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Abstract. The author proves an algebraicity theorem for the periods of parabolic 

forms of any weight for the full modular group, gives explicit formulas for the coeffi~ 

cients of i:he forms, and consuucts p-adic analogs of their Mellin uansforms in the man

ner of lwasawa and Mazur. 
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§I. Introduction. Basic results 

The concentrared auendon of mathematicians to number; theory, while never lessen

ing, has in recent years taken on new forms. Elementary questions about congruences 

and equations have found themselves becoming interwoven in an intricate and rich com

plex of constructions drawn from abstract harmonic analysis, topology, highly technical 

ramifications of homological algebra, algebraic geometry, measure theory, logic, and so 

on-corresponding to the spirit of GOdel's theorem on the incompleteness of the tech

niques of elem_entary arithmetic and on our capabilities of recognizing even those truths 

which we are in a position to "prove;, (see for example [2], [9]). 

A. new "synthetic" number theory; taking in the legacy of the "analytic" theory, 

is possibly taking shape under our very eyes. (And here, perhaps, all the connotations 

of the word 0 synthedc" are appropriate.) 

In our canvas, scarcely encompassable at a glance, any points of contact with con

crete number-theoretical facts, whether old or new, take on especial significance,- They 

discipline the imagination, and they provide a breathing space and the opt'ortuniey to 

evaluate the stunning beauty of past discoveries. Ramanujan's peculiar congruence 

modulo 69I serves as a fresh example. This congruence (and its analogs; see [7]) is so 

far, our only clue to understanding the I I-dimensional eta_le cohomology of the so-called 
Sato variety (see [9], [IO], [11], [I2]). 

The present article is bssed on an analysis of several recent works on rnodular 

forms and has the modest aim of making explicit a part of the number-theoretic informa-

*Editors's note. In English one usually speaks of cusp forms. 
AMS CMOS) subject classifications(l970). Primary 10015, 12B30; Secondary l2B40. 
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tion which they contain implicitly. A subsequent translation of this information back 

into, say the language of representation theory is certainly possible and nontrivial, but 

remains a matter for the future. 

Let us now describe in more detail the contents of the article. 

I.I. Let r' = SL(2, Z)/(±1), let w be an even integer, and let Sw+2 be the space 

of parabolic forms with respect to r on the upper half-plane of one complex variable 

(see (S] for the basic notions). 

To each ct>(z) € Sw+ 2 is associated the following collection of invariants: 

a) The periods of Cl>: the numbers rk(cl>) = fo00 cl>(z)z1 dz, 0 _:5: k ~ w. 

b) The coefficients of ct>: the numbers A such that cl>(z) =I"" 
1 

A e 217inz. n ,.,,,, n 
c) The Hecke series L.,,(s) = 'I:'=I \11-s. 
In §§2-7 of this article we construct the system of equations which connects the 

periods and the coefficients of <I>, and show that solving this system of equations al

lows us to obtain extremely precise information on both the periods and the coefficients. 

In particular, Ramanujan's congruence is included in a new series of formulas. 

In §§B-10 we construct p-adic analytic functions which are related to the L,.(s) 

just as the Leopoldt-Kubota-Iwasawa functions [ l] are related to ordinary Dirichlet 

L-functions. 

The first group of results is obtained by the application to forms of higher weight 

of the techniques developed in the author's articles [31-[5] for forms of weight 2 using 

Shimura•s theory [13}. The second part generalizes to forms of arbitrary weight the 

methods of Mazur and Swinnerton-Dyer, introduced in [6] for forms of weight 2. 

We restrict ourselves here to the consideration of the full modular group along the 

lines explained above. 

We now formulate some of the basic results of the article. 

1.2. The Periods Theorem. Let 

"" 
Cl> (z) = ~ Anemlnz E Sw~2 

n==1 

be a nonzero form which is an eigenform for all the Hecke operators, so that <I>IT,. = 
A cl>. Then the ratios n 

(r 0 (Cl>) : r 2 (Cl>) : • • • : r w (Cl>)), (r1 (<l>) : • • • : r w-1 (Cl>)) 

are rational over the algebraic number field Q(A I' · • • , A,., • · • ). 

Example. Let w = 10. Then S 12 = C~(z), where 

L\(z) = e2mzfI(1-e2rrlnz)z'= ~ "t' (n)imtru. 

We have 

(r1:r3: r5)= (1: - ~: ~)· 
241 • 3 22 • 3 
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The values of the remining periods are determined by the general relation rk(cl>) = 
(-l)k+l,w-k(cl>) (see §2 below). 

As we have said, Theorem 1.2 is proved by consuucting an infinite system of hom.o

geneous linear equations for the periods of cl>. This system naturally breaks up into 

equations for the even (k = 0 (2)) and odd (k = 1 (2)) periods. We check that each of 

these subsystems has a I-dimensional space of solutions; furthermore, the coefficients 

of the equations lie in Q{>.1, • • • , An, • • • ). 
A pare of these equations (which all <l> € Sw+ 2 have in common) has been pointed 

out by Shimura [13]. Another part, which is different for each cl>, is written out here for 

the fitst time in terms of the Hecke operators. For w = 10 Shimura's equations provide 

all the values of the periods with the exception of r0• As w increases, more and more 

of the information is contained in the remaining equations. 

Let us inuoduce another interpretation of the periods rk(cl>) in terms of the Hecke 

series. Since 

it is easy to see that 

00 

Lr:J> (s) = (2n)s S <l> (iy) ys-i dy, 
r (s) 

0 

Thus the Periods Theorem, roughly speaking, allows us to compute the values of 

L+(s) at the integer points within the critical strip, which stretehes from "= 0 to 

(J = w + 2. 

It would be very interesting to extend these computations to the remaining integer 

points. We also remark that our methods do not have anything to say on the arithmetic 

nature of the "common transcendencental multiplier" for the r
2

k (cl>) and the r2k+ 1{cl>) 

respectively. 

1.3. Th~ Coefficients Theorem. Under the hypotheses of Theorem 1.2, for all 

n > 2 we have 

iW-l] 
(O'w+i (n)-1.n)r0 = ,L;' ~ 2 (;) rzt(l\~16w-~l -~-1~/!1).* (1) 

n==AA '+66' l=l 

Here ow+ 1(n) = l:dln dw+ 1, ri = ri(<l>), and in the ouJ.er summation on the right the sum 

is taken over all·integer solutions of the equation n = !1/i' + 081 which satisfy 

~ > S > 0, and 

either ll' > o' > 0 or tiln, 11' = n/6, o'..,, 0 and 0 < o/ll s ~. (2) 

*Translator':'l note. Here and below rhe convention is observed rhar I' denotes a summa
rion in which cenain "boundary" rerms are to be raken wirh the coefficient Yi. 
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Furthermore, the terms in which o/ll = Yi are to be taken with the coefficient Yi. 

Example. Again for w = 10 we find 

0'11 (n) - T (n) = 

In particular, this formula gives a new proof of Ramanujan's congruence 

-r(n) ==au (n) mod 691. 

The table given in §7 shows that formula (l) also gives other well-known congru-

ences. 

The Coefficients Theorem simply displays the explicit form of a certain part of the 

above-mentioned equations for the periods. To prove the Periods Theorem we need to 

use, among other things, information on the coefficient of r0(<1>) in (1). On the other 

hand, if r0(<1>) ,/ O, then (l) can be considered as an explicit formula for the coefficients 

1\ of <I>, and hence the name of the theorem. It is interesting to note that to compute 

1\ we must sum some polynomial of degree w in 8. and o over the solutions of the 

universal equation n = /18.' + 88'; only this polynomial depends on <I>. Note further that 

uw+l (n) - 1\ is the nth coefficient of the modular form Ew+2 (z) - <l>(z), Ew+2 being the 

Eisenstein series of weight w + 2. 

Thus the Coefficients Theorem provides a series of relations which can be written 

, 
Ew+z(z)-Cl>(z) = a0 + ~ F(8., 6)e2m(M'+M'>z

1 
(3) 

11,6 
11' ,6' 

where F(.A, o) is a homogeneous polynomial of degree w, and the summation is over 

the integer points of the region defined by (2). The series on the right of (3) can be 

considered to be a sort of theta function "with spherical polynomials" constructed for 

the indefinite quadratic form 8.~' + oo'. The role of this series still needs to be ma~e 
explicit. 

l.4. To formulate the theorem on p-adic Hecke series let us introduce some more 

notation. 

First of all, fix a form <l>(z) E Sw+2 by the conditions that cI>I T n = 1\ <I> for all n, 

<l>(z) = I'i" Ane 27Tinz. Next, choose a prime p and an integer 8.
0 

with (8.
0

, p) = 1, and 

put 8. = t1.
0
p (for p ?: 3) or ll. = 4/l.0 (if p = 2). Furthermore, we fix an imbedding 0 c....o;, 

of the field of all algebraic numbers into the algebraic closure of the p-adic field. In 

the sequel, all identifications of algebraic numbers with p-adic ones will be with re

spect co chis imbedding. 

Consider a primitive Dirichlet character X modulo ~pm, m ?: 0. X can be uniquely 

written as a product XoXi• where Xo is a primitive character modulo ~. and x1 is a 

primitive character of period pm. X 0 is called the tame component of X• and X 1 the 

wild component. Set 



(the Gauss sum). 
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G(X) = 
2ni-l?

~ X(b)e llpffl 

Consider the Hecke-Dirichlet series 

00 

L4> (s, x) = ~ x (n) 'Ann-s .= c:~:: 5 <l>x (iy) YS-l dy. 
n==t o 

From the Periods Theorem we will later deduce that the values of L+(k, x) for 

375 

k = 1, · • ~ ., w + 1 and any X are "almost algebraic". Here we only need the following 

fact: there exist two numbers (I) t e C such that the values of (l/2mru *)L+(l, x> are 

integers of the field Q(AI' · • • , An' • • • , G(x). x(z)) (where we divide by (I)+ or (t)

according as x(-1) = +l or -1l. Fix such 41+ and cu-. 

We are now in a position to state the final result. All the notation which we have 

introduced in this subsection is used explicitly or implicitly in our formulation. 

1.5. Theorem on p-adic Hecke series. Suppose that \ is a p·adic unit, and denote 

by p that p-adic root of the equation X 2 - APX + pw+l = 0 which is also a p-adic unit. 

Then there exists a unique power series gx
0
(T) with coefficients in the p-adic com

pletion oi ihe ring of integers of the field Q(A1, • • • , An, • • • ) such that for any char

acter X = XoXi modulo fl.pm, m?: O, which has tame component Xo we have 

(4) 

where either q = p or q = 4 (/or p = 2). 

We will prove thi~ theorem by means of Mazur's "p-adic Mellin ttansform" of modu

lar forms. This beautiful and important consuuction allows us to hope for adelic ana

logs of p-adic Hecke series. 

Our result is clearly incomplete: the domain of values of the argument of L+ in 

(4) is too narrow. By analogy with the Leopoldt-Kubota-Iwasawa theory [l] one should 

expect a formula of type (4) for all the L+(k, )(), k e Z, or at any rate for k = 1, • • • , 

w +I. 

It is a pleasure for me to be able to thank I. I. Pjateckii-Sapiro and A. Nasybullin 

for extremely useful discussions, and B. Mazur and H. P. F. Swinnerton-Dyer for their 

kindness in sending me their article [6] before publication. 

§2. The Shimura-Eichler relations 

2.1. Proposition. Let cl> E Swt
2

, and let rk(<l>) be the periods of <I>. Then for any 

k = 0, 1, • • • , w we have 
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k (k) k ('w - k) rk (Cl>) + (-1) 2J . r w-k+d<l>) + (-1) L . r1 (<D) =0, 
o~i..;k t o.;;;i.;;;w-k t , 
i=cl(I?) iak(2) 

Proof. Let g = (~ ~), with det g I. 0, and let F(z) be a polynomial of weight ~ w. 

Let 

Fg (z) = (cz + dr F (az + b)\ • 
~ cz+ d 

Since <I> is a parabolic form of weight w + 2 for r, for any g e [' we have 

g(loo) ioo loo J Cl> (z) F (z) dz = S Cl> (gz) F (gz) d (gz) = J Cl> (z) Fg (z) dz. (8) 

g~) 0 0 

(These and subsequent integrals are to be taken along geodesic arcs.) Put s = (~ -~) 
and t = (~ -~). These are the standard generators of r, and s 2 = t 3 =I. It is easy to 

verify that 

(j + S('f) CD (z> F (z> dz= (T + '
1t, + '''f 00,) <D <z> F <z> dz =o. <9> 

0 5(0) 0 /(0) / 2(0) 

Indeed, s(ioo) = 0 and s(O) = ioo, so that the first sum vanishes. In the second sum the 

integral is taken around the perimeter of a ttiangle with vertices (0, ioo, I); replacing 

this by a nearby triangle lying entirely within the upper half-plane, and estimating the 

error terms using standard inequalities, we obtain the desired result. 

Now to obtain (5)k, (6)k and (7)k we must substitute F(z) = zk in (9), replace all 

the paths of integration by the path (O, ioo) using (8), and use the fact that by definition 

The first part ot (9) then gives us (5)k, whereas the second, in view of the fact that 

z' + (/'f + (i'( =:! + ~ (:) (-1).,'zw->+I + ~ (w~k) (-!)'/ • (10) 

gives us an equation which only differs from (6)k in that the summation runs over all i 

rather than just over those having the same parity as 0 or k. To break up this equation 

into two, note that S 
2 

has a basis made up of real forms (that is, forms with real co-
w+ 

efficients). But if <I> is real, then the periods r2k+1(<1>) are real, and the r2k(<l>) pure 

imaginary. Hence, in the linear relation in the rk(<l>) which arises out of (10), we can 

take real and imaginary parts; this then leads to (6)k and (7)k, which proves the propo

sition. 
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2.2. Definition. Let s+ be the space of real solutions of the system of equations 

(5)k, (6)k for even k, and (7)k for odd k., and let s- be the space of real solutions of 

the system (5)k, (6)k for odd k, and (7)k for even k. 
We clearly have s+c R(w+Z)/Z and s- C Rwlz, where R(w+Z)/Z and Rwlz are the 

real vector spaces with basis indexed by the even and odd integers respectively in the 

interval (0, w]. 

Note that (I, O, • • • , 0, -1) € s+; indeed, a straightforward check shows that r
0

(<t>) 

and r (<!>) have the same coefficient (either 1 or 2) in all the equations (5)-(7). 
w 

2.3. Proposition (Eichler, Shimura). Let 5~+2 be the space of all real parabolic 

forms of weight w + 2. Then the following assertions are true: 
a) The map 

is an isomorphism. 

b) The map 

So -~ s- · t'h .__,,_ (r
1

('t'h) r 3 (t'h), ... , rw-1 (<D)) W+I ~ • 'V ,---.- 'V' 'V 

5!+2 ~ s+: <D .- (r0 (Cl>), r2 (CD), ••. , r w (<D)) 

is an imbedding of s0 
2 

as a subspace of codimension I in 5+ which does not contain 
w+ 

the vector (1, 0, •.• , 0, -n. 
This result can be considered an immediate reformulation of a particular case of a 

theorem of Shimura's ([13], Theorem 1, §5; compare also §9 of the same paper). We omit 

the proof, since it does not have any direct relation to what will follow. Apart from that, 

the proof which Shimura gives is not the most natural one here, since it relies on an in

dependent computation of the dimensions of 5+ and s- carried out by Eichler. In fact 

Proposition 2.3 follows from the theorems of de Rham and Dolbeault, applied to the Sato 

variety-the w-fold fiber product of the "general" elliptic curve. The periods of the 

forms (f> are the periods of the differentials of the first kind of the highest order on such 

a variety. 

§3. The action of the Hecke operators on the periods 

3.1. Let g = (~ !> and <I> € S 2 • Recall that if we set w+ 
W+2 

(rD I g) (z) = (det g)2 (cz + drw-2 tD (gz) 

then the Hecke operator T n on 5w+2 is defined by the formula 

T _ ~ ~ ~ (nd-1 b) 
n - n 4J ~: . 

dlnb:;;d d Q d 
(11) 

It is we 11 known that 5~+2 is invariant with respect to all the Hecke operators T n and 

has a unique decomposition as a direct sum of I-dimensional invariant subspaces. 

3.2. Proposition. For all i, k = 0, · • • , w and n > 0 there exist coefficients 

Aik(n) E Z, zero if ii k (2), such that 
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loo fD J (Cl> IT n)(z) I dz = ~ Aik (n) r1 (Cl>) 
0 l=O 

for all <l> € s0 
2

• In other words, there exist endomorphisms T± of the spaces R(w+2>12 
w+ n 

arid Rw 12 of §2.2, 
Ul+2 al+:ll 

T::R2 -+R 2 

satisfying the following conditions: 

a) Tl,e matrix of T! in the standard basis has integer entries. 

b) The images oi S~+l in RCw+2>12 and Rw/2 (see Proposition 2.3) are inva'?ant 

under the y+ and T- respectively. 
n n 

c) The restriction of T± to these images coincides with the action of T on s0 
2 • n n w+ 

Proof. First of all let F(z) be an arbiuary polynomial of degree ~ w. In the ex

pression J~00 CCl>ITn)(z)F(:t) dz substitute tile explicit form (II) for Tn. We will carry 

out the summation over b mod d over the interval -d/2 ~ b :=: d/2; the symbol ::£' will 

indicate that in the summation in question che terms wich b = ±d/2 are to be taken wich 

che c oefficienc ~~- We have 

ioo lco 

S (Cl> l T n) (z) F (z) dz = J "'1 ~' <D (.!!... z + .!!..) nw+i F (z) dz. 
~ ."-! d2 d dw+2 

o o dfn~bt;;..! 
2 2 

Replacing nz/d 2 + b/d by z in each term, we bring this expression co the form 

ioo (loo b/d· S (Cl>IT nHz) F (z) dz = 2] ;: ~ • J - S ) <D (z) F ( d~ z - b~ ) dz. 
o din -~b<.!!... o o 

2 2 

(12) 

To deduce Proposition 3.2. from (12), sec F(z) = z1e and expand (d 2z/n - bd/n)k in 

powers of z. Clearly we obtain on the right an integral linear combination of the periods 

r1(cf)) and of integrals of the form fgld <l>(z)z1 dz with I~ k. Hence it suffices co check 

chat all such integrals are integer linear combinations of che periods of <I>. 

In fact, lee b > 0, (b, d) = 1, and lee b/d= b /d , b 1/d 1 , ···, b0/d0 = 0/1 m m m- m-
be che successive convergencs to b/d in irreducible form. It is well known that 

and_hence by (8) 

b/d m bkfdk m fl kf.loo) 

J <D (z) z1 dz = ~ J Cl> (z) i dz = ~ J <D (z) z' dz 
0 km=l bk-1/dk- t k=l gk(O) 

rn loo . 

= ~ J Cl>(z)(bkz+ (- l)k-1 bk-i)'(dtti + (--l)k-tdk-i)w-1 dz. (13) 

k-1 0 



PERIODS OF.PARABOLIC FORMS 

This completes the proof. We note that the matrices T! can be computed explicitly 

without especial difficulty. 

§4. The proof of Theorem 1.2 for odd periods 

379 

4.1. Let cl> E S~+l, and suppose that ct>j T n = 1\ ct> for all n ~ 1. Then the vector 

(r
1

(CI>), • • • , rw_
1
(cl>)) € s- is an eigenvector for all the operators r;, with eigenvalues 

A (Proposition 3.2 c)). But the subspace s- C Rw/Z is defined by the Eichler-Shimura 
n 

equations, which have integer coefficients, and the r- also have integer coefficients. 
n 

Finally, s-, together with S~+i• has a uniquely defined decomposition into one-dimen-

sional subspaces invariant under all the r-. Hence it follows that the coordinates of 
n 

the eigenvector ( r 
1 

(<I>), • • • , r w _1 (cl>)) are, up to a common multiple, rational over 

Q(A.1, • • • , "-n• • • ~ ), and this proves one haH of the Periods Theorem. 

4.2. The only obstacle to proving the second hall of the Periods Theorem in pre

cisely the same way is the fact that s+ has dimension one greater than s0 
2 (Proposi

w+ 
tion 2.3 b)), and hence it could a priori turn out that all the y+ have an invariant plane 

n 
in s+, on which y+ acts by multiplication by i\ • Then for one exceptional form <I> we 

n n 
could not guarantee the rationality of (r0(ct>): • • ·; rw(<l>)) over Q(>.1, • • ·, >.n, • • • ). 

·In fact there is no such exceptional form, bu_! to prove this we ~eed more precise 

information on the form of the T +, so that it will be convenient to first prove Theorem 
n 

1.3. 

§5. Proof of Theorem 1.3 

5.1. Formula (1) will be obtained as the result of a series of transformations of 

(12). First substitute F = 1 in (12), transfer all the J~00 from right to left and change 

signs. H we use the fact that cI>I T = A <I>, this gives 
n n 

loo bfd 

(no'w-• (n) - Ari) 5 <I> (z) dz = ~ ;: ~· J Cl> (z) dz. 
o. din -~be;.!. o 

2 2 

Fix b and d with (b, ti)= 1 arid collect together the terms fobli/dli with all Bl(n/d). 
The coefficient of such an integral will then be 

~w (n) ~ ~-w = r1w - ' 

ti" ~1( :) . d 

so that 

(14) 
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The term on the right with d =I vanishes. The term with d = 2 is 

1/. (:)(/OD) ico 

aw ( ; ) S <D (z) dz = <Tw ( ; ) S Cl> (z) dz = <1w ( ; ) S Cl> (z) (2z + I )w dz 

o (!~)(o) o 

(15) 

We transform the terms with d ~ 3 using (13) with l = 0, and the completely analo

gous formula with -b/d in place of b/d. In the· notation of (13) we get 

(

bid -bid) rn loo J + J cD(z)dz= ~ J Cl>(z) [(dkZ+(-l)k-1 dk-it» -(dk+(-l)k-idk_1z)w]dz 
'0 0 k=-1 0 

= ~ ~ (7)dL(-l)(k-l)(w-l)cff:.i(ri(Cl>)-rw-;(Cl>)). 
k=-l 1=0 

On account of (5). we may leave on the right-hand side only the terms with even i, and 
I 

then sum only over i = 21 ~ (w - 2)/2. Tatcing out the r 0(<1>) term again, we get 

The first sum on the left is obviously equal to 2(1 - dw)r0(cl>). 

Now substitute (15) and (16)b,d into the right-hand side of (14) and take all the

terms in r0(cl>) over to the left. The coefficient of r0(<1>) on the left is then of the -form 

nf1w-1 (n)-J..n - ~ Gw (!!...) ·2 (1-dj • !.qi(d). 
, din . d . 2 

(17) 

(He.re ¢(J)/2 for d ~ 3 is the number of b with 1 _$ b _$ J/2 and (b, d) = l; for d = 2 

the same formula automatically holds by (15).) An elementary calculation shows that 

(17) is equal to u w+l (n) - 1\; that is, the coefficient of r 0(<1>) in (!). 
It remains to check that we can also reduce the right-hand side of the formula ob

tained from (14) to the same form as the right-hand side of (I). 

Up to this point in the computation the right•hand side of (14) has the foilowing 

shape (after taking the terms in r
0

(<1>) over co the left and using the fact that in (15) we 

need take only the terms with even k, the others being real): 
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Here the first sum has arisen from (15) by the use of (5)k; and the second from (16)b,d; 

in summing over b and din (18) one should bear in mind that the length m(b/J) of the 

expression for b/d as a continued fraction and the denominators dk are functions of 

(b/d). 

To compare (18) with (1), we use the following lemma .of Heilbronn ([4], Lemma 7. 7): 

5.2. Lemma. The family of pairs (dk' dk_1) of successive denominators of conveT'" 

gents lo all rationals b/d with given d?.. 3 and 1 _$ b < d/2, (b, el)= 11 is precisely 

the family of pairs (L\, 8) taken from the solutions of the equation d = !1.l\' + 88~ sub· 

feet to the conditi~ns ~ > o > 0, (·~ S) = 1 and either 11' > o'? 0, (~'. o') =I or 11 = d, 

{!I = 1, 1 ~ 81 < d/2, 0 = 0, (,l\ It 8') - 1. 

5.3. The conditions imposed on the solutions of the equation d = !1.l\' + 88' in 

Heilbronn's Lemma only differ from the conditions (2) in the addition of the requirement 

(L\, 8) = (11 '' o') = l; that is, in the requirement that the solutions be primitive. That is 

compensated for by the factors uw(n/d) in (18). 

More precisely, write "w(n/d) = :£Dlnld Dw and take Dw inside the internal sum

mation: 

After this, to any primitive solution of d = M' + 88' and to any Dln/d we make corre

spond the (not necessarily primitive) solution of n - M' + 88 ': 

6.' = ~!!' 
Dd ' 

6' = ~{,'. 
Dd 

The whole sum (18)"then turns into a sum of the same form as the right-hand side 

of (1): the individual terms clearly have the same form, and the summation wiII be over 

the same region by Heilbronn's Lemma. This completes the proof of Theorem 1.3. 

§6. Proof of Theorem 1.2 for even periods 

6.1. Lemma. Let rt>€ s!.
2

, and let cI>ITn = >..ncl> for all n ~ 1. Furthermore, let 

r' € s+ (Definition 2.2) be a vector such that r'I y+ = >.. r' for all n > I. Then ir' is 
n n -

also the vector of periods for some form <I>'€ S~+2 (obviously proportional to <I>). 

Proof. According to Theorem 1.3, for any cl> € S~+z we have 
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w-2 
ho -:e 

f (Gw+i(n)Cl>' -Cl>'lfn)(z)dz-=] Ao.21(n)r21 (@'), Ao.i1(n)EZ. (19) 
0 l==I 

Let r' = (r0', r2', • • • , r' ) and r'I y+ = A r' for all n ~ 1. Since (19) describes the action w n n 
of T! on the r~ coordinate, we have 

w-2 
2 

C1w+1 (n) r~ - Anr~ = ~ Ao,2t (n) r~1-
1=1 

(20) 

On the other han~ by Proposition 2.3 there exists a form cl>' E S~+l such that ir; = 

r2(cl>'), • • ·, ir~_ 2 = rw_ 2(<1>'). We will show that it then follows that fr~ .... r0(<1>'). It 

will then follow from (5)0 that ir~ = rw(cl>'), and the lemma wiII be proved. 

Substitute ir;1 = r
2
f <1>') for 1 _$. l ~ (w - 2)/2 in (19). This gives 

w-2 
loo ~ 

.f (C1a•+1 (n) <I>' - <I>' IT n) (z) dz -= i L Au.21 (n) r~,. 
0 l=I 

(21) 

Comparing (20) and (21) gives us 

lo .. J (O'w+1 (n) <D' - <D'ITn) (z) dz = <1111+1 (n) ir; - '>.nir~. (22) 

0 

Now let us divide (22) by ow+l(n) and cake the limit as n -o oo. It is well known that 

lim a +l(n)-1A = 0 for anv <I>. It then follows that 
n-30 w n "' 

loo 

lim O'w+1 (n)-
1 

\' Cl>'ITndz =0 
n--:JO .. 

0 

for any <I>'. FinaIIy we obtain 

loo 

f a>' dz= ir~ 
•· 0 

which completes the proof of the lemma. 

6.2. Proof of Theorem 1.2. Conclusion. Now we can repeat the arguments of §4.1 

without alteration: the exceptional form referred to in §4.2 does not exist, since a col

lection (Al' · • • , An' • · ·) of eigenvalues of the r: on R(w+2>12 corresponds by 6.1 

to a I-dimensional invariant subspace of s+ (provided that <I>ITn = An<P for all n and 

some ct> € S~+)· 

§7. Examples 

7.1. We give here a table of the even periods for those values of w + 2 for which 

dim Sw+2 = l; that is, for w-= 16, 18, 20, 22, 26. The case w + 2 = 12 was used as an 

illustration in the Introduction. 
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w+2,r0 I '• '• '• '• Tzo 

16 I 
3617 3617 3617 

2J,31,5.7.13 2•.3•.5·11·13 2a.33 .5.7.13 

18 43867 43867 43867 
2"·31·5" ~·3"·5111 ·7· 13 21 ·3"·53 ·7· II 

20 283°617 283·617 283·617 283·617 
22.34,5.71.17 2s.3" ·5· 7'· 17 2"·3"·5·71 • 13·17 ·v.3~.5.71.11.11 

22 I 131°593 131·593 131·&93 131·593 
31 ·5'·7·19 2'·3'·53· 17· 19 2•.3•.5•.7.19 ~-3'·53·7·l3·19 

26 I 43-657931 97·657931 29·657931 657931 657931 
2•.3 .. 5s.7a.13.23 2~.3•.5•.71. Jl.13-23 2l~·5"·71 ·13·19-23 20.3•.5•.7a.13.17.23 2l ·3' .5•. 72 • II· 13·23. 

These values have been obtained by solving the system of the Eichler-Shimura 

equations for the even periods, to which was added one more equation of the Hecke type (for 

n = 2) to compute r 0 • 

An interesting feature of these solutions is the fact that from them congruences of 

the Ramanujan type modulo large primes automatically follow. More precisely, let 

S",... ~ R ( l + ~ ,_~_.,..,...,) . 

Then from our table and the Coefficients Theorem (formula (1)) we find immediately that 

A~•> = 0 15 (n) mod 3617, ). (H} = o (n) mod 43867 n - 17 ' 

A~211> = Ou(n) mod283 • 617, 

11.~2> = 0 21 (n) mod 131 · 593. }.~9> = <121; (n) mod 65 7 931. 

For a systematic discussion of congruences of this type from the point of view of 

/-adic representations see the articles of Serre (9] and Swinnerton-Dyer [12]. 

§8, Mazur' s p-adic integrals 

8.1. In [6] Mazur constructs a p-adic analog of the Hecke series of a parabolic form 

ct> of weight 2, starting out from the integral representation 
CID 

r (s) l ( ) J,.. t'h (' ) s-r d -- ti> s -= "" iy y y. 
(2n}s 

0 

(23) 

In this section we describe this construction. Rewrite the integral (23) in the form 

f R* )((s)(y)µ~00>, where R: is the multiplicative group of positive real nwnbers, x<s>: R:-c, 
ghien by x<s~y) = y5

, is a quasi-character of R':. and µ~00> = <l>(iy)y-1 dy is a measure 

on R: which is associated with <I>. 

We start with the description of the p-adic objects corresponding to R:; afte.r which 

we will introduce a class of p-adic measures with respect to which we can integrate, de

fine the Mazur integral and prove that the p-adic L-function is analytic. The only novel

ty of our exposition is the consideration of measures which are not necessarily bounded; 

this is essential for the applications. 
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In the following sections we will construct p-adic measures µ ~) associated to para

bolic forms Cl> E S 
2

; we will then compute the corresponding archimedean and nonarchiw+ 
medean integrals and compare them. 

8.2. The analog of R:. The foIIowing notation and conventions will be fixed from 

now on: 

p will be a prime number, .t'.1. 0 > 0 an integer with (~0 • p) =I, and q = p if p;::: 3, 

but q = 4 if p = 2. Let /). = f). 0q, and let Z6 = ~ Z/!1pn. Z~ is a ring with p-adic topology. 

The analog of R: will be the multiplicative group Z1. Note that 

• -c:io t.,-1 

Z~ ::::::: Gal Q (lP , 1 ° )/Q. 

There is a canonical group isomorphism Z~ ~ (Z/(~))* x (l + qZP)*. The projection 

onto the first factor is given by a 1-+ a mod ~- The inclusion (Z/(~))* C.... Z~ (which of 

course cannot be extended to an imbedding of rings) defines the subgroups of 0 Teich

muller representatives". The subgroup (1 + qZP)* = [' (in Iwasawa 's notation) is iso

morphic to ZP; 1 + q is a canonical generator for it. We will frequently write elements 

of f' in the form (1 + q)G-, with a E Z . If a = lim a (a E Z) in the p-adic topology, p n n 
then (I + q) a = lim (1 + q )°'n in the topology of the ring Z.1. 

8.3. The analog of x<s>. Choose a finite extension K of the field QP. Let 0 be 

ring of integers of K, and m C 0 the maximal ideal. Consider the group of p-adically 

continuous homomorphisms 

X = Hom (Z~, 0}. 

The elements of X will be called p-adic K-characters of Z~. It is they that will be the 

analogs of )((s) (rather than the more restricted class of objects introduced be low). 

Any character X EX can be uniquely represented in che form X = Xo • x
1

, where 

Xo is trivial on (1 + qZP}* and Xi is trivial on (Z/(~))*. The character Xo is the came 

component of X• and Xi the wild one. The group of came characters is isomorphic to 

Hom ((Z/(~))*, o*) and is obviously finite. 

The group of wild characters can naturally be given the structure of p-ad.ic analytic 

group, as (1 + m>* c o*. Indeed, let us associate to the wild character )( the element 

t = xO + q) - 1. Then t Em, since limn-oo (1 + q)Pn-=:: l in z:; hence limn_oe>(l + t)Pn 

"" 1 in o*. Furthermore, X is uniquely determined by t, since 1 + q is a topological 

generator of (1 + qZP)*, and t can be taken to be any element of m. 

We have thus introduced the local coordinate t in a neighborhood of the identity 

character of X: 

for all aEZP. 

It is sometimes convenient to use the local coordinate s, analogous co the classi

cal argument s of Dirichlet series: 

0:) s ~ x<s>: X(~> (e (I +qt) = (I+ q)as = exp (as log (I+ q)). 
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The character X(s) is defined for those s for which the series exp is p-adically con

vergent. In this domain t = (1 + q)5 
- 1. However, for instance, in the case (1 + t}Pn,., 1 

the required value of s clearly does not exist, so that the s-coordinate parametrizes a 

smaller neighborhood of unity than t {which covers all wild characters). 

8.4. The analog of µ< 00>. As in §B.3, let K be a finite extension of Q • The sym
P 

bol I I will denote the p-adic valuation of K for which IPI = p-1; ord will denote the 

p-adic denominator, so that ord (p) = 1. 

We will call any finitely a~ditive function of the open-and-closed subsets of 

with values in K a K-measure µ on z1. 
Set I =a+ pml.l.z .. for a E z: and m > O. For any measure µ. we have a,m ... 

Va, m µ (/ a,m) = µ(lb. m+1)• 

z* ~ 

(24) 

Conversely, if we fix a measure on the I , subject to the relations {24), then it 
a,m 

has a unique extension to a measure /1 on the whole of Z1, because any open-and-

closed set is a disjoint finite union of "intervals" I • We will make frequent use of a,m 
this re mark. 

Example 1. µ.(I ) = canst • p-m. This is the invariant measure. Note that as a,m 
m .......:;. oo, while I is contracting to a point, the measure µ('/ ) grows infinitely in a,m a,m 
the p-adic topology of the field K in which µ is taking its values: Jp-mJ = pm - oo. 

This is the phenomenon which is vital for our theory of integration. It is clear that 

the K-measure µ(I ) cannot tend to zer.o as m - oo as it does for measures with a,m 
archimedean values; but it could be bounded. We will see in what foilows that the class 

of functions which are important for our purposes can be integrated with respect to any 

measure which grows slower than the invariant measure. This remark is essential for 

the consideration of values of p which are "supers'ingular" for a given form Cl>, as was 

first shown by Nasybullin. 

Example 2. Let 6.
0 

= 1, let c be an integer with c > 0, and let 0 < a< pn, with 
(a, p) = 1. Set 

f.1.c(a T- (pn)) = (E:..]- c-t E ~Zc Qp = K, 
Pn 2 2 

(25) 

where [ ] is the usual integer part of a number, and let us check that conditions (24) 

are fulf iHed. (Mazur introduced this measure and showed that the Kubota-Leopoldt 

p-adic L-functions ate defined by an integration with respect to it. It would be exceed

ingly interesting to determine whether analogous measures exist for the (-functions of 

any totally real fields, which have recently been consuucted by Serre [11].) 

We must prove that 
p-1 

µc (a + (pn)) = 2; f.1.r (a + bp" + (pn+•)). 
b=O 

It follows from (25) that if i/c :5 a/pn < (i + I)/c, then /1 (a+ (pn)) = i - (c - 1)/2 for c . 
i = 0, · • · t c - l. Fix i and a satisfying these conditions, and an integer b with 

O<S_b~p-1. 
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One can easily see chat 

..!!. ~a+ bpn < k +1 
1 

[i +be) ~ where k = -p · 
C Pn+l C 

Hence the additivity relation is equivalent to the following: 

p-1 

i - c 2 1 = ~ ([i + :c ]-c / ) . 
b1aO 

We will check this by induction on i, For i = 0 we get the classical identity 

p-1 

~ [be] = (p-1)~c -1) 
1 

11-o p 

which is proved by counting the integer points under the diagonal of the rectangle hav

ing vertices (1,1), (p - 1, l}, (p - 1, c} and (I, c). The inductive step from i co i + 1 is 

based on the remark that on the right-hand side the summands cprresponding to b with 

i +be= -1 mod p increase by I, and the others do not change. 

8.5. The analog of integration. Let µ be a K-measure on Z~, let Rm be a system 

of representatives for (Zt./(pm 11))* in z~ I and let f : z~ --- K be a function. We will 

denote by 

S (/; Rm) = ~ f (b) fl (h,m) 
bER"' 

the corresponding "Riemann sum". 

8.6. Theorem-Definition. There exists a unique limit 

lim S (f; Rm) def J fµ 
z* a 

taken over all Rm as m - ""• provided that the following conditions hold: 

a) The measure µ is of moderate growth; that is, by definition, 

Em ='max Iµ (/b,m) I p-m-+ 0 as m-+ oo. 
b 

b) The function f satisfies the "Lipschitz condition": there exists a constant C 

such that 

b = b' mod11pm ~If (b) -f (b'>I < cµ-m as m-+ oo. 

In the applications, the measure µ wil_l be bounded, and hence of moderate growth. 

The function f will usually be (piecewise) analytic, or even locally constant. 

Proof. Let Rm and R: be two different systems of representatives mod 11pm. 
Then 

IS (f; Rm) - S (f; R~) I< max If (b)- f (b') J max Iµ(/ b,m) I< Cem. {26) 
b=b'(t.pffl) b 
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Similacly, 

IS (f; Rm+i)- S (f; Rm) I ~ max If (b) - f (b') I max Iµ.(/ b.m+1) I < Cpsm+1 (27) 
b=:b'(Apm) b 

(using {24)). Since €m - 0, the set of all sums S(f, Rm) is bounded. It follows from 

the fact that K is locally compact that it has an accumulation point, and it can then be 

seen from (26) and (27) that there can only be one limit point for the sums as m - "°• 
Remark. Archimedean Riemann sums have a limit because although the individual 

summands are small, there are a correspondingly large number of them to compensate. 

Nonarchimedean Riemann sums have a limit because although the individual terms are 

large, there are a correspondingly large-number of the special form const • pn of them 

to compensate. If the summands are not too large (moderate growth of µ), and are not 

too far apart (Lipschitz condition), summing them is "practically the same'' as multiply

ing any one of them by const • pn; but IPn I - 0. 

Now let x be· some p-adic K-character of Z~ , and let µ be a K-measure on z:. 
We will show that the p-adic Mellin-Mazur transform 

L (µ, l) = s p.X 
z* 

A. 

is an analytic function of X• The integral e:iE-ists in any case, if µ is of moderate 
n 

growth. This is clear from 8.3: 1(1 + t)a.P - 1 I < Const • p-n as n - oa, a € Zp. 

8.7. Theorem. Let µ be of moderate growth. and let X = XoX(t)' where Xo is the 

tame and X(t) the wild component. as in §8.3. Then there exists a unique power series 

g(x
0

, T) € K[[T]], depending only on Xo• convergent for all t € m, and such that 

L (I.I., X0X(t)) = g (Xo, t) for al/ t E m. 

Proof. For any m 2: 1 we define.the following system of representatives Rm C z: 
for the classes mod tlpm: 

By definition, L(p., Xo~(t)) = limm_.oo S(Rm), where the Riemann sums have the form 

pm-1 

S (Rm)= S ('X0X1t)1 Rm) = ~ a1m) (1 + f)k, (28) 

k=o 

tzJim> == ~ Xe, ( E) µ {E (1 + q)k \- {pm !J.)). {29) 

ee(Z/A)• 

Set 
pm_I 

Sm (T) = ~ a~m>(t + TlE K [TJ (30) 

k-o 

and let us prove the following facts: 
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a) In the coefficient·by·coefficient convergence topology, the limit lim S (t) m ........ oo m 

€ K[[T]] exists. 

Denote this limit by g(x0 , T). 

b) If g(x
0

, T) = l:'; bn yn, then lbnj ~ const ·pk for pk :Sn :S pk+l - 1, so that 

g(x
0

, t} is convergent for all t Em. 

c) For fixed t Em 

so that g(x 0 , t) converges to lim Sm (t) = L(p., XoX(i»· 
We begin with the following lemma. 

Lemma. For all 0:::; k :S pm - 1, 

p-1 
~ a(m+l) = ak(m). 
L..l 'k+lpm 
l-o 

(31) 

Proof of the Lemma. Substituting definition (29) on both sides of (31) and equating 

the coefficients of x0(d on either side, we see that it suffices to check the identity 

p-1 

2; fl (8 (1 + qt+lpm + (pm+I ~)) = µ (8 (1 + ql + (pm~)), 
1-0 

which follows from the fact that µ is finitely additive. 

We now return to the proof of the theorem. By using {30) and the lemma, we find 

that 
pm+1-t pm-1 p-1 

Sm+1 (T) "'= ~ a~m+ii·(l + T)k = ~ ~ ai:;;,~ (1 + T/+ipm' 
k=O k=Di=O 

pm-1 pm-1 P· l 

Sm (T) = 2: aim> (1 +Tl= ~ ~ a:;;~1~ (1 + T)\ 
k=D k=D i=O 

and hence 

To estimate the coefficients of the series {32) we use the following estimate for 

binomial coefficients: j(~)\ :S lr/sl (in the p-adic norm). Indeed, this inequality is 

equivalent to ord c:> ~ ord {r) - ord {s). u the right side is nonpositive, the assertion is 

uivial. In any case 

ord(:) = ~ ([-7]-(~]-(r /])· 
1=1 p 1' p 

But for any a, f3 2: 0 we obviously have [a+ {3] - [a] - [f3] ~ 0, and even [a + {3] -
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[a] - [/3] 2:. 1 if a + /3 is an integer but a and f3 are not. This last possibility occurfi 

for those terms of the sum for which ord(s) + 1 :S: i :S: ord(r). 

Now tum to (32). Taking account of the fact that lak<m~l~ I < £ 1pm+l and using 
+zp - m+ ' 

(29) and 8.6 a), we get 

I ~m) I ~ Em+1Pm+l max I ',r I · 
~n S 

14'i~p-1 

S mo-I < < mo I Th h . h . h . ua1 -m+mo-1 , uppose p _ n _ p - • en t e maximum on t e rig t 1s eq to p , 
and hence 

I A(m)I ,, m0 
n ~ Em+1P for all 

We then have 

bn = lim aim>= a~m.> + (a~nr.+•> - a~,»+ ... = a~mJ + ~ 
m-

A(M) 
n ' 

and the series on the right is convergent by (33) and the fact that £M+I - 0 as M - OQ• 

Hence the series I'; bn rn = lim Sm(T) is defined. 

Furthermore, if pmo-l :S rz::; pmo - 1, then 

by {33). Hence I'; bntn is convergent for all It! < 1. 

Finally, by {33)k, 

pm-1 pm_l 

~bnt"-Sm(t) - ~ (bn -a~m))t" -
n= o n:=O 

for k < m. This completes the proof of Theorem B. 7. 

§9. Measures associaLed to modulBI' forms 

9.1. In this section we will fix a form <I> € S~2 and two nonzero numbers <.u + E Ri 

and ru- € R, which will be chosen later. Consider the two functions on the rational 

numbers P±: Q -c: 
loo ioo 

p+ (x) = .!_ Im S <D (z) dz, 
w+ P- (x) = w~ Re S <D (z) dz. 

x x 

We list the properties of these functions which we will need. 

9.2. Proposition. a) P ±(x + 1) ::;: P t(x). 

b) P + is even. and p- is odd. 

(34) 

c) Suppose that cI>!T
11

=1\cl> for all n?: 1, and let the numbers r
2

i+ 1(cl>)/w+ and 

r2i(cl>)/w- be algebraic integers for all integers 2i, 2i + 1 € [O, w] (see Theorem 1.2). 

Then P ±(x) (for all x € Q) lakes values which are algebraic integers in some finite 

extension of Q. 
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d) Let p be a prime and e!>IT
11 

= A.
11 

cl>. Then 

Proof. a) follows from the face that Cl>(z + I) = ct>(z). b) follows since the coeffi

cients of cl> are real: 

loo loo lco s Cl> (z) dz = s Cl> (- z) dz = - s Cl> (z) dz. (35) 

x x " 

To prove c) it will be sufficient to establish chat 

ico w 

V x E Q, J Cl> (z) dz E ~ Zr, (Cl>), 
x l-O 

(36) 

and then to separate out the real and imaginary pans, using (35) and the face that the 

odd periods are real, whereas the even ones are pure imaginary. But (36) has been es

tablished on the way co the proof of Proposition 3.2. 
Finally, the equation d) just describes th~ action of the Hecke operator T

11 
{see 

(11) in §3): 

ioo 0-1 loo 

= pw J Cl> (z) dz + ~ S <I> (z) dz. 
px k .. o~ 

p 

Separating out real and imaginary parts completes the proof. 

9.3. We will now fix ct>. cu+ and w- satisfying 9.2 c). Choose a prime number p 
and denote by K one- of the p-adic completions of the field in which the functions P ± 

ta.ke their values. We will identify the P ±(x) with elements of K without especial 

mention. 

The following lemma was pointed out to me by Nasybullin. k is an improvement 

and a generalization of the original construction of Mazur and the author. In the noca• 

tion of §s, let Q.l be the set of rational numbers whose denominators divide 6.pn for all 

n > 1. 

9.4. Lemma. Let R : Q - K be a function with the following properties: for some 
<l 

A and B E K and all x E 0 
-,l. 

,,-. ( +k) R (x +I)= R (x) and ~ R 1!._P_ -=AR (x) i- BR (px). (37) 

Furthermore, let p denote any root of the equation p 2 = Ap + Bp. with p I O. Then 
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there exists a K(p).measure µ. on z: such that for all m 2:, 0 and all a E Z 

(38) 

Proof. We muse check formula (24). We have 

£ µ(a+ pml\k + (pm+1~)) = ~ p-{m+l)R (a :r::Ak) 
-o ~o P A 

+ ~ Bp-{..,.lR ( a +::6k) ~ 

We transform the first term by means of (37), and the second using che periodicity of R. 

This gives 

p·(m+•> (AR (;,IJ.) +BR(,r-~A )) + Bp-<m+:a> PR(~) 

= p-<m+i> (Ap + Bp) R (~) + B?-<m+i> R (~) 
p'"IJ. pn-•A 

= p-mR (;A)+ Bp_,,,....; R (~A)=µ (a+ (pm~)), 

and chis proves chat µ is finitely additive. 

9.5. We now apply Lemma 9.4 to the functions P :l:(x) to obtain the basic result of 

this section: 

Starting from given cl>, ru+, w- and K as above, we can construct K(p)-measures 

µ.: on z~ such that 

µi (a + (pm~)) = P-mpj: (...!!..._)- Pw P ;m+I) p± [_a ) , 
• ~A ~-1/J. (39) 

p2 
- hpp + PW+I = o. <DfT p = Ap<l>. 

The measure (39) is clearly of moderate growth if ord p < 1. 

It would be interesting co widen the type of conditions under which (39) turns out 

to be of moderate growth. Here we only use the integrality of the p:l:(x), but it could 

be that the p±(a/pm!!,) are divisible by a power of p that grows with m, and that would 

compensate for the p- m. 

_ §IO. p-adic Hecke functions 

10.1. In chis section we prove a stronger version of Theorem 1.5. 

We keep all the notation of §§s and 9, partially summarized in §I.4. In particular, 

X is a primitive Dirichlet character modulo fl.pm, with m 2:_ O; K is the p-adic field ob-

rained by completing the field of values of p±(x) and of X· The K(p)-measures fL! are 

constructed for a form cl> e: s0 
2 

which is an eigenfunction for all the T , ct>IT = i\ cl>, w+ n p p 
and o is a root of p 2 - A.,.p + fl"+l "' O. 
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Under these conditions the following holds: 

10.2. Theorem. If the measure µ! is of moderate growth, then 

Apm •sCIO dz m s ..... . \l>x {z) = p µa;X , 
w±a (X) 0 z" 

lJ. 

{40) 

where t.he left-hand side of (40) is an algebraic integer, considered as belonging to K; 

on the right of (40) x*(x) = x-1(-x); the sign ± (on both sides) is to be taken accord

ing as x<-l) = ±1. 

To deduce Theorem 1.5 from (40). we must note that 

"oa 
f <l>x (z) dz= - ~ l(I) (l, X). J 2n& 
0 

put )( in the form XoXp where Xi is the wild compo~ent of )(, write the p-adic char

acter x1 in the form X(t)' where t = x1{1+q)-1 according to §B.3, and finally apply 

Theorem 8. 7 to the right-hand side. 

Proof of Theorem 10.2. To compute the left-hand side of (40), we make use of the 

standard formula 

(see for example [3], Lemma 9.4). This gives 

Apm 'f <Dx (z) dz = ~ x· (b) 's"" <D (z) dz 
G(X) J 

o b mod tJ.rf1Z b/Apm 

The formulas (34) and (35) show at once that 
loa 

!J.pm ..... \ \l>x (z) dz= ~ r.• (b) P* (...!!_) . 
G (X) ro- ) !J.pm 

o bmod!J.pm 

(41) 

To compute the right-hand side of (40) we note that x* is the constant function on 

the "intervals" b + {~pm). so that JZ* is just the same as the corresponding Riemann sum: 
~ 

m J 11.±"'• m ~ p rG>"' = p 4J 
z~ bmod IJ.pm (42) 
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Thus to show that (41) and (42) coincide we must check chat 

~ x·(b)P±(__!_) =0. 
Li Ap"'-1 

b mod 11,!'1 

For this we break the sum up into partial summations, indexed by the classes 

b mod pm-l (this is even possible when m = Ol). and note that Pf<.b/tJ.pm-l) depends only 

on such a class, and that 

~ 'X* (b')= 0, 
b'=b mod l:i(l'1-l 

since x* is a primiti~ character. (This is where the primitivity of x is important.) 
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