t)
BM (X) is adopted as the error-location polynomial σBM(X), σBM(X) = σ

(2t)
BM (X),

since this last polynomial satisfies the whole set of Newton identities described in (45).
This algorithm can be implemented in iterative form. Let the minimum-degree polynomial

obtained in the μth iteration and able to satisfy the first μ Newton identities, denoted by
σ

(μ)
BM(X), be of the form

σ
(μ)
BM(X) = 1 + σ

(μ)
1 X + σ

(μ)
2 X2 + · · · + σ

(μ)
lμ

Xlμ (46)

where lμ is the degree of the polynomial σ
(μ)
BM(X). Then, a quantity dμ, called the μth discrep-

ancy, is obtained by using the following expression:

dμ = sμ+1 + σ
(μ)
1 sμ + σ

(μ)
2 sμ−1 + · · · + σ

(μ)
lμ

sμ+1−lμ (47)

If the discrepancy dμ is equal to zero, dμ = 0, then the minimum-degree polynomial σ
(μ)
BM(X)

satisfies (μ + 1)th Newton identity, and it becomes σ
(μ+1)
BM (X):

σ
(μ+1)
BM (X) = σ

(μ)
BM(X) (48)

If the discrepancy dμ is not equal to zero, dμ �= 0, then the minimum-degree polynomial

σ
(μ)
BM(X) does not satisfy the (μ + 1)th Newton identity, and a correction term is calculated to

be added to σ
(μ)
BM(X), in order to form σ

(μ+1)
BM (X).

In the calculation of the correction term, the algorithm resorts to a previous step ρ of the
iteration, with respect to μ, such that the discrepancy dρ �= 0 and ρ − lρ is a maximum. The

number lρ is the degree of the polynomial σ
(ρ)
BM(X).

Then

σ (μ+1)(X) = σ (μ)(X) + dμd−1
ρ X (μ−ρ)σ (ρ)(X) (49)

and this polynomial of minimum degree satisfies the (μ + 1)th Newton identity.
The B–M algorithm can be implemented in the form of a table, as given in Table 5.3.

Table 5.3 B–M algorithm table for determining the error-location polynomial

μ σ
(μ)
BM(X) dμ lμ μ − lμ

−1 1 1 0 −1

0 1 s1 0 0

1

·
·

2t

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

132 Essentials of Error-Control Coding

The minimum-degree polynomialσ
(μ+1)
BM (X) in iterationμ + 1 can be calculated as a function

of the minimum-degree polynomial σ
(μ)
BM(X) of the μth iteration as follows:

If dμ = 0 then σ
(μ+1)
BM (X) = σ

(μ)
BM(X), lμ+1 = lμ.

If dμ �= 0, the algorithm resorts to a previous row ρ, such that dρ �= 0 and ρ − lρ is maximum.
Then

σ
(μ+1)
BM (X) = σ

μ

BM(X) + dμd−1
ρ X (μ−ρ)σ (ρ)(X),

lμ+1 = max(lμ, lρ + μ − ρ),

dμ+1 = sμ+2 + σ
(μ+1)
1 sμ+1 + · · · + σ

(μ+1)
lμ+1

sμ+2−lμ+1
(50)

The above procedure has to be applied for the 2t rows of the table, until the minimum-degree
polynomial σ

(2t)
BM (X) is obtained, and finally this last polynomial is adopted as the error-

location polynomial σ
(2t)
BM (X) = σBM(X). In general, if the degree of σ

(2t)
BM (X) is larger than t ,

then it is likely that its roots do not correspond to the inverses of the real error-location numbers,
since it is also likely that the error event was severe, and affected more than t elements, being
over the error-correction capability of the code.

After the determination of the error-location polynomial, the roots of this polynomial are
calculated by applying the Chien search, as used in Euclidean algorithm decoding, by replacing
the variable X with all the elements of the Galois field GF(q), 1, α, α2, . . . , αq−2, in the
expression of the obtained error-location polynomial, looking for the condition σBM(αi) = 0.
This procedure leads to an estimate of the error pattern of minimum weight, which solves the
system of syndrome equations. This will be the true error pattern that occurred on the channel
if the number of errors τ in this pattern is τ ≤ t .

Example 5.6: Apply the B–M algorithm to Example 4.3, which concerns the binary BCH
code CBCH(15, 7) with t = 2, and a received polynomial of the form r (X) = 1 + X8.

The syndrome components were calculated in Example 4.3 as

s1 = r (α) = α2

s2 = r (α2) = α4

s3 = r (α3) = α7

s4 = r (α4) = α8

Table 5.4 is used to apply the B–M algorithm in order to determine the error-location
polynomial for the case of Example 5.6.

As an example, row μ + 1 = 1 is obtained from information at row μ = 0 by evaluating

l1 = max(l0, l−1 + 0 − (−1)) = 1

σ
(1)
BM(X) = σ

(0)
BM(X) + d0d−1

−1 X (0−(−1))σ (−1)(X) = 1 + α21−1 X11 = 1 + α2 X

and

d1 = s2 + σ
(1)
1 s1 = α4 + α2α2 = 0

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 133

Table 5.4 B–M algorithm table, Example 5.6

μ σ
(μ)
BM(X) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 α2 0 0

1 1 + α2 X 0 1 0 −1

2 1 + α2 X α10 1 1

3 1 + α2 X + α8 X 2 0 2 1 0

4 1 + α2 X + α8 X 2

The next step is performed using row μ = 1, whose information is useful to determine the
values in row μ + 1 = 2, and since the discrepancy is zero, d1 = 0, then

σ
(2)
BM(X) = σ

(1)
BM(X), l2 = l1 = 1 d2 = s3 + σ

(2)
1 s2 = α7 + α2α4 = α10

The procedure ends at row μ = 4, where the error-location polynomial is finally

σBM(X) = σ
(4)
BM(X) = 1 + α2 X + α8 X2

whose roots are β−1
1 = 1 = α0 = α− j1 and β−1

2 = α7 = α−8 = α− j2 , and so error positions
are at j1 = 0 and j2 = 8.

The error-location polynomial σBM(X) = 1 + α2 X + α8 X2 (B–M algorithm, Example 5.6)
is obtained as a function of the error-location polynomial σ (X) = α7 + α9 X + X2 (Euclidean
algorithm, Example 4.5) by multiplying σ (X) = α7 + α9 X + X2 by α8. Therefore, both poly-
nomials have the same roots. After performing error correction, the decoded polynomial is the
all-zero polynomial, as in the case of Example 4.5.

5.7.2 B–M Decoding of RS Codes

RS codes are non-binary codes, and this means that a given error, located at a given position,
can adopt any value among the elements of the Galois field GF(q) used for the design of that
code. As explained above, this brings an additional step into the decoding of RS codes, which
is the need to determine not only the position but also the value of an error, to perform error
correction. The following examples can be used to illustrate that the error-location polynomial,
calculated for a given error pattern, does not depend on the error value. Therefore the B–M
algorithm, which is in essence useful for determining this error-location polynomial, can be
applied in the same way as for binary BCH codes in order to determine the error-location
numbers in the decoding of an RS code. Indeed, the B–M algorithm solves part of a system
of 2t equations, with 2t unknowns, by forming a system of t equations, to determine the t
unknowns which are the positions of the errors. Therefore the system of equations (42) is to
be solved for determining error-location numbers in an RS code, whose complete system of
equations is of the form of (19). The difference between these two systems of equations is that
the system of equations (19) leaves open the actual error values, while the system of equations
(42) considers the existence of an error to be an error event of value 1.

Once the B–M algorithm determines the error-location polynomial, and by using the Chien
Search, its roots can be calculated, and the error positions are then determined. At this point,

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

134 Essentials of Error-Control Coding

error values can be obtained by using expressions (22)–(24), as done in the Euclidean algorithm.
There is however an equivalent method, described by Berlekamp [4] for evaluating error values.
This equivalent method requires the definition of the following polynomial [2]:

Z (X) = 1 + (s1 + σ1) X + (s2 + σ1s1 + σ2) X2 + · · · +
(sτ + σ1sτ−1 + σ2sτ−2 + · · · + στ) X τ (51)

Error values at position βi = α ji are calculated as

e ji = Z
(
β−1

i

)∏τ
k=1
k �=i

(
1 + βkβ

−1
i

) (52)

Example 5.7: Decode the received vector r = (000 000 011 000 111 000 000) for the RS
code CRS(7, 3), over GF(8) (prime polynomial pi (X) = 1 + X2 + X3), using the B–M algo-
rithm (see Example 5.5).

According to the received vector, converted into its polynomial form

r (X) = α6 X2 + α4 X4

the syndrome vector components are

s1 = r (α) = 0

s2 = r (α2) = α6

s3 = r (α3) = α4

s4 = r (α4) = α4

The B–M algorithm is applied by means of Table 5.5.
The error-location polynomial is then

σBM(X) = σ
(4)
BM(X) = 1 + α5 X + α6 X2

whose roots are β−1
1 = α3 = α−4 = α− j1 and β−1

2 = α5 = α−2 = α− j2 , and so error positions
are j1 = 4 and j2 = 2.

Table 5.5 B–M algorithm table, Example 5.7

μ σ
(μ)
BM(X) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 0 0 0

1 1 α6 1 0 −1

2 1 + α6 X 2 α4 2 0 1

3 1 + α5 X + α6 X 2 0 2 1

4 1 + α5 X + α6 X 2

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 135

The error-location polynomial σBM(X) = 1 + α5 X + α6 X2 is obtained as a function of the
error-location polynomial σ (X) = α + α6 X + X2 obtained for the same case by applying the
Euclidean algorithm in Example 5.5, Table 5.2, by multiplying σ (X) = α + α6 X + X2 by α6.
Therefore both polynomials have the same roots.

Calculation of the error values requires to form the polynomial

Z (X) = 1 + (s1 + σ1)X + (s2 + σ1s1 + σ2)X2 = 1 + α5 X + (α6 + α50 + α6)X2 = 1 + α5 X

Then

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = 1 + α5α3

(1 + α−5α3)
= α5

α
= α4

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = 1 + α5α5

(1 + α−3α5)
= α2

α3
= α6

Example 5.8: Decode the received vector r = (000 000 100 000 100 000 000) for an RS
code CRS(7, 3) over GF(23) (prime polynomial pi (X) = 1 + X2 + X3). In this example, the
error pattern presents the same error positions as in Example 5.7, but all errors are of value 1.

The received error vector represented in its polynomial form is

r (X) = X2 + X4

The syndrome vector components are

s1 = r (α) = α5

s2 = r (α2) = α3

s3 = r (α3) = α3

s4 = r (α4) = α6

The B–M algorithm is applied by means of Table 5.6.
The error-location polynomial is then

σBM(X) = σ
(4)
BM(X) = 1 + α5 X + α6 X2

Table 5.6 B–M algorithm table, Example 5.8

μ σ
(μ)
BM(X) dμ lμ μ − lμ ρ

−1 1 1 0 −1

0 1 α5 0 0 −1

1 1 + α5 X 0 1 0

2 1 + α5 X α4 1 1 1

3 1 + α5 X + α6 X 2 0 2 1 0

4 1 + α5 X + α6 X 2

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

136 Essentials of Error-Control Coding

which is the same error-location polynomial calculated in Example 5.7, where the error pattern
has errors at the same positions, but of different magnitude in comparison with the error pattern
of this example.

Roots of this polynomial are β−1
1 = α3 = α−4 = α− j1 and β−1

2 = α5 = α−2 = α− j2 , and
errors are at positions j1 = 4 and j2 = 2.

Error values are calculated by using the following polynomial:

Z (X) = 1 + (s1 + σ1)X + (s2 + σ1s1 + σ2)X2

= 1 + (α5 + α5)X + (α3 + α5α5 + α6)X2

= 1 + α6 X2

So

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = 1 + α6α6

(1 + α−5α3)
= α

α
= 1

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = 1 + α6α10

(1 + α−3α5)
= α3

α3
= 1

5.7.3 Relationship Between the Error-Location Polynomials of
the Euclidean and B–M Algorithms

Error-location polynomials defined in both of these algorithms are practically the same. As an
example, for the case of RS codes able to correct error patterns of size t = 2 or less, and for
the Euclidean algorithm, the error-location polynomial is equal to

σ (X) = (X − α− j1)(X − α− j2)

= (X + α− j1)(X + α− j2)

= (
X + β−1

1

)(
X + β−1

2

)
= (1 + β1 X)(1 + β2 X)/(β1β2)

= σBM(X)/(β1β2)

So, for the same error event, both the Euclidean and the B–M error-location polynomials
have the same roots, since they differ only by a constant factor. In general,

σ (X) = σBM(X)∏
τ
i=1βi

5.8 A Practical Application: Error-Control Coding for
the Compact Disk

5.8.1 Compact Disk Characteristics

The error-control coding system for the compact disk (CD) is perhaps one of the most interesting
applications of RS codes [8–15]. This system has been designed from the point of view of a

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 137

communication system, where the transmitter is the recording process, the channel is the disk
and the receiver is the CD reader. This storage technique is used for both digital and analog
information, like music for instance. In the case of dealing with analog signals, an analog-to-
digital conversion of that signal is required. This is done over the right and left channels of
a stereo audio signal. The sampling frequency is 44.1 kHz, allowing the conversion of high-
quality audio signals with spectral content up to 20 kHz into a digital format. The quantization
used is of 16 bits, so that the signal-to-quantization noise ratio is about 90 dB. Distortion is
therefore around 0.005%. The sampling frequency has been selected as a function of parameters
of the television signal,

{(625 − 37)/625} × 3 × 15,625 = 44.1 kHz

where 625 is the number of lines in PAL system, 37 is the number of unused lines, 3 is the
number of audio samples recorded per line and 15,625 Hz is the line frequency [8–14].

The digitized information is then protected against noise by using RS codes, which in the
case of the error-correction coding for the CD are two shortened versions of the RS code
CRS(255, 251), which operate over the Galois field GF(28), able to correct error patterns of
size t = 2 or less each, implemented in concatenated form.

The channel is a practical example of channels with burst errors, whose effect is diminished
in this coding technique by using concatenated RS codes and interleaving.

The two shortened versions of the RS code are concatenated by using an interleaver, giving
form to the so-called cross-interleaved Reed–Solomon code. The analog signal is sampled by
taking six samples from each of the audio channels, the right and left channels, thus forming
a group of 12 vectors of 16 bits each, that is, a vector of 24 bytes. This information is first
processed by an interleaver, and then input to the first encoder, which is a shortened version
CRS(28, 24) of the RS code CRS(255, 251). This encoder generates an output of 28 bytes that is
input to another interleaver, which in turn passes these 28-byte interleaved vectors to a second
encoder, another shortened version CRS(32, 28) of the RS code CRS(255, 251). The shortening
procedure is described in Section 5.9.

The coded information is added to another byte, containing synchronization information,
and is then modified by a process known as eight-to-fourteen modulation (EFM) before being
printed on the disk surface in digital format. This modulation is applied on the one hand to
remove low-frequency components in the spectrum of the signal so as to avoid interference with
the tracking control system needed for the reading of the disk, and on the other hand because
the CD reader uses self-synchronization, that is, obtains a synchronization signal from the
received signal itself, it is important to avoid long chains of ‘0’s, to keep the synchronizer
locked. In this particular case the EFM avoids the existence of chains of ‘0’s longer than 10.
EFM is essentially a conversion of vectors of 8 bits into vectors of 14 bits, such that the run
length limited (RLL) conditions are obeyed. These RLL conditions are such that there should
be at least two ‘0’s between any two ‘1’s, and at most ten ‘0’s between any two ‘1’s. Since
the vectors have to be concatenated, there is a need to add interconnecting vectors of 3 bits, in
order to maintain the RLL conditions over the concatenation of vectors. So finally each vector
of 8 bits is converted into a vector of 17 bits. At the end of the whole process, which involves
error-control coding, additional information and EFM, the six samples of audio stereo convert
into a sequence of 588 bits. This information is transferred to the disk surface at a speed of
4.332 Mbps.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

138 Essentials of Error-Control Coding

t

v(t)

Figure 5.1 Sampled audio signal

5.8.2 Channel Characteristics

The disk on which information is printed is a plastic disk covered by an aluminium–copper
alloy, with a diameter of 120 mm, a thickness of 1.2 mm and a printed pit thickness of 1.6 μm.
The CD reader has an AlGaAs laser of wavelength 0.8 μm that reads over the pits to detect the
printed value, at a constant speed of 1.25 m/s, and so the angular speed has to vary between
8 and 3.5 revolutions per second. This is done to keep the data rate at a constant value. The
error-control coding applied for CDs has a strong error-correction capability, and this makes
possible simple manufacture of disks because errors expected due to imperfections in the
printing process are automatically corrected by the CD reader [10–14].

5.8.3 Coding Procedure

As described in the previous section, the coding procedure for the CD is a combination of RS
codes and interleavers. The basic coding block is an array of six samples of 16 bits each taken
over the right and left audio channels, resulting in an uncoded vector of 24 bytes. Figure 5.1
represents the left or right audio signal that is sampled to form the uncoded vector.

These six samples are arranged in a vector as shown in Figure 5.2, where samples coming
from the right and left channels are identified.

Interleaver I1 takes the even-numbered samples for each stereo channel and separates them
from the odd-numbered samples, moving two time windows and filling the empty windows with
previous data. Encoder C1 is a shortened version CRS(28, 24) of the RS code CRS(255, 251)
that adds 4 bytes to the uncoded information, generating a vector of 28 bytes. This is the
so-called outer code.

Vector of 24 bytes

L L R R L L R R L L R R L L R R L L R R L L R R

Figure 5.2 Uncoded message format

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 139

Encoder C1 Interleaver I2 Encoder C2Interleaver I1 Interleaver E3

Figure 5.3 Coding procedure for the CD

Interleaver I2 generates a delay of 4 bytes over each processed vector with respect to the
previous vector, performing a variable-delay interleave for each position, but a constant-delay
interleave between consecutive positions. Encoder C2 is also a shortened version CRS(32, 28)
of the RS code CRS(255, 251) that adds 4 bytes to the interleaved and coded vector received
from interleaver I2, which is a vector of 28 bytes. This is the so-called inner code. After
encoding, the resulting interleaved and coded vector is of 32 bytes. Interleaver I3 performs
delays and some element inversions to facilitate the operation of an interpolation procedure
that takes place after decoding, and that makes imperceptible in the recovered audio signal any
errors produced by the whole decoder [8–10]. Figure 5.3 shows this interleaving and encoding
procedure.

The decoder performs the inverse of each of the operations described, in order to recover
the information.

5.9 Encoding for RS codes CRS(28, 24), CRS(32, 28) and CRS(255, 251)

In its original design an RS code is designed for operation over the Galois field GF(2m), and
its code length is n = 2m − 1. One interesting application of these codes is the design of RS
codes over the extended Galois field GF(28) = GF(256), because any element of a code vector
in these codes is itself a vector of 8 bits, or a byte. An RS code designed over this field, able
to correct any error pattern of size t = 2 or less, is the RS code CRS(255, 251). A table of
the codewords in this code would be enormous. However, the first page of the table (or set
of codewords at the top of the table) would contain codewords with ‘0’s only in the most
significant message positions. Therefore a shortened RS code can be formed by taking this
page of codewords and deleting the positions that are ‘0’s in all the codewords on this page.
More specifically, a shortened RS code can be constructed by setting sRS message symbols
to zero, where 1 ≤ sRS < k. Then the length of the code is n − sRS symbols, the number of
message symbols is k − sRS and the number of parity symbols is n − k as before, where all
the symbols remain in GF(2m). The generator polynomial and the error-correcting capability
of the shortened code is the same as that of the unshortened code, but the code is no longer
cyclic since not all cyclic shifts of codewords in the shortened code are also in the shortened
code. For this reason the shortened code is said to be quasi-cyclic.

In this way, an RS code can be designed without the restriction of having a fixed code
length n = 2m − 1, so that the code length can be significantly reduced, without losing any
good property of the main code. Thus, shortened RS codes CRS(28, 24) and CRS(32, 28)
are obtained from the original RS code CRS(255, 251) by setting sRS = 227 and sRS = 223,
respectively, and both the shortened codes have the same error-correction capability as that
of the main code CRS(255, 251), which is t = 2. The main code and the shortened versions of
this code all have a minimum distance dmin = 5. These two codes are the constituent codes of
the CD error-control coding system.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

140 Essentials of Error-Control Coding

For the main code,

q = 2m = 28

n = 2m − 1 = 255

n − k = 2t = 255 − 251 = 4

dmin = 2t + 1 = 5

The shortened versions of the main code CRS(255, 251), the codes CRS(28, 24) and
CRS(32, 28), all have the same parameters, except that the shortened codes have n = 28 and
k = 24 for the former, and n = 32 and k = 28 for the latter.

The coding procedure for the CD utilizes an interleaver between these two shortened RS
codes, which essentially creates a delayed distribution of the bytes in a given code vector. In this
way, the uncoded message of 24 bytes is first encoded by the shortened RS code CRS(28, 24)
that generates a code vector of 28 bytes, and then the interleaver forms a vector of 28 bytes
containing bytes from previous code vectors generated by the first encoder. In this interleaving
process, each element of the vector of 28 bytes generated by the first encoder is placed in
different vectors of 28 bytes position by position. The resulting vector of 28 bytes is input to
the encoder of the shortened RS code CRS(32, 28) that adds 4 bytes to the vector and generates
at the end a code vector of 32 bytes.

An example of the operation of these shortened RS codes is introduced here. The encoder
operates in systematic form. A message vector, expressed in polynomial form m(X), is multi-
plied by X2t = X4, as usually done in the systematic encoding of an RS code, generating the
polynomial X4m(X), which is then divided by the generator polynomial g(X) of the code. As
said above, this generator polynomial is the same as that of the main code, and is also the same
for both shortened versions of RS codes CRS(28, 24) and CRS(32, 28). Therefore, if t = 2, then

g(X) = (X + α)(X + α2)(X + α3)(X + α4)

g(X) = (X2 + α26 X + α3)(X2 + α28 X + α7)

g(X) = X4 + (α26 + α28)X3 + (α7 + α54)X2 + (α31 + α33)X + α10

g(X) = X4 + α76 X3 + α251 X2 + α81 X + α10 (53)

All operations performed in the calculation of this generator polynomial are done in GF(28).
This is the generator polynomial of RS codes CRS(255, 251), CRS(28, 24) and CRS(32, 28). As
explained above, systematic encoding of a given message polynomial m(X) consists in taking
the remainder polynomial of the division of X4m(X) by g(X). This remainder polynomial is
of degree 2t − 1 or less, and represents the 4 bytes added by this encoding.

As a result of both shortened RS codes having the same generator polynomial, in this
concatenated scheme, the code vector generated by the outer code, the shortened RS code
CRS(28, 24), has to be altered, in order to conveniently enable operation of the second encoder.
This is so because, as said above, the generator polynomial for both shortened RS codes in this
concatenation is the same. Indeed, after the encoding of a vector of 24 bytes into a code vector
of 28 bytes, the resulting code vector belongs to the code, and so it is a multiple of g(X). Even
after shifting by 4 bytes the positions of this code polynomial before the second encoding, it is
very likely that the shifted code vector of the inner code is still a code vector of the shortened

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 141

More significant 12 bytes Less significant 12 bytes

4 parity bytes

Figure 5.4 Code vector generated by the shortened RS code CRS(28, 24)

RS code CRS(32, 28). If this is so, then in the systematic encoding procedure for the second
(inner) encoder, it is very likely that the remainder, that is, the redundancy, will be a zero
polynomial, because the vector to be encoded already belongs to this code. For this reason, the
parity bytes generated by the outer code, the shortened RS code CRS(28, 24), are placed in the
middle of the code vector before the inner encoding process, as shown in Figure 5.4 [9, 15].

Example 5.9: An arbitrary message vector m of 24 bytes will be encoded by the shortened
RS code CRS(28, 24) [15]:

m = (
α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α2 α1 α0 0

α4 α3 α2 α1 α40 α30 α20 α10
)

The convention used here is that the most significant element of the Galois field GF(28) =
GF(256) is on the left, and the least significant element is on the right. The message vector
is composed of elements of the field; for example, element α2 has a binary representation
of the form (00100000). The resulting encoded vector generated by the shortened RS code
CRS(28, 24), expressed in a way that the 4 bytes of the redundancy are in the middle of the
code vector, is

c1 = (
α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249

α228 α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10
)

Part of the polynomial division involved in the calculation of this code vector is as follows:

X4 + α76 X3 + α251 X2 + α81 X + α10 α100 X27 + α90 X26 + α80 X25 + α70 X24 + α0 X23

+ 0.X22 + 0.X21 + α70 X20 . . .

α100 X27 + α176 X26 + α96 X25 + α181 X24 + α110 X23

+ α77 X26 + α225 X25 + α61 X24 + α126 X23

+ α77 X26 + α153 X25 + α73 X24 + α158 X23 + α87 X22

+ α93 X25 + α188 X24 + α161 X23 + α87 X22

...

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

142 Essentials of Error-Control Coding

The division stops after 23 operations. The last part of this division is

α218 X4 + α41 X3 + α83 X2 + α251 X

α218 X4 + α39 X3 + α284 X2 + α44 X + α228

+α89 X3 + α139 X2 + α249 X + α228

The remainder polynomial is the calculated redundancy, which is, as said above, placed in
the middle of the message vector.

The second encoder in this concatenated scheme, for the shortened RS code CRS(32, 28),
takes the code vector of 28 bytes generated by the first encoder, and operates in the same way
as that described above, in order to calculate the additional 4 bytes of redundancy. The number
of steps in the division is now 27, instead of 23. The encoded vector is finally of the form

c2 = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 α228

α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10 α144 α68 α240 α5)

Now the redundant bytes are placed as traditionally done at the end of the resulting code
vector, that is, in the least significant positions. It is noted here that in the real CD coding
procedure, there is an interleaver between these two concatenated encoders.

It is practically impossible to enumerate all the code vectors that form these codes, even
in the case of shortened RS codes. Any of the 256 elements of the field being used have the
possibility of being in each position of the message vector of 24 bytes. This means that the
total number of code vectors in the shortened RS code CRS(28, 24) is

2km = 224×8 = 6.27710 × 1057

This is the size of the input of the table of code vectors, and also the number of message vectors
that can be encoded. The shortened RS code CRS(32, 28) expands this vector space into a space
of the following number of code vectors:

2nm = 228×8 = 2.69599 × 1067

The relationship between these quantities is

2nm/2km = 228×8/224×8 = 232 = 4.29 × 109

which gives an idea of the expansion capability of the encoding procedure.

5.10 Decoding of RS Codes CRS(28, 24) and CRS(32, 28)

5.10.1 B–M Decoding

For both shortened versions of RS codes under analysis, the error-correction capability is t = 2,
and so the error pattern polynomial is of the form

e(X) = e j1 X j1 + e j2 X j2 (54)

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 143

where e j1 , e j2 , j1 and j2 are unknown variables. There are four unknown variables that can be
determined by finding the solution of a linearly independent system of four equations. After
determining the positions and values of these two errors, error-correction can be performed.

As explained in the previous section, the B–M algorithm [6, 7] can determine the error-
location polynomial and then, together with expressions (51) and (52), it is possible to determine
the positions and values of the errors. In this case, both shortened RS codes have the same
error-correction capability; that is, they are able to correct any error pattern of size t = 2 or
less. The B–M table in this case contains rows from μ = −1 to μ = 4. The error-location
polynomial for the shortened RS codes CRS (28, 24) and CRS (32, 28) is of the form

σ (X) = 1 + σ1 X + σ2 X2 (55)

The following polynomial is also necessary for evaluating the error values:

Z (X) = 1 + (S1 + σ)X + (S2 + σ1S1 + σ2)X2 (56)

Then

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

)
e j2 = Z

(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) (57)

The error polynomial is thus obtained, and is then added to the received polynomial r (X)
to perform error correction.

Example 5.10: Decoding for the concatenation of the RS codes CRS(28, 24) and CRS(32, 28)
of a code vector of 32 bytes. The received vector contains two errors at positions 8 and 16. In
the particular example, errors are erasures of the elements at those positions, represented in the
received vector with the symbol 0∗∗. The received vector r is the code vector calculated in
Example 5.9 that when affected by the above error pattern becomes

r = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 0∗∗

α2 α1 α0 0 α4 α3 α2 0∗∗ α40 α30 α20 α10 α144 α68 α240 α5)

The syndrome vector components are

s1 = α31, s2 = α132, s3 = α121, s4 = α133

These values are necessary for applying the B–M algorithm (see Table 5.7).
Therefore the error-location polynomial is equal to

σBM(X) = 1 + σ1 X + σ2 X2 = 1 + α208 X + α24 X2

whose roots are

β−1
1 = α239 β−1

2 = α247

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

144 Essentials of Error-Control Coding

Table 5.7 B–M algorithm table, Example 5.10

μ σ
(μ)
BM(X) dμ lμ μ − lμ

−1 1 1 0 −1

0 1 α31 0 0

1 1 + α31 X α126 1 0

2 1 + α101 X α128 1 1

3 1 + α101 X + α97 X 2 α32 2 1

4 1 + α208 X + α24 X 2 α168 2 2

Then the error-location numbers are

β1 = α−239 = α255−239 = α16 = α j1

β2 = α−247 = α255−247 = α8 = α j2

and so error positions are

j1 = 16 j2 = 8

The polynomial Z (X) is, for this case,

Z (X) = 1 + (s1 + σ)X + (s2 + σ1s1 + σ2)X2 = 1 + α165 X + α138 X2

and the error values at the error positions are

e j1 = Z
(
β−1

1

)∏2
k=1
k �=1

(
1 + βkβ

−1
1

) = α128

e j2 = Z
(
β−1

2

)∏2
k=1
k �=2

(
1 + βkβ

−1
2

) = α1 = α

The first decoder finds these two errors and adds the error polynomial

e(X) = e j1 X j1 + e j2 X j2 = α128 X16 + αX8

to the received polynomial, converting the received vector

r = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 0∗∗

α2 α1 α0 0 α4 α3 α2 0∗∗ α40 α30 α20 α10 α144 α68 α240 α5)

into the decoded vector

c = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249 α128

α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10 α144 α68 α240 α5)

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 145

The first decoder ends its operation by truncating the corresponding redundancy and by
passing to the second decoder the following vector:

c′ = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α89 α139 α249

α128 α2 α1 α0 0 α4 α3 α2 α1 α40 α30 α20 α10)

The second decoder calculates the syndrome of this vector, which turns out to be the all –
zero vector in this case, so that the vector is already a code vector. This example indicates
that the concatenation, in this way, of two RS codes does not make much sense if both are of
similar characteristics, since the error-correction capability of the scheme is almost equal to
that of one of the two RS codes involved. In only a few cases is the second decoder able to
correct errors effectively, as explained in more detail in Section 5.11 below. This emphasizes
the importance of the interleaver actually used in the coding procedure for the CD. Finally, the
decoded vector is

m̂ = (α100 α90 α80 α70 α0 0 0 α70 α60 α50 α200 α100 α2 α1 α0 0

α4 α3 α2 α1 α40 α30 α20 α10)

which is the true message vector transmitted in this example.

5.10.2 Alternative Decoding Methods

As pointed out in previous sections, any algorithm able to solve the system of equations (19)
can be used in a decoding algorithm for RS codes. Among these algorithms are the Euclidean
algorithm and the B–M algorithm, both introduced in previous sections in this chapter. In the
particular case of the concatenation of the RS codes CRS(28, 24) and CRS(32, 28), the error-
correction capability of each of these codes is t = 2, so that the error pattern polynomial is of
the form of (54), in which e j1 , e j2 , X j1 and X j2 are the unknown variables that are the positions
and values of the two possible errors. Since the number of unknown variables is 4, there must be
a system of at least four equations to uniquely determine these unknown variables. This system
of equations comes from the calculation of the four syndrome vector components obtained by
replacing the variable X in the expression of the received polynomial r (X) by the roots of the
corresponding Galois field α, α2, α3 and α4. The received vector is considered to be a valid
code vector if the four components of the syndrome vector are all equal to zero. Otherwise
there is at least one error in the received vector. If the number of errors is equal to the minimum
distance of the code, in this case dmin = 5, then the received vector may convert into another
code vector. In this case the error pattern is beyond the error-correction capability of the code.

The most well-known algorithms for decoding RS codes are those already introduced in
previous sections, the Euclidean and the B–M algorithms [2, 4, 6, 7], which can be implemented
in either the time domain (as described in this chapter) or the finite field transform (spectral)
domain [16]. Other algorithms can also be implemented. Among them, there exists a decoding
algorithm based on the direct solution of the corresponding system of equations, which, in this
particular case, is of low complexity because a maximum of only two errors (t = 2) have to
be determined.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

146 Essentials of Error-Control Coding

5.10.3 Direct Solution of Syndrome Equations

If the maximum number of errors to be corrected is relatively small, as it is in this case, then the
direct solution of the corresponding system of syndrome equations can be a simpler alternative
to the well-known decoding algorithms. In this case, the system of syndrome equations is of
the form

s1 = e(α) = e j1β1 + e j2β2

s2 = e(α2) = e j1β
2
1 + e j2β

2
2

s3 = e(α3) = e j1β
3
1 + e j2β

3
2

s4 = e(α4) = e j1β
4
1 + e j2β

4
2

(58)

where

β1 = α j1

β2 = α j2
(59)

From equation (58), we can form the terms

s1s3 + s2
2

s1s4 + s2s3

s2s4 + s2
3

(60)

and by multiplying these terms by β2
1 , β1 and 1, respectively, the following equation is obtained:(

s1s3 + s2
2

)
β2

1 + (s1s4 + s2s3)β1 + s2s4 + s2
3 = 0

In the same way, but multiplying now by β2
2 , β2 and 1, respectively, the following equation

is also obtained: (
s1s3 + s2

2

)
β2

2 + (s1s4 + s2s3) β2 + s2s4 + s2
3 = 0

These last two equations are almost the same, the difference being that the former is expressed
in β1 and the latter is expressed in β2. They can however be combined into one equation as(

s1s3 + s2
2

)
β2 + (s1s4 + s2s3) β + s2s4 + s2

3 = 0 (61)

where β = β1, β2 are the two roots of equation (61). Roots for this equation can be found by
using the Chien search over the possible values of β, which are the positions numbered from
0 to 31 (α0 and α31) for the case of the RS code CRS(32, 28), and from 0 to 27 (α0 and α27) for
the case of the RS code CRS(28, 24), leading to the solution of roots β1 and β2. Another way
is that once one of the roots has been determined, then the other one can be obtained by using

β2 = β1 + s1s4 + s2s3

s1s3 + s2
2

(62)

an expression that comes from the well-known relationship of the roots of a quadratic equation.
Once the values of the roots are determined, equation (58) can be solved to calculate the error

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 147

values. On the one hand,

s2 + s1β2 = e j1

(
β2

1 + β1β2

)
and thus

e j1 = (s2 + s1β2)/
(
β2

1 + β1β2

)
(63)

On the other hand,

s2 + s1β1 = e j2

(
β2

2 + β1β2

)
and thus

e j2 = (s2 + s1β1)/
(
β2

2 + β1β2

)
(64)

If the number of errors in the received vector is 2, then the solution is unique. Error correction
is then performed by adding the received vector to the error vector.

The complexity of this proposed direct-solution algorithm is less than the Euclidean algo-
rithm complexity, since equation (61) is directly obtained with the syndrome vector compo-
nents, and its roots are the error-location numbers β1 and β2, whose calculation leads to the
whole solution of the system. There is no need to look for the error-location polynomial σ (X).
It is just that the left-hand term in equation (61) is somehow an error-location polynomial for
this method, since if β is replaced by 1/X , and if the resulting polynomial is normalized to be
monic, then this expression becomes the error-location polynomial of the Euclidean algorithm
(see Examples 5.5 and 5.7).

If the number of errors is different from 2, then it is quite likely that the system of syn-
drome equations will be incorrectly solved. Therefore a suitable decoding process consists of
three steps to sequentially evaluate three different situations. First, the four syndrome vector
components have to be calculated. If all these components are equal to zero, the decoding
procedure adopts the received vector as a code vector. Otherwise the decoder assumes that
the received vector has only one error, and performs error correction according to expressions
(21), which are valid for determining the position and the value of one error. This procedure is
very simple. Expressions (21) can be used to calculate the magnitude and position of the error,
and then the error correction is performed by using (16). After performing this single-error
correction, the syndrome of the corrected vector is calculated. If the syndrome vector is the
all-zero vector, then the decoder considers that this correction was successful, and that the
corrected vector is a code vector. The decoding procedure halts at this step and proceeds to
the next received vector. Otherwise the decoder assumes that the received vector contains two
errors, and proceeds to calculate the roots of equation (61) by means of the Chien search. After
determining the values and positions of the two errors, error correction is again performed,
another corrected vector is evaluated and the syndrome vector components are determined for
this corrected vector. If after the assumption of a two-error pattern the correction is successful;
that is, the syndrome calculated over the corrected vector has all its components equal to zero,
then the corrected vector is considered as a code vector. Otherwise the received vector is left
as it has been received, and the decoder proceeds to decode the next received vector.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

148 Essentials of Error-Control Coding

Example 5.11: Solve Example 5.5, using expressions (61)–(64).
According to the received polynomial

r (X) = α6 X2 + α4 X4

the syndrome vector components are

s1 = r (α) = α8 + α8 = 0

s2 = r (α2) = α3 + α5 = α6

s3 = r (α3) = α5 + α2 = α4

s4 = r (α4) = 1 + α6 = α4

Equation (61) is of the form(
s1s3 + s2

2

)
β2 + (s1s4 + s2s3)β + s2s4 + s2

3

= [0.α4 + (α6)2]β2 + [0.α4 + α6α4]β + α6α4 + (α4)2

= α5β2 + α3β + α4

= 0

This equation has two roots, β1 = α2 and β2 = α4. This means that the first error is at position
j1 = 2, and the other error is at position j2 = 4.

Values of the errors are calculated by using (63) and (64):

e j1 = (s2 + s1β2)(
β2

1 + β1β2

) = α6 + 0.α4

α4 + α2α4
= α6

e j2 = (s2 + s1β1)(
β2

2 + β1β2

) = α6 + 0.α2

α8 + α2α4
= α4

The error polynomial is then

e(X) = α6 X2 + α4 X4

and the transmitted vector was the all-zero vector.

5.11 Importance of Interleaving

In general terms, concatenation of RS codes is not efficient without interleaving [8, 9, 15].
Burst errors are very common in the CD system, since information is printed in digital format
over the disk surface as a long and continuous spiral line, and so any scratch, rip or mark over
the surface can produce a serious damage of the printed information, that is, essentially a chain
or burst of errors in the digital sequence. Interleaving plays an important role in reducing the
effect of this sort of error event.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 149

At first sight, it seems that the concatenation of the two shortened RS codes of the CD system,
with error-correction capability t = 2 each, could have an error-correction capability of t = 4
errors in a code vector of 32 bytes, since the first encoder adds four redundancy elements to
correct two errors, and the second encoder does the same to correct another two errors. From
this point of view, it would be necessary to solve a system of eight syndrome equations, in
order to determine four error positions and their four error values.

However, the most common way of decoding a serial concatenation of codes is to first
perform the operation of decoding the inner code, and then to pass the resulting vector to
the outer decoder. In this case, most of the error patterns of size larger than 2, t > 2, make
the decoder of the RS code CRS(32, 28) collapse, because its corresponding system of syndrome
equations cannot be solved properly, and so this decoder passes the received vector to the
outer decoder, which in turn cannot correct that error pattern either. Thus the concatenated
system is in the end incapable of correcting more than a few error patterns of size t = 3 or
t = 4. The above explanation is true for the concatenation of two RS codes without using
interleaving in between the two codes. Here is noted the importance of the interleaving/de-
interleaving procedure, which causes a given burst error pattern, which is essentially a long
chain of consecutive errors, be distributed over many different consecutive code vectors, each
one containing a small number of bytes in error. Thus, for instance, a burst error pattern of three
errors, serially decoded without interleaving between the codes, generally cannot be corrected.
However, this error pattern is converted by the interleaving procedure into single error patterns
in three different received vectors, making the three-error event correctable, since the serial
decoders can manage error events of size t = 1. This is the essence of interleaving; that is, the
interleaving somehow randomizes and distributes a burst over many received vectors, reducing
the size of the error event per received vector.

By making use of the interleaver, the most common way of decoding in the CD system is
to use the first decoder in erasure mode; that is, in a mode where it first detects errors and then
erases them, before passing the resulting vector to the second decoder. This means that the first
decoder performs only error detection.

If the first decoder detects errors in the received vector, then it erases all its positions, de-
interleaves the erased received vector and passes it to the second decoder. The second decoder
knows which positions are erased, and therefore knows the positions of the possible errors. The
system of four syndrome equations of the second decoder is then able to determine the error
values in up to four of these error positions, thus performing the correction of error patterns of
size t = 4 or less. The relationship between the positions of the code vectors of the RS codes
CRS(32, 28) and CRS(28, 24) is illustrated in Figure 5.5.

The vector of 32 bytes is input to the first decoder. After determining the syndrome vector
and detecting errors, it erases and reorders the received vector, taking out the four parity bytes
at positions 0, 1, 2 and 3 of the vector of 32 bytes, and passes to the second decoder a vector of
28 bytes. This second decoder performs error correction and takes out bytes at positions 0, 1, 2
and 3 of the vector of 28 bytes, to obtain the decoded vector of 24 bytes. This procedure would
be implemented taking into account the interleaver between the two codes in the CD system.
Since the first decoder erases those received vectors found in error, and passes the erased vector
via the de-interleaver to the second decoder, the whole error-control coding scheme for the
CD is capable of correcting any error pattern of size t = 4 or less. The second decoder, which
corresponds to the RS code CRS(28, 24), corrects these error patterns by solving a system of

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

150 Essentials of Error-Control Coding

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

16

17

18

19

20

21

22

23

24

25

26

27

β′i

βi

Parity bytes of the RS code (28, 24)

Parity bytes of the RS code (32, 28)

Figure 5.5 Relationship between positions of code vectors of the RS codes CRS(32, 28) and CRS(28, 24)

equations of the form

s1 = r (α) = e j1β1 + e j2β2 + e j3β3 + e j4β4

s2 = r (α2) = e j1 (β1)2 + e j2 (β2)2 + e j3 (β3)2 + e j4 (β4)2 (65)

s3 = r (α3) = e j1 (β1)3 + e j2 (β2)3 + e j3 (β3)3 + e j4 (β4)3

s4 = r (α4) = e j1 (β1)4 + e j2 (β2)4 + e j3 (β3)4 + e j4 (β4)4

where positions βi = α ji , 0 ≤ ji < 28, are known, as they are passed from the first decoder to
the second one. It is necessary to determine only the values of errors e ji . Interleaving provides

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 151

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Maximum allowable size burst
error event

Erasure that collapses the
concatenated decoder

Figure 5.6 Limiting burst error pattern of error-correction coding for the CD

the whole coding system with a higher error-correction capability. This is briefly described in
Figure 5.6.

In Figure 5.6 the horizontal axis is the time sequential order in which bytes are transmitted,
whereas in the vertical axis the vector of 28 bytes received from the decoder of the RS code
CRS(32, 28) can be observed. This figure shows only the first 17 steps of the interleaving, and
only 9 bytes of the vector of 28 bytes. The whole array would have 112 columns and 28 rows,
and it would be an array of vectors that the first decoder passes to the second decoder. Each
vector is distributed by the de-interleaving process, placing its bytes with consecutive delays
of size 4D, D being the size of a byte. The first vector coming from the decoder of the RS
code CRS(32, 28) is for instance placed at positions numbered (1, 1), (2, 5), (3, 9), (4, 13),
etc., as depicted in Figure 5.6 with oblique lines. The 4 bytes provided by the first encoder are
discarded here. If for instance two vectors of 32 bytes were found to have errors and erased,
the second erased vector would be placed in positions numbered (1, 2), (2, 6), (3, 10), (4, 14),
and so on. When the decoder of the RS code CRS(32, 28) receives a vector of 32 bytes, it
calculates the syndrome vector components, and if this vector is different from the all-zero
vector, then instead of performing error correction, the decoder erases all the positions of the
received vector. After this, the decoder takes out the 4 bytes of redundancy and places as a
column the 28 resulting bytes, in 28 different columns, so that the first byte is the first in column
1, the second byte is the second in column 5, the third byte is the third in column 9, and so
on. Thus, the 28 received bytes of the received vector of 32 bytes that result from the removal
of the first four redundant bytes become single bytes in 1 of 28 different columns or vectors.
If for instance a burst error pattern of 32 bytes occurs, which could not be corrected if the
concatenated system does not use interleaving, it is converted by the interleaving procedure
into a series of 28 vectors with only one error in each, now able to be corrected by the second
decoder that corresponds to the RS code CRS(28, 24).

The erasure technique is not very efficient if the received vector has only few errors, because
the first decoder erases valid bytes, but if as happens usually in the CD channel a burst of
errors affects the received vector, the efficiency is very high. When a burst of 17 vectors of

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

152 Essentials of Error-Control Coding

32 bytes each affects the transmission, which is an error event that can be seen as affecting the
first 17 columns in Figure 5.6, an erasure of 5 bytes happens in the column 17 of that array,
which is a received vector for the second decoder. This column contains bytes of received
vectors numbered 1, 5, 9, 13 and 17, which were received and erased by the first decoder after
truncating 4 bytes of redundancy. The second decoder [RS code CRS(28, 24)] cannot correct
this error pattern. Therefore the whole system is able to correct a burst error event of 16 vectors
of 32 bytes, and so the total number of bits that can be corrected in a burst error pattern is

16 × 24 × 8 = 3072 bits

As seen in the above description of the interleaving procedure, there is a big difference in
the error-correction capability of the concatenated RS codes when interleaving is used. The
difference with respect to the concatenation of the same RS codes without interleaving is now
evident, as in this latter case, error events of more than 2 bytes in a given vector normally
cannot be corrected. As pointed out previously, the concatenation of the two RS codes without
interleaving has an error-correction capability similar to that of only one of the RS codes used.

RS codes demonstrate a very strong error-correction capability, especially against the burst
errors that happen in mobile communications and in the reading process of a CD. One of the
reasons for such a high correction capability is that RS codes are non-binary, and their error
correction is performed over an element of a Galois field, that is, over a group of bits, no matter
whether one or all of them are in error. This error-correction capability increases enormously
if these codes are implemented in serial concatenation with interleaving, which has the ability
to spread burst errors into several successive outer code vectors, converting burst errors into
random-like errors.

Bibliography and References

[1] Reed, I. S. and Solomon, G., “Polynomial codes over certain finite fields,” J. Soc. Ind.
Appl. Math., vol. 8, pp. 300–304, 1960.

[2] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[3] Blaum, M., A Course on Error Correcting Codes, 2001.
[4] Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[5] Chien, R. T., “Cyclic decoding procedure for the Bose–Chaudhuri–Hocquenghem codes,”

IEEE Tans. Inf. Theory, vol. IT-10, pp. 357–363, October 1964.
[6] Massey, J. L., “Step-by-step decoding of the Bose–Chaudhuri–Hocquenghem codes,”

IEEE Trans. Inf. Theory, vol. IT-11, pp. 580–585, October 1965.
[7] Berlekamp, E. R., “On decoding binary Bose–Chaudhuri–Hocquenghem codes,” IEEE

Trans. Inf. Theory, vol. IT-11, pp. 577–580, October 1965.
[8] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall,

Englewood Cliffs, New Jersey, 1993.
[9] Wicker, S. B. and Bhargava, V. K., Reed–Solomon Codes and Their Applications, IEEE

Press, New York, 1994.
[10] Peek, J. B. H., “Communications aspects of the compact disc audio system,” IEEE Com-

mun. Mag., vol. 23, no. 2, pp. 7–15, February 1985.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 153

[11] Hoeve, H., Timmermans, J. and Vries, L. B., “Error correction and concealment in the
compact disc system,” Philips Tech. Rev., vol. 40, no. 6, pp. 166–172, 1982.

[12] Immink, K. A. S., Coding Techniques for Digital Recorders, Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

[13] Heemskerk, J. P. J. and Immink, K. A. S., “Compact disc: System aspects and modulation,”
Philips Tech. Rev., vol. 40, pp. 157–164, 1982.

[14] Immink, K. A. S, Nijboer, J. G., Ogawa, H. and Odaka, K., “Method of coding binary
data,” United States Patent 4,501,000, February 1985.

[15] Castiñeira Moreira, J., Markarian, G. and Honary, B., An Improvement of Write/Read
Characteristics in Optical Storage Systems (E. G. Compact Discs and CD-Roms), MSc
Project Report, Lancaster University, Lancaster, United Kingdom, 1996.

[16] Blahut, R. E., “Transform techniques for error control codes,” IBM J. Res. Dev., vol. 23,
no. 3, May 1979.

[17] Sloane, N. J. A. and Peterson, W. W., The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, The Netherlands, 1998.

[18] Adámek, J., Foundations of Coding: Theory and Applications of Error-Correcting Codes
with an Introduction to Cryptography and Information Theory, Wiley Interscience, New
York, 1991.

[19] Massey, J. L. and Blahut, R. E., Communications and Cryptography: Two Sides of One
Tapestry, Kluwer, Massachusetts, 1994.

�

Problems

5.1 A cyclic code over GF(4) has the generator polynomial g(X) = X + 1, and is to
have a code length n = 3. The field elements are generated by the polynomial
α2 + α + 1 = 0. Find the generator matrix of the code in systematic form, the
minimum Hamming distance of the code and the syndrome vector if the received
vector is r = (α α α).

5.2 (a) Determine the generator polynomial of an RS code CRS(n, k) that operates
over the field GF(24) and is able to correct any error pattern of size t = 2 or
less.

(b) For the RS code of item (a), decode the received polynomial r (X) = αX3 +
α11 X7 by using the Euclidean algorithm.

(c) For the RS code of item (a), decode the received polynomial r (X) = α8 X5.

5.3 (a) Determine the generator polynomial of an RS code that operates over the field
GF(24) and is able to correct any error pattern of size t = 3 or less.

(b) Determine the values of n and k.

5.4 For the RS code of Problem 5.3, decode the received vector r = (000α7 00α3

00000α4 00) by using the Euclidean and the B–M algorithms.

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

154 Essentials of Error-Control Coding

5.5 Consider the RS code with symbols in GF(23), with three information symbols,
k = 3, code length n = 7, and the generator polynomial g(X) = (X + α2)(X + α3)
(X + α4)(X + α5) where α is a root of the primitive polynomial pi (X) = 1 + X + X3

used to represent the elements of GF(23).
(a) How many symbol errors can this code correct?
(b) Decode the received vector r = (0110111) to determine the transmitted code

vector.

5.6 The redundant symbols of a 1/2-rate RS code over GF(5) with code length 4 are
given by

c1 = 4k1 + 2k2

c2 = 3k1 + 3k2

(a) Find the number of code vectors, the generator matrix and the Hamming
distance of the code.

(b) Show that the vector (1134) is not a code vector, and find the closest code
vector.

5.7 An extended RS code over GF(22) has the following generator matrix:

G =
⎡⎣1 α 1 0 0

1 α2 0 1 0
1 1 0 0 1

⎤⎦
(a) What is the rate of the code, and its minimum Hamming distance?
(b) Is r = (α2 α α 0 1) a code vector of this code?

(c) The received vector r = (0 α 1 α2 0) contains a single error: find its
position and value.

5.8 Consider a shortened RS code CRS(8, 4) operating over the Galois field GF(24)
with error-correction capability t = 2.
(a) Obtain its generator polynomial, and then the code vector for the message

vector m = (α4 α7 0 α5).
(b) Consider now that this code vector is input to a second shortened RS code

CRS(12, 8), also operating over the same field, and with the same generator
polynomial and error-correction capability as the shortened RS code CRS(8, 4).
Determine the resulting concatenated code vector.

(c) Use either the Euclidean or the B–M decoding algorithm to decode the result-
ing concatenated code vector of item (b) when it is affected by either the error
pattern e(X) = X3 + X10 + X11 or the error pattern e(X) = X + X6 + X9.

5.9 The concatenated scheme of Problem 5.8 is now constructed using between the
two concatenated codes a convolutional interleaver like that seen in Figure P.5.1.
After the first encoding, a word of eight elements is generated. The first element
of this word is placed in the first position of the first column of the interleaver, the

OTE/SPH OTE/SPH
JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Reed–Solomon Codes 155

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

Codeword
from the
RS code

(8, 4)

Input word to
the RS code
(12, 8)

Figure P.5.1 An interleaver for a concatenation of two RS codes

second element in the second position of the second column of the interleaver, and
so on. Then the resulting word is input to the second encoder to finally generate
a codeword of 12 elements. Determine the increased error-correction capability
of this scheme with respect to the direct concatenation performed in Problem 5.8.

�

OTE/SPH OTE/SPH

JWBK102-05 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

156

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

6
Convolutional Codes

A second important technique in error-control coding is that of convolutional coding [1–6]. In
this type of coding the encoder output is not in block form, but is in the form of an encoded
sequence generated from an input information sequence. The encoded output sequence is
generated from present and previous message input elements, in a continuous encoding process
that creates redundancy relationships in the encoded sequence of elements. A given message
sequence generates a particular encoded sequence. The redundancy in the encoded sequence
is used by the corresponding decoder to infer the message sequence by performing error
correction. The whole set of encoded sequences form a convolutional code Cconv, where there
exists a bijective (one-to-one) relationship between message sequences and encoded sequences.

From this point of view, a sequence can also be considered as a vector. Then, message
sequences belong to a message vector space, and encoded sequences belong to a code vector
space. Message sequence vectors are shorter than code sequence vectors, and so there are
potentially many more possible code sequences than message sequences, which permits the
selection of code sequences containing redundancy, thus allowing errors to be corrected. The set
of selected sequences in the code vector space is the convolutional code. A suitable decoding
algorithm can allow us to determine the message sequence as a function of the received
sequence, which is the code sequence affected by the errors on the channel.

In general terms, convolutional encoding is designed so that its decoding can be performed
in some structured and simplified way. One of the design assumptions that simplifies decoding
is linearity of the code. For this reason, linear convolutional codes are preferred. The source
alphabet is taken from a finite field or Galois field GF(q). The message sequence is a sequence
of segments of k elements that are simultaneously input to the encoder. For each segment of k
elements that belongs to the extended vector space [GF(q)]k , the encoder generates a segment
of n elements, n > k, which belongs to the extended vector space [GF(q)]n . Unlike in block
coding, the n elements that form the encoded segment do not depend only on the segment
of k elements that are input at a given instant i , but also on the previous segments input at
instants i − 1, i − 2, . . . , i − K , where K is the memory of the encoder. The higher the level
of memory, the higher the complexity of the convolutional decoder, and the stronger the error-
correction capability of the convolutional code. Linear convolutional codes are a subspace
of dimension k of the vector space [GF(q)]n defined over GF(q). Linear convolutional codes

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

157

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

158 Essentials of Error-Control Coding

exist with elements from GF(q), but in most practical applications, however, message and
code sequences are composed of elements of the binary field GF(2), and the most common
structure of the corresponding convolutional code utilizes k = 1, n = 2. A convolutional code
with parameters n, k and K will be denoted as Cconv(n, k, K).

6.1 Linear Sequential Circuits

Linear sequential circuits are an important part of convolutional encoders. They are constructed
by using basic memory units, or delays, combined with adders and scalar multipliers that
operate over GF(q). These linear sequential circuits are also known as finite state sequential
machines (FSSMs) [7]. The number of memory units, or delays, defines the level of memory of
a given convolutional code Cconv(n, k, K), determining also its error-correction capability. Each
memory unit is assigned to a corresponding state of the FSSM. Variables in these machines
or circuits can be bits, or a vector of bits understood as an element of a field, group or ring
over which the FSSM is defined [9–15]. In these algebraic structures there is usually a binary
representation of the elements that adopt the form of a vector of components taken from GF(2).

FSSM analysis is usually performed by means of a rational transfer function G(D) =
P(D)/Q(D) of polynomial expressions in the D domain, called the delay domain, where
message and code sequences adopt the polynomial form M(D) and C(D), respectively. For
multiple input–multiple output FSSMs, the relationship between the message sequences and
the code sequences is described by a rational transfer function matrix G(D).

A convolutional encoder is basically a structure created using FSSMs that for a given input
sequence generates a given output sequence. The set of all the code sequences constitutes the
convolutional code Cconv.

6.2 Convolutional Codes and Encoders

A convolutional encoder takes a k-tuple mi of message elements as the input, and generates
the n-tuple ci of coded elements as the output at a given instant i , which depends not only on
the input k-tuple mi of the message at instant i but also on previous k-tuples, m j present at
instants j < i .

As an example, Figure 6.1 shows a convolutional encoder that at each instant i takes two
input elements and generates at the same instant three output elements. Rectangular blocks
identify memory units or delays of duration D, which is defined as the time unit of the FSSM,

m(2)

m(1)

c(3)

c(2)

c(1)

Figure 6.1 A convolutional encoder

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 159

m

c(2)

c(1)

Figure 6.2 Structure of a systematic convolutional encoder of rate Rc = 1/2

and is normally equal to the duration of an element of the Galois field GF(q) over which the
FSSM operates. The circles containing plus signs represent GF(q) adders, and it is also possible
to have GF(q) multipliers. In general terms, equivalent convolutional encoders can exist, that is,
convolutional encoders of different structures that generate the same convolutional code Cconv.

The quotient between the number of input elements k and the number of output elements
n defines what is called the rate of the convolutional code, Rc = k/n. In the case of the
convolutional encoder of Figure 6.1, for instance, this parameter is Rc = 2/3.

A differently structured convolutional encoder is shown in Figure 6.2, which is called a sys-
tematic encoder, since the message elements appear explicitly in the output sequence together
with the redundant elements. In this case the rate of the convolutional code is Rc = 1/2.

Properties of convolutional coding will be illustrated by means of an example based on the
convolutional encoder seen in Figure 6.3. This convolutional encoder is an FSSM that operates
over the binary field GF(2) where the input message k-tuple is simply one bit, m, and at each
instant i the encoder generates an output n-tuple of two bits c(1)

i and c(2)
i . The input sequence

mi = (m0, m1, m2, . . .) generates two output sequences c(1) = (c(1)
0 , c(1)

1 , c(1)
2 , . . .) and c(2) =

(c(2)
0 , c(2)

1 , c(2)
2 , . . .). These two output sequences can be obtained as the convolution between

the input sequence and the two impulse responses of the encoder defined for each of its
outputs. Impulse responses can be obtained by applying the unit impulse input sequence
m = (1, 0, 0, . . .) and observing the resulting outputs c(1)

i and c(2)
i . In general, a convolutional

encoder has K memory units (2 in this example), counting units in parallel (which occur when
k > 1) as a single unit, so that impulse responses extend for no more than K + 1 time units,
and are sequences of the form

g(1) =
(

g(1)
0 , g(1)

1 , g(1)
2 , . . . , g(1)

K

)
g(2) =

(
g(2)

0 , g(2)
1 , g(2)

2 , . . . , g(2)
K

)
(1)

m S1 S2

c(2)

c(1)

Figure 6.3 Convolutional encoder of rate Rc = 1/2

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

160 Essentials of Error-Control Coding

Table 6.1 Generator sequences for the FSSM of Figure 6.3

i m S1 S2 c(1) c(2)

0 1 0 0 1 1

1 0 1 0 0 1

2 0 0 1 1 1

3 0 0 0 0 0

Impulse response analysis can be applied to the convolutional encoder, as seen in Figure 6.3,
assuming that the FSSM starts in the all-zero state (00). Any state of the FSSM is described by
the state vectors S1 = (s01, s11, s21, . . .) and S2 = (s02, s12, s22, . . .). For a given input sequence,
the evolution of the FSSM can be easily observed by means of a table that describes all the
parameters of that FSSM. Table 6.1 shows the evolution of the FSSM of Figure 6.3, for the
unit impulse input.

The value K + 1 (3 for this example) is called the constraint length of the convolutional
code Cconv. It is measured in time units, and is the maximum number of time units that a given
bit of the input sequence can influence the output sequence values.

If the input is the unit impulse, then c(1) = g(1) and c(2) = g(2). For this example,

g(1) = (101)

g(2) = (111)

These vectors describe the impulse responses of the FSSM and they are also a description of
the connections of the structure of the FSSM, so that when a given memory unit is connected
to an output, the corresponding bit in the impulse response vector is ‘1’, whereas for an absent
connection this bit is ‘0’.

The impulse responses are also known as the generator sequences of the convolutional code
Cconv. From this point of view, it is possible to express the encoded sequences as

c(1) = u ∗ g(1)

c(2) = u ∗ g(2) (2)

where the operator ‘∗’ denotes discrete convolution modulo 2. This means that for an integer
number l ≥ 0,

c(j)
l =

K∑
i=0

ml−i g
(j)
i = ml g

(j)
0 +ml−1g(j)

1 + · · · + ml−K g(j)
K (3)

In the particular case of the example under analysis, the FSSM of Figure 6.3,

c(1)
l =

2∑
i=0

ml−i g
(1)
i = ml + ml−2

c(2)
l =

2∑
i=0

ml−i g
(2)
i = ml+ml−1 + ml−2

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 161

Both output sequences are concatenated to form a unique output or code sequence:

c =
(

c(1)
0 c(2)

0 , c(1)
1 c(2)

1 , c(1)
2 c(2)

2 , . . .
)

6.3 Description in the D-Transform Domain

As is well known in the field of signals and their spectra, convolution in the time domain
becomes multiplication in the spectral domain. This suggests a better description of convo-
lutional codes based on expressions given in the D-transform domain. In this domain, also
called the delay domain D, convolution (∗) becomes multiplication, so that sequences adopt a
polynomial form expressed in the variable D, where the exponent of this variable determines
the position of the element in the sequence represented.

The message sequence m(l) = (m(l)
0 , m(l)

1 , m(l)
2 , . . .) can be represented in polynomial form

as

M (l)(D) = m(l)
0 + m(l)

1 D + m(l)
2 D2 + · · · (4)

Delay D can be interpreted as a shift parameter, and it plays the same role as the term Z−1 in
the Z transform.

Impulse responses can also adopt a polynomial form

g(j)
i = (g(j)

i0 , g(j)
i1 , g(j)

i2 , . . .) (5)

G(j)
i (D) = g(j)

i0 + g(j)
i1 D + g(j)

i2 D2 + · · · (6)

Polynomial expressions of the output sequences can be then obtained as a function of the above
expressions. Thus, and for the example of the FSSM in Figure 6.3,

C (1)(D) = M(D)G(1)(D) = M(D)(1 + D2) = c(1)
0 + c(1)

1 D + c(1)
2 D2 + · · ·

C (2)(D) = M(D)G(2)(D) = M(D)(1 + D + D2) = c(2)
0 + c(2)

1 D + c(2)
2 D2 + · · · (7)

By multiplexing output polynomials C (1)(D) and C (2)(D), the code sequence in polynomial
form is finally obtained as

Cm(D) = C (1)(D2) + DC (2)(D2) (8)

Polynomial expressions of the impulse responses also indicate that the presence of a con-
nection is described in polynomial form by the existence of the corresponding power of D
(this term is multiplied by a ‘1’), while the absence of connection is seen as the absence of
such a term (this term is multiplied by a ‘0’). Polynomial expressions of the impulse responses
can also be considered as generator polynomials for each output sequence of the FSSM.

For more general structures of FSSMs or convolutional encoders where there is more than
one input and more than one output, the relationship between input i and output j is given by
the corresponding transfer function G(j)

i (D). In this input-to-output path the number of delays
or memory units D is called the length of the register. This number is equal to the degree of the
corresponding generator polynomial for such a path. To make sense, the last delay or register

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

162 Essentials of Error-Control Coding

stage should be connected to at least one output, so that the length Ki for the i th register is
defined as [1]

Ki = max
1≤ j≤n

{
deg

(
g(j)

i (D)
)}

1 ≤ i ≤ k (9)

The memory order of the encoder K is obtained as a function of the above definition as

K = max
1≤i≤k

Ki = max
1≤ j≤n

1≤i≤k

{
deg

(
g(j)

i (D)
)}

(10)

If M (i)(D) is the polynomial expression of the input sequence at input i and C (j)(D) is the
polynomial expression of the output j generated by this input, then the polynomial G(j)

i (D) =
C (j)(D)/M (i)(D) is the transfer function that relates input i and output j . In a more general
FSSM structure for which there are k inputs and n outputs, there will be kn transfer functions
that can be arranged in matrix form as

G(D) =

⎡⎢⎢⎢⎢⎢⎢⎣
G(1)

1 (D) G(2)
1 (D) · · · G(n)

1 (D)

G(1)
2 (D) G(2)

2 (D) · · · G(n)
2 (D)

...
...

...

G(1)
k (D) G(2)

k (D) · · · G(n)
k (D)

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

A convolutional code Cconv(n, k, K) produces an output sequence expressed in polynomial
form as

C(D) = M(D)G(D) (12)

where

M(D) = (
M (1)(D), M (2)(D), . . . , M (k)(D)

)
(13)

and

C(D) = (
C (1)(D), C (2)(D), . . . , C (n)(D)

)
(14)

so that after multiplexing,

Cm(D) = C (1)(Dn) + DC (2)(Dn) + · · · + Dn−1C (n)(Dn) (15)

Example 6.1: For the convolutional code Cconv(2, 1, 2) whose encoder is seen in Figure 6.3,
determine the polynomial expression of the output for the input sequence (100011).

The input sequence in polynomial form is

M(D) = 1 + D4 + D5

The generator matrix is of the form

G(D) = [
1 + D2 1 + D + D2

]

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 163

S1
(1)

S1
(2)

c(2)

c(3)

c(1)

m(2)

m(1)

Figure 6.4 Encoder of convolutional code Cconv (3, 2, 1) of code rate Rc = 2/3

Then

C(D) = (
C (1)(D) C (2)(D)

)
= [

1 + D4 + D5
] [

1 + D2 1 + D + D2
]

= [
1 + D2 + D4 + D5 + D6 + D7 1 + D + D2 + D4 + D7

]
c(1) = (10101111)

c(2) = (11101001)

Finally, the output sequence is

c = (11, 01, 11, 00, 11, 10, 10, 11) .

Note that each output sequence of the encoder has K bits more than the corresponding input
sequence, making the code sequence 2K bits longer. The reason is that the output sequences
are determined by the generator sequences of the code, which in turn represent the impulse
responses of the encoder. It is as if K zeros were added to the input sequence to finally determine
the output sequence.

For the encoder of the convolutional code Cconv(3, 2, 1) seen in Figure 6.4, the input is now
a vector of 2 bits that generates an output vector of 3 bits at each instant i . Note that the input
bits are simultaneously applied, and output bits are consequently simultaneously generated at
each time instant. This code is of rate Rc = 2/3. The memory of this FSSM is defined by one
delay or register stage in each branch of the structure.

The input vector is

m =
(

m(1)
0 m(2)

0 , m(1)
1 m(2)

1 , m(1)
2 m(2)

2 , . . .
)

(16)

and it is constructed using the input sequences

m(1) =
(

m(1)
0 , m(1)

1 , m(1)
2 , . . .

)
m(2) =

(
m(2)

0 , m(2)
1 , m(2)

2 , . . .
)

(17)

Impulse responses are described as

g(j)
i =

(
g(j)

i,0 , g(j)
i,1 , . . . , g(j)

i,K

)
(18)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

164 Essentials of Error-Control Coding

Table 6.2 Response to the unit impulse input m(1)

i m(1) s(1)
1 s(2)

1 c(1) c(2) c(3)

0 1 0 0 1 1 1

1 0 1 0 1 1 0

2 0 0 0 0 0 0

which relate input i to output j . The impulse responses for the first input are given in Table 6.2.
In this case the other input is set to zero m(2)

i = 0, ∀i . Impulse responses for the second input
are given in Table 6.3.

In this case the other input is set to zero, m(1)
i = 0, ∀i .

Then

g(1)
1 = (1 1) g(2)

1 = (1 1) g(3)
1 = (1 0)

g(1)
2 = (0 1) g(2)

2 = (0 0) g(3)
2 = (1 1)

and the encoding equations can be expressed as

c(1)
l = m(1)

l + m(1)
l−1 + m(2)

l−1

c(2)
l = m(1)

l + m(1)
l−1

c(3)
l = m(1)

l + m(2)
l + m(2)

l−1

Thus, the code sequence is of the form

c =
(

c(1)
0 c(2)

0 c(3)
0 , c(1)

1 c(2)
1 c(3)

1 , c(1)
2 c(2)

2 c(3)
2 , . . .

)
Expressions for the generator polynomials in the D domain are

G(1)
1 (D) = 1 + D G(2)

1 (D) = 1 + D G(3)
1 (D) = 1

G(1)
2 (D) = D G(2)

2 (D) = 0 G(3)
2 (D) = 1 + D

Thus, and if the input vector is for instance equal to

m(1) = (101) m(2) = (011)

Table 6.3 Response to the unit impulse input m(2)

i m(2) s(1)
1 s(2)

1 c(1) c(2) c(3)

0 1 0 0 0 0 1

1 0 1 0 1 0 1

2 0 0 0 0 0 0

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 165

then the corresponding polynomial expression is

M (1)(D) = 1 + D2 M (2)(D) = D + D2

C (1)(D) = M (1)(D)G(1)
1 (D) + M (2)(D)G(1)

2 (D)

= (1 + D2)(1 + D) + (D + D2)D

= 1 + D

C (2)(D) = M (1)(D)G(2)
1 (D) + M (2)(D)G(2)

2 (D)

= (1 + D2)(1 + D) + (D + D2)0

= 1 + D + D2 + D3

C (3)(D) = M (1)(D)G(3)
1 (D) + M (2)(D)G(3)

2 (D)

= (1 + D2)(1) + (D + D2)(1 + D)

= 1 + D + D2 + D3

and the code sequence is

c = (111, 111, 011, 011)

The general structure of the encoder can be designed to have different memory levels Ki in
each of its branches. In this case, as noted previously, the memory of the encoder is defined as
the maximum register length. If Ki is the register length of the i th register, then the memory
order is defined as [1]

K = max
1≤i≤k

(Ki) (19)

For a given convolutional code Cconv(n, k, K), the input vector is a sequence of kL informa-
tion bits and the code sequence contains N = nL + nK = n(L + K) bits. The nK additional
bits are related to the memory of the FSSM or encoder. The amount

nA = n(K + 1) (20)

is the maximum number of output bits that a given input bit can influence. Then nA is the
constraint length of the code, measured in bits.

In general terms, an input of k bits generates an output of n bits, and it is said that the rate
of a convolutional code Cconv(n, k, K) is k/n. However, and for a given finite input sequence
of length L , the corresponding output sequence will contain n(L + K) bits, as after the input
of the L vectors of k bits each, a sequence of ‘0’s is input to empty all the registers of the
FSSM. From this point of view, the operation of the convolutional code is similar to that of a
block code, and the code rate would be

kL

n(L + K)
(21)

This number tends to k/n for a sufficiently large input sequence of length L � K .

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

166 Essentials of Error-Control Coding

6.4 Convolutional Encoder Representations

6.4.1 Representation of Connections

As seen for instance in Figure 6.3, which is the encoder of a convolutional code Cconv(2, 1, 2), in
each clock cycle the bits contained in each register stage are right shifted to the following stage,
and, on the other hand, the two outputs are sampled to generate the two output bits for each input
bit. Output values depend on the way the registers are connected to the outputs. A different
output sequence would be obtained if these connections were made in a different manner.

One form of describing a convolutional code Cconv(n, k, K) is by means of a vector de-
scription of the connections that the FSSM has, which are directly described by the vector
representation of the generator polynomials g(1) and g(2) that correspond to the upper and
lower branches of the FSSM of Figure 6.3, respectively. In this description, a ‘1’ means that
there is connection, and a ‘0’ means that the corresponding register is not connected:

g(1) = (1 0 1)

g(2) = (1 1 1)

For a given input sequence, this code description can provide the corresponding output
sequence. This can be seen by implementing a table. For example, Table 6.4 describes the
register contents, the present state, the future state and the output values c(1) and c(2) when the
input sequence is m = (100011), for the FSSM of Figure 6.3.

The resulting output sequence is c = (1101110011101011). Table 6.5 is a useful tool for
constructing the corresponding state diagram of the encoder of Figure 6.3.

Note that in Table 6.5 there is no relationship between a row and the next or previous rows,
and so in this sense it is different from Table 6.4, where this relationship indeed exists.

6.4.2 State Diagram Representation

The state of the FSSM that forms the encoder of a 1/n-rate convolutional code is defined as the
contents of its K register stages. The future state is obtained by shifting one delay D to the right
the contents of the present state so that the empty stage generated in the left-most position

Table 6.4 Output sequence for a given input sequence to the encoder of Figure 6.3

Input mi State at ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

1 0 0 1 0 1 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 0 0 0 0

1 0 0 1 0 1 1

1 1 0 1 1 1 0

0 1 1 0 1 1 0

0 0 1 0 0 1 1

0 0 0 0 0 0 0

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 167

Table 6.5 Table of all the possible transitions for constructing a state diagram of a

convolutional encoder

Input mi State at ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

0 0 0 0 0 0 0

1 0 0 1 0 1 1

0 0 1 0 0 1 1

1 0 1 1 0 0 0

0 1 0 0 1 0 1

1 1 0 1 1 1 0

0 1 1 0 1 1 0

1 1 1 1 1 0 1

is filled with the value of the input bit at that time instant. The state diagram is a pictorial
representation of the evolution of the state sequences for these codes. The FSSM encoder of
Figure 6.3 has, for instance, the state diagram shown in Figure 6.5 [2, 4].

In this particular case there are four states, labelled Sa = 00, Sb = 10, Sc = 01 and Sd = 11.
There are only two transitions emerging from and arriving at any of these states, because there
are only two possible input values; that is, the input is either ‘1’ or ‘’0’. Transitions in Figure
6.5 by convention are shown in input–output form.

The state diagram of a convolutional encoder shows an interesting characteristic of these
codes. As described above, there are only two transitions emerging from a given state, but there
are, in this case, four states. Therefore there is some level of memory related to this fact, since
if the FSSM is in a given state, it is not possible to go to any other state in an arbitrary manner,
but only to two specific states as shown in the diagram. This sort of memory will be useful in
determining that some transitions are not allowed in the decoded sequence, thus assisting the
decisions required for error correction.

Sa = 0 0

0/00

1/0 1

Sb = 1 0 Sc = 0 1

Sd = 1 1

0/0 1

1/0 0

0/1 0

0/1 1

1/1 0

1/1 1

Figure 6.5 State diagram for the convolutional encoder of Figure 6.3

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

168 Essentials of Error-Control Coding

6.4.3 Trellis Representation

A way of representing systems based on FSSMs is the tree diagram [1, 2, 4]. This representation
is useful to indicate the start of the state sequence, but however the repetitive structure of state
evolution is not clearly presented in this case. One of the interesting characteristics of the
state evolution of a convolutional code is precisely that after K + 1 initial transitions, the state
structure becomes repetitive, where K + 1 is the constraint length of the code.

On the one hand, the state diagram clearly shows the repetitive structure of the state evolution
of a convolutional code, but it is not clear for describing the initial evolution. On the other hand,
the tree clearly shows the initial sequence, but not the repetitive structure of the state evolution.
A representation that clearly describes these two different parts of the state structure of a given
convolutional code is the so-called trellis diagram. Figure 6.6 depicts the trellis diagram of the
convolutional code Cconv(2, 1, 2) being used as an example.

The same convention used in the state diagram for denoting transitions is also adopted in
this trellis representation. This trellis diagram is a state versus time instant representation.
There are 2K possible states in this diagram. As seen in Figure 6.6, the state structure becomes
repetitive after time instant t4. There are two branches emerging from and arriving at a given
state, which correspond to transitions produced by the two possible inputs to the FSSM.

6.5 Convolutional Codes in Systematic Form

In a systematic code, message information can be seen and directly extracted from the encoded
information. In the case of a convolutional code, this means that

c(i) = m(i), i = 1, 2, . . . , k (22)

g(j)
i =

{
1 j = i
0 j �= i

(23)

t1 t2 t3 t4 t5 t6
0/00 0/00 0/00 0/00 0/00

1/00 1/00 1/00

1/11 1/11 1/11 1/11 1/11

0/11 0/11 0/11

1/01 1/01 1/01

0/01 0/01 0/01 0/01

1/10
1/10

0/10 0/10 0/10
1/10 1/10

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.6 Trellis representation of the convolutional code of Figure 6.3

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 169

m(1)

c(1)

c(2)

Figure 6.7 A systematic convolutional encoder

The transfer function for a systematic convolutional code is of the form

G(D) =

⎡⎢⎢⎢⎣
1 0 · · · 0 G(k+1)

1 (D) G(k+2)
1 (D) · · · G(n)

1 (D)

0 1 · · · 0 G(k+1)
2 (D) G(k+2)

2 (D) · · · G(n)
2 (D)

...
...

...
...

...
...

0 0 · · · 1 G(k+1)
k (D) G(k+2)

k (D) · · · G(n)
k (D)

⎤⎥⎥⎥⎦ (24)

Example 6.2: Determine the transfer function of the systematic convolutional code as shown
in Figure 6.7, and then obtain the code sequence for the input sequence m = (1101).

The transfer function in this case is

G(D) = [
1 D + D2

]
and so the code sequence for the given input sequence, which in polynomial form is m(D) =
1 + D + D3, is obtained from

C (1)(D) = M(D)G(1)(D) = 1 + D + D3

C (2)(D) = M(D)G(2)(D) = (
1 + D + D3

) (
D + D2

) = D + D3 + D4 + D5

Then

c = (10, 11, 00, 11, 01, 01)

In the case of systematic convolutional codes, there is no need to have an inverse transfer
function decoder to obtain the input sequence, because this is directly read from the code
sequence. However, for non-systematic convolutional codes, there needs to be an n × k matrix
G−1(D), such that

G(D) ◦ G−1(D) = Ik Dl for some l ≥ 0 (25)

where Ik is the identity matrix of size k × k. For a given convolutional code Cconv(n, 1, K), it
can be shown that its matrix G(D) has an inverse G−1(D) if and only if [16]

HCF
{
G(1)(D), G(2)(D), . . . , G(n)(D)

} = Dl , l ≥ 0 (26)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

170 Essentials of Error-Control Coding

A convolutional code characterized by its transfer function matrix G(D), for which an
inverse matrix G−1(D) exists, also has the property of being non-catastrophic [16].

Example 6.3: Verify that the following convolutional code Cconv(2, 1, 2) is catastrophic:

g(1)(D) = 1 + D

g(2)(D) = 1 + D2

Since

HCF
{
G(1)(D), G(2)(D)

} = 1 + D �= Dl , l ≥ 0

and applying the infinite input sequence

1 + D + D2 + · · · = 1

1 + D

the outputs for this encoder will be

c(1)(D) = 1

c(2)(D) = 1 + D

which give the finite output sequence c = (11, 01), followed by an infinite sequence of ‘0’s.
Let us assume that the above infinite input sequence is transmitted, and that the encoder

generates the corresponding finite sequence c = (11, 01) followed by ‘0’s. Let us also assume
that, in the channel, the transmitted sequence is affected by errors in such a way that it is
converted into the sequence c = (00, 00) followed by ‘0’s. The decoder will receive the all-
zero sequence, and in a linear code, this corresponds to the all-zero input sequence. Therefore,
the decoder will decode the infinite input sequence 1 + D + D2 + · · · = 1/ (1 + D) as the
all-zero input, thus producing an infinite number of errors, a catastrophic result.

Another characteristic of catastrophic convolutional codes is that their state diagrams show
loops of zero weight at states that are different from the self-loop at state Sa. A very in-
teresting characteristic of systematic linear convolutional codes is that they are inherently
non-catastrophic [16].

6.6 General Structure of Finite Impulse Response and Infinite Impulse
Response FSSMs

6.6.1 Finite Impulse Response FSSMs

Convolutional encoders are usually constructed using FSSMs. Figure 6.8 shows the structure
of a finite impulse response (FIR) FSSM that can be used as part of a convolutional encoder.

The coefficients of these structures are taken from the Galois field over which they are
defined, ai ∈ GF(q). In the particular case of the binary field GF(2), they can be equal to one

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 171

a1a0 a2

S1

S0

S2

an

m

Sn

c

Figure 6.8 An FIR FSSM

or zero. The transfer function for the FIR FSSM, as shown in Figure 6.8, is

G(D) = C(D)

M(D)
= a0 + a1 D + a2 D2 + · · · + an Dn (27)

A transfer function for a particular case is obtained in the following section, and this proce-
dure for obtaining transfer functions can be easily generalized to other cases.

6.6.2 Infinite Impulse Response FSSM

An infinite impulse response (IIR) structure contains feedback coefficients that connect the
outputs of the registers to an adder, placed at the input. A general structure for IIR FSSMs is
shown in Figure 6.9.

The transfer function for this structure is shown to be

G(D) = C(D)

M(D)
= a0 + a1 D + a2 D2 + · · · + an Dn

1 + f1 D + f2 D2 + · · · + fn Dn
(28)

a0 a1 a2 an

S0

S1 S2 Sn

fnf2f1

m

c

Figure 6.9 An IIR FSSM

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

172 Essentials of Error-Control Coding

In general, convolutional encoders can be constructed by using either FIR or IIR FSSMs,
and can generate systematic or non-systematic convolutional codes. There is a relationship
between the systematic and the non-systematic form of a given convolutional encoder.

6.7 State Transfer Function Matrix: Calculation of the
Transfer Function

6.7.1 State Transfer Function for FIR FSSMs

The state transfer function for a convolutional encoder or FSSM can be defined in the same
way as for the input–output transfer function, a definition that is more conveniently done in the
D domain. In order to introduce the state transfer function, the following FSSM, which is part
of the encoder shown in Figure 6.3, is now presented in Figure 6.10, with a slightly different
notation, which in this case shows the variables involved in the discrete time domain.

In this FSSM,

m(k) = s0(k)

c(1)(k) = s0(k) + s2(k) = s0(k) + s0(k − 2)

In the D domain,

C (1)(D) = S0(D) + D2S0(D) = (1 + D2)S0(D) = (1 + D2)M(D)

S0(D) = M(D)

where

s1(k) = s0(k − 1)

s2(k) = s0(k − 2)

S1(D) = DS0(D) = DM(D)

S2(D) = D2S0(D) = D2 M(D)

The transfer function is

G(D) = C (1)(D)

M(D)
= 1 + D2

s0(k) s1(k) s2(k)

m(k)

c(1)(k)

s0(k – 1) s0(k – 2)

Figure 6.10 FIR FSSM in the discrete time domain

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 173

and the state transfer function is

S(D) = [
S0(D)/M(D) S1(D)/M(D) S2(D) /M(D)

] = [
1 D D2

]
The state transfer function can be used to determine the evolution of the states of the corre-

sponding FSSM with respect to a particular input sequence. In the case of the unit impulse input
sequence, M(D) = 1, this state transfer function describes the state sequence as sequences in
the D domain. When the FSSM is an FIR FSSM, the impulse response additionally describes
the shortest state sequence.

In this particular example, the state of the FSSM is defined by the pair (S1(D) S2(D)). Now,
and for this example, the state impulse response is[

S0(D) S1(D) S2(D)
] = [

1 D D2
] • M(D)[

S0(D) S1(D) S2(D)
] = [

1 D D2
] • 1 = [

1 D D2
]

S0 = (1, 0, 0, 0, 0, 0, . . .)

S1 = (0, 1, 0, 0, 0, 0, . . .)

S2 = (0, 0, 1, 0, 0, 0, . . .)

Therefore the state transitions vector for the impulse response is (S1 S2) =
(00, 10, 01, 00, 00, . . .), which describes the shortest state transition of the FSSM, and is also
the shortest sequence as seen in the corresponding trellis in Figure 6.6, described by the state
sequence SaSbScSa. The output sequence of the FSSM is

C (1)(D) = (1 + D2)m(D) = 1 + D2

This output is of weight 2.
The state transfer function is useful for determining analytically the state sequence of an

FSSM or convolutional encoder. For FIR FSSMs, the state S0 completely describes the state
evolution of the FSSM, and since S0(D) = M(D), the input sequence completely determines
the state sequence.

6.7.2 State Transfer Function for IIR FSSMs

Let us consider the FSSM seen in Figure 6.11, which, as will be seen in the following section, is
part of the systematic convolutional encoder that is equivalent to the encoder shown in Figure
6.3. In this figure variables are described in the discrete time domain.

A similar analysis to that presented for FIR FSSMs is the following:

s0(k) = m(k) + s2(k)

where

s1(k) = s0(k − 1)

s2(k) = s0(k − 2)

c(k) = s0(k) + s0(k − 1) + s0(k − 2)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

174 Essentials of Error-Control Coding

s0(k) s1(k)
s2(k)

m(k)

c(k)

s0(k – 1) s0(k – 2)

Figure 6.11 An IIR FSSM

In the D domain,

S1(D) = DS0(D)

S2(D) = D2S0(D)

S0(D) = M(D) + S2(D) = M(D) + D2S0(D)

S0(D) + D2S0(D) = M(D)

S0(D) = M(D)

1 + D2

C(D) = S0(D) + DS0(D) + D2S0(D) = (1 + D + D2)S0(D) = (1 + D + D2)
M(D)

1 + D2

The transfer function is

G(D) = C(D)

M(D)
= 1 + D + D2

1 + D2

and the state transfer function is [15]

S(D) =
[

S0(D)

M(D)

S1(D)

M(D)

S2(D)

M(D)

]
=

[
1

1 + D2

D

1 + D2

D2

1 + D2

]
The impulse response is now infinite, and it does not correspond to the shortest sequence of

the FSSM. The state transfer function can be used to identify which is the input for generating
the shortest sequence. In this particular case, if the input is M(D) = 1 + D2, the corresponding
state sequence is

[S0(D) S1(D) S2(D)] =
[

1

1 + D2

D

1 + D2

D2

1 + D2

]
• M(D)

=
[

1

1 + D2

D

1 + D2

D2

1 + D2

]
• (1 + D2)

= [
1 D D2

]

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 175

which is the same as the shortest sequence of the IIR FSSM, as shown in the previous example.
For a one input–one output FSSM with K registers, the state transfer function is defined as

S(D) =
[

S0(D)

M(D)

S1(D)

M(D)
· · · SK (D)

M(D)

]
(29)

6.8 Relationship Between the Systematic and the Non-Systematic Forms

The transfer function description of an FSSM encoder can be used to obtain the equivalent
systematic form of a given non-systematic encoder [7]. This conversion method consists of
converting the transfer function of a non-systematic form, as given in expression (11), into an
expression of systematic form, like that of expression (24), by means of matrix operations.

Example 6.4: Determine the equivalent systematic version of the convolutional encoder gen-
erated by the transfer function

G(D) = Gns(D) = [
1 + D2 1 + D + D2

]
The non-systematic convolutional encoder of the code described by this transfer function is

shown in Figure 6.3. The transfer function should adopt the form of equation (24) to correspond
to a systematic convolutional encoder. In this case the procedure is quite simple, because it
only consists of dividing both polynomials of the transfer function by the polynomial 1 + D2.
This procedure converts the transfer functions of the original convolutional code, which are
in this case of FIR type, into transfer functions of IIR type. This division is done in order
to make the matrix transfer function contain the identity submatrix, which in this example is
G11(D) = 1. The resulting transfer function is

Gs(D) =
[

1
1 + D + D2

1 + D2

]
According to this expression, a non-systematic convolutional code encoded with FIR transfer

functions has an equivalent systematic convolutional code encoded with IIR transfer functions,

like the corresponding FSSM as shown in Figure 6.11. Indeed the transfer function 1+D+D2

1+D2

is of the form of equation (28) with a0 = a1 = a2 = f2 = 1, f1 = 0, ai = fi = 0 for i > 2,
and is implemented by an FSSM like that seen in Figure 6.11. Then equivalent systematic
convolutional encoder for the convolutional code of Example 6.4 is as seen in Figure 6.12.

Table 6.6 is a suitable tool for analysis of the convolutional encoder of Figure 6.12.
The corresponding trellis, obtained from Table 6.6, is given in Figure 6.13.

m

c(1)

c(2)

Figure 6.12 Equivalent systematic convolutional encoder of the encoder of Figure 6.3

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

176 Essentials of Error-Control Coding

Table 6.6 Table for constructing the state diagram of the convolutional

encoder of Figure 6.12

Input mi State ti State at ti+1 c(1) c(2)

– 0 0 0 0 – –

0 0 0 0 0 0 0

1 0 0 1 0 1 1

0 0 1 1 0 0 0

1 0 1 0 0 1 1

0 1 0 0 1 0 1

1 1 0 1 1 1 0

0 1 1 1 1 0 1

1 1 1 0 1 1 0

It can be verified that transitions in the trellis of Figure 6.6, which corresponds to the
convolutional encoder of Figure 6.3, have the same output assignments as the trellis of Figure
6.13, which corresponds to the equivalent convolutional encoder in systematic form.

The difference between the systematic and the non-systematic forms of the same convolu-
tional code is in the way the input is assigned a given output. As in the case of block codes, the
systematic convolutional encoder (or systematic generator matrix) generates the same code
as its corresponding non-systematic encoder (or the corresponding non-systematic generator
matrix), but with different input–output assignments.

For the convolutional encoder in systematic form, as seen in Figure 6.12, the transfer function
matrix and the state transfer function matrix are

G(D) =
[

1
1 + D + D2

1 + D2

]
and

S(D) =
[

1

1 + D2

D

1 + D2

D2

1 + D2

]

0/00 0/00 0/00

1/10 1/10 1/101/10 1/10 1/10 1/10

t1 t2 t3 t4 t5
0/00 0/00 0/00 0/00 0/00

1/11 1/11 1/11 1/11 1/11

1/11 1/11 1/11

0/01 0/01 0/01

0/01 0/01 0/01 0/01

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.13 Trellis for the convolutional encoder of Figure 6.12

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 177

a1
a2a0

S0

S1 S2

f1 fn

an

c(2)
c(1)

m

Sn

f2

Figure 6.14 General structure of systematic IIR convolutional encoders of rate Rc = 1/2

The shortest state sequence for the systematic convolutional encoder, characterized by being
implemented using IIR transfer functions, does not correspond to the unit impulse input, which
in this case generates an infinite output or state sequence. The input that produces the shortest
state sequence can be obtained by inspection of the corresponding state transfer function,
so that if this input sequence in polynomial form is equal to M(D) = 1 + D2, the system
generates the state sequence (S1 S2) = (00, 10, 01, 00, 00, . . .), that is, the shortest sequence
in the trellis as seen in Figure 6.13. The corresponding output sequence, for this case, is

C (1)(D) = 1M(D) = 1 + D2

C (2)(D) = 1 + D + D2

1 + D2
M(D) = 1 + D + D2

which is an output of weight 5.
In the general case, IIR convolutional encoders of rate Rc = 1/2 are of the form as given in

Figure 6.14.
The coefficients in this structure belong to the field over which the IIR FSSM is defined,

ai ∈ GF(q) and f j ∈ GF(q). In the particular case of encoders operating over GF(2), these
coefficients will be 1 or 0. The transfer function matrix of the general structure of Figure 6.14
for an IIR systematic convolutional encoder of rate Rc = 1/2 is shown to be [15]

G(D) =
[

1
a0 + a1 D + a2 D2 + · · · + an Dn

1 + f1 D + f2 D2 + · · · + fn Dn

]
(30)

6.9 Distance Properties of Convolutional Codes

One of the most significant parameters of an error-correcting or error-detecting code is the
minimum distance of the code, normally evaluated as the minimum value of the distance that
exists between any two code vectors of the code. When the code is linear, it is sufficient to

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

178 Essentials of Error-Control Coding

determine the distance between any code vector and the all-zero vector, which is, in the end,
the weight of that code vector [1, 2, 4, 5].

As seen for block codes, the minimum distance can be interpreted as the minimum-weight
error pattern that converts a given code vector into another code vector in the same code. In
the case of convolutional codes, this becomes the number of errors that convert a given code
sequence into another valid code sequence.

Since almost all convolutional codes of practical use are linear, the minimum distance of the
code can be determined by finding the code sequence of minimum weight. From this point of
view, the above analysis implies a search for the minimum number of errors that convert the
all-zero sequence into another code sequence. This can be seen in the corresponding trellis of
the convolutional code as a sequence that emerges from the all-zero state, normally labelled Sa,
and arrives back at the same state after a certain number of transitions. Then the Hamming or
minimum distance of the code can be determined by calculating the minimum weight among
all the sequences that emerge from and arrive back at the all-zero state Sa after a finite number
of transitions.

A tool for analysing the distance properties of a convolutional code is obtained by modifying
the traditional state diagram, in such a way that the modified diagram starts and ends in the
all-zero state Sa. In this modified diagram [1, 4], the self-loop that represents the transition from
state Sa to itself is omitted. In this modified state diagram branches emerging and arriving at the
states are denoted by the term Xi , where i is the weight of the code sequence that corresponds
to that branch.

For the example of the convolutional code Cconv(2, 1, 2),introduced in previous sections,
the modified state diagram is shown in Figure 6.15.

Paths starting and arriving at the all-zero state Sa have a weight that can be calculated by
adding the exponents i of the corresponding terms of the form Xi . In this case, for instance,
the path SaSbScSa has a total weight 5, and path SaSbSdScSa is of weight 6. The remaining
paths include the loops SdSd and SbScSb that only add weight to the paths described above.
Therefore the minimum distance in this code is equal to 5, and it is usually called the minimum
free distance, df = 5. The adjective free comes from the fact that there are no restrictions on
the length of the paths of the corresponding trellis or state diagram involved in its calculation.

For convolutional codes of more complex structure, the above calculation of the modified
state diagram, and its solution to determine the minimum free distance, is not that simple.

Sa Sb Sc

X

X 0

X

X2X2

X

Sd

X

Sa

Figure 6.15 Modified state diagram

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 179

More complex modified diagrams are solved by means of the Mason rule over what is called
the generating function T (X) (see details in [1]). This generating function is defined as

T (X) =
∑

i

Ai Xi (31)

where Ai is the number of sequences of weight i . A simplified approach to finding the generat-
ing function can be applied to the example under analysis, the convolutional code Cconv(2, 1, 2).
Let us assume that the input to the modified state diagram is 1, and so the output of this diagram
is then the generating function T (X). In the following, the names of the states are used as phan-
tom variables in order to estimate the generating function, obtained from the modified state
diagram. This is a slight abuse of notation in which Sb, Sc and Sd, for instance, are utilized as
variables over the modified state diagram to determine the desired generating function T (X).
Thus,

Sb = X2 + Sc

Sc = XSb + XSd = Sd = XSb + XSd

T (X) = X2Sc

Then

XSb = Sc − XSd = Sc(1 − X)

Sb = Sc(1 − X)

X

and

Sc(1 − X)

X
= X2 + Sc

or

Sc = X3

1 − 2X

Hence,

T (X) = X5

1 − 2X
(32)

X5 |1 − 2X
−X5 + 2X6 X5 + 2X6 + 4X7 + · · ·

2X6

− 2X6 + 4X7

4X7

The resulting expression T (X) = X5 + 2X6 + 4X7 + · · · can be interpreted as follows:
There is one path of weight 5, two paths of weight 6 and four paths of weight 7, and so on. The

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

180 Essentials of Error-Control Coding

minimum free distance of this code is therefore df = 5. The state diagram will be analysed
further in Section 6.13.

6.10 Minimum Free Distance of a Convolutional Code

The minimum free distance determines the properties of a convolutional code, and it is defined
as

df = min
{
d(ci , c j) : mi �= m j

}
(33)

where ci , c j are two code sequences that correspond to the message sequences mi �= m j . The
minimum free distance is defined as the minimum distance between any two code sequences
of the convolutional code. Assuming that the convolutional code is linear and that transmission
over the channel makes use of a geometrically uniform signal set [17–26], the calculation of
the minimum distance between any two code sequences is the same as determining the weight
of the sum of these two code sequences as

df = min
{
w(ci ⊕ c j) : mi �= m j

} = min {w(c) : mi �= 0} (34)

That is, the all-zero sequence is representative of the code in terms of the minimum distance
evaluation of that code. This also implies that the minimum free distance of a convolutional
code is the minimum weight calculated among all the code sequences that emerge from and
return to the all-zero state, and that are not the all-zero sequences, c �= 0.

Example 6.5: Determine the minimum free distance of the convolutional code Cconv(2, 1, 2)
used in previous examples, by employing the above procedure, implemented over the corre-
sponding trellis.

The sequence corresponding to the path described by the sequence of states SaSbScSa , seen
in bold in Figure 6.16, is the sequence of minimum weight, which is equal to 5. There are
other sequences like those described by the state sequences SaSbScSbScSa and SaSbSdScSa that
both are of weight 6. The remaining paths are all of larger weight, and so the minimum free
distance of this convolutional code is df = 5.

0 0 0

2 2 2 2

2 2 2

1 1 1

1
0 1 1

1 11 11 1 1

2

0 0 0 0 0 0 0 0 0 0

t1 t2 t3 t4 t5 t6 t7
Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.16 Minimum free distance sequence evaluated on the trellis

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 181

In the case of convolutional codes the distance between any two code sequences is not clearly
determined, since the transmission is done not in blocks of information but as a continuous
sequence of bits with a degree of memory. However, when the all-zero sequence is transmitted,
and this sequence is converted by the effect of the channel errors into another code sequence, it
is clear that an undetectable error pattern has occurred. This is the same as in the case of block
codes, where the minimum Hamming distance can be considered as the minimum number of
errors produced by the channel that have to occur in a transmitted code vector to convert it in
another code vector; these errors in fact then corresponding to an undetectable error pattern. In
the case of convolutional codes, the weight of the minimum-weight undetectable error pattern
is also the same as the minimum free distance df of the code. The error-correction capability
of the code is then defined as the number t of errors that can be corrected, which is equal to

t =
⌊

df − 1

2

⌋
(35)

This error-correction capability is obtained when error events are separated by at least the
constraint length of the code, measured in bits.

6.11 Maximum Likelihood Detection

For a given code sequence c generated by the encoder of a convolutional code, the channel noise
converts this sequence into the received sequence sr, which is essentially the code sequence c
with errors produced in the transmission. An optimal decoder is one that is able to compare the
conditional probabilities P(sr/c′) that the received sequence sr corresponds to a possible code
sequence c′, and then decide upon the code sequence with the highest conditional probability:

P(sr/c′) = max
all c

P(sr/c) (36)

This is the maximum likelihood criterion. It is in agreement with the intuitive idea of decoding
by selecting the code sequence that is most alike the received sequence. The application of this
criterion in the case of convolutional decoding faces the fact that there are so many possible
code sequences to be considered in the decoding procedure. For a code sequence of length
L bits, there are 2Rc L possible sequences, where Rc is the rate of the code. The maximum
likelihood decoder selects a sequence c′, from the set of all these possible sequences, which
has the maximum similarity to the received sequence.

If the channel is memoryless, and the noise is additive, white and Gaussian (AWGN), each
symbol is independently affected by this noise. For a convolutional code of rate 1/n, the
probability of being alike to the received sequence is measured as

P(sr/c) =
∞∏

i=1

P(sri / ci) =
∞∏

i=1

n∏
j=1

P(sr, j i / c ji) (37)

where on the trellis of the code sri
is the i th branch of the received sequence sr, ci is the i th

branch of the code sequence c, sr, j i is the j th symbol of sri , and c ji is the j th code symbol of ci ,
and where each branch is constituted of n code symbols. The decoding procedure consists of
selecting a sequence that maximizes the probability function (37). One algorithm that performs
this procedure for convolutional codes is the Viterbi decoding algorithm.

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

182 Essentials of Error-Control Coding

6.12 Decoding of Convolutional Codes: The Viterbi Algorithm

The Viterbi algorithm (VA) performs maximum likelihood decoding. It is applied to the trellis
of a convolutional code whose properties are conveniently used to implement this algorithm.
As explained above, one of the main problems that faces maximum likelihood decoding is
the number of calculations that have to be done over all the possible code sequences. The VA
reduces this complexity of calculation by avoiding having to take into account all the possible
sequences. The decoding procedure consists of calculating the cumulative distance between
the received sequence at an instant ti at a given state of the trellis, and each of all the code
sequences that arrive at that state at that instant ti . This calculation is done for all states of the
trellis, and for successive time instants, in order to look for the sequence with the minimum
cumulative distance. The sequence with the minimum cumulative distance is the same as the
sequence with the highest probability of being alike to the received sequence if transmission
is done over the AWGN channel.

The following example illustrates the application of the Viterbi decoding algorithm. The
distance used as a measure of the decoding procedure is the Hamming distance; that is, the
distance between any two sequences is defined as the number of differences between these two
sequences.

Example 6.6: Apply the Viterbi decoding algorithm to the convolutional code of Figure 6.12,
whose trellis is seen in Figure 6.13, if the received sequence is sr = 11 01 01 00 11

The first step in the application of this algorithm is to determine the Hamming distance
between the received sequence and the outputs at the different states and time instants, over
the corresponding trellis. This is shown in Figure 6.17.

Message sequence 1 0 1 0 1

Code sequence 11 01 11 00 11

Received sequence 11 01 01 00 11

2 11 0 2

1 0 2

0 1 2 0

1 2 0

0 1 1

0
0 1 1

2 22 11 11

1

1 1 0 1 0 1 0 0 1 1
t1 t2 t3 t4 t5 t7t6

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.17 Hamming distance calculations for the VA

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 183

t1 t2 t3 t42 3

1

0
1

2

0
3

2

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Sa = 00

Sd = 11

Sc = 01

Sb = 10

4

1 1 0 1 0 1
t1 t2 t3 t4 t52 1

1 1 0 1 0 1 0 0

4

4

1

0 33

3

1

0

2

2

2

3

2
3

3

3

5

4

Figure 6.18 Survivor paths in the VA

The essence of the VA is that when two or more paths arrive at a given time instant and state
of the trellis, only one of them would have the minimum cumulative distance, and should be
selected from among the others as the survivor. In fact, this decision procedure significantly
reduces the number of distance calculations required. Decisions of this kind start to be per-
formed as soon as two or more paths arrive at the same state and time instant of the trellis.
This happens after time instant t4 in this example, as seen in Figure 6.18.

In this particular example, at time instant t4, and at successive time instants, decisions can be
taken at all the states of the trellis. The reason is that there are two paths arriving at each state, but
only one of them has the minimum Hamming distance in each case. The other path has a higher
cumulative Hamming distance, and it is discarded. However, it is seen that at time instant t5, in
state Sb, there are two arriving paths that both have the same cumulative Hamming distance.
In this case the decision is taken by randomly selecting one of these two possible paths as the
survivor; the upper path in this example. On average, these random selections do not prevent
effective operation of the VA: If the error pattern is within the error-correction capability of
the code, then the decoded sequence does not pass through the state node concerned; if the
code’s correction capability has been exceeded, then the decoder fails anyway, and normally
outputs a burst of errors in the decoded sequence.

The discarding procedure is successively applied to the following time instants over each
state, now taking into account previous decisions already taken. After a given number of time
instants, the procedure is truncated, and the sequence with the minimum cumulative Hamming
distance is selected as the decoded sequence. This is shown for this example in Figure 6.19.

As seen in Figure 6.20, the decision taken at time instant t6 has produced the correct decoded
sequence. The sequence selected as the final survivor is that of minimum cumulative distance.
Then, by looking at the information provided by the trellis of Figure 6.6, the transmitted
message is finally determined by identifying along the decoded sequence which is the input
message bit that generated each of its transitions. In this example the decoder determines that
the transmitted message was the sequence 10101 . . . , and at this point it can also determine
that the decoder could correct one error present at the received sequence sr. As is seen in this
example, the Viterbi decoding algorithm leads directly to the estimated message sequence,
and performs error correction without the need of decoding table look-up, or of algebraic
equation solution, as in the case of traditional syndrome decoding of block codes. This fact

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

184 Essentials of Error-Control Coding

t1 t2 t3
2

1

0 3

0

2
2

3

Sa = 00

Sb = 10

Sc = 01

Sd = 11

1 1 0 1 0 1

t4 t5
1

3
1

2

2

0 0

t63

1

4

4
3

1 1

3

4

2
2dacc =

1dacc =

3dacc =

3dacc =

Figure 6.19 Viterbi decoding algorithm, time instant t6

makes convolutional codes particularly efficient in FEC systems, or in general, for those coding
schemes where error correction is preferred over error detection.

In the above example, the decision determining the maximum likelihood path at time instant
t6 was easily taken because the value of the minimum cumulative distance was unique. However,
it is possible that at the moment of truncating the decoding sequence, to decide the final survivor
sequence, more than one sequence could have the minimum value of the cumulative distance.
To mitigate any problems this might cause, the algorithm operates as follows. As seen in
Figure 6.19, the survivor paths at time instant t6 are the same in the first stage of the trellis
(from t1 to t2). This indicates that, with high probability, the first two bits of the transmitted
sequence were 11, which corresponds to the message bit 1. The survivors are also the same in
the second stage, but disagree in subsequent stages. If the message sequence, the code sequence
and the received sequence are long enough, it can be shown that survivor paths agree with high
probability at the time instant ti , and that the decoding decision taken at time ti is correct, if the
survivor sequences are extended to time instant ti+J , where J is called the decoding length,
measured in time instants. It can be heuristically shown that the error-correction capability of
the convolutional code is maximized if J is approximately equal to five times the constraint
length of the code; that is, J ≈ 5(K + 1).

t1 t2 t3
Sa = 00

Sb = 10

Sc = 01

Sd = 11

1 1 0 1 0 1

t4 t5

0 0

t6

1 1

1dacc =

3dacc =

4d acc =

4dacc =

t7

0 1

t8

1 1

Figure 6.20 Viterbi decoding algorithm, decoded sequence at time instant t8

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 185

This implies that, on one hand, convolutional codes are more powerful for longer messages,
and, on the other hand, it is necessary to add kK zeros to the end of the message sequence in
order to maintain the error-correction capability of the code at the end of a given message. This
makes the trellis terminate in the all-zero state Sa, enabling the decoding of a unique survivor,
as seen in Figure 6.20.

6.13 Extended and Modified State Diagram

The extended and modified state diagram is a useful tool for the analysis of convolutional codes.
The exponent of the variable Xi is again used to indicate the weight of the corresponding branch,
the exponent of the variable Y j is used to determine the length of the branch j and variable Z
is present only in the description of a given branch when this branch has been generated by an
input ‘1’. The modified generating function T (X, Y, Z) is then defined as

T (X, Y, Z) =
∑
i, j,l

Ai, j,l X i Y j Zl (38)

where Ai, j,l is the number of paths of weight i , which are of length j , and which result from
an input of weight l. The extended and modified state diagram of the convolutional code
Cconv(2, 1, 2) of the example under analysis, whose trellis is seen in Figure 6.6, is seen in
Figure 6.21.

If again the labels of the states are taken as phantom variables, and letting Sa = 1,

Sb = X2Y Z Sa + Y Z Sc, but Sa = 1

and so

Sb = X2Y Z + Y Z Sc

Sc = XY Sb + XY Sd

Sd = XY Z Sd + XY Z Sb

T (X, Y, Z) = X2Y Sc

Sa Sb Sc

XY

1YZ

XYXYZ
Sd

XYZ

X2YZ X2Y

Sa

Figure 6.21 Extended and modified state diagram

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

186 Essentials of Error-Control Coding

By operating over these phantom variables, it follows that

T (X, Y, Z) = X5Y 3 Z

1 − XY Z (1 + Y)

X5Y 3 Z |1 − XY (1 + Y)Z
−X5Y 3 Z + X6Y 4 Z2(1 + Y) X5Y 3 Z + X6Y 4 Z2(1 + Y) + · · ·

X6Y 4 Z2(1 + Y)
−X6Y 4 Z2(1 + Y) + X7Y 5 Z3(1 + Y)2

X7Y 5 Z3(1 + Y)2

Thus, the modified generating function for this example is equal to

T (X, Y, Z) = X5Y 3 Z + X6Y 4 Z2(1 + Y) + X7Y 5 Z3(1 + Y)2 + · · · (39)

There is a path of weight 5, with length 3 (three transitions), generated by an input ‘1’. There
are also two paths of weight 6, which are X6Y 4 Z2 and X6Y 4 Z2Y , and both are generated by
an input sequence of two ‘1’s, the former being of length 4 transitions and the latter of length
5 transitions. The modified generating function is useful for assessing the performance of a
convolutional code.

6.14 Error Probability Analysis for Convolutional Codes

Bit error rate (BER) performance is a straightforward measure of the error-correction capability
of any coding technique, and of course of convolutional codes. The most useful error probability
measure is the bit error probability, but first it is simpler to analyse the so-called node error
probability [1, 2, 4].

As described in previous sections, the all-zero sequence of a convolutional code can be used
to represent any code sequence in terms of the behaviour of the code in the presence of errors,
and all sequences that emerge from and return to the all-zero state Sa can be seen as modified
versions of the all-zero sequence that channel errors convert into other valid code sequences.
The node error probability is the probability that an erroneous sequence which emerges from
that node on the all-zero sequence (where a node is a state at a given time instant), and later
returns to it, is selected as a valid code sequence. The erroneous sequence is selected as valid,
instead of the correct sequence, if the number of coincidences the received sequence sr has
with respect to the erroneous code sequence is higher than the number of coincidences it has
with respect to the correct sequence (in this analysis, the all-zero sequence).

The erroneous paths are those defined by the modified generating function T (X, Y, Z). In
the example under analysis in the previous section [equation (39)], there will be a node error
if three or more bits in the received sequence sr, of the five positions in which the erroneous
and the correct paths differ, are closer to the erroneous sequence than to the correct one. This
indicates that the weight of the received sequence is 3 or larger. In the case of the binary
symmetric channel (BSC) with error or transition probability p, the probability Pe of this

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 187

occurring is

Pe = P(3 or more ‘1’s in the received sequence) =
5∑

e=3

(
5
e

)
pe(1 − p)5−e

For paths of length 6, an error event of length 3 generates a sequence that can be adopted
as correct or not, with equal probability. Paths with weights equal to or larger than 4 will be
erroneously decoded as

Pe =
(

6
3

)
p3(1 − p)3 +

6∑
e=1

(
6
e

)
pe(1 − p)6−e

In general, for an erroneous path of weight d ,

Pd =

⎧⎪⎪⎨⎪⎪⎩
∑d

e=(d+1)/2

(
d
e

)
pe(1 − p)d−e d odd

1

2

(
d
d/2

)
pd/2(1 − p)d/2 +

∑d

e=d/2+1

(
d
e

)
pe(1 − p)d−e d even

(40)

The node error probability is bounded by the union bound of all the possible events of this
kind, including all the possible erroneous paths at node j . This bound is given by

Pe(j) ≤
∞∑

d=df

Ad Pd (41)

where Ad is the number of code sequences of weight d, since there are Ad paths of that
Hamming weight with respect to the all-zero sequence. This bound is indeed independent of
j , and so it is equal to the desired node error probability, Pe(j) = Pe.

This error probability can be upper bounded. For d odd,

Pd =
d∑

e=(d+1)/2

(
d
e

)
pe(1 − p)d−e <

d∑
e=(d+1)/2

(
d
e

)
pd/2(1 − p)d/2

= pd/2(1 − p)d/2
d∑

e=(d+1)/2

(
d
e

)
< pd/2(1 − p)d/2

d∑
e=0

(
d
e

)
= 2d pd/2(1 − p)d/2 (42)

This expression is also valid for even values of d . The above bound can be used to provide an
upper bound on the node error probability [1, 2, 4]:

Pe <

∞∑
d=df

Ad

[
2
√

(1 − p)p
]d

(43)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

188 Essentials of Error-Control Coding

This expression is related to the generating function T (X) = ∑∞
d=df

Ad Xd , so that

Pe < T (X)

∣∣∣∣ X = 2
√

(1 − p)p
(44)

Since the error probability on a BSC is, in general, a small number p � 1, the above
summation can be approximately calculated from its first term as follows:

Pe < Adf

[
2
√

p(1 − p)
]df = Adf

2df [p(1 − p)]df/2 ≈ Adf
2df pdf/2 (45)

Example 6.7: For the convolutional code Cconv (2, 1, 2), df = 5 and Adf
= 1, and if for

instance p = 10−2, then

Pe < Adf
2df pdf/2 = 1.25

(
10−2

)2,5 ≈ 3.10−4

The above analysis corresponds to the evaluation of the node error probability. This analysis
can then be used to determine the bit error probability, or bit error rate.

In each error event, there are erroneous bits that are in number equal to the weight of the
erroneous sequence. An estimate of the number of erroneous bits in a given time unit can be
made if the error probability Pd is modified by the total number of ‘1’s that all the sequences
of weight d have. This number can be divided by k, which is the number of message bits
transmitted in that time unit, in order to obtain

Pbe <
1

k

∞∑
d=df

Bd Pd (46)

where Bd is the total number of ‘1’s that all the sequences of weight d have.
The extended and modified generating function is expressed as

T (X, Y, Z) =
∑
i, j,l

Ai, j,l X i Y j Zl

where Ai, j,l is the number of paths of weight i , of length j , and generated by an input of weight
l. This expression can be arranged to adopt the form

T (X, Z) =
∞∑

d=df

∞∑
b=1

Ad,b Xd Zb (47)

and, by calculating its derivative with respect to Z ,

∂T (X, Z)

∂ Z

∣∣∣∣ Z = 1
=

∞∑
d=df

∞∑
b=1

bAd,b Xd =
∞∑

d=df

Bd Xd (48)

is obtained, where

Bd =
∞∑

b=1

bAd,b (49)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 189

By using the calculated bound for Pd ,

Pd = 2d pd/2(1 − p)d/2 (50)

Pbe <
1

k

∞∑
d=df

Bd Pd = 1

k

∞∑
d=df

Bd

[
2
√

p(1 − p)
]d

= 1

k

∂T (X, Z)

∂ Z

∣∣∣∣∣∣ Z = 1
X = 2

√
p(1 − p)

(51)

Expression (51) can be simplified by assuming that the most significant term is the first of
the summation, so that [1]

Pbe ≈ 1

k
Bdf

2df pdf/2 (52)

Example 6.8: For the case of the convolutional code Cconv(2, 1, 2), with df = 5 and Bdf
= 1,

and since T (X, Y, Z) = X5Y 3 Z1 + · · ·, then if for instance p = 10−3, the BER is equal to
Pbe < Bdf

2df pdf/2 = 1.25 × (10−3)2,5 ≈ 1.01 × 10−6.

6.15 Hard and Soft Decisions

So far most of the coding techniques introduced have made use of decoding algorithms based on
what is called hard-decision detection. A hard-decision detector takes samples of the received
signal, determines whether each sample is over or under a given threshold and thus decides
whether the incoming signal represents a ‘1’ or a ‘0’. Samples are taken using a synchronizing
signal that is generated by other parts of the communication system, so that, from the decoding
point of view, perfect synchronization is assumed.

This procedure is usually called hard-decision detection because the input signal, essentially
in the form of a continuous waveform, is translated into a discrete alphabet in which there are
only two possible values for binary signalling, or q possible values for non-binary signalling.
Therefore, continuous channel information is converted into discrete detected information.
Based on this hard decision, in most of the codes already studied, the decoder was implemented
by evaluating the Hamming distance, dH, between a code vector or sequence and a received
vector or sequence.

However, when considering the concept of distance, a more intuitive idea is to think about
the so-called Euclidean distance, which is the real-number distance normally measured in
geometrical space. This concept known as the Euclidean distance d can be generalized for
a vector space of dimension n. In this case and given the vectors c1 and c2, the Euclidean
distance is the norm of the difference between these two vectors d = ||c1 − c2||. The reason
for being interested in Euclidean distance is that it enables the use of soft-decision detection,
which overcomes the loss of information inherent in hard-decision detection. In hard-decision
detection, sampled values are converted into the same hard value no matter how close to, or far
away from, the decision threshold they are. In soft-decision detection, the distance of a sample
value from the decision threshold is measured, and then used to enhance the decoding process.

The vector representation of code vectors of the triple repetition code and the even parity code
with n = 3, already described in Chapter 2, can help to introduce the concept and importance
of soft-decision detection and decoding. A given bit is usually transmitted or represented by a

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

190 Essentials of Error-Control Coding

0 1 1

1 0 1

0 0 0

1 1 0

1 1 1

0 1 0

1 0 0

0 0 1

x

y

z

Figure 6.22 Vector representation (polar format) of code vectors in a vector space of dimension n = 3

signal, such as a rectangular pulse of normalized amplitude ±1 in polar format. Code vectors
can be represented as vectors of a vector space, so that the Euclidean distance between any
two of them can also be determined. Thus, for instance, both the triple repetition code and the
even parity code, defined for a code length of n = 3, have a vector representation in a vector
space of dimension n = 3, as can be seen in Figure 6.22. In this figure the binary format is
replaced by the polar format (1 → +1, 0 → −1). Code vector projections over x , y, z are all
equal to ±1.

Figure 6.22 shows a vector space of dimension n = 3. Thus, for instance, the Euclidean
distance between the two code vectors (000) and (111) of the triple repetition code, represented
in polar format, is equal to 2

√
3. Synchronized samples taken of the received signal are the

n real numbers that are the coordinates of the received vector, which can also be represented
in the same vector space of Figure 6.22. Then it is possible to evaluate the Euclidean distance
between this received vector, and any code vector of a given code.

Example 6.9: Determine the Euclidean distance between the received vector and each of the
code vectors of the even parity code with n = 3, when the transmitted code vector is (101).
The transmission is done in polar format. Assume that after this transmission over a Gaussian
channel, the received signal looks like that seen in Figure 6.23.

Figure 6.23 shows the code vector 101 (+1 −1 +1) of the even parity code with n = 3,
which was transmitted in polar format through a Gaussian channel, and altered by the effect
of this noise. This signal x(t) is sampled to obtain the following sampled values:

x(15) = −0.1072

x(45) = −1.0504

x(75) = +1.6875

The received vector is then r = (−0.1072 −1.0504 +1.6875). The noise-free vectors of this
code are c1 = (−1 −1 −1), c2 = (−1 +1 +1), c3 = (+1 −1 +1) and c4 = (+1 +1 −1).
If hard decisions are taken, the decoded vector would be equal to (001), and so the even parity
code would detect an error and would require a retransmission for a correct reception of this
information. However, if soft decisions are performed by calculating the Euclidean distance

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 191

1.6875

–1.0504

–0.1072

0 10 20 30 40 50 60 70 80 90
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Figure 6.23 Signal resulting from the transmission of the code vector (101) in polar format over a

Gaussian channel

between the received vector and each of the code vectors, it would happen that

d(r , c1) =
√

(−0.1072 + 1)2 + (−1.0504 + 1)2 + (1.6875 + 1)2 = 2.8324

and

d(r , c2) = 2.3396

d(r , c3) = 1.3043

d(r , c4) = 3.5571

A soft-decision decoder would then decide that the decoded vector is the code vector that
has the minimum Euclidean distance with respect to the received vector, and, in this case, this
decoder will decide in favour of the correct code vector, which is c3. This is a simple example
to show the essential difference between hard- and soft-decision detection, and the decoding
advantage that the latter provides.

Essentially, hard decision is closely related to the BSC, as introduced in Chapter 1, where
symbols 0 and 1 have a probability p of being in error, and the output alphabet is also binary.
This approach leads to the design of decoding algorithms that operate over the binary field,
such as syndrome error detection and correction.

The BSC, characterized by being symmetric, binary and memoryless, can be extended in
such a way that each source symbol, either 0 or 1, is transmitted as a signal whose samples
belong to a continuous alphabet with values in the range (−∞, +∞). This is the so-called
Gaussian channel, and it is also a memoryless channel. A soft decision is performed if the

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

192 Essentials of Error-Control Coding

detector produces a value that belongs to a continuous alphabet (i.e., a real number), but the
same is also true, with little loss in performance advantage, even when the decision is performed
by producing a discrete quantized value of the continuous alphabet. In general terms, the BER
performance of a soft-decision decoder will be better than that of a hard-decision decoder,
for the same code, but this advantage is obtained in a trade-off with decoding complexity. At
first sight, soft decision can be applied without restrictions to the decoding of both block and
convolutional codes. However, and particularly in the case of long block codes, the calculations
involved are of such a complexity that optimal soft decision of these block codes is difficult
to implement in practice. But it is possible to represent block codes, as well as convolutional
codes, by means of a trellis [31]. In addition, the VA is easily modified to make use of soft-
decision detection, so that optimal soft-decision trellis decoding is feasible for block codes
using the VA, with a consequent reduction in complexity. Powerful convolutional codes can
also be of considerable size, and therefore complex to decode. Again, however, the use of the
soft-decision VA will considerably reduce the complexity of optimal decoding of a powerful
convolutional code.

6.15.1 Maximum Likelihood Criterion for the Gaussian Channel

As seen in Section 6.12, optimal decoding of convolutional codes is related to the maximum
likelihood algorithm, which essentially looks for the most likely code sequence among all
possible code sequences, based on the similarity of these sequences with respect to the received
sequence.

The maximum likelihood criterion assumes that information bits or message bits are equally
likely. A given signal si (t) taken from the set of signals {si (t)}, with i = 0, 1, . . . , M − 1, is
transmitted, and this signal is affected by noise to become the received signal r (t) = si (t) +
n(t). At the time instant T, the signal is sampled, and the value of the sampled signal is

y(T) = bi (T) + n(T) (53)

where bi (T) represents the value of the noise-free signal that represents the transmitted symbol,
and n(t) is a random Gaussian variable of zero mean value.

Since the decoder attempts to determine the value of a transmitted message bit based on
the received signal, and considering the binary case for instance, where there are just two
transmitted signals, the maximum likelihood criterion can be stated as follows:

P(s1/y) > P(s0/y) the decoder decides for hypothesis H1

P(s0/y) > P(s1/y) the decoder decides for hypothesis H0 (54)

Hypothesis H1 corresponds to the transmission of symbol ‘1’, and hypothesis H0 corresponds
to the transmission of symbol ‘0’.

By using the Bayes rule, these conditional probabilities can be expressed in the following
manner:

p(y/s1)P(s1) > p(y/s0)P(s0) the decoder decides for hypothesis H1

p(y/s1)P(s1) < p(y/s0)P(s0) the decoder decides for hypothesis H0 (55)

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 193

or, equivalently,

p(y/s1)

p(y/s0)
>

P(s0)

P(s1)
the decoder decides for hypothesis H1

p(y/s1)

p(y/s0)
<

P(s0)

P(s1)
the decoder decides for hypothesis H0 (56)

which is known as the likelihood ratio. If the transmitted symbols are equally likely, then

p(y/s1)

p(y/s0)
> 1 the decoder decides for hypothesis H1

p(y/s1)

p(y/s0)
< 1 the decoder decides for hypothesis H0 (57)

Let us assume that the two possible transmitted signals were s1 and s0, such that the random
variables obtained after sampling the corresponding signals are y(T) = b1 + n and y(T) =
b0 + n. If the transmission is over an AWGN channel, the probability density function that
characterizes these random variables is of the form

p(n) = 1

σ
√

2π
e− 1

2 (n
σ)2

This expression describes the previously presented sampled random variables when b0 =
b1 = 0. For the general case, where transmitted symbols are different from zero, the probability
density function is also a Gaussian probability density function, but with a mean value that is
equal to the noise-free value of that symbol.

The likelihood ratio can also be expressed in terms of these probability density functions
for each of the transmitted symbols, so that if

1

σ
√

2π
e
− 1

2

(
y−b1

σ

)2

1

σ
√

2π
e
− 1

2

(
y−b0

σ

)2
>

P(s0)

P(s1)
, the decoder decides for hypothesis H1 (58)

or, simplifying, if

e
− 1

2

[(
y−b1

σ

)2−
(

y−b0
σ

)2
]

>
P(s0)

P(s1)
, the decoder decides for hypothesis H1 (59)

By applying natural logarithms to both sides of the inequality, if

1

2σ 2

[
(y − b1)2 − (y − b0)2

]
> ln

(
P(s1)

P(s0)

)
, the decoder decides for hypothesis H1

And, for equally likely symbols, if

(y − b1)2 > (y − b0)2 , the decoder decides for hypothesis H1 (60)

For the Gaussian channel, the maximum likelihood decision is equivalent to the soft
minimum-distance decision. This Euclidean distance is calculated between the sampled values

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

194 Essentials of Error-Control Coding

of the received signal and the values that should correspond to the elements of a given code
sequence. The decision is taken over the whole code vector or sequence. Thus, the maximum
likelihood criterion is applied by considering which code vector or sequence is closest to the
received vector or sequence, that is, which code vector or sequence minimizes the distance
with respect to the received vector or sequence.

In the case of block codes, the maximum likelihood criterion decides that the code vector
ci is the decoded vector if

d(r , ci) = min
{
d(r , c j)

}
for all c j (61)

In the case of convolutional codes, the definition of block length is lost, since it becomes
semi-infinite. As we saw above, however, for the current purpose it can be replaced by the
decoding length. A given code sequence c generated by a convolutional code converts into
a received sequence sr, which is essentially the code sequence c containing some errors,
generated by the effect of the channel noise. An optimal decoder will compare the conditional
probability P(sr/c′) with the received sequence sr corresponding to one of the possible code
sequences c′, and will take the decision in favour of that code sequence that has the maximum
probability of being sr:

P(sr/c) = max
all c

sr/c (62)

6.15.2 Bounds for Soft-Decision Detection

A symmetric channel that models a soft-decision-detection scheme is, for example, that shown
in Figure 6.24.

The number of symbols of the output alphabet of this soft-decision channel can be increased
until it is virtually converted into a continuous output channel. If, for instance, the soft-decision
channel of Figure 6.24 would have an output alphabet of eight outputs, usually labelled outputs
0–7, then when the detector provides output 7, for example, it gives decoding information that
means that the decoded bit is highly likely to be a ‘1’. If however the detected value was

0

1

0

1

2

3

Very reliable output
for 0

Very reliable output
for 1

Less reliable ouptut
for 0

Less reliable ouptut
for 1

Figure 6.24 A soft-decision channel

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 195

a 4, it would be giving decoding information that means that the decoded bit is still a ‘1’,
but with relatively low probability. This decision contains more information than that of a
hard decision, which would just consist of deciding that the detected bit is a ‘1’ without any
additional information about the reliability of that decision. This additional information would
not be useful if the bit was to be decoded alone. However, when bits are related to other bits in a
given code vector or code sequence, the additional information provided by the soft decisions
helps to improve the estimates of all the bits.

It can be shown that there is an additional coding gain of around 2.2 dB, if soft decision is
applied instead of hard decision. This is the case when the soft-decision detector operates over a
continuous output range. If instead the output is quantized using eight values or levels, then this
coding gain is about 2 dB, and so there is not a significant improvement when using more than
eight quantization levels. Figure 6.25 shows the BER performance of the triple repetition code
(n = 3) described in Chapter 2, with curves for both hard and unquantized soft-decision de-
coding, as well as for no coding. It can be seen that the coding gain of the soft-decision decoder
with respect to the hard-decision decoder approaches asymptotically the value of 2.2 dB.

–2 0 2 4 6 8 10 12 14
10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

P
b

Repetition code, soft decision

Repetition code, hard decision

Uncoded transmission

Figure 6.25 A comparison between hard- and soft-decision decoding of the triple repetition code

(n = 3), and uncoded transmission

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

196 Essentials of Error-Control Coding

As pointed out in Chapter 2, the triple repetition code has a low code rate Rc = 1/3 that
produces a poor BER performance, which is even worse than uncoded transmission, if a hard-
decision decoder is utilized. A curious phenomenon is seen in Figure 6.25, where the BER
performance of the triple repetition code using a soft-decision decoder is practically coincident
with that of uncoded transmission. This is so because, at the end of the day, the triple repetition
of a given bit is the same as to transmit it with a signal of three times more energy than in
the case of uncoded transmission. The soft-decision decoder takes advantage of this additional
energy, so that repetition is in a way equivalent to an increase in the number of output levels of
the detector to more than 2. As pointed out above, the improvement of applying soft decision
is not very significant for more than eight levels at the output of the soft-decision channel.

From this explanation it can be concluded that the triple repetition code is equivalent to
uncoded transmission if the redundancy added is understood as an increase of the bit energy, a
fact that should be taken into account in order to make a fair comparison of BER performances.
This increase in the energy per bit, which is determined by the rate Rc of the code, is a penalty
that must be offset against the gain in performance offered by the error-correcting power
of the code. Seen in a rather different way, the triple repetition code is equivalent to uncoded
transmission where each bit is sampled three times at the detector. In the case of soft-decision
decoding, the decoder uses the values of these three samples to evaluate the Euclidean distance
over an AWGN channel.

When its use is possible, soft-decision decoding provides a better BER performance than
that of hard-decision decoding of the same code, for all the coding techniques presented in
previous chapters. Sometimes, however, it is impractical to use soft-decision decoding, as
discussed previously. In the case of very long block length RS codes, for example, even soft-
decision trellis decoding has an implementation complexity which makes it impractical for
most applications.

6.15.3 An Example of Soft-Decision Decoding of Convolutional Codes

A soft-decision decoder for the convolutional code described in Figure 6.12, whose trellis is also
seen in Figure 6.13, is presented in order to show differences between hard- and soft-decision
decoding. In this example the message sequence is m = (10101), which after being encoded
and transmitted in polar format, produces the code sequence c = (+1 +1 −1 +1 +1 + 1
− 1 −1 + 1 +1). This sequence is transmitted over an AWGN channel.

Let
sr = (+1.35 −0.15 −1.25 +1.40 −0.85 −0.10 −0.95 −1.75 +0.5 + 1.30) be the received
sequence. The soft-decision VA [1–6] will be applied to decode this sequence. Then a com-
parison with a hard-decision decoder is also presented.

The first step in the application of the soft-decision decoding algorithm is to calculate the
Euclidean distance between the samples of the received signal and the corresponding outputs
for each transition of the trellis:

Message sequence m = 10101
Code sequence c = +1 + 1 −1 +1 +1 + 1 −1 −1 +1 + 1
Received sequence sr = +1.35 −0.15 −1.25 +1.40 −0.85 −0.10 −0.95

−1.75 +0.5 +1.30

If a hard-decision decoder operated on the received sequence, the sampled values of this re-
ceived sequence would be converted by hard-decision detection into a set of values normalized

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 197

t1 t2 t3 t4
1 2

1

1 2
3

4

1
3

3

Sa = 00

Sd = 11

Sc = 01

Sb = 10

2

1 0 0 1 0 0

4

3

4

Erroneous
decision

Figure 6.26 Hard-decision decoding of example of Section 16.15.3

to be equal to ±1; that is, the output alphabet is the binary alphabet in polar format, and the de-
tection threshold would be set to zero. Therefore, and after converting the polar format into the
classic binary format, a trellis decoder would use the sequence 10 01 00 00 11 as the received
sequence, which has three errors with respect to the true transmitted sequence 11 01 11 00 11.
The error event in this case is such that the hard-decision Viterbi convolutional decoder fails at
time instant t4, because at that stage of the algorithm, the decoder discards the true sequence,
thus providing an incorrect decoded sequence. This can be seen in Figure 6.26.

Even when the algorithm still continues, to finally determine all the estimated bits of the
sequence, the decoder has already produced a decoding mistake in the first part of the sequence,
so that it will erroneously decode the whole received sequence.

Figure 6.27 is the trellis from Figure 6.13 in which now the transitions are denoted with
the corresponding output values in polar format, and input values are omitted. This trellis
representation will be useful for implementation of the soft-decision VA.

The squared Euclidean distance is the metric utilized to determine the minimum cumulative
distance of a given path. This cumulative distance is simply the sum of all the squared distances
involved in that path. The different paths arriving at a given node of the trellis are characterized
by the cumulative sum of squared distances for increasing time instants. In general, in a con-
volutional code of rate 1/n, there will be 2n possible outputs for each transition of the trellis,

–1–1 –1–1 –1–1

+1+1 +1+1 +1+1 +1+1 +1+1

+1+1 +1+1 +1+1

–1+1 –1+1 –1+1

–1+1 –1+1 –1+1 –1+1

+1–1+1–1
+1–1+1–1+1–1

+1–1+1–1

–1–1 –1–1 –1–1 –1–1 –1–1
t1 t2 t3 t4 t5

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Figure 6.27 Trellis of the convolutional encoder of Figure 6.12 with output values in polar format

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

198 Essentials of Error-Control Coding

which can be described as c0, c1, . . . , c2n−1. These vectors per transition have n components,
adopting the form ck = (

c(0)
k , c(1)

k , . . . , c(n−1)
k

)
. For the particular example being studied, these

vectors are c0 = (−1 − 1), c1 = (−1 + 1), c2 = (+ 1 − 1), c3 = (+ 1 + 1). The received se-
quence is also arranged as vectors of n components that are the samples of the received signal,
which adopts the form sr (i−1) = (

s(0)
r(i−1), s(1)

r(i−1), . . . , s(n−1)
r(i−1)

)
. The squared values of the distance

between the received samples sr(i−1) = (
s(0)

r(i−1), s(1)
r(i−1), . . . , s(n−1)

r(i−1)

)
at a given time instant ti

that defines the value for the transition i − 1 and some of the k possible output values for that
transition are calculated as

d2
(i−1)(sr(i−1), ck) =

n−1∑
j=1

(s(j)
r(i−1) − c(j)

k)2 (63)

For a path of U transitions of the trellis, the cumulative squared distance is calculated as

d2
U =

U+1∑
v=2

d2
v−1(sr(v−1), ck) (64)

where k varies according to the transition for which the cumulative squared distance is calcu-
lated.

The following is the soft-decision decoding of the received sequence for the example pre-
sented in this section.

As an example of the squared distance calculation, at time instant t2, the squared distance
of the transition from state Sa to the same state Sa is

d2
1 [(+1.35, −0.15), (−1, −1)] = (1.35 + 1)2 + (−0.15 + 1)2 = 6.245

All the remaining squared distances associated with the different transitions of the trellis
can be calculated as above, in order to determine, by addition of the corresponding values, the
cumulative squared distances at each time instant and state (node of the trellis), as shown in
Figures 6.28–6.30.

t1 t2 t3 t46.245 12.0675

1.445 11.467
6.299

13.499

1.667
12.699

12.267

12.900

+1.35 –0.15 –1.25 +1.40 –0.85 –0.10

16.7

15.699

16.499

2.499

Sa = 00

Sd = 11

Sc = 01

Sb = 10

Figure 6.28 Soft-decision decoding to determine the survivor at time instant t4 on the corresponding

trellis

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 199

6.245 12.0675

1.445 11.467

1.667

12.267

+1.35 –0.15 –1.25 +1.40

6.299

13.499

12.699

–0.85 –0.10

2.499

24.064

21.064

10.064

6.864

–0.95 –1.75

17.664

6.864

17.864

13.264

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5

Figure 6.29 Soft-decision decoding to determine the survivor at time instant t5 on the corresponding

trellis

If a decision is taken at time instant t6, the received sequence is correctly decoded, since the
minimum cumulative squared Euclidean distance is seen to be equal to d2

acum min = 7.204, for
the path that ends at the trellis node defined by the state Sb = 10, time instant t6, as seen in
Figure 6.31.

The soft-decision Viterbi decoding of the received sequence of this example shows the
advantages of using this type of decoding. Once again, soft decision leads to a better decoding
result than that of hard decision. In the former case, the decoder is able to correctly estimate
the sequence at instant t4, and then successfully decode the whole sequence correctly. In
comparison, the hard-decision decoder was shown to fail, owing to a wrong decision made at
time instant t4. In addition, the use of the squared Euclidean distance as a measure makes it
quite unlikely that two paths arriving at the same node of the trellis would have the same value
of cumulative squared distance.

1.445 11.467

1.667

12.267

6.299

13.499

12.699

2.499

10.064

6.864

6.864

13.264

9.204

15.604

14.404

7.204

18.804

12.404

17.604

10.404

6.245

+1.35 –0.15 –1.25 +1.40 –0.85 –0.10 –0.95 –1.75 +0.50 +1.30

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5 t6

Figure 6.30 Soft-decision decoding to determine the survivor at time instant t6 on the corresponding

trellis

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

200 Essentials of Error-Control Coding

1.445

1.667

6.299

2.499

10.064

6.864

6.864 9.204

7.204

12.404

10.404

+1.35 –0.15 –1.25 +1.40 –0.85 –0.10 –0.95 –1.75 +0.50 +1.30

Sa = 00

Sd = 11

Sc = 01

Sb = 10

t1 t2 t3 t4 t5 t6

Figure 6.31 Soft-decision decoding to determine the final survivor on the corresponding trellis

In this example hard-decision decoding was seen to produce a burst of decoding errors. This
is a characteristic of convolutional decoding in the presence of an error event that is over the
error-correction capability of the convolutional code. For this reason, convolutional codes are
widely used as the inner code of serially concatenated coding schemes where the outer code is
normally a code with high capability of correcting burst errors, like a Reed–Solomon (RS) code.
Interleaving is also very commonly used between these two codes, as has been shown in Chap-
ter 5 to be particularly efficient in the case of the cross-interleaved Reed–Solomon code coding
scheme for the compact disk. In this way, with the help of the outer code and the interleaver,
burst decoding errors produced by a collapsed convolutional decoder can be properly elimi-
nated. This combination of convolutional (inner) codes and RS (outer) codes is found in many
practical applications, including digital satellite transmission and deep space communications.

6.16 Punctured Convolutional Codes and Rate-Compatible Schemes

Punctured convolutional codes are convolutional codes obtained by puncturing of some of the
outputs of the convolutional encoder. The puncturing rule selects the outputs that are eliminated
and not transmitted to the channel. Puncturing increases the rate of a convolutional code, and
is a useful design tool because it makes it easy to achieve convolutional codes with relatively
high rates. This enhancement of code rate is desirable because low-rate codes are associated
with a higher loss of bit rate, or a larger increase in transmission bandwidth, in comparison
with uncoded transmission.

This procedure is applied to a base or mother code whose code rate is always smaller than
the desired code rate, so that for a given block of k message bits, only a selection of the total
number n of coded bits that the base encoder produces are transmitted. This technique was
first introduced by Cain, Clark and Geist [30]. In general, the base code is a convolutional code
of rate Rc = 1/2 which is used to construct punctured convolutional codes of rate (n − 1)/n,
with n ≥ 3. The main concept to keep in mind in the construction of a punctured convolutional
code is that its trellis should maintain the same state and transition structure of the base code
of rate Rc = 1/2; that is, in this case, a trellis that looks like that of the Figure 6.6, where there
are two transitions emerging from and arriving at each state. This differentiates the trellis of a
punctured convolutional code of rate (n − 1)/n from that of a convolutional code of the same

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 201

rate constructed in the traditional way. In the latter case, the rate of the code determines the
encoder structure, by requiring n − 1 parallel inputs, so that the resulting trellis will have 2n−1

transitions emerging from and arriving at each of its nodes. The punctured code trellis has
therefore fewer branches per state than that of the traditional code trellis. Thus the complexity
of the trellis is reduced, so that it also reduces the decoding complexity, whether using VA,
or the so-called BCJR algorithm described in Chapter 7. Another interesting application of
punctured convolutional codes will also be introduced in Chapter 7, involving turbo codes.

The construction of a given punctured convolutional code requires the definition of the
puncturing rule; that is, the rule that determines which of the coded outputs are not transmitted
to the channel. This puncturing rule can be properly described by means of a matrix, Pp,
where a ‘1’ indicates that the corresponding output is transmitted, whereas a ‘0’ indicates that
the corresponding output is not transmitted. The puncturing procedure has a period known as
the puncturing period Tp, so that the puncturing matrix is of size 2 × Tp when applied to a 1/2-
rate base code such as the code generated by the encoder of Figure 6.3. In the puncturing matrix
Pp, the first row determines the output bits that can be transmitted (‘1’s) or not (‘0’s) generated
by the convolutional base encoder output c(1), and the second row determines the output bits
that can be transmitted (‘1’s) or not (‘0’s) generated by the convolutional base encoder output
c(2). Read in column format, the puncturing matrix Pp defines for each transition or time
instant, if the outputs c(1) and/or c(2) are transmitted or not.

Example 6.10: Construct a punctured convolutional code of rate Rc = 2/3, using as the base
code the convolutional code of rate Rc = 1/2 whose encoder is shown in Figure 6.3. Figure 6.32
shows this punctured convolutional code of rate Rc = 2/3.

The construction of a punctured convolutional code of rate Rc = 2/3 is done by taking into
account the fact that the base encoder generates four output bits for every pair of input bits,
and so the punctured encoder should transmit only three of these four outputs to obtain the
desired code rate Rc = 2/3. This obviously requires the elimination of one output every four
outputs, making the corresponding puncturing period be equal to Tp = 2. A puncturing matrix
for this case would be of the form

Pp =
[

1 1
1 0

]

m(1)

c b
(2)

c b
(1)

S1 S2

Puncturing of
outputs cb

(1)

and cb
(2)

of the base
convolucional
code

c(2)

c(1)

Figure 6.32 Punctured convolutional encoder of rate Rc = 2/3 based on a convolutional code of rate

Rc = 1/2

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

202 Essentials of Error-Control Coding

1/00 1/0 1/00

1/11 1/1 1/11 1/1 1/11

0/11 0/1 0/11

1/01 1/0 1/01

0/0 0/01 0/0 0/01

1/1
1/10

0/10
1/1

0/1
1/10

0/10

t1 t2 t3 t4 t5 t6
0/00 0/0 0/00 0/0 0/00

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.33 Trellis for a punctured convolutional code of rate Rc = 2/3 based on a convolutional code

of rate Rc = 1/2

As read in column format, the above matrix indicates that in the first transition or time
instant both outputs c(1) and c(2) of the base convolutional encoder are transmitted, and in the
following time instant only c(1) is transmitted. In this way two input bits generate three output
bits, and the code rate is the desired rate Rc = 2/3. The trellis of this punctured convolutional
encoder, constructed from the base encoder as seen in Figure 6.3, has the trellis as shown in
Figure 6.33, where in even time index transitions output c(2) is not transmitted.

After the puncturing procedure, the base code of rate Rc = 1/2 and minimum Hamming
free distance df = 5 converts into a punctured code of rate Rc = 2/3 and minimum Hamming
free distance df = 3. One path with the minimum Hamming weight of 3 is shown in bold
in Figure 6.33. This minimum free distance reduction is a logical consequence of the puncturing
procedure, but in this case, however, the punctured convolutional code has the maximum
available value of that parameter for convolutional codes of that rate. This is, in general, not
true for punctured convolutional codes of rate (n − 1)/n. From this point of view, the punctured
convolutional code of rate Rc = 2/3 has the same properties as the traditionally constructed
convolutional code of the same rate, but with the advantage of a lower decoding complexity.

Figure 6.34 shows the first two stages of the trellis of a convolutional code of rate Rc = 2/3
constructed in the traditional way, which corresponds to the convolutional encoder as seen in
Figure 6.4. It can be seen that the structural complexity of this trellis is higher than that of the
trellis in Figure 6.33. This complexity arises not only due to the four branches emerging from
and arriving at each node of the trellis, but also due to the larger number of bits per transition,
so that both the number and the length of decoding distance calculations are increased.

Puncturing of convolutional codes emerges as a nice tool for the design of convolutional
codes of a desired code rate, since this procedure only requires the use of a fixed base convolu-
tional code of rate Rc = 1/2, together with a suitable puncturing matrix Pp. For a given base
convolutional code of rate Rc = 1/2, and a given puncturing matrix of size 2 × Tp, changes in
the element values in the matrix Pp generate a family of punctured codes with different code
rates. These code rates are in general larger than the initial code rate of the base code, and

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 203

11/110

00/000

01/001

10/111

11/101

01/010

10/100

11/011

01/100

10/010

11/000

01/111

10/001

00/011
00/101

00/110

11/110

00/000

01/001

10/111

Sa = 00

Sb = 10

Sc = 01

Sd = 11

Figure 6.34 Trellis for a convolutional code of rate Rc = 2/3 constructed in the traditional way

these different punctured convolutional codes are obtained by simply modifying the puncturing
matrix Pp. On the other hand, both the punctured encoder and decoder are based on the trellis
structure of the base convolutional code, so that they can adaptively operate in the family of
punctured convolutional codes by just knowing the changes in the puncturing matrix Pp. This
is called a set of rate-compatible punctured convolutional (RCPC) codes.

RCPC codes are very useful in automatic repeat request (ARQ) and hybrid-ARQ schemes
in order to optimize the data rate and BER performance as a function of the signal-to-noise
ratio of the channel. Thus, when the signal-to-noise ratio is high, high-rate codes (i.e., medium
error-control capability codes) are used, and when the signal-to-noise ratio in the channel is
low, relatively small-rate codes (i.e., high error-control capability codes) are then utilized. The
relative absence or presence of repeat transmission requests can be used to raise or lower the rate
of the codes in the RCPC set, usually starting from a high rate. Other system requirements or
status information can also be used to control the RCPC scheme, such as the quality-of-service
requirements of a sender, or channel state information in a multiuser wireless system.

Bibliography and References

[1] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[2] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

204 Essentials of Error-Control Coding

[3] Viterbi, A. J., “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, pp. 260–269, April 1967.

[4] Viterbi, A. J. and Omura, J. K., Principles of Digital Communication and Coding,
McGraw-Hill, New York, 1979.

[5] Carlson, B., Communication Systems: An Introduction to Signals and Noise in Electrical
Communication, 3rd Edition, McGraw-Hill, New York, 1986.

[6] Proakis, J. G. and Salehi, M., Communication Systems Engineering, Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

[7] Heegard, C. and Wicker, S., Turbo Coding, Kluwer, Massachusetts, 1999.
[8] Massey, J. L. and Mittelholzer, T., “Codes over rings – practical necessity,” AAECC

Symposium, Toulouse, France, June 1989.
[9] Massey, J. L. and Mittelholzer, T., “Convolutional codes over rings,” Proc. Fourth Joint

Swedish–Soviet International Workshop Inf. Theory, Gottland, Sweden, August 27–
September 1, 1989.

[10] Baldini, R., Coded Modulation Based on Ring of Integers, PhD Thesis, University of
Manchester, Manchester, 1992.

[11] Baldini, R. and Farrell, P. G., “Coded modulation based on ring of integers modulo-q. Part
2: Convolutional codes,” IEE Proc. Commun., vol. 141, no. 3, pp. 137–142, June 1994.

[12] Ahmadian-Attari, M., Efficient Ring-TCM Coding Schemes for Fading Channels, PhD
Thesis, University of Manchester, 1997.

[13] Lopez, F. J., Optimal Design and Application of Trellis Coded Modulation Techniques
Defined over the Ring of Integers, PhD Thesis, Staffordshire University, Stafford, 1994.

[14] Ahmadian-Attari, M. and Farrell, P. G., “Multidimensional ring-TCM codes for fading
channels,” IMA Conf. Cryptography & Coding, Cirencester, vol. 18–20, pp. 158–168,
December 1995.

[15] Castiñeira Moreira, J., Signal Space Coding over Rings, PhD Thesis, Lancaster University,
Lancaster, 2000.

[16] Massey, J. L. and Sain, M. K., “Inverse of linear sequential circuits,” IEEE Trans. Comput.,
vol. C17, pp. 330–337, April 1988.

[17] Forney, G. D., Jr., “Geometrically uniform codes,” IEEE Trans. Inf. Theory, vol. 37, no.
5, pp. 1241–1260, September 1991.

[18] Forney, G. D., Jr., “Coset codes. Part I: Introduction and geometrical classification,” IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 1123–1151, September 1988.

[19] Forney, G. D., Jr. and Wei, L.-F., “Multidimensional constellations. Part I: Introduction,
figures of merit, and generalised cross constellations,” IEEE Select. Areas Commun., vol.
7, no. 6, pp. 877–892, August 1989.

[20] Forney, G. D., Jr. and Wei, L.-F., “Multidimensional constellations. Part II: Voronoi con-
stellations,” IEEE Select. Areas Commun., vol. 7, no. 6, pp. 941–956, August 1989.

[21] Ungerboeck, G., “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory,
vol. IT-28, pp. 56–67, January 1982.

[22] Divsalar, D. and Yuen, J. H., “Asymmetric MPSK for trellis codes,” GLOBECOM’84,
Atlanta, Georgia, pp. 20.6.1–20.6.8, November 26–29, 1984.

[23] Benedetto, S., Garello, R., Mondin, M. and Montorsi, G., “Geometrically uniform parti-
tions of LxMPSK constellations and related binary trellis codes,” IEEE Trans. Inf. Theory,
vol. 42, no. 2–4, pp. 1995–1607, April 1994.

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 205

[24] Forney, G. D., Jr., “Coset codes. Part II: Binary lattices and related codes,” IEEE Trans.
Inf. Theory, vol. 34, no. 5, pp. 1152–1187, September 1988.

[25] Castiñeira Moreira, J., Edwards, R., Honary, B. and Farrell, P. G., “Design of ring-TCM
schemes of rate m/n over N -dimensional constellations,” IEE Proc. Commun., vol. 146,
pp. 283–290, October 1999.

[26] Benedetto, S., Garello, R. and Mondin, M., “Geometrically uniform TCM codes over
groups based on LxMPSK constellations,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp.
137–152, January 1994.

[27] Biglieri, E., Divsalar, D., McLane, P. J. and Simon, M. K., Introduction to Trellis-Coded
Modulation with Applications, McMillan, New York, 1991.

[28] Viterbi, A., “Convolutional codes and their performance in communication systems,”
IEEE Trans. Commun. Technol., vol. COM-19, no. 5, pp. 751–772, October 1971.

[29] Omura, J. K., “On the Viterbi decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-15,
pp. 177–179, January 1969.

[30] Cain, J. B., Clark, G. C. and Geist, J. M., “Punctured convolutional codes of rate (n-1)/n
and simplified maximum likelihood decoding,” IEEE Trans. Inf. Theory, vol. IT-25, pp.
97–100, January 1979.

[31] Honary B. and Markarian G., Trellis Decoding of Block Codes: A Practical Approach,
Kluwer, Massachusetts, 1997.

�

Problems

6.1 (a) Determine the state and trellis diagram for a convolutional code with K = 2,
code rate Rc = 1/3 and generator sequences given by the following polyno-
mials:

g(1)(D) = D + D2, g(2)(D) = 1 + D and g(3)(D) = 1 + D + D2.

(b) What is the minimum free distance of the code?
(c) Give an example to show that this code can correct double errors.
(d) Is this code catastrophic?

6.2 A binary convolutional error-correcting code has k = 1, n = 3, K = 2, g(1)(D) =
1 + D2, g(2)(D) = D and g(3)(D) = D + D2.
(a) Draw the encoder circuit and its trellis diagram, and calculate the free dis-

tance of the code.
(b) Is the code systematic or non-systematic?

6.3 (a) For the convolutional encoder of the Figure P.6.1,
determine the generator polynomials of the encoder.

(b) Is this a catastrophic code? Justify the answer.
(c) Determine the coded output for the input message m = (101).

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

206 Essentials of Error-Control Coding

m

c(2)

c(1)

Figure P.6.1 Convolutional encoder, Problem 6.3

6.4 Draw the trellis diagram of the binary convolutional encoder given in Figure P.6.2,
for which Rc = 1/3.
(a) What is the constraint length and the minimum free distance of the code

generated by this encoder?
(b) Draw the path through the extended trellis diagram corresponding to the

input sequence m = (1110100), starting from the all-zero state, and thus
determine the output sequence.

m

c(2)

c(3)

c(1)

Figure P.6.2 Convolutional encoder, Problem 6.4

6.5 (a) Draw the trellis diagram of the binary convolutional code generated by the
encoder of Figure P.6.3, and determine its minimum free distance.

m

c(2)

c(1)

Figure P.6.3 Convolutional encoder, Problem 6.5

(b) Obtain the impulse response of the encoder, and its relationship with item (a).

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

Convolutional Codes 207

(c) Confirm the minimum free distance of this code using the generating function
approach.

(d) What is the node error probability for this code on a BSC with p = 10−3?

m

c(1)

c(2)

Figure P.6.4 Convolutional encoder, Problem 6.6

6.6 The received sequence sr = (01 11 00 01 11 00 00 . . .) is applied to the input
of a decoder for the binary convolutional code generated by the encoder of
Figure P.6.4.
(a) Determine the corresponding input sequence by using the Viterbi decoding

algorithm, assuming that the encoder starts in the all-zero state.

6.7 The trellis diagram of a binary error-correcting convolutional encoder is shown
in Figure P.6.5.

0

1

0

1

0/00

1/10

1/11 0/01

Figure P.6.5 Trellis diagram, Problem 6.7

A sequence output by the encoder is transmitted over a channel subject to ran-
dom errors, and is received as the sequence

sr = (11 10 11 00 11 . . .)

(a) Using the Viterbi decoding algorithm, find the sequence most likely to have
been transmitted, and hence determine the positions of any errors which
may have occurred during transmission.

OTE/SPH OTE/SPH
JWBK102-06 JWBK102-Farrell June 17, 2006 18:3 Char Count= 0

208 Essentials of Error-Control Coding

(b) A sequence from the encoder of item (a) is transmitted over an AWGN chan-
nel and is received as the sequence

sr = (33 10 23 00 33 . . .)

after soft-decision detection with four levels. Find the most likely error pattern
in the received sequence.

6.8 The convolutional encoder of IIR type and code rate Rc = 1/2, as seen in Fig-
ure P.6.6, operates with coefficients over the binary field GF(2). Determine the
transfer function and the state transfer function matrices of this code.

a0

S0

S1 S2

a1

f1
f2

a2

c(1)

c(2)

m

Figure P.6.6 Convolutional encoder, Problem 6.8

6.9 A binary convolutional error-correcting code has k = 1, n = 2, K = 2, g(1)(D) =
1 + D + D2 and g(2)(D) = D + D2.
(a) Draw the encoder circuit and its trellis diagram, and determine the rate and

the free distance of the code.
(b) Is the code systematic or non-systematic?

6.10 An information sequence encoded using the encoder of Problem 6.9 is transmit-
ted through a channel subject to random errors and received as the sequence.

sr = (10 01 00 01 11 11 10)

What is the information sequence?

�

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

7
Turbo Codes

Berrou, Glavieux and Thitimajshima [1] introduced in 1993 a novel and apparently revolu-
tionary error-control coding technique, which they called turbo coding. This coding technique
consists essentially of a parallel concatenation of two binary convolutional codes, decoded by
an iterative decoding algorithm. These codes obtain an excellent bit error rate (BER) perfor-
mance by making use of three main components. They are constructed using two systematic
convolutional encoders that are IIR FSSMs, usually known as recursive systematic convo-
lutional (RSC) encoders, which are concatenated in parallel. In this parallel concatenation,
a random interleaver plays a very important role as the randomizing constituent part of the
coding technique. This coding scheme is decoded by means of an iterative decoder that makes
the resulting BER performance be close to the Shannon limit.

In the original structure of a turbo code, two recursive convolutional encoders are arranged
in parallel concatenation, so that each input element is encoded twice, but the input to the
second encoder passes first through a random interleaver [2, 3]. This interleaving procedure is
designed to make the encoder output sequences be statistically independent from each other.
The systematic encoders are binary FSSMs of IIR type, as introduced in Chapter 6, and usually
have code rate Rc = 1/2. As a result of the systematic form of the coding scheme, and the
double encoding of each input bit, the resulting code rate is Rc = 1/3. In order to improve
the rate, another useful technique normally included in a turbo coding scheme is puncturing
of the convolutional encoder outputs, as introduced in Chapter 6.

The decoding algorithm for the turbo coding scheme involves the corresponding decoders
of the two convolutional codes iteratively exchanging soft-decision information, so that the
information can be passed from one decoder to the other. The decoders operate in a soft-input–
soft-output mode; that is, both the input applied to each decoder, and the resulting output
generated by the decoder, should be soft decisions or estimates [3]. Both decoders operate
by utilizing what is called a priori information, and together with the channel information
provided by the samples of the received sequence, and information about the structure of the
code, they produce an estimate of the message bits. They are also able to produce an estimate
called the extrinsic information, which is passed to the other decoder, information that in the
following iteration will be used as the a priori information of the other decoder. Thus the first
decoder generates extrinsic information that is taken by the second decoder as its a priori

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

209

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

210 Essentials of Error-Control Coding

information. This procedure is repeated in the second decoder, which by using the a priori
information, the channel information and the code information generates again an estimation
of the message information, and also an extrinsic information that is now passed to the first
decoder. The first decoder then takes the received information as its a priori information for
the new iteration, and operates in the same way as described above, and so on.

The iterative passing of information between the first and the second decoders continues
until a given number of iterations is reached. With each iteration the estimates of the message
bits improve, and they usually converge to a correct estimate of the message. The number of
errors corrected increases as the number of iterations increases. However, the improvement of
the estimates does not increase linearly, and so, in practice, it is enough to utilize a reasonable
small number of iterations to achieve acceptable performance.

One of the most suitable decoding algorithms that performs soft-input–soft-output decisions
is a maximum a posteriori (MAP) algorithm known as the BCJR (Bahl, Cocke, Jelinek,
Raviv, 1974) algorithm [4]. Further optimizations of this algorithm lead to lower complexity
algorithms, like SOVA (soft-output Viterbi algorithm), and the LOG MAP algorithm, which
is basically the BCJR algorithm with logarithmic computation [2].

7.1 A Turbo Encoder

A turbo encoder constructed using two RSC encoders arranged in parallel, and combined with
a random interleaver, together with a multiplexing and puncturing block, is seen in Figure 7.1.

In the traditional structure of a turbo encoder, the encoders E1 and E2 are usually RSC
encoders of rate Rc = 1/2, such that c′

1 = c1, c′
2 = c2 and the lengths of the sequences m,

c1 and c2, and c′
1 and c′

2 are all the same. Then the overall turbo code rate is Rc = 1/3.
Puncturing [2, 6] is a technique very commonly used to improve the overall rate of the code.
The puncturing selection process is performed by periodically eliminating one or more of the
outputs generated by the constituent RSC encoders. Thus, for instance, the parity bits generated
by these two encoders can be alternately eliminated so that the redundant bit of the first encoder
is first transmitted, eliminating that of the second decoder, and in the following time instant
the redundant bit of the second encoder is transmitted, eliminating that of the first. In this way,

Encoder E1

Encoder E2

Interleaver

m

c1

c2

c = (m, c ′1, c ′2)Multiplex
& puncture
block

Figure 7.1 A turbo encoder

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 211

the lengths of c′
1 and c′

2 are half the lengths of c1 and c2, respectively, and the resulting overall
rate becomes Rc = 1/2. Puncturing is not usually applied to the message (systematic) bits,
because this causes a BER performance loss.

There are two important components of a turbo encoder whose parameters have a major
influence on the BER performance of a turbo code: the first is the interleaver, especially its
length and structure, and the second is the use of RSC IIR FSSMs as constituent encoders [2, 3].
The excellent BER performance of these codes is enhanced when the length of the interleaver
is significantly large, but also important is its pseudo-random nature. The interleaving block,
and its corresponding de-interleaver in the decoder, does not much increase the complexity of
a turbo scheme, but it does introduce a significant delay in the system, which in some cases
can be a strong drawback, depending on the application. The RSC-generated convolutional
codes are comparatively simple, but offer excellent performance when iteratively decoded
using soft-input–soft-output algorithms.

7.2 Decoding of Turbo Codes

7.2.1 The Turbo Decoder

Turbo codes are so named because of their iterative soft-decision decoding process, which
enables the combination of relatively simple RSC codes to achieve near-optimum performance.
Turbo decoding involves iterative exchange between the constituent decoders of progressively
better estimates of the message bits, in a decoding procedure that is helped by the statistical
independence of the two code sequences generated by each input bit. The turbo decoder is
shown in Figure 7.2.

In the decoding procedure, each decoder takes into account the information provided by
the samples of the channel, which correspond to the systematic (message) and parity bits,

Interleaver

Interleaver

Dec. D1

Dec. D2

Systematic information

Parity bits from E1

Parity bits from E2

Channel data

De-interleaver

_

_

_

_

Figure 7.2 A turbo decoder

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

212 Essentials of Error-Control Coding

together with the a priori information that was provided by the other decoder, which was
calculated as its extrinsic information in the previous iteration. However, instead of making a
hard decision on the estimated message bits, as done for instance in the traditional decoding of
convolutional codes using the Viterbi algorithm, the decoder produces a soft-decision estimate
of each message bit. This soft-decision information is an estimate of the corresponding bit
being a ‘1’ or a ‘0’; that is, it is a measure of the probability that the decoded bit is a ‘1’ or
a ‘0’. This information is more conveniently evaluated in logarithmic form, by using what
is known as a log likelihood ratio (LLR), to be defined below. This measure is very suitable
because it is a signed number, and its sign directly indicates whether the bit being estimated
is a ‘1’ (positive sign) or a ‘0’ (negative sign), whereas its magnitude gives a quantitative
measure of the probability that the decoded bit is a ‘1’ or a ‘0’. There are many algorithms that
operate using LLRs, and perform decoding using soft-input–soft- output values. One of these
algorithms is the BCJR algorithm [4]. Some background on the measures and probabilities
involved in this algorithm is presented next, in order to then introduce the BCJR algorithm [3].

7.2.2 Probabilities and Estimates

The probability distribution is a useful description of a discrete random variable X whose
values are taken from a discrete alphabet of symbols AX . The distribution (or histogram when
plotted graphically) is a function that assigns to each value of the variable the probability of
occurrence of that value. In the case of continuous random variables, the histogram becomes
the so-called probability density function. A probability distribution for a discrete random
variable is of the form

P(X = x) = p(x) ≥ 0 and
∑
x∈AX

p(x) = 1 (1)

where a non-negative number p(x) is assigned to each value of the random variable x ∈ AX .
An equivalent quantity often utilized in decoding algorithms is the probability measure or
metric μ(x) of the event x ∈ AX . A measure or estimate of an event x ∈ AX of a discrete
random variable is a generalization of the probability distribution, where the restriction that
the sum over all the probabilities in the distribution does not necessarily have to be equal to 1.
Then the relationship between measures μ(x) and probabilities p(x) is given by

p(x) = μ(x)∑
x∈A μ(x)

(2)

Measures have properties similar to those of probabilities. The marginal measure of an event
x ∈ AX , conditioned on a random variable Y , is obtained by summing over all the events of
the associated random variable Y :

μ(x) =
∑
y∈AY

μ(x, y) (3)

where μ(x, y) is the joint measure for a pair of random variables X and Y . The Bayes rule is
also applicable to joint measures:

μ(x, y) = μ(y/x)μ(x) (4)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 213

It is usually more convenient to convert products into sums by using measures in logarithmic
form. In this case the measure is called a metric of a given variable:

L(x) = − ln(μ(x)) (5)

μ(x) = e−L(x) (6)

It is also true that

L(μ(x) + μ(y)) = − ln
[
e−L(x) + e−L(y)

]
(7)

and

L(μ(x)μ(y)) = L(x) + L(y) (8)

7.2.3 Symbol Detection

Symbol detection is performed in receivers and decoders, and it is applied in order to determine
the value of a given discrete random variable X by observing events of another random variable
Y , which is related to the variable X . Thus, for instance, a given discrete random variable X
that takes values from the range of a discrete alphabet AX = {0, 1} can be the input of a binary
symmetric channel with transition or error probability p, and the corresponding output of this
channel can be the discrete random variable Y . If in this channel the output discrete random
variable Y takes values from the discrete alphabet AY = {0, 1}, it is said that the channel is a
hard-decision channel.

Another model is the Gaussian channel, where a given discrete random variable X with
values taken from the discrete polar format alphabet AX = {+1, −1} generates a continuous
random variable Y , which after being affected by white and Gaussian noise takes values from
the set of real numbers AY = �. In general terms, a hard decision over X is said to occur when
after observing the variable Y, the decoder or receiver makes a firm decision that selects one
of the two possible values of X , AX = {+1, −1}, a decision that will be denoted as x̂ . This
is the case of a decoder or receiver that takes samples of the received signal and compares
these samples with a voltage threshold in order to decide for a ‘1’ or a ‘0’ depending on this
comparison.

A soft decision of X is said to happen when after observing the variable Y the decoder or
receiver assigns a measure, metric or estimate μ(x) of X based on the observed value of Y .
There are many ways of assigning a measure μ(x) of X , that is, to make a soft decision of
X , but the more significant ones are those provided by the maximum likelihood (ML) and the
maximum a posteriori (MAP) decoding methods.

In the ML decoding method, the soft decision of X based on the event of the variable y ∈ AY

is given by the following conditional distribution function [3]:

μML(x) = p(y/x) = p(x, y)

p(x)
(9)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

214 Essentials of Error-Control Coding

In the MAP decoding method, the soft decision of X based on the event of the variable
y ∈ AY is given by the following conditional probability distribution function:

μMAP(x) = p(x/y) = p(x, y)

p(y)
(10)

The ML measure is not a probability distribution function because the normalizing condition,
the sum over the alphabet of X , AX , should be equal to 1, is not obeyed in this case. However,
it is obeyed in the case of the MAP estimation, which is indeed a probability density function.

The MAP measure is proportional to the joint probability p(x, y). Since

μMAP(x) ∝ p(x, y) (11)

then

μMAP(x) ∝ μML(x)p(x) (12)

7.2.4 The Log Likelihood Ratio

The LLR [2, 5] is the most common information measure or metric used in iterative decoding
algorithms, like the LOG MAP BCJR algorithm to be described below, and it is usually the
measure or the extrinsic estimate that each decoder communicates to the other in a turbo
decoder.

The LLR for a bit bi is denoted as L(bi), and it is defined as the natural logarithm of the
quotient between the probabilities that the bit is equal to ‘1’ or ‘0’. Since this is a signed
number, this sign can be directly considered as representative of the symbol which is being
estimated, and so it is more convenient to define it as the quotient of the probability that the
bit is equal to +1 or −1, using the polar format. This is the same as saying that the decision
is taken over the transmitted signal alphabet in the range {±1}, rather than over the binary
information alphabet {0, 1}. This estimate is then defined as

L(bi) = ln

(
P(bi = +1)

P(bi = −1)

)
(13)

This definition will be found more convenient in the description of the decoding algorithms,
where the sign of the LLR is directly used as the hard decision of the estimate, and its value
is utilized as the magnitude of the reliability of the estimate. Thus, a soft decision can be
understood as a weighted hard decision.

Figure 7.3 shows the LLR as a function of the bit probability of the symbol +1, which is
positive if P(bi = +1) > 0.5 (symbol ‘1’ is more likely than symbol ‘0’), and it is negative if
P(bi = +1) < 0.5 (symbol ‘0’ is more likely than symbol ‘1’). The magnitude of this amount
is a measure of the probability that the estimated bit adopts one of these two values.

From (13), and as P(bi = +1) = 1 − P(bi = −1), then [5]

eL(bi) = P(bi = +1)

1 − P(bi = +1)
(14)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

8
Log likelihood ratio

P(bi=+1)

Figure 7.3 LLR as a function of the bit probability of the symbol +1

and also

P(bi = +1) = eL(bi)

1 + eL(bi)
= 1

1 + e−L(bi)
(15)

P(bi = −1) = e−L(bi)

1 + e−L(bi)
= 1

1 + e+L(bi)
(16)

Expressions (15) and (16) can be summarized as follows:

P(bi = ±1) = e−L(bi)/2

1 + e−L(bi)
e±(L(bi)/2) = e−L(bi)/2

1 + e−L(bi)
e(bi L(bi)/2) (17)

since the bit bi = ±1.

7.3 Markov Sources and Discrete Channels

As seen in Chapter 1, a discrete channel can be described by its corresponding transition
probability matrix. The most commonly used model of a channel is the memoryless channel,
where a given input sequence X1, X2, X3, . . . of statistically independent values taken from
a discrete alphabet generates an output sequence Y1, Y2, Y3, . . . of values that are also taken
from a statistically independent discrete alphabet. Under this assumption, the output conditional

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

216 Essentials of Error-Control Coding

probability is obtained as the product of the transition probabilities of the channel:

p(Y/X) =
n∏

j=1

R j (Y j/X j) (18)

where R j (Y j/X j) is the channel transition probability p(y j/x j) for the transmitted symbol x j .
In this notation, x j represents the value of the signal at instant j , X j is a random variable that
represents x j and takes values from the discrete alphabet Ax , and X = Xn

1 = {X1, X2, . . . , Xn}
is a vector or sequence of random variables. The difference between X j and x j is that the former
is the random variable, and the latter is a particular value of that random variable.

Since the channel is stationary, transition probabilities are time invariant. In general, the data
source is characterized by a uniformly distributed probability distribution function, which is
called the source marginal distribution function p(X j) of the system.

When the source output is a sequence of independent discrete data, then the source is
considered to be a discrete memoryless source. However, this is not the most suitable model
for the encoded output sequence generated by a trellis encoder, for instance, since the output
symbols are related and the sequence contains some degree of memory. The behaviour of
this sort of encoded sequences is more appropriately described by the model of the so-called
discrete hidden Markov source.

A sequence input to a channel is considered to be a discrete hidden Markov source if
its elements are selected from a discrete alphabet, and the joint probabilities of the symbol
sequences are of the form

p(X) = p(X1)
n∏

j=2

Q j (X j/X j−1) (19)

where the source transition probabilities are

Q(X j/X j−1) = p(X j−1, X j)

p(X j−1)
(20)

These are the probabilities that describe the degree of dependence among the symbols generated
by a given discrete hidden Markov source. One important property of a discrete hidden Markov
source is that the corresponding probability distribution functions are such that

p(X j) =
∑

x j−1∈AX j−1

p(X j−1)Q j (X j/X j−1) (21)

The most relevant characteristic of a sequence generated by a discrete hidden Markov source
is that, at any time instant j , knowledge of the symbol X j makes the past and future sequences
X J−1

1 = {X1, X2, . . . , X j−1} and Xn
j+1 = {X j+1, X j+2, . . . , Xn} be independent from each

other. This allows us to do a decomposition of the sequence generated by a discrete hidden
Markov source into three subsequences, and accordingly to write the corresponding probability
distribution function as the product of three factors [1, 3]:

p(X) = p
(

X j−1
1 , X j , Xn

j+1

)
= p

(
X j−1

1 /X j

)
p(X j)p

(
Xn

j+1/X j
)

(22)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 217

This expression identifies the past, present and future sequences, and their statistical indepen-
dence, a fact resulting from the use of the discrete hidden Markov source model. This property
will be used in following sections.

The discrete hidden Markov source model is very suitable for describing the behaviour
of the output of a trellis encoder, which generates a sequence of related or dependent symbols
that are input to a discrete memoryless channel. Let B1, B2, B3, . . . be a sequence of branches
from the trellis of a given encoder, which assigns values of a discrete alphabet AB each
transition or branch, and let X1, X2, X3, . . . be the sequence of values taken from a discrete
alphabet AX , such that X j is the output assigned a given transition or branch B j . Then the
sequence X1, X2, X3, . . . can be considered as coming from a discrete hidden Markov source.
This sequence is input to a discrete memoryless channel, and the resulting output sequence
Y1, Y2, Y3, . . . can also be considered as a discrete hidden Markov source.

The trellis of an encoder, which essentially represents an FSSM, can be designed for either
block or convolutional codes, and is an example of the operation of a discrete hidden Markov
source. In a trellis encoder the output assigned to each branch represents the input value that is
transmitted by means of an output sequence of related or dependant symbols. In this case the
event of the occurrence Br j = br j of a transition or branch of the trellis is described by the
input value m j that produces such a transition, the output value X j that is transmitted at that
branch and the previous and present states Sj−1 and Sj that define that branch or transition.

In general, data input to an FSSM are supposed to be independent so that the joint probability
distribution function of a sequence of these input data is equal to the product

∏n
j=1 p(m j).

Therefore the transition probabilities of the source are equal to

Q j (br j/br j−1) =
{

p(m j) transition Sj−1 → Sj associated to m j , X j

0 transition Sj−1 → Sj does not exist
(23)

When dealing with a given discrete hidden Markov source, the intention is to determine the
hidden variables as a function of the observable variables. In the case of a discrete memoryless
channel through which a hidden Markov chain is transmitted, the intention is to determine
input variables represented by a sequence X, as a function of the observation of the output
variables of the channel, represented by a sequence Y .

An iterative solution for the above problem is the Baum and Welch algorithm, which was
applied to the decoding of convolutional codes by Bahl, Cocke, Jelinek and Raviv (BCJR)
[4] in the design of the so-called BCJR algorithm. The aim of this algorithm is to determine
an estimate or soft decision for a given sequence element at position j , X j , of the hidden
Markov chain, by observing the output sequence of a discrete memoryless channel Y that
corresponds to a given input sequence X. Thus, and by observing the output of the channel
Y = Y n

1 = {Y1, Y2, . . . , Yn} that corresponds to an input X, the following MAP estimate can
be calculated:

μMAP(X j) = p(X j , Y) (24)

where Y is a vector that contains the observed output values. A maximum likelihood measure
of the same event is

μML(X j) = p(X j , Y)

p(X j)
(25)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

218 Essentials of Error-Control Coding

The algorithm estimates the joint probability p(X j , Y) that defines either of these two
measures, and that can be factorized as in (22).

The Bayes rule and the following properties for joint events will be useful for obtaining
expressions for p(X j , Y):

For any two random variables X and Y , the joint probability of X and Y , P(X, Y), can be
expressed as a function of the conditional probability of X and Y , P(X/Y), as

P(X, Y) = P(X/Y)P(Y) (26)

For the joint events V = {X, Y }, W = {Y, Z} considered as other random variables, the
Bayes rule and expression (26) lead to the following expression:

P({X, Y }/Z) = P(V/Z) = P(V, Z)

P(Z)
= P(X, Y, Z)

P(Z)
= P(X, W)

P(Z)
= P(X/W)P(W)

P(Z)
(27)

P({X, Y }/Z) = P(X/{Y, Z}) P(Y, Z)

P(Z)
= P(X/{Y, Z})P(Y/Z) (28)

On the other hand, and by applying the statistical properties of a Markov chain and of a
memoryless channel,

p
(

Y j/
{

X j , Y j−1
1

})
= p(Y j/X j) (29)

and

p
(

Y n
j+1/

{
Y j , X j , Y j−1

1

})
= p(Y n

j+1/X j) (30)

7.4 The BCJR Algorithm: Trellis Coding and Discrete
Memoryless Channels

So far, discrete hidden Markov sources and their relationship to soft-decision decoding have
been described. The problem of the decoding of a turbo code is essentially to determine MAP
estimates or soft decisions of states and transitions of a trellis encoder, seen as a discrete hidden
Markov source whose output sequence is observed through a discrete memoryless channel.
This is shown in Figure 7.4.

The discrete hidden Markov source, as given in Figure 7.4, represents a trellis encoder (for
either block or convolutional codes), or in general, an FSSM seen as a discrete source of finite
states. This discrete hidden Markov has U states u = 0, 1, 2, . . . , U − 1. The state of the source

Hidden
Markov
source

Discrete
memoryless
channel

Receiver

Figure 7.4 Scenario for the BCJR algorithm

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 219

in time instant i is denoted as Si , and its output is Xi . A sequence of states from time instant
i to time instant j will be denoted as S j

i = {Si , Si+1, . . . , Sj }, and will be described by the

corresponding output sequence X j
i = {Xi , Xi+1, . . . , X j }. Xi is the i th output symbol taken

from a discrete alphabet. The state transitions are determined by the transition probabilities

pi (u/u′) = P(Si = u/Si−1 = u′) (31)

and the corresponding outputs by the probabilities

qi (X/{u′, u}) = P(Xi = x/{Si−1 = u′, Si = u}) (32)

where x is taken from the discrete output alphabet.
The discrete hidden Markov source generates a sequence Xn

1 that starts at state S0 = 0
and ends at the same state S0 = 0. The output of the discrete hidden Markov source Xn

1

is the input of a noisy discrete memoryless channel that generates the distorted sequence
Y n

1 = {Y1, Y2, . . . , Yn}. Transition probabilities of the discrete memoryless channel are defined
as R(Y j/X j), such that for every time instant 1 ≤ i ≤ n,

P
(
Y i

1/Xi
1

) =
i∏

j=1

R(Y j/X j) (33)

The term R(Y j/X j) determines the probability that at time instant j , the symbol Y j is the
output of the channel if the symbol X j was input to that channel. This will happen with a
transition probability P(y j/x j) that the input symbol x j converts into the output symbol y j .

A decoder for this Markov process has to estimate the MAP probability of states and outputs
of the discrete hidden Markov source by observing the output sequence Y n

1 = {Y1, Y2, . . . , Yn}.
This means that it should calculate the probabilities

P
(
Si = u/Y n

1

) = P
(
Si = u, Y n

1

)
P(Y n

1)
(34)

P
({Si−1 = u′, Si = u}/Y n

1

) = P
(
Si−1 = u′, Si = u, Y n

1

)
P(Y n

1)
(35)

The notation here is that the state Si defines a given state i in a trellis, whereas its particular
value is obtained from an alphabet U of states of the trellis, with u = 0, 1, 2, . . . , U − 1.
Therefore, in a trellis, the sequence Y n

1 = {Y1, Y2, . . . , Yn} is represented by a unique path.
The following MAP probability is associated with each node or state of a trellis:

P
(
Si = u/Y n

1

)
(36)

and the following MAP probability is associated with each branch or transition of the trellis:

P
({Si−1 = u′, Si = u}/Y n

1

)
(37)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

220 Essentials of Error-Control Coding

The decoder will calculate these probabilities by observing the output sequence Y n
1 =

{Y1, Y2, . . . , Yn}. The decoder can also calculate the joint probabilities

λi (u) = P
(
Si = u, Y n

1

)
(38)

and

σi (u
′, u) = P

(
Si−1 = u′, Si = u, Y n

1

)
(39)

Since for a given output sequence Y n
1 = {Y1, Y2, . . . , Yn}, the probability P

(
Y n

1

)
is a constant

value, the quantities λi (u) and σi (u′, u) can be divided by P
(
Y n

1

)
to determine the desired MAP

probabilities. Thus, there is a method for calculating the probabilities λi (u) and σi (u′, u). This
is obtained by defining the probabilities

αi (u) = P
(
Si = u, Y i

1

)
(40)

βi (u) = P
(
Y n

i+1/Si = u
)

(41)

γi (u
′, u) = P

({Si = u, Yi } /Si−1 = u′) (42)

Then

λi (u) = P
(
Si = u, Y n

1

) = P
(
Si = u, Y i

1

)
P

(
Y n

i+1/
{

Si = u, Y i
1

})
(43)

where

P
(
Y n

i+1/
{

Si = u, Y i
1

}) = P
(
Si = u, Y n

i+1, Y i
1

)
P

(
Si = u, Y i

1

) = P
(
Si = u, Y n

1

)
P

(
Si = u, Y i

1

) (44)

But since αi (u) = P
(
Si = u, Y i

1

)
,

λi (u) = P
(
Si = u, Y i

1

)
P

(
Y n

i+1/
{

Si = u, Y i
1

}) = αi (u)P
(
Y n

i+1/Si = u
)

(45)

The above simplification is obtained by applying the property of discrete hidden Markov
sources that states that, for a given event characterized by the state Si , past and future events do
not depend on the value at this state, so that past, present and future events are all statistically
independent.

Then, and since βi (u) = P
(
Y n

i+1/Si = u
)
,

λi (u) = αi (u)P
(
Y n

i+1/Si = u
) = αi (u)βi (u) (46)

An equivalent expression can be obtained for σi (u′, u) as

σi (u′, u) = P
(
Si−1 = u′, Si = u, Y n

1

)
= P

(
Y n

i+1/
{

Si−1 = u′, Si = u, Y i−1
1 , Yi

})
P

(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

= P
(
Y n

i+1/Si = u
)

P
(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

= P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= P
(
Y n

i+1/Si = u
)

P
({Yi , Si = u} /

{
Si−1 = u′, Y i−1

1

})
P

({
Si−1 = u′, Y i−1

1

})
= P

(
Y n

i+1/S1 = u
)

P
({Si = u, Yi } /Si−1 = u′) P

(
Si−1 = u′, Y i−1

1

)
(47)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 221

Thus

σi (u′, u) = P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= αi−1(u′)γi (u′, u)βi (u)
(48)

7.5 Iterative Coefficient Calculation

In the following, coefficients αi (u) and βi (u) are calculated by iteration as a function of
coefficients γi (u′, u).

For i = 0, 1, 2, . . . , n, the definition of αi−1(u′) allows us to describe the term αi (u) as

αi (u) = P
(
Si = u, Y i

1

) = P
(
Si = u, Y i−1

1 , Yi
)

(49)

αi (u) =
U−1∑
u′= 0

P
(
Si−1 = u′, Si = u, Y i−1

1 , Yi
)

=
U−1∑
u′= 0

P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /
{

Si−1 = u′, Y i−1
1

}) (50)

αi (u) =
U−1∑
u′= 0

P
(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) =
U−1∑
u′= 0

αi−1(u′)γi (u
′, u)

(51)
For i = 0, the decoder utilizes the initial conditions α0(0) = 1 and α0(u) = 0, u
= 0. In the

same way, for i = 1, 2, . . . , n − 1,

βi (u) =
U−1∑
u′= 0

P
({

Si+1 = u′, Y n
i+1

}
/Si = u

)
=

U−1∑
u′= 0

P
({

Si+1 = u′, Yi+1

}
/Si = u

)
P

(
Y n

i+2/Si+1 = u′)
βi (u) =

U−1∑
u′= 0

= βi+1(u′)γi+1(u, u′) (52)

For i = n, the decoder utilizes the contour conditions βn(0) = 1 and βn(u) = 0, u
= 0. This
is true for a terminated trellis, that is, for a trellis that starts and ends in the zero state S0. If
this is not the case, then βn(u) = 1∀u.

On the other hand, values of γi (u′, u) are also calculated as

γi (u′, u) =
∑
AX

P(Si = u/Si−1 = u′)P(Xi = x/{Si−1 = u′, Si = u})P (Yi/Xi)

γi (u′, u) =
∑
AX

pi (u/u′)qi (X/{u′, u})R(Yi/Xi)
(53)

The sum in the above expression is done over the entire input alphabet Ax .

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

222 Essentials of Error-Control Coding

The decoding procedure for calculating the values of λi (u) and σi (u′, u) is applied as
follows:

1. Set the initial conditions α0(0) = 1 and α0(u) = 0, u
= 0, and the contour conditions
βn(0) = 1 and βn(u) = 0, u
= 0 for u = 0, 1, 2, . . . , U − 1.

2. After receiving Yi , the decoder calculates γi (u′, u) with equation (53) and determines αi (u)
with equation (51). The obtained values are stored for every i and every u.

3. After receiving the whole sequence Y n
1 , the decoder recursively calculates the values βi (u)

by using expression (52). Once all the values βi (u) are determined, they can be multiplied
by αi (u) and γi (u′, u) in order to determine values of λi (u) and σi (u′, u) according to
expressions (46) and (48).

Any event dependent on the trellis states can be measured by adding the corresponding
probabilities λi (u), and any event dependent on the trellis transitions can be measured by
adding the corresponding probabilities σi (u′, u).

The iterative calculation of the values αi (u) is usually called the forward recursion, while the
iterative calculation of values βi (u) is called the backward recursion. The input information
probability is related to the values λi (u), and the coded information probability is related to
the values σi (u′, u).

Example 7.1: The BCJR algorithm is applied to the decoding of the block code Cb(5, 3) with
minimum Hamming distance dmin = 2 and the generator matrix

G =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦
In this code there are eight code vectors. The parity check matrix is conveniently obtained

by converting the generator matrix into systematic form. This can be done by adding the three
rows of the generator matrix and by replacing the third row by this sum of rows. The resulting
matrix is of a systematic form

G ′ =
⎡⎣1 0 1 0 0

0 1 0 1 0
1 1 0 0 1

⎤⎦
Then

P ′ =
⎡⎣1 0

0 1
1 1

⎤⎦
and

H′ = [
Iq P ′T] =

[
1 0 1 0 1
0 1 0 1 1

]
= H

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 223

Table 7.1 Code vectors of the block code Cb(5, 3)

0 0 0 0 0

1 1 0 0 1

0 1 0 1 0

1 0 0 1 1

1 0 1 0 0

0 1 1 0 1

1 1 1 1 0

0 0 1 1 1

It is verified that

G ◦ HT =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦
⎡⎢⎢⎢⎢⎣

1 0
0 1
1 0
0 1
1 1

⎤⎥⎥⎥⎥⎦ =
⎡⎣0 0

0 0
0 0

⎤⎦ = 0

Matrix H is the parity check matrix of the code. The eight code vectors of this code can be
obtained by multiplying the message vectors by the generator matrix G.

Table 7.1 allows us to determine the minimum weight, and therefore the minimum Hamming
distance of the code, which is pH = dmin = 2.

A trellis for this block code can be constructed, based on the information provided by the
code table, as shown in Figure 7.5.

It is assumed that the message bits that are input to the encoder of the block code are equally
likely. The operation of this code will be studied on the soft-decision, discrete, symmetric and
memoryless channel that is shown in Figure 7.6, whose transition probabilities are described
in Table 7.2. This channel has two inputs and four outputs, two of high reliability, and two of
low reliability.

It is assumed, in this example, that the transmitted code vector is c = (00000) and the
corresponding received vector is r = (10200). Note that elements of the transmitted vector are
inputs of the channel of Figure 7.6, and elements of the received vector are outputs of that

1

0

0

0

1

000 0 0

0
1

1

111

1

1

1

0

Figure 7.5 A trellis for the block code Cb(5, 3)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

224 Essentials of Error-Control Coding

0

1

0

1

2

3

High-reliability
output for 0

High-reliability
output for 1

Low-reliability output
for 0

Low-reliability output
for 1

Figure 7.6 A soft-decision discrete symmetric memoryless channel

channel. Table 7.3 shows the transition probabilities for the input elements ‘1’ and ‘0’ for each
received element.

The values γi (u′, u) are first calculated and then αi (u) and βi (u) can also be determined.
First, the calculations are described in detail as

γ1(0, 0) =
∑
x∈Ax

P(S1 = 0/S0 = 0)P(X1 = x/{S0 = 0, S1 = 0})P(Y1/X1 = x)

= P(S1 = 0/S0 = 0)P(X1 = 0/{S0 = 0, S1 = 0})P(Y1/X1 = 0)

+P(S1 = 0/S0 = 0)P(X1 = 1/{S0 = 0, S1 = 0})P(Y1/X1 = 1)

= 0.5 × 1 × 0.3 + 0.5 × 0 × 0.15

= 0.15

γ1(0, 1) =
∑

X

P(S1 = 1/S0 = 0)P(X1 = x/{S0 = 0, S1 = 1})P(Y1/X1 = x)

= P(S1 = 1/S0 = 0)P(X1 = 0/{S0 = 0, S1 = 1})P(Y1/X1 = 0)

+P(S1 = 1/S0 = 0)P(X1 = 1/{S0 = 0, S1 = 1})P(Y1/X1 = 1)

= 0.5 × 0 × 0.3 + 0.5 × 1 × 0.15

= 0.075

Table 7.2 Transition probabilities of the

channel of Figure 7.6

P(y/x)

x, y 0 1 2 3

0 0.5 0.3 0.15 0.05

1 0.05 0.15 0.3 0.5

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 225

Table 7.3 Transition probabilities for the received vector in Example 7.1

j 1 2 3 4 5

(P(y j/0), P(y j/1)) (0.3, 0.15) (0.5, 0.05) (0.15, 0.3) (0.5, 0.05) (0.5, 0.05)

γ2(0, 0) =
∑

X

P(S2 = 0/S1 = 0)P(X2 = x/{S1 = 0, S2 = 0})P(Y2/X2 = x)

= P(S2 = 0/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 0})P(Y2/X2 = 0)

+P(S2 = 0/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 0})P(Y2/X2 = 1)

= 0.5 × 1 × 0.5 + 0.5 × 0 × 0.05

= 0.25

γ2(0, 1) = P(S2 = 1/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 1})P(Y2/X2 = 0)

+P(S2 = 1/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 1})P(Y2/X2 = 1)

= 0 × 0 × 0.5 + 0 × 0 × 0.05

= 0

γ2(0, 2) = P(S2 = 2/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 2})P(Y2/X2 = 0)

+P(S2 = 2/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 2})P(Y2/X2 = 1)

= 0.5 × 0 × 0.5 + 0.5 × 1 × 0.05

= 0.025

γ2(0, 3) = P(S2 = 3/S1 = 0)P(X2 = 0/{S1 = 0, S2 = 3})P(Y2/X2 = 0)

+P(S2 = 3/S1 = 0)P(X2 = 1/{S1 = 0, S2 = 3})P(Y2/X2 = 1)

= 0 × 0 × 0.5 + 0 × 0 × 0.05

= 0

In the same way, the following values are also determined:

γ2(1, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ2(1, 1) = 0.5 × 1 × 0.5 + 1 × 0 × 0.05 = 0.25

γ2(1, 2) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ2(1, 3) = 0.5 × 0 × 0.5 + 0.5 × 1 × 0.05 = 0.025

γ3(0, 0) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(0, 1) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

226 Essentials of Error-Control Coding

γ3(0, 2) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(0, 3) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(1, 0) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(1, 1) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(1, 2) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(1, 3) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 0) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 1) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ3(2, 2) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(2, 3) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(3, 0) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(3, 1) = 0.5 × 0 × 0.15 + 0.5 × 1 × 0.3 = 0.15

γ3(3, 2) = 0 × 0 × 0.15 + 0 × 0 × 0.3 = 0

γ3(3, 3) = 0.5 × 1 × 0.15 + 0.5 × 0 × 0.3 = 0.075

γ4(0, 0) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ4(0, 1) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(1, 0) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

γ4(1, 1) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(2, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(2, 1) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

γ4(3, 0) = 0 × 0 × 0.5 + 0 × 0 × 0.05 = 0

γ4(3, 1) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ5(0, 0) = 1 × 1 × 0.5 + 1 × 0 × 0.05 = 0.5

γ5(1, 0) = 1 × 0 × 0.5 + 1 × 1 × 0.05 = 0.05

Forward recursive calculation of the values αi (u) is started by setting the initial conditions
α0(m) = 0, m
= 0:

α1(0) =
U−1∑
u′=0

α0(u′)γ1(u′, u)

=
1∑

u′=0

α0(u′)γ1(u′, u)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 227

= α0(0)γ1(0, 0) + α0(1)γ1(1, 0)

= 1 × 0.15 + 0 × 0 = 0.15

α1(1) = α0(0)γ1(0, 1) + α0(1)γ1(1, 1) = 1 × 0.075 + 0 × 0 = 0.075

α2(0) = α1(0)γ2(0, 0) + α1(1)γ2(1, 0) = 0.15 × 0.25 + 0.075 × 0 = 0.0375

α2(1) = α1(0)γ2(0, 1) + α1(1)γ2(1, 1) = 0.15 × 0 + 0.075 × 0.25 = 0.01875

α2(2) = α1(0)γ2(0, 2) + α1(1)γ2(1, 2) = 0.15 × 0.025 + 0.075 × 0 = 0.00375

α2(3) = α1(0)γ2(0, 3) + α1(1)γ2(1, 3) = 0.15 × 0 + 0.075 × 0.025 = 0.001875

α3(0) = α2(0)γ3(0, 0) + α2(1)γ3(1, 0) = 0.0375 × 0.075 + 0.01875 × 0.15 = 0.005625

α3(1) = α2(0)γ3(0, 1) + α2(1)γ3(1, 1) + α2(2)γ3(2, 1) + α2(3)γ3(3, 1)

= 0.0375 × 0 + 0.01875 × 0 + 0.00375 × 0.075 + 0.001875 × 0.15

= 0.0005625

α3(2) = α2(0)γ3(0, 2) + α2(1)γ3(1, 2) + α2(2)γ3(2, 2) + α2(3)γ3(3, 2)

= 0.0375 × 0.15 + 0.01875 × 0.075 + 0.00375 × 0 + 0.001875 × 0

= 0.00703125

α3(3) = α2(2)γ3(2, 3) + α2(3)γ3(3, 3)

= 0.00375 × 0.15 + 0.001875 × 0.075

= 0.000703125

α4(0) = α3(0)γ4(0, 0) + α3(1)γ4(1, 0) + α3(2)γ4(2, 0) + α3(3)γ4(3, 0)

= 0.005625 × 0.5 + 0.0005625 × 0.05 + 0.00703125 × 0 + 0.000703125 × 0

= 0.002840625

α4(1) = α3(0)γ4(0, 1) + α3(1)γ4(1, 1) + α3(2)γ4(2, 1) + α3(3)γ4(3, 1)

= 0.005625 × 0 + 0.0005625 × 0 + 0.00703125 × 0.05 + 0.000703125 × 0.5

= 0.000703125

α5(0) = α4(0)γ5(0, 0) + α4(1)γ5(1, 0)

= 0.002840625 × 0.5 + 0.000703125 × 0.05

= 0.00145546875

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

228 Essentials of Error-Control Coding

Backward recursive calculation of the values βi (u) is done by setting the contour conditions
β5(0) = 1, β5(m) = 0, m
= 0:

β4(0) = β5(0)γ5(0, 0) = 1 × 0.5 = 0.5

β4(1) = β5(0)γ5(1, 0) = 1 × 0.05 = 0.05

β3(0) = β4(1)γ4(0, 1) + β4(0)γ4(0, 0) = 0.05 × 0 + 0.5 × 0.5 = 0.25

β3(1) = β4(0)γ4(1, 0) + β4(1)γ4(1, 1) = 0.5 × 0.05 + 0.05 × 0 = 0.025

β3(2) = β4(0)γ4(2, 0) + β4(1)γ4(2, 1) = 0.5 × 0 + 0.05 × 0.05 = 0.0025

β3(3) = β4(0)γ4(3, 0) + β4(1)γ4(3, 1) = 0.5 × 0 + 0.05 × 0.5 = 0.025

β2(0) = β3(0)γ3(0, 0) + β3(1)γ3(0, 1) + β3(2)γ3(0, 2) + β3(3)γ3(0, 3)

= 0.25 × 0.075 + 0.025 × 0 + 0.0025 × 0.15 + 0.025 × 0

= 0.019125

β2(1) = β3(0)γ3(1, 0) + β3(1)γ3(1, 1) + β3(2)γ3(1, 2) + β3(3)γ3(1, 3)

= 0.25 × 0.15 + 0.025 × 0 + 0.0025 × 0.075 + 0.025 × 0

= 0.0376875

β2(2) = β3(0)γ3(2, 0) + β3(1)γ3(2, 1) + β3(2)γ3(2, 2) + β3(3)γ3(2, 3)

= 0.25 × 0 + 0.025 × 0.075 + 0.0025 × 0 + 0.025 × 0.15

= 0.005625

β2(3) = β3(0)γ3(3, 0) + β3(1)γ3(3, 1) + β3(2)γ3(3, 2) + β3(3)γ3(3, 3)

= 0.25 × 0 + 0.025 × 0.15 + 0.0025 × 0 + 0.025 × 0.075

= 0.005625

β1(0) = β2(0)γ2(0, 0) + β2(1)γ2(0, 1) + β2(2)γ2(0, 2) + β2(3)γ2(0, 3)

= 0.019125 × 0.25 + 0.0376875 × 0 + 0.005625 × 0.025 + 0.005625 × 0

= 0.004921875

β1(1) = β2(0)γ2(1, 0) + β2(1)γ2(1, 1) + β2(2)γ2(1, 2) + β2(3)γ2(1, 3)

= 0.0019125 × 0 + 0.0376875 × 0.25 + 0.005625 × 0 + 0.005625 × 0.025

= 0.0095625

β0(0) = β1(0)γ1(0, 0) + β1(1)γ1(0, 1)

= 0.004921875 × 0.15 + 0.0095625 × 0.075

= 0.00145546875

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 229

Once the values γi (u′, u), αi (u) and βi (u) have been determined, then the values λi (u) and
σi (u′, u) can be calculated as

λ1(0) = α1(0)β1(0) = 0.15 × 0.004921675 = 0.00073828125

λ1(1) = α1(1)β1(1) = 0.075 × 0.0095625 = 0.0007171875

λ2(0) = α2(0)β2(0) = 0.00375 × 0.019125 = 0.0007171875

λ2(1) = α2(1)β2(1) = 0.01875 × 0.0376875 = 0.000706640625

λ2(2) = α2(2)β2(2) = 0.00375 × 0.005625 = 0.00002109375

λ2(3) = α2(3)β2(3) = 0.001875 × 0.005625 = 0.000010546875

With all the values already calculated, an estimate or soft decision can be made for each step
i of the decoded sequence. The coefficients λi (u) determine the estimates for input symbols
‘1’ and ‘0’ when there is only one branch or transition of the trellis arriving at a given node,
which then defines the value of that node. This happens for instance in the trellis of Figure 7.5
at nodes λ1(0), λ1(1), λ2(0), λ2(1), λ2(2) and λ2(3):

λ1(0)

λ1(0) + λ1(1)
= 0.5072 Soft decision for ‘0’ at position 1

λ1(1)

λ1(0) + λ1(1)
= 0.4928 Soft decision for ‘1’ at position 1

λ2(0) + λ2(1)

λ2(0) + λ2(1) + λ2(2) + λ2(3)
= 0.97826 Soft decision for ‘0’ at position 2

λ2(2) + λ2(3)

λ2(0) + λ2(1) + λ2(2) + λ2(3)
= 0.0217 Soft decision for ‘1’ at position 2

Coefficients σi (u′, u) are then utilized for determining the soft decisions when there are two
or more transitions or branches arriving at a given node of the trellis, and when these branches
are assigned the different input symbols:

σ3(0, 0) = α2(0)γ3(0, 0)β3(0) = 0.0375 × 0.075 × 0.25 = 0.000703125

σ3(1, 0) = α2(1)γ3(1, 0)β3(0) = 0.01875 × 0.15 × 0.25 = 0.000703125

σ3(0, 2) = α2(0)γ3(0, 2)β3(2) = 0.0375 × 0.15 × 0.0025 = 0.0000140625

σ3(1, 2) = α2(1)γ3(1, 2)β3(2) = 0.01875 × 0.075 × 0.0025 = 0.000003515625

σ3(2, 1) = α2(2)γ3(2, 1)β3(1) = 0.00375 × 0.075 × 0.025 = 0.00000703125

σ3(3, 1) = α2(3)γ3(3, 1)β3(1) = 0.001875 × 0.15 × 0.025 = 0.00000703125

σ3(2, 3) = α2(2)γ3(2, 3)β3(3) = 0.00375 × 0.15 × 0.025 = 0.0000140625

σ3(3, 3) = α2(3)γ3(3, 3)β3(3) = 0.001875 × 0.075 × 0.025 = 0.000003515625

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

230 Essentials of Error-Control Coding

σ4(0, 0) = α3(0)γ4(0, 0)β4(0) = 0.005625 × 0.5 × 0.5 = 0.00140625

σ4(1, 0) = α3(1)γ4(1, 0)β4(0) = 0.0005625 × 0.05 × 0.5 = 0.0000140625

σ4(2, 1) = α3(2)γ4(2, 1)β4(1) = 0.00703125 × 0.05 × 0.05 = 0.000017578125

σ4(3, 1) = α3(3)γ4(3, 1)β4(1) = 0.000703125 × 0.5 × 0.05 = 0.000017578125

σ5(0, 0) = α4(0)γ5(0, 0)β5(0) = 0.002840625 × 0.5 × 1 = 0.0014203125

σ5(1, 0) = α4(1)γ5(1, 0)β5(0) = 0.000703125 × 0.05 × 1 = 0.00003515625

These values allow us to determine soft decisions for the corresponding nodes. For instance, for
position i = 3, the trellis transition probabilities involved in the calculation of a soft decision
for ‘0’ are

σ3(0, 0) + σ3(1, 2) + σ3(2, 1) + σ3(3, 3)

σ3(0, 0) + σ3(1, 0) + σ3(0, 2) + σ3(1, 2) + σ3(2, 1) + σ3(3, 1) + σ3(2, 3) + σ3(3, 3)

= 0.49275

which is a soft decision for ‘0’ at position 3. The soft decision for ‘1’ at that position is then
1 − 0.49275 = 0.5072. For position i = 4, the trellis transition probabilities involved in the
calculation of a soft decision for ‘0’ are

σ4(0, 0) + σ4(3, 1)

σ4(1, 0) + σ4(0, 0) + σ4(2, 1) + σ4(3, 1)
= 0.97826

and the soft decision for ‘1’ at position i = 4 is

σ4(1, 0) + σ4(2, 1)

σ4(1, 0) + σ4(0, 0) + σ4(2, 1) + σ4(3, 1)
= 0.021739

For position i = 5, the trellis transition probabilities involved in the calculation of a soft
decision for ‘0’ are

σ5(0, 0)

σ5(0, 0) + σ5(1, 0)
= 0.97584

and the soft decision for ‘1’ at position i = 5 is

σ5(1, 0)

σ5(0, 0) + σ5(1, 0)
= 0.02415

Based on the above calculations, the decoder will decide that the decoded vector is d =
(00100), which is not a code vector. The code vectors closest to the decoded vector are c =
(00000) and c = (10100). Table 7.4 shows the distance between any code vector and the
received vector r = (10200). This can help to understand why the decoder is not able to
correctly decide on the true code vector in this case.

In the Table 7.4, distances are measured as soft distances calculated over the soft-decision
channel of this example. In this table it is seen that the two code vectors c = (00000) and
c = (10100) that are closest to the received vector r = (10200) have the same distance with

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 231

Table 7.4 Soft-decision distances from the code

vectors to the received vector r = (10200)

Code Vectors Distance to r = (10200)

1 0 2 0 0 d

0 0 0 0 0 0 0 0 0 0 3

1 0 0 1 1 3 0 0 3 3 10

0 1 0 1 0 0 3 0 3 0 9

1 1 0 0 1 3 3 0 0 3 10

0 0 1 1 1 0 0 3 3 3 8

1 0 1 0 0 3 0 3 0 0 3

0 1 1 0 1 0 3 3 0 3 8

1 1 1 1 0 3 3 3 3 0 9

respect to this vector, so that the decoder cannot correctly decode this error pattern. However
soft decisions or estimates for the bits of the received vector might be helpful to the user, and
could be iteratively updated to converge to the right solution if they were involved in a turbo
decoding scheme with other component codes.

Example 7.2: Decode the received vector of Example 7.1 by using the ML Viterbi algorithm,
where trellis transitions are assigned the conditional probability values of the channel utilized
in that example.

The ML Viterbi algorithm can be used for decoding the received vector of the Example
7.1 if the trellis transitions in the corresponding trellis (Figure 7.5) are assigned the transition
probabilities for the input elements ‘1’ and ‘0’ of the soft-decision channel used in that example
(Figure 7.6). In this way, the decoding algorithm operates as shown in Figure 7.7, where, at
time instant t3, decisions can be already taken, in order to decide which is the survivor path
among those that arrive at a given node of the trellis.

0.15

0.05 0.3

0.15

0.3

0.150.50.3

0.50.15

0.3

0.3

0.05

0.15

t1 t2 t3t0

0

2

1

3

1 0 2

Figure 7.7 ML Viterbi decoding algorithm at time instant t3, Example 7.2

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

232 Essentials of Error-Control Coding

At time instant t3, and for state 0, there are two arriving branches with the cumulative
probabilities

time instant t3, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 = 0.0225(∗)
b2 → 0.15 × 0.5 × 0.3 = 0.0225

At this trellis node the cumulative probability is equal for both arriving branches, and so an
arbitrary decision is made in favour of the upper branch. This decision will influence the final
decision that the decoding algorithm will take, which will fortuitously decide for the true
vector. The decision taken at each node is denoted with an asterisk (∗).

The same procedure is applied to determine the soft decision for the other values of this
state, and thus

time instant t3, state 1 ⇒
{

b1 → 0.3 × 0.05 × 0.15 = 0.00225(∗)
b2 → 0.15 × 0.05 × 0.3 = 0.00225

Once again, the decision for state 1 is determined by making the arbitrary choice that the
upper branch is the survivor path. This repeated occurrence of the need to make an arbitrary
choice of survivor path is evidence that the received vector contains an error event that exceeds
the correcting power of the code, and is such that two code vectors are at the same distance
from the received vector.

time instant t3, state 2 ⇒
{

b1 → 0.3 × 0.5 × 0.3 = 0.045(∗)
b2 → 0.15 × 0.5 × 0.15 = 0.01125

time instant t3, state 3 ⇒
{

b1 → 0.3 × 0.05 × 0.3 = 0.0045(∗)
b2 → 0.15 × 0.05 × 0.15 = 0.001125

Figure 7.8 shows the resulting situation after the discarding of some paths at time instant t3.
For a clearer description of the calculations involved, each arriving path is marked with the

product of all the channel transition probabilities that contribute to the calculation of the soft
metric of that path. Thus, for example, at time instant t4 the following decisions are taken:

time instant t4, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 × 0.5 = 0.01125(∗)
b2 → 0.3 × 0.05 × 0.15 × 0.05 = 0.0001125

time instant t4, state 1 ⇒
{

b1 → 0.3 × 0.5 × 0.3 × 0.05 = 0.00225(∗)
b2 → 0.3 × 0.05 × 0.3 × 0.5 = 0.00225

Figure 7.9 shows the resulting situation after the discarding of some paths at time instant t4.
The final decision adopted at time instant t5 is then

time instant t5, state 0 ⇒
{

b1 → 0.3 × 0.5 × 0.15 × 0.5 × 0.5 = 0.005625(∗)
b2 → 0.3 × 0.5 × 0.3 × 0.05 × 0.05 = 0.0001125

The most likely path is the survivor path, as indicated in Figure 7.9 in bold, and the ML
Viterbi decoding algorithm decides for the code vector d = c = (00000). This decision is
the correct decision, but it is being obtained by chance, because of the two arbitrary upper
branch survivor path selections taken at time instant t3. If however the decision rule at this
critical time instant, where cumulative probabilities are equal for two arriving branches at the

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 233

1 5.0

0.3

0.3

0.150.50.3

0.05

0

2

1

3

0.05

0.5

0.05

0.5

1 0 2 0

t1 t2 t3t0 t4

Figure 7.8 ML Viterbi decoding algorithm at time instant t4, Example 7.2

nodes corresponding to state 0 and state 1, was such that the lower branch had been selected,
then the final result would have been to decode the code vector d = c = (10100), that is, the
other code vector that is at the same distance as the code vector c = (00000) to the received
vector r = (10200). This emergence of two equally possible codewords confirms the same
result achieved by using the soft distances given in Table 7.3. Unless additional decoding
information is available, if for instance the code is part of a turbo scheme, then there is no
way to determine which codeword is the correct one. However, even in an iterative decoding
algorithm this sort of ambiguous situation can arise after a given number of iterations, seen as
a fluctuating and alternating decision between code vectors that are at the same distance with

0.050.3

0.150.50.3

t1 t2 t3t0

0

2

1

0.05

0.5

t4 t5

1 0 2 0 0

0.5

Figure 7.9 ML Viterbi algorithm at time instant t5 and final decision, Example 7.2

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

234 Essentials of Error-Control Coding

respect to the received vector. Thus, the decision could fortuitously be in favour of the true
code vector or not depending on when the iteration of the algorithm is truncated.

This simple example shows the difference in decoding complexity between the BCJR algo-
rithm and the ML Viterbi algorithm. In Example 7.3 it will be however evident that in spite of
this higher complexity, the MAP BCJR decoding algorithm has a very efficient error-correction
capability when it is involved in iterative decoding algorithms. In this sense, it can be said that
the use of the MAP BCJR algorithm in the constituent decoders of an iterative turbo decoding
scheme is much less complex than the use of the Viterbi decoding algorithm applied over
the trellis of the complete turbo code, which will be very complex, especially for large-size
interleavers.

7.6 The BCJR MAP Algorithm and the LLR

The LLR can also be defined for conditional probabilities. Indeed MAP decoding algorithms
perform a soft decision or estimation of a given bit conditioned or based on the reception of
sampled values of a given received sequence Y . In this case the LLR is denoted as L(bi/Y)
and is defined as follows [2, 5]:

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
(54)

This estimation is based on the a posteriori probabilities of the bit bi that are determined in
iterative decoding algorithms as soft-input–soft-output decisions for each constituent decoder
in the decoding of a turbo code.

Another useful conditional LLR is based on the ratio of the probabilities that the output of
an optimal decoder is yi if the corresponding transmitted bit xi adopts one of its two possible
values +1 or −1. In logarithmic form this conditional LLR is equal to

L(yi/xi) = ln

(
P(yi/xi = +1)

P(yi/xi = −1)

)
(55)

For the additive white Gaussian noise (AWGN) channel and for transmitted bits in polar
format xi = ±1, which after transmission are received using an optimal receiver, the conditional
LLRs described in (55) take the form

P(yi/xi = +1) = 1√
2πσ

e
−Eb
2σ2 (yi −1)2

(56)

P(yi/xi = −1) = 1√
2πσ

e
−Eb
2σ2 (yi +1)2

(57)

L(yi/xi) = ln

(
e

−Eb
2σ2 (yi −1)2

e
−Eb
2σ2 (yi +1)2

)
= −Eb

2σ 2
(yi − 1)2 + Eb

2σ 2
(yi + 1)2 = 2

Eb

σ 2
yi = Lc yi (58)

Thus, the conditional LLR for an AWGN channel is proportional to the value of the sample
of the optimally received signal yi , and the constant of proportion is Lc = 2Eb/σ

2, a measure
of the signal-to-noise ratio in the channel.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 235

7.6.1 The BCJR MAP Algorithm: LLR Calculation

The decoding algorithm introduced by Bahl, Cocke, Jelinek and Raviv [4] was first imple-
mented for the trellis decoding of both block and convolutional codes, and, in comparison with
the well-known Viterbi decoding algorithm, the proposed BCJR algorithm did not provide any
particular advantage, as its complexity was higher than that of the Viterbi decoder. However,
this is a decoding algorithm that inherently utilizes soft-input–soft-output decisions, and this
becomes a decisive factor for its application in the iterative decoding of turbo codes.

In the following, a description of the BCJR MAP decoding algorithm in terms of LLRs is
developed. The definition of an LLR as a logarithm of a quotient allows some of the constant
terms involved to be cancelled, so that there is no need to calculate them in this form of
implementation of the BCJR algorithm.

The BCJR MAP decoding algorithm determines the probability that a given transmitted bit
was a +1 or a −1, depending on the received sequence Y = Y n

1 . The LLR L(bi/Y) summarizes
these two possibilities by calculating a unique number

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
(59)

The Bayes rule is used to express (59) as

L(bi/Y) = ln

(
P(bi = +1, Y)

P(bi = −1, Y)

)
(60)

Figure 7.10 shows the middle part of the trellis that is seen in Figure 7.5, in polar format.
Here, symbol ‘0’ is transmitted through the channel as −1, and symbol ‘1’ is transmitted
through the channel as +1. As pointed out in previous sections, the use of the polar format is
very convenient if decoders make use of LLRs, since this is a signed quantity whose sign is
the hard-decision part of the decoded or estimated value, which was transmitted in normalized
form as either a +1 or a −1.

+1

–1

–1

+1

–1

+1

+1

–1

S2 S3

0

1

2

3

Figure 7.10 Trellis transitions of the block code Cb(5, 3)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

236 Essentials of Error-Control Coding

In this case, for example in the transition from state S2 to state S3, the probability that
b3 = −1 is given by the probability that this state transition is one of the four possible trellis
transitions for which b3 = −1. Then the probability that b3 = −1 is the addition of all the
probabilities associated with the information bit −1.

In general the estimation of the information bit bi is done over the trellis transition with
which the bit is associated, defined from state Si−1 to state Si . Equation (60) is then written as

L(bi/Y) = ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y)∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y)

)

= ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y n

1)∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y n

1)

)
(61)

Here {u′, u} ⇒ bi = +1 represents the set of all the transitions that correspond to the message
or information bit bi = +1. The same is true for {u′, u} ⇒ bi = −1 with respect to the
message bit bi = −1. Terms of the form σi (u′, u) = P(Si−1 = u′, Si = u, Y n

1) can be expressed
as

σi (u
′, u) = P

(
Si−1 = u′, Si = u, Y n

1

)
= P

(
Si−1 = u′, Y i−1

1

)
P

({Si = u, Yi } /Si−1 = u′) P
(
Y n

i+1/Si = u
)

= αi−1(u′)γi (u
′, u)βi (u) (62)

Then

L(bi/Y) = L(bi/Y n
1)

= ln

(∑
{u′,u}⇒bi =+1 P(Si−1 = u′, Si = u, Y n

1)∑
{u′,u}⇒bi =−1 P(Si−1 = u′, Si = u, Y n

1)

)

= ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi (u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi (u′, u)βi (u)

)
(63)

7.6.2 Calculation of Coefficients γi (u′, u)

Coefficients αi−1(u′) and βi (u) are recursively calculated as functions of coefficients γi (u′, u),
so that coefficients γi (u′, u) have to be evaluated first to obtain all the quantities involved in this
algorithm. Equation (42) describes the coefficients γi (u′, u) and can be expressed in a more
convenient way by making use of the properties described by expressions (26)–(30):

γi (u
′, u) = P

({Si = u, Yi } /Si−1 = u′)
= P(Yi/{u′, u})P(u/u′)

= P(Yi/{u′, u})P(bi) (64)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 237

The bit probability of the i th transition can be calculated by using expression (17):

P(bi) = P(bi = ±1) = e−L(bi)/2

1 + e−L(bi)
ebi L(bi)/2 = C1 ebi L(bi)/2 (65)

On the other hand, the calculation of the term P(Yi/{u′, u}) is equivalent to calculating the
probability P(Yi/Xi), where Xi is the vector associated with the transition from Si−1 = u′ to
Si = u, which in general is a vector of n bits. If the channel is a memoryless channel, then

P(Yi/{u′, u}) = P(Yi/Xi) =
n∏

k=1

P(yik/xik) (66)

where yik and xik are the bits of the received and transmitted vectors Yi and Xi , respectively.
If transmission is done in polar format over the AWGN channel, the transmitted bits xik take
the normalized values +1 or −1, and [2]

Le(bi) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi extr(u′, u)βi (u)

)
(67)

P(Yi/{u′, u}) =
n∏

k=1

1√
2πσ

e− Eb

2σ 2

∑n
k=1 (yik − xik)2

(68)

= 1(√
2πσ

)n e− Eb
2σ2

∑n
k=1 (y2

ik+x2
ik)e

Eb
σ2

∑n
k=1 (yik xik) = C2 e

Eb
σ2

∑n
k=1 (yik xik) (69)

where only the term e
Eb
σ2

∑n
k=1 (yik xik) is significant because all the other terms in this expression

are constants. The expression for calculating coefficients γi (u′, u) is finally

γi (u
′, u) = C ebi L(bi)/2 e

Eb
σ2

∑n
k=1 (yik xik)

, C = C1C2 (70)

The above coefficients can be calculated for the BCJR MAP decoding algorithm by taking
into account the channel information or sampled values Lc yik , and the a priori information for
each constituent decoder L(bi). This latter information is the extrinsic information provided
by the other decoder, information that has been calculated in the previous iteration. With the
channel and a priori estimations, the decoder is able to determine values of γi (u′, u) for all the
transitions of the trellis.

Forward recursive calculations allow us to determine values of coefficients αi−1(u′) as a
function of coefficients γi (u′, u), and this can be done while the signal is being received.
After receiving the whole sequence Y n

1 , backward recursive calculation can be used to deter-
mine values of coefficients βi (u). Conditional LLRs L(bi/Y n

1) can be finally calculated after
determining the values of coefficients αi−1(u′), γi (u′, u) and βi (u).

In this particular example, and as seen in Figure 7.5 for the trellis of the block code Cb(5, 3),
transitions are assigned only one bit. In general, however, and particularly in the case of trellises
for convolutional codes, trellis transitions are usually assigned one or more input bits, and more

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

238 Essentials of Error-Control Coding

than one output bits, in the format input bits/output bits. In the most common structures of turbo
codes, constituent encoders are RSC encoders of code rate Rc = 1/2, and so the corresponding
assignment for inputs in the trellis transitions is done with just one bit. In this latter case it is
possible to distinguish between the message information and the redundant information, in the
calculation of the coefficients γi (u′, u):

γi (u
′, u) = C e(bi L(bi)/2) e

Lc
2

∑n
k=1 (yik xik)

= C e(bi L(bi)/2) e
Lc

2
yi1xi1 e

Lc
2

∑n
k=2 (yik xik)

= C e(bi L(bi)/2) e
Lc

2
yi1bi e

Lc
2

∑n
k=2 (yik xik)

= C e(bi L(bi)/2) e
Lc

2
yi1bi γi extr(u′,u) (71)

The received bit yi1 in equation (71) corresponds to the transmitted bit xi1 = bi , which is
the message or source bit that appears first in the encoded sequence of each trellis transition,
when systematic convolutional coding is used.

By taking into account the above considerations, and also that in the definition of the LLR
L(bi/Y n

1), the numerator is composed of the terms associated with bi = +1, whereas the
denominator is composed of the terms associated with bi = −1, the LLR L(bi/Y n

1) can be
written as

L(bi/Y n
1) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi (u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi (u′, u)βi (u)

)

= ln

(∑
{u′,u}⇒bi =+1 αi−1(u′) e+L(bi)/2 e+Lc yi1/2γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′) e−L(bi)/2 e−Lc yi1/2γi extr(u′, u)βi (u)

)
= L(bi) + Lc yi1 + Le(bi) (72)

where

Le(bi) = ln

(∑
{u′,u}⇒bi =+1 αi−1(u′)γi extr(u′, u)βi (u)∑
{u′,u}⇒bi =−1 αi−1(u′)γi extr(u′, u)βi (u)

)
(73)

is the so-called extrinsic LLR that is the estimation or soft decision that each decoder com-
municates to the other with respect to the information or message bit bi . This extrinsic LLR
contains the information provided by other bits related to bi that are different for each decoder,
as a consequence of the fact that the same bit bi was interleaved and encoded in a different
manner by each constituent encoder. This means that the bit bi has been encoded by encoder
E1 of the turbo encoder together with a group of bits that is different from the one utilized by
encoder E2.

In each iteration, each constituent decoder communicates to the other decoder the extrinsic
LLR

Le(bi) = L(bi/Y n
1) − L(bi) − Lc yi1 (74)

which is determined with the estimation of the message bit bi done by the decoder, from which
the a priori information and the channel information used to calculate that estimation are

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 239

subtracted. This extrinsic information contains channel information that comes from an error
event that is different for each received sequence, which in turn depends on which decoder is
determining this information.

7.7 Turbo Decoding

So far the characteristics of the BCJR MAP algorithm usually implemented for the decoding of
turbo codes have been introduced. This decoding algorithm is essentially an iterative decoding
algorithm where each constituent decoder generates soft decisions or estimates of the message
bits that are calculated using the channel information obtained from the sampled values of the
received sequence, and the a priori information that has been provided by the other decoder
in the previous iteration. The information passed is the extrinsic LLR that each decoder has
determined in the previous iteration, which becomes the a priori information of the other
decoder in the present iteration. This iterative procedure of interchanging information is such
that, under certain conditions, estimates of the message bits are closer to the true values as the
number of iterations increases.

A priori information is information that is neither related to the channel information (sampled
values of the received sequence) nor related to the coding information (information provided
by the trellis structure of the code). The first decoder does not have a priori information
for the message bits in the first iteration, and so all the message bits in that circumstance
are equally likely. This means that the a priori LLR L(bi) for the first decoder in the first
iteration is equal to zero, as seen in Figure 7.3, corresponding to the situation for which
P(bi = +1) = P(bi = −1) = 0.5.

The first decoder takes into account this initial a priori information and the channel infor-
mation, which is essentially provided by the sampled values of the received sequence affected
by the channel factor Lc. This sequence LcY (1)

1 consists of the systematic or message bits,
and of the parity check or redundancy bits. In most practical turbo codes, there is only one
message or systematic bit, and also only one parity check bit, since puncturing is applied to
both outputs of the two constituent encoders to make the whole turbo code be of code rate
k/n = 1/2. The example below shows that the use of puncturing is solved in the decoding
process by filling with zeros those positions that were punctured in the received sequence for
each constituent decoder.

The first decoder utilizes its a priori information and its channel information to determine
the first estimate or LLR L (1)

1 (bi/Y). Here the subscript identifies the decoder that generated
the LLR, and the superscript identifies the order or number of the iteration. In this calcula-
tion the decoder needs to first determine the values of the coefficients γi (u′, u) and then to
calculate the values of the coefficients αi−1(u′) and βi (u), which in turn are necessary for
finally determining the LLR L (1)

1 (bi/Y). After determining these estimates, the decoder has
to communicate to the other decoder the extrinsic information. Extrinsic information is the
information that includes neither the a priori information utilized in the present calculation of
L (1)

1 (bi/Y) nor the channel information of the message bit for which the extrinsic information
is calculated.

Extrinsic information L (1)
e1 (bi) is calculated by using expression (74). The second decoder

is then able to perform its estimations with the available information. This decoder makes
use of the received sequence LcY (1)

2 containing the samples of interleaved message bits, and

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

240 Essentials of Error-Control Coding

the samples of the corresponding parity check bits generated over the interleaved message
bits sequence by the encoder E2. If puncturing was applied, the punctured positions of the
encoded sequence are filled with zeros in this sequence. The second decoder takes as its a
priori information the extrinsic information L (1)

e1 (bi) of each message bit bi , generated in the
current iteration by the first decoder. However, and since interleaving has also been applied to
the message bits, this extrinsic information should be reordered according to the interleaving
rule, before being processed by the second decoder. If the forward operation of the interleaver
is described by a function I {.}, then L (1)

2 (bi) = I {L (1)
e1 (bi)}. The second decoder takes the

information L (1)
2 (bi) as its a priori information, and together with the channel information

LcY (1)
2 , it is able to determine the LLR L (1)

2 (bi/Y), and by applying equation (74), it can be

used to finally calculate the extrinsic information L (1)
e2 (bi) to be communicated to the first

decoder.
Since the extrinsic information L (1)

e2 (bi) corresponding to the message bit bi is affected by
interleaving, as the second decoder received the interleaved version, de-interleaving takes place
for reordering this information, before transmitting it to the first decoder. The de-interleaving
operation is defined by the operator I −1{.}. The extrinsic information provided by the second
decoder is reordered to be converted into the a priori information of the first decoder, so
that L (2)

1 (bi) = I −1{L (1)
e2 (bi)}. In this second iteration the first decoder utilizes again the same

available channel information LcY (1)
1 , but now the a priori information is different from zero,

because this information is updated by the extrinsic information provided by the second decoder
in the first iteration. In this way the first decoder produces improved estimates or LLRs of the
message bits L (2)

1 (bi/Y). Figure 7.11 describes this iterative decoding procedure for turbo codes.

Example 7.3: This example shows a turbo code with 1/2-rate RSC constituent encoders, like
those introduced as IIR systematic convolutional encoders in Chapter 6. The block diagram of
one of these RSC encoders is shown in Figure 7.12.

The RSC encoder shown in Figure 7.12 has the trellis section shown in Figure 7.13.

For each constituent encoder of the turbo code, called encoders E1 and E2, the transfer
function is of the form

G(D) =
[

1
1 + D + D2

1 + D2

]
Each RSC code has minimum free distance df = 5. Since, as mentioned earlier, the polar

format is a more convenient way of describing variables in a turbo code, the trellis of Figure 7.13
is depicted in Figure 7.14 with the assignment of inputs and outputs (variables x1 and x2) in
polar format.

Each constituent RSC encoder of the turbo scheme has a trellis of the form as given in
Figure 7.14. For brevity, these encoders are usually described in octal notation, for describing
the connexions of the corresponding convolutional encoder. Thus, for this example, the con-
volutional encoder is described as RSC code (111, 101) or (7, 5). Puncturing is also utilized in
this example to make the turbo code be of code rate Rc = 1/2. If all the outputs of these two
encoders and the corresponding message information were transmitted, the resulting code rate
would be Rc = 1/3. The puncturing rule adopted in this example is such that, alternately, one
of the two redundancy outputs is transmitted, while the other is not transmitted. Message bits

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 241

Channel
information

A priori
information

A priori
information

Channel
information

A priori
information

Channel
information

Extrinsic
information

Extrinsic
information

Decoder D1
iteration 1

Decoder D2
iteration 1

Decoder D1
iteration 2

L2
(1)(bi) = I {Le1

(1)(bi)}

L1
(2)(bi / Y)

L2
(1)(bi / Y)

L1
(1)(bi / Y)

LcY1
(1)

LcY2
(1)L1

(1)(bi) = 0

Le1
(1)(bi) = L 1

(1)(bi/Y)−L 1
(1)(bi)−Lcyi1

Le2
(1)(bi) = L 2

(1)(bi / Y)−L 2
(1)(bi)−Lcyi2

L1
(2)(b

i
) = I −1 {Le2

(1)(bi)}

Figure 7.11 Iterative decoding of turbo codes

are not affected by the puncturing rule, as it is known that this can result in a reduction of the
BER performance of the turbo code. The turbo code scheme is seen in Figure 7.15.

The puncturing rule adopted in this example of a turbo code is such that the systematic output
c(1)

1 is always transmitted, together with one of the two outputs c(2)
1 or c(2)

2 that are alternately
transmitted through the channel. In this case the puncturing matrices for each encoder of the

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

242 Essentials of Error-Control Coding

m
c(2)

c(1)

Polar
format

x1

x2

Figure 7.12 An RSC IIR systematic convolutional encoder of rate k/n = 1/2

0/01

Si−1 Si0/00

0/00

1/11 1/11

01

1/10
1/10

00

10

11
0/01

Figure 7.13 Trellis section of the RSC encoder

–1/–1 +1

–1/–1 +1

Si−1 Si
–1/–1 –1

–1/–1 –1

+1/+1 +1 +1/+1 +1

01

+1/+1 –1+1/+1 –1

00

10

11

Figure 7.14 Trellis with transition information in polar format

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 243

Polar
form

x1

x2
m

c1
(1)

c1
(2)

c2
(1) c2

(2)

m2Block interleaver of
size N×N

Puncturing

Figure 7.15 A 1/2 -rate turbo encoder

turbo code are respectively

P p1 =
[

1 1
1 0

]

P p2 =
[

0 0
0 1

]
The interleaver can be a random or block interleaver. There are of course other types of

interleavers, but these two are the most common ones. In the case of Example 7.3, a block
interleaver of size N × N = 4 × 4 is used. Input bit sequences consist of 16 message bits, and
two of these 16 bits are determined so that the code sequence of the first encoder is terminated.
A terminated code sequence in this example is one where the sequence starts at the all-zero
state (00), and ends in the same state.

Generally, the termination of the sequence can be ensured for the first encoder, but not
necessarily for the second encoder, since the interleaving procedure randomizes the input to
this second encoder. The puncturing rule is such that the parity check bits at odd positions of the
first encoder and the parity check bits at even positions of the second encoder are those bits that
are being alternately transmitted together with the corresponding message or systematic bits.

This way there are 14 message bits, and two additional bits that are utilized to terminate the
code sequence generated by the first encoder.

The interleaved sequence is obtained, in a block interleaver, by writing the input bits in
row format, and reading them in column format. Thus, for instance, permutation of the block
interleaver of Table 7.5 is the following:

I {.} =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

)
The inverse operation consists of arranging the interleaved bits in row format, and reading

them in column format, as shown in Table 7.6.
Therefore both the interleaving permutation I {.} and its corresponding inverse operation

are the same. This is true for block interleavers, but it is in general not true for other types of

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

244 Essentials of Error-Control Coding

Table 7.5 The block

interleaver of size 4 × 4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

interleavers. Thus, if the operator I {.} is applied to the interleaved sequence(
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

)
then the de-interleaved sequence is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
)

In the following, the operation of the encoder and the decoder of the turbo code of this
example is described by using tables. Table 7.7 shows an example of a transmission where the
input or message sequence, the parity check sequence generated by each encoder, the output
sequence and the received sequences for each decoder are tabulated. The transmission is over
an AWGN channel with σ = 1.2.

Table 7.8 shows the estimates or soft decisions L (1)
1 (bi/Y) for the 16 message bits, generated

by the first decoder, which is denoted as Dec1, obtained by applying the BCJR MAP decoding
algorithm.

As seen in Table 7.8, this first estimation of the first decoder contains four errors (marked
in bold) with respect to the message bit sequence actually transmitted.

The extrinsic LLR L (1)
e1 (bi) is also evaluated in this first iteration by the first decoder, and

these values are listed in Table 7.9. Note that this information should be interleaved before
being passed as a priori information to the second decoder.

The LLRs of Table 7.9 are the a priori values of the second decoder, which after inter-
leaving and together with the corresponding channel information is able to determine the
LLR L (1)

2 (bi/Y) for each bit. The second decoder determines the LLRs L (1)
2 (bi/Y) in the first

iteration, and these values are listed in Table 7.10.
At this stage the output of the second decoder still contains six message bit estimates in

error, as seen in Table 7.10. The extrinsic LLR L (1)
e2 (bi) for each bit can be calculated by this

second decoder as a function of the LLR L (1)
2 (bi/Y). These values are listed in Table 7.11.

Table 7.6 The block

de-interleaver

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 245

Table 7.7 Input or message sequence, parity check sequence generated by each encoder, output

sequence, and received sequences for each decoder, for the turbo code of Example 7.3

Input Parity Parity Output Received Sequence Sequence

Sequence Cod1 Cod2 Sequence Sequence for Dec1 for Dec2

+1 +1 +1 +1 +1 +0.213 +0.364 +0.213 +0.364 +0.213 0.000

+1 −1 −1 +1 −1 −0.371 −0.351 −0.371 0.000 +0.539 −0.351

−1 +1 +1 −1 +1 +0.139 +1.818 +0.139 +1.818 +0.323 0.000

+1 −1 +1 +1 +1 +0.514 +1.646 +0.514 0.000 −1.701 +1.646

+1 +1 −1 +1 +1 +0.539 +0.388 +0.539 +0.388 −0.371 0.000

−1 −1 −1 −1 −1 −0.422 −2.587 −0.422 0.000 −0.422 −2.587

+1 +1 −1 +1 +1 +1.533 + 0.267 +1.533 +0.267 +2.028 0.000

+1 −1 −1 +1 −1 +1.457 −1.678 +1.457 0.000 −0.175 −1.678

−1 +1 −1 −1 +1 +0.323 +1.103 +0.323 +1.103 +0.139 0.000

+1 −1 −1 +1 −1 +2.028 −0.170 +2.028 0.000 +1.533 −0.170

+1 +1 −1 +1 +1 −0.414 +3.560 −0.414 +3.560 −0.414 0.000

+1 +1 −1 +1 −1 +1.482 −1.003 +1.482 0.000 −0.862 −1.003

−1 +1 −1 −1 +1 −1.701 +0.893 −1.701 +0.893 +0.514 0.000

+1 +1 −1 +1 −1 −0.175 −1.306 −0.175 0.000 +1.457 −1.306

−1 −1 +1 −1 −1 −0.862 −2.049 −0.862 −2.049 +1.482 0.000

−1 −1 −1 −1 −1 −0.918 −0.492 −0.918 0.000 −0.918 −0.492

Table 7.8 LLR estimates performed by the first decoder, in the first iteration

Position of bi L (1)
1 (bi/Y) Estimated Bits Input or Message Bits

1 0.786280 +1 +1

2 −0.547963 −1 +1
3 0.499806 +1 −1
4 0.689170 +1 +1

5 0.641047 +1 +1

6 −0.584477 −1 −1

7 2.082215 +1 +1

8 1.987796 +1 +1

9 0.295812 +1 −1
10 2.808172 +1 +1

11 −0.050543 −1 +1
12 1.831479 +1 +1

13 −1.987958 −1 −1

14 0.165691 +1 +1

15 −2.243063 −1 −1

16 −2.247578 −1 −1

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

246 Essentials of Error-Control Coding

Table 7.9 Extrinsic LLRs calculated by

the first decoder, in the first iteration

L (1)
e1 (bi)

0.490347

−0.032905

0.306964

−0.025372

−0.107293

0.001045

−0.046297

−0.036260

−0.152547

−0.008128

0.524750

−0.227359

0.374643

0.409279

−1.046018

−0.972807

This extrinsic information is de-interleaved to become the a priori information of the first
decoder, in the second iteration. This decoder determines the LLRs L (2)

1 (bi/Y) based on this a
priori information and the channel information, to give the estimates as listed in Table 7.12.

A comparison of these results with those of the first iteration in Table 7.8 shows that the
estimates have improved, and the number of errors is reduced to 2.

Table 7.10 LLR estimations performed by the second

decoder, in the first iteration

Position of bi L (1)
2 (bi/Y) Estimated Bits Input Bits

1 0.768221 +1 +1

2 0.784769 +1 +1

3 −0.207484 −1 −1

4 −1.748824 −1 +1
5 −0.186654 −1 +1
6 −0.373027 −1 −1

7 2.820018 +1 +1

8 0.309994 +1 +1

9 0.473731 +1 −1
10 2.068479 +1 +1

11 0.012778 +1 +1

12 −2.510279 −1 +1
13 1.363218 +1 −1
14 2.492216 +1 +1

15 2.181300 +1 −1
16 −2.559998 −1 −1

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 247

Table 7.11 Extrinsic LLRs calculated by the

second decoder, in the first iteration

L (1)
e2 (bi)

−0.018059

0.143722

−0.503296

0.239134

0.361309

0.211449

0.011845

0.144303

−0.026075

−0.013736

0.063321

−0.267216

0.674047

0.504420

0.349821

−0.312420

The decoding procedure continues to alternate, with appropriate interleaving and de-
interleaving, and so in each iteration the first decoder communicates to the second decoder
extrinsic information that this second decoder uses as its a priori information, in order to
produce extrinsic information that the first decoder takes as its a priori information in the next
iteration. Extrinsic estimates calculated by the second decoder in the second iteration are listed
in Table 7.13.

Table 7.12 LLR estimations performed by the first

decoder, in the second iteration

Position of bi L (2)
1 (bi/Y) Estimated Bits Input Bits

1 0.840464 +1 +1

2 −0.031009 −1 +1
3 0.044545 +1 −1
4 1.404301 +1 +1

5 0.846298 +1 +1

6 −0.406661 −1 −1

7 2.170691 +1 +1

8 2.562218 +1 +1

9 −0.343457 −1 −1

10 2.874132 +1 +1

11 0.431024 +1 +1

12 2.316240 +1 +1

13 −1.982660 −1 −1

14 0.550832 +1 +1

15 −2.811396 −1 −1

16 −2.825644 −1 −1

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

248 Essentials of Error-Control Coding

Table 7.13 Extrinsic LLRs calculated by the

second decoder, in the second iteration

L (2)
e1 (bi)

0.064426

0.173966

−0.588380

0.189984

0.529265

−0.034277

0.052512

0.233310

−0.130874

0.026234

0.111812

−0.308991

0.756415

0.561614

0.380584

−0.336884

This is again converted by properly de-interleaving of the values into the a priori information
of the first decoder in the iteration number 3. The estimates at this stage of the decoding obtained
by the first decoder are given in Table 7.14.

In this third iteration the first decoder has been able to correctly decode the message sequence,
and further iterations will not change this result, although individual bit estimates may continue
to improve. However, the estimates increase magnitude as the number of iterations increases,
and this sometimes brings overflow or underflow problems in practical calculations of these
quantities. This is the reason for the design of logarithmic versions of the iterative decoding
algorithms for turbo codes and other iteratively decoded codes, since logarithmic operations
greatly reduce these calculation difficulties.

7.7.1 Initial Conditions of Coefficients αi−1(u′) and βi (u)

As pointed out in Section 7.5, coefficients αi−1(u′) and βi (u) are obtained by forward and
backward recursions respectively, and so it is necessary to set the initial and contour conditions
for these calculations.

If a code sequence generated by one of the constituent encoders is terminated, usually at
the all-zero state, it is already known at the receiver that the initial state and the final state
of the decoded sequence should be the same state, as was the case in the previous example,
where it was known that the decoded sequence should start and end at the all-zero state. In
the decoder, knowledge of the initial state can be taken into account by setting α0(0) = 1 and
α0(u) = 0, u
= 0. For i = n, and in the case of a terminated sequence, knowledge of the ending
state can also be taken into account by setting the contour conditions βn(0) = 1 and βn(u) =
0, u
= 0. The sequence encoded by the second encoder is not usually terminated. Therefore

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 249

Table 7.14 LLR estimations performed by the first

decoder, in the third iteration

Position of bi L (3)
1 (bi/Y) Estimated Bits Input Bits

1 0.981615 +1 +1

2 0.318157 +1 +1

3 −0.289548 −1 −1

4 1.543603 +1 +1

5 0.982070 +1 +1

6 −0.716361 −1 −1

7 2.273836 +1 +1

8 2.660691 +1 +1

9 −0.554936 −1 −1

10 2.969750 +1 +1

11 0.662567 +1 +1

12 2.407738 +1 +1

13 −2.161687 −1 −1

14 0.773773 +1 +1

15 −2.923458 −1 −1

16 −2.934754 −1 −1

this latter case can be taken into account by setting the contour conditions βn(u) = 1 ∀u. This
means that all the ending states in the corresponding trellis are equally likely.

7.8 Construction Methods for Turbo Codes

7.8.1 Interleavers

Interleaving is a widely used technique in digital communication and storage systems. An
interleaver takes a given sequence of symbols and permutes their positions, arranging them in
a different temporal order. The basic goal of an interleaver is to randomize the data sequence.
When used against burst errors, interleavers are designed to convert error patterns that contain
long sequences of serial erroneous data into a more random error pattern, thus distributing
errors among many code vectors [3, 7]. Burst errors are characteristic of some channels, like
the wireless channel, and they also occur in concatenated codes, where an inner decoder
overloaded with errors can pass a burst of errors to the outer decoder.

In general, data interleavers can be classified into block, convolutional, random, and linear
interleavers.

In a block interleaver, data are first written in row format in a permutation matrix, and
then read in column format. A pseudo-random interleaver is a variation of a block interleaver
where data are stored in a register at positions that are determined randomly. Convolutional
interleavers are characterized by a shift of the data, usually applied in a fixed and cumulative
way. Linear interleavers are block interleavers where the data positions are altered by following
a linear law.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

250 Essentials of Error-Control Coding

7.8.2 Block Interleavers

As explained previously, block interleavers consist of a matrix array of size MI × NI where data
are usually written in row format and then read in column format. Filling of all the positions
in the matrix is required, and this results in a delay of MI × NI intervals. The operation can be
equivalently performed by first writing data in column format and then by reading data in row
format. The block interleaver introduced in Example 7.3 as part of a turbo coding scheme is
an example of a block interleaver.

A block interleaver of size MI × NI separates the symbols of any burst error pattern of
length less than MI by at least NI symbols [3]. If, for example, a burst of three consec-
utive errors in the following sequence is written by columns into a 4 x 4 de-interleaver(

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
)
, then these errors will be separated by at least four

intervals

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The de-interleaved sequence in this case is

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
which confirms that the errors are separated by four positions.

In a given application of error-control coding, a block interleaver is selected to have a number
of rows that should be ideally larger than the longest burst of errors expected, and in practice at
least as large as the length of most expected bursts. The other parameter of a block interleaver
is the number of columns of the permutation matrix, NI, which is normally selected to be equal
to or larger than the block or decoding length of the code that is used. In this way, a burst of NI

errors will produce only one error per code vector. For error-correcting codes able to correct
any error pattern of size t or less, the value of NI can be set to be larger than the expected burst
length divided by t .

7.8.3 Convolutional Interleavers

A convolutional interleaver is formed with a set of N registers that are multiplexed in such a
way that each register stores L symbols more than the previous register.

The order zero register does not contain delay and it consists of the direct transmission of
the corresponding symbol. The multiplexers commute through the different register outputs
and take out the ‘oldest’ symbol stored in each register, while another symbol is input to
that register at the same time [7]. The operation of convolutional interleaving is shown in
Figure 7.16.

Convolutional interleavers are also known as multiplexed interleavers. The interleaver oper-
ation can be properly described by a permutation rule defined over a set of N integer numbers

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 251

2L

L

(N –1)L

(N –1)L

L

2LChannel

Figure 7.16 A convolutional interleaver

ZN = {0, 1, . . . , N − 1}: (
0 1 · · · N − 1

π{0} π{1} π{N − 1}
)

(75)

Expression (75) corresponds to the permutation rule of a given interleaver if the following
operation performed over the set {π{0}, π{1}, . . . , π{N − 1}}:

{π{0}, π{1}, . . . , π{N − 1}} modulo N

results in the set of integer numbers ZN = {0, 1, . . . , N − 1}.

7.8.4 Random Interleavers

Random interleavers are constructed as block interleavers where the data positions are deter-
mined randomly. A pseudo-random generator can be utilized for constructing these interleavers.
The memory requirement of a random interleaver is of size MI × NI symbols, but and since
there is the practical need of having two interleavers, one for being written (filled) and another
one for being read (emptied), the actual memory requirement is then 2MI × NI symbols.

In a turbo coding scheme, the interleaver plays a very important role. In general, the BER
performance is improved if the length of the interleaver that is part of the scheme is increased.
Either block or random interleavers can be used in a turbo code. In general, it is shown in
[2] that block interleavers perform better than random interleavers if the size MI × NI of
the interleaver is small, and random interleavers perform better than block interleavers when
the size MI × NI of the interleaver is medium or large. The BER performance of a turbo
code with large random interleavers is significantly better than that of a turbo code with block
interleavers of the same size. This can be seen in Figure 7.17. However, the larger the interleaver,
the larger is the delay in the system. Sometimes, and depending on the application, the delay
occasioned by a turbo code, or more precisely, by its interleaver, can be unacceptable for a given
practical application, and so in spite of their impressive BER performance, turbo codes with
large random interleavers cannot be used. This is the case for instance in audio applications,
where sometimes the delay of a turbo code cannot be tolerated. If the delay is acceptable in
a particular application, large random interleavers allow the turbo coding BER performance
to be close to the Shannon limit. It can be concluded that both families of turbo codes, those

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

252 Essentials of Error-Control Coding

Block Int. 13x13, 8952 transmitted blocks

Random Int. 13x13=169, 8952 transmitted blocks

Block Int. 31x31, 1575 transmitted blocks

Random Int. 31x31=961, 1575 transmitted blocks

Block Int. 81x81, 230 transmitted blocks

Random Int. 81x81=6561, 230 transmitted blocks

Block Int. 123x123, 100 transmitted blocks

Random Int. 123x123=15,129, 100 transmitted blocks

0 0.5 1 1.5 2 2.5 3
10–6

10–5

10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

Pb

Figure 7.17 BER performance of a turbo code as a function of the type and size of the interleaver

constructed using small block interleavers, and those constructed with considerably larger
random interleavers, can be used in practice, depending on the application. It has also been
shown in [2] that square block interleavers are better than rectangular block interleavers, and
that odd dimension interleavers are also better than even dimension interleavers. Therefore,
the best selection of a block interleaver is obtained by using MI = NI, and by making MI and
NI be odd numbers.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 253

7.8.5 Linear Interleavers

Another kind of interleaver also utilized in turbo coding schemes is the linear interleaver.
One interesting characteristic of this interleaver is that it has a mathematical expression for
generating the interleaving permutation, which avoids the need to store all the structure of the
interleaver, usually in the form of a big memory allocation, which is the case for random or
block interleavers.

In general, turbo codes have an impressive BER performance in the so-called waterfall
region, which is where the curve of Pbe versus Eb/N0 falls steeply. There is also another
characteristic region of the turbo code BER performance curve, which is known as the error
floor region. This floor region arises because of the degradation in the BER performance
caused by the relatively small minimum distance of a turbo code. This floor region is also a
consequence of the minimum distance of each of the constituent codes [2], so that the smaller
the minimum distance of the constituent codes, the higher is the BER at which the floor effect
starts appearing. In addition, the type and size of the interleaver plays an important role in
determining the minimum distance of the turbo code.

One solution for reducing the floor effect is the use of multiple turbo codes (MTC). These
codes consist of a modification of the classic structure of a turbo scheme, involving usually one
interleaver and two constituent codes. In the general structure of an MTC, there are JMTC > 2
constituent convolutional codes and JMTC − 1 interleavers, and the use of linear interleavers
in an MTC scheme can be very effective.

A linear interleaver of length L I can be described by the following permutation rule:(
0 1 · · · L I − 1

π{0} π{1} π{L I − 1}
)

(76)

where

π (i) = (i pMTC + sMTC) modL I (77)

In this expression pMTC, 0 ≤ pMTC ≤ L I − 1, is a parameter called the angular coefficient, and
sMTC, 0 ≤ sMTC ≤ L I − 1, is a parameter called the linear shift. It is required that the highest
common factor (HCF) between pMTC and L I be HCF (pMTC, L I) = 1. This definition is ex-
tracted from [10], where the authors introduce an analysis of linear interleavers with regard
to the minimum distance of an MTC. A conclusion obtained in that paper is that whereas the
minimum distance of a traditional turbo code, constructed with two constituent convolutional
codes and one interleaver, increases logarithmically with the size of the interleaver, the mini-
mum distance of an MTC exhibits a higher increase that is of order L (JMTC−2)/JMTC

I . Therefore,
linear interleavers appear to be easily constructed interleavers which also provide the turbo
code with enhanced minimum distance properties, comparable to and even better than those of
turbo codes with other types of interleavers, such as dithered relative prime (DRP) interleavers
[11] or S-random interleavers [12].

7.8.6 Code Concatenation Methods

Concatenation of codes [8] is a very useful technique that leads to the construction of very
efficient codes by using two or more constituent codes of relatively small size and complexity.
Thus, a big, powerful code with high BER performance, but of impractical complexity, can
be constructed in an equivalent concatenated form by combining two or more constituent

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

254 Essentials of Error-Control Coding

Encoder C1
(n1, k)

Encoder C2
(n2, n1)

Channel

Decoder C1
(n1, k)

Decoder C2
(n2, n1)

k n1 n2

k n1 n2

Figure 7.18 Serial concatenation of codes

codes to provide the same performance at a lower cost in terms of complexity. The reduced
complexity is important especially for the decoding of these codes, which can take advantage
of the combined structure of a concatenated code. Decoding is done by combining two or more
relatively low complexity decoders, thus effectively decomposing the problem of the decoding
of a big code. If these partial decoders properly share the decoded information, by using an
iterative technique, for example, then there need be no loss in performance.

There are essentially two ways of concatenating codes: traditionally, by using the so-called
serial concatenation, and more recently, by using the parallel concatenated structure of the first
turbo coding schemes. Both concatenation techniques allow the use of iterative decoding.

7.8.6.1 Serial concatenation

Serial concatenation of codes was introduced by David Forney [8]. In a serial concatenated
code a message block of k elements is first encoded by a code C1(n1, k), normally called the
outer code, which generates a code vector of n1 elements that are then encoded by a second
code C2(n2, n1), usually called the inner code, which generates a code vector of n2 elements.
A block diagram of a serial concatenated code is seen in Figure 7.18. The decoding of the
concatenated code operates in two stages: first performing the decoding of the inner code C2

and then the decoding of the outer code C1. The decoding complexity decomposed into these
two decoders is much lower than that of the direct decoding of the whole code equivalent to
the concatenated code, and the error-control efficiency can be the same if the two decoders
interactively share their decoded information, as in turbo decoding.

An example of serial concatenation of codes, where a convolutional interleaver would be
implemented in between the two constituent encoders, is the coding scheme for the compact
disk, already described in Chapter 5.

7.8.6.2 Parallel concatenation

Parallel concatenation of codes was introduced by Berrou, Glavieux and Thitimajshima [1] as
an efficient technique suitable for turbo decoding. Iterative decoding and parallel concatenation
of codes are two of the most relevant concepts introduced in the construction of a turbo code,
which have a strong influence on the impressive BER performance of these codes.

A simple structure for a parallel concatenated encoder is seen in Figure 7.19, which is the
encoder of a turbo code of code rate Rc = 1/3.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 255

Data
interleaver

m

c(1)

c(2)

m

c = (m,c(1),c(2))

Encoder of C1

Encoder of C2

Figure 7.19 A parallel concatenated code

A block or sequence of message bits m is input to the encoder of one of the constituent
codes C1, which in the case of convolutional codes is an FSSM, generating an output sequence
c1. In addition, the same input sequence is first interleaved, and then input to the encoder of
the second code C2, which in the case of convolutional codes is also an FSSM, generating an
output sequence c2. The output of both encoders, c1 and c2, are multiplexed with the input m
to form the output or code sequence c, so that the concatenated code is of code rate Rc = 1/3
if all the multiplexed sequences are of the same length.

Puncturing can be applied to the encoder outputs, as described in Chapter 6, to modify the
code rate of the concatenated code. Both puncturing and parallel concatenation are suitable
techniques for the construction of a turbo code. Under certain conditions, the use of more
than two constituent codes, as in MTC schemes described previously, can lead to better BER
performance.

Example 7.4: Determine the BER performance curve of Pbe versus Eb/N0, for a turbo code
of rate Rc = 1/2 constructed using 1/2-rate RSC (5, 7) encoders, in a parallel concatenation
like that shown in Figure 7.20. Make use of the puncturing procedure of Example 7.3, such that
the systematic bit is always transmitted, together with one of the outputs c(2)

1 or c(2)
2 alternately.

Use a random interleaver of size L I = N × N = 100 × 100 = 10, 000.
The simulation shown in Figure 7.21 was done by transmitting 400 blocks of 10,000 bits of

information each. This curve shows the three main regions of the BER performance of a turbo
code [13]. In the first region, the parameter Eb/N0 is very low, and the code produces only a
degradation of the average bit energy that results in a BER performance that is worse than that
of uncoded transmission (also seen in Figure 7.21). The next region is the so-called waterfall
region where the BER performance of the turbo code is impressively good, falling steeply over
a small middle range of Eb/N0. Finally there is the so-called floor region, characterized by
the flattening of the curve, where the parameter Eb/N0 is relatively high, but the error rate
decreases only slowly.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

256 Essentials of Error-Control Coding

Polar
form

x1

x2
m

c1
(1)

c1
(2)

m2

c 2
(1)

c2
(2)

Block or random
interleaver of size
N×N

Puncturing

Figure 7.20 Turbo encoder with a block or random interleaver

0 0.5 1 1.5 2 2.5 3

10−1

10−2

10−3

10−4

10−5

10−6

100

Eb/N0 (dB)

P
b

Figure 7.21 BER performance curve of Pbe versus Eb/N0, for a turbo code of rate Rc = 1/2, 1/2-rate

RSC (5, 7) encoders with puncturing, random interleaver of size L I = N × N = 10, 000, decoded by

the LOG MAP BCJR algorithm with eight iterations, in comparison with uncoded transmission

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 257

7.8.7 Turbo Code Performance as a Function of Size and Type of Interleaver

The BER performance of binary turbo codes is evaluated as a function of the type and size of
the interleaver. Simulations are done for the standard structure, involving the use of two 1/2-rate
RSC (5, 7) encoders in parallel concatenation with puncturing, as in Example 7.3, to control
the code rate, and either a block or a random interleaver, as shown in Figure 7.20. This turbo
scheme is decoded by using the LOG MAP BCJR algorithm with eight iterations. Simulations
are such that, depending on the size of the interleaver, the total number of transmitted bits is
approximately equal to 1.5 Mbits in each case.

7.9 Other Decoding Algorithms for Turbo Codes

The decoding algorithm already introduced in this chapter for decoding turbo codes is the
MAP BCJR algorithm. This algorithm is in general of high complexity, and, on the other hand,
sums and products involved in its calculation can lead to underflow and overflow problems in
practical implementations. These calculations also require considerable amount of memory to
store all the values, until a decoding decision is taken. A logarithmic version of this algorithm
appears to be a solution for many of the above calculation problems that the original version
of the BCJR algorithm faces [2, 9]. The basic idea is that by converting calculations into their
logarithmic form, products convert into sums. The logarithm of a sum of two or more terms
seems to be a new complication, but this operation is solved by using the following equation:

ln(eA + eB) = max(A, B) + ln(1 + e−|A−B|) = max(A, B) + fc(|A − B|) (78)

where fc(|A − B|) is a correction factor that can be either exactly calculated or, in practical
implementations of this algorithm, obtained from a look-up table.

The logarithmic version of the MAP BCJR algorithm greatly reduces the overflow and
underflow effects in its application. This logarithmic version is known as the LOG MAP BCJR
algorithm. As explained above, the correction term in equation (78) can be appropriately taken
from a look-up table. Another and even simpler version of the LOG MAP BCJR algorithm is
the so-called MAX LOG MAP BCJR algorithm, in which the correction term is omitted in the
calculation, and the equation (78) is used by simply evaluating the MAX value of the involved
quantities. A detailed analysis can be found in [2], where it is shown that the MAX LOG
MAP BCJR algorithm and the SOVA (soft-output Viterbi algorithm) are those of minimal
complexity, but with a level of degradation in BER performance with respect to the LOG
MAP BCJR algorithm. Therefore, as usual, decoding complexity is in a trade-off with BER
performance. The degradation in BER performance is around 0.6 dB between the best decoder,
the LOG MAP BCJR decoder, and the worst, the SOVA decoder.

7.10 EXIT Charts for Turbo Codes

Stephan Ten Brink [13, 14] introduced a very useful tool for the analysis of iterative decoders,
which is known as the extrinsic information transfer (EXIT) chart. This tool allows us to analyse
the iteration process in decoders that utilize soft-input–soft-output estimates that are passed
form one decoder to the other. This process of interchanging information is represented in a
graphical chart that depicts the transfer of mutual information between the a priori information
that is input to these decoders and the extrinsic information that is generated by these decoders.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

258 Essentials of Error-Control Coding

The EXIT chart emerged as a development of another technique, known as density evolution,
also applied to iteratively decoded coding schemes [28]. Both tools are suitable for the analysis
of iterative decoding, but EXIT charts involve less-complex calculations and appear to be easier
to use [13–20].

EXIT charts analyse the transfer between the a priori information, which in the case of the
LOG MAP BCJR algorithm described in Section 7.6 is the LLR L(bi) and acts as the input of
the decoder, and the extrinsic information generated by the decoder, which in the case of the
LOG MAP BCJR algorithm is denoted as the LLR Le(bi). Both the a priori and the extrinsic
information are measured by using the mutual information between these quantities and the
information in the systematic or message bits. These quantities are related by expression (74).
Following the notation introduced by S. Ten Brink [13, 14], expression (74) can be written as

Le(bi) = L(bi/Y n
1) − L(bi) − Lc yi1 = Ei1 = Di1 − Ai1 − Yi1 (79)

where A identifies the a priori information, E identifies the extrinsic information and Y
represents the channel information. All these quantities are LLRs like those described by
expression (59). The vector E will represent a set of values Ei and the same notation will be
used for the rest of the quantities involved.

7.10.1 Introduction to EXIT Charts

As described in previous sections, the BER performance curve of Pbe versus Eb/N0 of a turbo
code basically shows three main regions:

� A first region at low values of Eb/N0, where iterative decoding performs worse than uncoded
transmission, even for a large number of iterations.� A second region at low to medium values of Eb/N0, where iterative decoding is extremely
effective. This is the waterfall region, where the performance increases, but not linearly, with
an increase in the number of iterations.� A third region at higher value of Eb/N0, the error floor, where decoding converges in few
iterations, but performance increases only slowly as Eb/N0 increases.

The EXIT chart is an especially good tool for the analysis of the waterfall region, and also
illustrates the behaviour of the code in the other two regions. The chart is constructed from
the mutual information between the a priori information and the message bit information on
the one hand, and the mutual information between the extrinsic information and the message
bit information on the other. The a priori information and the extrinsic information are the
input and output measures, respectively that a given LOG MAP decoder utilizes for iterative
decoding.

As mentioned earlier, the performance of iterative decoding is enhanced by increasing the
number of iterations, but the enhancement is not linear with this increase. It is found that the
relative improvement in performance reaches a practical limit beyond which an increase in
the number of iterations does not result in a significant increase in coding gain. This fact is
also evident in the EXIT chart, a tool that can be used to determine the number of iterations
considered sufficient to achieve a given BER performance with a particular turbo coding
scheme.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 259

LOG MAP BCJR
decoder of code 2

LOG MAP BCJR
decoder of code 1

Inverse
interleaver

Interleaver

Interleaver

Information
bits

Parity check of
encoder 2

A1 E2

E1

D1

Y1 Y2

A2

D2

Parity check of
encoder 1

Figure 7.22 A priori, extrinsic and channel informations managed by a LOG MAP BCJR decoder

7.10.2 Construction of the EXIT Chart

In this section the EXIT chart of the turbo code of Example 7.4, when decoded using the LOG
MAP BCJR decoder, will be constructed. This turbo code consists of two 1/2-rate RSC (5, 7)
encoders, with a random interleaver of size N × N = 10, 000, and output puncturing applied
to make the code rate be Rc = 1/2. As in Example 7.3, the first encoder generates sequences
terminating in the all-zero state.

Figure 7.22 illustrates the operation of the LOG MAP BCJR decoder for this turbo code at
an intermediate iteration.

The first decoder makes use of the a priori information, together with the channel information
of the systematic and parity check bits generated by the first encoder, to generate a vector D1 of
estimates or soft decisions with components Di = L(bi/Y1). This vector of estimates is used
by the first decoder to produce a vector of extrinsic information, which is properly interleaved
to become the a priori information vector of the current iteration for the second decoder. This
extrinsic information vector

E1 = D1 − A1 − Y1

with components

Ei1 = Le1(bi) = L1(bi/Y1) − L1(bi) − Lc yi1 = Di1 − Ai1 − Yi1

is generated by the first decoder as shown in Figure 7.11.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

260 Essentials of Error-Control Coding

The second decoder processes its input information, which consists of the channel infor-
mation Y2 formed from the samples of the received message or systematic bits, properly
interleaved, and the samples of the received parity check bits that have been generated by the
second encoder, together with the a priori information A2 received from the first decoder, and
generates an extrinsic information vector

E2 = D2 − A2 − Y2

whose components are

Ei2 = Le2(bi) = L2(bi/Y2) − L2(bi) − Lc yi2 = Di2 − Ai2 − Yi2

as indicated in Figure 7.11. This extrinsic information becomes now the a priori information
vector A1 for the first decoder, in the next iteration.

As pointed out earlier, the EXIT chart is a representation of the relationship between two
mutual informations: the mutual information between the a priori information and the message
information, and the mutual information between the extrinsic information and the message
information.

For the AWGN channel, the input and output variables are considered to be random variables
that are related by

Y = X + n

or

y = x + n (80)

where X denotes a random variable that represents the message bits x that can take one of the two
possible values x = +1 or x = −1, Y denotes the random variable that results from the detected
samples of the transmitted information and n denotes the noise random variable. The function
that characterizes this channel is the Gaussian probability density function already introduced
and described by equations (56) and (57). Then equation (58) determines the logarithmic value
of the conditional probability [14]:

L(y/x) = 2
Eb

σ 2
y = 2

σ 2
y (81)

Here the average bit energy is equal to Eb = 1 for the normalized polar format adopted in
this case. This expression allows us to determine the random variable Y that represents the
logarithmic values of the samples of the received signal that are channel observations of the
form

Y = 2

σ 2
y = 2

σ 2
(x + n) (82)

This can also be written as

Y = 2

σ 2
y = μY x + nY (83)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 261

where

μY = 2/σ 2 (84)

and nY is a random variable with zero mean value and variance

σ 2
Y = 4/σ 2 (85)

The mean value and the variance of this random variable are related by

μY = σ 2
Y /2 (86)

This relationship will be useful in the construction of the EXIT chart. In a turbo code, both
decoders utilize the same decoding algorithm, and often also the same code, and therefore the
same trellis or code information. However, there is in general a slight difference between the
first and the second constituent codes in a turbo scheme, which is that the first code usually
generates terminated sequences, whereas this is not necessarily the case for the sequences
generated by the second constituent code. This difference was the reason for the setting of
slightly different initial or contour conditions in the decoding algorithm used, the LOG MAP
BCJR algorithm, as pointed out in previous sections. However, if the code sequences are long
enough, then the terminated sequence effect can be neglected, so that both decoders operate
in virtually the same way, and it will be sufficient to perform the EXIT chart analysis for only
one of the decoders, for the first decoder, for instance.

7.10.3 Extrinsic Transfer Characteristics of the Constituent Decoders

EXIT charts are generated for the decoding operation of one of the constituent decoders of a
turbo code. Since the mathematical complexity of the LOG MAP BCJR decoding algorithm
is very high, then the analysis for EXIT charts is derived by Monte Carlo simulation over the
parameters of interest.

Monte Carlo simulations of the operation of a LOG MAP BCJR decoder allow us to af-
firm that the values of the a priori information A are independent and uncorrelated from the
observations or sampled values of the channel Y . On the other hand, the probability density
function, or more exactly, the histogram of the values of the extrinsic information E generated
by the LOG MAP BCJR decoder, is a Gaussian histogram (equivalent for the continuous case
to a Gaussian probability density function). It is also true that these values become the a priori
values for the next iteration, so that a similar conclusion can be stated for the probability density
function of the a priori information.

The following figures show non-normalized histograms of the extrinsic information values
generated by Monte Carlo simulation of the operation of a LOG MAP BCJR decoder for
the turbo code of Example 7.4. Figure 7.23 shows the non-normalized histogram of extrinsic
estimates for the input ‘0’, which is proportional to the probability density function denoted
as pE (ξ/x = −1), and Figure 7.24 shows the non-normalized histogram of extrinsic estimates
for the input ‘1’, which is proportional to the probability density function denoted as pE (ξ/x =
+1). Histograms are shown for different values of the parameter Eb/N0 = 0.5, 1.0, 1.5 and
2.0 dB.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

80 90 100 110 120 130 140
0

500

100

1500

2000

2500

Eb / N0 = 0.5 dB

Eb / N0 = 1 dB

Eb / N0 = 1.5 dB

Eb / N0 = 2 dB

Figure 7.23 Non-normalized histogram for extrinsic estimates for the input symbol ‘0’ of a LOG MAP

BCJR decoder of a turbo code, as a function of Eb/N0

110 120 130 140
0

3000

2500

2000

1500

1000

500

80 90 100

Eb /N0 = 0.5 dB

Eb /N0 = 1 dB

Eb /N0 = 2 dB

Eb /N0 = 1.5 dB

Figure 7.24 Non-normalized histogram for extrinsic estimations for the input symbol ‘1’ of a LOG

MAP BCJR decoder of a turbo code, as a function of Eb/N0

262

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 263

Figures 7.23 and 7.24 show that extrinsic estimates generated by a LOG MAP BCJR decoder
of a turbo code are characterized by non-normalized Gaussian histograms, or extrapolating to
the continuous case, Gaussian probability density functions. If these histograms are depicted
over the same abscissa, it can be seen that an increase of the parameter Eb/N0 produces a
shift to the right of the extrinsic estimates for input ‘1’, and a shift to the left of the extrinsic
estimates for input ‘0’; that is, they start to be more separated from each other.

These Monte Carlo simulations confirm that the extrinsic information E generated by a
LOG MAP BCJR decoder can be modelled as an independent and Gaussian random variable
nE of zero mean value and variance σ 2

E , which is added to the transmitted systematic bit x
multiplied by μE . This is true for both the extrinsic estimates for ‘0’, E (0) and for ‘1’, E (1).
Therefore

E (0) = μE0x + nE0

E (1) = μE1x + nE1 (87)

where

μE0 = σ 2
E0/2

and

μE1 = σ 2
E1/2 (88)

An interesting observation can be made about Figure 7.25, where a detailed view of the
non-normalized histograms of the extrinsic informations for ‘0’ and for ‘1’ obtained by Monte
Carlo simulations over the LOG MAP BCJR decoder of the turbo code of Example 7.4 is
presented. Bold lines describe the extrinsic estimates for ‘1’ and dotted lines describe the
extrinsic estimates for ‘0’. The non-normalized histogram of the highest peak value corresponds
to Eb/N0 = 0.2 dB, and then lower peak value histograms correspond in decreasing order to
Eb/N0 = 0.3, 0.4, 0.5 and 0.6 dB.

The circled line highlights the non-normalized histograms for ‘0’ and for ’1’ when Eb/N0 =
0.6 dB, which is the first case for which the two peak values have different abscissa values.
Now at this value of Eb/N0 = 0.6 dB, the BER performance curve of Figure 7.21, which
relates to the same turbo code, is in the waterfall region that starts at Eb/N0 = 0.5 dB and ends
at about 1.5 dB. For values of Eb/N0 lower than 0.5 dB, the non-normalized histograms for
‘0’ and ‘1’ have their peaks at the same value of the abscissa, as seen in Figure 7.25.

Abscissa values of the peaks of the histograms in Figure 7.25 for low values of Eb/N0

are coincident due to the quantization effects of the histogram representation. This means
anyway that parameters μE0 and μE1 are in this case practically equal. The peak value of
the histogram for ‘0’ is at the abscissa value μE0 that corresponds to the abscissa for the
probability density function for ‘0’, pE (ξ/X = −1), which is of the form pE (ξ/X = −1) =
e−((ξ+μE0x)2)/2σ 2

E0/
√

2πσE0. The peak value of the histogram for ‘1’ is at the abscissa value μE1

that corresponds to the abscissa for the probability density function for ‘1’, pE (ξ/X = +1),
which is of the form pE (ξ/X = +1) = e−((ξ−μE1x)2)/2σ 2

E1/
√

2πσE1. It will be observed by
means of these simulations that when the values of μE0 and μE1 are similar, the code is in the
BER performance region where the coded scheme is worse than uncoded transmission. As the

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

264 Essentials of Error-Control Coding

494 496 498 500 502 504 506 508 510

2000

1800

1600

1400

1200

1000

800

600

400

200

490 492
0

Figure 7.25 Non-normalized histogram for extrinsic estimations for the input symbol ‘0’ of a LOG

MAP BCJR decoder of the turbo code of Example 7.4, for Eb/N0 = 0.2, 0.3, 0.4, 0.5 and 0.6 dB

values of μE0 and μE1 start to be significantly different, the turbo code performance moves
into the waterfall region.

These simulations are also useful to show that since the extrinsic information of a given
iteration becomes the a priori information of the following iteration, the a priori estimates A
can also be modelled as a Gaussian random variable n A of zero mean value and variance σ 2

A,
which is added to the value of the transmitted systematic or message bit x multiplied by μA.
Note that the interleaving or de-interleaving applied to convert the extrinsic information of the
current iteration into a priori information of the following iteration changes only the position
of the values of the estimations but not their statistical properties [13, 14]. Therefore,

A = μAx + n A (89)

where

μA = σ 2
A/2 (90)

Thus, the probability density function for this random variable is equal to

pA(ξ/X = x) = e
−

(
(ξ−(σ 2

A/2)x)2
)
/2σ 2

A

√
2πσA

(91)

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 265

The mutual information between the random variable A, which represents the a priori
estimates, and the variable X , which represents the systematic or message bits, is utilized to
determine a measure of the a priori information. This mutual information can be calculated
as [22]

IA = I (X ; A) = 1

2

∑
x=−1,+1

∫ ∞

−∞
pA(ξ/X = x) log2

2pA(ξ/X = x)

pA(ξ/X = −1) + pA(ξ/X = +1)
dξ

(92)
where 0 ≤ IA ≤ 1.

Expression (92) can be combined with expression (91) to give

IA = 1 −
∫ ∞

−∞

e−(ξ−σ 2
A/2)/2σ 2

A√
2πσA

log2(1 + e−ξ) dξ (93)

The mutual information between the random variable E , which represents the extrinsic
estimates, and the variable X , which represents the systematic or message bits, is also utilized
to determine a measure of the extrinsic information:

IE = I (X ; E) = 1

2

∑
x=−1,+1

∫ ∞

−∞
pE (ξ/X = x) log2

2pE (ξ/X = x)

pE (ξ/X = −1) + pE (ξ/X = +1)
dξ

(94)
where 0 ≤ IE ≤ 1.

The EXIT chart describes, for each value of Eb/N0, the relationship between the mutual
information of the a priori information and the message bit information, IA, and the mutual
information of the extrinsic information and the message bit information, IE . This extrinsic
information transfer function is defined as

IE = Tr(IA, Eb/N0) (95)

The curve can be depicted by calculating, for a given value of IA, and a given value of the
parameter Eb/N0, the corresponding value of IE . This calculation assumes that the a priori
information A given by expressions (89) and (90), with a probability density function described
by (91), has a determined value of IA, obtained for instance by using (93).

This a priori information is applied to the LOG MAP BCJR decoder together with a block
of code vectors affected by noise according to the value of the parameter Eb/N0 for which
the EXIT chart is being calculated. The LOG MAP BCJR decoder generates a set or vector
E of extrinsic estimates characterized by a given value of IE . This value is obtained by
Monte Carlo simulation via the extrinsic estimates E, by operating on the probability density
function pE (ξ/X = x) in expression (94). All the estimates that belong to the systematic
or message bits ‘0’ will form the histogram hist E (ξ/X = −1) that represents the function
pE (ξ/X = −1), and all the estimates that belong to the systematic or message bits ‘1’ will
form the histogram hist E (ξ/X = +1) that represents the function pE (ξ/X = +1). The mutual
information IE = I (X ; E) can be then calculated over these histograms.

This procedure is described as follows for the Example 7.4. A vector of values of a priori
information A of size N × N = 10, 000 is generated by using expressions (89) and (90) for this
example, for a given value of σA. At the same time, an array of code vectors is also generated

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

266 Essentials of Error-Control Coding

2.5

2

1.5

1

0.5

1230 1235 1240 1245 1250 1260 1265 127512701255

0

σA = 4.5σA = 4.5

σA = 2

σA = 2

Non-normalized histogram of the a priori information A applied when the
information bit is '1'

Non-normalized histogram of the a priori information A applied when the
information bit is '0'

Non-normalized histogram of the a extrinsic information E applied when the
information bit is es '1'

Non-normalized histogram of the a extrinsic information E applied when the
information bit is '0'

Figure 7.26 Non-normalized histograms of the a priori information A applied to a LOG MAP BCJR

decoder and the resulting non-normalized histograms of the extrinsic information E , for Example 7.4

with a block of message bits of size N × N = 10, 000 that, after being encoded by the code of
code rate Rc = 1/2, becomes a transmitted array of size 2N × N = 20, 000 coded bits, which
are affected by noise according to the value of the parameter Eb/N0, in this case Eb/N0 = 1dB.
The LOG MAP BCJR decoder generates with these inputs a vector of extrinsic information
E of size N × N = 10, 000. Figure 7.26 shows the results of this process, for Eb/N0 = 1dB
and two values of σA, σA = 2 and σA = 4.5, which consist of the non-normalized histograms
of the extrinsic information values and of the applied a priori values.

These histograms allow the calculation of the mutual informations of the EXIT chart. The
mutual information IA can be calculated by using expression (93), evaluated numerically, and
the corresponding value of the mutual information IE is also obtained by numerical integration
over the resulting histograms like those seen in Figure 7.26 for example, and by using expression

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 267

(94) in the form

IE = I (X ; E)

= 1

2

[∫ ∞

−∞
hist E (ξ/X = +1) log2

2hist E (ξ/X = +1)

hist E (ξ/X = −1) + hist E (ξ/X = +1)
dξ

+
∫ ∞

−∞
hist E (ξ/X = −1) log2

2hist E (ξ/X = −1)

hist E (ξ/X = −1) + hist E (ξ/X = +1)
dξ

]
(96)

EXIT chart Eb/N0= 0 dB

EXIT chart Eb/N0= –0.75

EXIT chart Eb/N0= 0.75 dB

EXIT chart Eb/N0= 1.5 dB

EXIT chart Eb/N0= 2.25 dB

EXIT chart Eb/N0= 3 dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1IE

IA

Figure 7.27 EXIT chart for the turbo code of Example 7.4, and different values of the parameter Eb/N0

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

268 Essentials of Error-Control Coding

0
0

0.9

0.9

1

1

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

IE;IA

IE;IA

EXIT chart, Eb/N0= 1 dB

EXIT chart, Eb/N0= 2 dB

Figure 7.28 Analysis of iterative decoding of turbo codes using EXIT charts

where hist E (ξ/X = +1) and hist E (ξ/X = −1) play the role of pE (ξ/X = +1) and
pE (ξ/X = −1), respectively. Integrals in (96) are solved as discrete sums over the corre-
sponding histograms.

Values of IA and IE can vary slightly depending on the error event simulated. For a fixed
error event and a value of Eb/N0, and for different values of σA, the EXIT chart corresponding
to that value of Eb/N0 can be depicted. The dependence of this EXIT chart on the value of the
parameter Eb/N0 can also be determined. This is seen in Figure 7.27 where the EXIT chart
for the turbo code of Example 7.4 describes the mutual information IE as a function of the
mutual information IA, for different values of the parameter Eb/N0.

Similarly, an EXIT chart can also describe the mutual information IA as a function of the
mutual information IE , which can be useful for understanding the process in which the extrinsic
information of the current iteration becomes the a priori information of the following iteration.
This transfer function can be superposed over the transfer function of IE as a function of IA, to
visualize the process of information interchange in an iterative decoder. This will give a clear
picture of the transference of information.

This is seen in Figure 7.28, where the iterative decoding procedure is clearly represented. The
procedure starts with the first decoder, and at the first iteration, when the a priori information
is equal to zero, resulting in a given value of the extrinsic information and also of the mutual
information IE for a given value of Eb/N0. This extrinsic information becomes the a priori
information of the other decoder, assumed to be exactly the same as the first decoder, in the
same iteration, which now operates with a non-zero a priori information. The symmetry of
the EXIT chart analysis seen in Figure 7.28 is due to the two constituent decoders being the
same, and operating under the same conditions. This process continues such that, for each

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 269

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1IE

IA

Eb / N0 = 0.5 dB

Figure 7.29 Analysis of iterative decoding of the turbo code of Example 7.4 using EXIT charts when

Eb/N0 = 0.5 dB

updated value of IA, there is a corresponding value of IE (vertical transitions between the two
curves) and then this value of IE converts into the following value of IA for the other decoder
(horizontal transitions between the two curves).

The curves in Figure 7.28 are for the iterative decoding of the turbo code of Example 7.4,
using the LOG MAP BCJR algorithm, for two values of the parameter Eb/N0, 1 dB and 2 dB.
It is seen that the number of significant iterations is larger in the case of Eb/N0 = 1dB. The
behaviour described in Figure 7.28 for these two values of the parameter Eb/N0 indicates
that the decoder is passing from the waterfall region to the error floor region of the BER
performance curve of this turbo code, that is, from a region where there are many significant
iterations to another where there are few.

The iterative decoding procedure does not make sense (is ineffective) beyond the point
in which the curve IE = Tr(IA, Eb/N0) and its reversed axes version IA = Tr(IE , Eb/N0)
intersect. This is seen in Figure 7.29 for the turbo code of Example 7.4 and for Eb/N0 = 0.5 dB.

As has been observed in Figures 7.21 and 7.25, the value of the parameter Eb/N0 = 0.5 dB
defines approximately the starting value for the waterfall region, but it is still a value at which
error correction operates worse than uncoded transmission. This is clearly confirmed by the
EXIT chart analysis as shown in Figure 7.29. This value of Eb/N0 is known as the threshold
of the coding scheme under iterative decoding [28].

Bibliography and References

[1] Berrou, C., Glavieux, A. and Thitimajshima, P., “Near Shannon limit error-correcting
coding and decoding: Turbo codes,” Proc. 1993 IEEE International Conference on Com-
munications, Geneva, Switzerland, pp. 1064–1070, May 1993.

[2] Hanzo, L., Liew, T. H. and Yeap, B. L., Turbo Coding, Turbo Equalisation and Space-Time
Coding, for Transmission over Fading Channels, IEEE Press/Wiley, New York, 2001.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

270 Essentials of Error-Control Coding

[3] Heegard, C. and Wicker, S., Turbo Coding, Kluwer, Massachusetts, 1999.
[4] Bahl, L., Cocke, J., Jelinek, F. and Raviv, J., “Optimal decoding of linear codes for

minimising symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, pp. 284–287, March
1974.

[5] Hagenauer, J., Offer, E. and Papke, L., Iterative decoding of binary block and convolutional
codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, March 1996.

[6] Cain, J. B., Clark, G. C. and Geist, J. M., “Punctured convolutional codes of rate (n-
1)/n and simplified maximum likelihood decoding,” IEEE Trans. Inf. Theory, vol. IT-25,
pp. 97–100, January 1979.

[7] Sklar, B., Digital Communications, Fundamentals and Applications, Prentice Hall, En-
glewood Cliffs, New Jersey, 1993.

[8] Forney, G. D., Jr., Concatenated Codes, MIT press, Cambridge, Massachusetts, 1966.
[9] Woodard, J.P. and Hanzo, L., “Comparative study of turbo decoding techniques,” IEEE

Trans. Veh. Technol., vol. 49, no. 6, November 2000.
[10] He, Ch., Lentmaier, M., Costello, D. J., Jr. and Zigangirov, K. Sh., “Designing linear

interleavers for multiple turbo codes,” Proc. 8th International Symposium on Commu-
nications Theory and Applications, St. Martin’s College, Ambleside, United Kingdom,
pp. 252–257, July 2005.

[11] Crozer, S. and Guinand, P., “Distance upper bounds and true minimum distance results
for turbo-codes designed with DRP interleavers,” Proc. 3rd Internatioal Sympsium on
Turbo Codes and Related Topics, Brest, France, pp. 169–172, September 2003.

[12] Dolinar, S. and Divsalar, D., “Weight distributions for turbo codes using random and
nonrandom permutations,” JPL TDA Progress Report, pp. 56–65, August 1995.

[13] Ten Brink, S., “Convergence behaviour of iteratively decoded parallel concatenated
codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, October 2001.

[14] Ten Brink, S., “Convergence of iterative decoding,” Electron. Lett., vol. 35, no. 10, May
1999.

[15] Ten Brink, S., Speidel, J. and Yan, R., “Iterative demapping and decoding for multilevel
modulation,” Proc. IEEE Globecom Conf. 98, Sydney, NSW, Australia, pp. 579–584,
November 1998.

[16] Ten Brink, S., “Exploiting the chain rule of mutual information for the design of iterative
decoding schemes,” Proc. 39th Allerton Conf., Monticello, Illinois, October 2001.

[17] Tuchler, M., Ten Brink, S. and Hagenauer, J., “Measures for tracing convergence of
iterative decoding algorithms,” Proc. 4th IEEE/ITG Conf. on Source and Channel Coding,
Berlin, Germany, pp. 53–60, January 2002.

[18] Ten Brink, S., Kramer, G. and Ashikhmin, A., “Design of low-density parity-check codes
for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, April 2004.

[19] Ashikhmin, A., Kramer, G. and Ten Brink, S., “Extrinsic information transfer functions:
A model and two properties,” Proc. Conf. Information Sciences and Systems, Princeton,
New Jersey, March 20–22, 2002, pp. 742–747.

[20] Sharon, E., Ashikhmim, A. and Litsyn, S., “EXIT functions for the Gaussian channel,”
Prov. 40th Annu. Allerton Conf. Communication, Control, Computers, Allerton, Illinois,
pp. 972–981, October 2003.

[21] Battail, G., “A conceptual framework for understanding turbo codes,” IEEE J. Select.
Areas Commun., vol. 16, no. 2, pp. 245–254, February 1998.

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 271

[22] Hamming, R. W., Coding and Information Theory, Prentice Hall, New Jersey, 1986.
[23] Benedetto, S. and Montorsi, G., “Unveiling turbo codes: Some results on parallel con-

catenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 409–428, March
1996.

[24] Divsalar, D., Dolinar, S. and Pollara, F., “Iterative turbo decoder analysis based on gaussian
density evolution,” Proc. MILCOM 2000, vol. 1, pp. 202–208, Los Angeles, California,
October 2000.

[25] Ashikhmin, A., Kramer, G. and Ten Brink, S., “Extrinsic information transfer functions:
Model and erasure channel properties,“ IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2657–
2672, November 2004.

[26] Meyerhans, G., Interleave and Code Design for Parallel and Serial Concatenated Con-
volutional Codes, PhD Thesis, Swiss Federal Institute of Technology, University of Notre
Dame, Notre Dame, Australia, 1996.

[27] Barbulescu, S. A. and Pietrobon, S. S., “Interleaver design for turbo codes,” Electron.
Lett., vol. 30, no. 25, pp. 2107–2108, December 1994.

[28] Schlegel, Ch. and Perez, L., Trellis and Turbo Coding, Wiley, New Jersey, March
2004.

[29] Honary B. and Markarian G., Trellis Decoding of Block Codes: A Practical Approach,
Kluwer, Massachusetts, 1997.

�

Problems

Concatenated Codes

7.1 The output codeword of a block code Cb(6, 3) generated by the generator matrix G

is then input to a convolutional encoder like that seen in Figure P.7.1, operating in
pseudo-block form. This means that after inputting the 6 bits of the codeword of the
block code, additional bits are also input to clear the registers of the convolutional
encoder.
(a) Determine the transpose of the parity check matrix of the block code, the

syndrome-error pattern table, the trellis diagram of the convolutional code
and its minimum free distance.

100101

010110

001011

G =

C (1)

C (2)

Figure P.7.1 Convolutional encoder in a serial concatenation with a block code

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

272 Essentials of Error-Control Coding

(b) Determine the minimum distance of the concatenated code.
(c) Decode the received sequence r = (01 10 10 00 11 11 00 00) to find possible

errors, and the transmitted sequence.

7.2 The cyclic code Ccyc(3, 1) generated by the polynomial g(X) = 1 + X + X 2 is ap-
plied on a given bit ‘horizontally’ and then a second cyclic code Ccyc(7, 3) gen-
erated by the polynomial g(X) = 1 + X + X 2 + X4 is applied ‘vertically’ over the
codeword in an array code format, as seen in Figure P.7.2.
(a) Determine the rate and error-correction capability of this array code.
(b) What is the relationship between the error-correction capability of this array

code and the individual error-correction capabilities of each cyclic code?

k1

n1

k2

n2

Figure 7.2 An array code

(c) Construct the array code by applying first the cyclic code Ccyc(7, 3) and then
the cyclic code Ccyc(3, 1) in order to compare with the result of item (b).

Turbo Codes

7.3 The simple binary array code (or punctured product code) has codewords with
block length n = 8 and k = 4 information bits in the format as given in Figure
P.7.3.

1 2

3 4

5

6

7 8

Figure 7.3 A punctured array code

Symbols 1, 2, 3 and 4 are the information bits, symbols 5 and 6 are row check
bits and symbols 7 and 8 are column check bits. Thus bits 1, 2, 5 and 3, 4, 6, form
two single-parity check (SPC) row component codewords, and bits 1, 3, 7 and 2,
4, 8 form two SPC column component codewords, where each component code
has the parameters (n, k) = (3, 2).

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 273

This array code can be regarded as a simple form of turbo code. In terms of the
turbo code structure shown in Figure P.7.4, the parallel concatenated component
encoders calculate the row and column parity checks of the array code, and the
permuter alters the order in which the information bits enter the column encoder
from {1, 2, 3, 4} to {1, 3, 2, 4}. The multiplexer then collects the information and
parity bits to form a complete codeword.

Column checks

Row checks

Permuter

Row encoder

Column encoder

Multiplexer

Information bits

Figure 7.4 An array code viewed as a turbo code

(a) What is the rate and Hamming distance of this code?
(b) A codeword from the code is modulated, transmitted over a soft-decision dis-

crete symmetric memoryless channel like that seen in Figure P.7.5, with the
conditional probabilities described in Table P.7.1, and received as the vector r

= (10300000). Using the turbo (iterative) MAP decoding algorithm, determine
the information bits that were transmitted.

0

1

0

1

2

3

High-reliability
output for 0

High-reliability
output for 1

Low-reliability
output for 0

Low-reliability
output for 1

Figure 7.5 A soft-decision discrete symmetric memoryless channel

Table P.7.1 Transition probabilities of the channel of Figure

P.7.5

P(y/x)

x, y 0 1 2 3

0 0.4 0.3 0.2 0.1

1 0.1 0.2 0.3 0.4

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

274 Essentials of Error-Control Coding

m

3-bit PR
Interleaver

C(1)

C(2)

C(3)

Figure 7.6 A 1/3-rate turbo code

7.4 Determine the minimum free distance of each of the constituent codes of the
1/3-rate turbo code encoded as shown in Figure P.7.6. Then, also determine the
minimum free distance of this turbo code.

The 3-bit pseudo-random interleaver has the permutation rule

⎛⎝1 2 3
3 1 2

⎞⎠.

Table P.7.2 Input message vector

and received sequence, Problem 7.5

Input Sequence Received Sequence

−1 −0.5290 − 0.3144

−1 −0.01479 − 0.1210

−1 −0.1959 + 0.03498

+1 1.6356 − 2.0913

−1 −0.9556 + 1.2332

+1 1.7448 − 0.7383

−1 −0.3742 − 0.1085

−1 −1.2812 − 1.8162

+1 +0.5848 + 0.1905

+1 +0.6745 − 1.1447

−1 −2.6226 − 0.5711

+1 +0.7426 + 1.0968

+1 1.1303 − 1.6990

−1 −0.6537 − 1.6155

+1 2.5879 − 0.5120

−1 −1.3861 − 2.0449

OTE/SPH OTE/SPH
JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

Turbo Codes 275

7.5 For a turbo code with the structure of Figure 7.20, with a block interleaver of size
N × N = 4 × 4 like that used in Example 7.3, constructed using 1/2-rate SRC (5,
7) encoders and a puncturing rule like that utilized in Example 7.3, the input or
message vector is
m = (−1 −1 −1 +1 −1 +1 −1 −1 +1 +1 −1 +1 +1 −1 +1 −1

)
.This input

vector makes the first encoder sequence be terminated.
(a) Determine the input for the second decoder, and the corresponding output of

the turbo code.
(b) After being transmitted and corrupted by AWGN, the received sequence as

tabulated in Table P.7.2 is then applied to the decoder.
Use the MAP BCJR decoding algorithm to determine the decoded sequence.
Estimate the number of iterations needed to arrive at the correct solution in this
particular case.

�

OTE/SPH OTE/SPH

JWBK102-07 JWBK102-Farrell June 17, 2006 18:4 Char Count= 0

276

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

8
Low-Density Parity Check Codes

In his seminal 1949 paper [1], Shannon stated theoretical bounds on the performance of
error-correction coding. Since that time, many practical error-correction schemes have been
proposed, but none has achieved performances close to the ideal until the turbo coding scheme,
described in Chapter 7, was discovered in 1993 by Berrou, Glavieux and Thitimajshima
[3]. Following this stimulating discovery, 3 years later in 1996 MacKay and Neal [4, 5]
rediscovered a class of codes first introduced by Gallager in 1962 [6], which are now rec-
ognized also to have near-ideal performance. These Gallager codes are the subject of this
chapter.

Gallager codes, now widely known as low-density parity check (LDPC) codes, are linear
block codes that are constructed by designing a sparse parity check matrix H, that is, for
the binary case, a matrix that contains relatively few ‘1’s spread among many ‘0’s. Gallager’s
original paper, apart from various LDPC code constructions, also presented an iterative method
of decoding the codes, which was capable of achieving excellent performance. However, the
complexity of the iterative decoding algorithm was beyond the capabilities of the electronic
processors available then, which is why the codes were forgotten until 1996, even in spite of
an attempt by Tanner in 1981 [7] to revive interest in them.

The first construction method proposed for the design of the sparse parity check matrix H
associated with these codes involves the use of a fixed number of ‘1’s per row and per column
of that matrix. In this case LDPC codes are said to be regular. However, the number of ‘1’s per
row and column can be varied, leading to the so-called irregular LDPC codes.

The bit error rate (BER) performance of LDPC codes is close to that of the turbo codes.
Modified versions of the original scheme, basically implemented as irregular LDPC codes,
and also operating over GF(q), with q = 4, 8 and 16 [8], are shown to perform even better
than the best-known turbo codes, being very close to the Shannon limits. A common factor
between LDPC codes and turbo codes is that the best BER performance of these coding
techniques is obtained when a pseudo-random process is applied to the design of parts of these
coding schemes. Thus, this pseudo-random procedure is present in the design of the random
interleaver of a turbo code, and in the construction of the sparse parity check matrix H of an
LDPC code.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

277

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

278 Essentials of Error-Control Coding

8.1 Different Systematic Forms of a Block Code

As seen in Chapter 2, a systematic linear block code Cb(n, k) is uniquely specified by its
generator matrix, which in the case of systematic block codes is of the form

G =

⎡⎢⎢⎢⎣
g0

g1
...

gk−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
p00 p01 · · · p0,n−k−1 1 0 0 · · · 0
p10 p11 · · · p1,n−k−1 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

pk−1,0 pk−1,1 · · · pk,n−k−1 0 0 0 · · · 1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

Submatrix P k × (n − k)

︸ ︷︷ ︸
Submatrix I k × k

(1)
A shorter notation for this matrix is

G = [P Ik] (2)

where P is the parity submatrix and Ik is the identity submatrix of dimension k × k. In this
form of systematic encoding, the message bits appear at the end of the code vector.

The systematic form of the parity check matrix H of the code Cb generated by the generator
matrix G is

H =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

p00 p10 · · · pk−1,0

p01 p11 · · · pk−1,1

...
...

...
p0,n−k−1 p1,n−k−1 · · · pk−1,n−k−1

⎤⎥⎥⎥⎦ = [
In−k PT]

︸ ︷︷ ︸
Submatrix I(n − k) × (n − k)

︸ ︷︷ ︸
Submatrix PT (n − k) × k

(3)

where PT is the transpose of the parity submatrix P . The parity check matrix H is such that
the inner product between a row vector gi of the generator matrix G and a row vector h j of
the parity check matrix H is zero; that is, gi and h j are orthogonal.

Therefore,

G ◦ HT = 0 (4)

and then

c ◦ HT = m ◦ G ◦ HT = 0 (5)

As will be seen in the following section, the design of an LDPC code starts with the con-
struction of the corresponding parity check matrix H, from which an equivalent systematic
parity check matrix is obtained, leading to formulation of the generator matrix G of the code.

The syndrome equation for a block code can be described in terms of the parity check
matrix H, instead of in terms of the transpose of this matrix, HT , as it was done in Chapter 4.
Then the code vector is generated from

c = GT ◦ m (6)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 279

Since GT is a generator matrix of dimension n × k, and the message vector m is of dimension
k × 1, the result of the operation in (6) is a code vector c of dimension n × 1, which is a column
vector. If a code vector is generated by using expression (6), then the corresponding syndrome
decoding is based on the calculation of a syndrome vector S of the form

S = H ◦ c (7)

which means that every code vector satisfies the condition

H ◦ c = 0 (8)

and that equation (4) is of the form

H ◦ GT = 0 (9)

Since the parity check matrix H is of dimension (n − k) × n, and the generator matrix
GT is of dimension n × k, the syndrome condition is represented by a matrix of dimension
(n − k) × k with all its elements equal to zero. This alternative way of encoding and decoding
a block code indicates that the parity check matrix H contains all the necessary information
to completely describe the block code. On the other hand, expression (9) will be useful for
designing an iterative decoder based on the sum–product algorithm, as will be shown in the
following sections.

8.2 Description of LDPC Codes

LDPC codes are usually designed to be linear and binary block codes. In this case there is a
generator matrix G that converts a message vector m into a code vector c by means of a matrix
multiplication. The corresponding parity check matrix H has the property that it is constructed
with linearly independent row vectors that form the dual subspace of the subspace generated
by the linearly independent row vectors of G. This means that every code vector satisfies the
condition H ◦ c = 0.

LDPC codes are designed by an appropriate construction of the corresponding parity check
matrix H, which is characterized by being sparse. According to the definition given by Gallager,
an LDPC code is denoted as CLDPC(n, s, v), where n is the code length, s is the number of ‘1’s
per column, with in general s ≥ 3, and v is the number of ‘1’s per row. If the rows of the parity
check matrix are linearly independent then the code rate is equal to (v − s)/v [4]. Otherwise
the code rate is

(
n − s ′)/n, where s ′ is the actual dimension of the row subspace generated by

the parity check matrix H. This relationship is obtained by counting the total number of ‘1’s
per row, and then per column, giving that ns = (n − k)v, which by algebraic manipulation
leads to the expression for the code rate. If the LDPC code is irregular, the numbers of ‘1’s per
row v and/or per column s are not fixed, and so the rate of the code is obtained by using the
average values of these parameters.

The code construction proposed by Gallager allowed him to demonstrate the main properties
of these codes: the error probability decreases exponentially with increasing code block length,
and the minimum distance of the code also increases with increasing code length. Tanner [7]
generalized the Gallager construction, defining the so-called bipartite graphs, where equations

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

280 Essentials of Error-Control Coding

related to the graph are generalized to be independent equations for each graph condition,
instead of being simply stated as parity check conditions.

8.3 Construction of LDPC Codes

8.3.1 Regular LDPC Codes

The construction method proposed by Gallager consists of forming a sparse parity check matrix
H by randomly determining the positions of ‘1’s, with a fixed number of ones ‘1’s per column
and per row, thus creating a regular LDPC code. The condition on the number of ‘1’s per
column and per row can be relaxed, provided that the number of ‘1’s per column s satisfies
s > 2. In this case, the LDPC code is said to be irregular. The conditions to be satisfied in the
construction of the parity check matrix H of a binary regular LDPC code are [9]

� The corresponding parity check matrix H should have a fixed number v of ‘1’s per row.� The corresponding parity check matrix H should have a fixed number s of ‘1’s per column.� The overlapping of ‘1’s per column and per row should be at most equal to one. This is a
necessary condition for avoiding the presence of cycles in the corresponding bipartite graph.� The parameters s and v should be small numbers compared with the code length.

It is however very difficult to satisfy the third condition if the intention is to construct
good LDPC codes, because cycles are unavoidable in the bipartite graph of an efficient LDPC
code [18].

The above construction does not normally lead to the design of a sparse parity check matrix
H of systematic form, and so it is usually necessary to utilize Gaussian elimination to convert
this resulting matrix into a systematic parity check matrix H′ = [In−k PT], where In−k is
the identity submatrix of dimension (n − k) × (n − k). The initially designed sparse parity
check matrix H is the parity check matrix of the LDPC code, whose generator matrix G is of
the form G = [P Ik].

Summarizing the design method for an LDPC code, a sparse parity check matrix H = [A B]
is constructed first, obeying the corresponding construction conditions. In general, this initial
matrix is not in systematic form. Submatrices A and B are sparse. Submatrix A is a square
matrix of dimension (n − k) × (n − k) that is non-singular, and so it has an inverse matrix
A−1. Submatrix B is of dimension (n − k) × k.

The Gaussian elimination method, operating over the binary field, modifies the matrix
H = [A B] into the form H′ = [Ik A−1 B] = [Ik PT]. This operation is equivalent to pre-

multiplying H = [A B] by A−1. Once the equivalent parity check matrix H′ has been formed,
the corresponding generator matrix G can be constructed by using the submatrices obtained,
to give G = [P Ik]. In this way both the generator and the parity check matrices are defined,
and the LDPC code is finally designed. Note that the matrices of interest are H and G.

LDPC codes can be classified, according to the construction method used for generating the
corresponding sparse parity check matrix H, into [11]

� random LDPC codes and� structured LDPC codes

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 281

In general, random LDPC codes show a slightly better BER performance than that of struc-
tured LDPC codes, but these latter codes are much less complex to encode than the former
codes. The construction approach proposed by MacKay [4, 5] is random, while other ap-
proaches include those based on finite field geometries, balanced incomplete block designs
and cyclic or quasi-cyclic structures [10, 11].

8.3.2 Irregular LDPC Codes

As described in previous sections, an irregular LDPC code is one with a sparse parity check
matrix H that has a variable number of ‘1’s per row or per column. In general, the BER
performances of irregular LDPC codes are better than those of regular LDPC codes. There are
several construction methods for irregular LDPC codes [9].

8.3.3 Decoding of LDPC Codes: The Tanner Graph

As described in Section 8.1, an alternative encoding method for block codes operates on the
message vector m by means of the matrix operation c = GT ◦ m, where

GT =
[

PT

Ik

]
to generate the code vector c. The transmitted vector is affected by the channel noise to be
converted in the received vector r = c + n, which is the input information for traditional
decoders of block codes based on calculation of the syndrome vector S = H ◦ r = H ◦ (GT ◦
m + n) = H ◦ n. An alternative decoding algorithm is introduced in this section, also based on
this syndrome calculation. The essence of this decoding algorithm is to determine an estimate
of a vector d that satisfies the condition H ◦ d = 0.

This algorithm is known as the sum–product algorithm, or belief propagation algorithm.
This algorithm determines the a posteriori probability of each message symbol as a function
of the received signal, the code information, expressed in the case of LDPC codes as parity
equations, and the channel characteristics. This algorithm is conveniently described over a
bipartite graph, called the Tanner graph [7], which is defined by the parity equations described in
the corresponding parity check matrix H. The bipartite graph depicts the relationship between
two types of nodes, the symbol nodes d j , which represent the transmitted symbols or bits, and
the parity check nodes hi , which represent the parity equations in which the bits or symbols
are related. Rows of the parity check matrix H identify the symbols involved in each parity
equation, so that a given row describes a parity check equation, and positions filled with ‘1’s
determine the positions of the symbols involved in that parity check equation. In this way,
and for binary LDPC codes, if the entry {i, j} of the sparse parity check matrix H is equal to
one, Hi j = 1, then there exists in the corresponding bipartite graph a connection between the
symbol node d j and the check node hi ; otherwise, the connection is not present.

The state of a given parity check node depends on the values of the symbol nodes actually
connected to it. In general, the parity check nodes connected to a given symbol node are said
to be the children nodes of that symbol node, and the symbol nodes connected to a given parity
check node are said to be the parent nodes of that parity check node.

In the sum–product algorithm, each symbol node d j sends to each of its children parity
check nodes hi an estimate Qx

i j of the probability that the parity check node is in state x , based

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

282 Essentials of Error-Control Coding

R x
43

Q x
43

d1 d2 d3 d4 dn

h1 h2 h3 hn−k

Symbol nodes

…

…

Parity check
nodes

Figure 8.1 A Tanner graph, a bipartite graph linking symbol and parity check nodes

on the information provided by the other children nodes of that symbol node. On the other
hand, each parity check node hi sends to each of its parent symbol nodes d j an estimate Rx

i j
of the probability that the parity equation i related to the parity check node hi is satisfied, if
the symbol or parent node is in state x , by taking into account the information provided by all
the other parent symbol nodes connected to this parity check node. This is seen in the Tanner
graph of Figure 8.1.

This is an iterative process of interchanging information between the two types of nodes on
the bipartite graph. The iterative process is halted if after calculating the syndrome condition
over the estimated decoded vector d , at a given iteration, the resulting syndrome vector is the
all-zero vector. If after several successive iterations the syndrome does not become the all-
zero vector, the decoder is halted when it reaches a given predetermined number of iterations.
In both cases, the decoder generates optimally decoded symbols or bits, in the a posteriori
probability sense, but these will not form a code vector if the syndrome is not an all-zero
vector. In this sense the sum–product algorithm performs in the same way as the MAP BCJR
algorithm, defining the best possible estimate of each symbol of the received vector, but not
necessarily defining the best estimate of the whole code vector that was initially transmitted
through the channel. This is a consequence of the sum–product algorithm being a maximum
a posteriori (MAP) decoding algorithm, whereas other decoding algorithms like the Viterbi
algorithm are maximum likelihood (ML) decoding algorithms, which optimize the decoding
of the whole code vector or sequence.

In general, iterative decoding of an LDPC code converges to the true message information
when the corresponding bipartite graph has a tree structure, that is, contains no cycles. However,
the presence of cycles of relatively short lengths in the bipartite graph is virtually unavoidable
when the corresponding LDPC code has good properties, but it is often possible to remove the
shortest cycles (of length 4, 6, 8, etc.), or least reduce their number. The degrading effect of
short-length cycles in the bipartite graph however diminishes as the code length increases and
is strongly reduced if the code length is large (>1000 bits).

8.4 The Sum–Product Algorithm

In the following, the sum–product algorithm is described. The algorithm requires an initial-
ization procedure that consists of determining the values Qx

i j , which are set to the a priori
estimates of the received symbols, denoted as f x

j , the probability that the j th symbol is x . This

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 283

information depends on the channel model utilized. In the case of the additive white Gaussian
noise (AWGN) channel, these probabilities are determined by using a Gaussian probability
density function.

After the initialization, the interchange of information between the symbol and the parity
check nodes begins. The information Rx

i j that each parity check node hi sends to its parent
symbol node d j is the probability that the parity check node hi is satisfied (that is, the parity
check equation related to this node is satisfied) when the parent symbol node being informed
is in state x . The probability of the parity check equation being satisfied is given by

P(hi/d j = x) =
∑

d:d j =x

P(hi/d)P(d/d j = x) (10)

This probability is calculated over all the possible decoded vectors d for which the parity check
equation is satisfied, when the informed parent symbol node is in state x .

For the parity check node hi , the information to be sent to the parent symbol node d j is
calculated for each value of x and is given by

Rx
i j =

∑
d:d j =x

P (hi/d)
∏

k∈N (i)\ j

Qdk
ik (11)

In this expression, N (i) represents the set of indexes of all the parent symbol nodes connected
to the parity check node hi , whereas N (i)\ j represents the same set with the exclusion of the
parent symbol node d j . The probability P

(
hi/d

)
that the parity check equation is satisfied

or not is equal to 1 or 0 respectively, for a given vector d. The symbol node d j sends to its
children parity check nodes hi the estimate Qx

i j , which is the estimate that the node is in state
x according to the information provided by the other children parity check nodes connected to
it. Then, and by using the Bayes rule,

P
(
d j = x/ {hi }i∈M(j)\i

) = P
(
d j = x

)
P

({hi }i∈M(j)\i /d j = x
)

P
({hi }i∈M(j)\i

) (12)

The information that the symbol node d j sends to its children parity check nodes is then

Qx
i j = αi j f x

j

∏
k∈M(j)\i

Rx
k j (13)

where M(j) represents the set of indexes of all the children parity check nodes connected to
the symbol node d j , whereas M(j)\i represents the same set with the exclusion of the children
parity check node hi . The coefficient f x

j is the a priori probability that d j is in state x . The
normalizing constant αi j is set to satisfy the normalizing condition

∑
x Qx

i j = 1.
In this way, the calculation of coefficients Qx

i j allow us to determine the values of the
coefficients Rx

i j that in turn can be used to perform an estimate for each value of the index j .
This is in the end an estimate for each symbol of the received vector, represented in the binary
case by the estimates for the two possible values of the variable x . This estimate is equal to

d̂ j = arg max
x

f x
j

∏
k∈M(j)

Rx
kj (14)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

284 Essentials of Error-Control Coding

which constitutes the estimate for the symbol at position j . If the estimated decoded vector d̂
satisfies the syndrome condition H ◦ d̂ = S (in general expressed in the form of H ◦ d̂ = 0),
then the estimated decoded vector d̂ is considered as a valid code vector c = d̂. Otherwise,
and if the decoder reaches the predetermined limiting number of iterations without finding a
suitable code vector that satisfies the above syndrome condition, then each symbol has been
optimally estimated, even though not all the symbols of the code vector actually transmitted
have been correctly decoded.

8.5 Sum–Product Algorithm for LDPC Codes: An Example

In this example, the following fairly sparse parity check matrix H of dimension 8 × 12 cor-
responds to a linear block code Cb(12, 4), of code rate Rc = 1/3, which is an irregular LDPC
code whose systematic generator matrix G is shown below:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 1 0 0 0 1
1 0 1 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎣
1 1 1 1 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0
1 1 1 0 1 0 0 1 0 0 1 0
1 0 0 1 1 1 0 1 0 0 0 1

⎤⎥⎥⎦
The encoding procedure adopted here is the traditional one, where the code vector c is

generated by multiplying the message vector m by the generator matrix G, c = m ◦ G, so that
the code vector satisfies the syndrome equation c ◦ HT = 0. As explained in Section 8.1, there
is an equivalent encoding method in which these operations are performed using c = GT◦ m
and H ◦ c = 0.

In this example, the message vector is m = (1 0 0 0), which generates the code vector
c = (1 1 1 1 1 0 0 0 1 0 0 0). This code vector is transmitted in polar format as the vector
t = (+1 +1 +1 +1 +1 −1 −1 −1 +1 −1 −1 −1). The transmission is done over an
AWGN channel with a standard deviation of σ = 0.8, and as a result of the transmission
and the sampling procedure, the following received vector is obtained:

r = (+1.3129 +2.6584 +0.7413 +2.1745 +0.5981 −0.8323 −0.3962 −1.7586

+1.4905 +0.4084 −0.9290 +1.0765)

If a hard-decision decoder was utilized, then the decoded vector would be

(1 1 1 1 1 0 0 0 1 1 0 1)

so that the channel produced two errors, at positions 10 and 12.

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 285

As the channel in this transmission is the AWGN channel, coefficients f x
j corresponding to

the received vector can be calculated using the Gaussian probability density function, and thus

f 0
j = 1√

2πσ
e−(r j +1)2

/(2σ 2) (15)

f 1
j = 1√

2πσ
e−(r j −1)2

/(2σ 2) (16)

These estimates require us to know the value of the standard deviation of the noise σ ; that is,
they require knowledge of the channel characteristics. Table 8.1 shows the values obtained in
this particular case.

In Table 8.1 and the following tables, note that values are truncated to four decimal places,
and so iterative calculation done with these truncated values could lead to slight differences in
numerical results throughout the decoding. Thus, for example, the value of f 0

2 is small (1.43 ×
10−5), but appears in the table as zero. The actual calculations were done more accurately
using MATLAB R© Program 5.3.

Values of the coefficients f x
j represent the estimates of the channel information. The co-

efficients involved in the iterative calculation take into account the code structure, described
in the corresponding bipartite graph, which represent the parity check equations. Thus, the
syndrome condition, expressed either as H ◦ c = 0 or as c ◦ HT = 0, means that the multi-
plication of the code vector c (using addition and multiplication over GF(2)) should be equal
to the all-zero vector. Therefore the parity check equations can be written as

c2 ⊕ c4 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 = 0

c1 ⊕ c3 ⊕ c4 ⊕ c9 = 0

c2 ⊕ c5 ⊕ c7 ⊕ c12 = 0

c1 ⊕ c4 ⊕ c10 ⊕ c11 = 0

c3 ⊕ c5 ⊕ c6 ⊕ c10 = 0

c1 ⊕ c3 ⊕ c7 ⊕ c8 ⊕ c11 = 0

c2 ⊕ c6 ⊕ c8 ⊕ c9 ⊕ c10 = 0

c5 ⊕ c9 ⊕ c11 ⊕ c12 = 0

This information can be properly represented by means of the bipartite or Tanner graph, as is
done in Figure 8.2 for the example under analysis.

Each row of the parity check matrix H corresponds to a parity check equation, and thus
to a parity check node. Each bit of the code vector corresponds to a symbol node. Thus, for
instance, the children parity check nodes of the symbol node 2 are the parity check nodes
1, 3 and 7, whereas the parent symbol nodes of the parity check node 1 are the symbol nodes
2, 4, 6, 7, 8 and 12.

The initialization of the sum–product algorithm is done by setting the two coefficients of
the information to be sent from symbol nodes to parity check nodes in the first iteration,

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Ta
bl

e
8.

1
V

al
u

es
o

f
th

e
re

ce
iv

ed
v
ec

to
r

an
d

co
rr

es
p

o
n

d
in

g
va

lu
es

o
f

co
ef

fi
ci

en
ts

fx j

j
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

r
+1

.3
1

2
9

+2
.6

5
8

4
+0

.7
4

1
3

+2
.1

7
4

5
+0

.5
9

8
1

−0
.8

3
2

3
−0

.3
9

6
2

−1
.7

5
8

6
+1

.4
9

0
5

+0
.4

0
8

4
−0

.9
2

9
0

+1
.0

7
6

5

t
+1

+1
+1

+1
+1

−1
−1

−1
+1

−1
−1

−1
f0 j

0
.0

0
7

6
0

.0
0

0
0

0
.0

4
6

7
0

.0
0

0
2

0
.0

6
7

8
0

.4
8

7
8

0
.3

7
5

1
0

.3
1

8
1

0
.0

0
3

9
0

.1
0

5
9

0
.4

9
6

7
0

.0
1

7
2

f1 j
0

.4
6

1
9

0
.0

5
8

2
0

.4
7

3
3

0
.1

6
9

7
0

.4
3

9
6

0
.0

3
6

2
0

.1
0

8
8

0
.0

0
1

3
0

.4
1

3
2

0
.3

7
9

4
0

.0
2

7
2

0
.4

9
6

4

286

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 287

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

Symbol nodes dj

Parity check nodes hi

Figure 8.2 Bipartite graph for the example introduced in Section 8.5

Q0
i j and Q1

i j , to be equal to the estimates that come from the channel information f 0
j and f 1

j ,
respectively. Thus, for this example,

Q0
12 = 0.0000 Q1

12 = 0.0582

Q0
14 = 0.0002 Q1

14 = 0.1697

Q0
16 = 0.4878 Q1

16 = 0.0362

Q0
17 = 0.3751 Q1

17 = 0.1088

Q0
18 = 0.3181 Q1

18 = 0.0013

Q0
1,12 = 0.0172 Q1

1,12 = 0.4964

Q0
21 = 0.0076 Q1

21 = 0.4619

Q0
23 = 0.0467 Q1

23 = 0.4733

Q0
24 = 0.0002 Q1

24 = 0.1697

Q0
29 = 0.0039 Q1

29 = 0.4132

Q0
32 = 0.0000 Q1

32 = 0.0582

Q0
35 = 0.0678 Q1

35 = 0.4396

Q0
37 = 0.3751 Q1

37 = 0.1088

Q0
3,12 = 0.0172 Q1

3,12 = 0.4964

Q0
41 = 0.0076 Q1

41 = 0.4619

Q0
44 = 0.0002 Q1

44 = 0.1697

Q0
4,10 = 0.1059 Q1

4,10 = 0.3794

Q0
4,11 = 0.4967 Q1

4,11 = 0.0272

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

288 Essentials of Error-Control Coding

Q0
53 = 0.0467 Q1

53 = 0.4733

Q0
55 = 0.0678 Q1

55 = 0.4396

Q0
56 = 0.4878 Q1

56 = 0.0362

Q0
5,10 = 0.1059 Q1

5,10 = 0.3794

Q0
61 = 0.0076 Q1

61 = 0.4619

Q0
63 = 0.0467 Q1

63 = 0.4733

Q0
67 = 0.3751 Q1

67 = 0.1088

Q0
68 = 0.3181 Q1

68 = 0.0013

Q0
6,11 = 0.4967 Q1

6,11 = 0.0272

Q0
72 = 0.0000 Q1

72 = 0.0582

Q0
76 = 0.4878 Q1

76 = 0.0362

Q0
78 = 0.3181 Q1

78 = 0.0013

Q0
79 = 0.0039 Q1

79 = 0.4132

Q0
7,10 = 0.1059 Q1

7,10 = 0.3794

Q0
85 = 0.0678 Q1

85 = 0.4396

Q0
89 = 0.0039 Q1

89 = 0.4132

Q0
8,11 = 0.4967 Q1

8,11 = 0.0272

Q0
8,12 = 0.0172 Q1

8,12 = 0.4964

These initialization values allow the calculation of coefficients R0
i j and R1

i j , which will be
iteratively updated during the decoding. These values are the estimates that go from the parity
check nodes to the symbol nodes, in the bipartite graph. Thus, for example, the coefficient
R0

12 is the estimate that the child parity check node 1 sends to its parent symbol node 2, and
is calculated assuming that its corresponding parity check equation, which is c2 ⊕ c4 ⊕ c6 ⊕
c7 ⊕ c8 ⊕ c12 = 0, is satisfied, when the bit or symbol 2 is in state c2 = 0. In this sense, there
are 16 combinations (even number of ‘1’s) of the bits c4, c6, c7, c8 and c12 that can satisfy
such a condition. The probabilities associated to each combination are added to calculate the
estimate R0

12 as

R0
12 = Q0

14 Q0
16 Q0

17 Q0
18 Q0

1,12 + Q0
14 Q0

16 Q0
17 Q1

18 Q1
1,12 + Q0

14 Q0
16 Q1

17 Q0
18 Q1

1,12 + Q0
14 Q0

16 Q1
17 Q1

18 Q0
1,12

+ Q0
14 Q1

16 Q0
17 Q0

18 Q1
1,12 + Q0

14 Q1
16 Q0

17 Q1
18 Q0

1,12 + Q0
14 Q1

16 Q1
17 Q0

18 Q0
1,12 + Q0

14 Q1
16 Q1

17 Q1
18 Q1

1,12

+ Q1
14 Q0

16 Q0
17 Q0

18 Q1
1,12 + Q1

14 Q0
16 Q0

17 Q1
18 Q0

1,12 + Q1
14 Q0

16 Q1
17 Q0

18 Q0
1,12 + Q1

14 Q0
16 Q1

17 Q1
18 Q1

1,12

+ Q1
14 Q1

16 Q0
17 Q0

18 Q0
1,12 + Q1

14 Q1
16 Q0

17 Q1
18 Q1

1,12 + Q1
14 Q1

16 Q1
17 Q0

18 Q1
1,12 + Q1

14 Q1
16 Q1

17 Q1
18 Q0

1,12

= 0.0051

In the same way the coefficient R1
12 is the estimate that the child parity check node 1 sends

to its parent symbol node 2, and is calculated assuming that its corresponding parity check
equation, which is c2 ⊕ c4 ⊕ c6 ⊕ c7 ⊕ c8 ⊕ c12 = 0 , is satisfied, when the bit or symbol 2 is
in state c2 = 1. In this sense, there are again 16 combinations (odd number of ‘1’s) of the bits
c4, c6, c7, c8 and c12 that can satisfy such a condition. The probabilities associated with each

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 289

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

Symbol nodes dj

Parity check nodes hi

R0
12, R1

12

Q X
17

Q X
18

Q X
14

Q X
16

Q X
14

Figure 8.3 Calculation of coefficients R0
12 and R1

12

combination are added to calculate the estimate R1
12 as

R1
12 = Q0

14 Q0
16 Q0

17 Q0
18 Q1

1,12 + Q0
14 Q0

16 Q0
17 Q1

18 Q0
1,12 + Q0

14 Q0
16 Q1

17 Q0
18 Q0

1,12 + Q0
14 Q0

16 Q1
17 Q1

18 Q1
1,12

+ Q0
14 Q1

16 Q0
17 Q0

18 Q0
1,12 + Q0

14 Q1
16 Q0

17 Q1
18 Q1

1,12 + Q0
14 Q1

16 Q1
17 Q0

18 Q1
1,12 + Q0

14 Q1
16 Q1

17 Q1
18 Q0

1,12

+ Q1
14 Q0

16 Q0
17 Q0

18 Q0
1,12 + Q1

14 Q0
16 Q0

17 Q1
18 Q1

1,12 + Q1
14 Q0

16 Q1
17 Q0

18 Q1
1,12 + Q1

14 Q0
16 Q1

17 Q1
18 Q0

1,12

+ Q1
14 Q1

16 Q0
17 Q0

18 Q1
1,12 + Q1

14 Q1
16 Q0

17 Q1
18 Q0

1,12 + Q1
14 Q1

16 Q1
17 Q0

18 Q0
1,12 + Q1

14 Q1
16 Q1

17 Q1
18 Q1

1,12

= 0.0020

The process of interchanging information can be seen in Figure 8.3.
The node that is updated or informed does not participate in the calculation of the cor-

responding estimate. This makes the iterative decoding converge to the right solution. The
larger the number of ‘1’s in each row of the parity check matrix, the larger is the number of
combinations of the bits needed to calculate the coefficients R0

i j and R1
i j . Tables 8.2 and 8.3

show the values of these coefficients in the form of a matrix, where index i corresponds to a
row, and index j corresponds to a column. Table 8.2 represents coefficients R0

i j that are the

estimates for the bit or symbol x = 0, and Table 8.3 shows the values of coefficients R1
i j that

are the estimates for the bit or symbol x = 1.
To clarify notation, the value of R0

i j for indexes i = 4, j = 10 is equal to R0
4,10 = 0.0390.

Values of coefficients R0
i j and R1

i j allow us to determine the first estimate of the decoded vector

Table 8.2 Values of coefficients R0
i j , first iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0051 0.0017 0.0002 0.0001 0.0004 0.0006

2 0.0036 0.0009 0.0113 0.0043

3 0.0868 0.0109 0.0024 0.0100

4 0.0325 0.0889 0.0390 0.0088

5 0.0875 0.0925 0.0423 0.1049

6 0.0126 0.0100 0.0348 0.0431 0.0270

7 0.0250 0.0008 0.0016 0.0035 0.0037

8 0.1022 0.1101 0.0179 0.0912

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

290 Essentials of Error-Control Coding

Table 8.3 Values of coefficients R1
i j , first iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0020 0.0007 0.0006 0.0008 0.0009 0.0002

2 0.0332 0.0324 0.0906 0.0372

3 0.0393 0.0035 0.0128 0.0043

4 0.0107 0.0305 0.0028 0.0299

5 0.0416 0.0398 0.0857 0.0333

6 0.0295 0.0280 0.0060 0.0188 0.0107

7 0.0089 0.0029 0.0046 0.0012 0.0003

8 0.0101 0.0264 0.0908 0.0197

d̂, using expression (14). Thus,

d̂1 =
{

0̂ → f 0
1 × R0

21 × R0
41 × R0

61 =
1̂ → f 1

1 × R1
21 × R1

41 × R1
61 =

1.13 × 10−8

4.85 × 10−6

}
⇒ ′1′

d̂2 =
{

0̂ → f 0
2 × R0

12 × R0
32 × R0

72

1̂ → f 1
2 × R1

12 × R1
32 × R1

72 =
= 1.58 × 10−10

4.06 × 10−8

}
⇒ ′1′

d̂3 =
{

0̂ → f 0
3 × R0

23 × R0
53 × R0

63

1̂ → f 1
3 × R1

23 × R1
53 × R1

63 =
= 3.59 × 10−8

1.785 × 10−5

}
⇒ ′1′

d̂4 =
{

0̂ → f 0
4 × R0

14 × R0
24 × R0

44

1̂ → f 1
4 × R1

14 × R1
24 × R1

44 =
= 3.31 × 10−10

3.19 × 10−7

}
⇒ ′1′

d̂5 =
{

0̂ → f 0
5 × R0

35 × R0
55 × R0

85

1̂ → f 1
5 × R1

35 × R1
55 × R1

85 =
= 7.007 × 10−6

6.20 × 10−7

}
⇒ ′0′

d̂6 =
{

0̂ → f 0
6 × R0

16 × R0
56 × R0

76

1̂ → f 1
6 × R1

16 × R1
56 × R1

76 =
= 3.39 × 10−9

5.34 × 10−9

}
⇒ ′1′

d̂7 =
{

0̂ → f 0
7 × R0

17 × R0
37 × R0

67

1̂ → f 1
7 × R1

17 × R1
37 × R1

67 =
= 2.73 × 10−9

6.37 × 10−9

}
⇒ ′1′

d̂8 =
{

0̂ → f 0
8 × R0

18 × R0
68 × R0

78

1̂ → f 1
8 × R1

18 × R1
68 × R1

78 =
= 7.96 × 10−9

1.03 × 10−10

}
⇒ ′0′

d̂9 =
{

0̂ → f 0
9 × R0

29 × R0
79 × R0

89

1̂ → f 1
9 × R1

29 × R1
79 × R1

89 =
= 6.52 × 10−9

4.98 × 10−7

}
⇒ ′1′

d̂10 =
{

0̂ → f 0
10 × R0

4,10 × R0
5,10 × R0

7,10

1̂ → f 1
10 × R1

4,10 × R1
5,10 × R1

7,10 =
= 1.62 × 10−6

1.17 × 10−8

}
⇒ ′0′

d̂11 =
{

0̂ → f 0
11 × R0

4,11 × R0
6,11 × R0

8,11

1̂ → f 1
11 × R1

4,11 × R1
6,11 × R1

8,11 =
= 2.12 × 10−6

7.91 × 10−7

}
⇒ ′0′

d̂12 =
{

0̂ → f 0
12 × R0

1,12 × R0
3,12 × R0

8,12

1̂ → f 1
12 × R1

1,12 × R1
3,12 × R1

8,12 =
= 9.23 × 10−9

8.87 × 10−9

}
⇒ ′1′

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 291

The first estimate of the decoded vector is

d̂ = (
1 1 1 1 0 1 1 0 1 0 0 0

)
which contains three errors with respect to the transmitted code vector c =
(1 1 1 1 1 0 0 0 1 0 0 0)

The decoding process continues since the syndrome for this estimated vector is not the
all-zero vector.

The next iteration starts with the calculation of the values of coefficients Q0
i j and Q1

i j . These
values are determined using expression (13), where there are normalizing coefficients so that
the condition Q0

i j + Q1
i j = 1 is satisfied. Thus, for example, the value of the coefficient Q0

12

is the estimate that the parent symbol node 2 sends to child parity check node 1, calculated
by forming the product of the estimates R0

k2 of all its children parity check nodes, excepting
that of child node 1, which is the node that is being updated. In the same way, the value of the
coefficient Q1

12 is the estimate that the parent symbol node 2 sends to child parity check node
1, calculated by forming the product of the estimates R1

k2 of all its children parity check nodes,
excepting that of child node 1, which is the node that is being updated. In this notation, k is the
index of the child node, that is, the index of each of the parity check nodes that are connected
in the bipartite graph to the parent node 2. The calculated coefficients are normalized by using
the normalizing constants.

The values of coefficients Q0
12 and Q1

12, in this example, are calculated as follows:

Q0
12 = α12 f 0

2 R0
32 R0

72

Q1
12 = α12 f 1

2 R1
32 R1

72

where

α12 = 1

f 0
2 R0

32 R0
72 + f 1

2 R1
32 R1

72

Figure 8.4 shows the flow of information and nodes participating in the calculation of
coefficients Q0

12 and Q1
12 for this example.

Symbol nodes dj

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

R x
32

R x
72Q x

12

Figure 8.4 Calculation of the values of coefficients Q0
12 and Q1

12

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

292 Essentials of Error-Control Coding

Table 8.4 Values of the coefficients Q0
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0015 0.0004 0.6601 0.7898 0.9950 0.2731

2 0.0209 0.0691 0.0083 0.1014

3 0.0018 0.7843 0.6946 0.3068

4 0.0008 0.0004 0.9091 0.9008

5 0.0010 0.8294 0.5620 0.9777

6 0.0054 0.0056 0.0688 0.9710 0.5147

7 0.0014 0.6847 0.9954 0.0046 0.9239

8 0.5273 0.0031 0.9316 0.1838

Tables 8.4 and 8.5 show the calculated values of coefficients Q0
i j and Q1

i j , respectively.

In the second iteration, the updated values of coefficients Q0
i j and Q1

i j allow us to determine

the updated values of coefficients R0
i j and R1

i j . This iteration is different from the first iteration

in the sense that coefficients Q0
i j and Q1

i j now contain updated information, rather than simply

channel information. In this second iteration the calculation of values of coefficients R0
i j and

R1
i j leads to a new estimated decoded vector d̂ , which again does not satisfy the syndrome

condition, and so the decoding process continues.
In the example under analysis, the decoder is able to find the correct code vector after three

iterations, and is also able to correct the two errors that the hard-decision received vector
contained. In this particular case the errors are in the message part of the code vector, that is, in
two of the four bits that are finally taken as the message bits, after truncating the redundancy.
The iterative decoding algorithm is able to correct these two errors. Tables 8.6 and 8.7 illustrate
the evolution of the decoding algorithm by presenting the values of the coefficients involved,
until arriving at the final solution. These tables show values that are truncated to four decimal
places, though actual values were determined in a more accurate way by using MATLAB R©

Program 5.3.
The updated values of coefficients R0

i j and R1
i j allow us to determine a new estimated decoded

vector. This second estimate of the decoded vector is shown in Table 8.8.

Table 8.5 Values of the coefficients Q1
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.9985 0.9996 0.3399 0.2102 0.0050 0.7269

2 0.9791 0.9309 0.9917 0.8986

3 0.9982 0.2157 0.3054 0.6932

4 0.9992 0.9996 0.0909 0.0992

5 0.9990 0.1706 0.4380 0.0223

6 0.9946 0.9944 0.9312 0.0290 0.4853

7 0.9986 0.3153 0.0046 0.9954 0.0761

8 0.4727 0.9969 0.0684 0.8162

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 293

Table 8.6 Values of coefficients R0
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.5416 0.5415 0.3704 0.4284 0.4581 0.5915

2 0.1622 0.1244 0.1709 0.0940

3 0.4572 0.5750 0.6095 0.3897

4 0.1723 0.1726 0.8999 0.9081

5 0.5390 0.4409 0.1859 0.4593

6 0.5118 0.5118 0.5135 0.4876 0.1027

7 0.3463 0.9150 0.6547 0.3453 0.6808

8 0.7713 0.4851 0.5172 0.4766

According to the values shown in Table 8.8, the estimated decoded vector in the second
iteration is d̂ = (

1 1 1 1 1 0 0 0 1 0 0 1
)
, which contains only one error, in the last bit, with

respect to the true code vector. This estimated decoded vector produces a non-zero syndrome
so that the decoder proceeds to the third iteration. Again, values of coefficients Q0

i j and Q1
i j

are updated, and they are shown in Tables 8.9 and 8.10.
The updated values of coefficients R0

i j and R1
i j of this third iteration are shown in Tables

8.11 and 8.12.
With these values, a new estimate of the decoded vector is formed, as given in Table 8.13.
According to the values shown in Table 8.8, the estimated decoded vector after the third

iteration is d̂ = c = (
1 1 1 1 1 0 0 0 1 0 0 0

)
, whose syndrome vector is the all-zero vector,

and so the decoder decides that this is a code vector and the decoded message vector is

m = (
1 0 0 0

)
Thus, the iterative decoding algorithm was able to correctly decode the received vector of

12 bits of this example. The minimum Hamming distance of the block code of this example
is dmin = 4, as determined by inspection of the minimum weight among all the non-zero code
vectors, or equivalently, by noting that there are four columns (columns 3, 4, 8, and 10 for
instance) in the corresponding parity check matrix H that when added result in the all-zero
vector. This allows us to say that this code is able, using hard-decision decoding, to correct

Table 8.7 Values of coefficients R1
i j , second iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.4584 0.4585 0.6296 0.5716 0.5419 0.4085

2 0.8378 0.8756 0.8291 0.9060

3 0.5428 0.4250 0.3905 0.6103

4 0.8277 0.8274 0.1001 0.0919

5 0.4610 0.5591 0.8141 0.5407

6 0.4882 0.4882 0.4865 0.5124 0.8973

7 0.6537 0.0850 0.3453 0.6547 0.3192

8 0.2287 0.5149 0.4828 0.5234

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Ta
bl

e
8.

8
E

st
im

at
e

o
f

th
e

d
ec

o
d

ed
v
ec

to
r

af
te

r
th

e
se

co
n

d
it

er
at

io
n

r
+1

.3
1

2
9

+2
.6

5
8

4
+0

.7
4

1
3

+2
.1

7
4

5
+0

.5
9

8
1

−0
.8

3
2

3
−0

.3
9

6
2

−1
.7

5
8

6
+1

.4
9

0
5

+0
.4

0
8

4
−0

.9
2

9
0

+1
.0

7
6

5

t
+1

+1
+1

+1
+1

−1
−1

−1
+1

−1
−1

−1
d

0 j
0

.0
0

0
1

0
.0

0
0

0
0

.0
0

1
6

0
.0

0
0

0
0

.0
1

3
3

0
.0

3
0

7
0

.0
5

0
3

0
.0

4
6

5
0

.0
0

0
1

0
.0

2
9

8
0

.0
2

4
0

0
.0

0
1

9

d
1 j

0
.1

5
6

4
0

.0
0

9
5

0
.0

9
3

3
0

.0
5

3
4

0
.0

2
3

9
0

.0
0

1
6

0
.0

1
1

8
0

.0
0

0
1

0
.1

2
6

2
0

.0
0

6
6

0
.0

0
1

1
0

.0
6

4
8

294

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Table 8.9 Values of coefficients Q0
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.0001 0.0000 0.9707 0.8503 0.9977 0.0197

2 0.0036 0.1078 0.0003 0.0047

3 0.0002 0.2909 0.7318 0.0436

4 0.0033 0.0003 0.3358 0.6910

5 0.0145 0.4130 0.9884 0.8426

6 0.0007 0.0161 0.8013 0.9974 0.9948

7 0.0002 0.6442 0.9949 0.0009 0.6807

8 0.1413 0.0005 0.9538 0.0310

Table 8.10 Values of coefficients Q1
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.9999 1.0000 0.0293 0.1497 0.0023 0.9803

2 0.9964 0.8922 0.9997 0.9953

3 0.9998 0.7091 0.2682 0.9564

4 0.9967 0.9997 0.6642 0.3090

5 0.9855 0.5870 0.0116 0.1574

6 0.9993 0.9839 0.1987 0.0026 0.0052

7 0.9998 0.3558 0.0051 0.9991 0.3193

8 0.8587 0.9995 0.0462 0.9690

Table 8.11 Values of coefficients R0
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.8153 0.8153 0.1651 0.0501 0.1833 0.8282

2 0.1117 0.0085 0.1143 0.1109

3 0.5885 0.7115 0.3092 0.5969

4 0.5627 0.5623 0.6896 0.3370

5 0.4418 0.1750 0.5579 0.5825

6 0.2129 0.2037 0.9758 0.7882 0.7897

7 0.4485 0.6784 0.5520 0.4485 0.6424

8 0.9252 0.8053 0.1639 0.8252

Table 8.12 Values of coefficients R1
i j , third iteration

1 2 3 4 5 6 7 8 9 10 11 12

1 0.1847 0.1847 0.8349 0.9499 0.8167 0.1718

2 0.8883 0.9915 0.8857 0.8891

3 0.4115 0.2885 0.6908 0.4031

4 0.4373 0.4377 0.3104 0.6630

5 0.5582 0.8250 0.4421 0.4175

6 0.7871 0.7963 0.0242 0.2118 0.2103

7 0.5515 0.3216 0.4480 0.5515 0.3576

8 0.0748 0.1947 0.8361 0.1748

295

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Ta
bl

e
8.

13
E

st
im

at
e

o
f

th
e

d
ec

o
d

ed
v
ec

to
r

af
te

r
th

e
th

ir
d

it
er

at
io

n

r
+1

.3
1

2
9

+2
.6

5
8

4
+0

.7
4

1
3

+2
.1

7
4

5
+0

.5
9

8
1

−0
.8

3
2

3
−0

.3
9

6
2

−1
.7

5
8

6
+1

.4
9

0
5

+0
.4

0
8

4
−0

.9
2

9
0

+1
.0

7
6

5

t
+1

+1
+1

+1
+1

−1
−1

−1
+1

−1
−1

−1
d

0 j
0

.0
0

0
1

0
.0

0
0

0
0

.0
0

0
0

0
.0

0
0

0
0

.0
0

7
7

0
.0

3
0

5
0

.0
0

5
7

0
.0

2
5

4
0

.0
0

0
2

0
.0

2
7

3
0

.0
2

1
7

0
.0

0
7

0

d
1 j

0
.1

4
1

2
0

.0
0

2
4

0
.2

0
8

6
0

.0
1

2
2

0
.0

0
7

8
0

.0
0

4
3

0
.0

0
1

7
0

.0
0

0
1

0
.0

3
9

4
0

.0
1

7
6

0
.0

0
3

2
0

.0
0

6
0

296

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 297

any error pattern of size t = 1, with a residual error-correction capability that can be used to
correct some error patterns of size larger than t = 1. Using a soft-decision decoding algorithm,
the code can correct a double error pattern, as the above example confirms. In fact, using the
sum–product decoding algorithm, the code is capable of correcting almost all possible double
error patterns.

However, the code rate in this example is Rc = 1/3, and according to a rather simple estimate,
the product Rc(t + 1) gives an indication if the error-correction capability of a block code is
efficient or not, when it is compared with uncoded transmission. A given block code performs
better than uncoded transmission if the product Rc(t + 1) satisfies the condition Rc(t + 1) > 1.
In this example, the product is equal to (1/3) × 2 = 0.667, so that the use of this simple code
would not produce a particular advantage with respect to uncoded transmission. This is not
surprising, because the example was introduced only for the purpose of explaining in some
detail how the sum–product algorithm operates. In addition, it is rather difficult to design
good, small, sparse parity check matrices with at least three ‘1’s per column, and a rather small
number of ‘1’s per row, as required in the classic construction of an LDPC or Gallager code.
Apart from this constraint, the predicted poor overall performance of this simple code is due to
the fact that its Tanner graph (see Figure 8.2) contains several cycles of length 4 (the shortest
possible cycle length). As has already been mentioned, this degrades the performance of an
iterative soft-decision decoding algorithm like the sum–product algorithm. Cycles of length 4
are avoided if the corresponding parity check matrix H does not contain rectangular patterns
of ‘1’s, as seen in the following matrix, which is another example of a parity check matrix H
with length 4 cycles in its corresponding bipartite graph [13]:

H =

⎡⎢⎢⎢⎢⎣
1 1 0 1 0 1 1 1
1 0 1 1 1 1 0 1
0 1 1 0 0 0 1 0
1 1 0 0 1 1 0 1
0 0 1 1 1 0 1 0

⎤⎥⎥⎥⎥⎦
Similar rectangular patterns are of course also seen in the H matrix of the previously analysed

code, corresponding to the bipartite graph of Figure 8.2.
Figure 8.5 shows the BER performance of the irregular LDPC code Cb(60, 30) with rate

Rc = 1/2, where the effect of varying the maximum or predetermined number of iterations of
the sum–product decoding algorithm is clear.

LDPC codes of course behave in agreement with Shannon’s predictions, and so they perform
better for larger code lengths n. In the case of large-code length LDPC codes and for a sufficient
number of iterations, the BER performance of LDPC codes is close to the Shannon limits.

8.6 Simplifications of the Sum–Product Algorithm

The aim of the sum–product decoding algorithm is to find a decoded vector d, which is an
estimate of the code vector actually transmitted, c, able to satisfy the syndrome condition:

H ◦ d = 0

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

298 Essentials of Error-Control Coding

–2 –1 0 1 2 3 4 5 6 7 8
10–4

10–3

10–2

10–1

100

Eb/N0 (dB)

Pbe
26 it

2 it

6 it

Uncoded transmission

14 it
10 it

Figure 8.5 BER performance of the irregular LDPC code Cb(60, 30) of rate Rc = 1/2, as a function

of the number of iterations

As described in Section 8.3.3, in the sum–product algorithm, each symbol node d j sends
to each child parity check node hi the estimate Qx

i j , based on the information provided by
the other children parity check nodes that the corresponding parity check node is in state
x . On the other hand, each parity check node hi sends to each parent symbol node d j the
estimate Rx

i j , calculated with the information provided by the other symbol nodes, indi-
cating that the corresponding parity check equation i is satisfied if the symbol node is in
state x .

The channel information can be determined by using the following expression:

f 1
j = 1

1 + e− 2Ay j

σ 2

(17)

so that

f 0
j = 1 − f 1

j (18)

where y j is the channel output at time instant j , and bits are transmitted in polar format with
amplitudes ± A. In general, in this text, the normalized polar format ±1 is utilized.

As has been seen in the example of Section 8.5, values of coefficients R0
i j and R1

i j are

determined as a function of the values of coefficients Q0
i j and Q1

i j by taking into account all
the combinations of code bits that satisfy the parity check equation related to that calculation.
However, Mackay and Neal introduced in their paper [4] a calculation method that avoids
having to take into account all these possibilities of the parity check equation in the calculation
of values of coefficients R0

i j and R1
i j .

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 299

The initialization of this modified version of the sum–product algorithm is the same as
that used in the traditional form of the algorithm, as performed for the example shown in
Section 8.5.

Q0
i j = f 0

j and Q1
i j = f 1

j (19)

The modified version carries out the iterative calculation by implementing two steps, the
horizontal and the vertical steps, according to the form in which the values are taken from the
corresponding parity check matrix H. The quantity δQi j is calculated as

δQi j = Q0
i j − Q1

i j (20)

and the quantity δRi j is also defined for a pair of values or nodes i and j as

δ Ri j =
∏

j ′ ∈ N (i)\ j

δ Qi j ′ (21)

Remember that in these expressions N (i) represents the set of indexes of all the parent symbol
nodes connected to the parity check node hi , whereas N (i)\ j represents the same set with the
exclusion of the parent symbol node d j .

Coefficients R0
i j and R1

i j are then calculated by performing

R0
i j = 1/2

(
1 + δ Ri j

)
(22)

and

R1
i j = 1/2

(
1 − δRi j

)
(23)

The coefficients Q0
i j and Q1

i j are updated in the vertical step. They are determined for every
pair of nodes i, j , and for every possible value of x , which in the binary case are x = 0 or
x = 1, as follows:

Qx
i j = αi j f x

j

∏
i ′ ∈ M(j)\i

Rx
i ′ j (24)

where M(j) represents the set of indexes of all the children parity check nodes connected to
the symbol node d j , whereas M(j)\i represents the same set with the exclusion of the children
parity check node hi .

The coefficient f x
j is the a priori probability that the symbol node d j is in state x . Constant

αi j is selected so that Q0
i j + Q1

i j = 1.
The estimate of the decoded vector for the current iteration requires the calculation of the

coefficients or a posteriori probabilities Q0
j and Q1

j , which are equal to

Qx
j = α j f x

j

∏
i ∈ M(j)

Rx
i j (25)

where, once again, constant α j is selected so that Q0
j + Q1

j = 1.

The estimate of the decoded vector d̂ can be finally obtained by calculating

�

d j = max
(
Qx

j

)
(26)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

300 Essentials of Error-Control Coding

which means that

if Q0
j > Q1

j then
�

d j = 0, else
�

d j = 1 (27)

Example 8.1: Apply the Mackay–Neal simplified sum–product decoding algorithm to the
example of Section 8.5, in order to see the equivalence of this method with respect to the
traditional sum–product decoding algorithm.

The Mackay–Neal simplified sum–product decoding algorithm avoids having to take into
account all the combinations or possibilities that the corresponding parity check equation,
associated with the calculation of the involved coefficient, is satisfied. The initialization pro-
cedure is the same as that of the traditional algorithm, and it is the same for this example as
that used in Section 8.5. This means that, according to the values of Table 8.1, the initialization
sets Q0

i j = f 0
j and Q1

i j = f 1
j .

The modified method is applied by forming, with the corresponding values, the following
calculation matrices:

HQ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Q0
12 0 Q0

14 0 Q0
16 Q0

17 Q0
18 0 0 0 Q0

1,12

Q0
21 0 Q0

23 Q0
24 0 0 0 0 Q0

29 0 0 0

0 Q0
32 0 0 Q0

35 0 Q0
37 0 0 0 0 Q0

3,12

Q0
41 0 0 Q0

44 0 0 0 0 0 Q0
4,10 Q0

4,11 0

0 0 Q0
53 0 Q0

55 Q0
56 0 0 0 Q0

5,10 0 0

Q0
61 0 Q0

63 0 0 0 Q0
67 Q0

68 0 0 Q0
6,11 0

0 Q0
72 0 0 0 Q0

76 0 Q0
78 Q0

79 Q0
7,10 0 0

0 0 0 0 Q0
85 0 0 0 Q0

89 0 Q0
8,11 Q0

8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

HQ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Q1
12 0 Q1

14 0 Q1
16 Q1

17 Q1
18 0 0 0 Q1

1,12

Q1
21 0 Q1

23 Q1
24 0 0 0 0 Q1

29 0 0 0

0 Q1
32 0 0 Q1

35 0 Q1
37 0 0 0 0 Q1

3,12

Q1
41 0 0 Q1

44 0 0 0 0 0 Q1
4,10 Q1

4,11 0

0 0 Q1
53 0 Q1

55 Q1
56 0 0 0 Q1

5,10 0 0

Q1
61 0 Q1

63 0 0 0 Q1
67 Q1

68 0 0 Q1
6,11 0

0 Q1
72 0 0 0 Q1

76 0 Q1
78 Q1

79 Q1
7,10 0 0

0 0 0 0 Q1
85 0 0 0 Q1

89 0 Q1
8,11 Q1

8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
These matrices can be subtracted to form the difference matrix

HδQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 δQ12 0 δQ14 0 δQ16 δQ17 δQ18 0 0 0 δQ1,12

δQ21 0 δQ23 δQ24 0 0 0 0 δQ29 0 0 0

0 δQ32 0 0 δQ35 0 δQ37 0 0 0 0 δQ3,12

δQ41 0 0 δQ44 0 0 0 0 0 δQ4,10 δQ4,11 0

0 0 δQ53 0 δQ55 δQ56 0 0 0 δQ5,10 0 0

δQ61 0 δQ63 0 0 0 δQ67 δQ68 0 0 δQ6,11 0

0 δQ72 0 0 0 δQ76 0 δQ78 δQ79 δQ7,10 0 0

0 0 0 0 δQ85 0 0 0 δQ89 0 δQ8,11 δQ8,12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 301

An example of the calculation of the parity check equation of the second row of the corre-
sponding difference matrix HδQ is done here to illustrate the equivalence of this method with
respect to the traditional one. Thus, for instance, the value of the coefficient R0

21 is calculated
as

δR21 = δQ23 δQ24 δQ29

= (
Q0

23 − Q1
23

) (
Q0

24 − Q1
24

) (
Q0

29 − Q1
29

)
= (

Q0
23 Q0

24 − Q0
23 Q1

24 − Q1
23 Q0

24 + Q1
23 Q1

24

) (
Q0

29 − Q1
29

)
= Q0

23 Q0
24 Q0

29 − Q0
23 Q1

24 Q0
29 − Q1

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 − Q0

23 Q0
24 Q1

29

+ Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

24 Q1
29

By taking into account that

Q0
24 = 1 − Q1

24 and Q0
29 = 1 − Q1

29

then

R0
21 = (1/2) (1 + δR21)

= (1/2)
(
1 + Q0

23 Q0
24 Q0

29 − Q0
23 Q1

24 Q0
29 − Q1

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 − Q0

23 Q0
24 Q1

29

+Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

24 Q1
29

)
= (1/2)

[
1 + Q0

23 Q0
24 Q0

29 − Q0
23

(
1 − Q0

24

)
Q0

29 − Q1
23

(
1 − Q1

24

)
Q0

29 + Q1
23 Q1

24 Q0
29

−Q0
23

(
1 − Q1

24

)
Q1

29 + Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23

(
1 − Q0

24

)
Q1

29

]
= (1/2)

[
1 + Q0

23 Q0
24 Q0

29 − Q0
23 Q0

29 + Q0
23 Q0

24 Q0
29 − Q1

23 Q0
29 + Q1

23 Q1
24 Q0

29

+ Q1
23 Q1

24 Q0
29 − Q0

23 Q1
29 + Q0

23 Q1
24 Q1

29 + Q0
23 Q1

24 Q1
29 + Q1

23 Q0
24 Q1

29 − Q1
23 Q1

29

+ Q1
23 Q0

24 Q1
29

]
= (1/2)

[
2Q0

23 Q0
24 Q0

29 + 2Q1
23 Q1

24 Q0
29 + 2Q0

23 Q1
24 Q1

29 + 2Q1
23 Q0

24 Q1
29

+ 1 − Q0
23 Q0

29 − Q1
23 Q0

29 − Q0
23 Q1

29 − Q1
23 Q1

29

]
= (1/2)

[
2Q0

23 Q0
24 Q0

29 + 2Q1
23 Q1

24 Q0
29 + 2Q0

23 Q1
24 Q1

29 + 2Q1
23 Q0

24 Q1
29

+1 − Q0
23

(
Q0

29 + Q1
29

) − Q1
23

(
Q0

29 + Q1
29

)]
= Q0

23 Q0
24 Q0

29 + Q1
23 Q1

24 Q0
29 + Q0

23 Q1
24 Q1

29 + Q1
23 Q0

24 Q1
29

Similarly, the calculation of the coefficient R1
21 gives

R1
21 = (1/2) (1 − δR21) = Q0

23 Q1
24 Q0

29 + Q1
23 Q0

24 Q0
29 + Q0

23 Q0
24 Q1

29 + Q1
23 Q1

24 Q1
29

This example illustrates the equivalence of these two methods.

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

302 Essentials of Error-Control Coding

8.7 A Logarithmic LDPC Decoder

Another important simplification of the sum–product algorithm makes use of logarithmic cal-
culation, in order to convert products or quotients into additions or subtractions. However, an
additional complication arises, because there is a need to calculate the logarithm of a sum of
terms in this algorithm. The logarithmic decoder is constructed on the basis of the MacKay–
Neal simplified sum–product decoding algorithm, and it is essentially a logarithmic refor-
mulation of the original algorithm. The decoding complexity is thereby drastically reduced.
Here, we recognize the significant contribution of Leonardo Arnone to the development of the
method presented in this section [12].

A useful expression for the development of this logarithmic algorithm is given for a number
z ≤ 1, which has an equivalent way of being expressed:

z = e−|Lz| → |Lz| = |ln (z) | (28)

The following expressions will also be useful in calculating the logarithm of a sum or a
difference:

ln(em + en) = max(m, n) + ln(1 + e−|m−n|) (29)

ln(em − en) = max(m, n) + ln(1 − e−|m−n|), m > n (30)

The logarithmic decoder is basically implemented by performing the same steps as the
MacKay–Neal simplified sum–product decoding algorithm, introduced in Section 8.6.

8.7.1 Initialization

In the initialization of the decoding algorithm, the values of coefficients Qx
i j are set to be

equal to the a priori probabilities f x
j of the symbols. Coefficient f x

j is the probability that

the j th symbol is equal to x . Thus, coefficients Q0
i j and Q1

i j are set to be equal to f 0
j and f 1

j ,
respectively. Since f x

j is a probability, it is a number less than or equal to 1, and so

f x
j = e

−
∣∣∣L f x

j

∣∣∣ → ∣∣L f x
j

∣∣ = ∣∣ln (
f x

j

) ∣∣ (31)

and

Qx
i j = e

−
∣∣∣L Qx

i j

∣∣∣ → ∣∣L Qx
i j

∣∣ = ∣∣ln (
Qx

i j

) ∣∣ (32)

8.7.2 Horizontal Step

Equation (20) can be written as

e−|LδQi j | = e
−

∣∣∣L Q0
i j

∣∣∣ − e
−

∣∣∣L Q1
i j

∣∣∣
(33)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 303

As this quantity is signed, it is better to rewrite it as

δQi j = (−1)si j

∣∣∣e−|LδQi j |∣∣∣ = (−1)si j

∣∣∣∣e−
∣∣∣L Q0

i j

∣∣∣ − e
−

∣∣∣L Q1
i j

∣∣∣∣∣∣∣ (34)

where

if
∣∣L Q0

i j

∣∣ ≤ ∣∣L Q1
i j

∣∣ then si j = 0

or

if
∣∣L Q0

i j

∣∣ >
∣∣L Q1

i j

∣∣ then si j = 1 (35)

Using expression (30),∣∣ln (∣∣e−|m| − e−|n|∣∣)∣∣ = min(|m|, |n|) + | ln
(
1 − e−||m|−|n||) |

then |LδQi j | can be written as

∣∣LδQi j

∣∣ = min
(∣∣L Q0

i j

∣∣ , ∣∣L Q1
i j

∣∣) +
∣∣∣∣ln (

1 − e
−

∣∣∣∣∣∣L Q0
i j

∣∣∣−∣∣∣L Q1
i j

∣∣∣∣∣∣)∣∣∣∣ (36)

or ∣∣LδQi j

∣∣ = min
(∣∣L Q0

i j

∣∣ , ∣∣L Q1
i j

∣∣) + f−
(∣∣∣∣L Q0

i j

∣∣ − ∣∣L Q1
i j

∣∣∣∣) (37)

where f− is a look-up table with entries |L Q0
i j | and |L Q1

i j |.
Expression (21) is written as

δ Ri j = e−|LδRi j | =
∏

j ′ ∈ N (i)\ j

(−1)si j ′
∣∣∣e−|Lδ Qi j ′ |

∣∣∣ = (−1)
∑

si j ′
∏

j ′ ∈ N (i)\ j

∣∣∣e−|Lδ Qi j ′ |
∣∣∣ (38)

and then ∣∣Lδ Ri j

∣∣ =
∑

j ′ ∈ N (i)\ j

∣∣LδQi j ′
∣∣ (39)

sδ Ri j =
∑

j ′ ∈ N (i)\ j

si j ′ (40)

or, equivalently,

δ Ri j = (−1)sδRi j

∣∣∣e−|LδRi j |∣∣∣ (41)

Coefficients R0
i j and R1

i j can be obtained by using expressions (22) and (23) with the values
of coefficients δ Ri j , and so in logarithmic form

ln
(
R0

i j

) = − ∣∣L R0
i j

∣∣ = ln
(

1 + (−1)sδRi j

∣∣∣e−|Lδ Ri j |∣∣∣) − ln (2) (42)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

304 Essentials of Error-Control Coding

If sδ Ri j is even,∣∣L R0
i j

∣∣ = ln (2) −
∣∣∣ln (

1 +
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) − f+

(∣∣Lδ Ri j

∣∣) (43)

If sδRri j is odd,∣∣L R0
i j

∣∣ = ln (2) +
∣∣∣ln (

1 −
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) + f−

(∣∣Lδ Ri j

∣∣) (44)

where f+(|LδRri j |) and f−(|Lδ Ri j |) are obtained from look-up tables. In a similar way, and
if sδ Ri j is even, then∣∣L R1

i j

∣∣ = ln (2) +
∣∣∣ln (

1 −
∣∣∣e−|Lδ Ri j |∣∣∣)∣∣∣ = ln (2) + f−

(∣∣Lδ Ri j

∣∣) (45)

and if sδ Ri j is odd,∣∣L R1
i j

∣∣ = ln (2) −
∣∣∣ln (

1 +
∣∣∣e−|LδRi j |∣∣∣)∣∣∣ = ln (2) − f+

(∣∣Lδ Ri j

∣∣) (46)

8.7.3 Vertical Step

In this step, and in order to solve equation (24), it is convenient to define the following constant,
for x = 0, 1:

cx
i j = f x

j

∏
i ′ ∈ M(j)\i

Rx
i ′ j (47)

which, in logarithmic form, is equal to

ln
(
cx

i j

) = ln

(
e
−

∣∣∣Lcx
i j

∣∣∣) = ln

(
e
−

∣∣∣L f x
j

∣∣∣) +
∑

i ′ ∈ M(j)\i

ln

(
e
−

∣∣∣L Rx
i ′ j

∣∣∣)
(48)

or

|Lcx
i j | = |L f x

j | +
∑

i ′∈M(j)\i

|L Rx
i ′ j | (49)

Then

αi j = 1/
(
c0

i j + c1
i j

)
(50)

and hence

Q0
i j = e

−
∣∣∣L Q0

i j

∣∣∣ = e
−

∣∣∣Lc0
i j

∣∣∣
e
−

∣∣∣Lc0
i j

∣∣∣ + e
−

∣∣∣Lc1
i j

∣∣∣ (51)

Expression (51) allows to determine |L Q0
i j | as∣∣L Q0

i j

∣∣ = ∣∣Lc0
i j

∣∣ − min
(∣∣Lc0

i j

∣∣, ∣∣Lc1
i j

∣∣) + f+
(∣∣|Lc0

i j | − |Lc1
i j |

∣∣) (52)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 305

Similarly, ∣∣L Q1
i j

∣∣ = ∣∣Lc1
i j

∣∣ − min
(∣∣Lc0

i j

∣∣, ∣∣Lc1
i j

∣∣) + f+
(∣∣|Lc0

i j | − |Lc1
i j |

∣∣) (53)

In each iteration, the decoder determines an estimate of the decoded vector by using expres-
sion (27). Two additional constants are defined to facilitate calculations, as done in the vertical
step. Since

Qx
j = α j f x

j

∏
i ∈ M(j)

Rx
i j = α j f x

j Rx
i j

∏
i ′ ∈ M(j)\i

Rx
i ′ j

the following constant is defined for x = 0, 1:

cx
j = e−|Lcx

j | = f x
j

∏
i ∈ M(j)

Rx
i j (54)

such that

|Lcx
j | = |Lcx

i j | + |L Rx
i j | (55)

The non-logarithmic value of the coefficient of interest is obtained as

Q0
j = e

−
∣∣∣L Q0

j

∣∣∣ = e
−

∣∣∣Lc0
j

∣∣∣
e
−

∣∣∣Lc0
j

∣∣∣ + e
−

∣∣∣Lc1
j

∣∣∣ (56)

which, in logarithmic form, is∣∣L Q0
j

∣∣ = ∣∣Lc0
j

∣∣ − min
(∣∣Lc0

j

∣∣, ∣∣Lc1
j

∣∣) + f+
(∣∣∣∣Lc0

j

∣∣ − ∣∣Lc1
j

∣∣∣∣) (57)

Similarly, ∣∣L Q1
j

∣∣ = ∣∣Lc1
j

∣∣ − min
(∣∣Lc0

j

∣∣, ∣∣Lc1
j

∣∣) + f+
(∣∣∣∣Lc0

j

∣∣ − ∣∣Lc1
j

∣∣∣∣) (58)

An estimate of the decoded vector d̂ is finally obtained by estimating each of its bits d j ,
such that

if Q0
j > Q1

j then
�

d j = 0, else
�

d j = 1 (59)

since

Q0
j = e

−
∣∣∣L Q0

j

∣∣∣
and Q1

j = e
−

∣∣∣L Q1
j

∣∣∣
Logarithmically,

if
∣∣L Q0

j

∣∣ <
∣∣L Q1

j

∣∣ then
�

d j = 0, else
�

d j = 1 (60)

8.7.4 Summary of the Logarithmic Decoding Algorithm

Initialization: Logarithmic values of coefficients |L Qx
i j | are set equal to the logarithmic values

of the a priori probabilities of the symbols |L f x
j |.

Horizontal step: Logarithmic values of the coefficients |L R0
i j | and |L R1

i j | are calculated for
each pair i, j j , using (39)–(46).

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

306 Essentials of Error-Control Coding

Vertical step: Logarithmic values of the coefficients |L Q0
i j | and |L Q1

i j | are calculated for each
pair i, j , using (49), (52) and (53).

Estimate of the decoded vector: An estimate of each symbol d̂ j of the received vector is obtained
at the end of each iteration.

The values of coefficients |L Q0
j | and |L Q1

j | are calculated by using (55), (57) and (58), and

the final estimate is determined by using (60). If H ◦ �

d = 0 then the decoded vector is a code
vector, and the decoding halts. Otherwise the decoder performs the next iteration.

8.7.5 Construction of the Look-up Tables

The effective BER Performance of an LDPC Code depends, as usual, on the decoding algorithm
used to decode it. In the case of the logarithmic version of the sum–product decoding algorithm
proposed in this section, there is a need to construct the two look-up tables that are called
f+ (|z1| , |z2|) and f− (|z1|, |z2|). The maximum number of bits for representing numbers in
these tables is c, such that the maximum number of entries of these two tables is Nt = 2c. The
effect of the quantization of the values in these tables is seen in Figures 8.6 and 8.7 where
the BER performances of two LDPC codes, obtained by simulation, are depicted. One LDPC
code is of a relatively small size, with parity check matrix H1 of 30 rows and 60 columns,
whereas the other code, extracted from MacKay’s website [26], is a medium-size LDPC code,
with parity check matrix H2 of 504 rows and 1008 columns. Look-up tables were constructed
using numerical representations of c = 16 bits, so that the maximum number of entries in these
tables is Nt = 2c = 65,536.

Simulations show that small look-up tables of 256 entries can be used without producing a
significant loss in the BER performance of these LDPC codes.

An analysis of decoding complexity determines that if n is the number of columns of the
parity check matrix H corresponding to a given LDPC code, and s is the average number of
‘1’s per column in that matrix, the traditional sum–product algorithm requires the calculation
of 6ns products and 5ns sums. In the case of the logarithmic algorithm, the calculation of 14ns
sums and 3ns subtractions is required. It is seen that the logarithmic decoder requires more
sums than that of the traditional algorithm, but it should be taken into account that there is
no need of performing products, which are essentially implemented as a considerable number
of sums in most of the practical implementations of this operation. Overall, the complexity
of the logarithmic decoding algorithm is much less than that of the traditional sum–product
algorithm.

8.8 Extrinsic Information Transfer Charts for LDPC Codes

8.8.1 Introduction

So far the sum–product algorithm has been introduced as an efficient iterative decoding al-
gorithm for decoding LDPC codes, and it has been presented in its traditional form, in the

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Pbe

1 2 3 4 5 6 7 8
10–5

10–4

10–3

10–2

10–1

Table of 4096 entries of 2 bytes,
Table of 512 entries of 2 bytes,
and ideal f+ y f- functions

Table of 256 entries of 2 bytes

Table of 128 entries of 2 bytes

Table of 64 entries of 2 bytes

Uncoded transmission

Eb/N0

Figure 8.6 Logarithmic decoding of LDPC code Cb(60, 30)

1 1.5 2 2.5 3 3.5
10–4

10–3

10–2

10–1

Pbe

Tables of 4096 entries
and of 256 entries, of 2
bytes

Table of 128 entries of 2 bytes

Table of 64 entries of 2 bytes

Uncoded transmission

Eb/N0

Figure 8.7 Logarithmic decoding of LDPC code Cb(1008, 504) [26]

307

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

308 Essentials of Error-Control Coding

MacKay–Neal simplified version, and in a logarithmic version (Section 8.7). These algorithms
operate on the basis of a convergent updating of interchange information communicated be-
tween the symbol nodes and the parity check nodes. In what follows, the convention

‘0’ → +1
‘1’ → −1

is adopted to simplify the mathematical expressions involved in extrinsic information transfer
(EXIT) chart analysis for LDPC codes.

A given LDPC code Cb(n, k), of code rate R = k/n has n symbol nodes and n − k parity
check nodes, connected as described by the corresponding bipartite graph. The bit or symbol
d j participates in d (j)

v parity check equations, which means that, in the corresponding bipartite

graph, this symbol node is connected to s(j) = d (j)
v parity check nodes, where s(j) is the number

of ‘1’s per column of the parity check matrix H. In the same way, the parity check node hi

relates d (i)
c symbol nodes or bits in its corresponding parity check equation, so that in the

corresponding bipartite graph this parity check node is connected to v(i) = d (i)
c symbol nodes.

In a regular LDPC code, the quantities s(j) = d (j)
v and v(i) = d (i)

c are the same for every row
and column, respectively.

Example 8.2: Form the sparse parity check matrix H of a regular LDPC code Cb(14, 7) of
code rate Rc = 1/2 for which dv = 3 and dc = 6.

An example of a matrix of this kind is the following:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1 0 1 0 0 0 1
0 1 1 0 1 0 0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 1 0 0 0 1 1 0
0 0 0 1 1 0 1 0 0 0 1 1 0 1
1 0 0 0 1 1 0 0 0 1 1 0 1 0
0 1 0 0 0 1 1 0 1 1 0 1 0 0
1 0 1 0 0 0 1 1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Example 8.2 is an illustrative example of a regular LDPC code that has a bipartite graph

like that of Figure 8.8, where it is seen that there are cycles of length 4, one of which is noted
in bold line in this figure.

As seen in Figure 8.8, there are three connections emerging from each symbol node, and there
are six connections arriving at each parity check code. The bipartite graph can be interpreted
as an interleaving of connections. This is seen in Figure 8.9.

The graphical representation as given in Figure 8.9 then allows us to see a given LDPC code as
a code constructed using two encoders, each one with its corresponding decoder. There is a code
for the symbol nodes and another code for the parity check nodes, which are related through
a connection interleaver like that seen in Figure 8.9. This connection interleaver acts during
the iterative decoding process, which consists of the interchange of soft-decision information
(LLRs) between the symbol node decoder (SND) and the parity check node decoder (PCND),
as shown in Figure 8.10 [14]. The MAP decoder converts a priori and channel LLRs into
a posteriori LLRs. Both decoders, the SND and the PCND, perform this type of operation,
generating LLRs as their outputs. If the a priori LLR is subtracted from the corresponding

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Symbol nodes dj

1 2 3 4 5 6 7

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.8 A bipartite graph for a regular LDPC code

Symbol nodes dj

1 2 3 4 5 6 7

Parity check nodes hi

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.9 Connection interleaver for a regular LDPC code

SND
Inverse connection
interleaver

Connection
interleaver

_

_

PCND

Channel
information

syndrome
detector

Figure 8.10 Interchange of LLRs between the SND and the PCND of an LDPC decoder

309

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

310 Essentials of Error-Control Coding

a posteriori LLR, then the extrinsic LLR is obtained. The extrinsic LLR of the current iteration
then becomes the a priori LLR for the next iteration.

From this point of view, an LDPC code can also be understood as a mixture of inner
repetition codes and a mixture of outer simple parity check codes, which operate like a serial
concatenated code [14]. This allows us to comprehend the similarity between LDPC codes and
other iteratively decoded codes, like the turbo codes introduced in Chapter 7.

8.8.2 Iterative Decoding of Block Codes

The expression of the LLR has been introduced in Chapter 7, equation (13), which is rewritten
here for clarity:

L(bi) = ln

(
P(bi = +1)

P(bi = −1)

)
Remember that the sign of this quantity is the hard decision of the estimated value, while its

absolute value is the reliability of that decision. From this definition, the following expressions
are obtained:

eL(bi) = P(bi = +1)

P(bi = −1)
= P(bi = +1)

1 − P(bi = +1)

or

P(bi = +1) = eL(bi)

1 + eL(bi)
(61)

and

P(bi = −1) = 1

1 + eL(bi)
(62)

When decisions are taken conditioned to another variable, like a received vector Y , the LLR
is of the form of equation (54) of Chapter 7, and considering equation (55) of Chapter 7, it can
be written as

L(bi/Y) = ln

(
P(bi = +1/Y)

P(bi = −1/Y)

)
= ln

(
P(bi = +1)

P(bi = −1)

)
+ ln

(
P(yi/bi = +1)

P(yi/bi = −1)

)
(63)

As described in previous sections, the sum–product algorithm operates over parity check
equations, so that it will be useful to determine the LLR of an exclusive-OR summation of two
or more bits. For this, and for the exclusive-OR sum of two bits,

P ((b1 ⊕ b2) = +1) = P(b1 = +1)P(b2 = +1) + (1 − P(b1 = +1))(1 − P(b2 = +1))
(64)

P ((b1 ⊕ b2) = −1) = P(b1 = +1)P(b2 = −1) + (1 − P(b1 = +1))(1 − P(b2 = −1))
(65)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 311

where P(bi = +1) is given by equation (61). If bits b1 and b2 are generated by independent
random sources, then

P ((b1 ⊕ b2) = +1) = 1 + eL(b1) eL(b2)(
1 + eL(b1)

) (
1 + eL(b2)

) (66)

P ((b1 ⊕ b2) = −1) = eL(b1) + eL(b2)(
1 + eL(b1)

) (
1 + eL(b2)

) (67)

and so [15]

L(b1 ⊕ b2) = ln

[
P((b1 ⊕ b2) = +1)

P((b1 ⊕ b2) = −1)

]
= ln

[
1 + eL(b1)eL(b2)

eL(b1) + eL(b2)

]
≈ sign(L(b1)) sign(L(b2)) min (|L(b1)|, |L(b2)|)

(68)

This operation deserves a distinguishing notation that is defined in [15], and that in this text is
described by the symbol[⊕]:

L(b1) [⊕] L(b2) = L(b1 ⊕ b2) (69)

The following rules apply to this operation:

L(b1) [⊕] ∞ = L(b1) (70)

L(b1) [⊕] − ∞ = −L(b1) (71)

L(b1) [⊕] 0 = 0 (72)

On the other hand, the expression can be extended to the operation over more than two bits
by induction

J∑
j=1

[⊕]L(b j) = L

(
J∑

j=1

⊕b j

)
= ln

[∏J
j=1

(
eL(b j) + 1

) + ∏J
j=1

(
eL(b j) − 1

)∏J
j=1

(
eL(b j) + 1

) − ∏J
j=1

(
eL(b j) − 1

)]
(73)

J∑
j=1

[⊕]L(b j) = L

(
J∑

j=1

⊕b j

)
≈

[
J∏

j=1

sign(L(b j))

]
min

j=1...J
|L(b j)| (74)

and by using

tan h(b/2) = eb − 1

eb + 1

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

312 Essentials of Error-Control Coding

it becomes

J∑
j=1

[⊕]L(b j) = L

(
J∑

j=1

⊕b j

)
= ln

[
1 + ∏J

j=1 tan h
(
L(b j)/2

)
1 − ∏J

j=1 tan h
(
L(b j)/2

)]

= 2 tan h−1

(
J∏

j=1

tan h
(
L(b j)/2

))
(75)

which can be approximately calculated as

J∑
j=1

[⊕]L(b j) = L

(
J∑

j=1

⊕b j

)
≈

(
J∏

j=1

sign(L(b j))

)
min

j=1...J
|L(b j)| (76)

8.8.3 EXIT Chart Construction for LDPC Codes

The transfer of mutual information between the SND and the PCND determines the EXIT chart
for an LDPC code. This analysis is simplified by applying it to a regular LDPC code; that is, an
LDPC code where the number of ‘1’s per column and per row is fixed. An example of a regular
LDPC code is presented in Example 8.2, whose bipartite graph is seen in Figures 8.8 and 8.9.
The notation used in this section is the same as that used in the case of the EXIT chart analysis
for turbo codes, presented in Chapter 7 [19–22]. Thus, IA is the mutual information between
the information of symbols or bits that correspond to symbol nodes, those over which estimates
are performed, and the a priori information, in both cases determined by LLRs. Similarly, IE is
the mutual information between the information of symbols or bits that correspond to symbol
nodes, and the extrinsic information. The EXIT chart for the SND and the PCND of an LDPC
code is described in terms of mutual information of the involved quantities, as described in
Chapter 7, and developed in the next section.

8.8.4 Mutual Information Function

For the AWGN channel, the relation of the average bit energy Eb and the noise power spectral
density N0 is equal to Eb/N0 = 1

/[
2Rcσ

2
n

]
, where Rc is the code rate and σ 2

n = N0/2 is the

noise variance. Then the channel LLR Lch = L (0)
ch is equal to

Lch = ln
p(y/x = +1)

p(y/x = −1)
= 2

σ 2
n

y = 2

σ 2
n

(x + n) (77)

where

p(y/X = x) = e−(y−x)2/2σ 2
n

√
2πσ 2

n

The variance σ 2
ch can be expressed as

σ 2
ch =

(
2

σ 2
n

σn

)2

= 4

σ 2
n

= 8Rc

Eb

N0

(78)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 313

By taking into account the analytical expression for IA, as given in Chapter 7,

IA = IA(σA) = 1 −
∫ ∞

−∞

e−(ξ−σ 2
A/2)/2σ 2

A√
2πσA

log2(1 + e−ξ) dξ

the following short notation is used:

J (σ) = IA(σA = σ) (79)

and thus

lim
σ→0

J (σ) = 0, lim
σ→∞ J (σ) = 0, σ > 0

This is a monotonically decreasing and invertible function for which the value of σA can be
obtained as

σA = J−1(IA) (80)

A polynomial approximation of functions J (σ) and J−1(I) is presented in [14] and used
below. The input X and the output Y of the AWGN channel are related as Y = X + n, where
n is a Gaussian random variable with zero mean value and variance σ 2

n . The LLR described in
expression (77) is a function of y. On the other hand, Lch(Y) is a variable conditioned on the
variable X = ±1, and so it also has a Gaussian distribution of mean value μch = ±2

/
σ 2

n and
variance σ 2

ch = 4
/
σ 2

n , such that μch = ±σ 2
ch

/
2.

If the mutual information between the LLR Lch(Y) and the input X is

J (σch) = I (X ; Lch(Y)) (81)

then

J (σch) = H (X) − H (X/Lch(Y)) = 1 −
∫ ∞

−∞

e−(ξ−σ 2
ch/2)/2σ 2

ch√
2πσch

log2(1 + e−ξ) dξ (82)

where H (X) is the entropy of the channel input X , and H (X/Lch(Y)) is the entropy of X
conditioned to Lch(Y). However, J (σch) = I (X ; Lch(Y)) is equal to I (X ; Y) so that the capacity
of the AWGN channel is equal to J (σch) = J (2/σn) [14, 23]. Following [14], a polynomial
approximation for J (σ) is

J (σ) ≈
⎧⎨⎩

− (0.0421061) σ 3 + (0.209252) σ 2 − (0.00640081) σ 0 ≤ σ ≤ 1.6363

1 − e(0.00181491)σ 3−(0.142675)σ 2−(0.0822054)σ+0.0549608 1.6363 < σ < 10
1 σ ≥ 10

(83)
and for the inverse function J−1(I),

J−1(I) ≈
{

(1.09542) I 2 + (0.214217) I + (2.33727)
√

I 0 ≤ I ≤ 0.3646
− (0.706692) ln [(0.386013) (1 − I)] + (1.75017) I 0.3646 < I < 1

(84)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

314 Essentials of Error-Control Coding

8.8.5 EXIT Chart for the SND

Since this analysis is restricted to regular LDPC codes, the number of parity equations in
which a given symbol is present is constant and equal to dv. In the case of the Example 8.2,
this parameter is dv = 3. The LLR that each symbol node d j sends to each parity check node
hi in the iteration number it is denoted as Z (i t)

i j , and the LLR that each parity check node hi

sends to each symbol node d j in the iteration number it is denoted as L (i t)
i j .

Each symbol node has as its input information a channel LLR Lch = L (0)
ch coming from the

channel, and an LLR L (i t)
i ′ j that comes from each of its children parity check nodes. The symbol

node uses this information to generate the LLR Z (i t)
i j to be sent to its dv children parity check

nodes, according to the expression

Z (i t)
i j = Lch +

∑
i ′∈M(j)\i

L (i t)
i ′ j (85)

In expression (85) the LLR L (i t)
i ′ j is the a priori LLR for the SND, Z (i t)

i j is the extrinsic LLR

generated by the SND and Lch = L (0)
ch is the LLR from the channel. At the end of this current

iteration, the SND determines an estimate, which is in turn an LLR, useful to determine an
estimate of each of the bits of the received code vector. This a posteriori estimate is equal to

A(i t)
i j = Lch +

∑
i∈M(j)

L (i t)
i j (86)

The LLR is Z (i t)
i j = |Lc−1

i j | − |Lc+1
i j |, calculated using (49).

The EXIT chart for the SND is determined by the value of the mutual information function
for the value σ of the standard deviation of the variable Z (i t)

i j described by expression (85).
The logarithmic version of the sum–product algorithm defines a linear relationship between

the quantities involved in describing the operation of the SND, as seen in expression (85).
Since channel LLRs and a priori LLRs are independent random variables, the variance of the
variable

Z (i t)
i j = Lch +

∑
i ′∈M(j)\i

L (i t)
i ′ j

is equal to [14]

σ 2
Zi j

= σ 2
ch + (dv − 1) σ 2

A = 8Rc

Eb

N0

+ (dv − 1)
[
J−1(IA)

]2
(87)

This leads to an analytical determination of the EXIT charts for LDPC codes, in comparison
with the heuristically implemented method described for the EXIT charts of turbo codes. Once
the standard deviation of the extrinsic LLRs generated by the SND has been determined, then
the mutual information between these LLRs and the bit or symbol information is directly
obtained by using expressions (80) and (83) with σA = σ = σZi j ,

IE,SND(IA, dv, Eb/N0, Rc) = J

(√
σ 2

ch + (dv − 1) σ 2
A

)
(88)

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 315

8.8.6 EXIT Chart for the PCND

Parity check nodes generate their LLRs taking into account the parity check equations that are
defined for each of them. The estimate or LLR is calculated assuming that the parity check
equation is satisfied. An LLR expression for a parity check equation has already been obtained,
and it is given by the expression (73) in its exact version, or by (74) in its approximated version.
They are conveniently rewritten for this case as

L (i t−1)
i j = ln

⎡⎣∏I ′
i ′=1

(
eZ (i t−1)

i ′ j + 1
)

+ ∏I ′
i ′=1

(
eZ (i t−1)

i ′ j − 1
)

∏I ′
i ′=1

(
eZ (i t−1)

i ′ j + 1
)

− ∏I ′
i ′=1

(
eZ (i t−1)

i ′ j − 1
)
⎤⎦ (89)

L (i t−1)
i j ≈

[
I ′∏

i ′=1

sign
(

Z (i t−1)
i ′ j

)]
min

i ′=1...I

∣∣∣Z (i t−1)
i ′ j

∣∣∣ (90)

Here Z (i t−1)
i ′ j is the estimate generated in the previous iteration, adopted as the a priori value

for the current iteration.
Remember that the convention adopted in [15] is that the bit or symbol ‘0’ is represented by

the signal +1, and the bit or symbol ‘1’ is represented by the signal −1. If the convention is
taken the other way round, the argument in expressions (73) and (89) should be inverted. This
expression is a summation of LLRs defined by the operator [⊕]. In [16] and [17] it is shown
that the EXIT chart for the PCND for the AWGN channel can be approximately, but with high
accuracy, calculated as

IE,PCND(IA, dc) ≈ 1 − J
(√

dc − 1 J−1(1 − IA)
)

(91)

It is more useful to determine the inverse function of (91), which defines the mutual infor-
mation between the bits of the decoded vector and the a priori information, as a function of
the mutual information between the bits of the decoded vector and the extrinsic information:

IA,PCND(IE, dc) ≈ 1 − J

(
J−1(1 − IE)√

dc − 1

)
(92)

Figure 8.11 shows the EXIT chart for the SND, for different values of the parameter dv, and
Figure 8.12 shows the EXIT chart for the PCND, for different values of the parameter dc.

LDPC codes have a more analytical procedure for determining the EXIT charts than that
of turbo codes. In [16] it is shown that, for the erasure channel, optimum design of an LDPC
code is done by matching up the corresponding EXIT charts for the SND and the PCND. This
conclusion is approximately valid for other channels including the AWGN channel. EXIT
charts for LDPC codes are also useful for determining for instance a practical bound on the
number of iterations for decoding LDPC codes. However, the EXIT chart analysis is also
a good tool for the design of LDPC codes. An example of an LDPC code design is given
in [14].

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

316 Essentials of Error-Control Coding

0
0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

IA,SND

IE,
SND

dv = 9 dv = 7 dv = 5 dv = 3

Figure 8.11 EXIT chart for the SND

0
0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

dc = 10

dc = 6

dc = 3

dc = 2

IE, PC ND

IA, PC ND

Figure 8.12 EXIT chart for the PCND

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 317

8.9 Fountain and LT Codes

8.9.1 Introduction

An interesting application field for LDPC codes is on the so-called erasure channel, introduced
in Chapter 1, and its relationship with transmission in data networks. In data transmission
over networks like the Internet, information is usually fragmented into data packets of fixed
size before being transmitted through the network. For transmission, the information in each
packet is usually encoded for detecting errors by using a cyclic redundancy check (CRC), and
the receiver detects errors by syndrome decoding applied over each data packet in order to
decide whether it accepts the data packet, or requires its retransmission. When the syndrome
calculation determines that the data packet is not a valid packet, then the system resorts to the
retransmission procedure called automatic repeat request (ARQ), described in Chapter 2. A
second channel in this duplex system is used for transmitting retransmission requests. Packets
found to contain errors are discarded, given the expectation that they will be retransmitted.
This is the traditional approach to error control in data networks, based on ARQ schemes.
However, a retransmission implies reuse of the transmission channel, and therefore throughput
is reduced.

A different approach to network error control is provided by the use of so-called fountain
codes [24, 27] in addition to the CRC. These codes generate data packets that are essentially
random functions of the whole file to be transmitted. The transmitter floods the receiver with
these data packets, without needing to know which of them are correctly received. The receiver
discards any packet containing errors, as determined by the CRC syndrome. If the original size
of the whole file to be transmitted is K data packets, and if the decoder receives N data packets,
then it is possible to correctly recover at the receiver the original information (i.e., the whole
file), provided N is sufficiently larger than K . How much larger N needs to be is determined
by the random functions used to generate the packets and by the error rate on the channel.

The process of discarding of data packets can be suitably modelled by the erasure channel,
introduced in Chapter 1, in which a packet that is discarded can be regarded as a packet
erasure. The probability of an erasure or discard is p for the binary erasure channel (BEC),
and its capacity is equal to 1 − p, as calculated in Chapter 1. If this channel operates over
a non-binary alphabet GF(q), for which q = 2m , then the erasure channel has an increased
capacity of (1 − p) m. In the transmission of data packets of a fixed length of m bits, the
erasure channel with non-binary alphabet GF(q) is a suitable model for the discarding of such
packets, so that each data packet is represented by one of the q = 2m elements of GF(q).

As demonstrated by Shannon, the capacity of a given channel does not depend on the
existence or not of a physical means for requesting retransmissions. In the case of the q-ary
erasure channel where q = 2m , this capacity remains equal to (1 − p) m independently of the
existence or not of retransmissions.

In a typical ARQ scheme, retransmissions are required regardless of the value of the erasure
or discard probability p, and this process could become enormously demanding if, for instance,
transmission is taking place in the presence of a very noisy channel. ARQ schemes are also
impractical in broadcast transmission scenarios, where the transmitter sends data packets to a
multiplicity of users over independent or partially independent channels. Here the number of
retransmissions required could seriously decrease the throughput of the transmitter. The need

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

318 Essentials of Error-Control Coding

to maintain high throughput rates suggests the use of an FEC scheme for the transmission
of packets in data networks, in order to reduce, and preferably eliminate, retransmissions.
As pointed out earlier, the capacity of the q-ary erasure channel remains equal to (1 − p) m
independently of the existence or not of retransmissions, and suitable erasure-correction codes
exist to take advantage of this property.

One of the most efficient error-control techniques was introduced in Chapter 5, and is the
Reed–Solomon coding technique. An interesting property of a RS code CRS(N , K) defined
over GF(q), where q = 2m , is that if any K of the N transmitted symbols are received, the
K information symbols can be successfully recovered. However, RS codes are complex to
decode and encode, particularly if m is large, and so they do not appear to be the most suitable
codes for data networks, where packets are normally of a large size. In addition, the rate of
an RS code needs to be determined before transmission, and is difficult to change during
transmission. Of course the transmission can start with the code rate set to match the capacity
of the erasure channel. However, the erasure probability p, which determines the capacity, can
change during transmission over a network, as a function of the users locations, for instance.
Therefore a dynamically variable code rate would be advantageous, and fountain codes appear
able to provide it very effectively.

8.9.2 Fountain Codes

A fountain code [24, 27] can be seen as a code that generates a continuous flow of transmitted
data packets, simulating the action of water falling from a spring into a collecting receptacle,
the data packet receiver. In this coding scheme, the whole information file to be transmitted is
of size Km, such that there are K data packets of m bits each. The receiver collects a set of
K data packets or more, enough to successfully recover the original transmitted information.
From this point of view, the rate of a fountain code tends to zero, because transmission is
supposedly time unlimited. However, in a practical implementation, the number of data packets
to be transmitted is dynamically determined to be finite, according to the necessities described
earlier. This usually results in a variable, but relatively high code rate. The simplest fountain
code is the linear random code.

8.9.3 Linear Random Codes

Let a whole file of information be fragmented into K data packets dp1 dp2 . . . dpK . Each
transmitted data packet contains m bits, and is going to be correctly received or not, depending
on the channel noise. Transmission is synchronous, and successive transmitted packets tpn are
ordered by a time index n. At time instant n, the encoder generates a random binary K -tuple
{Gkn}, and then the transmitted packet tpn is the exclusive-OR sum of all the information data
packets for which the random bits in {Gkn} are equal to ‘1’:

tpn =
K∑

k=1

dpk Gkn (93)

This encoding procedure can be seen as performed by an encoder whose generator matrix
has an increasing number of columns, and so at each time instant it adds another random (in

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 319

practice pseudo-random) column to its structure. An example of such a matrix could be the
following:

G =

⎡⎢⎢⎣
1 1 0 1 0 1 · · ·
0 1 1 0 1 1 · · ·
1 0 0 0 1 1 · · ·
0 0 1 1 1 0 · · ·

⎤⎥⎥⎦ (94)

The number of rows of this increasing matrix is K , and each of its semi-infinite number of
columns are successively generated as random K -tuples {Gkn}, where n = 1, 2, 3, For the
generator matrix of (94), for example, the first transmitted data packet is the exclusive-OR sum
of the original data packets dp1 and dp3, the second transmitted packet is the exclusive-OR
sum of the original data packets dp1 and dp2, and so on.

The erasure channel will affect the transmission by erasing some of the transmitted data
packets, but the receiver collects a set of N data packets in order to form a matrix of size
K × N , such that N = K + Ex , where Ex is the number of excess packets with respect to K ,
which can be understood as the redundancy in the transmission using the fountain code. The
question that now arises is, can the original packets of information be successfully recovered
from these N received data packets? The receiver is assumed to know the so-called fragment
generator matrix Gfr, which is a matrix formed in the decoder from the N correctly received
data packets, and each column of this fragment matrix has a known value of time index n.
If the decoder also knows the pseudo-random rule that generated the K -tuple columns of the
increasing matrix used by the encoder, then it is possible to recover the original information.

If N < K , then there is no way of successfully recovering the original information. For any
non-zero value of the excess Ex , there is the possibility of a successful recovery. In the case of
N = K , the original information can be recovered if an inverse matrix of the fragment generator
matrix Gfr exists. The probability of the existence of such an inverse matrix is determined in
[24], and it is equal to(

1 − 2−K
) (

1 − 2−(K−1)
) · · · (1 − 1/8)(1 − 1/4)(1 − 1/2)

which turns out to be equal to 0.289 for any K > 10.
If N > K , then the probability δ of the existence of an invertible submatrix of size K × K ,

in the fragment generator matrix Gfr, has to be determined. This probability, shown in [24],
is to be bounded by a quantity that is a function of the excess Ex of data packets correctly
received:

δ ≤ 2−Ex (95)

This means that the probability of successful recovery of data packets is 1 − δ, and that this
happens if at least K + log2(1/δ) data packets are received.

Summarizing, the probability of successful recovery of the original information is equal to
0.289 if no redundant data packets are received, and this probability increases to 1 − δ when
Ex excess (redundant) packets are received.

However, the decoding complexity of these linear random codes is dominated by the inver-
sion of the fragment generator matrix Gfr, which requires approximately K 3 binary operations,
a limiting drawback for the transmission of a large number of large data packets, as is usually
necessary in data networks.

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

320 Essentials of Error-Control Coding

8.9.4 Luby Transform Codes

Luby transform (LT) codes [25] appear to be more suitable for the erasure channel network
application. They can be understood as fountain codes characterized by a linear sparse matrix
similar to that used to define an LDPC code.

These codes are designed using a statistical analysis that models the problem of throwing
balls in order to fill a set of empty baskets. A first question arising from this particular problem
is to determine how many balls should be thrown to ensure that there is at least one ball in
each basket. Another question is to determine the number of empty baskets that results from
the throwing of a given number of balls at the set of baskets. Thus, for instance, if N balls are
thrown at K baskets, K e−N/K is the expected number of empty baskets. This means that the
expected number of empty baskets is a small number δ if N > K ln(K/δ) [24, 27].

8.9.4.1 LT encoder

The encoder of an LT code takes a set of K data packets dp1 dp2 . . . dpK to generate the coded
data packet as follows:

A degree dn is selected from a degree distribution function ρ(d), conveniently designed as
a function of the size K of the file to be encoded.

A set of dn data packets is selected in a uniform random manner to form the coded packet
tpn as the exclusive-OR of these packets.

This encoding mechanism is associated with a bipartite graph which is similar to that for
LDPC codes, and which is formed between the coded data packets tpn and the information
packets dpk .

A sparse graph is obtained when the average value of the degree dn is significantly smaller
than the number of information packets K . This encoding mechanism can be interpreted as an
LDPC code.

8.9.4.2 LT decoder

Since the encoding of an LT code is similar to that of an LDPC code, creating the transmitted
or coded data packets from the information source or message packets, the decoding of an LT
code consists of determining the vector dp as a function of the vector tp, which are related by the
expression tp = dp · G, where the matrix G corresponds to the bipartite graph of the encoding.
Both sides of the transmission know this matrix, even when it is normally a pseudo-randomly
generated matrix.

At first, this similarity with LDPC codes suggests the use of the sum–product algorithm for
decoding LT codes, but in this case the entities involved are packets that are either completely
reliable or completely unreliable (erased). This means that there are packets dpk with unity
probability of being true packets, or packets dpk that have all the same probability of not being
true packets. The decoding algorithm, in this case, operates in a very simple manner. In the
decoder coded packets tpn play the role of parity check nodes, and message packets dpk play
the role of symbol nodes. The decoder of an LT code then operates as follows:

1. It looks for a parity check node tpn that is connected to only one symbol node dpk . If this
is not the case, the algorithm cannot proceed to decode the coded packets.

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 321

2. It sets

dpk = tpn

3. It sums dpk to all the parity check nodes tp′
n that are connected to dpk as

tpn′ = tpn′ + dpk, for all n′ for which the bits in Gn′k = 1

4. It removes all the connections related to symbol node dpk .
5. Steps (1)–(4) are repeated for all dpk .

Example 8.3: For the LT code described by the following matrix G, determine the coded data
packets for the message packet set dp1dp2dp3 = (11, 10, 01), where the message data packets
consist of two bits. Then decode the coded data packets.

G =
⎡⎣1 1 0 1

0 0 1 1
0 1 1 0

⎤⎦
According to the above generator matrix G, supposed to be randomly generated, the coded

data packets are

tp1 = dp1 = 11

tp2 = dp1 ⊕ dp3 = 10

tp3 = dp2 ⊕ dp3 = 11

tp4 = dp1 ⊕ dp2 = 01

This is expressed as the coded vector tp = (tp1 tp2 tp3 tp4) = (11, 10, 11, 01)
The corresponding bipartite graph is of the form as given in Figure 8.13.
The decoding procedure is then applied. A parity check node connected to only one symbol

node is found (11), and then that packet is assigned the decoded packet dp1 = tp1 = 11. This
result is added to the other parity check nodes connected to this symbol node, and then the
connections are removed. This is seen in Figure 8.14.

After removing connections, the algorithm searches for another parity check node that is
connected to only one symbol node, and chooses dp2 = 10. After appropriately summing the
result and removing connections, the final configuration seen in Figure 8.15 determines the
end of the decoding by setting dp3 = 01.

10 11 0111

dp1 dp2 dp3

Figure 8.13 Bipartite graph for the LT code of Example 8.3

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

322 Essentials of Error-Control Coding

1001 11

11 dp2 dp3 11

1101 10

dp2 dp3

Figure 8.14 First steps in the decoding of the LT code of Example 8.3

A detailed description of the design of LT codes can be found in [24] and [25]. These codes
can be used in many practical applications. One of them is as a coding technique for distributed
multiuser information storage systems, where stored coded files that have been damaged could
be recovered by discarding (erasing) them and then decoding suitable combinations of coded
files stored elsewhere in the system.

8.10 LDPC and Turbo Codes

A common characteristic of these two coding techniques, which are the most efficient of all
those described in this book, is that they can be iteratively decoded using alternating exchanges
of soft-decision information. It is possible to demonstrate a certain degree of equivalence
between the decoders for these two impressive error-control techniques, as seen in Section
8.8.1 for instance. There are, however, some differences between them.

LDPC codes are extremely good in terms of the BER performance if the code length is large
enough. Thus, LDPC codes of length n = 10,000, for instance, have a BER performance curve
that is less than 0.1 dB from the Shannon limit. But these long block lengths lead to significant
decoding delay, and considerable encoding and decoding complexity.

On the other hand, turbo codes are constructed with relatively low complexity constituent
codes, and they also show a very good BER performance, but the error floor effect is present
at relatively high BERs. They are however more suitable for intermediate block or constraint
length applications.

For both turbo and LDPC codes, the original iterative decoding methods are more complex
than their logarithmic versions. Simplified variants of the logarithmic decoding algorithms
lead to even lower complexity decoding algorithms, usually performed by applying max or
min functions. As might be expected, however, the trade-off is some level of degradation in
the corresponding BER performance.

10

01 01 01 01

11 dp3 1011 dp3

Figure 8.15 Final steps in the decoding of the LT code of Example 8.3

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 323

Bibliography and References

[1] Shannon, C. E., “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27,
pp. 379–423, 623–656, July and October 1948.

[2] Shannon, C. E., “Communications in the presence of noise,” Proc. IEEE, vol. 86, no. 2,
pp. 447–458, February 1998.

[3] Berrou, C., Glavieux, A. and Thitimajshima, P., “Near Shannon limit error-correcting
coding and decoding: turbo codes,” Proc. 1993 IEEE International Conference on Com-
munications, Geneva, Switzerland, vol. 2, pp. 1064–1070, May 1993.

[4] MacKay, D. J. C. and Neal, R. M., “Near Shannon limit performance of low density parity
check codes,” Electron. Lett., vol. 33, no. 6, March 13, 1997.

[5] MacKay, D. J. C. and Neal, R. M., “Good error-correcting codes based on very sparse
matrices,” available at http://www.inference.phy.cam.ac.uk/mackay/CodesGallager.html

[6] Gallager, R. G., “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. IT-8, no.
1, pp. 21–28, January 1962.

[7] Tanner, L. M., “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory,
vol. 27, no. 5, pp. 533–547, 1981.

[8] Davey, M. C., Error-Correction Using Low-Density Parity-Check Codes, PhD Thesis,
University of Cambridge, Cambridge, United Kingdom, 1999.

[9] Tang, H., Xu, J., Kou, Y., Lin, S. and Abdel-Ghaffar, K., “On algebraic construction of
Gallager and circulant low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 50,
no. 6, pp. 1269–1279, June 2004.

[10] Kou, Y., Lin, S. and Fossorier, M., “Low-density parity-check codes based on finite
geometries: A rediscovery and new results,” IEEE Trans. Inf. Theory, vol. 47, pp. 2711–
2736, November 2001.

[11] Ammar, B., Honary B., Kou, Y., Xu J. and Lin, S., “Construction of low-density parity-
check codes based on balanced incomplete block designs,” IEEE Trans. Inf. Theory, vol.
50, no. 6, pp. 1257–1269, June 2004.

[12] Arnone, L., Gayoso, C., Gonzalez, C., and Castiñeira Moreira, J., “A LDPC logarithmic
decoder implementation,” Proc. VIII International Symposium on Communications The-
ory and Applications, St. Martin’s College, Ambleside, United Kingdom, pp. 356–361,
July 2005.

[13] LDPC toolkit for Matlab, available at http://arun-10.tripod.com/ldpc/generate.html
[14] Ten Brink, S., Kramer, G. and Ashikhmin, A., “Design of low-density parity-check codes

for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, April
2004.

[15] Hagenhauer, J., Offer, E. and Papke, L., “Iterative decoding of binary block and convo-
lutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, March 1996.

[16] Ashikhmin, A., Kramer, G. and Ten Brink, S., “Extrinsic information transfer functions:
A model and two properties,” Proc. Conf. Information Sciences and Systems, Princeton,
New Jersey, pp. 742–747, March 20–22, 2002.

[17] Sharon, E., Ashikhmim, A. and Litsyn, S., “EXIT functions for the Gaussian channel,”
Prov. 40th Annu. Allerton Conf. Communication, Control, Computers, Allerton, Illinois,
pp. 972–981, October 2003.

[18] Etzion, T., Trachtenberg, A. and Vardy, A., “Which codes have cycle-free Tanner graphs?”
IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2173–2180, September 1999.

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

324 Essentials of Error-Control Coding

[19] Ten Brink, S., “Convergence behaviour of iteratively decoded parallel concatenated
codes,” IEEE Trans. Commun., vol. 49, pp. 1727–1737, October 2001.

[20] Ten Brink, S., Speidel, J. and Yan, R., “Iterative demapping and decoding for multilevel
modulation,” Proc. IEEE Globecom Conf. 98, Sydney, NSW, Australia, vol. 1, pp. 579–
584, November 1998.

[21] Ten Brink, S., “Exploiting the chain rule of mutual information for the design of iterative
decoding schemes,” Proc. 39th Allerton Conf., Monticello, Illinois, October 2001.

[22] Tuchler, M., Ten Brink, S. and Hagenauer, J., “Measures for tracing convergence of
iterative decoding algorithms,” Proc. 4th IEEE/ITG Conf. Source and Channel Coding,
Berlin, Germany, pp. 53–60, January 2002.

[23] McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, Massachusetts,
1977.

[24] MacKay, D. J. C., “Digital fountain codes,” available at http://www.inference.phy.cam.ac.
uk/mackay/DFountain.html

[25] Luby, M., “LT codes,” available at http://www.inference.phy.cam.ac.uk/mackay/
dfountain/LT.pdf

[26] MacKay, D. J. C., Web site available at http://www.inference.phy.cam.ac.uk/mackay/
[27] MacKay, D. J. C., “Fountain codes,” IEE Proc. Commun., vol. 152, no. 6, pp. 1062–1068,

December 2005.
[28] MacKay, D. J. C., Information Theory, Inference, and Learning Algorithms, Cambridge

University Press, Cambridge, United Kingdom, 2003.

�

Problems

8.1 (a) Determine the number and size of the short cycles in the bipartite graph of the
irregular LDPC code Cb(12, 4) described in Section 8.5.

(b) Reduce the number of short cycles by changing the positions of ‘1’s in the
parity check matrix of item (a), but keeping the number of ‘1’s per column the
same, s = 3.

(c) Does the modified Tanner graph correspond to the same LDPC code or to a
different one?

8.2 A simple binary cyclic LDPC code can be constructed from the following circulant
matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

OTE/SPH OTE/SPH
JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Low-Density Parity Check Codes 325

(a) Determine the rank of the above matrix, and use that to find the cyclic and
systematic parity check matrices of the code, and its systematic generator
matrix.

(b) Calculate the average number of 1s per row and column of the two parity
check matrices, and hence calculate the rate of the code, confirming that it is
the same in both cases, and also the same as the rate calculated from the
dimensions of the parity check matrices. What is the Hamming distance of the
code?

(c) Sketch the Tanner graphs of the two parity check matrices and of the circulant
matrix, and determine the length of the shortest cycle in each case. Which
graph might be best for decoding the code by means of the sum–product
algorithm?

8.3 For the LDPC code of Problem 8.2,
(a) Use the systematic generator matrix found in part (a) of Problem 8.2 to deter-

mine the codeword corresponding to the message vector m = (100).
(b) The codeword of part (a) of this problem is transmitted over an AWGN

channel in normalized polar format (±1), and is received as the vector
r = (

1.0187 −0.6225 2.0720 1.6941 −1.3798 −0.7431 −0.2565
)
.

Using the sum–product algorithm, decode this received vector on each of the three
Tanner graphs found in part (c) of Problem 8.2, and comment on the processes
and the results obtained.

8.4 The block code Cb(5, 3) introduced in Example 7.1 in Chapter 7 has the following
generator and parity check matrices:

G =
⎡⎣1 0 1 0 0

0 1 0 1 0
0 0 1 1 1

⎤⎦ , H =
[
1 0 1 0 1
0 1 0 1 1

]

In that example the codeword c = (00000) is transmitted over a soft-decision
channel, and the corresponding received vector is r = (10200). This soft-decision
channel is described in Chapter 7, in Figure 7.6 and Table 7.2.
(a) Decode the received vector using the SPA over the parity check matrix H

to show that, after enough iterations, the decision of the decoder fluctuates
between the two code vectors c = (00000) and c = (10100), which are the
closest to the received vector r = (10200).

(b) Describe the deficiencies of the bipartite graph associated with the parity check
matrix H of this code, with respect to the iterative passing of information.

�

OTE/SPH OTE/SPH

JWBK102-08 JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

326

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in
the Transmission of Digital Signals

The two main problems in the transmission of digital data signals are the effects of channel
noise and inter-symbol interference (ISI) [2, 4]. In this appendix the effect of the channel
noise, assumed to be additive white Gaussian noise (AWGN), is studied, in the absence of
inter-symbol interference.

A.1 Digital Signalling

A.1.1 Pulse Amplitude Modulated Digital Signals

A digital signal can be described as a sequence of pulses that are amplitude modulated. The
corresponding signal is of the form

x(t) =
k=∞∑

k=−∞
ak p(t − kT) (1)

where coefficient ak is the kth symbol of the sequence, such that the coefficient ak is one of
the M possible values of the information to be transmitted, taken from a discrete alphabet of
symbols. The pulse p(t) is the basic signal to be transmitted, which is multiplied by ak to
identify the different signals that make up the transmission.

The signal ak p(t − kT) is the kth symbol that is transmitted at the kth time interval, where
T is the duration of such a time interval. Thus, the transmission consists of a sequence of
amplitude-modulated signals that are orthogonal in the time domain.

As seen in Figure A.1, the data sequence ak = A, 0, A, A, 0, A, corresponding to digital
information in binary format (101101), is a set of coefficients that multiply a normalized basic
signal or pulse p(t − kT). If these coefficients are selected from an alphabet {0, A}, the digital
transmission is said to have a unipolar format. If coefficients are selected from an alphabet

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

327

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

328 Essentials of Error-Control Coding

A

0
tk = 2

A p(t – 2T)T

Figure A.1 A digital signal

1

0
t k

p(t – kT)

Figure A.2 A normalized pulse at time interval k multiplied by a given coefficient ak

{−A/2, A/2}, the digital transmission is said to have a polar format. In this latter case, the
sequence of this example would be given by ak = A/2, −A/2, A/2, A/2, −A/2, A/2.

Index k adopts integer values from minus to plus infinity. As seen in Figure A.2, the basic
signal p(t) is normalized and of fixed shape, centred at the corresponding time interval k, and
multiplied by a given coefficient that contains the information to be transmitted. This basic
normalized pulse is such that

p(t) =
{

1 t = 0
0 t = ±T, ±2T, . . .

(2)

The normalized pulse is centred at the corresponding time interval k and so its sample value
at the centre of that time interval is equal to 1, whereas its samples obtained at time instants
different from t = kT are equal to 0. This condition does not necessarily imply that the
pulse is time limited. Samples are taken synchronously at time instants t = kT , where k = 0,

±1, ±2, . . . , such that for a particular time instant t = k1T ,

x(k1T) =
∑
∞

ak1
p(k1T − kT) = ak1

(3)

since (k1T − kT) = 0, for every k, except k = k1.
Conditions (2) describe the transmission without ISI, and are satisfied by many signal pulse

shapes. The classic rectangular pulse satisfies condition (2) if its duration τ is less than or
equal to T . The pulse sin c(t) also satisfies the orthogonality condition described in the time
domain by equation (2), but it is a pulse that is unlimited in time, however. Figure A.3 shows
the transmission of the binary information sequence (11001), using sin c(t) pulses modulated
in a polar format. At each sampling time instant t = kT , the pulse being sampled has amplitude
different from 0, while the other pulses are all equal to 0.

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in the Transmission of Digital Signals 329

–4 –2 0 2 4 6 8 10 12
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Time, t

A

Figure A.3 A digital transmission using sinc (t) pulses modulated in polar format

Each pulse occurs in a time interval of duration T . The inverse of this duration is the symbol
rate of the transmission, since it is the number of symbols that are transmitted in a unit of time
(usually a second). The symbol rate r is then equal to

r = 1/T (symbols per second) (4)

which is measured in symbols per second. When the discrete alphabet used in the transmission
contains only two symbols, M = 2, then it is binary transmission, and the corresponding
symbol rate r = rb is the binary signalling rate

rb = 1/Tb (bit per second) (5)

where T = Tb is the in time duration of each bit. The binary signalling rate is measured in bits
per second (bps).

A.2 Bit Error Rate

Figure A.4 shows the basic structure of a binary receiver.

Synchronization: T U

N0 / 2

x(t)
Low pass
filter H(f)

Sampling
and hold

y(tk)

Threshold
xd(t)

y(t)

Figure A.4 A binary receiver

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

330 Essentials of Error-Control Coding

The signal x(t) is a digital signal
∑

k ak p(t − kT), that is, an amplitude-modulated pulse
signal. This signal is affected by AWGN noise in the channel and is then input to the receiver.
The first block in this receiver is a low pass filter that eliminates part of the input noise without
producing ISI, giving the signal y(t). The receiver takes synchronized samples of this signal,
and generates after the sample-and-hold operation a random variable of the form

y(tk) = ak + n(tk) (6)

Sampled values y(tk) constitute a continuous random variable Y , and noise samples n(tk) taken
from a random signal n(t) form a random variable n.

The lowest complexity decision rule for deciding the received binary value is the so-called
hard decision, which consists only of comparing the sampled value y(tk) with a threshold U ,
such that if y(tk) > U , then the receiver considers that the transmitted bit is a 1, and if y(tk) < U
then the receiver considers that the transmitted bit is a 0. In this way the received sampled
signal y(tk) is converted into a signal xhd(t), basically of the same kind as that expressed in
equation (1), an apparently noise-free signal but possibly containing some errors with respect
to the original transmitted signal.

The probability density function of the random variable Y is related to the noise, and to
conditional probability of the transmitted symbols. The following hypotheses are relevant:

H0 is the hypothesis that a ‘0’ was transmitted ak = 0, Y = n

H1 is the hypothesis that a ‘1’ was transmitted ak = A, Y = A + n.

The probability density function of the random variable Y conditioned on the event H0 is
given by

pY(y/H0) = pN(y) (7)

where pN(y) is the Gaussian probability density function.
For hypothesis H1,

pY(y/H1) = pN(y − A) (8)

The probability density function in this case is shifted to the value n = y − A. Thus, the
probability density function for the noisy signal is the probability density function for the
noise-free discrete signal 0 or A (unipolar format) added to the probability density function of
the noise pN(n). Figure A.5 shows the reception of a given digital signal performed using hard
decision.

The probability density function for each signal is the Gaussian probability density function
centred at the value of the amplitude that is transmitted.

Figure A.6 shows the shadowed areas under each probability density function that correspond
to the probability of error associated with each hypothesis. Thus, the receiver assumes that
if Y < U , hypothesis H0 has occurred, and if Y > U, hypothesis H1 has occurred. Error

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in the Transmission of Digital Signals 331

y(tk) A

xd(t) A

Tb / 2

U

0 11 0 0
y(t)

A

0

0

0

tk Tb

tk Tb + Tb / 2

Figure A.5 Reception of a digital signal

Pe1 Pe0

U0 YA
−3 −2 −1 0 1 2 3 4 5

py(y/H0) py(y/H1)

Figure A.6 Bit error rate calculation

probabilities associated with each hypothesis are described in Figure A.6, and are equal to

Pe0 = P(Y > U/H0) =
∫ ∞

U
pY(y/H0) dy (9)

Pe1 = P(Y < U/H1) =
∫ U

−∞
pY (y/H1) dy (10)

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

332 Essentials of Error-Control Coding

The threshold value U should be conveniently determined. A threshold value U close to the
amplitude 0 reduces the error probability associated with the symbol ‘1’, but strongly increases
the error probability associate with the symbol ‘0’, and vice versa. The error probability of
the whole transmission is an average over these two error probabilities, and its calculation can
lead to a proper determination of the value of the threshold U:

Pe = P0 Pe0 + P1 Pe1 (11)

where P0 = P(H0), P1 = P(H1).
P0 and P1 are the source symbol probabilities; that is, the probabilities of the transmission

of a symbol ‘0’ and ‘1’. The average error probability is precisely the mean value of the errors
in the transmission that takes into account the probability of occurrence of each symbol.

The derivative with respect to the threshold U of the average error probability is set to be
equal to zero, to determine the optimal value of the threshold:

dPe/dU = 0 (12)

This operation leads to the following expression:

P0 pY (Uopt/H0) = P1 pY (Uopt/H1) (13)

If the symbols ‘0’ and ‘1’ of the transmission are equally likely

P0 = P1 = 1

2
(14)

then

Pe = 1

2
(Pe0 + Pe1) (15)

and the optimal value of the threshold is then

pY(Uopt/H0) = pY(Uopt/H1) (16)

As seems reasonable, the optimal value of the threshold U is set to be in the middle of the two
amplitudes, Uopt = A/2, if the symbol source probabilities are equal; that is, if symbols are
equally likely (see Figure A.6).

The Gaussian probability density function with zero mean value and variance σ 2 charac-
terizes the error probability of the involved symbols if they are transmitted over the AWGN
channel. This function is of the form

pN(y) = 1√
2πσ 2

e− y2

2σ2 (17)

In general, this probability density function is shifted to a mean value m and has a variance
σ 2, such that

pN(y) = 1√
2πσ 2

e− (y−m)2

2σ2 (18)

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in the Transmission of Digital Signals 333

−2 −1 0 1 2 3 4 5 6

pN(y)

Q(k)

m + kσm

Figure A.7 Normalized Gaussian probability density function Q(k)

The probability that a given value of the random variable Y is larger than a value m + kσ is
a function of the number k, and it is given by

P(Y > m + kσ) = 1√
2πσ 2

∫ ∞

m+kσ

e− (y−m)2

2σ2 dy (19)

These calculations are simplified by using the normalized Gaussian probability density func-
tion, also known as the function Q(k) (Figure A.7):

Q(k) = 1√
2π

∫ ∞

k
e− (λ)2

2 dλ (20)

obtained by putting

λ = y − m

σ
(21)

This normalized function can be used to calculate the error probabilities of the digital trans-
mission described in equations (9) and (10).

Pe0 =
∫ ∞

U
pN(y) dy = 1√

2πσ 2

∫ ∞

U
e− y2

2σ2 dy = Q(U/σ) (22)

and

Pe1 =
∫ U

−∞
pN(y − A) dy = 1√

2πσ 2

∫ U

−∞
e− (y−A)2

2σ2 dy = Q((A − U) / σ) (23)

If U = Uopt, the curves intersect in the middle point Uopt = A/2.

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

334 Essentials of Error-Control Coding

In this case these error probabilities are equal to

Pe0 = Pe1 = Q

(
A

2σ

)
(24)

Pe = 1

2
(Pe0 + Pe1) = Q

(
A

2σ

)
This is the minimum value of the average error probability for the transmission of two equally
likely symbols over the AWGN channel. As seen in the above expressions, the term A/2σ (or
equivalently its squared value) defines the magnitude of the number of errors in the transmis-
sion, that is, the error probability or bit error rate of the transmission.

The result is the same for transmission using the polar format (ak = ±A/2), if the symbol
amplitudes remain the same distance A apart.

The above expressions for the error probability can be generalized for the transmission of
M symbols taken from a discrete source, and they can also be described in terms of the signal-
to-noise ratio. The power associated with the transmission of the signal described in equation
(1) is useful for this latter purpose. Let us take a sufficiently long time interval T0, such that
T0 = NT, and N � 1. The amplitude-modulated pulse signal uses the normalized pulse

p(t) =
{

1 |t | < τ/2
0 ||t | > τ/2

(25)

where τ ≤ T . Then the power associated with this signal is equal to

SR = 1

T0

∫ T0/2

−T0/2

(∑
k

ak p(t − kT)2

)
dt = 1

T0

∫ T0/2

−T0/2

∑
k

a2
k p2(t − kT) dt

= 1

T0

∫ T0/2

−T0/2

k=N/2∑
k=−N/2

a2
k p2(t − kT) dt

SR =
∑

k

1

NT

∫ T/2

−T/2

a2
k p2(t) dt = N0

NT

∫ T/2

−T/2

a2
0 p2(t) dt + N1

NT

∫ T/2

−T/2

a2
1 p2(t) dt

SR = P0

1

T

∫ τ/2

−τ/2

a2
0 p2(t) dt + P1

1

T

∫ τ/2

−τ/2

a2
1 p2(t) dt (26)

The duration of the pulse can be equal to the whole time interval T = τ = Tb, in this case it
is said that the format is non-return-to-zero (NRZ), or it can be shorter than the whole time
interval τ < Tb, then the format is said to be return-to-zero (RZ). For the NRZ format,

SR = A2
/2 unipolar NRZ

SR = A2/4 polar NRZ

A =
{√

2SR unipolar√
4SR polar

(27)

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in the Transmission of Digital Signals 335

A

0 0
t

s1(t) s0(t)

A

t

TbTb

Figure A.8 Signalling in the NRZ unipolar format

If σ 2 is the noise power NR at the output of the receiver filter, then

(
A

2σ

)2

= A2

4NR

=
{

(1/2)(S/N)R unipolar

(S/N)R polar
(28)

Thus, unipolar format needs twice the signal-to-noise ratio to have the same BER performance
as that of the polar format.

The error probability was determined as a function of the parameter A/2σ . However, a
more convenient way of describing this performance is by means of the so-called average bit
energy-to-noise power spectral density ratio Eb/N0. This new parameter requires the following
definitions:

Eb = SR

rb

average bit energy (29)

Eb

N0

= SR

N0rb

average bit energy-to-noise power spectral density ratio (30)

The average bit energy of a sequence of symbols such as those described by the digital signal
(1) is calculated as

Eb = E

[
a2

k

∫ ∞

−∞
p2(t − k D) dt

]
= E

[
a2

k

∫ ∞

−∞
p2(t) dt

]
= a2

k

∫ ∞

−∞
p2(t) dt (31)

The above parameters are calculated for the unipolar NRZ format. In this format a ‘1’ is usually
transmitted as a rectangular pulse of amplitude A, and a ‘0’ is transmitted with zero amplitude
as in Figure A.8.

The average bit energy Eb is equal to

E1 =
∫ Tb

0

s2
1 (t) dt = A2Tb

E0 =
∫ Tb

0

s2
0 (t) dt = 0

Eb = P0 E0 + P1 E1 = 1

2
(E0 + E1) = A2Tb

2
(32)

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

336 Essentials of Error-Control Coding

A /2

− A /2

t

Tb Tb

t

s1(t) s0(t)

0 0

Figure A.9 Signalling in the NRZ polar format

Since the transmission is over the AWGN channel of bandwidth B and for the maximum
possible value of the symbol or bit rate rb = 2B, [1–4], the input noise is equal to

NR = σ 2 = N0 B = N0rb

2
(33)

This is the minimum amount of noise that inputs the receiver if a matched filter is used [1–4].
The quotient (A/2σ)2 can be now expressed as(

A

2σ

)2

= A2

4σ 2
= 2Ebrb

4N0rb/2
= Eb

N0

(34)

In the case of the NRZ polar format, where a ‘1’ is usually transmitted as a rectangular pulse of
amplitude A/2 and a ‘0’ is transmitted as a rectangular pulse of amplitude −A/2 (Figure A.9).

Then the average bit energy Eb is

E1 =
∫ Tb

0

s2
1 (t) dt = A2Tb

4

E0 =
∫ Tb

0

s2
0 (t) dt = A2Tb

4

Eb = P0 E0 + P1 E1 = 1

2
(E0 + E1) = A2Tb

4
(35)

and so (
A

2σ

)2

= A2

4σ 2
= 4Ebrb

4N0rb/2
= 2Eb

N0

(36)

It is again seen that the polar format has twice the value of (A/2σ)2 for a given value of
Eb/N0 with respect to the unipolar format:

(
A

2σ

)2

=
{

Eb

N0
unipolar

2Eb

N0
polar

(37)

OTE/SPH OTE/SPH
JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix A: Error Probability in the Transmission of Digital Signals 337

Now expressing the error probabilities of the two formats in terms of the parameter Eb/N0,
we obtain

Pe =
⎧⎨⎩ Q

(√
Eb

N0

)
unipolar

Q
(√

2Eb

N0

)
polar

(38)

This is the minimum value of the error probability and is given when the receiver uses the
matched filter. Any other filter will result in a higher bit error rate than that expressed in (38).
The matched filter is optimum in terms of maximizing the signal-to-noise ratio for the reception
of a given pulse shape, over a given channel transfer function, and affected by a given noise
probability density function.

Bibliography

[1] Carlson, A. B., Communication Systems: An Introduction to Signals and Noise in Electrical
Communication, 3rd Edition, McGraw-Hill, New York, 1986.

[2] Sklar, B., Digital Communications: Fundamentals and Applications, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[3] Couch, L. W., Digital and Analog Communications Systems, MacMillan, New York, 1996.
[4] Proakis, J. G. and Salehi, M., Communication Systems Engineering, Prentice Hall,

Englewood Cliffs, New Jersey, 1994.

OTE/SPH OTE/SPH

JWBK102-APPA JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

338

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q)

This appendix is devoted to an introduction to finite fields, usually called Galois fields GF(q).
A related algebraic structure called a group is first described. The aim of this appendix is
to define polynomial operations over these algebraic structures. The main concept in terms
of its utility for designing error-control codes is that a polynomial defined over a finite field
GF(pprime) has roots in that field, or in one of its extensions GF(q). In the same way, each
element a of the extended finite field GF(q) is a root of some polynomials with coefficients in
the finite field GF(pprime). The polynomial of minimum degree that satisfies this condition is
called a minimum polynomial of a.

B.1 Groups

A group Gr is defined as a set of elements that are related by some specific operations. For a
given group Gr of elements, the binary operation ∗ is defined as an assignment rule for any two
elements of this group, a and b. In this rule these two elements are assigned a unique element
c of the same group, such that c = a∗b. This operation is said to be closed over the group Gr

because its result is another element of the same group. This operation is said to be associative
if it satisfies

a ∗ (b ∗ c) = (a ∗ b) ∗ c (1)

B.1.1 Definition of a Group Gr

A set of elements Gr over which the binary operation ∗ is defined is said to be a group, if the
following conditions are satisfied:

1. The binary operation ∗ is associative.
2. The set of elements Gr contains an element e, such that for every element of the set a ∈ Gr,

e ∗ a = a ∗ e = a (2)

The element e is called the identity for the binary operation ∗.

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

339

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

340 Essentials of Error-Control Coding

3. For every element of the set a ∈ Gr, there is another element of the same set a′ ∈ Gr, such
that

a ∗ a′ = a′ ∗ a = e (3)

The element a′ is called the inverse element of a.

A group Gr is said to be commutative if, for every pair of its elements a, b ∈ Gr, it is true
that

a ∗ b = b ∗ a (4)

It can be shown that both the inverse element a′ of an element a and the identity e of the
binary operation defined over the group Gr are unique.

B.2 Addition and Multiplication Modulo m

For a set of elements Gr = {0, 1, 2, . . . , i, j, . . . , m − 1} that satisfies the conditions for being
a group, the addition operation ⊕ between any two of its elements i and j is defined as

i ⊕ j = r

r = (i + j)mod(m) (5)

that is, the addition of any two elements of the group i and j is the remainder of the division
of the arithmetic addition (i + j) by m. This operation is called modulo-m addition.

Modulo-2 addition, for instance, is defined over the group Gr = {0, 1}:
0 ⊕ 0 = 0,

1 ⊕ 1 = 0,

0 ⊕ 1 = 1,

1 ⊕ 0 = 1,

As an example, the last result comes from the calculation of 1 + 0 = 1, and 1/2 = 0 with re-
mainder 1, then 1 ⊕ 0 = 1. A group constituted of pprime elements Gr = {1, 2, 3, . . . , pprime −
1}, where pprime is a prime number. pprime : 2, 3, 5, 7, 11, . . . is a commutative group under
modulo-pprime addition.

Multiplication modulo-pprime between any two elements i and j is defined as

i ⊗ j = r

r = i j mod pprime (6)

For the binary group Gr = {0, 1}, this operation is determined by the following table:

0 ⊗ 0 = 0

1 ⊗ 1 = 1

0 ⊗ 1 = 0

1 ⊗ 0 = 0

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q) 341

Table B.1 Modulo-2 addition

⊕ 0 1

0 0 1

1 1 0

As an example, the last result of the above table comes from the calculation of 1 × 0 = 0,
and 0/2 = 0 with remainder 0, then 1 ⊗ 0 = 0.

B.3 Fields

The definition of groups is useful for introducing the definition of what is called a finite
field. A field is a set of elements F for which addition, multiplication, subtraction and division
performed with its elements result in another element of the same set. Once again, the definition
of a field is based on the operations described over such a field. For addition and multiplication
operations, the following conditions define a field:

1. F is a commutative group with respect to the addition operation. The identity element for
the addition is called ‘0’.

2. F is a commutative group for the multiplication operation. The identity element for multi-
plication is called ‘1’.

3. Multiplication is distributive with respect to addition:

a(b + c) = ab + ac (7)

The number of elements of a field is called the order of that field. A field with a finite number
of elements is usually called a finite field, or Galois field GF.

The inverse for the addition operation of an element of the field a ∈ F is denoted as −a, and
inverse for the multiplication operation of an element of the field is denoted as a−1. Subtraction
and division operations are defined as a function of the inverse elements as

a − b = a + (−b)

a/b = a(b−1) (8)

The set Gr = {0, 1} defined under addition and multiplication modulo 2 is such that Gr =
{0, 1} is a commutative group with respect to the addition operation, and is also a commutative
group with respect to the multiplication operation. This is the so-called binary field GF(2).

Operations in this binary field are defined by Tables B.1 and B.2.

Table B.2 Modulo-2 multiplication

• 0 1

0 0 0

1 0 1

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

342 Essentials of Error-Control Coding

For a given prime number pprime, the set of integer numbers {0, 1, 2, 3, . . . , pprime − 1}
is a commutative group with respect to modulo-pprime addition. The set of integer numbers
{1, 2, 3, . . . , pprime − 1} is a commutative group with respect to multiplication modulo pprime.
This set is therefore a field of order pprime. They are also called prime fields GF (pprime).

An extension of a prime field GF(pprime) is called an extended finite field GF(q) = GF(pm
prime),

with m a positive integer number. This extended field is also a Galois field. Particular cases of
practical interest are the finite fields of the form GF(2m), with m a positive integer number.

For a given finite field GF(q), and for an element of this field a ∈ GF(q), the powers of
this element are also elements of the finite field, since the multiplication operation is a closed
operation. Therefore,

a1 = a, a2 = a • a, a3 = a • a • a . . .

are also elements of the same finite field GF(q). However, these powers will start to repeat
because the field is a finite field, and its order is a finite number.

In other words, there should exist two integer numbers k and m, such that m > k and
am = ak . Since a−k is the multiplicative inverse of ak , a−kam = a−kak , or am−k = 1. There is
therefore a number n such that an = 1, and this number is called the order of the element a.
Thus, powers a1, a2, a3, . . . , an−1 are all different and form a group under multiplication in
GF(q).

It can be shown that if a is a non-zero element of the finite field GF(q), then aq−1 = 1. It is
also true that if a is a non-zero element of the finite field GF(q), and if n is the order of that
element, then n divides q − 1.

A non-zero element a of a finite field GF(q) is said to be a primitive element of that field
if the order of that element is q − 1. All the powers of a primitive element a ∈ GF(q) of a
field generate all the non-zero elements of that field GF(q). Every finite field has at least one
primitive element.

B.4 Polynomials over Binary Fields

The most commonly used fields are extensions of the binary field GF(2), and they are called
Galois fields GF(2m). Binary arithmetic uses addition and multiplication modulo 2. A polyno-
mial f (X) defined over GF(2) is of the form

f (X) = f0 + f1 X + f2 X2 + . . . + fn Xn (9)

where the coefficients fi are either 0 or 1. The highest exponent of the variable X is called the
degree of the polynomial. There are 2n polynomials of degree n. Some of them are

n = 1 X, X + 1

n = 2 X2, 1 + X2, X + X2, 1 + X + X2

Polynomial addition and multiplication are done using operations modulo 2, and satisfy the
commutative, associative and distributive laws. An important operation is the division of two
polynomials. As an example, the division of polynomial X3 + X + 1 by the polynomial X + 1

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q) 343

is done as follows:

X3 + X + 1 | X + 1
− − − − − − −−

X3 + X2 X2 + X
− − − − − − −

X2 + X + 1
X2 + X
− − − − −

r (X) = 1

The division is of the form

f (X) = q(X)g(X) + r (X) (10)

where, in this example,

r (X) = 1

q(X) = X + X2

Definition B.1: An element of the field a is a zero or root of a polynomial f (X) if f (a) = 0.
In this case a is said to be a root of f (X) and it also happens that X − a is factor of this
polynomial f (X).

Thus, for example, a = 1 is a root of the polynomial f (X) = 1 + X2 + X3 + X4 , and so
X + 1 is a factor of this polynomial f (X). The division of f (X) by X + 1 has the quotient
polynomial q(X) = 1 + X + X3. Remember that the additive inverse of a, −a, is equal to a,
a = −a, for modulo−2 operations.

Definition B.2: A polynomial p(X) defined over GF(2), of degree m, is said to be irreducible,
if p(X) has no factor polynomials of degree higher than zero and lower than m.

For example, the polynomial 1 + X + X2 is an irreducible polynomial, since neither X nor
X + 1 are its factors. A polynomial of degree 2 is irreducible if it has no factor polynomials
of degree 1. A property of irreducible polynomials over the binary field GF(2), of degree m, is
that they are factors of the polynomial X2m−1 + 1. For example, the polynomial 1 + X + X3

is a factor of X23−1 + 1 = X7 + 1.
Furthermore, an irreducible polynomial pi (X) of degree m is a primitive polynomial if the

smallest integer number n, for which pi (X) is a factor of Xn + 1, is n = 2m − 1. For example,
the polynomial X4 + X + 1 is a factor of X24−1+1 = X15+1, and it is not a factor of any
other polynomial of the form Xn + 1, where 1 ≤ n < 15. This means that the polynomial
X4 + X + 1 is a primitive polynomial.

Another interesting property of polynomials over GF(2) is that

(f (X))2l = f (X2l
) (11)

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

344 Essentials of Error-Control Coding

B.5 Construction of a Galois Field GF(2m)

An extended Galois field contains not only the binary elements ‘0’ and ‘1’ but also the element
α and its powers. For this new element,

0α = α0 = 0

1α = α1 = α

α2 = αα, α3 = αα2

αiα j = αi+ j = α jαi

A set of these elements is

F = {0, 1, α, α2, . . . , αk, . . .} (12)

which contains 2m elements. Since a primitive polynomial pi (X), over GF(2) of degree m, is
a factor of X2m−1+1, and taking into account that pi (α) = 0,

X2m−1 + 1 = p(X)q(X)

α2m−1 + 1 = p(α)q(α) = 0 (13)

α2m−1 = 1

Therefore the set F is a finite set of 2m elements:

F = {0, 1, α, α2, . . . , α2m−2} (14)

The condition

i + j < 2m − 1 (15)

should be satisfied to make the set be closed with respect to the multiplication operation. This
means that if any two elements of the set αi and α j are multiplied, the result αk = αiα j should
be an element of the same set; that is, k < 2m − 1.

If

i + j = (2m − 1) + r, 0 ≤ r < 2m−1 (16)

then

αiα j = α(i+ j) = α(2m−1)+r = αr

and this result shows that the set is closed with respect to the multiplication operation. On the
other hand, for a given integer number i , such that 0 < i < 2m−1,

α2m−1−i is the multiplicative inverse of αi (17)

Thus, the set F = {0, 1,α,α2, . . . ,α2m−2} is a group of order 2m − 1 with respect to the
multiplication operation. To ensure that the set F is a commutative group under addition, the

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q) 345

operation of addition in the set must be defined. For 0 ≤ i < 2m − 1, Xi is divided by p(X),
resulting in

Xi = qi (X)p(X) + ai (X) (18)

ai (X) is of degree m − 1 or less, and a(X) = ai0 + ai1 X + ai2 X2 + · · · + ai,m−1 Xm−1. For
0 ≤ i, j < 2m − 1,

ai (X) 	= a j (X) (19)

If i = 0, 1, 2, . . . , 2m−2, there are 2m − 1 different polynomials ai (X):

αi= qi (α)p(α) + ai (α) = ai (α)

αi= ai0+ai1 X + ai2 X2+ · · · + ai,m−1 Xm−1
(20)

These polynomials represent 2m − 1 non-zero elements α0,α1,α2, . . . , α2m−2.
There are 2m − 1 different polynomials in α over GF(2) which represent the 2m − 1 different

non-zero elements of the set F . This leads to a binary representation for each element of the
set.

The addition operation is defined as

0 ⊕ 0 = 0

0 ⊕ αi = αi ⊕ 0 = αi

and

αi ⊕ α j= (ai0 ⊕ a j0) + (ai1 ⊕ a j1)X + (ai2 ⊕ a j2)X2+ · · · + (ai,m−1 ⊕ a j,m−1)Xm−1 (21)

where addition element by element is done modulo 2. This is the same as saying that the
addition of any two elements of the set F = {0, 1,α,α2, . . . ,α2m−2} is the exclusive-OR bitwise
operation between the binary representation of those two elements, which are equivalent to the
corresponding polynomial expressions in α.

This set F of elements defined as above is commutative with respect to the addition operation,
and the set of non-zero elements of F is commutative with respect to the multiplication
operation. Therefore the set

F = {0, 1,α,α2, . . . ,α2m−2}
is a Galois field or finite field of 2m elements, GF(2m).

Example B.1: Let m = 3, and pi (X) = 1 + X + X3 a primitive polynomial over GF(2). Since
pi (α) = 1 + α + α3 = 0, then α3 = 1 + α. The field GF(23) can be constructed, making use
of the above expression, in order to determine all the non-zero elements of that field. Thus, for
example, α4 = αα3 = α(1 + α) = α + α2.

Table B.3 shows all the elements of the Galois field GF(23) generated by pi (X) = 1 + X +
X3. Examples of the product and sum of two elements in this field are calculated as follows:

α4α6 = α10 = α10−7 = α3

α2 + α4 = α2 + α + α2 = α

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

346 Essentials of Error-Control Coding

Table B.3 The Galois field GF(23) generated by pi (X) = 1 + X + X 3

Exp. representation Polynomial representation Vector representation

0 0 0 0 0

1 1 1 0 0

α α 0 1 0

α2 α2 0 0 1

α3 1 +α 1 1 0

α4 +α +α2 0 1 1

α5 1 +α +α2 1 1 1

α6 1 +α2 1 0 1

The most commonly used way of determining the sum of two elements of a Galois field is
by doing the bitwise exclusive-OR operation over the binary representations of these two
elements.

Example B.2: Determine the table of the elements of the Galois field GF(24) generated by
the primitive polynomial pi (X) = 1 + X + X4.

According to the expression for the primitive polynomial, pi (α) = 1 + α + α4 = 0, or α4 =
1 + α. The generated field GF(24) is shown in Table B.4.

B.6 Properties of Extended Galois Fields GF(2m)

Polynomials defined over the binary field GF(2) can have roots that belong to an extended
field GF(2m). This is the same as what happens in the case of polynomials defined over the

Table B.4 The Galois field GF(24) generated by pi (X) = 1 + X + X 4

Exp. representation Polynomial representation Vector representation

0 0 0 0 0 0

1 1 1 0 0 0

α α 0 1 0 0

α2 α2 0 0 1 0

α3 α3 0 0 0 1

α4 1 +α 1 1 0 0

α5 α +α2 0 1 1 0

α6 +α2 +α3 0 0 1 1

α7 1 +α +α3 1 1 0 1

α8 1 +α2 1 0 1 0

α9 α +α3 0 1 0 1

α10 1 +α +α2 1 1 1 0

α11 α +α2 +α3 0 1 1 1

α12 1 +α +α2 +α3 1 1 1 1

α13 1 +α2 +α3 1 0 1 1

α14 1 +α3 1 0 0 1

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q) 347

set of real numbers, which can have roots outside that set; that is, roots that are complex
numbers.

As an example, the polynomial pi (X) = 1 + X3 + X4 is irreducible over GF(2) since it has
no roots in that field, but it has, however, its four roots in the extended Galois field GF(24).
By simply replacing the variable X in the expression for the polynomial with the elements as
given in Table B.4 of the Galois field GF(24), it can be verified that α7, α11, α13 and α14 are
indeed the roots of that polynomial. As a consequence of this,

pi (X) = 1 + X3 + X4

= (X + α7)(X + α11)(X + α13)(X + α14)

= [X2 + (α7 + α11)X + α18][X2 + (α13 + α14)X + α27]

= [X2 + (α8)X + α3][X2 + (α2)X + α12]

= X4 + (α8 + α2)X3 + (α12 + α10 + α3)X2 + (α20 + α5)X + α15

= X4 + X3 + 1

The following theorem determines a condition to be satisfied by the roots of a polynomial
taken from an extended field. This theorem allows determination of all the roots of a given
polynomial as a function of one of these roots β.

Theorem B.1: Let f (X) be a polynomial defined over GF(2). If an element β of the extended
Galois field GF(2m) is a root of the polynomial f (X), then for any positive integer l ≥ 0, β2l

is also a root of that polynomial.
Demonstration of this theorem is based on equation (11), and is done by simply replacing

the variable X in the polynomial expression of f (X) with the corresponding root

(f (β))2l = (0)2l = f (β2l
) = 0

The element β2l
is called the conjugate of β.

This theorem states that if β is an element of the extended field GF(2m) and also a root of
the polynomial f (X), its conjugates are also elements of the same field and roots of the same
polynomial.

Example B.3: The polynomial pi (X) = 1 + X3 + X4 defined over GF(2) has α7 as one of
its roots. This means that, by applying Theorem B.1, (α7)2 = α14, (α7)4 = α28 = α13 and
(α7)8 = α56 = α11 are also roots of that polynomial. This is the whole set of roots since the
next operation (α7)16 = α112 = α7 repeats the value of the original root.

In this example it is also verified that the root β = α7 satisfies the condition β2m−1 =
β15 = (α7)15 = α105 = α0 = 1. In general, it is verified that β2m−1 = 1, because for an element
a ∈ G F(q), it is true that aq−1 = 1. Equivalently,

β2m−1 + 1 = 0

that is, β is a root of the polynomial X2m−1 + 1. In general, every non-zero element of the
Galois field GF(2m) is a root of the polynomial X2m−1 + 1. Since the degree of the polynomial

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

348 Essentials of Error-Control Coding

X2m−1 + 1 is 2m − 1, the 2m − 1 non-zero elements of GF(2m) are all roots of X2m−1 + 1.
Since the zero element 0 of the field GF(2m) is the root of the polynomial X , it is possible to
say that the elements of the field GF(2m) are all the roots of the polynomial X2m + X .

B.7 Minimal Polynomials

Since every element β of the Galois field GF(2m) is a root of the polynomial X2m + X , the
same element could be a root of a polynomial defined over GF(2) whose degree is less than
2m .

Definition B.3: The minimum-degree polynomial φ(X), defined over GF(2) that has β as its
root, is called the minimal polynomial of β. This is the same as to say that φ(β) = 0.

Thus, the minimal polynomial of the zero element 0 is X , and the minimum polynomial of
the element 1 is 1 + X .

B.7.1 Properties of Minimal Polynomials

Minimal polynomials have the following properties [1]:

Theorem B.2: The minimum polynomial of an element β of a Galois field GF(2m) is an
irreducible polynomial.

Demonstration of this property is based on the fact that if the minimal polynomial was not
irreducible, it could be expressed as the product of at least two other polynomials φ(X) =
φ1(X) φ2(X), but since φ(β) = φ1(β) φ2(β) = 0, it should be true that either φ1(β) = 0 or
φ2(β) = 0, which is contradictory with the fact that φ(X) is of minimum degree.

Theorem B.3: For a given polynomial f (X) defined over GF(2), and φ(X) being the minimal
polynomial of β, if β is a root of f (X), it follows that φ(X) is a factor of f (X).

Theorem B.4: The minimal polynomial φ(X) of the element β of the Galois field GF(2m) is
a factor of X2m + X .

Theorem B.5: Let f (X) be an irreducible polynomial defined over GF(2), and φ(X) be the
minimal polynomial of an element β of the Galois field GF(2m). If f (β) = 0, then f (X) =
φ(X).

This last theorem means that if an irreducible polynomial has the element β of the Galois
field GF(2m) as its root, then that polynomial is the minimal polynomial φ(X) of that element.

Theorem B.6: Let φ(X) be the minimal polynomial of the element β of the Galois field
GF(2m), and let e be the smallest integer number for which β2e = β, then the minimal poly-
nomial of β is

φ(X) =
e−1∏
i=0

(X + β2l
)

OTE/SPH OTE/SPH
JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

Appendix B: Galois Fields GF(q) 349

Table B.5 Minimal polynomials of all the elements of the Galois

field GF(24) generated by pi (X) = 1 + X + X 4

Conjugate roots Minimal polynomials

0 X
1 1 + X

α, α2, α4, α8 1 + X + X 4

α3, α6, α9, α12 1 + X + X 2 + X 3 + X 4

α5, α10 1 + X + X 2

α7, α11, α13, α14 1 + X 3 + X 4

Example B.4: Determine the minimal polynomial φ(X) of β = α7 in GF(24). As seen in
Example B.3, the conjugates β2 = (α7)2 = α14, β22 = (α7)4 = α28 = α13 and β23 = (α7)8 =
α56 = α11 are also roots of the polynomial for which β = α7 is a root. Since β2e = β16 =
(α7)16 = α112 = α7 = β, then e = 4 so that

φ(X) = (X + α7)(X + α11)(X + α13)(X + α14)

= [X2 + (α7 + α11)X + α18][X2 + (α13 + α14)X + α27]

= [X2 + (α8)X + α3][X2 + (α2)X + α12]

= X4 + (α8 + α2)X3 + (α12 + α10 + α3)X2 + (α20 + α5)X + α15

= X4 + X3 + 1

The construction of the Galois field GF(2m) is done by considering that the primitive poly-
nomial pi (X) of degree m has α as its root, pi (α) = 0. Since all the powers of α generate all
the elements of the Galois field GF(2m), α is said to be a primitive element.

All the conjugates of α are also primitive elements of the Galois field GF(2m). In general, it
can be said that if β is a primitive element of the Galois field GF(2m), then all its conjugates
β2l

are also elements of the Galois field GF(2m).
Table B.5 shows the minimal polynomials of all the elements of the Galois field GF(24)

generated by pi (X) = 1 + X + X4, as seen in Example B.2.

Bibliography

[1] Lin, S. and Costello, D. J., Jr., Error Control Coding: Fundamentals and Applications,
Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[2] Allenby, R. B. J., Rings, Fields and Groups: An Introduction to Abstract Algebra, Edward
Arnold, London, 1983.

[3] Hillma, A. P. and Alexanderson, G. L., A First Undergraduate Course in Abstract Algebra,
2nd Edition, Wadsworth, Belmont, California, 1978.

[4] McEliece, R. J., Finite Fields for Computer Scientists and Engineers, Kluwer, Mas-
sachusetts, 1987.

OTE/SPH OTE/SPH

JWBK102-APPB JWBK102-Farrell June 17, 2006 18:5 Char Count= 0

350

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

Answers to Problems

Chapter 1

1.1 (a) 1.32, 2.32, 2.32, 3.32, 4.32, 4.32, 2.22
(b) 2.58, 86%

1.2 (a) 1.875 bits/symbol
(b) 17 bits

1.3 0.722, 0.123, 0.189
1.5 0.0703, 0.741
1.6 0.3199
1.7 1, 0.8112, 0.9182
1.8 1, 0.25, 0.75, 1, 0.38, 0.431, 0.531
1.9 0.767, 0.862 when α = 0.48

1.11 0.622, 0.781, 79.6%
1.12 (a) 29,902 bps,

(b) 19.21 dB
1.13 150,053 bps

Chapter 2

2.1 See Chapter 2, Section 2.2
2.2 5, 10
2.3 (a) 11 (b) n, 10 (c) 11
2.4 (a) 0.5

(b) G =
⎡⎣0 1 1 1 0 0

1 0 1 0 1 0
1 1 0 0 0 1

⎤⎦ HT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
(c) 3
(d) 1, 2
(e) (110), error in sixth position

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

351

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

352 Essentials of Error-Control Coding

2.5 A possible solution: G =
[

1 1 1 1 0
1 0 1 0 1

]
, H =

⎡⎣1 0 0 1 1
0 1 0 1 0
0 0 1 1 1

⎤⎦
2.6 (a)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b) 7

2.7 (b) 0.25, 5 (c) 2.1 × 10−8

2.8 (a) H =

⎡⎢⎢⎣
1 0 0 0 0 0 1 0 1 1 0 1 1 1 1
0 1 0 0 0 1 0 1 0 1 1 1 1 0 1
0 0 1 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 0 1 0 1 1 1

⎤⎥⎥⎦
(c) (0110), error in the eighth position

2.9 (a) 6 (b) 4 (c) 0.6 (e) (0010111111) (f) (0110)
2.10 (a) 0.73, 1.04 × 10−4 (b) 0.722, 4.5 × 10−7

2.11 (a) Option 3 (b) 1.5 dB
2.12 (a) (12/11) rb, (15/11) rb, (16/11) rb (b) 7.2 dB, 6.63 dB, 5.85 dB

Chapter 3

3.1 It is for n = 6
3.2 (01010101)
3.3 (a) 0.43, 4 (b) (0010111) (c) r (X) = 1
3.5 (a) (00010111111111) (b) (00111), yes (c) Yes

3.6 (a)

00 0 0 0 0 0 0
01 1 0 1 1 0 1
10 1 1 0 1 1 0
11 0 1 1 0 1 1

(b) 4, l = 3, t = 1
3.7 (a) 8, 6 (b) 256 (d) 3 (e) 6
3.8 (a) (000011001101011) (b) A correctable error in the fifth position

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

Answers to Problems 353

Chapter 4

4.2 Examples of two elements: α9 → α + α3 + α4 → 01011, α20 → α2 + α3 → 00110
4.3

α X
1 1 + X
α, α2, α4, α8, α16 1 + X2 + X5

α3, α6, α12, α24, α17 1 + X2 + X3 + X4 + X5

α5, α10, α20, α9, α18 1 + X + X2 + X4 + X5

α7, α14, α28, α25, α19 1 + X + X2 + X3 + X5

α11, α22, α13, α26, α21 1 + X + X3 + X4 + X5

α15, α30, α29, α27, α23 1 + X3 + X5

4.4 g(X) = 1 + X + X2 + X3 + X5 + X7 + X8 + X9 + X10 + X11 + X15

4.5 g(X) = 1 + X3 + X5 + X6 + X8 + X9 + X10, 21, dmin = 7
4.6 (a) 6
4.7 g(X) = 1 + X4 + X6 + X7 + X8, dmin = 5
4.8 (b) The consecutive roots are 1, α, α2; 2
4.9 e(X) = 1 + X8

4.10 Errors at positions j1 = 11 and j2 = 4
4.11 (a) e(X) = X7 + X30 (b) It does not detect the error positions

Chapter 5

5.1 G =
[

1 1 0
1 0 1

]
, 2, α

5.2 (a) g(X) = X4 + α13 X3 + α6 X2 + α3 X + α10 (b) e(X) = αX3 + α11 X7

(c) e(X) = α8 X5

5.3 (a) g(X) = X6 + α10 X5 + α14 X4 + α4 X3 + α6 X2 + α9 X + α6 (b) (15, 9)
5.4 e(X) = α7 X3 + α3 X6 + α4 X12

5.5 (a) 2 (b) (1111111)

5.6 (a) 25, G =
[

1 0 4 3
0 1 2 3

]
, 3 (b) (1234)

5.7 (a) 0.6, 3 (b) Yes, (c) Fifth position, α

5.8 (a) g(X) = X4 + α13 X3 + α6 X2 + α3 X + α10,
c(X) = α5 X7 + α7 X5 + α4 X4 + α5 X2 + αX + α9

(b) c(X) = α5 X11 + α7 X9 + α4 X8 + α5 X6 + αX5 + α9 X4

(c) e(X) = X7 + X9, the decoder adds two errors,
e(X) = X5 + X2, successful decoding of the error pattern

5.9 It can correct burst errors of 64 bits

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

354 Essentials of Error-Control Coding

Chapter 6

6.1 (b) 6 (d) No
6.2 (a) 5 (b) Systematic
6.3 (a) g(1)(D) = 1 + D2, g(2)(D) = D + D2 (b) Catastrophic (c) (10, 01, 11)
6.4 (a) 2, 4 (b) (110, 101, 101, 011, 110, 011, 000)
6.5 (a) 4 (b) (10, 11, 11) (c) T (X) = X4 + 2X5 + 2X6 + . . . (d) 16 × 10−6

6.6 (a) m = (101000 . . .)
6.7 (a) (11, 10, 01, 00, 11) (b) (00, 20, 20, 00, 00 . . .)
6.8 See Section 6.6
6.9 (a) 0.5, 5 (b) Non-systematic

6.10 m = (1110010 . . .)

Chapter 7

7.1 (a) HT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦, dmin,CC = 4

(b) dmin,BC = 3, dmin,conc = 5
(c) (11010000) decoded by the convolutional code, (110100) passed to the block code,
(100)decoded message vector

7.2 (a) 1/7, dmin,conc = 12 (b) dmin,conc = 12 = 3 × 4 = dmin,(3,1) × dmin,(7,3) (c) Same as (b)
7.3 (a) 0.5, 3 (b) (0000)
7.4 3, 5
7.5 (a)

m =
(−1 − 1, −1 − 1, −1 − 1, +1 − 1, −1 + 1, +1 − 1, −1 + 1, −1 − 1, +1 − 1,

+1 − 1, −1 − 1, +1 + 1, +1 − 1, −1 − 1, +1 − 1, −1 − 1

)
(b) Message successfully decoded in three iterations

Chapter 8

8.1 (a) There are at least seven cycles of length 4; the‘1’s involved in these cycles are seen
in matrix H below:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 1 1 0 0 0 1
1 0 1 1 0 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

Answers to Problems 355

(b) In order to maintain s = 3, ‘1’s should be moved along the columns by replacement
of ‘0’s by ‘1’s and vice versa, in the same column. Every position of a ‘0’ in the above
matrix cannot be filled by replacement with a ‘1’ unless another cycle is formed.
(c) In general, it will correspond to another code.

8.2 (a) 4,

⎡⎢⎢⎣
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

⎤⎥⎥⎦
(b) 3, 12/7, 13/4, 13/7, 0.429, 4 (c) 6, 4, that of cycle length 6

8.3 (a) (1011100) (b) cyclic graph, decoded vectors in successive iterations:
(1011000) , (1011001) , (1011101) , 1011100, successful decoding.

Systematic graph, decoded vectors in successive iterations:
(1011000) , (1011011) , (1011011) , 1011000, 10110101, 1011101, unsuccessful decod-
ing in six iterations.

8.4 (a) The decoder fluctuates between the two code vectors c = (00000) and c = (10100),
which are those closest to the received vector r = (10200).
(b) Connections between symbol nodes and parity check nodes are not enough for effec-
tive belief propagation.

OTE/SPH OTE/SPH
JWBK102-ATP JWBK102-Farrell June 17, 2006 19:10 Char Count= 0

356

OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

Index

algorithm
BCJR, 210, 218, 234
Berlekamp-Massey, 128
Chien search, 111, 126
direct solution (of syndrome equations),

146
Euclidean, 108, 122, 125
soft output Viterbi algorithm (SOVA), 210
sum-product (belief propagation), 281,

282
Viterbi (VA), 182, 231

ARQ, 41, 68, 80, 317
go back N, 70
hybrid, 72
selective repeat, 70
stop and wait, 69

balanced incomplete block design, 281
bandwidth, 5, 27, 40, 336
bit, 1, 4
bit rate, 71
block length, 50
byte, 139

channel, 1, 10
additive white Gaussian noise (AWGN),

28, 40, 181, 213, 330
binary/non-binary erasure, 12, 39, 315,

317, 319
binary symmetric, 1, 11, 39, 188
capacity, 1, 21, 24, 31, 39
characteristics, 138, 213, 215

coding theorem, 2, 6, 25
delay, 71
discrete, 1, 30, 215, 218
feedback, 12, 65
memoryless, 191, 215, 218
non-symmetric, 39, 40
soft-decision (quantised), 194, 273
stationary, 216

code
array, 272
Bose, Chaudhuri, Hocquenghem (BCH),

97, 104
block, 41, 43, 50, 77
construction (of LDPC), 249
cyclic, 81, 86, 97, 115, 272, 281
cyclic redundancy check (CRC), 92, 317
concatenated, 140, 154, 253, 271
convolutional, 157
efficiency, 71
extended RS, 154
fountain, 317, 318
Gallager, 277
Hamming, 64, 89, 98, 99, 100
linear, 50, 157
low density parity check (LDPC), 277
linear random, 318
Luby transform (LT), 317, 320
minimum distance separable (MDS), 118
multiple turbo code (MTC), 253
non-binary/q-ary, 115, 317
non-linear, 94
non-systematic, 175

Essentials of Error-Control Coding Jorge Castiñeira Moreira and Patrick Guy Farrell
C© 2006 John Wiley & Sons, Ltd

357

OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

358 Index

code (Continued)
packet/frame, 68, 71, 92, 317, 318
perfect, 65
product, 272
punctured, 200, 209, 272
quasi-cyclic, 139, 281
rate, 43
rate compatible, 200, 203
regular/irregular LDPC, 280
repetition, 42, 77
Reed-Solomon (RS), 115, 136, 200
segment (of sequence), 157
sequence (of convolutional code), 161,

163, 165
shortened, 139, 154
single (simple) parity check (SPC), 88,

272, 310
structured/random LDPC, 280
systematic, 52, 119, 168, 278
turbo, 201, 209
variable length, 2
vector, 50
word, 2, 41, 50

concatenation, 140, 253
parallel, 209, 254
serial, 149, 200, 254

constraint length, 160, 184, 206

decoder
algebraic, 104, 125, 128
complexity, 147, 201, 202, 234, 254, 257,

277, 281, 297, 302, 306, 322
decoding (search) length, 184, 194
delay, 251
erasure, 149, 320
error trapping, 92
forward/backward recursion, 222, 237
hard-decision, 67, 189
inverse transfer function, 169
iterative, 130, 209, 221, 239, 282, 310
log-MAP, 210
log sum-product, 302
maximum a posteriori probability (MAP),

210, 214, 217
maximum likelihood (ML), 182, 192, 217
Meggitt, 91, 113

simplified sum-product, 297
soft-decision, 189, 194, 208
soft input, soft output, 209
spectral domain, 145
symbol/parity-check node, 308, 312, 314,

315
syndrome, 55, 89, 104, 120
turbo, 211, 239

delay (transform) domain (D-domain), 158,
161, 172

D-domain sequence, 173
detection

MAP, 214
matched filter, 12
ML, 181, 214
soft-decision, 213
symbol, 213

dimension
of block code 50
of vector space/sub-space, 47

distance, 32, 58, 177
BCH bound, 102, 113
cumulative, 182, 197
definition, 32, 58, 178
designed, 103
Euclidean, 189
Free/minimum free, 178, 180, 274
Hamming, 58, 182, 189
minimum, 58
soft, 193
squared Euclidean, 197

encoder
block, 50
catastrophic, 170, 205
channel, 3
connections, 160, 166, 281
convolutional, 158
memory, 159
non-systematic, 175
random, 33
recursive systematic, 209, 240
register length, 161
representations, 166
row/column, 273
shortest state sequence, 174, 176

OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

Index 359

source, 3
state diagram, 166, 178, 185
systematic, 52, 85, 159, 168, 176
tree diagram, 168
trellis diagram, 168, 176, 197, 202,

218
turbo, 210

entropy, 4, 5, 6, 8
a posteriori, 15
a priori, 15
conditional, 10
forward/backward, 14
mutual, 16, 20
noise (error), 18, 20
output (sink), 18
source, 5, 8, 38

erasure, 12, 77, 149, 317
equivocation, 17, 39
error

bit error rate (BER), 329, 332
burst, 91, 137, 159, 200, 249
correction, 41, 43, 59
detection, 41, 42, 55, 89
event, 55
floor, 253, 255
pattern, 56, 91
probability, 1, 61, 66, 68, 186
random, 42, 62
rate, 2, 66, 195
undetected, 56, 68, 91, 181

EXIT chart
for turbo codes, 257, 259
for LDPC codes, 306, 312, 314, 315

finite field
binary, 32, 45, 341
conjugate element, 100, 347
construction, 344
extended, 97, 339
Galois, 45, 339
geometry, 281
primitive element, 100, 342

finite state sequential machine (FSSM), 158
impulse response sequence, 159
finite impulse response (FIR), 170, 206
generating function, 179, 207

infinite impulse response (IIR), 175, 208
transfer function, 172

forward error control/correction, 42, 65, 79,
184, 318

Gaussian elimination, 89
graph

bipartite/Tanner, 279, 281, 287, 320
cycles, 282, 297, 324
parity-check node, 283
symbol node, 283

group, 339

information
a priori, 209, 237, 239
average, 4
extrinsic, 209, 237
measure, 1, 3
mutual/transinformation, 10, 16, 39, 265,

312
rate, 4, 5
self, 38

inner product, 48, 51
interleaving, 137, 148, 253

block, 243, 25, 243, 275
convolutional, 154, 249, 250
in compact disc, 138
linear, 253
of connections, 308
permutation, 253, 273
random/pseudo-random, 209, 249, 251,

274
intersymbol interference (ISI), 328, 330

key equation, 107, 123, 125

L’Hopital’s rule, 5
linear dependence/independence, 47
log likelihood ratio (LLR), 214
low pass filter, 330

Mason’s rule, 179
matrix

generator, 48, 51, 53, 87, 162, 278, 319
parity-check, 54, 58, 278
puncturing, 201

OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

360 Index

matrix (Continued)
row operation, 48, 87
row space, 48
state transfer function, 172, 176
transfer function, 158, 162, 170, 176
transition probability, 39

message, 2, 3, 43
modulo-2 addition/multiplication, 45, 82,

340

Newton identities, 130
Nyquist, 5, 30, 34

octal notation, 240

parity-check, 43, 52
equations, 53, 57

performance of coding, 23, 32, 34, 59, 65,
67, 68, 77, 152, 200, 203, 234, 257,
269, 277, 279, 281, 282, 297, 322

coding gain, 79, 195
error floor, 253, 255
EXIT chart, 257, 306
soft-decision bound, 194
waterfall region, 253, 255, 264, 269
union bound, 187

polynomial, 339, 342
code, 83, 100, 161
error evaluation, 106, 122
error location, 106, 122, 129
generator, 83, 94, 112, 115
irreducible, 100, 112, 343
message, 85
minimal, 97, 99, 112, 348
monic, 81
parity-check, 88, 94
primitive, 97,112, 343
remainder, 85
roots, 97, 101, 343
syndrome, 90, 123

power spectral density, 30, 65
probability

a posteriori, 15, 219, 234, 281
a priori, 15, 209
backward, 14

Bayes’ rule, 13, 192, 212, 235, 283
binomial distribution, 42
channel, 13
conditional, 10
conditional distribution, 213
density function, 24, 193, 212, 330
distribution function, 212
erasure, 12
error, 1
forward/transitional, 14, 39, 216
joint, 14
log likelihood ratio (LLR), 214, 234, 310
marginal distribution, 216
measure/metric, 212
node error, 188
output/sink, 13, 19
source, 5, 38

Q-function, 66, 333

retransmission error control/correction, 12,
41, 68, 80, 317

sampling, 5, 27, 30, 137, 189, 213, 329
sequence, 157

data, 327
generating function, 179, 185
generator, 160
survivor, 183

Shannon, 1, 2, 3, 10, 22, 34
limit, 36, 37, 209, 277, 322
theorems, 22, 25, 317

signal
average energy, 65, 335
digital, 327
M-ary, 40
non-return-to-zero (NRZ), 334
polar, 67, 190, 196, 214, 328, 334
pulse, 327
pulse amplitude modulated, 327
space, 27
-to-noise ratio, 35, 40, 65, 234, 335
unipolar, 327, 334
vector, 27, 28

sink, 3, 19

OTE/SPH OTE/SPH
JWBK102-IND JWBK102-Farrell June 17, 2006 19:11 Char Count= 0

Index 361

source, 1, 5
binary, 1
coding theorem, 22
compression, 2
discrete memoryless, 38
efficiency, 38
entropy, 5, 8, 38
extended, 9
information, 1, 6
information rate, 5, 6, 65
Markov, 215

standard array, 61
Stirling’s approximation, 24, 35
symbol, 3, 12, 213, 329
syndrome, 55, 61, 89

equations, 97, 124, 129, 146
vector, 55

systems
communications, 3, 31, 34, 42, 65, 68, 92,

200
compact disc (CD), 12, 136
data networks/internet, 12, 92, 317
duplex, 41, 317

trellis, 168, 192, 217, 223

Vandermonde determinant, 102, 117
vector

basis, 48
dual subspace, 48, 49
space, 44, 189
subspace, 46, 157

weight, 58

panchish
File Attachment
John.Wiley.and.Sons.Essentials.of.Error.Control.Coding.Sep.2006.pdf

Le théorème de Shannon implique l'existene des bonne familles des odes binaires
{Cn}n ([n, kn, dn]2-odes) de longueur n→∞, ave kn = [Rn].On expliquera dans la setion suivante la signi�ation géométrique de l'entropie : H(p)est la proportion logarithmique du volume V (n, d) de la boule de Hamming de rayonrelatif p :

H(p) = lim
n→∞

log2(V2(n, r))

n
, si r

n
→ p.Représentation graphique : fontion d'entropie

> H(p):=- p*log(p)/log(2)-(1-p)*log(1-p)/log(2);
> 'H(p)=- p*log(p)/log(2)-(1-p)*log(1-p)/log(2)';

H(p) := −p ln(p)

ln(2)
− (1− p) ln(1− p)

ln(2)

> plot([1-H(p)℄, p = 0..1, R = 0..1,disont=true);
> 'R=1+p*log(p)/log(2)+(1-p)*log(1-p)/log(2)';

47

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1
p

R = 1 +
p log(p)

log(2)
+

(1− p) log(1− p)

log(2)

48

Remarque 1.11
P ∗(Mn, n, p) = min

C
(PC = M−1

n

Mn∑

i=1

Pi)où Pi est la probabilité de deodage erroné d'un mot E(ui) ∈ C. Le théorème signi�e qu'ilexiste une famille {Cn} ⊂ F
n
2 des odes binaires de ardinal
Card (Cn) = Mn = 2[Rn] →∞telle que la valeur minimale de la probabilité de deodage inorrete par un mot du ode

Cn ⊂ F
n
2

P ∗(Mn, n, p) = PCn
= M−1

n

Mn∑

i=1

Pi → 0.Remarque 1.12 Dans le as d'un anal q-aire on utilise la borne de Gilbert -Varshamov
R ≥ 1−Hq(δ) pour l'existene des bons odes, où Hq(δ) est la fontion d'entropie q-aire :pour δ ∈ [0, q−1

q]

Hq(0) = 0,Hq(δ) =
δ log(q − 1)

log(q)
− δ log(δ)

log(q)
− (1− δ) log(1− δ)

log(q)
.

49

panchish
Sticky Note
voir Chapitre 6

2 Distane de Hamming, rendement et vitesse de trans-mission, distane relativeBorne de Hamming. Borne de Singleton.2.1 Capaité de orretion et rayon de reouvrementSoit C = ImE un [n, k, d]q-ode, E : F k → Fn. Rapellons que C véri�e la onditionde deodage d'ordre t (voir Dé�nition 1.5) si pour tout y ∈ Fn il existe au plus un mot
x ∈ C ⊂ Fn tel que d(x, y) ≤ t. Dans e as les boules

B(x, t) = {y ∈ Fn | d(x, y) ≤ t} ⊂ Fnpour la distane de Hamming soient deux-à-deux disjointes, et le ode C peut orriger terreurs si son éart d est tel que d ≥ 2t + 1 (voir Théorème 1.6).Définition 2.1 (a) Le nombre t =
[

d−1
2

] est dit la apaité de orretion(b) On appelle rayon de reouvrement ρ(C) du ode C le plus petit rayon r tel quel'ensemble des boules B(x, r) de rayon r entrées en haque mot de ode x ∈ C, forme unreouvrement de Fn. On a t ≤ ρ(C) et en as d'égalité le ode C est dit parfait.
50

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

panchish
Sticky Note
PLAN du 28/1 (suite):-Programmes en PARI (démonstration)-Capacité de correction et rayon de recouvrement-Borne de Hamming et borne de Singleton-Borne asymptotique de Hamming -Borne asymptotique de Singleton-Codes linéaires, exemples. -Matrice génératrice et matrice de correction. Codes de Hamming-Decodage par leader de classe

{
G =[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1;
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
]
}
\\
Chiffres(d,l, n)=
{
 \\ integer n, base d
 \\ vector length l
 local(i,m,v);
 v=vector(l);
 m=n;
for(i = 0,l-1,
v[l-i]=m%d;
m=floor(m/d));
return(v);
} /* end of Chiffres */
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
GM=matrix(6,32,k,l, 0);
{
for(k=0,5,
for(l=0,31,
GM[k+1,l+1]= if(k,Chiffres(2,6,l)[k+1],1);
));GM
}
\\\\\\\\\\\\\\\\\\\\\\\\\Coding map via matrix multiplication
Chiffres(d,l, n)=
{
 \\ integer n, base d
 \\ vector length l
 local(i,m,v);
 v=vector(l);
 m=n;
for(i = 0,l-1,
v[l-i]=m%d;
m=floor(m/d));
return(v);
} /* end of Chiffres */
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
GM=matrix(6,32,k,l, 0);
{
for(k=0,5,
for(l=0,31,
GM[k+1,l+1]= if(k,Chiffres(2,6,l)[k+1],1);
));GM
}
\\\\\\\\\\\\\\\\\\\\\\\\\Coding map via matrix multiplication
{u=[1,1,0,0,0,0];E(u)=lift(Mod(1,2)*u*GM);}
E(u)
u=[1,0,0,0,0,1];
\\
for(k=0,63,print(k " u=",Chiffres(2,6,k)",\nE(u)=",E(u)))
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Solving a linear system: NAIVE DECODING
{
C = Mod(1,2)*
[1, 0, 0, 0, 0, 0;
1, 1, 0, 0, 0, 0;
1, 0, 1, 0, 0, 0;
1, 0, 0, 1, 0, 0;
1, 0, 0, 0, 1, 0;
1, 0, 0, 0, 0, 1];
y= Mod(1,2)*[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
b =Mod(1,2)*[y[1],y[17],y[9],y[5],y[3],y[2]]~;
lift(matsolve(C,b))
}
\\ Verification
{
al=matsolve(C,b);
lift(C*al-b)
}
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Weight of the error
{
yt=al~*GM; lift(yt)
}
et=y-yt; norml2(lift(et))
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ NAIVE DECODING IS BAD!

panchish
File Attachment
pari-linsolve03.gp

User’s Guide

to

PARI / GP

C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier

Laboratoire A2X, U.M.R. 9936 du C.N.R.S.
Université Bordeaux I, 351 Cours de la Libération

33405 TALENCE Cedex, FRANCE
e-mail: pari@math.u-bordeaux.fr

Home Page:
http://www.parigp-home.de/

Primary ftp site:
ftp://megrez.math.u-bordeaux.fr/pub/pari/

last updated 5 November 2000
for version 2.1.1

Copyright c© 2000 The PARI Group

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions, or translations, of this manual
under the conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

PARI/GP is Copyright c© 2000 The PARI Group

PARI/GP is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. It is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY WHATSOEVER.

Table of Contents

Chapter 1: Overview of the PARI system . 5
1.1 Introduction . 5

1.2 The PARI types . 6

1.3 Operations and functions . 9

Chapter 2: Specific Use of the GP Calculator . 13
2.1 Defaults and output formats . 14

2.2 Simple metacommands . 20

2.3 Input formats for the PARI types . 23

2.4 GP operators . 26

2.5 The general GP input line . 29

2.6 The GP/PARI programming language . 30

2.7 Interfacing GP with other languages . 39

2.8 The preferences file . 39

2.9 Using GP under GNU Emacs . 41

2.10 Using GP with readline . 42

Chapter 3: Functions and Operations Available in PARI and GP 45
3.1 Standard monadic or dyadic operators . 46

3.2 Conversions and similar elementary functions or commands . 49

3.3 Transcendental functions . 57

3.4 Arithmetic functions . 65

3.5 Functions related to elliptic curves . 76

3.6 Functions related to general number fields . 82

3.7 Polynomials and power series . 119

3.8 Vectors, matrices, linear algebra and sets . 124

3.9 Sums, products, integrals and similar functions . 136

3.10 Plotting functions . 139

3.11 Programming under GP . 145

Chapter 4: Programming PARI in Library Mode . 153
4.1 Introduction: initializations, universal objects . 153

4.2 Important technical notes . 154

4.3 Creation of PARI objects, assignments, conversions . 157

4.4 Garbage collection . 160

4.5 Implementation of the PARI types . 167

4.6 PARI variables . 171

4.7 Input and output . 173

4.8 A complete program . 177

4.9 Adding functions to PARI . 181

Chapter 5: Technical Reference Guide for Low-Level Functions 187
5.1 Level 0 kernel (operations on unsigned longs) . 187

5.2 Level 1 kernel (operations on longs, integers and reals) . 188

5.3 Level 2 kernel (operations on general PARI objects) . 193

Appendix A: Installation Guide for the UNIX Versions . 199
Appendix B: A Sample program and Makefile . 205
Appendix C: Summary of Available Constants . 207
Index . 209

4

Chapter 1:

Overview of the PARI system

1.1 Introduction.

The PARI system is a package which is capable of doing formal computations on recursive types at
high speed; it is primarily aimed at number theorists, but can be used by anybody whose primary
need is speed.

Although quite an amount of symbolic manipulation is possible in PARI, this system does very
badly compared to much more sophisticated systems like Axiom, Macsyma, Maple, Mathematica
or Reduce on such manipulations (e.g. multivariate polynomials, formal integration, etc. . .). On
the other hand, the three main advantages of the system are its speed (which can be between 5
and 100 times better on many computations), the possibility of using directly data types which
are familiar to mathematicians, and its extensive algebraic number theory module which has no
equivalent in the above-mentioned systems.

It is possible to use PARI in two different ways:

1) as a library, which can be called from an upper-level language application (for instance
written in C, C++, Pascal or Fortran);

2) as a sophisticated programmable calculator, named GP, which contains most of the
control instructions of a standard language like C.

The use of GP is explained in chapters 2 and 3, and the programming in library mode is
explained in chapters 3, 4 and 5. In the present Chapter 1, we give an overview of the system.

Important note: A tutorial for GP is provided in the standard distribution (tutorial.dvi) and
you should read this first (at least the beginning of it, you can skip the specialized topics you’re not
interested in). You can then start over and read the more boring stuff which lies ahead. But you
should do that eventually, at the very least the various Chapter headings. You can have a quick
idea of what is available by looking at the GP reference card (refcard.dvi or refcard.ps). In
case of need, you can then refer to the complete function description in Chapter 3.

How to get the latest version?

This package can be obtained by anonymous ftp from quite a number of sites (ask archie or your
favourite Web search engine for the site nearest to you). But, if you want the very latest version
(including development versions), you should use the anonymous ftp address

ftp://megrez.math.u-bordeaux.fr/pub/pari

where you will find all the different ports and possibly some binaries. A lot of version information,
mailing list archives, and various tips can be found on PARI’s (fledgling) home page:

http://www.parigp-home.de/

5

Implementation notes: (You can skip this section and switch to Section 1.2 if you’re not inter-
ested in hardware technicalities. You won’t miss anything that would be mentioned here.)

The PARI package contains essentially three versions. The first one is a specific implementation
for 680x0 based computers which contains a kernel (for the elementary arithmetic operations on
multiprecise integers and real numbers, and binary/decimal conversion routines) entirely written in
MC68020 assembly language (around 6000 lines), the rest being at present entirely written in ANSI
C with a C++-compatible syntax. The system runs on SUN-3/xx, Sony News, NeXT cubes and
on 680x0 based Macs with x≥2. It should be very easy to port on any other 680x0 based machine
like for instance the Apollo Domain workstations.

Note that the assembly language source code uses the SUN syntax, which for some strange
reason differs from the Motorola standard used by most other 680x0 machines in the world. In the
Mac distribution, we have included a program which automatically converts from the SUN syntax
into the standard one, at least for the needed PARI assembly file. On the Unix distribution, we
have included other versions of the assembly file, using different syntaxes. This version is not
really maintained anymore since we lack the hardware to update/test it.

The second version is a version where most of the kernel routines are written in C, but the
time-critical parts are written in a few hundred lines of assembler at most. At present there exist
three versions for the Sparc architecture: one for Sparc version 7 (e.g. Sparcstation 1, 1+, IPC, IPX
or 2), one for Sparc version 8 with supersparc processors (e.g. Sparcstation 10 and 20) and one for
Sparc version 8 with microsparc I or II processors (e.g. Sparcclassic or Sparcstation 4 and 5). No
specific version is written for the Ultrasparc since it can use the microsparc II version. In addition,
versions exist for the HP-PA architecture, for the PowerPC architecture (only for the 601), for the
Intel family starting at the 386 (under Linux, OS/2, MSDOS, or Windows), and finally for the
DEC Alpha 64-bit processors.

Finally, a third version is written entirely in C, and should be portable without much trouble
to any 32 or 64-bit computer having no real memory constraints. It is about 2 times slower than
versions with a small assembly kernel. This version has been tested for example on MIPS based
DECstations 3100 and 5000 and SGI computers.

In addition to Unix workstations and Macs, PARI has been ported to a considerable number
of smaller and larger machines, for example the VAX, 68000-based machines like the Atari, Mac
Classic or Amiga 500, 68020 machines such as the Amiga 2500 or 3000, and even to MS-DOS 386
or better machines, using the EMX port of the GNU C compiler and DOS-extender.

1.2 The PARI types.

The crucial word in PARI is recursiveness: most of the types it knows about are recursive. For
example, the basic type Complex exists (actually called t_COMPLEX). However, the components
(i.e. the real and imaginary part) of such a “complex number” can be of any type. The only sensible
ones are integers (we are then in Z[i]), rational numbers (Q[i]), real numbers (R[i] = C), or even
elements of Z/nZ ((Z/nZ)[i] when this makes sense), or p-adic numbers when p ≡ 3 mod 4 (Qp[i]).

This feature must of course not be used too rashly: for example you are in principle allowed to
create objects which are “complex numbers of complex numbers”, but don’t expect PARI to make
sensible use of such objects: you will mainly get nonsense.

On the other hand, one thing which is allowed is to have components of different, but com-
patible, types. For example, taking again complex numbers, the real part could be of type integer,
and the imaginary part of type rational.

6

By compatible, we mean types which can be freely mixed in operations like + or ×. For
example if the real part is of type real, the imaginary part cannot be of type integermod (integers
modulo a given number n).

Let us now describe the types. As explained above, they are built recursively from basic types
which are as follows. We use the letter T to designate any type; the symbolic names correspond to
the internal representations of the types.

type t_INT Z Integers (with arbitrary precision)
type t_REAL R Real numbers (with arbitrary precision)
type t_INTMOD Z/nZ Integermods (integers modulo n)
type t_FRAC Q Rational numbers (in irreducible form)
type t_FRACN Q Rational numbers (not necessarily in irreducible form)
type t_COMPLEX T [i] Complex numbers
type t_PADIC Qp p-adic numbers
type t_QUAD Q[w] Quadratic Numbers (where [Z[w] : Z] = 2)
type t_POLMOD T [X]/P (X)T [X] Polmods (polynomials modulo P)
type t_POL T [X] Polynomials
type t_SER T ((X)) Power series (finite Laurent series)
type t_RFRAC T (X) Rational functions (in irreducible form)
type t_RFRACN T (X) Rational functions (not necessarily in irreducible form)
type t_VEC Tn Row (i.e. horizontal) vectors
type t_COL Tn Column (i.e. vertical) vectors
type t_MAT Mm,n(T) Matrices
type t_LIST Tn Lists
type t_STR Character strings

and where the types T in recursive types can be different in each component.

In addition, there exist types t_QFR and t_QFI for binary quadratic forms of respectively
positive and negative discriminants, which can be used in specific operations, but which may
disappear in future versions.

Every PARI object (called GEN in the sequel) belongs to one of these basic types. Let us have
a closer look.

1.2.1 Integers and reals: they are of arbitrary and varying length (each number carrying in its
internal representation its own length or precision) with the following mild restrictions (given for
32-bit machines, the restrictions for 64-bit machines being so weak as to be considered inexistent):
integers must be in absolute value less than 2268435454 (i.e. roughly 80807123 digits). The precision
of real numbers is also at most 80807123 significant decimal digits, and the binary exponent must
be in absolute value less than 223 = 8388608.

Note that PARI has been optimized so that it works as fast as possible on numbers with at
most a few thousand decimal digits. In particular, not too much effort has been put into fancy
multiplication techniques (only the Karatsuba multiplication is implemented). Hence, although it
is possible to use PARI to do computations with 107 decimal digits, much better programs can be
written for such huge numbers.

Integers and real numbers are completely non-recursive types and are sometimes called the
leaves.

7

1.2.2 Integermods, rational numbers (irreducible or not), p-adic numbers, polmods,
and rational functions: these are recursive, but in a restricted way.

For integermods or polmods, there are two components: the modulus, which must be of type
integer (resp. polynomial), and the representative number (resp. polynomial).

For rational numbers or rational functions, there are also only two components: the numerator
and the denominator, which must both be of type integer (resp. polynomial).

Finally, p-adic numbers have three components: the prime p, the “modulus” pk, and an approx-
imation to the p-adic number. Here Zp is considered as lim←−Z/pkZ, and Qp as its field of fractions.

Like real numbers, the codewords contain an exponent (giving essentially the p-adic valuation of
the number) and also the information on the precision of the number (which is in fact redundant
with pk, but is included for the sake of efficiency).

1.2.3 Complex numbers and quadratic numbers: quadratic numbers are numbers of the
form a+ bw, where w is such that [Z[w] : Z] = 2, and more precisely w =

√
d/2 when d ≡ 0 mod 4,

and w = (1 +
√
d)/2 when d ≡ 1 mod 4, where d is the discriminant of a quadratic order. Complex

numbers correspond to the very important special case w =
√
−1.

Complex and quadratic numbers are partially recursive: the two components a and b can be
of type integer, real, rational, integermod or p-adic, and can be mixed, subject to the limitations
mentioned above. For example, a+ bi with a and b p-adic is in Qp[i], but this is equal to Qp when
p ≡ 1 mod 4, hence we must exclude these p when one explicitly uses a complex p-adic type.

1.2.4 Polynomials, power series, vectors, matrices and lists: they are completely recur-
sive: their components can be of any type, and types can be mixed (however beware when doing
operations). Note in particular that a polynomial in two variables is simply a polynomial with
polynomial coefficients.

Note that in the present version 2.1.1 of PARI, there is a bug in the handling of power series of
power series (i.e. power series in several variables). However power series of polynomials (which are
power series in several variables of a special type) are OK. The reason for this bug is known, but it
is difficult to correct because the mathematical problem itself contains some amount of imprecision.

1.2.5 Strings: These contain objects just as they would be printed by the GP calculator.

1.2.6 Notes:

1.2.6.1 Exact and imprecise objects: we have already said that integers and reals are called
the leaves because they are ultimately at the end of every branch of a tree representing a PARI
object. Another important notion is that of an exact object: by definition, numbers of basic type
real, p-adic or power series are imprecise, and we will say that a PARI object having one of these
imprecise types anywhere in its tree is not exact. All other PARI objects will be called exact. This
is a very important notion since no numerical analysis is involved when dealing with exact objects.

1.2.6.2 Scalar types: the first nine basic types, from t_INT to t_POLMOD, will be called scalar
types because they essentially occur as coefficients of other more complicated objects. Note that
type t_POLMOD is used to define algebraic extensions of a base ring, and as such is a scalar type.

8

1.2.6.3 What is zero? This is a crucial question in all computer systems. The answer we give in
PARI is the following. For exact types, all zeros are equivalent and are exact, and thus are usually
represented as an integer zero. The problem becomes non-trivial for imprecise types. For p-adics
the answer is as follows: every p-adic number (including 0) has an exponent e and a “mantissa”
(a purist would say a “significand”) u which is a p-adic unit, except when the number is zero (in
which case u is zero), the significand having a certain “precision” k (i.e. being defined modulo pk).
Then this p-adic zero is understood to be equal to O(pe), i.e. there are infinitely many distinct
p-adic zeros. The number k is thus irrelevant.

For power series the situation is similar, with p replaced by X, i.e. a power series zero will be
O(Xe), the number k (here the length of the power series) being also irrelevant.

For real numbers, the precision k is also irrelevant, and a real zero will in fact be O(2e) where
e is now usually a negative binary exponent. This of course will be printed as usual for a real
number (0.0000 · · · in f format or 0.Exx in e format) and not with a O() symbol as with p-adics or
power series. With respect to the natural ordering on the reals we make the following convention:
whatever its exponent a real zero is smaller than any positive number, and any two real zeroes are
equal.

1.3 Operations and functions.

1.3.1 The PARI philosophy. The basic philosophy which governs PARI is that operations and
functions should, firstly, give as exact a result as possible, and secondly, be permitted if they make
any kind of sense.

More specifically, if you do an operation (not a transcendental one) between exact objects,
you will get an exact object. For example, dividing 1 by 3 does not give 0.33333 · · · as you might
expect, but simply the rational number (1/3). If you really want the result in type real, evaluate
1./3 or add 0. to (1/3).

The result of operations between imprecise objects will be as precise as possible. Consider for
example one of the most difficult cases, that is the addition of two real numbers x and y. The
accuracy of the result is a priori unpredictable; it depends on the precisions of x and y, on their
sizes (i.e. their exponents), and also on the size of x+ y. PARI works out automatically the right
precision for the result, even when it is working in calculator mode GP where there is a default
precision.

In particular, this means that if an operation involves objects of different accuracies, some
digits will be disregarded by PARI. It is a common source of errors to forget, for instance, that a
real number is given as r + 2eε where r is a rational approximation, e a binary exponent and ε is
a nondescript real number less than 1 in absolute value*. Hence, any number less than 2e may be
treated as an exact zero:

? 0.E-28 + 1.E-100
%1 = 0.E-28
? 0.E100 + 1
%2 = 0.E100

As an exercise, if a = 2^(-100), why do a + 0. and a * 1. differ ?

* this is actually not quite true: internally, the format is 2b(a+ ε), where a and b are integers

9

The second part of the PARI philosophy is that PARI operations are in general quite permissive.
For instance taking the exponential of a vector should not make sense. However, it frequently
happens that a computation comes out with a result which is a vector with many components, and
one wants to get the exponential of each one. This could easily be done either under GP or in
library mode, but in fact PARI assumes that this is exactly what you want to do when you take
the exponential of a vector, so no work is necessary. Most transcendental functions work in the
same way (see Chapter 3 for details).

An ambiguity would arise with square matrices. PARI always considers that you want to do
componentwise function evaluation, hence to get for example the exponential of a square matrix
you would need to use a function with a different name, matexp for instance. In the present version
2.1.1, this is not yet implemented. See however the program in Appendix C, which is a first attempt
for this particular function.

The available operations and functions in PARI are described in detail in Chapter 3. Here is
a brief summary:

1.3.2 Standard operations.

Of course, the four standard operators +, -, *, / exist. It should once more be emphasized that
division is, as far as possible, an exact operation: 4 divided by 3 gives (4/3). In addition to
this, operations on integers or polynomials, like \ (Euclidean division), % (Euclidean remainder)
exist (and for integers, \/ computes the quotient such that the remainder has smallest possible
absolute value). There is also the exponentiation operator ^, when the exponent is of type integer.
Otherwise, it is considered as a transcendental function. Finally, the logical operators ! (not prefix
operator), && (and operator), || (or operator) exist, giving as results 1 (true) or 0 (false). Note
that & and | are also accepted as synonyms respectively for && and ||. However, there is no bitwise
and or or.

1.3.3 Conversions and similar functions.

Many conversion functions are available to convert between different types. For example floor,
ceiling, rounding, truncation, etc. . . . Other simple functions are included like real and imaginary
part, conjugation, norm, absolute value, changing precision or creating an integermod or a polmod.

1.3.4 Transcendental functions.

They usually operate on any object in C, and some also on p-adics. The list is everexpanding and
of course contains all the elementary functions, plus already a number of others. Recall that by
extension, PARI usually allows a transcendental function to operate componentwise on vectors or
matrices.

1.3.5 Arithmetic functions.

Apart from a few like the factorial function or the Fibonacci numbers, these are functions which
explicitly use the prime factor decomposition of integers. The standard functions are included. In
the present version 2.1.1, a primitive, but useful version of Lenstra’s Elliptic Curve Method (ECM)
has been implemented.

There is now a very large package which enables the number theorist to work with ease in alge-
braic number fields. All the usual operations on elements, ideals, prime ideals, etc. . . are available.

More sophisticated functions are also implemented, like solving Thue equations, finding integral
bases and discriminants of number fields, computing class groups and fundamental units, computing

10

in relative number field extensions (including explicit class field theory), and also many functions
dealing with elliptic curves over Q or over local fields.

1.3.6 Other functions.

Quite a number of other functions dealing with polynomials (e.g. finding complex or p-adic roots,
factoring, etc), power series (e.g. substitution, reversion), linear algebra (e.g. determinant, charac-
teristic polynomial, linear systems), and different kinds of recursions are also included. In addition,
standard numerical analysis routines like Romberg integration (open or closed, on a finite or infinite
interval), real root finding (when the root is bracketed), polynomial interpolation, infinite series
evaluation, and plotting are included. See the last sections of Chapter 3 for details.

11

12

Chapter 2:

Specific Use of the GP Calculator

Originally, GP was designed as a debugging tool for the PARI system library, and hence not much
thought had been given to making it user-friendly. The situation has now changed somewhat, and
GP is very useful as a stand-alone tool. The operations and functions available in PARI and GP
will be described in the next chapter. In the present one, we describe the specific use of the GP
programmable calculator.

For starting the calculator, the general commandline syntax is:

gp [-s stacksize] [-p primelimit]

where items within brackets are optional*. These correspond to some internal parameters of GP, or
defaults. See Section 2.1 below for a list and explanation of all defaults, there are many more than
just those two. These defaults can be changed by adding parameters to the input line as above, or
interactively during a GP session or in a preferences file (also known as gprc).

UNIX: Some new features were developed on UNIX platforms, and depend heavily on the operating system
in use. It is possible that some of these will be ported to other operating systems (BeOS, MacOS,
DOS, OS/2, Windows, etc.) in future versions (most of them should be easy tasks for anybody
acquainted with those). As for now, most of them were not. So, whenever a specific feature of the
UNIX version is discussed in a paragraph, a UNIX sign sticks out in the left margin, like here. Just
skip these if you’re stranded on a different operating system: the core GP functions (i.e. at least
everything which is even faintly mathematical in nature) will still be available to you. It may also
be possible (and then definitely advisable) to install Linux or FreeBSD on your machine.

Note (added in version 2.0.12): Most UNIX goodies are now available for DOS, OS/2 and
Windows, thanks to the EMX/RSX runtime package (install excluded under DOS, since DLLs are
not supported by the OS). For Windows 95/98 and NT, you can also use the Cygwin compatibility
library to run GP almost as if running a genuine Unix system. Note that a native Linux binary will
be much faster than one using any of these compatibility packages (see the MACHINES benchmark
file, included in the distribution).

EMACS: If you have GNU Emacs, you can work in a special Emacs shell (see Section 2.9), which is started
by typing M-x gp (where as usual M is the Meta key) if you accept the default stack, prime and
buffer sizes, or C-u M-x gp which will ask you for the name of the gp executable, the stack size,
the prime limit and the buffer size. Specific features of this Emacs shell will be indicated by an
EMACS sign.

If a preferences file (or gprc, to be discussed in Section 2.8) can be found, GP will then read it
and execute the commands it contains. This provides an easy way to customize GP without having
to delve into the code to hardwire it to your likings.

A copyright message then appears which includes the version number. Please note this number,
so as to be sure to have the most recent version if you wish to have updates of PARI. The present
manual is written for version 2.1.1, and has undergone major changes since the 1.39.xx versions.

* On the Macintosh, even after clicking on the gp icon, once in the MPW Shell, you still need
to type explicitly a command of the above form.

13

After the copyright, the computer works for a few seconds (it is in fact computing and storing
a table of primes), writes the top-level help information, some initial defaults, and then waits after
printing its prompt (initially: ?).

Note that at any point the user can type Ctrl-C (that is press simultaneously the Control
and C keys): the current computation will be interrupted and control given back to the user at the
GP prompt.

The top-level help information tells you that (as in many systems) to get help, you should type
a ?. When you do this and hit return, a menu appears, describing the eleven main categories of
available functions and what to do to get more detailed help. If you now type ?n with 1 ≤ n ≤ 11,
you will get the list of commands corresponding to category n and simultaneously to Section 3.n
of this manual.

If you type ?functionname where functionname is the name of a PARI function, you will get
a short explanation of this function.

UNIX: If extended help (see Section 2.2.1) is available on your system, you can double or triple the ? sign
to get much more: respectively the complete description of the function (e.g. ?? sqrt), or a list of
GP functions relevant to your query (e.g. ??? "elliptic curve" or ??? "quadratic field").

If GP was compiled with the right options (see Appendix A), a line editor will be available
to correct the command line, get automatic completions, and so on. See Section 2.10.1 for a short
summary of available commands. This might not be available for all architectures.

Whether extended on-line help and line editing are available or not is indicated in the GP
banner, between the version number and the copyright message.

If you type ?\ you will get a short description of the metacommands (keyboard shortcuts).

Finally, typing ?. will return the list of available (pre-defined) member functions. These
are functions attached to specific kind of objects, used to retrieve easily some information from
complicated structures (you can define your own but they won’t be shown here). We will soon
describe these commands in more detail.

As a general rule, under GP, commands starting with \ or with some other symbols like ?
or #, are not computing commands, but are metacommands which allow the user to exchange
information with GP. The available metacommands can be divided into default setting commands
(explained below) and simple commands (or keyboard shortcuts, to be dealt with in Section 2.2).

2.1 Defaults and output formats.

There are many internal variables in GP, defining how the system will behave in certain situations,
unless a specific override has been given. Most of them are a matter of basic customization (colors,
prompt) and will be set once and for all in your preferences file (see Section 2.8), but some of them
are useful interactively (set timer on, increase precision, etc.).

The function used to manipulate these values is called default, which is described in Sec-
tion 3.11.2.4. The basic syntax is

default(def , value),

which sets the default def to value. In interactive use, most of these can be abbreviated using
historic GP metacommands (mostly, starting with \), which we shall describe in the next section.

14

Here we will only describe the available defaults and how they are used. Just be aware that
typing default by itself will list all of them, as well as their current values (see \d). Just after the
default name, we give between parentheses the initial value when GP starts (assuming you did not
tamper with it using command-line switches or a gprc).

Note: the suffixes k or M can be appended to a value which is a numeric argument, with the effect
of multiplying it by 103 or 106 respectively. Case is not taken into account there, so for instance
30k and 30K both stand for 30000. This is mostly useful to modify or set the defaults primelimit
or stacksize which typically involve a lot of trailing zeroes.

(somewhat technical) Note: As we will see in Section 2.6.5, the second argument to default
will be subject to string context expansion, which means you can use run-time values. In other
words, something like a = 3; default(logfile, "some filename" a ".log") will work (and log
the output in some filename3.log).

Some defaults will be expanded further when the values are used (after the above expansion
has been performed):

• time expansion: the string is sent through the library function strftime. This means that
%char combinations have a special meaning, usually related to the time and date. For instance, %H
= hour (24-hour clock) and %M = minute [00,59] (on a Unix system, you can try man strftime at
your shell prompt to get a complete list). This is applied to prompt, psfile, and logfile. For
instance,

default(prompt,"(%R) ? ")

will prepend the time of day, in the form (hh:mm) to GP’s usual prompt.

UNIX: • environment expansion: When the string contains a sequence of the form $SOMEVAR
(e.g. $HOME) the environment is searched and if SOMEVAR is defined, the sequence is replaced by
the corresponding value. Also the ~ symbol has the same meaning as in the C and bash shells —
~ by itself stands for your home directory, and ~user is expanded to user’s home directory. This
is applied to all filenames.

2.1.1 buffersize (default 30k): GP input is buffered, which means only so many bytes of data can
be read at a time before a command is executed. This used to be a very important variable, to allow
for very large input files to be read into GP, for example large matrices, without it complaining
about “unused characters”. Currently, buffersize is automatically adjusted to the size of the data
that are to be read. It will never go down by itself though. Thus this option may come in handy
to decrease the buffer size after some unusually large read, when you don’t need to keep gigantic
buffers around anymore.

UNIX: 2.1.2 colors (default ""): this default is only usable if GP is running within certain color-capable
terminals. For instance rxvt, color xterm and modern versions of xterm under X Windows, or
standard Linux/DOS text consoles. It causes GP to use a small palette of colors for its output.
With xterms, the colormap used corresponds to the resources Xterm*colorn where n ranges from
0 to 15 (see the file misc/color.dft for an example). Legal values for this default are strings
"a1,. . . ,ak" where k ≤ 7 and each ai is either

• the keyword no (use the default color, usually black on transparent background)

• an integer between 0 and 15 corresponding to the aforementioned colormap

15

• a triple [c0, c1, c2] where c0 stands for foreground color, c1 for background color, and c2 for
attributes (0 is default, 1 is bold, 4 is underline).

The output objects thus affected are respectively error messages, history numbers, prompt,
input line, output, help messages, timer (that’s seven of them). If k < 7, the remaining ai are
assumed to be no. For instance

default(colors, "9, 5, no, no, 4")

typesets error messages in color 9, history numbers in color 5, output in color 4, and does not affect
the rest.

A set of default colors for dark (reverse video or PC console) and light backgrounds respectively
is activated when colors is set to darkbg, resp. lightbg (or any proper prefix: d is recognized as
an abbreviation for darkbg).

EMACS: In the present version, this default is incompatible with Emacs. Changing it will just fail silently
(the alternative would be to display escape sequences as is, since Emacs will refuse to interpret
them). On the other hand, you can customize highlighting in your .emacs so as to mimic exactly
this behaviour. See emacs/pariemacs.txt.

If you use an old readline library (version number less than 2.0), you should do as in the
example above and leave a3 and a4 (prompt and input line) strictly alone. Since old versions of
readline did not handle escape characters correctly (or more accurately, treated them in the only
sensible way since they did not care to check all your terminal capabilities: it just ignored them),
changing them would result in many annoying display bugs.

The hacker’s way to check if this is the case would be to look in the readline.h include file
(wherever your readline include files are) for the string RL PROMPT START IGNORE. If it’s there, you
are safe.

A more sensible way is to make some experiments, and get a more recent readline if yours
doesn’t work the way you’d like it to. See the file misc/gprc.dft for some examples.

2.1.3 compatible (default 0): The GP function names and syntax have changed tremendously
between versions 1.xx and 2.00. To help you cope with this we provide some kind of backward
compatibility, depending on the value of this default:

compatible = 0: no backward compatibility. In this mode, a very handy function, to be
described in Section 3.11.2.27, is whatnow, which tells you what has become of your favourite
functions, which GP suddenly can’t seem to remember.

compatible = 1: warn when using obsolete functions, but otherwise accept them. The
output uses the new conventions though, and there may be subtle incompatibilities between the
behaviour of former and current functions, even when they share the same name (the current
function is used in such cases, of course!). We thought of this one as a transitory help for GP old-
timers. Thus, to encourage switching to compatible=0, it is not possible to disable the warning.

compatible = 2: use only the old function naming scheme (as used up to version 1.39.15),
but taking case into account. Thus I (=

√
−1) is not the same as i (user variable, unbound by

default), and you won’t get an error message using i as a loop index as used to be the case.

compatible = 3: try to mimic exactly the former behaviour. This is not always possible
when functions have changed in a fundamental way. But these differences are usually for the better
(they were meant to, anyway), and will probably not be discovered by the casual user.

16

One adverse side effect is that any user functions and aliases that have been defined before
changing compatible will get erased if this change modifies the function list, i.e. if you move
between groups {0, 1} and {2, 3} (variables are unaffected). We of course strongly encourage you
to try and get used to the setting compatible=0.

2.1.4 debug (default 0): debugging level. If it is non-zero, some extra messages may be printed
(some of it in French), according to what is going on (see \g).

2.1.5 debugfiles (default 0): file usage debugging level. If it is non-zero, GP will print information
on file descriptors in use, from PARI’s point of view (see \gf).

2.1.6 debugmem (default 0): memory debugging level. If it is non-zero, GP will regularly print
information on memory usage. If it’s greater than 2, it will indicate any important garbage collecting
and the function it is taking place in (see \gm).

Important Note: As it noticeably slows down the performance (and triggers bugs in some versions
of a popular compiler), the first functionality (memory usage) is disabled if you’re not running a
version compiled for debugging (see Appendix A).

2.1.7 echo (default 0): this is a toggle, which can be either 1 (on) or 0 (off). When echo mode is
on, each command is reprinted before being executed. This can be useful when reading a file with
the \r or read commands. For example, it is turned on at the beginning of the test files used to
check whether GP has been built correctly (see \e).

2.1.8 format (default "g0.28" and "g0.38" on 32-bit and 64-bit machines, respectively): of the
form xm.n, where x is a letter in {e, f, g}, and n, m are integers. If x is f, real numbers will be
printed in fixed floating point format with no explicit exponent (e.g. 0.000033), unless their integer
part is not defined (not enough significant digits); if the letter is e, they will be printed in scientific
format, always with an explicit exponent (e.g. 3.3e-5). If the letter is g, real numbers will be
printed in f format, except when their absolute value is less than 2−32 or they are real zeroes (of
arbitrary exponent), in which case they are printed in e format.

The number n is the number of significant digits printed for real numbers, except if n < 0
where all the significant digits will be printed (initial default 28, or 38 for 64-bit machines), and
the number m is the number of characters to be used for printing integers, but is ignored if equal
to 0 (which is the default). This is a feeble attempt at formatting.

UNIX: 2.1.9 help (default: the location of the gphelp script): the name of the external help program
which will be used from within GP when extended help is invoked, usually through a ?? or ???
request (see Section 2.2.1), or M-H under readline (see Section 2.10.1).

2.1.10 histsize (default 5000): GP keeps a history of the last histsize results computed so far,
which you can recover using the % notation (see Section 2.2.4). When this number is exceeded, the
oldest values are erased. Tampering with this default is the only way to get rid of the ones you
don’t need anymore.

2.1.11 lines (default 0): if set to a positive value, GP prints at most that many lines from each
result, terminating the last line shown with [+++] if further material has been suppressed. The
various print commands (see Section 3.11.2) are unaffected, so you can always type print(%), \a,
or \b to view the full result. If the actual screen width cannot be determined, a “line” is assumed
to be 80 characters long.

17

2.1.12 log (default 0): this is a toggle, which can be either 1 (on) or 0 (off). When logging
mode is turned on, GP opens a log file, whose exact name is determined by the logfile default.
Subsequently, all the commands and results will be written to that file (see \l). In case a file with
this precise name already existed, it will not be erased: your data will be appended at the end.

2.1.13 logfile (default "pari.log"): name of the log file to be used when the log toggle is on.
Tilde and time expansion are performed.

2.1.14 output (default 1): there are four possible values: 0 (= raw), 1 (= prettymatrix), 2
(= prettyprint), or 3 (= external prettyprint). This means that, independently of the default
format for reals which we explained above, you can print results in four ways: either in raw format,
i.e. a format which is equivalent to what you input, including explicit multiplication signs, and
everything typed on a line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to paste it somewhere else.

The second format is the prettymatrix format. The only difference to raw format is that
matrices are printed as boxes instead of horizontally. This is prettier, but takes more space and
cannot be used for input. Column vectors are still printed horizontally.

The third format is the prettyprint format, or beautified format. In the present version 2.1.1,
this is not beautiful at all.

UNIX: The fourth format is external prettyprint, which pipes all GP output in TeX format to an
external prettyprinter, according to the value of prettyprinter. The default script (tex2mail)
converts its input to readable two-dimensional text.

Independently of the setting of this default, an object can be printed in any of the three formats
at any time using the commands \a, \m and \b respectively (see below).

2.1.15 parisize (default, 1M bytes on the Mac, 4M otherwise): GP, and in fact any program using
the PARI library, needs a stack in which to do its computations. parisize is the stack size, in
bytes. It is strongly recommended you increase this default (using the -s command-line switch, or
a gprc) if you can afford it. Don’t increase it beyond the actual amount of RAM installed on your
computer or GP will spend most of its time paging.

In case of emergency, you can use the allocatemem function to increase parisize, once the
session is started. GP will try to double the stack size by itself when memory runs low during a
computation, but this very computation will then be lost, and you will have to type the command
again.

2.1.16 path (default ".:~:~/gp" on UNIX systems, ".;C:\;C:\GP on DOS, OS/2 and Windows,
and "." otherwise): This is a list of directories, separated by colons ’:’ (semicolons ’;’ in the DOS
world, since colons are pre-empted for drive names). When asked to read a file whose name does
not contain / (i.e. no explicit path was given), GP will look for it in these directories, in the order
they were written in path. Here, as usual, ’.’ means the current directory, and ’. .’ its immediate
parent. Tilde expansion is performed.

UNIX: 2.1.17 prettyprinter (default "tex2mail -TeX -noindent -ragged -by par") the name of an
external prettyprinter to use when output is 3 (alternate prettyprinter). This is experimental but
the default tex2mail looks already much nicer than the built-in “beautified format” (output = 2).
If the corresponding program doesn’t exist on your system,

18

2.1.18 primelimit (default 200k on the Mac, and 500k otherwise): GP precomputes a list of all
primes less than primelimit at initialization time. These are used by many arithmetical functions.
If you don’t plan to invoke any of them, you can just set this to 1.

2.1.19 prompt (default "? "): a string that will be printed as prompt. Note that most usual
escape sequences are available there: \e for Esc, \n for Newline, . . . , \\ for \. Time expansion is
performed.

This string is sent through the library function strftime (on a Unix system, you can try man
strftime at your shell prompt). This means that % constructs have a special meaning, usually
related to the time and date. For instance, %H = hour (24-hour clock) and %M = minute [00,59] (use
%% to get a real %).

If you use readline, escape sequences in your prompt will result in display bugs. If you have
a relatively recent readline (see the comment at the end of Section 2.1.2), you can brace them
with special sequences (\[and \]), and you will be safe. If these just result in extra spaces in
your prompt, then you’ll have to get a more recent readline. See the file misc/gprc.dft for an
example.

EMACS: Caution: Emacs needs to know about the prompt pattern to separate your input from previous GP
results, without ambiguity. It’s not a trivial problem to adapt automatically this regular expression
to an arbitrary prompt (which can be self-modifying!). Thus, in this version 2.1.1, Emacs relies on
the prompt being the default one. So, do not tamper with the prompt variable unless you modify it
simultaneously in your .emacs file (see emacs/pariemacs.txt and misc/gprc.dft for examples).

2.1.20 psfile (default "pari.ps"): name of the default file where GP is to dump its PostScript
drawings (these will always be appended, so that no previous data are lost). Tilde and time
expansion are performed.

2.1.21 realprecision (default 28 and 38 on 32-bit and 64-bit machines respectively): the number
of significant digits and, at the same time, the number of printed digits of real numbers (see \p).
Note that PARI internal precision works on a word basis (32 or 64 bits), hence may not coincide
with the number of decimal digits you input. For instance to get 2 decimal digits you need one
word of precision which, on a 32-bit machine, actually gives you 9 digits (9 < log10(232) < 10):

? default(realprecision, 2)
realprecision = 9 significant digits (2 digits displayed)

2.1.22 secure (default 0): this is a toggle which can be either 1 (on) or 0 (off). If on, the system
and extern command are disabled. These two commands are potentially dangerous when you
execute foreign scripts since they let GP execute arbitrary UNIX commands. GP will ask for
confirmation before letting you (or a script) unset this toggle.

2.1.23 seriesprecision (default 16): precision of power series (see \ps).

2.1.24 simplify (default 1): this is a toggle which can be either 1 (on) or 0 (off). When the PARI
library computes something, the type of the result is not always the simplest possible. The only type
conversions which the PARI library does automatically are rational numbers to integers (when they
are of type t_FRAC and equal to integers), and similarly rational functions to polynomials (when
they are of type t_RFRAC and equal to polynomials). This feature is useful in many cases, and
saves time, but can be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function simplify (see Chapter 3) which allows you to simplify objects to the simplest
possible types recursively (see \y).

19

2.1.25 strictmatch (default 1): this is a toggle which can be either 1 (on) or 0 (off). If on, unused
characters after a sequence has been processed will produce an error. Otherwise just a warning is
printed. This can be useful when you’re not sure how many parentheses you have to close after
complicated nested loops.

2.1.26 timer (default 0): this is a toggle which can be either 1 (on) or 0 (off). If on, every
instruction sequence (anything ended by a newline in your input) is timed, to some accuracy
depending on the hardware and operating system. The time measured is the user CPU time, not
including the time for printing the results (see # and ##).

2.1.27 Note on output formats.

A zero real number is printed in e format as 0.Exx where xx is the (usually negative) decimal
exponent of the number (cf. Section 1.2.6.3). This allows the user to check the accuracy of the zero
in question (this could also be done using \x, but that would be more technical).

When the integer part of a real number x is not known exactly because the exponent of x is
greater than the internal precision, the real number is printed in e format (note that in versions
before 1.38.93, this was instead printed with a ∗ at the end).

Note also that in beautified format, a number of type integer or real is written without enclosing
parentheses, while most other types have them. Hence, if you see the expression (3.14), it is not of
type real, but probably of type complex with zero imaginary part (if you want to be sure, type \x
or use the function type).

2.2 Simple metacommands.

Simple metacommands are meant as shortcuts and should not be used in GP scripts (see Sec-
tion 3.11). Beware that these, as all of GP input, are now case sensitive. For example, \Q is no
longer identical to \q. In the following list, braces are used to denote optional arguments, with
their default values when applicable, e.g. {n = 0} means that if n is not there, it is assumed to
be 0. Whitespace (or spaces) between the metacommand and its arguments and within arguments
is optional. (This can cause problems only with \w, when you insist on having a filename whose
first character is a digit, and with \r or \w, if the filename itself contains a space. In such cases,
just use the underlying read or write function; see Section 3.11.2.28).

2.2.1 ? {command}: GP on-line help interface. As already mentioned, if you type ?n where n is
a number from 1 to 11, you will get the list of functions in Section 3.n of the manual (the list of
sections being obtained by simply typing ?).

These names are in general not informative enough. More details can be obtained by typing
?function, which gives a short explanation of the function’s calling convention and effects. Of
course, to have complete information, read Chapter 3 of this manual (the source code is at your
disposal as well, though a trifle less readable!). Much better help can be obtained through the
extended help system (see below).

UNIX: If the line before the copyright message indicates that extended help is available (this means perl
is installed on your system, GP was told about it at compile time, and the whole PARI distribution
was correctly installed), you can add more ? signs for extended functionalities:

?? keyword yields the functions description as it stands in this manual, usually in Chapter 2
or 3. If you’re not satisfied with the default chapter chosen, you can impose a given chapter by

20

ending the keyword with @ followed by the chapter number, e.g. ?? Hello@2 will look in Chapter 2
for section heading Hello (which doesn’t exist, by the way).

All operators (e.g. +, &&, etc.) are accepted by this extended help, as well as a few other
keywords describing key GP concepts, e.g. readline (the line editor), integer, nf (“number field”
as used in most algebraic number theory computations), ell (elliptic curves), etc.

In case of conflicts between function and default names (e.g log, simplify), the function has
higher priority. Use ?? default /defaultname to get the default help.

??? pattern produces a list of sections in Chapter 3 of the manual related to your query. As
before, if pattern ends by @ followed by a chapter number, that chapter is searched instead; you
also have the option to append a simple @ (without a chapter number) to browse through the whole
manual.

If your query contains dangerous characters (e.g ? or blanks) it is advisable to enclose it within
double quotes, as for GP strings (e.g ??? "elliptic curve").

Note that extended help is much more powerful than the short help, since it knows about
operators as well: you can type ?? * or ?? &&, whereas a single ? would just yield a not too
helpful

*** unknown identifier.

message. Also, you can ask for extended help on section number n in Chapter 3, just by typing
?? n (where ?n would yield merely a list of functions). Finally, a few key concepts in GP are
documented in this way: metacommands (e.g ?? "??"), defaults (e.g ?? psfile) and type names
(e.g t_INT or integer), as well as various miscellaneous keywords such as edit (short summary of
line editor commands), operator, member, "user defined", nf, ell, . . .

Last but not least : ?? without argument will open a dvi previewer (xdvi by default, $GPXDVI
if it is defined in your environment) containing the full user’s manual. ??tutorial and ??refcard
do the same with the tutorial and reference card respectively.

Technical note: these functionalities are provided by an external perl script that you are free
to use outside any GP session (and modify to your liking, if you are perl-knowledgeable). It is
called gphelp, lies in the doc subdirectory of your distribution (just make sure you run Configure
first, see Appendix A) and is really two programs in one. The one which is used from within GP
is gphelp which runs TEX on a selected part of this manual, then opens a previewer. gphelp
-detex is a text mode equivalent, which looks often nicer especially on a colour-capable terminal
(see misc/gprc.dft for examples). The default help selects which help program will be used from
within GP. You are welcome to improve this help script, or write new ones (and we really would
like to know about it so that we may include them in future distributions). By the way, outside of
GP you can give more than one keyword as argument to gphelp.

2.2.2 /*...*/: comment. Everything between the stars is ignored by GP. These comments can
span any number of lines.

2.2.3 \\: one-line comment. The rest of the line is ignored by GP.

2.2.4 \a {n}: prints the object number n (%n) in raw format. If the number n is omitted, print
the latest computed object (%).

21

2.2.5 \b {n}: Same as \a, in prettyprint (i.e. beautified) format.

2.2.6 \c: prints the list of all available hardcoded functions under GP, not including operators
written as special symbols (see Section 2.4). More information can be obtained using the ? meta-
command (see above). For user-defined functions / member functions, see \u and \um.

2.2.7 \d: prints the defaults as described in the previous section (shortcut for default(), see
Section 3.11.2.4).

2.2.8 \e {n}: switches the echo mode on (1) or off (0). If n is explicitly given, set echo to n.

2.2.9 \g {n}: sets the debugging level debug to the non-negative integer n.

2.2.10 \gf {n}: sets the file usage debugging level debugfiles to the non-negative integer n.

2.2.11 \gm {n}: sets the memory debugging level debugmem to the non-negative integer n.

2.2.12 \h {m-n}: outputs some debugging info about the hashtable. If the argument is a number
n, outputs the contents of cell n. Ranges can be given in the form m-n (from cell m to cell n, $
= last cell). If a function name is given instead of a number or range, outputs info on the internal
structure of the hash cell this function occupies (a struct entree in C). If the range is reduced to
a dash (’-’), outputs statistics about hash cell usage.

2.2.13 \l {logfile}: switches log mode on and off. If a logfile argument is given, change the default
logfile name to logfile and switch log mode on.

2.2.14 \m: as \a, but using prettymatrix format.

2.2.15 \o {n}: sets output mode to n (0: raw, 1: prettymatrix, 2: prettyprint, 3: external
prettyprint).

2.2.16 \p {n}: sets realprecision to n decimal digits. Prints its current value if n is omitted.

2.2.17 \ps {n}: sets seriesprecision to n significant terms. Prints its current value if n is
omitted.

2.2.18 \q: quits the GP session and returns to the system. Shortcut for the function quit (see
Section 3.11.2.20).

2.2.19 \r {filename}: reads into GP all the commands contained in the named file as if they had
been typed from the keyboard, one line after the other. Can be used in combination with the \w
command (see below). Related but not equivalent to the function read (see Section 3.11.2.21); in
particular, if the file contains more than one line of input, there will be one history entry for each of
them, whereas read would only record the last one. If filename is omitted, re-read the previously
used input file (fails if no file has ever been successfully read in the current session).

UNIX: This command accepts compressed files in compressed (.Z) or gzipped (.gz or .z) format. They
will be uncompressed on the fly as GP reads them, without changing the files themselves.

22

2.2.20 \s: prints the state of the PARI stack and heap. This is used primarily as a debugging
device for PARI, and is not intended for the casual user.

2.2.21 \t: prints the internal longword format of all the PARI types. The detailed bit or byte
format of the initial codeword(s) is explained in Chapter 4, but its knowledge is not necessary for
a GP user.

2.2.22 \u: prints the definitions of all user-defined functions.

2.2.23 \um: prints the definitions of all user-defined member functions.

2.2.24 \v: prints the version number and implementation architecture (680x0, Sparc, Alpha, other)
of the GP executable you are using. In library mode, you can use instead the two character strings
PARIVERSION and PARIINFO, which correspond to the first two lines printed by GP just before the
Copyright message.

2.2.25 \w {n} {filename}: writes the object number n (%n) into the named file, in raw format. If
the number n is omitted, writes the latest computed object (%). If filename is omitted, appends
to logfile (the GP function write is a trifle more powerful, as you can have filenames whose first
character is a digit).

2.2.26 \x: prints the complete tree with addresses and contents (in hexadecimal) of the internal
representation of the latest computed object in GP. As for \s, this is used primarily as a debugging
device for PARI, and the format should be self-explanatory (a ∗ before an object – typically a
modulus – means the corresponding component is out of stack). However, used on a PARI integer,
it can be used as a decimal→hexadecimal converter.

2.2.27 \y {n}: switches simplify on (1) or off (0). If n is explicitly given, set simplify to n.

2.2.28 #: switches the timer on or off.

2.2.29 ##: prints the time taken by the latest computation. Useful when you forgot to turn on the
timer.

2.3 Input formats for the PARI types.

Before describing more sophisticated functions in the next section, let us see here how to input
values of the different data types known to PARI. Recall that blanks are ignored in any expression
which is not a string (see below).

2.3.1 Integers (type t_INT): type the integer (with an initial + or -, if desired) with no decimal
point.

23

2.3.2 Real numbers (type t_REAL): type the number with a decimal point. The internal precision
of the real number will be the supremum of the input precision and the default precision. For
example, if the default precision is 28 digits, typing 2. will give a number with internal precision
28, but typing a 45 significant digit real number will give a number with internal precision at least
45 (although less may be printed).

You can also use scientific notation with the letter E or e, in which case the (non leading)
decimal point may be omitted (like 6.02 E 23 or 1e-5, but not e10). By definition, 0.E N (or 0
E N) returns a real 0 of (decimal) exponent N , whereas 0. returns a real 0 “of default precision”
(of exponent −defaultprecision), see Section 1.2.6.3.

2.3.3 Integermods (type t_INTMOD): to enter nmodm, type Mod(n,m), not n%m (see Section 3.2.3).

2.3.4 Rational numbers (types t_FRAC and t_FRACN): under GP, all fractions are automatically
reduced to lowest terms, so it is in principle impossible to work with reducible fractions (of type
t_FRACN), although of course in library mode this is easy. To enter n/m just type it as written. As
explained in Section 3.1.4, division will not be performed, only reduction to lowest terms.

If you really want a reducible fraction under GP, you must use the type function (see Sec-
tion 3.11.2.26), by typing type(x,FRACN). Be warned however that this function must be used with
extreme care.

2.3.5 Complex numbers (type t_COMPLEX): to enter x+iy, type x + I*y (not x+i*y). The letter
I stands for

√
−1. Recall from Chapter 1 that x and y can be of type t_INT, t_REAL, t_INTMOD,

t_FRAC/t_FRACN, or t_PADIC.

2.3.6 p-adic numbers (type t_PADIC): to enter a p-adic number, simply write a rational or integer
expression and add to it O(p^k), where p and k are integers. This last expression indicates three
things to GP: first that it is dealing with a t_PADIC type (the fact that p is an integer, and not
a polynomial, which would be used to enter a series, see Section 2.3.10), secondly the “prime” p
(note that it is not checked whether p is indeed prime; you can work on 10-adics if you want, but
beware of disasters as soon as you do something non-trivial like taking a square root), and finally
the number of significant p-adic digits k. Note that O(25) is not the same as O(5^2); you probably
want the latter!

For example, you can type in the 7-adic number

2*7^(-1) + 3 + 4*7 + 2*7^2 + O(7^3)

exactly as shown, or equivalently as 905/7 + O(7^3).

2.3.7 Quadratic numbers (type t_QUAD): first, you must define the default quadratic order or
field in which you want to work. This is done using the quadgen function, in the following way.
Write something like

w = quadgen(d)

where d is the discriminant of the quadratic order in which you want to work (hence d is congruent
to 0 or 1 modulo 4). The name w is of course just a suggestion, but corresponds to traditional
usage. You can of course use any variable name that you like. However, quadratic numbers are
always printed with a w, regardless of the discriminant. So beware, two numbers can be printed in
the same way and not be equal. However GP will refuse to add or multiply them for example.

24

Now (1, w) will be the “canonical” integral basis of the quadratic order (i.e. w =
√
d/2 if

d ≡ 0 mod 4, and w = (1 +
√
d)/2 if d ≡ 1 mod 4, where d is the discriminant), and to enter x+ yw

you just type x + y*w.

2.3.8 Polmods (type t_POLMOD): exactly as for integermods, to enter xmod y (where x and y
are polynomials), type Mod(x,y), not x%y (see Section 3.2.3). Note that when y is an irreducible
polynomial in one variable, polmods whose modulus is y are simply algebraic numbers in the
finite extension defined by the polynomial y. This allows us to work easily in number fields, finite
extensions of the p-adic field Qp, or finite fields.

Important remark. Since the variables occurring in a polmod are not free variables, it is es-
sential in order to avoid inconsistencies that polmods use the same variable in internal operations
(i.e. between polmods) and variables of lower priority (which have been introduced later in the
GP session) for external operations (typically between a polynomial and a polmod). For example,
PARI will not recognize that Mod(y, y^2 + 1) is the same as Mod(x, x^2 + 1). Hopefully, this
problem will pass away when type “element of a number field” is eventually introduced.

On the other hand, Mod(x, x^2 + 1) + Mod(x, x^2 + 1) (which gives Mod(2*x, x^2 + 1))
and x + Mod(y, y^2 + 1) (which gives a result mathematically equivalent to x+ i with i2 = −1)
are completely correct, while y + Mod(x, x^2 + 1) gives Mod(x + y, x^2 + 1), which may not
be what you want (y is treated here as a numerical parameter, not as a polynomial variable).

Note (added in version 2.0.16) As long as the main variables are the same, it is allowed to mix
t_POL and t_POLMODs. The result will be the expected t_POLMOD. For instance x + Mod(x, x^2
+ 1) is equal to Mod(2*x, x^2 + 1). This wasn’t the case prior to version 2.0.16: it returned a
polynomial in x equivalent to x + i, which was in fact an invalid object (you couldn’t lift it).

2.3.9 Polynomials (type t_POL): type the polynomial in a natural way, not forgetting to put a
“∗” between a coefficient and a formal variable (this ∗ does not appear in beautified output). Any
variable name can be used except for the reserved names I (used exclusively for the square root
of −1), Pi (3.14 . . .), Euler (Euler’s constant), and all the function names: predefined functions,
as described in Chapter 3 (use \c to get the complete list of them) and user-defined functions,
which you ought to know about (use \u if you are subject to memory lapses). The total number of
different variable names is limited to 16384 and 65536 on 32-bit and 64-bit machines respectively,
which should be enough. If you ever need hundreds of variables, you should probably be using
vectors instead.

2.3.10 Power series (type t_SER): type a rational function or polynomial expression and add to
it O(expr ^k), where expr is an expression which has non-zero valuation (it can be a polynomial,
power series, or a rational function; the most common case being simply a variable name). This
indicates to GP that it is dealing with a power series, and the desired precision is k times the
valuation of expr with respect to the main variable of expr (to check the ordering of the variables,
or to modify it, use the function reorder; see Section 3.11.2.22).

2.3.11 Rational functions (types t_RFRAC and t_RFRACN): as for fractions, all rational func-
tions are automatically reduced to lowest terms under GP. All that was said about fractions in
Section 2.3.4 remains valid here.

25

2.3.12 Binary quadratic forms of positive or negative discriminant (type t_QFR and
t_QFI): these are input using the function Qfb (see Chapter 3). For example Qfb(1,2,3) will create
the binary form x2 + 2xy+ 3y2. It will be imaginary (of internal type t_QFI) since 22− 4 ∗ 3 = −8
is negative.

In the case of forms with positive discriminant (type t_QFR), you may add an optional fourth
component (related to the regulator, more precisely to Shanks and Lenstra’s “distance”), which
must be a real number. See also the function qfbprimeform which directly creates a prime form
of given discriminant (see Chapter 3).

2.3.13 Row and column vectors (types t_VEC and t_COL): to enter a row vector, type the
components separated by commas “,”, and enclosed between brackets “[” and “]”, e.g. [1,2,3].
To enter a column vector, type the vector horizontally, and add a tilde “˜” to transpose. [] yields
the empty (row) vector. The function Vec can be used to transform any object into a vector (see
Chapter 3).

2.3.14 Matrices (type t_MAT): to enter a matrix, type the components line by line, the components
being separated by commas “,”, the lines by semicolons “;”, and everything enclosed in brackets
“[” and “]”, e.g. [x,y; z,t; u,v]. [;] yields the empty (0x0) matrix. The function Mat can
be used to transform any object into a matrix (see Chapter 3).

Note that although the internal representation is essentially the same (only the type number
is different), a row vector of column vectors is not a matrix; for example, multiplication will not
work in the same way.

Note also that it is possible to create matrices (by conversion of empty column vectors and
concatenation, or using the matrix function) with a given positive number of columns, each of
which has zero rows. It is not possible to create or represent matrices with zero columns and a
nonzero number of rows.

2.3.15 Lists (type t_LIST): lists cannot be input directly; you have to use the function listcreate
first, then listput each time you want to append a new element (but you can access the elements
directly as with the vector types described above). The function List can be used to transform
(row or column) vectors into lists (see Chapter 3).

2.3.16 Strings (type t_STR): to enter a string, just enclose it between double quotes ", like this:
"this is a string". The function Str can be used to transform any object into a string (see
Chapter 3).

26

2.4 GP operators.

Loosely speaking, an operator is a function (usually associated to basic arithmetic operations)
whose name contains only non-alphanumeric characters. In practice, most of these are simple
functions, which take arguments, and return a value; assignment operators also have side effects.
Each of these has some fixed and unchangeable priority, which means that, in a given expression, the
operations with the highest priority will be performed first. Operations at the same priority level
will always be performed in the order they were written, i.e. from left to right. Anything enclosed
between parenthesis is considered a complete subexpression, and will be resolved independently of
the surrounding context. For instance, assuming that op1, op2, op3 are standard binary operators
with increasing priorities (think of +, *, ^ for instance),

x op1 y op2 z op2 x op3 y

is equivalent to
x op1 ((y op2 z) op2 (x op3 y)).

GP knows quite a lot of different operators, some of them unary (having only one argument),
some binary. Unary operators are defined for either prefix (preceding their single argument: op x)
or postfix (following the argument: x op) position, never both (some are syntactically correct in
both positions, but with different meanings). Binary operators all use the syntax x op y. Most of
them are well known, some are borrowed from C syntax, and a few are specific to GP. Beware that
some GP operators may differ slightly from their C counterparts. For instance, GP’s postfix ++
returns the new value, like the prefix ++ of C, and the binary shifts <<, >> have a priority which is
different from (higher than) that of their C counterparts. When in doubt, just surround everything
by parentheses (besides, your code will probably be more legible).

Here is the complete list (in order of decreasing priority, binary unless mentioned otherwise):

• Priority 9
++ and -- (unary, postfix): x++ assigns the value x + 1 to x, then returns the new value of

x. This corresponds to the C statement ++x (there is no prefix ++ operator in GP). x-- does the
same with x− 1.

• Priority 8
op=, where op is any simple binary operator (i.e. a binary operator with no side effects, i.e. one

of those defined below) which is not a boolean operator (comparison or logical). x op= y assigns
(x op y) to x, and returns the new value of x, not a reference to the variable x. (Thus an assignment
cannot occur on the lefthand side of another assignment.)

• Priority 7
= is the assignment operator. The result of x = y is the value of the expression y, which is

also assigned to the variable x. This is not the equality test operator. Beware that a statement
like x = 1 is always true (i.e. non-zero), and sets x to 1.

• Priority 6
! (unary, prefix): logical not . !x return 1 if x is equal to 0 (specifically, if gcmp0(x)==1), and

0 otherwise.

’ (unary, prefix): quote its argument without evaluating it.

? a = x + 1; x = 1;
? subst(a,x,1)

27

*** variable name expected: subst(a,x,1)
^---

? subst(a,’x,1)
%1 = 2

• Priority 5
^: powering.

’ (unary, postfix): derivative with respect to the main variable. If f is a (GP or user) function,
f ′(x) is allowed. If x is a scalar, the operator performs numerical derivation, defined as (f(x +
ε)− f(x− ε))/2ε for a suitably small epsilon depending on current precision. It behaves as (f(x))′

otherwise.

~ (unary, postfix): vector/matrix transpose.

! (unary, postfix): factorial. x! = x(x− 1) · · · 1.

.: x.b extracts member b from structure x.

• Priority 4
+, - (unary, prefix): - toggles the sign of its argument, + has no effect whatsoever.

• Priority 3
*: multiplication.

/: exact division (3/2=3/2, not 1.5).

\, %: euclidean quotient and remainder, i.e. if x = qy + r, with 0 ≤ r < y (if x and y are
polynomials, assume instead that deg r < deg y and that the leading terms of r and x have the
same sign), then x\y = q, x%y = r.

\/: rounded euclidean quotient for integers (rounded towards +∞ when the exact quotient
would be a half-integer).

<<, >>: left and right binary shift: x<<n = x ∗ 2n if n > 0, and x\/2−n otherwise; and
x>>n = x<<(-n).

• Priority 2
+, -: addition/subtraction.

• Priority 1
<, >, <=, >=: the usual comparison operators, returning 1 for true and 0 for false. For

instance, x<=1 returns 1 if x ≤ 1 and 0 otherwise.

<>, !=: test for (exact) inequality.

==: test for (exact) equality.

• Priority 0
&, &&: logical and .

|, ||: logical (inclusive) or . Any sequence of logical or and and operations is evaluated from
left to right, and aborted as soon as the final truth value is known. Thus, for instance, (x && 1/x)
or (type(p) == "t INT" && isprime(p)) will never produce an error since the second argument
need not (and will not) be processed when the first is already zero (false).

28

Remark: For the optimal efficiency, you should use the ++, -- and op= operators whenever possible:

? a = 200000;
? i = 0; while(i<a, i=i+1)
time = 4,919 ms.
? i = 0; while(i<a, i+=1)
time = 4,478 ms.
? i = 0; while(i<a, i++)
time = 3,639 ms.

For the same reason, the shift operators should be preferred to multiplication:

? a = 1<<20000;
? i = 1; while(i<a, i=i*2);
time = 5,255 ms.
? i = 1; while(i<a, i<<=1);
time = 988 ms.

2.5 The general GP input line.

2.5.1 Generalities. User interaction with a GP session proceeds as follows: a sequence of charac-
ters is typed by the user at the GP prompt. This can be either a \ command, a function definition,
an expression, or a sequence of expressions (i.e. a program). In the latter two cases, after the last
expression has been computed its result is put into an internal (“history”) array, and printed. The
successive elements of this array are called %1, %2, . . .As a shortcut, the latest computed expression
can also be called %, the previous one %‘, the one before that %‘‘ and so on.

If you want to suppress the printing of the result, for example because it is a long unimportant
intermediate result, end the expression with a ; sign. This same sign is used as an instruction
separator when several instructions are written on the same line (note that for the pleasure of
BASIC addicts, the : sign can also be used, but we will try to stick to C-style conventions in this
manual). The final expression computed, even if not printed, will still be assigned to the history
array, so you may have to pay close attention when you intend to refer back to it by number since
this number does not appear explicitly. Of course, if you just want to use it on the next line, use
% as usual.

Any legal expression can be typed in, and is evaluated using the conventions about operator
priorities and left to right associativity (see the previous section), using the available operator
symbols, function names (including user-defined functions and member functions see Section 2.6.3),
and special variables. Please note that, from version 1.900 on, there is a distinction between
lowercase and uppercase. Also, note that, outside of constant strings, blanks are completely ignored
in the input to GP.

The special variable names known to GP are Euler (Euler’s constant γ = 0.577 . . .), I (the
square root of −1), Pi (3.14. . .) — which could be thought of as functions with no arguments, and
which may therefore be invoked without parentheses —, and O which obeys the following syntax:

O(expr^k)

When expr is an integer or a rational number, this creates an expr -adic number (zero in fact) of
precision k. When expr is a polynomial, a power series or a rational function whose main variable
is X, say, this creates a power series (also zero) of precision v ∗ k where v is the X-adic valuation
of expr (see 2.3.6 and 2.3.9).

29

2.5.2 Special editing characters. A GP program can of course have more than one line. Since
GP executes your commands as soon as you have finished typing them, there must be a way to tell
it to wait for the next line or lines of input before doing anything. There are three ways of doing
this.

The first one is simply to use the backslash character \ at the end of the line that you are
typing, just before hitting <Return>. This tells GP that what you will write on the next line is
the physical continuation of what you have just written. In other words, it makes GP forget your
newline character. For example if you use this while defining a function, and if you ask for the
definition of the function using ?name, you will see that your backslash has disappeared and that
everything is on the same line. You can type a \ anywhere. It will be interpreted as above only if
(apart from ignored whitespace characters) it is immediately followed by a newline. For example,
you can type

? 3 + \

4

instead of typing 3 + 4.

The second one is a slight variation on the first, and is mostly useful when defining a user
function (see Section 2.6.3): since an equal sign can never end a valid expression, GP will disregard
a newline immediately following an =.

? a =

123

%1 = 123

The third one cannot be used everywhere, but is in general much more useful. It is the use
of braces { and }. When GP sees an opening brace ({) at the beginning of a line (modulo spaces
as usual), it understands that you are typing a multi-line command, and newlines will be ignored
until you type a closing brace }. However, there is an important (but easily obeyed) restriction:
inside an open brace-close brace pair, all your input lines will be concatenated, suppressing any
newlines. Thus, all newlines should occur after a semicolon (;), a comma (,) or an operator (for
clarity’s sake, we don’t recommend splitting an identifier over two lines in this way). For instance,
the following program

{

a = b

b = c

}

would silently produce garbage, since what GP will really see is a=bb=c which will assign the value
of c to both bb and a (if this really is what you intended, you’re a hopeless case).

30

2.6 The GP/PARI programming language.

The GP calculator uses a purely interpreted language. The structure of this language is
reminiscent of LISP with a functional notation, f(x,y) rather than (f x y): all programming
constructs, such as if, while, etc... are functions * (see Section 3.11 for a complete list), and the
main loop does not really execute, but rather evaluates (sequences of) expressions. Of course, it is
by no means a true LISP.

2.6.1 Variables and symbolic expressions.

In GP you can use up to 16383 variable names (up to 65535 on 64-bit machines). These
names can be any standard identifier names, i.e. they must start with a letter and contain only
valid keyword characters: or alphanumeric characters ([A-Za-z0-9]). To avoid confusion with
other symbols, you must not use other non-alphanumeric symbols like $, or ’.’. In addition to the
function names which you must not use (see the list with \c), there are exactly three special variable
names which you are not allowed to use: Pi and Euler, which represent well known constants, and
I =
√
−1.

Note that GP names are case sensitive since version 1.900. This means for instance that the
symbol i is perfectly safe to use, and will not be mistaken for

√
−1, and that o is not synonymous

anymore to O. If you grew addicted to the previous behaviour, you can have it back by setting the
default compatible to 3.

Now the main thing to understand is that PARI/GP is not a symbolic manipulation package,
although it shares some of the functionalities. One of the main consequences of this fact is that
all expressions are evaluated as soon as they are written, they never stay in a purely abstract
form**. As an important example, consider what happens when you use a variable name before
assigning a value into it. This is perfectly acceptable to GP, which considers this variable in fact
as a polynomial of degree 1, with coefficients 1 in degree 1, 0 in degree 0, whose variable is the
variable name you used.

If later you assign a value to that variable, the objects which you have created before will
still be considered as polynomials. If you want to obtain their value, use the function eval (see
Section 3.7.3).

Finally, note that if the variable x contains a vector or list, you can assign a result to x[m]
(i.e. write something like x[k] = expr). If x is a matrix, you can assign a result to x[m,n], but not
to x[m]. If you want to assign an expression to the m-th column of a matrix x, use x[,m] = expr
instead. Similarly, use x[m,] = expr to assign an expression to the m-th row of x. This process is
recursive, so if x is a matrix of matrices of . . . , an expression such as x[1, 1][, 3][4] = 1 would be
perfectly valid (assuming of course that all matrices along the way have the correct dimensions).

Note: We’ll see in Section 2.6.3 that it is possible to restrict the use of a given variable by declaring
it to be global or local. This can be useful to enforce clean programming style, but is in no way
mandatory.

* Not exactly, since not all their arguments need be evaluated. For instance it would be stupid
to evaluate both branches of an if statement: since only one will apply, GP only expands this one.
** An obvious but important exception are character strings which are evaluated. . . essentially

to themselves (type t_STR). Not exactly so though, since we do some work to treat the quoted
characters correctly (those preceded by a \).

31

(Technical) Note: Variables are numbered in the order that they appear since the beginning of
the session, and the main variable of an expression is always the lowest numbered variable. Hence
if you are working with expressions involving several variables and want to have them ordered in
a specific manner in the internal representation, the simplest is just to write down the variables
one after the other under GP before starting any real computations. If you already have started
working and want to change the names of the variables in an object, use the function changevar.
If you only want to have them ordered when the result is printed, you can also use the function
reorder, but this won’t change anything to the internal representation.

(Very technical) Note: Each variable has a stack of values, implemented as a linked list. When
a new scope is entered (during a function call which uses it as a parameter, or if the variable is used
as a loop index, see Section 2.6.3 and Section 3.11), the value of the actual parameter is pushed
on the stack. If the parameter is not supplied, a special 0 value called gnil is pushed on the stack
(this value is not printed if it is returned as the result of a GP expression sequence). Upon exit,
the stack decreases. You can kill a variable, decreasing the stack yourself. This should be used
only at the top level of GP, to undo the effect of an assignment, not from a function. However,
the stack has a bottom: the value of a variable is the monomial of degree 1 in this variable, as is
natural for a mathematician.

2.6.2 Expressions and expression sequences.

An expression is formed by combining the GP operators, functions (including user-defined
functions, see below) and control statements. It may be preceded by an assignment statement ’=’
into a variable. It always has a value, which can be any PARI object.

Several expressions can be combined on a single line by separating them with semicolons (’;’)
and also with colons (’:’) for those who are used to BASIC. Such an expression sequence will be
called simply a seq . A seq also has a value, which is the value of the last non-empty expression
in the sequence. Under GP, the value of the seq , and only this last value, is always put on the
stack (i.e. it will become the next object %n). The values of the other expressions in the seq are
discarded after the execution of the seq is complete, except of course if they were assigned into
variables. In addition, the value of the seq (or of course of an expression if there is only one) is
printed if the line does not end with a semicolon (’;’).

2.6.3 User defined functions.

It is very easy to define a new function under GP, which can then be used like any other
function. The syntax is as follows:

name(list of formal variables) = local(list of local variables); seq

which looks better written on consecutive lines:

name(x0, x1, . . .) =
{
local(t0, t1, . . .);
local(. . .);

. . .
}

(note that the first newline is disregarded due to the preceding = sign, and the others because of
the enclosing braces). Both lists of variables are comma-separated and allowed to be empty. The
local statements can be omitted; as usual seq is any expression sequence.

32

name is the name given to the function and is subject to the same restrictions as variable names.
In addition, variable names are not valid function names, you have to kill the variable first (the
converse is true: function names can’t be used as variables, see Section 3.11.2.14). Previously used
function names can be recycled: you are just redefining the function (the previous definition is lost
of course).

list of formal variables is the list of variables corresponding to those which you will
actually use when calling your function. The number of actual parameters supplied when calling
the function has to be less than the number of formal variables.

Uninitialized formal variables will be given a default value. An equal (=) sign following a
variable name in the function definition, followed by any expression, gives the variable a default
value. The expression gets evaluated the moment the function is defined, and is fixed afterward.
A variable for which you supply no default value will be initialized to zero.

list of local variables is the list of the additional local variables which are used in the
function body. Note that if you omit some or all of these local variable declarations, the non-
declared variables will become global, hence known outside of the function, and this may have
undesirable side-effects. On the other hand, in some cases it may also be what you want. Local
variables can be given a default value as the formal variables.

Example: For instance

foo(x=1, y=2, z=3) = print(x ":" y ":" z)

defines a function which prints its arguments (at most three of them), separated by colons. This
then follows the rules of default arguments generation as explained at the beginning of Section 3.0.2.

? foo(6,7)
6:7:3
? foo(,5)
1:5:3
? foo
1:2:3

Once the function is defined using the above syntax, you can use it like any other function.
In addition, you can also recall its definition exactly as you do for predefined functions, that is by
writing ?name. This will print the list of arguments, as well as their default values, the text of seq ,
and a short help text if one was provided using the addhelp function (see Section 3.11.2.1). One
small difference to predefined functions is that you can never redefine the built-in functions, while
you can redefine a user-defined function as many times as you want.

Typing \u will output the list of user-defined functions.

An amusing example of a user-defined function is the following. It is intended to illustrate both
the use of user-defined functions and the power of the sumalt function. Although the Riemann
zeta-function is included in the standard functions, let us assume that this is not the case (or
that we want another implementation). One way to define it, which is probably the simplest (but
certainly not the most efficient), is as follows:

zet(s) =
{
local(n); /* not needed, and possibly confusing (see below) */
sumalt(n=1, (-1)^(n-1)*n^(-s)) / (1 - 2^(1-s))

33

}

This gives reasonably good accuracy and speed as long as you are not too far from the domain of
convergence. Try it for s integral between −5 and 5, say, or for s = 0.5 + i ∗ t where t = 14.134 . . .

The iterative constructs which use a variable name (forxxx, prodxxx, sumxxx, vector, ma-
trix, plot, etc.) also consider the given variable to be local to the construct. A value is pushed
on entry and pulled on exit. So, it is not necessary for a function using such a construct to declare
the variable as a dummy formal parameter.

In particular, since loop variables are not visible outside their loops, the variable n need not
be declared in the protoype of our zet function above.

zet(s) = sumalt(n=1, (-1)^(n-1)*n^(-s)) / (1 - 2^(1-s))

would be a perfectly sensible (and in fact better) definition. Since local/global scope is a very tricky
point, here’s one more example. What’s wrong with the following definition?

? first_prime_div(x) =
{
local(p);
forprime(p=2, x, if (x%p == 0, break));
p

}
? first_prime_div(10)
%1 = 0

Answer: the index p in the forprime loop is local to the loop and is not visible to the outside
world. Hence, it doesn’t survive the break statement. More precisely, at this point the loop index
is restored to its preceding value, which is 0 (local variables are initialized to 0 by default). To sum
up, the routine returns the p declared local to it, not the one which was local to forprime and ran
through consecutive prime numbers. Here’s a corrected version:

? first_prime_div(x) = forprime(p=2, x, if (x%p == 0, return(p)))

Again, it is strongly recommended to declare all other local variables that are used inside a
function: if a function accesses a variable which is not one of its formal parameters, the value used
will be the one which happens to be on top of the stack at the time of the call. This could be a
“global” value, or a local value belonging to any function higher in the call chain. So, be warned.

Recursive functions can easily be written as long as one pays proper attention to variable
scope. Here’s a last example, used to retrieve the coefficient array of a multivariate polynomial (a
non-trivial task due to PARI’s unsophisticated representation for those objects):

coeffs(P, nbvar) =
{
local(v);

if (type(P) != "t_POL",
for (i=0, nbvar-1, P = [P]);
return (P)

);
v = vector(poldegree(P)+1, i, polcoeff(P,i-1));
vector(length(v), i, coeffs(v[i], nbvar-1))

}

34

If P is a polynomial in k variables, show that after the assignment v = coeffs(P,k), the coeffi-
cient of xn1

1 . . . xnkk in P is given by v[n1+1][. . .][nk+1]. What would happen if the declaration
local(v) had been omitted ?

The operating system will automatically limit the recursion depth:

? dive(n) = if (n, dive(n-1))
? dive(5000);
*** deep recursion: if(n,dive(n-1))

^---------------

There’s no way to increase the recursion limit (which may be different on your machine) from
within, since it would simply crash the GP process. To increase it before launching GP, you can
use ulimit or limit, depending on your shell, to raise the process available stack space (increase
stacksize).

Function which take functions as parameters ? This is easy in GP using the following trick
(neat example due to Bill Daly):

calc(f, x) = eval(Str(f "(x)"))

If you call this with calc("sin", 1), it will return sin(1) (evaluated!).

Restrictions on variable use: it is not allowed to use the same variable name for different
parameters of your function. Or to use a given variable both as a formal parameter and a local
variable in a given function. Hence

? f(x,x) = 1
*** user function f: variable x declared twice.

Also, the statement global(x, y, z, t) (see Section 3.11.2.11) declares the corresponding
variables to be global. It is then forbidden to use them as formal parameters or loop indexes as
described above, since the parameter would “shadow” the variable.

Implementation note. For the curious reader, here is how these stacks are handled: a hashing
function is computed from the identifier, and used as an index in hashtable, a table of pointers.
Each of these pointers begins a linked list of structures (type entree). The linked list is searched
linearly for the identifier (each list will typically have less than 7 components or so). When the
correct entree is found, it points to the top of the stack of values for that identifier if it is a variable,
to the function itself if it is a predefined function, and to a copy of the text of the function if it is
a user-defined function. When an error occurs, all of this maze (rather a tree, in fact) is searched
and (hopefully) restored to the state preceding the last call of the main evaluator.

Note: The above syntax (using the local keyword) was introduced in version 2.0.13. The old
syntax

name(list of true formal variables, list of local variables) = seq

is still recognized but is deprecated since genuine arguments and local variables become undistin-
guishable.

35

2.6.4 Member functions.

Member functions use the ‘dot’ notation to retrieve information from complicated structures
(by default: types ell, nf, bnf, bnr and prime ideals). The syntax structure.member is taken to
mean: retrieve member from structure, e.g. ell.j returns the j-invariant of the elliptic curve ell
(or outputs an error message if ell doesn’t have the correct type).

To define your own member functions, use the syntax structure.member = function text , where
function text is written as the seq in a standard user function (without local variables), whose only
argument would be structure. For instance, the current implementation of the ell type is simply
an horizontal vector, the j-invariant being the thirteenth component. This could be implemented
as

x.j =

{

if (type(x) != "t_VEC" || length(x) < 14,

error("this is not a proper elliptic curve: " x)

);

x[13]

}

You can redefine one of your own member functions simply by typing a new definition for it.
On the other hand, as a safety measure, you can’t redefine the built-in member functions, so typing
the above text would in fact produce an error (you’d have to call it e.g. x.j2 in order for GP to
accept it).

Warning: contrary to user functions arguments, the structure accessed by a member function is
not copied before being used. Any modification to the structure’s components will be permanent.

Note: Member functions were not meant to be too complicated or to depend on any data that
wouldn’t be global. Hence they do no have parameters (besides the implicit structure) or local
variables. Of course, if you need some preprocessing work in there, there’s nothing to prevent you
from calling your own functions (using freely their local variables) from a member function. For
instance, one could implement (a dreadful idea as far as efficiency goes):

correct_ell_if_needed(x) =

{

local(tmp);

if (type(x) != "t_VEC", tmp = ellinit(x))

\\ some further checks
tmp

}

x.j = correct_ell_if_needed(x)[13];

Typing \um will output the list of user-defined member functions.

36

2.6.5 Strings and Keywords

GP variables can now hold values of type character string (internal type t_STR). This section
describes how they are actually used, as well as some convenient tricks (automatic concatenation
and expansion, keywords) valid in string context.

As explained above, the general way to input a string is to enclose characters between quotes ".
This is the only input construct where whitespace characters are significant: the string will contain
the exact number of spaces you typed in. Besides, you can “escape” characters by putting a \ just
before them; the translation is as follows

\e: <Escape>
\n: <Newline>
\t: <Tab>

For any other character x, \x is expanded to x. In particular, the only way to put a " into a
string is to escape it. Thus, for instance, "\"a\"" would produce the string whose content is “a”.
This is definitely not the same thing as typing "a", whose content is merely the one-letter string a.

You can concatenate two strings using the concat function. If either argument is a string, the
other is automatically converted to a string if necessary (it will be evaluated first).

? concat("ex", 1+1)
%1 = "ex2"
? a = 2; b = "ex"; concat(b, a)
%2 = "ex2"
? concat(a, b)
%3 = "2ex"

Some functions expect strings for some of their arguments: print would be an obvious example,
Str is a less obvious but very useful one (see the end of this section for a complete list). While
typing in such an argument, you will be said to be in string context. The rest of this section is
devoted to special syntactical tricks which can be used with such arguments (and only here; you
will get an error message if you try these outside of string context):

• Writing two strings alongside one another will just concatenate them, producing a longer
string. Thus it is equivalent to type in "a " "b" or "a b". A little tricky point in the first
expression: the first whitespace is enclosed between quotes, and so is part of a string; while the
second (before the "b") is completely optional and GP actually suppresses it, as it would with any
number of whitespace characters at this point (i.e. outside of any string).

• If you insert an expression without quotes when GP expects a string, it gets “expanded”: it
is evaluated as a standard GP expression, and the final result (as would have been printed if you
had typed it by itself) is then converted to a string, as if you had typed it directly. For instance
"a" 1+1 "b" is equivalent to "a2b": three strings get created, the middle one being the expansion
of 1+1, and these are then concatenated according to the rule described above. Another tricky
point here: assume you did not assign a value to aaa in a GP expression before. Then typing aaa
by itself in a string context will actually produce the correct output (i.e. the string whose content
is aaa), but in a fortuitous way. This aaa gets expanded to the monomial of degree one in the
variable aaa, which is of course printed as aaa, and thus will expand to the three letters you were
expecting.

• Since there are cases where expansion is not really desirable, we now distinguish between
“Keywords” and “Strings”. String is what has been described so far. Keywords are special relatives

37

of Strings which are automatically assumed to be quoted, whether you actually type in the quotes
or not. Thus expansion is never performed on them. They get concatenated, though. The analyzer
supplies automatically the quotes you have “forgotten” and treats Keywords just as normal strings
otherwise. For instance, if you type "a"b+b in Keyword context, you will get the string whose
contents are ab+b. In String context, on the other hand, you would get a2*b.

All GP functions have prototypes (described in Chapter 3 below) which specify the types of
arguments they expect: either generic PARI objects (GEN), or strings, or keywords, or unevaluated
expression sequences. In the keyword case, only a very small set of words will actually be meaningful
(the default function is a prominent example).

Let’s now try some not-so-stupid exercises to get the hang of it. Try to guess the results of the
following commands without actually typing them, assuming that the print command evaluates
and prints its (string) arguments in left-to-right order, ending with a newline (and returns 0 as an
unprinted result):

print()
print(1+3"a,3" ,4)
print(a=3, (1 + ((a-3)==print())) (a = (a == 5\/2)))

Here is a less artificial example, used to create generic matrices:

? genmat(u,v,s="x") = matrix(u,v,i,j, eval(Str(s "" i "" j)))
? genmat(2,3) + genmat(2,3,"m")
%1 =
[x11 + m11 x12 + m12 x13 + m13]
[x21 + m21 x22 + m22 x23 + m23]

Note that the argument of Str is evaluated in string context, and really consists of 5 pieces (ex-
ercise: why are the empty strings necessary?). This part could also have been written as con-
cat(concat(Str(s), i), j) (but not as concat(Str(s), concat(i,j))!). More simply, we
could have written concat([Str(s), i,j]), or even concat([s,i,j]), silently assuming that s
will indeed be a string. In practice Str is much more efficient, if slightly more cryptic.

And here’s a final one: the function hist returns all history entries from %a to %b neatly packed
into a single vector

? hist(a,b) = vector(b-a+1, i, eval(Str("%" a-1+i)))

The arguments of the following functions are processed in string context:
Str
addhelp (second argument)
default (second argument)
error
extern
plotstring (second argument)
plotterm (first argument)
read
system
all the printxxx functions
all the writexxx functions

The arguments of the following functions are processed as keywords:
alias

38

default (first argument)
install (all arguments but the last)
trap (first argument)
type (second argument)
whatnow

2.7 Interfacing GP with other languages.

The PARI library was meant to be interfaced with C programs. This specific use will be dealt with
extensively in Chapter 4. GP itself provides a convenient, if simple-minded, interpreter, which
enables you to execute rather intricate scripts (see Section 3.11).

Scripts, when properly written, tend to be shorter and much clearer than C programs, and are
certainly easier to write, maintain or debug. You don’t need to deal with memory management,
garbage collection, pointers, declarations, and so on. Because of their intrinsic simplicity, they
are more robust as well. They are unfortunately somewhat slower. Thus their use will remain
complementary: it is suggested that you test and debug your algorithms using scripts, before
actually coding them in C for the sake of speed.

UNIX: Note that the install command enables you to concentrate on critical parts of your programs only
(which can of course be written with the help of other mathematical libraries than PARI!), and to
easily and efficiently import foreign functions for use under GP (see Section 3.11.2.13).

We are aware of three PARI-related public domain libraries. We neither endorse nor support
any of them. You might want to give them a try if you are familiar with the languages they are
based on. First, there are PariPerl*, written by Ilya Zakharevich (ilya@math.ohio-state.edu),
and PariPython**, by Stéfane Fermigier (fermigie@math.jussieu.fr). Finaly, Michael Stoll
(Michael Stoll@math.uni-bonn.de) has integrated PARI into CLISP, which is a Common Lisp
implementation by Bruno Haible, Marcus Daniels and others. These provide interfaces to GP
functions for use in perl, python or Lisp programs. To our knowledge, only the python and perl
interfaces have been upgraded to version 2.0 of PARI, the CLISP one being still based on version
1.39.xx.

2.8 The preferences file.

When GP is started, it looks for a customization file, or gprc in the following places (in this order,
only the first one found will be read):

• On the Macintosh (only), GP looks in the directory which contains the GP executable itself for
a file called gprc. No other places are examined.

• If the operating system supports environment variables (essentially, anything but MacOS), GP
checks whether the environment variable GPRC is set. Under DOS, you can set it in AUTOEXEC.BAT.
On Unix, this can be done with something like:

GPRC=/my/dir/anyname; export GPRC in sh syntax (for instance in your .profile),
setenv GPRC /my/dir/anyname in csh syntax (in your .login or .cshrc file).

If so, the file named by $GPRC is the gprc.

* see http://nswt.tuwien.ac.at:8000/htdocs/internet/unix/perl/math-pari.html
** see http://www.math.jussieu.fr/~fermigie/PariPython/readme.html

39

• If GPRC is not set, and if the environment variable HOME is defined, GP then tries

$HOME/.gprc on a Unix system

$HOME\ gprc on a DOS, OS/2, or Windows system.

• If HOME also leaves us clueless, we try

~/.gprc on a Unix system (where as usual ~ stands for your home directory), or

\ gprc on a DOS, OS/2, or Windows system.

• Finally, if no gprc was found among the user files mentioned above we look for /etc/gprc
(\etc\gprc) for a system-wide gprc file (you’ll need root privileges to set up such a file yourself).

Note that on Unix systems, the gprc’s default name starts with a ’.’ and thus is hidden
to regular ls commands; you need to type ls -a to see whether it’s already there without your
knowing about it.

In any case, GP will open the corresponding file and process the commands in there, before
doing anything else, e.g. creating the PARI stack. If the file doesn’t exist or cannot be read,
GP will proceed to the initialization phase at once, eventually emitting a prompt. If any explicit
commandline switches are given, they will override the values read from the gprc file.

The syntax in this file (and valid in this file only, at this very precise moment!) is simple-
minded, but should be sufficient for most purposes. It is read line by line, white space being
optional as usual (unless surrounded by quotes). Two types of lines are first dealt with by a
preprocessor:

• comments are removed. This applies to all text surrounded by /* . . . */ as well as everything
following \\ on a given line.

• lines starting with #if keyword are treated as comments if keyword is not defined, and read
normally otherwise. The condition can be negated using either #if not (or #if !). Only two
keywords are recognized:

EMACS: defined if GP is running in an Emacs shell (see Section 2.9).

READL: defined if GP is compiled with readline support (see Section 2.10.1).

For instance you could set your prompt in the following portable way:

\\ self modifying prompt looking like (18:03) gp >
prompt = "(\%R) \e[1mgp\e[m > "

\\ readline wants non-printing characters to be braced between ^A/^B pairs
#if READL prompt = "(%R) ^A\e[1m^Bgp^A\e[m^B > "

\\ escape sequences not supported under emacs
#if EMACS prompt = "(%R) gp > "

After the preprocessing there remain two types of lines:

• lines of the form default = value, where default is one of the available defaults (see Section 2.1),
which will be set to value on actual startup. Don’t forget the quotes around strings (e.g. for prompt
or help).

• lines of the form read "some GP file" where some GP file is a regular GP script this time,
which will be read just before GP prompts you for commands, but after initializing the defaults.
This is the right place to input files containing alias commands, or your favorite macros.

40

A sample gprc file called gprc.dft is provided in the standard distribution (in directory lib).
It’s a good idea to have a look at it and customize it to your needs.

2.9 Using GP under GNU Emacs.

Thanks to the initial help of Annette Hoffman from the University of Saarbrücken, and David
Carlisle from the University of Manchester, it is possible to use GP as a subprocess of GNU Emacs.
(Of course, you need GNU Emacs to be installed on your machine!). To use this, you should include
in your .emacs file the following lines:

(autoload ’gp-mode "/home/belabas/GP/lib/pari/pari" nil t)
(autoload ’gp-script-mode "/home/belabas/GP/lib/pari/pari" nil t)
(autoload ’gp "/home/belabas/GP/lib/pari/pari" nil t)
(autoload ’gpman "/home/belabas/GP/lib/pari/pari" nil t)
(setq auto-mode-alist
(cons ’("\\.gp$" . gp-script-mode) auto-mode-alist))

where pari.el is the name of the file that will have to be loaded by GNU Emacs (if you have
changed the name, or if you have the file in a different directory, you must of course supply the
correct name). This file is included in the PARI distribution and probably has been installed at
the same time as GP.

Once this is done, under GNU Emacs if you type M-x gp (where as usual M is the Meta key,
i.e. Escape, or on SUN keyboards, the Left key), a special shell will be started, which in particular
launches GP with the default stack size, prime limit and input buffer size. If you type instead
C-u M-x gp, you will be asked for the name of the GP executable, the stack size, the prime limit
and the input buffer size before the execution of GP begins. If for any of these you simply type
return, the default value will be used. On UNIX machines it will be the place you told Configure
(usually /usr/local/bin/gp) for the executable, 4000000 for the stack, 500000 for the prime limit
and 30000 for the buffer size.

You can then work as usual under GP, but with two notable advantages (which don’t really
matter if readline is available to you, see below). First and foremost, you have at your disposal
all the facilities of a text editor like Emacs, in particular for correcting or copying blocks. Second,
you can have an on-line help which is much more complete than what you obtain by typing ?name.
This is done by typing M-?. In the minibuffer, Emacs asks what function you want to describe, and
after your reply you obtain the description which is in the users manual, including the description
of functions (such as \, %) which use special symbols.

This help system can also be menu-driven, by using the command M-\c which opens a help
menu window which enables you to choose the category of commands for which you want an
explanation.

Nevertheless, if extended help is available on your system (see Section 2.2.1), you should use it
instead of the above, since it’s nicer (it ran through TEX) and understands many more keywords.

Finally you can use command completion in the following way. After the prompt, type the
first few letters of the command, then <TAB> where <TAB> is the TAB key. If there exists a unique
command starting with the letters you have typed, the command name will be completed. If not,
either the list of commands starting with the letters you typed will be displayed in a separate
window (which you can then kill by typing as usual C-x 1 or by typing in more letters), or “no
match found” will be displayed in the Emacs command line. If your GP was linked with the readline

41

library, read the section on completion in the section below (the paragraph on online help is not
relevant).

Note that if for some reason the session crashes (due to a bug in your program or in the PARI
system), you will usually stay under Emacs, but the GP buffer will be killed. To recover it, simply
type again M-x gp (or C-u M-x gp), and a new session of GP will be started after the old one, so
you can recover what you have typed. Note that this will of course not work if for some reason you
kill Emacs and start a new session.

You also have at your disposal a few other commands and many possible customizations
(colours, prompt). Read the file emacs/pariemacs.txt in standard distribution for details.

2.10 Using GP with readline.

Thanks to the initial help of Ilya Zakharevich, there is a possibility of line editing and command
name completion outside of an Emacs buffer if you have compiled GP with the GNU readline
library. If you don’t have Emacs available, or can’t stand using it, we really advise you to make
sure you get this very useful library before configuring or compiling GP. In fact, with readline,
even line editing becomes more powerful outside an Emacs buffer!

2.10.1 A (too) short introduction to readline: The basics are as follows (read the readline
user manual !), assume that C- stands for “the Control key combined with another” and the same
for M- with the Meta key (generally C- combinations act on characters, while the M- ones operate
on words). The Meta key might be called Alt on some keyboards, will display a black diamond on
most others, and can safely be replaced by Esc in any case. Typing any ordinary key inserts text
where the cursor stands, the arrow keys enabling you to move in the line. There are many more
movement commands, which will be familiar to the Emacs user, for instance C-a/C-e will take you
to the start/end of the line, M-b/M-f move the cursor backward/forward by a word, etc. Just press
the Return key at any point to send your command to GP.

All the commands you type in are stored in a history (with multiline commands being saved as
single concatenated lines). The Up and Down arrows (or C-p/C-n) will move you through it, M-</M-
> sending you to the start/end of the history. C-r/C-s will start an incremental backward/forward
search. You can kill text (C-k kills till the end of line, M-d to the end of current word) which you
can then yank back using the C-y key (M-y will rotate the kill-ring). C- will undo your last changes
incrementally (M-r undoes all changes made to the current line). C-t and M-t will transpose the
character (word) preceding the cursor and the one under the cursor.

Keeping the M- key down while you enter an integer (a minus sign meaning reverse behaviour)
gives an argument to your next readline command (for instance M-- C-k will kill text back to the
start of line). If you prefer Vi–style editing, M-C-j will toggle you to Vi mode.

Of course you can change all these default bindings. For that you need to create a file named
.inputrc in your home directory. For instance (notice the embedding conditional in case you would
want specific bindings for GP):

$if Pari-GP
set show-all-if-ambiguous
"\C-h": backward-delete-char
"\e\C-h": backward-kill-word
"\C-xd": dump-functions

42

(: "\C-v()\C-b" # can be annoying when copy-pasting !
[: "\C-v[]\C-b"

$endif

C-x C-r will re-read this init file, incorporating any changes made to it during the current session.

Note: By default, (and [are bound to the function pari-matched-insert which, if “electric
parentheses” are enabled (default: off) will automatically insert the matching closure (respectively
) and]). This behaviour can be toggled on and off by giving the numeric argument −2 to (
(M--2(), which is useful if you want, e.g to copy-paste some text into the calculator. If you don’t
want a toggle, you can use M--0 / M--1 to specifically switch it on or off).

Note: In recent versions of readline (2.1 for instance), the Alt or Meta key can give funny re-
sults (output 8-bit accented characters for instance). If you don’t want to fall back to the Esc
combination, put the following two lines in your .inputrc:

set convert-meta on
set output-meta off

2.10.2 Command completion and online help

As in the Emacs shell, <TAB> will complete words for you. But, under readline, this mechanism
will be context-dependent: GP will strive to only give you meaningful completions in a given context
(it will fail sometimes, but only under rare and restricted conditions).

For instance, shortly after a ~, we expect a user name, then a path to some file. Directly after
default(has been typed, we would expect one of the default keywords. After whatnow(, we
expect the name of an old function, which may well have disappeared from this version. After a
’.’, we expect a member keyword. And generally of course, we expect any GP symbol which may
be found in the hashing lists: functions (both yours and GP’s), and variables.

If, at any time, only one completion is meaningful, GP will provide it together with

• an ending comma if we’re completing a default,

• a pair of parentheses if we’re completing a function name. In that case hitting <TAB> again
will provide the argument list as given by the online help*.

Otherwise, hitting <TAB> once more will give you the list of possible completions. Just experi-
ment with this mechanism as often as possible, you’ll probably find it very convenient. For instance,
you can obtain default(seriesprecision,10), just by hitting def<TAB>se<TAB>10, which saves
18 keystrokes (out of 27).

Hitting M-h will give you the usual short online help concerning the word directly beneath the
cursor, M-H will yield the extended help corresponding to the help default program (usually opens
a dvi previewer, or runs a primitive tex-to-ASCII program). None of these disturb the line you
were editing.

* recall that you can always undo the effect of the preceding keys by hitting C-

43

44

Chapter 3:

Functions and Operations Available in PARI and GP

The functions and operators available in PARI and in the GP/PARI calculator are numerous and
everexpanding. Here is a description of the ones available in version 2.1.1. It should be noted that
many of these functions accept quite different types as arguments, but others are more restricted.
The list of acceptable types will be given for each function or class of functions. Except when stated
otherwise, it is understood that a function or operation which should make natural sense is legal.
In this chapter, we will describe the functions according to a rough classification. The general entry
looks something like:

foo(x, {flag = 0}): short description.

The library syntax is foo(x, flag).

This means that the GP function foo has one mandatory argument x, and an optional one, flag ,
whose default value is 0 (the {} should never be typed, it is just a convenient notation we will use
throughout to denote optional arguments). That is, you can type foo(x,2), or foo(x), which is
then understood to mean foo(x,0). As well, a comma or closing parenthesis, where an optional
argument should have been, signals to GP it should use the default. Thus, the syntax foo(x,) is
also accepted as a synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order. And when none are left,
the defaults are used instead. Thus, assuming that foo’s prototype had been

foo({x = 1}, {y = 2}, {z = 3}),

typing in foo(6,4) would give you foo(6,4,3). In the rare case when you want to set some far
away flag, and leave the defaults in between as they stand, you can use the “empty arg” trick alluded
to above: foo(6,,1) would yield foo(6,2,1). By the way, foo() by itself yields foo(1,2,3) as
was to be expected. In this rather special case of a function having no mandatory argument, you
can even omit the (): a standalone foo would be enough (though we don’t really recommend it for
your scripts, for the sake of clarity). In defining GP syntax, we strove to put optional arguments at
the end of the argument list (of course, since they would not make sense otherwise), and in order
of decreasing usefulness so that, most of the time, you will be able to ignore them.

Binary Flags. For some of these optional flags, we adopted the customary binary notation as
a compact way to represent many toggles with just one number. Letting (p0, . . . , pn) be a list of
switches (i.e. of properties which can be assumed to take either the value 0 or 1), the number
23 + 25 = 40 means that p3 and p5 have been set (that is, set to 1), and none of the others were
(that is, they were set to 0). This will usually be announced as “The binary digits of flag mean 1:
p0, 2: p1, 4: p2”, and so on, using the available consecutive powers of 2.

Pointers. If a parameter in the function prototype is prefixed with a & sign, as in

foo(x,&e)

it means that, besides the normal return value, the variable named e may be set as a side effect.
When passing the argument, the & sign has to be typed in explicitly. As of version 2.1.1, this
pointer argument is optional for all documented functions, hence the & will always appear between
brackets as in issquare(x, {&e}).

45

About library programming. To finish with our generic simple-minded example, the library
function foo, as defined above, is seen to have two mandatory arguments, x and flag(no PARI
mathematical function has been implemented so as to accept a variable number of arguments).
When not mentioned otherwise, the result and arguments of a function are assumed implicitly to
be of type GEN. Most other functions return an object of type long integer in C (see Chapter 4).
The variable or parameter names prec and flag always denote long integers.

The entree type is used by the library to implement iterators (loops, sums, integrals, etc.)
when a formal variable has to successively assume a number of values in a given set. When
programming with the library, it is easier and much more efficient to code loops and the like
directly. Hence this type is not documented, although it does appear in a few library function
prototypes below. See Section 3.9 for more details.

3.1 Standard monadic or dyadic operators.

3.1.1 +/-: The expressions +x and -x refer to monadic operators (the first does nothing, the second
negates x).

The library syntax is gneg(x) for -x.

3.1.2 +, -: The expression x + y is the sum and x - y is the difference of x and y. Among the
prominent impossibilities are addition/subtraction between a scalar type and a vector or a matrix,
between vector/matrices of incompatible sizes and between an integermod and a real number.

The library syntax is gadd(x, y) x + y, gsub(x, y) for x - y.

3.1.3 *: The expression x * y is the product of x and y. Among the prominent impossibilities are
multiplication between vector/matrices of incompatible sizes, between an integermod and a real
number. Note that because of vector and matrix operations, * is not necessarily commutative. Note
also that since multiplication between two column or two row vectors is not allowed, to obtain the
scalar product of two vectors of the same length, you must multiply a line vector by a column vector,
if necessary by transposing one of the vectors (using the operator ~ or the function mattranspose,
see Section 3.8).

If x and y are binary quadratic forms, compose them. See also qfbnucomp and qfbnupow.

The library syntax is gmul(x, y) for x * y. Also available is gsqr(x) for x * x (faster of
course!).

3.1.4 /: The expression x / y is the quotient of x and y. In addition to the impossibilities for
multiplication, note that if the divisor is a matrix, it must be an invertible square matrix, and in
that case the result is x∗y−1. Furthermore note that the result is as exact as possible: in particular,
division of two integers always gives a rational number (which may be an integer if the quotient
is exact) and not the Euclidean quotient (see x \ y for that), and similarly the quotient of two
polynomials is a rational function in general. To obtain the approximate real value of the quotient
of two integers, add 0. to the result; to obtain the approximate p-adic value of the quotient of two
integers, add O(p^k) to the result; finally, to obtain the Taylor series expansion of the quotient of
two polynomials, add O(X^k) to the result or use the taylor function (see Section 3.7.32).

The library syntax is gdiv(x, y) for x / y.

46

3.1.5 \: The expression x \ y is the Euclidean quotient of x and y. The types must be either both
integer or both polynomials. The result is the Euclidean quotient. In the case of integer division,
the quotient is such that the corresponding remainder is non-negative.

The library syntax is gdivent(x, y) for x \ y.

3.1.6 \/: The expression x \/ y is the Euclidean quotient of x and y. The types must be either
both integer or both polynomials. The result is the rounded Euclidean quotient. In the case of
integer division, the quotient is such that the corresponding remainder is smallest in absolute value
and in case of a tie the quotient closest to +∞ is chosen.

The library syntax is gdivround(x, y) for x \/ y.

3.1.7 %: The expression x % y is the Euclidean remainder of x and y. The modulus y must be of
type integer or polynomial. The result is the remainder, always non-negative in the case of integers.
Allowed dividend types are scalar exact types when the modulus is an integer, and polynomials,
polmods and rational functions when the modulus is a polynomial.

The library syntax is gmod(x, y) for x % y.

3.1.8 divrem(x, y): creates a column vector with two components, the first being the Euclidean
quotient, the second the Euclidean remainder, of the division of x by y. This avoids the need to
do two divisions if one needs both the quotient and the remainder. The arguments must be both
integers or both polynomials; in the case of integers, the remainder is non-negative.

The library syntax is gdiventres(x, y).

3.1.9 ^: The expression x^n is powering. If the exponent is an integer, then exact operations
are performed using binary (left-shift) powering techniques. In particular, in this case x cannot
be a vector or matrix unless it is a square matrix (and moreover invertible if the exponent is
negative). If x is a p-adic number, its precision will increase if vp(n) > 0. PARI is able to rewrite
the multiplication x∗x of two identical objects as x2, or sqr(x) (here, identical means the operands
are two different labels referencing the same chunk of memory; no equality test is performed). This
is no longer true when more than two arguments are involved.

If the exponent is not of type integer, this is treated as a transcendental function (see Sec-
tion 3.3), and in particular has the effect of componentwise powering on vector or matrices.

As an exception, if the exponent is a rational number p/q and x an integer modulo a prime,
return a solution y of yq = xp if it exists. Currently, q must not have large prime factors.

Beware that

? Mod(7,19)^(1/2)
%1 = Mod(11, 19)/*is any square root*/
? sqrt(Mod(7,19))
%2 = Mod(8, 19)/*is the smallest square root*/
? Mod(7,19)^(3/5)
%3 = Mod(1, 19)
? %3^(5/3)
%4 = Mod(1, 19)/*Mod(7,19) is just another cubic root*/

The library syntax is gpow(x, n, prec) for x^n.

47

3.1.10 shift(x, n) or x << n (= x >> (−n)): shifts x componentwise left by n bits if n ≥ 0 and
right by |n| bits if n < 0. A left shift by n corresponds to multiplication by 2n. A right shift of an
integer x by |n| corresponds to a Euclidean division of x by 2|n| with a remainder of the same sign
as x, hence is not the same (in general) as x\2n.

The library syntax is gshift(x, n) where n is a long.

3.1.11 shiftmul(x, n): multiplies x by 2n. The difference with shift is that when n < 0, ordinary
division takes place, hence for example if x is an integer the result may be a fraction, while for
shift Euclidean division takes place when n < 0 hence if x is an integer the result is still an integer.

The library syntax is gmul2n(x, n) where n is a long.

3.1.12 Comparison and boolean operators. The six standard comparison operators <=, <, >=,
>, ==, != are available in GP, and in library mode under the names gle, glt, gge, ggt, geq, gne
respectively. The library syntax is co(x, y), where co is the comparison operator. The result is 1
(as a GEN) if the comparison is true, 0 (as a GEN) if it is false.

The standard boolean functions || (inclusive or), && (and) and ! (not) are also available, and
the library syntax is gor(x, y), gand(x, y) and gnot(x) respectively.

In library mode, it is in fact usually preferable to use the two basic functions which are
gcmp(x, y) which gives the sign (1, 0, or -1) of x−y, where x and y must be in R, and gegal(x, y)
which can be applied to any two PARI objects x and y and gives 1 (i.e. true) if they are equal (but
not necessarily identical), 0 (i.e. false) otherwise. Particular cases of gegal which should be used
are gcmp0(x) (x == 0 ?), gcmp1(x) (x == 1 ?), and gcmp 1(x) (x == −1 ?).

Note that gcmp0(x) tests whether x is equal to zero, even if x is not an exact object. To test
whether x is an exact object which is equal to zero, one must use isexactzero.

Also note that the gcmp and gegal functions return a C-integer, and not a GEN like gle etc.

GP accepts the following synonyms for some of the above functions: since we thought it might
easily lead to confusion, we don’t use the customary C operators for bitwise and or bitwise or (use
bitand or bitor), hence | and & are accepted as synonyms of || and && respectively. Also, <> is
accepted as a synonym for !=. On the other hand, = is definitely not a synonym for == since it is
the assignment statement.

3.1.13 lex(x, y): gives the result of a lexicographic comparison between x and y. This is to be
interpreted in quite a wide sense. For example, the vector [1, 3] will be considered smaller than the
longer vector [1, 3,−1] (but of course larger than [1, 2, 5]), i.e. lex([1,3], [1,3,-1]) will return
−1.

The library syntax is lexcmp(x, y).

3.1.14 sign(x): sign (0, 1 or −1) of x, which must be of type integer, real or fraction.

The library syntax is gsigne(x). The result is a long.

3.1.15 max(x, y) and min(x, y): creates the maximum and minimum of x and y when they can
be compared.

The library syntax is gmax(x, y) and gmin(x, y).

48

3.1.16 vecmax(x): if x is a vector or a matrix, returns the maximum of the elements of x,
otherwise returns a copy of x. Returns −∞ in the form of −(231 − 1) (or −(263 − 1) for 64-bit
machines) if x is empty.

The library syntax is vecmax(x).

3.1.17 vecmin(x): if x is a vector or a matrix, returns the minimum of the elements of x, otherwise
returns a copy of x. Returns +∞ in the form of 231 − 1 (or 263 − 1 for 64-bit machines) if x is
empty.

The library syntax is vecmin(x).

3.2 Conversions and similar elementary functions or commands.

Many of the conversion functions are rounding or truncating operations. In this case, if the argu-
ment is a rational function, the result is the Euclidean quotient of the numerator by the denomi-
nator, and if the argument is a vector or a matrix, the operation is done componentwise. This will
not be restated for every function.

3.2.1 List(x = []): transforms a (row or column) vector x into a list. The only other way to create
a t_LIST is to use the function listcreate.

This is useless in library mode.

3.2.2 Mat(x = []): transforms the object x into a matrix. If x is not a vector or a matrix, this
creates a 1 × 1 matrix. If x is a row (resp. column) vector, this creates a 1-row (resp. 1-column)
matrix. If x is already a matrix, a copy of x is created.

This function can be useful in connection with the function concat (see there).

The library syntax is gtomat(x).

3.2.3 Mod(x, y, {flag = 0}): creates the PARI object (xmod y), i.e. an integermod or a polmod.
y must be an integer or a polynomial. If y is an integer, x must be an integer, a rational number,
or a p-adic number compatible with the modulus y. If y is a polynomial, x must be a scalar (which
is not a polmod), a polynomial, a rational function, or a power series.

This function is not the same as x % y, the result of which is an integer or a polynomial.

If flag is equal to 1, the modulus of the created result is put on the heap and not on the
stack, and hence becomes a permanent copy which cannot be erased later by garbage collecting
(see Section 4.4). Functions will operate faster on such objects and memory consumption will be
lower. On the other hand, care should be taken to avoid creating too many such objects.

Under GP, the same effect can be obtained by assigning the object to a GP variable (the value
of which is a permanent object for the duration of the relevant library function call, and is treated
as such). This value is subject to garbage collection, since it will be deleted when the value changes.
This is preferable and the above flag is only retained for compatibility reasons (it can still be useful
in library mode).

The library syntax is Mod0(x, y, flag). Also available are

• for flag = 1: gmodulo(x, y).

• for flag = 0: gmodulcp(x, y).

49

3.2.4 Pol(x, {v = x}): transforms the object x into a polynomial with main variable v. If x is a
scalar, this gives a constant polynomial. If x is a power series, the effect is identical to truncate
(see there), i.e. it chops off the O(Xk). If x is a vector, this function creates the polynomial whose
coefficients are given in x, with x[1] being the leading coefficient (which can be zero).

Warning: this is not a substitution function. It is intended to be quick and dirty. So if you
try Pol(a,y) on the polynomial a = x+y, you will get y+y, which is not a valid PARI object.

The library syntax is gtopoly(x, v), where v is a variable number.

3.2.5 Polrev(x, {v = x}): transform the object x into a polynomial with main variable v. If x is
a scalar, this gives a constant polynomial. If x is a power series, the effect is identical to truncate
(see there), i.e. it chops off the O(Xk). If x is a vector, this function creates the polynomial whose
coefficients are given in x, with x[1] being the constant term. Note that this is the reverse of Pol
if x is a vector, otherwise it is identical to Pol.

The library syntax is gtopolyrev(x, v), where v is a variable number.

3.2.6 Qfb(a, b, c, {D = 0.}): creates the binary quadratic form ax2 + bxy + cy2. If b2 − 4ac > 0,
initialize Shanks’ distance function to D.

The library syntax is Qfb0(a, b, c,D, prec). Also available are qfi(a, b, c) (when b2− 4ac < 0),
and qfr(a, b, c, d) (when b2 − 4ac > 0).

3.2.7 Ser(x, {v = x}): transforms the object x into a power series with main variable v (x by
default). If x is a scalar, this gives a constant power series with precision given by the default
serieslength (corresponding to the C global variable precdl). If x is a polynomial, the precision
is the greatest of precdl and the degree of the polynomial. If x is a vector, the precision is similarly
given, and the coefficients of the vector are understood to be the coefficients of the power series
starting from the constant term (i.e. the reverse of the function Pol).

The warning given for Pol applies here: this is not a substitution function.

The library syntax is gtoser(x, v), where v is a variable number (i.e. a C integer).

3.2.8 Set({x = []}): converts x into a set, i.e. into a row vector with strictly increasing entries. x
can be of any type, but is most useful when x is already a vector. The components of x are put
in canonical form (type t_STR) so as to be easily sorted. To recover an ordinary GEN from such an
element, you can apply eval to it.

The library syntax is gtoset(x).

3.2.9 Str({x = ""}, {flag = 0}): converts x into a character string (type t_STR, the empty string
if x is omitted). To recover an ordinary GEN from a string, apply eval to it. The arguments of Str
are evaluated in string context (see Section 2.6.5). If flag is set, treat x as a filename and perform
environment expansion on the string. This feature can be used to read environment variable values.

? i = 1; Str("x" i)
%1 = "x1"
? eval(%)
%2 = x1;
? Str("$HOME", 1)
%3 = "/home/pari"

The library syntax is strtoGENstr(x, flag). This function is mostly useless in library mode.
Use the pair strtoGEN/GENtostr to convert between char* and GEN.

50

3.2.10 Vec(x = []): transforms the object x into a row vector. The vector will be with one
component only, except when x is a vector/matrix or a quadratic form (in which case the resulting
vector is simply the initial object considered as a row vector), but more importantly when x is a
polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with
the leading coefficient of the polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.

The library syntax is gtovec(x).

3.2.11 binary(x): outputs the vector of the binary digits of |x|. Here x can be an integer, a
real number (in which case the result has two components, one for the integer part, one for the
fractional part) or a vector/matrix.

The library syntax is binaire(x).

3.2.12 bitand(x, y): bitwise and of two integers x and y, that is the integer∑
(xi and yi)2i

Negative numbers behave as if modulo a huge power of 2.

The library syntax is gbitand(x, y).

3.2.13 bitneg(x, {n = −1}): bitwise negation of an integer x, truncated to n bits, that is the
integer

n∑
i=0

not(xi)2i

The special case n = −1 means no truncation: an infinite sequence of leading 1 is then represented
as a negative number.

Negative numbers behave as if modulo a huge power of 2.

The library syntax is gbitneg(x).

3.2.14 bitnegimply(x, y): bitwise negated imply of two integers x and y (or not (x ⇒ y)), that
is the integer ∑

(xi andnot(yi))2i

Negative numbers behave as if modulo a huge power of 2.

The library syntax is gbitnegimply(x, y).

3.2.15 bitor(x, y): bitwise (inclusive) or of two integers x and y, that is the integer∑
(xi or yi)2i

Negative numbers behave as if modulo a huge power of 2.

The library syntax is gbitor(x, y).

51

3.2.16 bittest(x, n): outputs the nth bit of |x| starting from the right (i.e. the coefficient of 2n in
the binary expansion of x). The result is 0 or 1. To extract several bits at once as a vector, pass a
vector for n.

The library syntax is bittest(x, n), where n and the result are longs.

3.2.17 bitxor(x, y): bitwise (exclusive) or of two integers x and y, that is the integer∑
(xi xor yi)2i

Negative numbers behave as if modulo a huge power of 2.

The library syntax is gbitxor(x, y).

3.2.18 ceil(x): ceiling of x. When x is in R, the result is the smallest integer greater than or equal
to x. Applied to a rational function, ceil(x) returns the euclidian quotient of the numerator by
the denominator.

The library syntax is gceil(x).

3.2.19 centerlift(x, {v}): lifts an element x = a mod n of Z/nZ to a in Z, and similarly lifts a
polmod to a polynomial. This is the same as lift except that in the particular case of elements
of Z/nZ, the lift y is such that −n/2 < y ≤ n/2. If x is of type fraction, complex, quadratic,
polynomial, power series, rational function, vector or matrix, the lift is done for each coefficient.
Real and p-adics are forbidden.

The library syntax is centerlift0(x, v), where v is a long and an omitted v is coded as −1.
Also available is centerlift(x) = centerlift0(x,-1).

3.2.20 changevar(x, y): creates a copy of the object x where its variables are modified according
to the permutation specified by the vector y. For example, assume that the variables have been
introduced in the order x, a, b, c. Then, if y is the vector [x,c,a,b], the variable a will be
replaced by c, b by a, and c by b, x being unchanged. Note that the permutation must be
completely specified, e.g. [c,a,b] would not work, since this would replace x by c, and leave a and
b unchanged (as well as c which is the fourth variable of the initial list). In particular, the new
variable names must be distinct.

The library syntax is changevar(x, y).

3.2.21 components of a PARI object:

There are essentially three ways to extract the components from a PARI object.

The first and most general, is the function component(x, n) which extracts the nth-component
of x. This is to be understood as follows: every PARI type has one or two initial code words. The
components are counted, starting at 1, after these code words. In particular if x is a vector, this
is indeed the nth-component of x, if x is a matrix, the nth column, if x is a polynomial, the nth

coefficient (i.e. of degree n− 1), and for power series, the nth significant coefficient. The use of the
function component implies the knowledge of the structure of the different PARI types, which can
be recalled by typing \t under GP.

The library syntax is compo(x, n), where n is a long.

52

The two other methods are more natural but more restricted. The function polcoeff(x, n)
gives the coefficient of degree n of the polynomial or power series x, with respect to the main variable
of x (to check variable ordering, or to change it, use the function reorder, see Section 3.11.2.22).
In particular if n is less than the valuation of x or in the case of a polynomial, greater than the
degree, the result is zero (contrary to compo which would send an error message). If x is a power
series and n is greater than the largest significant degree, then an error message is issued.

For greater flexibility, vector or matrix types are also accepted for x, and the meaning is then
identical with that of compo.

Finally note that a scalar type is considered by polcoeff as a polynomial of degree zero.

The library syntax is truecoeff(x, n).

The third method is specific to vectors or matrices under GP. If x is a (row or column) vector,
then x[n] represents the nth component of x, i.e. compo(x,n). It is more natural and shorter to
write. If x is a matrix, x[m,n] represents the coefficient of row m and column n of the matrix,
x[m,] represents the mth row of x, and x[,n] represents the nth column of x.

Finally note that in library mode, the macros coeff and mael are available to deal with the
non-recursivity of the GEN type from the compiler’s point of view. See the discussion on typecasts
in Chapter 4.

3.2.22 conj(x): conjugate of x. The meaning of this is clear, except that for real quadratic
numbers, it means conjugation in the real quadratic field. This function has no effect on integers,
reals, integermods, fractions or p-adics. The only forbidden type is polmod (see conjvec for this).

The library syntax is gconj(x).

3.2.23 conjvec(x): conjugate vector representation of x. If x is a polmod, equal to Mod(a, q), this
gives a vector of length degree(q) containing the complex embeddings of the polmod if q has integral
or rational coefficients, and the conjugates of the polmod if q has some integermod coefficients. The
order is the same as that of the polroots functions. If x is an integer or a rational number, the
result is x. If x is a (row or column) vector, the result is a matrix whose columns are the conjugate
vectors of the individual elements of x.

The library syntax is conjvec(x, prec).

3.2.24 denominator(x): lowest denominator of x. The meaning of this is clear when x is a
rational number or function. When x is an integer or a polynomial, the result is equal to 1. When
x is a vector or a matrix, the lowest common denominator of the components of x is computed. All
other types are forbidden.

The library syntax is denom(x).

3.2.25 floor(x): floor of x. When x is in R, the result is the largest integer smaller than or equal
to x. Applied to a rational function, floor(x) returns the euclidian quotient of the numerator by
the denominator.

The library syntax is gfloor(x).

3.2.26 frac(x): fractional part of x. Identical to x− floor(x). If x is real, the result is in [0, 1[.

The library syntax is gfrac(x).

53

3.2.27 imag(x): imaginary part of x. When x is a quadratic number, this is the coefficient of ω
in the “canonical” integral basis (1, ω).

The library syntax is gimag(x).

3.2.28 length(x): number of non-code words in x really used (i.e. the effective length minus 2 for
integers and polynomials). In particular, the degree of a polynomial is equal to its length minus 1.
If x has type t_STR, output number of letters.

The library syntax is glength(x) and the result is a C long.

3.2.29 lift(x, {v}): lifts an element x = a mod n of Z/nZ to a in Z, and similarly lifts a polmod
to a polynomial if v is omitted. Otherwise, lifts only polmods with main variable v (if v does not
occur in x, lifts only intmods). If x is of type fraction, complex, quadratic, polynomial, power
series, rational function, vector or matrix, the lift is done for each coefficient. Forbidden types for
x are reals and p-adics.

The library syntax is lift0(x, v), where v is a long and an omitted v is coded as −1. Also
available is lift(x) = lift0(x,-1).

3.2.30 norm(x): algebraic norm of x, i.e. the product of x with its conjugate (no square roots are
taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise and
hence is not the L2-norm (see norml2). Note that the norm of an element of R is its square, so as
to be compatible with the complex norm.

The library syntax is gnorm(x).

3.2.31 norml2(x): square of the L2-norm of x. x must be a (row or column) vector.

The library syntax is gnorml2(x).

3.2.32 numerator(x): numerator of x. When x is a rational number or function, the meaning is
clear. When x is an integer or a polynomial, the result is x itself. When x is a vector or a matrix,
then numerator(x) is defined to be denominator(x)*x. All other types are forbidden.

The library syntax is numer(x).

3.2.33 numtoperm(n, k): generates the k-th permutation (as a row vector of length n) of the
numbers 1 to n. The number k is taken modulo n! , i.e. inverse function of permtonum.

The library syntax is permute(n, k), where n is a long.

3.2.34 padicprec(x, p): absolute p-adic precision of the object x. This is the minimum precision
of the components of x. The result is VERYBIGINT (231− 1 for 32-bit machines or 263− 1 for 64-bit
machines) if x is an exact object.

The library syntax is padicprec(x, p) and the result is a long integer.

3.2.35 permtonum(x): given a permutation x on n elements, gives the number k such that
x = numtoperm(n, k), i.e. inverse function of numtoperm.

The library syntax is permuteInv(x).

54

3.2.36 precision(x, {n}): gives the precision in decimal digits of the PARI object x. If x is an
exact object, the largest single precision integer is returned. If n is not omitted, creates a new
object equal to x with a new precision n. This is to be understood as follows:

For exact types, no change. For x a vector or a matrix, the operation is done componentwise.

For real x, n is the number of desired significant decimal digits. If n is smaller than the
precision of x, x is truncated, otherwise x is extended with zeros.

For x a p-adic or a power series, n is the desired number of significant p-adic or X-adic digits,
where X is the main variable of x.

Note that the function precision never changes the type of the result. In particular it is not
possible to use it to obtain a polynomial from a power series. For that, see truncate.

The library syntax is precision0(x, n), where n is a long. Also available are ggprecision(x)
(result is a GEN) and gprec(x, n), where n is a long.

3.2.37 random({N = 231}): gives a random integer between 0 and N − 1. N can be arbitrary
large. This is an internal PARI function and does not depend on the system’s random number
generator. Note that the resulting integer is obtained by means of linear congruences and will not
be well distributed in arithmetic progressions.

The library syntax is genrand(N).

3.2.38 real(x): real part of x. In the case where x is a quadratic number, this is the coefficient of
1 in the “canonical” integral basis (1, ω).

The library syntax is greal(x).

3.2.39 round(x, {&e}): If x is in R, rounds x to the nearest integer and sets e to the number of
error bits, that is the binary exponent of the difference between the original and the rounded value
(the “fractional part”). If the exponent of x is too large compared to its precision (i.e. e > 0), the
result is undefined and an error occurs if e was not given.

Important remark: note that, contrary to the other truncation functions, this function operates
on every coefficient at every level of a PARI object. For example

truncate
(

2.4 ∗X2 − 1.7
X

)
= 2.4 ∗X,

whereas

round
(

2.4 ∗X2 − 1.7
X

)
=

2 ∗X2 − 2
X

.

An important use of round is to get exact results after a long approximate computation, when
theory tells you that the coefficients must be integers.

The library syntax is grndtoi(x,&e), where e is a long integer. Also available is ground(x).

55

3.2.40 simplify(x): this function tries to simplify the object x as much as it can. The simplifi-
cations do not concern rational functions (which PARI automatically tries to simplify), but type
changes. Specifically, a complex or quadratic number whose imaginary part is exactly equal to 0
(i.e. not a real zero) is converted to its real part, and a polynomial of degree zero is converted to its
constant term. For all types, this of course occurs recursively. This function is useful in any case,
but in particular before the use of arithmetic functions which expect integer arguments, and not
for example a complex number of 0 imaginary part and integer real part (which is however printed
as an integer).

The library syntax is simplify(x).

3.2.41 sizebyte(x): outputs the total number of bytes occupied by the tree representing the PARI
object x.

The library syntax is taille2(x) which returns a long. The function taille returns the number
of words instead.

3.2.42 sizedigit(x): outputs a quick bound for the number of decimal digits of (the components
of) x, off by at most 1. If you want the exact value, you can use length(Str(x)), which is much
slower.

The library syntax is sizedigit(x) which returns a long.

3.2.43 truncate(x, {&e}): truncates x and sets e to the number of error bits. When x is in R,
this means that the part after the decimal point is chopped away, e is the binary exponent of the
difference between the original and the truncated value (the “fractional part”). If the exponent of
x is too large compared to its precision (i.e. e > 0), the result is undefined and an error occurs if e
was not given. The function applies componentwise on rational functions and vector / matrices; e
is then the maximal number of error bits.

Note a very special use of truncate: when applied to a power series, it transforms it into a
polynomial or a rational function with denominator a power of X, by chopping away the O(Xk).
Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number
by chopping away the O(pk).

The library syntax is gcvtoi(x,&e), where e is a long integer. Also available is gtrunc(x).

3.2.44 valuation(x, p): computes the highest exponent of p dividing x. If p is of type integer, x
must be an integer, an integermod whose modulus is divisible by p, a fraction, a q-adic number
with q = p, or a polynomial or power series in which case the valuation is the minimum of the
valuation of the coefficients.

If p is of type polynomial, x must be of type polynomial or rational function, and also a power
series if x is a monomial. Finally, the valuation of a vector, complex or quadratic number is the
minimum of the component valuations.

If x = 0, the result is VERYBIGINT (231 − 1 for 32-bit machines or 263 − 1 for 64-bit machines)
if x is an exact object. If x is a p-adic numbers or power series, the result is the exponent of the
zero. Any other type combinations gives an error.

The library syntax is ggval(x, p), and the result is a long.

56

3.2.45 variable(x): gives the main variable of the object x, and p if x is a p-adic number. Gives
an error if x has no variable associated to it. Note that this function is useful only in GP, since in
library mode the function gvar is more appropriate.

The library syntax is gpolvar(x). However, in library mode, this function should not be used.
Instead, test whether x is a p-adic (type t_PADIC), in which case p is in x[2], or call the function
gvar(x) which returns the variable number of x if it exists, BIGINT otherwise.

3.3 Transcendental functions.

As a general rule, which of course in some cases may have exceptions, transcendental functions
operate in the following way:

• If the argument is either an integer, a real, a rational, a complex or a quadratic number, it
is, if necessary, first converted to a real (or complex) number using the current precision held in the
default realprecision. Note that only exact arguments are converted, while inexact arguments
such as reals are not.

Under GP this is transparent to the user, but when programming in library mode, care must
be taken to supply a meaningful parameter prec as the last argument of the function if the first
argument is an exact object. This parameter is ignored if the argument is inexact.

Note that in library mode the precision argument prec is a word count including codewords,
i.e. represents the length in words of a real number, while under GP the precision (which is changed
by the metacommand \p or using default(realprecision,...)) is the number of significant
decimal digits.

Note that some accuracies attainable on 32-bit machines cannot be attained on 64-bit machines
for parity reasons. For example the default GP accuracy is 28 decimal digits on 32-bit machines,
corresponding to prec having the value 5, but this cannot be attained on 64-bit machines.

After possible conversion, the function is computed. Note that even if the argument is real,
the result may be complex (e.g. acos(2.0) or acosh(0.0)). Note also that the principal branch is
always chosen.

• If the argument is an integermod or a p-adic, at present only a few functions like sqrt
(square root), sqr (square), log, exp, powering, teichmuller (Teichmüller character) and agm
(arithmetic-geometric mean) are implemented.

Note that in the case of a 2-adic number, sqr(x) may not be identical to x ∗ x: for example if
x = 1+O(25) and y = 1+O(25) then x∗y = 1+O(25) while sqr(x) = 1+O(26). Here, x∗x yields
the same result as sqr(x) since the two operands are known to be identical. The same statement
holds true for p-adics raised to the power n, where vp(n) > 0.

57

Remark: note that if we wanted to be strictly consistent with the PARI philosophy, we should
have x ∗ y = (4 mod 8) and sqr(x) = (4 mod 32) when both x and y are congruent to 2 modulo 4.
However, since integermod is an exact object, PARI assumes that the modulus must not change,
and the result is hence (0 mod 4) in both cases. On the other hand, p-adics are not exact objects,
hence are treated differently.

• If the argument is a polynomial, power series or rational function, it is, if necessary, first
converted to a power series using the current precision held in the variable precdl. Under GP this
again is transparent to the user. When programming in library mode, however, the global variable
precdl must be set before calling the function if the argument has an exact type (i.e. not a power
series). Here precdl is not an argument of the function, but a global variable.

Then the Taylor series expansion of the function around X = 0 (where X is the main variable)
is computed to a number of terms depending on the number of terms of the argument and the
function being computed.

• If the argument is a vector or a matrix, the result is the componentwise evaluation of the
function. In particular, transcendental functions on square matrices, which are not implemented
in the present version 2.1.1 (see Appendix B however), will have a slightly different name if they
are implemented some day.

3.3.1 ^: If y is not of type integer, x^y has the same effect as exp(y*ln(x)). It can be applied to
p-adic numbers as well as to the more usual types.

The library syntax is gpow(x, y, prec).

3.3.2 Euler: Euler’s constant 0.57721 · · ·. Note that Euler is one of the few special reserved names
which cannot be used for variables (the others are I and Pi, as well as all function names).

The library syntax is mpeuler(prec) where prec must be given. Note that this creates γ on
the PARI stack, but a copy is also created on the heap for quicker computations next time the
function is called.

3.3.3 I: the complex number
√
−1.

The library syntax is the global variable gi (of type GEN).

3.3.4 Pi: the constant π (3.14159 · · ·).

The library syntax is mppi(prec) where prec must be given. Note that this creates π on the
PARI stack, but a copy is also created on the heap for quicker computations next time the function
is called.

58

3.3.5 abs(x): absolute value of x (modulus if x is complex). Power series and rational functions
are not allowed. Contrary to most transcendental functions, an exact argument is not converted
to a real number before applying abs and an exact result is returned if possible.

? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724

If x is a polynomial, returns −x if the leading coefficient is real and negative else returns x. For a
power series, the constant coefficient is considered instead.

The library syntax is gabs(x, prec).

3.3.6 acos(x): principal branch of cos−1(x), i.e. such that Re(acos(x)) ∈ [0, π]. If x ∈ R and
|x| > 1, then acos(x) is complex.

The library syntax is gacos(x, prec).

3.3.7 acosh(x): principal branch of cosh−1(x), i.e. such that Im(acosh(x)) ∈ [0, π]. If x ∈ R and
x < 1, then acosh(x) is complex.

The library syntax is gach(x, prec).

3.3.8 agm(x, y): arithmetic-geometric mean of x and y. In the case of complex or negative
numbers, the principal square root is always chosen. p-adic or power series arguments are also
allowed. Note that a p-adic agm exists only if x/y is congruent to 1 modulo p (modulo 16 for
p = 2). x and y cannot both be vectors or matrices.

The library syntax is agm(x, y, prec).

3.3.9 arg(x): argument of the complex number x, such that −π < arg(x) ≤ π.

The library syntax is garg(x, prec).

3.3.10 asin(x): principal branch of sin−1(x), i.e. such that Re(asin(x)) ∈ [−π/2, π/2]. If x ∈ R
and |x| > 1 then asin(x) is complex.

The library syntax is gasin(x, prec).

3.3.11 asinh(x): principal branch of sinh−1(x), i.e. such that Im(asinh(x)) ∈ [−π/2, π/2].

The library syntax is gash(x, prec).

3.3.12 atan(x): principal branch of tan−1(x), i.e. such that Re(atan(x)) ∈]− π/2, π/2[.

The library syntax is gatan(x, prec).

3.3.13 atanh(x): principal branch of tanh−1(x), i.e. such that Im(atanh(x)) ∈] − π/2, π/2]. If
x ∈ R and |x| > 1 then atanh(x) is complex.

The library syntax is gath(x, prec).

59

3.3.14 bernfrac(x): Bernoulli number Bx, where B0 = 1, B1 = −1/2, B2 = 1/6,. . . , expressed as
a rational number. The argument x should be of type integer.

The library syntax is bernfrac(x).

3.3.15 bernreal(x): Bernoulli number Bx, as bernfrac, but Bx is returned as a real number
(with the current precision).

The library syntax is bernreal(x, prec).

3.3.16 bernvec(x): creates a vector containing, as rational numbers, the Bernoulli numbers B0,
B2,. . . , B2x. These Bernoulli numbers can then be used as follows. Assume that this vector has
been put into a variable, say bernint. Then you can define under GP:

bern(x) =
{
if (x == 1, return(-1/2));
if (x < 0 || x % 2, return(0));
bernint[x/2+1]

}

and then bern(k) gives the Bernoulli number of index k as a rational number, exactly as bern-
real(k) gives it as a real number. If you need only a few values, calling bernfrac(k) each time
will be much more efficient than computing the huge vector above.

The library syntax is bernvec(x).

3.3.17 besseljh(n, x): J-Bessel function of half integral index. More precisely, besseljh(n, x)
computes Jn+1/2(x) where n must be of type integer, and x is any element of C. In the present
version 2.1.1, this function is not very accurate when x is small.

The library syntax is jbesselh(n, x, prec).

3.3.18 besselk(nu, x, {flag = 0}): K-Bessel function of index nu (which can be complex) and
argument x. Only real and positive arguments x are allowed in the present version 2.1.1. If flag is
equal to 1, uses another implementation of this function which is often faster.

The library syntax is kbessel(nu, x, prec) and kbessel2(nu, x, prec) respectively.

3.3.19 cos(x): cosine of x.

The library syntax is gcos(x, prec).

3.3.20 cosh(x): hyperbolic cosine of x.

The library syntax is gch(x, prec).

3.3.21 cotan(x): cotangent of x.

The library syntax is gcotan(x, prec).

3.3.22 dilog(x): principal branch of the dilogarithm of x, i.e. analytic continuation of the power
series log2(x) =

∑
n≥1 x

n/n2.

The library syntax is dilog(x, prec).

60

3.3.23 eint1(x, {n}): exponential integral
∫∞
x

e−t

t dt (x ∈ R)

If n is present, outputs the n-dimensional vector [eint1(x), . . . , eint1(nx)] (x ≥ 0). This is
faster than repeatedly calling eint1(i * x).

The library syntax is veceint1(x, n, prec). Also available is eint1(x, prec).

3.3.24 erfc(x): complementary error function (2/
√
π)
∫∞
x
e−t

2
dt.

The library syntax is erfc(x, prec).

3.3.25 eta(x, {flag = 0}): Dedekind’s η function, without the q1/24. This means the following: if
x is a complex number with positive imaginary part, the result is

∏∞
n=1(1− qn), where q = e2iπx.

If x is a power series (or can be converted to a power series) with positive valuation, the result is∏∞
n=1(1− xn).

If flag = 1 and x can be converted to a complex number (i.e. is not a power series), computes
the true η function, including the leading q1/24.

The library syntax is eta(x, prec).

3.3.26 exp(x): exponential of x. p-adic arguments with positive valuation are accepted.

The library syntax is gexp(x, prec).

3.3.27 gammah(x): gamma function evaluated at the argument x + 1/2. When x is an integer,
this is much faster than using gamma(x+ 1/2).

The library syntax is ggamd(x, prec).

3.3.28 gamma(x): gamma function of x. In the present version 2.1.1 the p-adic gamma function
is not implemented.

The library syntax is ggamma(x, prec).

3.3.29 hyperu(a, b, x): U -confluent hypergeometric function with parameters a and b. The pa-
rameters a and b can be complex but the present implementation requires x to be positive.

The library syntax is hyperu(a, b, x, prec).

3.3.30 incgam(s, x, y): incomplete gamma function.

x must be positive and s real. The result returned is
∫∞
x
e−tts−1 dt. When y is given, assume

(of course without checking!) that y = Γ(s). For small x, this will tremendously speed up the
computation.

The library syntax is incgam(s, x, prec) and incgam4(s, x, y, prec), respectively. There exist
also the functions incgam1 and incgam2 which are used for internal purposes.

3.3.31 incgamc(s, x): complementary incomplete gamma function.

The arguments s and x must be positive. The result returned is
∫ x

0
e−tts−1 dt, when x is not

too large.

The library syntax is incgam3(s, x, prec).

61

3.3.32 log(x, {flag = 0}): principal branch of the natural logarithm of x, i.e. such that Im(ln(x)) ∈
]− π, π]. The result is complex (with imaginary part equal to π) if x ∈ R and x < 0.

p-adic arguments are also accepted for x, with the convention that ln(p) = 0. Hence in
particular exp(ln(x))/x will not in general be equal to 1 but to a (p− 1)-th root of unity (or ±1 if
p = 2) times a power of p.

If flag is equal to 1, use an agm formula suggested by Mestre, when x is real, otherwise identical
to log.

The library syntax is glog(x, prec) or glogagm(x, prec).

3.3.33 lngamma(x): principal branch of the logarithm of the gamma function of x. Can have
much larger arguments than gamma itself. In the present version 2.1.1, the p-adic lngamma function
is not implemented.

The library syntax is glngamma(x, prec).

3.3.34 polylog(m,x, flag = 0): one of the different polylogarithms, depending on flag :

If flag = 0 or is omitted: mth polylogarithm of x, i.e. analytic continuation of the power series
Lim(x) =

∑
n≥1 x

n/nm. The program uses the power series when |x|2 ≤ 1/2, and the power series
expansion in log(x) otherwise. It is valid in a large domain (at least |x| < 230), but should not be
used too far away from the unit circle since it is then better to use the functional equation linking
the value at x to the value at 1/x, which takes a trivial form for the variant below. Power series,
polynomial, rational and vector/matrix arguments are allowed.

For the variants to follow we need a notation: let <m denotes < or = depending whether m is
odd or even.

If flag = 1: modified mth polylogarithm of x, called D̃m(x) in Zagier, defined for |x| ≤ 1 by

<m

(
m−1∑
k=0

(− log |x|)k

k!
Lim−k(x) +

(− log |x|)m−1

m!
log |1− x|

)
.

If flag = 2: modified mth polylogarithm of x, called Dm(x) in Zagier, defined for |x| ≤ 1 by

<m

(
m−1∑
k=0

(− log |x|)k

k!
Lim−k(x)− 1

2
(− log |x|)m

m!

)
.

If flag = 3: another modified mth polylogarithm of x, called Pm(x) in Zagier, defined for
|x| ≤ 1 by

<m

(
m−1∑
k=0

2kBk
k!

(log |x|)kLim−k(x)− 2m−1Bm
m!

(log |x|)m
)
.

These three functions satisfy the functional equation fm(1/x) = (−1)m−1fm(x).

The library syntax is polylog0(m,x, flag , prec).

62

3.3.35 psi(x): the ψ-function of x, i.e. the logarithmic derivative Γ′(x)/Γ(x).

The library syntax is gpsi(x, prec).

3.3.36 sin(x): sine of x.

The library syntax is gsin(x, prec).

3.3.37 sinh(x): hyperbolic sine of x.

The library syntax is gsh(x, prec).

3.3.38 sqr(x): square of x. This operation is not completely straightforward, i.e. identical to x∗x,
since it can usually be computed more efficiently (roughly one-half of the elementary multiplications
can be saved). Also, squaring a 2-adic number increases its precision. For example,

? (1 + O(2^4))^2

%1 = 1 + O(2^5)

? (1 + O(2^4)) * (1 + O(2^4))

%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be
identical, e.g. they are the value of the same variable, or we are computing a power.

? x = (1 + O(2^4)); x * x

%3 = 1 + O(2^5)

? (1 + O(2^4))^4

%4 = 1 + O(2^6)

(note the difference between %2 and %3 above).

The library syntax is gsqr(x).

3.3.39 sqrt(x): principal branch of the square root of x, i.e. such that Arg(sqrt(x)) ∈]−π/2, π/2],
or in other words such that <(sqrt(x)) > 0 or <(sqrt(x)) = 0 and =(sqrt(x)) ≥ 0. If x ∈ R and
x < 0, then the result is complex with positive imaginary part.

Integermod a prime and p-adics are allowed as arguments. In that case, the square root (if it
exists) which is returned is the one whose first p-adic digit (or its unique p-adic digit in the case
of integermods) is in the interval [0, p/2]. When the argument is an integermod a non-prime (or a
non-prime-adic), the result is undefined.

The library syntax is gsqrt(x, prec).

63

3.3.40 sqrtn(x, n, {&z}): principal branch of the nth root of x, i.e. such that Arg(sqrt(x)) ∈
]− π/n, π/n].

Integermod a prime and p-adics are allowed as arguments.

If z is present, it is set to a suitable root of unity allowing to recover all the other roots. If it
was not possible, z is set to zero.

The following script computes all roots in all possible cases:

sqrtnall(x,n)=
{
local(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC" ,
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));

V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V

}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");

The library syntax is gsqrtn(x, n,&z, prec).

3.3.41 tan(x): tangent of x.

The library syntax is gtan(x, prec).

3.3.42 tanh(x): hyperbolic tangent of x.

The library syntax is gth(x, prec).

3.3.43 teichmuller(x): Teichmüller character of the p-adic number x.

The library syntax is teich(x).

3.3.44 theta(q, z): Jacobi sine theta-function.

The library syntax is theta(q, z, prec).

3.3.45 thetanullk(q, k): k-th derivative at z = 0 of theta(q, z).

The library syntax is thetanullk(q, k, prec), where k is a long.

64

3.3.46 weber(x, {flag = 0}): one of Weber’s three f functions. If flag = 0, returns

f(x) = exp(−iπ/24) · η((x+ 1)/2) / η(x) such that j = (f24 − 16)3/f24 ,

where j is the elliptic j-invariant (see the function ellj). If flag = 1, returns

f1(x) = η(x/2) / η(x) such that j = (f24
1 + 16)3/f24

1 .

Finally, if flag = 2, returns

f2(x) =
√

2η(2x) / η(x) such that j = (f24
2 + 16)3/f24

2 .

Note the identities f8 = f8
1 + f8

2 and ff1f2 =
√

2.

The library syntax is weber0(x, flag , prec), or wf(x, prec), wf1(x, prec) or wf2(x, prec).

3.3.47 zeta(s): Riemann’s zeta function ζ(s) =
∑
n≥1 n

−s, computed using the Euler-Maclaurin
summation formula, except when s is of type integer, in which case it is computed using Bernoulli
numbers for s ≤ 0 or s > 0 and even, and using modular forms for s > 0 and odd.

The library syntax is gzeta(s, prec).

3.4 Arithmetic functions.

These functions are by definition functions whose natural domain of definition is either Z (or
Z>0), or sometimes polynomials over a base ring. Functions which concern polynomials exclusively
will be explained in the next section. The way these functions are used is completely different
from transcendental functions: in general only the types integer and polynomial are accepted as
arguments. If a vector or matrix type is given, the function will be applied on each coefficient
independently.

In the present version 2.1.1, all arithmetic functions in the narrow sense of the word — Euler’s
totient function, the Moebius function, the sums over divisors or powers of divisors etc.— call, after
trial division by small primes, the same versatile factoring machinery described under factorint.
It includes Shanks SQUFOF, Pollard Rho, ECM and MPQS stages, and has an early exit option
for the functions moebius and (the integer function underlying) issquarefree. Note that it relies
on a (fairly strong) probabilistic primality test: numbers found to be strong pseudo-primes after
10 successful trials of the Rabin-Miller test are declared primes.

65

3.4.1 addprimes({x = []}): adds the primes contained in the vector x (or the single integer x)
to the table computed upon GP initialization (by pari init in library mode), and returns a row
vector whose first entries contain all primes added by the user and whose last entries have been
filled up with 1’s. In total the returned row vector has 100 components. Whenever factor or
smallfact is subsequently called, first the primes in the table computed by pari init will be
checked, and then the additional primes in this table. If x is empty or omitted, just returns the
current list of extra primes.

The entries in x are not checked for primality. They need only be positive integers not divisible
by any of the pre-computed primes. It’s in fact a nice trick to add composite numbers, which for
example the function factor(x, 0) was not able to factor. In case the message “impossible inverse
modulo 〈some integermod〉” shows up afterwards, you have just stumbled over a non-trivial factor.
Note that the arithmetic functions in the narrow sense, like eulerphi, do not use this extra table.

The present PARI version 2.1.1 allows up to 100 user-specified primes to be appended to the
table. This limit may be changed by altering NUMPRTBELT in file init.c. To remove primes from
the list use removeprimes.

The library syntax is addprimes(x).

3.4.2 bestappr(x, k): if x ∈ R, finds the best rational approximation to x with denominator at
most equal to k using continued fractions.

The library syntax is bestappr(x, k).

3.4.3 bezout(x, y): finds u and v minimal in a natural sense such that x ∗ u + y ∗ v = gcd(x, y).
The arguments must be both integers or both polynomials, and the result is a row vector with
three components u, v, and gcd(x, y).

The library syntax is vecbezout(x, y) to get the vector, or gbezout(x, y,&u,&v) which gives
as result the address of the created gcd, and puts the addresses of the corresponding created objects
into u and v.

3.4.4 bezoutres(x, y): as bezout, with the resultant of x and y replacing the gcd.

The library syntax is vecbezoutres(x, y) to get the vector, or subresext(x, y,&u,&v) which
gives as result the address of the created gcd, and puts the addresses of the corresponding created
objects into u and v.

3.4.5 bigomega(x): number of prime divisors of |x| counted with multiplicity. x must be an
integer.

The library syntax is bigomega(x), the result is a long.

3.4.6 binomial(x, y): binomial coefficient
(
x
y

)
. Here y must be an integer, but x can be any

PARI object.

The library syntax is binome(x, y), where y must be a long.

66

3.4.7 chinese(x, y): if x and y are both integermods or both polmods, creates (with the same
type) a z in the same residue class as x and in the same residue class as y, if it is possible.

This function also allows vector and matrix arguments, in which case the operation is recur-
sively applied to each component of the vector or matrix. For polynomial arguments, it is applied to
each coefficient. Finally chinese(x, x) = x regardless of the type of x; this allows vector arguments
to contain other data, so long as they are identical in both vectors.

The library syntax is chinois(x, y).

3.4.8 content(x): computes the gcd of all the coefficients of x, when this gcd makes sense. If x is
a scalar, this simply returns x. If x is a polynomial (and by extension a power series), it gives the
usual content of x. If x is a rational function, it gives the ratio of the contents of the numerator
and the denominator. Finally, if x is a vector or a matrix, it gives the gcd of all the entries.

The library syntax is content(x).

3.4.9 contfrac(x, {b}, {lmax}): creates the row vector whose components are the partial quotients
of the continued fraction expansion of x, the number of partial quotients being limited to lmax. If
x is a real number, the expansion stops at the last significant partial quotient if lmax is omitted.
x can also be a rational function or a power series.

If a vector b is supplied, the numerators will be equal to the coefficients of b. The length of
the result is then equal to the length of b, unless a partial remainder is encountered which is equal
to zero. In which case the expansion stops. In the case of real numbers, the stopping criterion is
thus different from the one mentioned above since, if b is too long, some partial quotients may not
be significant.

If b is an integer, the command is understood as contfrac(x, lmax).

The library syntax is contfrac0(x, b, lmax). Also available are gboundcf(x, lmax), gcf(x),
or gcf2(b, x), where lmax is a C integer.

3.4.10 contfracpnqn(x): when x is a vector or a one-row matrix, x is considered as the list
of partial quotients [a0, a1, . . . , an] of a rational number, and the result is the 2 by 2 matrix
[pn, pn−1; qn, qn−1] in the standard notation of continued fractions, so pn/qn = a0 + 1/(a1 + . . . +
1/an) . . .). If x is a matrix with two rows [b0, b1, . . . , bn] and [a0, a1, . . . , an], this is then considered
as a generalized continued fraction and we have similarly pn/qn = 1/b0(a0+b1/(a1+. . .+bn/an) . . .).
Note that in this case one usually has b0 = 1.

The library syntax is pnqn(x).

3.4.11 core(n, {flag = 0}): if n is a non-zero integer written as n = df2 with d squarefree, returns
d. If flag is non-zero, returns the two-element row vector [d, f].

The library syntax is core0(n, flag). Also available are core(n) (= core(n, 0)) and core2(n)
(= core(n, 1)).

3.4.12 coredisc(n, {flag}): if n is a non-zero integer written as n = df2 with d fundamental
discriminant (including 1), returns d. If flag is non-zero, returns the two-element row vector [d, f].
Note that if n is not congruent to 0 or 1 modulo 4, f will be a half integer and not an integer.

The library syntax is coredisc0(n, flag). Also available are coredisc(n) (= coredisc(n, 0))
and coredisc2(n) (= coredisc(n, 1)).

67

3.4.13 dirdiv(x, y): x and y being vectors of perhaps different lengths but with y[1] 6= 0 considered
as Dirichlet series, computes the quotient of x by y, again as a vector.

The library syntax is dirdiv(x, y).

3.4.14 direuler(p = a, b, expr , {c}): computes the Dirichlet series to b terms of the Euler product
of expression expr as p ranges through the primes from a to b. expr must be a polynomial or rational
function in another variable than p (say X) and expr(X) is understood as the Dirichlet series (or
more precisely the local factor) expr(p−s). If c is present, output only the first c coefficients in the
series.

The library syntax is direuler(entree *ep, GEN a, GEN b, char *expr)

3.4.15 dirmul(x, y): x and y being vectors of perhaps different lengths considered as Dirichlet
series, computes the product of x by y, again as a vector.

The library syntax is dirmul(x, y).

3.4.16 divisors(x): creates a row vector whose components are the positive divisors of the integer
x in increasing order. The factorization of x (as output by factor) can be used instead.

The library syntax is divisors(x).

3.4.17 eulerphi(x): Euler’s φ (totient) function of |x|, in other words |(Z/xZ)∗|. x must be of
type integer.

The library syntax is phi(x).

3.4.18 factor(x, {lim = −1}): general factorization function. If x is of type integer, rational,
polynomial or rational function, the result is a two-column matrix, the first column being the
irreducibles dividing x (prime numbers or polynomials), and the second the exponents. If x is a
vector or a matrix, the factoring is done componentwise (hence the result is a vector or matrix of
two-column matrices). By definition, 0 is factored as 01.

If x is of type integer or rational, an argument lim can be added, meaning that we look only
for factors up to lim, or to primelimit, whichever is lowest (except when lim = 0 where the effect
is identical to setting lim = primelimit). Hence in this case, the remaining part is not necessarily
prime. See factorint for more information about the algorithms used.

The polynomials or rational functions to be factored must have scalar coefficients. In particular
PARI does not know how to factor multivariate polynomials.

Note that PARI tries to guess in a sensible way over which ring you want to factor. Note
also that factorization of polynomials is done up to multiplication by a constant. In particular, the
factors of rational polynomials will have integer coefficients, and the content of a polynomial or
rational function is discarded and not included in the factorization. If you need it, you can always
ask for the content explicitly:

? factor(t^2 + 5/2*t + 1)
%1 =
[2*t + 1 1]

[t + 2 1]

? content(t^2 + 5/2*t + 1)

68

%2 = 1/2

See also factornf.

The library syntax is factor0(x, lim), where lim is a C integer. Also available are factor(x)
(= factor0(x,−1)), smallfact(x) (= factor0(x, 0)).

3.4.19 factorback(f, {nf}): f being any factorization, gives back the factored object. If a second
argument nf is supplied, f is assumed to be a prime ideal factorization in the number field nf . The
resulting ideal is given in HNF form.

The library syntax is factorback(f,nf), where an omitted nf is entered as NULL.

3.4.20 factorcantor(x, p): factors the polynomial x modulo the prime p, using distinct degree
plus Cantor-Zassenhaus. The coefficients of x must be operation-compatible with Z/pZ. The
result is a two-column matrix, the first column being the irreducible polynomials dividing x, and
the second the exponents. If you want only the degrees of the irreducible polynomials (for example
for computing an L-function), use factormod(x, p, 1). Note that the factormod algorithm is usually
faster than factorcantor.

The library syntax is factcantor(x, p).

3.4.21 factorff(x, p, a): factors the polynomial x in the field Fq defined by the irreducible poly-
nomial a over Fp. The coefficients of x must be operation-compatible with Z/pZ. The result is a
two-column matrix, the first column being the irreducible polynomials dividing x, and the second
the exponents. It is recommended to use for the variable of a (which will be used as variable of a
polmod) a name distinct from the other variables used, so that a lift() of the result will be legible.
If all the coefficients of x are in Fp, a much faster algorithm is applied, using the computation of
isomorphisms between finite fields.

The library syntax is factmod9(x, p, a).

3.4.22 factorial(x) or x!: factorial of x. The expression x! gives a result which is an integer, while
factorial(x) gives a real number.

The library syntax is mpfact(x) for x! and mpfactr(x, prec) for factorial(x). x must be a
long integer and not a PARI integer.

3.4.23 factorint(n, {flag = 0}): factors the integer n using a combination of the Shanks SQUFOF
and Pollard Rho method (with modifications due to Brent), Lenstra’s ECM (with modifications by
Montgomery), and MPQS (the latter adapted from the LiDIA code with the kind permission of
the LiDIA maintainers), as well as a search for pure powers with exponents≤ 10. The output is a
two-column matrix as for factor.

This gives direct access to the integer factoring engine called by most arithmetical functions.
flag is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still
fall back to it later), 4: avoid Rho and SQUFOF, 8: don’t run final ECM (as a result, a huge
composite may be declared to be prime). Note that a (strong) probabilistic primality test is used;
thus composites might (very rarely) not be detected.

The machinery underlying this function is still in a somewhat experimental state, but should
be much faster on average than pure ECM as used by all PARI versions up to 2.0.8, at the expense
of heavier memory use. You are invited to play with the flag settings and watch the internals at

69

work by using GP’s debuglevel default parameter (level 3 shows just the outline, 4 turns on time
keeping, 5 and above show an increasing amount of internal details). If you see anything funny
happening, please let us know.

The library syntax is factorint(n, flag).

3.4.24 factormod(x, p, {flag = 0}): factors the polynomial x modulo the prime integer p, using
Berlekamp. The coefficients of x must be operation-compatible with Z/pZ. The result is a two-
column matrix, the first column being the irreducible polynomials dividing x, and the second the
exponents. If flag is non-zero, outputs only the degrees of the irreducible polynomials (for example,
for computing an L-function). A different algorithm for computing the mod p factorization is
factorcantor which is sometimes faster.

The library syntax is factormod(x, p, flag). Also available are factmod(x, p) (which is equiv-
alent to factormod(x, p, 0)) and simplefactmod(x, p) (= factormod(x, p, 1)).

3.4.25 fibonacci(x): xth Fibonacci number.

The library syntax is f ibo(x). x must be a long.

3.4.26 ffinit(p, n, {v = x}): computes a monic polynomial of degree n which is irreducible over
Fp. For instance if P = ffinit(3,2,y), you can represent elements in F32 as polmods modulo P.

The library syntax is f f init(p, n, v), where v is a variable number.

3.4.27 gcd(x, y, {flag = 0}): creates the greatest common divisor of x and y. x and y can be of
quite general types, for instance both rational numbers. Vector/matrix types are also accepted, in
which case the GCD is taken recursively on each component. Note that for these types, gcd is not
commutative.

If flag = 0, use Euclid’s algorithm.

If flag = 1, use the modular gcd algorithm (x and y have to be polynomials, with integer
coefficients).

If flag = 2, use the subresultant algorithm.

The library syntax is gcd0(x, y, flag). Also available are ggcd(x, y), modulargcd(x, y), and
srgcd(x, y) corresponding to flag = 0, 1 and 2 respectively.

3.4.28 hilbert(x, y, {p}): Hilbert symbol of x and y modulo p. If x and y are of type integer
or fraction, an explicit third parameter p must be supplied, p = 0 meaning the place at infinity.
Otherwise, p needs not be given, and x and y can be of compatible types integer, fraction, real,
integermod or p-adic.

The library syntax is hil(x, y, p).

3.4.29 isfundamental(x): true (1) if x is equal to 1 or to the discriminant of a quadratic field,
false (0) otherwise.

The library syntax is gisfundamental(x), but the simpler function isfundamental(x) which
returns a long should be used if x is known to be of type integer.

70

3.4.30 isprime(x, {flag = 0}): if flag = 0 (default), true (1) if x is a strong pseudo-prime for 10
randomly chosen bases, false (0) otherwise.

If flag = 1, use Pocklington-Lehmer “P-1” test. true (1) if x is prime, false (0) otherwise.

If flag = 2, use Pocklington-Lehmer “P-1” test and output a primality certificate as follows:
return 0 if x is composite, 1 if x is a small prime (currently strictly less than 341550071728321),
and a matrix if x is a large prime. The matrix has three columns. The first contains the prime
factors p, the second the corresponding elements ap as in Proposition 8.3.1 in GTM 138, and the
third the output of isprime(p,2).

In the two last cases, the algorithm fails if one of the (strong pseudo-)prime factors is not
prime, but it should be exceedingly rare.

The library syntax is gisprime(x, flag), but the simpler function isprime(x) which returns
a long should be used if x is known to be of type integer. Also available is plisprime(N, flag),
corresponding to gisprime(x, flag + 1) if x is known to be of type integer.

3.4.31 ispseudoprime(x): true (1) if x is a strong pseudo-prime for a randomly chosen base, false
(0) otherwise.

The library syntax is gispsp(x), but the simpler function ispsp(x) which returns a long should
be used if x is known to be of type integer.

3.4.32 issquare(x, {&n}): true (1) if x is square, false (0) if not. x can be of any type. If n is
given and an exact square root had to be computed in the checking process, puts that square root
in n. This is in particular the case when x is an integer or a polynomial. This is not the case for
intmods (use quadratic reciprocity) or series (only check the leading coefficient).

The library syntax is gcarrecomplet(x,&n). Also available is gcarreparfait(x).

3.4.33 issquarefree(x): true (1) if x is squarefree, false (0) if not. Here x can be an integer or a
polynomial.

The library syntax is gissquarefree(x), but the simpler function issquarefree(x) which
returns a long should be used if x is known to be of type integer. This issquarefree is just the
square of the Moebius function, and is computed as a multiplicative arithmetic function much like
the latter.

3.4.34 kronecker(x, y): Kronecker (i.e. generalized Legendre) symbol
(
x
y

)
. x and y must be of

type integer.

The library syntax is kronecker(x, y), the result (0 or ±1) is a long.

3.4.35 lcm(x, y): least common multiple of x and y, i.e. such that lcm(x, y)∗gcd(x, y) = abs(x∗y).

The library syntax is glcm(x, y).

3.4.36 moebius(x): Moebius µ-function of |x|. x must be of type integer.

The library syntax is mu(x), the result (0 or ±1) is a long.

71

3.4.37 nextprime(x): finds the smallest prime greater than or equal to x. x can be of any real
type. Note that if x is a prime, this function returns x and not the smallest prime strictly larger
than x.

The library syntax is nextprime(x).

3.4.38 numdiv(x): number of divisors of |x|. x must be of type integer, and the result is a long.

The library syntax is numbdiv(x).

3.4.39 omega(x): number of distinct prime divisors of |x|. x must be of type integer.

The library syntax is omega(x), the result is a long.

3.4.40 precprime(x): finds the largest prime less than or equal to x. x can be of any real type.
Returns 0 if x ≤ 1. Note that if x is a prime, this function returns x and not the largest prime
strictly smaller than x.

The library syntax is precprime(x).

3.4.41 prime(x): the xth prime number, which must be among the precalculated primes.

The library syntax is prime(x). x must be a long.

3.4.42 primes(x): creates a row vector whose components are the first x prime numbers, which
must be among the precalculated primes.

The library syntax is primes(x). x must be a long.

3.4.43 qfbclassno(x, {flag = 0}): class number of the quadratic field of discriminant x. In the
present version 2.1.1, a simple algorithm is used for x > 0, so x should not be too large (say
x < 107) for the time to be reasonable. On the other hand, for x < 0 one can reasonably compute
classno(x) for |x| < 1025, since the method used is Shanks’ method which is in O(|x|1/4). For larger
values of |D|, see quadclassunit.

If flag = 1, compute the class number using Euler products and the functional equation.
However, it is in O(|x|1/2).

Important warning. For D < 0, this function often gives incorrect results when the class group is
non-cyclic, because the authors were too lazy to implement Shanks’ method completely. It is there-
fore strongly recommended to use either the version with flag = 1, the function qfhclassno(−x)
if x is known to be a fundamental discriminant, or the function quadclassunit.

The library syntax is qfbclassno0(x, flag). Also available are classno(x) (= qfbclassno(x)),
classno2(x) (= qfbclassno(x, 1)), and finally there exists the function hclassno(x) which com-
putes the class number of an imaginary quadratic field by counting reduced forms, an O(|x|)
algorithm. See also qfbhclassno.

3.4.44 qfbcompraw(x, y) composition of the binary quadratic forms x and y, without reduction
of the result. This is useful e.g. to compute a generating element of an ideal.

The library syntax is compraw(x, y).

72

3.4.45 qfbhclassno(x): Hurwitz class number of x, where x is non-negative and congruent to 0
or 3 modulo 4. See also qfbclassno.

The library syntax is hclassno(x).

3.4.46 qfbnucomp(x, y, l): composition of the primitive positive definite binary quadratic forms
x and y using the NUCOMP and NUDUPL algorithms of Shanks (à la Atkin). l is any positive
constant, but for optimal speed, one should take l = |D|1/4, where D is the common discriminant
of x and y.

The library syntax is nucomp(x, y, l). The auxiliary function nudupl(x, l) should be used
instead for speed when x = y.

3.4.47 qfbnupow(x, n): n-th power of the primitive positive definite binary quadratic form x
using the NUCOMP and NUDUPL algorithms (see qfbnucomp).

The library syntax is nupow(x, n).

3.4.48 qfbpowraw(x, n): n-th power of the binary quadratic form x, computed without doing
any reduction (i.e. using qfbcompraw). Here n must be non-negative and n < 231.

The library syntax is powraw(x, n) where n must be a long integer.

3.4.49 qfbprimeform(x, p): prime binary quadratic form of discriminant x whose first coefficient
is the prime number p. By abuse of notation, p = 1 is a valid special case which returns the
unit form. Returns an error if x is not a quadratic residue mod p. In the case where x > 0, the
“distance” component of the form is set equal to zero according to the current precision.

The library syntax is primeform(x, p, prec), where the third variable prec is a long, but is
only taken into account when x > 0.

3.4.50 qfbred(x, {flag = 0}, {D}, {isqrtD}, {sqrtD}): reduces the binary quadratic form x (up-
dating Shanks’s distance function if x is indefinite). The binary digits of flag are toggles meaning

1: perform a single reduction step

2: don’t update Shanks’s distance

D, isqrtD , sqrtD , if present, supply the values of the discriminant, b
√
Dc, and

√
D respectively

(no checking is done of these facts). If D < 0 these values are useless, and all references to Shanks’s
distance are irrelevant.

The library syntax is qfbred0(x, flag , D, isqrtD , sqrtD). Use NULL to omit any of D, isqrtD ,
sqrtD .

Also available are

redimag(x) (= qfbred(x) where x is definite),

and for indefinite forms:

redreal(x) (= qfbred(x)),

rhoreal(x) (= qfbred(x, 1)),

redrealnod(x, sq) (= qfbred(x, 2, , isqrtD)),

rhorealnod(x, sq) (= qfbred(x, 3, , isqrtD)).

73

3.4.51 quadclassunit(D, {flag = 0}, {tech = []}): Buchmann-McCurley’s sub-exponential algo-
rithm for computing the class group of a quadratic field of discriminant D. If D is not fundamental,
the function may or may not be defined, but usually is, and often gives the right answer (a warning
is issued). The more general function bnrinit should be used to compute the class group of an
order.

This function should be used instead of qfbclassno or quadregula when D < −1025, D >
1010, or when the structure is wanted.

If flag is non-zero and D > 0, computes the narrow class group and regulator, instead of the
ordinary (or wide) ones. In the current version 2.1.1, this doesn’t work at all : use the general
function bnfnarrow.

Optional parameter tech is a row vector of the form [c1, c2], where c1 and c2 are positive real
numbers which control the execution time and the stack size. To get maximum speed, set c2 = c.
To get a rigorous result (under GRH) you must take c2 = 6. Reasonable values for c are between
0.1 and 2.

The result of this function is a vector v with 4 components if D < 0, and 5 otherwise. The
correspond respectively to

• v[1] : the class number

• v[2] : a vector giving the structure of the class group as a product of cyclic groups;

• v[3] : a vector giving generators of those cyclic groups (as binary quadratic forms).

• v[4] : (omitted if D < 0) the regulator, computed to an accuracy which is the maximum
of an internal accuracy determined by the program and the current default (note that once the
regulator is known to a small accuracy it is trivial to compute it to very high accuracy, see the
tutorial).

• v[5] : a measure of the correctness of the result. If it is close to 1, the result is correct (under
GRH). If it is close to a larger integer, this shows that the class number is off by a factor equal to
this integer, and you must start again with a larger value for c1 or a different random seed. In this
case, a warning message is printed.

The library syntax is quadclassunit0(D, flag , tech). Also available are buchimag(D, c1, c2)
and buchreal(D, flag , c1, c2).

3.4.52 quaddisc(x): discriminant of the quadratic field Q(
√
x), where x ∈ Q.

The library syntax is quaddisc(x).

3.4.53 quadhilbert(D, {flag = 0}): relative equation defining the Hilbert class field of the
quadratic field of discriminant D. If flag is non-zero and D < 0, outputs [form, root(form)] (to be
used for constructing subfields). If flag is non-zero and D > 0, try hard to get the best modulus.
Uses complex multiplication in the imaginary case and Stark units in the real case.

The library syntax is quadhilbert(D, flag , prec).

3.4.54 quadgen(x): creates the quadratic number ω = (a +
√
x)/2 where a = 0 if x ≡ 0 mod 4,

a = 1 if x ≡ 1 mod 4, so that (1, ω) is an integral basis for the quadratic order of discriminant x. x
must be an integer congruent to 0 or 1 modulo 4.

The library syntax is quadgen(x).

74

3.4.55 quadpoly(D, {v = x}): creates the “canonical” quadratic polynomial (in the variable v)
corresponding to the discriminant D, i.e. the minimal polynomial of quadgen(x). D must be an
integer congruent to 0 or 1 modulo 4.

The library syntax is quadpoly0(x, v).

3.4.56 quadray(D, f, {flag = 0}): relative equation for the ray class field of conductor f for the
quadratic field of discriminant D (which can also be a bnf), using analytic methods.

For D < 0, uses the σ function. flag has the following meaning: if it’s an odd integer, outputs
instead the vector of [ideal , corresponding root]. It can also be a two-component vector [λ, flag],
where flag is as above and λ is the technical element of bnf necessary for Schertz’s method. In that
case, returns 0 if λ is not suitable.

For D > 0, uses Stark’s conjecture. If flag is non-zero, try hard to get the best modulus. The
function may fail with the following message

"Cannot find a suitable modulus in FindModulus"

See bnrstark for more details about the real case.

The library syntax is quadray(D, f, flag).

3.4.57 quadregulator(x): regulator of the quadratic field of positive discriminant x. Returns an
error if x is not a discriminant (fundamental or not) or if x is a square. See also quadclassunit if
x is large.

The library syntax is regula(x, prec).

3.4.58 quadunit(x): fundamental unit of the real quadratic field Q(
√
x) where x is the positive

discriminant of the field. If x is not a fundamental discriminant, this probably gives the fundamental
unit of the corresponding order. x must be of type integer, and the result is a quadratic number.

The library syntax is fundunit(x).

3.4.59 removeprimes({x = []}): removes the primes listed in x from the prime number table. In
particular removeprimes(addprimes) empties the extra prime table. x can also be a single integer.
List the current extra primes if x is omitted.

The library syntax is removeprimes(x).

3.4.60 sigma(x, {k = 1}): sum of the kth powers of the positive divisors of |x|. x must be of type
integer.

The library syntax is sumdiv(x) (= sigma(x)) or gsumdivk(x, k) (= sigma(x, k)), where k
is a C long integer.

3.4.61 sqrtint(x): integer square root of x, which must be of PARI type integer. The result is
non-negative and rounded towards zero. A negative x is allowed, and the result in that case is
I*sqrtint(-x).

The library syntax is racine(x).

75

3.4.62 znlog(x, g): g must be a primitive root mod a prime p, and the result is the discrete log of
x in the multiplicative group (Z/pZ)∗. This function using a simple-minded baby-step/giant-step
approach and requires O(

√
p) storage, hence it cannot be used for p greater than about 1013.

The library syntax is znlog(x, g).

3.4.63 znorder(x): xmust be an integer mod n, and the result is the order of x in the multiplicative
group (Z/nZ)∗. Returns an error if x is not invertible.

The library syntax is order(x).

3.4.64 znprimroot(x): returns a primitive root of x, where x is a prime power.

The library syntax is gener(x).

3.4.65 znstar(n): gives the structure of the multiplicative group (Z/nZ)∗ as a 3-component row
vector v, where v[1] = φ(n) is the order of that group, v[2] is a k-component row-vector d of integers
d[i] such that d[i] > 1 and d[i] | d[i − 1] for i ≥ 2 and (Z/nZ)∗ '

∏k
i=1(Z/d[i]Z), and v[3] is a

k-component row vector giving generators of the image of the cyclic groups Z/d[i]Z.

The library syntax is znstar(n).

3.5 Functions related to elliptic curves.

We have implemented a number of functions which are useful for number theorists working on
elliptic curves. We always use Tate’s notations. The functions assume that the curve is given by a
general Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a priori the ai can be of any scalar type. This curve can be considered as a five-component
vector E=[a1,a2,a3,a4,a6]. Points on E are represented as two-component vectors [x,y], except
for the point at infinity, i.e. the identity element of the group law, represented by the one-component
vector [0].

It is useful to have at one’s disposal more information. This is given by the function ellinit
(see there), which usually gives a 19 component vector (which we will call a long vector in this
section). If a specific flag is added, a vector with only 13 component will be output (which we
will call a medium vector). A medium vector just gives the first 13 components of the long vector
corresponding to the same curve, but is of course faster to compute. The following member functions
are available to deal with the output of ellinit:
a1–a6, b2–b8, c4–c6 : coefficients of the elliptic curve.
area : volume of the complex lattice defining E.
disc : discriminant of the curve.
j : j-invariant of the curve.
omega : [ω1, ω2], periods forming a basis of the complex lattice defining E (ω1 is the

real period, and ω2/ω1 belongs to Poincaré’s half-plane).
eta : quasi-periods [η1, η2], such that η1ω2 − η2ω1 = iπ.
roots : roots of the associated Weierstrass equation.
tate : [u2, u, v] in the notation of Tate.
w : Mestre’s w (this is technical).

76

Their use is best described by an example: assume that E was output by ellinit, then typing
E.disc will retrieve the curve’s discriminant. The member functions area, eta and omega are only
available for curves over Q. Conversely, tate and w are only available for curves defined over Qp.

Some functions, in particular those relative to height computations (see ellheight) require
also that the curve be in minimal Weierstrass form. This is achieved by the function ellglobalred.

All functions related to elliptic curves share the prefix ell, and the precise curve we are
interested in is always the first argument, in either one of the three formats discussed above, unless
otherwise specified. For instance, in functions which do not use the extra information given by long
vectors, the curve can be given either as a five-component vector, or by one of the longer vectors
computed by ellinit.

3.5.1 elladd(E, z1, z2): sum of the points z1 and z2 on the elliptic curve corresponding to the
vector E.

The library syntax is addell(E, z1, z2).

3.5.2 ellak(E,n): computes the coefficient an of the L-function of the elliptic curve E, i.e. in
principle coefficients of a newform of weight 2 assuming Taniyama-Weil conjecture (which is now
known to hold in full generality thanks to the work of Breuil, Conrad, Diamond, Taylor and Wiles).
E must be a medium or long vector of the type given by ellinit. For this function to work for
every n and not just those prime to the conductor, E must be a minimal Weierstrass equation. If
this is not the case, use the function ellglobalred first before using ellak.

The library syntax is akell(E,n).

3.5.3 ellan(E,n): computes the vector of the first n ak corresponding to the elliptic curve E. All
comments in ellak description remain valid.

The library syntax is anell(E,n), where n is a C integer.

3.5.4 ellap(E, p, {flag = 0}): computes the ap corresponding to the elliptic curve E and the prime
number p. These are defined by the equation #E(Fp) = p+ 1− ap, where #E(Fp) stands for the
number of points of the curve E over the finite field Fp. When flag is 0, this uses the baby-step
giant-step method and a trick due to Mestre. This runs in time O(p1/4) and requires O(p1/4)
storage, hence becomes unreasonable when p has about 30 digits.

If flag is 1, computes the ap as a sum of Legendre symbols. This is slower than the previous
method as soon as p is greater than 100, say.

No checking is done that p is indeed prime. E must be a medium or long vector of the type
given by ellinit, defined over Q, Fp or Qp. E must be given by a Weierstrass equation minimal
at p.

The library syntax is ellap0(E, p, flag). Also available are apell(E, p), corresponding to flag =
0, and apell2(E, p) (flag = 1).

77

3.5.5 ellbil(E, z1, z2): if z1 and z2 are points on the elliptic curve E, this function computes the
value of the canonical bilinear form on z1, z2:

ellheight(E, z1+z2)− ellheight(E, z1)− ellheight(E, z2)

where + denotes of course addition on E. In addition, z1 or z2 (but not both) can be vectors or
matrices. Note that this is equal to twice some normalizations. E is assumed to be integral, given
by a minimal model.

The library syntax is bilhell(E, z1, z2, prec).

3.5.6 ellchangecurve(E, v): changes the data for the elliptic curve E by changing the coordinates
using the vector v=[u,r,s,t], i.e. if x′ and y′ are the new coordinates, then x = u2x′ + r, y =
u3y′ + su2x′ + t. The vector E must be a medium or long vector of the type given by ellinit.

The library syntax is coordch(E, v).

3.5.7 ellchangepoint(x, v): changes the coordinates of the point or vector of points x using the
vector v=[u,r,s,t], i.e. if x′ and y′ are the new coordinates, then x = u2x′+r, y = u3y′+su2x′+t
(see also ellchangecurve).

The library syntax is pointch(x, v).

3.5.8 elleisnum(E, k, {flag = 0}): E being an elliptic curve as output by ellinit (or, alterna-
tively, given by a 2-component vector [ω1, ω2]), and k being an even positive integer, computes the
numerical value of the Eisenstein series of weight k at E. When flag is non-zero and k = 4 or 6,
returns g2 or g3 with the correct normalization.

The library syntax is elleisnum(E, k, flag).

3.5.9 elleta(om): returns the two-component row vector [η1, η2] of quasi-periods associated to
om = [ω1, ω2]

The library syntax is elleta(om, prec)

3.5.10 ellglobalred(E): calculates the arithmetic conductor, the global minimal model of E and
the global Tamagawa number c. Here E is an elliptic curve given by a medium or long vector of
the type given by ellinit, and is supposed to have all its coefficients ai in Q. The result is a 3
component vector [N, v, c]. N is the arithmetic conductor of the curve, v is itself a vector [u, r, s, t]
with rational components. It gives a coordinate change for E over Q such that the resulting model
has integral coefficients, is everywhere minimal, a1 is 0 or 1, a2 is 0, 1 or −1 and a3 is 0 or 1. Such
a model is unique, and the vector v is unique if we specify that u is positive. To get the new model,
simply type ellchangecurve(E,v). Finally c is the product of the local Tamagawa numbers cp, a
quantity which enters in the Birch and Swinnerton-Dyer conjecture.

The library syntax is globalreduction(E).

78

3.5.11 ellheight(E, z, {flag = 0}): global N“’eron-Tate height of the point z on the elliptic curve
E. The vector E must be a long vector of the type given by ellinit, with flag = 1. If flag = 0, this
computation is done using sigma and theta-functions and a trick due to J. Silverman. If flag = 1,
use Tate’s 4n algorithm, which is much slower. E is assumed to be integral, given by a minimal
model.

The library syntax is ellheight0(E, z, flag , prec). The Archimedean contribution alone is
given by the library function hell(E, z, prec). Also available are ghell(E, z, prec) (flag = 0) and
ghell2(E, z, prec) (flag = 1).

3.5.12 ellheightmatrix(E, x): x being a vector of points, this function outputs the Gram matrix
of x with respect to the Néron-Tate height, in other words, the (i, j) component of the matrix is
equal to ellbil(E,x[i],x[j]). The rank of this matrix, at least in some approximate sense, gives
the rank of the set of points, and if x is a basis of the Mordell-Weil group of E, its determinant is
equal to the regulator of E. Note that this matrix should be divided by 2 to be in accordance with
certain normalizations. E is assumed to be integral, given by a minimal model.

The library syntax is mathell(E, x, prec).

3.5.13 ellinit(E, {flag = 0}): computes some fixed data concerning the elliptic curve given by the
five-component vector E, which will be essential for most further computations on the curve. The
result is a 19-component vector E (called a long vector in this section), shortened to 13 components
(medium vector) if flag = 1. Both contain the following information in the first 13 components:

a1, a2, a3, a4, a6, b2, b4, b6, b8, c4, c6,∆, j.

In particular, the discriminant is E[12] (or E.disc), and the j-invariant is E[13] (or E.j).

The other six components are only present if flag is 0 (or omitted!). Their content depends on
whether the curve is defined over R or not:

• When E is defined over R, E[14] (E.roots) is a vector whose three components contain
the roots of the associated Weierstrass equation. If the roots are all real, then they are ordered by
decreasing value. If only one is real, it is the first component of E[14].

E[15] (E.omega[1]) is the real period of E (integral of dx/(2y+ a1x+ a3) over the connected
component of the identity element of the real points of the curve), and E[16] (E.omega[2]) is a
complex period. In other words, ω1 = E[15] and ω2 = E[16] form a basis of the complex lattice
defining E (E.omega), with τ = ω2

ω1
having positive imaginary part.

E[17] and E[18] are the corresponding values η1 and η2 such that η1ω2 − η2ω1 = iπ, and both
can be retrieved by typing E.eta (as a row vector whose components are the ηi).

Finally, E[19] (E.area) is the volume of the complex lattice defining E.

•When E is defined over Qp, the p-adic valuation of j must be negative. Then E[14] (E.roots)
is the vector with a single component equal to the p-adic root of the associated Weierstrass equation
corresponding to −1 under the Tate parametrization.

E[15] is equal to the square of the u-value, in the notation of Tate.

E[16] is the u-value itself, if it belongs to Qp, otherwise zero.

E[17] is the value of Tate’s q for the curve E.

79

E.tate will yield the three-component vector [u2, u, q].

E[18] (E.w) is the value of Mestre’s w (this is technical), and E[19] is arbitrarily set equal to
zero.

For all other base fields or rings, the last six components are arbitrarily set equal to zero (see
also the description of member functions related to elliptic curves at the beginning of this section).

The library syntax is ellinit0(E, flag , prec). Also available are initell(E, prec) (flag = 0) and
smallinitell(E, prec) (flag = 1).

3.5.14 ellisoncurve(E, z): gives 1 (i.e. true) if the point z is on the elliptic curve E, 0 otherwise.
If E or z have imprecise coefficients, an attempt is made to take this into account, i.e. an imprecise
equality is checked, not a precise one.

The library syntax is oncurve(E, z), and the result is a long.

3.5.15 ellj(x): elliptic j-invariant. x must be a complex number with positive imaginary part, or
convertible into a power series or a p-adic number with positive valuation.

The library syntax is jell(x, prec).

3.5.16 elllocalred(E, p): calculates the Kodaira type of the local fiber of the elliptic curve E at
the prime p. E must be given by a medium or long vector of the type given by ellinit, and is
assumed to have all its coefficients ai in Z. The result is a 4-component vector [f, kod, v, c]. Here f
is the exponent of p in the arithmetic conductor of E, and kod is the Kodaira type which is coded
as follows:

1 means good reduction (type I0), 2, 3 and 4 mean types II, III and IV respectively, 4 + ν
with ν > 0 means type Iν ; finally the opposite values −1, −2, etc. refer to the starred types I∗0, II∗,
etc. The third component v is itself a vector [u, r, s, t] giving the coordinate changes done during
the local reduction. Normally, this has no use if u is 1, that is, if the given equation was already
minimal. Finally, the last component c is the local Tamagawa number cp.

The library syntax is localreduction(E, p).

3.5.17 elllseries(E, s, {A = 1}): E being a medium or long vector given by ellinit, this computes
the value of the L-series of E at s. It is assumed that E is a minimal model over Z and that the
curve is a modular elliptic curve. The optional parameter A is a cutoff point for the integral, which
must be chosen close to 1 for best speed. The result must be independent of A, so this allows some
internal checking of the function.

Note that if the conductor of the curve is large, say greater than 1012, this function will take
an unreasonable amount of time since it uses an O(N1/2) algorithm.

The library syntax is lseriesell(E, s,A, prec) where prec is a long and an omitted A is coded
as NULL.

3.5.18 ellorder(E, z): gives the order of the point z on the elliptic curve E if it is a torsion point,
zero otherwise. In the present version 2.1.1, this is implemented only for elliptic curves defined over
Q.

The library syntax is orderell(E, z).

80

3.5.19 ellordinate(E, x): gives a 0, 1 or 2-component vector containing the y-coordinates of the
points of the curve E having x as x-coordinate.

The library syntax is ordell(E, x).

3.5.20 ellpointtoz(E, z): if E is an elliptic curve with coefficients in R, this computes a complex
number t (modulo the lattice defining E) corresponding to the point z, i.e. such that, in the
standard Weierstrass model, ℘(t) = z[1], ℘′(t) = z[2]. In other words, this is the inverse function
of ellztopoint.

If E has coefficients in Qp, then either Tate’s u is in Qp, in which case the output is a p-adic
number t corresponding to the point z under the Tate parametrization, or only its square is, in
which case the output is t+ 1/t. E must be a long vector output by ellinit.

The library syntax is zell(E, z, prec).

3.5.21 ellpow(E, z, n): computes n times the point z for the group law on the elliptic curve
E. Here, n can be in Z, or n can be a complex quadratic integer if the curve E has complex
multiplication by n (if not, an error message is issued).

The library syntax is powell(E, z, n).

3.5.22 ellrootno(E, {p = 1}): E being a medium or long vector given by ellinit, this computes
the local (if p 6= 1) or global (if p = 1) root number of the L-series of the elliptic curve E. Note
that the global root number is the sign of the functional equation and conjecturally is the parity of
the rank of the Mordell-Weil group. The equation for E must have coefficients in Q but need not
be minimal.

The library syntax is ellrootno(E, p) and the result (equal to ±1) is a long.

3.5.23 ellsigma(E, z, {flag = 0}): value of the Weierstrass σ function of the lattice associated to
E as given by ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

If flag = 1, computes an (arbitrary) determination of log(σ(z)).

If flag = 2, 3, same using the product expansion instead of theta series. The library syntax is
ellsigma(E, z, flag)

3.5.24 ellsub(E, z1, z2): difference of the points z1 and z2 on the elliptic curve corresponding to
the vector E.

The library syntax is subell(E, z1, z2).

3.5.25 elltaniyama(E): computes the modular parametrization of the elliptic curve E, where E
is given in the (long or medium) format output by ellinit, in the form of a two-component vector
[u, v] of power series, given to the current default series precision. This vector is characterized
by the following two properties. First the point (x, y) = (u, v) satisfies the equation of the elliptic
curve. Second, the differential du/(2v+a1u+a3) is equal to f(z)dz, a differential form on H/Γ0(N)
where N is the conductor of the curve. The variable used in the power series for u and v is x,
which is implicitly understood to be equal to exp(2iπz). It is assumed that the curve is a strong
Weil curve, and the Manin constant is equal to 1. The equation of the curve E must be minimal
(use ellglobalred to get a minimal equation).

The library syntax is taniyama(E), and the precision of the result is determined by the global
variable precdl.

81

3.5.26 elltors(E, {flag = 0}): if E is an elliptic curve defined over Q, outputs the torsion subgroup
of E as a 3-component vector [t,v1,v2], where t is the order of the torsion group, v1 gives the
structure of the torsion group as a product of cyclic groups (sorted by decreasing order), and v2
gives generators for these cyclic groups. E must be a long vector as output by ellinit.

? E = ellinit([0,0,0,-1,0]);

? elltors(E)

%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to Z/2Z× Z/2Z, with generators [0, 0] and [1, 0].

If flag = 0, use Doud’s algorithm : bound torsion by computing #E(Fp) for small primes
of good reduction, then look for torsion points using Weierstrass parametrization (and Mazur’s
classification).

If flag = 1, use Lutz–Nagell (much slower), E is allowed to be a medium vector.

The library syntax is elltors0(E, flag).

3.5.27 ellwp(E, {z = x}, {flag = 0}):

Computes the value at z of the Weierstrass ℘ function attached to the elliptic curve E as given
by ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

If z is omitted or is a simple variable, computes the power series expansion in z (starting
z−2 + O(z2)). The number of terms to an even power in the expansion is the default serieslength
in GP, and the second argument (C long integer) in library mode.

Optional flag is (for now) only taken into account when z is numeric, and means 0: compute
only ℘(z), 1: compute [℘(z), ℘′(z)].

The library syntax is ellwp0(E, z, flag , prec, precdl). Also available is weipell(E, precdl) for
the power series (in x = polx[0]).

3.5.28 ellzeta(E, z): value of the Weierstrass ζ function of the lattice associated to E as given by
ellinit (alternatively, E can be given as a lattice [ω1, ω2]).

The library syntax is ellzeta(E, z).

3.5.29 ellztopoint(E, z): E being a long vector, computes the coordinates [x, y] on the curve E
corresponding to the complex number z. Hence this is the inverse function of ellpointtoz. In
other words, if the curve is put in Weierstrass form, [x, y] represents the Weierstrass $“wp$-function
and its derivative. If z is in the lattice defining E over C, the result is the point at infinity [0].

The library syntax is pointell(E, z, prec).

82

3.6 Functions related to general number fields.

In this section can be found functions which are used almost exclusively for working in general
number fields. Other less specific functions can be found in the next section on polynomials.
Functions related to quadratic number fields can be found in the section Section 3.4 (Arithmetic
functions).

We shall use the following conventions:

• nf denotes a number field, i.e. a 9-component vector in the format output by nfinit.
This contains the basic arithmetic data associated to the number field: signature, maximal order,
discriminant, etc.

• bnf denotes a big number field, i.e. a 10-component vector in the format output by bnfinit.
This contains nf and the deeper invariants of the field: units, class groups, as well as a lot of
technical data necessary for some complex fonctions like bnfisprincipal.

• bnr denotes a big “ray number field”, i.e. some data structure output by bnrinit, even
more complicated than bnf , corresponding to the ray class group structure of the field, for some
modulus.

• rnf denotes a relative number field (see below).

• ideal can mean any of the following:

– a Z-basis, in Hermite normal form (HNF) or not. In this case x is a square matrix.

– an idele, i.e. a 2-component vector, the first being an ideal given as a Z–basis, the second
being a r1 + r2-component row vector giving the complex logarithmic Archimedean information.

– a ZK-generating system for an ideal.

– a column vector x expressing an element of the number field on the integral basis, in which
case the ideal is treated as being the principal idele (or ideal) generated by x.

– a prime ideal, i.e. a 5-component vector in the format output by idealprimedec.

– a polmod x, i.e. an algebraic integer, in which case the ideal is treated as being the principal
idele generated by x.

– an integer or a rational number, also treated as a principal idele.

• a character on the Abelian group
⊕

(Z/NiZ)gi is given by a row vector χ = [a1, . . . , an] such
that χ(

∏
gnii) = exp(2iπ

∑
aini/Ni).

83

Warnings:

1) An element in nf can be expressed either as a polmod or as a vector of components on the
integral basis nf .zk. It is absolutely essential that all such vectors be column vectors.

2) When giving an ideal by a ZK generating system to a function expecting an ideal, it must
be ensured that the function understands that it is a ZK-generating system and not a Z-generating
system. When the number of generators is strictly less than the degree of the field, there is no
ambiguity and the program assumes that one is giving a ZK-generating set. When the number of
generators is greater than or equal to the degree of the field, however, the program assumes on the
contrary that you are giving a Z-generating set. If this is not the case, you must absolutely change
it into a Z-generating set, the simplest manner being to use idealhnf(nf ,x).

Concerning relative extensions, some additional definitions are necessary.

• A relative matrix will be a matrix whose entries are elements of a (given) number field nf ,
always expressed as column vectors on the integral basis nf .zk. Hence it is a matrix of vectors.

• An ideal list will be a row vector of (fractional) ideals of the number field nf .

• A pseudo-matrix will be a pair (A, I) where A is a relative matrix and I an ideal list whose
length is the same as the number of columns of A. This pair will be represented by a 2-component
row vector.

• The module generated by a pseudo-matrix (A, I) is the sum
∑
i ajAj where the aj are the

ideals of I and Aj is the j-th column of A.

• A pseudo-matrix (A, I) is a pseudo-basis of the module it generates if A is a square matrix
with non-zero determinant and all the ideals of I are non-zero. We say that it is in Hermite Normal
Form (HNF) if it is upper triangular and all the elements of the diagonal are equal to 1.

• The determinant of a pseudo-basis (A, I) is the ideal equal to the product of the determinant
of A by all the ideals of I. The determinant of a pseudo-matrix is the determinant of any pseudo-
basis of the module it generates.

Finally, when defining a relative extension, the base field should be defined by a variable having
a lower priority (i.e. a higher number) than the variable defining the extension. For example, under
GP you can use the variable name y (or t) to define the base field, and the variable name x to
define the relative extension.

Now a last set of definitions concerning the way big ray number fields (or bnr) are input,
using class field theory. These are defined by a triple a1, a2, a3, where the defining set [a1, a2, a3]
can have any of the following forms: [bnr], [bnr , subgroup], [bnf ,module], [bnf ,module, subgroup],
where:

• bnf is as output by bnfclassunit or bnfinit, where units are mandatory unless the ideal
is trivial; bnr by bnrclass (with flag > 0) or bnrinit. This is the ground field.

• module is either an ideal in any form (see above) or a two-component row vector containing
an ideal and an r1-component row vector of flags indicating which real Archimedean embeddings
to take in the module.

• subgroup is the HNF matrix of a subgroup of the ray class group of the ground field for the
modulus module. This is input as a square matrix expressing generators of a subgroup of the ray
class group bnr.clgp on the given generators.

84

The corresponding bnr is then the subfield of the ray class field of the ground field for the
given modulus, associated to the given subgroup.

All the functions which are specific to relative extensions, number fields, big number fields,
big number rays, share the prefix rnf, nf, bnf, bnr respectively. They are meant to take as first
argument a number field of that precise type, respectively output by rnfinit, nfinit, bnfinit,
and bnrinit.

However, and even though it may not be specified in the descriptions of the functions below,
it is permissible, if the function expects a nf , to use a bnf instead (which contains much more
information). The program will make the effort of converting to what it needs. On the other hand,
if the program requires a big number field, the program will not launch bnfinit for you, which
can be a costly operation. Instead, it will give you a specific error message.

The data types corresponding to the structures described above are rather complicated. Thus,
as we already have seen it with elliptic curves, GP provides you with some “member functions” to
retrieve the data you need from these structures (once they have been initialized of course). The
relevant types of number fields are indicated between parentheses:
bnf (bnr , bnf) : big number field.
clgp (bnr , bnf) : classgroup. This one admits the following three subclasses:
cyc : cyclic decomposition (SNF).
gen : generators.
no : number of elements.

diff (bnr , bnf , nf) : the different ideal.
codiff (bnr , bnf , nf) : the codifferent (inverse of the different in the ideal group).
disc (bnr , bnf , nf) : discriminant.
fu (bnr , bnf , nf) : fundamental units.
futu (bnr , bnf) : [u,w], u is a vector of fundamental units, w generates the torsion.
nf (bnr , bnf , nf) : number field.
reg (bnr , bnf ,) : regulator.
roots (bnr , bnf , nf) : roots of the polnomial generating the field.
sign (bnr , bnf , nf) : [r1, r2] the signature of the field. This means that the field has r1 real

embeddings, 2r2 complex ones.
t2 (bnr , bnf , nf) : the T2 matrix (see nfinit).
tu (bnr , bnf ,) : a generator for the torsion units.
tufu (bnr , bnf ,) : as futu, but outputs [w, u].
zk (bnr , bnf , nf) : integral basis, i.e. a Z-basis of the maximal order.
zkst (bnr) : structure of (ZK/m)∗ (can be extracted also from an idealstar).

For instance, assume that bnf = bnfinit(pol), for some polynomial. Then bnf .clgp retrieves
the class group, and bnf .clgp.no the class number. If we had set bnf = nfinit(pol), both would
have output an error message. All these functions are completely recursive, thus for instance
bnr.bnf.nf.zk will yield the maximal order of bnr (which you could get directly with a simple
bnr.zk of course).

The following functions, starting with buch in library mode, and with bnf under GP, are
implementations of the sub-exponential algorithms for finding class and unit groups under GRH,
due to Hafner-McCurley, Buchmann and Cohen-Diaz-Olivier.

The general call to the functions concerning class groups of general number fields (i.e. excluding
quadclassunit) involves a polynomial P and a technical vector

tech = [c, c2,nrel , borne,nrpid ,minsfb],

85

where the parameters are to be understood as follows:

P is the defining polynomial for the number field, which must be in Z[X], irreducible and,
preferably, monic. In fact, if you supply a non-monic polynomial at this point, GP will issue a
warning, then transform your polynomial so that it becomes monic. Instead of the normal result,
say res, you then get a vector [res,Mod(a,Q)], where Mod(a,Q)=Mod(X,P) gives the change of
variables.

The numbers c and c2 are positive real numbers which control the execution time and the
stack size. To get maximum speed, set c2 = c. To get a rigorous result (under GRH) you must
take c2 = 12 (or c2 = 6 in the quadratic case, but then you should use the much faster function
quadclassunit). Reasonable values for c are between 0.1 and 2. (The defaults are c = c2 = 0.3).

nrel is the number of initial extra relations requested in computing the relation matrix. Rea-
sonable values are between 5 and 20. (The default is 5).

borne is a multiplicative coefficient of the Minkowski bound which controls the search for small
norm relations. If this parameter is set equal to 0, the program does not search for small norm
relations. Otherwise reasonable values are between 0.5 and 2.0. (The default is 1.0).

nrpid is the maximal number of small norm relations associated to each ideal in the factor
base. Irrelevant when borne = 0. Otherwise, reasonable values are between 4 and 20. (The default
is 4).

minsfb is the minimal number of elements in the “sub-factorbase”. If the program does not
seem to succeed in finding a full rank matrix (which you can see in GP by typing \g 2), increase
this number. Reasonable values are between 2 and 5. (The default is 3).

Remarks.

Apart from the polynomial P , you don’t need to supply any of the technical parameters (under
the library you still need to send at least an empty vector, cgetg(1,t VEC)). However, should you
choose to set some of them, they must be given in the requested order. For example, if you want to
specify a given value of nrel, you must give some values as well for c and c2, and provide a vector
[c, c2, nrel].

Note also that you can use an nf instead of P , which avoids recomputing the integral basis
and analogous quantities.

3.6.1 bnfcertify(bnf): bnf being a big number field as output by bnfinit or bnfclassunit,
checks whether the result is correct, i.e. whether it is possible to remove the assumption of the
Generalized Riemann Hypothesis. If it is correct, the answer is 1. If not, the program may output
some error message, but more probably will loop indefinitely. In no occasion can the program give
a wrong answer (barring bugs of course): if the program answers 1, the answer is certified.

The library syntax is certifybuchall(bnf), and the result is a C long.

86

3.6.2 bnfclassunit(P, {flag = 0}, {tech = []}): Buchmann’s sub-exponential algorithm for com-
puting the class group, the regulator and a system of fundamental units of the general algebraic
number field K defined by the irreducible polynomial P with integer coefficients.

The result of this function is a vector v with 10 components (it is not a bnf , you need bnfinit
for that), which for ease of presentation is in fact output as a one column matrix. First we describe
the default behaviour (flag = 0):

v[1] is equal to the polynomial P . Note that for optimum performance, P should have gone
through polred or nfinit(x, 2).

v[2] is the 2-component vector [r1, r2], where r1 and r2 are as usual the number of real and
half the number of complex embeddings of the number field K.

v[3] is the 2-component vector containing the field discriminant and the index.

v[4] is an integral basis in Hermite normal form.

v[5] (v.clgp) is a 3-component vector containing the class number (v.clgp.no), the structure
of the class group as a product of cyclic groups of order ni (v.clgp.cyc), and the corresponding
generators of the class group of respective orders ni (v.clgp.gen).

v[6] (v.reg) is the regulator computed to an accuracy which is the maximum of an internally
determined accuracy and of the default.

v[7] is a measure of the correctness of the result. If it is close to 1, the results are correct
(under GRH). If it is close to a larger integer, this shows that the product of the class number by
the regulator is off by a factor equal to this integer, and you must start again with a larger value
for c or a different random seed, i.e. use the function setrand. (Since the computation involves a
random process, starting again with exactly the same parameters may give the correct result.) In
this case a warning message is printed.

v[8] (v.tu) a vector with 2 components, the first being the number w of roots of unity in K
and the second a primitive w-th root of unity expressed as a polynomial.

v[9] (v.fu) is a system of fundamental units also expressed as polynomials.

v[10] gives a measure of the correctness of the computations of the fundamental units (not of
the regulator), expressed as a number of bits. If this number is greater than 20, say, everything is
OK. If v[10] ≤ 0, then we have lost all accuracy in computing the units (usually an error message
will be printed and the units not given). In the intermediate cases, one must proceed with caution
(for example by increasing the current precision).

If flag = 1, and the precision happens to be insufficient for obtaining the fundamental units
exactly, the internal precision is doubled and the computation redone, until the exact results are
obtained. The user should be warned that this can take a very long time when the coefficients of
the fundamental units on the integral basis are very large, for example in the case of large real
quadratic fields. In that case, there are alternate methods for representing algebraic numbers which
are not implemented in PARI.

If flag = 2, the fundamental units and roots of unity are not computed. Hence the result has
only 7 components, the first seven ones.

tech is a technical vector (empty by default) containing c, c2, nrel , borne, nbpid , minsfb, in
this order (see the beginning of the section or the keyword bnf). You can supply any number of

87

these provided you give an actual value to each of them (the “empty arg” trick won’t work here).
Careful use of these parameters may speed up your computations considerably.

The library syntax is bnfclassunit0(P, flag , tech, prec).

3.6.3 bnfclgp(P, {tech = []}): as bnfclassunit, but only outputs v[5], i.e. the class group.

The library syntax is bnfclassgrouponly(P, tech, prec), where tech is as described under
bnfclassunit.

3.6.4 bnfdecodemodule(nf ,m): if m is a module as output in the first component of an extension
given by bnrdisclist, outputs the true module.

The library syntax is decodemodule(nf ,m).

3.6.5 bnfinit(P, {flag = 0}, {tech = []}): essentially identical to bnfclassunit except that the
output contains a lot of technical data, and should not be printed out explicitly in general. The
result of bnfinit is used in programs such as bnfisprincipal, bnfisunit or bnfnarrow. The
result is a 10-component vector bnf .

• The first 6 and last 2 components are technical and in principle are not used by the casual user.
However, for the sake of completeness, their description is as follows. We use the notations explained
in the book by H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

bnf [1] contains the matrix W , i.e. the matrix in Hermite normal form giving relations for the
class group on prime ideal generators (pi)1≤i≤r.

bnf [2] contains the matrix B, i.e. the matrix containing the expressions of the prime ideal
factorbase in terms of the pi. It is an r × c matrix.

bnf [3] contains the complex logarithmic embeddings of the system of fundamental units which
has been found. It is an (r1 + r2)× (r1 + r2 − 1) matrix.

bnf [4] contains the matrix M ′′C of Archimedean components of the relations of the matrix
(W |B).

bnf [5] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

bnf [6] contains the permutation of the prime factor base which was necessary to reduce the
relation matrix to the form explained in subsection 6.5.5 of GTM 138 (i.e. with a big c× c identity
matrix on the lower right). Note that in the above mentioned book, the need to permute the rows
of the relation matrices which occur was not emphasized.

bnf [9] is a 3-element row vector used in bnfisprincipal only and obtained as follows. Let
D = UWV obtained by applying the Smith normal form algorithm to the matrix W (= bnf [1])
and let Ur be the reduction of U modulo D. The first elements of the factorbase are given (in
terms of bnf.gen) by the columns of Ur, with archimedian component ga; let also GDa be the
archimedian components of the generators of the (principal) ideals defined by the bnf.gen[i]^
bnf.cyc[i]. Then bnf [9] = [Ur, ga, GDa].

Finally, bnf [10] is by default unused and set equal to 0. This field is used to store further
information about the field as it becomes available (which is rarely needed, hence would be too
expensive to compute during the initial bnfinit call). For instance, the generators of the principal

88

ideals bnf.gen[i]^bnf.cyc[i] (during a call to bnrisprincipal), or those corresponding to the
relations in W and B (when the bnf internal precision needs to be increased).

• The less technical components are as follows:

bnf [7] or bnf .nf is equal to the number field data nf as would be given by nfinit.

bnf [8] is a vector containing the last 6 components of bnfclassunit[,1], i.e. the classgroup
bnf .clgp, the regulator bnf .reg, the general “check” number which should be close to 1, the num-
ber of roots of unity and a generator bnf .tu, the fundamental units bnf .fu, and finally the check
on their computation. If the precision becomes insufficient, GP outputs a warning (fundamental
units too large, not given) and does not strive to compute the units by default (flag = 0).

When flag = 1, GP insists on finding the fundamental units exactly, the internal precision
being doubled and the computation redone, until the exact results are obtained. The user should
be warned that this can take a very long time when the coefficients of the fundamental units on
the integral basis are very large.

When flag = 2, on the contrary, it is initially agreed that GP will not compute units.

When flag = 3, computes a very small version of bnfinit, a “small big number field” (or sbnf
for short) which contains enough information to recover the full bnf vector very rapidly, but which
is much smaller and hence easy to store and print. It is supposed to be used in conjunction with
bnfmake. The output is a 12 component vector v, as follows. Let bnf be the result of a full bnfinit,
complete with units. Then v[1] is the polynomial P , v[2] is the number of real embeddings r1, v[3]
is the field discriminant, v[4] is the integral basis, v[5] is the list of roots as in the sixth component
of nfinit, v[6] is the matrix MD of nfinit giving a Z-basis of the different, v[7] is the matrix
W = bnf [1], v[8] is the matrix matalpha = bnf [2], v[9] is the prime ideal factor base bnf [5] coded in
a compact way, and ordered according to the permutation bnf [6], v[10] is the 2-component vector
giving the number of roots of unity and a generator, expressed on the integral basis, v[11] is the
list of fundamental units, expressed on the integral basis, v[12] is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix matalpha, expressed on the integral
basis.

Note that all the components are exact (integral or rational), except for the roots in v[5]. In
practice, this is the only component which a user is allowed to modify, by recomputing the roots
to a higher accuracy if desired. Note also that the member functions will not work on sbnf , you
have to use bnfmake explicitly first.

The library syntax is bnfinit0(P, flag , tech, prec).

3.6.6 bnfisintnorm(bnf , x): computes a complete system of solutions (modulo units of positive
norm) of the absolute norm equation Norm(a) = x, where a is an integer in bnf . If bnf has not
been certified, the correctness of the result depends on the validity of GRH.

The library syntax is bnfisintnorm(bnf , x).

89

3.6.7 bnfisnorm(bnf , x, {flag = 1}): tries to tell whether the rational number x is the norm of
some element y in bnf . Returns a vector [a, b] where x = Norm(a) ∗ b. Looks for a solution which
is an S-unit, with S a certain set of prime ideals containing (among others) all primes dividing x.
If bnf is known to be Galois, set flag = 0 (in this case, x is a norm iff b = 1). If flag is non zero
the program adds to S the following prime ideals, depending on the sign of flag . If flag > 0, the
ideals of norm less than flag . And if flag < 0 the ideals dividing flag .

If you are willing to assume GRH, the answer is guaranteed (i.e. x is a norm iff b = 1), if S
contains all primes less than 12 log(disc(Bnf))2, where Bnf is the Galois closure of bnf .

The library syntax is bnfisnorm(bnf , x, flag , prec), where flag and prec are longs.

3.6.8 bnfissunit(bnf , sfu, x): bnf being output by bnfinit, sfu by bnfsunit, gives the column
vector of exponents of x on the fundamental S-units and the roots of unity. If x is not a unit,
outputs an empty vector.

The library syntax is bnfissunit(bnf , sfu, x).

3.6.9 bnfisprincipal(bnf , x, {flag = 1}): bnf being the number field data output by bnfinit,
and x being either a Z-basis of an ideal in the number field (not necessarily in HNF) or a prime
ideal in the format output by the function idealprimedec, this function tests whether the ideal is
principal or not. The result is more complete than a simple true/false answer: it gives a row vector
[v1, v2, check], where

v1 is the vector of components ci of the class of the ideal x in the class group, expressed on the
generators gi given by bnfinit (specifically bnf .clgp.gen which is the same as bnf [8][1][3]).
The ci are chosen so that 0 ≤ ci < ni where ni is the order of gi (the vector of ni being
bnf .clgp.cyc, that is bnf [8][1][2]).

v2 gives on the integral basis the components of α such that x = α
∏
i g
ci
i . In particular, x is

principal if and only if v1 is equal to the zero vector, and if this the case x = αZK where α is given
by v2. Note that if α is too large to be given, a warning message will be printed and v2 will be set
equal to the empty vector.

Finally the third component check is analogous to the last component of bnfclassunit: it
gives a check on the accuracy of the result, in bits. check should be at least 10, and preferably
much more. In any case, the result is checked for correctness.

If flag = 0, outputs only v1, which is much easier to compute.

If flag = 2, does as if flag were 0, but doubles the precision until a result is obtained.

If flag = 3, as in the default behaviour (flag = 1), but doubles the precision until a result is
obtained.

The user is warned that these two last setting may induce very lengthy computations.

The library syntax is isprincipalall(bnf , x, flag).

3.6.10 bnfisunit(bnf , x): bnf being the number field data output by bnfinit and x being an
algebraic number (type integer, rational or polmod), this outputs the decomposition of x on the
fundamental units and the roots of unity if x is a unit, the empty vector otherwise. More precisely,
if u1,. . . ,ur are the fundamental units, and ζ is the generator of the group of roots of unity (found by
bnfclassunit or bnfinit), the output is a vector [x1, . . . , xr, xr+1] such that x = ux1

1 · · ·uxrr ·ζxr+1 .
The xi are integers for i ≤ r and is an integer modulo the order of ζ for i = r + 1.

The library syntax is isunit(bnf , x).

90

3.6.11 bnfmake(sbnf): sbnf being a “small bnf ” as output by bnfinit(x, 3), computes the com-
plete bnfinit information. The result is not identical to what bnfinit would yield, but is func-
tionally identical. The execution time is very small compared to a complete bnfinit. Note that
if the default precision in GP (or prec in library mode) is greater than the precision of the roots
sbnf [5], these are recomputed so as to get a result with greater accuracy.

Note that the member functions are not available for sbnf , you have to use bnfmake explicitly
first.

The library syntax is makebigbnf(sbnf , prec), where prec is a C long integer.

3.6.12 bnfnarrow(bnf): bnf being a big number field as output by bnfinit, computes the narrow
class group of bnf . The output is a 3-component row vector v analogous to the corresponding class
group component bnf .clgp (bnf [8][1]): the first component is the narrow class number v.no,
the second component is a vector containing the SNF cyclic components v.cyc of the narrow class
group, and the third is a vector giving the generators of the corresponding v.gen cyclic groups.
Note that this function is a special case of bnrclass.

The library syntax is buchnarrow(bnf).

3.6.13 bnfsignunit(bnf): bnf being a big number field output by bnfinit, this computes an
r1 × (r1 + r2 − 1) matrix having ±1 components, giving the signs of the real embeddings of the
fundamental units.

The library syntax is signunits(bnf).

3.6.14 bnfreg(bnf): bnf being a big number field output by bnfinit, computes its regulator.

The library syntax is regulator(bnf , tech, prec), where tech is as in bnfclassunit.

3.6.15 bnfsunit(bnf , S): computes the fundamental S-units of the number field bnf (output by
bnfinit), where S is a list of prime ideals (output by idealprimedec). The output is a vector v
with 6 components.

v[1] gives a minimal system of (integral) generators of the S-unit group modulo the unit group.

v[2] contains technical data needed by bnfissunit.

v[3] is an empty vector (used to give the logarithmic embeddings of the generators in v[1] in
version 2.0.16).

v[4] is the S-regulator (this is the product of the regulator, the determinant of v[2] and the
natural logarithms of the norms of the ideals in S).

v[5] gives the S-class group structure, in the usual format (a row vector whose three components
give in order the S-class number, the cyclic components and the generators).

v[6] is a copy of S.

The library syntax is bnfsunit(bnf , S, prec).

91

3.6.16 bnfunit(bnf): bnf being a big number field as output by bnfinit, outputs a two-component
row vector giving in the first component the vector of fundamental units of the number field, and
in the second component the number of bit of accuracy which remained in the computation (which
is always correct, otherwise an error message is printed). This function is mainly for people who
used the wrong flag in bnfinit and would like to skip part of a lengthy bnfinit computation.

The library syntax is buchfu(bnf).

3.6.17 bnrL1(bnr , subgroup, {flag = 0}): bnr being the number field data which is output by
bnrinit(,,1) and subgroup being a square matrix defining a congruence subgroup of the ray class
group corresponding to bnr (or 0 for the trivial congruence subgroup), returns for each character χ
of the ray class group which is trivial on this subgroup, the value at s = 1 (or s = 0) of the abelian
L-function associated to χ. For the value at s = 0, the function returns in fact for each character
χ a vector [rχ, cχ] where rχ is the order of L(s, χ) at s = 0 and cχ the first non-zero term in the
expansion of L(s, χ) at s = 0; in other words

L(s, χ) = cχ · srχ +O(srχ+1)

near 0. flag is optional, default value is 0; its binary digits mean 1: compute at s = 1 if set to
1 or s = 0 if set to 0, 2: compute the primitive L-functions associated to χ if set to 0 or the
L-function with Euler factors at prime ideals dividing the modulus of bnr removed if set to 1 (this
is the so-called LS(s, χ) function where S is the set of infinite places of the number field together
with the finite prime ideals dividing the modulus of bnr , see the example below), 3: returns also
the character.

Example:

bnf = bnfinit(x^2 - 229);

bnr = bnrinit(bnf,1,1);

bnrL1(bnr, 0)

returns the order and the first non-zero term of the abelian L-functions L(s, χ) at s = 0 where χ
runs through the characters of the class group of Q(

√
229). Then

bnr2 = bnrinit(bnf,2,1);

bnrL1(bnr2,0,2)

returns the order and the first non-zero terms of the abelian L-functions LS(s, χ) at s = 0 where
χ runs through the characters of the class group of Q(

√
229) and S is the set of infinite places of

Q(
√

229) together with the finite prime 2 (note that the ray class group modulo 2 is in fact the
class group, so bnrL1(bnr2,0) returns exactly the same answer as bnrL1(bnr,0)!).

The library syntax is bnrL1(bnr , subgroup, flag , prec)

92

3.6.18 bnrclass(bnf , ideal , {flag = 0}): bnf being a big number field as output by bnfinit (the
units are mandatory unless the ideal is trivial), and ideal being either an ideal in any form or a two-
component row vector containing an ideal and an r1-component row vector of flags indicating which
real Archimedean embeddings to take in the module, computes the ray class group of the number
field for the module ideal , as a 3-component vector as all other finite Abelian groups (cardinality,
vector of cyclic components, corresponding generators).

If flag = 2, the output is different. It is a 6-component vector w. w[1] is bnf . w[2] is the result
of applying idealstar(bnf , I, 2). w[3], w[4] and w[6] are technical components used only by the
function bnrisprincipal. w[5] is the structure of the ray class group as would have been output
with flag = 0.

If flag = 1, as above, except that the generators of the ray class group are not computed, which
saves time.

The library syntax is bnrclass0(bnf , ideal , flag , prec).

3.6.19 bnrclassno(bnf , I): bnf being a big number field as output by bnfinit (units are manda-
tory unless the ideal is trivial), and I being either an ideal in any form or a two-component row vec-
tor containing an ideal and an r1-component row vector of flags indicating which real Archimedean
embeddings to take in the modulus, computes the ray class number of the number field for the
modulus I. This is faster than bnrclass and should be used if only the ray class number is desired.

The library syntax is rayclassno(bnf , I).

3.6.20 bnrclassnolist(bnf , list): bnf being a big number field as output by bnfinit (units are
mandatory unless the ideal is trivial), and list being a list of modules as output by ideallist of
ideallistarch, outputs the list of the class numbers of the corresponding ray class groups.

The library syntax is rayclassnolist(bnf , list).

3.6.21 bnrconductor(a1, {a2}, {a3}, {flag = 0}): conductor of the subfield of a ray class field as
defined by [a1, a2, a3] (see bnr at the beginning of this section).

The library syntax is bnrconductor(a1, a2, a3, flag , prec), where an omitted argument among
the ai is input as gzero, and flag is a C long.

3.6.22 bnrconductorofchar(bnr , chi): bnr being a big ray number field as output by bnrclass,
and chi being a row vector representing a character as expressed on the generators of the ray class
group, gives the conductor of this character as a modulus.

The library syntax is bnrconductorofchar(bnr , chi , prec) where prec is a long.

93

3.6.23 bnrdisc(a1, {a2}, {a3}, {flag = 0}): a1, a2, a3 defining a big ray number field L over a
groud field K (see bnr at the beginning of this section for the meaning of a1, a2, a3), outputs a
3-component row vector [N,R1, D], where N is the (absolute) degree of L, R1 the number of real
places of L, and D the discriminant of L/Q, including sign (if flag = 0).

If flag = 1, as above but outputs relative data. N is now the degree of L/K, R1 is the number
of real places of K unramified in L (so that the number of real places of L is equal to R1 times the
relative degree N), and D is the relative discriminant ideal of L/K.

If flag = 2, does as in case 0, except that if the modulus is not the exact conductor corre-
sponding to the L, no data is computed and the result is 0 (gzero).

If flag = 3, as case 2, outputting relative data.

The library syntax is bnrdisc0(a1, a2, a3, flag , prec).

3.6.24 bnrdisclist(bnf , bound , {arch}, {flag = 0}): bnf being a big number field as output by
bnfinit (the units are mandatory), computes a list of discriminants of Abelian extensions of the
number field by increasing modulus norm up to bound bound , where the ramified Archimedean
places are given by arch (unramified at infinity if arch is void or omitted). If flag is non-zero, give
arch all the possible values. (See bnr at the beginning of this section for the meaning of a1, a2,
a3.)

The alternative syntax bnrdisclist(bnf , list) is supported, where list is as output by ideal-
list or ideallistarch (with units).

The output format is as follows. The output v is a row vector of row vectors, allowing the bound
to be greater than 216 for 32-bit machines, and v[i][j] is understood to be in fact V [215(i− 1) + j]
of a unique big vector V (note that 215 is hardwired and can be increased in the source code only
on 64-bit machines and higher).

Such a component V [k] is itself a vector W (maybe of length 0) whose components correspond
to each possible ideal of norm k. Each component W [i] corresponds to an Abelian extension L of
bnf whose modulus is an ideal of norm k and no Archimedean components (hence the extension is
unramified at infinity). The extension W [i] is represented by a 4-component row vector [m, d, r,D]
with the following meaning. m is the prime ideal factorization of the modulus, d = [L : Q] is
the absolute degree of L, r is the number of real places of L, and D is the factorization of the
absolute discriminant. Each prime ideal pr = [p, α, e, f, β] in the prime factorization m is coded as
p · n2 + (f − 1) · n+ (j − 1), where n is the degree of the base field and j is such that

pr = idealprimedec(nf ,p)[j].

m can be decoded using bnfdecodemodule.

The library syntax is bnrdisclist0(a1, a2, a3, bound , arch, flag).

3.6.25 bnrinit(bnf , ideal , {flag = 0}): bnf is as output by bnfinit, ideal is a valid ideal (or a
module), initializes data linked to the ray class group structure corresponding to this module. This
is the same as bnrclass(bnf , ideal , flag + 1).

The library syntax is bnrinit0(bnf , ideal , flag , prec).

94

3.6.26 bnrisconductor(a1, {a2}, {a3}): a1, a2, a3 represent an extension of the base field, given
by class field theory for some modulus encoded in the parameters. Outputs 1 if this modulus is the
conductor, and 0 otherwise. This is slightly faster than bnrconductor.

The library syntax is bnrisconductor(a1, a2, a3) and the result is a long.

3.6.27 bnrisprincipal(bnr , x, {flag = 1}): bnr being the number field data which is output by
bnrinit and x being an ideal in any form, outputs the components of x on the ray class group
generators in a way similar to bnfisprincipal. That is a 3-component vector v where v[1] is the
vector of components of x on the ray class group generators, v[2] gives on the integral basis an
element α such that x = α

∏
i g
xi
i . Finally v[3] indicates the number of bits of accuracy left in the

result. In any case the result is checked for correctness, but v[3] is included to see if it is necessary
to increase the accuracy in other computations.

If flag = 0, outputs only v1.

The settings flag = 2 or 3 are not available in this case.

The library syntax is isprincipalrayall(bnr , x, flag).

3.6.28 bnrrootnumber(bnr , chi , {flag = 0}): if χ = chi is a (not necessarily primitive) character
over bnr , let L(s, χ) =

∑
id χ(id)N(id)−s be the associated Artin L-function. Returns the so-called

Artin root number, i.e. the complex number W (χ) of modulus 1 such that

Λ(1− s, χ) = W (χ)Λ(s, χ)

where Λ(s, χ) = A(χ)s/2γχ(s)L(s, χ) is the enlarged L-function associated to L.

The generators of the ray class group are needed, and you can set flag = 1 if the character is
known to be primitive. Example:

bnf = bnfinit(x^2 - 145);
bnr = bnrinit(bnf,7,1);
bnrrootnumber(bnr, [5])

returns the root number of the character χ of Cl7(Q(
√

145)) such that χ(g) = ζ5, where g is the
generator of the ray-class field and ζ = e2iπ/N where N is the order of g (N = 12 as bnr.cyc
readily tells us).

The library syntax is bnrrootnumber(bnf , chi , flag)

3.6.29 bnrstark(bnr , subgroup, {flag = 0}): bnr being as output by bnrinit(,,1), finds a relative
equation for the class field corresponding to the modulus in bnr and the given congruence subgroup
using Stark units (set subgroup = 0 if you want the whole ray class group). The main variable of
bnr must not be x, and the ground field and the class field must be totally real and not isomorphic
to Q (over the rationnals, use polsubcyclo or galoissubcyclo). flag is optional and may be set
to 0 to obtain a reduced relative polynomial, 1 to be satisfied with any relative polynomial, 2 to
obtain an absolute polynomial and 3 to obtain the irreducible relative polynomial of the Stark unit,
0 being default. Example:

bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5, 1);
bnrstark(bnr, 0)

returns the ray class field of Q(
√

3) modulo 5.

95

Remark. The result of the computation depends on the choice of a modulus verifying special
conditions. By default the function will try few moduli, choosing the one giving the smallest result.
In some cases where the result is however very large, you can tell the function to try more moduli
by adding 4 to the value of flag. Whether this flag is set or not, the function may fail in some
extreme cases, returning the error message

"Cannot find a suitable modulus in FindModule".

In this case, the corresponding congruence group is a product of cyclic groups and, for the
time being, the class field has to be obtained by splitting this group into its cyclic components.

The library syntax is bnrstark(bnr , subgroup, flag).

3.6.30 dirzetak(nf , b): gives as a vector the first b coefficients of the Dedekind zeta function of
the number field nf considered as a Dirichlet series.

The library syntax is dirzetak(nf , b).

3.6.31 factornf(x, t): factorization of the univariate polynomial x over the number field defined
by the (univariate) polynomial t. x may have coefficients in Q or in the number field. The main
variable of t must be of lower priority than that of x (in other words the variable number of t
must be greater than that of x). However if the coefficients of the number field occur explicitly (as
polmods) as coefficients of x, the variable of these polmods must be the same as the main variable
of t. For example

? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + 1, y^2+1); \\ these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** incorrect type in gmulsg

The library syntax is polfnf(x, t).

3.6.32 galoisfixedfield(gal , perm, {fl = 0}, {v = y})): gal being be a Galois field as output by
galoisinit and perm an element of gal .group or a vector of such elements, computes the fixed
field of gal by the automorphism defined by the permutations perm of the roots gal .roots. P is
guaranteed to be squarefree modulo gal .p.

If no flags or flag = 0, output format is the same as for nfsubfield, returning [P, x] such that
P is a polynomial defining the fixed field, and x is a root of P expressed as a polmod in gal .pol.

If flag = 1 return only the polynomial P .

If flag = 2 return [P, x, F] where P and x are as above and F is the factorization of gal .pol
over the field defined by P , where variable v (y by default) stands for a root of P . The priority of
v must be less than the priority of the variable of gal .pol.

Example:

G = galoisinit(x^4+1);
galoisfixedfield(G,G.group[2],2)
[x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]

computes the factorization x4 + 1 = (x2 −
√
−2x− 1)(x2 +

√
−2x− 1)

The library syntax is galoisf ixedfield(gal , perm, p).

96

3.6.33 galoisinit(pol , {den}): computes the Galois group and all neccessary information for com-
puting the fixed fields of the Galois extension K/Q where K is the number field defined by pol
(monic irreducible polynomial in Z[X] or a number field as output by nfinit). The extension K/Q
must be Galois with Galois group “weakly” super-solvable (see nfgaloisconj)

Warning: The interface of this function is experimental, so the described output can be subject
to important changes in the near future. However the function itself should work as described. For
any remarks about this interface, please mail allomber@math.u-bordeaux.fr.

The output is an 8-component vector gal .

gal [1] contains the polynomial pol (gal.pol).

gal [2] is a three–components vector [p, e, q] where p is a prime number (gal.p) such that pol
totally split modulo p , e is an integer and q = pe (gal.mod) is the modulus of the roots in gal.roots.

gal [3] is a vector L containing the p-adic roots of pol as integers implicitly modulo gal.mod.
(gal.roots).

gal [4] is the inverse of the Van der Monde matrix of the p-adic roots of pol , multiplied by
gal [5].

gal [5] is a multiple of the least common denominator of the automorphisms expressed as
polynomial in a root of pol .

gal [6] is the Galois group G expressed as a vector of permutations of L (gal.group).

gal [7] is a generating subset S = [s1, . . . , sg] of G expressed as a vector of permutations of L
(gal.gen).

gal [8] contains the relative orders [o1, . . . , og] of the generators of S (gal.orders).

Let H be the maximal normal supersolvable subgroup of G, we have the following properties:

• if G/H ' A4 then [o1, . . . , og] ends by [2, 2, 3].

• if G/H ' S4 then [o1, . . . , og] ends by [2, 2, 3, 2].

• else G is super-solvable.

• for 1 ≤ i ≤ g the subgroup of G generated by [s1, . . . , sg] is normal, with the exception of
i = g − 2 in the second case and of i = g − 3 in the third.

• the relative order oi of si is its order in the quotient group G/〈s1, . . . , si−1〉, with the same
exceptions.

• for any x ∈ G there exists a unique family [e1, . . . , eg] such that (no exceptions):

– for 1 ≤ i ≤ g we have 0 ≤ ei < oi

– x = ge11 g
e2
2 . . . genn

If present den must be a suitable value for gal [5].

The library syntax is galoisinit(gal , den).

97

3.6.34 galoispermtopol(gal , perm): gal being a galois field as output by galoisinit and perm
a element of gal .group, return the polynomial defining the Galois automorphism, as output by
nfgaloisconj, associated with the permutation perm of the roots gal .roots. perm can also be a
vector or matrix, in this case, galoispermtopol is applied to all components recursively.

Note that

G = galoisinit(pol);
galoispermtopol(G, G[6])~

is equivalent to nfgaloisconj(pol), if degree of pol is greater or equal to 2.

The library syntax is galoispermtopol(gal , perm).

3.6.35 galoissubcyclo(n,H, {Z}, {v}): compute a polynomial defining the subfield of Q(ζn) fixed
by the subgroup H of Z/nZ. The subgroup H can be given by a generator, a set of generators
given by a vector or a HNF matrix. If present Z must be znstar(n), and is currently only used
when H is a HNF matrix. If v is given, the polynomial is given in the variable v .

The following function can be used to compute all subfields of Q(ζn) (of order less than d, if
d is set):

subcyclo(n, d = -1)=
{
local(Z,G,S);
if (d < 0, d = n);
Z = znstar(n);
G = matdiagonal(Z[2]);
S = [];
forsubgroup(H = G, d,
S = concat(S, galoissubcyclo(n, mathnf(concat(G,H)),Z));

);
S

}

The library syntax is galoissubcyclo(n,H,Z, v) where n is a C long integer.

3.6.36 idealadd(nf , x, y): sum of the two ideals x and y in the number field nf . When x and y
are given by Z-bases, this does not depend on nf and can be used to compute the sum of any two
Z-modules. The result is given in HNF.

The library syntax is idealadd(nf , x, y).

3.6.37 idealaddtoone(nf , x, {y}): x and y being two co-prime integral ideals (given in any form),
this gives a two-component row vector [a, b] such that a ∈ x, b ∈ y and a+ b = 1.

The alternative syntax idealaddtoone(nf , v), is supported, where v is a k-component vector
of ideals (given in any form) which sum to ZK . This outputs a k-component vector e such that
e[i] ∈ x[i] for 1 ≤ i ≤ k and

∑
1≤i≤k e[i] = 1.

The library syntax is idealaddtoone0(nf , x, y), where an omitted y is coded as NULL.

98

3.6.38 idealappr(nf , x, {flag = 0}): if x is a fractional ideal (given in any form), gives an element
α in nf such that for all prime ideals p such that the valuation of x at p is non-zero, we have
vp(α) = vp(x), and. vp(α) ≥ 0 for all other p.

If flag is non-zero, x must be given as a prime ideal factorization, as output by idealfactor,
but possibly with zero or negative exponents. This yields an element α such that for all prime
ideals p occurring in x, vp(α) is equal to the exponent of p in x, and for all other prime ideals,
vp(α) ≥ 0. This generalizes idealappr(nf , x, 0) since zero exponents are allowed. Note that the
algorithm used is slightly different, so that idealapp(nf ,idealfactor(nf ,x)) may not be the
same as idealappr(nf ,x,1).

The library syntax is idealappr0(nf , x, flag).

3.6.39 idealchinese(nf , x, y): x being a prime ideal factorization (i.e. a 2 by 2 matrix whose first
column contain prime ideals, and the second column integral exponents), y a vector of elements in
nf indexed by the ideals in x, computes an element b such that

vp(b− yp) ≥ vp(x) for all prime ideals in x and vp(b) ≥ 0 for all other p.

The library syntax is idealchinese(nf , x, y).

3.6.40 idealcoprime(nf , x, y): given two integral ideals x and y in the number field nf , finds a β
in the field, expressed on the integral basis nf [7], such that β · y is an integral ideal coprime to x.

The library syntax is idealcoprime(nf , x).

3.6.41 idealdiv(nf , x, y, {flag = 0}): quotient x · y−1 of the two ideals x and y in the number field
nf . The result is given in HNF.

If flag is non-zero, the quotient x · y−1 is assumed to be an integral ideal. This can be much
faster when the norm of the quotient is small even though the norms of x and y are large.

The library syntax is idealdiv0(nf , x, y, flag). Also available are idealdiv(nf , x, y) (flag = 0)
and idealdivexact(nf , x, y) (flag = 1).

3.6.42 idealfactor(nf , x): factors into prime ideal powers the ideal x in the number field nf . The
output format is similar to the factor function, and the prime ideals are represented in the form
output by the idealprimedec function, i.e. as 5-element vectors.

The library syntax is idealfactor(nf , x).

3.6.43 idealhnf(nf , a, {b}): gives the Hermite normal form matrix of the ideal a. The ideal can be
given in any form whatsoever (typically by an algebraic number if it is principal, by a ZK-system
of generators, as a prime ideal as given by idealprimedec, or by a Z-basis).

If b is not omitted, assume the ideal given was aZK + bZK , where a and b are elements of K
given either as vectors on the integral basis nf [7] or as algebraic numbers.

The library syntax is idealhnf0(nf , a, b) where an omitted b is coded as NULL. Also available
is idealhermite(nf , a) (b omitted).

3.6.44 idealintersect(nf , x, y): intersection of the two ideals x and y in the number field nf .
When x and y are given by Z-bases, this does not depend on nf and can be used to compute the
intersection of any two Z-modules. The result is given in HNF.

The library syntax is idealintersect(nf , x, y).

99

3.6.45 idealinv(nf , x): inverse of the ideal x in the number field nf . The result is the Hermite
normal form of the inverse of the ideal, together with the opposite of the Archimedean information
if it is given.

The library syntax is idealinv(nf , x).

3.6.46 ideallist(nf , bound , {flag = 4}): computes the list of all ideals of norm less or equal to
bound in the number field nf . The result is a row vector with exactly bound components. Each
component is itself a row vector containing the information about ideals of a given norm, in no
specific order. This information can be either the HNF of the ideal or the idealstar with possibly
some additional information.

If flag is present, its binary digits are toggles meaning

1: give also the generators in the idealstar.

2: output [L,U], where L is as before and U is a vector of zinternallogs of the units.

4: give only the ideals and not the idealstar or the ideallog of the units.

The library syntax is ideallist0(nf , bound , flag), where bound must be a C long integer. Also
available is ideallist(nf , bound), corresponding to the case flag = 0.

3.6.47 ideallistarch(nf , list , {arch = []}, {flag = 0}): vector of vectors of all idealstarinit (see
idealstar) of all modules in list , with Archimedean part arch added (void if omitted). list is
a vector of big ideals, as output by ideallist(. . . , flag) for instance. flag is optional; its binary
digits are toggles meaning: 1: give generators as well, 2: list format is [L,U] (see ideallist).

The library syntax is ideallistarch0(nf , list , arch, flag), where an omitted arch is coded as
NULL.

3.6.48 ideallog(nf , x, bid): nf being a number field, bid being a “big ideal” as output by ideal-
star and x being a non-necessarily integral element of nf which must have valuation equal to 0
at all prime ideals dividing I = bid [1], computes the “discrete logarithm” of x on the generators
given in bid [2]. In other words, if gi are these generators, of orders di respectively, the result is a
column vector of integers (xi) such that 0 ≤ xi < di and

x ≡
∏
i

gxii (mod ∗I) .

Note that when I is a module, this implies also sign conditions on the embeddings.

The library syntax is zideallog(nf , x, bid).

3.6.49 idealmin(nf , x, {vdir}): computes a minimum of the ideal x in the direction vdir in the
number field nf .

The library syntax is minideal(nf , x, vdir , prec), where an omitted vdir is coded as NULL.

100

3.6.50 idealmul(nf , x, y, {flag = 0}): ideal multiplication of the ideals x and y in the number field
nf . The result is a generating set for the ideal product with at most n elements, and is in Hermite
normal form if either x or y is in HNF or is a prime ideal as output by idealprimedec, and this
is given together with the sum of the Archimedean information in x and y if both are given.

If flag is non-zero, reduce the result using idealred.

The library syntax is idealmul(nf , x, y) (flag = 0) or idealmulred(nf , x, y, prec) (flag 6= 0),
where as usual, prec is a C long integer representing the precision.

3.6.51 idealnorm(nf , x): computes the norm of the ideal x in the number field nf .

The library syntax is idealnorm(nf , x).

3.6.52 idealpow(nf , x, k, {flag = 0}): computes the k-th power of the ideal x in the number field
nf . k can be positive, negative or zero. The result is NOT reduced, it is really the k-th ideal power,
and is given in HNF.

If flag is non-zero, reduce the result using idealred. Note however that this is NOT the same
as as idealpow(nf , x, k) followed by reduction, since the reduction is performed throughout the
powering process.

The library syntax corresponding to flag = 0 is idealpow(nf , x, k). If k is a long, you can
use idealpows(nf , x, k). Corresponding to flag = 1 is idealpowred(nf , vp, k, prec), where prec is
a long.

3.6.53 idealprimedec(nf , p): computes the prime ideal decomposition of the prime number p in
the number field nf . p must be a (positive) prime number. Note that the fact that p is prime is
not checked, so if a non-prime number p is given it may lead to unpredictable results.

The result is a vector of 5-component vectors, each representing one of the prime ideals above
p in the number field nf . The representation vp = [p, a, e, f, b] of a prime ideal means the following.
The prime ideal is equal to pZK+αZK where ZK is the ring of integers of the field and α =

∑
i aiωi

where the ωi form the integral basis nf .zk, e is the ramification index, f is the residual index, and
b is an n-component column vector representing a β ∈ ZK such that vp−1 = ZK + β/pZK which
will be useful for computing valuations, but which the user can ignore. The number α is guaranteed
to have a valuation equal to 1 at the prime ideal (this is automatic if e > 1).

The library syntax is idealprimedec(nf , p).

3.6.54 idealprincipal(nf , x): creates the principal ideal generated by the algebraic number x
(which must be of type integer, rational or polmod) in the number field nf . The result is a one-
column matrix.

The library syntax is principalideal(nf , x).

101

3.6.55 idealred(nf , I, {vdir = 0}): LLL reduction of the ideal I in the number field nf , along the
direction vdir . If vdir is present, it must be an r1 + r2-component vector (r1 and r2 number of
real and complex places of nf as usual).

This function finds a “small” a in I (it is an LLL pseudo-minimum along direction vdir). The
result is the Hermite normal form of the LLL-reduced ideal rI/a, where r is a rational number such
that the resulting ideal is integral and primitive. This is often, but not always, a reduced ideal
in the sense of Buchmann. If I is an idele, the logarithmic embeddings of a are subtracted to the
Archimedean part.

More often than not, a principal ideal will yield the identity matrix. This is a quick and dirty
way to check if ideals are principal without computing a full bnf structure, but it’s not a necessary
condition; hence, a non-trivial result doesn’t prove the ideal is non-trivial in the class group.

Note that this is not the same as the LLL reduction of the lattice I since ideal operations are
involved.

The library syntax is ideallllred(nf , x, vdir , prec), where an omitted vdir is coded as NULL.

3.6.56 idealstar(nf , I, {flag = 1}): nf being a number field, and I either and ideal in any form,
or a row vector whose first component is an ideal and whose second component is a row vector of
r1 0 or 1, outputs necessary data for computing in the group (ZK/I)∗.

If flag = 2, the result is a 5-component vector w. w[1] is the ideal or module I itself. w[2]
is the structure of the group. The other components are difficult to describe and are used only in
conjunction with the function ideallog.

If flag = 1 (default), as flag = 2, but do not compute explicit generators for the cyclic
components, which saves time.

If flag = 0, computes the structure of (ZK/I)∗ as a 3-component vector v. v[1] is the order, v[2]
is the vector of SNF cyclic components and v[3] the corresponding generators. When the row vector
is explicitly included, the non-zero elements of this vector are considered as real embeddings of nf
in the order given by polroots, i.e. in nf [6] (nf .roots), and then I is a module with components
at infinity.

To solve discrete logarithms (using ideallog), you have to choose flag = 2.

The library syntax is idealstar0(nf , I, flag).

3.6.57 idealtwoelt(nf , x, {a}): computes a two-element representation of the ideal x in the number
field nf , using a straightforward (exponential time) search. x can be an ideal in any form, (including
perhaps an Archimedean part, which is ignored) and the result is a row vector [a, α] with two
components such that x = aZK + αZK and a ∈ Z, where a is the one passed as argument if any.
If x is given by at least two generators, a is chosen to be the positive generator of x ∩ Z.

Note that when an explicit a is given, we use an asymptotically faster method, however in
practice it is usually slower.

The library syntax is ideal two elt0(nf , x, a), where an omitted a is entered as NULL.

3.6.58 idealval(nf , x, vp): gives the valuation of the ideal x at the prime ideal vp in the number
field nf , where vp must be a 5-component vector as given by idealprimedec.

The library syntax is idealval(nf , x, vp), and the result is a long integer.

102

3.6.59 ideleprincipal(nf , x): creates the principal idele generated by the algebraic number x
(which must be of type integer, rational or polmod) in the number field nf . The result is a two-
component vector, the first being a one-column matrix representing the corresponding principal
ideal, and the second being the vector with r1 + r2 components giving the complex logarithmic
embedding of x.

The library syntax is principalidele(nf , x).

3.6.60 matalgtobasis(nf , x): nf being a number field in nfinit format, and x a matrix whose
coefficients are expressed as polmods in nf , transforms this matrix into a matrix whose coefficients
are expressed on the integral basis of nf . This is the same as applying nfalgtobasis to each entry,
but it would be dangerous to use the same name.

The library syntax is matalgtobasis(nf , x).

3.6.61 matbasistoalg(nf , x): nf being a number field in nfinit format, and x a matrix whose
coefficients are expressed as column vectors on the integral basis of nf , transforms this matrix
into a matrix whose coefficients are algebraic numbers expressed as polmods. This is the same as
applying nfbasistoalg to each entry, but it would be dangerous to use the same name.

The library syntax is matbasistoalg(nf , x).

3.6.62 modreverse(a): a being a polmod A(X) modulo T (X), finds the “reverse polmod” B(X)
modulo Q(X), where Q is the minimal polynomial of a, which must be equal to the degree of T ,
and such that if θ is a root of T then θ = B(α) for a certain root α of Q.

This is very useful when one changes the generating element in algebraic extensions.

The library syntax is polmodrecip(x).

3.6.63 newtonpoly(x, p): gives the vector of the slopes of the Newton polygon of the polynomial
x with respect to the prime number p. The n components of the vector are in decreasing order,
where n is equal to the degree of x. Vertical slopes occur iff the constant coefficient of x is zero
and are denoted by VERYBIGINT, the biggest single precision integer representable on the machine
(231 − 1 (resp. 263 − 1) on 32-bit (resp. 64-bit) machines), see Section 3.2.44.

The library syntax is newtonpoly(x, p).

3.6.64 nfalgtobasis(nf , x): this is the inverse function of nfbasistoalg. Given an object x whose
entries are expressed as algebraic numbers in the number field nf , transforms it so that the entries
are expressed as a column vector on the integral basis nf .zk.

The library syntax is algtobasis(nf , x).

103

3.6.65 nfbasis(x, {flag = 0}, {p}): integral basis of the number field defined by the irreducible,
preferably monic, polynomial x, using a modified version of the round 4 algorithm by default. The
binary digits of flag have the following meaning:

1: assume that no square of a prime greater than the default primelimit divides the discrim-
inant of x, i.e. that the index of x has only small prime divisors.

2: use round 2 algorithm. For small degrees and coefficient size, this is sometimes a little
faster. (This program is the translation into C of a program written by David Ford in Algeb.)

Thus for instance, if flag = 3, this uses the round 2 algorithm and outputs an order which will
be maximal at all the small primes.

If p is present, we assume (without checking!) that it is the two-column matrix of the fac-
torization of the discriminant of the polynomial x. Note that it does not have to be a complete
factorization. This is especially useful if only a local integral basis for some small set of places is
desired: only factors with exponents greater or equal to 2 will be considered.

The library syntax is nfbasis0(x, flag , p). An extended version is nfbasis(x,&d, flag , p), where
d will receive the discriminant of the number field (not of the polynomial x), and an omitted p
should be input as gzero. Also available are base(x,&d) (flag = 0), base2(x,&d) (flag = 2) and
factoredbase(x, p,&d).

3.6.66 nfbasistoalg(nf , x): this is the inverse function of nfalgtobasis. Given an object x whose
entries are expressed on the integral basis nf .zk, transforms it into an object whose entries are
algebraic numbers (i.e. polmods).

The library syntax is basistoalg(nf , x).

3.6.67 nfdetint(nf , x): given a pseudo-matrix x, computes a non-zero ideal contained in (i.e. mul-
tiple of) the determinant of x. This is particularly useful in conjunction with nfhnfmod.

The library syntax is nfdetint(nf , x).

3.6.68 nfdisc(x, {flag = 0}, {p}): field discriminant of the number field defined by the integral,
preferably monic, irreducible polynomial x. flag and p are exactly as in nfbasis. That is, p
provides the matrix of a partial factorization of the discriminant of x, and binary digits of flag are
as follows:

1: assume that no square of a prime greater than primelimit divides the discriminant.

2: use the round 2 algorithm, instead of the default round 4. This should be slower except
maybe for polynomials of small degree and coefficients.

The library syntax is nfdiscf0(x, flag , p) where, to omit p, you should input gzero. You can
also use discf(x) (flag = 0).

3.6.69 nfeltdiv(nf , x, y): given two elements x and y in nf , computes their quotient x/y in the
number field nf .

The library syntax is element div(nf , x, y).

104

3.6.70 nfeltdiveuc(nf , x, y): given two elements x and y in nf , computes an algebraic integer q
in the number field nf such that the components of x − qy are reasonably small. In fact, this is
functionally identical to round(nfeltdiv(nf ,x,y)).

The library syntax is nfdiveuc(nf , x, y).

3.6.71 nfeltdivmodpr(nf , x, y, pr): given two elements x and y in nf and pr a prime ideal in
modpr format (see nfmodprinit), computes their quotient x/y modulo the prime ideal pr .

The library syntax is element divmodpr(nf , x, y, pr).

3.6.72 nfeltdivrem(nf , x, y): given two elements x and y in nf , gives a two-element row vector
[q, r] such that x = qy + r, q is an algebraic integer in nf , and the components of r are reasonably
small.

The library syntax is nfdivres(nf , x, y).

3.6.73 nfeltmod(nf , x, y): given two elements x and y in nf , computes an element r of nf of the
form r = x−qy with q and algebraic integer, and such that r is small. This is functionally identical
to

x− nfeltmul(nf , round(nfeltdiv(nf , x, y)), y).

The library syntax is nfmod(nf , x, y).

3.6.74 nfeltmul(nf , x, y): given two elements x and y in nf , computes their product x ∗ y in the
number field nf .

The library syntax is element mul(nf , x, y).

3.6.75 nfeltmulmodpr(nf , x, y, pr): given two elements x and y in nf and pr a prime ideal in
modpr format (see nfmodprinit), computes their product x ∗ y modulo the prime ideal pr .

The library syntax is element mulmodpr(nf , x, y, pr).

3.6.76 nfeltpow(nf , x, k): given an element x in nf , and a positive or negative integer k, computes
xk in the number field nf .

The library syntax is element pow(nf , x, k).

3.6.77 nfeltpowmodpr(nf , x, k, pr): given an element x in nf , an integer k and a prime ideal pr
in modpr format (see nfmodprinit), computes xk modulo the prime ideal pr .

The library syntax is element powmodpr(nf , x, k, pr).

3.6.78 nfeltreduce(nf , x, ideal): given an ideal in Hermite normal form and an element x of the
number field nf , finds an element r in nf such that x− r belongs to the ideal and r is small.

The library syntax is element reduce(nf , x, ideal).

3.6.79 nfeltreducemodpr(nf , x, pr): given an element x of the number field nf and a prime ideal
pr in modpr format compute a canonical representative for the class of x modulo pr .

The library syntax is nfreducemodpr2(nf , x, pr).

105

3.6.80 nfeltval(nf , x, pr): given an element x in nf and a prime ideal pr in the format output by
idealprimedec, computes their the valuation at pr of the element x. The same result could be
obtained using idealval(nf ,x,pr) (since x would then be converted to a principal ideal), but it
would be less efficient.

The library syntax is element val(nf , x, pr), and the result is a long.

3.6.81 nffactor(nf , x): factorization of the univariate polynomial x over the number field nf given
by nfinit. x has coefficients in nf (i.e. either scalar, polmod, polynomial or column vector). The
main variable of nf must be of lower priority than that of x (in other words, the variable number
of nf must be greater than that of x). However if the polynomial defining the number field occurs
explicitly in the coefficients of x (as modulus of a t_POLMOD), its main variable must be the same
as the main variable of x. For example,

? nf = nfinit(y^2 + 1);

? nffactor(nf, x^2 + y); \\ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ WRONG

The library syntax is nffactor(nf , x).

3.6.82 nffactormod(nf , x, pr): factorization of the univariate polynomial x modulo the prime
ideal pr in the number field nf . x can have coefficients in the number field (scalar, polmod,
polynomial, column vector) or modulo the prime ideal (integermod modulo the rational prime
under pr , polmod or polynomial with integermod coefficients, column vector of integermod). The
prime ideal pr must be in the format output by idealprimedec. The main variable of nf must be
of lower priority than that of x (in other words the variable number of nf must be greater than that
of x). However if the coefficients of the number field occur explicitly (as polmods) as coefficients
of x, the variable of these polmods must be the same as the main variable of t (see nffactor).

The library syntax is nffactormod(nf , x, pr).

3.6.83 nfgaloisapply(nf , aut , x): nf being a number field as output by nfinit, and aut being
a Galois automorphism of nf expressed either as a polynomial or a polmod (such automorphisms
being found using for example one of the variants of nfgaloisconj), computes the action of the
automorphism aut on the object x in the number field. x can be an element (scalar, polmod,
polynomial or column vector) of the number field, an ideal (either given by ZK-generators or by
a Z-basis), a prime ideal (given as a 5-element row vector) or an idele (given as a 2-element row
vector). Because of possible confusion with elements and ideals, other vector or matrix arguments
are forbidden.

The library syntax is galoisapply(nf , aut , x).

106

3.6.84 nfgaloisconj(nf , {flag = 0}, {d}): nf being a number field as output by nfinit, computes
the conjugates of a root r of the non-constant polynomial x = nf [1] expressed as polynomials in
r. This can be used even if the number field nf is not Galois since some conjugates may lie in the
field. As a note to old-timers of PARI, starting with version 2.0.17 this function works much better
than in earlier versions.

nf can simply be a polynomial if flag 6= 1.

If no flags or flag = 0, if nf is a number field use a combination of flag 4 and 1 and the result is
always complete, else use a combination of flag 4 and 2 and the result is subject to the restriction
of flag = 2, but a warning is issued when it is not proven complete.

If flag = 1, use nfroots (require a number field).

If flag = 2, use complex approximations to the roots and an integral LLL. The result is not
guaranteed to be complete: some conjugates may be missing (no warning issued), especially so if
the corresponding polynomial has a huge index. In that case, increasing the default precision may
help.

If flag = 4, use Allombert’s algorithm and permutation testing. If the field is Galois with
“weakly” super solvable Galois group, return the complete list of automorphisms, else only the
identity element. If present, d is assumed to be a multiple of the least common denominator of the
conjugates expressed as polynomial in a root of pol .

A group G is “weakly” super solvable if it contains a super solvable normal subgroup H such
that G = H , or G/H ' A4 , or G/H ' S4. Abelian and nilpotent groups are “weakly” super
solvable. In practice, almost all groups of small order are “weakly” super solvable, the exceptions
having order 36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and ≥ 108.

Hence flag = 4 permits to quickly check whether a polynomial of order strictly less than 36
is Galois or not. This method is much faster than nfroots and can be applied to polynomials of
degree larger than 50.

The library syntax is galoisconj0(nf , flag , d, prec). Also available are galoisconj(nf) for
flag = 0, galoisconj2(nf , n, prec) for flag = 2 where n is a bound on the number of conjugates,
and galoisconj4(nf , d) corresponding to flag = 4.

3.6.85 nfhilbert(nf , a, b, {pr}): if pr is omitted, compute the global Hilbert symbol (a, b) in nf ,
that is 1 if x2 − ay2 − bz2 has a non trivial solution (x, y, z) in nf , and −1 otherwise. Otherwise
compute the local symbol modulo the prime ideal pr (as output by idealprimedec).

The library syntax is nfhilbert(nf , a, b, pr), where an omitted pr is coded as NULL.

3.6.86 nfhnf(nf , x): given a pseudo-matrix (A, I), finds a pseudo-basis in Hermite normal form of
the module it generates.

The library syntax is nfhermite(nf , x).

3.6.87 nfhnfmod(nf , x, detx): given a pseudo-matrix (A, I) and an ideal detx which is contained
in (read integral multiple of) the determinant of (A, I), finds a pseudo-basis in Hermite normal
form of the module generated by (A, I). This avoids coefficient explosion. detx can be computed
using the function nfdetint.

The library syntax is nfhermitemod(nf , x, detx).

107

3.6.88 nfinit(pol , {flag = 0}): pol being a non-constant, preferably monic, irreducible polynomial
in Z[X], initializes a number field structure (nf) associated to the field K defined by pol . As
such, it’s a technical object passed as the first argument to most nfxxx functions, but it contains
some information which may be directly useful. Access to this information via member functions is
prefered since the specific data organization specified below may change in the future. Currently,
nf is a row vector with 9 components:

nf [1] contains the polynomial pol (nf .pol).

nf [2] contains [r1, r2] (nf .sign), the number of real and complex places of K.

nf [3] contains the discriminant d(K) (nf .disc) of K.

nf [4] contains the index of nf [1], i.e. [ZK : Z[θ]], where θ is any root of nf [1].

nf [5] is a vector containing 7 matrices M , MC, T2, T , MD, TI, MDI useful for certain
computations in the number field K.

•M is the (r1+r2)×nmatrix whose columns represent the numerical values of the conjugates
of the elements of the integral basis.

• MC is essentially the conjugate of the transpose of M , except that the last r2 columns
are also multiplied by 2.

• T2 is an n×n matrix equal to the real part of the product MC ·M (which is a real positive
definite symmetric matrix), the so-called T2-matrix (nf .t2).

• T is the n × n matrix whose coefficients are Tr(ωiωj) where the ωi are the elements of
the integral basis. Note that T = MC ·M and in particular that T = T2 if the field is totally real
(in practice T2 will have real approximate entries and T will have integer entries). Note also that
det(T) is equal to the discriminant of the field K.

• The columns of MD (nf .diff) express a Z-basis of the different of K on the integral
basis.

• TI is equal to d(K)T−1, which has integral coefficients. Note that, understood as as ideal,
the matrix T−1 generates the codifferent ideal.

• Finally, MDI is a two-element representation (for faster ideal product) of d(K) times the
codifferent ideal (nf .disc∗nf .codiff, which is an integral ideal). MDI is only used in idealinv.

nf [6] is the vector containing the r1+r2 roots (nf .roots) of nf [1] corresponding to the r1+r2
embeddings of the number field into C (the first r1 components are real, the next r2 have positive
imaginary part).

nf [7] is an integral basis in Hermite normal form for ZK (nf .zk) expressed on the powers of θ.

nf [8] is the n×n integral matrix expressing the power basis in terms of the integral basis, and
finally

nf [9] is the n× n2 matrix giving the multiplication table of the integral basis.

If a non monic polynomial is input, nfinit will transform it into a monic one, then reduce it
(see flag = 3). It is allowed, though not very useful given the existence of nfnewprec, to input a
nf or a bnf instead of a polynomial.

The special input format [x,B] is also accepted where x is a polynomial as above and B is
the integer basis, as computed by nfbasis. This can be useful since nfinit uses the round 4

108

algorithm by default, which can be very slow in pathological cases where round 2 (nfbasis(x,2))
would succeed very quickly.

If flag = 2: pol is changed into another polynomial P defining the same number field, which is
as simple as can easily be found using the polred algorithm, and all the subsequent computations
are done using this new polynomial. In particular, the first component of the result is the modified
polynomial.

If flag = 3, does a polred as in case 2, but outputs [nf , Mod(a, P)], where nf is as before and
Mod(a, P) = Mod(x, pol) gives the change of variables. This is implicit when pol is not monic: first
a linear change of variables is performed, to get a monic polynomial, then a polred reduction.

If flag = 4, as 2 but uses a partial polred.

If flag = 5, as 3 using a partial polred.

The library syntax is nfinit0(x, flag , prec).

3.6.89 nfisideal(nf , x): returns 1 if x is an ideal in the number field nf , 0 otherwise.

The library syntax is isideal(x).

3.6.90 nfisincl(x, y): tests whether the number field K defined by the polynomial x is conjugate to
a subfield of the field L defined by y (where x and y must be in Q[X]). If they are not, the output
is the number 0. If they are, the output is a vector of polynomials, each polynomial a representing
an embedding of K into L, i.e. being such that y | x ◦ a.

If y is a number field (nf), a much faster algorithm is used (factoring x over y using nffactor).
Before version 2.0.14, this wasn’t guaranteed to return all the embeddings, hence was triggered by
a special flag. This is no more the case.

The library syntax is nfisincl(x, y, flag).

3.6.91 nfisisom(x, y): as nfisincl, but tests for isomorphism. If either x or y is a number field,
a much faster algorithm will be used.

The library syntax is nfisisom(x, y, flag).

3.6.92 nfnewprec(nf): transforms the number field nf into the corresponding data using current
(usually larger) precision. This function works as expected if nf is in fact a bnf (update bnf to
current precision) but may be quite slow (many generators of principal ideals have to be computed).

The library syntax is nfnewprec(nf , prec).

3.6.93 nfkermodpr(nf , a, pr): kernel of the matrix a in ZK/pr , where pr is in modpr format
(see nfmodprinit).

The library syntax is nfkermodpr(nf , a, pr).

3.6.94 nfmodprinit(nf , pr): transforms the prime ideal pr into modpr format necessary for all
operations modulo pr in the number field nf . Returns a two-component vector [P, a], where P
is the Hermite normal form of pr , and a is an integral element congruent to 1 modulo pr , and
congruent to 0 modulo p/pre. Here p = Z ∩ pr and e is the absolute ramification index.

The library syntax is nfmodprinit(nf , pr).

109

3.6.95 nfsubfields(nf , {d = 0}): finds all subfields of degree d of the number field nf (all subfields
if d is null or omitted). The result is a vector of subfields, each being given by [g, h], where g is an
absolute equation and h expresses one of the roots of g in terms of the root x of the polynomial
defining nf . This is a crude implementation by M. Olivier of an algorithm due to J. Klüners.

The library syntax is subfields(nf , d).

3.6.96 nfroots(nf , x): roots of the polynomial x in the number field nf given by nfinit without
multiplicity. x has coefficients in the number field (scalar, polmod, polynomial, column vector).
The main variable of nf must be of lower priority than that of x (in other words the variable
number of nf must be greater than that of x). However if the coefficients of the number field occur
explicitly (as polmods) as coefficients of x, the variable of these polmods must be the same as the
main variable of t (see nffactor).

The library syntax is nfroots(nf , x).

3.6.97 nfrootsof1(nf): computes the number of roots of unity w and a primitive w-th root of unity
(expressed on the integral basis) belonging to the number field nf . The result is a two-component
vector [w, z] where z is a column vector expressing a primitive w-th root of unity on the integral
basis nf .zk.

The library syntax is rootsof1(nf).

3.6.98 nfsnf(nf , x): given a torsion module x as a 3-component row vector [A, I, J] where A is a
square invertible n × n matrix, I and J are two ideal lists, outputs an ideal list d1, . . . , dn which
is the Smith normal form of x. In other words, x is isomorphic to ZK/d1 ⊕ · · · ⊕ ZK/dn and di
divides di−1 for i ≥ 2. The link between x and [A, I, J] is as follows: if ei is the canonical basis of
Kn, I = [b1, . . . , bn] and J = [a1, . . . , an], then x is isomorphic to

(b1e1 ⊕ · · · ⊕ bnen)/(a1A1 ⊕ · · · ⊕ anAn) ,

where the Aj are the columns of the matrix A. Note that every finitely generated torsion module
can be given in this way, and even with bi = ZK for all i.

The library syntax is nfsmith(nf , x).

3.6.99 nfsolvemodpr(nf , a, b, pr): solution of a · x = b in ZK/pr , where a is a matrix and b a
column vector, and where pr is in modpr format (see nfmodprinit).

The library syntax is nfsolvemodpr(nf , a, b, pr).

3.6.100 polcompositum(x, y, {flag = 0}): x and y being polynomials in Z[X] in the same vari-
able, outputs a vector giving the list of all possible composita of the number fields defined by x
and y, if x and y are irreducible, or of the corresponding étale algebras, if they are only square-
free. Returns an error if one of the polynomials is not squarefree. When one of the polynomials is
irreducible (say x), it is often much faster to use nffactor(nfinit(x), y) then rnfequation.

If flag = 1, outputs a vector of 4-component vectors [z, a, b, k], where z ranges through the list
of all possible compositums as above, and a (resp. b) expresses the root of x (resp. y) as a polmod
in a root of z, and k is a small integer k such that a+ kb is the chosen root of z.

The compositum will quite often be defined by a complicated polynomial, which it is advisable
to reduce before further work. Here is a simple example involving the field Q(ζ5, 51/5):

110

? z = polcompositum(x^5 - 5, polcyclo(5), 1)[1];
? pol = z[1] \\ pol defines the compositum
%2 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14 \
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256

? a = z[2]; a^5 - 5 \\ a is a fifth root of 5
%3 = 0
? z = polredabs(pol, 1); \\ look for a simpler polynomial
? pol = z[1]
%5 = x^20 + 25*x^10 + 5
? a = subst(a.pol, x, z[2]) \\ a in the new coordinates
%6 = Mod(-5/22*x^19 + 1/22*x^14 - 123/22*x^9 + 9/11*x^4, x^20 + 25*x^10 + 5)

The library syntax is polcompositum0(x, y, flag).

3.6.101 polgalois(x): Galois group of the non-constant polynomial x ∈ Q[X]. In the present
version 2.1.1, x must be irreducible and the degree of x must be less than or equal to 7. On
certain versions for which the data file of Galois resolvents has been installed (available in the Unix
distribution as a separate package), degrees 8, 9, 10 and 11 are also implemented.

The output is a 3-component vector [n, s, k] with the following meaning: n is the cardinality of
the group, s is its signature (s = 1 if the group is a subgroup of the alternating group An, s = −1
otherwise), and k is the number of the group corresponding to a given pair (n, s) (k = 1 except
in 2 cases). Specifically, the groups are coded as follows, using standard notations (see GTM 138,
quoted at the beginning of this section; see also “The transitive groups of degree up to eleven”, by
G. Butler and J. McKay in Communications in Algebra, vol. 11, 1983, pp. 863–911):

In degree 1: S1 = [1,−1, 1].

In degree 2: S2 = [2,−1, 1].

In degree 3: A3 = C3 = [3, 1, 1], S3 = [6,−1, 1].

In degree 4: C4 = [4,−1, 1], V4 = [4, 1, 1], D4 = [8,−1, 1], A4 = [12, 1, 1], S4 = [24,−1, 1].

In degree 5: C5 = [5, 1, 1], D5 = [10, 1, 1], M20 = [20,−1, 1], A5 = [60, 1, 1], S5 = [120,−1, 1].

In degree 6: C6 = [6,−1, 1], S3 = [6,−1, 2], D6 = [12,−1, 1], A4 = [12, 1, 1], G18 = [18,−1, 1],
S−4 = [24,−1, 1], A4 × C2 = [24,−1, 2], S+

4 = [24, 1, 1], G−36 = [36,−1, 1], G+
36 = [36, 1, 1], S4 ×

C2 = [48,−1, 1], A5 = PSL2(5) = [60, 1, 1], G72 = [72,−1, 1], S5 = PGL2(5) = [120,−1, 1],
A6 = [360, 1, 1], S6 = [720,−1, 1].

In degree 7: C7 = [7, 1, 1], D7 = [14,−1, 1], M21 = [21, 1, 1], M42 = [42,−1, 1], PSL2(7) =
PSL3(2) = [168, 1, 1], A7 = [2520, 1, 1], S7 = [5040,−1, 1].

The method used is that of resolvent polynomials and is sensitive to the current precision. The
precision is updated internally but, in very rare cases, a wrong result may be returned if the initial
precision was not sufficient.

The library syntax is galois(x, prec).

111

3.6.102 polred(x, {flag = 0}, {p}): finds polynomials with reasonably small coefficients defining
subfields of the number field defined by x. One of the polynomials always defines Q (hence is equal
to x− 1), and another always defines the same number field as x if x is irreducible. All x accepted
by nfinit are also allowed here (e.g. non-monic polynomials, nf, bnf, [x,Z K basis]).

The following binary digits of flag are significant:

1: does a partial reduction only. This means that only a suborder of the maximal order may
be used.

2: gives also elements. The result is a two-column matrix, the first column giving the elements
defining these subfields, the second giving the corresponding minimal polynomials.

If p is given, it is assumed that it is the two-column matrix of the factorization of the discrim-
inant of the polynomial x.

The library syntax is polred0(x, flag , p, prec), where an omitted p is coded by gzero. Also
available are polred(x, prec) and factoredpolred(x, p, prec), both corresponding to flag = 0.

3.6.103 polredabs(x, {flag = 0}): finds one of the polynomial defining the same number field as
the one defined by x, and such that the sum of the squares of the modulus of the roots (i.e. the
T2-norm) is minimal. All x accepted by nfinit are also allowed here (e.g. non-monic polynomials,
nf, bnf, [x,Z K basis]).

The binary digits of flag mean

1: outputs a two-component row vector [P, a], where P is the default output and a is an
element expressed on a root of the polynomial P , whose minimal polynomial is equal to x.

4: gives all polynomials of minimal T2 norm (of the two polynomials P (x) and P (−x), only
one is given).

The library syntax is polredabs0(x, flag , prec).

3.6.104 polredord(x): finds polynomials with reasonably small coefficients and of the same degree
as that of x defining suborders of the order defined by x. One of the polynomials always defines Q
(hence is equal to (x − 1)n, where n is the degree), and another always defines the same order as
x if x is irreducible.

The library syntax is ordred(x).

3.6.105 poltschirnhaus(x): applies a random Tschirnhausen transformation to the polynomial
x, which is assumed to be non-constant and separable, so as to obtain a new equation for the étale
algebra defined by x. This is for instance useful when computing resolvents, hence is used by the
polgalois function.

The library syntax is tschirnhaus(x).

3.6.106 rnfalgtobasis(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed as a polynomial or polmod with polmod coefficients,
expresses x on the relative integral basis.

The library syntax is rnfalgtobasis(rnf , x).

112

3.6.107 rnfbasis(bnf , x): given a big number field bnf as output by bnfinit, and either a poly-
nomial x with coefficients in bnf defining a relative extension L of bnf , or a pseudo-basis x of such
an extension, gives either a true bnf -basis of L if it exists, or an n+ 1-element generating set of L
if not, where n is the rank of L over bnf .

The library syntax is rnfbasis(bnf , x).

3.6.108 rnfbasistoalg(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed on the relative integral basis, computes the repre-
sentation of x as a polmod with polmods coefficients.

The library syntax is rnfbasistoalg(rnf , x).

3.6.109 rnfcharpoly(nf , T, a, {v = x}): characteristic polynomial of a over nf , where a belongs
to the algebra defined by T over nf , i.e. nf [X]/(T). Returns a polynomial in variable v (x by
default).

The library syntax is rnfcharpoly(nf , T, a, v), where v is a variable number.

3.6.110 rnfconductor(bnf , pol): bnf being a big number field as output by bnfinit, and pol
a relative polynomial defining an Abelian extension, computes the class field theory conductor of
this Abelian extension. The result is a 3-component vector [conductor , rayclgp, subgroup], where
conductor is the conductor of the extension given as a 2-component row vector [f0, f∞], rayclgp is
the full ray class group corresponding to the conductor given as a 3-component vector [h,cyc,gen]
as usual for a group, and subgroup is a matrix in HNF defining the subgroup of the ray class group
on the given generators gen.

The library syntax is rnfconductor(rnf , pol , prec).

3.6.111 rnfdedekind(nf , pol , pr): given a number field nf as output by nfinit and a polynomial
pol with coefficients in nf defining a relative extension L of nf , evaluates the relative Dedekind
criterion over the order defined by a root of pol for the prime ideal pr and outputs a 3-component
vector as the result. The first component is a flag equal to 1 if the enlarged order could be proven
to be pr -maximal and to 0 otherwise (it may be maximal in the latter case if pr is ramified in
L), the second component is a pseudo-basis of the enlarged order and the third component is the
valuation at pr of the order discriminant.

The library syntax is rnfdedekind(nf , pol , pr).

3.6.112 rnfdet(nf ,M): given a pseudomatrix M over the maximal order of nf , computes its
pseudodeterminant.

The library syntax is rnfdet(nf ,M).

3.6.113 rnfdisc(nf , pol): given a number field nf as output by nfinit and a polynomial pol with
coefficients in nf defining a relative extension L of nf , computes the relative discriminant of L.
This is a two-element row vector [D, d], where D is the relative ideal discriminant and d is the
relative discriminant considered as an element of nf ∗/nf ∗2. The main variable of nf must be of
lower priority than that of pol .

Note: As usual, nf can be a bnf as output by nfinit.

The library syntax is rnfdiscf(bnf , pol).

113

3.6.114 rnfeltabstorel(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed as a polynomial modulo the absolute equation
rnf [11][1], computes x as an element of the relative extension L/K as a polmod with polmod
coefficients.

The library syntax is rnfelementabstorel(rnf , x).

3.6.115 rnfeltdown(rnf , x): rnf being a relative number field extension L/K as output by rn-
finit and x being an element of L expressed as a polynomial or polmod with polmod coefficients,
computes x as an element of K as a polmod, assuming x is in K (otherwise an error will occur).
If x is given on the relative integral basis, apply rnfbasistoalg first, otherwise PARI will believe
you are dealing with a vector.

The library syntax is rnfelementdown(rnf , x).

3.6.116 rnfeltreltoabs(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an element of L expressed as a polynomial or polmod with polmod coefficients,
computes x as an element of the absolute extension L/Q as a polynomial modulo the absolute
equation rnf [11][1]. If x is given on the relative integral basis, apply rnfbasistoalg first, otherwise
PARI will believe you are dealing with a vector.

The library syntax is rnfelementreltoabs(rnf , x).

3.6.117 rnfeltup(rnf , x): rnf being a relative number field extension L/K as output by rnfinit
and x being an element of K expressed as a polynomial or polmod, computes x as an element of
the absolute extension L/Q as a polynomial modulo the absolute equation rnf [11][1]. Note that
it is unnecessary to compute x as an element of the relative extension L/K (its expression would
be identical to itself). If x is given on the integral basis of K, apply nfbasistoalg first, otherwise
PARI will believe you are dealing with a vector.

The library syntax is rnfelementup(rnf , x).

3.6.118 rnfequation(nf , pol , {flag = 0}): given a number field nf as output by nfinit (or simply
a polynomial) and a polynomial pol with coefficients in nf defining a relative extension L of nf ,
computes the absolute equation of L over Q.

If flag is non-zero, outputs a 3-component row vector [z, a, k], where z is the absolute equation
of L over Q, as in the default behaviour, a expresses as an element of L a root α of the polynomial
defining the base field nf , and k is a small integer such that θ = β + kα where θ is a root of z and
β a root of pol .

The main variable of nf must be of lower priority than that of pol . Note that for efficiency,
this does not check whether the relative equation is irreducible over nf , but only if it is squarefree.
If it is reducible but squarefree, the result will be the absolute equation of the étale algebra defined
by pol . If pol is not squarefree, an error message will be issued.

The library syntax is rnfequation0(nf , pol , flag).

3.6.119 rnfhnfbasis(bnf , x): given a big number field bnf as output by bnfinit, and either a
polynomial x with coefficients in bnf defining a relative extension L of bnf , or a pseudo-basis x of
such an extension, gives either a true bnf -basis of L in upper triangular Hermite normal form, if it
exists, zero otherwise.

The library syntax is rnfhermitebasis(nf , x).

114

3.6.120 rnfidealabstorel(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an ideal of the absolute extension L/Q given in HNF (if it is not, apply
idealhnf first), computes the relative pseudomatrix in HNF giving the ideal x considered as an
ideal of the relative extension L/K.

The library syntax is rnfidealabstorel(rnf , x).

3.6.121 rnfidealdown(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an ideal of the absolute extension L/Q given in HNF (if it is not, apply
idealhnf first), gives the ideal of K below x, i.e. the intersection of x with K. Note that, if x is
given as a relative ideal (i.e. a pseudomatrix in HNF), then it is not necessary to use this function
since the result is simply the first ideal of the ideal list of the pseudomatrix.

The library syntax is rnfidealdown(rnf , x).

3.6.122 rnfidealhnf(rnf , x): rnf being a relative number field extension L/K as output by rn-
finit and x being a relative ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes as a 2-component row vector the relative Hermite normal
form of x, the first component being the HNF matrix (with entries on the integral basis), and the
second component the ideals.

The library syntax is rnfidealhermite(rnf , x).

3.6.123 rnfidealmul(rnf , x, y): rnf being a relative number field extension L/K as output by
rnfinit and x and y being ideals of the relative extension L/K given by pseudo-matrices, outputs
the ideal product, again as a relative ideal.

The library syntax is rnfidealmul(rnf , x, y).

3.6.124 rnfidealnormabs(rnf , x): rnf being a relative number field extension L/K as output
by rnfinit and x being a relative ideal (which can be, as in the absolute case, of many different
types, including of course elements), computes the norm of the ideal x considered as an ideal of the
absolute extension L/Q. This is identical to idealnorm(rnfidealnormrel(rnf ,x)), only faster.

The library syntax is rnfidealnormabs(rnf , x).

3.6.125 rnfidealnormrel(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being a relative ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the relative norm of x as a ideal of K in HNF.

The library syntax is rnfidealnormrel(rnf , x).

3.6.126 rnfidealreltoabs(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being a relative ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF matrix of the ideal x considered as an ideal of
the absolute extension L/Q.

The library syntax is rnfidealreltoabs(rnf , x).

3.6.127 rnfidealtwoelt(rnf , x): rnf being a relative number field extension L/K as output by
rnfinit and x being an ideal of the relative extension L/K given by a pseudo-matrix, gives a
vector of two generators of x over ZL expressed as polmods with polmod coefficients.

The library syntax is rnfidealtwoelement(rnf , x).

115

3.6.128 rnfidealup(rnf , x): rnf being a relative number field extension L/K as output by rnfinit
and x being an ideal of K, gives the ideal xZL as an absolute ideal of L/Q (the relative ideal
representation is trivial: the matrix is the identity matrix, and the ideal list starts with x, all the
other ideals being ZK).

The library syntax is rnfidealup(rnf , x).

3.6.129 rnfinit(nf , pol): nf being a number field in nfinit format considered as base field, and
pol a polynomial defining a relative extension over nf , this computes all the necessary data to work
in the relative extension. The main variable of pol must be of higher priority (i.e. lower number)
than that of nf , and the coefficients of pol must be in nf .

The result is an 11-component row vector as follows (most of the components are technical),
the numbering being very close to that of nfinit. In the following description, we let K be the
base field defined by nf , m the degree of the base field, n the relative degree, L the large field (of
relative degree n or absolute degree nm), r1 and r2 the number of real and complex places of K.

rnf [1] contains the relative polynomial pol .

rnf [2] is a row vector with r1 + r2 entries, entry j being a 2-component row vector [rj,1, rj,2]
where rj,1 and rj,2 are the number of real and complex places of L above the j-th place of K so
that rj,1 = 0 and rj,2 = n if j is a complex place, while if j is a real place we have rj,1 + 2rj,2 = n.

rnf [3] is a two-component row vector [d(L/K), s] where d(L/K) is the relative ideal discrimi-
nant of L/K and s is the discriminant of L/K viewed as an element of K∗/(K∗)2, in other words
it is the output of rnfdisc.

rnf [4] is the ideal index f, i.e. such that d(pol)ZK = f2d(L/K).

rnf [5] is a vector vm with 7 entries useful for certain computations in the relative extension
L/K. vm[1] is a vector of r1 + r2 matrices, the j-th matrix being an (r1,j + r2,j) × n matrix Mj

representing the numerical values of the conjugates of the j-th embedding of the elements of the
integral basis, where ri,j is as in rnf [2]. vm[2] is a vector of r1 + r2 matrices, the j-th matrix
MCj being essentially the conjugate of the matrix Mj except that the last r2,j columns are also
multiplied by 2. vm[3] is a vector of r1 + r2 matrices T2j , where T2j is an n × n matrix equal to
the real part of the product MCj ·Mj (which is a real positive definite matrix). vm[4] is the n× n
matrix T whose entries are the relative traces of ωiωj expressed as polmods in nf , where the ωi are
the elements of the relative integral basis. Note that the j-th embedding of T is equal to MCj ·Mj ,
and in particular will be equal to T2j if r2,j = 0. Note also that the relative ideal discriminant of
L/K is equal to det(T) times the square of the product of the ideals in the relative pseudo-basis
(in rnf [7][2]). The last 3 entries vm[5], vm[6] and vm[7] are linked to the different as in nfinit,
but have not yet been implemented.

rnf [6] is a row vector with r1 + r2 entries, the j-th entry being the row vector with r1,j + r2,j

entries of the roots of the j-th embedding of the relative polynomial pol .

rnf [7] is a two-component row vector, where the first component is the relative integral pseudo
basis expressed as polynomials (in the variable of pol) with polmod coefficients in nf , and the
second component is the ideal list of the pseudobasis in HNF.

rnf [8] is the inverse matrix of the integral basis matrix, with coefficients polmods in nf .

rnf [9] may be the multiplication table of the integral basis, but is not implemented at present.

rnf [10] is nf .

116

rnf [11] is a vector vabs with 5 entries describing the absolute extension L/Q. vabs[1] is an
absolute equation. vabs[2] expresses the generator α of the number field nf as a polynomial modulo
the absolute equation vabs[1]. vabs[3] is a small integer k such that, if β is an abstract root of pol
and α the generator of nf , the generator whose root is vabs will be β+ kα. Note that one must be
very careful if k 6= 0 when dealing simultaneously with absolute and relative quantities since the
generator chosen for the absolute extension is not the same as for the relative one. If this happens,
one can of course go on working, but we strongly advise to change the relative polynomial so that
its root will be β + kα. Typically, the GP instruction would be

pol = subst(pol, x, x - k*Mod(y,nf .pol))

Finally, vabs[4] is the absolute integral basis of L expressed in HNF (hence as would be output
by nfinit(vabs[1])), and vabs[5] the inverse matrix of the integral basis, allowing to go from
polmod to integral basis representation.

The library syntax is rnfinitalg(nf , pol , prec).

3.6.130 rnfisfree(bnf , x): given a big number field bnf as output by bnfinit, and either a
polynomial x with coefficients in bnf defining a relative extension L of bnf , or a pseudo-basis
x of such an extension, returns true (1) if L/bnf is free, false (0) if not.

The library syntax is rnfisfree(bnf , x), and the result is a long.

3.6.131 rnfisnorm(bnf , ext , el , {flag = 1}): similar to bnfisnorm but in the relative case. This
tries to decide whether the element el in bnf is the norm of some y in ext . bnf is as output by
bnfinit.

ext is a relative extension which has to be a row vector whose components are:

ext [1]: a relative equation of the number field ext over bnf . As usual, the priority of the variable
of the polynomial defining the ground field bnf (say y) must be lower than the main variable of
ext [1], say x.

ext [2]: the generator y of the base field as a polynomial in x (as given by rnfequation with
flag = 1).

ext [3]: is the bnfinit of the absolute extension ext/Q.

This returns a vector [a, b], where el = Norm(a) ∗ b. It looks for a solution which is an S-
integer, with S a list of places (of bnf) containing the ramified primes, the generators of the class
group of ext , as well as those primes dividing el . If ext/bnf is known to be Galois, set flag = 0
(here el is a norm iff b = 1). If flag is non zero add to S all the places above the primes which:
divide flag if flag < 0, or are less than flag if flag > 0. The answer is guaranteed (i.e. el is a norm
iff b = 1) under GRH, if S contains all primes less than 12 log2 |disc(Ext)|, where Ext is the normal
closure of ext/bnf . Example:

bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
rnf = rnfequation(bnf,p,1);
ext = [p, rnf[2], bnfinit(rnf[1])];
rnfisnorm(bnf,ext,17, 1)

checks whether 17 is a norm in the Galois extension Q(β)/Q(α), where α3 + α2 − 2α− 1 = 0 and
β2 + α2 + 2 ∗ α+ 1 = 0 (it is).

The library syntax is rnfisnorm(bnf , ext, x, flag , prec).

117

3.6.132 rnfkummer(bnr , subgroup, {deg = 0}): bnr being as output by bnrinit, finds a relative
equation for the class field corresponding to the module in bnr and the given congruence subgroup.
If deg is positive, outputs the list of all relative equations of degree deg contained in the ray class
field defined by bnr .

(THIS PROGRAM IS STILL IN DEVELOPMENT STAGE)

The library syntax is rnfkummer(bnr , subgroup, deg , prec), where deg is a long.

3.6.133 rnflllgram(nf , pol , order): given a polynomial pol with coefficients in nf and an order
order as output by rnfpseudobasis or similar, gives [[neworder], U], where neworder is a reduced
order and U is the unimodular transformation matrix.

The library syntax is rnflllgram(nf , pol , order , prec).

3.6.134 rnfnormgroup(bnr , pol): bnr being a big ray class field as output by bnrinit and pol a
relative polynomial defining an Abelian extension, computes the norm group (alias Artin or Takagi
group) corresponding to the Abelian extension of bnf = bnr[1] defined by pol , where the module
corresponding to bnr is assumed to be a multiple of the conductor (i.e. polrel defines a subextension
of bnr). The result is the HNF defining the norm group on the given generators of bnr [5][3]. Note
that neither the fact that pol defines an Abelian extension nor the fact that the module is a multiple
of the conductor is checked. The result is undefined if the assumption is not correct.

The library syntax is rnfnormgroup(bnr , pol).

3.6.135 rnfpolred(nf , pol): relative version of polred. Given a monic polynomial pol with co-
efficients in nf , finds a list of relative polynomials defining some subfields, hopefully simpler and
containing the original field. In the present version 2.1.1, this is slower than rnfpolredabs.

The library syntax is rnfpolred(nf , pol , prec).

3.6.136 rnfpolredabs(nf , pol , {flag = 0}): relative version of polredabs. Given a monic poly-
nomial pol with coefficients in nf , finds a simpler relative polynomial defining the same field. If
flag = 1, returns [P, a] where P is the default output and a is an element expressed on a root of P
whose characteristic polynomial is pol , if flag = 2, returns an absolute polynomial (same as

rnfequation(nf ,rnfpolredabs(nf ,pol))

but faster).

Remark. In the present implementation, this is both faster and much more efficient than rnf-
polred, the difference being more dramatic than in the absolute case. This is because the imple-
mentation of rnfpolred is based on (a partial implementation of) an incomplete reduction theory
of lattices over number fields (i.e. the function rnflllgram) which deserves to be improved.

The library syntax is rnfpolredabs(nf , pol , flag , prec).

3.6.137 rnfpseudobasis(nf , pol): given a number field nf as output by nfinit and a polynomial
pol with coefficients in nf defining a relative extension L of nf , computes a pseudo-basis (A, I)
and the relative discriminant of L. This is output as a four-element row vector [A, I,D, d], where
D is the relative ideal discriminant and d is the relative discriminant considered as an element of
nf ∗/nf ∗2.

Note: As usual, nf can be a bnf as output by bnfinit.

The library syntax is rnfpseudobasis(nf , pol).

118

3.6.138 rnfsteinitz(nf , x): given a number field nf as output by nfinit and either a polynomial x
with coefficients in nf defining a relative extension L of nf , or a pseudo-basis x of such an extension
as output for example by rnfpseudobasis, computes another pseudo-basis (A, I) (not in HNF in
general) such that all the ideals of I except perhaps the last one are equal to the ring of integers
of nf , and outputs the four-component row vector [A, I,D, d] as in rnfpseudobasis. The name of
this function comes from the fact that the ideal class of the last ideal of I (which is well defined)
is called the Steinitz class of the module ZL.

Note: nf can be a bnf as output by bnfinit.

The library syntax is rnfsteinitz(nf , x).

3.6.139 subgrouplist(bnr , {bound}, {flag = 0}): bnr being as output by bnrinit or a list of cyclic
components of a finite Abelian group G, outputs the list of subgroups of G (of index bounded by
bound , if not omitted). Subgroups are given as HNF left divisors of the SNF matrix corresponding
to G. If flag = 0 (default) and bnr is as output by bnrinit, gives only the subgroups whose
modulus is the conductor.

The library syntax is subgrouplist0(bnr , bound , flag , prec), where bound , flag and prec are
long integers.

3.6.140 zetak(znf , x, {flag = 0}): znf being a number field initialized by zetakinit (not by
nfinit), computes the value of the Dedekind zeta function of the number field at the complex
number x. If flag = 1 computes Dedekind Λ function instead (i.e. the product of the Dedekind zeta
function by its gamma and exponential factors).

The accuracy of the result depends in an essential way on the accuracy of both the zetakinit
program and the current accuracy, but even so the result may be off by up to 5 or 10 decimal digits.

The library syntax is glambdak(znf , x, prec) or gzetak(znf , x, prec).

3.6.141 zetakinit(x): computes a number of initialization data concerning the number field de-
fined by the polynomial x so as to be able to compute the Dedekind zeta and lambda functions
(respectively zetak(x) and zetak(x, 1)). This function calls in particular the bnfinit program.
The result is a 9-component vector v whose components are very technical and cannot really be
used by the user except through the zetak function. The only component which can be used if it
has not been computed already is v[1][4] which is the result of the bnfinit call.

This function is very inefficient and should be rewritten. It needs to computes millions of
coefficients of the corresponding Dirichlet series if the precision is big. Unless the discriminant is
small it will not be able to handle more than 9 digits of relative precision (e.g zetakinit(x^8 -
2) needs 440MB of memory at default precision).

The library syntax is initzeta(x).

119

3.7 Polynomials and power series.

We group here all functions which are specific to polynomials or power series. Many other
functions which can be applied on these objects are described in the other sections. Also, some of
the functions described here can be applied to other types.

3.7.1 O(a^b): p-adic (if a is an integer greater or equal to 2) or power series zero (in all other
cases), with precision given by b.

The library syntax is ggrandocp(a, b), where b is a long.

3.7.2 deriv(x, {v}): derivative of x with respect to the main variable if v is omitted, and with
respect to v otherwise. x can be any type except polmod. The derivative of a scalar type is zero,
and the derivative of a vector or matrix is done componentwise. One can use x′ as a shortcut if
the derivative is with respect to the main variable of x.

The library syntax is deriv(x, v), where v is a long, and an omitted v is coded as −1.

3.7.3 eval(x): replaces in x the formal variables by the values that have been assigned to them
after the creation of x. This is mainly useful in GP, and not in library mode. Do not confuse this
with substitution (see subst). Applying this function to a character string yields the output from
the corresponding GP command, as if directly input from the keyboard (see Section 2.6.5).

The library syntax is geval(x). The more basic functions poleval(q, x), qfeval(q, x), and
hqfeval(q, x) evaluate q at x, where q is respectively assumed to be a polynomial, a quadratic
form (a symmetric matrix), or an Hermitian form (an Hermitian complex matrix).

3.7.4 factorpadic(pol , p, r, {flag = 0}): p-adic factorization of the polynomial pol to precision r,
the result being a two-column matrix as in factor. The factors are normalized so that their leading
coefficient is a power of p. r must be strictly larger than the p-adic valuation of the discriminant
of pol for the result to make any sense. The method used is a modified version of the round 4
algorithm of Zassenhaus.

If flag = 1, use an algorithm due to Buchmann and Lenstra, which is usually less efficient.

The library syntax is factorpadic4(pol , p, r), where r is a long integer.

3.7.5 intformal(x, {v}): formal integration of x with respect to the main variable if v is omitted,
with respect to the variable v otherwise. Since PARI does not know about “abstract” logarithms
(they are immediately evaluated, if only to a power series), logarithmic terms in the result will
yield an error. x can be of any type. When x is a rational function, it is assumed that the base
ring is an integral domain of characteristic zero.

The library syntax is integ(x, v), where v is a long and an omitted v is coded as −1.

3.7.6 padicappr(pol , a): vector of p-adic roots of the polynomial pol congruent to the p-adic
number a modulo p (or modulo 4 if p = 2), and with the same p-adic precision as a. The number
a can be an ordinary p-adic number (type t_PADIC, i.e. an element of Qp) or can be an element of
a finite extension of Qp, in which case it is of type t_POLMOD, where at least one of the coefficients
of the polmod is a p-adic number. In this case, the result is the vector of roots belonging to the
same extension of Qp as a.

The library syntax is apprgen9(pol , a), but if a is known to be simply a p-adic number (type
t_PADIC), the syntax apprgen(pol , a) can be used.

120

3.7.7 polcoeff(x, s, {v}): coefficient of degree s of the polynomial x, with respect to the main
variable if v is omitted, with respect to v otherwise.

The library syntax is polcoeff0(x, s, v), where v is a long and an omitted v is coded as −1.
Also available is truecoeff(x, v).

3.7.8 poldegree(x, {v}): degree of the polynomial x in the main variable if v is omitted, in the
variable v otherwise. This is to be understood as follows. When x is a polynomial or a rational
function, it gives the degree of x, the degree of 0 being −1 by convention. When x is a non-zero
scalar, it gives 0, and when x is a zero scalar, it gives −1. Return an error otherwise.

The library syntax is poldegree(x, v), where v and the result are longs (and an omitted v is
coded as −1). Also available is degree(x), which is equivalent to poldegree(x,-1).

3.7.9 polcyclo(n, {v = x}): n-th cyclotomic polynomial, in variable v (x by default). The integer
n must be positive.

The library syntax is cyclo(n, v), where n and v are long integers (v is a variable number,
usually obtained through varn).

3.7.10 poldisc(pol , {v}): discriminant of the polynomial pol in the main variable is v is omitted,
in v otherwise. The algorithm used is the subresultant algorithm.

The library syntax is poldisc0(x, v). Also available is discsr(x), equivalent to poldisc0(x,-
1).

3.7.11 poldiscreduced(f): reduced discriminant vector of the (integral, monic) polynomial f .
This is the vector of elementary divisors of Z[α]/f ′(α)Z[α], where α is a root of the polynomial f .
The components of the result are all positive, and their product is equal to the absolute value of
the discriminant of f .

The library syntax is reduceddiscsmith(x).

3.7.12 polhensellift(x, y, p, e): given a vector y of polynomials that are pairwise relatively prime
modulo the prime p, and whose product is congruent to x modulo p, lift the elements of y to
polynomials whose product is congruent to x modulo pe.

The library syntax is polhensellift(x, y, p, e) where e must be a long.

3.7.13 polinterpolate(xa, {ya}, {v = x}, {&e}): given the data vectors xa and ya of the same
length n (xa containing the x-coordinates, and ya the corresponding y-coordinates), this function
finds the interpolating polynomial passing through these points and evaluates it at v. If ya is
omitted, return the polynomial interpolating the (i, xa[i]). If present, e will contain an error
estimate on the returned value.

The library syntax is polint(xa, ya, v,&e), where e will contain an error estimate on the
returned value.

3.7.14 polisirreducible(pol): pol being a polynomial (univariate in the present version 2.1.1),
returns 1 if pol is non-constant and irreducible, 0 otherwise. Irreducibility is checked over the
smallest base field over which pol seems to be defined.

The library syntax is gisirreducible(pol).

121

3.7.15 pollead(x, {v}): leading coefficient of the polynomial or power series x. This is computed
with respect to the main variable of x if v is omitted, with respect to the variable v otherwise.

The library syntax is pollead(x, v), where v is a long and an omitted v is coded as −1. Also
available is leadingcoeff(x).

3.7.16 pollegendre(n, {v = x}): creates the nth Legendre polynomial, in variable v.

The library syntax is legendre(n), where x is a long.

3.7.17 polrecip(pol): reciprocal polynomial of pol , i.e. the coefficients are in reverse order. pol
must be a polynomial.

The library syntax is polrecip(x).

3.7.18 polresultant(x, y, {v}, {flag = 0}): resultant of the two polynomials x and y with exact
entries, with respect to the main variables of x and y if v is omitted, with respect to the variable
v otherwise. The algorithm used is the subresultant algorithm by default.

If flag = 1, uses the determinant of Sylvester’s matrix instead (here x and y may have non-exact
coefficients).

If flag = 2, uses Ducos’s modified subresultant algorithm. It should be much faster than the
default if the coefficient ring is complicated (e.g multivariate polynomials or huge coefficients), and
slightly slower otherwise.

The library syntax is polresultant0(x, y, v, flag), where v is a long and an omitted v is coded
as −1. Also available are subres(x, y) (flag = 0) and resultant2(x, y) (flag = 1).

3.7.19 polroots(pol , {flag = 0}): complex roots of the polynomial pol , given as a column vector
where each root is repeated according to its multiplicity. The precision is given as for transcendental
functions: under GP it is kept in the variable realprecision and is transparent to the user, but
it must be explicitly given as a second argument in library mode.

The algorithm used is a modification of A. Sch“”onhage’s remarkable root-finding algorithm,
due to and implemented by X. Gourdon. Barring bugs, it is guaranteed to converge and to give
the roots to the required accuracy.

If flag = 1, use a variant of the Newton-Raphson method, which is not guaranteed to converge,
but is rather fast. If you get the messages “too many iterations in roots” or “INTERNAL ERROR:
incorrect result in roots”, use the default function (i.e. no flag or flag = 0). This used to be the
default root-finding function in PARI until version 1.39.06.

The library syntax is roots(pol , prec) or rootsold(pol , prec).

3.7.20 polrootsmod(pol , p, {flag = 0}): row vector of roots modulo p of the polynomial pol . The
particular non-prime value p = 4 is accepted, mainly for 2-adic computations. Multiple roots are
not repeated.

If p < 100, you may try setting flag = 1, which uses a naive search. In this case, multiple roots
are repeated with their order of multiplicity.

The library syntax is rootmod(pol , p) (flag = 0) or rootmod2(pol , p) (flag = 1).

122

3.7.21 polrootspadic(pol , p, r): row vector of p-adic roots of the polynomial pol with p-adic
precision equal to r. Multiple roots are not repeated. p is assumed to be a prime.

The library syntax is rootpadic(pol , p, r), where r is a long.

3.7.22 polsturm(pol , {a}, {b}): number of real roots of the real polynomial pol in the interval
]a, b], using Sturm’s algorithm. a (resp. b) is taken to be −∞ (resp. +∞) if omitted.

The library syntax is sturmpart(pol , a, b). Use NULL to omit an argument. sturm(pol) is
equivalent to sturmpart(pol,NULL,NULL). The result is a long.

3.7.23 polsubcyclo(n, d, {v = x}): gives a polynomial (in variable v) defining the sub-Abelian
extension of degree d of the cyclotomic field Q(ζn), where d | φ(n). (Z/nZ)∗ has to be cyclic
(i.e. n = 2, 4, pk or 2pk for an odd prime p). The function galoissubcyclo covers the general
case.

The library syntax is subcyclo(n, d, v), where v is a variable number.

3.7.24 polsylvestermatrix(x, y): forms the Sylvester matrix corresponding to the two polynomi-
als x and y, where the coefficients of the polynomials are put in the columns of the matrix (which
is the natural direction for solving equations afterwards). The use of this matrix can be essential
when dealing with polynomials with inexact entries, since polynomial Euclidean division doesn’t
make much sense in this case.

The library syntax is sylvestermatrix(x, y).

3.7.25 polsym(x, n): creates the vector of the symmetric powers of the roots of the polynomial x
up to power n, using Newton’s formula.

The library syntax is polsym(x).

3.7.26 poltchebi(n, {v = x}): creates the nth Chebyshev polynomial, in variable v.

The library syntax is tchebi(n, v), where n and v are long integers (v is a variable number).

3.7.27 polzagier(n,m): creates Zagier’s polynomial Pn,m used in the functions sumalt and sumpos
(with flag = 1). The exact definition can be found in a forthcoming paper. One must have m ≤ n.

The library syntax is polzagreel(n,m, prec) if the result is only wanted as a polynomial with
real coefficients to the precision prec, or polzag(n,m) if the result is wanted exactly, where n and
m are longs.

3.7.28 serconvol(x, y): convolution (or Hadamard product) of the two power series x and y; in
other words if x =

∑
ak ∗Xk and y =

∑
bk ∗Xk then serconvol(x, y) =

∑
ak ∗ bk ∗Xk.

The library syntax is convol(x, y).

3.7.29 serlaplace(x): x must be a power series with only non-negative exponents. If x =∑
(ak/k!) ∗Xk then the result is

∑
ak ∗Xk.

The library syntax is laplace(x).

123

3.7.30 serreverse(x): reverse power series (i.e. x−1, not 1/x) of x. x must be a power series whose
valuation is exactly equal to one.

The library syntax is recip(x).

3.7.31 subst(x, y, z): replace the simple variable y by the argument z in the “polynomial” ex-
pression x. Every type is allowed for x, but if it is not a genuine polynomial (or power series, or
rational function), the substitution will be done as if the scalar components were polynomials of
degree one. In particular, beware that:

? subst(1, x, [1,2; 3,4])
%1 =
[1 0]

[0 1]

? subst(1, x, Mat([0,1]))
*** forbidden substitution by a non square matrix

If x is a power series, z must be either a polynomial, a power series, or a rational function. y
must be a simple variable name.

The library syntax is gsubst(x, v, z), where v is the number of the variable y.

3.7.32 taylor(x, y): Taylor expansion around 0 of x with respect to the simple variable y. x can
be of any reasonable type, for example a rational function. The number of terms of the expansion
is transparent to the user under GP, but must be given as a second argument in library mode.

The library syntax is tayl(x, y, n), where the long integer n is the desired number of terms in
the expansion.

3.7.33 thue(tnf , a, {sol}): solves the equation P (x, y) = a in integers x and y, where tnf was
created with thueinit(P). sol , if present, contains the solutions of Norm(x) = a modulo units
of positive norm in the number field defined by P (as computed by bnfisintnorm). If tnf was
computed without assuming GRH (flag = 1 in thueinit), the result is unconditional. For instance,
here’s how to solve the Thue equation x13 − 5y13 = −4:

? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]

Hence, assuming GRH, the only solution is x = 1, y = 1.

The library syntax is thue(tnf , a, sol), where an omitted sol is coded as NULL.

3.7.34 thueinit(P, {flag = 0}): initializes the tnf corresponding to P . It is meant to be used
in conjunction with thue to solve Thue equations P (x, y) = a, where a is an integer. If flag is
non-zero, certify the result unconditionnaly, Otherwise, assume GRH, this being much faster of
course.

The library syntax is thueinit(P, flag , prec).

124

3.8 Vectors, matrices, linear algebra and sets.

Note that most linear algebra functions operating on subspaces defined by generating sets
(such as mathnf, qflll, etc.) take matrices as arguments. As usual, the generating vectors are
taken to be the columns of the given matrix.

3.8.1 algdep(x, k, {flag = 0}): x being real, complex, or p-adic, finds a polynomial of degree at
most k with integer coefficients having x as approximate root. Note that the polynomial which is
obtained is not necessarily the “correct” one (it’s not even guaranteed to be irreducible!). One can
check the closeness either by a polynomial evaluation or substitution, or by computing the roots of
the polynomial given by algdep.

If x is padic, flag is meaningless and the algorithm LLL-reduces the “dual lattice” corresponding
to the powers of x.

Otherwise, if flag is zero, the algorithm used is a variant of the LLL algorithm due to Hastad,
Lagarias and Schnorr (STACS 1986). If the precision is too low, the routine may enter an infinite
loop.

If flag is non-zero, use a standard LLL. flag then indicates a precision, which should be between
0.5 and 1.0 times the number of decimal digits to which x was computed.

The library syntax is algdep0(x, k, flag , prec), where k and flag are longs. Also available is
algdep(x, k, prec) (flag = 0).

3.8.2 charpoly(A, {v = x}, {flag = 0}): characteristic polynomial of A with respect to the variable
v, i.e. determinant of v ∗ I −A if A is a square matrix, determinant of the map “multiplication by
A” if A is a scalar, in particular a polmod (e.g. charpoly(I,x)=x^2+1). Note that in the latter
case, the minimal polynomial can be obtained as

minpoly(A)=
{
local(y);
y = charpoly(A);
y / gcd(y,y’)

}

The value of flag is only significant for matrices.

If flag = 0, the method used is essentially the same as for computing the adjoint matrix,
i.e. computing the traces of the powers of A.

If flag = 1, uses Lagrange interpolation which is almost always slower.

If flag = 2, uses the Hessenberg form. This is faster than the default when the coefficients are
integermod a prime or real numbers, but is usually slower in other base rings.

The library syntax is charpoly0(A, v, flag), where v is the variable number. Also available
are the functions caract(A, v) (flag = 1), carhess(A, v) (flag = 2), and caradj(A, v, pt) where, in
this last case, pt is a GEN* which, if not equal to NULL, will receive the address of the adjoint matrix
of A (see matadjoint), so both can be obtained at once.

125

3.8.3 concat(x, {y}): concatenation of x and y. If x or y is not a vector or matrix, it is considered
as a one-dimensional vector. All types are allowed for x and y, but the sizes must be compatible.
Note that matrices are concatenated horizontally, i.e. the number of rows stays the same. Using
transpositions, it is easy to concatenate them vertically.

To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), first transform
the vector into a one-row or one-column matrix using the function Mat. Concatenating a row vector
to a matrix having the same number of columns will add the row to the matrix (top row if the
vector is x, i.e. comes first, and bottom row otherwise).

The empty matrix [;] is considered to have a number of rows compatible with any operation,
in particular concatenation. (Note that this is definitely not the case for empty vectors [] or
[]~.)

If y is omitted, x has to be a row vector or a list, in which case its elements are concatenated,
from left to right, using the above rules.

? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 = [1, 2, 3, 4]~
? a[1] = Mat(a[1]); concat(a)
%3 =
[1 3]

[2 4]

? concat([1,2; 3,4], [5,6]~)
%4 =
[1 2 5]

[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]

[3 4 6 8]

[1 2 3 4]

The library syntax is concat(x, y).

3.8.4 lindep(x, {flag = 0}):x being a vector with real or complex coefficients, finds a small integral
linear combination among these coefficients.

If flag = 0, uses a variant of the LLL algorithm due to Hastad, Lagarias and Schnorr (STACS
1986).

If flag > 0, uses the LLL algorithm. flag is a parameter which should be between one half the
number of decimal digits of precision and that number (see algdep).

If flag < 0, returns as soon as one relation has been found.

The library syntax is lindep0(x, flag , prec). Also available is lindep(x, prec) (flag = 0).

126

3.8.5 listcreate(n): creates an empty list of maximal length n.

This function is useless in library mode.

3.8.6 listinsert(list , x, n): inserts the object x at position n in list (which must be of type t_LIST).
All the remaining elements of list (from position n+ 1 onwards) are shifted to the right. This and
listput are the only commands which enable you to increase a list’s effective length (as long as it
remains under the maximal length specified at the time of the listcreate).

This function is useless in library mode.

3.8.7 listkill(list): kill list . This deletes all elements from list and sets its effective length to 0.
The maximal length is not affected.

This function is useless in library mode.

3.8.8 listput(list , x, {n}): sets the n-th element of the list list (which must be of type t_LIST)
equal to x. If n is omitted, or greater than the list current effective length, just appends x. This
and listinsert are the only commands which enable you to increase a list’s effective length (as
long as it remains under the maximal length specified at the time of the listcreate).

If you want to put an element into an occupied cell, i.e. if you don’t want to change the effective
length, you can consider the list as a vector and use the usual list[n] = x construct.

This function is useless in library mode.

3.8.9 listsort(list , {flag = 0}): sorts list (which must be of type t_LIST) in place. If flag is non-
zero, suppresses all repeated coefficients. This is much faster than the vecsort command since no
copy has to be made.

This function is useless in library mode.

3.8.10 matadjoint(x): adjoint matrix of x, i.e. the matrix y of cofactors of x, satisfying x ∗ y =
det(x) ∗ Id. x must be a (non-necessarily invertible) square matrix.

The library syntax is adj(x).

3.8.11 matcompanion(x): the left companion matrix to the polynomial x.

The library syntax is assmat(x).

3.8.12 matdet(x, {flag = 0}): determinant of x. x must be a square matrix.

If flag = 0, uses Gauss-Bareiss.

If flag = 1, uses classical Gaussian elimination, which is better when the entries of the ma-
trix are reals or integers for example, but usually much worse for more complicated entries like
multivariate polynomials.

The library syntax is det(x) (flag = 0) and det2(x) (flag = 1).

127

3.8.13 matdetint(x): x being an m × n matrix with integer coefficients, this function computes
a multiple of the determinant of the lattice generated by the columns of x if it is of rank m, and
returns zero otherwise. This function can be useful in conjunction with the function mathnfmod
which needs to know such a multiple. Other ways to obtain this determinant (assuming the rank is
maximal) is matdet(qflll(x,4)[2]∗x) or more simply matdet(mathnf(x)). Experiment to see
which is faster for your applications.

The library syntax is detint(x).

3.8.14 matdiagonal(x): x being a vector, creates the diagonal matrix whose diagonal entries are
those of x.

The library syntax is diagonal(x).

3.8.15 mateigen(x): gives the eigenvectors of x as columns of a matrix.

The library syntax is eigen(x).

3.8.16 mathess(x): Hessenberg form of the square matrix x.

The library syntax is hess(x).

3.8.17 mathilbert(x): x being a long, creates the Hilbert matrix of order x, i.e. the matrix whose
coefficient (i,j) is 1/(i+ j − 1).

The library syntax is mathilbert(x).

3.8.18 mathnf(x, {flag = 0}): if x is a (not necessarily square) matrix of maximal rank, finds the
upper triangular Hermite normal form of x. If the rank of x is equal to its number of rows, the
result is a square matrix. In general, the columns of the result form a basis of the lattice spanned
by the columns of x.

If flag = 0, uses the naive algorithm. If the Z-module generated by the columns is a lattice, it
is recommanded to use mathnfmod(x, matdetint(x)) instead (much faster).

If flag = 1, uses Batut’s algorithm. Outputs a two-component row vector [H,U], where H is
the upper triangular Hermite normal form of x (i.e. the default result) and U is the unimodular
transformation matrix such that xU = [0|H]. If the rank of x is equal to its number of rows, H is
a square matrix. In general, the columns of H form a basis of the lattice spanned by the columns
of x.

If flag = 2, uses Havas’s algorithm. Outputs [H,U, P], such that H and U are as before and
P is a permutation of the rows such that P applied to xU gives H. This does not work very well
in present version 2.1.1.

If flag = 3, uses Batut’s algorithm, and outputs [H,U, P] as in the previous case.

If flag = 4, as in case 1 above, but uses LLL reduction along the way.

The library syntax is mathnf0(x, flag). Also available are hnf(x) (flag = 0) and hnfall(x)
(flag = 1). To reduce huge (say 400× 400 and more) relation matrices (sparse with small entries),
you can use the pair hnfspec / hnfadd. Since this is rather technical and the calling interface may
change, they are not documented yet. Look at the code in basemath/alglin1.c.

128

3.8.19 mathnfmod(x, d): if x is a (not necessarily square) matrix of maximal rank with integer
entries, and d is a multiple of the (non-zero) determinant of the lattice spanned by the columns of
x, finds the upper triangular Hermite normal form of x.

If the rank of x is equal to its number of rows, the result is a square matrix. In general, the
columns of the result form a basis of the lattice spanned by the columns of x. This is much faster
than mathnf when d is known.

The library syntax is hnfmod(x, d).

3.8.20 mathnfmodid(x, d): outputs the (upper triangular) Hermite normal form of x concate-
nated with d times the identity matrix.

The library syntax is hnfmodid(x, d).

3.8.21 matid(n): creates the n× n identity matrix.

The library syntax is idmat(n) where n is a long.

Related functions are gscalmat(x, n), which creates x times the identity matrix (x being a
GEN and n a long), and gscalsmat(x, n) which is the same when x is a long.

3.8.22 matimage(x, {flag = 0}): gives a basis for the image of the matrix x as columns of a
matrix. A priori the matrix can have entries of any type. If flag = 0, use standard Gauss pivot. If
flag = 1, use matsupplement.

The library syntax is matimage0(x, flag). Also available is image(x) (flag = 0).

3.8.23 matimagecompl(x): gives the vector of the column indices which are not extracted by
the function matimage. Hence the number of components of matimagecompl(x) plus the number
of columns of matimage(x) is equal to the number of columns of the matrix x.

The library syntax is imagecompl(x).

3.8.24 matindexrank(x): x being a matrix of rank r, gives two vectors y and z of length r giving
a list of rows and columns respectively (starting from 1) such that the extracted matrix obtained
from these two vectors using vecextract(x, y, z) is invertible.

The library syntax is indexrank(x).

3.8.25 matintersect(x, y): x and y being two matrices with the same number of rows each of
whose columns are independent, finds a basis of the Q-vector space equal to the intersection of the
spaces spanned by the columns of x and y respectively. See also the function idealintersect,
which does the same for free Z-modules.

The library syntax is intersect(x, y).

3.8.26 matinverseimage(x, y): gives a column vector belonging to the inverse image of the column
vector y by the matrix x if one exists, the empty vector otherwise. To get the complete inverse
image, it suffices to add to the result any element of the kernel of x obtained for example by matker.

The library syntax is inverseimage(x, y).

129

3.8.27 matisdiagonal(x): returns true (1) if x is a diagonal matrix, false (0) if not.

The library syntax is isdiagonal(x), and this returns a long integer.

3.8.28 matker(x, {flag = 0}): gives a basis for the kernel of the matrix x as columns of a matrix.
A priori the matrix can have entries of any type.

If x is known to have integral entries, set flag = 1.

Note: The library function ker mod p(x, p), where x has integer entries and p is prime, which is
equivalent to but many orders of magnitude faster than matker(x*Mod(1,p)) and needs much less
stack space. To use it under GP, type install(ker mod p, GG) first.

The library syntax is matker0(x, flag). Also available are ker(x) (flag = 0), keri(x) (flag = 1)
and ker mod p(x, p).

3.8.29 matkerint(x, {flag = 0}): gives an LLL-reduced Z-basis for the lattice equal to the kernel
of the matrix x as columns of the matrix x with integer entries (rational entries are not permitted).

If flag = 0, uses a modified integer LLL algorithm.

If flag = 1, uses matrixqz(x,−2). If LLL reduction of the final result is not desired, you can
save time using matrixqz(matker(x),-2) instead.

If flag = 2, uses another modified LLL. In the present version 2.1.1, only independent rows are
allowed in this case.

The library syntax is matkerint0(x, flag). Also available is kerint(x) (flag = 0).

3.8.30 matmuldiagonal(x, d): product of the matrix x by the diagonal matrix whose diagonal
entries are those of the vector d. Equivalent to, but much faster than x ∗ matdiagonal(d).

The library syntax is matmuldiagonal(x, d).

3.8.31 matmultodiagonal(x, y): product of the matrices x and y knowing that the result is a
diagonal matrix. Much faster than x ∗ y in that case.

The library syntax is matmultodiagonal(x, y).

3.8.32 matpascal(x, {q}): creates as a matrix the lower triangular Pascal triangle of order x+ 1
(i.e. with binomial coefficients up to x). If q is given, compute the q-Pascal triangle (i.e. using
q-binomial coefficients).

The library syntax is matqpascal(x, q), where x is a long and q = NULL is used to omit q.
Also available is matpascalx.

3.8.33 matrank(x): rank of the matrix x.

The library syntax is rank(x), and the result is a long.

3.8.34 matrix(m,n, {X}, {Y }, {expr = 0}): creation of the m × n matrix whose coefficients
are given by the expression expr . There are two formal parameters in expr , the first one (X)
corresponding to the rows, the second (Y) to the columns, and X goes from 1 to m, Y goes from
1 to n. If one of the last 3 parameters is omitted, fill the matrix with zeroes.

The library syntax is matrice(GEN nlig,GEN ncol,entree *e1,entree *e2,char *expr).

130

3.8.35 matrixqz(x, p): x being an m× n matrix with m ≥ n with rational or integer entries, this
function has varying behaviour depending on the sign of p:

If p ≥ 0, x is assumed to be of maximal rank. This function returns a matrix having only
integral entries, having the same image as x, such that the GCD of all its n × n subdeterminants
is equal to 1 when p is equal to 0, or not divisible by p otherwise. Here p must be a prime number
(when it is non-zero). However, if the function is used when p has no small prime factors, it will
either work or give the message “impossible inverse modulo” and a non-trivial divisor of p.

If p = −1, this function returns a matrix whose columns form a basis of the lattice equal to
Zn intersected with the lattice generated by the columns of x.

If p = −2, returns a matrix whose columns form a basis of the lattice equal to Zn intersected
with the Q-vector space generated by the columns of x.

The library syntax is matrixqz0(x, p).

3.8.36 matsize(x): x being a vector or matrix, returns a row vector with two components, the
first being the number of rows (1 for a row vector), the second the number of columns (1 for a
column vector).

The library syntax is matsize(x).

3.8.37 matsnf(X, {flag = 0}): if X is a (singular or non-singular) square matrix outputs the
vector of elementary divisors of X (i.e. the diagonal of the Smith normal form of X).

The binary digits of flag mean:

1 (complete output): if set, outputs [U, V,D], where U and V are two unimodular matrices
such that UXV is the diagonal matrix D. Otherwise output only the diagonal of D.

2 (generic input): if set, allows polynomial entries. Otherwise, assume that X has integer
coefficients.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1
will be deleted, i.e. outputs a shortened vector D′ instead of D. If complete output was required,
returns [U ′, V ′, D′] so that U ′XV ′ = D′ holds. If this flag is set, X is allowed to be of the form D
or [U, V,D] as would normally be output with the cleanup flag unset.

The library syntax is matsnf0(X, flag). Also available is smith(X) (flag = 0).

3.8.38 matsolve(x, y): x being an invertible matrix and y a column vector, finds the solution u of
x ∗u = y, using Gaussian elimination. This has the same effect as, but is a bit faster, than x−1 ∗ y.

The library syntax is gauss(x, y).

131

3.8.39 matsolvemod(m, d, y, {flag = 0}): m being any integral matrix, d a vector of positive
integer moduli, and y an integral column vector, gives a small integer solution to the system of
congruences

∑
imi,jxj ≡ yi (mod di) if one exists, otherwise returns zero. Shorthand notation:

y (resp. d) can be given as a single integer, in which case all the yi (resp. di) above are taken to be
equal to y (resp. d).

If flag = 1, all solutions are returned in the form of a two-component row vector [x, u], where
x is a small integer solution to the system of congruences and u is a matrix whose columns give a
basis of the homogeneous system (so that all solutions can be obtained by adding x to any linear
combination of columns of u). If no solution exists, returns zero.

The library syntax is matsolvemod0(m, d, y, flag). Also available are gaussmodulo(m, d, y)
(flag = 0) and gaussmodulo2(m, d, y) (flag = 1).

3.8.40 matsupplement(x): assuming that the columns of the matrix x are linearly independent
(if they are not, an error message is issued), finds a square invertible matrix whose first columns
are the columns of x, i.e. supplement the columns of x to a basis of the whole space.

The library syntax is suppl(x).

3.8.41 mattranspose(x) or x˜: transpose of x. This has an effect only on vectors and matrices.

The library syntax is gtrans(x).

3.8.42 qfgaussred(q): decomposition into squares of the quadratic form represented by the sym-
metric matrix q. The result is a matrix whose diagonal entries are the coefficients of the squares, and
the non-diagonal entries represent the bilinear forms. More precisely, if (aij) denotes the output,
one has

q(x) =
∑
i

aii(xi +
∑
j>i

aijxj)2

The library syntax is sqred(x).

3.8.43 qfjacobi(x): x being a real symmetric matrix, this gives a vector having two components:
the first one is the vector of eigenvalues of x, the second is the corresponding orthogonal matrix of
eigenvectors of x. The method used is Jacobi’s method for symmetric matrices.

The library syntax is jacobi(x).

3.8.44 qflll(x, {flag = 0}): LLL algorithm applied to the columns of the (not necessarily square)
matrix x. The columns of x must however be linearly independent, unless specified otherwise
below. The result is a transformation matrix T such that x · T is an LLL-reduced basis of the
lattice generated by the column vectors of x.

If flag = 0 (default), the computations are done with real numbers (i.e. not with rational
numbers) hence are fast but as presently programmed (version 2.1.1) are numerically unstable.

If flag = 1, it is assumed that the corresponding Gram matrix is integral. The computation is
done entirely with integers and the algorithm is both accurate and quite fast. In this case, x needs
not be of maximal rank, but if it is not, T will not be square.

If flag = 2, similar to case 1, except x should be an integer matrix whose columns are linearly
independent. The lattice generated by the columns of x is first partially reduced before applying

132

the LLL algorithm. [A basis is said to be partially reduced if |vi ± vj | ≥ |vi| for any two distinct
basis vectors vi, vj .]

This can be significantly faster than flag = 1 when one row is huge compared to the other
rows.

If flag = 3, all computations are done in rational numbers. This does not incur numerical
instability, but is extremely slow. This function is essentially superseded by case 1, so will soon
disappear.

If flag = 4, x is assumed to have integral entries, but needs not be of maximal rank. The
result is a two-component vector of matrices : the columns of the first matrix represent a basis of
the integer kernel of x (not necessarily LLL-reduced) and the second matrix is the transformation
matrix T such that x · T is an LLL-reduced Z-basis of the image of the matrix x.

If flag = 5, case as case 4, but x may have polynomial coefficients.

If flag = 7, uses an older version of case 0 above.

If flag = 8, same as case 0, where x may have polynomial coefficients.

If flag = 9, variation on case 1, using content.

The library syntax is qflll0(x, flag , prec). Also available are lll(x, prec) (flag = 0), lllint(x)
(flag = 1), and lllkerim(x) (flag = 4).

3.8.45 qflllgram(x, {flag = 0}): same as qflll except that the matrix x which must now be a
square symmetric real matrix is the Gram matrix of the lattice vectors, and not the coordinates of
the vectors themselves. The result is again the transformation matrix T which gives (as columns)
the coefficients with respect to the initial basis vectors. The flags have more or less the same
meaning, but some are missing. In brief:

flag = 0: numerically unstable in the present version 2.1.1.

flag = 1: x has integer entries, the computations are all done in integers.

flag = 4: x has integer entries, gives the kernel and reduced image.

flag = 5: same as 4 for generic x.

flag = 7: an older version of case 0.

The library syntax is qflllgram0(x, flag , prec). Also available are lllgram(x, prec) (flag = 0),
lllgramint(x) (flag = 1), and lllgramkerim(x) (flag = 4).

3.8.46 qfminim(x, b,m, {flag = 0}): x being a square and symmetric matrix representing a posi-
tive definite quadratic form, this function deals with the minimal vectors of x, depending on flag .

If flag = 0 (default), seeks vectors of square norm less than or equal to b (for the norm defined
by x), and at most 2m of these vectors. The result is a three-component vector, the first component
being the number of vectors, the second being the maximum norm found, and the last vector is
a matrix whose columns are the vectors found, only one being given for each pair ±v (at most m
such pairs).

If flag = 1, ignores m and returns the first vector whose norm is less than b.

In both these cases, x is assumed to have integral entries, and the function searches for the
minimal non-zero vectors whenever b = 0.

133

If flag = 2, x can have non integral real entries, but b = 0 is now meaningless (uses Fincke-Pohst
algorithm).

The library syntax is qfminim0(x, b,m, flag , prec), also available are minim(x, b,m) (flag =
0), minim2(x, b,m) (flag = 1), and finally f incke pohst(x, b,m, prec) (flag = 2).

3.8.47 qfperfection(x): x being a square and symmetric matrix with integer entries representing
a positive definite quadratic form, outputs the perfection rank of the form. That is, gives the rank
of the family of the s symmetric matrices vivti , where s is half the number of minimal vectors and
the vi (1 ≤ i ≤ s) are the minimal vectors.

As a side note to old-timers, this used to fail bluntly when x had more than 5000 minimal
vectors. Beware that the computations can now be very lengthy when x has many minimal vectors.

The library syntax is perf(x).

3.8.48 qfsign(x): signature of the quadratic form represented by the symmetric matrix x. The
result is a two-component vector.

The library syntax is signat(x).

3.8.49 setintersect(x, y): intersection of the two sets x and y.

The library syntax is setintersect(x, y).

3.8.50 setisset(x): returns true (1) if x is a set, false (0) if not. In PARI, a set is simply a row
vector whose entries are strictly increasing. To convert any vector (and other objects) into a set,
use the function Set.

The library syntax is setisset(x), and this returns a long.

3.8.51 setminus(x, y): difference of the two sets x and y, i.e. set of elements of x which do not
belong to y.

The library syntax is setminus(x, y).

3.8.52 setsearch(x, y, {flag = 0}): searches if y belongs to the set x. If it does and flag is zero
or omitted, returns the index j such that x[j] = y, otherwise returns 0. If flag is non-zero returns
the index j where y should be inserted, and 0 if it already belongs to x (this is meant to be used
in conjunction with listinsert).

This function works also if x is a sorted list (see listsort).

The library syntax is setsearch(x, y, flag) which returns a long integer.

3.8.53 setunion(x, y): union of the two sets x and y.

The library syntax is setunion(x, y).

3.8.54 trace(x): this applies to quite general x. If x is not a matrix, it is equal to the sum of x
and its conjugate, except for polmods where it is the trace as an algebraic number.

For x a square matrix, it is the ordinary trace. If x is a non-square matrix (but not a vector),
an error occurs.

The library syntax is gtrace(x).

134

3.8.55 vecextract(x, y, {z}): extraction of components of the vector or matrix x according to
y. In case x is a matrix, its components are as usual the columns of x. The parameter y is a
component specifier, which is either an integer, a string describing a range, or a vector.

If y is an integer, it is considered as a mask: the binary bits of y are read from right to left,
but correspond to taking the components from left to right. For example, if y = 13 = (1101)2 then
the components 1,3 and 4 are extracted.

If y is a vector, which must have integer entries, these entries correspond to the component
numbers to be extracted, in the order specified.

If y is a string, it can be

• a single (non-zero) index giving a component number (a negative index means we start
counting from the end).

• a range of the form "a..b", where a and b are indexes as above. Any of a and b can be
omitted; in this case, we take as default values a = 1 and b = −1, i.e. the first and last components
respectively. We then extract all components in the interval [a, b], in reverse order if b < a.

In addition, if the first character in the string is ^, the complement of the given set of indices
is taken.

If z is not omitted, x must be a matrix. y is then the line specifier, and z the column specifier,
where the component specifier is as explained above.

? v = [a, b, c, d, e];

? vecextract(v, 5) \\ mask
%1 = [a, c]

? vecextract(v, [4, 2, 1]) \\ component list
%2 = [d, b, a]

? vecextract(v, "2..4") \\ interval
%3 = [b, c, d]

? vecextract(v, "-1..-3") \\ interval + reverse order
%4 = [e, d, c]

? vecextract([1,2,3], "^2") \\ complement
%5 = [1, 3]

? vecextract(matid(3), "2..", "..")

%6 =

[0 1 0]

[0 0 1]

The library syntax is extract(x, y) or matextract(x, y, z).

135

3.8.56 vecsort(x, {k}, {flag = 0}): sorts the vector x in ascending order, using the heapsort
method. x must be a vector, and its components integers, reals, or fractions.

If k is present and is an integer, sorts according to the value of the k-th subcomponents of
the components of x. k can also be a vector, in which case the sorting is done lexicographically
according to the components listed in the vector k. For example, if k = [2, 1, 3], sorting will be
done with respect to the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.

The binary digits of flag mean:

• 1: indirect sorting of the vector x, i.e. if x is an n-component vector, returns a permutation
of [1, 2, . . . , n] which applied to the components of x sorts x in increasing order. For example,
vecextract(x, vecsort(x,,1)) is equivalent to vecsort(x).

• 2: sorts x by ascending lexicographic order (as per the lex comparison function).

• 4: use decreasing instead of ascending order.

The library syntax is vecsort0(x, k, flag). To omit k, use NULL instead. You can also use the
simpler functions

sort(x) (= vecsort0(x,NULL, 0)).

indexsort(x) (= vecsort0(x,NULL, 1)).

lexsort(x) (= vecsort0(x,NULL, 2)).

Also available are sindexsort and sindexlexsort which return a vector of C-long integers
(private type t_VECSMALL) v, where v[1] . . . v[n] contain the indices. Note that the resulting v is
not a generic PARI object, but is in general easier to use in C programs!

3.8.57 vector(n, {X}, {expr = 0}): creates a row vector (type t_VEC) with n components whose
components are the expression expr evaluated at the integer points between 1 and n. If one of the
last two arguments is omitted, fill the vector with zeroes.

The library syntax is vecteur(GEN nmax, entree *ep, char *expr).

3.8.58 vectorv(n,X, expr): as vector, but returns a column vector (type t_COL).

The library syntax is vvecteur(GEN nmax, entree *ep, char *expr).

3.9 Sums, products, integrals and similar functions.

Although the GP calculator is programmable, it is useful to have preprogrammed a number of
loops, including sums, products, and a certain number of recursions. Also, a number of functions
from numerical analysis like numerical integration and summation of series will be described here.

One of the parameters in these loops must be the control variable, hence a simple variable
name. The last parameter can be any legal PARI expression, including of course expressions using
loops. Since it is much easier to program directly the loops in library mode, these functions are
mainly useful for GP programming. The use of these functions in library mode is a little tricky and
its explanation will be mostly omitted, although the reader can try and figure it out by himself by
checking the example given for the sum function. In this section we only give the library syntax,
with no semantic explanation.

The letter X will always denote any simple variable name, and represents the formal parameter
used in the function.

136

(numerical) integration: A number of Romberg-like integration methods are implemented (see
intnum as opposed to intformal which we already described). The user should not require too
much accuracy: 18 or 28 decimal digits is OK, but not much more. In addition, analytical cleanup of
the integral must have been done: there must be no singularities in the interval or at the boundaries.
In practice this can be accomplished with a simple change of variable. Furthermore, for improper
integrals, where one or both of the limits of integration are plus or minus infinity, the function
must decrease sufficiently rapidly at infinity. This can often be accomplished through integration
by parts. Finally, the function to be integrated should not be very small (compared to the current
precision) on the entire interval. This can of course be accomplished by just multiplying by an
appropriate constant.

Note that infinity can be represented with essentially no loss of accuracy by 1e4000. However
beware of real underflow when dealing with rapidly decreasing functions. For example, if one wants
to compute the

∫∞
0
e−x

2
dx to 28 decimal digits, then one should set infinity equal to 10 for example,

and certainly not to 1e4000.

The integrand may have values belonging to a vector space over the real numbers; in particular,
it can be complex-valued or vector-valued.

See also the discrete summation methods below (sharing the prefix sum).

3.9.1 intnum(X = a, b, expr , {flag = 0}): numerical integration of expr (smooth in]a, b[), with
respect to X.

Set flag = 0 (or omit it altogether) when a and b are not too large, the function is smooth,
and can be evaluated exactly everywhere on the interval [a, b].

If flag = 1, uses a general driver routine for doing numerical integration, making no particular
assumption (slow).

flag = 2 is tailored for being used when a or b are infinite. One must have ab > 0, and in fact
if for example b = +∞, then it is preferable to have a as large as possible, at least a ≥ 1.

If flag = 3, the function is allowed to be undefined (but continuous) at a or b, for example the
function sin(x)/x at x = 0.

The library syntax is intnum0(entree *e,GEN a,GEN b,char *expr,long flag,long prec).

3.9.2 prod(X = a, b, expr , {x = 1}): product of expression expr , initialized at x, the formal
parameter X going from a to b. As for sum, the main purpose of the initialization parameter x is
to force the type of the operations being performed. For example if it is set equal to the integer 1,
operations will start being done exactly. If it is set equal to the real 1., they will be done using real
numbers having the default precision. If it is set equal to the power series 1 +O(Xk) for a certain
k, they will be done using power series of precision at most k. These are the three most common
initializations.

As an extreme example, compare

? prod(i=1, 100, 1 - X^i); \\ this has degree 5050 !!
time = 3,335 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 43 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)

The library syntax is produit(entree *ep, GEN a, GEN b, char *expr, GEN x).

137

3.9.3 prodeuler(X = a, b, expr): product of expression expr , initialized at 1. (i.e. to a real number
equal to 1 to the current realprecision), the formal parameter X ranging over the prime numbers
between a and b.

The library syntax is prodeuler(entree *ep, GEN a, GEN b, char *expr, long prec).

3.9.4 prodinf(X = a, expr , {flag = 0}): infinite product of expression expr , the formal parameter
X starting at a. The evaluation stops when the relative error of the expression minus 1 is less than
the default precision. The expressions must always evaluate to an element of C.

If flag = 1, do the product of the (1 + expr) instead.

The library syntax is prodinf(entree *ep, GEN a, char *expr, long prec) (flag = 0), or
prodinf1 with the same arguments (flag = 1).

3.9.5 solve(X = a, b, expr): find a real root of expression expr between a and b, under the condition
expr(X = a) ∗ expr(X = b) ≤ 0. This routine uses Brent’s method and can fail miserably if expr
is not defined in the whole of [a, b] (try solve(x=1, 2, tan(x)).

The library syntax is zbrent(entree *ep, GEN a, GEN b, char *expr, long prec).

3.9.6 sum(X = a, b, expr , {x = 0}): sum of expression expr , initialized at x, the formal parameter
going from a to b. As for prod, the initialization parameter x may be given to force the type of the
operations being performed.

As an extreme example, compare

? sum(i=1, 5000, 1/i); \\ rational number: denominator has 2166 digits.
time = 1,241 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 158 ms.
%2 = 9.094508852984436967261245533

The library syntax is somme(entree *ep, GEN a, GEN b, char *expr, GEN x). This is to
be used as follows: ep represents the dummy variable used in the expression expr

/* compute a^2 + . . . + b^2 */
{
/* define the dummy variable "i" */
entree *ep = is_entry("i");
/* sum for a <= i <= b */
return somme(ep, a, b, "i^2", gzero);

}

3.9.7 sumalt(X = a, expr , {flag = 0}): numerical summation of the series expr , which should be
an alternating series, the formal variable X starting at a.

If flag = 0, use an algorithm of F. Villegas as modified by D. Zagier. This is much better than
Euler-Van Wijngaarden’s method which was used formerly. Beware that the stopping criterion is
that the term gets small enough, hence terms which are equal to 0 will create problems and should
be removed.

If flag = 1, use a variant with slightly different polynomials. Sometimes faster.

Divergent alternating series can sometimes be summed by this method, as well as series which
are not exactly alternating (see for example Section 2.6.3).

138

Important hint: a significant speed gain can be obtained by writing the (−1)X which may occur
in the expression as (1. - X%2*2).

The library syntax is sumalt(entree *ep, GEN a, char *expr, long flag, long prec).

3.9.8 sumdiv(n,X, expr): sum of expression expr over the positive divisors of n.

Arithmetic functions like sigma use the multiplicativity of the underlying expression to speed
up the computation. In the present version 2.1.1, there is no way to indicate that expr is multi-
plicative in n, hence specialized functions should be prefered whenever possible.

The library syntax is divsum(entree *ep, GEN num, char *expr).

3.9.9 suminf(X = a, expr): infinite sum of expression expr , the formal parameter X starting at
a. The evaluation stops when the relative error of the expression is less than the default precision.
The expressions must always evaluate to a complex number.

The library syntax is suminf(entree *ep, GEN a, char *expr, long prec).

3.9.10 sumpos(X = a, expr , {flag = 0}): numerical summation of the series expr , which must be
a series of terms having the same sign, the formal variable X starting at a. The algorithm used
is Van Wijngaarden’s trick for converting such a series into an alternating one, and is quite slow.
Beware that the stopping criterion is that the term gets small enough, hence terms which are equal
to 0 will create problems and should be removed.

If flag = 1, use slightly different polynomials. Sometimes faster.

The library syntax is sumpos(entree *ep, GEN a, char *expr, long flag, long prec).

3.10 Plotting functions.

Although plotting is not even a side purpose of PARI, a number of plotting functions are
provided. Moreover, a lot of people felt like suggesting ideas or submitting huge patches for this
section of the code. Among these, special thanks go to Klaus-Peter Nischke who suggested the
recursive plotting and the forking/resizing stuff under X11, and Ilya Zakharevich who undertook
a complete rewrite of the graphic code, so that most of it is now platform-independent and should
be relatively easy to port or expand.

These graphic functions are either

• high-level plotting functions (all the functions starting with ploth) in which the user has
little to do but explain what type of plot he wants, and whose syntax is similar to the one used in
the preceding section (with somewhat more complicated flags).

• low-level plotting functions, where every drawing primitive (point, line, box, etc.) must be
specified by the user. These low-level functions (called rectplot functions, sharing the prefix plot)
work as follows. You have at your disposal 16 virtual windows which are filled independently, and
can then be physically ORed on a single window at user-defined positions. These windows are
numbered from 0 to 15, and must be initialized before being used by the function plotinit, which
specifies the height and width of the virtual window (called a rectwindow in the sequel). At all
times, a virtual cursor (initialized at [0, 0]) is associated to the window, and its current value can
be obtained using the function plotcursor.

139

A number of primitive graphic objects (called rect objects) can then be drawn in these windows,
using a default color associated to that window (which can be changed under X11, using the
plotcolor function, black otherwise) and only the part of the object which is inside the window
will be drawn, with the exception of polygons and strings which are drawn entirely (but the virtual
cursor can move outside of the window). The ones sharing the prefix plotr draw relatively to the
current position of the virtual cursor, the others use absolute coordinates. Those having the prefix
plotrecth put in the rectwindow a large batch of rect objects corresponding to the output of the
related ploth function.

Finally, the actual physical drawing is done using the function plotdraw. Note that the
windows are preserved so that further drawings using the same windows at different positions or
different windows can be done without extra work. If you want to erase a window (and free the
corresponding memory), use the function plotkill. It is not possible to partially erase a window.
Erase it completely, initialize it again and then fill it with the graphic objects that you want to
keep.

In addition to initializing the window, you may want to have a scaled window to avoid un-
necessary conversions. For this, use the function plotscale below. As long as this function is
not called, the scaling is simply the number of pixels, the origin being at the upper left and the
y-coordinates going downwards.

Note that in the present version 2.1.1 all these plotting functions (both low and high level)
have been written for the X11-window system (hence also for GUI’s based on X11 such as Open-
windows and Motif) only, though very little code remains which is actually platform-dependent. A
Suntools/Sunview, Macintosh, and an Atari/Gem port were provided for previous versions. These
may be adapted in future releases.

Under X11/Suntools, the physical window (opened by plotdraw or any of the ploth* func-
tions) is completely separated from GP (technically, a fork is done, and the non-graphical memory
is immediately freed in the child process), which means you can go on working in the current GP
session, without having to kill the window first. Under X11, this window can be closed, enlarged
or reduced using the standard window manager functions. No zooming procedure is implemented
though (yet).

• Finally, note that in the same way that printtex allows you to have a TEX output corre-
sponding to printed results, the functions starting with ps allow you to have PostScript output of
the plots. This will not be absolutely identical with the screen output, but will be sufficiently close.
Note that you can use PostScript output even if you do not have the plotting routines enabled. The
PostScript output is written in a file whose name is derived from the psfile default (./pari.ps if
you did not tamper with it). Each time a new PostScript output is asked for, the PostScript output
is appended to that file. Hence the user must remove this file, or change the value of psfile, first
if he does not want unnecessary drawings from preceding sessions to appear. On the other hand,
in this manner as many plots as desired can be kept in a single file.

None of the graphic functions are available within the PARI library, you must be under GP to
use them. The reason for that is that you really should not use PARI for heavy-duty graphical work,
there are much better specialized alternatives around. This whole set of routines was only meant
as a convenient, but simple-minded, visual aid. If you really insist on using these in your program
(we warned you), the source (plot*.c) should be readable enough for you to achieve something.

140

3.10.1 plot(X = a, b, expr , {Ymin}, {Ymax}): crude (ASCII) plot of the function represented by
expression expr from a to b, with Y ranging from Ymin to Ymax . If Ymin (resp. Ymax) is not
given, the minima (resp. the maxima) of the computed values of the expression is used instead.

3.10.2 plotbox(w, x2, y2): let (x1, y1) be the current position of the virtual cursor. Draw in the
rectwindow w the outline of the rectangle which is such that the points (x1, y1) and (x2, y2) are
opposite corners. Only the part of the rectangle which is in w is drawn. The virtual cursor does
not move.

3.10.3 plotclip(w): ‘clips’ the content of rectwindow w, i.e remove all parts of the drawing that
would not be visible on the screen. Together with plotcopy this function enables you to draw on
a scratchpad before commiting the part you’re interested in to the final picture.

3.10.4 plotcolor(w, c): set default color to c in rectwindow w. In present version 2.1.1, this is
only implemented for X11 window system, and you only have the following palette to choose from:

1=black, 2=blue, 3=sienna, 4=red, 5=cornsilk, 6=grey, 7=gainsborough.

Note that it should be fairly easy for you to hardwire some more colors by tweaking the
files rect.h and plotX.c. User-defined colormaps would be nice, and may be available in future
versions.

3.10.5 plotcopy(w1, w2, dx, dy): copy the contents of rectwindow w1 to rectwindow w2, with
offset (dx, dy).

3.10.6 plotcursor(w): give as a 2-component vector the current (scaled) position of the virtual
cursor corresponding to the rectwindow w.

3.10.7 plotdraw(list): physically draw the rectwindows given in list which must be a vector whose
number of components is divisible by 3. If list = [w1, x1, y1, w2, x2, y2, . . .], the windows w1, w2,
etc. are physically placed with their upper left corner at physical position (x1, y1), (x2, y2),. . .
respectively, and are then drawn together. Overlapping regions will thus be drawn twice, and the
windows are considered transparent. Then display the whole drawing in a special window on your
screen.

3.10.8 plotfile(s): set the output file for plotting output. Special filename - redirects to the same
place as PARI output.

3.10.9 ploth(X = a, b, expr , {flag = 0}, {n = 0}): high precision plot of the function y = f(x)
represented by the expression expr , x going from a to b. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving the coordinates of the
bounding box in the form [xmin, xmax , ymin, ymax].

141

Important note: Since this may involve a lot of function calls, it is advised to keep the current
precision to a minimum (e.g. 9) before calling this function.

n specifies the number of reference point on the graph (0 means use the hardwired default
values, that is: 1000 for general plot, 1500 for parametric plot, and 15 for recursive plot).

If no flag is given, expr is either a scalar expression f(X), in which case the plane curve
y = f(X) will be drawn, or a vector [f1(X), . . . , fk(X)], and then all the curves y = fi(X) will be
drawn in the same window.

The binary digits of flag mean:

• 1: parametric plot. Here expr must be a vector with an even number of components.
Successive pairs are then understood as the parametric coordinates of a plane curve. Each of
these are then drawn.

For instance:

ploth(X=0,2*Pi,[sin(X),cos(X)],1) will draw a circle.

ploth(X=0,2*Pi,[sin(X),cos(X)]) will draw two entwined sinusoidal curves.

ploth(X=0,2*Pi,[X,X,sin(X),cos(X)],1) will draw a circle and the line y = x.

• 2: recursive plot. If this flag is set, only one curve can be drawn at time, i.e. expr must be
either a two-component vector (for a single parametric curve, and the parametric flag has to be
set), or a scalar function. The idea is to choose pairs of successive reference points, and if their
middle point is not too far away from the segment joining them, draw this as a local approximation
to the curve. Otherwise, add the middle point to the reference points. This is very fast, and usually
more precise than usual plot. Compare the results of

ploth(X = −1, 1, sin(1/X), 2) and ploth(X = −1, 1, sin(1/X))

for instance. But beware that if you are extremely unlucky, or choose too few reference points,
you may draw some nice polygon bearing little resemblance to the original curve. For instance you
should never plot recursively an odd function in a symmetric interval around 0. Try

ploth(x = -20, 20, sin(x), 2)

to see why. Hence, it’s usually a good idea to try and plot the same curve with slightly different
parameters.

The other values toggle various display options:

• 4: do not rescale plot according to the computed extrema. This is meant to be used when
graphing multiple functions on a rectwindow (as a plotrecth call), in conjuction with plotscale.

• 8: do not print the x-axis.

• 16: do not print the y-axis.

• 32: do not print frame.

• 64: only plot reference points, do not join them.

• 256: use splines to interpolate the points.

• 512: plot no x-ticks.

• 1024: plot no y-ticks.

• 2048: plot all ticks with the same length.

142

3.10.10 plothraw(listx , listy , {flag = 0}): given listx and listy two vectors of equal length, plots
(in high precision) the points whose (x, y)-coordinates are given in listx and listy . Automatic
positioning and scaling is done, but with the same scaling factor on x and y. If flag is 1, join
points, other non-0 flags toggle display options and should be combinations of bits 2k, k ≥ 3 as in
ploth.

3.10.11 plothsizes(): return data corresponding to the output window in the form of a 6-
component vector: window width and height, sizes for ticks in horizontal and vertical directions
(this is intended for the gnuplot interface and is currently not significant), width and height of
characters.

3.10.12 plotinit(w, x, y): initialize the rectwindow w to width x and height y, and position the
virtual cursor at (0, 0). This destroys any rect objects you may have already drawn in w.

The plotting device imposes an upper bound for x and y, for instance the number of pixels
for screen output. These bounds are available through the plothsizes function. The following
sequence initializes in a portable way (i.e independant of the output device) a window of maximal
size, accessed through coordinates in the [0, 1000]× [0, 1000] range :

s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);

3.10.13 plotkill(w): erase rectwindow w and free the corresponding memory. Note that if you
want to use the rectwindow w again, you have to use initrect first to specify the new size. So
it’s better in this case to use initrect directly as this throws away any previous work in the given
rectwindow.

3.10.14 plotlines(w,X, Y, {flag = 0}): draw on the rectwindow w the polygon such that the
(x,y)-coordinates of the vertices are in the vectors of equal length X and Y . For simplicity, the
whole polygon is drawn, not only the part of the polygon which is inside the rectwindow. If flag is
non-zero, close the polygon. In any case, the virtual cursor does not move.

X and Y are allowed to be scalars (in this case, both have to). There, a single segment will be
drawn, between the virtual cursor current position and the point (X,Y). And only the part thereof
which actually lies within the boundary of w. Then move the virtual cursor to (X,Y), even if it
is outside the window. If you want to draw a line from (x1, y1) to (x2, y2) where (x1, y1) is not
necessarily the position of the virtual cursor, use plotmove(w,x1,y1) before using this function.

3.10.15 plotlinetype(w, type): change the type of lines subsequently plotted in rectwindow w.
type −2 corresponds to frames, −1 to axes, larger values may correspond to something else. w = −1
changes highlevel plotting. This is only taken into account by the gnuplot interface.

3.10.16 plotmove(w, x, y): move the virtual cursor of the rectwindow w to position (x, y).

3.10.17 plotpoints(w,X, Y): draw on the rectwindow w the points whose (x, y)-coordinates are
in the vectors of equal length X and Y and which are inside w. The virtual cursor does not move.
This is basically the same function as plothraw, but either with no scaling factor or with a scale
chosen using the function plotscale.

As was the case with the plotlines function, X and Y are allowed to be (simultaneously)
scalar. In this case, draw the single point (X,Y) on the rectwindow w (if it is actually inside w),
and in any case move the virtual cursor to position (x, y).

143

3.10.18 plotpointsize(w, size): changes the “size” of following points in rectwindow w. If w = −1,
change it in all rectwindows. This only works in the gnuplot interface.

3.10.19 plotpointtype(w, type): change the type of points subsequently plotted in rectwindow w.
type = −1 corresponds to a dot, larger values may correspond to something else. w = −1 changes
highlevel plotting. This is only taken into account by the gnuplot interface.

3.10.20 plotrbox(w, dx, dy): draw in the rectwindow w the outline of the rectangle which is such
that the points (x1, y1) and (x1 + dx, y1 + dy) are opposite corners, where (x1, y1) is the current
position of the cursor. Only the part of the rectangle which is in w is drawn. The virtual cursor
does not move.

3.10.21 plotrecth(w,X = a, b, expr , {flag = 0}, {n = 0}): writes to rectwindow w the curve
output of ploth(w,X = a, b, expr , flag , n).

3.10.22 plotrecthraw(w, data, {flag = 0}): plot graph(s) for data in rectwindow w. flag has the
same significance here as in ploth, though recursive plot is no more significant.
data

is a vector of vectors, each corresponding to a list a coordinates. If parametric plot is set, there
must be an even number of vectors, each successive pair corresponding to a curve. Otherwise, the
first one containe the x coordinates, and the other ones contain the y-coordinates of curves to plot.

3.10.23 plotrline(w, dx, dy): draw in the rectwindow w the part of the segment (x1, y1)− (x1 +
dx, y1+dy) which is inside w, where (x1, y1) is the current position of the virtual cursor, and move
the virtual cursor to (x1 + dx, y1 + dy) (even if it is outside the window).

3.10.24 plotrmove(w, dx, dy): move the virtual cursor of the rectwindow w to position (x1 +
dx, y1 + dy), where (x1, y1) is the initial position of the cursor (i.e. to position (dx, dy) relative to
the initial cursor).

3.10.25 plotrpoint(w, dx, dy): draw the point (x1 + dx, y1 + dy) on the rectwindow w (if it is
inside w), where (x1, y1) is the current position of the cursor, and in any case move the virtual
cursor to position (x1 + dx, y1 + dy).

3.10.26 plotscale(w, x1, x2, y1, y2): scale the local coordinates of the rectwindow w so that x goes
from x1 to x2 and y goes from y1 to y2 (x2 < x1 and y2 < y1 being allowed). Initially, after the
initialization of the rectwindow w using the function plotinit, the default scaling is the graphic
pixel count, and in particular the y axis is oriented downwards since the origin is at the upper left.
The function plotscale allows to change all these defaults and should be used whenever functions
are graphed.

3.10.27 plotstring(w, x, {flag = 0}): draw on the rectwindow w the String x (see Section 2.6.5),
at the current position of the cursor.
flag

is used for justification: bits 1 and 2 regulate horizontal alignment: left if 0, right if 2, center
if 1. Bits 4 and 8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert
additional small gap between point and string: horizontal if bit 16 is set, vertical if bit 32 is set
(see the tutorial for an example).

144

3.10.28 plotterm(term): sets terminal where high resolution plots go (this is currently only taken
into account by the gnuplot graphical driver). Using the gnuplot driver, possible terminals are
the same as in gnuplot. If term is ”?”, lists possible values.

Terminal options can be appended to the terminal name and space; terminal size can be put
immediately after the name, as in "gif=300,200". Positive return value means success.

3.10.29 psdraw(list): same as plotdraw, except that the output is a PostScript program appended
to the psfile.

3.10.30 psploth(X = a, b, expr): same as ploth, except that the output is a PostScript program
appended to the psfile.

3.10.31 psplothraw(listx , listy): same as plothraw, except that the output is a PostScript pro-
gram appended to the psfile.

3.11 Programming under GP.

3.11.1 Control statements.

A number of control statements are available under GP. They are simpler and have a syntax
slightly different from their C counterparts, but are quite powerful enough to write any kind of
program. Some of them are specific to GP, since they are made for number theorists. As usual,
X will denote any simple variable name, and seq will always denote a sequence of expressions,
including the empty sequence.

3.11.1.1 break({n = 1}): interrupts execution of current seq , and immediately exits from the n
innermost enclosing loops, within the current function call (or the top level loop). n must be bigger
than 1. If n is greater than the number of enclosing loops, all enclosing loops are exited.

3.11.1.2 for(X = a, b, seq): the formal variable X going from a to b, the seq is evaluated. Nothing
is done if a > b. a and b must be in R.

3.11.1.3 fordiv(n,X, seq): the formal variable X ranging through the positive divisors of n, the
sequence seq is evaluated. n must be of type integer.

3.11.1.4 forprime(X = a, b, seq): the formal variable X ranging over the prime numbers between
a to b (including a and b if they are prime), the seq is evaluated. More precisely, the value of X is
incremented to the smallest prime strictly larger than X at the end of each iteration. Nothing is
done if a > b. Note that a and b must be in R.

? { forprime(p = 2, 12,
print(p);
if (p == 3, p = 6);

)
}

2
3
7
11

145

3.11.1.5 forstep(X = a, b, s, seq): the formal variable X going from a to b, in increments of s,
the seq is evaluated. Nothing is done if s > 0 and a > b or if s < 0 and a < b. s must be in R∗

or a vector of steps [s1, . . . , sn]. In the latter case, the successive steps are used in the order they
appear in s.

? forstep(x=5, 20, [2,4], print(x))

5

7

11

13

17

19

3.11.1.6 forsubgroup(H = G, {B}, seq): executes seq for each subgroup H of the abelian group
G (given in SNF form or as a vector of elementary divisors), whose index is bounded by bound.
The subgroups are not ordered in any obvious way, unless G is a p-group in which case Birkhoff’s
algorithm produces them by decreasing index. A subgroup is given as a matrix whose columns give
its generators on the implicit generators of G. For example, the following prints all subgroups of
index less than 2 in G = Z/2Zg1 × Z/2Zg2 :

? G = [2,2]; forsubgroup(H=G, 2, print(H))

[1; 1]

[1; 2]

[2; 1]

[1, 0; 1, 1]

The last one, for instance is generated by (g1, g1 + g2). This routine is intended to treat huge
groups, when subgrouplist is not an option due to the sheer size of the output.

For maximal speed the subgroups have been left as produced by the algorithm. To print them
in canonical form (as left divisors of G in HNF form), one can for instance use

? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))

[2, 1; 0, 1]

[1, 0; 0, 2]

[2, 0; 0, 1]

[1, 0; 0, 1]

Note that in this last representation, the index [G : H] is given by the determinant.

3.11.1.7 forvec(X = v, seq , {flag = 0}): v being an n-component vector (where n is arbitrary)
of two-component vectors [ai, bi] for 1 ≤ i ≤ n, the seq is evaluated with the formal variable X[1]
going from a1 to b1,. . . ,X[n] going from an to bn. The formal variable with the highest index
moves the fastest. If flag = 1, generate only nondecreasing vectors X, and if flag = 2, generate
only strictly increasing vectors X.

146

3.11.1.8 if(a, {seq1}, {seq2}): if a is non-zero, the expression sequence seq1 is evaluated, otherwise
the expression seq2 is evaluated. Of course, seq1 or seq2 may be empty, so if (a,seq) evaluates
seq if a is not equal to zero (you don’t have to write the second comma), and does nothing otherwise,
whereas if (a,,seq) evaluates seq if a is equal to zero, and does nothing otherwise. You could get
the same result using the ! (not) operator: if (!a,seq).

Note that the boolean operators && and || are evaluated according to operator precedence as
explained in Section 2.4, but that, contrary to other operators, the evaluation of the arguments is
stopped as soon as the final truth value has been determined. For instance

if (reallydoit && longcomplicatedfunction(), ...)%

is a perfectly safe statement.

Recall that functions such as break and next operate on loops (such as forxxx, while, until).
The if statement is not a loop (obviously!).

3.11.1.9 next({n = 1}): interrupts execution of current seq, resume the next iteration of the
innermost enclosing loop, within the current fonction call (or top level loop). If n is specified,
resume at the n-th enclosing loop. If n is bigger than the number of enclosing loops, all enclosing
loops are exited.

3.11.1.10 return({x = 0}): returns from current subroutine, with result x.

3.11.1.11 until(a, seq): evaluates expression sequence seq until a is not equal to 0 (i.e. until a is
true). If a is initially not equal to 0, seq is evaluated once (more generally, the condition on a is
tested after execution of the seq , not before as in while).

3.11.1.12 while(a, seq): while a is non-zero evaluate the expression sequence seq . The test is
made before evaluating the seq, hence in particular if a is initially equal to zero the seq will not be
evaluated at all.

3.11.2 Specific functions used in GP programming.

In addition to the general PARI functions, it is necessary to have some functions which will
be of use specifically for GP, though a few of these can be accessed under library mode. Before we
start describing these, we recall the difference between strings and keywords (see Section 2.6.5):
the latter don’t get expanded at all, and you can type them without any enclosing quotes. The
former are dynamic objects, where everything outside quotes gets immediately expanded.

We need an additional notation for this chapter. An argument between braces, followed by a
star, like {str}∗, means that any number of such arguments (possibly none) can be given.

3.11.2.1 addhelp(S, str): changes the help message for the symbol S. The string str is expanded
on the spot and stored as the online help for S. If S is a function you have defined, its definition
will still be printed before the message str . It is recommended that you document global variables
and user functions in this way. Of course GP won’t protest if you don’t do it.

There’s nothing to prevent you from modifying the help of built-in PARI functions (but if you
do, we’d like to hear why you needed to do it!).

147

3.11.2.2 alias(newkey , key): defines the keyword newkey as an alias for keyword key . key must
correspond to an existing function name. This is different from the general user macros in that
alias expansion takes place immediately upon execution, without having to look up any function
code, and is thus much faster. A sample alias file misc/gpalias is provided with the standard
distribution. Alias commands are meant to be read upon startup from the .gprc file, to cope with
function names you are dissatisfied with, and should be useless in interactive usage.

3.11.2.3 allocatemem({x = 0}): this is a very special operation which allows the user to change
the stack size after initialization. x must be a non-negative integer. If x! = 0, a new stack of size
16 ∗ dx/16e bytes will be allocated, all the PARI data on the old stack will be moved to the new
one, and the old stack will be discarded. If x = 0, the size of the new stack will be twice the size
of the old one.

Although it is a function, this must be the last instruction in any GP sequence. The technical
reason is that this routine usually moves the stack, so objects from the current sequence might not
be correct anymore. Hence, to prevent such problems, this routine terminates by a longjmp (just
as an error would) and not by a return.

The library syntax is allocatemoremem(x), where x is an unsigned long, and the return type
is void. GP uses a variant which ends by a longjmp.

3.11.2.4 default({key}, {val}, {flag}): sets the default corresponding to keyword key to value val .
val is a string (which of course accepts numeric arguments without adverse effects, due to the
expansion mechanism). See Section 2.1 for a list of available defaults, and Section 2.2 for some
shortcut alternatives. Typing default() (or \d) yields the complete default list as well as their
current values.

If val is omitted, prints the current value of default key . If flag is set, returns the result instead
of printing it.

3.11.2.5 error({str}∗): outputs its argument list (each of them interpreted as a string), then
interrupts the running GP program, returning to the input prompt.

Example: error("n = ", n, " is not squarefree !").

Note that, due to the automatic concatenation of strings, you could in fact use only one
argument, just by suppressing the commas.

UNIX: 3.11.2.6 extern(str): the string str is the name of an external command (i.e. one you would type
from your UNIX shell prompt). This command is immediately run and its input fed into GP, just
as if read from a file.

3.11.2.7 getheap(): returns a two-component row vector giving the number of objects on the
heap and the amount of memory they occupy in long words. Useful mainly for debugging purposes.

The library syntax is getheap().

3.11.2.8 getrand(): returns the current value of the random number seed. Useful mainly for
debugging purposes.

The library syntax is getrand(), returns a C long.

3.11.2.9 getstack(): returns the current value of top − avma, i.e. the number of bytes used up
to now on the stack. Should be equal to 0 in between commands. Useful mainly for debugging
purposes.

The library syntax is getstack(), returns a C long.

148

3.11.2.10 gettime(): returns the time (in milliseconds) elapsed since either the last call to get-
time, or to the beginning of the containing GP instruction (if inside GP), whichever came last.

The library syntax is gettime(), returns a C long.

3.11.2.11 global({list of variables}): declares the corresponding variables to be global. From
now on, you will be forbidden to use them as formal parameters for function definitions or as loop
indexes. This is especially useful when patching together various scripts, possibly written with
different naming conventions. For instance the following situation is dangerous:

p = 3 \\ fix characteristic
...
forprime(p = 2, N, ...)
f(p) = ...

since within the loop or within the function’s body (even worse: in the subroutines called in
that scope), the true global value of p will be hidden. If the statement global(p = 3) appears at
the beginning of the script, then both expressions will trigger syntax errors.

Calling global without arguments prints the list of global variables in use. In particular,
eval(global) will output the values of all local variables.

3.11.2.12 input(): reads a string, interpreted as a GP expression, from the input file, usually
standard input (i.e. the keyboard). If a sequence of expressions is given, the result is the result
of the last expression of the sequence. When using this instruction, it is useful to prompt for the
string by using the print1 function. Note that in the present version 2.19 of pari.el, when using
GP under GNU Emacs (see Section 2.9) one must prompt for the string, with a string which ends
with the same prompt as any of the previous ones (a "? " will do for instance).

UNIX: 3.11.2.13 install(name, code, {gpname}, {lib}): loads from dynamic library lib the function name.
Assigns to it the name gpname in this GP session, with argument code code (see Section 4.9.2 for
an explanation of those). If lib is omitted, uses libpari.so. If gpname is omitted, uses name.

This function is useful for adding custom functions to the GP interpreter, or picking useful
functions from unrelated libraries. For instance, it makes the function system obsolete:

? install(system, vs, sys, "libc.so")
? sys("ls gp*")
gp.c gp.h gp_rl.c

But it also gives you access to all (non static) functions defined in the PARI library. For
instance, the function GEN addii(GEN x, GEN y) adds two PARI integers, and is not directly
accessible under GP (it’s eventually called by the + operator of course):

? install("addii", "GG")
? addii(1, 2)
%1 = 3

149

Caution: This function may not work on all systems, especially when GP has been compiled
statically. In that case, the first use of an installed function will provoke a Segmentation Fault,
i.e. a major internal blunder (this should never happen with a dynamically linked executable).
Hence, if you intend to use this function, please check first on some harmless example such as the
ones above that it works properly on your machine.

3.11.2.14 kill(s): kills the present value of the variable, alias or user-defined function s. The
corresponding identifier can now be used to name any GP object (variable or function). This is the
only way to replace a variable by a function having the same name (or the other way round), as in
the following example:

? f = 1
%1 = 1
? f(x) = 0
*** unused characters: f(x)=0

^----
? kill(f)
? f(x) = 0
? f()
%2 = 0

When you kill a variable, all objects that used it become invalid. You can still display them,
even though the killed variable will be printed in a funny way (following the same convention as
used by the library function fetch var, see Section 4.6). For example:

? a^2 + 1
%1 = a^2 + 1
? kill(a)
? %1
%2 = #<1>^2 + 1

If you simply want to restore a variable to its “undefined” value (monomial of degree one), use
the quote operator: a = ’a. Predefined symbols (x and GP function names) cannot be killed.

3.11.2.15 print({str}∗): outputs its (string) arguments in raw format, ending with a newline.

3.11.2.16 print1({str}∗): outputs its (string) arguments in raw format, without ending with a
newline (note that you can still embed newlines within your strings, using the \n notation !).

3.11.2.17 printp({str}∗): outputs its (string) arguments in prettyprint (beautified) format, ending
with a newline.

3.11.2.18 printp1({str}∗): outputs its (string) arguments in prettyprint (beautified) format,
without ending with a newline.

3.11.2.19 printtex({str}∗): outputs its (string) arguments in TEX format. This output can then
be used in a TEX manuscript. The printing is done on the standard output. If you want to print
it to a file you should use writetex (see there).

Another possibility is to enable the log default (see Section 2.1). You could for instance do:

default(logfile, "new.tex");
default(log, 1);
printtex(result);

(You can use the automatic string expansion/concatenation process to have dynamic file names if
you wish).

150

3.11.2.20 quit(): exits GP.

3.11.2.21 read({str}): reads in the file whose name results from the expansion of the string str .
If str is omitted, re-reads the last file that was fed into GP. The return value is the result of the
last expression evaluated.

3.11.2.22 reorder({x = []}): x must be a vector. If x is the empty vector, this gives the vector
whose components are the existing variables in increasing order (i.e. in decreasing importance).
Killed variables (see kill) will be shown as 0. If x is non-empty, it must be a permutation of
variable names, and this permutation gives a new order of importance of the variables, for output
only. For example, if the existing order is [x,y,z], then after reorder([z,x]) the order of
importance of the variables, with respect to output, will be [z,y,x]. The internal representation
is unaffected.

3.11.2.23 setrand(n): reseeds the random number generator to the value n. The initial seed is
n = 1.

The library syntax is setrand(n), where n is a long. Returns n.

UNIX: 3.11.2.24 system(str): str is a string representing a system command. This command is executed,
its output written to the standard output (this won’t get into your logfile), and control returns to
the PARI system. This simply calls the C system command.

3.11.2.25 trap({e}, {rec}, {seq}): tries to execute seq , trapping error e, that is effectively pre-
venting it from aborting computations in the usual way; the recovery sequence rec is executed if
the error occurs and the evaluation of rec becomes the result of the command. If e is omitted, all
exceptions are trapped. Note in particular that hitting ^C (Control-C) raises an exception.

? \\ trap division by 0
? inv(x) = trap (gdiver2, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY

If seq is omitted, defines rec as a default action when encountering exception e. The error
message is printed, as well as the result of the evaluation of rec, and the control is given back to
the GP prompt. In particular, current computation is then lost.

The following error handler prints the list of all user variables, then stores in a file their name
and their values:

? { trap(,
print(reorder);
write("crash", reorder);
write("crash", eval(reorder))) }

If no recovery code is given (rec is omitted) a so-called break loop will be started. During a
break loop, all commands are read and evaluated as during the main GP loop (except that no
history of results is kept).

To get out of the break loop, you can use next, break or return; reading in a file by \r will
also terminate the loop once the file has been read (read will remain in the break loop). If the
error is not fatal (^C is the only non-fatal error), next will continue the computation as if nothing
had happened (except of course, you may have changed GP state during the break loop); otherwise

151

control will come back to the GP prompt. After a user interrupt (^C), entering an empty input line
(i.e hitting the return key) has the same effect as next.

Break loops are useful as a debugging tool to inspect the values of GP variables to understand
why a problem occurred, or to change GP behaviour (increase debugging level, start storing results
in a logfile, modify parameters. . .) in the middle of a long computation (hit ^C, type in your
modifications, then type next).

If rec is the empty string "" the last default handler is popped out, and replaced by the previous
one for that error.

Note: The interface is currently not adequate for trapping individual exceptions. In the current
version 2.1.1, the following keywords are recognized, but the name list will be expanded and changed
in the future (all library mode errors can be trapped: it’s a matter of defining the keywords to GP,
and there are currently far too many useless ones):

accurer: accuracy problem

gdiver2: division by 0

archer: not available on this architecture or operating system

typeer: wrong type

errpile: the PARI stack overflows

3.11.2.26 type(x, {t}): this is useful only under GP. If t is not present, returns the internal type
number of the PARI object x. Otherwise, makes a copy of x and sets its type equal to type t, which
can be either a number or, preferably since internal codes may eventually change, a symbolic name
such as t_FRACN (you can skip the t_ part here, so that FRACN by itself would also be all right).
Check out existing type names with the metacommand \t.

GP won’t let you create meaningless objects in this way where the internal structure doesn’t
match the type. This function can be useful to create reducible rationals (type t_FRACN) or rational
functions (type t_RFRACN). In fact it’s the only way to do so in GP. In this case, the created object,
as well as the objects created from it, will not be reduced automatically, making some operations
a bit faster.

There is no equivalent library syntax, since the internal functions typ and settyp are available.
Note that settyp does not create a copy of x, contrary to most PARI functions. It also doesn’t
check for consistency. settyp just changes the type in place and returns nothing. typ returns a
C long integer. Note also the different spellings of the internal functions (set)typ and of the GP
function type, which is due to the fact that type is a reserved identifier for some C compilers.

3.11.2.27 whatnow(key): if keyword key is the name of a function that was present in GP version
1.39.15 or lower, outputs the new function name and syntax, if it changed at all (387 out of 560
did).

3.11.2.28 write(filename, {str∗}): writes (appends) to filename the remaining arguments, and
appends a newline (same output as print).

3.11.2.29 write1(filename, {str∗}): writes (appends) to filename the remaining arguments with-
out a trailing newline (same output as print1).

3.11.2.30 writetex(filename, {str∗}): as write, in TEX format.

152

Chapter 4:

Programming PARI in Library Mode

4.1 Introduction: initializations, universal objects.

To be able to use PARI in library mode, you must write a C program and link it to the PARI
library. See the installation guide (in Appendix A) on how to create and install the library and
include files. A sample Makefile is presented in Appendix B.

Probably the best way to understand how programming is done is to work through a complete
example. We will write such a program in Section 4.8. Before doing this, a few explanations are in
order.

First, one must explain to the outside world what kind of objects and routines we are going to
use. This is done simply with the statement

#include <pari.h>

This file pari.h imports all the necessary constants, variables and functions, defines some important
macros, and also defines the fundamental type for all PARI objects: the type GEN, which is simply
a pointer to long.

Technical note: we would have liked to define a type GEN to be a pointer to itself. This unfortu-
nately is not possible in C, except by using structures, but then the names become unwieldy. The
result of this is that when we use a component of a PARI object, it will be a long, hence will need
to be typecast to a GEN again if we want to avoid warnings from the compiler. This will sometimes
be quite tedious, but of course is trivially done. See the discussion on typecasts in the next section.

After declaring the use of the file pari.h, the first executable statement of a main program
should be to initialize the PARI system, and in particular the PARI stack which will be both a
scratchboard and a repository for computed objects. This is done with a call to the function

void pari init(long size, long maxprime))

The first argument is the number of bytes given to PARI to work with (it should not reasonably be
taken below 500000), and the second is the upper limit on a precomputed prime number table. If
you don’t want prime numbers, just put maxprime = 2. Be careful because lots a PARI functions
need this table (certainly all the ones of interest to number theorists). If you wind up with the
error message “not enough precomputed primes”, try to increase this value.

We have now at our disposal:

• a large PARI stack containing nothing. It’s a big connected chunk of memory whose size
you chose when invoking pari_init. All your computations are going to take place here. When
doing large computations, unwanted intermediate results clutter up memory very fast so some kind
of garbage collecting is needed. Most large systems do garbage collecting when the memory is
getting scarce, and this slows down the performance. In PARI we have taken a different approach:
you must do your own cleaning up when the intermediate results are not needed anymore. Special

153

purpose routines have been written to do this; we will see later how (and when, if at all) you should
use them.

• the following universal objects (by definition, objects which do not belong on the stack):
the integers 0, 1 and 2 (respectively called gzero, gun, and gdeux), the fraction 1

2 (ghalf), the
complex number i (gi). All of these are of type GEN.

In addition, space is reserved for the polynomials xv (polx[v]), and the polynomials 1v
(polun[v]). Here, xv is the name of variable number v, where 0 ≤ v ≤ MAXVARN (the exact value
of which depends on your machine, at least 16383 in any case). Both polun and polx are arrays
of GENs, the index being the polynomial variable number.

However, except for the ones corresponding to variables 0 and MAXVARN, these polynomials are
not created upon initialization. It is the programmer’s responsibility to fill them before use. We’ll
see how this is done in Section 4.6 (never through direct assignment).

• a heap which is just a linked list of permanent universal objects. For now, it contains exactly
the ones listed above. You will probably very rarely use the heap yourself; and if so, only as a
collection of individual copies of objects taken from the stack (called clones in the sequel). Thus
you need not bother with its internal structure, which may change as PARI evolves. Some complex
PARI functions may create clones for special garbage collecting purposes, usually destroying them
when returning.

• a table of primes (in fact of differences between consecutive primes), called diffptr, of type
byteptr (pointer to unsigned char). Its use is described in appendix C.

• access to all the built-in functions of the PARI library. These are declared to the outside
world when you include pari.h, but need the above things to function properly. So if you forget
the call to pari_init, you will immediately get a fatal error when running your program (usually
a segmentation fault).

4.2 Important technical notes.

4.2.1 Typecasts.

We have seen that, due to the non-recursiveness of the PARI types from the compiler’s point of
view, many typecasts will be necessary when programming in PARI. To take an example, a vector
V of dimension 2 (two components) will be represented by a chunk of memory pointed to by the
GEN V. V[0] contains coded information, in particular about the type of the object, its length, etc.
V[1] and V[2] contain pointers to the two components of V. Those coefficients V[i] themselves
are in chunks of memory whose complexity depends on their own types, and so on. This is where
typecasting will be necessary: a priori, V[i] (for i = 1, 2) is a long, but we will want to use it as
a GEN. The following two constructions will be exceedingly frequent (x and V are GENs):

V[i] = (long) x;
x = (GEN) V[i];

Note that a typecast is not a valid lvalue (cannot be put on the left side of an assignment), so
(GEN)V[i] = x would be incorrect, though some compilers may accept it.

Due to this annoyance, the PARI functions and variables that occur most frequently have
analogues which are macros including the typecast. The complete list can be found in the file

154

paricast.h (which is included by pari.h and can be found at the same place). For instance you
can abbreviate:

(long) gzero -----> zero
(long) gun -----> un
(long) polx[v] -----> lpolx[v]
(long) gadd(x,y) -----> ladd(x,y)

In general, replacing a leading g by an l in the name of a PARI function will typecast the result
to long. Note that ldiv is an ANSI C function which is is hidden in PARI by a macro of the same
name representing (long)gdiv.

The macro coeff(x,m, n) exists with exactly the meaning of x[m,n] under GP when x is a
matrix. This is a purely syntactical trick to reduce the number of typecasts and thus does not
create a copy of the coefficient (contrary to all the library functions). It can be put on the left
side of an assignment statement, and its value, of type long integer, is a pointer to the desired
coefficient object. The macro gcoeff is a synonym for (GEN) coeff, hence cannot be put on the
left side of an assignment.

To retrieve the values of elements of lists of . . . of lists of vectors, without getting infuriated
by gigantic lists of typecasts, we have the mael macros (for multidimensional array element). The
syntax is maeln(x, a1, . . . , an), where x is a GEN, the ai are indexes, and n is an integer between 2
and 5 (with a standalone mael as a synonym for mael2). This stands for x[a1][a2] . . . [an] (with all
the necessary typecasts), and returns a long (i.e. they are valid lvalues). The gmaeln macros are
synonyms for (GEN)maeln. Note that due to the implementation of matrix types in PARI (i.e. as
horizontal lists of vertical vectors), coeff(x,y) is actually completely equivalent to mael(y,x). It
is suggested that you use coeff in matrix context, and mael otherwise.

4.2.2 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have
only given the basic names of the functions. For example gadd(x, y) assumes that x and y are
PARI objects (of type GEN), and creates the result x+ y on the PARI stack. For most of the basic
operators and functions, many other variants are available. We give some examples for gadd, but
the same is true for all the basic operators, as well as for some simple common functions (a more
complete list is given in Chapter 5):

GEN gaddgs(GEN x, long y)

GEN gaddsg(long x, GEN y)

In the following three, z is a preexisting GEN and the result of the corresponding operation is put
into z. The size of the PARI stack does not change:

void gaddz(GEN x, GEN y, GEN z)

void gaddgsz(GEN x, long y, GEN z)

void gaddsgz(GEN x, GEN y, GEN z)

There are also low level functions which are special cases of the above:

GEN addii(GEN x, GEN y): here x and y are GENs of type t_INT (this is not checked).

GEN addrr(GEN x, GEN y): here x and y are GEN reals (type t_REAL).

There also exist functions addir, addri, mpadd (whose two arguments can be of type integer or
real), addis (to add a t_INT and a long) and so on.

155

All these functions can of course be called by the user but we feel that the few microseconds lost
in calling more general functions (in this case gadd) are compensated by the fact that one needs to
remember a much smaller number of functions, and also because there is a hidden danger here: the
types of the objects that you use, if they are themselves results of a previous computation, are not
completely predetermined. For instance the multiplication of a type real t_REAL by a type integer
t_INT usually gives a result of type real, except when the integer is 0, in which case according to
the PARI philosophy the result is the exact integer 0. Hence if afterwards you call a function which
specifically needs a real type argument, you are going to be in trouble.

If you really want to use these functions, their names are self-explanatory once you know that
i stands for a PARI integer, r for a PARI real, mp for i or r, s for an ordinary signed long, whereas
z (as a suffix) means that the result is not created on the PARI stack but assigned to a preexisting
GEN object passed as an extra argument.

For completeness, Chapter 5 gives a description of all these low-level functions.

Please note that in the present version 2.1.1 the names of the functions are not always consis-
tent. This will be changed. Hence anyone programming in PARI must be aware that the names of
almost all functions that he uses might be subject to change. If the need arises (i.e. if there really
are people out there who delve into the innards of PARI), updated versions with no name changes
will be released.

4.2.3 Portability: 32-bit / 64-bit architectures.

PARI supports both 32-bit and 64-bit based machines, but not simultaneously! The library will
have been compiled assuming a given architecture (a priori following a guess by the Configure
program, see Appendix A), and some of the header files you include (through pari.h) will have
been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs
to run identically on 32-bit and 64-bit machines, you will have to use these, and not the corre-
sponding numeric values, whenever the precise size of your long integers might matter. Here are
the most important ones:

64-bit 32-bit
BITS_IN_LONG 64 32
LONG_IS_64BIT defined undefined
DEFAULTPREC 3 4 (≈ 19 decimal digits, see formula below)
MEDDEFAULTPREC 4 6 (≈ 38 decimal digits)
BIGDEFAULTPREC 5 8 (≈ 57 decimal digits)

For instance, suppose you call a transcendental function, such as

GEN gexp(GEN x, long prec).

The last argument prec is only used if x is an exact object (otherwise the relative precision is
determined by the precision of x). But since prec sets the size of the inexact result counted in
(long) words (including codewords), the same value of prec will yield different results on 32-bit and
64-bit machines. Real numbers have two codewords (see Section 4.5), so the formula for computing
the bit accuracy is

bit accuracy(prec) = (prec− 2) ∗ BITS IN LONG

(this is actually the definition of a macro). The corresponding accuracy expressed in decimal digits
would be

bit accuracy(prec) ∗ log(2)/ log(10).

156

For example if the value of prec is 5, the corresponding accuracy for 32-bit machines is (5 − 2) ∗
log(232)/ log(10) ≈ 28 decimal digits, while for 64-bit machines it is (5− 2) ∗ log(264)/ log(10) ≈ 57
decimal digits.

Thus, you must take care to change the prec parameter you are supplying according to the bit
size, either using the default precisions given by the various DEFAULTPRECs, or by using conditional
constructs of the form:

#ifndef LONG_IS_64BIT

prec = 4;

#else

prec = 6;

#endif

which is in this case equivalent to the statement prec = MEDDEFAULTPREC;.

Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones)
have no precise equivalents on 64-bit machines.

4.3 Creation of PARI objects, assignments, conversions.

4.3.1 Creation of PARI objects. The basic function which creates a PARI object is the function
cgetg whose prototype is:

GEN cgetg(long length, long type).

Here length specifies the number of longwords to be allocated to the object, and type is the type
number of the object, preferably in symbolic form (see Section 4.5 for the list of these). The precise
effect of this function is as follows: it first creates on the PARI stack a chunk of memory of size
length longwords, and saves the address of the chunk which it will in the end return. If the stack
has been used up, a message to the effect that “the PARI stack overflows” will be printed, and an
error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills correctly
and completely its first codeword (z[0] or *z). Many PARI objects also have a second codeword
(types t_INT, t_REAL, t_PADIC, t_POL, and t_SER). In case you want to produce one of those from
scratch (this should be exceedingly rare), it is your responsibility to fill this second codeword, either
explicitly (using the macros described in Section 4.5), or implicitly using an assignment statement
(using gaffect).

Note that the argument length is predetermined for a number of types: 3 for types t_INTMOD,
t_FRAC, t_FRACN, t_COMPLEX, t_POLMOD, t_RFRAC and t_RFRACN, 4 for type t_QUAD and t_QFI,
and 5 for type t_PADIC and t_QFR. However for the sake of efficiency, no checking is done in the
function cgetg, so disasters will occur if you give an incorrect length.

157

Notes: 1) The main use of this function is to prepare for later assigments (see Section 4.3.2). Most
of the time you will use GEN objects as they are created and returned by PARI functions. In this
case you don’t need to use cgetg to create space to hold them.

2) For the creation of leaves, i.e. integers or reals, which is very common,

GEN cgeti(long length)

GEN cgetr(long length)

should be used instead of cgetg(length, t INT) and cgetg(length, t REAL) respectively.

3) The macros lgetg, lgeti, lgetr are predefined as (long)cgetg, (long)cgeti, (long)cgetr,
respectively.

Examples: 1) z = cgeti(DEFAULTPREC) and cgetg(DEFAULTPREC, t INT) create an integer ob-
ject whose “precision” is bit accuracy(DEFAULTPREC) = 64. This means z can hold rational
integers of absolute value less than 264. Note that in both cases, the second codeword will not be
filled. Of course we could use numerical values, e.g. cgeti(4), but this would have different mean-
ings on different machines as bit accuracy(4) equals 64 on 32-bit machines, but 128 on 64-bit
machines.

2) The following creates a type “complex” object whose real and imaginary parts can hold real
numbers of precision bit accuracy(MEDDEFAULTPREC) = 96 bits:

z = cgetg(3, t_COMPLEX);
z[1] = lgetr(MEDDEFAULTPREC);
z[2] = lgetr(MEDDEFAULTPREC);

3) To create a matrix object for 4× 3 matrices:

z = cgetg(4, t_MAT);
for(i=1; i<4; i++) z[i] = lgetg(5, t_COL);

If one wishes to create space for the matrix elements themselves, one has to follow this with a
double loop to fill each column vector.

These last two examples illustrate the fact that since PARI types are recursive, all the branches
of the tree must be created. The function cgetg creates only the “root”, and other calls to cgetg
must be made to produce the whole tree. For matrices, a common mistake is to think that z =
cgetg(4, t MAT) (for example) will create the root of the matrix: one needs also to create the
column vectors of the matrix (obviously, since we specified only one dimension in the first cgetg!).
This is because a matrix is really just a row vector of column vectors (hence a priori not a basic
type), but it has been given a special type number so that operations with matrices become possible.

4.3.2 Assignments. Firstly, if x and y are both declared as GEN (i.e. pointers to something), the
ordinary C assignment y = x makes perfect sense: we are just moving a pointer around. However,
physically modifying either x or y (for instance, x[1] = 0) will also change the other one, which is
usually not desirable.

158

Very important note: Using the functions described in this paragraph is very inefficient and often
awkward: one of the gerepile functions (see Section 4.4) should be preferred. See the paragraph
end for some exceptions to this rule.

The general PARI assignment function is the function gaffect with the following syntax:

void gaffect(GEN x, GEN y)

Its effect is to assign the PARI object x into the preexisting object y. This copies the whole structure
of x into y so many conditions must be met for the assignment to be possible. For instance it is
allowed to assign an integer into a real number, but the converse is forbidden. For that, you must
use the truncation or rounding function of your choice (see section 3.2). It can also happen that
y is not large enough or does not have the proper tree structure to receive the object x. As an
extreme example, assume y is the zero integer with length equal to 2. Then all assignments of a
non-zero integer into y will result in an error message since y is not large enough to accommodate a
non-zero integer. In general common sense will tell you what is possible, keeping in mind the PARI
philosophy which says that if it makes sense it is legal. For instance, the assignment of an imprecise
object into a precise one does not make sense. However, a change in precision of imprecise objects
is allowed.

All functions ending in “z” such as gaddz (see Section 4.2.2) implicitly use this function. In
fact what they exactly do is record avma (see Section 4.4), perform the required operation, gaffect
the result to the last operand, then restore the initial avma.

You can assign ordinary C long integers into a PARI object (not necessarily of type t_INT).
Use the function gaffsg with the following syntax:

void gaffsg(long s, GEN y)

Note: due to the requirements mentionned above, it’s usually a bad idea to use gaffect statements.
Two exceptions:

• for simple objects (e.g. leaves) whose size is controlled, they can be easier to use than gerepile,
and about as efficient.

• to coerce an inexact object to a given precision. For instance

gaffect(x, (tmp=cgetr(3))); x = tmp;

at the beginning of a routine where precision can be kept to a minimum (otherwise the precision of
x will be used in all subsequent computations, which will be a disaster if x is known to thousands
of digits).

4.3.3 Copy. It is also very useful to copy a PARI object, not just by moving around a pointer as
in the y = x example, but by creating a copy of the whole tree structure, without pre-allocating a
possibly complicated y to use with gaffect. The function which does this is called gcopy, with
the predefined macro lcopy as a synonym for (long)gcopy. Its syntax is:

GEN gcopy(GEN x)

and the effect is to create a new copy of x on the PARI stack. Beware that universal objects which
occur in specific components of certain types (mainly moduli for types t_INTMOD and t_PADIC) are
not copied, as they are assumed to be permanent. In this case, gcopy only copies the pointer. Use
GEN forcecopy(GEN x) if you want a complete copy.

Please be sure at this point that you really understand the difference between y = x, y =
gcopy(x), and gaffect(x,y): this will save you from many “obvious” mistakes later on.

159

4.3.4 Clones. Sometimes, it may be more efficient to create a permanent copy of a PARI object.
This will not be created on the stack but on the heap. The function which does this is called
gclone, with the predefined macro lclone as a synonym for (long)gclone. Its syntax is:

GEN gclone(GEN x)

A clone can be removed from the heap (thus destroyed) using

void gunclone(GEN x)

No PARI object should keep references to a clone which has been destroyed. If you want to copy a
clone back to the stack then delete it, use forcecopy and not gcopy, otherwise some components
might not be copied (moduli of t_INTMODs and t_POLMODs for instance).

4.3.5 Conversions. The following functions convert C objects to PARI objects (creating them on
the stack as usual):

GEN stoi(long s): C long integer (“small”) to PARI integer (t_INT)

GEN dbltor(double s): C double to PARI real (t_REAL). The accuracy of the result is 19 decimal
digits, i.e. a type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them will
be significant.

We also have the converse functions:

long itos(GEN x): x must be of type t_INT,

double rtodbl(GEN x): x must be of type t_REAL,

as well as the more general ones:

long gtolong(GEN x),

double gtodouble(GEN x).

4.4 Garbage collection.

4.4.1 Why and how.

As we have seen, the pari init routine allocates a big range of addresses (the stack) that are going
to be used throughout. Recall that all PARI objects are pointers. But for universal objects, they
will all point at some part of the stack.

The stack starts at the address bot and ends just before top. This means that the quantity

(top− bot) / sizeof(long)

is equal to the size argument of pari init. The PARI stack also has a “current stack pointer”
called avma, which stands for available memory address. These three variables are global (declared
for you by pari.h). For historical reasons they are of type long and not of type GEN as would seem
more natural.

The stack is oriented upside-down: the more recent an object, the closer to bot. Accordingly,
initially avma = top, and avma gets decremented as new objects are created. As its name indicates,
avma always points just after the first free address on the stack, and (GEN)avma is always (a
pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all

160

computations, and an error message is issued. To avoid this you will need to clean up the stack
from time to time, when some bunch of intermediate objects will not be needed anymore. This is
called “garbage collecting.”

We are now going to describe briefly how this is done. We will see many concrete examples in
the next subsection.

• First, PARI routines will do their own garbage collecting, which means that whenever a doc-
umented function from the library returns, only its result(s) will have been added to the stack
(non-documented ones may not do this, for greater speed). In particular, a PARI function that
does not return a GEN does not clutter the stack. Thus, if your computation is small enough
(i.e. you call few PARI routines, or most of them return long integers), then you don’t need to do
any garbage collecting. This will probably be the case in many of your subroutines. Of course the
objects that were on the stack before the function call are left alone. Except for the ones listed
below, PARI functions only collect their own garbage.

• It may happen that all objects that were created after a certain point can be deleted — for
instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough
to record the value of avma just before the first garbage is created, and restore it upon exit:

long ltop = avma; /* record initial avma */

garbage ...
avma = ltop; /* restore it */

All objects created in the garbage zone will eventually be overwritten: they should not be accessed
anymore once avma has been restored.

• If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the
stack (e.g. the latest one obtained from a function call), and the above method is not available
(because the initial value of avma has been lost), just use the function

void cgiv(GEN z)

where z is the object you want to give back.

• Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage
during a computation without losing recent data. For this you need the gerepile function (or one
of its variants described hereafter):

GEN gerepile(long ltop, long lbot, GEN q)

This function cleans up the stack between ltop and lbot, where lbot < ltop, and returns the
updated object q. This means:

1) we translate (copy) all the objects in the interval [avma, lbot[, so that its right extremity
abuts the address ltop. Graphically

bot avma lbot ltop top
End of stack |-------------[++++++[-/-/-/-/-/-/-|++++++++| Start

free memory garbage

becomes:

bot avma ltop top
End of stack |---------------------------[++++++[++++++++| Start

free memory

161

where ++ denote significant objects, -- the unused part of the stack, and -/- the garbage we
remove.

2) The function then inspects all the PARI objects between avma and lbot (i.e. the ones that
we want to keep and that have been translated) and looks at every component of such an object
which is not a codeword. Each such component is a pointer to an object whose address is either

— between avma and lbot, in which case it will be suitably updated,

— larger than or equal to ltop, in which case it will not change, or

— between lbot and ltop in which case gerepile will scream an error message at you (“sig-
nificant pointers lost in gerepile”).

3) avma is updated (we add ltop− lbot to the old value).

4) We return the (possibly updated) object q: if q initially pointed between avma and lbot,
we return the translated address, as in 2). If not, the original address is still valid (and we return
it!).

As stated above, no component of the remaining objects (in particular q) should belong to the
erased segment [lbot, ltop[, and this is checked within gerepile. But beware as well that the
addresses of all the objects in the translated zone will have changed after a call to gerepile: every
pointer you may have kept around elsewhere, outside the stack objects, which previously pointed
into the zone below ltop must be discarded. If you need to recover more than one object, use one
of the gerepilemany functions below.

As a consequence of the preceding explanation, we must now state the most important law
about programming in PARI:

If a given PARI object is to be relocated by gerepile then, apart from universal ob-
jects, the chunks of memory used by its components should be in consecutive memory
locations. All GENs created by documented PARI function are guaranteed to satisfy this.

This is because the gerepile function knows only about two connected zones: the garbage
that will be erased (between lbot and ltop) and the significant pointers that will be copied and
updated. If there is garbage interspersed with your objects, disasters will occur when we try to
update them and consider the corresponding “pointers”. So be very wary when you allow objects
to become disconnected. Have a look at the examples, it’s not as complicated as it seems.

In practice this is achieved by the following programming idiom:

ltop=avma; garbage(); lbot=avma; q=anything();
return gerepile(ltop, lbot, q); /* returns the updated q */

Beware that

ltop=avma; garbage();
return gerepile(ltop, avma, anything())

might work, but should be frowned upon. We can’t predict whether avma is going to be evaluated
after or before the call to anything(): it depends on the compiler. If we are out of luck, it will be
after the call, so the result will belong to the garbage zone and the gerepile statement becomes
equivalent to avma = ltop. Thus we would return a pointer to random garbage.

• A simple variant is

GEN gerepileupto(long ltop, GEN q)

162

which cleans the stack between ltop and the connected object q and returns q updated. For this
to work, q must have been created before all its components, otherwise they would belong to the
garbage zone! Documented PARI functions guarantee this. If you stumble upon one that does not,
consider it a bug worth reporting.

• To cope with complicated cases where many objects have to be preserved, you can use

void gerepilemany(long ltop, GEN *gptr[], long n))

which cleans up the most recent part of the stack (between ltop and avma). All the GENs pointed
at by the elements of the array gptr (of length n) are updated. A copy is done just before the
cleaning to preserve them, so they don’t need to be connected before the call. This is the most
robust of the gerepile functions (the less prone to user error), but also the slowest.

• More efficient, but trickier to use is

void gerepilemanysp(long ltop, long lbot, GEN *gptr[], long n)

which cleans the stack between lbot and ltop and updates the GENs pointed at by the elements
of gptr without doing any copying. This is subject to the same restrictions as gerepile, the only
difference being that more than one address gets updated.

4.4.2 Examples.

Let x and y be two preexisting PARI objects and suppose that we want to compute x2 + y2. This
can trivially be done using the following program (we skip the necessary declarations; everything
in sight is a GEN):

p1 = gsqr(x);
p2 = gsqr(y); z = gadd(p1,p2);

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as
unnecessary garbage p1 and p2. More precisely it contains (in this order) z, p2, p1 (recall that,
since the stack grows downward from the top, the most recent object comes first). We need a way
to get rid of this garbage (in this case it causes no harm except that it occupies memory space, but
in other cases it could disconnect other PARI objects and this is dangerous).

It would not have been possible to get rid of p1, p2 before z is computed, since they are used
in the final operation. We cannot record avma before p1 is computed and restore it later, since this
would destroy z as well. It is not possible either to use the function cgiv since p1 and p2 are not
at the bottom of the stack and we don’t want to give back z.

But using gerepile, we can give back the memory locations corresponding to p1, p2, and
move the object z upwards so that no space is lost. Specifically:

ltop = avma; /* remember the current address of the top of the stack */
p1 = gsqr(x); p2 = gsqr(y);
lbot = avma; /* keep the address of the bottom of the garbage pile */
z = gadd(p1, p2); /* z is now the last object on the stack */
z = gerepile(ltop, lbot, z); /* garbage collecting */

Of course, the last two instructions could also have been written more simply:

z = gerepile(ltop, lbot, gadd(p1,p2));

In fact gerepileupto is even simpler to use, because the result of gadd will be the last object on
the stack and gadd is guaranteed to return an object suitable for gerepileupto:

163

ltop = avma;
z = gerepileupto(ltop, gadd(gsqr(x), gsqr(y)));

As you can see, in simple conditions the use of gerepile is not really difficult. However make sure
you understand exactly what has happened before you go on (use the figure from the preceding
section).

Important remark: as we will see presently it is often necessary to do several gerepiles during
a computation. However, the fewer the better. The only condition for gerepile to work is that
the garbage be connected. If the computation can be arranged so that there is a minimal number
of connected pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two GEN variables x and y which creates
the vector [x2 + y, y2 + x]. Without garbage collecting, one would write:

p1 = gsqr(x); p2 = gadd(p1, y);
p3 = gsqr(y); p4 = gadd(p3, x);
z = cgetg(3,t_VEC);
z[1] = (long)p2;
z[2] = (long)p4;

This leaves a dirty stack containing (in this order) z, p4, p3, p2, p1. The garbage here consists of
p1 and p3, which are separated by p2. But if we compute p3 before p2 then the garbage becomes
connected, and we get the following program with garbage collecting:

ltop = avma; p1 = gsqr(x); p3 = gsqr(y); lbot = avma;
z = cgetg(3,t_VEC);
z[1] = ladd(p1,y);
z[2] = ladd(p3,x);
z = gerepile(ltop,lbot,z);

Finishing by z = gerepileupto(ltop, z) would be ok as well. But when you have the choice,
it’s usually clearer to brace the garbage between ltop / lbot pairs.

Beware that

ltop = avma; p1 = gadd(gsqr(x), y); p3 = gadd(gsqr(y), x);
z = cgetg(3,t_VEC);
z[1] = (long)p1;
z[2] = (long)p3
z = gerepileupto(ltop,z); /* WRONG !!! */

would be a disaster since p1 and p3 would be created before z, so the call to gerepileupto would
overwrite them, leaving z[1] and z[2] pointing at random data!

We next want to write a program to compute the product of two complex numbers x and y,
using a method which takes only 3 multiplications instead of 4. Let z = x∗y, and set x = xr+ i∗xi
and similarly for y and z. The well-known trick is to compute p1 = xr ∗ yr, p2 = xi ∗ yi, p3 =
(xr + xi) ∗ (yr + yi), and then we have zr = p1− p2, zi = p3− (p1 + p2). The program is essentially
as follows:

ltop = avma;
p1 = gmul(x[1],y[1]);
p2 = gmul(x[2],y[2]);
p3 = gmul(gadd(x[1],x[2]), gadd(y[1],y[2]));

164

p4 = gadd(p1,p2); lbot = avma;
z = cgetg(3,t_COMPLEX);
z[1] = lsub(p1,p2);
z[2] = lsub(p3,p4);
z = gerepile(ltop,lbot,z);

“Essentially”, because for instance x[1] is a long and not a GEN, so we need to insert many annoying
typecasts: p1 = gmul((GEN)x[1], (GEN)y[1]) and so on.

Let us now look at a less trivial example where more than one gerepile is needed in practice
(at the expense of efficiency, one can always use only one using gcopy; see below). Suppose that
we want to write a function which multiplies a line vector by a matrix (such a function is of course
already part of gmul, but let’s ignore this for a moment). Then the most natural way is to do a
cgetg of the result immediately, and then a gerepile for each coefficient of the result vector to get
rid of the garbage which has accumulated while this particular coefficient was computed. We leave
the details to the reader, who can look at the answer in the file basemath/gen1.c, in the function
gmul, case t_VEC times case t_MAT. It would theoretically be possible to have a single connected
piece of garbage, but it would be a much less natural and unnecessarily complicated program.

Let us now take an example which is probably the least trivial way of using gerepile, but is
unfortunately sometimes necessary. Although it is not an infrequent occurrence, we will not give
a specific example but a general one: suppose that we want to do a computation (usually inside
a larger function) producing more than one PARI object as a result, say two for instance. Then
even if we set up the work properly, before cleaning up we will have a stack which has the desired
results z1, z2 (say), and then connected garbage from lbot to ltop. If we write

z1 = gerepile(ltop,lbot,z1);

then the stack will be cleaned, the pointers fixed up, but we will have lost the address of z2. This
is where we need one of the gerepilemany functions: we declare

GEN *gptr[2]; /* Array of pointers to GENs */
gptr[0] = &z1; gptr[1] = &z2;

and now the call gerepilemany(ltop, gptr, 2) copies z1 and z2 to new locations, cleans the
stack from ltop to the old avma, and updates the pointers z1 and z2. Here we don’t assume
anything about the stack: the garbage can be disconnected and z1, z2 need not be at the bottom
of the stack. If all of these assumptions are in fact satisfied, then we can call gerepilemanysp
instead, which will usually be faster since we don’t need the initial copy (on the other hand, it is
less cache friendly).

Another important usage is “random” garbage collection during loops whose size requirements
we cannot (or don’t bother to) control in advance:

long ltop = avma, limit = (avma+bot)/2;
GEN x, y;

while (...)
{
garbage(); x = anything();
garbage(); y = anything()
garbage();
if (avma < limit) /* memory is running low (half spent since entry) */
{

165

GEN *gptr[2];
gptr[0] = &x; gptr[1] = &y;
gerepilemany(ltop, gptr, 2);

}
}

Here we assume that only x and y are needed from one iteration to the next. As it would be too
costly to call gerepile once for each iteration, we only do it when it seems to have become necessary.
Of course, when the need arises, you can use bigger gptr arrays: in the PARI library source code,
we once needed to preserve up to 10 objects at a time (in a variant of the LLL algorithm)!

Technical note: the statement limit = (avma+bot)/2 is dangerous since the addition can over-
flow, which would result in limit being negative. This will prevent garbage collection in the loop.
To avoid this problem, we provide a robust macro stack_lim(avma,n), which denotes an address
where 2n−1/(2n−1 + 1) of the total stack space is exhausted (1/2 for n = 1, 2/3 for n = 2). Hence,
the above snippet should be written as

long ltop = avma, limit = stack_lim(avma,1);
. . .

4.4.3 Some hints and tricks. In this section, we give some indications on how to avoid most
problems connected with garbage collecting:

First, although it looks complicated, gerepile has turned out to be a very flexible and fast
garbage collector, which compares very favorably with much more sophisticated methods used in
other systems. A few tests that we have done indicate that the price paid for using gerepile, when
properly used, is usually around 1 or 2 percents of the total time, which is quite acceptable.

Secondly, in many cases, in particular when the tree structure and the size of the PARI objects
which will appear in a computation are under control, one can avoid gerepile altogether by creating
sufficiently large objects at the beginning (using cgetg), and then using assignment statements and
operations ending with z (such as gaddz). Coming back to our first example, note that if we know
that x and y are of type real and of length less than or equal to 5, we can program without using
gerepile at all:

z = cgetr(5); ltop = avma;
p1 = gsqr(x); p2 = gsqr(y); gaddz(p1,p2,z);
avma = ltop;

This practice will usually be slower than a craftily used gerepile though, and is certainly more
cumbersome to use. As a rule, assignment statements should generally be avoided.

Thirdly, the philosophy of gerepile is the following: keep the value of the stack pointer avma
at the beginning, and just before the last operation. Afterwards, it would be too late since the lower
end address of the garbage zone would have been lost. Of course you can always use gerepileupto,
but you will have to assume that the object was created before its components.

Finally, if everything seems hopeless, at the expense of speed you can do the following: after
saving the value of avma in ltop, perform your computation as you wish, in any order, leaving a
messy stack. Let z be your result. Then write the following:

z = gerepileupto(ltop, gcopy(z));

166

The trick is to force a copy of z to be created at the bottom of the stack, hence all the rest
including the initial z becomes connected garbage. If you need to keep more than one result, use
gerepilemany (of which the above is just a special case).

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.5 Implementation of the PARI types.

Although it is a little tedious, we now go through each type and explain its implementation. Let
z be a GEN, pointing at a PARI object. In the following paragraphs, we will constantly mix two
points of view: on the one hand, z will be treated as the C pointer it is (in the context of program
fragments like z[1]), on the other, as PARI’s handle on (the internal representation of) some
mathematical entity, so we will shamelessly write z 6= 0 to indicate that the value thus represented
is nonzero (in which case the pointer z certainly will be non-NULL). We offer no apologies for this
style. In fact, you had better feel comfortable juggling both views simultaneously in your mind if
you want to write correct PARI programs.

Common to all the types is the first codeword z[0], which we don’t have to worry about since
this is taken care of by cgetg. Its precise structure will depend on the machine you are using,
but it always contain the following data: the internal type number associated to the symbolic type
name, the length of the root in longwords, and a technical bit which indicates whether the object
is a clone (see below) or not. This last one is used by GP for internal garbage collecting, you won’t
have to worry about it.

These data can be handled through the following macros:

long typ(GEN z) returns the type number of z.

void settyp(GEN z, long n) sets the type number of z to n (you should not have to use this
function if you use cgetg).

long lg(GEN z) returns the length (in longwords) of the root of z.

long setlg(GEN z, long l) sets the length of z to l (you should not have to use this function if
you use cgetg; however, see an advanced example in Section 4.8).

(If you know enough about PARI to need to access the “clone” bit, then you’ll be able to find usage
hints in the code (esp. killbloc() and matrix block()). It is technical after all.)

These macros are written in such a way that you don’t need to worry about type casts when
using them: i.e. if z is a GEN, typ(z[2]) will be accepted by your compiler, without your having to
explicitly type typ((GEN)z[2]). Note that for the sake of efficiency, none of the codeword-handling
macros check the types of their arguments even when there are stringent restrictions on their use.

The possible second codeword is used differently by the different types, and we will describe
it as we now consider each of them in turn:

167

4.5.1 Type t_INT (integer): this type has a second codeword z[1] which contains the following
information:

the sign of z: coded as 1, 0 or −1 if z > 0, z = 0, z < 0 respectively.

the effective length of z, i.e. the total number of significant longwords. This means the following:
apart from the integer 0, every integer is “normalized”, meaning that the first mantissa longword
(i.e. z[2]) is non-zero. However, the integer may have been created with a longer length. Hence
the “length” which is in z[0] can be larger than the “effective length” which is in z[1]. Accessing
z[i] for i larger than or equal to the effective length will yield random results.

This information is handled using the following macros:

long signe(GEN z) returns the sign of z.

void setsigne(GEN z, long s) sets the sign of z to s.

long lgefint(GEN z) returns the effective length of z.

void setlgefint(GEN z, long l) sets the effective length of z to l.

The integer 0 can be recognized either by its sign being 0, or by its effective length being
equal to 2. When z 6= 0, the word z[2] exists and is non-zero, and the absolute value of z is
(z[2],z[3],. . . ,z[lgefint(z)-1]) in base 2^BITS IN LONG, where as usual in this notation z[2]
is the highest order longword.

The following further macros are available:

long mpodd(GEN x) which is 1 if x is odd, and 0 otherwise.

long mod2(GEN x), mod4(x), and so on up to mod64(x), which give the residue class of x
modulo the corresponding power of 2, for positive x (you will obtain weird results if you use these
on the integer 0 or on negative numbers).

These macros directly access the binary data and are thus much faster than the generic modulo
functions. Besides, they return long integers instead of GENs, so they don’t clutter up the stack.

4.5.2 Type t_REAL (real number): this type has a second codeword z[1] which also encodes its
sign (obtained or set using the same functions as for the integers), and a biased binary exponent
(i.e. the actual exponent value plus some constant bias, actually a power of 2, whose value is given
by HIGHEXPOBIT). This exponent can be handled using the following macros:

long expo(GEN z) returns the true (unbiased) exponent of z. This is defined even when z is equal
to zero, see Section 1.2.6.3.

void setexpo(GEN z, long e) sets the exponent of z to e, of course after adding the bias.

Note the functions:

long gexpo(GEN z) which tries to return an exponent for z, even if z is not a real number.

long gsigne(GEN z) which returns a sign for z, even when z is neither real nor integer (a rational
number for instance).

The real zero is characterized by having its sign equal to 0. However, usually the first mantissa
word z[2] is defined and equal to 0. This fact must never be used to recognize a real 0. If z is
not equal to 0, the first mantissa word z[2] is normalized, i.e. its most significant bit is 1. The
mantissa is (z[2],z[3],. . . ,z[lg(z]-1]) in base 2^BITS IN LONG. Here, z[2] is the most significant

168

longword, and the mantissa takes values between 1 (included) and 2 (excluded). Thus, assume that
sizeof(long) is 32 and the length is 4, the real number 3.5 is represented as z[0] (encoding
type = t REAL, lg = 4), z[1] (encoding sign = 1, expo = 1), z[2] = 0xe0000000, z[3] = 0x0.

4.5.3 Type t_INTMOD (integermod): z[1] points to the modulus, and z[2] at the number
representing the class z. Both are separate GEN objects, and both must be of type integer, satisfying
the inequality 0 ≤ z[2] < z[1].

It is good practice to keep the modulus object on the heap, so that new integermods resulting
from operations can point at this common object, instead of carrying along their own copies of it
on the stack. The library functions implement this practice almost by default.

4.5.4 Type t_FRAC and t_FRACN (rational number): z[1] points to the numerator, and z[2]
to the denominator. Both must be of type integer. In principle z[2] > 0, but this rule does not have
to be strictly obeyed. Note that a type t_FRACN rational number can be converted to irreducible
form using the function GEN gred(GEN x).

4.5.5 Type t_COMPLEX (complex number): z[1] points to the real part, and z[2] to the
imaginary part. A priori z[1] and z[2] can be of any type, but only certain types are useful and
make sense.

4.5.6 Type t_PADIC (p-adic numbers): this type has a second codeword [1] which contains
the following information: the p-adic precision (the exponent of p modulo which the p-adic unit
corresponding to z is defined if z is not 0), i.e. one less than the number of significant p-adic digits,
and the biased exponent of z (the bias being equal to HIGHVALPBIT here). This information can be
handled using the following functions:

long precp(GEN z) returns the p-adic precision of z.

void setprecp(GEN z, long l) sets the p-adic precision of z to l.

long valp(GEN z) returns the p-adic valuation of z (i.e. the unbiased exponent). This is defined
even if z is equal to 0, see Section 1.2.6.3.

void setvalp(GEN z, long e) sets the p-adic valuation of z to e.

In addition to this codeword, z[2] points to the prime p, z[3] points to pprecp(z), and z[4]
points to an integer representing the p-adic unit associated to z modulo z[3] (and points to zero
if z is zero). To summarize, if z 6= 0, we have the equality:

z = pvalp(z) ∗ (z[4] +O(z[3])) = pvalp(z) ∗ (z[4] +O(pprecp(z)))

4.5.7 Type t_QUAD (quadratic number): z[1] points to the polynomial defining the quadratic
field, z[2] to the “real part” and z[3] to the “imaginary part”, which are to be taken as the
coefficients of z with respect to the “canonical” basis (1, w), see Section 1.2.3. Complex numbers
are a particular case of quadratics but deserve a separate type.

169

4.5.8 Type t_POLMOD (polmod): exactly as for integermods, z[1] points to the modulus, and
z[2] to a polynomial representing the class of z. Both must be of type t_POL in the same variable.
However, z[2] is allowed to be a simplification of such a polynomial, e.g a scalar. This is quite
tricky considering the hierarchical structure of the variables; in particular, a polynomial in variable
of lesser priority than the modulus variable is valid, since it can be considered as the constant term
of a polynomial of degree 0 in the correct variable. On the other hand a variable of greater priority
would not be acceptable.

4.5.9 Type t_POL (polynomial): this type has a second codeword which is analogous to the one
for integers. It contains a “sign”: 0 if the polynomial is equal to 0, and 1 if not (see however the
important remark below), a variable number (e.g. 0 for x, 1 for y, etc. . .), and an effective length.

These data can be handled with the following macros:

signe and setsigne as for reals and integers.

long lgef(GEN z) returns the effective length of z.

void setlgef(GEN z, long l) sets the effective length of z to l.

long varn(GEN z) returns the variable number of the object z.

void setvarn(GEN z, long v) sets the variable number of z to v.

Note also the function long gvar(GEN z) which tries to return a variable number for z, even
if z is not a polynomial or power series. The variable number of a scalar type is set by definition
equal to BIGINT.

The components z[2], z[3],. . . z[lgef(z)-1] point to the coefficients of the polynomial in as-
cending order, with z[2] being the constant term and so on. Note that the degree of the polynomial
is equal to its effective length minus three. The function

long degree(GEN x) returns the degree of x with respect to its main variable even when x is not
a polynomial (a rational function for instance). By convention, the degree of 0 is −1.

Important remark. A zero polynomial can be characterized by the fact that its sign is 0. However,
its effective length may be equal to 2, or greater than 2. If it is greater than 2, this means that
all the coefficients of the polynomial are equal to zero (as they should for a zero polynomial), but
not all of these zeros are exact zeros, and more precisely the leading term z[lgef(z)-1] is not an
exact zero.

4.5.10 Type t_SER (power series): This type also has a second codeword, which encodes a
“sign”, i.e. 0 if the power series is 0, and 1 if not, a variable number as for polynomials, and a
biased exponent with a bias of HIGHVALPBIT. This information can be handled with the following
functions: signe, setsigne, varn, setvarn as for polynomials, and valp, setvalp for the exponent
as for p-adic numbers. Beware: do not use expo and setexpo on power series.

If the power series is non-zero, z[2], z[3],. . . z[lg(z)-1] point to the coefficients of z in
ascending order, z[2] being the first non-zero coefficient. Note that the exponent of a power series
can be negative, i.e. we are then dealing with a Laurent series (with a finite number of negative
terms).

4.5.11 Type t_RFRAC and t_RFRACN (rational function): z[1] points to the numerator, and
z[2] on the denominator. The denominator must be of type polynomial. Note that a type t_RFRACN
rational function can be converted to irreducible form using the function gred.

170

4.5.12 Type t_QFR (indefinite binary quadratic form): z[1], z[2], z[3] point to the three
coefficients of the form and should be of type integer. z[4] is Shanks’s distance function, and
should be of type real.

4.5.13 Type t_QFI (definite binary quadratic form): z[1], z[2], z[3] point to the three
coefficients of the form. All three should be of type integer.

4.5.14 Type t_VEC and t_COL (vector): z[1], z[2],. . . z[lg(z)-1] point to the components of
the vector.

4.5.15 Type t_MAT (matrix): z[1], z[2],. . . z[lg(z)-1] point to the column vectors of z,
i.e. they must be of type t_COL and of the same length.

The last two were introduced for specific GP use, and you’ll be much better off using the standard
malloc’ed C constructs when programming in library mode. We quote them just for completeness
(advising you not to use them):

4.5.16 Type t_LIST (list): This one has a second codeword which contains an effective length
(handled through lgef / setlgef). z[2],. . . , z[lgef(z)-1] contain the components of the list.

4.5.17 Type t_STR (character string): char * GSTR(z) (= (z+1)) points to the first char-
acter of the (NULL-terminated) string.

4.6 PARI variables.

4.6.1 Multivariate objects

We now consider variables and formal computations. As we have seen in Section 4.5, the codewords
for types t_POL and t_SER encode a “variable number”. This is an integer, ranging from 0 to
MAXVARN. The lower it is, the higher the variable priority. PARI does not know anything about
intelligent “sparse” representation of polynomials. So a multivariate polynomial in PARI is just
a polynomial (in one variable), whose coefficients are themselves (arbitrary) polynomials. All
computations are then just done formally on the coefficients as if the polynomial was univariate.

In fact, the way an object will be considered in formal computations depends entirely on its
“principal variable number” which is given by the function

long gvar(GEN z)

which returns a variable number for z, even if z is not a polynomial or power series. The variable
number of a scalar type is set by definition equal to BIGINT which is bigger than any legal variable
number. The variable number of a recursive type which is not a polynomial or power series is
the minimal variable number of its components. But for polynomials and power series only the
“outermost” number counts: the representation is not symmetrical at all.

Under GP, one need not worry too much since the interpreter will define the variables as it sees
them and do the right thing with the polynomials produced (however, have a look at the remark
in Section 2.3.8). But in library mode, they are tricky objects if you intend to build polynomials
yourself (and not just let PARI functions produce them, which is usually less efficient). For instance,
it does not make sense to have a variable number occur in the components of a polynomial whose
main variable has a higher number (lower priority), even though there’s nothing PARI can do to
prevent you from doing it.

171

4.6.2 Creating variables A basic difficulty is to “create” a variable. As we have seen in Sec-
tion 4.1, a plethora of objects is associated to variable number v. Here is the complete list: polun[v]
and polx[v], which you can use in library mode and which represent, respectively, the monic mono-
mials of degrees 0 and 1 in v; varentries[v], and polvar[v]. The latter two are only meaningful to
GP, but they have to be set nevertheless. All of them must be properly defined before you can use
a given integer as a variable number.

Initially, this is done for 0 (the variable x under GP), and MAXVARN, which is there to address
the need for a “temporary” new variable, which would not be used in regular objects (created by
the library). We call the latter type a “temporary variable”. The regular variables meant to be
used in regular objects, are called “user variables”.

4.6.2.1 User variables: When the program starts, x is the only user variable (number 0). To
define new ones, use

long fetch user var(char *s)

which inspects the user variable named s (creating it if needed), and returns its variable number.

long v = fetch_user_var("y");
GEN gy = polx[v];

This function raises an error if s is already known as a function name to the interpreter.

Caveat: it is possible to use flissexpr (see Section 4.7.1) to execute a GP command and create
GP variables on the fly as needed:

GEN gy = flissexpr("y"); /* supposedly returns polx[v], for some v */
long v = gvar(gy);

This is dangerous, especially when programming functions that will be used under GP. The code
above reads the value of y, as it is currently known by the GP interpreter (possibly creating it in
the process). All is well and good if y hasn’t been tampered with in previous GP commands. But
if y has been modified (e.g y = 1), then the value of gy is not what you expected it to be and
corresponds instead to the current value of the GP variable (e.g gun).

4.6.2.2 Temporary variables: MAXVARN is available, but is better left to pari internal functions
(some of which don’t check that MAXVARN is free for them to use, which can be considered a bug).
You can create more temporary variables using

long fetch var()

This returns a variable number which is guaranteed to be unused by the library at the time you
get it and as long as you do not delete it (we’ll see how to do that shortly). This has lower
number (i.e. higher priority) than any temporary variable produced so far (MAXVARN is assumed to
be the first such). This call updates all the aforementioned internal arrays. In particular, after the
statement v = fetch var(), you can use polun[v] and polx[v]. The variables created in this
way have no identifier assigned to them though, and they will be printed as #<number>, except for
MAXVARN which will be printed as #. You can assign a name to a temporary variable, after creating
it, by calling the function

void name var(long n, char *s)

after which the output machinery will use the name s to represent the variable number n. The GP
parser will not recognize it by that name, however, and calling this on a variable known to GP will
raise an error. Temporary variables are meant to be used as free variables, and you should never

172

assign values or functions to them as you would do with variables under GP. For that, you need a
user variable.

All objects created by fetch var are on the heap and not on the stack, thus they are not
subject to standard garbage collecting (they won’t be destroyed by a gerepile or avma = ltop
statement). When you don’t need a variable number anymore, you can delete it using

long delete var()

which deletes the latest temporary variable created and returns the variable number of the previous
one (or simply returns 0 if you try, in vain, to delete MAXVARN). Of course you should make sure
that the deleted variable does not appear anywhere in the objects you use later on. Here is an
example:

{
long first = fetch_var();
long n1 = fetch_var();
long n2 = fetch_var(); /* prepare three variables for internal use */
...
/* delete all variables before leaving */
do { num = delete_var(); } while (num && num <= first);

}

The (dangerous) statement

while (delete_var()) /* empty */;

removes all temporary variables that were in use, except MAXVARN which cannot be deleted.

4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and
output of PARI objects.

4.7.1 Input.

For input, PARI provides you with two powerful high level functions which enables you to input
your objects as if you were under GP. In fact, the second one is essentially the GP syntactical
parser, hence you can use it not only for input but for (most) computations that you can do under
GP. These functions are called flisexpr and flisseq. The first one has the following syntax:

GEN f lisexpr(char *s)

Its effect is to analyze the input string s and to compute the result as in GP. However it is limited
to one expression. If you want to read and evaluate a sequence of expressions, use

GEN f lisseq(char *s)

In fact these two functions start by filtering out all spaces and comments in the input string
(that’s what the initial f stands for). They then call the underlying basic functions, the GP parser
proper: GEN lisexpr(char *s) and GEN lisseq(char *s), which are slightly faster but which you
probably don’t need.

To read a GEN from a file, you can use the simpler interface

173

GEN lisGEN(FILE *file)

which reads a character string of arbitrary length from the stream file (up to the first new-
line character), applies flisexpr to it, and returns the resulting GEN. This way, you won’t have
to worry about allocating buffers to hold the string. To interactively input an expression, use
lisGEN(stdin).

Once in a while, it may be necessary to evaluate a GP expression sequence involving a call to
a function you have defined in C. This is easy using install which allows you to manipulate quite
an arbitrary function (GP knows about pointers!). The syntax is

void install(void *f, char *name, char *code)

where f is the (address of) the function (cast to the C type void*), name is the name by which
you want to access your function from within your GP expressions, and code is a character string
describing the function call prototype (see Section 4.9.2 for the precise description of prototype
strings). In case the function returns a GEN, it should satisfy gerepileupto assumptions (see
Section 4.4).

4.7.2 Output.

For output, there exist essentially three different functions (with variants), corresponding to the
three main GP output formats (as described in Section 2.1.14), plus three extra ones, respectively
devoted to TEX output, string output, and (advanced) debugging.

• “raw” format, obtained by using the function brute with the following syntax:

void brute(GEN obj, char x, long n)

This prints the PARI object obj in format x0.n, using the notations from Section 2.1.8. Recall
that here x is either ’e’, ’f’ or ’g’ corresponding to the three numerical output formats, and n
is the number of printed significant digits, and should be set to −1 if all of them are wanted (these
arguments only affect the printing of real numbers). Usually you won’t need that much flexibility,
so most of the time you will get by with the function

void outbrute(GEN obj), which is equivalent to brute(x,’g’,-1),

or even better, with

void output(GEN obj) which is equivalent to outbrute(obj) followed by a newline and a buffer
flush. This is especially nice during debugging. For instance using dbx or gdb, if obj is a GEN,
typing print output(obj) will enable you to see the content of obj (provided the optimizer has
not put it into a register, but it’s rarely a good idea to debug optimized code).

• “prettymatrix” format: this format is identical to the preceding one except for matrices. The
relevant functions are:

void matbrute(GEN obj, char x, long n)

void outmat(GEN obj), which is followed by a newline and a buffer flush.

• “prettyprint” format: the basic function has an additional parameter m, corresponding to the
(minimum) field width used for printing integers:

void sor(GEN obj, char x, long n, long m)

The simplified version is

174

void outbeaut(GEN obj) which is equivalent to sor(obj,’g’,-1,0) followed by a newline and
a buffer flush.

• The first extra format corresponds to the texprint function of GP, and gives a TEX output of
the result. It is obtained by using:

void exe(GEN obj, char x, long n)

• The second one is the function GENtostr which converts a PARI GEN to an ASCII string. The
syntax is

char* GENtostr(GEN obj), wich returns a malloc’ed character string (which you should free
after use).

• The third and final one outputs the hexadecimal tree corresponding to the GP command \x using
the function

void voir(GEN obj, long nb), which will only output the first nb words corresponding to leaves
(very handy when you have a look at big recursive structures). If you set this parameter to −1 all
significant words will be printed. Usually this last type of output would only be used for debugging
purposes.

Remark. Apart from GENtostr, all PARI output is done on the stream outfile, which by default
is initialized to stdout. If you want that your output be directed to another file, you should use
the function void switchout(char *name) where name is a character string giving the name of
the file you are going to use. The output will be appended at the end of the file. In order to close
the file, simply call switchout(NULL).

Similarly, errors are sent to the stream errfile (stderr by default), and input is done on the
stream infile, which you can change using the function switchin which is analogous to switchout.

(Advanced) Remark. All output is done according to the values of the pariOut / pariErr global
variables which are pointers to structs of pointer to functions. If you really intend to use these,
this probably means you are rewriting GP. In that case, have a look at the code in language/es.c
(init80() or GENtostr() for instance).

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine
err. The basic syntax is

err(talker, "error message");

This will print the corresponding error message and exit the program (in library mode; go back to
the GP prompt otherwise). You can also use it in the more versatile guise

err(talker, format, ...);

where format describes the format to use to write the remaining operands, as in the printf function
(however, see the next section). The simple syntax above is just a special case with a constant
format and no remaining arguments.

The general syntax is

void err(numerr,...)

175

where numerr is a codeword which indicates what to do with the remaining arguments and what
message to print. The list of valid keywords is in language/errmessages.c together with the basic
corresponding message. For instance, err(typeer,"matexp") will print the message:

*** incorrect type in matexp.

Among the codewords are warning keywords (all those which start with the prefix warn). In that
case, err does not abort the computation, just print the requested message and go on. The basic
example is

err(warner, "Strategy 1 failed. Trying strategy 2")

which is the exact equivalent of err(talker,...) except that you certainly don’t want to stop the
program at this point, just inform the user that something important has occured (in particular,
this output would be suitably highlighted under GP, whereas a simple printf would not).

4.7.4 Debugging output.

The global variables DEBUGLEVEL and DEBUGMEM (corresponding to the default debug
and debugmem, see Section 2.1) are used throughout the PARI code to govern the amount of
diagnostic and debugging output, depending on their values. You can use them to debug your own
functions, especially after having made them accessible under GP through the command install
(see Section 3.11.2.13).

For debugging output, you can use printf and the standard output functions (brute or
output mainly), but also some special purpose functions which embody both concepts, the main
one being

void fprintferr(char *pariformat, ...)

Now let’s define what a PARI format is. It is a character string, similar to the one printf uses,
where % characters have a special meaning. It describes the format to use when printing the
remaining operands. But, in addition to the standard format types, you can use %Z to denote a GEN
object (we would have liked to pick %G but it was already in use!). For instance you could write:

err(talker, "x[%d] = %Z is not invertible!", i, x[i])

since the err function accepts PARI formats. Here i is an int, x a GEN which is not a leaf and this
would insert in raw format the value of the GEN x[i].

4.7.5 Timers and timing output.

To profile your functions, you can use the PARI timer. The functions long timer() and long
timer2() return the elapsed time since the last call of the same function (in milliseconds). Two
different functions (identical except for their independent time-of-last-call memories!) are provided
so you can have both global timing and fine tuned profiling.

You can also use void msgtimer(char *format,...), which prints prints Time, then the
remaining arguments as specified by format (which is a PARI format), then the output of timer2.

This mechanism is simple to use but not foolproof. If some other function uses these timers,
and many PARI functions do when DEBUGLEVEL is high enough, the timings will be meaningless.
The functions long gentimer(long id) or long genmsgtimer(long id, char *format,...)
are equivalent to timer and msgtimer respectively, except they will use a unique timer denoted by
id. To get a valid identifier, use id = get_timer(0).

176

This timer has to be deleted when it’s not needed anymore (i.e. when the main function
returns), with a call to get timer(id). After such a call, the reserved identifier becomes available
again.

4.8 A complete program.

Now that the preliminaries are out of the way, the best way to learn how to use the library mode is
to work through a detailed non-trivial example of a main program. We will write a program which
computes the exponential of a square matrix x. The complete listing is given in Appendix B, but
each part of the program will be produced and explained here. We will use an algorithm which is
not optimal but is not far from the one used for the PARI function gexp (in fact embodied in the
function mpexp1). This consists in calculating the sum of the series:

ex/(2
n) =

∞∑
k=0

(x/(2n))k

k!

for a suitable positive integer n, and then computing ex by repeated squarings. First, we will need
to compute the L2-norm of the matrix x, i.e. the quantity:

z = ‖x‖2 =
√∑

x2
i,j .

We will then choose the integer n such that the L2-norm of x/(2n) is less than or equal to 1, i.e.

n =
⌈
ln(z)

/
ln(2)

⌉
if z ≥ 1, and n = 0 otherwise. Then the series will converge at least as fast as the usual one for e1,
and the cutoff error will be easy to estimate. In fact a larger value of n would be preferable, but
this is slightly machine dependent and more complicated, and will be left to the reader.

Let us start writing our program. So as to be able to use it in other contexts, we will structure
it in the following way: a main program which will do the input and output, and a function which
we shall call matexp which does the real work. The main program is easy to write. It can be
something like this:

#include <pari.h>

GEN matexp(GEN x, long prec);

int
main()
{
long d, prec = 3;
GEN x;

/* take a stack of 106 bytes, no prime table */
pari_init(1000000, 2);
printf("precision of the computation in decimal digits:\n");
d = itos(lisGEN(stdin));
if (d > 0) prec = (long) (d*pariK1+3);

printf("input your matrix in GP format:\n");
x = matexp(lisGEN(stdin), prec);

177

sor(x, ’g’, d, 0);
exit(0);

}

The variable prec represents the length in longwords of the real numbers used. pariK1 is a
constant (defined in paricom.h) equal to ln(10)/(ln(2)∗BITS IN LONG), which allows us to convert
from a number of decimal digits to a number of longwords, independently of the actual bit size
of your long integers. The function lisGEN reads an expression (here from standard input) and
converts it to a GEN, like the GP parser itself would. This means it takes care of whitespace etc. in
the input, and can do computations (e.g. matid(2) or [1,0; 0,1] are equally valid inputs).

Finally, sor is the general output routine. We have chosen to give d significant digits since
this is what was asked for. Note that there is a trick hidden here: if a negative d was input, then
the computation will be done in precision 3 (i.e. about 9.7 decimal digits for 32-bit machines and
19.4 for 64-bit machines) and in the function sor, giving a negative third argument outputs all the
significant digits, which is entirely appropriate. Now let us attack the main course, the function
matexp:

GEN
matexp(GEN x, long prec)
{
long lx=lg(x),i,k,n,lbot, ltop = avma;
GEN y,r,s,p1,p2;

/* check that x is a square matrix */
if (typ(x) != t_MAT) err(talker,"this expression is not a matrix");
if (lx == 1) return cgetg(1, t_MAT);
if (lx != lg(x[1])) err(talker,"not a square matrix");

/* compute the L2 norm of x */
s = gzero;
for (i=1; i<lx; i++)
s = gadd(s, gnorml2((GEN)x[i]));

if (typ(s) == t_REAL) setlg(s,3);
s = gsqrt(s,3); /* we do not need much precision on s */

/* if s < 1, we are happy */
k = expo(s);
if (k < 0) { n = 0; p1 = x; }
else { n = k+1; p1 = gmul2n(x,-n); setexpo(s,-1); }

Before continuing, several remarks are in order.

First, before starting this computation which will produce garbage on the stack, we have
carefully saved the value of the stack pointer avma in ltop. Note that we are going to assume
throughout that the garbage does not overflow the currently available stack. If it ever did, we
would have several options — allocate a larger stack in the main program (for instance change
1000000 into 2000000), do some gerepileing along the way, or (if you know what you are doing)
use allocatemoremem.

Secondly, the err function is the general error handler for the PARI library. This will abort
the program after printing the required message.

Thirdly, notice how we handle the special case lx = 1 (empty matrix) before accessing
lx(x[1]). Doing it the other way round could produce a fatal error (a segmentation fault or

178

a bus error, most probably). Indeed, if x is of length 1, then x[1] is not a component of x. It is
just the contents of the memory cell which happens to follow the one pointed to by x, and thus has
no reason to be a valid GEN. Now recall that none of the codeword handling macros do any kind of
type checking (see Section 4.5), thus lg would consider x[1] as a valid address, and try to access
*((GEN)x[1]) (the first codeword) which is unlikely to be a legal memory address.

In the fourth place, to compute the square of the L2-norm of x we just add the squares of the
L2-norms of the column vectors which we obtain using the library function gnorml2. Had this
function not existed, the norm computation would of course have been just as easy to write, but
we would have needed a double loop.

We then take the square root of s, in precision 3 (the smallest possible). The prec argument of
transcendental functions (here 3) is only taken into account when the arguments are exact objects,
and thus no a priori precision can be determined from the objects themselves. To cater for this
possibility, if s is of type t_REAL, we use the function setlg which effectively sets the precision of s
to the required value. Note that here, since we are using a numeric value for a cget function, the
program will run slightly differently on 32-bit and 64-bit machines: we want to use the smallest
possible bit accuracy, and this is equal to BITS IN LONG.

Note that the matrix x is allowed to have complex entries, but the function gnorml2 guarantees
that s is a non-negative real number (not necessarily of type t_REAL of course). If we had not known
this fact, we would simply have added the instruction s = greal(s); just after the for loop.

Note also that the function gnorml2 works as desired on matrices, so we really did not need
this loop at all (s = gnorml2(x) would have been enough), but we wanted to give examples of
function usage. Similarly, it is of course not necessary to take the square root for testing whether
the norm exceeds 1.

In the fifth place, note that we initialized the sum s to gzero, which is an exact zero. This
is logical, but has some disadvantages: if all the entries of the matrix are integers (or rational
numbers), the computation will take rather long, about twice as long as with real numbers of the
same length. It would be better to initialize s to a real zero, using for instance the instructions:

s = cgetr(prec+1); gaffsg(0,s);

This raises the question: which real zero does this produce (have a look at Section 1.2.6.3)? In fact,
the following choice has been made: it will give you the zero with exponent equal to −BITS IN LONG
times the number of longwords in the mantissa, i.e. −bit accuracy(lg(s)). Instead of the above
idiom, you can also use the function GEN realzero(long prec), which simply returns a real zero
to accuracy −bit accuracy(prec).

The sixth remark here is about how to determine the approximate size of a real number. The
fastest way to do this is to look at its binary exponent. Hence we need to have s actually represented
as a real number, and not as an integer or a rational number. The result of transcendental functions
is guaranteed to be of type t_REAL, or complex with t_REAL components, thus this is indeed the
case after the call to gsqrt since its argument is a nonnegative (real) number.

Finally, note the use of the function gmul2n. It has the following syntax:

GEN gmul2n(GEN x, long n)

and the effect is simply to multiply x by 2n, where n can be positive or negative. This is much
faster than gmul or gmulgs.

There is another function gshift with exactly the same syntax. When n is non-negative, the
effects of these two functions are the same. However, when n is negative, gshift acts like a right

179

shift of -n, hence does not noramlly perform an exact division on integers. The function gshift is
the PARI analogue of the C or GP operators << and >>.

We now come to the heart of the function. We have a GEN p1 which points to a certain matrix
of which we want to take the exponential. We will want to transform this matrix into a matrix with
real (or complex of real) entries before starting the computation. To do this, we simply multiply
by the real number 1 in precision prec + 1 (to be on the side of safety). To sum the series, we
will use three variables: a variable p2 which at stage k will contain p1k/k!, a variable y which will
contain

∑k
i=0 p1

i/i!, and a variable r which will contain the size estimate sk/k!. Note that we do
not use Horner’s rule. This is simply because we are lazy and do not want to compute in advance
the number of terms that we need. We leave this modification (and many other improvements!) to
the reader. The program continues as follows:

/* initializations before the loop */
r = cgetr(prec+1); gaffsg(1,r); p1 = gmul(r,p1);
y = gscalmat(r,lx-1); /* creates scalar matrix with r on diagonal */
p2 = p1; r = s; k = 1;
y = gadd(y,p2);

/* now the main loop */
while (expo(r) >= -BITS_IN_LONG*(prec-1))
{
k++; p2 = gdivgs(gmul(p2,p1),k);
r = gdivgs(gmul(s,r),k); y = gadd(y,p2);

}

/* now square back n times if necessary */
if (!n) { lbot = avma; y = gcopy(y); }
else
{
for (i=0; i<n; i++) { lbot = avma; y = gsqr(y); }

}
return gerepile(ltop,lbot,y);

}

A few remarks once again. First note the use of the function gscalmat with the following syntax:

GEN gscalmat(GEN x, long m)

The effect of this function is to create the m× m scalar matrix whose diagonal entries are x. Hence
the length of the matrix including the codeword will in fact be m+1. There is a corresponding
function gscalsmat which takes a long as a first argument.

If we refer to what has been said above, the main loop should be self-evident.

When we do the final squarings, according to the fundamental dogma on the use of gerepile,
we keep the value of avma in lbot just before the squaring, so that if it is the last one, lbot will
indeed be the bottom address of the garbage pile, and gerepile will work. Note that it takes a
completely negligible time to do this in each loop compared to a matrix squaring. However, when
n is initially equal to 0, no squaring has to be done, and we have our final result ready but we lost
the address of the bottom of the garbage pile. Hence we use the trick of copying y again to the top
of the stack. This is inefficient, but does the trick. If we wanted to avoid this using only gerepile,
the best thing to do would be to put the instruction lbot=avma just before both occurrences of the
instruction y=gadd(p2,y). Of course, we could also rewrite the last block as follows:

180

/* now square back n times */
for (i=0; i<n; i++) y = gsqr(y);
return gerepileupto(ltop,y);

because it does not matter to gerepileupto that we have lost the address just before the final
result (note that the loop is not executed if n is 0). It is safe to use gerepileupto here as y will
have been created by either gsqr or gadd, both of which are guaranteed to return suitable objects.

Remarks. As such, the program should work most of the time if x is a square matrix with real
or complex entries. Indeed, since essentially the first thing that we do is to multiply by the real
number 1, the program should work for integer, real, rational, complex or quadratic entries. This
is in accordance with the behavior of transcendental functions.

Furthermore, since this program is intended to be only an illustrative example, it has been
written a little sloppily. In particular many error checks have been omitted, and the efficiency is
far from optimal. An evident improvement would be the use of gerepileupto mentioned above.
Another improvement is to multiply the matrix x by the real number 1 right at the beginning,
speeding up the computation of the L2-norm in many cases. These improvements are included in
the version given in Appendix B. Still another improvement would come from a better choice of n. If
the reader takes a look at the implementation of the function mpexp1 in the file basemath/trans1.c,
he can make the necessary changes himself. Finally, there exist other algorithms of a different nature
to compute the exponential of a matrix.

4.9 Adding functions to PARI.

4.9.1 Nota Bene. As mentioned in the COPYING file, modified versions of the PARI package can
be distributed under the conditions of the GNU General Public License. If you do modify PARI,
however, it is certainly for a good reason, hence we would like to know about it, so that everyone
can benefit from it. There is then a good chance that the modifications that you have made will
be incorporated into the next release.

(Recall the e-mail address: pari@math.u-bordeaux.fr, or use the mailing lists).

Roughly four types of modifications can be made. The first type includes all improvements to
the documentation, in a broad sense. This includes correcting typos or inacurracies of course, but
also items which are not really covered in this document, e.g. if you happen to write a tutorial, or
pieces of code exemplifying some fine points that you think were unduly omitted.

The second type is to expand or modify the configuration routines and skeleton files (the Con-
figure script and anything in the config/ subdirectory) so that compilation is possible (or easier,
or more efficient) on an operating system previously not catered for. This includes discovering and
removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct bugs, to add new
functionalities to existing functions, or to improve their efficiency.

Finally the last type is to add new functions to PARI. We explain here how to do this, so that
in particular the new function can be called from GP.

181

4.9.2 The calling interface from GP, parser codes. A parser code is a character string
describing all the GP parser needs to know about the function prototype. It contains a sequence
of the following atoms:

• Syntax requirements, used by functions like for, sum, etc.:
= separator = required at this point (between two arguments)

• Mandatory arguments, appearing in the same order as the input arguments they describe:
G GEN
& *GEN
L long (we implicitly identify int with long)
S symbol (i.e. GP identifier name). Function expects a *entree
V variable (as S, but rejects symbols associated to functions)
n variable, expects a variable number (a long, not an *entree)
I string containing a sequence of GP statements (a seq), to be processed by lisseq

(useful for control statements)
E string containing a single GP statement (an expr), to be processed by lisexpr
r raw input (treated as a string without quotes). Quoted args are copied as strings

Stops at first unquoted ’)’ or ’,’. Special chars can be quoted using ’\’
Example: aa"b\n)"c yields the string "aab\n)c"

s expanded string. Example: Pi"x"2 yields "3.142x2"
Unquoted components can be of any PARI type (converted following current output
format)

• Optional arguments:
s* any number of strings, possibly 0 (see s)
s*p idem, setting prettyp = 1 (i.e. in beautified format)
s*t idem, in TEX format
Dxxx argument has a default value

The format to indicate a default value (atom starts with a D) is “Dvalue,type,”, where type
is the code for any mandatory atom (previous group), value is any valide GP expression which is
converted according to type, and the ending comma is mandatory. For instance D0,L, stands for
“this optional argument will be converted to a long, and is 0 by default”. So if the user-given
argument reads 1 + 3 at this point, (long)4 is sent to the function (via itos()); and (long)0 if
the argument is ommitted. The following special syntaxes are available:

DG optional GEN, send NULL if argument omitted.
D& optional *GEN, send NULL if argument omitted.
DV optional *entree, send NULL if argument omitted.
DI optional *char, send NULL if argument omitted.
Dn optional variable number, −1 if omitted.

• Automatic arguments:
f Fake *long. C function requires a pointer but we don’t use the resulting long
p real precision (default realprecision)
P series precision (default seriesprecision, global variable precdl for the library)

• Return type: GEN by default, otherwise the following can appear at the start of the code string:
l return long
v return void

No more than 8 arguments can be given (syntax requirements and return types are not con-
sidered as arguments). This is currently hardcoded but can trivially be changed by modifying the

182

definition of argvec in anal.c:identifier(). This limitation should disappear in future versions.

When the function is called under GP, the prototype is scanned and each time an atom
corresponding to a mandatory argument is met, a user-given argument is read (GP outputs an error
message it the argument was missing). Each time an optional atom is met, a default value is inserted
if the user omits the argument. The “automatic” atoms fill in the argument list transparently,
supplying the current value of the corresponding variable (or a dummy pointer).

For instance, here is how you would code the following prototypes (which don’t involve default
values):

GEN name(GEN x, GEN y, long prec) ----> "GGp"
void name(GEN x, GEN y, long prec) ----> "vGGp"
void name(GEN x, long y, long prec) ----> "vGLp"
long name(GEN x) ----> "lG"

If you want more examples, GP gives you easy access to the parser codes associated to all GP
functions: just type \h function. You can then compare with the C prototypes as they stand in
the code.

Remark: If you need to implement complicated control statements (probably for some improved
summation functions), you’ll need to know about the entree type, which is not documented.
Check the comment before the function list at the end of language/init.c and the source code in
language/sumiter.c. You should be able to make something of it.

4.9.3 Coding guidelines. Code your function in a file of its own, using as a guide other functions
in the PARI sources. One important thing to remember is to clean the stack before exiting your
main function (usually using gerepile), since otherwise successive calls to the function will clutter
the stack with unnecessary garbage, and stack overflow will occur sooner. Also, if it returns a GEN
and you want it to be accessible to GP, you have to make sure this GEN is suitable for gerepileupto
(see Section 4.4).

If error messages are to be generated in your function, use the general error handling routine
err (see Section 4.7.3). Recall that, apart from the warn variants, this function does not return
but ends with a longjmp statement. As well, instead of explicit printf / fprintf statements, use
the following encapsulated variants:

void pariputs(char *s): write s to the GP output stream.

void fprintferr(char *s): write s to the GP error stream (this function is in fact much more
versatile, see Section 4.7.4).

Declare all public functions in an appropriate header file, if you expect somebody will access
them from C. For example, if dynamic loading is not available, you may need to modify PARI to
access these functions, so put them in paridecl.h. The other functions should be declared static
in your file.

Your function is now ready to be used in library mode after compilation and creation of the
library. If possible, compile it as a shared library (see the Makefile coming with the matexp
example in the distribution). It is however still inaccessible from GP.

183

4.9.4 Integration with GP as a shared module

To tell GP about your function, you must do the following. First, find a name for it. It does
not have to match the one used in library mode, but consistency is nice. It has to be a valid
GP identifier, i.e. use only alphabetic characters, digits and the underscore character (), the first
character being alphabetic.

Then you have to figure out the correct parser code corresponding to the function prototype.
This has been explained above (Section 4.9.2).

Now, assuming your Operating System is supported by install, simply write a GP script like
the following:

install(libname, code, gpname, library)
addhelp(gpname, "some help text")

(see Section 3.11.2.1 and 3.11.2.13). The addhelp part is not mandatory, but very useful if you
want others to use your module. libname is how the function is named in the library, usually the
same name as one visible from C.

Read that file from your GP session (from your preferences file for instance, see Section 2.8),
and that’s it, you can use the new function gpname under GP (and we would very much like to
hear about it!).

4.9.5 Integration the hard way

If install is not available for your Operating System, it’s more complicated: you have to
hardcode your function in the GP binary (or install Linux). Here’s what needs to be done:

In the definition of functions basic (file language/init.c), add your entry in exact alpha-
betical order by its GP name (note that digits come before letters), in a line of the form:

{ "gpname", V, (void*)libname, secno, "code" }

where

libname is the name of your function in library mode,

gpname the name that you have chosen to call it under GP,

secno is the section number of Chapter 3 in which this function would belong (type ? in GP
to see the list),

V is a number between 0 and 99. Right now, for PARI there are only two significant values:
zero means that it’s possible to call the function without argument, and non-zero means it needs at
least one argument. A binding of PARI to an external language (such as Math::Pari Perl module)
may actually distinguish between different non-zero values. Better use 99 if you want a non-zero
value which will not confuse anybody.

code is the parser code.

Once this has been done, in the file language/helpmessages.c add in exact alphabetical
order a short message describing the effect of your function: "name(x,y,...)=short descriptive
message",

The message must be a single line, of arbitrary length. Do not use \n; the necessary newlines
will be inserted by GP’s online help functions. Optional arguments should be shown between braces
(see the other messages for comparison).

Now, you can recompile GP.

184

4.9.6 Example. A complete description could look like this:

{
install(bnfinit0, GD0,L,DGp, ClassGroupInit, "libpari.so");
addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[]}):
compute the necessary data for ...");

}

which means we have a function ClassGroupInit under GP, which calls the library function
bnfinit0 . The function has one mandatory argument, and possibly two more (two ’D’ in the
code), plus the current real precision. More precisely, the first argument is a GEN, the second one
is converted to a long using itos (0 is passed if it is omitted), and the third one is also a GEN,
but we pass NULL if no argument was supplied by the user. This matches the C prototype (from
paridecl.h):

GEN bnfinit0(GEN P, long flag, GEN data, long prec)

This function is in fact coded in basemath/buch2.c, and will in this case be completely identical
to the GP function bnfinit but GP does not need to know about this, only that it can be found
somewhere in the shared library libpari.so.

Important note: You see in this example that it is the function’s responsibility to correctly
interpret its operands: data = NULL is interpreted by the function as an empty vector. Note that
since NULL is never a valid GEN pointer, this trick always enables you to distinguish between a
default value and actual input: the user could explicitly supply an empty vector!

Note: If install were not available we would have to modify language/helpmessages.c, and
language/init.c and recompile GP. The entry in functions basic corresponding to the function
above is actually

{ "bnfinit", 91, (void*)bnfinit0, 6, "GD0,L,DGp" }

185

186

Chapter 5:

Technical Reference Guide for Low-Level Functions

In this chapter, we give a description all public low-level functions of the PARI system. These
essentially include functions for handling all the PARI types. Higher level functions, such as
arithmetic or transcendental functions, are described fully in Chapter 3 of this manual.

Many other undocumented functions can be found throughout the source code. These private
functions are more efficient than the library functions that call them, but much sloppier on argument
checking and damage control. Use them at your own risk!

5.1 Level 0 kernel (operations on unsigned longs).

For the non-68k versions, we need level 0 operations simulating basic operations of the 68020
processor (on which PARI was originally implemented). The type ulong is defined in the file
parigen.h as unsigned long. Note that in the prototypes below a ulong is sometimes implicitly
typecast to int or long.

The global ulong variables overflow (which will contain only 0 or 1) and hiremainder used
to be declared in the file pariinl.h. However, for certain architectures they are no longer needed,
and/or have been replaced with local variables for efficiency; and the ‘functions’ mentioned below
are really chunks of assembler code which will be inlined at each invocation by the compiler. If you
really need to use these lowest-level operations directly, make sure you know your way through the
PARI kernel sources, and understand the architecture dependencies.

To make the following descriptions valid both for 32-bit and 64-bit machines, we will set BIL
to be equal to 32 (resp. 64), an abbreviation of BITS IN LONG, which is what is actually used in the
source code.

int addll(int x, int y) adds the ulongs x and y, returns the lower BIL bits and puts the carry
bit into overflow.

int addllx(int x, int y) adds overflow to the sum of the ulongs x and y, returns the lower
BIL bits and puts the carry bit into overflow.

int subll(int x, int y) subtracts the ulongs x and y, returns the lower BIL bits and put the
carry (borrow) bit into overflow.

int subllx(int x, int y) subtracts overflow from the difference of the ulongs x and y, returns
the lower BIL bits and puts the carry (borrow) bit into overflow.

int shiftl(ulong x, ulong y) shifts the ulong x left by y bits, returns the lower BIL bits and
stores the high-order BIL bits into hiremainder. We must have 1 ≤ y ≤ BIL. In particular, y must
be non-zero; the caller is responsible for testing this.

int shiftlr(ulong x, ulong y) shifts the ulong x << BIL right by y bits, returns the higher BIL
bits and stores the low-order BIL bits into hiremainder. We must have 1 ≤ y ≤ BIL. In particular,
y must be non-zero.

int bfffo(ulong x) returns the number of leading zero bits in the ulong x (i.e. the number of bit
positions by which it would have to be shifted left until its leftmost bit first becomes equal to 1,
which can be between 0 and BIL− 1 for nonzero x). When x is 0, BIL is returned.

187

int mulll(ulong x, ulong y) multiplies the ulong x by the ulong y, returns the lower BIL bits
and stores the high-order BIL bits into hiremainder.

int addmul(ulong x, ulong y) adds hiremainder to the product of the ulongs x and y, returns
the lower BIL bits and stores the high-order BIL bits into hiremainder.

int divll(ulong x, ulong y) returns the Euclidean quotient of (hiremainder << BIL) + x and
the ulong divisor y and stores the remainder into hiremainder. An error occurs if the quotient
cannot be represented by a ulong, i.e. if hiremainder ≥ y initially.

5.2 Level 1 kernel (operations on longs, integers and reals).

In this section as elsewhere, long denotes a BIL-bit signed C-integer, “integer” denotes a PARI
multiprecise integer (type t_INT), “real” denotes a PARI multiprecise real (type t_REAL). Refer to
Chapters 1–2 and 4 for general background.

Note: Many functions consist of an elementary operation, immediately followed by an assignment
statement. All such functions are obtained using macros (see the file paricom.h), hence you can
easily extend the list. Below, they will be introduced like in the following example:

GEN gadd[z](GEN x, GEN y[, GEN z]) followed by the explicit description of the function

GEN gadd(GEN x, GEN y)

which creates its result on the stack, returning a GEN pointer to it, and the parts in brackets indicate
that there exists also a function

void gaddz(GEN x, GEN y, GEN z)

which assigns its result to the pre-existing object z, leaving the stack unchanged.

5.2.1 Basic unit and subunit handling functions

long typ(GEN x) returns the type number of x. (The header files included through pari.h will
give you access to the symbolic constants t_INT etc., so you should never need to know the actual
numerical values.)

long lg(GEN x) returns the length of x in BIL-bit words.

long lgef(GEN x) returns the effective length of the polynomial x in BIL-bit words.

long lgefint(GEN x) returns the effective length of the integer x in BIL-bit words.

long signe(GEN x) returns the sign (−1, 0 or 1) of x. Can be used for integers, reals, polynomials
and power series (for the last two types, only 0 or 1 are possible).

long gsigne(GEN x) same as signe, but also valid for rational numbers (and marginally less
efficient for the other types).

long expo(GEN x) returns the unbiased binary exponent of the real number x.

long gexpo(GEN x) same as expo, but also valid when x is not a real number. When x is an
exact 0, this returns -HIGHEXPOBIT.

long expi(GEN x) returns the binary exponent of the real number equal to the integer x. This is
a special case of gexpo above, covering the case where x is of type t_INT.

188

long valp(GEN x) returns the unbiased 16-bit p-adic valuation (for a p-adic) or X-adic valuation
(for a power series, taken with respect to the main variable) of x.

long precp(GEN x) returns the precision of the p-adic x.

long varn(GEN x) returns the variable number of x (between 0 and MAXVARN). Should be used
only for polynomials and power series.

long gvar((GEN x)) returns the main variable number when any variable at all occurs in the
composite object x (the smallest variable number which occurs), and BIGINT otherwise.

void settyp(GEN x, long s) sets the type number of x to s. This should be used with extreme
care since usually the type is set otherwise, and the components and further codeword fields (which
are left unchanged) may not match the PARI conventions for the new type.

void setlg(GEN x, long s) sets the length of x to s. Again this should be used with extreme
care since usually the length is set otherwise, and increasing the length joins previously unrelated
memory words to the root node of x. This is, however, an extremely efficient way of truncating
vectors or polynomials.

void setlgef(GEN x, long s) sets the effective length of x to s, where x is a polynomial. The
number s must be less than or equal to the length of x.

void setlgefint(GEN x, long s) sets the effective length of the integer x to s. The number s
must be less than or equal to the length of x.

void setsigne(GEN x, long s) sets the sign of x to s. If x is an integer or real, s must be equal
to −1, 0 or 1, and if x is a polynomial or a power series, s must be equal to 0 or 1.

void setexpo(GEN x, long s) sets the binary exponent of the real number x to s, after adding
the appropriate bias. The unbiased value s must be a 24-bit signed number.

void setvalp(GEN x, long s) sets the p-adic or X-adic valuation of x to s, if x is a p-adic or a
power series, respectively.

void setprecp(GEN x, long s) sets the p-adic precision of the p-adic number x to s.

void setvarn(GEN x, long s) sets the variable number of the polynomial or power series x to s
(where 0 ≤ s ≤ MAXVARN).

5.2.2 Memory allocation on the PARI stack

GEN cgetg(long n, long t) allocates memory on the PARI stack for an object of length n and
type t, and initializes its first codeword.

GEN cgeti(long n) allocates memory on the PARI stack for an integer of length n, and initializes
its first codeword. Identical to cgetg(n,t_INT).

GEN cgetr(long n) allocates memory on the PARI stack for a real of length n, and initializes its
first codeword. Identical to cgetg(n,t_REAL).

void cgiv(GEN x) frees object x if it is the last created on the PARI stack (otherwise disaster
occurs).

GEN gerepile(long p, long q, GEN x) general garbage collector for the PARI stack. See Sec-
tion 4.4 for a detailed explanation and many examples.

189

5.2.3 Assignments, conversions and integer parts

void mpaff(GEN x, GEN z) assigns x into z (where x and z are integers or reals).

void affsz(long s, GEN z) assigns the long s into the integer or real z.

void affsi(long s, GEN z) assigns the long s into the integer z.

void affsr(long s, GEN z) assigns the long s into the real z.

void aff ii(GEN x, GEN z) assigns the integer x into the integer z.

void aff ir(GEN x, GEN z) assigns the integer x into the real z.

void affrs(GEN x, long s) assigns the real x into the long s. . .not. This is a forbidden assign-
ment in PARI, so an error message is issued.

void affri(GEN x, GEN z) assigns the real x into the integer z. . .no it doesn’t. This is a forbidden
assignment in PARI, so an error message is issued.

void affrr(GEN x, GEN z) assigns the real x into the real z.

GEN stoi(long s) creates the PARI integer corresponding to the long s.

long itos(GEN x) converts the PARI integer x to a C long (if possible, otherwise an error message
is issued).

GEN mptrunc[z](GEN x[, GEN z]) truncates the integer or real x (not the same as the integer
part if x is non-integer and negative).

GEN mpent[z](GEN x[, GEN z]) true integer part of the integer or real x (i.e. the floor function).

5.2.4 Valuation and shift

long vals(long s) 2-adic valuation of the long s. Returns −1 if s is equal to 0, with no error.

long vali(GEN x) 2-adic valuation of the integer x. Returns −1 if s is equal to 0, with no error.

GEN mpshift[z](GEN x, long n[, GEN z]) shifts the real or integer x by n. If n is positive, this
is a left shift, i.e. multiplication by 2n. If n is negative, it is a right shift by −n, which amounts to
the truncation of the quotient of x by 2−n.

GEN shifts(long s, long n) converts the long s into a PARI integer and shifts the value by n.

GEN shifti(GEN x, long n) shifts the integer x by n.

GEN shiftr(GEN x, long n) shifts the real x by n.

5.2.5 Unary operations

Let “op” be some unary operation of type GEN (*)(GEN). The names and prototypes of the low-level
functions corresponding to op will be as follows.

GEN mpop(GEN x) creates the result of op applied to the integer or real x.

GEN ops(long s) creates the result of op applied to the long s.

GEN opi(GEN x) creates the result of op applied to the integer x.

GEN opr(GEN x) creates the result of op applied to the real x.

GEN mpopz(GEN x, GEN z) assigns the result of applying op to the integer or real x into the
integer or real z.

190

Remark: it has not been considered useful to include the functions void opsz(long,GEN), void
opiz(GEN,GEN) and void oprz(GEN, GEN).

The above prototype schemes apply to the following operators:

op=neg: negation (−x). The result is of the same type as x.

op=abs: absolute value (|x|). The result is of the same type as x.

In addition, there exist the following special unary functions with assignment:

void mpinvz(GEN x, GEN z) assigns the inverse of the integer or real x into the real z. The
inverse is computed as a quotient of real numbers, not as a Euclidean division.

void mpinvsr(long s, GEN z) assigns the inverse of the long s into the real z.

void mpinvir(GEN x, GEN z) assigns the inverse of the integer x into the real z.

void mpinvrr(GEN x, GEN z) assigns the inverse of the real x into the real z.

5.2.6 Comparison operators

long mpcmp(GEN x, GEN y) compares the integer or real x to the integer or real y. The result
is the sign of x− y.

long cmpsi(long s, GEN x) compares the long s to the integer x.

long cmpsr(long s, GEN x) compares the long s to the real x.

long cmpis(GEN x, long s) compares the integer x to the long s.

long cmpii(GEN x, GEN y) compares the integer x to the integer y.

long cmpir(GEN x, GEN y) compares the integer x to the real y.

long cmprs(GEN x, long s) compares the real x to the long s.

long cmpri(GEN x, GEN y) compares the real x to the integer y.

long cmprr(GEN x, GEN y) compares the real x to the real y.

5.2.7 Binary operations

Let “op” be some operation of type GEN (*)(GEN,GEN). The names and prototypes of the low-level
functions corresponding to op will be as follows. In this section, the z argument in the z-functions
must be of type t_INT or t_REAL.

GEN mpop[z](GEN x, GEN y[, GEN z]) applies op to the integer-or-reals x and y.

GEN opss[z](long s, long t[, GEN z]) applies op to the longs s and t.

GEN opsi[z](long s, GEN x[, GEN z]) applies op to the long s and the integer x.

GEN opsr[z](long s, GEN x[, GEN z]) applies op to the long s and the real x.

GEN opis[z](GEN x, long s[, GEN z]) applies op to the integer x and the long s.

GEN opii[z](GEN x, GEN y[, GEN z]) applies op to the integers x and y.

GEN opir[z](GEN x, GEN y[, GEN z]) applies op to the integer x and the real y.

GEN oprs[z](GEN x, long s[, GEN z]) applies op to the real x and the long s.

191

GEN opri[z](GEN x, GEN y[, GEN z]) applies op to the real x and the integer y.

GEN oprr[z](GEN x, GEN y[, GEN z]) applies op to the reals x and y.

Each of the above can be used with the following operators.

op=add: addition (x + y). The result is real unless both x and y are integers (or longs).

op=sub: subtraction (x - y). The result is real unless both x and y are integers (or longs).

op=mul: multiplication (x * y). The result is real unless both x and y are integers (or longs),
OR if x or y is the integer or long zero.

op=div: division (x / y). In the case where x and y are both integers or longs, the result is
the Euclidean quotient, where the remainder has the same sign as the dividend x. If one of x or y
is real, the result is real unless x is the integer or long zero. A division-by-zero error occurs if y is
equal to zero.

op=res: remainder (“x % y”). This operation is defined only when x and y are longs or
integers. The result is the Euclidean remainder corresponding to div, i.e. its sign is that of the
dividend x. The result is always an integer.

op=mod: remainder (x % y). This operation is defined only when x and y are longs or
integers. The result is the true Euclidean remainder, i.e. non-negative and less than the absolute
value of y.

5.2.8 Division with remainder: the following functions return two objects, unless specifically
asked for only one of them — a quotient and a remainder. The remainder will be created on the
stack, and a GEN pointer to this object will be returned through the variable whose address is passed
as the r argument.

GEN dvmdss(long s, long t, GEN *r) creates the Euclidean quotient and remainder of the
longs s and t. If r is not NULL or ONLY REM, this puts the remainder into *r, and returns the
quotient. If r is equal to NULL, only the quotient is returned. If r is equal to ONLY REM, the
remainder is returned instead of the quotient. In the generic case, the remainder is created after
the quotient and can be disposed of individually with a cgiv(r). The remainder is always of the
sign of the dividend s.

GEN dvmdsi(long s, GEN x, GEN *r) creates the Euclidean quotient and remainder of the long
s by the integer x. Obeys the same conventions with respect to r.

GEN dvmdis(GEN x, long s, GEN *r) create the Euclidean quotient and remainder of the integer
x by the long s.

GEN dvmdii(GEN x, GEN y, GEN *r) returns the Euclidean quotient of the integer x by the inte-
ger y and puts the remainder into *r. If r is equal to NULL, the remainder is not created, and if r is
equal to ONLY REM, only the remainder is created and returned. In the generic case, the remainder
is created after the quotient and can be disposed of individually with a cgiv(r). The remainder is
always of the sign of the dividend x.

GEN truedvmdii(GEN x, GEN y, GEN *r), as dvmdii but with a non-negative remainder.

void mpdvmdz(GEN x, GEN y, GEN z, GEN *r) assigns the Euclidean quotient of the integers
x and y into the integer or real z, putting the remainder into *r (unless r is equal to NULL or
ONLY REM as above).

192

void dvmdssz(long s, long t, GEN z, GEN *r) assigns the Euclidean quotient of the longs s
and t into the integer or real z, putting the remainder into *r (unless r is equal to NULL or ONLY REM
as above).

void dvmdsiz(long s, GEN x, GEN z, GEN *r) assigns the Euclidean quotient of the long s
and the integer x into the integer or real z, putting the remainder into *r (unless r is equal to NULL
or ONLY REM as above).

void dvmdisz(GEN x, long s, GEN z, GEN *r) assigns the Euclidean quotient of the integer x
and the long s into the integer or real z, putting the remainder into *r (unless r is equal to NULL
or ONLY REM as above).

void dvmdiiz(GEN x, GEN y, GEN z, GEN *r) assigns the Euclidean quotient of the integers x
and y into the integer or real z, putting the address of the remainder into *r (unless r is equal to
NULL or ONLY REM as above).

5.2.9 Miscellaneous functions

void addsii(long s, GEN x, GEN z) assigns the sum of the long s and the integer x into the
integer z (essentially identical to addsiz except that z is specifically an integer).

long divise(GEN x, GEN y) if the integer y divides the integer x, returns 1 (true), otherwise
returns 0 (false).

long divisii(GEN x, long s, GEN z) assigns the Euclidean quotient of the integer x and the long
s into the integer z, and returns the remainder as a long.

long mpdivis(GEN x, GEN y, GEN z) if the integer y divides the integer x, assigns the quotient
to the integer z and returns 1 (true), otherwise returns 0 (false).

void mulsii(long s, GEN x, GEN z) assigns the product of the long s and the integer x into the
integer z (essentially dentical to mulsiz except that z is specifically an integer).

5.3 Level 2 kernel (operations on general PARI objects).

The functions available to handle subunits are the following.

GEN compo(GEN x, long n) creates a copy of the n-th true component (i.e. not counting the
codewords) of the object x.

GEN truecoeff(GEN x, long n) creates a copy of the coefficient of degree n of x if x is a scalar,
polynomial or power series, and otherwise of the n-th component of x.

The remaining two are macros, NOT functions (see Section 4.2.1 for a detailed explanation):

long coeff(GEN x, long i, long j) applied to a matrix x (type t_MAT), this gives the address
of the coefficient at row i and column j of x.

long maeln(GEN x, long a1, ..., long an) stands for x[a1][a2]...[an], where 2 ≤ n ≤
5, with all the necessary typecasts.

193

5.3.1 Copying and conversion

GEN cgetp(GEN x) creates space sufficient to hold the p-adic x, and sets the prime p and the p-adic
precision to those of x, but does not copy (the p-adic unit or zero representative and the modulus
of) x.

GEN gcopy(GEN x) creates a new copy of the object x on the PARI stack. For permanent subob-
jects, only the pointer is copied.

GEN forcecopy(GEN x) same as copy except that even permanent subobjects are copied onto the
stack.

long taille(GEN x) returns the total number of BIL-bit words occupied by the tree representing x.

GEN gclone(GEN x) creates a new permanent copy of the object x on the heap.

GEN greffe(GEN x, long l, int use stack) applied to a polynomial x (type t_POL), creates a
power series (type t_SER) of length l starting with x, but without actually copying the coefficients,
just the pointers. If use stack is zero, this is created through malloc, and must be freed after use.
Intended for internal use only.

double rtodbl(GEN x) applied to a real x (type t_REAL), converts x into a C double if possible.

GEN dbltor(double x) converts the C double x into a PARI real.

double gtodouble(GEN x) if x is a real number (but not necessarily of type t_REAL), converts x
into a C double if possible.

long gtolong(GEN x) if x is an integer (not a C long, but not necessarily of type t_INT), converts
x into a C long if possible.

GEN gtopoly(GEN x, long v) converts or truncates the object x into a polynomial with main
variable number v. A common application would be the conversion of coefficient vectors.

GEN gtopolyrev(GEN x, long v) converts or truncates the object x into a polynomial with main
variable number v, but vectors are converted in reverse order.

GEN gtoser(GEN x, long v) converts the object x into a power series with main variable number v.

GEN gtovec(GEN x) converts the object x into a (row) vector.

GEN co8(GEN x, long l) applied to a quadratic number x (type t_QUAD), converts x into a real
or complex number depending on the sign of the discriminant of x, to precision l BIL-bit words.

GEN gcvtop(GEN x, GEN p, long l) converts x into a p-adic number of precision l.

GEN gmodulcp(GEN x, GEN y) creates the object Mod(x,y) on the PARI stack, where x and
y are either both integers, and the result is an integermod (type t_INTMOD), or x is a scalar or a
polynomial and y a polynomial, and the result is a polymod (type t_POLMOD).

GEN gmodulgs(GEN x, long y) same as gmodulcp except y is a long.

GEN gmodulss(long x, long y) same as gmodulcp except both x and y are longs.

GEN gmodulo(GEN x, GEN y) same as gmodulcp except that the modulus y is copied onto the
heap and not onto the PARI stack.

long gexpo(GEN x) returns the binary exponent of x or the maximal binary exponent of the
coefficients of x. Returns -HIGHEXPOBIT if x has no components or is an exact zero.

194

long gsigne(GEN x) returns the sign of x (−1, 0 or 1) when x is an integer, real or (irreducible or
reducible) fraction. Raises an error for all other types.

long gvar(GEN x) returns the main variable of x. If no component of x is a polynomial or power
series, this returns BIGINT.

int precision(GEN x) If x is of type t_REAL, returns the precision of x (the length of x in BIL-bit
words if x is not zero, and a reasonable quantity obtained from the exponent of x if x is numerically
equal to zero). If x is of type t_COMPLEX, returns the minimum of the precisions of the real and
imaginary part. Otherwise, returns 0 (which stands in fact for infinite precision).

long sizedigit(GEN x) returns 0 if x is exactly 0. Otherwise, returns gexpo(x) multiplied by
log10(2). This gives a crude estimate for the maximal number of decimal digits of the components
of x.

5.3.2 Comparison operators and valuations

int gcmp0(GEN x) returns 1 (true) if x is equal to 0, 0 (false) otherwise.

int isexactzero(GEN x) returns 1 (true) if x is exactly equal to 0, 0 (false) otherwise. Note that
many PARI functions will return a pointer to gzero when they are aware that the result they return
is an exact zero, so it is almost always faster to test for pointer equality first, and call isexactzero
(or gcmp0) only when the first test fails.

int gcmp1(GEN x) returns 1 (true) if x is equal to 1, 0 (false) otherwise.

int gcmp\ 1(GEN x) returns 1 (true) if x is equal to −1, 0 (false) otherwise.

long gcmp(GEN x, GEN y) comparison of x with y (returns the sign of x− y).

long gcmpsg(long s, GEN x) comparison of the long s with x.

long gcmpgs(GEN x, long s) comparison of x with the long s.

long lexcmp(GEN x, GEN y) comparison of x with y for the lexicographic ordering.

long gegal(GEN x, GEN y) returns 1 (true) if x is equal to y, 0 otherwise.

long gegalsg(long s, GEN x) returns 1 (true) if the long s is equal to x, 0 otherwise.

long gegalgs(GEN x, long s) returns 1 (true) if x is equal to the long s, 0 otherwise.

long iscomplex(GEN x) returns 1 (true) if x is a complex number (of component types embed-
dable into the reals) but is not itself real, 0 if x is a real (not necessarily of type t_REAL), or raises
an error if x is not embeddable into the complex numbers.

long ismonome(GEN x) returns 1 (true) if x is a non-zero monomial in its main variable, 0 oth-
erwise.

long ggval(GEN x, GEN p) returns the greatest exponent e such that pe divides x, when this
makes sense.

long gval(GEN x, long v) returns the highest power of the variable number v dividing the poly-
nomial x.

int pvaluation(GEN x, GEN p, GEN *r) applied to non-zero integers x and p, returns the highest
exponent e such that pe divides x, creates the quotient x/pe and returns its address in *r. In
particular, if p is a prime, this returns the valuation at p of x, and *r will obtain the prime-to-p
part of x.

195

5.3.3 Assignment statements

void gaffsg(long s, GEN x) assigns the long s into the object x.

void gaffect(GEN x, GEN y) assigns the object x into the object y.

5.3.4 Unary operators

GEN gneg[z](GEN x[, GEN z]) yields −x.

GEN gabs[z](GEN x[, GEN z]) yields |x|.

GEN gsqr(GEN x) creates the square of x.

GEN ginv(GEN x) creates the inverse of x.

GEN gfloor(GEN x) creates the floor of x, i.e. the (true) integral part.

GEN gfrac(GEN x) creates the fractional part of x, i.e. x minus the floor of x.

GEN gceil(GEN x) creates the ceiling of x.

GEN ground(GEN x) rounds the components of x to the nearest integers. Exact half-integers are
rounded towards +∞.

GEN grndtoi(GEN x, long *e) same as round, but in addition puts minus the number of signif-
icant binary bits left after rounding into *e. If *e is positive, all significant bits have been lost.
This kind of situation raises an error message in ground but not in grndtoi.

GEN gtrunc(GEN x) truncates x. This is the (false) integer part if x is an integer (i.e. the unique
integer closest to x among those between 0 and x). If x is a series, it will be truncated to a
polynomial; if x is a rational function, this takes the polynomial part.

GEN gcvtoi(GEN x, long *e) same as grndtoi except that rounding is replaced by truncation.

GEN gred[z](GEN x[, GEN z]) reduces x to lowest terms if x is a fraction or rational function
(types t_FRAC, t_FRACN, t_RFRAC and t_RFRACN), otherwise creates a copy of x.

GEN content(GEN x) creates the GCD of all the components of x.

GEN normalize(GEN x) applied to an unnormalized power series x (i.e. type t_SER with all coef-
ficients correctly set except that x[2] might be zero), normalizes x correctly in place. Returns x.
For internal use.

GEN normalizepol(GEN x) applied to an unnormalized polynomial x (i.e. type t_POL with all
coefficients correctly set except that x[2] might be zero), normalizes x correctly in place and
returns x. For internal use.

196

5.3.5 Binary operators

GEN gmax[z](GEN x, GEN y[, GEN z]) yields the maximum of the objects x and y if they can be
compared.

GEN gmaxsg[z](long s, GEN x[, GEN z]) yields the maximum of the long s and the object x.

GEN gmaxgs[z](GEN x, long s[, GEN z]) yields the maximum of the object x and the long s.

GEN gmin[z](GEN x, GEN y[, GEN z]) yields the minimum of the objects x and y if they can be
compared.

GEN gminsg[z](long s, GEN x[, GEN z]) yields the minimum of the long s and the object x.

GEN gmings[z](GEN x, long s[, GEN z]) yields the minimum of the object x and the long s.

GEN gadd[z](GEN x, GEN y[, GEN z]) yields the sum of the objects x and y.

GEN gaddsg[z](long s, GEN x[, GEN z]) yields the sum of the long s and the object x.

GEN gaddgs[z](GEN x, long s[, GEN z]) yields the sum of the object x and the long s.

GEN gsub[z](GEN x, GEN y[, GEN z]) yields the difference of the objects x and y.

GEN gsubgs[z](GEN x, long s[, GEN z]) yields the difference of the object x and the long s.

GEN gsubsg[z](long s, GEN x[, GEN z]) yields the difference of the long s and the object x.

GEN gmul[z](GEN x, GEN y[, GEN z]) yields the product of the objects x and y.

GEN gmulsg[z](long s, GEN x[, GEN z]) yields the product of the long s with the object x.

GEN gmulgs[z](GEN x, long s[, GEN z]) yields the product of the object x with the long s.

GEN gshift[z](GEN x, long n[, GEN z]) yields the result of shifting (the components of) x left
by n (if n is non-negative) or right by −n (if n is negative). Applies only to integers, reals and
vectors/matrices of such. For other types, it is simply multiplication by 2n.

GEN gmul2n[z](GEN x, long n[, GEN z]) yields the product of x and 2n. This is different from
gshift when n is negative and x is of type t_INT: gshift truncates, while gmul2n creates a fraction
if necessary.

GEN gdiv[z](GEN x, GEN y[, GEN z]) yields the quotient of the objects x and y.

GEN gdivgs[z](GEN x, long s[, GEN z]) yields the quotient of the object x and the long s.

GEN gdivsg[z](long s, GEN x[, GEN z]) yields the quotient of the long s and the object x.

GEN gdivent[z](GEN x, GEN y[, GEN z]) yields the true Euclidean quotient of x and the integer
or polynomial y.

GEN gdiventsg[z](long s, GEN x[, GEN z]) yields the true Euclidean quotient of the long s by
the integer x.

GEN gdiventgs[z](GEN x, long s[, GEN z]) yields the true Euclidean quotient of the integer x
by the long s.

GEN gdiventres(GEN x, GEN y) creates a 2-component vertical vector whose components are the
true Euclidean quotient and remainder of x and y.

GEN gdivmod(GEN x, GEN y, GEN *r) If r is not equal to NULL or ONLY REM, creates the (false)
Euclidean quotient of x and y, and puts (the address of) the remainder into *r. If r is equal

197

to NULL, do not create the remainder, and if r is equal to ONLY REM, create and output only the
remainder. The remainder is created after the quotient and can be disposed of individually with a
cgiv(r).

GEN poldivres(GEN x, GEN y, GEN *r) same as gdivmod but specifically for polynomials x
and y.

GEN gdeuc(GEN x, GEN y) creates the Euclidean quotient of the polynomials x and y.

GEN gdivround(GEN x, GEN y) if x and y are integers, returns the quotient x/y of x and y,
rounded to the nearest integer. If x/y falls exactly halfway between two consecutive integers, then
it is rounded towards +∞ (as for round). If x and y are not both integers, the result is the same
as that of gdivent.

GEN gmod[z](GEN x, GEN y[, GEN z]) yields the true remainder of x modulo the integer or
polynomial y.

GEN gmodsg[z](long s, GEN x[, GEN z]) yields the true remainder of the long s modulo the
integer x.

GEN gmodgs[z](GEN x, long s[, GEN z]) yields the true remainder of the integer x modulo the
long s.

GEN gres(GEN x, GEN y) creates the Euclidean remainder of the polynomial x divided by the
polynomial y.

GEN ginvmod(GEN x, GEN y) creates the inverse of x modulo y when it exists.

GEN gpow(GEN x, GEN y, long l) creates xy. The precision l is taken into account only if y is
not an integer and x is an exact object. If y is an integer, binary powering is done. Otherwise, the
result is exp(y ∗ log(x)) computed to precision l.

GEN ggcd(GEN x, GEN y) creates the GCD of x and y.

GEN glcm(GEN x, GEN y) creates the LCM of x and y.

GEN subres(GEN x, GEN y) creates the resultant of the polynomials x and y computed using the
subresultant algorithm.

GEN gpowgs(GEN x, long n) creates xn using binary powering.

GEN gsubst(GEN x, long v, GEN y) substitutes the object y into x for the variable number v.

int gdivise(GEN x, GEN y) returns 1 (true) if y divides x, 0 otherwise.

GEN gbezout(GEN x,GEN y, GEN *u,GEN *v) creates the GCD of x and y, and puts (the adresses
of) objects u and v such that ux + vy = gcd(x, y) into *u and *v.

198

Appendix A:

Installation Guide for the UNIX Versions

1. Required tools.

We assume that you have either an ANSI C or a C++ compiler available. If your machine does
not have one (for example if you still use /bin/cc in SunOS 4.1.x), we strongly suggest that you
obtain the gcc/g++ compiler from the Free Software Foundation or by anonymous ftp. As for all
GNU software mentioned afterwards, you can find the most convenient site to fetch gcc at the
address

http://www.gnu.ai.mit.edu/order/ftp.html

You can certainly compile PARI with a different compiler, but the PARI kernel takes advantage of
some optimizations provided by gcc if it is available. This results in about 20% speedup on most
architectures*.

1.1. Optional packages: The following programs and libraries are useful in conjunction with
GP, but not mandatory. They’re probably already installed somewhere on your system (with the
possible exception of readline, which we think is really worth a try). In any case, get them before
proceeding if you want the functionalities they provide. All of them are free (though you ought to
make a small donation to the FSF if you use (and like) GNU wares).

• GNU readline library. This provides line editing under GP, an automatic context-dependent
completion, and an editable history of commands. Note that it is incompatible with SUN command-
tools (yet another reason to dump Suntools for X Windows). A recent readline (version number at
least 2.2) is preferred, but older versions should be usable.

• GNU gzip/gunzip/gzcat package enables GP to read compressed data.

• GNU emacs. GP can be run in an Emacs buffer, with all the obvious advantages if you are
familiar with this editor. Note that readline is still useful in this case since it provides a much
better automatic completion than is provided by Emacs GP-mode.

• perl provides extended online help (full text from this manual) about functions and concepts,
which can be used under GP or independently (http://www.perl.com will direct you to the nearest
CPAN archive site).

• A colour-capable xterm, which enables GP to use different (user configurable) colours for
its output. All xterm programs which come with current X11R6.3 distributions will satisfy this
requirement. Under X11R6, you can for instance use color xterm (get the latest version at
http://www.clark.net/pub/dickey/xterm).

* One notable exception is the native AIX C compiler on IBM RS/6000 workstations, which
generates fast code even without any special help from the PARI kernel sources.

199

2. Compiling the library and the GP calculator.

2.1. Basic configuration: First, have a look at the MACHINES file to see if anything funny applies
to your architecture or operating system. Then, type

./Configure

in the toplevel directory. This will attempt to configure GP/PARI without outside help. Note that
if you want to install the end product in some nonstandard place, you can use the --prefix option,
as in

./Configure --prefix=/an/exotic/directory

(the default prefix is /usr/local). This phase extracts some files and creates a directory Oxxx
where the object files and executables will be built. The xxx part depends on your architecture
and operating system, thus you can build GP for several different machines from the same source
tree (the builds are completely independent, so can be done simultaneously).

Configure will let the following environment variable override the defaults if set:

AS: Assembler.

CC: C compiler.

DLLD: Dynamic library linker.

For instance, Configure avoids gcc on some architectures due to various problems which may have
been fixed in your version of the compiler. You can try

env CC=gcc Configure

and compare the benches. Also, if you insist on using a C++ compiler and run into trouble with a
recent g++, try to use g++ -fpermissive.

2.2. Troubleshooting and fine tuning: Decide whether you agree with what Configure printed
on your screen (in particular the architecture, compiler and optimization flags). If anything should
have been found and was not, consider that Configure failed and follow the instructions below.
Look especially for the readline and X11 libraries, and the perl and gunzip (or zcat) binaries.

In case the default Configure run fails miserably, try

./Configure -a

(interactive mode) and answer all the questions (there aren’t that many). Of course, Configure
will still provide defaults for each answer but if you accept them all, it will fail just the same,
so be wary. In any case, we would appreciate a bug report including the complete output from
Configure and the file Oxxx/dft.Config.in that was produced in the process.

Note that even in interactive mode, you can’t directly tell Configure where the readline
library and include files are. If they are not in a standard place, it won’t find them. Nonetheless,
it first searches the distribution toplevel for a readline directory. Thus, if you just want to give
readline a try (as you probably should), you can get the source and compile it there (you don’t
need to install it). You can also use this feature together with a symbolic link, named readline,
in the PARI toplevel directory if you have compiled the readline library somewhere else, without
installing it to one of its standard locations.

200

Technical note: Configure can build GP on different architectures simultaneously from the same
toplevel sources. Instead of the readline link alluded above, you can create readline-osname-
arch, using the same naming conventions as for the Oxxx directory, e.g readline-linux-i686.

2.3. Debugging/profiling: If you also want to debug the PARI library,

Configure -g

will create a directory Oxxx.dbg containing a special Makefile ensuring that the GP and PARI
library built there will be suitable for debugging (if your compiler doesn’t use standard flags, e.g. -g
you may have to tweak that Makefile). If you want to profile GP or the library (using gprof for
instance),

Configure -pg

will create an Oxxx.prf directory where a suitable version of PARI can be built.

2.4. Compilation and tests: To compile the GP binary, simply type

make gp

in the distribution directory. If your make program supports parallel make, you can speed up the
process by going to the Oxxx directory that Configure created and doing a parallel make here (for
instance make -j4 with GNU make).

2.4.1. Testing

To test the binary, type make bench. This will build a static executable (the default, built by
make gp is probably dynamic) and run a series of comparative tests on those two. To test only the
default binary, use make dobench which starts the bench immediately.

The static binary should be slightly faster. In any case, this should not take more than one
minute (user time) on modern machines. See the file MACHINES to get an idea of how much time
comparable systems need (we would appreciate a short note in the same format in case your system
is not listed and you nevertheless have a working GP executable).

If a [BUG] message shows up, something went wrong. Probably with the installation procedure,
but it may be a bug in the Pari system, in which case we would appreciate a report (including the
relevant *.dif file in the Oxxx directory and the file dft.Config.in).

Known problems:

• elliptic: the test cmcurve=ellinit([0,-3/4,0,-2,-1]) may give results which differ
slightly from the template (last decimal in a few entries). This ultimately depends on the output
of

polroots(x^3-3/4*x^2-2*x-1)[1]

at \p38, which may be 2.0 or 1.999 . . . depending on your hardware, libraries, compiler. . . Intel
Pentiums running Linux often trigger this BUG (unrelated to the infamous fdiv bug), which can
safely be ignored in any case: both results are correct given the requested precision.

• program: the GP function install may not be available on your platform, triggering an
error message (“not yet available for this architecture”). Have a look at the MACHINES files (the dl
column) to check if your system is known not to support it, or has never been tested yet.

• If when running gp-dyn, you get a message of the form

201

ld.so: warning: libpari.so.xxx has older revision than expected xxx

(possibly followed by more errors), you already have a dynamic PARI library installed and a broken
local configuration. Either remove the old library or unset the LD LIBRARY PATH environment
variable. Try to disable this variable in any case if anything very wrong occurs with the gp-dyn
binary (e.g Illegal Instruction on startup). It doesn’t affect gp-sta.

2.4.2. Some more testing [Optional]

You can test GP in compatibility mode with make test-compat. If you want to test the
graphic routines, use make test-graphic. You will have to click on the mouse button after seeing
each image (under X11). There will be eight of them, probably shown twice (under X11, try to
resize at least one of them as a further test).

The make bench and make test-compat runs produce a Postscript file pari.ps in Oxxx which
you can send to a Postscript printer. The output should bear some similarity to the screen images.

3. Installation.

When everything looks fine, type

make install

(You may have to do this with superuser privileges, depending on the target directories.) Beware
that, if you chose the same installation directory as before in the Configure process, this will wipe
out any files from version 1.39.15 and below that might already be there. Libraries and executable
files from newer versions (starting with version 1.900) are not removed since they are only links to
files bearing the version number (beware of that as well: if you’re an avid GP fan, don’t forget to
delete the old pari libraries once in a while).

This installs in the directories chosen at Configure time the default GP executable (probably
gp-dyn) under the name gp, the default PARI library (probably libpari.so), the necessary include
files, the manual pages, the documentation and help scripts and emacs macros.

By default, if a dynamic library libpari.so could be built, the static library libpari.a will
not be created. If you want it as well, you can use the target make install-lib-sta. You can
install a statically linked gp with the target make install-bin-sta. As a rule, programs linked
statically (with libpari.a) may be slightly faster (about 5% gain), but use much more disk space
and take more time to compile. They are also harder to upgrade: you will have to recompile them
all instead of just installing the new dynamic library. On the other hand, there’s no risk of breaking
them by installing a new pari library.

3.1. The Galois package: The default polgalois function can only compute Galois groups of
polynomials of degree less or equal to 7. If you want to handle polynomials of degree bigger than
7 (and less than 11), you need to fetch a separate archive: galdata.tgz which can probably be
found at the same place where you got the main PARI archive, and on the megrez ftp server in
any case. Untar the archive in the datadir directory which was chosen at Configure time (it’s
one of the last messages on the screen if you did not run Configure -a). You can then test the
polgalois function with your favourite polynomials.

202

3.2. The GPRC file: Copy the file misc/gprc.dft (or gprc.dos if you’re using GP.EXE) to
$HOME/.gprc. Modify it to your liking. For instance, if you’re not using an ANSI terminal, remove
control characters from the prompt variable. You can also enable colors.

If desired, also copy/modify misc/gpalias somewhere and call it from the gprc file (this
provides some common shortcuts to lengthy names). Finally, if you have superuser privileges and
want to provide system-wide defaults, you can copy your customized .gprc file to /etc/gprc.

In older versions, gphelp was hidden in pari lib directory and wasn’t meant to be used from
the shell prompt, but not anymore. If gp complains it can’t find gphelp, check whether your .gprc
(or the system-wide gprc) does contain explicit paths. If so, correct them according to the current
misc/gprc.dft.

4. Getting Started.

4.1. Printable Documentation: To print the user’s guide, for which you’ll need a working
(plain) TEX installation; type

make doc

This will create, in two passes, a file doc/users.dvi containing the manual with a table of contents
and an index. You must then send the users.dvi file to your favourite printer in the usual way,
probably via dvips. Also included are a short tutorial (doc/tutorial.dvi) and a reference card
(doc/refcard.dvi and doc/refcard.ps) for GP.

If the pdftex package is part of your TEX setup, you can produce these documents in PDF format,
which may be more convenient for online browsing (the manual is complete with hyperlinks); type

make docpdf

All these documents are available online from PARI home page and on the megrez ftp server.

4.2. C programming: Once all libraries and include files are installed, you can link your C
programs to the PARI library. A sample makefile examples/Makefile is provided to illustrate the
use of the various libraries. Type make all in the examples directory to see how they perform on
the mattrans.c program, which is commented in the manual.

4.3. GP scripts: Several complete sample GP programs are also given in the examples directory,
for example Shanks’s SQUFOF factoring method, the Pollard rho factoring method, the Lucas-
Lehmer primality test for Mersenne numbers and a simple general class group and fundamental
unit algorithm (much worse than the built-in bnfinit!). See the file examples/EXPLAIN for some
explanations.

4.4. EMACS: If you want to use gp under GNU Emacs, read the file emacs/pariemacs.txt. If
you are familiar with Emacs, we suggest that you do so.

203

4.5. The PARI Community: There are three mailing lists devoted to the PARI/GP package
(run courtesy of Dan Bernstein), and most feedback should be directed to those. They are:

• pari-announce: to announce major version changes. You can’t write to this one, but you
should probably subscribe.

• pari-dev: for everything related to the development of PARI, including suggestions, tech-
nical questions, bug reports or patch submissions.

• pari-users: for everything else.

To subscribe, send empty messages respectively to
pari-announce-subscribe@list.cr.yp.to
pari-users-subscribe@list.cr.yp.to
pari-dev-subscribe@list.cr.yp.to

The PARI home page (maintained by Gerhard Niklasch) at the address
http://www.parigp-home.de/

maintains an archive of all discussions as well as a download area. If don’t want to subscribe to
those lists, you can write to us at the address

pari@math.u-bordeaux.fr

At the very least, we will forward you mail to the lists above and correct faulty behaviour, if
necessary. But we cannot promise you will get an individual answer.

If you have used PARI in the preparation of a paper, please cite it in the following form
(BibTeX format):

@manual{PARI2,
organization = "{The PARI~Group}",
title = "{PARI/GP, Version 2.1.1}",
year = 2000,
address = "Bordeaux",
note = "available from {\tt http://www.parigp-home.de/}"

}

In any case, if you like this software, we would be indebted if you could send us an email message
giving us some information about yourself and what you use PARI for.

Good luck and enjoy!

204

Appendix B:

A Sample program and Makefile

We assume that you have installed the PARI library and include files as explained in Appendix
A or in the installation guide. If you chose differently any of the directory names, change them
accordingly in the Makefiles.

If the program example that we have given is in the file matexp.c (say as the first of several
matrix transcendental functions), then a sample Makefile might look as follows. Note that the
actual file examples/Makefile is much more elaborate and you should have a look at it if you
intend to use install() on custom made functions, see Section 3.11.2.13.

CC = cc
INCDIR = /home/belabas/GP/include/pari
LIBDIR = /home/belabas/GP/lib
CFLAGS = -O -I$(INCDIR) -L$(LIBDIR)

all: matexp

matexp: matexp.c
$(CC) $(CFLAGS) -o matexp matexp.c -lpari -lm

We then give the listing of the program examples/matexp.c seen in detail in Section 4.8, with the
slight modifications explained at the end of that section.

/* Id : matexp.c, v 1.3 1999/12/17 16 : 14 : 01 karim Exp */
#include "pari.h"

GEN
matexp(GEN x,long prec)
{
long lx=lg(x),i,k,n, ltop = avma;
GEN y,r,s,p1,p2;

/* check that x is a square matrix */
if (typ(x) != t_MAT) err(typeer,"matexp");
if (lx == 1) return cgetg(1, t_MAT);
if (lx != lg(x[1])) err(talker,"not a square matrix");

/* convert x to real or complex of real and compute its L2 norm */
s = gzero; r = cgetr(prec+1); affsr(1,r); x = gmul(r,x);
for (i=1; i<lx; i++)
s = gadd(s, gnorml2((GEN)x[i]));

if (typ(s) == t_REAL) setlg(s,3);
s = gsqrt(s,3); /* we do not need much precision on s */

/* if s < 1 we are happy */
k = expo(s);
if (k < 0) { n = 0; p1 = x; }
else { n = k+1; p1 = gmul2n(x,-n); setexpo(s,-1); }

205

/* initializations before the loop */
y = gscalmat(r,lx-1); /* creates scalar matrix with r on diagonal */
p2 = p1; r = s; k = 1;
y = gadd(y,p2);

/* the main loop */
while (expo(r) >= -BITS_IN_LONG*(prec-1))
{
k++; p2 = gdivgs(gmul(p2,p1),k);
r = gdivgs(gmul(s,r),k); y = gadd(y,p2);

}

/* square back n times if necessary */
for (i=0; i<n; i++) y = gsqr(y);
return gerepileupto(ltop,y);

}

int
main()
{
long d, prec = 3;
GEN x;

/* take a stack of 106 bytes, no prime table */
pari_init(1000000, 2);
printf("precision of the computation in decimal digits:\n");
d = itos(lisGEN(stdin));
if (d > 0) prec = (long)(d*pariK1+3);

printf("input your matrix in GP format:\n");
x = matexp(lisGEN(stdin), prec);

sor(x, ’g’, d, 0);
exit(0);

}

206

Appendix C:

Summary of Available Constants

In this appendix we give the list of predefined constants available in the PARI library. All
of them are in the heap and not on the PARI stack. We start by recalling the universal objects
introduced in Section 4.1:

t_INT: gzero (zero), gun (un), gdeux (deux)
t_FRAC: ghalf (lhalf)
t_COMPLEX: gi
t_POL: polun[..] (lpolun[..]), polx[..] (lpolx[..])

Only polynomials in the variables 0 and MAXVARN are defined initially. Use fetch var() (see
Section 4.6.2.2) to create new ones.

The other objects are not initialized by default:

bern(i). This is the 2i-th Bernoulli number (B0 = 1, B2 = 1/6, B4 = −1/30, etc. . .). To
initialize them, use the function:

void mpbern(long n, long prec)

This creates the even numbered Bernoulli numbers up to B2n−2 as real numbers of precision
prec. They can then be used with the macro bern(i). Note that this is not a function but simply
an abbreviation, hence care must be taken that i is inside the right bounds (i.e. 0 ≤ i ≤ n − 1)
before using it, since no checking is done by PARI itself.

geuler. This is Euler’s constant. It is initialized by the first call to mpeuler (see Section 3.3.2).

gpi. This is the number π. It is initialized by the first call to mppi (see Section 3.3.4).

The use of both geuler and gpi is deprecated since it’s always possible that some library
function increases the precision of the constant after you’ve computed it, hence modifying the
computation accuracy without your asking for it and increasing your running times for no good
reason. You should always use mpeuler and mppi (note that only the first call will actually compute
the constant, unless a higher precision is required).

Finally, one has access to a table of (differences of) primes through the pointer diffptr. This
is used as follows: when

void pari init(long size, long maxprime)

is called, this table is initialized with the successive differences of primes up to (just a little beyond)
maxprime (see Section 4.1). maxprime has to be less than 436272744, whatever memory is available.
A difference of 0 means we have reached the end of the table. The largest prime computable using
this table is available as the output of

ulong maxprime()

Here’s a small example:

byteptr d = diffptr;

207

ulong p = 0;

if (maxprime() < goal) err(primer1); /* not enough primes */
while (p <= goal) /* run through all primes up to goal */
{
p += *d++;
...

}

Here, we use the general error handling function err (see Section 4.7.3), with the codeword primer1.
This will just print the error message:

*** not enough precomputed primes

and then abort the computations.

You can use the function initprimes from the file arith2.c to compute a new table on the
fly and assign it to diffptr or to a similar variable of your own. Beware that before changing
diffptr, you should really free the (malloced) precomputed table first, and then all pointers into
the old table will become invalid.

PARI currently guarantees that the first 6547 primes, up to and including 65557, will be present
in the table, even if you set maxnum to zero.

In addition, some single or double-precision real numbers are predefined, and their list is in
the file paricom.h.

208

209

Index

SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

A

Abelian extension 113, 118
abs . 58
accuracy . 9
acos . 59
acosh . 59
addell 77
addhelp 184
addhelp 38, 147
addii . 155
addir . 155
addis . 155
addll . 187
addllx 187
addmul 188
addprimes 65
addri . 155
addrr . 155
addsii 193
adj . 127
adjoint matrix 127
affii . 190
affir . 190
affri . 190
affrr . 190
affrs . 190
affsi . 189
affsr . 190
affsz . 189
agm . 59
akell . 77
algdep 124, 125
algdep0 125
algebraic dependence 124
algtobasis 103
alias 38, 147
allocatemem 18, 147
allocatemoremem 148, 178
alternating series 138
and . 48
and . 51
anell . 77
apell . 77
apell2 77

apprgen 120
apprgen9 120
area . 76
arg . 59
Artin L-function 95
Artin root number 95
asin . 59
asinh . 59
assignment 158
assmat 127
atan . 59
atanh . 59
automatic simplification 19
available commands 21
avma 159, 160

B

backslash character 30
base . 104
base2 . 104
basistoalg 104
Berlekamp 70
bern . 207
bernfrac 59
Bernoulli numbers 59, 60, 64
bernreal 59, 60
bernvec 60
besseljh 60
besselk 60
bestappr 66
bezout 66
bezoutres 66
bfffo . 187
BIGDEFAULTPREC 156
BIGINT 170, 171
bigomega 66
bilhell 77
binaire 51
binary flag 45
binary quadratic form 7, 25, 50
binary 51
binome 66
binomial coefficient 66
binomial 66
Birch and Swinnerton-Dyer conjecture . . 78
bitand 48, 51
bitneg 51
bitnegimply 51

210

bitor 48, 51
BITS_IN_LONG 156
bittest 51
bitwise and 48, 51
bitwise exclusive or 51
bitwise inclusive or 51
bitwise negation 51
bitwise or 48
bitxor 51
bit_accuracy 156, 179
bnf . 82
bnf 35, 85
bnfcertify 86
bnfclassgrouponly 88
bnfclassunit 86
bnfclassunit0 87
bnfclgp 88
bnfdecodemodule 88
bnfinit 82, 88
bnfinit0 89
bnfisintnorm 89
bnfisnorm 89
bnfisprincipal 88, 90
bnfissunit 90
bnfisunit 90
bnfmake 90
bnfnarrow 74, 91
bnfreg 91
bnfsignunit 91
bnfsunit 91
bnfunit 91
bnr . 83
bnr . 35
bnrclass 92
bnrclass0 93
bnrclassno 93
bnrclassnolist 93
bnrconductor 93
bnrconductorofchar 93
bnrdisc 93
bnrdisc0 93
bnrdisclist 94
bnrdisclist0 94
bnrinit 73, 94
bnrinit0 94
bnrisconductor 94
bnrisprincipal 88, 94
bnrL1 91, 92
bnrrootnumber 95

bnrstark 75, 95, 96
boolean operators 48
brace characters 30
break loop 151
break 145, 151
Breuil . 77
brute 174, 176
buchfu 91
buchimag 74
Buchmann 85, 86, 101, 120
Buchmann-McCurley 73
buchnarrow 91
buchreal 74
buffersize 15

C

Cantor-Zassenhaus 69
caract 125
caradj 125
carhess 125
case distinction 29
ceil . 52
centerlift 52
centerlift0 52
certifybuchall 86
cgetg 157, 158, 166, 189
cgeti 157, 189
cgetp . 193
cgetr 157, 189
cgiv 161, 189
changevar 31, 52
character string 26, 171
character 91, 93, 95
characteristic polynomial 125
charpoly 125
charpoly0 125
Chebyshev 123
chinese 66
chinois 66
classno 72
classno2 72
clgp . 85
CLISP . 39
clone 154, 159
cmpii . 191
cmpir . 191
cmpis . 191
cmpri . 191

211

cmprr . 191
cmprs . 191
cmpsi . 191
cmpsr . 191
co8 . 194
code words 52
codiff 85
coeff 53, 155, 193
colors 15
column vector 7, 26, 171
comparison operators 48
compatible 16
completion 42
complex number 7, 8, 24, 169
compo 52, 193
component 52
components 52
composition 72
compraw 72
compress 22
concat 37, 125, 126
conj . 53
conjvec 53
Conrad 77
content 67, 196
contfrac 67
contfrac0 67
contfracpnqn 67
continued fraction 67
Control statements 145
conversions 160
convol 123
coordch 78
copy . 159
core . 67
core0 . 67
core2 . 67
coredisc 67
coredisc0 67
coredisc2 67
cos . 60
cosh . 60
cotan . 60
CPU time 20
creation 157
cyc . 85
cyclo . 121
Cygwin 13

D

dbltor 160, 194
debug 17, 22, 176
debugfiles 17, 22
debugging 176
debuglevel 69
DEBUGLEVEL 176
debugmem 17, 22
DEBUGMEM 176
debugmem 176
decodemodule 88
decomposition into squares 132
Dedekind 61, 96, 113, 119
default precision 9
default 38, 148
DEFAULTPREC 156
defaults 14, 22
definite binary quadratic form 171
degree . 170
degree 121, 170
delete_var 173
denom . 53
denominator 53
deriv 119, 120
destruction 161
det . 127
det2 . 127
detint 127
diagonal 128
Diamond 77
diff . 85
difference 46
diffptr 154, 207
dilog . 60
dirdiv 67
direuler 68
Dirichlet series 67, 68, 96
dirmul 68
dirzetak 96
disc 76, 85
discf . 104
discsr 121
divise 193
divisii 193
divisors 68
divll . 188
divrem 47
divsum 139

212

dvi . 43
dvmdii 192
dvmdiiz 193
dvmdis 192
dvmdisz 193
dvmdsi 192
dvmdsiz 192
dvmdss 192
dvmdssz 192

E

echo 17, 22
ECM 65, 69
editing characters 29
effective length 168, 170
eigen . 128
eint1 60, 61
element_div 104
element_divmodpr 105
element_mul 105
element_mulmodpr 105
element_pow 105
element_powmodpr 105
element_reduce 105
element_val 105
ell . 35
elladd 77
ellak . 77
ellan . 77
ellap . 77
ellap0 77
ellbil 77
ellchangecurve 78
ellchangepoint 78
elleisnum 78
elleta 78
ellglobalred 78
ellheight 78
ellheight0 78
ellheightmatrix 78
ellinit 76, 79
ellinit0 80
ellisoncurve 80
ellj . 80
elllocalred 80
elllseries 80
ellorder 80
ellordinate 80

ellpointtoz 81
ellpow 81
ellrootno 81
ellsigma 81
ellsub 81
elltaniyama 81
elltors 81
elltors0 82
ellwp . 82
ellwp0 82
ellzeta 82
ellztopoint 82
Emacs . 41
EMX . 6, 13
entree 35, 46, 183
environment expansion 50
environment expansion 15
environment variable 50
erfc . 61
err 175, 176, 178
errfile 175
error . 175
error 38, 148
eta 61, 76
Euclid . 70
Euclidean quotient 46
Euclidean remainder 47
Euler product 68, 72, 137
Euler totient function 65, 68
Euler . 138
Euler 29, 31, 58
Euler-Maclaurin 64
eulerphi 65, 68
eval 50, 120
exact object 8
exe . 175
exp . 61
expi . 188
expo 168, 170, 188
expression sequence 32
expression 32
extern 19, 38, 148
external prettyprint 18
extract 135

F

factcantor 69
factmod 70

213

factmod9 69
factor 68
factor0 68
factorback 69
factorcantor 69
factoredbase 104
factoredpolred 112
factorff 69
factorial 69
factorint 68, 69
factormod 70
factornf 68, 96
factorpadic 120
factorpadic4 120
fetch_user_var 172
fetch_var 172
ffinit 70
fibo . 70
fibonacci 70
field discriminant 104
filename 15
filter . 173
fincke_pohst 133
finite field 25
fixed floating point format 17
flisexpr 173
flisseq 173
flissexpr 172
floor . 53
foo . 45
for . 145
forcecopy 159, 160, 193
Ford . 103
fordiv 145
formal integration 120
format 174, 176
format 17
forprime 145
forstep 145
forsubgroup 146
forvec 146
fprintferr 176, 183
frac . 53
FreeBSD 13
fu . 85
fundamental units 75, 85, 86
fundunit 75
futu . 85

G

gabs . 58
gach . 59
gacos . 59
gadd . 46
gaddgs 155
gaddgsz 155
gaddgs[z] 197
gaddsg 155
gaddsgz 155
gaddsg[z] 196
gaddz 155, 159, 166
gadd[z] 188, 196
gaffect 158, 159, 195
gaffsg 159, 195
Galois 89, 106, 111, 117
galois 111
galoisapply 106
galoisconj 107
galoisconj0 107
galoisconj2 107
galoisconj4 107
galoisfixedfield 96
galoisinit 96, 97
galoispermtopol 97, 98
galoissubcyclo 95, 98, 123
gamma . 61
gammah 61
gand . 48
garbage collecting 160
garg . 59
gash . 59
gasin . 59
gatan . 59
gath . 59
gauss . 131
gaussmodulo 131
gaussmodulo2 131
gbezout 66, 198
gbitand 51
gbitneg 51
gbitnegimply 51
gbitor 51
gbitxor 52
gboundcf 67
gcarrecomplet 71
gcarreparfait 71
gcd . 70

214

gcd0 . 70
gceil 52, 196
gcf . 67
gcf2 . 67
gch . 60
gclone 159, 160, 194
gcmp 48, 195
gcmp0 48, 195
gcmp1 48, 195
gcmpgs 195
gcmpsg 195
gcmp 1 . 195
gcmp_1 48
gconj . 53
gcopy 159, 160, 193
gcos . 60
gcotan 60
gcvtoi 56, 196
gcvtop 194
gdeuc . 198
gdeux . 153
gdiv . 46
gdivent 46
gdiventgs[z] 197
gdiventres 47, 197
gdiventsg[z] 197
gdivent[z] 197
gdivgs[z] 197
gdivise 198
gdivmod 197
gdivround 47, 198
gdivsg[z] 197
gdiv[z] 197
gegal 48, 195
gegalgs 195
gegalsg 195
gen (member function) 85
GEN 7, 153
gener . 76
generic matrix 38
genmsgtimer 176
genrand 55
gentimer 176
GENtostr 50, 175
geq . 48
gerepile 158, 161, 180, 189
gerepilemany 165
gerepilemany 163
gerepilemanysp 163

gerepileupto 162, 181
getheap 148
getrand 148
getstack 148
gettime 148
get_timer 176
geuler 207
geval . 120
gexp 61, 177
gexpo 168, 188, 194
gfloor 53, 196
gfrac 53, 196
ggamd . 61
ggamma 61
ggcd 70, 198
gge . 48
ggprecision 55
ggrandocp 119
ggt . 48
ggval 56, 195
ghalf . 153
ghell . 78
ghell2 78
gi . 153
gimag . 53
ginv . 196
ginvmod 198
gisfundamental 70
gisirreducible 121
gisprime 71
gispsp 71
gissquarefree 71
glambdak 119
glcm 71, 198
gle . 48
glength 54
glngamma 62
global . 35
global 31, 149
globalreduction 78
glog . 62
glogagm 62
glt . 48
gmax . 48
gmaxgs[z] 196
gmaxsg[z] 196
gmax[z] 196
gmin . 48
gmings[z] 196

215

gminsg[z] 196
gmin[z] 196
gmod . 47
gmodgs[z] 198
gmodsg[z] 198
gmodulcp 49, 194
gmodulgs 194
gmodulo 49, 194
gmodulss 194
gmod[z] 198
gmul . 46
gmul2n 48, 179
gmul2n[z] 197
gmulgs[z] 197
gmulsg[z] 197
gmul[z] 197
gne . 48
gneg . 46
gnil . 32
gnorm . 54
gnorml2 54, 179
gnot . 48
gor . 48
GP . 13
gphelp 21
gpi . 207
gpolvar 56
gpow 47, 58, 198
gpowgs 198
gprc . 39
gprc . 14
GPRC . 39
gprec . 55
gpsi . 62
greal . 55
gred 169, 170
gred[z] 196
greffe 194
gres . 198
GRH 74, 85, 86, 87, 89, 117, 124
grndtoi 55, 196
ground 55, 196
gscalmat 129, 180
gscalsmat 129, 180
gsh . 62
gshift 48, 179
gshift[z] 197
gsigne 48, 168, 188, 194
gsin . 62

gsqr 46, 63, 196
gsqrt . 63
gsqrtn 64
GSTR . 171
gsub . 46
gsubgs[z] 197
gsubsg[z] 197
gsubst 124, 198
gsub[z] 197
gsumdivk 75
gtan . 64
gth . 64
gtodouble 160, 194
gtolong 160, 194
gtomat 49
gtopoly 50, 194
gtopolyrev 50, 194
gtoser 50, 194
gtoset 50
gtovec 51, 194
gtrace 134
gtrans 132
gtrunc 56, 196
gun . 153
gunclone 160
gval . 195
gvar 170, 171, 189, 194
gzero 153, 179
gzeta . 65
gzetak 119
gzip . 22

H

Hadamard product 123
hashing function 35
hashtable 35
hclassno 72
heap 22, 154, 207
hell . 78
help . 17
Hermite normal form 69, 83, 84, 99, 101, 107,

109, 114, 119, 128, 129, 146
hess . 128
hexadecimal tree 175
hil . 70
Hilbert class field 74
Hilbert matrix 128
Hilbert symbol 70, 107

216

hilbert 70
histsize 17
hnf . 128
hnfall 128
hnfmod 129
hnfmodid 129
hqfeval 120
Hurwitz class number 72
hyperu 61

I

I 24, 29, 58
ideal list 84
ideal . 83
idealadd 98
idealaddtoone 98
idealaddtoone0 98
idealappr 98
idealappr0 99
idealchinese 99
idealcoprime 99
idealdiv 99
idealdiv0 99
idealdivexact 99
idealfactor 99
idealhermite 99
idealhnf 99
idealhnf0 99
idealintersect 99, 129
idealinv 99, 100, 108
ideallist 100
ideallist0 100
ideallistarch 100
ideallistarch0 100
ideallllred 102
ideallog 100
idealmin 100
idealmul 100
idealmulred 100
idealnorm 100
idealpow 101
idealpowred 101
idealpows 101
idealprimedec 101
idealprincipal 101
idealred 101
idealstar 102
idealstar0 102

idealtwoelt 102
idealval 102
ideal_two_elt0 102
idele . 83
ideleprincipal 102
idmat . 129
if . 146
imag . 53
image . 129
imagecompl 129
imprecise object 8
incgam 61
incgam1 61
incgam2 61
incgam3 61
incgam4 61
incgamc 61
inclusive or 48
indefinite binary quadratic form 170
indexrank 129
indexsort 136
infile 175
infinite product 138
infinite sum 139
infinity . 137
initell 80
initzeta 119
input . 173
input . 149
install 38, 149, 174, 176, 184
integ . 120
integer 7, 23, 167
integermod 7, 23, 169
integral basis 103
internal longword format 22
internal representation 23
interpolating polynomial 121
intersect 129
intformal 120
intnum 137
intnum0 137
inverseimage 129
iscomplex 195
isdiagonal 129
isexactzero 48, 195
isfundamental 70
isideal 109
ismonome 195
isprime 70, 71

217

isprincipalall 90
isprincipalrayall 95
ispseudoprime 71
ispsp . 71
issquare 71
issquarefree 65, 71
isunit 90
itos 160, 182, 190

J

j . 76
jacobi 132
jbesselh 60
jell . 80

K

kbessel 60
kbessel2 60
ker . 130
keri . 130
kerint 130
ker_mod_p 130
keyword 36
kill . 149
Kodaira 80
Kronecker symbol 71
kronecker 71

L

laplace 123
lclone 159
lcm . 71
lcopy . 159
leadingcoeff 121
leaves . 8
leaves . 7
Legendre polynomial 122
Legendre symbol 71
legendre 122
length . 167
length 54
Lenstra 69, 120
lex . 48
lexcmp 48, 195
lexsort 136
lg 167, 178, 188
lgef 170, 171, 188
lgefint 168, 188

lgetg . 157
lgeti . 157
lgetr . 157
library mode 153
LiDIA . 69
lift . 54
lift0 . 54
limit . 35
lindep 126
lindep0 126
line editor 42
linear dependence 126
lines . 17
Linux 13, 184
Linux . 13
lisexpr 173
lisGEN 173, 177
Lisp . 39
lisseq 173
list 7, 26, 171
List . 49
listcreate 126
listinsert 126
listkill 127
listput 127
listsort 127
LLL 101, 107, 125, 126, 128, 130, 132
lll . 133
lllgram 133
lllgramint 133
lllgramkerim 133
lllint 133
lllkerim 133
lngamma 62
local 31, 32, 35
localreduction 80
log 17, 21, 22, 61, 150
logfile . 150
logfile 18
LONG_IS_64BIT 156
lpolx . 155
lseriesell 80

M

MACHINES 13
mael 53, 155
maeln . 193
makebigbnf 91

218

Mat 26, 49, 125
matadjoint 127
matalgtobasis 103
matbasistoalg 103
matbrute 174
matcompanion 127
matdet 127
matdetint 127
matdiagonal 127
mateigen 128
matextract 135
mathell 79
mathess 128
mathilbert 128
mathnf 124, 128
mathnf0 128
mathnfmod 128
mathnfmodid 129
matid . 129
matimage 129
matimage0 129
matimagecompl 129
matindexrank 129
matintersect 129
matinverseimage 129
matisdiagonal 129
matker 129
matker0 130
matkerint 130
matkerint0 130
matmuldiagonal 130
matmultodiagonal 130
matpascal 130
matqpascal 130
matrank 130
matrice 130
matrix 7, 8, 26, 38, 171
matrix 130
matrixqz 130
matrixqz0 131
matsize 131
matsnf 131
matsnf0 131
matsolve 131
matsolvemod 131
matsolvemod0 131
matsupplement 132
mattranspose 132
max . 48

maxprime 153, 207
MAXVARN 154, 172
MEDDEFAULTPREC 156
member functions 35, 76, 85
min . 48
minideal 100
minim . 133
minim2 133
minimal polynomial 125
Mod . 49
Mod0 . 49
mod2 . 168
mod4 . 168
mod64 . 168
modpr . 109
modreverse 103
modulargcd 70
module . 84
Moebius 65, 71
moebius 65, 71
Mordell-Weil group 78, 81
mpadd . 155
mpaff . 189
mpbern 207
mpcmp . 191
mpdivis 193
mpdvmdz 192
mpent[z] 190
mpeuler 58, 207
mpfact 69
mpfactr 69
mpinvir 191
mpinvrr 191
mpinvsr 191
mpinvz 191
mpodd . 168
mppi 58, 207
MPQS 65, 69
mpshift[z] 190
mptrunc[z] 190
msgtimer 176
mu . 71
mulll . 187
mulsii 193
multivariate polynomial 34

N

name_var 172

219

newtonpoly 103
next 147, 151
nextprime 71
nf . 82
nf . 35, 85
nfalgtobasis 103
nfbasis 103, 104, 108
nfbasis0 104
nfbasistoalg 104
nfdetint 104
nfdisc 104
nfdiscf0 104
nfdiveuc 104
nfdivres 105
nfeltdiv 104
nfeltdiveuc 104
nfeltdivmodpr 104
nfeltdivrem 105
nfeltmod 105
nfeltmul 105
nfeltmulmodpr 105
nfeltpow 105
nfeltpowmodpr 105
nfeltreduce 105
nfeltreducemodpr 105
nfeltval 105
nffactor 106, 109
nffactormod 106
nfgaloisapply 106
nfgaloisconj 96, 106
nfhermite 107
nfhermitemod 107
nfhilbert 107
nfhnf . 107
nfhnfmod 107
nfinit 82, 96, 107, 111, 112
nfinit0 109
nfisideal 109
nfisincl 109
nfisisom 109
nfkermodpr 109
nfmod . 105
nfmodprinit 104, 105, 109
nfnewprec 108, 109
nfreducemodpr2 105
nfroots 110
nfrootsof1 110
nfsmith 110
nfsnf . 110

nfsolvemodpr 110
nfsubfield 96
nfsubfields 109
no . 85
norm . 54
normalize 196
normalizepol 196
norml2 54
not . 48
nucomp 73
nudupl 73
numbdiv 71
number field 25
numdiv 71
numer . 54
numerator 54
numerical derivation 28
numerical integration 136
numtoperm 54
nupow . 73
Néron-Tate height 78

O

O . 29, 119
omega . 74
omega 72, 76
oncurve 80
operator 26
or . 48
or . 51
ordell 80
order . 76
orderell 80
ordred 112
outbeaut 174
outbrute 174
outfile 175
outmat 174
output formats 14
output . 174
output 18, 22, 174, 176

P

p-adic number 7, 24, 169
padicappr 120
padicprec 54
parametric plot 141
pari.h 153

220

pariErr 175
pariK1 177
pariOut 175
PariPerl 39
pariputs 183
PariPython 39
parisize 18
pari_init 153, 154, 207
parser code 181, 184
Pascal triangle 130
path . 18
perf . 134
Perl . 39
permtonum 54
permute 54
permuteInv 54
phi . 68
Pi . 29, 58
plisprime 71
plot . 140
plotbox 141
plotclip 141
plotcolor 141
plotcopy 141
plotcursor 141
plotdraw 141
plotfile 141
ploth . 141
plothraw 142
plothsizes 143
plotinit 143
plotkill 143
plotlines 143
plotlinetype 143
plotmove 143
plotpoints 143
plotpointsize 143
plotpointtype 144
plotrbox 144
plotrecth 142, 144
plotrecthraw 144
plotrline 144
plotrmove 144
plotrpoint 144
plotscale 142, 144
plotstring 38, 144
plotterm 38, 144
pnqn . 67
pointch 78

pointell 82
pointer . 45
pointer 45
Pol . 49
polcoeff 52, 120
polcoeff0 120
polcompositum 110
polcompositum0 111
polcyclo 121
poldegree 121
poldisc 121
poldisc0 121
poldiscreduced 121
poldivres 197
poleval 120
polfnf 96
polgalois 111
polhensellift 121
polint 121
polinterpolate 121
polisirreducible 121
Pollard Rho 65, 69
pollead 121
pollegendre 122
polmod 7, 25, 169
polmodrecip 103
polrecip 122
polred 111, 112
polred0 112
polredabs 112
polredabs0 112
polredord 112
polresultant 122
polresultant0 122
Polrev 50
polroots 122
polrootsmod 122
polrootspadic 122
polsturm 122
polsubcyclo 95, 123
polsylvestermatrix 123
polsym 123
poltchebi 123
poltschirnhaus 112
polun 154, 171
polvar 171
polx 154, 171
polylog 62
polylog0 62

221

polynomial 7, 8, 25, 169
polzag 123
polzagier 123
polzagreel 123
PostScript 140
powell 81
power series 7, 8, 25, 170
powering 47, 58
powraw 73
precdl 57
precision 57
precision 54, 195
precision0 55
precp 169, 188
precprime 72
preferences file 13, 14, 39, 184
prettymatrix format 18
prettyprint format 18
prettyprinter 18
prime . 72
primeform 73
primelimit 18
primes 72
principal ideal 101
principalideal 101
principalidele 103
print 37, 38, 150
print1 150
printf 175
printp 150
printp1 150
printtex 150
priority 27
prod . 137
prodeuler 137, 138
prodinf 138
prodinf1 138
product 46
produit 137
programming 30, 145
prompt 19
psdraw 145
pseudo-basis 84
pseudo-matrix 84
psfile 19, 140
psi . 62
psploth 145
psplothraw 145
pvaluation 195

Python 39

Q

Qfb . 50
Qfb0 . 50
qfbclassno 72
qfbclassno0 72
qfbcompraw 72
qfbhclassno 72
qfbnucomp 72
qfbnupow 73
qfbpowraw 73
qfbprimeform 73
qfbred 73
qfbred0 73
qfeval 120
qfgaussred 132
qfi . 50
qfjacobi 132
qflll 124, 132
qflll0 133
qflllgram 133
qflllgram0 133
qfminim 133
qfminim0 133
qfperfection 134
qfr . 50
qfsign 134
quadclassunit 73
quadclassunit0 74
quaddisc 74
quadgen 24, 74
quadhilbert 74
quadpoly 74
quadpoly0 75
quadratic number 7, 8, 24, 169
quadray 75
quadregulator 75
quadunit 75
quit 22, 150
quote . 150
quotient 46

R

Rabin-Miller 65
racine 75
random 55
rank . 130

222

rational function 7, 25, 170
rational number 7, 24, 169
raw format 18
rayclassno 93
rayclassnolist 93
read . 22
read 38, 151
readline 42
real number 7, 23, 168
real . 55
realprecision 19, 22
realzero 179
recip . 123
recursion depth 35
recursion 34
recursive plot 142
recursiveness 6
redimag 73
redreal 73
redrealnod 73
reduceddiscsmith 121
reduction 72, 73
reference card 21
reg . 85
regula 75
regulator 91
removeprimes 75
reorder 31, 52, 151
resultant2 122
return 147, 151
rhoreal 73
rhorealnod 73
Riemann zeta-function 33, 64
rnf . 83
rnfalgtobasis 112
rnfbasis 112
rnfbasistoalg 113
rnfcharpoly 113
rnfconductor 113
rnfdedekind 113
rnfdet 113
rnfdisc 113
rnfdiscf 113
rnfelementabstorel 114
rnfelementdown 114
rnfelementreltoabs 114
rnfelementup 114
rnfeltabstorel 113
rnfeltdown 114

rnfeltreltoabs 114
rnfeltup 114
rnfequation 110, 114
rnfequation0 114
rnfhermitebasis 114
rnfhnfbasis 114
rnfidealabstorel 114, 115
rnfidealdown 115
rnfidealhermite 115
rnfidealhnf 115
rnfidealmul 115
rnfidealnormabs 115
rnfidealnormrel 115
rnfidealreltoabs 115
rnfidealtwoelement 115
rnfidealtwoelt 115
rnfidealup 115, 116
rnfinit 116
rnfinitalg 117
rnfisfree 117
rnfisnorm 117
rnfkummer 117, 118
rnflllgram 118
rnfnormgroup 118
rnfpolred 118
rnfpolredabs 118
rnfpseudobasis 118
rnfsteinitz 118, 119
rootmod 122
rootmod2 122
rootpadic 122
roots 76, 85, 122
rootsof1 110
rootsold 122
round 2 103
round 4 103, 104, 120
round . 55
row vector 7, 26, 171
RSX . 13
rtodbl 160, 194

S

scalar product 46
scalar type 8
Schönhage 122
scientific format 17
secure 19
Ser . 50

223

serconvol 123
seriesprecision 19, 22
serlaplace 123
serreverse 123
Set . 50
setexpo 168, 170, 189
setintersect 134
setisset 134
setlg 167, 179, 189
setlgef 170, 171, 189
setlgefint 168, 189
setminus 134
setprecp 169, 189
setrand 151
setsearch 134
setsigne 168, 170, 189
settyp 167, 189
setunion 134
setvalp 169, 170, 189
setvarn 170, 189
Shanks SQUFOF 65, 69
Shanks 50, 72, 73
shift . 47
shifti 190
shiftl 187
shiftlr 187
shiftmul 48
shiftr 190
shifts 190
sigma 75, 139
sign . 48
sign 48, 85
signat 134
signe 167, 170, 188
signunits 91
simplefactmod 70
simplify 19, 21, 55
sin . 62
sindexlexsort 136
sindexsort 136
sinh . 62
sizebyte 56
sizedigit 56, 195
smallfact 68
smallinitell 80
Smith normal form 85, 88, 91, 102, 110,

119, 131, 146
smith . 131
solve . 138

somme . 138
sor . 174
sort . 136
sqr . 63
sqred . 132
sqrt . 63
sqrtint 75
sqrtn . 63
srgcd . 70
stack . 153
stack 22, 207
stacksize 35
stack_lim 166
Stark units 74, 95
startup 39
stderr 175
stdout 175
Steinitz class 118
stoi 160, 190
Str 37, 38, 50
strftime 15, 19
strictmatch 19
string context 37
string 7, 26, 36
strtoGEN 50
strtoGENstr 50
sturm . 123
sturmpart 123
subcyclo 123
subell 81
subfields 109
subgroup 146
subgrouplist 119, 146
subgrouplist0 119
subll . 187
subllx 187
subres 122, 198
subresext 66
subresultant algorithm 70, 121, 122
subst . 123
sum . 46
sum 136, 138
sumalt 138, 139
sumdiv 75, 139
suminf 139
sumpos 139
suppl . 132
switchin 175
switchout 175

224

sylvestermatrix 123
symmetric powers 123
system 19, 38, 149, 151

T

t2 . 85
taille 56, 194
taille2 56
talker . 175
Tamagawa number 78, 80
tan . 64
tanh . 64
taniyama 81
Taniyama-Weil conjecture 77
Tate . 76
tate . 76
tayl . 124
Taylor series 46
Taylor . 77
taylor 124
tchebi 123
teich . 64
teichmuller 64
tex2mail 18
texprint 174
theta . 64
thetanullk 64
thue . 124
thueinit 124
time expansion 15
timer 20, 176
timer2 176
trace . 134
trap 38, 151
truecoeff 53, 121, 193
truedvmdii 192
truncate 56
tschirnhaus 112
tu . 85
tufu . 85
tutorial 21
typ 167, 188
type number 167
type 39, 152
typecast 154
types . 6
t_COL 7, 26, 171
t_COMPLEX 7, 24, 169

t_FRAC 7, 24, 169
t_FRACN 7, 24, 169
t_INT 7, 23, 167
t_INTMOD 7, 23, 169
t_LIST 7, 26, 171
t_MAT 7, 26, 171
t_PADIC 7, 24, 169
t_POL 7, 25, 169
t_POLMOD 7, 25, 169
t_QFI 7, 25, 171
t_QFR 7, 25, 170
t_QUAD 7, 24, 169
t_REAL 7, 23, 168
t_RFRAC 7, 25, 170
t_RFRACN 7, 25, 170
t_SER 7, 25, 170
t_STR 7, 26, 171
t_VEC 7, 26, 171

U

ulimit 35
ulong . 187
un . 155
universal object 207
until . 147
user defined functions 32

V

vali . 190
valp 169, 170, 188
vals . 190
valuation 56
varentries 171
variable (special) 29
variable (temporary) 172
variable (user) 172
variable number 170, 171, 182
variable 25, 27, 30, 154
variable 56
varn 170, 188
Vec 26, 50
vecbezout 66
vecbezoutres 66
veceint1 60
vecextract 129, 134
vecmax 48
vecmin 49
vecsort 135

225

vecsort0 136
vecteur 136
vector . 8
vector 136
vectorv 136
version number 23
Vi . 42
voir . 175
vvecteur 136

W

w . 76
weber . 64
weber0 64
Weierstrass ℘-function 82
Weierstrass equation 76
Weil curve 81
weipell 82
wf . 64
wf1 . 64
wf2 . 64
whatnow 39, 152
while . 147
Wiles . 77
write . 23
write 38, 152
write1 152
writetex 152

X

x[,n] . 53
x[m,n] 53
x[m,] . 53
x[n] . 53

Z

Zassenhaus 69, 120
zbrent 138
zell . 81
zero 8, 155
zeta function 33
zeta . 64
zetak . 119
zetakinit 119
zideallog 100
zk . 85
zkst . 85
znlog . 75

znorder 75
znprimroot 76
znstar 76

226

		1 Overview of the PARI system

		1.1 Introduction

		1.2 The PARI types

		1.3 Operations and functions

		2 Specific Use of the GP Calculator

		2.1 Defaults and output formats

		2.2 Simple metacommands

		2.3 Input formats for the PARI types

		2.4 GP operators

		2.5 The general GP input line

		2.6 The GP/PARI programming language

		2.7 Interfacing GP with other languages

		2.8 The preferences file

		2.9 Using GP under GNU Emacs

		2.10 Using GP with readline

		3 Functions and Operations Available in PARI and GP

		3.1 Standard monadic or dyadic operators

		3.2 Conversions and similar elementary functions or commands

		3.3 Transcendental functions

		3.4 Arithmetic functions

		3.5 Functions related to elliptic curves

		3.6 Functions related to general number fields

		3.7 Polynomials and power series

		3.8 Vectors, matrices, linear algebra and sets

		3.9 Sums, products, integrals and similar functions

		3.10 Plotting functions

		3.11 Programming under GP

		4 Programming PARI in Library Mode

		4.1 Introduction: initializations, universal objects

		4.2 Important technical notes

		4.3 Creation of PARI objects, assignments, conversions

		4.4 Garbage collection

		4.5 Implementation of the PARI types

		4.6 PARI variables

		4.7 Input and output

		4.8 A complete program

		4.9 Adding functions to PARI

		5 Technical Reference Guide for Low-Level Functions

		5.1 Level 0 kernel (operations on unsigned longs)

		5.2 Level 1 kernel (operations on longs, integers and reals)

		5.3 Level 2 kernel (operations on general PARI objects)

		A Installation Guide for the UNIX Versions

		0.1 Required tools

		0.2 Compiling the library and the GP calculator

		0.3 Installation

		0.4 Getting Started

		B A Sample program and Makefile

		C Summary of Available Constants

		Index

panchish
File Attachment
users.pdf

Questions :1) Quel est le nombre maximum de mots que peut ontenir un ode C de apaité deorretion t ? 2) Quel est le nombre minimum de mots que doit ontenir un ode C pouravoir un rayon de reouvrement ρ(C) �xé ?Pour répondre à es deux questions on montre tout d'abord que CardB(x, r) ne dépendpas de x ∈ C : Card B(x, r) = |B(x, r)| =: Vq(n, r) ("le volume de la boule de Hamming").

51

Proposition 2.2 Pour tout entier r ≤ n, et tout x ∈ Fn

CardB(x, r) = Vq(n, r) =
r∑

i=0

(q − 1)i

(
n

i

)

Preuve. On peut représenter B(x, r) omme la réunion des sphères S(x, i) entrées en
x et de rayon i ≤ r.Calulons Card (S(x, i)) pour x et i �xés

Card (S(x, i)) = Card {y ∈ Fn | d(x, y) = i}l'ensemble des mots dont le nombre de omposantes distintes de elles de x est i.Il y a don (ni) ensembles d'indies à i éléments possibles. Chaune des i omposantesdistintes peut être de q − 1 façons, 'est à dire
Card (S(x, i)) = (q − 1)i

(
n

i

)

52

2.2 Borne de Hamming et borne de SingletonThéorème 2.3 (Borne de Hamming) Soit C ⊂ Fn un ode (sur l'alphabet F de Card (F) =
q) de distane d = d(C), la apaité de orretion t =

[
d−1
2

] et de ardinal M = Card (C).Alors
M

t∑

i=0

(q − 1)i

(
n

i

)

≤ qn, don Vq(n, t) ≤ qn/M ⇐⇒M ≤ qn/Vq(n, t).

Preuve est impliquée par le fait que les boules B(x, t) entrées en x ∈ C ⊂ Fn, sontdisjointes, ar 2t + 1 ≤ d.

53

Corollaire 2.4 Soit C ⊂ Fn un ode sur l'alphabet F de Card (F) = q de distane
d = d(C) et la apaité de orretion t =

[
d−1
2

]. Alors
max

C
(Card (C)) ≤ qn/Vq(n, t)Remarque 2.5 Soit C ⊂ Fn un ode (sur l'alphabet F de Card (F) = q) ayant le rayonde reouvrement ρ(C). Alors

min
C

(Card (C)) ≥ qn/Vq(n, ρ(C))Optimisation des paramètres : on onsidère les odes C ⊂ Fn sur l'alphabet F de
Card (F) = q de ardinal Card (C) = M , de distane d = d(C). Deux des paramètres
(n,M, d) sont �xés, on herhe à déterminer la plus grande valeur possible pour le troi-sième.

54

Théorème 2.6 (Borne de Singleton) Soit C = ImE un [n, k, d]q-ode, E : F k →
Fn. Alors

k ≤ n− d + 1⇐⇒ R ≤ 1− δ + 1/n,où R = k/n, δ = d/n.Preuve On pose
x = (x1, . . . , xn) ∈ Fn, x′ = (x1, . . . , xn−d+1) ∈ Fn−d+1,alors l'appliation E′ : F k → Fn−d+1 obtenue de E : F k → Fn par E′(u) := E(u)′, resteinjetive ar le poids de C est d, d'où k ≤ n− d + 1.Définition 2.7 Un ode atteignant la borne de Singleton est dit M.D.S. ("maximumdistane separable" en anglais).Le odes M.D.S. triviaux sont de type : [n, 1, n], [n, n − 1, 2], [n, n, 1].

55

2.3 Bonnes familles des odes et problèmes asymptotiques.Un bon ode est un ode orrigeant de nombreuses erreurs ompte tenu de sa longueurtout en ayant une vitesse de transmission la plus élevée possible, e qui orrespond à desparamètres R et δ assez grands dans [0, 1℄. Rapellons (voir De�nition1.9) qu'une famille
{Ci} des [ni, ki, di]q-odes est dite bonne s'il existe et positives les limites

lim
i→∞

ki

ni
= R > 0, lim

i→∞

di

ni
= δ > 0,Toutefois, es paramètres δ et R sont liés par des relations dites asymptotiques. Nousallons établir quelques relations.

56

2.4 Borne de Hamming et borne de Singleton asymptotiquesThéorème 2.8 (Borne de Singleton asymptotique) Soit {Ci} une famille des
[ni, ki, di]q-odes, on pose

R = lim sup
i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors

R ≤ 1− δPreuve : Pour toute i, on pose Ri = ki/ni, δi = di/ni, alors Ri ≤ 1− δi + 1/ni. Lorsque
i→∞, on obtient le résultat : R ≤ 1− δ.

57

Borne de Hamming asymptotique utilise la fontion d'entropie q-aire : pour δ ∈
[0, q−1

q]

Hq(0) = 0,Hq(δ) =
δ log(q − 1)

log(q)
− δ log(δ)

log(q)
− (1− δ) log(1− δ)

log(q)Proposition 2.9
1

n + 1
q
nHq

(r

n

)

≤ Vq(n, r) =

r∑

i=0

(q − 1)i

(
n

i

)

≤ q
nHq

(r

n

) (2.1)Preuve On remarque tout d'abord, que pour tout z ∈]0, 1], et pour tout i ≤ r,
zi−r ≥ 1 =⇒

r∑

i=0

(q − 1)i

(
n

i

)

≤
r∑

i=0

(q − 1)i

(
n

i

)

zi−r.Puis, on utilise l'inégalité : pour tout z ∈]0, 1],
r∑

i=0

(q − 1)i

(
n

i

)

zi−r ≤
n∑

i=0

(q − 1)i

(
n

i

)

zi−r = z−r(1 + (q − 1)z)n =: g(z).Pour trouver le minimum de g(z) on alule la dérivée g′(z) :58

panchish
Sticky Note
Faire en exercice en détail en class

panchish
Sticky Note
Supposons que r<=(q-1)n/q

> diff(z^(-r)*(1+(q-1)*z)^n,z);
−z(−r) r (1 + (q − 1) z)n

z
+

z(−r) (1 + (q − 1) z)n n (q − 1)

1 + (q − 1) zCei dit, g′(z) est égale à
−rz−1−r(1+(q−1)z)n+n(q−1)z−r(1+(q−1)z)n−1 = z−1−r(1+(q−1)z)n−1((q−1)(n−r)z−r).Cei implique

g′(z) = 0⇐⇒ −z−1−r(1 + (q − 1)z)n−1((q − 1)(n− r)z − r) = 0.don
z0 =

r

(q − 1)(n− r)
=

r/n

(q − 1)
(

1− r

n

) ,

g(z0) = z−r
0 (1 + (q − 1)z0)

n, 1 + (q − 1)z0 = 1 +
r

n− r
=

n

n− r
=

1

1− r

n

,et le minimum est
g(z0) = (q − 1)r

(r

n

)−r (

1− r

n

)n−r

.

59

panchish
Sticky Note
r-n

 q:=3;r:=1;n:=3;

 IiIk

 IiIi

 IiIk

 g(z):=z^(-r)*(1+(q-1)*z)^n;

 KiZJInpHNiIhIiIsJiIiIkYnRiMiIiMiIiQ=

 gp:=diff(g(z),z);

 LCYqJkkiekc2IiEiIywmIiIiRihGJCIiIyIiJCEiIiomRiRGK0YnRikiIic=

 solve(gp);

 NiUjISIiIiIjRiMjIiIiIiIl

 plot(g(z), z=0.1..0.8);

 LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkdzckJCIiIiEiIiQiJUc8ISIjNyQkIjApZTxOSyFvLiIhIzokIjB0aiFSIz52cCIhIzg3JCQiMGU7TGBEKW81ISM6JCIwdTwkZlgrdDshIzg3JCQiMFUkb2N6JFs1IiEjOiQiL3orJypmWFo7ISM3NyQkIjAlKW9QNCozVDYhIzokIjB6OGU3LlBpIiEjODckJCIwa0ZiJHo7eDYhIzokIixAVFU9ZyIhIio3JCQiMEVeLWs8MUAiISM6JCIwOzdxXkJJZSIhIzg3JCQiMDA1PyhHRFg3ISM6JCIvbUhFYClbYyIhIzc3JCQiMEBUI3lFMiJHIiEjOiQiMG82a3RgdWEiISM4NyQkIi8mKiopNHd4OzghIzkkIjB3LC1BOThgIiEjODckJCIwLS8zXy9OTiIhIzokIjAmSFxRIioqZV4iISM4NyQkIi8nPlJnYGVRIiEjOSQiMCQpUUA0V0tdIiEjODckJCIwQ1snNDVGQTkhIzokIjAyQzNDYyoqWyIhIzg3JCQiMHNWKFt6JCllOSEjOiQiMFsncDlMY3g5ISM4NyQkIjBFXi0ocDIlXCIhIzokIjBlbFkjcFhtOSEjODckJCIwcFF4UHhnXyIhIzokIjBBaTNOTnFYIiEjODckJCIwJHBRZCpHVGMiISM6JCIwb3lSJTRnWTkhIzg3JCQiMCJIZU9PTydmIiEjOiQiMGIhUlRWUFE5ISM4NyQkIjAvMztCZ1FqIiEjOiQiMHVPKnltWUg5ISM4NyQkIjB6ZTwyXnFtIiEjOiQiMDMmKilbLTlBOSEjODckJCIwTnBRb21NcSIhIzokIjA3KnAjZW9ZVCIhIzg3JCQiLzI5ZUg5UTwhIzkkIjApellfSDIzOSEjODckJCIwIkdjN1NLdTwhIzokIjBCb3JnKnAsOSEjODckJCIwOERdXlx2IT0hIzokIjBgU1QsemlSIiEjODckJCIvLS8zeFFWPSEjOSQiMDFIIUcxKDNSIiEjODckJCIwQFUlPU5oISk9ISM6JCIwQjhfazNkUSIhIzg3JCQiMDpIZXA9SSI+ISM6JCIwNDBBVHQ6USIhIzg3JCQiMCllPHZyLFs+ISM6JCIwWHZbc2l1UCIhIzg3JCQiMHNXKkdTPCUpPiEjOiQiMFJQaV0lZXQ4ISM4NyQkIjAiPlFja2E+PyEjOiQiMGZbJip6TSxQIiEjODckJCIwc1YoKTRyUDAjISM6JCIwJCp6b14wck8iISM4NyQkIjBzVypHPHgiNCMhIzokIjA8Y2ZKITNrOCEjODckJCIwakVgKXAiZjcjISM6JCIwbFBmWl47TyIhIzg3JCQiMFB0WUx1QjsjISM6JCIvUXBUa01mOCEjNzckJCIwMDQ9NjVhPiMhIzokIjA4eSF6Tl1kOCEjODckJCIwYjVAJXBfSkEhIzokIjB4SFBlV2ROIiEjODckJCIwKFF4aytebEEhIzokIjBVb3M+QlZOIiEjODckJCIwdVsoPkEuLEIhIzokIjBMLC1WcElOIiEjODckJCIwWyY0Pjt3TkIhIzokIjBHLE9gaj9OIiEjODckJCIwSGU7Mz9AUCMhIzokIjAzUHomUUJeOCEjODckJCIwMTdDZ1ByUyMhIzokIjAoR3N4QGtdOCEjODckJCIwUXZdMltIVyMhIzokIjBYQyQ+I1ItTiIhIzg3JCQiMHNXKj0/WXlDISM6JCIwLypvZE8uXTghIzg3JCQiMDhEXWsmNDZEISM6JCIwdFckSCkzK04iISM4NyQkIjAzO0tZKFxbRCEjOiQiMDdkKHprO104ISM4NyQkIjBRd180XT5lIyEjOiQiMGtFbyopcC9OIiEjODckJCIwclQkeXZoPEUhIzokIi9yMWVpJjROIiEjNzckJCIwXy4yImZ2XkUhIzokIjBEOishUWReOCEjODckJCIwYTI6OWknKm8jISM6JCIwPDlcaUZDTiIhIzg3JCQiMGI1QDonW0FGISM6JCIwJVJkNl5JYDghIzg3JCQiMHBReHBUKGZGISM6JCIwVS0rOl5XTiIhIzg3JCQiMGU6SjMncCR6IyEjOiQiMCNmJlw8SWNOIiEjODckJCIwJ0dkV28kMyRHISM6JCIwWiVIXj4xZDghIzg3JCQiMF4tMC8kKUcnRyEjOiQiMGQ4bipIVGU4ISM4NyQkIjAjXClwIip6JCoqRyEjOiQiMCIpb1s6eStPIiEjODckJCIwWCopeTRNWSRIISM6JCIwOy9XcDU9TyIhIzg3JCQiMFghNFtfJylwSCEjOiQiMEpNLkNnT08iISM4NyQkIjBCWSMqeW1cKyQhIzokIjA+anoqcGhsOCEjODckJCIweWM4USlvUUkhIzokIjBFcXYoNGduOCEjODckJCIwUnhhSlVeMiQhIzokIjAmKSp5IkdkKXA4ISM4NyQkIi8oUnpiJikpNEohIzkkIjBcKlI4RTZzOCEjODckJCIwN0JZPV5rOSQhIzokIjBmOG92JGZ1OCEjODckJCIwMDU/KT1iekohIzokIjBybmZOS3BQIiEjODckJCIwdFgiXFY4O0shIzokIjA0dnVjOyd6OCEjODckJCIvKFJ6KFI8XkshIzkkIjBMPHM4JEcjUSIhIzg3JCQiMFsnSD4kR2hHJCEjOiQiMChbJUgqUi4mUSIhIzg3JCQiMGhAVkVRRUskISM6JCIwW09saywhKVEiISM4NyQkIjBtS2xEbGlOJCEjOiQiMGlNNT49M1IiISM4NyQkIjBUIkcnKlFxIVIkISM6JCIwJmYmUVkkeSRSIiEjODckJCIwPExtQ0coR00hIzokIjBbaGI4XXJSIiEjODckJCIwYDE4PWNKWSQhIzokIjBoLCoqRyFHKzkhIzg3JCQiMDM7Sz5sJClcJCEjOiQiMHV6cTRnTlMiISM4NyQkIjAvMjkmPTxNTiEjOiQiMDkta0l2cFMiISM4NyQkIi8tL1FeM25OISM5JCIwX091I1I9NTkhIzg3JCQiMCopeWRqcEBnJCEjOiQiMCdmVExlbjg5ISM4NyQkIi8tL29xKXBqJCEjOSQiMHAhcDNGQDw5ISM4NyQkIjAmKiopeiozQnVPISM6JCIwKT1hIkh0NVUiISM4NyQkIjBoQVgncDQyUCEjOiQiMCM0cE9dYUM5ISM4NyQkIjAxOEVlPF11JCEjOiQiMEtUbiFbaUc5ISM4NyQkIjBVJSlvLFEjelAhIzokIjA4RmdHdEJWIiEjODckJCIwWCopeU0oNDhRISM6JCIwbWpXT1ZoViIhIzg3JCQiMGxJaCsyJlxRISM6JCIwMCE0KSpSRVM5ISM4NyQkIjBzVypbUjEnKVEhIzokIjBpc0dTcFdXIiEjODckJCIvLC1hYEs+UiEjOSQiMFFzWSlRTls5ISM4NyQkIjBzVigpW1pZJlIhIzokIjAsUDpqUURYIiEjODckJCIqVz0iKilSISIqJCIwLi9IcCFvYzkhIzg3JCQiMDdDW0omW0VTISM6JCIwNkhmWU03WSIhIzg3JCQiMEZgMTA9KWVTISM6JCIwYykpPk1GX1kiISM4NyQkIjAzO0tQYGY0JSEjOiQiMCVcRiJbcylwOSEjODckJCIwWiRwR0QnMzglISM6JCIwMEUoKSplSHU5ISM4NyQkIi4qeipcTWE7JSEjOCQiMG5lLiopSCh5OSEjODckJCIwJGU7dFIuK1UhIzokIjBFISk+bj5LWyIhIzg3JCQiLyV6ZUNCYEIlISM5JCIvMHYhKT4meVsiISM3NyQkIjAlKW9QR0hGRiUhIzokIjA7WThvPkdcIiEjODckJCIwJXplZHAtMlYhIzokIjBOP0shZVUoXCIhIzg3JCQiMFJ5YzskKTNNJSEjOiQiMGg+NikqPj9dIiEjODckJCIwaUNcKlsyeFYhIzokIjAoPXdUQilwXSIhIzg3JCQiLyhSeiR5PThXISM5JCIvKHkmR2YpPl4iISM3NyQkIjBBVylbOGdYVyEjOiQiMFJTJ3owXzs6ISM4NyQkIjB2XCoqWygqUlslISM6JCIwYCRlY1slPl8iISM4NyQkIjBeLC5nRGheJSEjOiQiL3VCTnBfRTohIzc3JCQiME5xUy4uUGIlISM6JCIwO3I0Yk4+YCIhIzg3JCQiME9yVTBuJiplJSEjOiQiMHInKXpfWXJgIiEjODckJCIwMTdDTiplQFkhIzokIjBtPXM/Uj1hIiEjODckJCIwKil5ZHgsd2wlISM6JCIway1wLGhyYSIhIzg3JCQiMEtrRyJIJlFwJSEjOiQiMD47dSlcY186ISM4NyQkIjA3Qll2SipIWiEjOiQiMD1ybVEqKXpiIiEjODckJCIwdFkkZjlRalohIzokIjAscmo0ZkljIiEjODckJCIwYDA2cDshKXolISM6JCIwdDNqO1wkbzohIzg3JCQiMG9PdFxPUSRbISM6JCIwJSp6dD5qUWQiISM4NyQkIjAoXCoqRzlhcFshIzokIjBza3RlLSV6OiEjODckJCIvJioqKVIkb2khXCEjOSQiMD5GciVbOSZlIiEjODckJCIwMzpJVTwnUVwhIzokIjBhZnVXUi1mIiEjODckJCIwc1YoR1sudlwhIzokIi53KHBiLCdmIiEjNjckJCIvI1J5dyw7LCYhIzkkIjB2eFJWZT1nIiEjODckJCIwdFkkKnlTby8mISM6JCItTW8lSHZnIiEjNTckJCIwPE1vPlQpeV0hIzokIjAsK1hGOEZoIiEjODckJCIwVCNbd0YqbzYmISM6JCIwVjkpcCo9Kj07ISM4NyQkIjBSeWNYRiJcXiEjOiQiMGlXVTE2VWkiISM4NyQkIjBfLjIwQ209JiEjOiQiMCdwOXpxU0k7ISM4NyQkIjBGYTMqWyIpPl8hIzokIi9HcyxzI2ZqIiEjNzckJCIwI1snSF1JaUQmISM6JCIwIykqZVQ8LVU7ISM4NyQkIjA9T3N4MTRIJiEjOiQiMFdaJikpPSd5ayIhIzg3JCQiMEhlOyR5M0ZgISM6JCIwKClwUEckKlJsIiEjODckJCIvMTdNTEpnYCEjOSQiMCdRIjRgZCdmOyEjODckJCIwb05yX15oUiYhIzokIi9XITMwLmVtIiEjNzckJCIwcFB2THhMViYhIzokIjBfMVNlREFuIiEjODckJCIwaUNcXiN5bGEhIzokIjA3TCZcJlt5biIhIzg3JCQiME9yVSo0eStiISM6JCIwVHoiPlsmUm8iISM4NyQkIi8tL1t5JHBgJiEjOSQiMDpLJ0gjKkghcCIhIzg3JCQiMFJ4YUY1QmQmISM6JCIwYEBvOVRscCIhIzg3JCQiLyNSeSJcYDFjISM5JCIwNEEhW0xoLTwhIzg3JCQiLy0vW2JgV2MhIzkkIjBkWUksJFI0PCEjODckJCIwNkFXITNveWMhIzokIi9LMGYjPWJyIiEjNzckJCIwJSlvUDpRXnImISM6JCIwQj8kNEg0QTwhIzg3JCQiMF8vNCRSPFtkISM6JCIwPHY9PiIzRzwhIzg3JCQiMC4xN3chSCV5JiEjOiQiMHM7MDRoWXQiISM4NyQkIjBOcFEpUUY9ZSEjOiQiMDwmSE1PKTN1IiEjODckJCIwQVcpUWd6YGUhIzokIjBFTShwLVVaPCEjODckJCIwJjQ+UWFfKSllISM6JCIwbyc0NEYlUXYiISM4NyQkIjB4YDIhUilbI2YhIzokIi9NXVMoKmZnPCEjNzckJCIwYTI6VSwqZmYhIzokIjBBSC5lUnJ3IiEjODckJCIwJjM8JSo9ciYqZiEjOiQiMC1eQHlmUXgiISM4NyQkIi8tL1FlQUpnISM5JCIwIil6V05jMHkiISM4NyQkIi8xN2slZlExJyEjOSQiMGk1QHVQbnkiISM4NyQkIjBjNkJHaDc1JyEjOiQiMCJ5bS9dJlF6IiEjODckJCIwJz1QOVJyTWghIzokIi9kXXUsRCs9ISM3NyQkIjA+UHVSIlFxaCEjOiQiMDI7bjoqNDI9ISM4NyQkIi4qekgoPlg/JyEjOCQiMF8zd3Ikbzg9ISM4NyQkIjAtLjEnZlVVaSEjOiQiME1FNElHNSM9ISM4NyQkIjAuMTcoKlxfRichIzokIjAyTGVIO3UjPSEjODckJCIwPE1vXjBESichIzokIjB0Y0I8KXBNPSEjODckJCIwMDZBISpma00nISM6JCIwNkFKeGo4JT0hIzg3JCQiME1vT20rT1EnISM6JCIwTyIzVWpvWz0hIzg3JCQiMCp6ZmZvazprISM6JCIvRlRbMi5iPSEjNzckJCIvLzNPUDlfayEjOSQiMCp5V21kR2k9ISM4NyQkIjAjXClwInpSKFsnISM6JCIwKG9KNk1LcD0hIzg3JCQiMCRmPW4hSEVfJyEjOiQiME5ML1UmUXc9ISM4NyQkIjByVCQzMXRkbCEjOiQiMHRPbzRdTSk9ISM4NyQkIjBFXy8/XzlmJyEjOiQiMEovdSRRRSEqPSEjODckJCIwKEdkTWghemknISM6JCIuS2gxZncqPSEjNjckJCIwPU5xUFxFbSchIzokIjAxS0RhTlohPiEjODckJCIwZj1QKzojKnAnISM6JCIwMnZVKEdANz4hIzg3JCQiMGAwNnE6QnQnISM6JCIvWTwjeTIhPj4hIzc3JCQiMEBUI28iKSopb24hIzokIjAoZS5yaGFFPiEjODckJCIwPU5xelBSIW8hIzokIi9yJlshW3pMPiEjNzckJCIwJz5SUUAqKVFvISM6JCIwVFJlOGA1JT4hIzg3JCQiMDM8TTMtYShvISM6JCIwX1UmPk5tWz4hIzg3JCQiMDlHYzJIITRwISM6JCIvI3AnKTMqcGI+ISM3NyQkIjApb1A6eFlWcCEjOiQiMDBrTUxJSCc+ISM4NyQkIjBrR2QxI1wiKXAhIzokIi9scmNaJTQoPiEjNzckJCIwLC0vKz9mLCghIzokIjBaKXlcJUcjeT4hIzg3JCQiMGM2QixINjAoISM6JCIwJipHVDUvZCk+ISM4NyQkIjBeLTBuTnAzKCEjOiQiLyh6d0NNTCo+ISM3NyQkIjBvTnImKlspPnIhIzokIjBXemZHcy4rIyEjODckJCIwUHVbWExcOighIzokIjApNEsrLiF6KyMhIzg3JCQiMG9Ocikzdio9KCEjOiQiMFQlUUVyUjo/ISM4NyQkIjBWJjM8WipwQSghIzokIjBKMygqM1hNLSMhIzg3JCQiMDQ9T3lnKWZzISM6JCIwMiQqNGhyMC4jISM4NyQkIjBhMzxTInkoSCghIzokIjAqSCg9aUEpUT8hIzg3JCQiLyp6ZiQ9K0t0ISM5JCIwTDN5aSVIWT8hIzg3JCQiMCNcKXA7aGVPKCEjOiQiL0ghcDI3UDAjISM3NyQkIjA4RV8jM0YtdSEjOiQiMDRlXjM6PDEjISM4NyQkIi8tL294IylRdSEjOSQiMGA2TFF5KHA/ISM4NyQkIjBlOko8KjNzdSEjOiQiL0gjSCxScjIjISM3NyQkIi8jUnlJNnVdKCEjOSQiMHY/LCczKVwzIyEjODckJCIwWyY0ZkEpPWEoISM6JCIwdlUpcCdlRTQjISM4NyQkIi8nPlI4XCN6diEjOSQiMDBmbUE0NTUjISM4NyQkIjB1WyhwPWU2dyEjOiQiMCo0PikpekQzQCEjODckJCIwYzZCPjwoW3chIzokIjBlNiVRKjRtNiMhIzg3JCQiMCYqKXlaamkkbyghIzokIjA6VUkmcFtDQCEjODckJCIwWiUqKT0kKT49eCEjOiQiMDtmblI3QjgjISM4NyQkIjBKaEF6KHpfeCEjOiQiMG9ldVRvLDkjISM4NyQkIjAoWyhcMSgzKXkoISM6JCIwKCp6VDMxI1tAISM4NyQkIjBLa0c1JFxEeSEjOiQiMDNEX1FgbjojISM4NyQkIjBVJG93MnpmeSEjOiQiMCczVkpfaGtAISM4NyQkIjAoUXglKXBrJCp5ISM6JCIwMHJeNCpSc0AhIzg3JCQiLywtOShRKUh6ISM5JCIwQV06TlgyPSMhIzg3JCQiMD1OcWxeZid6ISM6JCIwSk9YYyo0Kj0jISM4NyQkIiIpISIiJCIlKD4jISIjLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiIhIiIkIiIpISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ6NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkNSUhIiItJSlCT1VORFNfWUc2IyQiIyEpISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlZ00hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlIVwkISIiLSUpQ0hJTERSRU5HNiI=

 NiI=

 JSFH

 JSFH

panchish
File Attachment
Hq.mw

Un exemple numérique :
> restart;q:=3;r:=1;n:=3;
> g(z):=z^(-r)*(1+(q-1)*z)^n;
> gprime(z):=diff(z^(-r)*(1+(q-1)*z)^n,z);

q := 3

r := 1

n := 3

g(z) :=
(1 + 2 z)3

z

gprime(z) := − (1 + 2 z)3

z2
+

6 (1 + 2 z)2

z
> z0:=
> r /((q-1)*(n-r));

z0 :=
1

4
> plot([g(z)℄, z = 0 .. 1, y = 0..20, disont=true);
> 'y=g(z)';

60

0

2

4

6

8

10

12

14

16

18

20

y

0.2 0.4 0.6 0.8 1
z

y = g(z)

61

D'autre part
q
nHq

(r

n

)

= q
n

r
n log(q − 1)

log(q)
−

r
n log(r

n)

log(q)
− (1− r

n) log(1− r
n)

log(q) =

(q − 1)r
(r

n

)−r (

1− r

n

)n−r

= g(z0),d'où l'inégalité supérieure.L'inégalité inférieure : on montre qu'il existe z̃ ∈]0, 1] tel que
r∑

i=0

(q − 1)i

(
n

i

)

> (q − 1)r

(
n

r

)

≥ 1

n + 1
z̃−r(1 + (q − 1)z̃)n ≥ 1

n + 1
g(z0). (2.2)En e�et, le développement (1 + (q − 1)z̃)n =

∑n
i=0 Aiz̃

i ontient n + 1 termes, Aiz̃
i =

(
n
i

)
(q − 1)iz̃i, et on peut hoisir z̃ de telle façon que le terme Aiz̃

i =
(
n
i

)
(q − 1)iz̃i soitmaximal parmi Aiz̃

i :
Ai−1z̃

i−1

Aiz̃i
=

1

z̃

(
n

i− 1

)(
n

i

)−1

(q − 1)−1 = (2.3)
1

z̃
· n!

(i− 1)!(n− i + 1)!
· i!(n− i)!

n!

1

z̃

Ai−1

Ai
=

1

z̃

i

(n− i + 1)(q − 1)
.

62

panchish
Sticky Note
r-n

panchish
Sticky Note
pour i=r

On voit don que
Ai−1z̃

i−1

Aiz̃i
=

1

z̃

i

(n− i + 1)(q − 1)est une suite roissante pour 0 ≤ i ≤ n. On hoisira z̃ de telle façon que ette suite dépasse1 en r-ème terme. Plus préisemment pour tout z̃ dans le segment
z̃ ∈

[
r

(n− r + 1)(q − 1)
,

r + 1

(n− r)(q − 1)

]

⇐⇒ 1 ∈
[
Ar−1z̃

r−1

Ar z̃r
,

Arz̃
r

Ar+1z̃r+1

]

,on a (pour tous les i, j ave 0 ≤ i < r ≤ j ≤ n) :
Ai−1z̃

i−1

Aiz̃i
≤ Aiz̃

i

Ai+1z̃i+1
≤ · · · ≤ Ar−1z̃

r−1

Arz̃r
≤ 1 ≤ Ar z̃

r

Ar+1z̃r+1
≤ · · · ≤ Aj−1z̃

j−1

Aj z̃j
.Cei implique

Ai−1z̃
i−1 ≤ Aiz̃

i ≤ · · · ≤ Arz̃
r, Arz̃

r ≥ Ar+1z̃
r+1 ≥ · · · ≥ Aj z̃

j ≥Mais par notre hoix le terme Arz̃
r =

(
n
i

)
(q − 1)rz̃r est maximal parmi Aiz̃

i, don
z̃−r(1 + (q − 1)z̃)n ≤ (n + 1)Ar ⇒ g(z0) ≤ (n + 1)

r∑

i=0

(q − 1)i

(
n

i

)

.

63

Il reste à rapeller que
g(z0) = q

nHq

(r

n

)

= (q − 1)r
(r

n

)−r (

1− r

n

)n−r

,ei implique la borne inférieure :
1

n + 1
q
nHq

(r

n

)

≤ Vq(n, r) =

r∑

i=0

(q − 1)i

(
n

i

)

.

64

Cours N
◦2(disponible à l'adresse : http ://www-fourier.ujf-grenoble.fr/�panhish).Rappels :Proposition 2.9

1

n + 1
q
nHq

(r

n

)

≤ Vq(n, r) =

r∑

i=0

(q − 1)i

(
n

i

)

≤ q
nHq

(r

n

) (2.4)
Corollaire 2.10 Lorsque n→∞, r

n → δ, on a
Hq(δ) = lim

n→∞

logq Vq(n, r)

n
= lim

n→∞

logq(Vq(n, r))

logq(Card (Fn))(la "proportion logarithmique de la boule de Hamming de rayon relatif" δ dans Fn).Preuve On prend logq de l'inégalité (2.4) :
1

n + 1
q
nHq

(r

n

)

≤ Vq(n, r) =

r∑

i=0

(q − 1)i

(
n

i

)

≤ q
nHq

(r

n

)

⇒ − logq(n + 1)

n
+ Hq

(r

n

)

≤ logq Vq(n, r)

n
≤ Hq

(r

n

)

.

65

panchish
Text Box

panchish
Sticky Note
Pour r<=n(q-1)/q

et si r
n → δ, n→∞ alors logq(n+1)

n → 0 et on obtient le resultat.

66

Théorème 2.11 (Borne de Hamming asymptotique) Soit {Ci} une famille des
[ni, ki, di]q-odes, on pose

R = lim sup
i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors

R ≤ 1−Hq(δ/2),où Hq(x) est la fontion entropie q-aire dé�nie sur [0, (q − 1)/q] par
Hq(0) = 0,

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x) pour 0 ≤ x ≤ (q − 1)/q.Preuve Soit Ci ⊂ Fn un ode de la famille {Ci}, on pose ti =
[

di−1
2

]. Alors
di − 2

2
≤ ti =

[
di − 1

2

]

≤ di − 1

2
=

niδi − 1

2
⇒ lim

i→∞

ti
ni

= lim
i→∞

niδi − 1

2ni
=

δ

2Selon Théorème 2.3 (la borne de Hamming) on a
Vq(ni, ti)q

ki ≤ qni ⇒ logq(Vq(ni, ti)) + ki ≤ ni

67

Lorsque ni →∞ , ti

ni
→ δ

2
don

logq(Vq(ni, ti))

ni
→ Hq(δ/2).Il vient que

Vq(ni, ti)q
ki ≤ qni ⇒ logq(Vq(ni, ti)) + ki ≤ ni

⇒ Hq(δ/2) + R ≤ 1⇒ R ≤ 1−Hq(δ/2).

> restart;FONCTION D'ENTROPIE
> q:=4:
> Hq(x):=x*log(q-1)/log(q)- x*log(x)/log(q)-(1-x)*log(1-x)/log(q);

Hq(x) :=
x ln(3)

ln(4)
− x ln(x)

ln(4)
− (1− x) ln(1− x)

ln(4)

68

 q:=3;r:=1;n:=3;

 IiIk

 IiIi

 IiIk

 Hq(x):=x*log(q-1)/log(q)-x*log(x)/log(q)-(1-x)*log(1-x)/log(q);

 LCgqKEkieEc2IiIiIi1JI2xuRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiMiIiNGJi1GKDYjIiIkISIiRiYqKEYkRiYtRig2I0YkRiZGLkYxRjEqKCwmRiZGJkYkRjFGJi1GKDYjRjZGJkYuRjFGMQ==

 plot(Hq(x), x=0.1..1);

 LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdeeDckJCIiIiEiIiQiL2BZJ1xpKiplJCEjOTckJCIrWCU9dC8iISM1JCIwS0A3RFBMciQhIzo3JCQiK3IqKlspMyIhIzUkIjAiPl02SSIqPVEhIzo3JCQiK2Y7ek02ISM1JCIwM09AJ2V1TlIhIzo3JCQiK2otUyI9IiEjNSQiMD5WJFtQUl5TISM6NyQkIitZdHlGNyEjNSQiMDA7UilwZ2tUISM6NyQkIis0VHpxNyEjNSQiMFJmZihSJXpFJSEjOjckJCIrQF5LOjghIzUkIi9NRyxXTXRWISM5NyQkIitlIno4TyIhIzUkIi9UISozeW8hWyUhIzk3JCQiKylcJkcyOSEjNSQiMCcpPTYkSDAnZSUhIzo3JCQiKzdlXWE5ISM1JCIvbjk5IXpGcCUhIzk3JCQiKyJcKDQnXCIhIzUkIjAnPSpRQkhheSUhIzo3JCQiKigpPkhhIiEiKiQiMCZScCV5XiMpKVshIzo3JCQiKzFYJCoqZSIhIzUkIjAxIlxKdyYqKilcISM6NyQkIis+PUNOOyEjNSQiMDZqNHhYbDMmISM6NyQkIilfUXc7ISIpJCIwaFlpbHNJPCYhIzo3JCQiK2YnM2BzIiEjNSQiMD4qZi5mX3VfISM6NyQkIitaS3ZtPCEjNSQiMFRnOm51I2ZgISM6NyQkIitiSidcIj0hIzUkIjBsJVxEbF1jYSEjOjckJCIrIzRQdyY9ISM1JCIwSExYJlJRVGIhIzo3JCQiK2xyWC8+ISM1JCIwYnYiKXlaS2omISM6NyQkIitZNC9cPiEjNSQiMDsqZXAvXz5kISM6NyQkIitYJWZiKj4hIzUkIjBWOi4sMyQzZSEjOjckJCIrW3pGUT8hIzUkIjBQVU8lZnYpKWUhIzo3JCQiK0RjTiUzIyEjNSQiMEM1dyRHUXVmISM6NyQkIisiUTxBOCMhIzUkIjBoUmEwJjNpZyEjOjckJCIqPSIpUTwjISIqJCIwYzZYUjx1OCchIzo3JCQiK0Qjeik9QSEjNSQiMDgpKj5fTnhAJyEjOjckJCIrNG1PbEEhIzUkIi9ER1Y1ZipIJyEjOTckJCIrV2ElM0ojISM1JCIwLCllUVRleWohIzo3JCQiK2ImW1tOIyEjNSQiMGwvYUYwU1gnISM6NyQkIis0bHEuQyEjNSQiMHgxZDcsbWAnISM6NyQkIitfdmdaQyEjNSQiMC0jPkM7ISk0bSEjOjckJCIrKEciWyVcIyEjNSQiMHNaZVU2cG8nISM6NyQkIitlZSZwYCMhIzUkIjAmKj15VmhldichIzo3JCQiKyR5IlIkZSMhIzUkIjBBU2AoKVwtJG8hIzo3JCQiK3BWM0ZFISM1JCIwO2IpUXpJKipvISM6NyQkIis2ZHZzRSEjNSQiMHJAUGpNMChwISM6NyQkIisnejJ1ciMhIzUkIjApUSIzT00jUnEhIzo3JCQiKyJSYVR3IyEjNSQiMEtnZzh1LDYoISM6NyQkIis8cDw0RyEjNSQiMC84KGVzYnhyISM6NyQkIithKj1fJkchIzUkIjAoM01BO19YcyEjOjckJCIrUih6MyFIISM1JCIwKjMpZSkqKSk+SighIzo3JCQiK2VzJEclSCEjNSQiMGVRRyJIRHN0ISM6NyQkIipKRDQqSCEiKiQiMCozNzdPUFN1ISM6NyQkIitQZSRSLiQhIzUkIjAkUShval0vXSghIzo3JCQiK0hTenpJISM1JCIwJFxEL3lpanYhIzo3JCQiK3Job0JKISM1JCIwdUF4MmJLaSghIzo3JCQiK2BGVXNKISM1JCIwT1dRPzImKW8oISM6NyQkIitgXWk5SyEjNSQiMHlWJ0dTP1d4ISM6NyQkIiovRERFJCEiKiQiMGY5NDs/bCF5ISM6NyQkIit5MT0xTCEjNSQiMFBmUXknW2l5ISM6NyQkIisnM0xSTiQhIzUkIjA0N2UqeiFHI3ohIzo3JCQiK1FgOCZSJCEjNSQiMEx6blMxVCh6ISM6NyQkIiskKilmP1ckISM1JCIwUlciRy1wSiEpISM6NyQkIisocCdRKFskISM1JCIwNHUoKT5xazMpISM6NyQkIioqUW9LTiEiKiQiMCVvMHM8UlMiKSEjOjckJCIrVlcieWQkISM1JCIwXCplJio+SSQ+KSEjOjckJCIrdzI8QE8hIzUkIjBhP2s9c0xDKSEjOjckJCIqN1Mhb08hIiokIjBLUiV5aW0nSCkhIzo3JCQiKy4rcjdQISM1JCIvX1dsIWVtTSkhIzk3JCQiK15Ic2ZQISM1JCIwJXBNVDxWKVIpISM6NyQkIisiKjRHLVEhIzUkIjB0ISlvemZYVykhIzo3JCQiKyNmOiRcUSEjNSQiMGMpKj0/RVpcKSEjOjckJCIrVmxPJSpRISM1JCIwJUgzUyR6PmEpISM6NyQkIitSeUlSUiEjNSQiMHAzbEtWJCllKSEjOjckJCIrKD5caSlSISM1JCIwKSk9UGBbZmopISM6NyQkIissUltIUyEjNSQiMHNOUVJhIXonKSEjOjckJCIrX0B3dFMhIzUkIjAiXFZod1lBKCkhIzo3JCQiKy4xbEFUISM1JCIwZjE3XVUmcCgpISM6NyQkIio0OnA7JSEiKiQiL1xtOi5SNikpISM5NyQkIiojUT03VSEiKiQiMGZMRWpHTSYpKSEjOjckJCIrXzRBZVUhIzUkIjBvVmkhZVImKikpISM6NyQkIitNIVEwSSUhIzUkIjBcI3BtZEZMKikhIzo3JCQiK3Vta1hWISM1JCIwOigqSE1BSCgqKSEjOjckJCIrVz5UIVIlISM1JCIwLmgjRz5fNiEqISM6NyQkIitwb0hRVyEjNSQiMCxNa20iKj4wKiEjOjckJCIqQ2AwWyUhIiokIi9DdSU0LXEzKiEjOTckJCIqSzMkSFghIiokIjBiP1RKIWVFIiohIzo3JCQiK0BnSXRYISM1JCIwXlBnKXBhaCIqISM6NyQkIitaJVJvaCUhIzUkIjAqZiopemVXJj4qISM6NyQkIitsPWxqWSEjNSQiMGVIOmhCNkIqISM6NyQkIitbT2w1WiEjNSQiMCgpUSV5I1JoRSohIzo3JCQiKzckPU12JSEjNSQiMGF5JD5ySChIKiEjOjckJCIrJltLKSl6JSEjNSQiMFlPWWNhJ0gkKiEjOjckJCIqR19KJVshIiokIjAxYCd5cV1nJCohIzo3JCQiKy9hPiIqWyEjNSQiMCo+KlIiSDkkUiohIzo3JCQiK2xnd0tcISM1JCIwNyNHZk1xPyUqISM6NyQkIipbNjApXCEiKiQiLmxTRiJlXiUqISM4NyQkIit6WVJEXSEjNSQiME1ZMzteKXolKiEjOjckJCIrZFYlKXBdISM1JCIwXzdjM0RyXSohIzo3JCQiKyVSSFY2JiEjNSQiMGp0b0srUGAqISM6NyQkIis7OHFmXiEjNSQiLykqZSV5aStjKiEjOTckJCIrJHolejJfISM1JCIwcCgpPVAoPShlKiEjOjckJCIrLT0qPUQmISM1JCIvaTQvbUo2JyohIzk3JCQiKzg3VSZIJiEjNSQiMEFhPjRSV2oqISM6NyQkIitPTSY+TSYhIzUkIjBqUihHNVJlJyohIzo3JCQiK2pWUSlRJiEjNSQiL0AvTzhdIm8qISM5NyQkIit4KWUrViYhIzUkIjBeWzh1cjpxKiEjOjckJCIrV2BVemEhIzUkIjBXPCc0QV9DKCohIzo3JCQiKzlIdD9iISM1JCIwOTBuJ3ouVigqISM6NyQkIitjbi9wYiEjNSQiMFRpOkIoKlF3KiEjOjckJCIrVHc6OmMhIzUkIjB1Q2VOLUl5KiEjOjckJCIrbyJIamwmISM1JCIwJXBfW25SKnoqISM6NyQkIitfM2otZCEjNSQiMFpedGkkMzwpKiEjOjckJCIqWVIjXGQhIiokIjBVPWldJDNNKSohIzo3JCQiK1RsaSZ6JiEjNSQiMCpINT8jKj5dKSohIzo3JCQiKy5MalFlISM1JCIwcCpRPkRVaykqISM6NyQkIis8VjskKWUhIzUkIjBGWmNwPiV5KSohIzo3JCQiK2AkPSNIZiEjNSQiMHNCbmk2QCopKiEjOjckJCIrJXBDXihmISM1JCIwXHIhPU8nXCEqKiEjOjckJCIrMl1NQWchIzUkIi86KFJBXnQiKiohIzk3JCQiKyZvT1IxJyEjNSQiMFtkIlIwY0YqKiEjOjckJCIrbiFmMjYnISM1JCIwcmwnKkhrI1EqKiEjOjckJCIrLFB4ZGghIzUkIjAmSDVfcjtbKiohIzo3JCQiKzg1My5pISM1JCIwTmNJejBwJioqISM6NyQkIismUkNVQychIzUkIjBESicpM2FUJyoqISM6NyQkIitkeTkkSCchIzUkIjA7SnNqPD4oKiohIzo3JCQiK1RDZk1qISM1JCIwKFs+dlF3eCoqISM6NyQkIitfQiFHUSchIzUkIjAjSDciKnByJCkqKiEjOjckJCIrJ0d3YVUnISM1JCIwWmxnOEEjKSkqKiEjOjckJCIraWpIc2shIzUkIjBeXCJcWEwjKioqISM6NyQkIitULClvXichIzUkIjBcPSUqSFFhKioqISM6NyQkIiprKVJqbCEiKiQiL1UiRyRwI3kqKiohIzk3JCQiK1hyNjFtISM1JCIwImVnIlFeIyoqKiohIzo3JCQiKiNbPl9tISIqJCIwJDMpejhkKioqKiohIzo3JCQiK3dsMCtuISM1JCIwRyQqSEdyKCoqKiohIzo3JCQiK3Yuc1RuISM1JCIwZUBZIz4lKSkqKiohIzo3JCQiK0ElPW55JyEjNSQiMCVHLnYrLigqKiohIzo3JCQiKzBlP0xvISM1JCIwWT0oKmVxVSoqKiEjOjckJCIrVFlveW8hIzUkIjBWRi5MInAhKioqISM6NyQkIitgeG9BcCEjNSQiMEwpND5PUicpKiohIzo3JCQiKzBkYXJwISM1JCIwazBdOl8xKSoqISM6NyQkIitZblc6cSEjNSQiL1BhPGNodSoqISM5NyQkIiskWz9CMSghIzUkIjBfUzBDWHMnKiohIzo3JCQiK2Ndei9yISM1JCIwRFlDSE0oZioqISM6NyQkIit3NEJeciEjNSQiMDJ1TjM0MSYqKiEjOjckJCIrbU4jXD4oISM1JCIwQ1lyT1Y2JSoqISM6NyQkIisyXGZTcyEjNSQiMHUjNFIlRy4kKiohIzo3JCQiKyMqcEMmRyghIzUkIjAqKXolKj5PKT0qKiEjOjckJCIrKWUkKj5MKCEjNSQiMC8/dFxAZSEqKiEjOjckJCIrNmgseHQhIzUkIjBRWFVpREIqKSohIzo3JCQiK1siZUlVKCEjNSQiMEhbKVx5YHgpKiEjOjckJCIrTSo9KG91ISM1JCIwQypld2koPScpKiEjOjckJCIrYWtuNXYhIzUkIjBRWXQ7K20lKSohIzo3JCQiKy9Yd2V2ISM1JCIwKikqKjNNUCFHKSohIzo3JCQiK0xdeCx3ISM1JCIwJz0keWFvLyIpKiEjOjckJCIrRUtqWnchIzUkIjBgWjolKT0yeiohIzo3JCQiK25gXyJwKCEjNSQiMGpSIzMlPjN4KiEjOjckJCIqJj5FU3ghIiokIjBwcyRvZWNaKCohIzo3JCQiK1tVWSN5KCEjNSQiMCdSNEU/VkUoKiEjOjckJCIrUVVPSXkhIzUkIi5LJykpZkksKCohIzg3JCQiK3QpPlMoeSEjNSQiMDFUPi9PdG4qISM6NyQkIisiR3M8I3ohIzUkIjBVNDZMSCpcJyohIzo3JCQiK01YKEgneiEjNSQiMCgqXGNbcF9pKiEjOjckJCIrKDMqKik0ISkhIzUkIjAjUXNUTy0nZiohIzo3JCQiKyIqZUFiISkhIzUkIjBEXnkqKXpsYyohIzo3JCQiKyYzQjA1KSEjNSQiMCxvIjRGJ2ZgKiEjOjckJCIqa2BjOSkhIiokIjA4MHInNEQvJiohIzo3JCQiK3QqNCEqPSkhIzUkIi4+SjpJRVoqISM4NyQkIis5JHplQikhIzUkIjAiNGclb1tyViohIzo3JCQiKyo+XDBHKSEjNSQiME9cXG9eP1MqISM6NyQkIitZQGNGJCkhIzUkIjBYbSNHYHRqJCohIzo3JCQiKyk9PyxQKSEjNSQiMFVJSyhbIXlLKiEjOjckJCIrJnlhclQpISM1JCIweW13KnpvJ0cqISM6NyQkIitQZD9pJSkhIzUkIjA+dShbJCkpZUMqISM6NyQkIitNcTkyJikhIzUkIjBPdS9SdFA/KiEjOjckJCIrI1IpM2EmKSEjNSQiMClmTjt4QmUiKiEjOjckJCIrKjRCdGYpISM1JCIwImUqUSFSJ1s2KiEjOjckJCIrXDhnVCcpISM1JCIweDx6RiEpKm8hKiEjOjckJCIrJ3oqWyFwKSEjNSQiMHc7d1JebCwqISM6NyQkIislR2FadCkhIzUkIjBIS3BtTHUnKikhIzo3JCQiKz1JLSF5KSEjNSQiMGl4KCl6SmIiKikhIzo3JCQiK1ssMUUpKSEjNSQiMDxkdUJpNCcpKSEjOjckJCIqQngkbykpISIqJCIwJ1xVUTU7NCkpISM6NyQkIitzZVs4KikhIzUkIi82VyZcX0B2KSEjOTckJCIrUjZEZSopISM1JCIwTFt4I3BvJHApISM6NyQkIitrZzgxISohIzUkIjBtVHl1ISkqRycpISM6NyQkIitOQ1JbISohIzUkIjAuYHdCWSpwJikhIzo3JCQiKzp2OSg0KiEjNSQiMFxDbm8iWypcKSEjOjckJCIrPV85VCIqISM1JCIweS5vQE1PVikhIzo3JCQiK1YneVk9KiEjNSQiMGF4QzVzaU8pISM6NyQkIitpNVxKIyohIzUkIjBHQHlUaDdIKSEjOjckJCIrVkdceSMqISM1JCIwKVxSaW42OCMpISM6NyQkIipeZDdLKiEiKiQiMHRqei41JVIiKSEjOjckJCIrI29ybU8qISM1JCIwM1tBbl0jZSEpISM6NyQkIit3OSo0VCohIzUkIjBOJCk9OSYqZih6ISM6NyQkIistWS5mJSohIzUkIi4kUiI+dkopeSEjODckJCIrZl9nKyYqISM1JCIwN3cjPWNiKnooISM6NyQkIit2MU5bJiohIzUkIjA+RTxfLiUqcCghIzo3JCQiK3VRQiRmKiEjNSQiLycqZi4jcDNnKCEjOTckJCIrYE5vUCcqISM1JCIwT1tVK1snKVwoISM6NyQkIipmb0BvKiEiKiQiMCdRbU1qPCJSKCEjOjckJCIrNzBhRigqISM1JCIvXytac112cyEjOTckJCIrKSlSanYoKiEjNSQiMHZFJUcjPV45KCEjOjckJCIrKio0dD4pKiEjNSQiMHZmMlk+ciwoISM6NyQkIiszL0VqKSohIzUkIjA4UXUqWygzKW8hIzo3JCQiK0xFejQqKiEjNSQiMHInSCUpZXI/biEjOjckJCIrJjQzSSQqKiEjNSQiME9Pc05cSWonISM6NyQkIitjTkFjKiohIzUkIjB2IipRT2N5YCchIzo3JCQiKm5ucicqKiEiKiQiMFdUcFxJJCpbJyEjOjckJCIqeTYieSoqISIqJCIwQytHczN1VichIzo3JCQiK05RZSQpKiohIzUkIjA9eiVbUG80ayEjOjckJCIqKmUwKikqKiEiKiQiMDAmKTRiai1RJyEjOjckJCIqIz56IioqKiEiKiQiMHBiKD5DbmtqISM6NyQkIitYel8lKioqISM1JCIwIjQ+KlFNI1tqISM6NyQkIionZiplKioqISIqJCIwRWdiNXYmUmohIzo3JCQiKihSRSgqKiohIiokIjBkKVtoRFxJaiEjOjckJCIrJik+aikqKiohIzUkIi9UOmIjZTJLJyEjOTckJSp1bmRlZmluZWRHJSp1bmRlZmluZWRHLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiIhIiIkIiM1ISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ4NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkUyUhIiItJSlCT1VORFNfWUc2IyQiJD8iISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlSU0hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlZ00hIiItJSlDSElMRFJFTkc2Ig==

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 JSFH

 g(z):=z^(-r)*(1+(q-1)*z)^n;

 KiZJInpHNiIhIiIpLCYiIiJGKComIiIjRihGI0YoRigiIiRGKA==

 gp:=diff(g(z),z);

 LCYqJilJInpHNiIiIiMhIiIpLCYiIiJGKyomRidGK0YlRitGKyIiJEYrRigqKCIiJ0YrRiVGKClGKkYnRitGKw==

 solve(gp);

 NiUjISIiIiIjRiMjIiIiIiIl

 plot(g(z), z=0.1..0.8);

 LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkdzckJCIiIiEiIiQiJUc8ISIjNyQkIjApZTxOSyFvLiIhIzokIjB0aiFSIz52cCIhIzg3JCQiMGU7TGBEKW81ISM6JCIwdTwkZlgrdDshIzg3JCQiMFUkb2N6JFs1IiEjOiQiL3orJypmWFo7ISM3NyQkIjAlKW9QNCozVDYhIzokIjB6OGU3LlBpIiEjODckJCIwa0ZiJHo7eDYhIzokIixAVFU9ZyIhIio3JCQiMEVeLWs8MUAiISM6JCIwOzdxXkJJZSIhIzg3JCQiMDA1PyhHRFg3ISM6JCIvbUhFYClbYyIhIzc3JCQiMEBUI3lFMiJHIiEjOiQiMG82a3RgdWEiISM4NyQkIi8mKiopNHd4OzghIzkkIjB3LC1BOThgIiEjODckJCIwLS8zXy9OTiIhIzokIjAmSFxRIioqZV4iISM4NyQkIi8nPlJnYGVRIiEjOSQiMCQpUUA0V0tdIiEjODckJCIwQ1snNDVGQTkhIzokIjAyQzNDYyoqWyIhIzg3JCQiMHNWKFt6JCllOSEjOiQiMFsncDlMY3g5ISM4NyQkIjBFXi0ocDIlXCIhIzokIjBlbFkjcFhtOSEjODckJCIwcFF4UHhnXyIhIzokIjBBaTNOTnFYIiEjODckJCIwJHBRZCpHVGMiISM6JCIwb3lSJTRnWTkhIzg3JCQiMCJIZU9PTydmIiEjOiQiMGIhUlRWUFE5ISM4NyQkIjAvMztCZ1FqIiEjOiQiMHVPKnltWUg5ISM4NyQkIjB6ZTwyXnFtIiEjOiQiMDMmKilbLTlBOSEjODckJCIwTnBRb21NcSIhIzokIjA3KnAjZW9ZVCIhIzg3JCQiLzI5ZUg5UTwhIzkkIjApellfSDIzOSEjODckJCIwIkdjN1NLdTwhIzokIjBCb3JnKnAsOSEjODckJCIwOERdXlx2IT0hIzokIjBgU1QsemlSIiEjODckJCIvLS8zeFFWPSEjOSQiMDFIIUcxKDNSIiEjODckJCIwQFUlPU5oISk9ISM6JCIwQjhfazNkUSIhIzg3JCQiMDpIZXA9SSI+ISM6JCIwNDBBVHQ6USIhIzg3JCQiMCllPHZyLFs+ISM6JCIwWHZbc2l1UCIhIzg3JCQiMHNXKkdTPCUpPiEjOiQiMFJQaV0lZXQ4ISM4NyQkIjAiPlFja2E+PyEjOiQiMGZbJip6TSxQIiEjODckJCIwc1YoKTRyUDAjISM6JCIwJCp6b14wck8iISM4NyQkIjBzVypHPHgiNCMhIzokIjA8Y2ZKITNrOCEjODckJCIwakVgKXAiZjcjISM6JCIwbFBmWl47TyIhIzg3JCQiMFB0WUx1QjsjISM6JCIvUXBUa01mOCEjNzckJCIwMDQ9NjVhPiMhIzokIjA4eSF6Tl1kOCEjODckJCIwYjVAJXBfSkEhIzokIjB4SFBlV2ROIiEjODckJCIwKFF4aytebEEhIzokIjBVb3M+QlZOIiEjODckJCIwdVsoPkEuLEIhIzokIjBMLC1WcElOIiEjODckJCIwWyY0Pjt3TkIhIzokIjBHLE9gaj9OIiEjODckJCIwSGU7Mz9AUCMhIzokIjAzUHomUUJeOCEjODckJCIwMTdDZ1ByUyMhIzokIjAoR3N4QGtdOCEjODckJCIwUXZdMltIVyMhIzokIjBYQyQ+I1ItTiIhIzg3JCQiMHNXKj0/WXlDISM6JCIwLypvZE8uXTghIzg3JCQiMDhEXWsmNDZEISM6JCIwdFckSCkzK04iISM4NyQkIjAzO0tZKFxbRCEjOiQiMDdkKHprO104ISM4NyQkIjBRd180XT5lIyEjOiQiMGtFbyopcC9OIiEjODckJCIwclQkeXZoPEUhIzokIi9yMWVpJjROIiEjNzckJCIwXy4yImZ2XkUhIzokIjBEOishUWReOCEjODckJCIwYTI6OWknKm8jISM6JCIwPDlcaUZDTiIhIzg3JCQiMGI1QDonW0FGISM6JCIwJVJkNl5JYDghIzg3JCQiMHBReHBUKGZGISM6JCIwVS0rOl5XTiIhIzg3JCQiMGU6SjMncCR6IyEjOiQiMCNmJlw8SWNOIiEjODckJCIwJ0dkV28kMyRHISM6JCIwWiVIXj4xZDghIzg3JCQiMF4tMC8kKUcnRyEjOiQiMGQ4bipIVGU4ISM4NyQkIjAjXClwIip6JCoqRyEjOiQiMCIpb1s6eStPIiEjODckJCIwWCopeTRNWSRIISM6JCIwOy9XcDU9TyIhIzg3JCQiMFghNFtfJylwSCEjOiQiMEpNLkNnT08iISM4NyQkIjBCWSMqeW1cKyQhIzokIjA+anoqcGhsOCEjODckJCIweWM4USlvUUkhIzokIjBFcXYoNGduOCEjODckJCIwUnhhSlVeMiQhIzokIjAmKSp5IkdkKXA4ISM4NyQkIi8oUnpiJikpNEohIzkkIjBcKlI4RTZzOCEjODckJCIwN0JZPV5rOSQhIzokIjBmOG92JGZ1OCEjODckJCIwMDU/KT1iekohIzokIjBybmZOS3BQIiEjODckJCIwdFgiXFY4O0shIzokIjA0dnVjOyd6OCEjODckJCIvKFJ6KFI8XkshIzkkIjBMPHM4JEcjUSIhIzg3JCQiMFsnSD4kR2hHJCEjOiQiMChbJUgqUi4mUSIhIzg3JCQiMGhAVkVRRUskISM6JCIwW09saywhKVEiISM4NyQkIjBtS2xEbGlOJCEjOiQiMGlNNT49M1IiISM4NyQkIjBUIkcnKlFxIVIkISM6JCIwJmYmUVkkeSRSIiEjODckJCIwPExtQ0coR00hIzokIjBbaGI4XXJSIiEjODckJCIwYDE4PWNKWSQhIzokIjBoLCoqRyFHKzkhIzg3JCQiMDM7Sz5sJClcJCEjOiQiMHV6cTRnTlMiISM4NyQkIjAvMjkmPTxNTiEjOiQiMDkta0l2cFMiISM4NyQkIi8tL1FeM25OISM5JCIwX091I1I9NTkhIzg3JCQiMCopeWRqcEBnJCEjOiQiMCdmVExlbjg5ISM4NyQkIi8tL29xKXBqJCEjOSQiMHAhcDNGQDw5ISM4NyQkIjAmKiopeiozQnVPISM6JCIwKT1hIkh0NVUiISM4NyQkIjBoQVgncDQyUCEjOiQiMCM0cE9dYUM5ISM4NyQkIjAxOEVlPF11JCEjOiQiMEtUbiFbaUc5ISM4NyQkIjBVJSlvLFEjelAhIzokIjA4RmdHdEJWIiEjODckJCIwWCopeU0oNDhRISM6JCIwbWpXT1ZoViIhIzg3JCQiMGxJaCsyJlxRISM6JCIwMCE0KSpSRVM5ISM4NyQkIjBzVypbUjEnKVEhIzokIjBpc0dTcFdXIiEjODckJCIvLC1hYEs+UiEjOSQiMFFzWSlRTls5ISM4NyQkIjBzVigpW1pZJlIhIzokIjAsUDpqUURYIiEjODckJCIqVz0iKilSISIqJCIwLi9IcCFvYzkhIzg3JCQiMDdDW0omW0VTISM6JCIwNkhmWU03WSIhIzg3JCQiMEZgMTA9KWVTISM6JCIwYykpPk1GX1kiISM4NyQkIjAzO0tQYGY0JSEjOiQiMCVcRiJbcylwOSEjODckJCIwWiRwR0QnMzglISM6JCIwMEUoKSplSHU5ISM4NyQkIi4qeipcTWE7JSEjOCQiMG5lLiopSCh5OSEjODckJCIwJGU7dFIuK1UhIzokIjBFISk+bj5LWyIhIzg3JCQiLyV6ZUNCYEIlISM5JCIvMHYhKT4meVsiISM3NyQkIjAlKW9QR0hGRiUhIzokIjA7WThvPkdcIiEjODckJCIwJXplZHAtMlYhIzokIjBOP0shZVUoXCIhIzg3JCQiMFJ5YzskKTNNJSEjOiQiMGg+NikqPj9dIiEjODckJCIwaUNcKlsyeFYhIzokIjAoPXdUQilwXSIhIzg3JCQiLyhSeiR5PThXISM5JCIvKHkmR2YpPl4iISM3NyQkIjBBVylbOGdYVyEjOiQiMFJTJ3owXzs6ISM4NyQkIjB2XCoqWygqUlslISM6JCIwYCRlY1slPl8iISM4NyQkIjBeLC5nRGheJSEjOiQiL3VCTnBfRTohIzc3JCQiME5xUy4uUGIlISM6JCIwO3I0Yk4+YCIhIzg3JCQiME9yVTBuJiplJSEjOiQiMHInKXpfWXJgIiEjODckJCIwMTdDTiplQFkhIzokIjBtPXM/Uj1hIiEjODckJCIwKil5ZHgsd2wlISM6JCIway1wLGhyYSIhIzg3JCQiMEtrRyJIJlFwJSEjOiQiMD47dSlcY186ISM4NyQkIjA3Qll2SipIWiEjOiQiMD1ybVEqKXpiIiEjODckJCIwdFkkZjlRalohIzokIjAscmo0ZkljIiEjODckJCIwYDA2cDshKXolISM6JCIwdDNqO1wkbzohIzg3JCQiMG9PdFxPUSRbISM6JCIwJSp6dD5qUWQiISM4NyQkIjAoXCoqRzlhcFshIzokIjBza3RlLSV6OiEjODckJCIvJioqKVIkb2khXCEjOSQiMD5GciVbOSZlIiEjODckJCIwMzpJVTwnUVwhIzokIjBhZnVXUi1mIiEjODckJCIwc1YoR1sudlwhIzokIi53KHBiLCdmIiEjNjckJCIvI1J5dyw7LCYhIzkkIjB2eFJWZT1nIiEjODckJCIwdFkkKnlTby8mISM6JCItTW8lSHZnIiEjNTckJCIwPE1vPlQpeV0hIzokIjAsK1hGOEZoIiEjODckJCIwVCNbd0YqbzYmISM6JCIwVjkpcCo9Kj07ISM4NyQkIjBSeWNYRiJcXiEjOiQiMGlXVTE2VWkiISM4NyQkIjBfLjIwQ209JiEjOiQiMCdwOXpxU0k7ISM4NyQkIjBGYTMqWyIpPl8hIzokIi9HcyxzI2ZqIiEjNzckJCIwI1snSF1JaUQmISM6JCIwIykqZVQ8LVU7ISM4NyQkIjA9T3N4MTRIJiEjOiQiMFdaJikpPSd5ayIhIzg3JCQiMEhlOyR5M0ZgISM6JCIwKClwUEckKlJsIiEjODckJCIvMTdNTEpnYCEjOSQiMCdRIjRgZCdmOyEjODckJCIwb05yX15oUiYhIzokIi9XITMwLmVtIiEjNzckJCIwcFB2THhMViYhIzokIjBfMVNlREFuIiEjODckJCIwaUNcXiN5bGEhIzokIjA3TCZcJlt5biIhIzg3JCQiME9yVSo0eStiISM6JCIwVHoiPlsmUm8iISM4NyQkIi8tL1t5JHBgJiEjOSQiMDpLJ0gjKkghcCIhIzg3JCQiMFJ4YUY1QmQmISM6JCIwYEBvOVRscCIhIzg3JCQiLyNSeSJcYDFjISM5JCIwNEEhW0xoLTwhIzg3JCQiLy0vW2JgV2MhIzkkIjBkWUksJFI0PCEjODckJCIwNkFXITNveWMhIzokIi9LMGYjPWJyIiEjNzckJCIwJSlvUDpRXnImISM6JCIwQj8kNEg0QTwhIzg3JCQiMF8vNCRSPFtkISM6JCIwPHY9PiIzRzwhIzg3JCQiMC4xN3chSCV5JiEjOiQiMHM7MDRoWXQiISM4NyQkIjBOcFEpUUY9ZSEjOiQiMDwmSE1PKTN1IiEjODckJCIwQVcpUWd6YGUhIzokIjBFTShwLVVaPCEjODckJCIwJjQ+UWFfKSllISM6JCIwbyc0NEYlUXYiISM4NyQkIjB4YDIhUilbI2YhIzokIi9NXVMoKmZnPCEjNzckJCIwYTI6VSwqZmYhIzokIjBBSC5lUnJ3IiEjODckJCIwJjM8JSo9ciYqZiEjOiQiMC1eQHlmUXgiISM4NyQkIi8tL1FlQUpnISM5JCIwIil6V05jMHkiISM4NyQkIi8xN2slZlExJyEjOSQiMGk1QHVQbnkiISM4NyQkIjBjNkJHaDc1JyEjOiQiMCJ5bS9dJlF6IiEjODckJCIwJz1QOVJyTWghIzokIi9kXXUsRCs9ISM3NyQkIjA+UHVSIlFxaCEjOiQiMDI7bjoqNDI9ISM4NyQkIi4qekgoPlg/JyEjOCQiMF8zd3Ikbzg9ISM4NyQkIjAtLjEnZlVVaSEjOiQiME1FNElHNSM9ISM4NyQkIjAuMTcoKlxfRichIzokIjAyTGVIO3UjPSEjODckJCIwPE1vXjBESichIzokIjB0Y0I8KXBNPSEjODckJCIwMDZBISpma00nISM6JCIwNkFKeGo4JT0hIzg3JCQiME1vT20rT1EnISM6JCIwTyIzVWpvWz0hIzg3JCQiMCp6ZmZvazprISM6JCIvRlRbMi5iPSEjNzckJCIvLzNPUDlfayEjOSQiMCp5V21kR2k9ISM4NyQkIjAjXClwInpSKFsnISM6JCIwKG9KNk1LcD0hIzg3JCQiMCRmPW4hSEVfJyEjOiQiME5ML1UmUXc9ISM4NyQkIjByVCQzMXRkbCEjOiQiMHRPbzRdTSk9ISM4NyQkIjBFXy8/XzlmJyEjOiQiMEovdSRRRSEqPSEjODckJCIwKEdkTWghemknISM6JCIuS2gxZncqPSEjNjckJCIwPU5xUFxFbSchIzokIjAxS0RhTlohPiEjODckJCIwZj1QKzojKnAnISM6JCIwMnZVKEdANz4hIzg3JCQiMGAwNnE6QnQnISM6JCIvWTwjeTIhPj4hIzc3JCQiMEBUI28iKSopb24hIzokIjAoZS5yaGFFPiEjODckJCIwPU5xelBSIW8hIzokIi9yJlshW3pMPiEjNzckJCIwJz5SUUAqKVFvISM6JCIwVFJlOGA1JT4hIzg3JCQiMDM8TTMtYShvISM6JCIwX1UmPk5tWz4hIzg3JCQiMDlHYzJIITRwISM6JCIvI3AnKTMqcGI+ISM3NyQkIjApb1A6eFlWcCEjOiQiMDBrTUxJSCc+ISM4NyQkIjBrR2QxI1wiKXAhIzokIi9scmNaJTQoPiEjNzckJCIwLC0vKz9mLCghIzokIjBaKXlcJUcjeT4hIzg3JCQiMGM2QixINjAoISM6JCIwJipHVDUvZCk+ISM4NyQkIjBeLTBuTnAzKCEjOiQiLyh6d0NNTCo+ISM3NyQkIjBvTnImKlspPnIhIzokIjBXemZHcy4rIyEjODckJCIwUHVbWExcOighIzokIjApNEsrLiF6KyMhIzg3JCQiMG9Ocikzdio9KCEjOiQiMFQlUUVyUjo/ISM4NyQkIjBWJjM8WipwQSghIzokIjBKMygqM1hNLSMhIzg3JCQiMDQ9T3lnKWZzISM6JCIwMiQqNGhyMC4jISM4NyQkIjBhMzxTInkoSCghIzokIjAqSCg9aUEpUT8hIzg3JCQiLyp6ZiQ9K0t0ISM5JCIwTDN5aSVIWT8hIzg3JCQiMCNcKXA7aGVPKCEjOiQiL0ghcDI3UDAjISM3NyQkIjA4RV8jM0YtdSEjOiQiMDRlXjM6PDEjISM4NyQkIi8tL294IylRdSEjOSQiMGA2TFF5KHA/ISM4NyQkIjBlOko8KjNzdSEjOiQiL0gjSCxScjIjISM3NyQkIi8jUnlJNnVdKCEjOSQiMHY/LCczKVwzIyEjODckJCIwWyY0ZkEpPWEoISM6JCIwdlUpcCdlRTQjISM4NyQkIi8nPlI4XCN6diEjOSQiMDBmbUE0NTUjISM4NyQkIjB1WyhwPWU2dyEjOiQiMCo0PikpekQzQCEjODckJCIwYzZCPjwoW3chIzokIjBlNiVRKjRtNiMhIzg3JCQiMCYqKXlaamkkbyghIzokIjA6VUkmcFtDQCEjODckJCIwWiUqKT0kKT49eCEjOiQiMDtmblI3QjgjISM4NyQkIjBKaEF6KHpfeCEjOiQiMG9ldVRvLDkjISM4NyQkIjAoWyhcMSgzKXkoISM6JCIwKCp6VDMxI1tAISM4NyQkIjBLa0c1JFxEeSEjOiQiMDNEX1FgbjojISM4NyQkIjBVJG93MnpmeSEjOiQiMCczVkpfaGtAISM4NyQkIjAoUXglKXBrJCp5ISM6JCIwMHJeNCpSc0AhIzg3JCQiLywtOShRKUh6ISM5JCIwQV06TlgyPSMhIzg3JCQiMD1OcWxeZid6ISM6JCIwSk9YYyo0Kj0jISM4NyQkIiIpISIiJCIlKD4jISIjLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiIhIiIkIiIpISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ6NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkNSUhIiItJSlCT1VORFNfWUc2IyQiIyEpISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlZ00hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlIVwkISIiLSUpQ0hJTERSRU5HNiI=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbW9HRiQ2LVEiO0YnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y0LyUqc3ltbWV0cmljR0Y0LyUobGFyZ2VvcEdGNC8lLm1vdmFibGVsaW1pdHNHRjQvJSdhY2NlbnRHRjQvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJw==

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

panchish
File Attachment
Hq.mw

BORNES DE SINGLETON ET DE HAMMING (D'EMPILEMENT DE SPHÈRES)ASYMPTOTIQUES
> f:=Hq(x);

f :=
x ln(3)

ln(4)
− x ln(x)

ln(4)
− (1− x) ln(1− x)

ln(4)
> g1:=x/2;g:=algsubs(x=g1,f);

g1 :=
1

2
x

g := −
ln(1− 1

2
x) (1− 1

2
x)

ln(4)
+

1

2
x (−ln(

1

2
x) + ln(3))

ln(4)
> plot([f,1-g(x),1-x℄, x=0..2,y=0..1);'y=Hq(x),1-Hq(x/2),1-x';

69

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x

y = Hq(x), 1−Hq(
1

2
x), 1− x

70

 q:=3;r:=1;n:=3;

 IiIk

 IiIi

 IiIk

 Hq(x):=x*log(q-1)/log(q)-x*log(x)/log(q)-(1-x)*log(1-x)/log(q);

 LCgqKEkieEc2IiIiIi1JI2xuRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiMiIiNGJi1GKDYjIiIkISIiRiYqKEYkRiYtRig2I0YkRiZGLkYxRjEqKCwmRiZGJkYkRjFGJi1GKDYjRjZGJkYuRjFGMQ==

 plot(Hq(x), x=0.1..1);

 LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdeeDckJCIiIiEiIiQiL2BZJ1xpKiplJCEjOTckJCIrWCU9dC8iISM1JCIwS0A3RFBMciQhIzo3JCQiK3IqKlspMyIhIzUkIjAiPl02SSIqPVEhIzo3JCQiK2Y7ek02ISM1JCIwM09AJ2V1TlIhIzo3JCQiK2otUyI9IiEjNSQiMD5WJFtQUl5TISM6NyQkIitZdHlGNyEjNSQiMDA7UilwZ2tUISM6NyQkIis0VHpxNyEjNSQiMFJmZihSJXpFJSEjOjckJCIrQF5LOjghIzUkIi9NRyxXTXRWISM5NyQkIitlIno4TyIhIzUkIi9UISozeW8hWyUhIzk3JCQiKylcJkcyOSEjNSQiMCcpPTYkSDAnZSUhIzo3JCQiKzdlXWE5ISM1JCIvbjk5IXpGcCUhIzk3JCQiKyJcKDQnXCIhIzUkIjAnPSpRQkhheSUhIzo3JCQiKigpPkhhIiEiKiQiMCZScCV5XiMpKVshIzo3JCQiKzFYJCoqZSIhIzUkIjAxIlxKdyYqKilcISM6NyQkIis+PUNOOyEjNSQiMDZqNHhYbDMmISM6NyQkIilfUXc7ISIpJCIwaFlpbHNJPCYhIzo3JCQiK2YnM2BzIiEjNSQiMD4qZi5mX3VfISM6NyQkIitaS3ZtPCEjNSQiMFRnOm51I2ZgISM6NyQkIitiSidcIj0hIzUkIjBsJVxEbF1jYSEjOjckJCIrIzRQdyY9ISM1JCIwSExYJlJRVGIhIzo3JCQiK2xyWC8+ISM1JCIwYnYiKXlaS2omISM6NyQkIitZNC9cPiEjNSQiMDsqZXAvXz5kISM6NyQkIitYJWZiKj4hIzUkIjBWOi4sMyQzZSEjOjckJCIrW3pGUT8hIzUkIjBQVU8lZnYpKWUhIzo3JCQiK0RjTiUzIyEjNSQiMEM1dyRHUXVmISM6NyQkIisiUTxBOCMhIzUkIjBoUmEwJjNpZyEjOjckJCIqPSIpUTwjISIqJCIwYzZYUjx1OCchIzo3JCQiK0Qjeik9QSEjNSQiMDgpKj5fTnhAJyEjOjckJCIrNG1PbEEhIzUkIi9ER1Y1ZipIJyEjOTckJCIrV2ElM0ojISM1JCIwLCllUVRleWohIzo3JCQiK2ImW1tOIyEjNSQiMGwvYUYwU1gnISM6NyQkIis0bHEuQyEjNSQiMHgxZDcsbWAnISM6NyQkIitfdmdaQyEjNSQiMC0jPkM7ISk0bSEjOjckJCIrKEciWyVcIyEjNSQiMHNaZVU2cG8nISM6NyQkIitlZSZwYCMhIzUkIjAmKj15VmhldichIzo3JCQiKyR5IlIkZSMhIzUkIjBBU2AoKVwtJG8hIzo3JCQiK3BWM0ZFISM1JCIwO2IpUXpJKipvISM6NyQkIis2ZHZzRSEjNSQiMHJAUGpNMChwISM6NyQkIisnejJ1ciMhIzUkIjApUSIzT00jUnEhIzo3JCQiKyJSYVR3IyEjNSQiMEtnZzh1LDYoISM6NyQkIis8cDw0RyEjNSQiMC84KGVzYnhyISM6NyQkIithKj1fJkchIzUkIjAoM01BO19YcyEjOjckJCIrUih6MyFIISM1JCIwKjMpZSkqKSk+SighIzo3JCQiK2VzJEclSCEjNSQiMGVRRyJIRHN0ISM6NyQkIipKRDQqSCEiKiQiMCozNzdPUFN1ISM6NyQkIitQZSRSLiQhIzUkIjAkUShval0vXSghIzo3JCQiK0hTenpJISM1JCIwJFxEL3lpanYhIzo3JCQiK3Job0JKISM1JCIwdUF4MmJLaSghIzo3JCQiK2BGVXNKISM1JCIwT1dRPzImKW8oISM6NyQkIitgXWk5SyEjNSQiMHlWJ0dTP1d4ISM6NyQkIiovRERFJCEiKiQiMGY5NDs/bCF5ISM6NyQkIit5MT0xTCEjNSQiMFBmUXknW2l5ISM6NyQkIisnM0xSTiQhIzUkIjA0N2UqeiFHI3ohIzo3JCQiK1FgOCZSJCEjNSQiMEx6blMxVCh6ISM6NyQkIiskKilmP1ckISM1JCIwUlciRy1wSiEpISM6NyQkIisocCdRKFskISM1JCIwNHUoKT5xazMpISM6NyQkIioqUW9LTiEiKiQiMCVvMHM8UlMiKSEjOjckJCIrVlcieWQkISM1JCIwXCplJio+SSQ+KSEjOjckJCIrdzI8QE8hIzUkIjBhP2s9c0xDKSEjOjckJCIqN1Mhb08hIiokIjBLUiV5aW0nSCkhIzo3JCQiKy4rcjdQISM1JCIvX1dsIWVtTSkhIzk3JCQiK15Ic2ZQISM1JCIwJXBNVDxWKVIpISM6NyQkIisiKjRHLVEhIzUkIjB0ISlvemZYVykhIzo3JCQiKyNmOiRcUSEjNSQiMGMpKj0/RVpcKSEjOjckJCIrVmxPJSpRISM1JCIwJUgzUyR6PmEpISM6NyQkIitSeUlSUiEjNSQiMHAzbEtWJCllKSEjOjckJCIrKD5caSlSISM1JCIwKSk9UGBbZmopISM6NyQkIissUltIUyEjNSQiMHNOUVJhIXonKSEjOjckJCIrX0B3dFMhIzUkIjAiXFZod1lBKCkhIzo3JCQiKy4xbEFUISM1JCIwZjE3XVUmcCgpISM6NyQkIio0OnA7JSEiKiQiL1xtOi5SNikpISM5NyQkIiojUT03VSEiKiQiMGZMRWpHTSYpKSEjOjckJCIrXzRBZVUhIzUkIjBvVmkhZVImKikpISM6NyQkIitNIVEwSSUhIzUkIjBcI3BtZEZMKikhIzo3JCQiK3Vta1hWISM1JCIwOigqSE1BSCgqKSEjOjckJCIrVz5UIVIlISM1JCIwLmgjRz5fNiEqISM6NyQkIitwb0hRVyEjNSQiMCxNa20iKj4wKiEjOjckJCIqQ2AwWyUhIiokIi9DdSU0LXEzKiEjOTckJCIqSzMkSFghIiokIjBiP1RKIWVFIiohIzo3JCQiK0BnSXRYISM1JCIwXlBnKXBhaCIqISM6NyQkIitaJVJvaCUhIzUkIjAqZiopemVXJj4qISM6NyQkIitsPWxqWSEjNSQiMGVIOmhCNkIqISM6NyQkIitbT2w1WiEjNSQiMCgpUSV5I1JoRSohIzo3JCQiKzckPU12JSEjNSQiMGF5JD5ySChIKiEjOjckJCIrJltLKSl6JSEjNSQiMFlPWWNhJ0gkKiEjOjckJCIqR19KJVshIiokIjAxYCd5cV1nJCohIzo3JCQiKy9hPiIqWyEjNSQiMCo+KlIiSDkkUiohIzo3JCQiK2xnd0tcISM1JCIwNyNHZk1xPyUqISM6NyQkIipbNjApXCEiKiQiLmxTRiJlXiUqISM4NyQkIit6WVJEXSEjNSQiME1ZMzteKXolKiEjOjckJCIrZFYlKXBdISM1JCIwXzdjM0RyXSohIzo3JCQiKyVSSFY2JiEjNSQiMGp0b0srUGAqISM6NyQkIis7OHFmXiEjNSQiLykqZSV5aStjKiEjOTckJCIrJHolejJfISM1JCIwcCgpPVAoPShlKiEjOjckJCIrLT0qPUQmISM1JCIvaTQvbUo2JyohIzk3JCQiKzg3VSZIJiEjNSQiMEFhPjRSV2oqISM6NyQkIitPTSY+TSYhIzUkIjBqUihHNVJlJyohIzo3JCQiK2pWUSlRJiEjNSQiL0AvTzhdIm8qISM5NyQkIit4KWUrViYhIzUkIjBeWzh1cjpxKiEjOjckJCIrV2BVemEhIzUkIjBXPCc0QV9DKCohIzo3JCQiKzlIdD9iISM1JCIwOTBuJ3ouVigqISM6NyQkIitjbi9wYiEjNSQiMFRpOkIoKlF3KiEjOjckJCIrVHc6OmMhIzUkIjB1Q2VOLUl5KiEjOjckJCIrbyJIamwmISM1JCIwJXBfW25SKnoqISM6NyQkIitfM2otZCEjNSQiMFpedGkkMzwpKiEjOjckJCIqWVIjXGQhIiokIjBVPWldJDNNKSohIzo3JCQiK1RsaSZ6JiEjNSQiMCpINT8jKj5dKSohIzo3JCQiKy5MalFlISM1JCIwcCpRPkRVaykqISM6NyQkIis8VjskKWUhIzUkIjBGWmNwPiV5KSohIzo3JCQiK2AkPSNIZiEjNSQiMHNCbmk2QCopKiEjOjckJCIrJXBDXihmISM1JCIwXHIhPU8nXCEqKiEjOjckJCIrMl1NQWchIzUkIi86KFJBXnQiKiohIzk3JCQiKyZvT1IxJyEjNSQiMFtkIlIwY0YqKiEjOjckJCIrbiFmMjYnISM1JCIwcmwnKkhrI1EqKiEjOjckJCIrLFB4ZGghIzUkIjAmSDVfcjtbKiohIzo3JCQiKzg1My5pISM1JCIwTmNJejBwJioqISM6NyQkIismUkNVQychIzUkIjBESicpM2FUJyoqISM6NyQkIitkeTkkSCchIzUkIjA7SnNqPD4oKiohIzo3JCQiK1RDZk1qISM1JCIwKFs+dlF3eCoqISM6NyQkIitfQiFHUSchIzUkIjAjSDciKnByJCkqKiEjOjckJCIrJ0d3YVUnISM1JCIwWmxnOEEjKSkqKiEjOjckJCIraWpIc2shIzUkIjBeXCJcWEwjKioqISM6NyQkIitULClvXichIzUkIjBcPSUqSFFhKioqISM6NyQkIiprKVJqbCEiKiQiL1UiRyRwI3kqKiohIzk3JCQiK1hyNjFtISM1JCIwImVnIlFeIyoqKiohIzo3JCQiKiNbPl9tISIqJCIwJDMpejhkKioqKiohIzo3JCQiK3dsMCtuISM1JCIwRyQqSEdyKCoqKiohIzo3JCQiK3Yuc1RuISM1JCIwZUBZIz4lKSkqKiohIzo3JCQiK0ElPW55JyEjNSQiMCVHLnYrLigqKiohIzo3JCQiKzBlP0xvISM1JCIwWT0oKmVxVSoqKiEjOjckJCIrVFlveW8hIzUkIjBWRi5MInAhKioqISM6NyQkIitgeG9BcCEjNSQiMEwpND5PUicpKiohIzo3JCQiKzBkYXJwISM1JCIwazBdOl8xKSoqISM6NyQkIitZblc6cSEjNSQiL1BhPGNodSoqISM5NyQkIiskWz9CMSghIzUkIjBfUzBDWHMnKiohIzo3JCQiK2Ndei9yISM1JCIwRFlDSE0oZioqISM6NyQkIit3NEJeciEjNSQiMDJ1TjM0MSYqKiEjOjckJCIrbU4jXD4oISM1JCIwQ1lyT1Y2JSoqISM6NyQkIisyXGZTcyEjNSQiMHUjNFIlRy4kKiohIzo3JCQiKyMqcEMmRyghIzUkIjAqKXolKj5PKT0qKiEjOjckJCIrKWUkKj5MKCEjNSQiMC8/dFxAZSEqKiEjOjckJCIrNmgseHQhIzUkIjBRWFVpREIqKSohIzo3JCQiK1siZUlVKCEjNSQiMEhbKVx5YHgpKiEjOjckJCIrTSo9KG91ISM1JCIwQypld2koPScpKiEjOjckJCIrYWtuNXYhIzUkIjBRWXQ7K20lKSohIzo3JCQiKy9Yd2V2ISM1JCIwKikqKjNNUCFHKSohIzo3JCQiK0xdeCx3ISM1JCIwJz0keWFvLyIpKiEjOjckJCIrRUtqWnchIzUkIjBgWjolKT0yeiohIzo3JCQiK25gXyJwKCEjNSQiMGpSIzMlPjN4KiEjOjckJCIqJj5FU3ghIiokIjBwcyRvZWNaKCohIzo3JCQiK1tVWSN5KCEjNSQiMCdSNEU/VkUoKiEjOjckJCIrUVVPSXkhIzUkIi5LJykpZkksKCohIzg3JCQiK3QpPlMoeSEjNSQiMDFUPi9PdG4qISM6NyQkIisiR3M8I3ohIzUkIjBVNDZMSCpcJyohIzo3JCQiK01YKEgneiEjNSQiMCgqXGNbcF9pKiEjOjckJCIrKDMqKik0ISkhIzUkIjAjUXNUTy0nZiohIzo3JCQiKyIqZUFiISkhIzUkIjBEXnkqKXpsYyohIzo3JCQiKyYzQjA1KSEjNSQiMCxvIjRGJ2ZgKiEjOjckJCIqa2BjOSkhIiokIjA4MHInNEQvJiohIzo3JCQiK3QqNCEqPSkhIzUkIi4+SjpJRVoqISM4NyQkIis5JHplQikhIzUkIjAiNGclb1tyViohIzo3JCQiKyo+XDBHKSEjNSQiME9cXG9eP1MqISM6NyQkIitZQGNGJCkhIzUkIjBYbSNHYHRqJCohIzo3JCQiKyk9PyxQKSEjNSQiMFVJSyhbIXlLKiEjOjckJCIrJnlhclQpISM1JCIweW13KnpvJ0cqISM6NyQkIitQZD9pJSkhIzUkIjA+dShbJCkpZUMqISM6NyQkIitNcTkyJikhIzUkIjBPdS9SdFA/KiEjOjckJCIrI1IpM2EmKSEjNSQiMClmTjt4QmUiKiEjOjckJCIrKjRCdGYpISM1JCIwImUqUSFSJ1s2KiEjOjckJCIrXDhnVCcpISM1JCIweDx6RiEpKm8hKiEjOjckJCIrJ3oqWyFwKSEjNSQiMHc7d1JebCwqISM6NyQkIislR2FadCkhIzUkIjBIS3BtTHUnKikhIzo3JCQiKz1JLSF5KSEjNSQiMGl4KCl6SmIiKikhIzo3JCQiK1ssMUUpKSEjNSQiMDxkdUJpNCcpKSEjOjckJCIqQngkbykpISIqJCIwJ1xVUTU7NCkpISM6NyQkIitzZVs4KikhIzUkIi82VyZcX0B2KSEjOTckJCIrUjZEZSopISM1JCIwTFt4I3BvJHApISM6NyQkIitrZzgxISohIzUkIjBtVHl1ISkqRycpISM6NyQkIitOQ1JbISohIzUkIjAuYHdCWSpwJikhIzo3JCQiKzp2OSg0KiEjNSQiMFxDbm8iWypcKSEjOjckJCIrPV85VCIqISM1JCIweS5vQE1PVikhIzo3JCQiK1YneVk9KiEjNSQiMGF4QzVzaU8pISM6NyQkIitpNVxKIyohIzUkIjBHQHlUaDdIKSEjOjckJCIrVkdceSMqISM1JCIwKVxSaW42OCMpISM6NyQkIipeZDdLKiEiKiQiMHRqei41JVIiKSEjOjckJCIrI29ybU8qISM1JCIwM1tBbl0jZSEpISM6NyQkIit3OSo0VCohIzUkIjBOJCk9OSYqZih6ISM6NyQkIistWS5mJSohIzUkIi4kUiI+dkopeSEjODckJCIrZl9nKyYqISM1JCIwN3cjPWNiKnooISM6NyQkIit2MU5bJiohIzUkIjA+RTxfLiUqcCghIzo3JCQiK3VRQiRmKiEjNSQiLycqZi4jcDNnKCEjOTckJCIrYE5vUCcqISM1JCIwT1tVK1snKVwoISM6NyQkIipmb0BvKiEiKiQiMCdRbU1qPCJSKCEjOjckJCIrNzBhRigqISM1JCIvXytac112cyEjOTckJCIrKSlSanYoKiEjNSQiMHZFJUcjPV45KCEjOjckJCIrKio0dD4pKiEjNSQiMHZmMlk+ciwoISM6NyQkIiszL0VqKSohIzUkIjA4UXUqWygzKW8hIzo3JCQiK0xFejQqKiEjNSQiMHInSCUpZXI/biEjOjckJCIrJjQzSSQqKiEjNSQiME9Pc05cSWonISM6NyQkIitjTkFjKiohIzUkIjB2IipRT2N5YCchIzo3JCQiKm5ucicqKiEiKiQiMFdUcFxJJCpbJyEjOjckJCIqeTYieSoqISIqJCIwQytHczN1VichIzo3JCQiK05RZSQpKiohIzUkIjA9eiVbUG80ayEjOjckJCIqKmUwKikqKiEiKiQiMDAmKTRiai1RJyEjOjckJCIqIz56IioqKiEiKiQiMHBiKD5DbmtqISM6NyQkIitYel8lKioqISM1JCIwIjQ+KlFNI1tqISM6NyQkIionZiplKioqISIqJCIwRWdiNXYmUmohIzo3JCQiKihSRSgqKiohIiokIjBkKVtoRFxJaiEjOjckJCIrJik+aikqKiohIzUkIi9UOmIjZTJLJyEjOTckJSp1bmRlZmluZWRHJSp1bmRlZmluZWRHLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiIhIiIkIiM1ISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ4NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkUyUhIiItJSlCT1VORFNfWUc2IyQiJD8iISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlSU0hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlZ00hIiItJSlDSElMRFJFTkc2Ig==

 h(x):=subs(x=x/2,Hq(x));

 LCgqKEkieEc2IiIiIi1JI2xuRzYkJSpwcm90ZWN0ZWRHSShfc3lzbGliR0YlNiMiIiNGJi1GKDYjIiIkISIiI0YmRi0qKEYkRiYtRig2IywkRiRGMkYmRi5GMSNGMUYtKigsJkYmRiZGJEY3RiYtRig2I0Y5RiZGLkYxRjE=

 with(plots):P1:=plot(1-x,x=0..1, colour=blue):
P2:=plot(1-h(x),x=0..2):

 display({P1, P2});

 LSUlUExPVEc2KS0lJ0NVUlZFU0c2JDdneDckJCIqOS5nRyQhIzckIjBvOGBET1cpKiohIzo3JCQiKkcxP2QnISM3JCIwLE1OKmYlNCgqKiEjOjckJCIqVTQhZSkqISM3JCIvdCZ6XVEjZSoqISM5NyQkIitjN1M5OCEjNyQiMFdgWFdSZyUqKiEjOjckJCIrJSk9Z3I+ISM3JCIwWSQqKVIqKXBBKiohIzo3JCQiKzdEISlHRSEjNyQiMGFPPHh2LiEqKiEjOjckJCIrb1A/VlIhIzckIjAoPTtkaCV5JikqISM6NyQkIitEXWdkXyEjNyQiMFk0cj1gdCIpKiEjOjckJCIqYTJrKXkhIzYkIjA9JipHaDExdSohIzo3JCQiKzA1X141ISM2JCIwXEp2QlR6bSohIzo3JCQiKzNDKSozOiEjNiQiMD1gQXRrJFsmKiEjOjckJCIqIlFXbT4hIzUkIjAneXUpUVtfViohIzo3JCQiKyM+cWAqSCEjNiQiMF8jNFo4Wig+KiEjOjckJCIrbXA2SlMhIzYkIjAoSEgmKWYkXCgqKSEjOjckJCIrPDUlPjEmISM2JCIwWUgmKWVyZXcpISM6NyQkIitub2s8ZyEjNiQiMCVIJ3pyKCozZSkhIzo3JCQiKzxcQTJxISM2JCIwPEBsXiIqb1IpISM6NyQkIitgemtJISkhIzYkIi8qKTNHd2A4IykhIzk3JCQiK2UpKXldISohIzYkIjAvU1s0VnAuKSEjOjckJCIrPEgsNTUhIzUkIjBbVFtwPTUneSEjOjckJCIrcClRQzUiISM1JCIwWy9LVzsvcighIzo3JCQiKypmKVsxNyEjNSQiL252XzJMWHYhIzk3JCQiK29iJzRKIiEjNSQiLiMpMyNbJVJRKCEjODckJCIrKFtbO1QiISM1JCIwTWhFdGpBQighIzo3JCQiK0IjeUldIiEjNSQiMGsyJlx3ZCg0KCEjOjckJCIrQXF6NjshIzUkIjB3R2MlWyg0JXAhIzo3JCQiKzBoKlFxIiEjNSQiMCNHSSVbaTYibyEjOjckJCIrTSNINSI9ISM1JCIwUFlLQ3BLbSchIzo3JCQiKzEtJ2UhPiEjNSQiMF5jaVw2XWAnISM6NyQkIis3WyEqND8hIzUkIjBDamRYP3FSJyEjOjckJCIrIikpeiozQCEjNSQiMFVCOzxjIm9pISM6NyQkIitBVk43QSEjNSQiMDgkPTBOQU9oISM6NyQkIitIVkcyQiEjNSQiMFlhVk9bcywnISM6NyQkIituInonNEMhIzUkIjAuZXNzbzYqZSEjOjckJCIrRCdRZ14jISM1JCIwNioqbyQ0ZmlkISM6NyQkIitZW2kzRSEjNSQiMFoqeiFwc0RsJiEjOjckJCIrLTBpM0YhIzUkIjApPmtpMW9OYiEjOjckJCIrKXpEPiJHISM1JCIwJW9dPi4ncFQmISM6NyQkIit3KSopSCJIISM1JCIwZWg7UGhGSSYhIzo3JCQiK3BYeDVJISM1JCIwcHNjellTPiYhIzo3JCQiKyl6WiQ+SiEjNSQiMFU8c25IYDImISM6NyQkIit1YyFwQCQhIzUkIi9gKik+clJxXCEjOTckJCIrSCZwNUskISM1JCIwNGhZdkgsJ1shIzo3JCQiK2t1WDpNISM1JCIwc1JoTl88dyUhIzo3JCQiKzIlWyc9TiEjNSQiMCd5KGY1UGVsJSEjOjckJCIrV0l1Ok8hIzUkIjBFdihSaHFkWCEjOjckJCIrOlxCPFAhIzUkIjByMlwyem1YJSEjOjckJCIqeGhrIlEhIiokIjAiWzZMWVNmViEjOjckJCIrIzRWLiNSISM1JCIvYjIzPDdmVSEjOTckJCIrXkpSP1MhIzUkIjBcNzQiNCxrVCEjOjckJCIrKHkzRjclISM1JCIwQUklKjQ4I29TISM6NyQkIisqPnhUQSUhIzUkIjBvJykpSGtrdVIhIzo3JCQiKjg7dUolISIqJCIwYipHOCozKiopUSEjOjckJCIrbyV5VVUlISM1JCIwOSQqM11FVXokISM6NyQkIis8dSYpPlghIzUkIjAjNGF3ZCMqNFAhIzo3JCQiKzZYd0BZISM1JCIwXE1STl84aSQhIzo3JCQiKy9FST5aISM1JCIublZLQXlgJCEjODckJCIqNzF3I1shIiokIjBIP2tFemtXJCEjOjckJCIrMyEqUUBcISM1JCIvb1twOGNvTCEjOTckJCIrQ00keS0mISM1JCIwYyV6PC5WIkckISM6NyQkIithZiVbNyYhIzUkIjA5KzxyOEs/JCEjOjckJCIrOkMnNEImISM1JCIwQHRJW1YqPUohIzo3JCQiK3ZIX0FgISM1JCIwX2ciZiUqSFpJISM6NyQkIitsKCp6RWEhIzUkIjAuIVxMVypvJ0ghIzo3JCQiKycqZl9GYiEjNSQiLzwlXG46LypHISM5NyQkIitEaz1HYyEjNSQiMDZgdUFTXiJHISM6NyQkIitWbFpHZCEjNSQiMExxRHJ2N3UjISM6NyQkIitcUiNbI2UhIzUkIjBzRW8hKnA4biMhIzo3JCQiK1kheSpHZiEjNSQiMDBbdXFdcGYjISM6NyQkIitgV0NHZyEjNSQiMDFmR2hEcl8jISM6NyQkIit0d3JLaCEjNSQiMGZQcCwpeWFDISM6NyQkIislNCJIRmkhIzUkIjBKZ3QiR0ohUiMhIzo3JCQiK0dDIj1MJyEjNSQiMCMqcG9pZixLIyEjOjckJCIrYWMjPlYnISM1JCIwIj4qUmhVU0QjISM6NyQkIilfekpsISIpJCIwRypvXCJHIio9IyEjOjckJCIrSCQ0aGonISM1JCIvRG9kbFVBQCEjOTckJCIqWCc9S24hIiokIjBRXCFRLSk+MSMhIzo3JCQiK2pEZUlvISM1JCIwLD9tIipcNSsjISM6NyQkIitrTkFScCEjNSQiMG48SU84XCQ+ISM6NyQkIisjNCplUHEhIzUkIjB5Jyp6Ilwwdz0hIzo3JCQiK3BpPVFyISM1JCIwUnAibydmbyI9ISM6NyQkIisyNVxTcyEjNSQiMHYwIT0nKW9kPCEjOjckJCIrcCpHWEwoISM1JCIwJWYnM20zVXEiISM6NyQkIisiUnFaVighIzUkIjA8ckd6YSJbOyEjOjckJCIrcChbVWAoISM1JCIwTiNSaGJcJGYiISM6NyQkIis2KGYxayghIzUkIjBDIjNOKCkzTzohIzo3JCQiK2ZGY014ISM1JCIwNEdJWE9qWyIhIzo3JCQiKyNRMkgleSEjNSQiMGhDJmZPKSpIOSEjOjckJCIrXitvU3ohIzUkIjBgSCpHPDQhUSIhIzo3JCQiKygqNFVQISkhIzUkIjAtM3RrPztMIiEjOjckJCIrI2ZbOTkpISM1JCIwdGtFPyhbIUciISM6NyQkIigoKmVDKSEiKCQiMDJDJDNNPEk3ISM6NyQkIisnZUg0TSkhIzUkIjA7cUBmJkcmPSIhIzo3JCQiK3IqXD1XKSEjNSQiMCVIYCQ9VSZRNiEjOjckJCIrLiVRLmEpISM1JCIwVUhzSFRRNCIhIzo3JCQiKy40NVonKSEjNSQiMEdRLi0vay8iISM6NyQkIitbLFtSKCkhIzUkIjBjLigqZTVpKyIhIzo3JCQiKjIiZVgpKSEiKiQiMFgjeVR5PzUnKiEjOzckJCIrOTpLWCopISM1JCIwO10nKnBxWz4qISM7NyQkIit1Jik0VyEqISM1JCIvKTRuSHFEeikhIzo3JCQiKzdVJkg5KiEjNSQiMCRSNEVQIyopUikhIzs3JCQiKzEyeVYjKiEjNSQiMDB2Ri5nbSspISM7NyQkIilebF0kKiEiKSQiMCg+O3h4LSx3ISM7NyQkIithJVsnWyUqISM1JCIwLF02d3kjUXMhIzs3JCQiK3gvUVgmKiEjNSQiMEUsbiR6eikpbyEjOzckJCIrPWF5WycqISM1JCIwIyopKSpIcGtDbCEjOzckJCIrYl8nPnYqISM1JCIwZCo9Zj0rcmghIzs3JCQiKydHdlglKSohIzUkIjBDWT4vVT0nZSEjOzckJCIrWSZ5VSYqKiEjNSQiMHBNOl1CZF0mISM7NyQkIis6dGcvNSEiKiQiMGpALVllaEAmISM7NyQkIitDUE06NSEiKiQiMFA2J2Y7QCgpWyEjOzckJCIrKGUhZkQ1ISIqJCIwPGMlcD0wJGUlISM7NyQkIis6KVJaLiIhIiokIjBEQyQpPmImPlYhIzs3JCQiK3ohSF0vIiEiKiQiMDQpemUoUkIuJSEjOzckJCIrWmxRYjUhIiokIjBvbjsydEh2JCEjOzckJCIrKHklcGw1ISIqJCIwcG94WGZZWyQhIzs3JCQiK1k9RHY1ISIqJCIwQD4oKUh3WEMkISM7NyQkIitGdzkmMyIhIiokIjBeb0xRJnovSSEjOzckJCIrZD1RJjQiISIqJCIwYVdkaGVpdyMhIzs3JCQiK21LZTA2ISIqJCIwSDgyM2khUUQhIzs3JCQiK3BtMjs2ISIqJCIwWTxgL0hMSiMhIzs3JCQiK2sjPmA3IiEiKiQiMDBdYnApekJAISM7NyQkIitRVXNONiEiKiQiMCR6ITMxJykpPj4hIzs3JCQiK00+PFk2ISIqJCIwN0YkUnlCRDwhIzs3JCQiK0UtQ2M2ISIqJCIweigpKmZVRVo6ISM7NyQkIisqPiRRbDYhIiokIjB3WDFtU1FSIiEjOzckJCIqM2JpPCIhIikkIjAjeWF5IiplQDchIzs3JCQiKygpXFkmPSIhIiokIjAoKXkiPmFOJTMiISM7NyQkIissJHloPiIhIiokIjBERlQ9QnlNKiEjPDckJCIrKFJoYz8iISIqJCIwYGQoSC5cOSIpISM8NyQkIitmZTE7NyEiKiQiME5UIjRibmZvISM8NyQkIitsTChmQSIhIiokIjBAR0MwazN3JiEjPDckJCIqIjNKTzchIikkIjBMMGV6XlpyJSEjPDckJCIrNlEhZUMiISIqJCIwKW9lbHMjWyVRISM8NyQkIislSFZnRCIhIiokIjAqeTgyOlEvSSEjPDckJCIqQ3ptRSIhIikkIjAiUUhLWWFSQSEjPDckJCIraXkkZkYiISIqJCIwaCpHTip6Um0iISM8NyQkIitHdSRmRyIhIiokIjBzWlFzUHM4IiEjPDckJCIrZHpFJ0giISIqJCIwYnAjNHJtcnAhIz03JCQiK2xWUDE4ISIqJCIwOlNLUnpvcCQhIz03JCQiK05HOjs4ISIqJCIwYl80JylHXF0iISM9NyQkIitkLCxGOCEiKiQiLikpeTBLUi8jISM8NyQkIitXZndPOCEiKiQiMC8mcCVwNiJRZyEjPzckJCIqTCM9WjghIikkIjBLQ3NQMlkmKSohIz43JCQiK0M2aWM4ISIqJCIwd0E9X0xMeiMhIz03JCQiKz0tJXBPIiEiKiQiMGYpW3RBQUxlISM9NyQkIisjb1xtUCIhIiokIjBWVT5tVWhyKiEjPTckJCIrcCkpeidRIiEiKiQiMHU3cig9UyVbIiEjPDckJCIrYTpzJ1IiISIqJCIwXCNHS1RMIzQjISM8NyQkIisobzRyUyIhIiokIjBVb1ZSbUYlRyEjPDckJCIrI3A5clQiISIqJCIwdVxIYj5vbiQhIzw3JCQiK2NpTUY5ISIqJCIvYyZvS2FRayUhIzs3JCQiKyg0JFxQOSEiKiQiMCQpW3Y5PCE9ZCEjPDckJCIqKnAib1ciISIpJCIwdksnNGhAMm8hIzw3JCQiK0NLXWQ5ISIqJCIwbC90VUJzPCkhIzw3JCQiKz42MW45ISIqJCIwdyczJClRIVJeKiEjPDckJCIrSD1EeDkhIiokIjBURSslb2kwNiEjOzckJCIrUWMrKFsiISIqJCIwZCMqXEs5WkUiISM7NyQkIisqKWYkeVwiISIqJCIwJ3AkWzFvWVgiISM7NyQkIit5VUAyOiEiKiQiME9iUi06MWoiISM7NyQkIipzZXleIiEiKSQiMCgqRzpdJVFWPSEjOzckJCIrcypmdl8iISIqJCIwTTNJKDRkXD8hIzs3JCQiKz47PFE6ISIqJCIwYmByNDIoKUcjISM7NyQkIit2d0taOiEiKiQiMDloYD9IbV0jISM7NyQkIitgYHZkOiEiKiQiMENyIXlkNG9GISM7NyQkIit3eiN5YyIhIiokIjA5TXhmKkhNSSEjOzckJCIqLSUqeWQiISIpJCIucig0byVSSiQhIzk3JCQiK0tJI3plIiEiKiQiMGV0WkJQamckISM7NyQkIitzeGIoZiIhIiokIjA7JG8sITMvIVIhIzs3JCQiKyI9dHpnIiEiKiQiLzp3d3Y0TFUhIzo3JCQiK0IpKip5aCIhIiokIjAoXEwkcF1aYyUhIzs3JCQiK1dyTUc7ISIqJCIvT1NqclpIXCEjOjckJCIrKFsveWoiISIqJCIwViZmMDV6dF8hIzs3JCQiKmljI1s7ISIpJCIwKHo8cDNJcWMhIzs3JCQiK1V6RWU7ISIqJCIwYChwOXE7bWchIzs3JCQiKygqW0RvOyEiKiQiMC5iUVw2clonISM7NyQkIipKJ295OyEiKSQiMGZRYnBvUSNwISM7NyQkIitCU0gpbyIhIiokIjBrQndrJWVedCEjOzckJCIrTU84KXAiISIqJCIwPmF0enloIXkhIzs3JCQiK0x4KiozPCEiKiQiMEtcdiFvNEckKSEjOzckJCIrJ0dNKT08ISIqJCIwLissVnEjPikpISM7NyQkIiswUyopRzwhIiokIjBGOiM9U1dTJCohIzs3JCQiK3lXN1I8ISIqJCIwRCRRdnVpISopKiEjOzckJCIrdSNHJls8ISIqJCIwYSR6Kj4nW1Q1ISM6NyQkIis8Q2JlPCEiKiQiMFBmVV8mUSo0IiEjOjckJCIrYS1dbzwhIiokIi5jUC91KmU2ISM4NyQkIitbODl6PCEiKiQiMCYqKSkzZWBeQSIhIzo3JCQiK2A7YCl5IiEiKiQiMCgqeW8qKUhkRyIhIzo3JCQiKzpoTyp6IiEiKiQiMClSXSVRbCNlOCEjOjckJCIrJFFWIjQ9ISIqJCIwaXIhMzJFRTkhIzo3JCQiK3h1Iik9PSEiKiQiMGsmUidSPmdcIiEjOjckJCIrUC1BSD0hIiokIjA4JDQtPCNSZCIhIzo3JCQiK3hdbVI9ISIqJCIwVydwP05KYjshIzo3JCQiK08kbyJcPSEiKiQiL2MrImYqR0s8ISM5NyQkIit2LkVmPSEiKiQiMGFqd2tucyI9ISM6NyQkIis9IzQicD0hIiokIi80QzJZaC4+ISM5NyQkIitvYXl6PSEiKiQiMGRCJ2ZTSSw/ISM6NyQkIisjUkIhKik9ISIqJCIwcmFMJHlfKjMjISM6NyQkIislW0wnKio9ISIqJCIwKTRmIWZeYT4jISM6NyQkIitHdmc0PiEiKiQiL3h2IW9DKipIIyEjOTckJCIrTl9bPj4hIiokIjBqdiFmcWMzQyEjOjckJCIrKnpxJEg+ISIqJCIwMHBjUmpJXyMhIzo3JCQiK1tNWFI+ISIqJCIwKj0jNFolZllFISM6NyQkIisoKTM5XT4hIiokIjAwT0xaM2l5IyEjOjckJCIrQi0lKmY+ISIqJCIwdCYpWyR6aUJIISM6NyQkIitETWhwPiEiKiQiMGwlSGpNSHFJISM6NyQkIis+UiYqej4hIiokIjBFcFVUSEtDJCEjOjckJCIqIkg2Jik+ISIpJCIwJj5jZEA5UUwhIzo3JCQiKy0+RiEqPiEiKiQiMFY/JDNRVVRNISM6NyQkIitFUnEjKj4hIiokIi9GQiRbcVRcJCEjOTckJCIrXmY4Jio+ISIqJCIwbTJgeSJwXU4hIzo3JCQiK2s+TicqPiEiKiQiME1tVDA4NGUkISM6NyQkIit3emMoKj4hIiokIjA6OXVAPUloJCEjOjckJCIrIylmPCkqPiEiKiQiMHZHVCQpXCtqJCEjOjckJCIrKSlSeSkqPiEiKiQiMDBBbWNBIVtPISM6NyQkIisiKnozKio+ISIqJCIwKTRMTSIpXGRPISM6NyQkIislKj5SKio+ISIqJCIwVk4kXFNXbk8hIzo3JCQiKygqZnAqKj4hIiokIjA6XypHVDZ5TyEjOjckJSp1bmRlZmluZWRHJSp1bmRlZmluZWRHLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSdDVVJWRVNHNiQ3ZHc3JCQiIiEhIiIkIiM1ISIiNyQkIjBqRF4tMHdEJiEjPCQiMHVbKFxSVVoqKiEjOjckJCIwOEVfLz5BJCkqISM8JCIwdVomNHluLCoqISM6NyQkIjBSeGE0Jm8oXCIhIzskIjBFXy9cSi0mKSohIzo3JCQiMDE3Q1tlYiwjISM7JCIwemU8OlclKXoqISM6NyQkIjBwUHZdcTRgIyEjOyQiMEJZI1xIIXB1KiEjOjckJCIvMztLTSMpM0khIzokIjAjUnljdzYqcCohIzo3JCQiMFYnR2RDaC5OISM7JCIwT3JVdlEnXCcqISM6NyQkIjBQdVsoUks6UyEjOyQiMGM3RGduJSlmKiEjOjckJCIwb05yVSVSRFghIzskIjBWJ0dkMFlaJiohIzo3JCQiMGQ5SGVrKzAmISM7JCIwYTM8YSQqXFwqISM6NyQkIjBhMzxNJT43YiEjOyQiMDpIZWMheVslKiEjOjckJCIwKVsoXCpIV0tnISM7JCIwXi0wcWJuUiohIzo3JCQiMClmPlJ5I1tiJyEjOyQiLy8zO3NeVyQqISM5NyQkIjAiMztLQ0NlcSEjOyQiMCNSeWNkPCVIKiEjOjckJCIwd18wNiJSOnYhIzskIjBzVyopKTNZWyMqISM6NyQkIjBrRmI1JikqZSEpISM7JCIwQ1olKlssVD4qISM6NyQkIjAyOEVfIVs+JikhIzskIjBwUXglPjBbIiohIzo3JCQiMDpIZTtZXjAqISM7JCIwNDxNUSZbJTQqISM6NyQkIjBqRF4tLCRIJiohIzskIjBXKFsoKilwcS8qISM6NyQkIjBrRmJTX1wrIiEjOiQiME9zV2ZaXSoqKSEjOjckJCIwLCwtJSoqW2E1ISM6JCIwKiopemYrXlgqKSEjOjckJCIwLS8zO3hoNSIhIzokIjApZj5SRyNRKikpISM6NyQkIjBoQFY7VU86IiEjOiQiMFJ5YyR5TlkpKSEjOjckJCIwZDlIZVJbPyIhIzokIjBWJjM8LzsmeikhIzo3JCQiLy4xNyQ+IWU3ISM5JCIvKFJ6byEpPnUpISM5NyQkIjAyOEVVN1ZJIiEjOiQiMCRwUXh2byZwKSEjOjckJCIwRV4tRDVWTiIhIzokIjB1WyhcKCpvWCcpISM6NyQkIjBZI1wpKkcnZlMiISM6JCIwYTI6NVBTZikhIzo3JCQiMFcpb1BcXGM5ISM6JCIwYzZCMTBOYSkhIzo3JCQiLyc+UkcoUTA6ISM5JCIvLzM7RmglXCkhIzk3JCQiMFkjXCkqUW5mOiEjOiQiMGEyOjVFLlcpISM6NyQkIi80PU9HWDM7ISM5JCIvIj5RO1o6UikhIzk3JCQiLyI+UXdNMG0iISM5JCIvND1PX1lSJCkhIzk3JCQiMHliNnRHeHEiISM6JCIwQVcpbzdGI0gpISM6NyQkIjAzOkk/QyRmPCEjOiQiMCNcKXB6djFDKSEjOjckJCIwYDA2X3J5IT0hIzokIjBaJSopeSVHQD4pISM6NyQkIjAjUnljdWhlPSEjOiQiMDM7S2EjUVQiKSEjOjckJCIwNkFXKTNCMz4hIzokIjAqeWQ6InA8NCkhIzo3JCQiMDhFX2FyLCc+ISM6JCIwKFF4YSVHKVIhKSEjOjckJCIwUHVbZCc+NT8hIzokIjBqRF5VLikqKXohIzo3JCQiMCNbJ0hSYTgxIyEjOiQiMD1OcWdYJ1F6ISM6NyQkIjBZI1wpZikzN0AhIzokIjBhMjpTNnopeSEjOjckJCIwaEBWMTMoZUAhIzokIjBSeWMkPkhUeSEjOjckJCIwJGU7TCNSQEAjISM6JCIwPE1vd2d5eSghIzo3JCQiMHBQdnFHKmZBISM6JCIwSmlDSHIrdSghIzo3JCQiMChReGFBKTNKIyEjOiQiMDhFX3U8IipvKCEjOjckJCIwLjA1SV4nZkIhIzokIjAoXCoqKXBbLmsoISM6NyQkIjBbJ0hmSSFRVCMhIzokIjBfLjIlcD4nZSghIzo3JCQiMDM6SV0lcGdDISM6JCIwI1wpcFwwJFJ2ISM6NyQkIjBHYjVyO1JeIyEjOiQiMHNXKilHJDMnWyghIzo3JCQiLyV6ZShIVWlEISM5JCIvMTdDcWRQdSEjOTckJCIwbUtsPyJbOkUhIzokIjBNbk16PVhRKCEjOjckJCIwO0trW2g3bSMhIzokIjAleWM4JlEoUXQhIzo3JCQiMC8yOSkpKlI4RiEjOiQiMChIZj0sZydHKCEjOjckJCIwI1wpcCpId2pGISM6JCIwMzpJK1BpQighIzo3JCQiMHpkOkAkNDlHISM6JCIwQFUlKXkxZj0oISM6NyQkIjB3Xi5GUVUnRyEjOiQiMENbJ0g8d05yISM6NyQkIjAkb090PlQ3SCEjOiQiMDxMbS0pZSgzKCEjOjckJCIwYjVALSpba0ghIzokIjBYKil5KDReTnEhIzo3JCQiMDlHY0FBVCwkISM6JCIwJz1QdXgoZSlwISM6NyQkIjApZTxOKWVqMSQhIzokIjA3Q1s7VE8kcCEjOjckJCIwa0dkYVhPNiQhIzokIjBPclVYYWopbyEjOjckJCIwTGxJQDFmOyQhIzokIjBuTXB5JDRNbyEjOjckJCIwOUdjI0cnZkAkISM6JCIwJz1QdXIuJXknISM6NyQkIjApXCoqKWYoKmVFJCEjOiQiMC0wNVMtVHQnISM6NyQkIjBlO0xtYSE9TCEjOiQiMFUkb09gJT5vJyEjOjckJCIwND1PQSQ0bUwhIzokIjAiPlF3biFSaichIzo3JCQiMCwtL0ciSDpNISM6JCIwKnpmPigzWmUnISM6NyQkIjBfLzR5NidwTSEjOiQiMFsmND4jKVFJbCEjOjckJCIwaUJaYSV6PU4hIzokIjBRd19YMDdbJyEjOjckJCIwJGU7TEo0cE4hIzokIjA8TW8nbyE0VichIzo3JCQiMDA1P11YLWkkISM6JCIwJioqKXpcYSh6aiEjOjckJCIwZDlIW2tzbSQhIzokIjBWJjM8YnRLaiEjOjckJCIwJilwUj4mUTxQISM6JCIwOklnIVtoI0cnISM6NyQkIjBkOUhRQ3J3JCEjOiQiMFYmMzxjKEdCJyEjOjckJCIwT3JVJilILiNRISM6JCIwa0dkOXEnemghIzo3JCQiMFgqKXlQIkduUSEjOiQiMGI1QGk9RjgnISM6NyQkIjBDWiUqb2A5I1IhIzokIjB3XzBKWSZ5ZyEjOjckJCIvMTdDK01xUiEjOSQiLyV6ZSgqZidIZyEjOTckJCIwI1wpcFw1KD1TISM6JCIwMjpJXSpHIilmISM6NyQkIjBPc1dIQzIyJSEjOiQiMGtGYnF2I0hmISM6NyQkIjBZI1wpXFtINyUhIzokIjBhMjpdXnEoZSEjOjckJCIwSGQ5emsvPCUhIzokIjByVSYzX2BIZSEjOjckJCIvJz5SKVwjNEElISM5JCIvLzM7XTJ6ZCEjOTckJCIpI3AsRiUhIikkIikzJClIZCEiKTckJCIwdVsoXC9iQlYhIzokIjBFXi1iXGtuJiEjOjckJCIwIj1Pcyt1cFYhIzokIjA+UXcjKmYtaiYhIzo3JCQiMCRlO0wwekFXISM6JCIwPE1vWTRzZCYhIzo3JCQiMFF3X3ZnRVolISM6JCIwaUJaQ1J0XyYhIzo3JCQiMDlGYUdcP18lISM6JCIwJ0dkOTImelomISM6NyQkIjBoQVg1eDlkJSEjOiQiMFJ4YSpHX0dhISM6NyQkIjBHYzdOISo9aSUhIzokIjBzVihbJzQieWAhIzo3JCQiMEBUI1t2S3ZZISM6JCIwemU8WHNZSyYhIzo3JCQiMGpEXkFDVnMlISM6JCIwUHVbeHZjRiYhIzo3JCQiMFUkb08tcHNaISM6JCIwZTtMdzR0QSYhIzo3JCQiMD1OcXEjUkNbISM6JCIwI1snSEgyYzwmISM6NyQkIjA5R2NpIylmKFshIzokIjAnPVB1dCxDXiEjOjckJCIwLjE3ayhHQVwhIzokIjAoUnplQnJ4XSEjOjckJCIweWM4RlJyKFwhIzokIjBBVidHMidHLSYhIzo3JCQiLyRmPWRPSS0mISM5JCIvMjlHTSdwKFwhIzk3JCQiLzA1Pyc9bjImISM5JCIvJioqKXo4R0JcISM5NyQkIjBQdFkkSCZ6NyYhIzokIjBqRWAxWj8oWyEjOjckJCIwUHVbMipwdF4hIzokIjBqRF4jNElFWyEjOjckJCIwJilwUlJYXkEmISM6JCIwOklnZ2FbeCUhIzo3JCQiMEtqRXRLcEYmISM6JCIwb090RW5JcyUhIzo3JCQiMCllPE5SWkdgISM6JCIwN0NbMUU6biUhIzo3JCQiMD5Rd0FmaVAmISM6JCIwIj1PczJ1QlkhIzo3JCQiMHZdLDhRZFUmISM6JCIwRFwpcD1FdVghIzo3JCQiMGI0Pkc0cFomISM6JCIwWCE0PTI0QlghIzo3JCQiMG9Ocks7el8mISM6JCIwS2tHbiQzc1chIzo3JCQiMGQ4Rk0kUSFlJiEjOiQiMFYnR2RtaD5XISM6NyQkIjAnSGY9amZFYyEjOiQiMC8yOW8uTVAlISM6NyQkIi8nPlI9QCd5YyEjOSQiLy8zOyl5OEslISM5NyQkIjByVCRvJ2YzdCYhIzokIjBIZTtMUyJwVSEjOjckJCIwPlF3Nyw3eSYhIzokIjAiPU9zKSl6PVUhIzo3JCQiMFJ4YSpmInAjZSEjOiQiMGhBWCslM3RUISM6NyQkIjAoWyhcUnY3KWUhIzokIjA4RF1nQyg9VCEjOjckJCIwVSRvT1xLRmYhIzokIjBlO0wxdkUyJSEjOjckJCIwLjA1XSIqMylmISM6JCIwKFwqKilcMyI+UyEjOjckJCIwbk1wKXBJR2chIzokIjBMbEksJHByUiEjOjckJCIwdlwqKkdILjMnISM6JCIwRF0rcnEnPlIhIzo3JCQiMDdCWSNvJylIaCEjOiQiMClvUHZKOHFRISM6NyQkIjA4RV8vYTo9JyEjOiQiMChReGFmVz1RISM6NyQkIjBzVihbIT4hSGkhIzokIjBHYzcmNCk0eCQhIzo3JCQiMG9PdFk7LUcnISM6JCIwS2pFYCR5PlAhIzo3JCQiMFQjWyc+J1JMaiEjOiQiMGY8TiFRZ21PISM6NyQkIjA9TnFJKm96aiEjOiQiMCNbJ0hwNS5pJCEjOjckJCIwUHRZOChvSGshIzokIjBqRWAnR0pxTiEjOjckJCIwZDlIeVI4WychIzokIjBWJjM8LW09TiEjOjckJCIwYjVAIz0oPWAnISM6JCIwWCopeTxHIm9NISM6NyQkIjByVCRvVHchZSchIzokIjBIZTskZUI+TSEjOjckJCIwZDlIeV1daichIzokIjBWJjM8I1xcTyQhIzo3JCQiMC0uMXNIUW8nISM6JCIwKXBSei08O0whIzo3JCQiMEBUI1s7ImZ0JyEjOiQiMHplPE4pM2tLISM6NyQkIjAqeWQ6YzUkeSchIzokIjA2QVdRJSpvQCQhIzo3JCQiMD1QdTMsWiRvISM6JCIwI0djNyopSGxKISM6NyQkIjBrRmJTW0spbyEjOiQiME9zV2ZebjYkISM6NyQkIjAuMTdNJSpSJHAhIzokIjAoUnplYyttSSEjOjckJCIwQVcpb3hnJClwISM6JCIweWI2QiNSO0khIzo3JCQiMENbJ0glW2IuKCEjOiQiMHdeLmReVydIISM6NyQkIjBbJ0hmTWQmMyghIzokIjBfLjJhRVciSCEjOjckJCIwJHBReDd0T3IhIzokIjAyOEVzb0snRyEjOjckJCIwZDlIW2x1PSghIzokIjBWJjM8WGA3RyEjOjckJCIwc1YoW1wzTXMhIzokIjBHYzcwOmZ3IyEjOjckJCIwJXplPGheKEcoISM6JCIwMTdDKVFbN0YhIzo3JCQiLylmPmYwYEwoISM5JCIvLS8zV3BrRSEjOTckJCIwKWY+UiJmaVEoISM6JCIwLS8zJzN1OEUhIzo3JCQiMDlGYT1HXVYoISM6JCIwJ0dkOT0oXGMjISM6NyQkIjBmPVAlKnoiKlsoISM6JCIwVCJHYysjM14jISM6NyQkIjA+UHVRcmdgKCEjOiQiMCJHYzcnR1JZIyEjOjckJCIwUnhhZiRIKmUoISM6JCIwaEFYUzEyVCMhIzo3JCQiMF4sLicpKnpQdyEjOiQiMFwpcFIsP2lCISM6NyQkIjB4YTQ0ZTNwKCEjOiQiMEJYITQ+OTRCISM6NyQkIjBGYTNQUW10KCEjOiQiMHRYIkg7T2pBISM6NyQkIjA6SGV3dygpeSghIzokIjAmMzxNS0E2QSEjOjckJCIwLzI5KSlSIlJ5ISM6JCIwJ0hmPSwnMzsjISM6NyQkIi8qemY0cSUqKXkhIzkkIi8sLS8qSDA2IyEjOTckJCIwKFF4YV5oUnohIzokIjA4RV8lW1FnPyEjOjckJCIwJiopeWQpKXkoKXohIzokIjAwNkE5NkEsIyEjOjckJCIwbUtsIWYnKVIhKSEjOiQiME1uTTRNLCc+ISM6NyQkIjBEXSs2KlwqMykhIzokIjB2XCoqKTNdNT4hIzo3JCQiMCp6Zj5kdFQiKSEjOiQiMCwtL0drI2U9ISM6NyQkIjB2XSxWQSEqPSkhIzokIjBEXClwdig0Ij0hIzo3JCQiMFcoWyg0JEdUIykhIzokIjBjN0QhcHJlPCEjOjckJCIwRF0rclI4SCkhIzokIjB2XCoqR2cnMzwhIzo3JCQiMDQ8TVt1N00pISM6JCIwIkhlO2JzZTshIzo3JCQiMHBReGFKTVIpISM6JCIwSmhBWG9sZyIhIzo3JCQiLy0vMyxaVCUpISM5JCIvKWY+KilIJmU6ISM5NyQkIjA3Q1s7bzFcKSEjOiQiMCllPE49TDQ6ISM6NyQkIjBqRWBtKSlcYSkhIzokIjBQdFlMNl1YIiEjOjckJCIwdFgiSDk8JWYpISM6JCIwRmEzZEdlUyIhIzo3JCQiMCV6ZTwrWlcnKSEjOiQiMDE3QykqSGJOIiEjOjckJCIwO0trUUFjcCkhIzokIjAleWM4d1AvOCEjOjckJCIwb090T1RFdSkhIzokIjBLakVqZXREIiEjOjckJCIwJz5SeT93I3opISM6JCIwLzM7I3pCMjchIzo3JCQiMG9PdEUsRCUpKSEjOiQiMEtqRXQpXGQ2ISM6NyQkIjBaJHBRbnEmKikpISM6JCIwYDE4RSRILzYhIzo3JCQiMGM2QkVlRSUqKSEjOiQiMFcpb1A8TWQ1ISM6NyQkIjBOcFFkSW8qKikhIzokIjBsSWhVcEorIiEjOjckJCIwclUmM3ByWCEqISM6JCIwJ0dkOTQkR2EqISM7NyQkIjAvMjlRKDMlNCohIzokIjBrSGY9RSJmISohIzs3JCQiMFolKil5NjVZIiohIzokIjBGYjVAKSkqUSYpISM7NyQkIjBkOUhRRCQpPiohIzokIjBGYTM8WW4sKSEjOzckJCIvJXplblRlQyohIzkkIjAuMTdDJGVUdiEjOzckJCIwclQkbz1JJ0gqISM6JCIwIkhlOzgpcC4oISM7NyQkIjA2QVczWWJNKiEjOiQiMCopeWQ6UlhhJyEjOzckJCIwJjM8TXQjKilSKiEjOiQiMFgiSGVtczVnISM7NyQkIjAjUnljcDZYJSohIzokIjAiMztLLyQpW2IhIzs3JCQiMCV6ZTx1OylcKiEjOiQiMGg/VCNlSz1dISM7NyQkIjBcKXBSdy5bJiohIzokIjAyOklnQic+WCEjOzckJCIwRFwpcGhVKGYqISM6JCIwYDI6SVFkLSUhIzs3JCQiMHNXKikpUiZvayohIzokIjB3XzA2ZzlgJCEjOzckJCIwUnljQm5zcCohIzokIjAzO0trRnQtJCEjOzckJCIwS2pFVi8ydiohIzokIjAlb090YyZIXCMhIzs3JCQiMHVaJjQ2cSp6KiEjOiQiMGhBWCEqKSlIKyMhIzs3JCQiMGAwNjduIVspKiEjOiQiMHNXKil5RyQ+OiEjOzckJCIwSGQ5ZnAoKiopKiEjOiQiMDhGYTMvQisiISM7NyQkIjBEXSteZjgmKiohIzokIjAmXChcKipbUydbISM8NyQkIiM1ISIiJCIiISEiIi0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiM1ISIiLSUlVklFV0c2JDskIiIhISIiJCIjPyEiIiUoREVGQVVMVEctJiUmX0FYSVNHNiMiIiI2Ji0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIiQiIiEhIiIkIiIhISIiLSUqTElORVNUWUxFRzYjIiIhLSUqVEhJQ0tORVNTRzYjIiIiLSUtVFJBTlNQQVJFTkNZRzYjJCIiISEiIi0mJSZfQVhJU0c2IyIiIzYmLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiJCIiISEiIiQiIiEhIiItJSpMSU5FU1RZTEVHNiMiIiEtJSpUSElDS05FU1NHNiMiIiItJS1UUkFOU1BBUkVOQ1lHNiMkIiIhISIiLSUrQVhFU0xBQkVMU0c2JS1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRIng2Ii8lJ2ZhbWlseUdRKERFRkFVTFQ2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlRk9OVEc2JSUoREVGQVVMVEclKERFRkFVTFRHIiM1LSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkUyUhIiItJSlCT1VORFNfWUc2IyQiJD8iISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlIVskISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJWdNISIiLSUpQ0hJTERSRU5HNiI=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=

 g(z):=z^(-r)*(1+(q-1)*z)^n;

 KiZJInpHNiIhIiIpLCYiIiJGKComIiIjRihGI0YoRigiIiRGKA==

 gp:=diff(g(z),z);

 LCYqJilJInpHNiIiIiMhIiIpLCYiIiJGKyomRidGK0YlRitGKyIiJEYrRigqKCIiJ0YrRiVGKClGKkYnRitGKw==

 solve(gp);

 NiUjISIiIiIjRiMjIiIiIiIl

 plot(g(z), z=0.1..0.8);

 LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkdzckJCIiIiEiIiQiJUc8ISIjNyQkIjApZTxOSyFvLiIhIzokIjB0aiFSIz52cCIhIzg3JCQiMGU7TGBEKW81ISM6JCIwdTwkZlgrdDshIzg3JCQiMFUkb2N6JFs1IiEjOiQiL3orJypmWFo7ISM3NyQkIjAlKW9QNCozVDYhIzokIjB6OGU3LlBpIiEjODckJCIwa0ZiJHo7eDYhIzokIixAVFU9ZyIhIio3JCQiMEVeLWs8MUAiISM6JCIwOzdxXkJJZSIhIzg3JCQiMDA1PyhHRFg3ISM6JCIvbUhFYClbYyIhIzc3JCQiMEBUI3lFMiJHIiEjOiQiMG82a3RgdWEiISM4NyQkIi8mKiopNHd4OzghIzkkIjB3LC1BOThgIiEjODckJCIwLS8zXy9OTiIhIzokIjAmSFxRIioqZV4iISM4NyQkIi8nPlJnYGVRIiEjOSQiMCQpUUA0V0tdIiEjODckJCIwQ1snNDVGQTkhIzokIjAyQzNDYyoqWyIhIzg3JCQiMHNWKFt6JCllOSEjOiQiMFsncDlMY3g5ISM4NyQkIjBFXi0ocDIlXCIhIzokIjBlbFkjcFhtOSEjODckJCIwcFF4UHhnXyIhIzokIjBBaTNOTnFYIiEjODckJCIwJHBRZCpHVGMiISM6JCIwb3lSJTRnWTkhIzg3JCQiMCJIZU9PTydmIiEjOiQiMGIhUlRWUFE5ISM4NyQkIjAvMztCZ1FqIiEjOiQiMHVPKnltWUg5ISM4NyQkIjB6ZTwyXnFtIiEjOiQiMDMmKilbLTlBOSEjODckJCIwTnBRb21NcSIhIzokIjA3KnAjZW9ZVCIhIzg3JCQiLzI5ZUg5UTwhIzkkIjApellfSDIzOSEjODckJCIwIkdjN1NLdTwhIzokIjBCb3JnKnAsOSEjODckJCIwOERdXlx2IT0hIzokIjBgU1QsemlSIiEjODckJCIvLS8zeFFWPSEjOSQiMDFIIUcxKDNSIiEjODckJCIwQFUlPU5oISk9ISM6JCIwQjhfazNkUSIhIzg3JCQiMDpIZXA9SSI+ISM6JCIwNDBBVHQ6USIhIzg3JCQiMCllPHZyLFs+ISM6JCIwWHZbc2l1UCIhIzg3JCQiMHNXKkdTPCUpPiEjOiQiMFJQaV0lZXQ4ISM4NyQkIjAiPlFja2E+PyEjOiQiMGZbJip6TSxQIiEjODckJCIwc1YoKTRyUDAjISM6JCIwJCp6b14wck8iISM4NyQkIjBzVypHPHgiNCMhIzokIjA8Y2ZKITNrOCEjODckJCIwakVgKXAiZjcjISM6JCIwbFBmWl47TyIhIzg3JCQiMFB0WUx1QjsjISM6JCIvUXBUa01mOCEjNzckJCIwMDQ9NjVhPiMhIzokIjA4eSF6Tl1kOCEjODckJCIwYjVAJXBfSkEhIzokIjB4SFBlV2ROIiEjODckJCIwKFF4aytebEEhIzokIjBVb3M+QlZOIiEjODckJCIwdVsoPkEuLEIhIzokIjBMLC1WcElOIiEjODckJCIwWyY0Pjt3TkIhIzokIjBHLE9gaj9OIiEjODckJCIwSGU7Mz9AUCMhIzokIjAzUHomUUJeOCEjODckJCIwMTdDZ1ByUyMhIzokIjAoR3N4QGtdOCEjODckJCIwUXZdMltIVyMhIzokIjBYQyQ+I1ItTiIhIzg3JCQiMHNXKj0/WXlDISM6JCIwLypvZE8uXTghIzg3JCQiMDhEXWsmNDZEISM6JCIwdFckSCkzK04iISM4NyQkIjAzO0tZKFxbRCEjOiQiMDdkKHprO104ISM4NyQkIjBRd180XT5lIyEjOiQiMGtFbyopcC9OIiEjODckJCIwclQkeXZoPEUhIzokIi9yMWVpJjROIiEjNzckJCIwXy4yImZ2XkUhIzokIjBEOishUWReOCEjODckJCIwYTI6OWknKm8jISM6JCIwPDlcaUZDTiIhIzg3JCQiMGI1QDonW0FGISM6JCIwJVJkNl5JYDghIzg3JCQiMHBReHBUKGZGISM6JCIwVS0rOl5XTiIhIzg3JCQiMGU6SjMncCR6IyEjOiQiMCNmJlw8SWNOIiEjODckJCIwJ0dkV28kMyRHISM6JCIwWiVIXj4xZDghIzg3JCQiMF4tMC8kKUcnRyEjOiQiMGQ4bipIVGU4ISM4NyQkIjAjXClwIip6JCoqRyEjOiQiMCIpb1s6eStPIiEjODckJCIwWCopeTRNWSRIISM6JCIwOy9XcDU9TyIhIzg3JCQiMFghNFtfJylwSCEjOiQiMEpNLkNnT08iISM4NyQkIjBCWSMqeW1cKyQhIzokIjA+anoqcGhsOCEjODckJCIweWM4USlvUUkhIzokIjBFcXYoNGduOCEjODckJCIwUnhhSlVeMiQhIzokIjAmKSp5IkdkKXA4ISM4NyQkIi8oUnpiJikpNEohIzkkIjBcKlI4RTZzOCEjODckJCIwN0JZPV5rOSQhIzokIjBmOG92JGZ1OCEjODckJCIwMDU/KT1iekohIzokIjBybmZOS3BQIiEjODckJCIwdFgiXFY4O0shIzokIjA0dnVjOyd6OCEjODckJCIvKFJ6KFI8XkshIzkkIjBMPHM4JEcjUSIhIzg3JCQiMFsnSD4kR2hHJCEjOiQiMChbJUgqUi4mUSIhIzg3JCQiMGhAVkVRRUskISM6JCIwW09saywhKVEiISM4NyQkIjBtS2xEbGlOJCEjOiQiMGlNNT49M1IiISM4NyQkIjBUIkcnKlFxIVIkISM6JCIwJmYmUVkkeSRSIiEjODckJCIwPExtQ0coR00hIzokIjBbaGI4XXJSIiEjODckJCIwYDE4PWNKWSQhIzokIjBoLCoqRyFHKzkhIzg3JCQiMDM7Sz5sJClcJCEjOiQiMHV6cTRnTlMiISM4NyQkIjAvMjkmPTxNTiEjOiQiMDkta0l2cFMiISM4NyQkIi8tL1FeM25OISM5JCIwX091I1I9NTkhIzg3JCQiMCopeWRqcEBnJCEjOiQiMCdmVExlbjg5ISM4NyQkIi8tL29xKXBqJCEjOSQiMHAhcDNGQDw5ISM4NyQkIjAmKiopeiozQnVPISM6JCIwKT1hIkh0NVUiISM4NyQkIjBoQVgncDQyUCEjOiQiMCM0cE9dYUM5ISM4NyQkIjAxOEVlPF11JCEjOiQiMEtUbiFbaUc5ISM4NyQkIjBVJSlvLFEjelAhIzokIjA4RmdHdEJWIiEjODckJCIwWCopeU0oNDhRISM6JCIwbWpXT1ZoViIhIzg3JCQiMGxJaCsyJlxRISM6JCIwMCE0KSpSRVM5ISM4NyQkIjBzVypbUjEnKVEhIzokIjBpc0dTcFdXIiEjODckJCIvLC1hYEs+UiEjOSQiMFFzWSlRTls5ISM4NyQkIjBzVigpW1pZJlIhIzokIjAsUDpqUURYIiEjODckJCIqVz0iKilSISIqJCIwLi9IcCFvYzkhIzg3JCQiMDdDW0omW0VTISM6JCIwNkhmWU03WSIhIzg3JCQiMEZgMTA9KWVTISM6JCIwYykpPk1GX1kiISM4NyQkIjAzO0tQYGY0JSEjOiQiMCVcRiJbcylwOSEjODckJCIwWiRwR0QnMzglISM6JCIwMEUoKSplSHU5ISM4NyQkIi4qeipcTWE7JSEjOCQiMG5lLiopSCh5OSEjODckJCIwJGU7dFIuK1UhIzokIjBFISk+bj5LWyIhIzg3JCQiLyV6ZUNCYEIlISM5JCIvMHYhKT4meVsiISM3NyQkIjAlKW9QR0hGRiUhIzokIjA7WThvPkdcIiEjODckJCIwJXplZHAtMlYhIzokIjBOP0shZVUoXCIhIzg3JCQiMFJ5YzskKTNNJSEjOiQiMGg+NikqPj9dIiEjODckJCIwaUNcKlsyeFYhIzokIjAoPXdUQilwXSIhIzg3JCQiLyhSeiR5PThXISM5JCIvKHkmR2YpPl4iISM3NyQkIjBBVylbOGdYVyEjOiQiMFJTJ3owXzs6ISM4NyQkIjB2XCoqWygqUlslISM6JCIwYCRlY1slPl8iISM4NyQkIjBeLC5nRGheJSEjOiQiL3VCTnBfRTohIzc3JCQiME5xUy4uUGIlISM6JCIwO3I0Yk4+YCIhIzg3JCQiME9yVTBuJiplJSEjOiQiMHInKXpfWXJgIiEjODckJCIwMTdDTiplQFkhIzokIjBtPXM/Uj1hIiEjODckJCIwKil5ZHgsd2wlISM6JCIway1wLGhyYSIhIzg3JCQiMEtrRyJIJlFwJSEjOiQiMD47dSlcY186ISM4NyQkIjA3Qll2SipIWiEjOiQiMD1ybVEqKXpiIiEjODckJCIwdFkkZjlRalohIzokIjAscmo0ZkljIiEjODckJCIwYDA2cDshKXolISM6JCIwdDNqO1wkbzohIzg3JCQiMG9PdFxPUSRbISM6JCIwJSp6dD5qUWQiISM4NyQkIjAoXCoqRzlhcFshIzokIjBza3RlLSV6OiEjODckJCIvJioqKVIkb2khXCEjOSQiMD5GciVbOSZlIiEjODckJCIwMzpJVTwnUVwhIzokIjBhZnVXUi1mIiEjODckJCIwc1YoR1sudlwhIzokIi53KHBiLCdmIiEjNjckJCIvI1J5dyw7LCYhIzkkIjB2eFJWZT1nIiEjODckJCIwdFkkKnlTby8mISM6JCItTW8lSHZnIiEjNTckJCIwPE1vPlQpeV0hIzokIjAsK1hGOEZoIiEjODckJCIwVCNbd0YqbzYmISM6JCIwVjkpcCo9Kj07ISM4NyQkIjBSeWNYRiJcXiEjOiQiMGlXVTE2VWkiISM4NyQkIjBfLjIwQ209JiEjOiQiMCdwOXpxU0k7ISM4NyQkIjBGYTMqWyIpPl8hIzokIi9HcyxzI2ZqIiEjNzckJCIwI1snSF1JaUQmISM6JCIwIykqZVQ8LVU7ISM4NyQkIjA9T3N4MTRIJiEjOiQiMFdaJikpPSd5ayIhIzg3JCQiMEhlOyR5M0ZgISM6JCIwKClwUEckKlJsIiEjODckJCIvMTdNTEpnYCEjOSQiMCdRIjRgZCdmOyEjODckJCIwb05yX15oUiYhIzokIi9XITMwLmVtIiEjNzckJCIwcFB2THhMViYhIzokIjBfMVNlREFuIiEjODckJCIwaUNcXiN5bGEhIzokIjA3TCZcJlt5biIhIzg3JCQiME9yVSo0eStiISM6JCIwVHoiPlsmUm8iISM4NyQkIi8tL1t5JHBgJiEjOSQiMDpLJ0gjKkghcCIhIzg3JCQiMFJ4YUY1QmQmISM6JCIwYEBvOVRscCIhIzg3JCQiLyNSeSJcYDFjISM5JCIwNEEhW0xoLTwhIzg3JCQiLy0vW2JgV2MhIzkkIjBkWUksJFI0PCEjODckJCIwNkFXITNveWMhIzokIi9LMGYjPWJyIiEjNzckJCIwJSlvUDpRXnImISM6JCIwQj8kNEg0QTwhIzg3JCQiMF8vNCRSPFtkISM6JCIwPHY9PiIzRzwhIzg3JCQiMC4xN3chSCV5JiEjOiQiMHM7MDRoWXQiISM4NyQkIjBOcFEpUUY9ZSEjOiQiMDwmSE1PKTN1IiEjODckJCIwQVcpUWd6YGUhIzokIjBFTShwLVVaPCEjODckJCIwJjQ+UWFfKSllISM6JCIwbyc0NEYlUXYiISM4NyQkIjB4YDIhUilbI2YhIzokIi9NXVMoKmZnPCEjNzckJCIwYTI6VSwqZmYhIzokIjBBSC5lUnJ3IiEjODckJCIwJjM8JSo9ciYqZiEjOiQiMC1eQHlmUXgiISM4NyQkIi8tL1FlQUpnISM5JCIwIil6V05jMHkiISM4NyQkIi8xN2slZlExJyEjOSQiMGk1QHVQbnkiISM4NyQkIjBjNkJHaDc1JyEjOiQiMCJ5bS9dJlF6IiEjODckJCIwJz1QOVJyTWghIzokIi9kXXUsRCs9ISM3NyQkIjA+UHVSIlFxaCEjOiQiMDI7bjoqNDI9ISM4NyQkIi4qekgoPlg/JyEjOCQiMF8zd3Ikbzg9ISM4NyQkIjAtLjEnZlVVaSEjOiQiME1FNElHNSM9ISM4NyQkIjAuMTcoKlxfRichIzokIjAyTGVIO3UjPSEjODckJCIwPE1vXjBESichIzokIjB0Y0I8KXBNPSEjODckJCIwMDZBISpma00nISM6JCIwNkFKeGo4JT0hIzg3JCQiME1vT20rT1EnISM6JCIwTyIzVWpvWz0hIzg3JCQiMCp6ZmZvazprISM6JCIvRlRbMi5iPSEjNzckJCIvLzNPUDlfayEjOSQiMCp5V21kR2k9ISM4NyQkIjAjXClwInpSKFsnISM6JCIwKG9KNk1LcD0hIzg3JCQiMCRmPW4hSEVfJyEjOiQiME5ML1UmUXc9ISM4NyQkIjByVCQzMXRkbCEjOiQiMHRPbzRdTSk9ISM4NyQkIjBFXy8/XzlmJyEjOiQiMEovdSRRRSEqPSEjODckJCIwKEdkTWghemknISM6JCIuS2gxZncqPSEjNjckJCIwPU5xUFxFbSchIzokIjAxS0RhTlohPiEjODckJCIwZj1QKzojKnAnISM6JCIwMnZVKEdANz4hIzg3JCQiMGAwNnE6QnQnISM6JCIvWTwjeTIhPj4hIzc3JCQiMEBUI28iKSopb24hIzokIjAoZS5yaGFFPiEjODckJCIwPU5xelBSIW8hIzokIi9yJlshW3pMPiEjNzckJCIwJz5SUUAqKVFvISM6JCIwVFJlOGA1JT4hIzg3JCQiMDM8TTMtYShvISM6JCIwX1UmPk5tWz4hIzg3JCQiMDlHYzJIITRwISM6JCIvI3AnKTMqcGI+ISM3NyQkIjApb1A6eFlWcCEjOiQiMDBrTUxJSCc+ISM4NyQkIjBrR2QxI1wiKXAhIzokIi9scmNaJTQoPiEjNzckJCIwLC0vKz9mLCghIzokIjBaKXlcJUcjeT4hIzg3JCQiMGM2QixINjAoISM6JCIwJipHVDUvZCk+ISM4NyQkIjBeLTBuTnAzKCEjOiQiLyh6d0NNTCo+ISM3NyQkIjBvTnImKlspPnIhIzokIjBXemZHcy4rIyEjODckJCIwUHVbWExcOighIzokIjApNEsrLiF6KyMhIzg3JCQiMG9Ocikzdio9KCEjOiQiMFQlUUVyUjo/ISM4NyQkIjBWJjM8WipwQSghIzokIjBKMygqM1hNLSMhIzg3JCQiMDQ9T3lnKWZzISM6JCIwMiQqNGhyMC4jISM4NyQkIjBhMzxTInkoSCghIzokIjAqSCg9aUEpUT8hIzg3JCQiLyp6ZiQ9K0t0ISM5JCIwTDN5aSVIWT8hIzg3JCQiMCNcKXA7aGVPKCEjOiQiL0ghcDI3UDAjISM3NyQkIjA4RV8jM0YtdSEjOiQiMDRlXjM6PDEjISM4NyQkIi8tL294IylRdSEjOSQiMGA2TFF5KHA/ISM4NyQkIjBlOko8KjNzdSEjOiQiL0gjSCxScjIjISM3NyQkIi8jUnlJNnVdKCEjOSQiMHY/LCczKVwzIyEjODckJCIwWyY0ZkEpPWEoISM6JCIwdlUpcCdlRTQjISM4NyQkIi8nPlI4XCN6diEjOSQiMDBmbUE0NTUjISM4NyQkIjB1WyhwPWU2dyEjOiQiMCo0PikpekQzQCEjODckJCIwYzZCPjwoW3chIzokIjBlNiVRKjRtNiMhIzg3JCQiMCYqKXlaamkkbyghIzokIjA6VUkmcFtDQCEjODckJCIwWiUqKT0kKT49eCEjOiQiMDtmblI3QjgjISM4NyQkIjBKaEF6KHpfeCEjOiQiMG9ldVRvLDkjISM4NyQkIjAoWyhcMSgzKXkoISM6JCIwKCp6VDMxI1tAISM4NyQkIjBLa0c1JFxEeSEjOiQiMDNEX1FgbjojISM4NyQkIjBVJG93MnpmeSEjOiQiMCczVkpfaGtAISM4NyQkIjAoUXglKXBrJCp5ISM6JCIwMHJeNCpSc0AhIzg3JCQiLywtOShRKUh6ISM5JCIwQV06TlgyPSMhIzg3JCQiMD1OcWxeZid6ISM6JCIwSk9YYyo0Kj0jISM4NyQkIiIpISIiJCIlKD4jISIjLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiISEiIiQiIiEhIiItJSVWSUVXRzYkOyQiIiIhIiIkIiIpISIiJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiQtSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USJ6NiIvJSdmYW1pbHlHUSE2Ii8lJXNpemVHUSMxMDYiLyUlYm9sZEdRJmZhbHNlNiIvJSdpdGFsaWNHUSV0cnVlNiIvJSp1bmRlcmxpbmVHUSZmYWxzZTYiLyUqc3Vic2NyaXB0R1EmZmFsc2U2Ii8lLHN1cGVyc2NyaXB0R1EmZmFsc2U2Ii8lK2ZvcmVncm91bmRHUShbMCwwLDBdNiIvJStiYWNrZ3JvdW5kR1EuWzI1NSwyNTUsMjU1XTYiLyUnb3BhcXVlR1EmZmFsc2U2Ii8lK2V4ZWN1dGFibGVHUSZmYWxzZTYiLyUpcmVhZG9ubHlHUSZmYWxzZTYiLyUpY29tcG9zZWRHUSZmYWxzZTYiLyUqY29udmVydGVkR1EmZmFsc2U2Ii8lK2ltc2VsZWN0ZWRHUSZmYWxzZTYiLyUscGxhY2Vob2xkZXJHUSZmYWxzZTYiLyU2c2VsZWN0aW9uLXBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lLG1hdGh2YXJpYW50R1EnaXRhbGljNiJRITYiLSUlUk9PVEc2Jy0lKUJPVU5EU19YRzYjJCIkNSUhIiItJSlCT1VORFNfWUc2IyQiIyEpISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlZ00hIiItJS5CT1VORFNfSEVJR0hURzYjJCIlIVwkISIiLSUpQ0hJTERSRU5HNiI=

 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbW9HRiQ2LVEiO0YnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdRJXRydWVGJy8lKXN0cmV0Y2h5R0Y0LyUqc3ltbWV0cmljR0Y0LyUobGFyZ2VvcEdGNC8lLm1vdmFibGVsaW1pdHNHRjQvJSdhY2NlbnRHRjQvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lK2V4ZWN1dGFibGVHRjRGLw==

 JSFH

 JSFH

panchish
File Attachment
Hq.mw

3 Codes linéaires et odes yliques. Matrie généra-trie et alul du syndromed'erreur3.1 Codes linéairesUne lasse de odes très importante est elle des odes linéaires, notamment en raisondes outils dont nous disposons pour manipuler et représenter les appliations linéaires àl'aide de l'ériture matriielle.En général, pour un alphabet �ni F , étant donné une énumération de F k, la donnéed'un ode C = Im(E), E : F k → Fn est la donnée de n × qk éléments de F , e quireprésente un gros volume d'information.

71

Si l'on munit F k et Fn de strutures supplémentaires et si l'on prend une appliation Equi respete es strutures, on peut éonomiser sur le volume d'information représentant
E au prix de aluls des valeurs non mémorisées de E.En e sens le plus simple est de prendre pour q un nombre primaire, q = pr, pour Fle orps Fq et pour E une appliation linéaire injetive de F

k
q dans F

n
q . Rapportant C auxbases anoniques adéquates, on aratérise ette appliation par n× k éléments de Fq.RapellonsDéfinition 1.2 (a) Soit F un ensemble �ni non vide et n entier stritement positif.L'appliation d : Fn × Fn −→ N

(a, b) 7→ Card {i ∈ {1, . . . , n} | ai 6= bi}ave a = (a1, · · · , an) et b = (b1, · · · , bn) est la distane de Hamming sur Fn.(b) Soit F un orps �ni. L'appliation w : Fn → N

a 7→ d(a, 0) = Card {i ∈ {1, . . . , n} | ai 6= 0}est le poids de Hamming.
72

Définition 3.1 Soit F = Fq un orps �ni. Un ode linéaire C est un sous-espae vetorielde dimension k de l'espae vetoriel Fn (vu omme l'image d'une appliation E : F k → Fnlinéaire injetive). Les veteurs lignes a = (a1, · · · , ak) ∈ F k sont les mots d'information,et les veteurs lignes c = E(a) = (c1, · · · , cn) ∈ Fn sont les mots de ode. La matriegénératrie G du ode E est la matrie attahée à l'appliation linéaire E : F k → Fn(dans les bases standards de F k et Fn), de telle façon que
c = E(a) = aG.Remarque 3.2 Un ode linéaire C est l'image d'une appliation linéaire injetive, donon peut onsidérer C omme un sous-espae vetoriel de dimension k de l'espae vetoriel

Fn. On peut ainsi aratériser les odes linéaires à partir de matries à oe�ients dans
F omme noyau d'une autre appliation linéaire S : Fn → Fn−k. La matrie H de S estappelée matrie de ontr�le de C :

S(c) = Hct.

73

panchish
Sticky Note
Code de Reed-Muller de l'introduction de type [32,6,16]_2

panchish
Sticky Note
Exercice: trouver une matrice de syndrome du code de Reed-Muller de l'introduction de type [32,6,16]_2

panchish
Sticky Note
Solution : on considère la fonction affine(0.1) en p.14: y=(y_1, ..., y_{32})=y(x_1,x_2,x_3,x_4,x_5)=\al_1+\al_2x_1+\al_3x_2+\al_4x_3\al_5x_4+\al_6x_5= y_1+l(x)=y_1+(y_{17}-y_1)x_1+(y_9-y_1)x_2+(y_5-y_1)x_3+(y_3-y_1)x_4+(y_2-y_1)x_5On chosie comme variables principales y_1, y_17, y_9, y_5, y_3, y_2 (see p.17). Les 26 variables restantes y_j sont libres (j=4, 6, 7, 8, 10, 11, ..., 31). On prends j=4, j-1=3=(00011)_2, alors la relation ci-dessus devienty_4=y_1+(y_3-y_1)+(y_2-y_1), i.e.y_1+y_2+y_3+y_4=0 (la première ligne etc.), au total 26 relations.La dernière relation coresponde àj=32, j-1<->(1,1,1,1,1)_2y_1+(y_{17}-y_1)+(y_9-y_1)+(y_5-y_1)+(y_3-y_1)+(y_2-y_1)=y_{32}y_2+y_3+y_5+y_9+y_{17}+y_{32}=0

{
G =Mod(1,2)*[
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1;
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1;
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
];
H=lift(matker(G)~)
}
matsize(H)
\\

panchish
File Attachment
pari-linsolve03syn.gp

panchish
Sticky Note
PLAN du 28/1/2014 (suite)-RAPPELS sur les codes linéaires -Matrice génératrice et matrice de correction, E(u)=uG, S(x)=Hx^t, exemples. Codes de Hamming-Decodage des codes linéaires par leader de classe-Codes cycliques, constructions de G et H, nombre des codes cyclique de type donné-Polynôme générateur et polynôme correcteur, matrice systematique-Codes de Reed-Solomon-Préparation au contrôle continu du 1 mars (?), Salle de lecture, 14-16h:1) Bornes de Hamming. V_q(n,r). Borne de Singleton. Exemple de code de Reed-Muller de longueur 32. 2) Codes linéaires, trouver les matrices de génération et de contrôl. 3) Codes de Hamming. Nombre des mots de code de poids donné. 4) Nombre des codes cycliques de type donné.

panchish
Inserted Text
Exemple : Code H5gp > H=matrix(5,31,i,j);p > {for(i=1,5,for(j=1,31,H[i,j]=Chiffres(2,5,j)[i]));H;G=lift(Mod(1,2)*(matker(H)~));}

\\ Ecrire le naturel n en base d avec l chiffres
Chiffres(d,l,n)={
v=vector(l);
m=n;
for(i=0,l-1,
	v[l-i]=m%d;
	m=m\d;);
return(v);
}

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\ Matrice du code d'Hamming
H=matrix(5,31,i,j);
{
for(i=1,5,
for(j=1,31,
H[i,j]=Chiffres(2,5,j)[i]
));H;G=lift(Mod(1,2)*(matker(H)~));
}

\\

panchish
File Attachment
Code H5.gp

panchish
Sticky Note
gp > y=[1,0,0,0,0,0,0]%31 = [1, 0, 0, 0, 0, 0, 0]gp > H*y~%32 = [10, 10, 12, 12, 13]~gp > lift(Mod(1,2)*H*y~)%33 = [0, 0, 0, 0, 1]~

panchish
Text Box
- le mardi 28/01 : 8h -13h (3 séances, D 117)

Exemple. Soit H une matrie (n−k)×n à oe�ients dans Fq de rang n−k. Le noyau del'appliation représentée par H est un sous-espae vetoriel de F
n
q . On peut don dé�nirun ode linéaire par un système d'équations linéaires :

C =
{

c = (c1, · · · , cn)
∣
∣
∣ Hct = 0

}

.Posons
H = (A, In−k) =

1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

et soit q = 2 (C ode binaire) On désire transmettre le message
a = (a1a2a3a4).On le ode en c = (a1a2a3a4c5c6c7), ave c5, c6, c7 tels que Hct = 0. Or,

Hct = 0⇐⇒
a1 + a3 + a4 + c5 = 0
a1 + a2 + a4 + c6 = 0
a1 + a2 + a3 + c7 = 0

⇐⇒
c5 = a1 + a3 + a4

c6 = a1 + a2 + a4

c7 = a1 + a2 + a3

74

On obtient l'appliation linéaire injetive E : F4
2 → F7

2

(a1, a2, a3, a4) 7−→ (a1, a2, a3, a4, a1 + a3 + a4, a1 + a2 + a4, a1 + a2 + a3)La matrie H est appelée matrie de ontr�le de C. On a Hct = 0 pour tous les mots deode c ∈ C.Remarque 3.3 Si H = (A, In−k), alors un message a = a1 · · · ak est odé en c =
a1 · · · akck+1 · · · cn le ode est alors dit systématique. Ii A ∈ Matn−k,k(F)De plus, on a

{Hct = 0} =⇒ ct =

(
Ik

−A

)

at = [a(Ik,−At)]t'est-à-dire, que

ck+1

ck+2

· · ·
cn

= −A

a1

· · ·
ak

 ,

ck+1

ck+2

· · ·
cn

+ A

a1

· · ·
ak

 =

0
0
· · ·
0

.

75

Il vient la dé�nition suivante :Définition 3.4 G = (Ik,−At) est la matrie génératrie anonique du ode linéaire Cde matrie de ontr�le H = (A, In−k). D'une manière plus générale, toute matrie Gengendrant un ode C est une matrie génératrie de C.Remarque 3.5 Pour tout mot ode c, on a Hct = 0 et c = aG. Don
GHt = 0 ∈ Matk,n−k(F), HGt = 0 ∈ Matn−k,k(F),puisque Hct = HGtat = 0 pour tous les a ∈ F k.

76

3.2 Détetion et orretion d'erreurs, déodageDans e qui suit, nous noterons c un mot ode émis, y le message reçu, et e = y− c leveteur erreur.La distane de Hamming d(y, c) est alors le nombre d'erreurs survenues au ours de latransmission. Pour déoder y reçu, on peut supposer que le nombre d'erreurs est minimal,'est à dire que l'on va herher le mot ode c le plus prohe de y au sens de la distanede Hamming. C'est la règle du déodage par plus prohe voisin.Définition 3.6 Soit t un entier naturel. C un ode linéaire de dimension r et de longueur
n est dit t-orreteur d'erreurs si

∀y ∈ F
n
q , |{c ∈ C : d(y, c) ≤ t}| ≤ 1Si alors c ∈ C est transmis et qu'au plus t erreurs surviennent, on a d(y, c) ≤ t et

d(y, c′) > t pour tout autre élément de C. Ainsi, la méthode du déodage par plus prohevoisin donne le bon résultat.Il apparaît qu'un des objetifs de la théorie du odage onsiste à élaborer des odesdont les mots sont très éloignés les uns des autres au sens de la distane de Hamming.Toutefois, un autre est de transmettre un maximum d'information et don de garder desvitesses de transmission aeptables, et réunir les deux est épineux.Théorème 3.7 Un ode C peut orriger t erreurs si son éart d est tel que d ≥ 2t + 177

panchish
Sticky Note
RAPPEL: un code t-correcteur

Preuve : On a déja vu e resultat (Théorème 1.6) Si c est envoyé et y reçu, tels que
d(y, c) ≤ t, tout mot ode c′ de C est tel que d(c, c′) ≥ 2t+1. Or, d est une distane, don

d(y, c′) ≥ d(c, c′)− d(c, y)

d(y, c′) ≥ t + 1

C peut don orriger t erreurs.Exemple. Reprenons le ode déjà vu plus haut
E : F

4
2 → F

7
2 (3.1)

(a1, a2, a3, a4) 7→ (a1, a2, a3, a4, a1 + a3 + a4, a1 + a2 + a4, a1 + a2 + a3)Soient a, b des éléments de F
4
2Si d(a, b) = 1, alors d(E(a), E(b)) = 3 ou 4.Si d(a, b) = 2, alors d(E(a), E(b)) = 3 ou 4.Si d(a, b) = 3, alors d(E(a), E(b)) = 3 ou 4.Si d(a, b) = 4, alors d(E(a), E(b)) = 7.Cei dit, l'appliation E éarte vraiment les mots d'information.En e�et, on peut toujours supposer b = (0, 0, 0, 0), et on utilise diretement la formule(3.1) pour le mot E(a).Don d = 3, et le ode orrige 1 erreur. 78

panchish
Sticky Note
 1 0 0 0 1 1 1G= 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0

Lemme 3.8 Soit un ode linéaire C de matrie de orretion H et d'éart d. Alors d ≥ s+1si et seulement si s olonnes de H sont linéairement indépendantes.Preuve : Supposons que s olonnes de H soient linéairement dépendantes. Alors il existe
c ∈ C non nul tel que Hct = 0 et w(c) ≤ s. Ainsi, d ≤ s. Inversement, si s olonnes de
H sont toujours indépendantes, c ∈ C non nul est toujours tel que w(c) ≥ s + 1 et don
d ≥ s + 1.

79

Ce qui suit est un algorithme simple de déodage des odes linéaires : le déodage parleader de lasse.Soit C un ode linéaire de longueur n et de dimension k sur Fq. L'espae vetoriel
F

n
q /C est formé de toutes les lasses a + C, a ∈ F

n
q . Pour tout a, |a + C| = qk , et

F
n
q = (a(0) + C) ∪ · · · ∪ (a(s) + C),ave a(0) = 0, s = qn−k − 1.Alors, quel que soit le message y reçu, il existe i tel que y ∈ a(i)+C, et si c est le messageenvoyé, e = y− c = a(i) + z ∈ a(i) +C. On peut ainsi onstruire une méthode de déodagedes odes linéaires. En e�et, quel que soit y ∈ a(i) + C reçu, tous les veteurs erreurpossibles pour y sont également dans a(i) +C. La règle de déodage par plus prohe voisinnous onduit à hoisir pour veteur erreur le veteur e ∈ a(i) + C de poids de Hammingminimum, et on déode y en x = y − e. Nous allons voir maintenant l'algorithme, àproprement parler, plus en détail.

80

Définition 3.9 Dans les onditions dérites préédemment, un élément de poids mini-mum dans a + C est appelé un leader de lasse.Soient a(1), · · · , a(s) les leaders des lasses a+C, a 6= 0, et soient c(1) = 0, c(2), · · · , c(qk)tous les mots du ode C et soit le tableau suivant :
c(1) c(2) · · · c(qk)

a(1) + c(1) a(1) + c(2) · · · a(1) + c(qk)

· · · · · · · · · · · ·
a(s) + c(1) a(s) + c(2) · · · a(s) + c(qk)Si on reçoit le mot y = a(i) + c(j), le veteur erreur est e = a(i) et on déode y en

x = y − e = c(j), 'est à dire le mot du ode (don un terme de plus petit poids) de laolonne où est situé y. On peut déterminer la lasse de y en évaluant e que l'on appellele syndrome de y.

81

Définition 3.10 Soit H la matrie de orretion d'un ode linéaire C de longueur n etde dimension k. Alors le veteur S(y) = Hyt de longueur n− k est appelé le syndrome de
y.Théorème 3.11 Pour y, z éléments de F

n
q , on a(i) S(y) = 0 si et seulement si y ∈ C(ii) S(y) = S(z) si et seulement si y + C = z + CPreuve : S(y) = Hyt, et C = {y ∈ Fn

q : Hyt = 0}, d'où le (i). De plus, S(y) = S(z)⇐⇒
Hyt = Hzt ⇐⇒ H(y − z)t = 0⇐⇒ y − z ∈ C ⇐⇒ y + C = z + C, d'où le (ii).Si le message c est envoyé et y reçu, e = y − c, alors

S(y) = S(c + e) = S(c) + S(e) = S(e),

y et e sont dans la même lasse, et le leader de ette lasse a également le même syndrome.

82

Cei nous permet d'améliorer l'algorithme préédent. Celui-i onsistait à reherherle message reçu y dans le tableau onstruit préédemment, et à le déoder en remontantau premier terme de la olonne du tableau où il se situe. Or, de e qui préède, tousles éléments d'une même ligne du tableau ont le même syndrome. Ainsi, pour ne pasperdre du temps de herher y dans le tableau, il su�t d'y rajouter une olonne, elle dessyndromes. Le déodage se fait alors omme suit :(i) On alule S(y) = Hyt.(ii) On herhe S(y) dans la olonne des syndromes.(iii) Le veteur erreur e est le leader de ette lasse, don premier terme de la ligne où�gure S(y).(iv) On déode y en x = c(j) = y − e, qui est également un terme de plus petit poidsde la olonne de y.

83

Exemple. Soit C un ode linéaire de matrie génératrie G et de matrie de ontr�le H .
G =

(
1 0 1 0
0 1 1 1

)

,H =

(
1 1 1 0
0 1 0 1

)

Motsd'information { 00 10 01 11Motsodes { 0000 1010 0111 1101 0
0

1000 0010 1111 0101 1
0

0100 1110 0011 1001 1
1

0001 1011 0110 1100 0
1

︸︷︷︸ ︸︷︷︸Leaders de lasse SyndromesSi y = (1110) est le message reçu, plut�t que de herher y dans le tableau, e quiserait oûteux pour de grands tableaux, on alule son syndrome :
S(y) = Hyt =

(
1
1

)

84

Il vient ensuite immédiatement que le veteur erreur est le leader de la lasse orrespon-dante, ayant le même syndrome, don e = (0100), et on déode y en x = y − e = (1010)Cette méthode est toutefois limitée, ar pour de très grands odes, il devient impossiblede trouver les leaders de lasse. Un ode binaire de longueur 50 et de dimension 20 possède
≈ 109 lasses. Pour surmonter es di�ultés, il va falloir onstruire des odes partiuliers.

85

3.3 Classe des odes de HammingThéorème 3.12 Soit C un ode linéaire binaire de matrie de orretion H. Alors, lesyndrome d'un veteur reçu est égal à la somme des olonnes de H orrespondant auxpositions des erreurs.Preuve : On note hj la jme olonne de H , et soit y = x + e le message reçu, x ∈ C.Alors, S(y) = Het. Si
e = (0, · · · , 0, 1

i1
, 0, · · · , 0, 1

i2
, 0, · · ·),alors

S(y) = hi1 + hi2 + · · ·Si toutes les olonnes de H sont di�érentes, une erreur simple en ime position entraîne
S(y) = hj , don une erreur peut être orrigée. Dans le as de odes visant à orriger uneerreur, la lasse des odes de Hamming simpli�e le problème de la loalisation de l'erreur.Définition 3.13 Un ode binaire Cm, de longueur n = 2m − 1, m ≥ 2, de matrie deorretion m× (2m− 1) H est appelé ode de Hamming binaire si les olonnes de H sontles éritures binaires de 1, 2, · · · , 2m − 1.Lemme 3.14 Cm est de dimension 2m −m− 1 et orrige 1 erreur.

86

Preuve : Par onstrution, H est de rang m, et deux olonnes distintes de H sonttoujours linéairement indépendantes. En revanhe, omme H ontient ave deux olonnesdistintes également leur somme, on a l'éart de C d = 3, don C orrige une erreur.Exemple Soit C3 le ode de Hamming binaire de longueur 7 et de dimension 4. Alors samatrie de orretion est
H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

Le message reçu y = (1101111) a pour syndrome S(y) = (011)t, alors nous pouvonsa�rmer qu'une erreur s'est produite en 3ème position, puisque 011 est l'ériture de 3 enbase 2, don le mot de ode orrigé est x = (1111111).

87

Remarque 3.15 On peut dé�nir les odes de Hamming q-aires C(m, q) pour tout orps�nis Fq. Ils sont de type [(qm−1)/(q−1), (qm−1)/(q−1)−m, 3], et la matrie de ontr�leest formée par les olonnes representant les oordonnées homogènes de points di�érentsde l'espae projetif P
m−1
FqRemarque 3.16 Les odes de Hamming C(m, q) sont parfaits : ils réalisent un empile-ment de sphères de rayon 1 dans F

n
q .Rapellons que

CardB(x, r) = Vq(n, r) =

r∑

i=0

(q − 1)i

(
n

i

)

don
Vq(n, 1) = 1 + n(q − 1).La borne d'empilement de sphères de rayon 1a la forme :

qn ≤ qkVq(n, 1)⇐⇒ qn−k ≤ 1 + n(q − 1),et ette borne est atteinte puisque n− k = m, qm = 1 + n(q − 1).
88

3.4 Énumération de poids et l'identité de MaWilliams(voir [vLi℄, �3.5). Pour obtenir une information plus détillée sur les distanes entre les motsd'un ode linéaire C, on utilise le polyn�me-énumérateur de poids A(z) =
∑n

i=0 Aiz
n.Définition 3.17 (a) Soit C un ode linéaire, Le polyn�me-énumérateur de poids estdonné par

A(z) =

n∑

i=0

Aiz
i,où

Ai := #{c ∈ C | w(c) = i = d(c, 0)}est le nombre de mots de C de poids i ≤ n, A0 = 1.(b) La suite (Ai)
n
i=0 est dit la distribution des poids.

89

panchish
Sticky Note
(facultative en 2014)->

On utilise la notation C⊥ pour le ode dual d'un ode linéaire C sur Fq,
C⊥ = {(x1, · · · , xn) ∈ F

n
q | ∀c = (c1, · · · , cn) ∈ C, x1c1 + · · ·+ cnxn = 0}.Exemple. Si C = F

n
q , alors C⊥ = (Fn

q)⊥ = {0}, puis
Ai =

(
n

i

)

(q − 1)i ⇒ A(z) =

n∑

i=0

(
n

i

)

(q − 1)izi = (1 + (q − 1)z)n,et B(z) = 1.

90

Théorème 3.18 Soit C un [n, k, d]q-ode linéaire sur Fq ave le polyn�me-énumérateur
A(z) =

∑n
i=0 Aiz

n, et soit B(z) le polyn�me-énumérateur du ode dual C⊥. Alors
B(z) = q−k(1 + (q − 1)z)nA

(
1− z

1 + (q − 1)z

)

.Preuve On �xe un morphisme de groupes χ : Fq → C
∗ non-triviale, par exemple χ(x) =

exp(2iπTrFq/Fp
(x)/p), où q = pr

TrFq/Fp
(x) = x + xp + · · ·+ xpr−1 ∈ Fp.Puis, on onsidère la fontion génératrie

g(u, z) :=
∑

v∈Fn
q

χ(〈u, v〉)zw(v),où
〈u, v〉 = u1v1 + · · ·+ unvn, u = u1 + · · ·+ un, v = v1 + · · ·+ vn ∈ F

n
q .

91

On pose w(ν) = 1 pour tout ν ∈ F∗
q , w(0) = 0, alors

w(v1, · · · , vn) = w(v1) + · · ·+ w(vn) ∈ N.Puis on montre que
∑

u∈C

g(u, z) = |C|B(z), (3.2)pare que
∑

u∈C

g(u, z) =
∑

u∈C

∑

v∈Fn
q

χ(〈u, v〉)zw(v) =
∑

v∈Fn
q

zw(v)
∑

u∈C

χ(〈u, v〉).

Ii la somme intérieure est |C| pour v ∈ C⊥, et nulle sinon, puisque 〈u, v〉 prends alorstoute valeur de Fq le même nombre de fois.

92

D'autre part,
g(u, z) =

∑

v=(v1,··· ,vn)∈Fn
q

χ(u1v1)z
w(v1) · . . . · χ(unvn)zw(vn) (3.3)

=

n∏

i=1

∑

vi∈Fq

χ(uivi)z
w(vi) = (1− z)w(u)(1 + (q − 1)z)n−w(u)

= (1 + (q − 1)z)n

(
1− z

1 + (q − 1)z

)w(u)

= (1 + (q − 1)z)n−w(u)(1− z)w(u),pare que
∑

vi∈Fq

χ(uivi)z
w(vi) =

∑

v∈Fq

χ(0)zw(v) = (1 + (q − 1)z), si ui = 0,

1 + z
∑

ν∈F∗

q

χ(ν) = 1− z, si ui 6= 0.La sommation des égalités (3.3) substituées dans ∑u∈C g(u, z) = |C|B(z), montre dire-tement l'identité du théorème 3.18, puisque |C| = qk :
B(z) = q−k(1 + (q − 1)z)n

n∑

i=0

Ai

(
1− z

1 + (q − 1)z

)i

.

93

Exeries3.1 Soit Ai := #{c ∈ C | w(c) = i = d(c, 0)} est le nombre de mots d'un ode C de poids
i ≤ n, A0 = 1. Montrer que pour le ode de Hamming C = Hm binaire il y a la relationsuivante :

iAi =

(

n

i − 1

)

− Ai−1 − (n − i + 2)Ai−23.2 En déduire :
A′(z) = (1 + z)n − A(z) − nzA(z) + z2A′(z), A(0) = 1.3.3 Caluler le polyn�me-énumérateur de poids A(z) =

∑n
i=0 Aiz

i pour le ode de Hammingbinaire C = Hm, où Ai := #{c ∈ C | w(c) = i = d(c, 0)} est le nombre de mots de C depoids i ≤ n, A0 = 1. (Réponse : A(z) = ((1+ z)n +n(1+ z)(n−1)/2(1− z)(n+1)/2))/(n+1)).3.4 Caluler le polyn�me-énumérateur de poids A(z) =
∑n

i=0 Aiz
i pour le ode C de répé-tition pûr, et pour le ode d'un seul ontr�l de parité. Véri�er diretement l'identité deMaWilliams dans e as.

94

3.5 Codes yliquesDéfinition 3.19 Un ode linéaire C ⊂ F
n
q est dit ylique si

(a0, · · · , an−1) ∈ C ⇐⇒ (an−1, a0, . . . , an−2) ∈ CPour la suite, nous supposons que pgd(n, q) = 1 et on notera (xn−1) l'idéal de Fq[x]engendré par xn − 1. Alors, tout élément de Fq[x]/(xn − 1) peut être représenté par despolyn�mes de degré inférieur à n (ou le polyn�me nul), et et anneau est ainsi isomorpheà F
n
q omme Fq-espae vetoriel. Un isomorphisme est donné par

(a0, · · · , an−1)←→ a0 + a1x + a2x
2 + ... + an−1x

n−1Cet isomorphisme permet de onsidérer les éléments de Fq[x]/(xn−1) omme des veteursde F
n
q ou omme des polyn�mes de degré < n modulo xn − 1. La multipliation despolyn�mes modulo xn−1 est introduite de manière usuelle, 'est à dire, que si g1, g2 ∈ Fq[x]alors (g1 mod (xn − 1))(g2 mod (xn − 1)) = (g1g2) mod (xn − 1),

(g1 mod (xn − 1)) + (g2 mod (xn − 1)) = (g1 + g2) mod (xn − 1).
95

panchish
Sticky Note
Cours N 4 PLAN du 12/2/2014-RAPPELS Codes cycliques, Exemples: RS, codes de Golay-Decodage des codes cycliques. Locateurs d'erreurs, polynôme locateur d'erreur-Algorithme de décodage, exemples -Codes BCH. Distance construite.Exemple: codes de Reed-Solomon, description géométriqueDecodage par Berlekamp-Massey

3.6 Construtions3.6.1. Constrution par polyn�me générateurPour obtenir un ode ylique de dimension k et de longueur n, on peut oder lesmessages à transmettre (identi�és à des polyn�mes de degré ≤ k − 1) en les multipliantpar un polyn�me g donné de degré n− k diviseur de xn − 1. La orrespondane
(a0, · · · , an−1)←→ f(x) = an−1x

n−1 + · · ·+ a1x + a0entre les veteurs et les polyn�mes permet d'interpréter C omme le sous-espae suivant :
C = 〈1 · g(x), x · g(x), x2 · g(x), · · · , xk−1 · g(x)〉 ⊂ Fq[x]/(xn − 1)de l'anneau quotient

Fq[x]/(xn − 1).

96

Théorème 3.20 Le ode linéaire C est ylique si et seulement si C est un idéal de
Fq[x]/(xn − 1).Preuve : Si C est un idéal de Fq[x]/(xn − 1), et (a0, · · · , an−1) ∈ C, alors

x · (a0, · · · , an−1) = (an−1, a0, · · · , an−2) ∈ C.Inversement, si C est ylique, pour tout a(x) ∈ C, xa(x) ∈ C, x2a(x) ∈ C et ainsi desuite, don b(x)a(x) ∈ C et C est un idéal.L'anneau Fq[x] est prinipal, don tous les idéaux de l'anneau Fq[x]/(xn − 1) sontprinipaux. En partiulier, tout idéal non nul est engendré par un polyn�me g(x) de plusbas degré qu'il ontient, et g(x) divise xn − 1 :
C = 〈1 · g(x), x · g(x), x2 · g(x), · · · , xk−1 · g(x)〉,

97

3.6.2. Constrution par polyn�me orreteurSi g(x) = g0 + g1x + · · ·+ gn−kxn−k, une matrie génératrie du ode C est
G =

g0 g1 · · · gn−k 0 0 · · · 0
0 g0 g1 · · · gn−k 0 · · · 0
· ·
0 · · · · · · 0 g0 g1 · · · gn−k

∈ Mk,n(Fq)

Les lignes de G sont, de manière évidente, linéairement indépendantes et rg(G) = k, ladimension du ode.Proposition 3.21 Si h(x) = (xn − 1)/g(x) = h0 + · · ·+ hkxk, alors
H =

0 0 · · · 0 hk hk−1 · · · h1 h0

0 0 · · · hk hk−1 hk−2 · · · h0 0
· ·
hk hk−1 · · · h0 0 · · · · · · · · · 0

∈ Mn−k,n(Fq)

est une matrie de ontr�le de C.
98

Preuve (voir [MW-S℄, p. 194) : En e�et, soit
h(x) = (xn − 1)/g(x) (3.4)

= h0 + h1x + h2x
2 + . . . + hkxk =

k∑

j=0

hjx
j =

n−1∑

j=0

hjx
j où hj = 0 pour j ≥ k + 1.Alors une ondition néessaire pour que

f(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1appartienne au ode C = (g), est donnée par la ongruene suivante :
f(x) = g(x) · u(x)⇒ h(x) · f(x) = h(x)g(x) · u(x) ≡ 0 mod (xn − 1).On alule don le produit

h(x) · f(x) =
k∑

j=0

hjx
j

n−1∑

i=0

aix
i =

k∑

j=0

n−1∑

i=0

hjaix
i+j , où i + j ≤ k + n− 1 ≤ 2n− 1.De plus,

xi+j ≡ xi+j−n mod (xn − 1), si i + j ≥ n.99

On pose l = i + j, alors
h(x) · f(x) =

k∑

j=0

n−1∑

i=0

hjaix
i+j (3.5)

=
n−1∑

l=0

n−1∑

i=0

hl−iaix
l +

2n−1∑

l=n

n−1∑

i=0

hl−iaix
l

≡
n−1∑

l=0

n−1∑

i=0

hl−iaix
l +

n−1∑

l′=0

n−1∑

i=0

hl′+n−iaix
l′ mod (xn − 1)

=

n−1∑

l=0

(
n−1∑

i=0

hl−iai +

n−1∑

i=0

hl+n−iai

)

xl(on utilise la notation l′ = l − n pour l ≥ n). Puis, on observe que la seonde somme sur
i dans la derinère ligne de (3.5) est nulle dès que l ≥ k puisque l + n− i ≥ k + 1 et don
hl+n−i = 0 puisque le degré du polyn�me h est égal à k (voir (3.4)).Don, pour tous les l = k, k + 1, · · · , n − 1 il n'y a qu'une seule somme , et on a laondition suivante : pour tous les l = k, k + 1, · · · , n− 1

n−1∑

i=0

hl−iai = 0.

100

Don une ondition néessaire onsiste a un système de k − n équations linéaires
n−1∑

i=0

hl−iai = 0, (l = k, k + 1, · · · , n− 1) (3.6)de plus, hl−i = 0 si l − i ≥ k + 1⇐⇒ hl−i = 0 si i ≤ l − k − 1. Le système devient don

(l = n− 1) 0 · a0 + · · ·+ hk · an−k−1 + · · ·+ h1 · an−2 + · · ·+ h0 · an−1 = 0
(l = n− 2) 0 · a0 + · · ·+ hk · an−k−2 + hk−1 · an−k−1 + · · ·+ h0 · an−2 + 0 · an−1 = 0
· = 0

(l = k) hk · a0 + · · ·+ h0 · ak + 0 · ak+1 + · · ·+ h0 · an−2 + · · ·+ 0 · an−1 = 0

,

'est à dire, la matrie du système est la matrie suivante (de rang n− k, puisque h0 6= 0)
H =

0 0 · · · 0 hk hk−1 · · · h1 h0

0 0 · · · hk hk−1 hk−2 · · · h0 0
· ·
hk hk−1 · · · h0 0 · · · · · · · · · 0

Comme la ondition est néessaire, e système donne un sous-espae veoriel C ′ de C dedimension n− (n− k) = k. Mais la dimension du ode C est égale à k don C ′ = C, et laondition de ontr�le (3.6) est néessaire et su�sante.101

Définition 3.22 Soit C = (g(x)) un ode ylique. Alors g(x) est appelé polyn�me gé-nérateur de C, et h(x) = (xn − 1)/g(x) est appelé polyn�me orreteur de C.Soit xn−1 = f1(x)f2(x) · · · fm(x) la déomposition de xn−1 en fateurs irrédutiblessur Fq. Nous supposons dans ette partie que pgd(n, q) = 1, e qui élimine l'éventualitéde fateurs multiples. Si fi(x) est irrédutible sur Fq, alors (fi(x)) est un idéal maximal et
C est un ode ylique maximal. On engendre tous les odes yliques de longueur n sur Fqgrâe à la fatorisation i-dessus, en hoisissant n'importe quel diviseur de xn − 1 (parmiles 2m diviseurs distints de xn−1) omme polyn�me générateur. On a de plus les mêmespropriétés que pour les odes onstruits à partir de matries. En e�et, si C est ylique,
g(x) et h(x) sont des polyn�mes respetivement générateur et orreteur de C, alors
v(x) ∈ Fq[x]/(xn− 1) est un mot du ode C si et seulement si v(x)h(x) ≡ 0 mod (xn− 1).Un message a(x) est odé en w(x) = a(x)g(x). Si on divise le message reçu v(x) par g(x)et que le reste est non nul, on sait que des erreurs sont survenues :

v(x) = b(x)g(x) + r(x).Cei dit, le syndr�me S(v) = r(x) est le reste de la division eulidienne. Un deodagepossible de v(x) est don b(x).
102

Pour avoir un déodage standard ("de vraisemblene maximale") d'un mot v(x) onhoisit parmi les polyn�mes
v(x)− ã(x)g(x), ã(x) = a′

0 + a′
1x + · · ·+ a′

k−1x
k−1un polyn�me de nombre minimum des oe�ients non nuls. Ave e hoix, on délare

ã(x) = a′
0 + a′

1x + · · ·+ a′
k−1x

k−1un mot déodé.

103

On peut obtenir la matrie génératrie anonique de C de la manière suivante (voir[Li-Ni℄,Ch. IX, �2). Soit deg(g(x)) = n− k. Alors il existe ave uniité aj(x) et rj(x) ave
deg(rj(x)) < n− k et tels que

xj = aj(x)g(x) + rj(x) pour tout jAinsi, xj − rj(x) ∈ C, ainsi que
gj(x) = xk(xj − rj(x)) (pour n− k ≤ j ≤ n− 1)onsidéré modulo xn− 1. Les polyn�mes gj(x), pour n− k ≤ j ≤ n− 1, sont linéairementindépendants et forment la matrie génératrie anonique de C : (Ik,−R), où la ième lignede R est le veteur des oe�ients de rn−k−1+i(x) :

gn−k = xk(xn−k − rn−k(x)) ≡ 1− xkrn−k(x) mod (xn − 1),deg xkrn−k(x) < n

gn−k+1 = xk(xn−k+1 − rn−k(x)) ≡ x− xkrn−k+1(x) mod (xn − 1),deg xkrn−k+1(x) < n

· ·
gn−1 = xk(xn−1 − rn−1(x)) ≡ xk−1 − xkrn−1(x) mod (xn − 1),deg xkrn−1(x) < n.

104

panchish
Sticky Note
Exercice. Matrice systématique de code cyclique

Exemple Soit n = 7, q = 2. Alors
x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)et g(x) = x3 + x2 + 1 engendre un ode ylique de longueur 7 et de dimension 4 depolyn�me orreteur

h(x) = (x7 − 1)/g(x) = (x + 1)(x3 + x + 1) = x4 + x3 + x2 + x + 1.(et exemple est disponible à l'adresse ahée :http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-maple dans le �hier4mag-6rem.mws)

105

{VERSION 6 0 "IBM INTEL NT" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0
1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0
0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 }
{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2
2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1
11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0
0 0 0 1 0 1 0 2 2 0 1 }}
{SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 27 "restart;g:=x^3+x^2+1
 mod 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"gG,(*$)%\"xG\"\"$\"\"\"
F**$)F(\"\"#F*F*F*F*" }}}{EXCHG {PARA 11 "" 1 "" {TEXT -1 0 "" }}}
{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "r[3]:=rem(x^3, g,x)mod 2;" }
}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"rG6#\"\"$,&\"\"\"F)*$)%\"xG\"\"#
F)F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "r[4]:=rem(x^4, g,x)
mod 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"rG6#\"\"%,(%\"xG\"\"\"F
*F**$)F)\"\"#F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "r[5]:=
rem(x^5, g,x)mod 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"rG6#\"\"&,
&%\"xG\"\"\"F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "r[6]:=r
em(x^6, g,x)mod 2;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>&%\"rG6#\"\"',&
*$)%\"xG\"\"#\"\"\"F-F+F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0
"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 20 "Factor(x^7-1) mod 2;"
}}{PARA 11 "" 1 "" {XPPMATH 20 "6#*(,(*$)%\"xG\"\"$\"\"\"F)*$)F'\"\"#F
)F)F)F)F),(F%F)F'F)F)F)F),&F'F)F)F)F)" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 105 "G:=\nMatrix([[1, 0, 0, 0, 1, 0, 1], [0, 1, 0, 0, 1, \+
1, 1], [0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 1, 0, 1, 1]]);" }}{PARA 11 ""
1 "" {XPPMATH 20 "6#>%\"GG-%'RTABLEG6%\")sOQ_-%'MATRIXG6#7&7)\"\"\"\"
\"!F/F/F.F/F.7)F/F.F/F/F.F.F.7)F/F/F.F/F.F.F/7)F/F/F/F.F/F.F.%'MatrixG
" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 106 "G1:=\nMatrix([[1, 0, 1
, 1, 0, 0, 0], [0, 1, 0, 1, 1,0, 0], [0, 0, 1, 0, 1, 1, 0], \n[0, 0, 0
, 1, 0, 1, 1]]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#G1G-%'RTABLEG6%
\"*W)fv8-%'MATRIXG6#7&7)\"\"\"\"\"!F.F.F/F/F/7)F/F.F/F.F.F/F/7)F/F/F.F
/F.F.F/7)F/F/F/F.F/F.F.%'MatrixG" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 32 "h:=quo(x^7-1, x^3+x^2+1,x)mod 2;" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#>%\"hG,**$)%\"xG\"\"%\"\"\"F**$)F(\"\"$F*F**$)F(\"\"#F*
F*F*F*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 83 "H1:=\nMatrix([[0,
 0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 0, 0]]);" }
}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#H1G-%'RTABLEG6%\"*3*fv8-%'MATRIXG6
#7%7)\"\"!F.\"\"\"F/F/F.F/7)F.F/F/F/F.F/F.7)F/F/F/F.F/F.F.%'MatrixG" }
}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 42 "with(linalg):K:=multiply(G
,transpose(H1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"KGK%'matrixG6#
7&7%\"\"#\"\"!F*7%F*F*F*F,7%F*F*F+Q(pprint06\"" }}}{EXCHG {PARA 0 "> \+
" 0 "" {MPLTEXT 1 0 36 "map(item -> Expand(item) mod 2, K) ;" }}{PARA
11 "" 1 "" {XPPMATH 20 "6#K%'matrixG6#7&7%\"\"!F(F(F'F'F'Q(pprint06\"
" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "with(linalg):K:=multipl
y(G1,transpose(H1));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"KGK%'matri
xG6#7&7%\"\"#F*F*F)F)7%F*F*\"\"!Q(pprint06\"" }}}{EXCHG {PARA 0 "> "
0 "" {MPLTEXT 1 0 36 "map(item -> Expand(item) mod 2, K) ;" }}{PARA
11 "" 1 "" {XPPMATH 20 "6#K%'matrixG6#7&7%\"\"!F(F(F'F'F'Q(pprint06\"
" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "16 0 0" 0 }
{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }
{RTABLE_HANDLES 52383672 137559844 137559908 }{RTABLE
M7R0
I5RTABLE_SAVE/52383672X,%)anythingG6"F%[gl!"%!!!#="%"("""""!F'F'F'F&F'F'F'F'F&F
'F'F'F'F&F&F&F&F'F'F&F&F&F&F&F'F&F%
}
{RTABLE
M7R0
I6RTABLE_SAVE/137559844X,%)anythingG6"F%[gl!"%!!!#="%"("""""!F'F'F'F&F'F'F&F'F&
F'F&F&F'F&F'F&F&F'F'F'F&F&F'F'F'F&F%
}
{RTABLE
M7R0
I6RTABLE_SAVE/137559908X,%)anythingG6"F%[gl!"%!!!#6"$"(""!F&"""F&F'F'F'F'F'F'F'
F&F'F&F'F&F'F&F'F&F&F%
}

panchish
File Attachment
4mag-06rem12.mws

> restart;g:=x^3+x^2+1 mod 2;
g := x3 + x2 + 1

> r[3℄:=rem(x^3, g,x)mod 2;
r3 := 1 + x2

> r[4℄:=rem(x^4, g,x)mod 2;
r4 := x + 1 + x2

> r[5℄:=rem(x^5, g,x)mod 2;
r5 := x + 1

> r[6℄:=rem(x^6, g,x)mod 2;
r6 := x2 + xLes matries anoniques (voir Dé�nition 3.4) génératrie et orretrie orrespondantessont

G =

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

, H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

106

panchish
Inserted Text
gp > g=Mod(1,2)*(x^3 + x^2 + 1);g%24 = Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)gp > G=matrix(3,7);G%25 =[0 0 0 0 0 0 0][0 0 0 0 0 0 0][0 0 0 0 0 0 0]gp > for(k=1,3,for(l=1,7,G[k,l]=polcoeff(lift(x^(l-1)%g),k-1);))gp > G%26 =[1 0 0 1 1 1 0][0 1 0 0 1 1 1][0 0 1 1 1 0 1]

Cours N
◦3(disponible sur : http ://www-fourier.ujf-grenoble.fr/�panhish /SCCI).Exemples 3.23 (Codes de Reed-Solomon) Soit Fq un orps �ni et F∗

q = 〈α〉. Unode de Reed-Solomon est un ode sur Fq de longueur q − 1, dé�ni par le polyn�me géné-rateur g(x) des raines αb, αb+1, · · · , αb+d′−2 ∈ F
∗
q :

g(x) = (x− αb)(x− αb+1) · . . . · (x− αb+d′−2), d◦(g) = d′ − 1ave les fateurs linéaires dans Fq[x].On montrera que, k = n− d◦(g) = q− 1− d′ + 1 = q− d′, d ≥ d′. D'autre part, par laborne de Singleton (le théorème 2.6), d ≤ n − k + 1 = q − 1 − (q − d′) + 1 = d′, don lepoids de C est exatement d′.Exemple. 1) Soit F
∗
8 = 〈α〉, α3 = α + 1, g(x) = (x− α)(x− α2)(x− α3) = α6 + αx +

α6x2 + x3. Alors n = 7, k = 4, d = 4,
G =

α6 α α6 1 0 0 0
0 α6 α α6 1 0 0
0 0 α6 α α6 1 0
0 0 0 α6 α α6 1

.

2) Soit F
∗
256 = 〈α〉, g =

∏43
12(x − α11j), α8 = α7 + α2 + α + 1. Alors n = 255, k =

223, d = 33 (un ode utilsé par la NASA). 107

panchish
Text Box

panchish
Inserted Text
gp > f=(x^8+x^7+x^2+x+1)*Mod(1,2);f% = Mod(1, 2)*x^8 + Mod(1, 2)*x^7 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)gp > a=ffgen(f)% = xgp > polisirreducible(f)% 1gp > fforder(a)% = 255gp > lift(a^254)% = x^7 + x^6 + x + 1

4 Polyn�mes loateurs d'erreurs. Appliation au déo-dage4.1 Constrution de odes yliques à partir des raines.Lorsque l'on dé�nit un ode ylique par un polyn�me générateur g, tous les mots duode sont multiples de e polyn�me, et s'annulent don sur l'ensemble des raines de g. Deplus, on peut trouver une extension de Fq ontenant es raines. Soient don α1, · · · , αsdes éléments d'une extension Fqm de Fq, et pi(x) le polyn�me minimal de αi sur Fq,
1 ≤ i ≤ s. Soit n ∈ N tel que αn

i = 1, 1 ≤ i ≤ s, et soit g(x) = ppcm(p1(x), · · · , ps(x)).Dans es onditions, g(x) divise xn− 1 et si C est le ode de polyn�me générateur g, on a
v(x) ∈ C ⇐⇒ v(αi) = 0, i = 1, · · · , sDans e qui suit, nous allons étudier l'intérêt de ette méthode de onstrution de odesyliques, par rapport à la onstrution direte par polyn�me générateur.

108

Théorème 4.1 : Soit C ⊂ Fq[x]/(xn − 1) un ode ylique de polyn�me générateur gdont les raines sont α1, · · · , αn−k. Alors, f ∈ Fq[x]/(xn − 1) est un mot du ode si etseulement si le veteur des oe�ients de f(f0, · · · , fn−1) est dans le noyau de
H =

1 α1 α2
1 · · · αn−1

1

: : : : :
1 αn−k α2

n−k · · · αn−1
n−k

Preuve : f ∈ C si et seulement si f(αi) = 0 pour 1 ≤ i ≤ n− k, e qui équivaut bien àl'assertion du théorème.Théorème 4.2 Le ode ylique binaire C de longueur n = 2m − 1 dont le polyn�megénérateur est le polyn�me minimal sur F2 d'un élément primitif de F2m est équivalent auode de Hamming binaire (n, n−m).Preuve : Si α est un élément primitif de F2m :
F
∗
2m = 〈α〉 = {1, α, α2, · · · , α2m−2}alors son polyn�me minimal sur F2 est

p(x) = (x− α)(x− α2)(x− α4) · · · (x− α2m−1

)(deg(p) = m)109

panchish
Sticky Note
Exemple

et
{1, α, α2, · · · , αm−1}est une base de F2m sur F2. Soit alorsH la matrie dont la jème olonne est (c0, · · · , cm−1)

t,ave αj−1 = c0 + c1α + · · · + cm−1α
m−1, et les ci dans F2. Soit alors a(x) = a0 + a1x +

· · · + an−1x
n−1 ∈ F2[x] ave n = 2m − 1. On a Hat = a(α), exprimé dans la base

{1, α, · · · , αm−1}. La matrie H est don une matrie de ontr�le du ode engendré par
p(x), et les olonnes de H sont une permutation des représentations binaires des 2m − 1premiers entiers, qui forment une matrie de orretion du ode de Hamming binaire
(n, n−m), et les deux odes sont don équivalents.Exemple. Considérons le polyn�me p(x) = x4 +x +1. Il est primitif sur F2 et une de sesraines α est un élément primitif de F16 :

α4 = 1 + α,α5 = α + α2, α6 = α2 + α3, α7 = 1 + α + α3, α8 = 1 + α2,

α9 = α + α3, α10 = 1 + α + α2, α11 = α + α2 + α3, α12 = 1 + α + α2 + α3,

α13 = 1 + α2 + α3, α14 = 1 + α3, α15 = 1.

110

Erivons H dont la jème olonne est αj−1 exprimé dans la base {1, α, α2, α3}, 0 ≤ j ≤ 14.Il vient
H =

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Si alors a(x) = a0 + · · · + a10x

10 est le message à transmettre, il sera odé en w(x) =
a(x)(x4+x+1). Supposons qu'une erreur survienne au ours de la transmission, le messagereçu est alors v(x) = w(x) + xe−1. Son syndrome est S(v) = v(α) = w(α) + αe−1 = αe−1,et on sait qu'une erreur est survenue en eème position.

111

4.2 Exemples : odes de GolayLes aluls suivants sont disponibles à l'adresse ahée :http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-maple dans le �hier4mag-7yl-gol.mws :4.2.1. Code G23On onsidère le groupe ylique F∗
211 d'ordre 211−1 = 23 ·89. Soit α ∈ F∗

211 une raineprimitive de degré 23. On pose
G23 =

{

x = (x0, · · · , x22) ∈ F
23
2 |

22∑

i=0

xiα
i = 0

}

⊂ F2[x]/(x23 − 1).On a n=23, q = 2,
x23 − 1 = x23 + 1 = (x + 1)g0(x)g1(x) =

(x + 1) (x11 + x10 + x6 + x5 + x4 + x2 + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

112

où
g0(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1

=
∏

i∈I

(x− αi), I = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}

g1(x) = x11 + x9 + x7 + x6 + x5 + x + 1

=
∏

j∈J

(x− αj), J = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}

Remarque. L'ensemble
I = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}oïnide ave l'ensemble des résidues quadratiquesmodulo 23, et l'ensemble omplémentaire

J = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}oïnide ave l'ensemble des non-résidues quadratiques modulo 23.L'appliation de Frobenius αk 7→ α2k laisse I et J stable puisque (2
23

)
= 1, et l'ap-pliation αk 7→ α−k éhange les ensembles I et J puisque (−1

23

)
= −1, grâe à la loi de

113

réiproité quadratique de Gauss : pour les nombres premiers positifs impairs p, q on a
(

p

q

)(
q

p

)

= (−1)
(p−1)

2
(q−1)

2 ,et on a les deux ompléments suivants de ette loi :
(

2

p

)

= (−1)(p
2−1)/8,

(−1

p

)

= (−1)(p−1)/2,

114

Définition 4.3 Code de Golay G23 est un sous-espae vetoriel (g0) de dimension 12dans le quotient
F2[x]/(x23 − 1)vu omme un espae vetoriel de dimension 23 sur F2 ave le polyn�me générateur

g0(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1et ave le polynome de ontr�le
h(x) = (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1) = (x + 1)g1(x)C'est un [23, 12, 7]2-ode.

> restart ;
> with(linalg) :Warning, the proteted names norm and trae have been redefined andunproteted
> Fator(x^23+1) mod 2;

(x + 1) (x11 + x10 + x6 + x5 + x4 + x2 + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

> g:=x^11+x^10+x^6+x^5+x^4+x^2+1;irredu(g) mod 2;
g := x11 + x10 + x6 + x5 + x4 + x2 + 1115

true

> alias(alpha = RootOf(g)) ;
α

> Fator(g,alpha) mod 2;
(x + α9) (x + α6) (x + α9 + α8 + α6 + α5 + α2 + α) (x + α4)

(x + α8 + α7 + α6 + α5 + α3 + α2 + 1) (x + α10 + α8 + α6 + α3 + α + 1)

(x + α10 + α7 + α4 + α3 + α2 + α + 1) (x + α) (x + α2) (x + α8) (x + α3)
> for i from 0 to 23 do
> if Eval(g, x=alpha^i) mod 2 = 0 then Expand (alpha^i) mod 2;
> print('i'=i, alpha^i=Expand (alpha^i) mod 2, 'g'(alpha^i)=0) fi
> od ;

i = 1, α = α, g(α) = 0

i = 2, α2 = α2, g(α2) = 0

i = 3, α3 = α3, g(α3) = 0

i = 4, α4 = α4, g(α4) = 0

i = 6, α6 = α6, g(α6) = 0

i = 8, α8 = α8, g(α8) = 0

116

i = 9, α9 = α9, g(α9) = 0

i = 12, α12 = α10 + α7 + α4 + α3 + α2 + α + 1, g(α12) = 0

i = 13, α13 = α10 + α8 + α6 + α3 + α + 1, g(α13) = 0

i = 16, α16 = α9 + α8 + α6 + α5 + α2 + α, g(α16) = 0

i = 18, α18 = α8 + α7 + α6 + α5 + α3 + α2 + 1, g(α18) = 0

> for i from 0 to 23 do
> if Eval(g, x=alpha^(-i)) mod 2 = 0 then Expand (alpha^(-i)) mod 2;
> print('i'=i, alpha^(i)=Expand (alpha^i) mod 2, 'g'(alpha^(-i))=0) fi
> od ;

i = 5, α5 = α5, g(
1

α5
) = 0

i = 7, α7 = α7, g(
1

α7
) = 0

i = 10, α10 = α10, g(
1

α10
) = 0

i = 11, α11 = α10 + α6 + α5 + α4 + α2 + 1, g(
1

α11
) = 0

117

i = 14, α14 = α10 + α9 + α7 + α6 + α5 + α + 1, g(
1

α14
) = 0

i = 15, α15 = α8 + α7 + α5 + α4 + α + 1, g(
1

α15
) = 0

i = 17, α17 = α10 + α9 + α7 + α6 + α3 + α2, g(
1

α17
) = 0

i = 19, α19 = α9 + α8 + α7 + α6 + α4 + α3 + α, g(
1

α19
) = 0

i = 20, α20 = α10 + α9 + α8 + α7 + α5 + α4 + α2, g(
1

α20
) = 0

i = 21, α21 = α9 + α8 + α4 + α3 + α2 + 1, g(
1

α21
) = 0

i = 22, α22 = α10 + α9 + α5 + α4 + α3 + α, g(
1

α22
) = 0

> g[1℄:=x^11+x^9+x^7+x^6+x^5+x+1;Fator(g[1℄,alpha) mod 2;
g1 := x11 + x9 + x7 + x6 + x5 + x + 1

118

(x + α10 + α9 + α7 + α6 + α3 + α2) (x + α10 + α6 + α5 + α4 + α2 + 1) (x + α7)

(x + α8 + α7 + α5 + α4 + α + 1) (x + α10) (x + α5) (x + α10 + α9 + α5 + α4 + α3 + α)

(x + α9 + α8 + α7 + α6 + α4 + α3 + α) (x + α9 + α8 + α4 + α3 + α2 + 1)

(x + α10 + α9 + α7 + α6 + α5 + α + 1) (x + α10 + α9 + α8 + α7 + α5 + α4 + α2)Code de Golay G23 = (g) est un sous-espae vetoriel de dimension 12 dans lequotient
F2[x]/(x23 − 1)(vu omme un espae vetoriel de dimension 23 sur F2) ave le polyn�me générateur

g := x11 + x10 + x6 + x5 + x4 + x2 + 1et ave le polynome de ontr�le h = (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1) ,
h = x12 + x11 + x10 + x9 + x8 + x5 + x2 + 1.C'est un [23, 12, 7]2-ode.

> for i from 0 to 23 do
> if Eval(g[1℄, x=alpha^i) mod 2 = 0 then Expand (alpha^i) mod 2;
> print('i'=i, alpha^i=Expand (alpha^i) mod 2, 'g[1℄'(alpha^i)=0) fi
> od ; 119

i = 5, α5 = α5, g1(α
5) = 0

i = 7, α7 = α7, g1(α
7) = 0

i = 10, α10 = α10, g1(α
10) = 0

i = 11, α11 = α10 + α6 + α5 + α4 + α2 + 1, g1(α
11) = 0

i = 14, α14 = α10 + α9 + α7 + α6 + α5 + α + 1, g1(α
14) = 0

i = 15, α15 = α8 + α7 + α5 + α4 + α + 1, g1(α
15) = 0

i = 17, α17 = α10 + α9 + α7 + α6 + α3 + α2, g1(α
17) = 0

i = 19, α19 = α9 + α8 + α7 + α6 + α4 + α3 + α, g1(α
19) = 0

i = 20, α20 = α10 + α9 + α8 + α7 + α5 + α4 + α2, g1(α
20) = 0

i = 21, α21 = α9 + α8 + α4 + α3 + α2 + 1, g1(α
21) = 0

i = 22, α22 = α10 + α9 + α5 + α4 + α3 + α, g1(α
22) = 0

> (x^11+x^10+x^6+x^5+x^4+x^2+1)*(x+1)*(x^11+x^9+x^7+x^6+x^5+x+1);g:=x^1
> 1+x^10+x^6+x^5+x^4+x^2+1;

(x11 + x10 + x6 + x5 + x4 + x2 + 1) (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

g := x11 + x10 + x6 + x5 + x4 + x2 + 1

120

> G:= matrix(12, 23,
> [[1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0℄,
> [0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0℄,
> [0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0℄,
> [0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0℄,
> [0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0℄,
> [0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0℄,
> [0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0℄,
> [0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0℄,
> [0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0℄,
> [0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0℄,
> [0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0℄,
> [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1℄℄) ;

121

G :=

1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

> transpose(G);

122

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 0 1 0 1 0 0 0 0 0
0 1 1 1 0 1 0 1 0 0 0 0
0 0 1 1 1 0 1 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 1 0 1 0
1 1 0 0 0 1 1 1 0 1 0 1
0 1 1 0 0 0 1 1 1 0 1 0
0 0 1 1 0 0 0 1 1 1 0 1
0 0 0 1 1 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1

123

> (x^11+x^10+x^6+x^5+x^4+x^2+1)*(x+1)*(x^11+x^9+x^7+x^6+x^5+x+1);
(x11 + x10 + x6 + x5 + x4 + x2 + 1) (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

> 'h'=(x+1)*(x^11+x^9+x^7+x^6+x^5+x+1);
> h:=Expand((x+1)*(x^11+x^9+x^7+x^6+x^5+x+1)) mod 2;

h = (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

h := x12 + x11 + x10 + x9 + x8 + x5 + x2 + 1

> 'h'=(x+1)*(x^11+x^9+x^7+x^6+x^5+x+1);'h'=sort(h,x);
h = (x + 1) (x11 + x9 + x7 + x6 + x5 + x + 1)

h = x12 + x11 + x10 + x9 + x8 + x5 + x2 + 1

> Expand(h*g) mod 2;
1 + x23

124

> H:= matrix(11, 23,
> [[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1℄,
> [0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0℄,
> [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0℄,
> [0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0℄,
> [0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0℄,
> [0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0℄,
> [0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0℄,
> [0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0℄,
> [0,0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0℄,
> [0,1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0℄,
> [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0℄℄) ;

H :=

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

125

> K:=multiply(H,transpose(G)) ;
K :=

2 2 2 2 2 2 4 4 4 4 4 4
2 2 2 2 2 4 4 4 4 4 4 4
2 2 2 2 4 4 4 4 4 4 4 2
2 2 2 4 4 4 4 4 4 4 2 2
2 2 4 4 4 4 4 4 4 2 2 2
2 4 4 4 4 4 4 4 2 2 2 2
4 4 4 4 4 4 4 2 2 2 2 2
4 4 4 4 4 4 2 2 2 2 2 2
4 4 4 4 4 2 2 2 2 2 2 0
4 4 4 4 2 2 2 2 2 2 0 2
4 4 4 2 2 2 2 2 2 0 2 0

Les termes de la matrie obtenue ne sont pas � réduits � à leur forme anonique dans

GF(211) = F2[α℄. Pour obtenir la rédution, on utilise :
> map(item -> Expand(item) mod 2, K) ;

126

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

%1 := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]Une autre matrie de ontr�le :on onsidère la matrie dont la j-me olonne est formée par les oordonnées de
αj−1(j = 1, 2, ..., 23) dans la base

〈1, α, α2, . . . , α10〉

GF(211) = F2[α]. 127

> for j from 1 to 23 do print(alpha^(j-1)=Expand(alpha^(j-1)) mod 2) ;
> od;

1 = 1

α = α

α2 = α2

α3 = α3

α4 = α4

α5 = α5

α6 = α6

α7 = α7

α8 = α8

α9 = α9

α10 = α10

α11 = α10 + α6 + α5 + α4 + α2 + 1

α12 = α10 + α7 + α4 + α3 + α2 + α + 1

α13 = α10 + α8 + α6 + α3 + α + 1

α14 = α10 + α9 + α7 + α6 + α5 + α + 1

α15 = α8 + α7 + α5 + α4 + α + 1

128

α16 = α9 + α8 + α6 + α5 + α2 + α

α17 = α10 + α9 + α7 + α6 + α3 + α2

α18 = α8 + α7 + α6 + α5 + α3 + α2 + 1

α19 = α9 + α8 + α7 + α6 + α4 + α3 + α

α20 = α10 + α9 + α8 + α7 + α5 + α4 + α2

α21 = α9 + α8 + α4 + α3 + α2 + 1

α22 = α10 + α9 + α5 + α4 + α3 + α

> H1:= matrix(11, 23,
> [[1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0℄,
> [0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1℄,
> [0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,0℄,
> [0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1℄,
> [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,1,1,1℄,
> [0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,1,0,1,0,1,0,1℄,
> [0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0℄,
> [0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0℄,
> [0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0℄,
> [0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1℄,
> [0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,0,1℄℄) ;

129

H1 :=

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1

> K1:=multiply(H1,transpose(G)) ;

130

K1 :=

2 2 2 2 2 2 2 4 4 4 4 4
0 2 2 2 2 2 2 2 4 4 4 4
2 2 2 0 0 2 4 4 2 2 4 4
0 2 2 2 0 0 2 4 4 2 2 4
2 2 2 0 2 2 2 2 2 4 4 4
2 2 0 2 2 4 2 2 2 4 4 4
2 2 2 2 2 2 4 4 4 4 2 4
0 2 2 2 2 2 2 4 4 4 4 2
0 0 2 2 2 2 2 2 4 4 4 4
0 0 0 2 2 2 2 2 2 4 4 4
2 2 2 2 2 2 4 4 4 4 4 4

Les termes de la matrie obtenue ne sont pas � réduits � à leur forme anonique dans

GF(211) = F2[α℄. Pour obtenir la rédution.
> map(item -> Expand(item) mod 2, K1) ;

131

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

%1 := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4.2.2. Code G24de type [24, 12, 8]2 est un 3-orretur ; il est obtenu en ajoutant un ontr�le total deparité à la matrie H de ode G23.Ce ode est bien adapté à la transmission de 4096 nuanes de ouleur.
132

4.2.3. Code G11On onsidère le groupe ylique F
∗
35 d'ordre 35 − 1 = 11 · 22. Soit α ∈ F

∗
35 une raineprimitive de degré 11. On pose

G11 =

{

x = (x0, · · · , x10) ∈ F
11
3 |

10∑

i=0

xiα
i = 0

}

⊂ F3[x]/(x11 − 1).On a n=11, q = 3,
X11−1 = X11+2 = (x+2)g0(x)g1(x) = (x+2) (x5+2 x3+x2+2 x+2) (x5+x4+2 x3+x2+2)où

g0(x) = x5 + 2 x3 + x2 + 2 x + 2 =
∏

i∈I

(x− αi), I = {1, 3, 4, 5, 9}

g1(x) = x5 + x4 + 2 x3 + x2 + 2 =
∏

j∈J

(x− αj), J = {2, 6, 7, 8, 10}

133

Remarque. L'ensemble
I = {1, 3, 4, 5, 9}oïnide ave l'ensemble des résidues quadratiquesmodulo 11, et l'ensemble omplémentaire
J = {2, 6, 7, 8, 10}oïnide ave l'ensemble des non-résidues quadratiques modulo 11.L'appliation de Frobenius αk 7→ α3k laisse I et J stable puisque (3

11

)
= 1, et l'ap-pliation αk 7→ α−k éhange les ensembles I et J puisque (−1

11

)
= −1, grâe à la loi deréiproité quadratique de Gauss : pour les nombres premiers positifs impairs p, q on a

(
p

q

)(
q

p

)

= (−1)
(p−1)

2
(q−1)

2 ,et on a les deux ompléments suivants de ette loi :
(

2

p

)

= (−1)(p
2−1)/8,

(−1

p

)

= (−1)(p−1)/2,

134

Définition 4.4 Code de Golay G11 est un sous-espae vetoriel (g0) de dimension 6 dansle quotient
F3[x]/(x11 − 1)vu omme un espae vetoriel de dimension 11 sur F3 ave le polyn�me générateur

g0(x) = g0(x) = x5 + 2 x3 + x2 + 2 x + 2et ave le polynome de ontr�le
h(x) = (x + 2) (x5 + x4 + 2 x3 + x2 + 2) = (x + 1)g1(x)C'est un [11, 6, 5]3-ode.

> q:=3;
q := 3

> restart ;
> with(linalg) :Warning, the proteted names norm and trae have been redefined andunproteted

135

> Fator(x^11-1) mod 3;
(x + 2) (x5 + 2 x3 + x2 + 2 x + 2) (x5 + x4 + 2 x3 + x2 + 2)

> g:=x^5+2*x^3+x^2+2*x+2;irredu(g) mod 3;
g := x5 + 2 x3 + x2 + 2 x + 2

true

> alias(alpha = RootOf(g)) ;
α

> Fator(g,alpha) mod 3;
(x + 2 α) (x + 2 α3 + α2 + 2 α + 2) (x + 2 α4) (x + α4 + 2 α3 + 2 α2 + 2 α + 1) (x + 2 α3)

> for i from 0 to 11 do
> if Eval(g, x=alpha^i) mod 3 = 0 then Expand (alpha^i) mod 3;
> print('i'=i, alpha^i=Expand (alpha^i) mod 3, 'g'(alpha^i)=0) fi
> od ;

i = 1, α = α, g(α) = 0

136

i = 3, α3 = α3, g(α3) = 0

i = 4, α4 = α4, g(α4) = 0

i = 5, α5 = α3 + 2 α2 + α + 1, g(α5) = 0

i = 9, α9 = 2 α4 + α3 + α2 + α + 2, g(α9) = 0
> for i from 0 to 11 do
> if Eval(g, x=alpha^(-i)) mod 3 = 0 then Expand (alpha^(-i)) mod 3;
> print('i'=i, alpha^(i)=Expand (alpha^i) mod 3, 'g'(alpha^(-i))=0) fi
> od ;

i = 2, α2 = α2, g(
1

α2
) = 0

i = 6, α6 = α4 + 2 α3 + α2 + α, g(
1

α6
) = 0

i = 7, α7 = 2 α4 + 2 α3 + α + 1, g(
1

α7
) = 0

i = 8, α8 = 2 α4 + 2 α3 + 2 α2 + 2, g(
1

α8
) = 0

i = 10, α10 = α4 + 2 α2 + α + 2, g(
1

α10
) = 0

137

> (x+2)*(x^5+2*x^3+x^2+2*x+2)*(x^5+x^4+2*x^3+x^2+2);
> 'h'=(x+2)*(x^5+x^4+2*x^3+x^2+2);
> h:= sort(Expand((x+2)*(x^5+x^4+2*x^3+x^2+2)) mod 3,x);

(x + 2) (x5 + 2 x3 + x2 + 2 x + 2) (x5 + x4 + 2 x3 + x2 + 2)

h = (x + 2) (x5 + x4 + 2 x3 + x2 + 2)

h := x6 + x4 + 2 x3 + 2 x2 + 2 x + 1Code de Golay C11 = (g) est un sous-espae vetoriel de dimension 6 dans lequotient Z3[X℄/(x11 − 1) vu omme un espae vetoriel de dimension 11 sur
Z3 ave le polyn�me générateur
g := x5 + 2 x3 + x2 + 2 x + 2et ave le polynome de ontr�le h = (x + 2) (x5 + x4 + 2 x3 + x2 + 2) ,
h := x6 + x4 + 2 x3 + 2 x2 + 2 x + 1.C'est un [11, 6, 5]3 -ode.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%

138

> G:= matrix(6, 11,
> [[2,2,1,2,0,1,0,0,0,0,0℄,
> [0,2,2,1,2,0,1,0,0,0,0℄,
> [0,0,2,2,1,2,0,1,0,0,0℄,
> [0,0,0,2,2,1,2,0,1,0,0℄,
> [0,0,0,0,2,2,1,2,0,1,0℄,
> [0,0,0,0,0,2,2,1,2,0,1℄℄);

G :=

2 2 1 2 0 1 0 0 0 0 0
0 2 2 1 2 0 1 0 0 0 0
0 0 2 2 1 2 0 1 0 0 0
0 0 0 2 2 1 2 0 1 0 0
0 0 0 0 2 2 1 2 0 1 0
0 0 0 0 0 2 2 1 2 0 1

> 'h'= x^6+x^4+2*x^3+2*x^2+2*x+1;
h = x6 + x4 + 2 x3 + 2 x2 + 2 x + 1

139

> H:= matrix(5, 11,
> [[0,0,0,0,1,0,1,2,2,2,1℄,
> [0,0,0,1,0,1,2,2,2,1,0℄,
> [0,0,1,0,1,2,2,2,1,0,0℄,
> [0,1,0,1,2,2,2,1,0,0,0℄,
> [1,0,1,2,2,2,1,0,0,0,0℄℄);

H :=

0 0 0 0 1 0 1 2 2 2 1
0 0 0 1 0 1 2 2 2 1 0
0 0 1 0 1 2 2 2 1 0 0
0 1 0 1 2 2 2 1 0 0 0
1 0 1 2 2 2 1 0 0 0 0

> sort(Expand(h*g) mod 3,x);
x11 + 2

> K:=multiply(H,transpose(G)) ;
K :=

0 3 3 6 9 9
3 3 6 9 9 12
3 6 9 9 12 12
6 9 9 12 12 9
9 9 12 12 9 6

Les termes de la matrie obtenue ne sont pas � réduits � à leur forme anonique dans

GF(35) = F3[α℄. Pour obtenir la rédution.140

> map(item -> Expand(item) mod 3, K) ;

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4.2.4. Code G12de type [12, 6, 6]3 est un 2-orretur ; il est obtenu en ajoutant une ligne de ontr�le totalà la matrie H de ode G11.Exerie. (a) Caluler le volume de la boule de Hamming Vq(n, t), t = 1, 2, 3.(b) Montrer que la borne de Hamming est atteinte pour les odes G23 et G11 don on aun emplilement parfait de sphères.Remarque 4.5 On peut montrer que les odes G23 , G11 et C(m, q) (voir Setion 3.16)sont tous les odes parfaits.
141

panchish
Sticky Note
(16:24) gp > f=(a^11-1)*Mod(1,3);factor(f)%1 =[Mod(1, 3)*a + Mod(2, 3) 1][Mod(1, 3)*a^5 + Mod(2, 3)*a^3 + Mod(1, 3)*a^2 + Mod(2, 3)*a + Mod(2, 3) 1][Mod(1, 3)*a^5 + Mod(1, 3)*a^4 + Mod(2, 3)*a^3 + Mod(1, 3)*a^2 + Mod(2, 3) 1](16:25) gp > g=factor(f)[2,1];g%2 = Mod(1, 3)*a^5 + Mod(2, 3)*a^3 + Mod(1, 3)*a^2 + Mod(2, 3)*a + Mod(2, 3)(16:26) gp > G=subst(g,a,x);G%3 = Mod(1, 3)*x^5 + Mod(2, 3)*x^3 + Mod(1, 3)*x^2 + Mod(2, 3)*x + Mod(2, 3)(16:27) gp > b=ffgen(g)%4 = a(16:27) gp > factor(G*b/b)%5 =[x + 2*a 1][x + 2*a^3 1][x + (2*a^3 + a^2 + 2*a + 2) 1][x + (a^4 + 2*a^3 + 2*a^2 + 2*a + 1) 1][x + 2*a^4 1](16:27) gp > f1=(a^11-1)*Mod(1,3);g1=factor(f1)[3,1]%6 = Mod(1, 3)*a^5 + Mod(1, 3)*a^4 + Mod(2, 3)*a^3 + Mod(1, 3)*a^2 + Mod(2, 3)(16:28) gp > G1=subst(g1,a,x);G1%7 = Mod(1, 3)*x^5 + Mod(1, 3)*x^4 + Mod(2, 3)*x^3 + Mod(1, 3)*x^2 + Mod(2, 3)(16:29) gp > factor(G1*b/b)%8 =[x + 2*a^2 1][x + (a^4 + a^3 + 2*a + 2) 1][x + (a^4 + a^3 + a^2 + 1) 1][x + (2*a^4 + a^2 + 2*a + 1) 1][x + (2*a^4 + a^3 + 2*a^2 + 2*a) 1]

panchish
Sticky Note
(16:45) gp > for(i=1,11,print(i,"\t",b^i))1 a2 a^23 a^34 a^45 a^3 + 2*a^2 + a + 16 a^4 + 2*a^3 + a^2 + a7 2*a^4 + 2*a^3 + a + 18 2*a^4 + 2*a^3 + 2*a^2 + 29 2*a^4 + a^3 + a^2 + a + 210 a^4 + 2*a^2 + a + 211 1

panchish
Sticky Note
Cours N4 du 12/2/2014 (suite) PLAN-RAPPELS Codes cycliques, Exemples: -Codes de Golay-Decodage des codes cycliques. Locateurs d'erreurs, polynôme locateur d'erreur-Algorithme de décodage, exemples -Codes BCH. Distance construite.Deuxième description (géométrique) des codes de RS (p.169)Algorithme de Berlrkamp-Massey (p.180)

Théorie des Codes TELECOMMUNICATIONS 1A
Feuille TD 4 - Codes correcteurs - Codes linéaires

1 Code de Hamming

On considère le code de Hamming (15,11) de distance 3.

1. Quel est son rendement ?

2. Expliciter une matrice génératrice, sous forme canonique.

3. Donner l'algorithme de codage.

4. Donner un algorithme qui détecte jusqu'à 2 erreurs.

5. Donner un algorithme qui corrige 1 erreur. Que se passe-t-il en cas de 2 erreurs?

2 Codage et décodage des codes linéaires

Soit C un code linéaire (n, k) sur un vocabulaire V de cardinal q = pm où p est un nombre
premier. On pose r = n− k.

Soit G =

 L R

 une matrice génératrice de C, où L est une matrice carrée k × k et R

est une matrice k × r. On rappelle que C = Im(G) = {xt.G / x ∈ V k}.
Dans toute la suite, on supposera que L est inversible (cette hypothèse est sans restriction
moyennant une permutation éventuelle des chi�res des mots de C).

1. Soit M une matrice k × k inversible. Montrer que M.G est une matrice génératrice de
C.

2. Montrer que C admet une unique matrice génératrice G′ normalisée (ou canonique)
de la forme

G′ =

 Ik T

où Ik est la matrice identité k × k. Expliciter T en fonction de L et R.
En déduire qu'un code linéaire est systématique.

3. En déduire une méthode pour calculer le codage du mot source [u1, . . . , uk] ∈ V k.

4?. La matrice de contrôle H de C est une matrice r×n dé�nie par : H =

 T t −Ir

 .

Montrer que x = [x1, . . . xn] ∈ C si et seulement si H.

 x1
...

xn

 = O (i.e. le vecteur nul de V r).

N.B. Le code engendré par H est appelé code orthogonal de C.

5. En déduire une méthode simple pour détecter une erreur lorsqu'on utilise le code C.

1

6. On suppose maintenant que C est t-correcteur.
Soit x = [x1, . . . , xn] ∈ C le mot de code envoyé et y ∈ V n le mot reçu. On suppose que la
distance de Hamming dH(x, y) entre x et y véri�e : dH(x, y) ≤ t.
La correction consiste à calculer x à partir de y.

a. Quel est le cardinal de Im(H) ?

b. Soit e = y−x le vecteur d'erreurs. Montrer que e est l'unique elément de V n de poids de
Hamming wH(e) minimal tel que He = Hy. (NB Le vecteur Hy est appelé syndrome
d'erreur).

c. En déduire une méthode de correction permettant de calculer x à partir de y.

3 Codes de Golay

On considère le code de Golay G12 ternaire (i.e. sur V = F3) de matrice génératrice G = [I6|R]
avec

R =

0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0

1. En admettant que G12 est de distance 6, donner ses caractéristiques et sa matrice de

contrôle.

2. On véri�e facilement que si r et s sont deux lignes quelconques de G, alors r.s = 0 (non
demandé). En déduire que G12 est auto-dual, i.e. G12 = G⊥

12.

3. Montrer que G12 n'est pas parfait.

4. Soit G11 le code obtenu à partir de G12 en supprimant sa dernière composante; expliciter
la matrice de contrôle associée à G11. Quelle est sa distance ?

5. Montrer que G11 est un code parfait.

Complément: un code binaire parfait
On peut construire un code binaire parfait (23, 12, 7) à partir du code de Golay binaire G24.
Le code (24, 12, 8) G24 a les propritétés suivantes:

• G24 est auto-dual (i.e. G⊥24 = G24).

• G24 admet aussi [A|I12] comme matrice
génératrice.

• Le poids de tout mot de G24 est divisible par
4 (en e�et, toute ligne a un poids multiple de
4 et les lignes étant toutes orthogonales 2 à 2,
toute combinaison de lignes a un poids aussi
multiple de 4).

• G24 est de distance 8 (il n'y a pas de mot de
poids 4).

• Soit G23 le code (23, 12, 7) obtenu à partir
de G24 en supprimant sa dernière composante;
G23 est un code parfait.

G24 a pour matrice génératrice G = [I12|A] avec (NB
'0' est noté '.')

A =

. 1 1 1 1 1 1 1 1 1 1 1
1 1 1 . 1 1 1 . . . 1 .
1 1 . 1 1 1 . . . 1 . 1
1 . 1 1 1 . . . 1 . 1 1
1 1 1 1 . . . 1 . 1 1 .
1 1 1 . . . 1 . 1 1 . 1
1 1 . . . 1 . 1 1 . 1 1
1 . . . 1 . 1 1 . 1 1 1
1 . . 1 . 1 1 . 1 1 1 .
1 . 1 . 1 1 . 1 1 1 . .
1 1 . 1 1 . 1 1 1 . . .
1 . 1 1 . 1 1 1 . . . 1

2

panchish
File Attachment
td4-code-lineaire-enonce.pdf

panchish
Sticky Note
(22:21) gp > G12%24 =[Mod(1, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(1, 3) Mod(1, 3) Mod(1, 3) Mod(1, 3)][Mod(0, 3) Mod(1, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(0, 3) Mod(1, 3) Mod(2, 3) Mod(2, 3) Mod(1, 3)][Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(1, 3) Mod(0, 3) Mod(2, 3) Mod(1, 3) Mod(2, 3)][Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(2, 3) Mod(1, 3) Mod(1, 3) Mod(0, 3) Mod(2, 3)][Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(0, 3) Mod(1, 3) Mod(2, 3) Mod(2, 3) Mod(0, 3) Mod(1, 3) Mod(1, 3)][Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(0, 3) Mod(1, 3) Mod(1, 3) Mod(1, 3) Mod(2, 3) Mod(1, 3) Mod(2, 3) Mod(0, 3)]

panchish
Sticky Note
(22:27) gp > lift(G12)%26 =[1 0 0 0 0 0 0 1 1 1 1 1][0 1 0 0 0 0 1 0 1 2 2 1][0 0 1 0 0 0 1 1 0 2 1 2][0 0 0 1 0 0 1 2 1 1 0 2][0 0 0 0 1 0 1 2 2 0 1 1][0 0 0 0 0 1 1 1 2 1 2 0]

panchish
Sticky Note
1 [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1]2 [1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2]3 [1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1]4 [1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1]5 [1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2]6 [1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2]7 [1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2]8 [1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1]9 [1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2]10 [1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]11 [1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2]12 [1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]13 [2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]14 [2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1]15 [2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2]16 [2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1]17 [2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2]18 [2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1]19 [2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1]20 [2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1]21 [2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2]22 [2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2]23 [2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1]24 [2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2]

panchish
Sticky Note
(10:15) gp > A=1+264*z^6+440*z^9+24*z^12%12 = 24*z^12 + 440*z^9 + 264*z^6 + 1(10:19) gp > subst(A,z,(1-z)/(1+2*z))%13 = (17496*z^12 + 320760*z^9 + 192456*z^6 + 729)/(4096*z^12 + 24576*z^11 + 67584*z^10 + 112640*z^9 + 126720*z^8 + 101376*z^7 + 59136*z^6 + 25344*z^5 + 7920*z^4 + 1760*z^3 + 264*z^2 + 24*z + 1)(10:20) gp > B=3^(-6)*(1+2*z)^12*subst(A,z,(1-z)/(1+2*z))%14 = 24*z^12 + 440*z^9 + 264*z^6 + 1

4.3 Loateurs d'erreursPour déteter et orriger les erreurs, nous avons vu qu'il fallait déterminer le syndromedu message reçu. Dans le as de ertains odes yliques, e veteur de longueur n − kpeut être remplaé par un objet plus léger ayant les mêmes possibilités. En e�et, soit αune raine primitive nème de l'unité, ontenue dans F2m , ∗) et onsidérons le ode généré Ii q = 2par g(x), le polyn�me minimal de α sur F2. Soit par exemple
H = (1 αα2 · · ·αn−1)et
S(v) = Hvt = v(α).Soit w le message émis, posons e(j)(x) = xj−1, 1 ≤ j ≤ n, et plaçons-nous dans le asd'une erreur simple. Il existe don j, 1 ≤ j ≤ n, tel que v = w + e(j) don

S(v) = v(α) = w(α) + e(j)(α) = αj−1

e(j)(α) est appelé loateur d'erreur. En e�et, omme on a e(j)(α) 6= e(i)(α) pour i 6= j,
1 ≤ i, j ≤ n, αj−1 détermine la position de l'erreur. ∗) Faire en exeriele as q

142

4.4 Déodage des odes yliquesSoit C un ode ylique de polyn�me générateur g et soient w le message émis et v lemessage reçu. Supposons qu'au plus t erreurs se produisent, et on note t′ le nombre exated'erreurs, t′ ≤ t. On utilise maintenant plusieures raines α1, · · · , αr de g pour détérminerle polyn�me d'erreur e(x) =
∑t′

i=1 cix
ai , ou les ai sont tous di�érentes dans 0, 1, · · · , n−1,et ci sont les valeurs d'erreurs. On suppose dans ette setion en simpli�ant que parmiles raines de g il y a une raine primitive nème de l'unité α , ontenue dans Fqm , disons

α = α1, et onsidérons le ode engendré par g(x), le polyn�me minimal de α sur Fq. Onutilise les notations
αj = αbj , Sbj

= e(αbj) =

t′∑

i=1

ciα
bjai , (4.1)Posons alors

H =

1 α1 α2
1 · · · αn−1

1

: : : : :
1 αr α2

r · · · αn−1
r

et
S(v) = Hvt = (Sb1 , Sb2 , · · · , Sbr

)t.Soit w le message émis, v = w + e don
Sbj

= v(αj) = w(αbj) + e(αbj) = e(αbj).143

On pose
ηi = αai , (où e(x) =

t′∑

i=1

cix
ai)pour la raine α �xée, et on introduit le polyn�me loateur d'erreur

s(x) =

t′∏

i=1

(1− ηix) =

t′∑

i=0

τt′−ix
i, ave ηi = αai (4.2)Les raines de s(x) sont les η−1

i , 'est à dire les α−ai .Soit alors l'identité polynomiale
t′∏

i=1

(ηj − x) =

t′∑

i=0

(−1)iσt′−ix
i = σt′ − σt′−1x + · · ·+ (−1)t′σ0x

t′ . (4.3)Les oe�ients σi sont don σ0 = 1 et pour 1 ≤ i ≤ t′, les σi sont les polyn�mesélémentaires symétriques en η1, · · · , ηt′ , et τi = (−1)iσi. En remplaçant x par ηi dans(4.3), il vient
(−1)t′σt′ + (−1)t′−1σt′−1ηi + · · · − σ1η

t′−1
i + ηt′

i = 0 (4.4)
144

pour tout 1 ≤ j ≤ t′. En multipliant par ciη
b
i et en sommant pour 1 ≤ i ≤ t′, il vient

(−1)t′σt′Sb + (−1)t′−1σt′−1Sb+1 + · · · − σ1Sb+t′−1 + Sb+t′ = 0 (pour tout b). (4.5)

145

Résumé de ette méthode : (on note τi = (−1)iσi).- 1ème étape : Déterminer le syndrome
S(v) = (Sb1 , Sb2 , · · · , Sbr

)t.Soit
Sbj

=

t′∑

i=0

ciα
aibj =

t′∑

i=0

ciη
bj

i =

n−1∑

i=0

viα
ibj

i (4.6)- 2ème étape : Trouver les oe�ients τt′−i du polyn�me loateur d'erreurs (4.2). Iion utilise des relations entre Sbj
, ηi et les syndr�mes Sbj

, par exemple (4.4), (4.5) (voirSetion 5).- 3ème étape : Cherher les raines de s(x) en testant les di�érentes puissanes de αpour déterminer les loateurs d'erreurs ηi- 4ème étape : Remplaer les ηi par leurs valeurs dans l'expression des Sj pour déter-miner les valeurs des erreurs ci (as non binaire seulement). On obtient ainsi le veteurerreur e et on peut déoder w = v − e, u = (v − e)/g (le mot d'information).
146

Cours N
◦44.4.1. Exemples de deodage des odes yliquesSoit α un élément primitif de F16 raine du polyn�me x4 + x + 1 sur F2, m(i)(x) lepolyn�me minimal unitaire de αi. Alors

m(1)(x) = m(2)(x) = m(4)(x) = m(8)(x) = x4 + x + 1

m(3)(x) = m(6)(x) = m(12)(x) = x4 + x3 + x2 + x + 1Ainsi, un ode de polyn�me générateur
g(x) = m(1)(x)m(3)(x) = 1 + x4 + x6 + x7 + x8est un ode ylique dont les paramètres sont d = 5, q = 2, n = 15. Sa dimension est k = 7et un polyn�me de orretion est

h(x) = (x15 − 1)/g(x) = 1 + x4 + x6 + x7

147

panchish
Text Box

On onstruit une matrie génératrie G dont la ième ligne est le veteur
xi−1g(x), 1 ≤ 1 ≤ k. On obtient

G =

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

La distane du ode est 5 don e ode orrige deux erreurs. Pour ela on onsidèreles omposantes
S1 =

14∑

i=0

viα
i, S3 =

14∑

i=0

viα
3i.du syndrome S(v) = Hvt. Alors v ∈ C si et seulement si S(v) = Hvt = 0. Supposons quele veteur reçu v = (v0, . . . v14) ontient deux erreurs. Par exemple e(X) = Xa1 + Xa2 ,où 0 ≤ a1, a2 ≤ 14, a1 6= a2. Alors

S1 = αa1 + αa2 , S3 = α3a1 + α3a2 .

148

Soit η1 = αa1 , η2 = αa2 les loateurs des erreurs, alors
S1 = η1 + η2, S3 = η3

1 + η3
2 =⇒ S3

1 = (η1 + η2)
3 = η3

1 + η3
2 + 3η1η2(η1 + η2).Cei implique

(X − η1)(X − η1) = X2 − S1X + η1η2 =⇒ S1(X − η1)(X − η1) = S1X
2 − S2

1X + S3
1 + S3et la substitution X = η1 donne S3 = S3

1 + S2
1η1 + S1η

2
1 ,

1 + S1η
−1
1 + (S2

1 + S3S
−1
1)η−2

1 = 0.

1 + S1η
−1
2 + (S2

1 + S3S
−1
1)η−2

2 = 0.S'il y a deux erreurs, η−1
1 et η−1

2 sont des raines di�érentes du polyn�me loateur d'erreurs :
s(X) = 1 + S1X + (S2

1 + S3S
−1
1)X2.S'il n'y a qu'une seul erreur, S1 = η1, S3 = η3

1 don S3
1 + S3 = 0, et on a

s(X) = 1 + S1X.S'il n'y a pas d'erreurs, S1 = S3 = 0, et on a reçu message orret w. Si S1 6= 0 et
S3

1 + S3 = 0, le polyn�me s(X) a une seule raine dans F16.149

L'exemple suivant est disponible à l'adresse ahée :http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-mapledans le �hier 4mag-08yl.mws :Soit par exemple le mot reçu a la forme
v = (100111000000000) =⇒ v(x) = 1 + x3 + x4 + x5.Alors S(v) = (S1(v), S3(v)) est donné par

S1 = 1 + α3 + α4 + α5 = α2 + α3,

S3 = 1 + α9 + α12 + α15 = 1 + α2.(rappelons que
α4 = 1 + α,α5 = α + α2, α6 = α2 + α3, α7 = 1 + α + α3, α8 = 1 + α2,

α9 = α + α3, α10 = 1 + α + α2, α11 = α + α2 + α3, α12 = 1 + α + α2 + α3,

α13 = 1 + α2 + α3, α14 = 1 + α3, α15 = 1).Le polyn�me s(X) a la forme suivante :
s(X) = 1 + S1X + (S2

1 + S3S
−1
1)X2 =

1 + (α2 + α3)X + (1 + α + α2 + α3 + (1 + α2)(α2 + α3)−1)X2

= 1 + (α2 + α3)X + (1 + α + α3)X2.150

On trouve les raines de e polyn�me : X = α et X = α7. Alors η−1
1 = α et η−1

2 = α7,'est à dire, η1 = α14, η2 = α8. On onnait alors les erreurs : elles sont dans les positionsorrespondantes aux X8 et X14, 'est-à-dire, la 9e et la 15e omposantes de v. Alors lemot transmis était
w = (100111001000001).On déode e mot par la division du polyn�me orrespondant par le polyn�me générateur

g(X). On obtient le polyn�me 1 + X3 + X5 + X6 et le reste nul. Alors le message initialétait
(1001011)←→ u(x) = x6 + x5 + x3 + 1 = (v(x)− e(x))/g

151

Exemple.Si le message reçu est v = (100100110000100), soit enore v(x) = 1+x3+x6+x7+x12.On alule alors les omposantes du syndrome :
S1 = v(α) = 1 = S2 = S4, S3 = v(α3) = α4Cette fois on utilise le système linéaire d'équations des inonnues τi provenant des relations(4.5) (ave b = 1, 2, t′ = 2) : τt′Sb + τt′−1Sb+1 + · · ·+ τ1Sb+t′−1 + Sb+t′ = 0 :

S2τ1 + S1τ2 = S3

S3τ1 + S2τ2 = S4qui s'érit également
τ1 + τ2 = α4

α4τ1 + τ2 = 1et dont la matrie est régulière. Il vient
τ1 = 1
τ2 = α
τ0 = 1

=⇒ s(x) = 1 + x + αx2.En testant les di�érentes puissanes de α, on trouve152

η−1
1 = α8

η−1
2 = α6 =⇒ η1 = α7

η2 = α9,ainsi, le polyn�me erreur est
e(x) = x7 + x9,et on peut déoder

w(x) = v(x)− e(x)

= (1 + x3 + x6 + x7 + x12)− (x7 + x9)

= 1 + x3 + x6 + x9 + x12Le message émis était w = (100100100100100).Pour retrouver le message original, il su�t de diviser w(x) par g(x). Il vient
a(x) = w(x)/g(x) = 1 + x3 + x4et en�n

a = (1001100).

153

5 Codes BCH et odes de Reed-Solomon. Codage etdéodageCe sont des odes yliques partiuliers qui permettent de prévoir la distane minimumavant la onstrution.5.1 Classe des odes BCH (Bose, Ray-Chaudhuri et Hoquen-ghem)Lorsque l'on dé�nit un ode ylique par polyn�me générateur g, tous les mots du odesont multiples de e polyn�me, et s'annulent don sur l'ensemble des raines de g. De plus,on peut trouver une extension de Fq ontenant es raines. Soient don α1, · · · , αs deséléments d'une extension de Fq et pi(x) le polyn�me minimal de αi sur Fq, 1 ≤ i ≤ s.Soit n ∈ N tel que αn
i = 1, 1 ≤ i ≤ s, et soit g(x) = ppcm(p1(x), · · · , ps(x)). Dans esonditions, g(x) divise xn − 1 et si C est le ode du polyn�me générateur g, on a

v(x) ∈ C ⇐⇒ v(αi) = 0, i = 1, · · · , s.Dans e qui suit, nous allons étudier l'intérêt de ette méthode de onstrution de odesyliques, par rapport à la onstrution direte par polyn�me générateur.
154

Théorème 5.1 Soit C un ode ylique sur F de longueur n ave n premier ave q, etde polyn�me générateur g(x). Soit L le orps des raines nèmes de l'unité (le orps dedéomposition de xn−1 sur Fq). Soit b un entier, et β une raine primitive nème. Si g(x)possède, parmi les raines dans une extension L de F = Fq, les puissanes de β dont lesexposants sont d′ − 1 entiers onséutifs, soit
βb, βb+1, . . . , βb+d′−2,alors le poids du ode C est supériereur ou égal à d′ : d ≥ d′.

Définition 5.2 Un ode BCH de distane onstruite d′ est un ode ylique dont le géné-rateur est le produit (sans répétition de fateurs) de polyn�mes minimaux de βb, . . . , βb+d′−2.Dans le as b = 1 on dit que 'est un ode BCH au sens strit.

155

Exemple. Soit β un élément primitif de F16 raine du polyn�me x4 + x + 1 sur F2. Alors
m(1)(x) = m(2)(x) = m(4)(x) = m(8)(x) = x4 + x + 1

m(3)(x) = m(6)(x) = m(9)(x) = m(12)(x) = x4 + x3 + x2 + x + 1Ainsi, un ode de polyn�me générateur
g(x) = m(1)(x)m(3)(x) = 1 + x4 + x6 + x7 + x8est un ode BCH dont les paramètres sont b = 1, d′ = 5 = d, q = 2, n = 15 puisque β, β2,

β4, β8 sont les raines de m(1)(x), et β3 est une raine de m(3)(x) = x4 +x3 +x2 +x+1 =
(x5 − 1)/(x− 1) (β3)5 = 1, et

β, β2, β3, β4,sont des raines d'exposants onséutifs de g(x). La dimension du ode est k = 7, et unpolyn�me de ontr�le est
h(x) = (x15 − 1)/g(x) = 1 + x4 + x6 + x7

156

Exemple. On onsidère le polyn�me g(x) = x6 + x3 + 1, un diviseur de
(x9 − 1) = (x2 + x + 1)(x6 + x3 + 1)(x + 1) ∈ F2[x]On voit que les raines de g sont β, β2, β4, β5, β7, et que α := β5 + β3 est un générateurdu groupe ylique F

∗
64, α7 = β, β9 = 1. Il y a don deux raines d'exposants onséutifs,

β et β2. Le poids minimum du ode est ≥ 3, et le mot g est lui-même de poids 3. Don leode C est un 1-orreteur.
> restart ;
> with(linalg) :Warning, the proteted names norm and trae have been redefined andunproteted
> Fator(x^9+1) mod 2;

(x6 + x3 + 1) (x2 + x + 1) (x + 1)

> g:=x^6+x^3+1;alias(beta = RootOf(g)) ;
g := x6 + x3 + 1

β
> for i from 0 to 8 do
> if Eval(g, x=beta^i) mod 2 = 0 then print('i'=i, 'g'(beta^i)=0) fi
> od ; 157

i = 1, g(β) = 0

i = 2, g(β2) = 0

i = 4, g(β4) = 0

i = 5, g(β5) = 0

i = 7, g(β7) = 0

i = 8, g(β8) = 0

> Expand(beta^7) mod 2;
β4 + β

> Fator(x^7-beta, beta) mod 2;
(x + β5 + β4 + β3) (x + β5 + β4 + β2 + 1) (x + β5 + β2 + 1) (x + β4 + β3 + β2 + 1)

(x + β3 + β2 + 1) (x + β5 + β3) (x + β4)
> alpha:=beta^5+beta^3;
> for i from 0 to 63 do
> if Eval(x-1, x=alpha^i) mod 2 = 0 then print('i'=i, alpha^i=1) fi
> od ;

α := β5 + β3

158

i = 0, 1 = 1

i = 63, (β5 + β3)63 = 1

159

Le théorème permet de trouver un ode orrigeant t erreurs pour tout entier t. Il su�tde trouver n tel qu'un diviseur de xn − 1 satisfasse aux onditions du Théorème 5.1, parexemple le produit g(x) des diviseurs de xn − 1, de raines β, β2, . . . , βd′−1.Remarque 5.3 On peut poser d′ = 2t + 1 mais dans e as, n et k ne peuvent pas êtrehoisies arbitrairement. Les entiers n−1 et 0 serons onsidérés omme onséutifs puisque
βn = β0 = 1.

160

Rappelons qu'un ode BCH de distane onstruite d′ est un ode ylique dont le générateurest le produit (sans répétition de fateurs) de polyn�mes minimaux de βb, . . . , βb+d′−2.Dans le as b = 1 on dit que 'est un ode BCH au sens strit.Exemple. Pour obtenir BCH de longueur 9 sur F2 et de distane ≥ 4 on peut partir desraines β, β2, β3 ∈ F64, don d′ − 1 = 3,
g(x) = (x6 + x3 + 1) (x2 + x + 1) = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x2 + x + 1.Malheureusement, on obtient le ode de répétition pure (de poids 9). C'est à dire, k = 1,

n = d = 9 ; on a vu qu'un tel ode n'est pas e�ae. Dans e as on a hoisi d′ = 4, maisen réalité on a obtenu d = 9. Remarquez que, a priori, on n'a, en général que d ≥ d′.

161

Preuve du Theorème 5.1 Soit C un ode ylique sur F de longueur n ave n premierave q, et de polyn�me générateur g(x). Soit L le orps des raines nèmes de l'unité (leorps de déomposition de xn−1 sur Fq). Soit b un entier, et β une raine primitive nème.Le polyn�me g(x) est un polyn�me de degré minimal qui possède, parmi les raines dansune extesion L de F = Fq, les puissanes de β suivantes
βb, βb+1, . . . , βb+d′−2.Soit a = (a0, . . . , an−1) un mot du ode, a ∈ C ⇐⇒ g(x)|a(x) ⇐⇒ a(x) s'annule surles raines de g, ar g ne possède pas de raines multiples, d'où

a0 + a1(β
b) + a2(β

b)2 + · · ·+ an−1(β
b)n−1 = 0

a0 + a1(β
b+1) + a2(β

b+1)2 + · · ·+ an−1(β
b+1)n−1 = 0

. .

a0 + a1(β
b+d′−2) + a2(β

b+d′−2)2 + · · ·+ an−1(β
b+d′−2)n−1 = 0

(5.1)
Soit Vi = t((βb)i, (βb+1)i, . . . , (βb+d′−2)i), alors le système (5.1)⇐⇒ a0V0+· · ·+an−1Vn−1 =
0. On souhaite montrer que toutes les d′ − 1 olonnes Vi1 , Vi2 , . . . , Vid′

−1
sont linéairementindépendentes, voir le lemme 3.8.

162

Mais
((βb)i, (βb+1)i, . . . , (βb+d′−2)i) = ((βi)b, (βi)b+1, . . . , (βi)b+d′−2),don la matrie du système ave les olonnes Vi1 , Vi2 , . . . , Vid′

−1
est

ub
1 ub

2 . . . ub
d′−1

ub+1
1 ub+1

2 . . . ub+1
d′−1

.

ub+d′−2
1 ub+d′−2

2 . . . ub+d′−2
d′−1

ave uj = βij , j = 1, · · · , d′− 1. Don le déterminant (de type de Van der Monde) est nonnul :
∣
∣
∣
∣
∣
∣
∣
∣

βbi1 βbi2 · · · βbid′
−1

β(b+1)i1 β(b+1)i2 · · · β(b+1)id′
−1

· · · · · · · · · · · ·
β(b+d′−2)i1 β(b+d′−2)i2 · · · β(b+d′−2)id′

−1

∣
∣
∣
∣
∣
∣
∣
∣

= βb(i1+i2+···id′
−1)

∏

1≤k<j≤d′−1

(βij−βik) 6= 0,

ar u1 = βi1 , . . . , ud′−1 = βid′
−1 sont distints.En onséquane, le système (5.1) ne peut pas être satisfait ave moins de d′ oe�ientsnon-nuls, et don le poids de a est au moins d′.163

Définition 5.4 (a) Soit b ∈ N et soit β ∈ Fqm une raine nème primitive de l'unité, où
m est l'ordre multipliatif de q modulo n. Soit C le ode BCH sur Fq de longueur n et dedistane onstruite d′, 2 ≤ d′ ≤ n, dé�ni par les raines βb, βb+1, · · · , βb+d′−2.Si m(i)(x) est le polyn�me minimal de βi sur Fq, le polyn�me générateur du ode Cest

g(x) = ppcm(m(b)(x),m(b+1)(x), · · · ,m(b+d′−2)(x))(b) De plus, si n = qm − 1, les odes BCH orrespondants sont appelés primitifs.() Si n = q − 1, le ode est dit de Reed-Solomon.

164

Exemple : Soit, ave les notations de la dé�nition, m(1)(x) = x4 + x + 1 le polyn�meminimal sur F2 de α élément primitif de F16. On onstruit alors une matrie de orretion
H dont la ième olonne est αi exprimé omme ombinaison linéaire de 1, α, α2, α3. Lamatrie H obtenue dé�nit un ode équivalent au ode de Hamming de dimension 11 etde longueur 15 :

H =

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

= (1 αα2α3α4α5α6α7α8α9α10α11α12α13α14)De plus, on a également m(1)(α2) = 0. Le ode ainsi onstruit est don un ode BCH
F2 ave b = 1 et d = 3, et orrige don une seule erreur.

165

Pour déoder un message reçu v ∈ F15
2 , il faut aluler son syndrome Hvt = v(α)exprimé dans la base {1, α, α2, α3}. Il su�t pour ela de diviser v(x) par m(1)(x). Si r(x)est le reste de la division, alors v(α) = r(α).Si par exemple

v = (010110001011101), v(x) = x + x3 + x4 + x8 + x10 + x11 + x12 + x14,alors r(x) = 1 + x et don Hvt = 1 + α. Or, on a d'après la matrie H : α4 = 1 + α,e qui orrespond don à une erreur en inqième position. Le message émis était don
w = (010100001011101),
w(x) = x+x3 +x4 +x8 +x9 +x10 +x11 +x12 +x14 = (x10 +x8−x5 +x2 +x) ·(1+x+x4).Vérifiation :

> rem(x+x^3+x^8+x^(10)+x^(11)+x^(12)+x^(14), 1+x+x^4,x, 'q') mod 2;
0

> q;
x10 + x8 − x5 + x2 + x

166

5.2 Codes de Reed-SolomonSelon la dé�nition 5.4, un ode de Reed-Solomon est un ode BCH sur Fq de longueur
q−1 et de distane onstruite d′, 2 ≤ d′ ≤ n, dé�ni par les raines βb, βb+1, · · · , βb+d′−2 ∈
F
∗
q .On utilise souvent q = 2m, et on va érire α au lieu de β :

x2m−1 − 1 =
∏

u∈F
∗

2m

(x− u) = (x− 1)(x− α) · . . . · (x− α2m−2)don
g(x) = (x− αb)(x− αb+1) · . . . · (x− αb+d′−2), d◦(g) = d′ − 1ave les fateur linéaires dans F2m [x].D'une part, par Théorème 5.1, k = 2m − 1 − d′ + 1 = 2m − d′, d ≥ d′. D'autre part,par la borne de Singleton, Théorème 2.6, d ≤ n − k + 1 = 2m − 1 − (2m − d′) + 1 = d′,don le poids de C est exatement d′.

167

panchish
Sticky Note
Cours N5 du 19/2/2014 PLAN-RAPPELS. Deuxième description (géométrique) des codes de RS (en exercice, p.169)-Algorithme de Berlrkamp-Massey (p.180)-Borne de Plotkin (p.204). Version asymptotoque-Borne de Gilbert-Varshamov (p.219). Version asymptotique-Borne de la géométrie algébrique (sans démonstration. p.226). -Existence des bonnes familles. Familles excellentes (p.229).-Codes géométriques (notions).-Révision pour l'examen:1) Codes de RS (distance, bornes, construction)2) Décodage des codes cycliques. Codes BCH (Berlekamp-Massey, locateurs d'erreurs, polynôme d'erreures)3) Borne de Plotkin4) Borne de Varshamov-Gilbert

Exemple. 1) Soit F∗
8 = 〈α〉, α3 = α + 1, g(x) = (x − α)(x− α2)(x− α3) = α6 + αx +

α6x2 + x3. Alors n = 7, k = 4, d = 4,
G =

α6 α α6 1 0 0 0
0 α6 α α6 1 0 0
0 0 α6 α α6 1 0
0 0 0 α6 α α6 1

.

2) Soit F
∗
256 = 〈α〉, g =

∏43
12(x − α11j), α8 = α7 + α2 + α + 1. Alors n = 255, k =

223, d = 33 (un ode utilsé par le NASA).

168

5.3 Deuxième désription des odes de Reed-SolomonThéorème 5.5 (voir [Pa-Wo℄, p.139) Soit F2m = 〈α〉, et soit p(x) ∈ F2m [x] paourt lesous-espae linéaire Pk ⊂ F2m [x] ave d◦(p) ≤ k − 1 ou p ≡ 0. Alors l'ensemble des motsde la forme
(p(1), p(α), · · · , p(α2m−2))est un ode de Reed-Solomon de longueur n = 2m − 1, de polyn�me

g(x) = (x− α)(x− α2) · · · · · (x− αr)ave r = 2m − 1− k.Remarque importante. Cette desription montre que les mots de ode sont ertainesfontions polyn�miales sur l'ensemble des raines d'un polyn�me.Preuve On remarque que l'appliation
Φ : p 7→ (p(1), p(α), . . . , p(α2m−2)) ∈ F

n
qest injetive puisque Ker(Φ) = 0 par l'interpolation de Lagrange. On pose C1 = Im(Φ) =

Φ(Pk).
169

panchish
Sticky Note
En exercice

Une base onvenable de C1 :
ci = Φ(pi), pi = xi (i = 0, 1, · · · , k − 1) : ci = (1, αi, α2i, · · · , α(2m−2)i),don ci(x) :=

∑2m−2
j=0 αjixj .Ensuite, on alule le syndr�me du polyn�me ci(x) :

ci(α
t) :=

2m−2∑

j=0

(αi+t)j =
2m−2∑

j=0

βj , ave β = αi+t.Puisque 1 ≤ t ≤ r, 0 ≤ i ≤ k − 1, alors 1 ≤ i + t ≤ r + k − 1 = 2m − 2, don
β 6= 1, ci(α

t) =
β2m−2 − 1

β − 1
= 0.Cei dit, C1 ⊂ C, puisque tous les mots de C1 ont le syndr�me nul. Mais

dimF2m C = dimF2m C1 = k ⇒ C = C1.Exerie. Montrer un résultat analogue pour un orps �ni Fq arbitraire.
170

5.4 Problèmes de déodage.Nous avons vu que la lasse des odes BCH permet, sous seule ondition d'augmenter
n et don m, de onstruire des odes de poids ≥ d′ pour tout entier positif d′. Nousallons, dans e qui suit, onstruire un algorithme général de déodage des odes BCH,puis l'appliquer dans un exemple.Considérons un ode BCH de distane onstruite d′ ≥ 2t + 1. Supposons que v,w et
e soient le message reçu, le message émis et le veteur erreur, v = w + e. Il faut dans unpremier temps aluler le syndrome de v

S(v) = Hvt = (Sb, Sb+1, · · · , Sb+d′−2)
tave Sj = v(βj) = e(βj) pour b ≤ j ≤ b + d′ − 2.Si r erreurs se produisent, ave r ≤ t, alors 2r + 1 ≤ d′ et

e(x) =

r∑

i=1

cix
ai ,où les ai sont tous di�érents dans 0, 1, · · · , n− 1. Les ηi = βai sont les loateurs d'erreurs,et les ci, qui sont des éléments de F∗

q , sont les valeurs d'erreurs. Or,
Sj = e(βj) =

r∑

i=1

ciη
j
i (j = b, b + 1, · · · , b + d′ − 2).

171

panchish
Sticky Note
Algorithme de decodage avec un système linéaire (rappel)

Nous voyons don que nous pourrons déoder dès lors que nous aurons obtenu les ouples
(ci, ηi). Dans le as binaire, les ci sont de plus tous égaux à 1.Remarque 5.6 On a Sq

j = Sjq. En e�et,
Sq

j = (
r∑

i=1

ciη
j
i)

q =
r∑

i=1

cq
i η

jq
i =

r∑

i=1

ciη
jq
i = SjqSoit alors l'identité polynomiale

r∏

i=1

(ηi − x) =
r∑

i=0

(−1)iσr−ix
i = σr − σr−1x + · · ·+ (−1)rσ0x

rLes oe�ients σi sont don σ0 = 1 et pour 1 ≤ i ≤ r, les σi sont les polyn�mes élémen-taires symétriques en η1, · · · , ηr . En remplaçant x par ηi, il vient
(−1)rσr + (−1)r−1σr−1ηi + · · · − σ1η

r−1
i + ηr

i = 0pour tout 1 ≤ i ≤ r.En multipliant par ciη
j
i et en sommant pour 1 ≤ i ≤ r, il vient

r∑

i=1

((−1)rσrciη
j
i + (−1)r−1σr−1ciη

j+1
i + · · · − σ1ciη

j+r−1
i + ciη

j+r
i) = 0

172

don
(−1)rσrSj + (−1)r−1σr−1Sj+1 + · · · − σ1Sj+r−1 + Sj+r = 0pour tout b ≤ j ≤ b + r − 1, où j + r ≤ b + 2r − 1 ≤ b + d′ − 2 puisque 2r + 1 ≤ d′. (Onrappelle que

Sj = e(βj) =
r∑

i=1

ciη
j
i (j = b, b + 1, · · · , b + d′ − 2).)

173

Lemme 5.7 Le système d'équations
(−1)rσrSj + (−1)r−1σr−1Sj+1 + · · · − σ1Sj+r−1 + Sj+r = 0,

b ≤ j ≤ b + r − 1, des inonnues (−1)iσi est résoluble ave une seule solution si etseulement si r erreurs se sont produites.Preuve : La matrie du système est déomposable en produit suivant :

Sb Sb+1 · · · Sb+r−1

Sb+1 Sb+2 · · · Sb+r

· · · · · · · · · · · ·
Sb+r−1 Sb+r · · · Sb+2r−2

= V DV t

ave
V =

1 1 · · · 1
η1 η2 · · · ηr

· · · · · · · · · · · ·
ηr−1
1 ηr−1

2 · · · ηr−1
r

,D =

c1η
b
1 0 · · · 0

0 c2η
b
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · crη

b
r

V est une matrie de Van der Monde régulière dès lors que les ηi sont tous distints et
D est diagonale, don régulière si et seulement si les ci et les ηi sont tous non nuls. Cesdeux onditions sont remplies si et seulement si r erreurs se produisent.174

En e�et, la multipliation des matries montre
V DV t =

1 1 · · · 1
η1 η2 · · · ηr

· · · · · · · · · · · ·
ηr−1
1 ηr−1

2 · · · ηr−1
r

c1η
b
1 0 · · · 0

0 c2η
b
2 · · · 0

· · · · · · · · · · · ·
0 0 · · · crη

b
r

1 η1 · · · ηr−1
r

1 η2 · · · ηr

· · · · · · · · · · · ·
1 ηr−1

1 · · · ηr−1
r

=

c1η
b
1 c2η

b
2 · · · crη

b
r

c1η
b+1
1 c2η

b+1
2 · · · crη

b+1
r

· · · · · · · · · · · ·
c1η

b+r−1
1 c2η

b+r−1
2 · · · crη

b+r−1
r

1 η1 · · · ηr−1
r

1 η2 · · · ηr

· · · · · · · · · · · ·
1 ηr−1

1 · · · ηr−1
r

=

Sb Sb+1 · · · Sb+r−1

Sb+1 Sb+2 · · · Sb+r

Sb+r−1 Sb+r · · · Sb+2r−2

175

Définition 5.8 : On appelle polyn�me loateur d'erreur le polyn�me
s(x) =

r∏

i=1

(1− ηix) =
n∑

i=0

(−1)iσix
i

ave les notations utilisées préédemment. Les raines de s(x) sont les η−1
i , 'est à direles β−ai . Il su�t don ensuite d'évaluer le polyn�me s(x) pour les di�érentes puissanesde β pour loaliser les erreurs.

176

Après avoir trouvé les raines ηi, on utilise le lemme suivant :Lemme 5.9 Le système Sj =
∑

ciη
j
i , b ≤ j ≤ b + r − 1 des inonnues ci est résoluble siles oe�ients ηi sont des éléments distints de F∗

qm .Preuve : Le déterminant du système est alors
∣
∣
∣
∣
∣
∣
∣
∣

ηb
1 ηb

2 · · · ηb
r

ηb+1
1 ηb+1

2 · · · ηb+1
r

· · · · · · · · · · · ·
ηb+r−1
1 ηb+r−1

2 · · · ηb+r−1
r

∣
∣
∣
∣
∣
∣
∣
∣

= ηb
1η

b
2 · · · ηb

r

∏

1≤i<j≤r

(ηi − ηj) 6= 0

177

Nous allons résumer et algorithme en notant τi = (−1)iσi.5.4.1. Déodage BCHSoit C un ode BCH de distane onstruite d′ ≥ 2t + 1, w le message émis et v lemessage reçu. Supposons qu'au plus t erreurs se produisent.1ère étape : Déterminer le syndrome
S(v) = (Sb, Sb+1, · · · , Sb+d′−2)

t.(On rappelle que
Sj = e(βj) =

r∑

i=1

ciη
j
i (j = b, b + 1, · · · , b + d′ − 2).)

2ème étape : Déterminer l'entier r maximal tel que le système d'équations
Sj+r + Sj+r−1τ1 + · · ·+ Sjτr = 0, b ≤ j ≤ b + r − 1des inonnues τi soit résoluble ave une seule solution pour ainsi déterminer lenombre d'erreurs r. Cei permet de former le polyn�me loateur d'erreur

s(x) =
r∏

i=1

(1− ηix) =
r∑

i=0

τix
i

178

dont les oe�ients se déduisent des Sj .3ème étape : Cherher les raines de s(x) en testant les di�érentes puissanes de β pourdéterminer les loateurs d'erreurs ηi .4ème étape : Remplaer les ηi par leurs valeurs dans l'expression des Sj pour déterminerles valeurs des erreurs ci (as non binaire seulement). On obtient ainsi le veteurerreur e et on peut déoder w = v − e.
Remarque 5.10 : L'étape di�ile est la 2ème. Pour parvenir à déterminer les oe�ients
τi, une méthode possible est d'utiliser l'algorithme de Berlekamp-Massey (voir [Li-Ni℄,p.235-239, [vLi-vdG℄, p.20) et la setion 5.5.

179

Cours N
◦5(disponible sur : http ://www-fourier.ujf-grenoble.fr/�panhish /SCCI).5.5 Algorithme de Berlekamp-Massey(voir [vLi-vdG℄, p.20, [vLi℄, p.98, et le mémoire de TER de Insa Fröhlih, 2004).Soit C un [n, k, d,]q-ode BCH de zéroes β, β2, . . . , βd′−1, ou F∗

qm ⊃ 〈β〉n, βn = 1, uneraine primitive de degré n dans Fqm . Soient v,w et e le message reçu, le message émis etle veteur erreur, v = w + e, onsidérés omme des polyn�mes : v(x), w(x) et e(x) ∈ Fq[x].On pose
v(x) = v0 + · · ·+ vn−1x

n−1, w(x) = v0 + · · ·+ wn−1x
n−1,

e(x) := v(x)− w(x) = e0 + · · ·+ en−1x
n−1et soit I := {i | ei 6= 0} (omparer ave la notation de la setion 5.4 : e(x) =

∑r
i=1 cix

ai ,don ci = eai
).

180

panchish
Sticky Note
PLAN du 19/2/2014 :-Polynôme locateur d'erreur, polynôme évaluateur d'erreurs-Algorithme de Berlekamp-Massey (p.180, exemples p.187, p.163)-Borne de Plotkin (p.204). Version asymptotoque-Borne de Gilbert-Varshamov (p.219).Version asymptotique-Borne de la géométrie algébrique (sans démonstration. p.226). -Existence des bonnes familles. Familles excellentes (p.229).-Codes géométriques (notions).PLAN du 22/3/2012 -Révision pour l'examen:1) Codes de RS (distance, bornes, construction), p.168-1702) Décodage des codes cycliques. Codes BCH (Berlekamp-Massey, locateurs d'erreurs, polynôme d'erreures) (p.180, exemples p.187, p.163)3) Borne de Plotkin (pour tous les codes)4) Borne de Varshamov-Gilbert (borne d'existence)

panchish
Cross-Out

panchish
Replacement Text
w

Définition 5.11 (a) Le polyn�me loateur d'erreurs est
s(x) =

∏

i∈I

(1− βix),Le degré de s(x) est égale au nombre d'erreures ommises, don il est inférieur où égaleà t, où t =

[
d′ − 1

2

]. (b) Le polyn�me évaluateur d'erreurs est
u(x) =

∑

i∈I

eiβ
i
∏

j∈I\{i}

(1− βjx) .Le degré de u(x) est stritement plus petit que t.On onstate que
ei = − u(β−i)

s′(β−i)
, s′(x) =

∑

i∈I

−βi
∏

j∈I\{i}

(1− βjx)puisque
s′(β−i) = −βi

∏

j∈I\{i}

(1− βj−i), u(β−i) = eiβ
i
∏

j∈I\{i}

(1− βj−i).

181

De plus d◦(s(x)) ≤ t =
[

d′−1
2

]

, d◦(u(x)) < t. Il reste à trouver les polyn�mes s(x), u(x).On utilise l'identité formelle
u(x)

s(x)
=
∑

i∈I

eiβ
i

1− βix
=
∑

i∈I

eix
−1

∞∑

l=1

(βix)l =

∞∑

l=1

xl−1e(βl), (5.2)puisque
u(x) =

∑

i∈I

eiβ
i
∏

j∈I\{i}

(1− βjx) et e(x) = v(x)− w(x) = e0 + · · ·+ en−1x
n−1.Les d′ − 1 premiers oe�ients de la série à droite dans (5.2) sont onnus :

e(βl) = v(βl) (1 ≤ l ≤ d′ − 1).On pose
S(x) =

d′−1∑

l=1

e(βl)xl−1 le polyn�me de syndromeet on herhe u(x), s(x) à partir de l'égalité (5.2) omme une solution de la ongruene :
u(x) ≡ s(x)S(x)(modxd′−1) (5.3)182

Pour résoudre la ongruene (5.3) on utilise la division eulidienne et l'identité de Bezout :on alule trois suites sj(x), rj(x), uj(x) ave la propriété
rjx)xd′−1 + sj(x)S(x) = uj(x)où le degré de uj(x) déroît jusqu'à e que deg(uj+1) < t et deg(uj) ≥ t, à partir de

1 · xd′−1 + 0 · S(x) = xd′−1, 0 · xd′−1 + 1 · S(x) = S(x),où t =

[
d′ − 1

2

], de telle façon que
(s0(x), t0(x), u0(x)) = (1, 0, xd′−1); (s1(x), t1(x), u1(x)) = (0, 1, S(x)).On va montrer que le ouple (u(x), s(x)) = (uj+1(x), sj+1(x)) est un unique ouple véri-�ant (5.3).Le problème, qui reste en appliquant l'algorithme de déodage, est qu'on ne onnaîtpas le nombre exat r d'erreurs ommises. Cependant, on suppose toujours que le nombremaximal d'erreurs est borné par t := [

d′ − 1

2
]. En général, on a don un polyn�me d'er-reur e(x) =

n−1∑

i=0

eix
i qui possède beauoup de oe�ients ei = 0. Rapellons qu'on note par

183

panchish
Sticky Note
r_0 etc.

I = {i | ei 6= 0} l'ensemble d'indies des oe�ients non nuls. Lepolyn�me loateur d'erreurss'érit don s(x) =
∏

i∈I(1−βix) ave deg(s) ≤ t. Pour un ode BCH le système linéaire dela deuxième étape de l'algorithme est de la forme

e(βb) e(βb+1) · · · e(βb+t′−1)

e(βb+1) e(βb+2) · · · e(βb+t′)
· · · · · · · · · · · ·

e(βb+t′−1) e(βb+t′) · · · e(βb+2t′−2)

·

τ =
(

e(βb+t′) e(βb+t′+1)
... e(βb+2t′−1)

) ave τ = ((−1)t′σt′ , (−1)t′−1σt′−1, . . . ,−σ1).On a vu dans la setion 5.4 que e système a une unique solution si et seulement si t′ = roïnide ave le nombre d'erreurs. Pour ne pas onsidérer plusieurs systèmes, on utilse l'al-gorithme suivant de Berlekamp-Massey, qui détermine diretement le polyn�me loateurd'erreurs s(x) du bon degré. On utilise pour ei un ode BCH au sens strit, 'est-à-dire
b = 1.Puisque le ode est engendré par β, . . . , βd′−1, les premiers d′−1 oe�ients de la sériesont onnus (première étape de l'algorithme de déodage) et on érit la somme partielle
S(x) :=

∑d′−1
j=1 e(βj)xj−1. Don u(x) ≡ s(x)S(x) mod xd′−1. L'algorithme de Berlekamp-Massey alule trois suites de polyn�mes, ui(x), si(x) et ri(x), qui véri�ent l'égalité :

ui(x) = si(x)S(x) + ri(x)xd′−1 pour i ≥ 0 : (5.4)On pose u0 = xd′−1, u1 = S(x), s0 = r1 = 0, s1 = r0 = 1 (pour i = 0, 1).On alule ui+1 = ui−1 − uiqi par la division eulidienne184

et puis si+1 = si−1 − siqi et ri+1 = ri−1 − riqi (l'algorithme d'Eulide étendu),jusqu'on obtient deg(ui+1) < t et deg(ui) ≥ t.Résultat : s(x) = si+1(x) est le polyn�me loateur d'erreurs, et u(x) = ui+1(x) est lepolyn�me évaluateur d'erreurs.L'ensemble I ontient omme dans e qui préède tous les i pour lesquels β−i est uneraine de s(x). Puis, les ei se alulent failement ave la formule i-dessus.Théorème 5.12 Soit d′ = 2t + 1. L'algorithme de Berlekamp-Massey donne (à fa-teur onstant près) l'unique ouple s(x), u(x) ave deg(s) ≤ t, deg(u) < t véri�ant laongruene u(x) ≡ s(x)S(x) mod xd′−1.Preuve : Existene : Il est lair que haque ouple ui, si véri�e l'égalité (5.4). Il faut donontroler le degré de ui et si. La division eulidienne montre que ui−1 = uiqi + ui+1 ave
deg(ui+1) < deg(ui). Don la suite (deg(ui)) est stritement déroissante pour i ≥ 1 etil existe un j ∈ N ave deg(uj) ≥ t et deg(uj+1) < t. En plus, on obtient de la premièreéquation deg(qi) = deg(ui−1) − deg(ui) ≥ 1 pour i ≥ 2 . On utilise ette propriétépour estimer le degré des si. On a s2 = −s1q1, don deg(s2) ≥ deg(s1). Pour i ≥ 2 lasuite (deg(si)) est stritement roissante : Pour s3 = s1 − s2q2, le as préédent donne
deg(s3) = deg(s2) + deg(q2) > deg(s2). Si on a ette propriété jusqu'à i, on obtient pour
si+1 = si−1 − siqi, deg(si+1) = deg(si) + deg(qi) > deg(si). Le degré de sj+1 est don

185

donné par une somme télesopique : deg(sj+1) = deg(sj) + deg(qj)
= deg(s1) + deg(q1) + . . . + deg(qj)
= deg(u0)− deg(uj) ≤ t ,ar deg(qi) = deg(ui−1)− deg(ui) pour i ≥ 2, deg(u0) = d′ − 1 = 2t, deg(uj) ≥ t.

Uniité : On suppose, qu'il y a s(x), u(x) et s∗(x), u∗(x) ave
u(x) ≡ s(x)S(x) mod xd′−1 et u∗(x) ≡ s∗(x)S(x) mod xd′−1.En multipliant la ongruene par s∗(x), respetivement par s(x), on obtient

s∗(x)u(x) ≡ s(x)u∗(x) mod xd′−1.Puisque deg(s),deg(s∗) ≤ t et deg(u),deg(u∗) < t, les deux �tés de la ongruene sontde degré inférieur à d′− 1. On a don égalité, d'où u = γu∗, s = γs∗. Comme u(x) et s(x)sont premiers entre eux, γ doit être une onstante non nulle.

186

Exemple de déodageSoit α une raine du polyn�me x2 + x + 2 irrédutible sur F3. α engendre F
∗
9 et lespuissanes de α sont :

α1 = α, α2 = 2α + 1, α3 = 2α + 2, α4 = 2,
α5 = 2α, α6 = α + 2, α7 = α + 1, α8 = 1.On onsidère le polyn�me générateur

g(x) = (x2 + 1)(x2 + x + 2)(x + 1) = (x− α)(x− α2)(x− α3)(x− α4)(x− α6),divisible par le polyn�me minimal de α et possède les raines α,α2, α3, α4 et α6. La matriede ontr�le H , qui est engendrée par leurs puissanes, s'érit alors :
H =

1 α1 α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

1 α3 α6 α1 α4 α7 α2 α5

1 α4 1 α4 1 α4 1 α4

1 α6 α4 α2 1 α6 α4 α2

.

Soit le mot reçu c′ = (0, 2, 1, 0, 0, 1, 1, 2) et on suppose, qu'au plus deux erreurs ont étéommises. Le polyn�me d'erreurs est alors e(x) = ea1
xa1 + ea2

xa2 . En alulant Hc′t, onobtient
(e(α), e(α2), e(α3), e(α4), e(α6)) = (α4, α3, α4, 0, α) .187

Ave es valeurs, on peut déterminer les oe�ients du polyn�me loateur d'erreurs s(x) =
1−σ1(α

a1 , αa2)x+σ2(α
a1 , αa2)x2. Puisqu'on a quatre puissanes onséutives de α ommeraines de g(x), it de résoudre le système suivant :

∣
∣
∣
∣

0 = σ2e(α) + 2σ1e(α
2) + e(α3)

0 = σ2e(α
2) + 2σ1e(α

3) + e(α4)

∣
∣
∣
∣
⇐⇒

∣
∣
∣
∣

σ1 = 1
σ2 = α

∣
∣
∣
∣Don s(x) = 1 +2x+αx2. En évaluant s(x) en les puissanes de α, on voit que s(α2) = 0et s(α5) = 0. Don a1 = 8 − 5 = 3, a2 = 8 − 2 = 6, d'où le polyn�me d'erreurs e(x) =

e3x
3 + e6x

6. En utilisant les valeurs de e(α) et de e(α4), on obtient le système
∣
∣
∣
∣

α4 = e3α
3 + e6α

6

0 = e3α
4 + e6

∣
∣
∣
∣
⇔
∣
∣
∣
∣

e3 = 2
e6 = e3

∣
∣
∣
∣

.Ces valeurs de e3 et e6 sont aussi des solutions pour les trois autres égalités. Le polyn�med'erreurs est don e(x) = 2x3 +2x6 et le mot envoyé était c = c′− e = (0, 2, 1, 1, 0, 1, 2, 2).La division de c(x) = 2x7 + 2x6 + x5 + x3 + x2 + 2x par g(x) donne bien le mot déodé
m(x) = 2x2 + x, qui orrespond à m = (0, 1, 2).La méthode de déodage naïve (la division de c′(x) par g(x)) donnerait dans e as
m(x) = 2 + x2, respetivement c = (1, 0, 0, 2, 0, 1, 1, 2), où seulement trois lettres sontorretes. 188

Par la onstrution du polyn�me générateur g, il s'agit d'un ode BCH au sens stritave d′ = 5 et don t = 2. Si c′ = (0, 2, 1, 0, 0, 1, 1, 2) est le mot reçu, (α4, α3, α4, 0, α) estson syndrome. Le polyn�me S(x) s'érit S(x) = α4 + α3x + α4x2 + 0x3 = 2 + α3x + 2x2.L'algorithme de Berlekamp-Massey alule le tableau suivant :
i 0 1 2

ui x4 2x2 + α3x + 2 2x + α3

qi 2x2 + α7x + α3

ri 1 0 1
si 0 1 x2 + α3x + α7On a deg(u2) = 1 < 2 et deg(u1) = 2 ≥ 2. Don u2(x) = 2x + α3 est le polyn�meévaluateur d'erreurs et s2(x) = x2 + α3x + α7 est le polyn�me loateur d'erreurs. Enessayant les di�érentes puissanes de α, on (re)trouve que s2(α

2) = 0 et s2(α
5) = 0,d'où I = {3, 6}. Car s′2(x) = 2x + α3 = u2(x), les oe�ients du polyn�me d'erreur sont

e3 = e6 = −1 = 2. On a don obtenu le polyn�me d'erreur sans savoir à priori, qu'il yavait deux erreurs à orriger.
189

Exemple : l'algorithme de Berlekamp-Massey, disponible à l'adresse ahée :http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-mapledans le �hier 4mag-09berl-ma.mwsOn herhe u(x), s(x) à partir de l'égalité (5.2) omme une solution de la ongruene (5.3) :
u(x) ≡ s(x)S(x)(modxd′−1)Pour résoudre la ongruene (5.3) on utilise la division eulidienne et l'identité de Bezout :on alule trois suites sn(x), tn(x), un(x) ave la propriété

tn(x)xd′−1 + sn(x)S(x) = un(x)où le degré de un(x) déroît jusqu'à e que deg(un) < t et deg(un−1) ≥ t

> restart ;
> with(linalg) :
> alias(alpha = RootOf(X^2+X+2) mod 3) ;

α

190

panchish
Sticky Note
Exercice à faire: en PARI/GP?

{VERSION 6 0 "IBM INTEL NT" "6.0" }
{USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0
1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0
0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 }
{CSTYLE "_cstyle84" -1 256 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 0 0 0
1 }{CSTYLE "_cstyle94" -1 257 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 0 0
0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2
2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Warning" -1
7 1 {CSTYLE "" -1 -1 "Courier" 1 10 0 0 255 1 2 2 2 2 2 1 1 1 3 1 }1
1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE ""
-1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2
2 0 1 }{PSTYLE "_pstyle100" -1 256 1 {CSTYLE "" -1 -1 "Courier" 1 12
255 0 0 1 2 1 2 2 1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_
pstyle109" -1 257 1 {CSTYLE "" -1 -1 "Courier" 1 12 255 0 0 1 2 1 2 2
1 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }}
{SECT 0 {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "restart ;" }}{PARA 0
"> " 0 "" {MPLTEXT 1 0 14 "with(linalg) :" }}{PARA 7 "" 1 "" {TEXT -1
80 "Warning, the protected names norm and trace have been redefined an
d unprotected\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 38 "alias(al
pha = RootOf(X^2+X+2) mod 3) ;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%&al
phaG" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 84 "#########################
##\n" }}}
{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 128 "g:=(X^2+1)*(X^2+X+2)*(X+1);
 Factor(g,alpha)mod 3; Expand(g-(X-alpha)*(X-alpha^2)*(X-alpha^3)*
(X-alpha^4)*(X-alpha^6))mod 3;\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%
\"gG*(,&*$)%\"XG\"\"#\"\"\"F+F+F+F+,(F'F+F)F+F*F+F+,&F)F+F+F+F+" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#*,,&%\"XG\"\"\"*&\"\"#F&%&alphaGF&F&F&
,&F%F&F&F&F&,(F%F&*&F(F&F)F&F&F&F&F&,(F%F&F)F&F&F&F&,(F%F&F)F&F(F&F&"
}}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 250 "#cv:=[0,2,1,0,0,1,1,2];\n#cv:=[1,2,1,0,0,1,1,2];\n#c
v:=[2,2,1,0,0,1,1,2];\n################################\ncv:=[2,0,1,1,
2,1,0,0];\n#g3:=Expand(g) mod 3;\n#with(PolynomialTools):\n#cv:=Coeffi
cientList(g3,X);\n#cv:=[2,0,1,1,2,1,0,1];\n#cv:=[0,0,2,0,1,1,2,1];\n"
}}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#cvG7*\"\"#\"\"!\"\"\"F(F&F(F'F'"
}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 52 "c:=sum(cv[j]*X^(j-1),j=1.
.8);\nwith(PolynomialTools):" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 25 "cw:
=CoefficientList(c,X);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 283 "########
###\n#c:=2
*X^7+X^6+X^5+X^2+2*X; #c=(0,2,1,0,0,1,1,2)\nquo(c, g,X)mod 3;\nrem(c, \+
g,X)mod 3;\n(c-rem(c, g,X))mod 3;# d\351codage, na\357f c=(1,0,0,2,0,1
,1,2) n'est pas bon\n###
######" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"cG,,*$)%\"XG\"\"&\"\"\"F
&\"\"#F*)F(\"\"%F*F$)F(\"\"$F*F**$)F(F,F*F*F,F*" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>%#cwG7(\"\"#\"\"!\"\"\"F(F&F(" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#\"\"!" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#,,*$)%\"XG\"\"&\"\"\"F(*&\"\"#F()F&\"
\"%F(F(*$)F&\"\"$F(F(*$)F&F*F(F(F*F(" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 86 "### PUI
SSANCES DE beta \nb:=[1,2,3,4,6];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#
>%\"bG7'\"\"\"\"\"#\"\"$\"\"%\"\"'" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 101 "####################################MATRICE DE CONTR
OLE\nh:=(i,j)->alpha^(b[i]*j);\nH:= matrix(5,8, h);" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>%\"hGj+6$%\"iG%\"jG6\"6$%)operatorG%&arrowGF))%&alph
aG*&&%\"bG6#9$\"\"\"9%F4F)F)F)6$\"\"!F7" }}{PARA 11 "" 1 "" {XPPMATH
20 "6#>%\"HGK%'matrixG6#7'7*%&alphaG*$)F*\"\"#\"\"\"*$)F*\"\"$F.*$)F*
\"\"%F.*$)F*\"\"&F.*$)F*\"\"'F.*$)F*\"\"(F.*$)F*\"\")F.7*F+F2F8F>*$)F*
\"#5F.*$)F*\"#7F.*$)F*\"#9F.*$)F*\"#;F.7*F/F8*$)F*\"\"*F.FE*$)F*\"#:F.
$)F\"#=F.*$)F*\"#@F.*$)F*\"#CF.7*F2F>FEFK*$)F*\"#?F.Fen*$)F*\"#GF.*$
)F*\"#KF.7*F8FEFUFen*$)F*\"#IF.*$)F*\"#OF.*$)F*\"#UF.*$)F*\"#[F.Q)ppri
nt426\"" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 253 "###############
################################## \n#CALCUL DE SYNDROME\n#########
###\nSy:=(i,j)->Eval(c, X=
alpha^(b[j]))mod 3;\nSyn:=matrix(1,5,Sy);\n###########################
#################################" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>
%#SyGj+6$%\"iG%\"jG6\"6$%)operatorG%&arrowGF)-%$modG6$-%%EvalG6$%\"cG/
%\"XG)%&alphaG&%\"bG6#9%\"\"$F)F)F)6$\"\"!F>" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#>%$SynGK%'matrixG6#7#7'\"\"!F*F*F*F*Q)pprint436\"" }}}
{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "
" {MPLTEXT 1 0 105 "##
##POLYNOME DE SYNDROME\nS:=sum(Syn[1,j]*X^(j-1),j=1..5);" }}{PARA 11 "
" 1 "" {XPPMATH 20 "6#>%\"SG\"\"!" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 1333 "##\n# \+
ALGORITHME DE BERLEKAMP-MASSEY\n######################################
#####################\nBerlMa:=proc(a::anything,dp::posint)\nlocal S,B
,s0,s1,s2,r0,r1,r2,u0,u1,u2,t,q,i, b;\n# apr\350s on va substituer S:=
alpha^4+alpha^3*X+alpha^4*X^2+0*X^3;dp:=5;\n##########################
################\nif a<>0 then\ndo\n##################################
##############\nt:=floor((dp-1)/2);\nb:=X^(dp-1);\ns0:=0:r0:=1:s1:=1:r
1:=0: \nu0:=b; u1:=a;u2:=rem(u0,u1,X);i:=0;\n#######################
###################\n#if a=0 then \n#ERROR(\n# sprintf(\"%a in C\",
\n# c));\n#fi;\n##\"
\"\nwhile(degree(u1,X)>t-1) do\n#print('i'=i,degree(u1,X)>t-1);\n#d1<>
0) do\ni:=i+1;\nq:=Expand(quo(u0,u1,X)) mod 3;u2:=Expand(rem(u0,u1,
X)) mod 3;\nu0:=u1; u1:= u2;\ns2:=s0-q*s1;\nr2:=r0-q*r1;\ns0:=s1;s1:=
 s2;\nr0:=r1;r1:= r2;\n#printf(\"i=%d,%a*%a+%a*%a=%a\\n\"\n#,i,a,u0 ,b
, v0, d0);\n#print('i'=i,\n#'degree(u1,X)'=degree(u1,X), degree(u1,X)>
t-1,\n#'S'=a,'s'[i]=s0, 'B'= b, 'r'[i]=r0, 'u'[i]=u0):\nod;\n#printf(
\"les valeurs de [u,r, s] sont :\"):\nu2:=sort(Expand(u2) ,[alpha,X]) \+
mod 3:\ns2:=sort(Expand(s2) ,[alpha,X]) mod 3:\nr2:=sort(Expand(r2) ,[
alpha,X]) mod 3:\n#print('u'=u2);print('s'=s2);print('r'=r2); \nreturn
 [u2,s2, r2]; \nod;\nelse print(`mot de code`); return [0,1, 0]; fi;
\nend proc:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 61 "#S:=alpha^4+
alpha^3*X+alpha^4*X^2+0*X^3;\ndp:=5;\nBerlMa(S,dp);" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>%#dpG\"\"&" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%,mot~
de~codeG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7%\"\"!\"\"\"F$" }}}
{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 298 "###########################
###\n#s(x)=s_\{i+1\}(x) et u(x
)=u_\{i+1\}(x) sont le polyn\364me locateur\n# d'erreurs et le polyn
\364me \351valuateur d'erreurs.\n#####################################
#################################\nu:=BerlMa(S,dp)[1];\ns:=BerlMa(S,dp
)[2];\nf:=s;" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#%,mot~de~codeG" }}
{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"uG\"\"!" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#%,mot~de~codeG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"s
G\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fG\"\"\"" }}}{EXCHG
{PARA 0 "> " 0 "" {MPLTEXT 1 0 1094 "#Expand((2*alpha-1)/alpha^3) mod \+
3;\n#Expand((2*X+alpha^3)) mod 3;\n#Expand((X^2+alpha^3*X+alpha^7)) mo
d 3;\n#X^2+2*X+2*X*alpha+alpha+1;\n#Factor(X^2+alpha^3*X+alpha^7,alpha
) mod 3;\n#f:=X^2+alpha^3*X+alpha^7;\nerr:=0:\nr:=0:\nfor i from 1 to \+
8 do\n##\n##################
############################\nif Eval(f, X=alpha^(-i)) mod 3 = 0 then \+
\nu:=BerlMa(S,dp)[1]:\ns:=BerlMa(S,dp)[2]:\nsp:=diff(s,X):\nei:=Expand
(-(Eval(u, X=alpha^(-i)) mod 3)/(Eval(sp, X=alpha^(-i)) mod 3)) mod 3:
\nerr:=err+ei*X^i:r:=r+1:\nprint('i'=i,'u'=u,'s'=s,'sp'=sp,\n#########
##################################\n'u(alpha^(-i))'=Eval(u, X=alpha^(-
i)) mod 3,\n'sp(alpha^(-i))'=Eval(sp, X=alpha^(-i)) mod 3,\n'-u(alpha^
(-i))/sp(alpha^(-i))'=ei\n##################################\n);\n fi;
\nod ; \n##\n#POLYNOME D'
ERREURS\n##\nr:=r: s:=Berl
Ma(S,dp)[2];\nprint(`nombre de racines de s est \351gale \340 r`=r,`de
gree(s,X)`=degree(s,X));\n#degree(0,X);\nif r<>degree(s,X) then print(
`d\351codage impossible`) else\nprint('err'=err) fi;\n" }}{PARA 11 ""
1 "" {XPPMATH 20 "6#%,mot~de~codeG" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#
>%\"sG\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$/%Enombre~de~racines~d
e~s~est~|dygale~|[y~rG\"\"!/%,degree(s,X)GF%" }}{PARA 11 "" 1 ""
{XPPMATH 20 "6#/%$errG\"\"!" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0
131 "###DECODAGE \+
\nwith(PolynomialTools):\ncw:=Expand(CoefficientList(c-err,X)) mod 3;
" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#cwG7(\"\"#\"\"!\"\"\"F(F&F(" }}
}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "cw := [1, 2, 1, 0, 0, 1, 1,
 2];" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#cwG7*\"\"\"\"\"#F&\"\"!F(F&
F&F'" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0
"> " 0 "" {MPLTEXT 1 0 93 "###
MOT D'INFORMATION\na[inf]:=quo(c-err, g,X)mod 3;" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>&%\"aG6#%$infG\"\"\"" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 34 "a[inf]:=CoefficientList(a[inf],X);" }}{PARA 11 "" 1 "
" {XPPMATH 20 "6#>&%\"aG6#%$infG7#\"\"\"" }}}{EXCHG {PARA 0 "> " 0 ""
{MPLTEXT 1 0 0 "" }}}}{MARK "20 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1
1 1 }{PAGENUMBERS 0 1 2 33 1 1 }

panchish
File Attachment
4mag-09berl-ma.mws

> BerlMa:=pro(a::anything,dp::posint)
> loal S,B,s0,s1,s2,r0,r1,r2,u0,u1,u2,t,q,i;
> # après on va substituer S:=alpha^4+alpha^3*X+alpha^4*X^2+0*X^3;dp:=5;
> t:=floor((dp-1)/2);
> b:=X^(dp-1);
> s0:=0:r0:=1:s1:=1:r1:=0:
> u0:=b; u1:=a;u2:=rem(u0,u1,X);i:=0;
> while(degree(u1,X)>t-1) do
> print('i'=i,degree(u1,X)>t-1);
> #d1<>0) do
> i:=i+1;
> q:=quo(u0,u1,X);u2:=rem(u0,u1,X);
> u0:=u1; u1:= u2;
> s2:=s0-q*s1;
> r2:=r0-q*r1;
> s0:=s1;s1:= s2;
> r0:=r1;r1:= r2;
> #printf("i=%d,%a*%a+%a*%a=%a\n"
> #,i,a,u0 ,b, v0, d0);
> print('i'=i,
> 'degree(u1,X)'=degree(u1,X), degree(u1,X)>t-1,
> 'S'=a,'s'[i℄=s0, 'B'= b, 'r'[i℄=r0, 'u'[i℄=u0);
> od;
> printf("les valeurs de [u,r, s℄ sont :");
> u2:=sort(Expand(u2) ,[alpha,X℄) mod 3;
> s2:=sort(Expand(s2) ,[alpha,X℄) mod 3;
> r2:=sort(Expand(r2) ,[alpha,X℄) mod 3;
> print('u'=u2);print('s'=s2);print('r'=r2);
> return [u2,s2, r2℄;
> end pro: 191

Warning, `b` is impliitly delared loal to proedure `BerlMa`
> S:=alpha^4+alpha^3*X+alpha^4*X^2+0*X^3;dp:=5;BerlMa(S,dp);

S := α4 + α3 X + α4 X2

dp := 5

i = 0, 1 < 2

i = 1, degree(u1 , X) = 1, 1 < 1, S = α4 + α3 X + α4 X2, s1 = 1, B = X4, r1 = 0,

u1 = α4 + α3 X + α4 X2les valeurs de [u,r, s℄ sont :
u = 2 α + 2 + 2 X

s = X2 + 2 X + 2 X α + α + 1

r = 1

[2 α + 2 + 2 X, X2 + 2 X + 2 X α + α + 1, 1]

> Expand((2*alpha-1)/alpha^3) mod 3;
1

> Expand((2*X+alpha^3)) mod 3;
2 α + 2 + 2 X

> Expand((X^2+alpha^3*X+alpha^7)) mod 3;192

X2 + 2 X + 2 X α + α + 1

> X^2+2*X+2*X*alpha+alpha+1;
X2 + 2 X + 2 X α + α + 1

> Fator(X^2+alpha^3*X+alpha^7,alpha) mod 3;
(X + α + 2) (X + α)

> f:=X^2+alpha^3*X+alpha^7;
> for i from 1 to 8 do
> if Eval(f, X=alpha^(-i)) mod 3 = 0 then print(i) fi
> od ;

f := X2 + α3 X + α7

3

6

193

Exemple : l'identité de Bezout pour les polynomes pseudo-aléatoires sur F34 ,disponible à l'adresse ahée : http ://www-fourier.ujf-grenoble.fr/�panhish/04mag-maple dans le �hier 4mag-11bezout-poly.mws
> restart ;
> with(linalg) :Warning, the proteted names norm and trae have been redefined andunproteted
> irr34 := op(1, selet(has, Fator(x^81-x) mod 3, 4)) ;

irr34 := x4 + x + 2Le polyn�me irrédutible obtenu par e proédé n'est pas forément le même d'unesession à l'autre.On aliasse α à une raine de e polyn�me dans une extension de F3, de sorte que
GF(34) = F3[α℄.

> alias(alpha = RootOf(irr34) mod 3) ;
αLa proédure rnd3 génère un entier modulo 3 pseudo-aléatoire.

> rnd3 := rand(0..2) :
> seq(rnd3(), i = 1..5) ;

0, 2, 0, 2, 1

194

La proédure rnd34 génère un élément pseudo-aléatoire de GF(34).
> rnd34 := () -> add(rnd3()*alpha^i, i=0..3):

2 + 2 α + 2 α2 + α3, 1 + α, 2 + 2 α + α2, 2 α2, α2

La proédure rndP34(n) génère un polyn�me pseudo-aléatoire unitaire de GF(24) dedegré n.
> rndP34 := pro(n)
> RETURN(sort(X^n + add(rnd34()*X^i, i=0..(n-1))))
> end :
> rndP34(5);

X5 + α2 X4 + 2 α2 X3 + (2 + 2 α + α2) X2 + (1 + α) X + 2 + 2 α + 2 α2 + α3

195

> Bezout34 := pro(P::anything,
> A::anything,
> B::anything)
> loal gd, U, V ;
> gd := gdex(A, B, X, 'U', 'V') ; #A*U+B*V=gd
> if gd <> 1 then ERROR(
> sprintf("les polyn�mes %a et %a
> ne sont pas premiers entre eux.",
> A, B))
> fi ;
> RETURN(P, rem(P*U, B, X), rem(P*V, A, X)) #P, A*U+B*V=P
> end :
> _seed := 1925 :
> A, B, P:= X^(4), rndP34(2), rndP34(2);G := gdex(A, B, X, 'U', 'V')
> ;#G=pgd(A,B), A*U+B*V=P

A, B, P := X4, X2 + (α + 2 α2) X + α + α2 + α3, X2 + (1 + α + 2 α3) X + 1 + α2 + 2 α3

G := 1

> P, U, V:= Bezout34(P, A, B);#A*U+B*V=P

196

P, U, V := X2 + (1 + α + 2 α3) X + 1 + α2 + 2 α3,

− (α3 + 6 α4 − 8 α6 − 2 α7 + 1 + 2 α− α2 + 2 α5 + 8 α8) X

(1 + 19 α4 + 16 α5 + 10 α6 + 4 α7 + α8 + 4 α + 10 α2 + 16 α3) α2

− −4 α4 + 8 α5 − 3 α7 − 20 α8 + 17 α6 + 2 α3 + 3 α2 − 1 + 16 α10

(1 + 19 α4 + 16 α5 + 10 α6 + 4 α7 + α8 + 4 α + 10 α2 + 16 α3) α2
,

(α3 + 6 α4 − 8 α6 − 2 α7 + 1 + 2 α− α2 + 2 α5 + 8 α8) X3

(2 α + 3 α2 + α4 + 2 α3 + 1)2 α2

− (4 α7 − 2 α6 − 3 α5 + 2 α4 + α3 + 1) X2

(α2 + 1 + α) (2 α + 3 α2 + α4 + 2 α3 + 1) α2
+

(2 α3 − 2 α2 − α + 1) αX

(α2 + 1 + α)2

+
1 + α2 + 2 α3

α (α2 + 1 + α)
> Expand(P - U*A - V*B) mod 3;

0

> G, U, V:= Bezout34(G, A, B) :#A*U+B*V=gd
> Expand(G - U*A - V*B) mod 3;

197

0
> un,tn,sn:=Bezout34(G, X^4,
> B):#A=X^(d'-1),B=S(X),un=G(X),tn=U(X),sn=V(X)
> un:=sort(Expand(un) ,[alpha,X℄) mod 3;

un := 1

> tn:=sort(Expand(tn) ,[alpha,X℄) mod 3;
tn := 2 X + 2 X α + X α2 + 2 X α3 + 2 α3 + α2

> sn:=sort(Expand(sn),[alpha,X℄) mod 3;
sn := X3 + X3 α + 2 X3 α2 + X3 α3 + X α + 2 X α2 + X α3 + X2 + 2 X2 α + X2 α2 + 2 α2 + α

+ 1 + α3

> Expand(G - tn*A - sn*B) mod 3;
0

198

> Bezout:=pro(a::anything,b::anything)
> loal A,B,u0,u1,u2,v0,v1,v2,d0,d1,r,t,i;
> #if a<0 then a:=-a;
> #else fi;
> #if b<0 then b:=-b;
> #else fi;
> u0:=1+0*X:v0:=0*X: u1:=0*X:v1:=1+0*X:
> d0:=a; d1:=b;r:=b;i:=0;
> while(d1<>0) do
> i:=i+1;t:=quo(d0,d1,X);r:=rem(d0,d1,X);
> d0:=d1; d1:= r;
> u2:=u0-t*u1;
> v2:=v0-t*v1;
> u0:=u1;u1:= u2;
> v0:=v1;v1:= v2;
> #printf("i=%d,(%a)*(%a)+(%a)*(%a)=%a\n"
> #,i,a,u0 ,b, v0, d0);
> u0:=sort(Expand(u0) ,[alpha,X℄) mod 3;
> v0:=sort(Expand(v0) ,[alpha,X℄) mod 3;
> d0:=sort(Expand(d0) ,[alpha,X℄) mod 3;
> print('i'=i,
> 'A'*'u'[i℄+'B'*'v'[i℄='d'[i℄,
> 'A'=a,'u'[i℄=u0, 'B'= b, 'v'[i℄=v0, 'd'[i℄=d0);
> od;
> printf("les valeurs de [d,u, v℄ sont :");
> print('d'=d0);print('u'=u0);print('v'=v0);
> return [d0,u0, v0℄;
> end pro: 199

> A, B:= rndP34(2), rndP34(2);Bezout(A,B);
A, B := X2 + (2 + α + α3) X + 1 + α + 2 α3, X2 + (2 α3 + α2 + 2 α) X + 1 + 2 α3

i = 1, A u1 + B v1 = d1, A = X2 + (2 + α + α3) X + 1 + α + 2 α3, u1 = 0,

B = 2 α3 + X2 + (2 α3 + α2 + 2 α) X + 1, v1 = 1,

d1 = 2 α3 + X2 + 2 X α3 + X α2 + 2 α X + 1

i = 2, A u2 + B v2 = d2, A = X2 + (2 + α + α3) X + 1 + α + 2 α3, u2 = 1,

B = 2 α3 + X2 + (2 α3 + α2 + 2 α) X + 1, v2 = 2,

d2 = α + 2 X α3 + 2 X α2 + 2 α X + 2 X

i = 3, A u3 + B v3 = d3, A = X2 + (2 + α + α3) X + 1 + α + 2 α3, u3 = 2 α3 + α2 + 1 + X α3,

B = 2 α3 + X2 + (2 α3 + α2 + 2 α) X + 1, v3 = α3 + 2 α2 + 2 X α3, d3 = 2 αles valeurs de [d,u, v℄ sont :
d = 2 α

u = 2 α3 + α2 + 1 + X α3

v = α3 + 2 α2 + 2 X α3

[2 α, 2 α3 + α2 + 1 + X α3, α3 + 2 α2 + 2 X α3]

200

Exemple. Soit β un élément primitif de F16 raine du polyn�me x4 + x + 1 sur F2. Alors
m(1)(x) = m(2)(x) = m(4)(x) = m(8)(x) = x4 + x + 1

m(3)(x) = m(6)(x) = m(9)(x) = m(12)(x) = x4 + x3 + x2 + x + 1Ainsi, un ode de polyn�me générateur
g(x) = m(1)(x)m(3)(x) = 1 + x4 + x6 + x7 + x8est un ode BCH dont les paramètres sont b = 1, d′ = 5 = d, q = 2, n = 15. Sa dimensionest k = 7 et un polyn�me de ontr�le est

h(x) = (x15 − 1)/g(x) = 1 + x4 + x6 + x7On onstruit une matrie génératrie G dont la ième ligne est le veteur xi−1g(x), 1 ≤
1 ≤ k. On obtient

G =

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

201

Si le message reçu est v = (100100110000100), soit enore v(x) = 1 + x3 + x6 + x7 + x12.On alule alors les omposantes du syndrome :
S1 = S2 = S4 = v(β) = 1, S3 = v(β3) = β4Il apparaît alors que le plus grand système linéaire d'équations des inonnues τi est de laforme
S2τ1 + S1τ2 = S3

S3τ1 + S2τ2 = S4
⇐⇒ S1τ2 + S2τ1 = S3

S2τ2 + S3τ1 = S4qui s'érit également
τ1 + τ2 = β4

β4τ1 + τ2 = 1et dont la matrie est régulière. Il vient
τ1 = 1

τ2 = β

τ0 = 1 par dé�nition, et on a don s(x) = 1 + x + βx2.En testant les di�érentes puissanes de β, on trouve
η−1
1 = β8, η−1

2 = β6,202

et on a don
η1 = β7

η2 = β9ainsi, le polyn�me erreur est
e(x) = x7 + x9et on peut déoder

w(x) = v(x)− e(x)

= (1 + x3 + x6 + x7 + x12)− (x7 + x9)

= 1 + x3 + x6 + x9 + x12Le message émis était w = (100100100100100).Pour retrouver le message original, il su�t de diviser w(x) par g(x). Il vient
a(x) = w(x)/g(x) = 1 + x3 + x4 ⇒ a = (1001100).

203

6 Bornes de Plotkin et de Gilbert-Varshamov6.1 Rendement, taux de orretion et domaine de odesSoit C ⊂ Fn un ode de ardinal Card (C) = M sur l'alphabet F de Card (F) = qde distane d = d(C) et la apaité de orretion t =
[

d−1
2

]. Nous avons vu la dé�nition1.4 du rendement et du taux de orretion : soit C un [n, k, d]q-ode, alors la vitessede transmission (le "rendement" ou "information rate" en anglais) de C est le rapport
R = k/n, δ = d/n est la distane relative (ou le "taux de orretion") de C.Un bon ode est un ode orrigeant de nombreuses erreurs ompte tenu de sa longueurtout en ayant une vitesse de transmission la plus élevée possible, e qui orrespond à desparamètres R et δ assez grands dans [0, 1℄. Rapellons (voir De�nition 1.9) qu'une famille
{Ci} des [ni, ki, di]q-odes est dite bonne s'il existe et positives les limites

lim
i→∞

ki

ni
= R > 0, lim

i→∞

di

ni
= δ > 0,On a vu que ave toute bonne famille on peut faire tendre vers 1 la probabilité detransmission orrete. En réalité, on utilise R ≈ 0, 1 ∼ 0, 95, n ≈ 300 ∼ 1000, et δ > 2p.Toutefois, es paramètres δ et R sont liés par des relations dites asymptotiques.Nous avons déjà établi quelques relations dans Setion 2 :

204

1) Borne de Singleton (voir Théorème 2.6). Soit C = ImE un [n, k, d]q-ode,
E : F k → Fn. Alors

k ≤ n− d + 1⇐⇒ R ≤ 1− δ + 1/n

1′) Borne de Singleton asymptotique (voir Théorème 2.8). Soit {Ci} une familledes [ni, ki, di]q-odes, on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors

R ≤ 1− δ

205

2) Borne de Hamming (voir Théorème 2.3). Soit C ⊂ Fn un ode sur l'alphabet Fde Card (F) = q de distane d = d(C) et la apaité de orretion t =
[

d−1
2

]. Alors
Card (C)

t∑

i=0

(q − 1)i

(
n

i

)

≤ qn, don Vq(n, t) ≤ qn/Card (C).

2′) Borne de Hamming asymptotique voir Théorème 2.11. Soit {Ci} une familledes [ni, ki, di]q-odes, on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors R ≤ 1−Hq(δ/2) où Hq(δ) est la fontion entropie q-aire dé�nie sur [0, (q − 1)/q]par

Hq(0) = 0,Hq(δ) = δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ) pour 0 ≤ δ ≤ (q − 1)/qRapellons la signi�ation géométrique de l'entropie q-aire : Hq(δ) est la proportion logarith-mique du volume Vq(n, d) de la boule de Hamming de rayon relatif δ :
Hq(δ) = lim

n→∞

logq(Vq(n, d))

n
, si d

n
→ δ.206

Maintenant on va obtenir des meilleurs bornes (supérieures et inférieures), pour dérirele domaine de odes, où se trouvent les bons odes.Soit Cq l'ensemble des odes sur Fq et Vq l'image de l'appliation
F : Cq −→ [0, 1]× [0, 1], F(C) = (δ,R)On note Uq l'ensemble des points d'aumulation de Vq. Les odes de Vq\Uq ont dits isolés.On pose

Aq(n, d) = max
{

Card (C) = M
∣
∣
∣ il existe un ode C ⊂ F

n
q de distane d = d(C)

}

,

αq(δ) := lim sup
n→∞,

d
n
→δ

n−1 logq Aq(n, d),Un ode est dit optimal s'il atteint la borne αq(δ).Un théorème de Yu.I.Manin (voir [Ts-V℄) montre que αq(δ) est ontinue ave αq(0) = 1,
αq(δ) = 0 pour (q − 1)/q ≤ δ ≤ 1 et αq(δ) est déroissante dans 0 ≤ δ ≤ (q − 1)/q ≤ 1.

207

On montrera en partiuler :� Borne de Plotkin asymptotique
αq(δ) ≤ max

(

1− q

q − 1
δ, 0

)

� Borne de Gilbert-Varshamov asymptotique Pour tout δ dans l'intervale
]0, (q − 1)/q[il existe une famille {Ci} des [ni, ki, di]q-odes, telle que

R = lim sup
i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,et

αq(δ) ≥ R ≥ 1−Hq(δ),'est à direon a
αq(δ) ≥ 1−Hq(δ)où Hq(δ) est la fontion entropie q-aire

208

Représentation graphique des bornes : pour q = 49 :

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
delta

209

6.2 Borne de PlotkinThéorème 6.1 (Borne de Plotkin). Soit C un ode linéaire de longueur n et de dimension
k sur Fq, d'éart d. Alors

d ≤ nqk−1(q − 1)

qk − 1
= n

q − 1

q

(

1 +
1

qk − 1

)

. (∗)Preuve : Soit 1 ≤ i ≤ n tel que C ontienne un mot dont la ième oordonnée est non nulle.Soit D le sous-espae de C onstitué des mots odes dont la ième oordonnée est nulle.On a |C/D| = q, don, omme |C/D| = |C|/|D|, |D| = qk−1. Il vient alors que la sommedes poids des mots odes est ≤ nqk−1(q − 1). Comme C omporte qk − 1 mots de poidsnon nul, on obtient la relation voulue :
d(qk − 1) ≤ nqk−1(q − 1).Remarque. Soit M = CardC = qk, alors il est ommode d'érire l'inégalité (*) sous laforme : si d

n 6=
q−1

q , alors
M ≤

(
d

n

q

q − 1
− 1

)−1

+ 1 .

210

Théorème 6.2 (Borne de Plotkin asymptotique). Soit {Ci} une famille des [ni, ki, di]q-odes, on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors

R ≤ max

(

1− q

q − 1
δ, 0

)

Preuve Soit {Ci} une famille des [ni, ki, di]q-odes, on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors il y a trois possibilités :

δ >
q − 1

q
, δ <

q − 1

q
, ou δ =

q − 1

q
.

211

1) Premier as : δ > q−1
q
. On érit l'inégalité du Théorèmé 6.1 :

di ≤
niq

ki−1(q − 1)

qki − 1
⇒ ni ·

q − 1

q
·
(

1 +
1

qki − 1

)

≥ di.Cei implique
qki ≤

(
di

ni

q

q − 1
− 1

)−1

+ 1→ 1

δ q
q−1 − 1

+ 1 > 0(une onstante indépendent de n), (6.1)puisque δ > q−1
q .Don ki sont uniformement bornés, ela signi�e que

R = lim sup
i→∞

ki

ni
= 0.

212

2) Deuxième as : 0 < δ < q−1
q
. Dans e as on peut supposer : pour ni assez grand

di

ni
= δi → δ <

q − 1

q
⇒ di

ni
− 1

ni
<

q − 1

q
⇒ di − 1 < ni ·

q − 1

q
.On pose

n′
i =

[
q(di − 1)

q − 1

]

≤ q(di − 1)

q − 1

(

⇒ n′
i

q − 1

q
≤ di − 1

)

.Ensuite, di = δini →∞ don
0 < n′

i < nipuisque
n′

i =

[
q(di − 1)

q − 1

]

≥ (di − 1) · q

q − 1
− 1 > 0,

n′
i =

[
q(di − 1)

q − 1

]

≤ (di − 1) · q

q − 1
< niPour tout n = ni on onsidère les n− n′ derniers symboles des mots du ode. Il existe unsous-ensemble C ′ = C(ξ) ⊂ C formé par les mots ave les mêmes n−n′ derniers symboles

ξ ∈ Fn−n′

q , et ave
M ′ := Card (C ′) ≥M · qn′−n.213

Ainsi que C ′ n'est pas un sous-espae vetoriel de C, on peut �xer un c′0 ∈ C ′, alorsl'ensemble de toutes les di�érenes
Cn′ =

{

c′ − c′0

∣
∣
∣ c′ ∈ C ′

}

=
{

c = (c1, · · · , cn′ , 0, · · · , 0)
∣
∣
∣ c′ ∈ C ′

}

⊂ C,est un sous-espae vetoriel de C ayant le même ardinal que C ′. On utilise enore lethéorème 6.1 pour le sous-espae vetoriel C ′ de C don
d′ ≤ n′qk′−1(q − 1)

qk′ − 1
⇒ n′ · q − 1

q
·
(

1 +
1

qk′−1

)

≥ d′.Cei résulte :
M · qn′−n ≤M ′ <

(
d′

n′

q
q−1 − 1

)−1

+ 1 (6.2)
=

n′(q − 1)

d′q − n′(q − 1)
+ 1 ≤ n′(q − 1)

dq − n′(q − 1)
+ 1 ≤ n′(q − 1)

q
+ 1 ≤ d ≤ npuisque d ≤ n, d′ ≥ d et

dq − n′(q − 1) = dq −
[
q(d− 1)

q − 1

]

(q − 1) ≥ dq − q(d− 1) = q(ne pas onfondre la notation d′ ave la distane onstruite des odes BCH !).214

Pour onlure, on prend logq de (6.2) : M = qk = Card (C), et
M · qn′−n < n⇒ k + n′ − n ≤ logq n,

q(d− 1)

q − 1
− 1 < n′ ≤ q(d− 1)

q − 1
.Il reste à diviser par n = ni et passer à la limite n→∞ :

k ≤ n− n′ + logq n ≤ n− q(d− 1)

q − 1
+ logq n⇒ k

n
≤ 1− q

q − 1
· d
n

+
logq n + 1

n

⇒ R ≤ 1− q

q − 1
δ

215

3) Troisième as (en exerie) : δ = q−1
q
.Pour montrer que R = 0 on raisonne par l'absurde. On suppose que

R = lim sup
i→∞

ki

ni
> 0,et on hoisit une sous-suite des odes Ci ave ki/ni ≥ R0 > 0. On pose

n′
i =

[
q(di − 1)

q − 1

]

≤ q(di − 1)

q − 1
.Ensuite, di = δini →∞ don

0 < n′
i < nipuisque

n′
i =

[
q(di − 1)

q − 1

]

≥ (di − 1) · q

q − 1
− 1 > 0,et pour voir que n′

i < ni on remarque que par Théorème 6.1
n′

i =

[
q(di − 1)

q − 1

]

≤ (di − 1) · q

q − 1
≤
(

q − 1

q
· ni ·

(

1 +
1

qki − 1

)

− 1

)

· q

q − 1

ni +
ni

qki − 1
− q

q − 1
< ni, (

ni

qki − 1
→ 0)216

puisque
di ≤

q − 1

q
·
(

1 +
1

qki − 1

)

, et qki > qR0ni ⇒ ni

qki − 1
→ 0.Maintenant on répète le raisonnement du deuxième as. Pour tout n = ni et n′ = n′

i,on onsidère les n − n′ derniers symboles des mots du ode. Il existe un sous-ensemble
C ′ = C(ξ) ⊂ C formé par les mots ave les mêmes n− n′ derniers symboles ξ ∈ F

n−n′

q , etave
M ′ := Card (C ′) ≥M · qn′−nAinsi que C ′ n'est pas un sous-espae vetoriel de C, on peut �xer un c′0 ∈ C ′, alorsl'ensemble de toutes les di�érenes

Cn′ =
{

c′ − c′0

∣
∣
∣ c′ ∈ C ′

}

=
{

c = (c1, · · · , cn′ , 0, · · · , 0)
∣
∣
∣ c′ ∈ C ′

}

⊂ C,est un sous-espae vetoriel de C ayant le même ardinal que C ′. On utilise enore Théo-rème 6.1 pour le sous-espae vetoriel C ′ de C don
d′ ≤ n′qk′−1(q − 1)

qk′ − 1
⇒ n′ · q − 1

q
·
(

1 +
1

qk′−1

)

≥ d′.

217

Cei résulte :
M · qn′−n ≤M ′ <

(
d′

n′

q
q−1 − 1

)−1

+ 1 (6.3)
=

n′(q − 1)

d′q − n′(q − 1)
+ 1 ≤ n′(q − 1)

dq − n′(q − 1)
≤ n′(q − 1)

q
≤ npuisque d′ ≥ d et

dq − n′(q − 1) = dq −
[
q(d− 1)

q − 1

]

(q − 1) ≥ dq − q(d− 1) = qPour onlure dans e as, on prend de nouveaux logq de (6.3) :
k + n′ − n ≤ logq n,

q(d− 1)

q − 1
≤ n′ <

q(d− 1)

q − 1
+ 1.Il reste à diviser par n = ni et passer à la limite n→∞ :

k ≤ n− n′ + logq n ≤ n− q(d− 1)

q − 1
+ logq n⇒ k

n
≤ 1− q

q − 1
· d
n

+
logq n + 1

nMais dans e as δ = q−1
q ,

⇒ R ≤ 1− q

q − 1
δ = 0.

218

6.3 Borne de Gilbert-VarshamovThéorème 6.3 (Borne de Gilbert-Varshamov) Il existe un ode linéaire de dimension k,de longueur n sur Fq et d'éart ≥ d dès lors que
qn−k >

d−2∑

i=0

(
n− 1

i

)

(q − 1)i = Vq(n− 1, d− 2).

Preuve du Théorème 6.3 : Soit C un ode omme dérit i-dessus. Construisons samatrie de orretion H . On hoisit pour la première olonne n'importe quel veteur de
F

n−k
q non nul, puis pour la seonde un veteur non multiple salaire de la première, et ainside suite jusqu'à obtenir j−1 olonnes dont d−1 sont toujours linéairement indépendantes.Par ombinaison linéaire de d− 2 ou moins de es j − 1 olonnes, on peut former au plus

d−2∑

i=0

(
j − 1

i

)

(q − 1)i = Vq(j − 1, d− 2).olonnes.
219

Comme par ombinaison linéaire de d − 2 ou moins de es j − 1 olonnes, on peutformer au plus
d−2∑

i=0

(
j − 1

i

)

(q − 1)i = Vq(j − 1, d− 2)olonnes, on obtient une ondition su�sante pour l'existene d'une jème olonne herhée.Elle est donnée pour un hoix de j − 1 ≤ n− 1 olonnes
qn−k >

d−2∑

i=0

(
n− 1

i

)

(q − 1)i = Vq(n− 1, d− 2)(on obtient le nombre maximal possible des ombinaisons linéaires de d−2 olonnes hoisisparmi n − 1 olonnes). Ainsi, si l'inégalité du théorème est véri�ée, on peut trouver une
jème olonne linéairement indépendante de toutes d− 2 des j − 1 premières olonnes, ete jusqu'à obtenir H de rang n− k, e qui fournit un ode de distane ≥ d.

220

Remarque. La borne de Gilbert-Varshamov reste valable pour tous les odes sous uneforme légérement plus faible (voir [vLi℄, p. 56, [Ste℄, p.35, [MW-S℄, p.34) : Il existe unode C ⊂ F
n
q de distane minimale ≥ d et de ardinale M = Card (C) dès lors que

qn > Vq(n, d− 1)M, Vq(n, d− 1) =
d−1∑

i=0

(
n

i

)

(q − 1)i.Pour un tel ode on suppose qu'il n'est pas possible de trouver un mot c en dehors de Cde distane ≥ d. Alors
qn ≤ Vq(n, d− 1)M, Vq(n, d− 1) =

d−1∑

i=0

(
n

i

)

(q − 1)i.('est-à-dire, le rayon de reouvrement est ≤ d − 1). Dans le as ontraire on trouve untel mot c et on l' ajout au ode C (non-néessarement linéaire), à partir du ode trivialomportant un seul mot (on raisonne par réurrene sur M). Cei dit, il existe un odedu ardinal M pour le nombre
M =

[
qn

Vq(n, d− 1)

]

− 1⇒M <
qn

Vq(n, d− 1)
≤M + 2.

221

Borne de Gilbert-Varshamov asymptotique (voir Théorème 6.3).Rappelons qu'on a dé�ni le rendement maximal
αq(δ) := lim sup

n→∞,
d
n
→δ

n−1 logq Aq(n, d),

pour le taux de orretion δ donné, où on pose
Aq(n, d) = max

{

Card (C) = M
∣
∣
∣ il existe un ode C ⊂ F

n
q de distane d = d(C)

}

.Rappelons la signi�ation géométrique de l'entropie q-aire : Hq(δ) est la proportion loga-rithmique du volume Vq(n, d) de la boule de Hamming de rayon relatif δ :
Hq(δ) = lim

n→∞

logq(Vq(n, d))

n
, si d

n
→ δ.

222

Théorème 6.4 (Borne de Gilbert-Varshamov asymptotique) Pour tout δ dansl'intervale]0, (q − 1)/q[il existe une famille {Ci} des [ni, ki, di]q-odes, telle que
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,et

R ≥ 1−Hq(δ),'est à dire, qu'on a
αq(δ) ≥ 1−Hq(δ)où Hq(δ) est la fontion entropie q-aire dé�nie sur [0, (q − 1)/q] par Hq(0) = 0,

Hq(δ) = δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ) pour 0 ≤ δ ≤ (q − 1)/q.

223

Preuve : Soit ni →∞ une suite arbitraire. On pose di = [δni], et
ki =

[
ni − logq Vq(ni − 1, di − 2)

]
− 1Alors on a l'enadrement :

ni − logq Vq(ni − 1, di − 2) > ki ≥ ni − logq Vq(ni − 1, di − 2)− 2don ki véri�e l'inégalité du Théorème 6.3 :
qni−ki >

di−2∑

i=0

(
ni − 1

i

)

(q − 1)i = Vq(ni − 1, di − 2) ≥ qni−ki−2.don il existe un [ni, ki, di]q-ode Ci. Il reste à passer à la limite ni →∞ :
logq Vq(ni − 1, di − 2)

ni
=

logq Vq(ni − 1, [δ · ni]− 2)

ni
→ Hq(δ),

ki

ni
→ R⇒ R ≥ 1−Hq(δ).Rappelons le orollaire 2.10 : Lorsque n→∞, r

n
→ δ, on a

Hq(δ) = lim
n→∞

logq Vq(n, r)

n
= lim

n→∞

logq(Vq(n, r))

logq(Card (Fn))
.

224

Théorème 6.5 (Borne de Bassalygo-Elias, sans démonstration) Pour tout odede dimension k, de longueur n et d'éart d sur Fq et pour tout entier w tel que 1 ≤ w ≤ ntel que
d− 2w + qw2/(q − 1)n > 0on a

n− k ≥ logq

(
n

w

)

+ w logq(q − 1)− logq d + logq rPreuve : voir [Ste℄, p.32.Théorème 6.6 (Borne de Bassalygo-Elias asymptotique , sans démonstration.Soit {Ci} une famille des [ni, ki, di]q-odes, on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,alors

R ≤ αq(δ) ≤ RBE , où RBE = 1−Hq

q − 1

q
−

(q − 1)

√

1− q δ

q − 1

q

.

225

6.4 Borne de la géométrie algébrique (sans démonstration)Théorème 6.7 (Tsfasman-Zink-Drinfeld-Vladut). Il existe une famille{Ci} des [ni, ki, di]q-odes provenant des ourbes algébriques sur Fq, telle que si l'on pose
R = lim sup

i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
,

1) R ≥ 1− δ − 1√
q − 1

, 'est à dire,
αq(δ) ≥ R ≥ RGA = 1− δ − 1√

q − 1
. (6.4)2) Si q est un arré, la borne (6.4) est atteinte

lim sup
i→∞

di

ni
=

1√
q − 1

.Remarque 6.8 Si q est un arré, alors la borne inférieure (6.4) est meilleure que la bornede Gilbert-Varshamov asymptotique (voir le théorème 6.4, et la représentation graphiquedes bornes i-dessou).Représentation graphique des bornes : 1) Pour q = 49 :226

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
delta

227

2) Pour q = 25 :

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
delta

228

Existene des bonnes familles et odes géométriquesRappel : bonne famille, voir De�nition 1.9Une famille {Ci} des [ni, ki, di]q-odes est dite bonne s'il existe et positive les limites
R = lim

i→∞

ki

ni
, δ = lim

i→∞

di

ni
.On montrera l'existene des bonnes familles, et même des familles exellentes :Définition 6.9 Une bonne famille {Ci} des [ni, ki, di]q-odes est dite exellente s'il existe

R = lim
i→∞

ki

ni
> 0, δ = lim

i→∞

di

ni
∈]0, (q − 1)/q[,et

R ≥ 1−Hq(δ)où Hq(δ) est la fontion entropie q-aire dé�nie sur [0, (q − 1)/q] par Hq(0) = 0,
Hq(δ) = δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ) pour 0 ≤ δ ≤ (q − 1)/q.

229

Représentation graphique : fontion d'entropie, q = 7

Hq(δ) =
δ log(q − 1)

log(q)
− δ log(δ)

log(q)
− (1− δ) log(1− δ)

log(q)

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1
delta

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1
delta

R = Hq(δ) R = 1−Hq(δ)

230

Pour onstruire une telle famille on utiliseThéorème 6.3 (Borne de Gilbert-Varshamov) Il existe un ode linéaire de dimension k,de longueur n sur Fq et d'éart ≥ d dès lors que
qn−k > Vq(n− 1, d− 2) =

d−2∑

i=0

(
n− 1

i

)

(q − 1)i. (∗)

(Rappelons qu'on a montré l'existene d'un tel ode en onstruisant sa matrie deontr�le H ∈ Mn−k,n(Fq) ave la propriété que toutes les d− 1 olonnes sont linéairementindépendantes. La partie gauhe de (*) est le nombre total des olonnes, et la partiedroite de (*) est le nombre maximum des ombinaisons linéaires de d − 2 olonnes parmiles olonnes onstruites par réurrene ; ei dit que (*) permet de hoisir les olonnesd'une matrie H voulue)

231

Passage à la limiteThèorème 6.4 (Borne de Gilbert-Varshamov asymptotique) Pour tout δ dans l'intervale
]0, (q − 1)/q[il existe une famille {Ci} des [ni, ki, di]q-odes, telle que

R = lim sup
i→∞

ki

ni
, δ = lim sup

i→∞

di

ni
, et R = 1−Hq(δ) ,Preuve : Soit ni →∞ une suite arbitraire. On pose di = [δni], et

ki =
[
ni − logq Vq(ni − 1, di − 2)

]
− 1Alors on a l'enadrement :

ni − logq Vq(ni − 1, di − 2) > ki ≥ ni − logq Vq(ni − 1, di − 2)− 2don ki véri�e l'inégalité du Théorème 6.3 :
qni−ki >

di−2∑

i=0

(
ni − 1

i

)

(q − 1)i = Vq(ni − 1, di − 2) ≥ qni−ki−2.don il existe un [ni, ki, di]q-ode Ci. 232

Il reste à passer à la limite ni →∞ en utilisant l'enadrement i-dessus :
ni − ki

ni
<

logq Vq(ni − 1, di − 2)

ni
≤ ni − ki − 2

ni
.Rappelons le orollaire 2.10 : lorsque n→∞, r

n → δ, on a
lim

n→∞

logq Vq(n, r)

n
= Hq(δ)⇒

logq Vq(ni − 1, di − 2)

ni
=

logq Vq(ni − 1, [δ · ni]− 2)

ni
→ Hq(δ),

ki

ni
→ R⇒ 1−R ≤ Hq(δ) ≤ 1−R⇒ R = 1−Hq(δ) .

233

7 Codes géométriques de Goppa. Systèmes a�nes etourbes algébriquessur les orps �nis7.1 Systèmes a�nes et systèmes projetifs7.1.1. Systèmes a�nes.Soit V un espae vetoriel sur Fq, dimFq
V = k.Définition 7.1 Un système a�ne

P = {P1, · · · , Pn} ⊂ Vest un sous-ensemble dans V tel que P n'est pas ontenu dans auun hyperplan H ⊂ V .On pose
d = d(P) = n−max

H
{Card (P ∩H) | H hyperplan } > 0On onsidère l'appliation linéaire

EP : V ∗ → F
n
q , EP(l) = (l(P1), . . . , l(Pn))234

panchish
Sticky Note
facultatif en 2014

alors on obtient le ode
C = Im(EP) = EP(V ∗) ⊂ F

n
qassoié à P. On voit queC est un [n, k, d]q-ode (voir la dé�nition 1.4) : si c = (l0(P1), · · · , l0(Pn))un mot de ode C ave l0 ∈ V ∗, l0 6= 0, alors

Card {i ∈ {1, 2, · · · , n} | l0(Pi) 6= 0} = n− Card ({P ∩H0 | H0 hyperplan l0 = 0}don
d = min

l
Card {i ∈ {1, 2, · · · , n} | l(Pi) 6= 0}.Remarque Pratiquement une matrie-génératrie de C est donnée par les oordonnéesdes points P1, · · · , Pn dans une base de V : si l1, · · · , lk ∈ V ∗ les fontions des oordonnées(la base duale d'une base de V), alors

G =

l1(P1) l1(Pn)
.

lk(P1) lk(Pn)

 (ne pas onfondre ave une matrie de ontr�le !)

235

Théorème 7.2 Soit Systq(n, k, d) l'ensemble des systèmes a�nes i-dessus. Le groupe
GLFq

(V) agit sur Systq(n, k, d), et il y a une bijetion
ϕ : Systq(n, k, d)/GLFq

(V)
∼→ Codes([n, k, d]q)Preuve Pour g ∈ GLFq

(V) on pose
g · P = {g · P1, · · · , g · Pn} ⊂ Valors

Pi ∈ H ⇐⇒ g · Pi ∈ g ·H un autre hyperplan .D'autre part,
Ker(EP) = {l ∈ V ∗ | (l(P1), . . . , l(Pn))} = {0} ⇒ EP est injetive
Eg·P(l) = (l(g · P1), . . . , l(g · Pn)) = (g∗l(P1), . . . , g

∗l(Pn))EP(g∗l)mais g∗ est un Fq-isomorphisme don les systèmes P et g · P donnent le même ode
Im(EP). L'appliation réiproque à ϕ :
ϕ−1 : C 7→ ϕ−1(C) = {P1, · · · , Pn} ⊂ V = C∗, Pi(c) = ci, ième oordonnée de c = (c1, · · · , cn) ∈ C

236

7.1.2. Systèmes projetifs.Soit n ≥ 1 un entier. On appelle espae projetif de dimension n sur un orps Fet on note P
n
F ou simplement P

n l'ensemble des lasses d'équivalene de (n + 1)-uplets
(x0, · · · , xn), xi ∈ F pour 0 ≤ i ≤ n ; sous la relation (x0, · · · , xn) ∼ (λ0x0, · · · , λnxn)pour tout λ ∈ F ∗. Une lasse d'équivalene x est un point de P

n.Définition 7.3 Un système projetif
P = {P1, · · · , Pn} ⊂ P

k−1
Fqest un sous-ensemble dans P

k−1
Fq

= P(V) tel que P n'est pas ontenu dans auun hyperplanprojetif H ⊂ P
k−1
Fq

.Soit
P◦ = {P ◦

1 , · · · , P ◦
n} ⊂ Vun système a�ne dans V representant P. Tout autre système

P◦
λ = {λ1P

◦
1 , · · · , λnP ◦

n} ⊂ Vdé�ni un ode Cλ = Im(EP◦

λ
) = ϕ(P◦

λ) équivalent à C = Im(EP◦) = ϕ(P◦) :
C = ϕ(P◦) = EP◦(V ∗) = {(l(P ◦

1), . . . , l(P ◦
n)) | l ∈ V ∗}

Cλ = ϕ(P◦
λ) = EP◦(V ∗) = {(λ1l(P

◦
1), . . . , λnl(Pn)◦) | l ∈ V ∗ , λi ∈ F

∗
q}.237

C'est-à-dire, Cλ = σ(C) pour la bijetion linéaire diagonale donnée par la matrie σ =
diag{λ1, · · · , λn}.Théorème 7.4 Soit Systq(n, k, d) l'ensemble des systèmes projetifs i-dessus. Le groupe
PGLFq

(V) agit sur Systq(n, k, d), et il y a une bijetion
ϕ : Systq(n, k, d)/PGLFq

(V)
∼→ {Codes([n, k, d]q)}/(mod ∼)où ∼ désigne l'équivalene linéaire diagonale des [n, k, d]q odes.Preuve : en exerie.

238

7.2 Codes géométriquesOn dé�ni les odes géométriques à partir des sous-ensembles de
X = P = {P1, · · · , Pn} ⊂ P

k−1
Fq

, et {P1, · · · , Pn} ⊂ F
k
q .Une matrie génératrie du ode C = ϕ(P) est donnée par des oordonnées des points

Pi :
P = (aij), Pj =

a1j

a2j

· · ·
akj

, j = 1, · · · , n.

On pose
d = d(C) = d(X) = n−max

H
{Card (X ∩H) | H hyperplan } > 0Remarque 7.5 Le nombre Card (X∩H) est majoré par le "degré" de X. Pour une ourbeplanaire X = X(Fq) ⊂ P

2
Fq

donnée omme l'ensemble des zéros d'un polyn�me homogènede degré m, H est une droite qui oupe X en maximum m points.
239

Exemple. Codes de Reed-Muller d'ordre 1. Soit Lm = Fq[T1, · · · , Tm]d◦≤1 le Fq-espae vetoriel de tous les polyn�mes de degré ≤ 1 de m variables sur Fq (ave le polyn�menul), don dimFq
Lm = m + 1. On onsidère un sous ensemble

P = {P1, · · · , Pn} ⊂ F
m
qtel que

∀l ∈ Lm(∀j = 1, · · · , n, l(Pj) = 0⇒ l ≡ 0).Définition 7.6
RMq(1, n,m) = ImEv, Ev : Lm → F

n
q , f 7→ ((f(P1), · · · , f(Pn))est dit le ode de Reed-Muller d'ordre 1.On véri�e que RMq(1, n,m) est un [n,m + 1, n − qm−1]-ode : tout polyn�me de degré

≤1 de m variables s'annule en ≤ qm−1 points. Pour q = 2, n = 32, m = 5 on obtient leode de l'Introdution.
240

Exerie. 1) Donner une version projetive du ode : on onsidère le Fq-espae vetoriel
L′

m de tous les polyn�mes homogènes de degré 1 de m + 1 variables sur Fq (ave lepolyn�me nul), don dimFq
L′

m = m + 1. On obtient un
[

n,m + 1, n− qm − 1

q − 1

]

q-ode pour tout
n ≥ qm − 1

q − 1
,(voir [Ste℄, p. 46).2) Montrer que pour

n =
qm+1 − 1

q − 1on obtient un ode se trouvant sur la borne de Plotkin (voir Théorème 6.1) de paramètres
[
qm+1 − 1

q − 1
,m + 1, qm

]

q

.

241

7.3 Codes de Goppa rationnelsCe sont des odes géométriques qui produisent une bonne famille des odes (dans lesens de la dé�nition 1.9.)Soit g(x) un polyn�me unitaire irrédutible sur Fqm , L = {γ0, γ1, · · · , γn−1} ⊂ Fqmave g(γi) 6= 0 pour tout i = 0, 1, 2, · · · , n− 1.Définition 7.7 Le ode de Goppa rationnel Γ(L, g) est
Γ(L, g) =

{

w = (w0, w1, · · · , wn−1) ⊂ F
n
q

∣
∣
∣

n−1∑

i=0

wi

x− γi
≡ 0 mod g(x)

} (7.1)('est-à-dire, la fration à droite est de la forme d'une fration irrédutible a(x)
b(x) ave

g(x)|a(x).L'idée lé : la distane d(Γ(L, g)) ≥ t + 1, t := deg(g) puisque n−1∑

i=0

wi

x− γi
=

a(x)

b(x)
6= 0ave g(x)|a(x) ⇒ il y a au moins s ≥ t + 1 termes wi non-nuls ar après avoir amener audénominateur ommun on aura le degré du polyn�me a(x) ≤ s− 1.Soient v = (v0, v1, · · · , vn−1) = w + e, un mot reu, w = (w0, w1, · · · , wn−1) ∈ Γ(L, g)un mot de ode, e = (e0, e1, · · · , en−1) ∈ F

n
q le mot d'erreur, alors on onsidère les frations242

suivantes
v(x) =

n−1∑

i=0

vi

x− γi
, w(x) =

n−1∑

i=0

wi

x− γi
, e(x) =

n−1∑

i=0

ei

x− γi
.On érira une matrie de ontr�le G ∈ Matmt,n(Fq) du ode Γ(L, g) : on utilise pour tout

i = 0, · · · , n− 1 un unique polyn�me fi(x) mod g(x) dans Fqm [x]/(g) tel que
fi(x)(x− γi) ≡ 1 mod g(x)⇒ fi(x) := − 1

g(γi)

[
g(x)− g(γi)

x− γi

]

. (7.2)('est à dire, fi(x) est l'inverse de (x− γi) mod g(x)).

243

Soit
g(x) =

t∑

i=0

gix
i, hj =

1

g(γj)
∈ F

∗
qmalors

g(x)− g(y)

x− y
=

∑

k+j≤t−1

gk+j+1y
jxk ⇒

n−1∑

i=0

wihi

∑

k+j≤t−1

gk+j+1 · (γi)
jxk ≡ 0 mod g.En e�et

xi − yi

x− y
=

∑

k+j=i−1

yjxk;ei implique
fi(x) = − 1

g(γi)

[
g(x)− g(γi)

x− γi

]

= −hi

∑

k+j≤t−1

gk+j+1 · (γi)
jxk. (7.3)Pour pouvoir travailler ave les polyn�mes, on fait orrespondre (de façon unique) au mot

v un polyn�me fv(x) modulo g,
v 7→ fv(x) =

n−1∑

i=0

vifi(x)⇒ w 7→ fw(x) =
n−1∑

i=0

wifi(x) ≡ 0 mod g.

244

Si v = (v0, v1, · · · , vn−1) = w + e, un mot reu, w = (w0, w1, · · · , wn−1) ∈ Γ(L, g),
e = (e0, e1, · · · , en−1) ∈ F

n
q , alors

fv(x) = S(x) =

n−1∑

i=0

eifi(x) ≡
n−1∑

i=0

vifi(x) mod gpuisque ∑n−1
i=0 wifi(x) ≡ 0 mod g. On obtient maintenant une matrie de ontr�le de laforme expliite (7.3) :

n−1∑

i=0

wifi(x) ≡ 0 mod g ⇒
n−1∑

i=0

wihi

∑

k+j≤t−1

gk+j+1 · (γi)
jxk ≡ 0 mod gei dit, pour tous les k = 0, · · · , t − 1 le oe�ient de xk à gauhe est nul, don unematrie de ontr�le du ode Γ(L, g) est

h0gt h1gt · · · hn−1gt

h0(gt−1 + gtγ0) h1(gt−1 + gtγ1) · · · hn−1(gt−1 + gtγn−1)
· · · · · · · · · · · ·

h0(g1 + g2γ0 + · · · + gtγ
t−1
0) h1(g1 + g2γ1 + · · · + gtγ

t−1
1) · · · hn−1(g1 + g2γn−1 + · · · + gtγ

t−1
n−1)

245

On obtient une matrie simpli�ée en faisant des transformations élémentaires :

h0 h1 · · · hn−1

h0γ0 h1γ1 · · · hn−1γn−1

· · · · · · · · · · · ·
h0γ

t−1
0 h1γ

t−1
1 · · · hn−1γ

t−1
n−1

Puis, on utilse omme syndr�me la fration rationnelle
e(x) =

n−1∑

i=0

ei

x− γi(le veteur d'erreurs), représenté omme le polyn�me de syndr�me mod g

fe(x) ≡ S(x) ≡ fv(x) ≡
n−1∑

i=0

eifi(x) mod g.

246

Théorème 7.8 Le ode Γ(L, g) a :(a) la dimension k(Γ(L, g)) ≥ n−mt,(b) la distane d(Γ(L, g)) ≥ t + 1, t = deg(g)Preuve L'assértion (a) est immédiate de la taille de la matrie G vue omme une
Matmt,n(Fq)-matrie après un hoix d'une base de Fqm sur Fq.L'assértion (b) est impliquée par l'uniité de déomposition d'une fration rationnelleen éléments simples : pour avoir un élément non-nul

n−1∑

i=0

ci

x− γi
=

a(x)

b(x)
(7.4)sous la forme d'une fration irrédutible a(x)

b(x) ave a(x) divisible par un polyn�me irré-dutible g(x) de degré t, il faut avoir au moins s ≥ t + 1 termes non-nuls ar après avoiramener au dénominateur ommun on aura le degré du polyn�me a(x) ≤ s− 1 .

247

7.3.1. Constrution des bonnes famillesRappelonsDéfinition 6.9. Une bonne famille {Ci} des [ni, ki, di]q-odes est dite exellente s'il existe
R = lim

i→∞

ki

ni
, δ = lim

i→∞

di

ni
, tels que R ≥ 1−Hq(δ)

Théorème 7.9 Pour tout δ ∈]0, (q − 1)/q[il existe une famille exellente {Ci} des
[ni, ki, di]q-odes de Goppa rationnelles :

R = lim
i→∞

ki

ni
, δ = lim

i→∞

di

ni
,et

R = 1−Hq(δ)où Hq(δ) est la fontion entropie q-aire dé�nie sur [0, (q − 1)/q] par
Hq(0) = 0,

Hq(δ) = δ logq(q − 1)− δ logq(δ)− (1− δ) logq(1− δ) pour 0 ≤ δ ≤ (q − 1)/q.

248

Preuve du Théorème 7.9. On hoisit ni = qmi , m = mi, d = di = [δni], et on préiserale polyn�me g(x) = gi(x) ∈ Fqm [x] de degré t = ti à partir de onsidération suivante :Soit c = (c0, c1, · · · , cn−1) un mot de ode de poids j < d, alors le numérateur de lafration (7.4) est de degré ≤ j − 1, don le nombre maximal de es diviseurs irrédutiblesde degré t est inférieur ou égal à [j − 1

t

]. Il nous faut don exlure de onsidération unpetit ensemble de polyn�mes irréditibles, dont le nombre est majoré par
d−1∑

j=1

(
n

j

)

(q − 1)j

[
j − 1

t

]

≤ d

t
Vq(n, d)puisque le nombre des numérateurs non-nuls de la fration (7.4) est majoré par le nombrede toutes le ombinaisons linéaires non-triviales (sur Fq) de d éléments parmi n éléments.D'autre part on sait que (voir Corollaire 2.10) que

lim
n→∞

logq Vq(n, [δn])

n
= Hq(δ),et que le nombre total des polyn�mes irrédutibles de degré t sur Fqm [x] est donné par lethéorème A.17 :

Nqm(t) =
1

t

∑

d|t

µ(d)qmt/d ⇒ Nqm(t) =
1

t
qmt(1 + o(1)) lorsque m→∞.

249

On obtient une ondition su�sante pour l'existane d'un polyn�me voulu g de degré t

d

t
Vq(n, d) <

1

t
qmt(1 + o(1))⇐⇒ d · Vq(n, d) < qmt(1 + o(1)) (m→∞), (7.5)que signi�e :

Hq(δ) <
mt

n
+ o(1), lorsque m→∞.Plus préisement, pour satisfaire les inégalités (7.5) et t < d = di, on prend logq de (7.5) :

logq(d·Vq(n, d)) = logq([δn])+logq(Vq(n, [δn])) ≤ n(Hq(δ)+logq(n)) ≤ mt(1+o(1)) (m→∞),Pour hoisir g et t on pose
t =

[n

m
Hq(δ)(1 + o(1))

]

− 1 (7.6)pour satisfaire (7.5), et pour avoir t < d = [δn], il su�t d'avoir
n

m
Hq(δ)(1 + o(1)) ≤ δn− 1que est vraie pour
m ≥ Hq(δ)(1 + o(1))

δ
.

250

Conernant le rendement de ette famille, on utilise le théorème 7.8 : ave n = ni,
m = mi, k = ki, d = di i-dessus, et t = ti hoisis omme dans l'égalité (7.6), on a

ki ≥ ni −miti et di

ni
→ δ > 0.Cei résulte l'inégalité suivante :

Ri =
ki

ni
≥ ni −miti

ni
≥ 1−Hq(δ)(1 + o(1))→ 1−Hq(δ)⇒ R ≥ 1−Hq(δ)don la famille onstruite est exellente.

251

7.4 Déodage des odes de Goppa rationnelsOn utilse omme syndr�me la fration rationnelle
n−1∑

i=0

ei

x− γi(le veteur d'erreurs), représenté omme un polyn�me mod g

S(x) =
n−1∑

i=0

eifi(x) mod g(le polyn�me de syndr�me). Remarquer que si v = (v0, v1, · · · , vn−1) = w+e, un mot reu,
w = (w0, w1, · · · , wn−1) ∈ Γ(L, g), e = (e0, e1, · · · , en−1) ∈ F

n
q , alors

S(x) =
n−1∑

i=0

eifi(x) ≡
n−1∑

i=0

vifi(x) mod gpuisque
n−1∑

i=0

wifi(x) ≡ 0.

252

Ensuite, on utilise une version de l'algorithme de Berlekamp-Massey, voir la setion 5.5.Soit I := {i | ei 6= 0}, et on onsidère le polyn�me loateur d'erreurs
s(x) =

∏

i∈I

(x− γi),et le polyn�me évaluateur d'erreurs
u(x) =

∑

i∈I

ei

∏

j∈I\{i}

(x− γj).On herhe u(x), s(x) à partir de sa dé�nition omme une solution de la ongruene :
u(x) ≡ s(x)S(x)(modg(x)) (7.7)Pour résoudre la ongruene (7.7) on utilise la division eulidienne et l'identité de Bezout :on alule trois suites sn(x), tn(x), un(x) ave la propriété
tn(x)g(x) + sn(x)S(x) = un(x)où le degré de un(x) déroît jusqu'à e que deg(uj+1) < t et deg(uj) ≥ t (t = [(deg g −

1)/2]) à partir de
0 · g(x) + 1 · S(x) = S(x), 1 · g(x) + 0 · S(x) = g(x)253

de telle façon que
(s0(x), t0(x), u0(x)) = (0, 1, S(x)), (s1(x), t1(x), u1(x)) = (1, 0, g(x)).Il est lair que le ouple (u(x), s(x)) = (un(x), sn(x)) est un unique ouple satisfaisant(7.7) ave la propriété que le degré de s(x) est inférieur de degré de g(x).Exerie. Erire un algorithme pour trouver s(x) et u(x).

254

Construtions des odes géométriques à partir des ourbesprojetives7.5 Espae projetif Pn, variétés algébriquesSoit K un orps et n ≥ 1 un entier. On onsidère l'espae projetif de dimension n sur
K et on note P

n
K ou simplement P

n l'ensemble des lasses d'équivalene de (n + 1)-uplets
(x0, · · · , xn) ∈ Kn+1 \ (0, · · · , 0),sous la relation (x0, · · · , xn) ∼ (λx0, · · · , λxn) pour tout λ ∈ K∗. Une lasse d'équivalene

x, notée (x0 : · · · : xn) est dit un point de Pn.Soit K[T] = K[T0, · · · , Tn]. On interprète les éléments de K[T] omme des fontionsrégulières de l'espae a�ne A
n+1, et on interprète les éléments de

K

(
T1

T0
,
T2

T0
, · · · , Tn

T0

)

,omme des fontions rationnelles de P
n.

255

Remarque : Soit (x0, · · · , xn) ∈ Kn+1, et soit F = F0 + F1 + · · ·+ Fm ∈ K[T0, · · · , Tn]un polyn�me ave des omposantes homogènes Fi de degré i, alors
F (λx0, · · · , λxn) = F0(x0, · · · , xn) + λF1(x0, · · · , xn) + · · ·+ λmFm(x0, · · · , xn).Il vient que pour un polyn�me homogène F , la ondition F (x) = 0 ne dépend que de lalasse x = (x0 : · · · : xn) ∈ Pn.Définition 7.10 Une partie X ⊂ P

n est dite une variété algébrique projetive irrédutibles'il existe un idéal premier homogène P de K[T0, · · · , Tn], tel que
X = V (P) = {x ∈ P

n | ∀F ∈ P,F (x) = 0},'est à dire, P est un idéal premier engendré par des polyn�mes homogènes, et X estl'ensemble des zéros d'un système homogène donné par des générateurs de P .

256

Il y a une grande di�érene entre les fontions rationnelles des oordonnés a�nes etdes oordonnés projetives : une fration
f(T0, · · · , Tn) =

R(T0, · · · , Tn)

S(T0, · · · , Tn)ne dé�nie pas une fontion d'un point x = (x0 : · · · : xn) ∈ P
n, si S(x0, · · · , xn) 6= 0, arsa valeur dépend de hoix des oordonnés homogènes de x.Cependant, pour les polyn�mes homogènesR et S de même degré, tels que S(x0, · · · , xn) 6=

0, la valeur
f(x0, · · · , xn) =

R(x0, · · · , xn)

S(x0, · · · , xn)est bien dé�nie.

257

Définition 7.11 Soit X une variété projetive. L'idéal de X est l'ensemble
I(X) = {F ∈ F [T0, · · · , Tn]|F (x) = 0,∀x ∈ X}.Pour dé�nir le orps des fontions K(X) d'une variété projetive irrédutible X ononsidère d'abord l'anneau

OX =
{

f(T0, · · · , Tn) =
R(T0, · · · , Tn)

S(T0, · · · , Tn)
∣
∣
∣R,S ∈ F [T0, · · · , Tn] polyn�mes homogènes de même degré, tels que S 6∈ I(X)

}

.Alors l'idéal
MX =

{

f(T0, · · · , Tn) =
R(T0, · · · , Tn)

S(T0, · · · , Tn)

∣
∣
∣R,S ∈ F [T0, · · · , Tn], R ∈ I(X), S 6∈ I(X)

}

est un seul idéal maximal de l'anneau OX , et l'anneau quotient OX/MX est un orps, ditle orps des frations sur X.
258

Définition 7.12 (a) Soit U une partie d'une variété projetive X. On dit que U est unvoisinage ouvert ontenant un point x ∈ X, s'il existe un polyn�me homogène S(T0, · · · , Tn) ∈
K[T0, · · · , Tn] tel que U ∋ x, et

U = X ∩ {t = (t0 : · · · : tn) ∈ P
n | S(t0, · · · , tn) 6= 0}.(b) Une appliation f : U → K est dite une fontion régulière au point x s'ils existe

R,S ∈ K[T0, · · · , Tn] des polyn�mes homogènes de même degré tels que S(x) 6= 0 et
f = R/S dans un voisinage de x ; f est régulière sur une partie Y de X, si elle estrégulière en tout x de Y .Exemple. On onsidère la variète projetive X ⊂ P2 sur K = C, donné par l'équationhomogène irrédutible u3 = v3 − w3. Alors la fontion rationnelle

u

v − w
=

u(v2 + vw + w2)

(v − w)(v2 + vw + w2)
=

v2 + vw + w2

u2est régulière si v 6= w, même si u = 0, par exemple en (0 : 1 : j) et en (0 : 1 : j2).
259

Soit x un point de X et soient les ouples (U, f) dans lesquels f est régulière sur Uvoisinage ouvert de x. On dé�nit la relation d'équivalene suivante :
(U, f) ∼ (U ′, f ′)⇐⇒ f = f ′ sur U ∩ U ′dont les lasses d'équivalenes forment un anneau.Définition 7.13 L'anneau des lasses d'équivalenes de la relation i-dessus est appelél'anneau loal de x, noté Ox. Cet anneau est loal au sens algébrique d'unique idéal maxi-mal

mx = { lasses d'équivalene de (U, f) ave f(x) = 0}

260

Définition 7.14 Un anneau noethérien loal O d'idéal maximal m et de orps résiduel
k(m) = O/m est dit régulier si le k(m)-espae vetoriel m/m

2 a la même dimension quela dimension de l'anneau O.Définition 7.15 Une variété projetive X est dite non-singulière au point x si Ox est unanneau loal régulier, et X est dite singulière au point x sinon. Une variété X s'appellenon-singulière ou lisse si elle est non singulière en tout point dans toute extension de K.L'ensemble des points non-singuliers de X est un ouvert non vide de X dense dans X.Définition 7.16 : On appelle ourbe projetive lisse toute variété algébrique projetivelisse de dimension 1. La dimension de X est le degré de transendane de K(X) sur K.

261

Exemple : ourbes planesRappelons qu'une ourbe projetive plane C sur un orps K est dé�nit par une équationde type F (X : Y : Z) = 0, où F (X : Y : Z) ∈ K[X,Y,Z] est une forme homogène desvariables projetives X, Y , Z.L'équation de la tangente dans les oordonnées a�nes a la forme
f ′

x(P)(x− α) + f ′
y(P)(y − β) = 0.Par la onstrution,

f(x, y) = F (x, y, 1), où F (X,Y,Z) = 0 l'équation homogène de la ourbe.Cei implique : f ′
x = F ′

X , f ′
y = F ′

Y , et selon le théorème onnu de Euler (sur les fontionshomogènes) on a
XF ′

X + Y F ′
Y + ZF ′

Z = nF où n est le degré de FLorsque P = (α : β : 1) se trouve sur la ourbe alors
αF ′

X(P) + βF ′
Y (P) + F ′

Z(P) = nF,don l'équation de la tangente se transforme vers
xF ′

X(P) + yF ′
Y (P) + F ′

Z(P) = 0⇐⇒ XF ′
X + Y F ′

Y + ZF ′
Z = 0.('est la forme projetive de la droite tangente).262

Définition 7.17(a) Un point singulier sur une ourbe projetive plane C sur K est toute solution dusystème
F = F ′

X = F ′
Y = F ′

Z = 0dans une extension de K.(b) On dit qu'une ourbe projetive plane C sur K est lisse si le système
F = F ′

X = F ′
Y = F ′

Z = 0n'a pas de solutions non�triviales dans toute extension de K.

263

7.6 Codes provenants des ourbes algébriquesTous les exemples onsidérés dans le reste de la setion proviennent d'une ourbealgébrique X sur Fq muni d'un plongement projetif
ϕ : X →֒ P

N
Fq

.On utilise des sous-espaes vetoriels L(D) ⊂ Fq(X) de dimension �nie (voir la dé�nition7.21) assoiés à un diviseur D (voir la setion 7.7). Un diviseur est une ombinaison linéaire�nie formelle sur Z

D =
∑

i

aiPides points Pi sur X. Un exemple typique de l'espae L(D) est donné par les polynomesde degré ≤ t, qui orrespondent aux fontions rationnelles sur la droite projetive X = P1ave un p�le de degré ≤ t en ∞ ; dans e as D = t · (∞).Il existe plusieures bonnes onstrutions des odes (L-onstrution, Ω-onstrution,
P-onstrution, voir [Ste℄, pp.243-248). Dans e qui suit on donnera seulement quelquesexemples.

264

7.6.1. P-onstrutionDans e as P = X, n = Card (X(Fq)), On onsidère un diviseur D sur une ourbeprojetive lisse X, 'est à dire, une ombinaison linéaire
D =

∑

aP P,la somme étant sur tous les points de X, et les aP entiers tous nuls sauf un ensemble �ni.Ensuite, on onsidère l'espae vetoriel L(D) attahé au diviseur D :
L(D) = {f ≡ 0, ou f ∈ K(X)∗|div(f) + D ≥ 0},C'est à dire, que si D = −∑ aP P +

∑
aP ′P ′, ave les aP et les aP ′ tous positifs ou nuls,

L(D) est l'ensemble des éléments non nuls de K(X) ayant des zéros d'ordre au moins aPaux points P et des p�les d'ordre au plus aP ′ aux points P ′.Puis on pose
k = l(D) = dimFq

L(D),où L(D) ⊂ Fq(X) est un sous-espae de dimension �nie dans le orps
Fq(X) =

{
u(T0, · · · , TN)

v(T0, · · · , TN)

}

/mod ∼des fontions rationnelles sur X. 265

On utilise un plongement anonique
ϕD : X →֒ P

l(D)−1
Fqattahé à un diviseur de degré deg(D) > 2g, où g = g(X) est le genre de X, voir [Ste℄,p.93 et la dé�nition 7.29.Remarque : On peut dé�nir le genre omme le maximum g(X) = max

D
(deg D − l(D) + 1) ,pris sur tous les diviseurs D sur X. Cette dé�nition simple à été utilisé par Riemann.Il existe des dé�nitions équivalentes, par exemple, g(X) = l(KX), où KX est le diviseurd'une di�érentielle non nulle. Pour les ourbes omplexes X, g(X) oïnide ave le nombred'anses de X, vue omme une surfae de Riemann ompate.On pose a = deg D, et on suppose D positif : ∀P, aP ≥ 0. Alors

d = n−max
H
{Card (X ∩H) | H hyperplan }puisque deg D ≤ maxH{Card (X ∩ H) | H hyperplan } : selon la onstrution du plon-gement ϕD ([Ste℄, p.92) ave N = l(D) − 1, il existe un hyperplan H ⊂ P

l(D)−1
Fq

telque D = ϕ−1
D (H), don deg D ≤ maxH{Card (X ∩H) | H hyperplan} (il se peut que lesoordonnées des points d'intersetion appartiennent à une extension du orps de base Fq).

266

7.6.2. Borne de la géométrie algébriqueOn utilise le théorème 7.30 de Riemann-Roh (sous une forme faible) :
l(D) ≥ deg(D)− g + 1,où g = g(X) est le genre de X, voir [Ste℄, p.93 et la dé�nition 7.29.Cei impliqie :

{
k = l(D) ≥ deg(D)− g + 1, où a = deg(D)
d ≥ n− a, (d := n−maxH{Card (X ∩H) | H hyperplan }) (7.8)don l'addition direte dans 7.8 donne

k + d ≥ n− g + 1 (7.9)la borne de l'existene de la géométrie algébrique, omparer ave la borne de Singleton :
k + d ≤ n + 1.Ensuite on divise (7.9) par n :

R + δ ≥ 1− g

n
+

1

n
(7.10)

267

Théorème 7.18 (Ihara-Tsfasman-Zink-Drinfeld-Vladut, sans démonstration). Soit
g = g(X) est le genre de X, n = CardX(Fq)). Alors(a)

lim inf
X

g

n
≥ 1√

q − 1
. (7.11)(b) Si q est un arré, la borne (7.11) est atteinte

lim inf
X

g

n
=

1√
q − 1

.Corollaire 7.19 Si q est un arré, alors
lim sup R ≥ 1− 1√

q − 1
− δ.En e�et, il su�t de substituer lim inf

X

g

n
=

1√
q − 1

dans l'inégalité R + δ ≥ 1− g

n
+

1

n
,et passer à la limite.

268

Pour q = 49 :

0

0.2

0.4

0.6

0.8

1

R

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
delta

269

7.7 Généralités sur les diviseursDéfinition 7.20 Un diviseur sur une ourbe projetive lisse X est une ombinaison li-néaire
D =

∑

aP P,la somme étant sur les points de X, et les aP entiers tous nuls sauf un ensemble �niappelé le support de D. Si les aP sont tous positifs ou nuls, on note D ≥ 0. On dé�nit ledegré de D : deg(D) =
∑

aP .Soit x point non singulier de X, et f ∈ Ox. On pose vx(f) = n si f ∈ mn
x et f ∈ mn+1

x .Si h = f/g ∈ K(X), on pose vx(h) = vx(f)− vx(g). Si h ∈ mx, alors x est un zéro de hd'ordre vx(h). Si h−1 ∈ mx, alors x est un p�le de h d'ordre vx(h−1). Ensuite, le diviseur
(f) =

∑
vx(f) · x s'appelle le diviseur de la fontion f . Les diviseurs de la forme (f) sontappelés prinipaux. On dé�nit alors la relation d'équivalene

D ∼ D′ ⇐⇒ il existe f de K(X)∗ telle que D −D′ = (f)La lasse d'équivalene de D sous ette relation est appelée lasse de diviseurs de D. Ondit que D et D′ sont équivalents.
270

Définition 7.21 Le K-espae vetoriel L(D) attahé à un diviseur D est dé�nit par :
L(D) = {f ≡ 0, ou f ∈ K(X)∗|div(f) + D ≥ 0}.C'est à dire, que si D = −∑ aP P +

∑
aP ′P ′, ave les aP et les aP ′ tous positifs ou nuls,

L(D) est l'ensemble des éléments non nuls de K(X) ayant des zéros d'ordre au moins aPaux points P et des p�les d'ordre au plus aP ′ aux points P ′. On note l(D) la dimensionsur K de L(D).Théorème 7.22 On a{

l(D) = 0, si deg D < 0

l(D) ≤ deg D + 1, sinon.Preuve : voir [Ste℄, p.83.Exemple. Un exemple typique de l'espae L(D) est donné par les polynomes de degré
≤ t, qui orrespondent aux fontions rationnelles sur la droite projetive X = P

1 aveun p�le de degré ≤ t en ∞ ; dans e as D = t · (∞). Dans e as l'égalité est attente
l(D) = deg D + 1.

271

7.7.1. Di�érentielles et alul de l(A)Soit R un anneau sur un autre anneau O (ave le morphisme de struture i : O → R).Définition 7.23 Le module de di�érentielles ΩR/O est dé�nit omme un R�module munid'une appliation de R-modules d : R → Ω(R/O) satisfaisante la ondition d(rs) =
rd(s)+sd(r), et qui est universel par rapport à ette ondition. Une onstrution expliite :posons I = Kerδ, δ : R⊗O R→ R morphisme de la multipliation, alors Ω(R/O) = I/I2,et d(r) = r ⊗ 1− 1⊗ r.Proposition 7.24 Soit R/O une extension des orps R = K et k = O. Alors Ω(K/k) estun espae vetoriel sur K et df1, . . . , dfn est une base de Ω(K/k) sur K ⇐⇒K/k(f1, . . . , fn)est une extension séparable algébrique des orps.Preuve : voir [La℄. En partiulier, pour une ourbe X sur k on pose ΩX = Ω(k(X)/k) :alors dimK ΩX = 1 ar le degré de transendene de K/k est égale à 1.Pour un P ∈ X posons ΩP = Ω(OP /k), alors ΩP = OP dt, où t une uniformisanteloale en P , 'est à dire, mO = (t). De plus, dt est en même temps une base de ΩX sur K.Soit ω une forme di�érentielle régulière sur U ouvert non vide de X. Les lasses de larelation d'équivalene

(U,ω) ∼ (U ′, ω′)⇐⇒ ω = ω′ sur U ∩ U ′sont appelées formes di�érentielles rationnelles dont l'ensembleΩ(X) est un K(X)-module.272

Définition 7.25 Soit ω une forme di�érentielle rationnelle sur X ourbe lisse. Au voi-sinage de x point de X, ω s'érit ω = fdt, ave f = fx une fontion rationnelle et t = txun paramètre loal. On dé�nit le diviseur de ω par
(ω) =

∑

vx(fx) · xLa lasse de diviseurs d'une forme di�érentielle rationnelle sur X est appelée lasse desdiviseurs anoniques, notée W . Un représentatant de W est appelé diviseur anoniquenoté K.Remarque 7.26 : On a L(K) ∼= Ω[X] (l'espae des formes di�érentielles régulières sur
X) par l'isomorphisme de K-espaes vetoriels f → fω

273

7.8 Courbes sur les orps �nisDéfinition 7.27 : Soit K′ un sous-orps de K. Un point x = (x0, · · · , xn) de P
n
K est dit

K′-rationnel si
xi 6= 0 =⇒ xj/xi ∈ K′ pour tout 0 ≤ j ≤ nDéfinition 7.28 Soit X une ourbe projetive lisse sur K et σ l'automorphisme de Fro-benius sur X. Un diviseur D est dit K-rationnel si

σ(D) = D7.9 Théorème de Riemann-Roh sur un orps K, genreDéfinition 7.29 Soit X une ourbe projetive lisse dé�nie sur K, et KX la lasse a-nonique de X ('est à dire, la lasse d'une di�érentielle non nulle). On appelle genre de
X

g = g(X) = l(KX) = dimK L(KX)Remarque : On peut dé�nir aussi le genre omme le maximum g(X) = max
D

(deg D − l(D) + 1) ,pris sur tous les diviseurs D sur X. Cette dé�nition simple à été utilisé par Riemann.Il existe des dé�nitions équivalentes, par exemple, g(X) = l(KX), où KX est le diviseurd'une di�érentielle non nulle. Pour les ourbes omplexes X, g(X) oïnide ave le nombred'anses de X, vue omme une surfae de Riemann ompate.274

Théorème 7.30 (de Riemann-Roh). Soit D un diviseur sur une ourbe projetive etlisse X de genre g et soit KX la lasse anonque de X. Alors
l(D)− l(KX −D) = deg D − g + 1Preuve : Voir [Ste℄, p.91.Proposition 7.31 (Formule du genre de Plüker). Soit X une ourbe planaire projetiveet lisse de degré m dans P2. Alors

g = (m− 1)(m− 2)/2Preuve : voir [Ste℄, p.96.Les odes de Goppa se basent sur une ourbe algébrique lisse et un ensemble de pointsrationnels sur ette ourbe. Pour onstruire des odes e�aes, il est utile de hoisir desourbes ave un grand nombre de points rationnels.Théorème 7.32 (Borne de Hasse-Weil). Soit Nqm(X) le nombre de points Fqm-rationnelssur la ourbe projetive lisse X. Alors
|Nqm(X)− qm − 1| ≤ 2gqm/2

275

Il existe bien d'autres bornes onernant le nombre de points rationnels sur des ourbespartiulières, et le leteur est renvoyé à [Ste℄, hap.6 pour une onnaissane plus appro-fondie sur elles-i.

276

7.10 Codes géométriques de Goppa : L-onstrution.Définition 7.33 : Soit X une ourbe projetive lisse dé�nie sur Fq. Soient x1, · · · , xndes points de X Fq-rationnels et soit D0 =
∑

xi. Soit en�n D un diviseur sur X Fq-rationnel tel que les supports de D0 et D soient disjoints. Le ode linéaire C = C(D0,D)
q-aire de longueur n assoié au ouple (D0,D) est l'image de

Ev : L(D)→ Fqn

f 7→ (f(x1), . . . , f(xn))Un tel ode est appelé un ode géométrique de Goppa.Pour onstruire un ode de Goppa (non rationnel) sur Fq, nous devons hoisir une ourbelisse X, et deux diviseurs partiuliers. En e�etuant pour es éléments des hoix judiieux,nous allons pouvoir onstruire des odes très e�aes. A�n de mieux guider notre hoix,nous allons établir quelques relations entre les divers paramètres du ode et ertainesgrandeurs liées aux objets hoisis.

277

Théorème 7.34 Soit X une ourbe projetive lisse de genre g et x1, · · · , xn des pointsde X Fq-rationnels. Alors le ode de Goppa C(D0,D) est de dimension k, de longueur net d'éart d satisfaisant
k = l(D)− l(D −D0) = deg D − g + 1 + l(K −D)− l(D0 −D)

d ≥ n− deg DCorollaire 7.35 : Si deg D < n, alors(i) k ≥ deg D − g + 1 et d ≥ n− deg D(ii) Si de plus 2g − 2 < deg D < n, alors k = deg D − g + 1(iii) Si {f1, · · · , fk} est une base de L(D), alors
G =

f1(x1) f1(x2) · · · f1(xn)
: : : :

fk(x1) fk(x2) · · · fk(xn)

est une matrie génératrie de C(D0,D).Les paramètres kC = deg D−g+1 et dC = n−deg D sont appelés dimension désignéeet distane désignée du ode C(D0,D). D'après le théorème plus haut, on a la distane de
C d ≥ dC , et le orollaire i-dessus nous indique que si n > deg D > 2g− 2, alors k = kC .

278

Remarque 7.36 Soit désormais C = C(D0,D) un ode sur une ourbe lisse de genrezéro sur Fq, tel que deg D < n. Alors les paramètres de C satisfont
k + d ≥ n + 1− gou enore

R + δ ≥ 1 + (1− g)/nOr, d'après la borne de Singleton, on a k + d ≤ n + 1. Don si g = 0, on a
k + d = n + 1et la borne est atteinte.Exemple : Soit X = P

1(Fq) la ourbe lisse sur Fq de genre zéro et les diviseurs D = m ·xet D0 tel que SuppD0 6∋ xAlors L(D) est l'espae des polyn�mes sur Fq de degré au plus m, et le ode de Goppagénéré est de longueur q, de dimension m + 1 et d'éart q −m sur Fq qui est un ode deReed-Solomon.
279

Exemple : odes de Hermite. On onsidère la ourbe projetive et lisse X ⊂ P2
Fq

X : uq+1 + vq+1 + wq+1 = 0de genre g(X) =
q(q − 1)

2
. Elle ontient 3(q + 1) points sur Fq2 ave uvw = 0 :

(1, ζ, 0), (0, 1, ζ), (1, 0, ζ) ∈ X(Fq2) ave ζq+1 = 1, ζ ∈ F
∗
q2 ,de plus, il y a (q − 2)(q + 1)2 point ave uvw 6= 0 : dans e as on peut supposer u = 1,

vq+1 6= −1, et le nombre de solution de l'équation wq+1 = a ∈ F
∗
q égal à q + 1. Don

Card (X(Fq2)) = 3(q + 1) + (q − 2)(q + 1)2 = q3 + 1 = q2 + 1 + 2g(X)q.C'est-à-dire, le nombre des points X(Fq2) de la ourbe X est maximal possible. On pose
n = q3

D0 = {x1, · · · , xn}, xi ∈ X(Fq2)\x∞, (x∞ = (0, 1, 1)), D0 = m · x∞.Soit C = C(D0,D) = L(D0 −D) le ode de Goppa orrespondant, 'est un
[q3,m− g + 1, d]q − ode , ave d ≥ n−m, ave le hoix de m : q2 − q < m < q3.Si q = 2, g(X) = 1, X est une ourbe elliptique, Card (X(F4)) = 9 :280

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%COURBE de FERMAT sur GF(4)
> restart ;
> with(linalg) :Warning, the proteted names norm and trae have been redefined andunproteted
> g:=x^2+x+1 mod 2;

g := x2 + x + 1

> alias(alpha = RootOf(g)) ;
α

> f:=(x,y,z)->x^3+y^3+z^3;
f := (x, y, z)→ x3 + y3 + z3

> h:=(i,j)->x[i-1,j-1℄: X:=Matrix(3,2,h);
X :=

x0, 0 x0, 1

x1, 0 x1, 1

x2, 0 x2, 1

> u:=(i,j)-> alpha^(i-1):U:=Matrix(2,1,u);
281

U :=

[
1
α

]

> with(LinearAlgebra):
> Y:= Multiply(X, U);Warning, the assigned name GramShmidt now has a global binding

Y :=

x0, 0 + x0, 1 α
x1, 0 + x1, 1 α
x2, 0 + x2, 1 α

> v[1℄:=f(0, 1, x[2℄);
v1 := 1 + x2

3

> v[2℄:=f(1, x[1℄, x[2℄);
v2 := 1 + x1

3 + x2
3

> vv[1℄:=subs(x[0℄=Y[1,1℄,x[1℄=Y[2,1℄, x[2℄=Y[3,1℄,v[1℄) ;
vv1 := 1 + (x2, 0 + x2, 1 α)3

> vv[2℄:= subs(x[0℄=Y[1,1℄,x[1℄=Y[2,1℄, x[2℄=Y[3,1℄,v[2℄) ;
vv2 := 1 + (x1, 0 + x1, 1 α)3 + (x2, 0 + x2, 1 α)3282

> :=0;
> if f(0,0,1) mod 2 =0 then :=+1;
> print (, [0, 0, 1℄) fi;
> for i from 0 to 1 do
> for j from 0 to 1 do
> if Eval(vv[1℄,{x[2,0℄=i,x[2,1℄=j}) mod 2 =0 then :=+1;
> print (,[0, 1, i+j*alpha℄) fi ;od ;od;
> for i2 from 0 to 1 do
> for j2 from 0 to 1 do
> for i1 from 0 to 1 do
> for j1 from 0 to 1 do
> if Eval(vv[2℄,{x[2,0℄=i2,x[2,1℄=j2, x[1,0℄=i1,x[1,1℄=j1}) mod 2
> =0 then :=+1;
> print (,[1, i1+j1*alpha, i2+j2*alpha℄)
> fi od; od ;od ;od;

283

c := 0

1, [0, 1, α]

2, [0, 1, 1]

3, [0, 1, 1 + α]

4, [1, α, 0]

5, [1, 1, 0]

6, [1, 1 + α, 0]

7, [1, 0, α]

8, [1, 0, 1]

9, [1, 0, 1 + α]

284

Dans e as q = 2, n = q3 = 8, m = 2, k = 2, d = 6, et on obtient un [8, 2, 6]4-ode Cdonné par l'espae vetoriel
〈1,

u

v + w
〉puisque la fontion

u

v + w
=

u (v2 + vw + w2)

(v + w) (v2 + vw + w2)
=

(v2 + vw + w2)

u2est �nie aux points
{x1, x2, x3, x4, x5, x6, x7, x8)}et appartient à L(2x∞).Exerie. 1) Caluler une matrie génératrie et une mathrie de ontr�le de C.Exerie. 2) Construire un ode analogue pour m = 2.Remarque 7.37 Ainsi, la lasse des odes de Goppa peut être vue omme une généra-lisation des odes BCH. On peut d'ailleurs étendre la méthode de onstrution des odesBCH vue dans Setion 5 pour dé�nir les odes de Goppa (omme dans Théorème 7.9.Cette lasse possède plusieurs avantages sur la lasse des odes BCH, et notamment eluide fournir de bons odes de grande longueur.Nous avons vu déjà (Théoème 7.9), qu'il existe une bonne famille de odes de Goppasur Fq dont le rendement tend vers la borne de Gilbert-Varshamov.285

7.11 Codes géométriques de Goppa : Ω-onstrution.A un ouple (D0,D) et une ourbe lisse X, on peut également assoier un autre odede Goppa. Considérons l'espae de formes di�érentielles
Ω(D0 −D) = {ω ∈ Ω(X)∗|(ω) + D0 −D ≥ 0} ∪ {0}'est à dire l'espae des formes di�érentielles ayant des zéros de multipliités appropriéesdans SuppD et des p�les au plus simples dans SuppD0. Alors l'appliation

Res : Ω(D0 −D)→ Fqn

ω 7→ (Resx1
(ω), · · · ,Resxn

(ω))dé�nit un ode q-aire linéaire C∗ = C∗(D0,D) de longueur n. Or, nous avons vu que l'onpouvait identi�er Ω(D0 −D) et L(K + D0 −D) par le morphisme
ω 7→ ω/ω0 = foù ω0 est une forme di�érentielle rationnelle sur X �xée.

286

ConlusionNous avons vu que la théorie des odes orreteurs d'erreurs se doit de relever plusieursdé�s s'opposant parfois. En e�et, les paramètres prinipaux d'un ode de dimension donnéesont sa vitesse de transmission et sa distane relative. Or, a�n d'augmenter la vitesse detransmission, il onvient de limiter la longueur du ode et don sa distane relative, e quiréduit le nombre d'erreurs que le ode est apable de orriger. Ainsi, selon le besoin et lesmoyens, on pourra privilégier l'un ou l'autre de es deux paramètres. D'autre part, nousavons vu dans la dernière partie de l'étude la lasse des odes de Goppa, qui se onstruisentà partir d'une ourbe projetive lisse et de deux diviseurs. Un moyen d'optimiser es odeset d'en onstruire de performants est d'étudier plus en profondeur es objets (ommepar exemple les ourbes elliptiques, modulaires . . .) ainsi que les bornes onernant lesparamètres des odes onstruits sur es objets.

287

8 Exeries de préparation à l'exemen8.1 Estimation des sommes binomiales.Pour tout z ∈]0, 1], soit
g(z) =

n∑

i=0

(q − 1)i

(
n

i

)

zi−r = z−r(1 + (q − 1)z)n.Montrer que g(z) atteint le minimum en
z0 =

r

(q − 1)(n− r)
=

r/n

(q − 1)
(

1− r

n

) ,et le minimum est
g(z0) = (q − 1)r

(r

n

)−r (

1− r

n

)n−r

.8.2 Enadrement de la probabilité du deodage erroné.Soit p = ps la probabilité des perturbations de symboles au ours de la transmission.On onsidère F = {0, 1} et l'appliation E : F → Fn du odage de répétition pure.Caluler la probabilité P du deodage erroné.288

panchish
Cross-Out

panchish
Replacement Text
r-n

(a) Montrer que
P =

∑

0≤l<n/2

(
n

l

)

(1− p)lpn−l = O(pn/2) lorsque p→ 0

(b) Pour tout p < 1
8 , enadrer P (voir [vLi℄, p.24).(a) Caluler le volume de la boule de Hamming Vq(n, t), t = 1, 2, 3.8.3 Codes de Golay et empilement de sphères.(a) Caluler le volume de la boule de Hamming Vq(n, t), t = 1, 2, 3.(b) Montrer que la borne de Hamming est atteinte pour les odes G23 et G11 don ona un emplilement de sphères parfait.8.4 Désription géométrique des odes de Reed-Solomon(voir [Pa-Wo℄, p.139).Soit F2m = 〈α〉, et soit p(x) ∈ F2m [x] paourt le sous-espae linéaire Pk ⊂ F2m [x] ave

d◦(p) ≤ k − 1 ou p ≡ 0. Alors l'ensemble des mots de la forme
(p(1), p(α), · · · , p(α2m−2))

289

est un ode de Reed-Solomon de longueur n = 2m − 1, de polyn�me
g(x) = (x− α)(x− α2) · · · · · (x− αr)ave r = 2m − 1− k.Solution. On remarque que l'appliation

Φ : p 7→ (p(1), p(α), . . . , p(α2m−2)) ∈ F
n
qest injetive puisque Ker(Φ) = 0 par l'interpolation de Lagrange. On pose C1 = Im(Φ) =

Φ(Pk). Une base onvenable de C1 :
ci = Φ(pi), pi = xi (i = 0, 1, · · · , k − 1) : ci = (1, αi, α2i, · · · , α(2m−2)i),don ci(x) :=

∑2m−2
j=0 αjixj .Ensuite, on alule le syndr�me du polyn�me ci(x) :

ci(α
t) :=

2m−2∑

j=0

(αi+t)j =
2m−2∑

j=0

βj , ave β = αi+t.Puisque 1 ≤ t ≤ r, 0 ≤ i ≤ k − 1, alors 1 ≤ i + t ≤ r + k − 1 = 2m − 2, don
β 6= 1, ci(α

t) =
β2m−2 − 1

β − 1
= 0.290

Cei dit, C1 ⊂ C, puisque tous les mots de C1 ont le syndr�me nul. Mais
dimF2m C = dimF2m C1 = kdon C = C1.Montrer un résultat analogue pour un orps �ni Fq arbitraire.8.5 Codes de Reed-Muller d'ordre 1.Soit Lm = Fq[T1, · · · , Tm]d◦≤1 le Fq-éspae vetoriel de tous les polyn�mes de degré 1ou 0 de m variables sur Fq (ave le polyn�me nul), don dimFq

Lm = m +1. On onsidèreun sous ensemble
P = {P1, · · · , Pn} ⊂ F

m
qtel que

∀l ∈ Lm(∀j = 1, · · · , n, l(Pj) = 0⇒ l ≡ 0).

RMq(1, n,m) = ImEv, Ev : Lm → F
n
q , f 7→ ((f(P1), · · · , f(Pn))est dit le ode de Reed-Muller d'ordre 1.Véri�er que RMq(1, n,m) est un [n,m + 1, n − qm−1]-ode : tout polyn�me de degré1 de m variables s'annule en qm−1 points.

291

1) Donner une version projetive du ode : on onsidère le Fq-éspae vetoriel L′
m detous les polyn�mes homogènes de degré 1 de m + 1 variables sur Fq (ave le polyn�menul), don dimFq

L′
m = m + 1. On obtient un

[

n,m + 1, n− qm − 1

q − 1

]

q-ode pour tout
n ≥ qm − 1

q − 1
.2) Montrer que pour

n =
qm+1 − 1

q − 1on obtient un ode se trouvant sur la borne de Plotkin (voir Théorème 6.1) de paramètres
[
qm+1 − 1

q − 1
,m + 1, qm

]

q

.3) Code orreteur de Reed-Muller d'ordre 1 et de longueur 32. Trouver une matriede ontr�le du ode donné par toutes les ombinaisons linéaires mod 2 des lignes Ai de
292

la matrie
α1

α2

α3

α4

α5

α6

1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

(∗)

F
6
2 ∋ u = (α1, α2, α3, α4, α5, α6)

E7→E(u) := A1α1+A2α2+A3α3+A4α4+A5α5+A6α6 ∈ F
32
28.6 Exemples de deodage des odes yliques.Soit α un élément primitif de F16 raine du polyn�me x4 + x + 1 sur F2, m(i)(x) lepolyn�me minimale unitaire de αi. Alors

m(1)(x) = m(2)(x) = m(4)(x) = m(8)(x) = x4 + x + 1

m(3)(x) = m(6)(x) = m(12)(x) = x4 + x3 + x2 + x + 1Ainsi, un ode de polyn�me générateur
g(x) = m(1)(x)m(3)(x) = 1 + x4 + x6 + x7 + x8

293

est un ode ylique dont les paramètres sont d = 5, q = 2, n = 15. Sa dimension est k = 7et un polyn�me de orretion est
h(x) = (x15 − 1)/g(x) = 1 + x4 + x6 + x7On onstruit une matrie génératrie G dont la ième ligne est le veteur xi−1g(x), 1 ≤

1 ≤ k.(a) Montrer que
G =

1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

(b) Montrer que la distane du ode est 5 don e ode orrige deux erreurs.() On onsidère les omposantes
S1 =

14∑

i=0

viα
i, S3 =

14∑

i=0

viα
3i.

294

du syndrome S(v) = Hvt. Alors v ∈ C si et seulement si S(v) = Hvt = 0. Supposonsque le veteur reçu v = (v0, . . . v14) ontient au plus deux erreurs. Par exemple e(X) =
Xa1 + Xa2 , où 0 ≤ a1, a2 ≤ 14, a1 6= a2. Alors

S1 = αa1 + αa2 , S3 = α3a1 + α3a2 .Soit η1 = αa1 , η2 = αa2 les loateurs des erreurs, alors
S1 = η1 + η2, S3 = η3

1 + η3
2 ,Montrer que

S3 = S3
1 + S2

1η1 + S1η
2
1 ,don

1 + S1η
−1
1 + (S2

1 + S3S
−1
1)η−2

1 = 0.

1 + S1η
−1
2 + (S2

1 + S3S
−1
1)η−2

2 = 0.(d) Montrer que s'il y a deux erreurs, η−1
1 et η−1

2 sont des raines di�érentes dupolyn�me
s(X) = 1 + S1X + (S2

1 + S3S
−1
1)X2.S'il n'y a qu'une seul erreur, S1 = η1, S3 = η3

1 don S3
1 + S3 = 0, et on a

s(X) = 1 + S1X.295

S'il n'y a pas d'erreurs, S1 = S3 = 0, et on a reçu message orret w. Si S1 6= 0 et
S3

1 + S3 = 0, le polyn�me s(X) a une seule raine dans F16. Si
s(X) = 1 + S1X + (S2

1 + S3S
−1
1)X2n'a pas de raines dans F16, le veteur d'erreurs e(X) a plus que deux omposantes nonnuls, et il n'est pas possible de orriger les erreurs à l'aide de e ode.(e) Soit par exemple le mot reçu a la forme

v = (100111000000000).Montrer que a1 = 8 et a2 = 14. Corriger le mot v.Solution. On a S(v) = (S1(v), S3(v)) est donné par
S1 = 1 + α3 + α4 + α5 = α2 + α3,

S3 = 1 + α9 + α12 + α15 = 1 + α2.(rappelons que
α4 = 1 + α,α5 = α + α2, α6 = α2 + α3, α7 = 1 + α + α3, α8 = 1 + α2,

α9 = α + α3, α10 = 1 + α + α2, α11 = α + α2 + α3, α12 = 1 + α + α2 + α3,

α13 = 1 + α2 + α3, α14 = 1 + α3, α15 = 1).296

Le polyn�me s(X) a la forme suivante :
s(X) = 1 + S1X + (S2

1 + S3S
−1
1)X2 =

1 + (α2 + α3)X + (1 + α + α2 + α3 + (1 + α2)(α2 + α3)−1)X2

= 1 + (α2 + α3)X + (1 + α + α3)X2.On trouve les raines de e polyn�me : X = α et X = α7. Alors η−1
1 = α et η−1

2 = α7,'est à direη1 = α14, η2 = α8. On onnait alors les erreurs : elles sont dans les positionsorrespondantes aux X8 et X14, 'est à direla 9e et la 15e omposantes de v. Alors le mottransmis était
w = (100111001000001).On déode e mot par la division du polyn�me orrespondant par le polyn�me générateur

g(X). On obtient le polyn�me 1 + X3 + X5 + X6 et le reste nul. Alors le message initialétait
(1001011)8.7 Codes de Reed-SolomonSoit F∗

256 = 〈α〉, g =
∏43

12(x−α11j), α8 = α7 + α2 + α + 1. Alors n = 255, k = 223 (unode de Reed-Solomon utilsé par NASA). Montrer que d = 33.
297

8.8 Déodage des odes de Goppa rationnels.Soit g(x) un polyn�me unitaire irrédutible sur Fqm , L = {γ0, γ1, · · · , γn−1} ⊂ Fqmave g(γi) 6= 0 pour tout i = 1, 2, · · · , n− 1.Le ode de Goppa rationnel Γ(L, g) est
Γ(L, g) =

{

(c0, c1, · · · , cn−1) ⊂ F
n
q

∣
∣
∣

n−1∑

i=0

ci

x− γi
≡ 0 mod g(x)

}

('est-à-dire, la fration à droite est de la forme d'une fration irrédutible a(x)
b(x) ave

g(x)|a(x).alors on onsidère les frations suivantes
v(x) =

n−1∑

i=0

vi

x− γi
, w(x) =

n−1∑

i=0

wi

x− γi
, e(x) =

n−1∑

i=0

ei

x− γi
.On utilse omme syndr�me la fration rationnelle

n−1∑

i=0

ei

x− γi

298

(le veteur d'erreurs), représenté omme un polyn�me mod g

S(x) =
n−1∑

i=0

eifi(x) mod g(le polyn�me de syndr�me).(a) Montrer que si v = (v0, v1, · · · , vn−1) = w+e, un mot reu, w = (w0, w1, · · · , wn−1) ∈
Γ(L, g), e = (e0, e1, · · · , en−1) ∈ F

n
q , alors

S(x) =

n−1∑

i=0

eifi(x) ≡
n−1∑

i=0

vifi(x) mod gpuisque
n−1∑

i=0

eifi(x) ≡ 0(le veteur d'erreurs).(b) Soit I := {i | ei 6= 0}, et on onsidère le polyn�me loateur d'erreurs
s(x) =

∏

i∈I

(x− γi),

299

et le polyn�me évaluateur d'erreurs
u(x) =

∑

i∈I

ei

∏

j∈I\{i}

(x− γj).Montrer que u(x), s(x) satisfont la ongruene :
u(x) ≡ s(x)S(x)(modg(x)) (8.1)(d) Une version de l'algorithme de Berlekamp-Massey. Pour résoudre la ongruene(8.1) on utilise la division eulidienne et l'identité de Bezout : on alule trois suites

sn(x), tn(x), un(x) ave la propriété
tn(x)g(x) + sn(x)S(x) = un(x)où le degré de un(x) déroît jusqu'à e que deg(uj+1) < t et deg(uj) ≥ t (t = [(deg g −

1)/2]), à partir de
0 · g(x) + 1 · S(x) = S(x), 1 · g(x) + 0 · S(x) = g(x)de telle façon que

(s0(x), t0(x), u0(x)) = (0, 1, S(x)), (s1(x), t1(x), u1(x)) = (1, 0, g(x)).Dérire un algorithme pour trouver s(x) et u(x).300

8.9 Codes de Hermite.On onsidère la ourbe projetive et lisse X ⊂ P
2
Fq

X : uq+1 + vq+1 + wq+1 = 0de genre g(X) =
q(q − 1)

2
. Elle ontient 3(q + 1) points sur Fq2 ave uvw = 0 :

(1, ζ, 0), (0, 1, ζ), (1, 0, ζ) ∈ X(Fq2) ave ζq+1 = 1, ζ ∈ F
∗
q2 ,de plus, il y a (q − 2)(q + 1)2 point ave uvw 6= 0 : dans e as on peut supposer u = 1,

vq+1 6= −1, et le nombre de solution de l'équation wq+1 = a ∈ F
∗
q égale à q + 1. Don

Card (X(Fq2)) = 3(q + 1) + (q − 2)(q + 1)2 = q3 + 1 = q2 + 1 + 2g(X)q.(a) Montrer que le nombre des points X(Fq2) de la ourbe X est maximal possible.On pose n = q3

D0 = {x1, · · · , xn}, xi ∈ X(Fq2)\x∞, (x∞ = (0, 1, 1)), D0 = m · x∞.Soit C = C(D0,D) = L(D0 −D) le ode de Goppa orrespondant, 'est un
[q3,m− g + 1, d]q − ode , ave d ≥ n−m, ave le hoix de m : q2 − q ≤ m < q3.301

Si q = 2, g(X) = 1, X est une ourbe elliptique, Card (X(F4)) = 9(b) Dans e as q = 2, n = q3 = 8, m = 2, k = 2, d = 6, et on obtient un [8, 2, 6]4-ode
C donné par l'espae vetoriel

〈1,
u

v + w
〉puisque la fontion

u

v + w
=

u (v2 + vw + w2)

(v + w) (v2 + vw + w2)
=

(v2 + vw + w2)

u2est �nie aux points
{x1, x2, x3, x4, x5, x6, x7, x8)}et appartient à L(2x∞). Caluler une matrie génératrie et une mathrie de ontr�le de

C. () Construire un ode analogue pour m = 3.

302

8.10 Exemen du 13 janvier 2003, 10h-13h, Salle 0141. a) Soient F un ensemble �ni de ardinal q, d(x, y) la distane de Hamming sur Fn, et
Bq(x, r) = {y ∈ Fn | d(x, y) ≤ r} ⊂ Fn.Trouver Vq(n, r) = Card (Bq(x, r)).b) Enadrer V5(3n, n).2. Soit p = ps la probabilité des perturbations de symboles au ours de la transmissionsur un anal bruité. On onsidère F = {0, 1} et l'appliation E : F 2 → F 2n du odage derépitition pure.(a) Caluler la probabilité P du deodage erroné.(b) Pour tout p < 1

100 , enadrer P3. (a) Est-e-que la borne de Singleton est atteinte pour les odes de Golay G23 et G11 ?(b) Même question pour la borne de Plotkin.() Montrer que la borne de Hamming est atteinte pour les odes G23 et G11.4. Soit Fq un orps �ni de q ≥ 3 éléménts, k, d deux nombres entiers.(a) Montrer que pour tout ouple (k, d) ave k + d = q il existe un ode C de type
[q − 1, k, d]q.(b) Pour quelles valeurs k, d un tel ode C soit parfait ?

303

() Pour q = 8, k = 5, d = 3, onstruire une matrie de ontr�le de C.5. On onsidère le Fq-éspae vetoriel Vm de tous les polyn�mes homogènes de degré 1 de
m + 1 variables sur Fq (ave le polyn�me nul), don dimFq

Vm = m + 1 et soit
P = {P1, · · · , Pn} ⊂ F

m+1
q \{0}un sous-ensemble tel que l'espae vetoriel engendré par les {P1, · · · , Pn} oïnide ave

F
m+1
q , et les points Pi ne sont pas proportionnels.a) Montrer qu'obtient un [n,m + 1, n− qm − 1

q − 1

]

q

-ode pour tout n ≥ qm − 1

q − 1
.b) Montrer que pour

n =
qm+1 − 1

q − 1un tel ode atteinte la borne de Plotkin.6. Code orreteur de Reed-Muller d'ordre 1 et de longueur 32.Dérire une matrie de ontr�le du ode donné par toutes les ombinaisons linéaires
304

mod 2 des lignes Ai de la matrie

1, 1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

305

8.11 Exemen du 17 déembre 2003, 16h30-18h30, Salle 014
1. (a) Trouver une matrie génératrie et une matrie de ontr�le du ode ylique

C = (g) ⊂ F2[x]/(x15 − 1)de longeuer 15, où g = x4 + x + 1 est un polyn�me sur F2.(b) Trouver la distane d du ode C, et a apaité de orretion.() Le ode C est-il pafait ?(d) On suppose qu'au plus une erreur s'est produit au ours de la transmission. Déoderle message
v = (101101000111001),trouver le message émis et le mot d'information.2. a) Soient F un ensemble �ni de ardinal q, d(x, y) la distane de Hamming sur Fn, et

Bq(x, r) = {y ∈ Fn | d(x, y) ≤ r} ⊂ Fn.Enadrer Vq(n, r) = Card (Bq(x, r)).b) Caluler V3(11, 2).3. Soit Fq un orps �ni de q ≥ 3 éléménts, k, d deux nombres entiers.306

(a) Pour tout ouple (k, d) ave k + d = q onstruire un ode C de type [q − 1, k, d]q.(b) Pour q = 4, k = 2, d = 2, onstruire une matrie de ontr�le de C.4. Codes de Reed-Muller d'ordre 1. Soit Lm = Fq[T1, · · · , Tm]d◦≤1 le Fq-éspaevetoriel de tous les polyn�mes de degré ≤ 1 de m variables sur Fq (ave le polyn�menul).(a) Montrer que dimFq
Lm = m + 1.(b) On onsidère un sous ensemble du ardinal n

P = {P1, · · · , Pn} ⊂ F
m
qtel que

∀l ∈ Lm(∀j = 1, · · · , n, l(Pj) = 0⇒ l ≡ 0).Le ode
RMq(1, n,m) = ImEv, Ev : Lm → F

n
q , f 7→ ((f(P1), · · · , f(Pn))est dit le ode de Reed-Muller d'ordre 1.Montrer que RMq(1, n,m) est un [n,m + 1, n− qm−1]-ode.) Pour quelles valeures de n un tel ode atteinte la borne de Plotkin ?

307

8.12 Contr�le ontinu du jeudi 2 déembre 2004, 8h00�10h00,AMPHI1. a) Soient F un ensemble �ni de ardinal q, d(x, y) la distane de Hamming sur Fn, et
Bq(x, r) = {y ∈ Fn | d(x, y) ≤ r} ⊂ Fn.Trouver Vq(n, r) = Card (Bq(x, r)).b) Enadrer V5(3n, n) à l'aide de la fontion d'entropie H5(x), où Hq(δ) est la fontiond'entropie q-aire : pour δ ∈ [0, q−1

q]

Hq(0) = 0,Hq(δ) =
δ log(q − 1)

log(q)
− δ log(δ)

log(q)
− (1− δ) log(1− δ)

log(q)
.2. (a) Est-e-que la borne de Singleton est atteinte pour les odes de Golay G23 et G11 ?(b) Montrer que la borne de Hamming (d'empilement de sphères) est atteinte pour lesodes G23 et G11.() Même question pour les odes de Hamming3. Soit Fq un orps �ni de q ≥ 3 éléménts, k, d deux nombres entiers.

308

(a) Montrer que pour tout ouple (k, d) ave k + d = q il existe un ode C de type
[q − 1, k, d]q.(b) Pour quelles valeurs k, d un tel ode C soit parfait ?() Pour q = 8, k = 5, d = 3, onstruire une matrie de ontr�le de C.4. Soit C3 le ode de Hamming binaire de longueur 7 et de dimension 4. Alors sa matriede orretion est

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

(a) Pour le message reçu y = (1101101) trouver le syndrome S(y),(b) trouver la position d'une erreur éventuelle d'une transmission ave C3,() trouver le polyn�me énumérateur des poids A(z) du ode C3A Annexe : Rappels sur les orps �nisCette partie est une somme d'éléments d'algèbre utiles dans la ompréhension de lathéorie des odes orreteurs d'erreurs, sans faire partie à proprement parler de la théorieen elle-même qui est le sujet de l'étude. C'est pourquoi rien de e qui suit n'est démontré.Pour un plus large développement sur les orps �nis et les démonstrations de e quiest a�rmé i-dessous, le leteur est renvoyé aux textes d'E.Peyre [Pey℄, ainsi que Lidl-Niederreiter, [Li-Ni℄. 309

A.1 StrutureProposition-Définition A.1 : Soit A un anneau ommutatif de aratéristique p unnombre premier. L'appliation
Frp : x 7→ xp, x ∈ Aest un morphisme d'anneau appelé morphisme de Frobenius. Plus généralement, si A estun anneau ommutatif de aratéristique p premier et si q est une puissane de p, on note

Frq : x 7→ xq.Théorème A.2 : Soit K un orps �ni. Alors K est de aratéristique p premier, K est deardinal q = pd, ave d = [K : Fp]. Inversement, si p est premier, d est un entier, il existeà isomorphisme près un unique orps à q = pd éléments, qui est le orps de déompositionde Xq−X sur Fp. On note e orps Fq. De plus, on a l'existene de deux isomorphismes :un de (Fq,+) sur ((Z/pZ)d,+) et un du groupe multipliatif F
∗
q sur Z/(q− 1)Z (F∗

q est ungroupe ylique d'ordre q − 1).Théorème A.3 : Soit q = pn. Tout sous-orps de Fq est d'ordre pm, où m est un diviseurde n.
310

A.2 Polyn�mes sur les orps �nisThéorème A.4 : Soit p premier et q une puissane de p. Pour tout entier d stritementpositif, il existe un polyn�me P irrédutible de degré d sur Fq et Fqd est isomorphe à
Fq[T]/(P).Remarque A.5 Si on a un tel polyn�me unitaire et r une raine de P dans Fq, la famille
{1, r, · · · , rd−1} est une base du Fp-espae vetoriel Fq.Théorème A.6 : Soit P un polyn�me irrédutible sur Fq et r une raine de P dans uneextension de Fq. Alors, pour tout polyn�me Q sur Fq, Q(r) = 0 si et seulement si Q divise
P .Lemme A.7 Soit P un polyn�me irrédutible sur Fq de degré m. Alors P divise xqn − xsi et seulement si m divise n.Théorème A.8 : Soit P un polyn�me irrédutible sur Fq de degré m. Alors P possèdeune raine r dans Fqm . De plus, toutes les raines de P sont simples et sont données par
r, rq, · · · , rqm−1 , éléments distints de Fqm .Corollaire A.9 : Le orps de déomposition d'un polyn�me P de degré m irrédutiblesur Fq est Fqm .

311

Définition A.10 Soit P un polyn�me sur Fq tel que P (0) 6= 0. L'ordre de P est le pluspetit entier positif e tel que P divise xe − 1. Si P(0)=0, alors il existe Q sur Fq non nulen 0 et h un entier positif tels que P = xhQ, et dans e as, ord(P) = ord(Q).Remarque A.11 Si P est irrédutible de degré m sur Fq, alors l'ordre de P divise qm−1.Théorème A.12 Le nombre de polyn�mes irrédutibles unitaires sur Fq de degré m etd'ordre e est
Nq,m,e = ϕ(e)/m si e > 1.où ϕ(e) est l'indiateur d'Euler de e.Remarque A.13 : Le degré de P irrédutible sur Fq d'ordre e est l'ordre multipliatif de

q modulo e.

312

Définition A.14 Un polyn�me P de degré m sur Fq est dit primitif sur Fq s'il est lepolyn�me minimal sur Fq d'un élément primitif de Fqm .Théorème A.15 P est primitif sur Fq si et seulement si P est unitaire, non nul en 0 etd'ordre qm − 1.Définition A.16 On appelle fontion de Moebius la fontion dé�nie sur N par :
µ(n) =

1 , si n = 1
(−1)k , si n est le produit de k nombres premiers distints,

0 , si n est divisible par le arré d'un nombre premier.Théorème A.17 Le nombre de polyn�mes irrédutibles unitaires de degré n sur Fq est
Nq(n) =

1

n

∑

d|n

µ(n/d)qd =
1

n

∑

d|n

µ(d)qn/d

La somme se faisant sur tous les diviseurs positifs de n.
313

Théorème A.18 Soit α un élément de Fqm , une extension de Fq. Soit d le degré de δsur Fq et P le polyn�me minimal de α sur Fq. Alors,(i) P est irrédutible sur Fq et son degré d divise m.(ii) Q polyn�me sur Fq est tel que Q(α) = 0 si et seulement si P divise Q.(iii) Q polyn�me irrédutible unitaire sur Fq et tel que Q(α) = 0 est tel que P = Q.(iv) P divise xqd − x et xqm − x.(v) Les raines de P sont α,αq, · · · , αqd−1 et P est le polyn�me minimal sur Fq detoutes es raines.(vi) Si P (α) = 0, alors l'ordre de P est égal à elui de α dans le groupe multipliatif
F
∗
qm .(vii) P est un polyn�me primitif sur Fq si et seulement si α est d'ordre qd − 1 dans

F
∗
qm .Théorème A.19 (Critère d'irrédutibilité) Soit P un polyn�me de degré d sur Fq.Alors P est irrédutible si et seulement si le rang de Frq − 1 est égal à d− 1.RéférenesLivres de base :[Dem℄ Demazure, Mihel Cours d'algèbre. Primalité. Divisibilité. Codes., Nou-314

velle Bibliothèque Mathématique [New Mathematis Library℄, 1. Cassini, Paris,1997. xviii+302 pp.[La℄ Lang, Serge Algebra. Reading, Mass. : Addison�Wesley (1965).[vLi℄ J.H. van Lint, Introdution to oding theory. Springer-Verlag, 3e édition, 1999[vLi-vdG℄ J.H. van Lint, G. van der Geer, Introdution to oding theory and algebraigeometry. Springer-Verlag, New-York[Li-Ni℄ Rudolf Lidl etHarald Niederreiter, Introdution to �nite �elds and theirappliations. Addison�Wesley : Reading, 1983[MW-S℄ MWilliams F.J., Sloane N.J.A., The theory of error�orreting odes,North � Holland, Amsterdam, 1977[Pa-Wo℄ Papini, O., et Wolfman, J., Algèbre disrète et odes orreteurs, ColletionMath. et Appliations, Springer-Verlag, 1995Livres supplémentaires :[Ebe02℄ W. Ebeling, Laties and Codes. A ours Partially Based on Letures by F.Hirzebruh. Seond Ed. Advaned Letures in Mathematis. Vieweg. xi, 187 p.,2002[Se70℄ J.� P. Serre, Cours d'arithmétique. Paris : Presses Univ. Frane, 1970.
315

[Ste℄ S. A. Stepanov, Codes on algebrai urves. Kluwer Aademi Publishers. vii,350 p., 1999[Ts-V℄ Tsfasman, M.A. et Vladut, S.G. , Algebrai-geometri odes. Kluwer Aa-demi Publishers. xxiv, 667 p., 1991Artiles et autres soures :[Aug℄ Augot, Daniel Les travaux de M.Sudan sur les odes orreteurs d'erreurs,Gazette des mathématiiens, SMF, No 98, otobre 2003, 5-13[Pey℄ Emmanuel Peyre, Corps �nis et ourbes elliptiques. DESS Cryptologie, séu-rité et odage d'information, Modules A1A et A1B, Grenoble, 2002, pp. 1-128[Pre℄ Oliver Pretzel, Codes and Algebrai Curves (Oxford Leture Series in Ma-thematis and Its Appliations, 8), 1998[Sha℄ Shannon, C.E : A mathematial theory of ommuniation, Bell Syst. Tehn.J., SMF, 27, 379-423, 623-656 (1948)

316

	Transmission d'information, codage et decodage optimal
	Principe de transmission d'information
	Hypothèses sur un canal bruité
	Généralités sur les codes
	Codage et decodage optimal sur un canal bruité
	Théorème de Shannon (1948)

	Distance de Hamming, rendement et vitesse de transmission
	Capacité de correction et rayon de recouvrement
	Borne de Hamming et borne de Singleton
	Bonnes familles des codes et problèmes asymptotiques.
	Borne de Hamming et borne de Singleton asymptotiques

	Codes linéaires et codes cycliques. Matrice génératrice et syndrome
	Codes linéaires
	Détection et correction d'erreurs, décodage
	Classe des codes de Hamming
	Énumération de poids et l'identité de MacWilliams
	Codes cycliques
	Constructions
	Construction par polynôme générateur
	Construction par polynôme correcteur

	Polynômes locateurs d'erreurs. Application au décodage
	Construction de codes cycliques à partir des racines.
	 Exemples : codes de Golay
	Code G23
	Code G24
	Code G11
	Code G12

	Locateurs d'erreurs
	 Décodage des codes cycliques
	 Exemples de decodage des codes cycliques

	Codes BCH et codes de Reed-Solomon. Codage et décodage
	Classe des codes BCH (Bose, Ray-Chaudhuri et Hocquenghem)
	Codes de Reed-Solomon
	Deuxième déscription des codes de Reed-Solomon
	Problèmes de décodage.
	 Décodage BCH

	Algorithme de Berlekamp-Massey

	Bornes de Plotkin et de Gilbert-Varshamov
	Rendement, taux de correction et domaine de codes
	Borne de Plotkin
	Borne de Gilbert-Varshamov
	Borne de la géométrie algébrique (sans démonstration)

	Codes géométriques de Goppa. Systèmes affines et courbes algébriques
	Systèmes affines et systèmes projectifs
	Systèmes affines.
	Systèmes projectifs.

	Codes géométriques
	Codes de Goppa rationnels
	Construction des bonnes familles

	Décodage des codes de Goppa rationnels
	Espace projectif Pn, variétés algébriques
	Codes provenants des courbes algébriques
	P-construction
	Borne de la géométrie algébrique

	Généralités sur les diviseurs
	 Différentielles et calcul de l(A)

	Courbes sur les corps finis
	Théorème de Riemann-Roch sur un corps K, genre
	Codes géométriques de Goppa: L-construction.
	Codes géométriques de Goppa: -construction.

	Exercices de préparation à l'exemen
	 Estimation des sommes binomiales.
	 Encadrement de la probabilité du decodage erroné.
	 Codes de Golay et empilement de sphères.
	 Déscription géométrique des codes de Reed-Solomon
	 Codes de Reed-Muller d'ordre 1.
	 Exemples de decodage des codes cycliques.
	 Codes de Reed-Solomon
	 Décodage des codes de Goppa rationnels.
	 Codes de Hermite.
	Exemen du 13 janvier 2003, 10h-13h, Salle 014
	Exemen du 17 décembre 2003, 16h30-18h30, Salle 014
	 Contrôle continu du jeudi 2 décembre 2004, 8h00–10h00, AMPHI

	 Annexe : Rappels sur les corps finis
	 Structure
	Polynômes sur les corps finis

