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PREFACE

This book is a revised and expanded version of a series of talks
given in Hanoi at the Vi@n Toan hoc (Mathematical Institute)} in
July, 1978. The purpose of the book iz the same as the purpose of
the talks: to make certain recent applicaticns of p-adic analysis
to number theory accessible to graduate students and researchers in
related fields. The emphasis is on new results and conjectures, or
new interpretations of earlier results, which have come to light in
the past couple of vears and which indicate intriguing and as yet
imperfectly understood mew connections between algebraic number

theory, algebraic geometry, and p-adic analysis.

I occasionally state without proof or assume some familiarity
with facts or techniques of other fields: algebraic geometry
(Chapter TII}, algebraic number theory {Chapter IV), analysis (the
Appendix), But T include down-to-earth examples and words of
motivation whenever possible, so that even a reader with little

background in these areas should be able te see what's going on.

Chapter I centains the basic information about p-adic numbers
and p-adic analysis needed for what follows. Chapter II describes
the construction and properties of p-adic Dirichlet L-fumctions,
including Leopoldt's formula for the value at 1, using the approach
of p-adic integration. The p-adic gamma function and log gamma
function are introduced, their properties are developed and compared
with the identities satisfied by the classical gamma function, and
two formulas relating them to the p-adiec L-functioms Lp(s,x} are

proved. The first formula--expressing Lé(O,x) in terms of special
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values of log gamma--will be used later (Chapter IV} in the discus-
sion of Gross' p-adic regulator. The other formula--a p-adic Stir-
ling series for log gamma near infinity--will be a key wotivating

example for the p-adic Stieltjes transform, discussed in the Appen-

dix.

Chapter III is devoted primarily to proving a p-adic formula
for Gauss sums, which expresses them essentially as values of the
p-adic gamma function. The approach emphasizes the analogy with
the complex-analytic pericds of differentials on certain special
curves, and uses some algebraic geometry. The reader who is inter-
ested in a treatment that is more "elementary' and self-contained

(but more computational rather than geometric) is referred to [62].

Chapter IV discuszses two different types of p-adic regulators.
One, due to Leopoldt, is comnected with the behavior of LP(S,X) at
a=1; the other, due to Gross, is connected with the behavior at
s=0. Conjectures describing these connections between regulators
and L-functions are explained and compared to the classical case.
The conjectures are proved in the case of a cne-dimensional char-
acter ¥ with base field Q (the "abelian over Q" ecase). The
proof of Gross' conjecture in this case combines the formula for
L;(G,X) in Chapter IT and the p-adic formula for Gauss sums in
Chapter IIT, together with a p-adic version of the linear indepen-—
dence over Q of logarithms of algebraic numbers (Baker's theorem).

This procf provides the culwination of the main part of the book.

The Appendix concerns some general constructions in p-adic
analysis: the Stieltjes transferm and the Shnirelman integral. 1
first use the Stieltjes transform to highlight the analogy between
the p-adic and classical log gamma functions. I then.give a com-
plete account of M. M. Vishik's p-adic spectral thecrem. This
material has been relegated to the Appendiz because it has not yet
led to new number theoretic or algebra-gecmetric facts, perhaps

because Vishik's theory i1s not very well known.

I would like to thank N, M. Katz, whose Spring 1978 lectures at

Princeton provided the explanations of the algebraic geometry and
p-adic cohomology given in Chapter III; R. Greenberg, whose seminar
talka at the University cf Washington in October 1979 and whose
comments con the manuscript were of great help in writing Chapter IV;
B. H. Gross, whose preprint [35] and correspondence were the basis
for the second half of Chapter IV; and M. M. Vishik, whose preprint
[95] is given in modified form in §§3-4 of the Appendix.

I am also grateful to Ju. I. Manin and A. A. Kirillov for the
stimulation provided by their seminars on Diophantine geometry and
p-adic analysis during my stays in Moscow in 1974-75 and in Spring
1978: and to the Vietnamese mathematicians, in particular L&é-vin-
Thiém, Ha-huy-Khodi, Vwong-ngoc-Chau and Dg—nggc—Diép, for their
hospitality, which contributed to a fruitful and enjoyable visit to

Hanoi.

Seartle Neal Koblitz
April 1980

FRONTISPIECE: Artist's conception of the construction of the
2-adic number system as an inverse 1imit. By Professor A. T.
Fomenko of Moscow State University.



I, BASICS

In some places in this chapter detailed proofs and computations
are omitted, in order mot tc bore the reader before we get to the
main subject matter. These details are readily available (see, for

examp:LE, [53]) -

1. History (very brief)

Kummer 1850~  introduced p-adic numbers and developed
and Hensel,..... 1900 their basic properties
Minkowski....... 1884 proved: an equation alx§+...+anxi =0

(ai rational) is solvable in the rational
nubibers if and omly if it is solvable’'in
the reals and in the p-adic numbers for
all primes p (see [13, 84])

Tat@.eeanroerues 1950 Fourier analysis on p—adic groups; pointed
toward interrelations between p-adic num-
bers and L—functions and representation
theory (see [59])

Dwork,ceveees .. 1960 used p-adic analysis to prove rationality
of the zeta—function of an algebraic vari-
ety defined over a finite field, part of
the Weil conjectures (see [25,53] )

(Rummer........, 1851 congruences for Bernoulli numbers—but he
approached them in an ad hoc way, without
p-adic numbers)

Kubota-Leopoldt 1964 interpretation of Kummer congruences for
Bernoulli numbers using p-adic- zeta-function

Twasawa, Serre, Dpast p-adic theories for wany arithmetically

Mazur, Manin, 15 interesting functions

Katz, others years

Dwork, past p—adic differential i

. equations, p-adic
Grotheadieck and 15 cohomology, crystals * P
their students years

2. Basic concepts

Let p be a prime number, fixed once and for all. The "p-adic

numbers” are all expressions of the form
m m-1 mt+2
+
2pP 2P + Enre2P

where the a, ¢ {0,1,2,...,p-1} are digits, and n is any

+ oy

integer. These expressions form & field (+ and X are defined
in the obvious way), which contains the nonnegative integers
- r s

n=ag+ apt ...t ap {"n written to the base '},
and hence contains the field of rational numbers {. For example

-l= (1) + (p-Dp + (-1p% + ...;

—a )

S—:—T-= ag + aqp + agp F oo,

as is readily seen by adding 1 to the first expression on the

right and multiplying the second expression on the right by Ll-p.

4An equivalent way to define the field {_  of p-adic numbers
. P
is as the completion of Q under the "p—adic metric" determined
by the norm | }p: Q—-ncnnegative real numbers, defined by

Tal ord b ~ ord_a
B-e T T oo
p P

where ord of a nonzero integer is the highest power of p

dividing it. Under this norm, numbars highly divisible by p are

"smail”, while numbers with p in the denominator are "large",

For example, |250|5 = 1/125, !1/250]5 = 125, Glearly, | |

1s multiplicative, because ordp behaves like log: ?
ordp(xy) = ordpx + ordpy{

Also note that ]nlP <1 for n an integer.

It is not hard to verify that the completion of Q under the

p=adic metric can be identified with the set Qp of "p-adic

& x " m mtl .
xpansions” a p= + a P * ... . The norm | IP is ecasy to



evaluate on an element of written in its p-adic expansion:

. _ m 1 N ]
if x= ap + a P + ... with a # 0, then ‘le P .

Thus, G  is obtained from | 1P in the same way as the real
number field R iz obtained from the usual absolute valde BE
as the completion of Q. In fact, a theorem of Ostrowski (see
[13] or [53]) says that any norm on Q is equivalent to the usual
Il ortw | |P for some p- Hence, together with R, the

various Qp make up all possible completions of Q:
R 9 Q0 et Q

SIS
Q

P

. Often, a situvation can be studied more easily over R and Qp
than over Q and then the informatfon obtained can be put
together to conclude something about the situation over Q. For
example, one can readily show that a raticnal number has a square
root in @ if and only if it has a square root in R and for all
p has a square root in . This assertion is a special case of

the Hasse-Minkowski theorem (see §1 above).

Tn addition to multiplicativity, the other basic property of a
norm | | on a field is the "triangle imequality" |x + y| <
1x[ + |yl, so named because in the case of the complex numbers
£ 1t says that in the complex plane one side of & triangle is
less than or.equal to the sum of the other two sides. The norm

| !p on Q_ satisfies a stronger inequality:

I +yl, < max Clxl, [5]) (z.1)
This is obvious if we recall how to evaluate Ix}P for x =
ampm + am+1pm+l + ,.. {(see above). A norm that satisfies (2.1)
is called "non-Archimedean". TInequality (2.1) is sometimes called

the "igosceles triangle principle', because it immediately implies
that, ameng the three "sides" ixlp, iy|p and 1x+y|p; at least
two must be equal, Thus, in non-Archimedean geometry "all triangles

are isosceles™.

i e

Here is another strange comsequence of (2,1). 1In a field with
a non-Archimedean norm | | , define
P
D (r} = ix| fx—a]p‘g r} ("closed" disc of radius

r centered at a}
(2.2)

Da(r_) = {x]| fx—alp < r} ("open" disc of radius
r centered at a).

Then if b € Da(r}, it follows from (2.1) that Db(r) = Da(r).
(Also, if b € Da(r_), then Db(r_) = Da(r_).) Thus, any point in
a disc is its center! In particular, any point in a disc {or in
its complement) has a neighborhood completely contained in the disc
(resp., in its complement). Therefore, any &isc is both open.and
closed in the topological sense. That is why the words-"open’:;;a
"closed" in (2,2} are in quotation marks; these words are used
only by snalogy with classical gecmetry, and cne should not be
misled by them.

In Qp, it is not hard to see that zll discs of finite radius
are compact. The most important such disec is

Zp ase Do = x| [xl <1} < fx=ag+aptap’t ..l

ZP is a ring, whose elements are called p~adic "integers". Z
is the closure of the ordinary integers Z in QP. In Q , the
P
other discs centered at 0§ are
m, m art1
PZ = {x=a +
o ot P

Zp is a lecal ring, i.e., it has a unique maximal ideal pZ_, and

+ .o} for me gz,

its residue field Zp/pZp is the field of p elements F_ = z/pzZ.
P
The set of invertible elements in the ving Z_ is

B oasr Ry - pZ, = {x| ]xlp=1}

_ 2
{x = ay ta;p tanp”+ ... | ay # 0}.

There are p-~l npumbers in Z; which play a special role:

the (p-l)~th roots of cne. For each possible choice of ay =

1, 2,..., p-1, there is a unique such root whese first digit is

‘855 we denote it m(ao) and call it the Teichmilier representative

of ag. For example, for p =5



w(l) =1

B(2) = 2 4+ 105 + 2052 + 1e55 4 3057 + L,

W(3) = 3+ 305 4 2052 4 3057 + 155 ¢ L. = —u(®

w(4) = & + 45 + 4e5% + 45> + 4es® 4 L= -1
Except for w(*l), the Teichmiiller representatives are irratiomal,
so their p-adic digits de not repeat, and can be expected to be

just as random as, say, the decimal digits in vZ.

If x=ag+ap+ ...« Z¥, we set w(x) = m(ao). Any

0 ordpx .
X € Qp can be written as X =p Xy for e € Zp. Then we
write ordpx
= Ly >
b P m(xo) %>

where <z > .= xolm(xo) is in 1+ pr, the set of =x such
that |x--1\p < 1.
a .
The ring Z_ is the inverse limit ef the rings z/p"Z with
; Tl o 2/ptE

respect to the map "reduction mod p ' from Zip 2 to D or
m > n. This suggests that, if we want to solve an equation f{x) =
0 for x ¢ Z_, we should first solve it in Z/pZ = Fp, then in
z/pzz, ZIPBZ, and g0 on. An important condition under which a

solution in F_ can be "lifted” to a selution in Zp is given by
P

Hensel's Lemma. Suppose that f{(x) € Zp[x], f(ao) = ¢ {(mod p),
and f‘(ao) 20 (mod p) <(here £' is the formal derivative of the

polynomial f). Then there exists a unique =z = a5+ ... € ZP

such that (x) = 0.

Hensel's Lemma is proved by Newton's method for approximating
roots (see [59,53]).

For example, when £(x) = L1 1, any ay € {1,...,p-1}
satisfies f£{ay) =0 (med p), while f'(ao) = (p—l}ag_2 0
(mod p); so Hensel's Lemma tells us that ay has a u?ique
Teichmiiller representative m(ao) € Z;.

Unlike in the case of R, whose algebraic closure C is only

a quadratic extension, QP has algebraic extensions of arbitrary

10

‘degree; 1its algebraic closure 6; has infinite degree over QP.

Can J I be extended from Qp to a%? Well, suppose o 1is

P
algebraic over Qp and satisfies the minimal polynowmial £(x) =
d d-1

x + 84q% L 2. It is not hard to show that a multi-
plicative norm on ﬁ% extending | lp would have to be unique.
So the value of this extended | |p on & -and each of its conju-

gates would be the same (because we can also get an extension of

| |P by composing our first extension uf | | with a field
.autcmorphism of 6' taking o to the conjugate). Therefore, the
only possible value for fu|p 15 the d-th root of |a0|p. It
turns out that this definition

_ 4
lol, = v !Npr/Qp‘“)'p

(N denctes field norm)

does in fact give a norm on Q . But the fact that this | lp
satisfies the trianglie inequality is not trivial to prove. The
extension of i [p to Eﬁ is perhaps the hardest of the basic

facts about p-adic numbers; for two different proofs, see [13]
and [53].

We now define the ordp function on ab by crdpu = —logpfulp,
S0 as to ggree with the earlier ord on @ . (Here Iog is the
ordinary "log to base p", unot to be confused with a p-adic
logarithm which we shall introduce shortly.} Clearly, if [K:QP] =
d, then the image of K under ordP is an additive subgroup of
%Z, and so orde = éz for some e dividing d. This positive

integer e 1is called the index of ramification of K. There are

twe extremes:

(1) e=1. Then X is called unramified. An example is
K = Qp(gij for N not divisible by p. In fact, it car be shown
that every unramified X 1is contained in some cyclotomic field,
s0 the "unramified closure" of Qp is anr = L_JQp(gﬁ).
pfX
(2) e=4d. Then K is called totally ramified. An example
is K =0Q (§) for E#L a p-th root of one, i.e., a root of

L+ 20724 4 x+1-0. Toshow that K is totally rami-

n




fied, it suffices to find X € K such chat ordpk = 1/(p-1). Let

A = E-1. Singe A satisfies: 0= [&+1)P-1] / [(x+1)-1] = L7 4

1
—== ord
ot T p-I “F%P
= 1/{p~1). More generally, if £ is a primitive Pn‘th root of cne,

n-1
then Qp(E) is totally ramified of degree p =p ~, and

- (2.3
n n-1" )
P - P

pxf 2 4 %p(p—l)xp—s + ...+ p, it follows that. ord A =

ordp(g -1y =

The set of all tatally ramified extenslons is harder to describe
than the set of all unramified extensicns. And, of course, "most"
extensions are neither unramified nor totally ramified. In the

general case we write d = a+¢f,

The significance of f 1is as follows. If K is any field with

a non-Archimedean norm | | , we let
OK = {x ¢ K| |xip < 11, MK = {x ¢ ¥| ixlp < 1}.

OK is called the "ring of integers' of K, and MK is the unique
maximal ideal in UK. If K is algebraic over Qp, then the resi-
due field UK/MK will be algebrale over FP. If K has degree 4

and ramification index e, then this residue f£ield has degree f =

d/e over Fp {see [59]).

Let us return to the case of K unramified, of degree d = f,
Let q = pf, so that OK/MK iz the field of q elements Fq.
Then, using Hensel's Lemma (generalized tc OK)’ we see that every
nonzero element a, € F_ has a unique Telchmiller representative
m(ao} ¢ K such that w(ao)q_l =1 and w(ao) mod MK is ag. 1f
a, generates Fq as an extension of FP, then K = QP (m(aO)).
These Teichmiller representatives atre a natural choice of "digits"

in K: every x ¢ K can be written uniquely as the limit of a sum

- i
X = EiZm a,p”, vhere a, ¢ {m(a)}a qu A
(we agree to let w(0) = 0). Even in QP it is sometimes con—

venient to choose 0, w(l), w(2),..., w(p-1) as digits instead of

0, 1, 2,14+, P-L.
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Since the complex number field C 1is a finite dimensional
R-vector space, it is complete under the extension of I | to C.
However, 6; turns out not to be complete under | IP. For exam-
ple, the convergent infinite sum Xxipi, whete the x; are a
sequence of roots of one of increasing degree, in general is not
algebraic over Qp- Thus, in order to do analysis, we must take

a larger fileld than a%. We denote the completion of aﬁ by ﬂp:

2, = % (" means completion with respect to | jp).

It is not hard tc see that . is algebraically closed, as

well as complete, that OQ /MQ = fé, and that ordpﬂp = 0. Some-

PP
times {! is denoted C in order to emphasize the analogy with

the complex numbers (i.e., both are the smallest extension field of
@ that is both algebraically closed and ccmplete in the respective
metric}. But in some respects I iz more complicated. For

example, it is 2 much bigger extension of Qp than C is over R
{in fact, ﬂp has uncountable transcendance degree over Qp), and

it is easy to see that QP is neot locally compact.

3. Power series

An infinite sum Eai has a limit if I is small for

wei<d ¥4
large N, M > N, Because of the isosceles triangle primciple
(2.1), in @ this occurs if and only if &;—=0, i.e., ]aijp
— 0, or equivalently, ordpaf—a—w. Thus,-the question of con-
vergence or divergence of a power series Zaixl depeads only on
Exlp, not on the precise value of x. There is no "conditiomal
convergence". Thus, every infinite series Zaixi has a radius of

convergence T such that one of the fellowing helds:

00 .
jgji=0 aixl converges <= x ¢ D(r ) (d:f Do(r_), see (2.2))

or

o
i =
;Ejizo a;x° comverges < = € D(r) azg Ppfe).

An example of the first alternative is IxL {where r =1); an

13



i_l i
of Ix’® (here

example of the second is the derivative Eplxp

also r = 1}.

An important example is the series e = ZIx /il. To determine
its radius of convergence, we must find ordp(i!). If i is a
-1 -2
power of p, it is easy to see that ordp(pn!) =P T
oo tp+1 = (i-1)/(p-1). More generally, if we write the posi-
tive integer 1 to the base p: 1 = Eaipl, and let 8; =L a;
denote the sum of its digics, then .
'1--S:.L
ord_{i!) . (3.1)
P b1

Since 1< 5, 2 {p=1) (logpi + 1), it follows that asymptotically

ord_(i!) ~ ——= and so
P p=

Drdp(xlli!)——-—rw = orde > Si—l

@xED(.\%_), 'Y=I:%/;>l'
Thus, € converges in a disc smaller tham the unit disc. In the
¢lassical case the di! in the denominator makes e converge
everywhere, but in | |_ it has a harmful effect on convergence.
The poor convergence of e* causes much of p-adic analysis, e.g.,
differential equatioms, to involve subtleties which are absent in
complex analysis.

To obtain a series convergent in D(1") instead of D(%_), we
can replace e® by ewx, where 7 (not to be confused with the
rezl number W = 3.l4...) is any element of Qp such that ordpw
= 1/(p-1}. The best choice of T is a {p-1)-th root of -p, for

reasons that will beccme clesar later.

We can analyze more closely why e® converges so poorly if we

use the formal power series identity

S § NI bl L R TE 23O . G

where the Mobius function | is defined by

14

0 if there is a prime whose square divides n;
wmy =
ko, . .
(-1)" if n is a product of k distinet primes,
The identity (3.2) is easily proved by taking log of both sides
and using the fact that Zdin () =1 if n=1 and 0 other—

wise.

Most of the terms in (3.2) -- those for which pfn -- have

fairly good convergence, because the binomial series

(1+1n* = z(a) Yi, (a) _ale-1)s-r (u-itl)

i i it
has coefficients

(‘i) €z, for aez. (3.3)

(Namely, this is trivial for « a pesitive integer; then use the

fact that the positive integers are dense in 2 2 Thus, for
P

ny-uln) /n
pim, E i(l—x ) u( € Zp[[x]] and so converges for |x| < 1.
The bad coavergence of (3.2} comes from those n which are divis-
ible by p. So, to get better convergence, we can define the
"Artin-Hasse exponential® 2 3
2
E {(x) = [T {l_xn)—u(n)/n - KT xp/p + %P /p + xp/p3 +...
pin

where the last equality of formal power series is proved in the
same way as (3.2), Then Ep(x) is in Zp[[x]], and so converges
in D{1 7).

E

p-1

If we make the change of variables E (1), where T = -p,
the first twe terms in the exponent are mz - ¥®).  The expression
b .
X - x plays a key role in much of p-adic analysis, since in a

field of characteristic p

x € the prime field FP = ox-xF =0
also recall that the Teichmiiller representatives {w(a)}aeF are

N a p
sclutions of this equation in Qp. T is chosen to be a (p-1}-th
root of -p precisely so that the first two terms in the exponent

for Ep(wx) become a multiple of x - xF.

15



Since

i .
RICE P i (3.4)

£, (1) Hizz e

—xP .
the convergence of eﬂ(x P} is determined by the worst convergence

that occurs on the right. Ep(ﬂx) converges on DB(y ) (recall
= pll(P_l)), snd it is easy to comp%te that the worst series is

2 .
the first one in the product, exp(-m° xP /p%), which gonverges

) ¢S4 RN it
for ord x > —(p-1)/p?. Thus, if we let Y, = p 1, 1

P ) _ ,
follows that o X ) converges on D(y;7), a dise strictly

bigger than D(1).

p . .
Thus, the -xF in eﬂ(x_x } is a "correction' which improves
s

the convergence of e, e can see how this works if we look at

m(x-%" ) P_
the expansions of eﬂx and e ( out to the x —term, iie
first term where the two series differ. In the expansion e =

: ) ' ] 3
% (mx)t/il,  the «P—term is the first one in which 1/il ¢ ZP,

i.e., the first term containing a P in the denominator. Thus,
. p-1
|w¥/pt]_ = |-w/(p-131f_ = }ﬂ|p (the first equality because T
’ P
i Do K(x—xp) is
= ~p), But the coefficient of = 1n @&
P =T
= = w(eplpl = 1) = vy (L (-1
T T T(-p/pt - 1) =y
A simple fact of elementary number theory (Wilson's theorem) says?
(p-1)1 = -1 {mod p). Hence, the p-adic norm of the coefficient of
p -
& in "X ig bounded by |p1T|P = lwpip. Thus, the correc

tion term _mx® has the effect of canceling the P in the denom—
ipator of m)P/pl.
p
T {%=% ) ith E ().
We denote En(x) =e (not to be confused wit p( )
Hote that E_(x) must first be expanded as a power series and then
Tr .
evaluated. If |x| <1, the result will be the same as if we
. o :
first substituted = in ﬂ(x—xp) and then took the exponential.
But if le > 1, that exponential will not converge unless
P - - a >
Ix—xP[ < 1, and even in the latter case will in general give
P

0
the wrong value; for example, E (1) 41=e (see 8ITI.5}.
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Another importﬁﬁt series is
i+l .
® -1 i
log(l + x) = Z LD - ])_ X, (3.5)
i=1 _
which is easily seen to comverge on D(1 ). It has better conver-
gence than el Since the identity
log(zy) = 1logx + legy ' (3.6)
holds as a formal power series identity, i.e., E(—1)1+1xl/i +

oMY o 8 ey 4 dn ollx,y1l, it Follows

that (3.6) holds in §. as long as |x-1] < 1 and iy—l!p < 1.
In particular, since E—1|p <1 for £ amy pn—th root of one

(see §2), we can apply {3.6) to conclude that log £ = 0.

The p-adiec logarithm has a natural extension to ﬂ; = QP—{O},
which we shall denote lnP {s0 as not to confuse it with the
classical leg-to-the-base-p; however, in the literature logp

is normally used rather than lnp).

Proposition. There exists a unique function lnp: R;———9‘Q

P
such that

1 lnp(l + x) is given by the series (3.5) if ]x[p < 1:
(2) (3.6) holds for all x, v ¢ R;;
(3} lnp(p} = 0.

The third condition is a normalization, which is necessary be-
cause, as menticned before, ordp behaves like a logarithm. Thus,
if lnp is any function satisfying (1) and (2), then for any
constant ¢ € QP the function lnp + c-ordp also satisfies (1)
and (2).

I won't prove this proposition, but will discuss concretely how
one computes a logarithm. First, for every E € ¢, choose "Pm/n"

to be any root of - pm = 0. Now suppose we want to find In x

. . min
for some nonzero X € Qp. First write x = p / XO’ where =m/n =

ord x. Since [xoip =1, its reduction modulo M, is a nonzero

element Eb € ?é. Let m(ﬁb) be the Teichmiiller representative of

xqe Then

17

UNIVERSITE DE GRENOBLE I
LABORATOIRE
DE MATHEMATIQUES PURES
INSTITUT FOIIRTER




ord_x m
x = p P ool g, vhere l<xg - i, <L

fmpli £ 1) =90,
Since lnpp =0, and {3.6) implies that lnp(a?y root o )
we have - .
1 .
R Sentxg - 1

For example,

1)u
1“5(250 5

i 4 i,
z{—1)1+1 (305 + 352 + 0e5o + 4057 + .07/

3 4
(z b 1e5 b 2055 4 1o50 + 357 )
2

Note that a function such as ordp, which is locally constant
i d_x
on H* (i.e., for every a € Q% there existe t such that or o
= ordpa for x € D_(r)) but is mot constant, could not exist on
a - . .
C*, gor this reason, the theory of analytic continuation is more
; i 1 is not ob-
complicated on Q;. tnlike the classical log, np )
tained by "analytic continuation” of the series (3.5); any of the
functions ln_ + ctord_ would also be locally analytic and agree
i
with (3.5) on Dl(l ).
There 1is a notion of p-adic global analyticity, due te Krasner
[57], such that two globally analytic functions which agree, say,
2
o
on a disc, must agree everywhere. Namely,rlet D c QP be a s-
called "quasi-connected" set, the most important examples of which
are dises from which finitely many smaller discs and/or compact

i : D=} is said to
subsets have been removed. Then 2 function £: D o

be Krasner analytic if D ig a union of open sets Di’ Di fad Di+1’
.
i i i imit of rational func-—
such that for each 1, lei iz a uniform limi fonal Fo
i i i Krasner analy
tions having no poles In D.. 1np is not

¢%. Later we shall see examples of interesting Krasner analytic
fEnctions. For example, the second derivative of the p-adic log
gamma function turns out to be Krasnmer analytic on the complement

z: D=0 -2 (see p. 134).
of % p P

- : 1
A final remark about 1In_: it has the expected derivative T,

1 €
= im = 1+ =), and
since lim [(lnv{x +e) - lnPX) /el Lin £ hlp( X)
O f=!
1n (1 + i} {s given by the usual series as saom as |°!p ARl
o i
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4, Newton polygons

a. Classical case

For £(X,Y) = 2ainin e R[X,Y], let Mf bethe convex hull
of the following set of points in the (i,i)-plane: {(i,1}| aij#O}.
Mf is called the Newton polygon of f. If two polynomials f, g
€ R{X,Y] have no common factors, then the twc curves determined by
f and g intersect in a finite number N of points {counting
multiplicicy): _{(x,y)l flx,v) = glx,y) = 0}. Let Mf + Mg =
{z=x+y | xc¢ Mo, y € Mg}. Then it can be shown that

N < area(Mf + Mg} - area(Mf) - area(Mg).

b. The p-adic case: polynomials

Lec f(x) = ay + ...+ adxd € Qp[x]. The Newton polygon Mf
of f is defined to be the cenvex hull of the points (i, ord ai)
(where we agree to take ordPO = 4w}, i.e., M, 1s the polygonal
line obtained by rotating a
vertical lipe through (0, ordpao) (ds ordpad)

counterclockwise until it bends

arcund various points (i, ordpai),

\/

(d, ord ad). This is similar to the classical case (where we take

and eventually reaches the point

1~ '

- j - . .
a; 5 ain and ordYai the least 1 for which aij # 00,
except that we only take the lower part of the convex hull.

It is not hard to prove the following

Proposition. If a segment of Mg has slope X and horizontal

length N (i.e., it extends from (i, ordPai) to

(i+N, AN + nrdpai)), then f has precisely N roots T with

ordpri = -A (counting mulcipliecity).

Examples. (1) The Eisenstein irreducibility criteriom: if
£(x) = ay t .t ad_lxd_l + xd € (3[x], and if there exists a prime
p such that ord a; 21 for 0 <i<d and ardpao =1, then f
is irreducible over Q. In fact, using the Newton polygon Mf, we

can quickly see that f is even irreducible over Qp. Namely, the

19




conditicns on ord a; imply that Mf consists of the line segme?t
from (0,1) to (d,0). Hence £ has d roots all of ordinal 3
If f factored over Qp, each root r would have degree dt < 4d
over , and hence we would have ordpr € %TZ. Thus, f is

irreducible.

(2) Later we'll want to study the curve yp -y = 2. If this
curve is considered over a field of characteristic p, there are
p obvious automorphisms XX, y+—->-y+z, acE Fp. Suppose We
want to find similar automorphisms Xp=-x, yi—=y+a when the curve
is considered over ﬂp. For example, let us fix ¥ € ﬂp and look
for ae ﬂp such that sending yreyt+a “1ifts" the automorphism
y>y+1 in the semse that a = 1+ z with Ez|p <1, i.e.,

a 21 (mod MQ ). Tt is convenient to suppose that ]ylp < ¥, where

¥ = Pl!{P_l) > 1. We must choese =z 80 that

(rr1+2P - @+1+z) = ¥ -y,
or, if we write this as a polynomial in 2z,
L S Ejet T (P -1z +

+ La)? - ¥ - 11 = 0.

D
E]_ii<p (1

ordpao > 1 + min(0, (p-llord y), which is greater than zero, since

we have assumed that ordpy > -1/(p-1). On the other hand, ordpal

P 1=

The constant term a, = {y+l)P -y - )yl satisfies

=ord a =0 and ord a, >0 for 1<1i<p- Hence, the Newton
polygon of this polynomizl in
z is as showm in the diagram

to the right. The only nonzero

slope is the first litcle seg-
ment, with slope X = —ordpao. Thusg, there is exactly one root =z
with !z[P < 1, in fact, with ord z = -A = ordpao. This root =z
gives the umique lifting te _Qp of the automerphism yi—y+l in
characteristic p. The other p-l rvoots =z have IzlP =1, and
the corresponding maps yh-y+ltz 1ift the other automorphisms

y|—-by+;, a e Fp.
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c. The p-adic case: power series

The Newton polygon Mf for a power series f(x) = Zaixi
€ Slp[[x]] is defined just as for polynomials, except that now it

extends infinitely far to the right. Also, it is possible for the

Newton polygen to include an infinitely long segment without any

oints i
P (i, ordpai) fa? to the right. For example, the power

] 3-1_pd .
series 1 + E.>1 P Tx has simply the X—semiaxis as its Newton

ol u; .
polygon, although nrdpai >0 for i > p. Here is the case p = 2:

The following theorem is the p-adic analog of the Weierstrass

Preparation Theorem.

T _ m
heorem. Let f(x) = ax + ... ¢ & [[x]], a #0, bea

power series which converges on D(pA)_ Let (N, ord aN) be the
P

right endpoint of the last segment of Mf with slope < X, if
- L _—

this N is finite. Otherwise, there will be a last infinitely

long segment of slope A and only finitely many points (i, ord a )
Pi

on that segmwent. In that case let N be the last such 1 (for

example, in the above illustration N = 2). Then there exists a

unique poiynomial h(x) of the form b & rhl s
=t bm+1x + ... F bNX

with bm =ay and a unique power series g(x) which converges and

1s noizero en D(pA), such that

h
F(x) = g% on D).

In addition, Mh colncides with Mf ag far as the point

(m, ordPaN).

Coroilary 1. Within the region of convergence of £, the New—

ton polygon determines ordp of the zeros of f ipn the same way
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as for polyncmials,

Corollary 2. A power series which converges everywhere and has

no _zeros is a constant.

For procis of these facts, see, for example, [53].

£l pd
Examples. (1) The power series 1 + L J 1xp s which con-

321 ¥
verges on D(l), has precisely p =zeros, all with | | = 1.

(2) For the log series f(x) = E (—l)i+1 xi/i, M_ is the

; £
polygonal line connecting the points (pl,-j), 31 =0, 1, 2, ... .

The picture for p = 2 is given below., We may conclude that in
Dl(l_) the function lnP vanishes at points 1 + x for exactly

: 1 . i
p3 - p values of x with ordinal l/(pj - p3 l). These x's

are precisely x =¥ -1 for £ a primitive pJ—th root of one
(see (2.3)).

Remark. Some specialists prefer another defipition of the New-
ton pelygon. Instead of the points (i, ordpai), they look at the
linas ~Ri: y = ix + ordpai with slope 1 and y-intercept ordpai.
Then 4, is defined as the graph of the function min, Ei(x). The
#x—coordinates of the pointe of intersection of the Ri which appear
in Mf give ord of the zeros, and the diffefence between the
sloepes i of successive ki which appear in Mf give the number
of zeros with given ord ., For example, Mf for the log series
fxy = & (-1 x1/1 is shown in the drawing on the next page.
It somewhat resembles the usual graph of log, especially near the
y-axis. This type of Newton polygon was used in Hi-huy-Khodi's
thesis [39], which contains a detalled discussion of such Newton

polygons, as well as a new generalization of Newton polygons

22

LA}
Nets o
( ten sequences™) which can be used for more refined investiga—

tions of power series,
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II. p-ADIC {-FUNCTIONS, L~FUNCTIONS, AND T -FUNCTIONS

1. Dirichiet L-series
We leave p—adics for a moment to review the basic facts about

! iodic
Dirichlet L-series (see [13,41]). Tet £: 7= be a perio

function with period 4: f(x+d) = £(x). Then we define

L(s,f) = z:f-l f(n) n S

; : . e C.
for Re s > 1, and extend by analytic continuation o other s

The generalized Bernoulli numbers are

t
rent of t* in z“‘l e a
Bk,f = klscoefficient of ¢t 4=0 edt .
It can be showa [41]} that for k a positive integer
B
. 3% {1.2)
L=k, £) = - — 7
For example, for the Riemanm zeta fupction [(s) = L(s,l} (where
1 denotes the constant function 1, having period 1)
k t
L = ki iedent of t  in —/———
z(1-k) = I Bk’ Bk = k!rcoefficien .

1 . *
When f = X is a character, il.e., a homemorphism X% (z2/dZ)

—a (% from the multiplicative group of integers mod d {where X

is extended by x{n} =0 for all n having a common factor with

d), the L-series equals the following

-1 .
L) = ﬂ(l—xp%’) : (1.3)

where the product is taken over all primes

"Eyler product” if Re s > 1:

L.

i i i . To give
L-functions ogecur in many situations in number theory g
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a simple example, the class number h of an imaginary quadratic
field Q{v/-d) of discriminant -d 1is given by
v /d 1 -1
L{l,y) = - ¥ < a),
zr ML 34 Lia=1© x(@
where w =2, 4, or 6 is the number of rocts of unity in
Q(v=d), and y: (Z/dZ)x—={£1} is the Legendre symbol {quadratic

residue symbol). By the way, no elementary procf (not using the

h =

Dirichlet formula h = —é £ a y(a) ) is known for the nomvanishing
of the simple sum I a y(a). Later (Chapter IV) we shell study
generalizations and p-adic analogs of the formula L(1,y%) =
27hfwvd

We shall alsc want to consider "twisted" L-functions. Let r
be a positive integer, and let &£ # 1 be any nontrivial r-th root

of one. Let zd = g, Then let
L(s,f,z) = zi:;l f(n) 2 n o,

Since the function nk>f(n)z has period dr, this is a special
case of the L-series comsidered above. 1In particular, if we replace

k by k+l and £(a) by z°f(a) in {1.1) and (1.2), we obtain:

k f(a)eatebdtza+bd
L{-k,£,2z) = kl*coefficient of t At
O<a<d 1 - e
0<b<r
a at
k
= klecoefficient of t. 1in Haze 4

Oza<d l—sedt

We now proceed to the p-adic thecry.

2. p-adic measures
Let d be a fixed positive integer, and let X = lim Z/deZ,
’ N
where the map from Z/dpMZ to Z/deZ for M 2 N is reduction
mod de. In the special case d =1, X dis simpily Zp. By
a -+ deZp we mean the set of all x € X which map to a  under

the natural map X——*-Z/deZ. Witheout less of geperality, we may

agree always to choose a 80 that € < a < de. Note that
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X = t_J a + 4z is = disjoint union of d topological spaces
0<a<d P
isemorphic to Zp' Also,
N Wl, ° (3igjoint union). (2.1}
a+dpz, = L (asban™ + @'z, (als]
0<b<p

Tt is not hard to show that any open subset which is compact

(i.e closed, sinee X is compact) is a finite union of compact-
e,

open sets of the form a + deZ . {(Warning: Not all open sets are

compact, for example, x-10} )

Definition. Am ©_-valued measure ¥ O% X is a finitely
p

gcX te 2.
additive bounded map from the set of compact open o

If we are given the values of a fupcgion W only om the sets
a+ deZ such a | extends to a measure on all compact-open U
A

if and only if these values are bounded and for all a

-p—l ] N‘H.Z (2.2)
wa+ @'y = D7 nllndr) ¥R

ko igioint unions (2.1).
i.e., we need only check additivity for the disjoln
8., we
An equivalent definition of 2 measure is: & bounded linear
functional fhk—>|fdp on the Q -vector space of locally constant
functions on X (i.e., funections which are 2 fipnite linear combi-
nation of characteristice functions of compact—open sets) -
i i ¢ Xe—af  is an
A poutine verification shows that, if fr X b i .
continuous function, and we write f as a uniform 1imit of locally
‘s . d
constant funetions f., then the limit of the Riemann suls fi i
i
: = 11 . TFor example
exists and depends only on f: fdp = 1lim J;idu ple,
we can evaluate Jédu as the limit

jfdu = lim z

N
f{a) ufa + dp Zp). (2.3
N=—o Qga<dp
- a.
Clearly, the Qp—valued measures form an ﬂp vector spac

For more detailed proefs, see, for example, [53].

Remark. Much more general p-adic measures have been defined:

i anin,
mesgsures on more general fypes of p-adic spaces X (Mazur, M »
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continuous functionm on X. Le:x £ € {3

function on X;

Katz), measures which take values in spaces of modular forms (Katz)

or spaces of operators (Vishik), unbounded measures (Manin, Vishik).

Basic example., Fix 'z ¢ Qp so that € = zd iz not in

- N
Dl(l }. Thean JeP —1|P > 1 for all N. The most important case

is when £ = z':1 ig a root of one which is not a pN—th root of one

for any N. Define
N éa
+ . —=
ufa + dp Zp) 5
1-gP

This gives a measure, since boundedness is ensured by stipulating

that €°  is not close to 1, and the verification of additivity

reduces to summing & geometric progression:

p-1 p-1 N
N N1 _ 1 Z atbdp
ZB=0 b, (atbdp™ + dp7 72 ) = FIL Zob=0 Z
1-¢f
a p-1 N a
2 b N
- e BT 7 i - nG et
1-&P 1-€f

An especially simple case, considered by Osipov [78], occurs
when d =1 and z =& is a (p-1)-th root of one, in which case
N

the denominator 1 -&f =1-& is simply a coastant.

Since the space X '"brings together" 2/dZ and Z_, we have
two natural sources of continuous functioms on X. (1) Any

£ Z-—*-QP having pericd d c8n be considered as a continuous

(in fact, locally constant) function on X by setting f(x) = £(a)
for x € a+ dZP. {2} Any continuous f: Zg—-**ﬁ can be pulled
back to X by means of the map from X to Z_ which "forgets
nod d informatrion't (i.e., the map which is the inverse limit of

the projectione reduction mod‘pN: Z/deZ-‘PZ/pNZ).

We shall look at the following example of the second type of

be any small fixed wvalue
(pamely, ordpt > 1/(p-1)). Then e ¥ =E% tlxi/i! is a2 continuous

its value at an x ¢ X 1is determined by approxi-
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N
mating x by a for which x ¢ a + dp ZP.

Now let f be a function of pericd d, and consider the func-
tion etxf(x) on X. We can integrate this. functien using (2.3)
and summing the gepmetric progressicn., We shall write duz(x) ta

remind ourselves that x (and not ¢t} is the variable of integra-

, 1 :g:. at a
1im — n e f({a) z

tion. We have:

Jee ) du ()

e 1 - &P 0ga<dp
N1
d-1 ¢
= z f(a)zaeat 1im i 2 (ze )bdL
a=0 o6 PN b=
: i-£
- N apl
d-1 f(a)zaeat i 1 - P 4P
= _ dt im N .
80 1 _eett e 1 - g?
N
Since edp ¢ approaches 1 as N—=w, the limit is 1, and we
obtain
j . d-1 f(a)zaeat ‘ ,
TG G < D o 2.4
2 a=0 1 - sedt

Notice that the right side of (2.4) is the same function that
appeared in the expression for L{-k,f,z) in §1, except that in
(1.4) the values of z and f were complex, while in (2.4) they
are p-adic. The most important case of (1.4} occurs when f takes
algebraic values, for example, whem f = y: (Z/dZ)*—>C* 1is a
character. Thus, suppose that in (1.4) both =z and the vailues of
f are contained in a finite extension K of §. If we imbed X
in ﬂp, we can identify z and f{a)} simultanecusly as complex

or as p~adic numbers,

To construct such an imbedding, choose any prime ideal P of
K dividing p. Intreduce the "P-adic'" topclogy on K in the same
way as the p-adic topology was introduced on Q: x < K is con—
sidered to be small if the fractional ideal (x) is divisible by
a large positive power of P. Then complete K in this topology.

8ince P|(p), the resulting complete field K, contains Qp, and
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is an algebraic exteansion of Qp. For more details, see [59]. In
what follows, we shali suppese that such an imbedding IP: KC-b‘QP
has been chosen once and for all, so that any expression involving
complex numbers which all lie in K can be simultaneously viewed

as a p-adic expression,

In particular, L{-k,f,z) can be considered p-adically. Then,

comparing {2.4) with (1.4), we obtain

:Ew £ j'tx
k0 LERE,2) 77 = je i (x) du;(x)

i k
zk:() kaf (x) duz (x) -1%,— :

Since this holds for all t with ordpt > 1/(p-1), we can equate
coefficients and obtain

L) =[G au o (2.5)

As an application of (2.3), one can now study p-adically the

values at -k of the Riemann zeta function, since, if we take any

positive integer = prime to p, we have &
; E Lis,i,e) = zz n—s[r-l if rfn _ (rl—s 1) £(s).
e°=1, £l n=1 -1 if rfn

Thus, for d =1, X% = Zp’ and i defined as the sum of ps

over all € with Er =1, € # 1, we have

(k) = o [ . . (2.6)
r -1

Remark. The relation between this U and Mazur's messures

1 (see [53]) is that u = for o= 1l/r.

LLMazur » O

3. p-adic interpolatiaon

For simplicity, we first treat the case of the Riemann zeta

function, and take d =1, X = % . We know that the values

P
L) = B - L jxk‘l anx) (3.1)
r -1

are rational numbers (we have replaced k by k-1 in (2.6)). It

would be nice to find a continuous p-adic function Cp: Z;——%-Qp
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which agrees with L on all i=k. Since the set {1-k} is dense
in Zp’ there can be at most one such Cp' Such a _cp exists if
and only if
k1 close to k2 p-adically :

-—-};(1-kl) close to C{l-k,) p-adically:

This is not the case, however, and we must first modify the zeta

function.

We define a new complex analytic function by setting

() = Ty = e )
for Re s > 1 (and for other s € C by analytic continuation).
z* is obtained from T in a similar way to how the Artin-Hasse
exponential was obtained from e* in §I.3 (see the identity (3.2)
in Chapter I; the terﬁs with plr are omitted to define Ep(x)).
This procedure is often called "removing the Euler factor at s

because

- - 1
g*(s) = (1-p ®yg(s) = (1-p S)ng ﬁ - I

L#p l_ﬂ-s'

There is yet another way to view [¥%. Let us return to the

measures . It is easy to see that there does mot exist a trans- -

lation-invariant (bounded)} p-adic measure, L.e., a W o1 ZP such
that
N ] )
u(a1 +p Zp) = u(a2 + p Zp) for all a;. a5
However, the measures U_ on ZP (for any € % Dl(l )) Thave the
closest possible property, namely:
N N+1
= + z
ugp(a +p Zp) u (ap +p p),
as follows trivially from the definition. This implies that for

any continuous funection £ on Zp

[t an 00 - J o au e (3.2
Z €
PZP P -
(where for U c X, J'f of course means ka]U extended by zero

ke X -7TU) ). Now let gt = 1, p I r. Since raising to the p-th

power permutes r-th roots of one, we have (where we again let. Y =
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Iy )

_[ =1 aux
7%
P

(j - j)xk_l du(x)
Z, Py

Jxk"l dufx) - j ()" du)
z z
P P

a-h Jxk_l du{x}.
Z

P
Dividing by rk—l, we obtain by (3.1)

i [T aw = a-hHow < s 6
r' -1 sy

P
Thus, removing the Euler facter is equivalent to restrictigg the

domain of integration from ZP to Z;.

Now suppose that two values kl and k2 are close p-adically,
and are also in the same congruence class mod p-1, that is, sup=
pose that kl - k2 = (p-l)me, m € Z. Then we compare the in-—
tegrand in (3.3) for kl and kzz

k,-1 N

1 k -k ro
el e

kz—l
X

But for x € Z#, xp_1 = 1 (mod p)} (because a* o1 for ac

F;), and 1t is easy to see (using the binomial expansion) that
N
pm

(xp l) 1 (mod pNH'

kl_l k,-1
Thus, x gad x are close together p-adically. Hence,

L]

3. (3.4)

their integrals over the compact set Zg are also close together;

in fact, it is easy to see that

k. -1 k-1
J x 1 du(x) = [ x - du(x)  (mod pN+l)o
ik 7%
P P

If we further assume that kl £ 0 (mod p-~1), and if we take r - to

be a primitive {p-1)-th root of one modulc p (so that p | © i—l)s
k k

then we have: 1/(r 1 - 1) = 1/(r 2 - 1) (mod pN+1). Meltiplying

these two congruences and using (3.3) and (3.1), we obtain the
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N
Kummer congruences. IE k, =k, (med (p-1)p") 2md (p-1) %y,
then .
Lhen B, B
k-1 'k k-1 'k N1
S (L-p?2 )—== (modov O
kl .

1]

1L-p Xk

[

where both sides of the congruence are rational unumbers in ZP

(i.e., without p 1in the denominatot).

Thus, the Kummer congruences, which were ofiginally thought to
be merely a number theoretic curicsity, are now seen to arise
naturally from the simple fact that: if two functions are close
together, then their integrals over a compact set are also close

together.

We ean now define the p-adic zeta function Cp(s) by letting
1-k approach s p-adically, but fixing a class modulo p-1, i.e.,
fixing kO € {0, 1,..., p-2} and only choosing k which are con-

gruent to k (med p-1}, Thus, we define

4]
Ly (8) = lim £*(1-k)
PsXy 1-k-»s, kEkO (mod p-1)
k-1

- lin - Jx dn(x)

I-Tk=s, kEkO (mod p-1) v -1 ZS

- L [ oo™ w0 auo,

<r>l_s wlr) 0_ 1 Z;

where ® is the locally constant function or Zg which takes a
p-adic integer to the Teichmiilier representative of its first digit,
and as before <x> = x/w{x) = 1 (mod p). (Thus, <% is well
defined for p-adic s, see (3.4).) Lp is a p-~adic funection with

p-1 "branches" Cp’ko for k= 0, I,..., p-2.

Remark. The classical Mellin transform of a measure W =
f(x)dx dis the functicn
@0
g(s) = J %" £(x)dx.
0 .
For example, the gamma function is defined as the Mellin transform

of e fdx/x: -

T{s) = _[ e ¥ xs“l dx.
¢l
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Thus, Cp is the p-adic "Mellin-Mazur transform' of the measure

o= 3 - e = UMazur,l/r' Strangely, the p-adic I'-function,
£ =1, £#1 X
which we shall soon study, is not any type of p-adic Mellin trans-

form, so far as we know.

4, p—ad{é Dirichlet L-functions

A Dirichlet character ¥: (Z/dZ)*—>(*% takes values in a fin-
ite (cycleotomic) extension K of Q. Reeall that we can consider
K to be imbedded in Qp if we choose a prime ideal P of K
dividing p and take the completion of X im the P-adic topology:
1pt K‘lébﬁp. We shall still use the letter ¥ for 1poXs S0

¥ denotes either a complex or p-adic valued character.

A Dirichlet character ¥ is said to be primitive of conductor
d if there is no character ¥': (Z/d'Z)*—»C*, d' a proper
divisor of d, such that () = ¥"(n) for all n oprime te d;
equivalently, ¥ dis primitive if it is not constant on any sub-

group {x| x =1 (mod d")} in (Z/dZ)*.

If Xy and X, &re two primitive Dirichlet characters of
conductor dl and d2’ respectively, then X1Xs denotes the
primitive Dirichlet character such that xlxz(n) = Xl(n)xz(n)
whenever n and dld2 have no common factor. This is not the
same as the characcer nk&—xl(n)xz(n), which is often imprimitive.
For example, if Xp =X is the conjugate character, then XX
is identically 1, while Xl(n)xz(n) =0 if g.c.d.(n,dl) > 0.
Note that the conductor of X%y divides the least common multi-
ple of dl, dZ'

If ¥ 1is a primitive Dirichlet character of conductor d with
values in ﬂp, we let % = xm_k, where w: nk~w(n) is the
Teichmiller character, which has conductor p. Clearly, the con-=
ductor of ¥ is pd if p ! 4, and is either 4 or d/p if

P d.

Let x be a primitive Dirichlet character of conductor d. We
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use the relation (2.5) for f = x:

L(1-K,¥,2) = e X () du ().
X

{We have replaced k by k~1 in (2.5).) We want p-adically to
interpolate this function of k, i.e., to let %k approach l-g e
Z_  and get an £ —valued function Lp(s,x,z). To de this, we must
first make two modifications: {1) '"remove the Euler factor' by

restricting the Integral to

X* dof L_J a + dep
0<a<dp, pla

(%% 1is the inverse imege of Z; under the "forget mod d informa-
k
tion" map); (2) replace x by <x> = x/w(x) Iin % . We thus
define
k
Lp(l—k,x,z) asf ﬁi <> fx o) duz(x)

k-1
= ii <x> Xl(x) duz(x)

- ﬁL et X, G0 du ()

]

k-1 k-1
au (x) - J (px)" 7 x (ex)dn G
Xfx X, Xf k 2

(see (3.2); the argument is the same for X as for Zp). Bring-
ing the p outside the second integral and using the above expres-
sien for L(1-k,¥,z}, we conclude that
Lp(l*k,x,z}. = LOrkxaz) - P X PILCR 2P (4.1)
We thus have the following

Proposition. For x a character of conducter d, the continu-

ous function from Z to Qp
-5
= >
Lp(s,x,z) ot x£<x Xl(x} duz(x}

k-1
interpolates the values L(l~k,xk,z) - Xk(p)L(l—k,Xk,Zp)-

This proposition can be used to prove the following theorem.

Theorem (Kubota-Leocpoldt [58] and Iwasawa [41]). There exists

a unique p-adic continuous (except for a pole at 1 when ¥ is
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the trivial character) function L (s,¥), s € Z_, such that
k-
LX) = - x @ hLikx. %.2)

Proof. Tet T > 1 be an integer prime to pd, and let z° =

1, =z # 1. ﬁe first note that the ordinary classical L-function
can be recovered from the "twisted" L-function L{s,%,2) by means
of the following relation, which follows immediately from the
definitions:

. Ls,0z) = (7% - ) Lis,xds s e G (6.3)
z =1, z#1

Using this for s = 1-k and summing (4.1) over nontrivial r-th
roots of unity =z (which are only permuted by zkr*zp), we have
k-
) L (1-k,¥,z) = (1-x (P D) L(l-k,X, ,z)
ro P T #1 k

z"=1, z#1 z =1, =

(%, (-1 (1 (22" Lei-k,x,)

i

n

(<r>kx(r)—1)(1—xk(p)pk'l)L(1—k,xk) (4.6)
S0 we define
i

L (s,x)
P Sy -1 2Tl a1

= — L_(s8,X,z)
def <r>1 ) ?

(4.5)

= —l;;l— f<x>_s %, () dux,
<> Ty(r) -1 %%

where 1§ 1s the sum of M, over all z with z' = i, =z +#+ 1.

The equality (4.2) in the theorem now fallows from (4.4). The

continuity of Lp(s,x) {more precisely, local analyticity) follows

because we are taking the integral of a continuous (actually,

analytic) function of s and then dividing by an expression which

can only vanish if s =1 and x(r) =1; r can be chosen so that

¥{r} # 1 unless y is trivial. This concludes the proof of the

thecrem.

Notice that the functiom CP k (s) we defined in §3 is pre-
o R
cisely Lp(s,m 0y, Alsc note thag, while it was necessary to choosge

r in order to construct both Cp L (s) and L (s,%), these
Ky =3

functions are in fact independent of r.
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5, Leppoldt's formula for Lp(lsx).

Recall [13] the classical formula for L{1,¥}, which can be
derived by Fourier inversion on the growp G = Z/dZ, Let [ be a
fixed primitive d-th root of 1, and define .

2 -ab

£a) = 2, £ ¢

for a function f on 6. Then

. £ay 2P (5.1)
£€(b) = F 2, f@ .
Applying Fourier inversion (5.1) to fs{b} = EnEb (mod ) n°
(suppose Re s > 1} and using the definition of L(s,¥) and
L(s,1,2z) = L z" 0 °, we have

L(saX) = Zgepeq XY £,(0) = % Za!b % (b) Es(a} ;b

1

I, xd T, X Fia)  (where § = ab)

i
g o - -a
22, X@) 1,107,

vwhere g = Zx(j}cj ig the fauss sum. Letting s=+1 and noting

that L{1,1,z) = -log(l-z), we obtain

L) = - ;X, 220<a<d ¥(a) leg(l - T 7). (5.2)

We now proceed to the p-adic case.
Theorem (Leopoldt [64]).

L = - -2 X

> X(a) 1n (1 - . (5.3

O<axd
The purpose of this section is to prove this theorem.

Note that {5.3) differs from (5.2) in two respects: the ex-
pected "removal of the Euler factor", giving the term (1-¥(p}/p);
and the replacement of log by lnp. The validity of the p-adic
formula (5.3} might seem surprising at first because.of the replace-
ment of log(l—g_a} by lnp(l- ;—a), since the formal series for
the former does not converge p-adically, i.e., we need properties

(2) and (3) of the proposition in §I.3 in order to evaluate
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lnp(l—c_a). But the proof of Lemma 1 below shows that the same for-
mal series, along with the p-adic version of analytlc continuationm,

realiy do lie behind Lecpoldt's formula, despite first impressions.

Lemma 1. If =z f Dl(l_) and u_ is the measure on Zp given

N
by y,(a+ psz) = 2%/(1~2F ), rthen
gl ) = - Lo =2
zi.x di_(x) = : lnp ]
P
Proof. If jz!p < 1, then the left side is (the ' denotes

omission of indices divisible by p):

T

1 z zjl 1 ( z z‘j z zPj
im — 1im — - el
Ko < epd J 1_:_;5N N \0< G <p 0<j<pN_l Bi

I

1 3P _ b
p(lnp(l 2P - 1n (12 )).

We now use analytic continuation te extend the equality from
‘zfp <1 to all g t Dl(l—). As we remarked at the end of 51.3,
a function is said to be Krasner analytic on the complement of

Dl(l_) if it is a uniform limit of raticnal functions with poles

Tin Dl(l‘). The basic fact we need about such functions (see [57])

is that if two Krasmer analytic funciions on the complement of

Dl(l_} are equal on a disc, then they are equal everywhere on the
complement. of Dl(l_). Thus, if we show that the two sides of
Lemma 1 are each Krasner analytic functions of z on the comple-
ment of Dl(l_J, then, since they are equal on the disc lzJP <1,

they must be equal for all =z 4 Dl(lw).

Note that by writing

vk D Ben u lslysn s 4o

(1-2)° 1-zP 0d5<p
TwzP =4 1 .
1+ z (?)(-z) 1, i x| > 1,
1-z P 0&<p ™ P

we see that =z é Dl(l_) £ (l—z)p/(l—zp) e Dl(l_) (in fact,
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its distance from 1 is < %/p). Hence, the right side of the
equality in the lemma is the uniform Jimit of the rational functions

(with poles in Dl(ly})

N i
1Y el (w@_-zﬂ’ - 1) ,
Py 1-2"

and the left side is the uniform limit of the ratiomal functions

(with poles in Dl(l—))
1 .

2 _ 1

0<j<pN 140 ZPN

This concludes the proof of the lemma.

Lemma 1 will be applied when 2z is a root (but not a pN—th

Toot) of unity.

Remarks. 1. If =z is a (p-1)-th root of 1, the right side of
Lemma 1 becomes —(1—1/p)lnp(l~z). For example, setting =z = -1

gives the following p-adic limit for 1np2:
1

In2 = --E—c lim z —(5»1-9}—
P Ho-D) o glfept

2. Lemma 1 is the key step in our proof of Lecpoldt's formula
for Lp(l,x). As mentioned before, the subtlety in Leopoldt's for-
mula is that 1np(l_z) is not given by the same formal series as
log(l-z), since =z is outside the disc of convergence of
in_(1-z). However, Lemma 1 shows that if we ''correct by the
Frobenius" in the Dwork style (see, e.g., [28]), i.e., if we re-
place (1-z} by (l—z)p/(l—zp), then the resulting series 1s
globally analytic out to roots of unity. (We shall see further
examples of "correcting by the Frobenius", e.g., in §6.) The
effect of this step on the formula for Lp(l,x) is to bring out
the Euler factor (1 - X{p)/p), as we shall see below (in (5.4)).

The other ingredient in the proof of Leopecldt's formula is the

analog of the Fourier inversion (5,1) used in the classical case.
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Llemma 2. Suppose that X is a primitive Dirichlet character

mod d, &£ is a fixed primitive d-th root of unity, g = Zx(j)cj,

z# 1 is an r-th root of unity, where r is prime to pd, and

f: X-—*-Q is any continuous function. Then

fxfdu - —K Z X(2) ffdu

O<a<d z

To prove Lemma 2, by linearity and continuity of both sides it

suffices to prove it when f is the characteristic function of
. N
j+ dp Z , i.e., to pxove that x(j)zJ/(l—zdp ) =

—X z x(a)z [ aJ/(l zdp ). But this reduces to: gkg =d.
X

Proof of the theorem. we first prove an analogous formuls for
the "twisted" Lp{l,x,z).

Note that, if f; X—»Q  comes from pulling back a function
(also denoted £) on Zp using the preojection ("forget mod d
information") from X ro Zp, then we can replace X by Z_ in

4 £ duz, where uz on Zp is defined by the same formula as on

N
N
Z ) = zJ/(l-z Y. To see

this, one reduces to the case when £ 1s the pull-back of the

% with d replaced by I: G+

characteristic function of i+ pNZP, which is checked easily.

Applying Lemma 2 and the preceding remark to the function

1 -y
£f{x) = ;-(characterlstlc function of X&), we obtain

Lp(l,)(,z) =X_£Xéﬂduz = —X z Y{a) I— dy

0<a<d az
g P
= EK z x(a) 5 1npg—_-;§)- by Lemma 1
Oa<d 1-(g %P
g
- EX(_P ZX(a)ln(l—: 2).  (5.4)
O<a<d

Since r > 1 is apy integer prime to pd, we may choose r
s0 that x(r) # 1 and then use (4.5) with s = 1 to exXpress
Lp(l,x) in terms of the Lp(l,x,z). We cbtain
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—

1
= i 1:;
Lp(l,x) TGy -1 zr=%§Jz%l Lp( X,2)
B _ i -
S T <41 B . , § 1 1-a)].
T ( 5 )[x(r)—l U<3?%X(a} R np( r e

-ar -a
Since the imner summation is equal to 1np(1-§ ) - 1np(1-§ ),
the term in square brackets is immediately seen to equal

— _a ]
EO<a<d X(a)lnp(l“E ), as desired.

This completes the proof of Leopoldt's formula.

We shall later prove one more formula for the p-adic L-function,
which relates its behavior at 0 to the p-adic gamma function.

But first we take up the p-adic gamms and log gamma functions.
&. The p-adic gamma function

First recall some properties of the classical gamma function:

(1) It is a meromorphic function on the complex plane with
poles at 0, -1, -2, -3,... -

{2) T{x+l) = =T (%), Tk = (k-1}!

1ex m _ 2ri eﬂix
(3) T(x)-T (1% sin(mx) 2mix _ 1
a
- 122+ (n-1) X
(4) T(x) = lim ;zglijjjjzgia:ij-n
) =00
(5) Gauss multiplication fermula: for m =1, 2,...
m-1 l—x
[ orfetl) - (omy D2 T py
h=0 mn
for example (x = 1)
m-1
B F(E) _ (Zn)(m_l>/2 m-l/Z,
h=1

so that if we divide these two equaticns we cbtain
m-1
H
r} LS h)

h=0 ( m

oy T r(2)

h=1 "'n

niE (6.1)
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We now proceed to the p~adic theory., For simplicity, we shall
assume that p # 2. {Minor modifications are sometimes needed when
p=2.)

Proceeding naively, we would like to construct a funetion I'_(s)}

on Zp which inrerpolates T'(k) = 1 i.e., so that T(k)

1<k 3,
approaches Pp(s) as k runs through any sequence of positive
integers which approaches s p-adically. However, T(k} is
divisible by a large power of p for large k; hence Fp(s)

would have to be identically zerc, which is useless. So, as in the

case of the zeta function, we must modify the values T{k).

We might improve the situation if we eliminate the j's which
are divisible by p, much as we "removed the Euler factor at p"
from 7(s) to get *(s). Thus, suppose we take TI'#(k) =

Hj<k p?j 3, which 1s an integer prime to p. Now we can find a
3

continuous function PP on Zp which agrees with I'* on positive
integers if and only if

"k, close to k, p-adically = T#(k,) close to T*(k,)
1 2 1 2
p-adicfally,

i.e., if and only if. F*(kz)/F*(kl) = 1 (mod pN) with N large
whenever kzwkl iz highly divisible by p. To check this, take
+ pn. But it is easy to show that iIn that

I

for example k2 = kl

case the quotient F*(kz}fT*(k ig congruent

) : s 3
1 klij <k2 ] P!J
te -1 =od pn. (Nawely, in any f{inite abelian group G we have

Hg€G g=1T_ _1g; apply this to G = (Z/p Z)*.) So the sign is

=g
wrong, and we have to make one final modification. We define
k s
T (k) = (-1 1 is I (¢) = lim T (k). (6.2)
? j<i, pli P k—s>s P

Using the generalized Wilson's theorem cited above:

n i T -1 (mod pn),
kgi<ktp™, plj

it is simple teo check that the Timit in (6.2) exists, is indepen-

dent of how k approaches s, and determines a continucus function
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on Zp with values in Z;.

We verify some basic properties of Pp:

I (x41) -x if x € Z%;
(1) T (0 =1, and —liL(—)— = : P
P = -1 if x € pr.

To prove the second equality, since both sides are continuous on

ZP, it suffices to prove equality for the positive integers x = k
(which are dense in Zp), and then it is obvious from (6.2). Using
(6.2) and this equality, we can compute the first few values

TP(Z) =1, Fp(l) = -1, rp(o) 1.

(2) For x ¢ Zp, wrice z = x + Py,

is the first digit in - x, unless X € pzp, in which case [y = P

where X, ¢ {1,...,p}

Then we have x

T_()T (-x) = (1) °,

p p %

In fact, to show that the continuous function £(x) = (~1) Tp(x)-
Pp(l—x) equals 1 on Zp, it suffices to show that F(k) = 1

for positive integers k. Clearly f(1) =1, and a simple verifi-

cation using property (1) shows that £(k+1}/f(k) = L.

(3} For any positive integer m, P I m, we have (here x4

and =, are as in property (2)):

1
m-1
[T p (zin) N
s 1% (1))t
w1 =m (m ) . (6.3)
a
I, Go hljl r (E)
, x,
(Note: Since @ P71 21 (mod p), it follows that (m_(p_l))

ig a well-defined function of p-adic xl.) To prove property (3},
let f(x) be the left side and g(x) the right side of (6.3). £
and g are continuous, and f{1) = 1 = g(1). Next,

X .
£{xtl) Iy (=) Fp(ﬁ + 1) ) Um  if x eZ%
O I, G ’ I'p(x/m)

1 if x € pr,

G2

of unity, we conclude that

while

1) l/m if x € z;,' since then (x+1}0=x0+l, (x+1)1=x1;
BT
glx)

1

if x & pr, since then (x+l)0 = xo—(p—l),
(x+1)l = x1+1.
This proves property (3).

We now discuss an interesting special case of pfoﬁetty (3).

Suppese that x = ;§I is a rational number between ¢ and 1

whose deaominator divides p-1. Then KO = p-t, Xy = E§I'— 1=

(l—xo)/(p-l). Note that the left side f(x) of (6.3) is congruent
1-x

to m U= m(l_x)(l_P) mod p. In addition,

1-x, - %, (p-1))
f(x)p_l - (mp-l)( %y = % (P -1

Thus, £(x) is the (p-1)-th roct of 1 congruent to m(l—x)(l—p)

mod p:
£ = wl@0P)
Now the classical expression fcl(x) which is obtained from

f(x) by replacing Pp by I, 1is equal to 1111—x 3 QCE:lvm)- Let
K =Q(E), where £ is a fixed primitive (p-l)~th root of unity.

Then Gal(XEL/E)/K) = 2/(p-1)2, with oz Pl oeg? 22l
for a ¢ Z/{p-1)2. Choose a prime ideal P of KGE:l¢E) which
divides p. Then P determines an imbedding p! K@IQ%GD -
QPCEZLJE). There exists a unique "Frobenius element" Frob &
Gal(KGE:leD/K) such that Frab{x} = x* (mod P) for every
algebraic integer x in K(Eilvﬂh.

We then have for x = r/(p-1)

l-x
1-Frob _ n_ s 2 =0) s Py,

f . (x}
el Frob m

and, since elements of Gal(K(B:évﬂle) multiply ml_x by roots

43




1-Frobly (1-=)(1-p)) _
. ) =. wcm ) B fp—adiccx)

p (fcl )

This phenomenon —- that a classical exptession raised to the
i-Frob, where Frob 1is a p-th power type map, can be identified
with a p-adlc analog of the classical expression —- occurs in other
contexts. For example, let

E: y2 = x(x-1)(x-A), A e Z,

be an elliptic curve whose reduction

E: y2 = x(x-L){x-A}, X € Z/pZ,
is nonsingular, TFurther suppose that E is not "supersingular"

(which wiil be the case if * 1is not a root of the polynomial *
(p-13/2

2.

2
o GP‘i)/z) 3™, It is known [67,43] that the period f
of the holomorphic differential dx/y on the Riemann surface
(torus) E, as a function of the parameter X, satisfies the
differential equation

A0 + (1-0E - 7E = o,

whese solution bounded at zero is the hypergeometric serles
® fun?
ty = 2 (YT ¢ o
Although when we consider f£(}) as a p-adic series it converges
only on D(17), it turns out that the power series @ = fl_Fmb
defined by ©(h) = £QA)/£0P) comverges on DY) for some Yy > 1,

Wow 1t is well known that the zeta-function of _ﬁ
(number of F ,-points on E)
p =

Z(E/Fp) = expz\ =

is of the form

{1 - aT)(1 ~ pT/fa)
(L-1){1-p1) °*

where ord o = 0. Dwork [43] proved the following formula for o:
a = O{wdh).

Thus, o can be thought of as a sort of "p-adic perded".

Z(E/Fp) =

In Chapter IIL we shall study another analogy between classical

formulas for pericds of a curve considered over C and p-adic
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formulas for the roots of the zeta function of the curve considered

over a finite field.

This concludes our discussion of elementary {ecasily proved)
properties of T_. 1In Chapter IIT we shall prove an algebraicity
result for certain Tp values and products of values, for example,

) d
. Ty . T
the algebraicity of Pp(a) if d|p-l. (More precisely: (Fp(a))

€ Q(EJT).) But the proof of this fact uses p-adic cohomology. It
would be interesting to find an elementary proof of this algebra-—

icity. After all, the assertion can be stated very simply (here we

H

write is 1- 5§3 )i

+
(s+sp+...+spn+spn t

Lim

t
) € Z; is algebraic over 1,
* (s+ep+. .. +sp™)! p )

s+e.p+...+spn

For example, the theorem in SLII.6 will give us the following

5-adic formula:

4
. (1)4 o (3 € 35 + ... + 3257 4+ 3.5%7]y,
s\ Lim N
B A3 4 305 4 L., 4+ 30501 50 T e 30
=3+ 4e(2) =3+ 471 ¢ 2
(vheze VoL = 0(2) = 2 + 105 + 205% + 1059 + 3.5 4 .., « Z;) and

the following 7-adic formula:

3
; (1)3 o (54 oo ¥ 407" 4 67y
-T.l3 = lim o
VT
=:‘l~m_t§ﬂ I3 ez

No elementary proof is known for either of these equalities.

7. The p-adic log gamma function

We start by describing another approach to the p-adic zeta and
L-functions, which was the original point of wiew of Kubota and

Leopoldt [58].

It is not hard to prove the following p-adic formula for the
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k-th Bernoulli number (see [41]):
_ : -n z k ’
BZc = lim p N i (7.1)
n— 053(1,
More generally, if £: Z--‘-ﬂp has peried d, and if Bk £ is
*
defined for p-adic wvalued f in the same way as for compiex valued

f (see (1.1)), themn we have

B =l = z L £ i*. (7.2)
’ n—« dp (0<£j<dp

The simplest examples of {7.1) ave:

-1 - p™¢ n—lj 1
tim o zj=1imp PN L1 g
An p) 2 1
i<p
- 2 - pt N1 (2 1
lim p .znj = limp G == B,
j<p

This type of limit lim p z £(3) can be used for
n==c 0<3<p"

other f£(x) besides £(x) = x.

Definition. Suppose that a subset U C ﬂp has no isolated
points. A funection £: U—*.Qp is called locally apalytic if for

every a € U there exist r and a; such that for all x in

Da(r) au -
21—10 ai(x—a)i.

f{x)
It is easy to check that a locglly analytic function £ can be

il

differentiated in the usual way:
£ x) = lim M = Ziai(x--a)l‘-:‘L for x e Da(t‘)ﬁ U.
€0 ”

temma. If { is_locally apnalytic on Zp, then the iimit

lim p ™ Z f(j) exists.
n—w  0<i<p”
To prove the lemma, one easily reduces to the case_when f(r) =
z aixl on D(1). (Thus, ai—b—Cl.) Then we need to show that
L aiBi

converges, but this follows because [Bklp < p. (More pre-
cisely, we have already seen that Bk € Zp if p-lfk, and one can
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similarly use the p-adic integral formuia

a -l B, - k . J’ £ a0
1-r Zp

to show that pB

Y € zp if p-1]k.)

The approach of Kubota-Leopoldt is based on this lemma and the
formulas (7.1) and (7.2)., In order to obtain & p-adic function out
of (7.1) as k approaches some p-adic =, we ﬁust omit the j
which are divisible by p and also restrict to k = ko {mod p-1)
for some fixed ko. If we write j = <j>w(j) for p]’j, then we

obtain for k = ko (mod p-1) (see §3 for the definition of %):
B
_ k-1 (_ k)
(" D=

2 lim oP z ,k_kz k
k P, o n-1

c*(1l-k)

i}

L= <3<p 0<3<p
k
= —i lim p N <> w(i) O

We can now define ?;p " {8) by replacing k by 1l-s and applying
]
¢]

- k
the lemma to f(x) = <x>l g w{x) 0 (we take f£(x) = 0 on pr).
Similarly, the p-adic L-function for a Dirichlet character ¥:

(Z/dZ) & —=> Q; can be defined by setting

LQ-s0 = —é lim -lﬁ zn <1 (). (7.3)
n— dp" 053<dp”, pf3

This approach to the construction of tjp,k and Lp can be
generalized as follows. Let X = lim {Z/deZ), as in 82, We call
a funetion £(x,s} on X xU ‘(Wherlz U is a subset of ﬂp with no
isolated points) lucallz_ analytic if every (a,b} ¢ X X U has a
aeighborhood {(a + deZp) X (Db(r) A U) on which £(x,s) =

E 245 (X-a)i(s—b):l. Then it is easy to show that
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F(s} = lin -—1; z o 1(358)
n—»u  dp o 0<j<dp

exists and is a locally analytic function of s & U (see [22]).

In the case of Lp(s,x), we had U= Z and”
< Ox(x) if xe X

fix,s) =

otherwise.

A special case of this construction leads to the p-adic log
gamma function. We start with a function on pr U of the form
f(x + 8) with U now a subset of ﬂp which is invariant under

translation by ZP'

Lemma. Suppose that I{x) is locally analytic on s + Zp for

some fixed s & . Let

F(s) = 1lim p_n EE n f(s + ).

o0 0<3i<p

Then F 1s locally analytic on s + ZP, and

Flz + 1) - F{x) = f'(&x).

The proof is easy; the last assertion follows because

Flx + 1) - F(x) = 1im (£{x + p) - £ }/p".

The classical log gamma function satisfies log ['(x +_1) -
log I'(x) = log x. S¢, by the lemma, the natural way to obtain a
p-adic analog is to let f£'(x) = lnpx, ie., f{x) ==x lnpx - x
(see the remark at the end of §1.3). Thus, J. Diamond [22] defined
his p-adic log gamma function as

G (x) = lm p " z (x+1)1n_(xH]) - (=) (7.4)

P Thsstm oy 05j<pn P .

for x € §§ -Z_. Thus,
PP

Gp(x + 1) - Gp(x) = 1npx. (7.5)

Note that it is inevitable that a continuous p-adic function
satisfying (7.5) not be defined on Zp. Namely, lnpO, znd hence
either Gp(l) or GP{O), is not defined. It then follows by
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induction that GP cannot be defined either on the positive inte-—

gers or the negative integers, both of which are demse in Zp.

The other possible candidate for a p-adic log gamma function,
namely lnprp, is defined on Z_, but it only satisfies (7.5)
when x ¢ Z; (see property (1) of TP) .

T}_’le two functions G_ and 1n T are related as follows,
First note that Gp{x) + Gp(l—x) = 0, as follows immediately from
(7.4) {after replacing J by pn—l—j). T now claim: If x e ZP,
then

1o T (x) = /. G(L—Jf-—’i)

PP 0<i<p, pfitx ?° P

(7.6)
i.e., we omit the one value of i for which Gp((i+x)/p) ig not
defined because (it+x}/p e-Zp. To prove (7.6), we note that both
sides vanish when = = 0, since Gp(i/p) + GP((P-i)/p) = 03 and
both sides of (7.6) change by the same amount when x is replaced
by x + 1, namely by lnpx if =x ¢ Z; and by 0 if =x ¢ pr.
Since the nonnegative integers are dense in Zp’ we have (7.6) for

all xe Z_.
b

We discover an interesting relationship between G and the
zeta function if we expand Gp in powers of 1/x for =x large.

Suppose Ix\p > 1. We have

Gp(x) = lim p 25 n (x + 1) lnpx +

TLdc0 0<j<p
x lim p—nz (1+1) (—l+1n (1+f-€))
T oy st<pn X P
o0
= (x-—-%)ln x-x+xilim p Z Z (—l}k+1(i)k+l(é-ﬁ)
P n—=o  0d<p” k=1 x
2B « :
- ) A
(x 2)lnpx x + KD X (7.7
k=1
1 1 1
= (x—i)lnpx - X +m— m+ iy

where we used (7.1} and the fact that Bk =0 for odd k& = 3.
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Hence,

L
Gp(x) = (x - 5) lnPX -

i (k)—
k=L

Roughly speaking, one might expect that, since &(-k) is an

-k
integral of tk, Gp(x) is essentially - jz J;k-EE_ dufr) =
flnp(l - i) du{t}. We shall later look more carefully at this

possibility (see 88 and the Appendix}.

Remark. In the classical case, Stirling's formula

n
alo= /A e <,
e
gives
T 1 8
log i® (x - i) log x - % + 157 -

2m
Thus, Gp is actually the anzlog of 1og(T(x)/¥ZT). {From a number
theoretic point of view it is often natural to normallze the gamma
function by dividing by Y27, For example, T(z )//EF l/JF is
algebraic: also, the right side of the Gauss multlpllcation formula
becomes simpler, see property (5) at the beginning of §6.) WNote
that in the classical case the series {7.7) is only an asymptotic
series. We cannot simply evaluate (7.7) at x ¢ C, since it
diverges for all =x: EBk[ grows roughly like k!, in contrast

to which is bounded.

B
Finally, we note the following "distributiomn property" of Gp’
which follows immediately from the definition (7.4} and the fact

that 1n = 0:
pp

6,6 = > ¢ (X1 sor xEQp-Z}-). (7.8)

8. A formula for L[')(O,x)

The purpose of this section is to prove a formula for Lé(O,X)

which is analogous to a classical formula of Lerch (gee [97],p. 271):
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L1(0,%)

il

"LX 0<a<d
=L{0,x) log & +

log & + 25 x{a} log I'(a/d)

%éd) log T'(a/d).

0<a<d

We start by defining a twisted version of G_:
P

B 1 j
L0 = 1lin o D) (I (o) - 1), (8.1)
n—»cw rp O0Lj<rp P
r
where 2z =1, x e ﬂp-—Zp. Tn particular, Gp,l = Gp. The follow-—

ing properties of G
Py2Z

are proved in

properties of Gp'

the same way as the analogous

Proposition. The limit (8.1) exists for x € ﬂp-—Zp and satis-

fies:

z Gp,z(x +1) - Gp,z(x) = lnpx for =4 Zp; {8.2)

p-1
G = z i 1 .
P,Z(X} - d=0 # Gpszp( P ) for x % ZP’ (-8.3)
o
_ k

6, .0 = B, Inx Z L(-k,1,2) (8.4)

for « |x|_ > 1, where B, = 1/(z-1) = -L(0,1,z). ¢{See formula
*

(1.4) with k =0, f trivial, d =1,
supposing that =z # 1.)

We now give an expression for Gp
; z

u,. Here zr =1, =z #1, and u, Es
by U (a+p Z ) =z /(l—zp ).

Prupos1t1on.

z{x) = - Jﬂ lnp(x + t) duz(t)
o .

z=¢€; in (8.4) we are

in terms of the measure

the measure on zp defined

£ -7, .
oY X € o " (8.5}

Proof., Let ¢ z(x) denote the function on the right in {(8.%).

3
Then for Exlp > 1 we have

sz Z

P :Z D
l
lnpx uz(Zp) Ly S
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B = - zflnpx ay (&) - Jln {15y oo

k J-tk du (£) x|
p

DUNIVERSITE DE GRENOBLE [
LABORATOIRE

DE MATHEMATIQUES PURES
FAETTTITTY FOUIRTIER




k
= -L{0,1,z) 1npx + zk>l%ka(_k,1,z)

by (2.5). Thus, by (8.4), E;P’z(x) -6, = for \x[P > 1,

Now let U = {xef | |x-j] »p " for 211 jeZ}. Then
n P B P

Q’p"zp = Un=0 U - We prove that Gp,z{x) =Gp’z(x) for ern

by induction onm n. We just proved this equality for n = 0. If

we show that E;P 2 like Gp 2 satisfies (8.3), then the induc~

> 3

tion step will follow, since =x ¢ Un+

1 = (=+i)/fp < Un for

i=40, 1,..., p-L. But the change of variables u = pt + i gives

zlj'lnpesig_a + t) au p(c) - J- 1np(x +u) du {u)
Z z itpZ
P P P
if we use the fact that 1n p = 0 and the definition of u, (as
in (3.2)). The property (3.4) then follows for Gp 2 and the
2
proposition is proved.
Remark. If we define the convolution g of f with W by
g(z) = f Flx + t) du(r) for =x e @ svch that f is continuous
Z P
b
on x + ZP, then it follows from {2.3) and the definition of u,
that zep(x+l) - g(x) = -{(x) when u = . Thus, if we take the
preceding proposition as the definiticn of Gp 2? then property

(8.2) follows from this equality with f = —1np.

Corollary.

dy_(t)
¢® o = cokaent | —E - for xef -z, kxl. (8.6)
P>z AR L

Theorem {Diamond [227 and Ferrero-Greenberg [29]). Let X be

a pontrivial character of conductor d. Then

L{J(O,x) = z

g<a<pd, pla

. .
0] Gp(p_d) - L0, In g (8.7

Proof. 1In order to relate twisted and untwisted Gp, we need
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a lemma. As usual, T 1is any positive integer prime to pd.
1
Lemma. Tet O< a <pd, p | a, B,(x) = x - 3, end define a,
0<a” < pd, by: ra'Z a (mod pd). Then

a a a' a'
ZS %G 2Y - rle (——) + InrB (——). 8.8
1 p,zpd(Pd) r(p pd o™ F1lpa (8.8
To prove (8.8), we use (8.1) to write the left side as

e dp 32 g (e ) -
n

N o FP 0_<_j<rpn Zr=l
a A a
(———+ | (ln -+ i - j)\
n—-cc Ip GSj<rpn pd ) p(pd )
j=-a/pd (mod 1)

. - a 1 . & A
lim p Z n(p_d +a" + rJ) (lnp(ﬁ + a” +r3) - ]),

ik ] 0<i<p

r lim L

t

= . l/a ) a
< a" < W= _ 1 Y _
where 0 < a r, a a/pd (mod r}. Since r(pd +a pd’

we find that the left side of (8.8) equals
r lim p "

a‘I al
—+j(lnr+1n(—-+j —l)
) 00 0£j<pn (Pd ) P P Pd )

eyl s+ 5, 5))-

We now proceed to the proof of the theorem. TFirst, a twisted
version of (8.7) (for z # 1) follows immediately by differenti-
ating under the integral sign in the definition

L (s,%,2) = j<x>—s v, (x dp (%)

ol & 1 2

and then setting s = 0. Namely, we have:

Lé<0,x,2) —J; lnpx %; (0 du ()

- - Gd) iL XpdK, ~ , :S X (a) J- 1np(§%>duz(x)

<a<pd atpdZ
pla ?
= -L (0,¥,2)1n_d - 2 X (a)za_[ln (i+ t)du (x)
P P 0<a<pd 1 Z pipd zpd
pfa P
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. a a
= -L (0,),2) Ind + z ¥ (2)2® G (—)
p Uk p D<atpd, pfa 1 P:Zpd pd
Now let A denote the right side of (8.7). We must show that
L (D,X) = A, Summing the twisted version of (8.7) over =z # 1
w:.th z¥ = 1, and adding A + L' (0,%¥) to both sides, we obtain

A + L'(0,%,2) = L (U,x) - L {0,%,2) 1n d
r,pP 1 P
z =]
E a
¥, (a) z 2% d
0<a<pd 1 z5=1 p,zF Pd)
pla

Note that the relation {4.5) between the twisted and untwisted LP

gives
i-s 2
<> L - L s (8.9}
T X(r) pCS,X) 2r=l p(ssst)

and, if we differentiate,

-5

“ln r <> 178 y(r) L0+ <178 () Ll (5,30
z L'(s,X%,2). (8.10)
zr=1 3
Using {8.9) with s = 0 aund the lemma (8.8), we have
= - d
A+ 211-1'7(0,)(,2) L;(O,X) <e>y(r) LP(U,X) lnp
a' 1
& z X (a)( 1n r)
05pe L ) (pd 2)
»la

Note that <r>x(r) = rxl(r) and )(l(a') = xl(a/r). Now using
(8.10) with s = 0, we obtain

A+ rxl(r)L;(O,x} - r){l(r)lnpr LP(G,)() = _Ll;(G,}() -
al
Y, (P)L_(0,¥)1n d + vy, (r) _2_ ¥.(a")e_(=5
X1 P X P 1 D<a'<pd, pfa’ 1 p(pd)

+ ey ()in_r z ¥, {a")=
L P ocarSpa, pfatt P
Since the last sum cn the right equals Bl X = _LP(O’X)’ we can—
A1
cel that term and obtain
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1 Y = 1
A+ Ty (0 L0 LG+ xx(n) 4,
using the definition of A. Since r')(l_(r) # 1, this gives
LI;(O'X) = A, and the theorem is proved. l
Corallary.

' - ay _
LP(O,X) Oééidxl(a) ln T (d) LP(O;X) lnpd. (8.11)

The corollary follows immediately by usiang the relation (7.6)

between GP and 111111"p in the formula (8.7).

Remark. 1In a very similar manner cne can express the values
of Lp at positive integers in terms of special values of the
successive derivatives of lan‘p (see [23], [561). If Dk denotés

the k-th derivative, one has:

L Gox, gy = %-;—i—‘};—l:eéaz(dx(a) (n‘_‘lnprp)(g) for kz 1.
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III. GAUSS SUMS AﬁD THE p-ADIC GAMMA FUNCTITION

1. Gauss and Jacobi sums

Let Fq be ‘a finite field, let K be a field (such as €  or
QP), let '

yi PR

be an additive character, i.e., a nontrivial homomerphism from the
additive group of Fq to the multiplicative group K*, and let

¥t F#% ——-F%

q

be a multiplicative character, i.e., a homomorphism from the molti-
plicative group F: to K%, (Warning: Characters ¥ on F:
should not be confused with the Dirichlet characters on (Z/dZ)#*
which were considered im Chapter IT and were also denoted ¥.) The
Gauss sum {in K} of y and ¥ is defined as

gl = - 2 XGD) i)

xng

If X, and ¥, are two multiplicative characters of Fq, then

the Jacobi sum of (xl,xz) is defined as

J(Xl,xz) = Xl(X) XZ(I_X)"

xqu, x#0,1
{The Gauss and Jacobi sums are usually defined without the minus
sign before the summation, but this definition is more convenient

for our purposes.)}

The Gauss and Jacobi sums satisfy the following elementary

properties:
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(1) Tf ¥ is not the trivial character, and if ¥ = x_l de-

notes the conjugate character, then
g0L¥) (o) = x{-1}eq.

{2) If ¥ is nontrivial and K = C," then
[eCo)] = V.

(3) If y;%, is nomtrivial, then

g0y s¥) glxy.9)

NCRIRD (.1

Ftpaxy)

Note that the expression in property (3) does not depend on the

choice of (nontrivial) additive character .

Remark. g(x,¥> 1is the analog for Fq of the gamma function
on R. Namely,

(=23
I(s) =fxs oTE X
o

X

i.e., T(s) 1ie the "sum" over the {positive)} multiplicative group
of the field (i.e., the integral with respect te its Haar measure
dx/x) of the product of a multiplicative character x #—»xs and

an additive character xJ—ﬂhe—X. The analog of property (1) is:

r{s) T(l-8) = in which m plays the role of q and

S|
sin(ms)?
: . : Tis s

sin(wag), which is essentially e = {(-1)", plays the role of

x{-1}. J(xl,xz) is the analog of the beta—function

1
_ r-1 Y- T(r) T(s)
B(r,s) 2 x {1~x) dx e (1.2)

As an illustration of this strikinmg analogy, compare the proof
of the expression (1.1) for the Jacobi sum in terms of Gauss sums
with the proof of the formula (1.2) for the beta~function in terms
of the gamma function. Both proofs are easy, so let's write then

side-by-side:
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B(r,s) F(r+s) = J(xl,xz) g8X Xpo¥) =
1 @0
j # (2-x00 %" Lax f yie 1Yy E ¥y (30X, (1-%) Z Xy (PO ()
0 ) [i xeF yeF
q q
1l
[ e la-nT e Ve = D G (e0nie)
00 x,yEFq

change of variables

u=xy, v={l-xy

u

X = IV’ y = utv
=JJur_lvB-le-u_vdudv = z Xl(u)xz(v)w{uﬁi)
co u,vqu
- forteora [t = D X W > %@
[ Q uEFq veF
= I'(r) T(s). = glx ¥ 8lt,.¥

The analogy between Gauss and Jacobi sums and gamma and beta
functions goés deeper. The purpose of this chapter 1s to show that

Causs sumg are essentially values of the p-adic gamma function.

2. Fermat curves
Let K be a field containing ¢ d-th roots of unity, for
example, C or S?.P or Fq when q £ 1 (mod d). We let Hy de-

note the set of d-th roots of unity. If K 1s of characteristic

p, we must have B * d. The projective Fermat curve F(d),
4> 2, s defined by X%+ v% = 2%, The affine curve F()*F
is defined by xCl + yd =1 (x=2%X/z, y=7%/2). The group
udx Ud operates on F(d) and F(f])aff by

(£,8"){x,y) = (&x, &'y}, €, BN e Hg. ' (2.1

We first comsider F(d) over C and study the groups Hl(F(d),Q)

58

and H%R(F(d)/Q), and the action of Mg ¥H, on these groups,
To describe the homology Hl(F(d) ,@}, start with the path
Toi 10,11—F@*E, v (0) = (¢, Y.

Fiz a primitive d-th root of unity £, let
Y= Y- LAy, + (6.8 - &l

so that v pgoes first from (0,1) to (1,0), then from (1,0)
to {(0,8), then from (0,8) to (£,0), then from (§,0) to
(0,1).

Note that F(d) 1is a nonsingular plane curve of degree d.

From algebraic geometry we know the following

Fact. The 2g = (d-1)(d-2} differential forms

r-1 s~ _dx
A S
y

(T3]

r,s 1<r,s<d1l, r+s#d,

form a basis for

1 _ {differentials of the second kind}
Fpp (F(&) D = lexact differentials] :

and the g forms with r+s < d form a basis for the holomorphic

. 1
forms in HDR(F(d)/Q).

Hote that for (£,E") ¢ udx ud

' _ pr-l.,s-1 £ _ k.8
(E,E)*wr’s = & 7% —T = g w

E'd_l r,s y87

so that W is an eigen-form for u xud, which acts by the
3

d
character X gt (ERE"YF— £, e,

£ = X
o mr’s xr’s(a) mr,s | for a ¢ Hy ud.

Remark. The above assertion about W with r+s <d form-
L

ing a basis for the holomorphic differentials is true for any non—
singular plane curve of degree d (see {87], p. 171-173). The

assertion about differentials of the second kind can be proved as
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follows.

First note that the points at infinity F(d) —’F(d)aff are given
in the coordinates u = Z/X = 1/x, v =¥/X=y/x by u=0, v=¢,
where ¢ runs through the d d-th roots o§ -1. Consider the
{d-1)-dimensional vector space of differem‘:ials on F(d) of the

form H(x,y) %}_{_l, where H(x,y) = xd_zP(y/x) is a homogeneous
¥

polynomidl of degree d-2. In the (u,v)-ccordinates,

dx d-1 dx L du
H(x,¥) ;FI = -x (x/v) P(y/x)(—;-z-) = —EP(V) =
which has residue res. = —El_dP(C) = ZP(L) = 20<i<d ai—l':l at

the point at infinity (0,7). The sum of the residues is clearly
zerc, but the residues camnot all be zero unless H{x,v) =0, since

=L
i-1 " @3 ¢

vector space of H's te the {d-1)-dimensional vector space of
P

a ZE E_lres Thus, the map from the (d-1)-dimensional

possible residues at infinity whose sum is zero, is surjective,

atf differs from a differential

i.e., any differential form on F(d)
of the secend kind (i.e., one with all residues zerc) by a differ-
ential of the form H(x,y)dx/yd_l. So for suitable H(x,y),

homogeneous of degree &-2, we can write

W H(x,¥v) y—gfi = a differential of the second kind;
applying (E_,,E)*‘ gives

Er-h;mr’s - H{x,¥y) % - another differential of the 2nd kind.
If r+s 7 0 (mod d}, Ywe can subtract and conclude that mr,s is

a differential of the second kind., Finally, to show that the 2g
differentials mr,s with 1, s < d are linearly independent
modulo emact differentials, it suffices to use the faect that they
are not exact (see (2.2) below) and they are eigen-forms for

vy ® ud with distinct characters.

We can thus write

X
1 1 .8
B (F(A/Q) = @ B (F(d)/Q) 7T,
R lgr,s<d, r+s#d DR
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1 X :
where the space I-IBR(F(l:l)/Q)'_'r’S of forms on which ].lqud acts

by Xr,s is one-dimensional =nd is spamned by .
’

Aft ighi i L i
er establishing these facts about HDR{F(d) /Q), it is not

hard to show that the classes of the paths {(Z,Z")v}
(£,8" e Mg X Hy
span the homology Hl(F(d},Q) .

We now compute:

Jwr’ = u - w + u - f "
TR DTy T @y T @y, R
- (- @wos e @ns - o
7, T,2
=(1—ES+EI+S—Er)J'Lu
r,s
Yo
= (-t -eh fxr—lys—l dx
d-1
Yo ¥
But 1
[Xrys—dd_:“ _ jtr(l_td)s/d—lg
Y, 0 -
N ‘
1 -
= E] ue/e (l—u)e'/d T fore u=td
0 L3
1
=3 B(E’g} {sea (1.2)).
Thus

L o-Ho-ff
I"Jrs = “""'_5# B(5. - (2.2)

3. L-series for algebraic varieties (mot to be confused with
Dirichlet L-geries)

Let VO be a separable algebraic vaviety of finite type over
Fq’ and let V be obtained from VO by extending scalars to the
algebraic closure ?q: ¥ = V0®Fq. The Frobenius map F: V=V

is the map which raises coordinates fo the q-th power (in terms of
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coordinate rings, it ralses varlables te the q-th power and keeps-
coefficients fixed). Thus, the Fq-points of v, are the fixed
points of the Frobenius F in V.

" If g e End ¥, let Ifix(g)l denote the number of fixed points
of g om V. Thus, |V (F )} = | £ix(FM] .
q

Let G be a finite group of automorphisms of VO over F ,

q
let p: G=CL(W} be a finite dimensional representation of G in

a vector space W over a field K of characteristic zero, and let
¥ = Tr{p). Then we define

N TTl 1 -1 b
LV, /F_,G,0) = exp - x(g )| Eix(Freg) | (3.1
0 (nzl n 16 g;; )

e K[[T]].

For example, if G = {1}, then this is merely

o0

20V, /E ) = exp (21 I; ivO(Fqn)l).

n=

We shall be interested in the case of Fermat curves. Let VO
be the Zariski open subset of F(d) where none of the coordinates

vanish:

vy = L=y | 2eyda1, xytol.

d
be an extension of QP containing Qp( 1}, We imbed ud in

As always, we suppose ¢ = 1 {med d), so that ¥, < Fq' Let K

by the Teichmiller map =xhu(x). Let G =1 ;%U,. which acts
on VO by (2.1). Let xG and Xq be two characters of ¥y with
values in K, i.e., %y is of the form xl—')—iﬂ(x)ai (i=1, 2).
Let p= X = XXX, Let ii (i=1, 2) be the character on

(g-1>/d
Fz given by x)—»—xi(x )

Claim. The coefficient ¢f T in tbe exponment in (3.1) is
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equal to —J(il’iz) .
To prove this claim, note that (x,y) ¢ V 1is fixed by

FolE,E') whenever (Ex%,£'yY) = (x,¥). Thus, the inner sum in (3.1}
for n=1 is

X &, 68h.

(x,¥) eV
xq—l q=1

Eud’ ¥ Eud
But xq_l, yq_l € uy if and only if unmxd and v=yd are in
Fz. In that case ')(l(xq_l))(2 (yq—l) = )’El(u)iz(v) . Since for each

{u,v) there are |G| pairs (x,y) with u=xd, v=yd, we obtain

2D @D x| - Y F @,
I | g

u,veFéﬂ

utwy=1

= z ¥, (u)¥, (1)
ueFé, u#0,1 L 2

= -J(il,iz).

We shall also be interested in the case of so-called "Artin-
Schreier curves”, Just as the Fermat curve is connected with Jacobi
sung, similarly the Artin-Schreier curve

¥ -y = x4, pig, (3.2)

is connected with Gauss sums. Let A(d,p) denote the complete
nonsingular model of the plane curve (3.2). Note that here p
appears in the form of the equation. This is related to the fact

that Gauss sums, unlike Jacobi sums, depend on an additive character

4.

In the Gauss sums we study, the additive character ¥ is always
v
assumed to be of the form ¥: Fg-lr-)- FP-—LK* for some character

IJJO of Fp, i.e., it is obtained by pulling back an additive char-

acter of Fp by means of the trace map from 1"‘q to Fp.
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The curve A{d,p) is a degree d covering of the y-line which

p—y = 0 and over

is totally ramified over the p sclutions of ¥
the point at infinity, and is unramified elsewhere. It follows from
the Hurwitz genus formula {see, e.g.,[40], p. 301).thar 2g-2 =
~2d + (p+1)(d-1), so that 2g={(d~1)(p-1).

Over a field of characteristic p containing Mo the curve

A(d,p) has two types of automorphisms:
zF¥Ex, yhy, F,'éud; (3.3) v

and
X b=>-x, yhkvito, U.er. (3.4)

We shall see that the first type corresponds to the multiplicative
character ¥ and the second type to the additive character ¥ in
the Gauss sum. Wote that, as in the case of F(d), the number

2g = (d=1){p~1) is the number of pairs (¥,¥) with both x and

Y = wOOTr nontrivial. .
Let VO = { Gy | yp--y = xd, x#0}, let G = udX_IZ/pZ,

and let p = x: (F,0)—-y E),@).

Claim. <The cpefficient of ¥ din the exponent of (3.1) is

equal to —g@fl,lb).

This claim is proved in a manner similar to the previous one:

D eincron| - Z e

gel E&,n), (x,¥)
f—y=xd#0
(,y) = Exd,y+a)

- x, @) gty
(x,v)

yp—yzxd=u€F§

= le]| 2, %, (uw ¥, (Tr u),
;2;* 1 0 Fq/Fp
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as desired.

We now look more closely at L-series of this type. In particu-
lar, we show that the '"bad" points of F(d) and A(d,p) that were

omitted in ¥V, ({(the points where a coordinate is zero) can in fact

0 .
be included without changing the L-series, if our characters are

nontrivial,

We return to the general case of a variety VO. The Frobenius

F acts on the Fq»—points of ¥ A closed point x of Vy is the

0
same as an orbit of Fj deg x is the number of points.in the
orbit (equivalently, the degree over F_ of the field containing

the coordinates of the ?q—points in the orbit}.

Now suppose that V. 1is gquasi-projective, and "G is a finite

1}

group of automorphisms of V. over Fq (hence commute with F), [et

X, = VO/G with the induced grobenius endomotphism.

We first consider the case whem G has no fixed points, i.e.,
for all geG and all ve Vo(fq), if g#1, then gv#v., To
every closed point Xq in - XO of degree N, we associate a
conjugacy class Frob(xo) in € as follows. First Choosg_ an X
in the orbit =x

0
lies cver x, and so equals gv for some unique geG. Changing

and 2 ve VO(Fq) lying over . Then ::.FNY_’I: also

out choice of x in the orbit x, or our choice of v Llying over

0
x only changes g by conjugation., Hence we obtain a conjugacy
class Frob(xo) in G depending only on g (In cur application
later, G will be abelian, so that Frob(xo) will be a well-

defined element.)

Let p be a representation of ¢ in a finite dimensional
vector space W over a field X of characteristic zere, and let

¥ =Tr p. Then

Claim.
1
Det (l - p(Frob(xO))‘T

L(VU/Fq,G;ﬂ) = 1 deg XO)

where the product is taken over all closed points gy of Xy
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To prove this claim, we take the log of both sides and use the

n
T I B
fact that log Det{l-MT) = —z? Trace{(M ) for any matrix M.

Then we need only show that

-

el zx(g_l”fix(ﬁ’ng on V)|
geG

is equal to

L rdeg X
A noo I r
n» coefficient of I° in 2 2 = Trace p(Frob(XO)) R

r
%, r=1

which can be written

and
sum

the

let

Now

/) s x(Fron™ 2 (x)),

X of dégree sin

o
this equality follows easily by writing the first sum as the
of ¥(g) over all g and v with y= gv and then using
definition of ’Erob(xo) . ’

Now let us allow G to have fixed points. For v ¢ VO(Fq},
I, = {geG| gv=v}, the "inertia group” of v. Let
I

WY o= {wew | p(g) w=w for all gsIv}.

Frob(x is only defined up to multiplication by elements of

0’
as well as conjugation; nevertheless, the determinant of

dag x Iv
T -p(Frob{xU)) acting on W still depends only on e

it is not hard to show that
deg Xy -1
= - .5
LUVY/E60) = [1 pet{r -2 p(Frob(xO))lwzv . (3.9
X
0 .
In our example VO = 7{d}, G = udxud, the fixed points occur

(1) when Y = 0, in which case I = 1XUg3

v
(2) when X = 0, in which case Iv = udx 1;
{3) when Z = 0, in which case Iv is the diagonal in Mg XMy
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If our character p = y = A ® Xg has the pfoperty that xr, Xgr
and XX, are all nontrivial (i.e., 0 <1, s < d,. t+s #4d),
then in all cases Iv acts nontrivially on the one~dimensicnal
space W, Hence WEV = 0, and there are no contributions to
(3.5) from the points with zero X, Y or Z coordinate.
Similarly, when VO = A(d,p), G = Ug* Z/pZ, the fixzed points

are

(1) the point at infinity, where Iv = G;
(2) the points with x=0, where I, =uyx {0}.

Again there is no contribution te (3.5) when the characters are

nontrivial,

We now return to the general case of a variety V.. Let Dre

0 8

be the regular representation of G. We have
[IGI if g=1;
0 if g#1l.

It is lmmediate from the definition that

Trace preg(g) =

o0
L(VD/Fq=G,DrEg) = Z(VO/Fq) = exp ZT |V0(Fqn)[;

and aiso

L(VO/Fq,G,ptrivial) = Z{XD/Fq) (recall Xy = VO/G).

Since trivially we have

L(Voqu,G,plG)pz} L(voqu,G,ol) 'I‘{Vo/Fq’G’pz)’
it fellows that the decomposition
_ deg P
preg = ® e y

where the summation is over all irreducible representatiocns of &,

gives a corresponding product decomposition of Z(VO/Fq):
= deg P
ZOV/FY = 2(Xy/F) [T (v, /F .6,0) , (3.6)

where the product is over all nontrivial irreducible representations
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Suppose VO is a projective, nonsingular, geometrically con-—

Then X the quotient of

nected curve over Fq’ of genus g. 0°

Vg by G, is also nonsingular, say of genus g'. We have
polynomial In Z[T] of degree Zg_
(1-1 Q-eD

Moreover, if p 1is irreducible and nontrivial, then

Z(VO/‘Fq) =

L(VO/Fq,G,p) is a polynomial in T.
This was proved for curves by Weil in the 1940's, but it is only a
conjecture in the general case of higher dimensional V.. It then

follows that
Zdegp deg L(VOIFq,G,Q) = 2g-2g',
where the sumation is over all irreducible nontrivial representa-

tions Q.

4, Cohomology

unr -
A = {KEQ;MI [=|, <1y thus, 270 is

Let ]

the ring extension of Zp generated by all B-th roots of umity

with p f .

1
Fact. For every prime % there exists a functor H

projective nonsingular free modules (of rank 2g}

geometrically connected z, if Ldp

curves of genus g over

over F 29T if f=p
q P

1 1 uny
(nemely, Eg ., (V,2,) for ##p and H_ oy, 0V/77) for

4=p), such that if V = V()@quq with V¥, defined over Fq’

and if F is the q-th power Frobenius endomorphism, then

Trace(F* it (M) = 1+q- lvgte ) - (4.1
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5,

i

This fact implies that

v,/ > o
Z{V_[/F = z —_—
o/Fy) exp 2w iVOCFqn}E
E n
= exp z J;T (1r+q" - Trace(F*nlﬁl(V)) )
n=1

1 1 1
T-T i ar Det(l - ToF*|H (V).

Here the Det term is a polynomial which is clearly in Z[T]..

Similarly; for L-series one can construct for geG a “twisted"

variety V(‘} defined over Fq such that Va ®F Fq = VD®F Fq =V

q

while the Frebenius for V! is Feg (P is the Frobenius for

0
VO)' Thus, (4.1) implies that
n 1
Trace((Feg)*[H™(V}) = 1+ q" « [fix(Fog)]. (4.2)
Now let p be an absolutely irreducible representation of G

in & vector space over a field X which we assume contains ZJE, or
unr

Zp . Then the subspace of Hl{V}G)K on which G acts by p 1is
1 P 1 -1
wwmen® - (L5 yehg) amen,
le] £eG
and, using (4.2) and (3.1), one easily shows thart
LT /E,600) = Dec (1 - TR @D @RP) . (4.3)

We now apply (3.6) and (4.3} to our examples F{(d) and A{d,p).

It follows from (4.3) that the coefficient of T 1in

) 1
VL(VO/Fq,G,p) is -Trace #*| (@ (V}I®K)P. In the case Vg = T,

G = Mg *Hgs P = xrx)(s with 0<r,s<d, r+s#d, we showed that
this coefficient i ~Jx L%
nt is J(Xr,xs} # 0.

K ™

Since the 2g spaces

[t a@ex)T

are nonzero, it follows that each of them is

one-dimensicnal, and we have the direct sum decomposition
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x
whe@rer = © FEwey T o
e XX
Moreover, the eigen—-value of F#% on (Hl(F(d))@K) T "8 e
Trace F* = J(ir’is)' Then {3.6) (with VO = F(d) and XO = VO;’G

= the projective line) gives

S — - IGLEID,
Z(F(4) /) AT gD 1§.rI,_Is<d(l CRyYRLy]
r+s#d

as Weil explained in his famous paper in 1949 [99].

d = n
Next, let V5 = A(d,p): yp -y =x over Fq, g = 1 (mod d);

G =g 7/pZ. - We have shown that each of the 2g = (d-1) (p-1)
characters p = xxwo with y and tpo nontrivial gives nonzero

Xxv
Trace F¥] (Hl (A(d,p))®K) ¢

= g, ¢'0°Tr) .,  Thus, we again
have the decomposition
1 xx g
wa e = @ (e, ®K)

s 1[10 nontrivial

into one—-dimensional eigenspaces with F acting by g%, 1;100’.1‘1:)

on the }Xx ‘.llo—compcment. We conclude:

SR [1 (L - g%, oI
2(a(d.p) /Fq) (1-D-an X WO nontrivial 0

We obtain a number theoretic corollary if we replace Fq by
¥ o and replace g(¥%,y) by the corresponding Gauss sum aver Fqn:
& Gow)y = - EF* X(NF n/F x} ﬂJ(TrF n/Fq x).
o? x€F* g0 e q

Namely, we have

action of the qnwpower Frobenius

EF (i$ 1J-’,:."'I‘IF /T )
q" ap on (E-AWEEDXVO
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xlpo

il

7 (& 4,0 ©F)

n

n
(EF (X’ ‘L’ODTI)) s
q
which is known as the Hasse-Davenport relation for Gauss sums.

5. p-adic cohomology

1

By explicitly constructing a p-adic H~ for A(d,p), we shall

. X ~ 1 Xx‘bo
derive a p~adic expression for g(¥, ¥,°Tr) = F#*|{(H GK) B
¢l

shewing how special values of the p-adic gamma function arise as

eigen—values of Frobenius. TFor simplicity, we shall assume p > 2,

. . 7 (x~ xP) .
A key role will be played by the function e congidered

_ P
in §1.3. As before, we denote E {(x) = Mx-=)

Proposition. There is a one-to-one correspondence between

(p-1)-th roots T of -p and noentrivial additive characters 1])0

of FP such that
= 2
vl = E‘n'(l) = 1+ 7 (med 7).
We then have
Wu(a} = Eﬂ(m(a)) for aer.

(Recall that w(a) denotes the Teichmiller representative.)

oT (x - x°) -

Proof. For x ¢ D(1) we have: E’rr(x)p = g
i X
L’l (x~x")*. (Thus, because of the p in the exponent, we
il
can evaluate Eﬁ(x)P by first evaluating the exponent and then ’

expanding.) Hence, if x e D(1) satisfies x-x = 0 -- in other

words, if x = w(a) for some a ¢ Fp —— then Eﬂ(x)p=1. Thus,
each Eﬁ(w(a)) is a p—th reot of 1. It follows from the expan-
sion En(x) = 1+ nx+ % wzxz + .. that E“(w(a)) S 1+7a

2
(mod 7). The proposition now follows easily.

71




One similarly shows that if ¢ = wouTrF /7 is the additive
q P :

character on Fq and if BEFq, then

i
w® = T e n,

O<i<f
where q = pf gnd T is the {p-1)-th root of -p corresponding

to ¢O'

Let V be a nonsingular algebraic variety over a perfect field
k of characteristic p. In our application V will be the curve
A{d,p) and k will be Fq’ Iet R be a complete discrete valu-
ation ring with maximal ideal MR and residue field %k, and let

K be its fraction field. For us, R will be the ring of integers
in Qp(g:-]%@,_ ™, where 1 -

Washnitzer and Momsky [75] comstructed an explicit versior of
p-adic #' which to a sc-called "special affine open set” associ-
ates a K-vector space. I1f U = {Uj} is a covering of V by

special affine open sets, then the map Uj i—l'*Hl(Uj) defines a

Zariski presheaf H"Y of E-vector spaces on V, such that the ,
cohomology Eg’q - 1f{v Y => p*(V)  conjecturally abuts to a

"good" p-adic cohomology (in the sense of §4). This has been
proved in the case when V 1is a curve. We shall only need the

Washnitzer-Monsky Hl for curves.
Theorem (Washaitzer-Monsky}. The functor
v }—b-Hl(V) das HO(V,Hl) {global sections)

on complete nonsingular gecmetrically connected curves V satis-

fies the properties:

rank Hl(V) = 2 genus(V);
Trace(F*[Hl(V)) = g+ 1- |fix(F)|,

when V = V. & k for some V defined over F , where F = F
men 07k 0 q Fy
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is the q~th power Frobenius endemorphism of V.

The basic type of ring which goes into the constructionm of H»

is R<<x x.>>», which is defined as

120 Xy

{EAWXW € RI[x xN]]l for some real mumber B .and

1 €>0 we have crdpszalw]+B},

W "1 M
where w = (Wl’ . _.,wN) s ® o= Teeemy || = Zwi. Equiva-
lently,

R<<xl,...,xN>> = {feRI[xl,...,xN]]l Jr>1, f converges
for xl,...,stD(r)}.

It turns out that H! for the p-adic "affine line" will be

il
R<<x>>®K/E£ R<<x>>(@K = 0, as expected.

Remark., In p-adic analysis D(1) can often be thought of as
the affine line, since it is the smaliest disc containing the
Teichmiller representatives of the points of the affine line over
Fp. Ore might ask why the simpler ring A = {f<¢K[[x]]] £ con-
verges on D(1)} camnot be used, In fact, 4/dzx 1is not surjec-

i 3
14N

tive on A. (For example, a = ijxp = ax € A, but

: } 1
ZXP ¢ A, so a is not = of any element of A.,) In fact,

d
rank(A/E;A) = o rather than Z-genus(line) = 0. However,
d . .
Gy is surjective on Re<u> > (K,

For simplicity, suppose that the nonsingular curve Vaff is

given by one equation f{z,y}) = 0 (as will be the case in our
application to A(d,p)). Consider the coordinate ring of the

s e ff
Zariski open svbset U of v where the tangent to the curve

" is not wvertical:

RESNSICICRONES. iR

Such an affine open set is called a "special affine" open set U
over k. We now define the "dagger ring" for U to be the

quotient
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S = Ry 2/ FE), gD,
where F(x,y) is any fixed pelynomial in R[x,y] whose reduction
modulo MR is f(x,v}. WNote that A+(U)/MRA+(U) = klx,y,t]/
(f, ta—f— 1, t.e., A+(U) "1ifts" the ccordinate ring of the

Iy
+
special affine open set U. (Of course, A (U) is not unique,

since TF{z,y} is not unique.)}

d
In our example V = A(d,p), where £(x,¥) = yp—y—x , we

have % = -1. We can take F(x,y) = yp—y—xd, so that oF/dy =
pyp_l—l, which is invertible in the ring R<<y>>  (since

aff

e ZPjy(P_l)j ). Thus, for U = A(d,p) = A(d,p) -

1-pyPt
{point at infinity}, we have

+ d

AU = Re<kyrr/yF-y-x.

Because U =V - {point}, we are in an especially convenlent
situation for computing Hl(V). Nzmely, if V 1is a complete, mon-—

singular geometrically comnected curve over k such that V -

{point} is a special affine U, then

vy = wl@- {pointh.
Roughly spesking, this 1s because, if ¥y serrsV,  are finitely many
points of ¥V, then

HY (V) comn BV - v, b

can be identified as the subset whose residue at each point van-
. . s 1 .
ishes. Since the sum of the residues vanishes in H (V- {vi}),

this subset is all of Hl(V— {vi}) if s=1.

We now state a general fact (see [75]) about lifting a
k-morphism ¢0: U]‘——'-I’U2 of spécial affine open sets to s morphisam
[ A+(U2)—-—>—A+(U1) of their dagger rings. For simplicity of
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notation, we suppose that there is only one x wvarizble, as will be
‘the case in our application. Suppose that
Bfi

U, = Spec k[x,y,t]/(fi(x,y), t_ay -1, 4i=1, 2.
First of all, such a lifting ¢ exists (¢ is not unique). Next,
suppose that we fix an element ¢(x) « A+(U1) which reduces to
¢0(x) medulo MR' Then there exists a unique choice of ¢(y)
and ¢(t) Iifting ¢D(y), ¢0(t). Finally, let

2, = Ao
NI

with differenttal d, and let H (V) = HY(Q, ®K =
+
+ + b
ATWOR dx/ (T ®K).  Then B'(U,) ie independent of the
. ce s 1 1
choice of Fi lifting fi’ and ¢%: H (Uz)—>~H (Ul) is indepen—
dent of the choice of ¢ lifting ¢:0. Thus, we may choose any

convenient lifting.

We show how te choose a convenient lifting of d}o in the case -

= _ _ aff
U=u, = u, = A(d,p) and ¢O: Xpb—»x, yk=y+ao, o e

{0,1,...,p~1}. Ve want to construct an endomorphism ¢ of
ATy = Rrex,yr/ P -y - xD

which reduces to ¢, module MR. It is simplest to choocse ¢(x)

0

= x. Then the above fact asserts that there exists a unique

+
$(y) ¢ A'(U) such that ¢(y) = y+o mod MR' To see this con-

cretely, we note that 2z = ¢(y)-y-o must satisfy

z+y+)? - (z+y+a) = P -y,
in other words,
-2
P i p-i _
=4 3@ it P+ puraPlon.
i=1 _
++af-yP-a-0, .1
75




See example (2) in 31.4.b, where we saw that if ordpy > “E%T’
go that A = ordp((y-ka)p-yp-u) > 0, then there is a unique
solution z with 0 <ord 2z = *. This =z can be expressed as a
power series in v by first solving (5.1) mod p2 :

po+af -z + Grof-yP-u =0,
then substituting the approximate solution in place of all higher
pOWELS 22,...,2p in (5.1) and again solving the resulting linear
eguation for =z, and sc on. The result is a power series in ¥
with coefficients in Zp € R which converges for ordpy > _p—l'
Hence, ¢{y) =z +y+a € R<y»> C A+(U) is the desired '
lifting of ¢0(y) =y + o,

0f course, the other type of automorphism ¢0: X p— &x,
vy —v, where Ed =1, Ee Fq’ can be lifted simply to
bt xb—>w{E)x, yr—>y, where w(E)eR is the Teichmiller

representative.
+ d h
Thus, the group & =y, X Z/pZ acts on A'(U), and hence on

the dagger cohomology

i@ = Afmereas safmen.

6. p-adic formula fer Gauss sums

L.
Because we claimed that the dagger H~ is a good cohomology,
the subspace of Hl(A(d,p)) on which G = udx Z/pZ acts by X><¢O
should be one-dimensiomal (if ¥ and wo are nontrivial), and the

q-th power Frobenius should act on it by g (¥, wOOTr), where

ﬂél_ th power X .
%o U K*.
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Since G acts on A*(U) = R<<x,y>>/(yp'-y-xd), ‘we can decom-
pose
X
dwer = ©  (Toex)” °
all ¥, ¥,

The following proposition is due to Monsky. We let ¥  denote
a a
2¢q-1) .
Ermu(E3d 7, e et V., 4, denote the trivial character on F ,
p

and we let wﬂ denote the character a—>F (w(a)) on FP (see

the beginning of §5).

Proposition. The subspace of A+(U) invariant under

{1}x2/pZ ¢ G is R<<x>>; rthe subspace of A+(U)()K on which

X .
2/pZ acts by W is T (y) (R«x»@K); st Veriy

X XU
=x ke oaa Wfoex) * T - £, () % (Resx>>@x) .

To prove this, first ncte that Eﬁ(y) ard E (-y) = l/Eﬂ(y)
have coefficients in R (see $I.3) and converge on a disc strictly
larger than D(1); hence Eﬂ(y) iz a wnit in R<<y>>. In addi-
tion, Ew(y) transforms by wﬂ under the action of 2Z/pZ, i.e.,

P (B ) = g () F v, GeF, (6.1)
where ¢a iz the Iifting of yF—y+a constructed in §5. To

see this, note that ¢G(Eﬂ(y))/Eﬂ(y) is a p-th root of unity

(independent of y), because
P — p - P
(e 0,0/, 0)" = Pl O erlr=yD

since ¢a(y)p'-¢a(y) = yp-y. (Note that the extra p in the
exponent allows us to evaluate the exponrent first, as at the begin-
ning of §5.) To determine which p-th root, we set y=0:

E (0,000 /E (0 = E G 00 = E(u@) = (8,
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and (6.1) is proved.
Since A+(U)®K clearly has rank p over R<<x>>GE (it

equals @ yi R<<x>>(K ), and the subspace on which 2Z/pZ acts
0<i<p

by wﬂ (resp. }  includes E“(y) R<<x>> (DK {(resp.

triv
Re<x>>®K), the first two assertions of the proposition follow.
The assertions about the action of X, are obvious, -

Remarks. 1., For fixed T, . -p, we could also use the
units Eﬂ_(y)i ¢ R<<y>>, i=0,1,..., p-1, since E“(y)i trans-
forms by wni under Z/pZ. Hence,

Sfoer = 0 pomeceesen.
0gi<p-1
T (y - p) —p'iTXd

Fote that Eﬂ(y)p = YY) o ¢ R<<x>>. Thus,

E“(y) ig a Kummer generator of A+(U)®K over R<<x>>(DK.

2. All of this applies to any curve of the form yp—y = f(x)
< R[x]; the specific polynomial £(x) = xd was not needed in

analyzing the action of 2/pZ.

Proposition. For IJ‘JD =¥ and for x = )., lgax<d,

T
1.4 X* Vg ) ,
H- (A" (NEK) 1z 2 one~dimensional K—vector space with basis
E_n_(y) Xadx_x; if either x or wo is trivial, this space 1s zero.

Proof. We compute: dE'rr(Y) = Eﬁ(y) dlog Eﬂ(y) =

E(y) dmy-yD) = TEG) a(=x%) = v a*TE (ax.  Thus,

4 (E_n_('y) xf (xd)) Eﬂ(y}xa% (—ﬂdxdf(xd) -+ af(xd) + dxdf'(xd)) ,

so that for azl,
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(ﬁl(A.!-(U) ®K))X *¥o _ E () 57 R<<x‘:1>>‘5i(_K &K
d (E“ (v} =2 R<<xd>>®z<)
= R >BE
(_"X +5 X“c%g) (R<<x>>®K)
The proposition now asserts that the cokernel of 3 = x§;+ g_ e

on  Re<ox>>@K iz K if a 2 1. (The triviality of

1 XX,
B (A+(U)®K) tiv e immediate, since 4y, surjective on

dx
Kipio XV
R<<x>®@K;  the triviality of ELATM®® T 9 4111 ne
shown later.)
We compute:
a
+£ m
m+l _ 73 m x
x = —x + 3(" “.HT),
sc that
=, & a a_qi,..(2
DR S 3 Eri-y--G)
+
= w 1 = m+l Trm+1
o= a a a
, a (m+a)(m+a—l) (n+1+c—l) .
- = L) =
=1 men e
(6.2}
Because we have
a
4=
(m+1)! (“‘ d) @1
ord b —is > ord_ b == (see §I.3
mt+l +1 = A
P _ n+1 L formula (3.3))

5
ord b --umrl
p whl p-1

(=zee 8I.3, (3.1)},

xm+l
1

follews that the constant sum in (6.2) converges (since §

while urdpbm+l 2 (a+l)e+B  when me+ e RL<x>>(DK, it

m+l £
(r-1) (1ngm +1)). Similarly, or:r;lp of the inner sum inside the
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2 is at least
1+s _

b n) > ne + B'
p-1 - )

miann ((m+l)€ + B -

for some £' > 0 and some real number B'. Thus, any element f
in B<<z>>®K can be written as const + 9g, g € R<<x>>@K, It
remains to show that 1 cannot be writtem as 3g, g € R > (0K,
if azl, in which case we will have proved that the cokernel is

n s
precisely the constants. Suppose g = anx , 1 =23g. Ther.l

n o _ d a no
1“‘"2%" = (%*d)zbnx’

and comparing coefficients gives

a
1 = Ebo
- m > 1
bn_ n+§bn—l oz
d
n
hij

= s8s = .

a
(a+1)1 (“+E)
n+l

- i i L > en+B for anm
Thus, ordpbn < (Sn+l_ 1)/ (p-1}, which is ne n y
¢ > 0 and real number B. Thus, g ¢ R<<x>(®K.

The final assertion is that the cohomology is zero when a=0.

; adx
Roughly speaking, this is because the basis Eﬂ(y) Ll for the

cokernel of 3 only mekes sense when a 2 1. More precisely,

X XU E (y) 2L reax®>rax ©K
Hl (A+(U) @K triv. Cw _ T -
d(ETr(y) R<<x >>®K)

re<xo>EIK
(JL - -H) (Re<x>>(EK)
dx
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d . . .
To show that E;—Tr is surjective on R<<x>>®@XK, it suffices to
~] 3

. . 1 1d -n-1/d\®
show that its formal -—( --—) = - ™ (——)

L8 a lnvgrse [ L T dx z dx

n=0

takes 2 series in R<<Xx>>®K to a series in R<<x>>()K. But this

. s . nl /o :
is easy using the same estimate for "—ﬁ() as above, This com—
m T

pletes the proof of the proposition.

Reczll that cur Gauss sum g(¥,), ¥ = Yg°Tr, is the actionm

1+ X* ¥
of the q-th power Frobenius F = Fo on H (A {HEK) . Since

g

the curve A{d,p) 1is defined over Fp, the p-th power Frobenius

FO = F. also acts on A(d,p) and hence on Hl(AJr(U)@)K); and
£

we have F = FO , uhere gq = pf = 1 (med d). However, FO does

not commute with the action of G = udx Z/pZ; dits matrix in the

eigen~vectors of G is not diagonal. More precisely, we have

Py

xxv X<y
Proposition, Fg(nl(A+(U)®K) 9 ¢ watmen” 0

This is an immediate consequence of the commutation relation
Fyeifoo) Gny) = @7, yPea®) = @8, Yo 4 = @Perix,y),

for (E,a) ¢ G.

Thus, if y = Xy l<a<d, and if we lec a', a",..., a(J)
(£-1) ‘aa s J
ey @ denote the least positive residue of p a mod d,

then for some constant X = A{a,d,T) we have

a dx)

Pl E - a2 T o ddtoen. 6.

Then we obtain
f-1

8Gs bote) = IJ 2@ ,em. (6.4)
=0 .
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ca _ d a'
Proposition. A(a,d,m) = -pw I‘P 1-=-].

This proposition, together with (6.4} and the elementary fact

£-1
that %l z a9 o the sur of the p-adic digits in a%l,
=0

imply!

-1 ,
Thearem. (-p¥ H T (1 ‘<PilTa>)
=0 »

8y Ypot) =

Sa(g~1) /d
m

where < > denotes the least positive residue modulo 1 (not to

be confused with our earlier meanings of < >},

Proof of proposition. Let R be the ring of integers in

Qp(g-\/f,ﬂ). First we imbed
¢
AT = recr, /(5P -y - ¥ ——— >R [x]] (6.5

by sending y to the formal power series solution of yp-y =X
near (0,0), i.e., with zero constant term: v = —xd + ... . To
see that such a solution exists (and is unlgue}, one can use a ver—
sion of Hensel's lemma {8I,2) for the "x-adic topology”" in R[[x]]
(the topology which says that two series are close together if
their difference is divisible by a large power of x). Then y=0
is a solution mod x of f{y} = yp—y—xd = 0; moreover £'(0) =

-1 # 0, so the existence and uniqueness of the desired series

¢y(x) e Ri[x]] 1is assured.

The imbedding (6.5) induces a homemorphism

gt E@R———s @ [ [x1 10
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which commutes with the p-th power Frobenius F¥, where FO acts

on R[[x]] by sending x to = and acts on A+(U) by sending

% to %P and ¥ to the unique element which lifts yp and
satisfies F{)(y)p-FO(y) = xpd.
We have
dx Tly-vP) a dx < d
e a_) - ( y-y _) = o™® adx
¢(T()")X - $le x e xS
Thus, by (6.3),
—‘ITxd a dx —‘ITxd a' dx
Fg(e x -X—) = Ai(a,d,m) e = (6.6)

. 1
in H(R[{x]]®K). 1In other words, the difference between the two

sides of this equality lie in d(R[[x]](®X). Note that
o

d a
z a x" £ jg in d@[[x]]) < —2¢ R for all n.
a=1 n = n

Thus,
o
a LA e d{R[[x]I®K) < ord a > ord n + constant
& n x pn - P

for all =a.

Evaluating F% in (6.6) gives

B
pd d

=Tx d; _ — T

P s e S g dRIIER. (6.7)

Equating powers of x in (6.7) gives

-m™ ord (md+a') + const

o8
=) med p . (6.8)

n!

P E A

m!
where m is chosen so that md+a’ - p{nd+a), i.e., m=
Pa;_a'_ + pn.

We now chcose a sequence of n's for which urdp(nd+ a) {(and
hence ordp(md+a')) approaches infinity. Namely, we can let n
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approach -a/d by taking the p-adic expansior of -a/d; but it is
f
motre convenient teo expand -a/d in powers of q = p . Letting

b:-q;—la, so that 0 < b < g-1, we have

a b 2
2 = 22— = b+bg+ + ..
3 T-q q + bg
el 1-gd
Let @n = b-+bg+ ...+ bq = - & Then ordp(nd+a)
n! Sn ij .
> fi. Further ncte that ordp(%‘ﬁ) = - pTl = - 5_—1 Similarly,
m! ij
ord (wﬁ):: - —=— + const. Thus, multiplying (6.8) through by
PAT p-1

mi(-m ™ and carefully taking note of ox:dp and the effect on the

congruence, we obtain
£ —ij/(p—l) + const

n—m m!
A= op {-m -—:! mod p .
Sy, L
But j(f'“““p_l)_*'m as j—==o (this is because b < g-1 and

so has at least ome digit less than p-1; thus, 5 < f(p-1)).

Hence,

n-m mt

A= p Hm (-m) ar

-

. o )
where n = g(qj-l), m = pn+Eia.L_ Note that I l i =
- ' igin, pli

p*2p***np = pnn!.

Thus, by the definitiomn of I‘p,

-+ +1 !

Py - o™ [ 1= n® e

P i<m, pli n! p
Hence,

- +
A= op lim M ™t D).
-0 P

Row

(cm (_l)m+1 o= T (_p)n - _WPn—m,
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p-1 _ _ para' |

a

since 1T = -p. Since pn-m = Eaal and n—)-——d and
al’
m--—)f-F ag  jrew—=—® . we conclude!
—_ —_ T
A o= —p'rr(paa)/d lim T _{m+1),
m—»-a'/d -

and the proposition is proved.

Remarks. 1. For simplicity, suppose p = 1 (mod d). Then the
theorem reads:

gG ot = —p oD/

a
I'p(l—a). (6,9)
Suppose 1 <r, s, r+s < d, and let fﬂ denote ﬁd—a' By
property (3) of Gauss and Jacobi sums at the beginning of this
chapter, (6.9) gives us:
T 5
5) 7o)

(r-l- S) 2
Pp a

which looks remarkably similar to the beta function value in (2,2)

I axg)

for the classical periods of the differential W, o !
3

2. The above theorem also gives an analogy between the Chowla-
Selberg formula for the periods of an elliptic curve with complex
multiplication and a p-adic expression for the roots of the zeta

function of the elliptic curve; see [37,34].

We have thereby shown Gauss sums to be p-adic analogs of
special values of the gamma function. In the next section, we show
how Stickleberger’s theorem on the ideal decomposition eof Gauss
sums is an immediate corollary. In the next chapter we shall see
a subtler application: the proof that the p-adic Dirichlet

Lefunction Lp(s,)() has at most a simple zero at s=10,
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7. Stickleberger's theorem

Stickleberger’s theorem gives the ideal decomposition of Gauss

sums gOGY) in Q. Let K denote the field Q(WI).  Lec P

be any fixed prime ideal of K lying over p. Let q be the tum-
ber of elements in the residue field O/P of P; thus, ¢ = pf
igs the least power of p such that d ] q-1. We identify Fc1 wi.th

0/P, and let

d

be a multiplicative character, Tet a be the integer, 0fa<d,

X: Fg = (0/Py¢——u, c K

~1)/d .
determined by X(x) mod P = xa(q ) for ze0/P. Thus, if we use
P to imbed K in ﬂp, and consider ¥ to take values in .QP,
then ¥ is the aga_l_ th power of the Teichmiiller character, i.e,,
X = )~(a in the notation of §§3- 6.

The Gauss sum g(¥,¥) is obviously an algebraic integer in

R@ED). By checking the sction of Gal(XE1)/X) on

gL = - Z X ¥x),
xeFé

we see that g{}(,w)d lies in ¥ and is independent of the additive
character Y. By property (1) im 81, g(¥X;¥) divides q = pf;
hence, the ideal (g()(,lb)d} in K must be a product of powers of

prime ideals of K which divide p. Stickleberger's theorem gives

these powers.

We can ceonsider g(x,w)d p-adically if we choose an imbedding
13 K"——PQp(in/i-). As explained before (8II.2), for our fixed
prime ideal P of K dividing p, we obtain such én imbedding
L= by taking the completion of K in the P-adic topology;

this jmbedding 1 allows us to identify ¥ (strictly speaking,
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3(a-1) : :
1oy) with w . The power of P dividing the ideal (g(x,w)d)

in K is simply ordp(ip(g(x,kb)d)) .
Reczll that Gal(K/Q} ~ (Z/dZ)%, where Ot Ei—*Ej for
]
. d
je (2/d2)*, E” = 1. Gal(R/Q) permutes the prime ideals of X
dividing p, and we let Pj = orjP. Of course, Pj=P_r if §/§!
3
is in the subgroup of powers of p 1in (Z/dZ)* (the "decomposi-

tion group" of P},

If a/be Q with g.e.d.(b,d) = 1, 1Iet <a/b>d denote the
least positive residue of a/b mod 4, i.e., the least positive

k such that kb = a (mod &). Let
d
tawd - 11 P
je (zianx/{p d
be the ideal decomposition of g()(,w)d.
£-1

Stickleberger's theorem. o. = z<-ajjpk> , d.e.,
] =0 d

( <—a/j>dcj)
(g(x,w)d) o pMez/dzy*

»

where we write P ¥ for O’jP = Pj.

Procf. Otj = power of Pj dividing g(x,‘P)d

= power of P dividiag Ogig(x,lp}d

-1
power of P dividing g(X(J )sWJ)d,

-1 _ <1/j> <a/i> g1
where x(j ) = ojlo)( is the character x a. o dd . . But
according to the theorem in §6,

£-1

f=1
,tb)d)) = z(d—<pka/j>d) = Z<—a/jpk>d. Q.E.D,
k=0 D

A §
ord (1p(ex
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I¥. p-ADIC REGULATORS

1. Regulators and L-functions

If K is a nuomber field with Ty real imbeddings and 2r2
complex imbeddings, a classical theorem of Dirichlet [13] asserts
that the multiplicative group E of units of X 1is the direct
product of the (finite) group W of roots of 1 in X and a free
abelian group of rank ¥ +rT -1, d.e., there exist units ey,...,

2
sueh that every unit can be written uniquely in the form

e
r]_-}~172-1;n R e 1
1 2 e X2 oot of 1.
negTeyttte, gy > Byt AT

172

If ¢1, . ’¢r1 denote the real imbeddings and ¢rl+l, s ’¢r1+r2

dencte the complex imbeddings (one chosen from each complex conjugate

pair), then the map

{toele; O ]eeos T08lo, O

Tty
210g|¢.1_l+1( Mvees 21og\¢r1ﬂ2( )i x>

takes the group E/W of units modulo roots of 1 isomorphically

to a lattice in the hyperplane xl+x2 + e +Xr1+r2 ={ din rlhcz—

dimensional real space. The volume

det(ni log |¢i(ej) |) , l<i,i< r1+r2—l,
where a,=1 for igrl, ni= 2 for i>r1, of a fundamental
i
parallelotepe (actually of its projection on the xr1+r

is called the {classical) regulator of ¥. It depends only on K,

-hyperplane)
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not on the choice of "fundamental umits" ej or the ardering of the

¢i’ and it is always nonzero.

In this chapter we discuss two very different types of p-adic
regulators. The first type, due to Leopoldt, takes the same units
Ej as in the classical case, replaces the imbeddings ¢i: K G-
by imbeddings qbi of K into the algebraigally cleosed field Qp,
and replaces Jlog by lnp. Because there is no natural way of
eliminating T, of the p-adic ¢i the way we eliminated one d)i
from each complex conjugate pair in the complex case, Leopoldt fur-—

ther assumes that r2=0, i.e., K 1is totally real,

The second, more recently developed type of p-adic regulator is
due to B. H, Gross ([35], see also Greenmberg [31]). It applies to
number fields K which are totally complex, i.e., rl:O; nora
specifically, to se—called CM fields, which are quadratiec imaginary
extensions of a totally real field K+, i.e., K= K+{/—E) for
gome o which is positive under all imbeddings K+B>-R. Grogs
works not with ordirnary units, but rather with "p-units™. A p-unit
is an algebraic number which has absolute value 1 at all places
(including archimedean valuations) except for those over p. In
other words, all of its conjugates must have complex absolute value
1, and its ideal decompesition only involves primes dividing p.

A key examplie of a p-unit is g /g, where g is a Causs sum for

a finite field of q=pf elements, The multiplicative group of
p~units, if tensored with @ and written additively, is isomorphic
to the vector space of divisors ZPIP q (P-P). Among the imbed-
dings d)i: K"i——b—s‘ap, Gross chooses one from each coset medulo

+ {(the decomposition group of p), so that each d)i gives a dif-
ferent permytaticn of the divisors P-P. For a more precise state-
ment., see below. Gross then takes the determinant of a %X%
matrix, where g is the number of primes P over p. GCross's P
adic regulator is very different from Leopoldt's, In Gross's case
the set of units considered and even the size of the matrix vary

completely from cne p to another.
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The basic way in which regulators occur "in nature" 1s in the
expansion at 1 or 0 of £- and L-functions. First, in the

classical case, let

1
t.(s) =
K 2 (NA)S

be the Dedekind zeta function of the number field K, Here the sum

is over all non-zerc integral ideals A of K, and N is the
norm. The series comverges for Res > 1 and can be analytically
continued to a function which is holomerphic on the complex plane
except for a simple pole at s=1, The residue at s=1 equals
2 eny) 2ur
w /i

where r, amd T, are, as above, the number of real imbeddings

1 2
and pairs of complex imbeddings; w is the number of roots eof 1
in K, D is the discriminant of K, h 1is its class number, and
R 1is its regulator. The subtlest and most elusive term in this

formula Is the regulatecr.

The Leopoldt p—adic regulator occurs 1n a similar way. Let K
be a totally real field, i.e., r2=0. Serre [85] has shown how to
associate to K a p-adic zeta function CK’p(s) which is defined
and holomorphic on the closed wmit disc in .Qp {actually, on a
slightly larger disc) except for a possible pole at s=1. Cenjec-
turally, the pole at s=1 is a simple pole ‘with residue given by

zrl b RE!Leognldt

5 E.

Here all of the terms have been defined above except for E, which
is a product of Euler factors. (The phenomenon of "throwing out

the p-Euler factor" can be ezpected to occur in all p-adic versions
cf classical formulas for I- and L-functions.) Ia the simplest
case, when K=(Q, we have r, =1, h=1, w=2, D=1,

1 Rp,Leopoldt
=1, and E = 1-5.

1
Note that there's an ambiguity of sign in vD. We will see

that also is only defined up to a2 sign. In the

Rp ,Leopoldt
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classical case one can normalize by taking the absolute value of the
determinant in the definition of R and the positive square root

of ]D] . It is harder to f£ix the sign in the p-adic eage,

It is also conjectured that always Rp,Leoledt #0, i.e.,
there really is a pole at s=1. Both the residue formula and the
nen-vanishing of the regulator have been proved in the case when
K is an abelian extension of Q (the "abelian over Q" case). In
that case QK is a product of Divichlet L-series, and the neces-
sary facts were essentially worked out by Leopoldt [64] (see also
[61l]}. We shall prove the non-vanishing of Rp,Leopoldt below in
the abelian over { case. The proof uses a thecrem from transcen-

dence theory, which will be stated without proof,

But very little is known about in the neon-—-abelian

Rp,Leopoldt
case. A partial result supporting the residue formula was obtained

by Serre [86]1, who proved that for any totally real field K, if

Lo o has a pole at 1, then # 0.
t

Rp,]‘..eopoldt
It should also be mentioned that the "Leopoldt conjecture”
(non-vanishing of R

p,Leopoldt
between the p-adic regulator and the residue at 1 has been gener-—

) and the expected relationship

alized by Serre to p-adic "Artin L-functions" associated to repre-

gentations of the Galois group of k/k (k& totally real).

Gross's p-adic regulator, we shall see, is comnected to the
behavior near s=0 of p-adic Artin L-functions. These are p-adic
I-functiocns Lp{s,p) which p-adically interpolate values of the
Artin I-series associated with a representation p of the Galois
group of 2 CM field K over a totally real ground field k. The
order of zero mp of L (s,p) at &=0 has been conjectured for
some time (see [29]). Gross further conjectures that the leading
term in the Taylor series at 0 of Lp(s,p) is

1,
o
RP’GMSS(Q) Alp) s 7,

. Ve aas .
where Rp,Gross(p) is Cross's p-adic regulator and A(p) is an

explicitly given algebraic number, which turns out to be a product
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of certain Euler type factors and an algebraic number which is in-
dependent of p. (For a more detailed account, see below.) HNote
the analogy with the Leopoldt residue formula discussed above, in
which the leading coefficient of the Laurent expansion {at g=1)

is the product of a (p-adic transcendental) regulator, an Euler
term, and an algebraic number independent of p. In the classical
case, as we shall see below, the functional equation for L-functions
gives a direct relationship between the expansion at s=1 and the
expansion at s={. But in the p-adic case there is ne functional
equation, and no one has yet been able to explain the analogy
between the Leopoldt and the Gross formulas, In the sense of provid-

ing a direct link between the two types of p-adic regulators.

Gross's conjectured formula was motivated by: Ferrero-Greenberg's

procf [29] that p-adic Dirichlet L-series have at most a simple zero
at 03 and a conjecture of Stark and Tate concerning the leading
coefficient at 0 of classical Artin L-series. Gross's conjecture
is known to be true when K is an abeliap extension of Q. 1In the
abelian over Q «case it reduces to the case when £ is a one-
dimensional character, o, = 1, and the conjecture asserts that

L;(s,p) = Rp,Gross(p) Alp) £ 0 at s=0.

We shall give Gross's variant of Ferrero—Greenberg's original proof

of this fact.

Gross developed his conjecture as a p-adic analog of a
conjecture of Stark [50] and Tate [%3]. Instead of giving the
Stark=Tate conjecture In the general setting, I'1l illustrate the

idea by showing how it interprets the classical formula {(see §IL.3)

& — - .
ULy = -4 D X 10aa-7Y, (1.1)
O<a<d
where ¥ 1is a nontrivial Dirichlet character of conductor d, ¢
iz a primitive d-th root of 1, and gX = I x{a)ga,

For simplicity, we take the case when ¥ is a nontrivial even

character and d=:pN is a power of an odd prime p.
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Let K = Q(g), where ¢ is a primitive d-th root of 1, and
tee ¥ =q+z™H
Gal(R/Q) = (z/dZy*, o, (0) = 1%, and Cal(X'/Q) ® (2/d)#/{41}.

be its maximal totally real subfield. Then

Let G denote (Z/dZ)%/{+l)}, sc that summation over a<G means

taking representatives from half of the residue classes in (Z/dZ)%,

Let g be a generator of the cyclic group (Z/dZ}* (recall
+
that d is an odd prime power), so that Uge Gal(K /Q) generates

_i_
Gal{K' /Q). Let
_1 -
_ B
-1
[
Then it can be shown ([61], p. 85) that € is a Minkowski unit in

g
s= (-5 8

' {alsc in K), i.e., {Uas}aeG generate a subgroup of finite

. - . + N
index in the group E of units of X' . Let Ecyc ¢ E denote this
group of "cyclotomic units". (Equivalently, the 68 ars multipli-
catively independent except for the single relation HaeG Uas = Ng
=1, The situation is a little messier when d 1is not a prime

power.)

Let C[G] be the group-ring over the complex numbers of G =
(2/d2)%/{+1}. Let I be the ideal generated by the element

z ~ . Then it is easy to see that E 1s a free rank-one
T e cye

Z[¢]/I-module with generator €, where we define
fa; o 25
"% b - I I(UE) . :EEU ¢ e Z[G]1/1;

and Ecy$:)c is a free rank-one C[G]/I-module.

Let X dencte C[G]/I. Let LOG: X=X be the map defined
on a basis element by
-1
=
LOG(oa) EE 1og|dbdae, @,
beG
+
The determinant of LOG is clearly the regulator of K (times

the index [E:EC ). We can write the map LOG explicitly as

¥C
abg —abg
- g 4 ~ L -1
LOG(Ga) = S lag :ab 3 E_ab Ob .
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It 1is easy to check that this is a weli-defined map from X to X.

An irreducible representation of C[{G1/I is the same as a non—
trivial even character mod d. Let ¥ be such a character. Define
the "¥-regulator RX. to be the determimant of the map induced by

LOG omn VX @ X, where G acts on the l-dimensional space VX
CIG}
by  ¥. Here WV ® X can simply be identified with the Y-eigen

Xelc)

space of X, i.e., the I-dimensicnal subspace spanned by Z-)z(a) o,

Then

= - -1
LoG (Z x(a) oa)= s bzes x(a) 1ogicbﬁa€| o,

Z x{b) x(e) Loglo e] o 4 (¢ = ab)
. ey,

b, g G

E()hﬂce)( im)o)
(a; ® a l b;} b

Thus

R, = 2 ¥(a) log

asC

g3 - 788y

|
= z X(a) (log|1-77%%8] - 1og]1-77%%|)

ael

= > %28 X(2a8) 1og|1-1 78| _ > x(2) X(28) Log|1-z 2]
aetz aeG

= v(2) (x{g}-1) E X (a) 10g|1—cma\

aeQ

d —_— —
= AF @) - D 3 W) tog(l-gh

a=1
(because ¥ is even, and log (- - = ibg |1~Z_aHl—Ea|).
Comparing with (1.1), we see that the only difference between R.><
and L(l,x) is an algebraic factor; that is, R_ 1is the trans—
cendental part of L{1,x). Tt is this fact which Stark and Tate

generalize in their conjecture.

We get a companion fact about the behavior of L(s,¥) near
s=0 if we use the functional equation for L{s,¥X), which relates

L{s,¥%) to L(l—s,i}, and hence relates behavior near s=1 to
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behavior near s=0. Suppose ¥ 1is a nontrivial even character.
Then the functional equation is (see, e.g., [41], p. 5):

£ B o
_Exm L(i-s, X)
L0 = 5 05) T(s) cos{s/2)

If we let g0 and write I'(s) = I'{s+1) /s, we find that

L{0,¥} =0 (which we knew, since B =0 for ¥ even and non-

. I’x
trivial), and the Taylor expansicn at s=0 starts out

. g _
L(s,X) £ & 'EX‘L(I,)() + higher terms.

Hence, the transcendental part of the first nonzero Taylor coeffi-
clent 1s the same as the transcendental part of L(l,")Z), i.e,, it
is R-. Note that the non—vanishing of R- implies non—vanishing
of L(l,}_(), and at 0 it implies that the zero of L(s,X) is
simple, i.e., L'(0,¥) # 0.

More generally, the Stark-Tate conjecture can be stated equi-~
valently in terms of the behavior near either 1 or ¢, thanks to

the functional equation.

In the p-adic case, there is no known {or expected) functional

equation, and so there are two completely different p-adic analogs

of the Stark-Tate conjecture, one at s=1 {due to Leopoldt and

Serre), and one at s=0 (due to Gross).

2. Leopoldt's p-adic regulator

Let K be a totally real number field, n = [K:Q]. By Dirich-
let's unit theorem, the group E of uwnits of X is the product of
the roots of 1 in K and a free abelian group of rank n-1. Let

81s1ees® be generators of this free abelian group. Let ¢1,. vy

n-1

¢n: KG—)-QP be all of the n possible imbeddings of X dnto the

algebraically closed field ﬂp. The Leopoldt (p-adic) regulator of
K is defined as the determinant of the (n-1)x (n-1) matrix

{1“p¢1(*"j)}1gi,j5n-1‘ (2.1)
Lemma. The Leopoldt regulator R = R Xy is indepen-

p,Leopoldt
dent up_to +1 of the choice of basis {ej} and the ordering of
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the cI:i.

Proof. Any other basis €' = {e'} can be written in the form
M
e' =g, where M is an (n-1) X (n~1) matrix {mk,} with m, €
M 3 3
Z and det M = 41, The notation e' =& here means that

. Ty,
L&) ka) .
' - , and lnpfi)ie

e! =1 e
k

] . Then also d)i(ejf) = E ¢i(e

. o .
(].npcpie)M, i.e,, 1np¢i(ej) = IZ( mkj lnpcpi(ek). Thls means that

replacing € by €' in (2.1) amounts to multiplying the matrix
(2.1} by M on the right. Since det M = £1, the independence

of choice of basis & 1is clear,

Rearranging the ¢ clearly changes the determinant

PEERE ’¢n—l
at most by a sign. It remains to consider what happens if some ¢k,

a
1<k £ n-l, changes plaﬁes with ¢n. Since 1T ¢i(ej) =1 for

i=1
any unit e,, we have Z In & (e.) = 0, and so adding all the
J i=1 P 1 J IIE}
other rows to the k—th row gives In ¢,(e.} = -1n e.) in
8 p¢1 j) p¢n( 3

i=1
the k-th row; hence interchanging ¢k and ¢n only changes the

determinant by a minus sign, and the lemma is proved.

The Leopeldt conjecture, Rp’Leroldt(K) # 0 for any totally

real number field K,
In the simplest case, whern n=2, di.e., K is real guadratic,

the non-vanishing of R (X) simply says that lnp of a

p,Leopoldt
fundamental unit e 1is nonzero. Since the kernel of the In_ map
consists of powers of p times roots of unity, while ordp of any
unit is 0 and e 1is not a reot of 1, it immediately follows

that lnpe # 0.

More generally, we shall prove Leopoldt's comjecture for all
abelian extensions K of Q. The proof relies upon the p-adic

varsion of the following deep theorem of transcendence theory.
Baker's theorem [9]. If 0 # o e QccC and {log alcc

are linearly independent over Q, then {log ai} are lineazly
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independent over Q.

But before showing how the Leopoldt conjecture for K/Q abelian
can be derived from the p-adic Baker theorem, we first give another
interpretation of this conjecture, in terms of which one can state

a natural more general conjectuote.

Let K be a number field with ring of integers 0 and group
of units E, Let [K:Q] =n =1 +2r,, whers r, (2r,) is the
number of real (complex) imbeddings. Let Pi’ i=1,...,8, be the

primes of X dividing p, 2nd let OP_C ¥, be the Pi—adic com-

1 1
pletion of 0 € XK. iet Ni denote the norm from K  to Qp.
i
Let
g
= & = I =15
a-1] 0%, ag = laxeal TN () =11
i=1 i
Let EG C E be the subgroup of units of norm +1; E0 has index
2 in E if 0 has units with norm -1, otherwise E0=E. Then
< i i A .
EO OG)-OP. imbeds in 0
1
Let EO be the closure of E0 in AO. To get a concrete idea
of what ED looks like, let el""’erlﬂ:z—l ¢ E be a set of
fundamental units of norm +1, i.e., they generate E_ madulo

0
23
roots of 1. Thus, By = {HHej [ Otje Z, N a root of 1}, HNow
w .
let N be an integer such that e =1 (mod Pi) for all i and

g
j. For example, N can be chosen to be T (qi_l)’ where 9"
£ i=1
p * is the number of elements in the residue field 0/P . Tet

= el?. Then e' can be raised to p-adic powers uj € Zp in AO,
1
because its image in each 0% * is close to 1. Tt is easy to see
i
that EO c AO is precisely the set of elements of the form
B. oy

r]T[ej:| eJ[ J, where 1 is a root of 1, OSBj<N, and ujezp.

Proposition. For K totally real, Leopoldt's conjecture is
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equivalent to the assertion that EG is 2 subgroup of fimite Index

in Ao'

Thues, if K has T, pairs of complex i;nbeddings, a natural

generalization of Leopoldt’s conjecture is: AO/EO is isomorphic

2
to (finite group) % Zp .

Proof of proposition. First note that the fundamental units
M M
: N
ej can be raised tc some power eNP such that the image of ejp—l

B
in OP has p-adic absolute value less than p—U(P-D
i
i, j. For example, if all of the P:.L are unramified (and p>2),

for all

then we need ouly take e;.q, where N is chesen as above so that

. M a
eb_I =1 {mod P,) for all 4, j. Let e! = eIpr , let E' = {lle! jI
i i « i b i
T = v 3 Z}cE. T E' has finite
@€ z} < Eys E {]'Eej ! o€ p} 5 en as fin

index in E,, and E' has finite index in EO'
Note that, 1f we replace Ej by e-% in the definition of R =

R , obtaining a new determinant R', the effect is to

p,Leopoldt L
M, n—

multipiy the regulator by a nonzerc constant (in fact, by (Np)

or Z(NpM)n_l, since each entry in the (n-1) X (a~1) matrix is

multiplied by NpM, and we also have to throw in a 2 if EG#E)-

Thus, the proposition is equivalent to: R'=0 1if and only if

[4,:E'] < =

Let =, = [KP': Qp] be the local degree, and let O, , t = 1,
seeafy, be the i;beddings Kpic-—a- szp. Let KPi’t =05
Opi’t =0,,0p - Tet B= ﬂp“, and let By = {(y),...,5.) < Bl

1
Ly =0}, Define LOG: A—»3 by

LOG(x xg) = (lnpdll{xl) . 1npcl,n1 (xl) sievs

preres

lnpggl (xg) beas ’lnpog*ng (xg}) .
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Let 0' = {xe0* | |x-1] <p_l/(p—l)}, which is a subgroup of
Pi Pi P
finite index in OE . (Since JU_tx— llp is independent of the
i
inbedding, we denote ik ]x—llp.) Let I+ T, € 0|‘3 be an element
i

with J'IT]._|p maximal, and denote Tep = Uit(’n"i). We clalm that lnp
1 = 1 . .
maps Opi’t citGPi isemorphically to TritOPi,t' To see this,
first check that for any &< UP c the series
a3
i

em® = 3 (G

converges to an element of 0 . Whose p-adic distance frem 1 is

i’
Juﬂitlp. Since ln‘p and the exponential fumetion give mutually
inverse isomorphisms between the open disc of radius p—lf(P_l)
arcund 1 and the open disc of radius p_ll(p_l) around 0, it
0 3 ].npﬂd't
' =
follows that Gpi (1+ni) '_"':..-', "itOPi,t'
g
Thus, I 01; iz a subgroup of finite index in gA which is
i=1 i
taken isomorphicaliy by LOG to the free rank-one ®0P -module
i=1 "3
in B generated by (. ..lnp(Trit). ] . Since

1=, ... ,g;t=l,...,ni

rank,, @OP =n, it follows that rank, LOC(A) = n, and
P i _p

rank, LOG(A,) = n-1. Since 1LOG maps E' cl0!  isomorphically to
P i

the Zp-submodu].e of BO spanned by

{t...1In o, &l ...)

p it i i,t}j=l,...,n—1' (2.2)

it follows that
457 Bl <w <& [LOG(A) ¢ LOG(E')] < =

= rark, LOG{E') = n-1
< the set of vectors (2.2} has rank n-1

<> R' # 0. Q.E.D.
The proposition just proved can be paraphrased roughly as
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follows: Leopoldt’s conjecture says that a system of fundamental

units is independent not only over Z, but even over Zp'
We now prove Leopoldt's conjecture in the abelian over Q case.
Theorem. Let K be a totally real abelian extension of Q.

Then Rp,Leopoldt‘.(K} # 0.

Proof. Fix an imbedding ¢: Ke—>0 . Let G = Gal(K/Q), n=
[K:Q]. Then the imbeddings ¢&,: Ka—:-gzp are {tiiﬂo‘}oec. Let o
be any fixed element of G. Let {ej} be a basis of the units of
K. Then

R =R (K) = Det {lnprbo(e

p,Leopoldt 1

i

if R =10, then the rows of this matrix are linearly dependent

j=ly...,n-1; oe G—{cro}'

over {4 , i1.e.,
p
E ag lnPd)U(ej) =0, J=1l,...,0-1,
UEG—{GO}
for some ageﬂp not all zero. Since any unit e 1is a root of 1

times a product of the Ej’ we have

0

%

Let £ [G] be the group=ring over Qp of . Deline

CeG

I = {z a 0 e [61) z a_lin dole) =0 for all units el.
ceG < P gl R ’

Then T is an {deal of Qp[G], since it is clearly closed under

addition, and for any TeG, Eaco el = an, lnp(bd(’re) =40
e}
g
for all units e = TZacyU e 1. By (2.3), Zaoc is an

0

element of I. Since a; =0, this element is not a multiple of
o

o, Hence, we can find a nontrivial character ¥: G*ﬂ'ﬂg such

0

that Zag X_l(c) # 0. (This is because the function f(G)=aU

on G can be expanded as a linear combination of characters of G:
. 1 a0 -1 .
f=1c %, with ¢ ==¥a ¥ (d); if ¢ =0 for all non-
x X ¥ g a X
trivial ¥, then f would be a multiple of the trivial character,
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z ag lnPdJO’{e) =0, a_ =0, for all units e. (2.3

and I ag O would be a multiple of L0¢.)
0 -
So let ¥ be such that ZaUx 1(0) #0, and let

o, = > x@ o (2.4)

Then, since I is an ideal, it contains

% ag ¢ = ZUZ a,? X(T_ld) = (zag X—I(o)) a, -

Since the coefficient is nonzero, it follows that o€ 1, Note

that also o = L0 €I, because Hufe) =1 for all units e.
Thus, 1 contains o - Gl = (x(oy-1)ag, i.e.,
X ofFid
z (x{o) - 1) 1n ¢o(e) = 0 for all units e. (2.5)
o#id P

We now use the p-adic version of Baker's thecrem, which was
proved by Brumer [15]. It is the same theorem, except that Llog
is replaced by lnp’ C is replaced by ﬂp, and we fix an imbed-

ding of E in Qp instead of C. That is,
p-adic Baker theorem. If 0# o, e Q<O  and {lna, }CQ
1 - p1 P

are linearly independent over @, then they are linearly indepen-

dent over 5

Because of this theorem, we may conclude from (2.5} that fnr

all e the set {lnquo(e)} ig linearly dependent over

o e c-{id}
Q, i.e., over Z, Thus, for every e there are integers m

By Mg
=0 such that 1np¢( 0 ale) )= 0, i.e., ¢(I{0(e) )

gel
is a power of p times a root of 1. Since c>rc1p of any unit is

ith
wit] 4
e
zero, Il o(e) must be a root of 1. Thus, replacing my by a
multiple, we obtain: for each. e there exist o not all zero,

but with mid:O’ such that 1 cs(e)}Jle =1,

But, by a theorem of Minkowski {[73], p. 90), there exists a

Dy
unit e such that N ofe} =1, m

id:O' implies that all of the

m0=0. That is, there exist units whose conjugates are multipli-
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catlvely independent except for the single relation HNe = llo(e) =1.

This contradiction proves the theorem.

The Leopoldt conjecture for all totally real fields would fol-

low from the following conjecture in transcendence theory.

Conjecture (Schanuel). If Qpseensli € C are linearly indepen—

dent over Q, then
— - cxl 0’.1_
Tr.deg.Q QGul,...,ar, edt,...,e ) 21,

The same holds if al,...,are Qp are in the disc of convergence of
the p-adic exponential function and are linearly independent over

Q.

To see how Leopoldt's conjecture would follow from Schanuel's
conjecture, we shall suppose that K is Galeis (the general case
can readily be reduced to the Galois case), in which case Minkow-
ski's theorem cited above ensures the existence of a unit e which
together with its conjugates Ui(e), o€ Gal(K/Q), generates a
subgroup of finite index in the unit group. Let ¢i = ¢=Gi be the
imbeddings KG—%-QP. Tn Schanuel's conjecture let r=n-1, oy =
1np¢i(e), i=1,.,,.,n-1, Replacing the full unit group by the sub=—
group generated by the ¢i(e) only changes the regulator by a
nonzero constant multipie. If we set ej= ¢j(e), we have ¢i{ej)=
¢(oidj(e)). The regulator for the ej is then the determinant of
a matrix each of whose rows is 2z permutation of
)

G, O, *tt O (-a - -=*-0
n

1 72 n-1 172

with one entry omitted. Schanuel's conjecture says that ul,...,

-1

o are algebraically independent. But vanishing of the regula-

n-1
tor would give a nontrivial algebraic relation between the «'s.
(The easiest way to see the non-triviality of the polynomial in

o is to note that if it were the zero polynomial, then

vee sl
1 *“n-1
the classical regulator, which is the same determinant with ai =
log|¢{di(e})|, $: Ke—a{, would also vanish, and it is well

known that the classical regulator is nonzero.)

102

3. Gross's p-adic regulator

Let K< C be a Galols extension of a totally real field k.
Let T be complex conjugation. Suppose we have ar imbedding
o3 KG—)-QP which extends a fixed imbedding k‘-—)-ﬂp. Then any
other such imbedding is of the form ¢°0, Ue Gal(K/k). By a complex
conjugation of $(K) C Qp we mean the image of T under any of
thege imbeddings ¢e¢¢, i.e., any of the automorphisms
(¢o0)ete(9o0)™L = go(oto ™Mo of 9(X). If K/k is abelian,
then of course there is only one complex conjugation ¢°T°¢_l of

$(K).
Let k be totally real. Suppose we are given a representation
p: Gal(k/k)=———saut(v},

where V is a finite dimensional vector space over § , which is
trivial on Gal(k/K) c Gal(i/k), i.,e., P can be considered as a
representation of the gquotient Gal(X/k). If p of any complex
conjugation is the automorphism 2 {resp. -1}, it is said to be

an even (resp. odd) representation,

Using results of Deligne and Ribet [21], one can associate a
p-adic L-fumction Lp(s,p) to any even representation p. (If p
is not even, the associated p-adic L-function is identically zero.)
Lp{s,p) is a meromorphic function from Z_ to £ . It is com-
jectured to be holoworphic, except for a pole at s=1 when p
contains the trivial representation. Lp(s,p} is called the

"p-adiec Artin L-series associated to p."

Example. Tet k =0 and X = Q(f), where { is a primitive
d~th root of 1. lLet dim V=1, i.,e., § 1is a one-dimensional
character. Such characters p correspond to Dirichlet characters
X: (z/az)*—»ﬁ; by the correspondence

ploye = x(De, o, e Cal(K/Q) = (2/d2)¥,
where e 1is a basis of V = ﬂpe and j e (Z2/dZ)* 415 determined

by © as usual by Oj(¢)= cj. Then p is ewven (resp. odd) if
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¥(-1}=1 (resp. ¥x(-1)=-1). In this case the p-adic Artin L-series
associated to £ dis simply the p-adic Dirichlet L-series Lp(s,x}

which we studied in Chapter II.

In this example, recall that Lp(s,x} p-adically interpolates

the algebraic numbers
-l k-1 -k
Lp(l—k,x) = (1 -xw (pp 7))Lk, xw ),

where w is the Teichmuiler character. Gross's conjecture concerns
the expansion near s=0 of the p-adic Artin Leseries Lp(s,p).

In the present example note that when 1-k=0 1in the above formula,
the p-adic L-function is related to the classical L-fuynction for

the character wai. Specifically,

Y

L0 = (-3 @) Lo ) = U () B 1) (.

>

-1
If ¥ is even, then xw is odd., The Gross conjecture for the
expansion of Lp(S,p) near s=0, which in some sense is a vast
generalization of (3.1), will thus involve expressions associated

to the odd representation p(:)m_l.

It will take us a while to work up to the precise statement of
Gross's conjecture. We first define the "p-units" of a mumber field
K;

{p}

E=E"(K) ass {ec k| |e|v=l for all valuations v/ p}.

This means that {1) in the factorization of the fractional ideal

() = HPmp only Plp occur; and (2) under zl1 imbeddings K&,
e has complex absolute value 1. WNote that the p-units are net
contained in the ring of integers 0 ¢ X. Condition (2) means that
the m for P must be negative the m for any complex conjugate
prime ideal oto L(P), T1f all of the m=90, then it is well known

that condition (2) implies that e 4is a root of 1.

In the azbove example, when X = Q(£), an example of a p-unit

is a ratio of Causs sums of the form (see Chapter IIi)
~ d &1 d
gl UpoTed Je (s Yoo,

We shall see that these p-units play a cruclal role in the case
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when K 1s asbelian over @, which is the one case where Gross's

conjecture is proved.

The basic case which is of interest is when X is a CM (“com—
plex multiplication') field, i.e., a quadratic imaginary extension
of a totally real field K+. In that case there is only one complex
conjugation, namely, the unique nontrivial element T of Gal(K/K+L
and we denote o = To for oeK and P = 1P for a prime ideal P

of K. Thus, if K is a CM field, (1) and (2) give
ees®@ = (o) = ;i_[ o', (3.2)
P

Writing (e) additively gives a homomorphism
g {(Ry——— (D z (P-P),

where the sum is over primes P of R dividing p, one from each
complex conjugate pair. The kernel of this homomorphism is the
group of roots of 1 in K, and the image certainly contains
C)IIZ (P-P), where h is the class number of K, because, if we

write the principal ideal Ph = (@), we have
90 > /g — 1 (P-F).

Thus, if we tensor the Z-module ¥ = E(p)(K) (i.e., the abelian
group with respect to multiplication, which we write additively)

with Q@ (thereby killing roots of 1), we obtain a Q-vector space
e = ® Q *P-P.
Z

We shall want to adjust the above homomorphism E-a-() Z(P-F)
given by epb—» (&) = [ mP(P -P). Namely, at each P insert the
residue degree fp = [Q/P: Fp], where 0 is the ring of integers
of K and Fp is the field of p elements. Also, insert a minus

sign. Thus, let
¥(e) =, - Dmt, (B-P).
This map ¥ extends to an isomorphism ¥: E@Q-—-”—)—@Q (P-H.

Tt is not hard te comstruct the inverse @ of the "divisor

1]

map” Y. Let h be the class number of K, and write Ph = f{a).
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Let e =aj/a ¢ B. Then e is determined by P . up to a root of

unity, and so the element

op-Fy = “J"--eeE®Q (3.3)

hi

is well~defined. ;xtend b by linearity to (B Q (P~P). Cleariy
& and ¥ are inverse to one another, These maps allow us to
think of E@Q as divisors, and to thipnk of any additive function
on E which kills roots of unity {(for example, 1np) as a
function on the divisors G—) Q(P-Py.

We now define a function LOG (not the same functiom as the
L0G in the preceding section) by letting ¢: KH—QP run through
all imbeddings, letting P¢ be the prime ideal dividing p which

is defined by

Py = {xe 0] Idb(x)!P < 1}, (3.4}

and setting
L0G(a) = Z In ¢ie) P, eezP gy,
) P ¢
Combining terms with the same P¢’ we have
LoG(e) = z In (NP(E)) P-P) « @a (P-P,
P P P
where the sum, as usual, is over Plp, one taken from each complex
conjugate palr. Here Np(e) is the local norm NKP/Q (¢(e)),
P

where ¢ is any imbedding for which P = P¢' Since LOG kills
rootg of 1 and is linear on E (i.e., LOG(elez) = LOG(el) +
LOG{ez)), it extends uniquely te E@Q, and so, via @, to
@ q(-Py:

e @eP-H—-0 Q (P~P. (3.5)
Since LOG kills only roots of 1 in E, it is easy to see that
its image in (@ Qp (P-P) has Q-rank g, where 2g 1s the
number of primes P over p.

But the interesting gquestion is the Qp—rank of the image, In

other words, are the vectors LOG(ej) even () —-independent as

{e.} runs through a "fundamental set of p-units" (i.e., a maximal
]
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set of p-units which are multiplicatively independent)? Gross con—

jectures that they are,
Gross's first conjecture. Let L0Gy  be the endomorphism of

) QP (P-P) obtained by extending 106 linearly from (g ((P-F)
to D Q, (P- Py. Define

RP,Gro.v,s(K) = Det LOGQP'
Then
Rp,Gross(K) # 0.

We continue to let XK denote a CM field, a purely imaginary
quadratic extension of the totally real field K+, and let k
denote the totally real ground field., Let ¢ = Gal(K/k), and let
p: Ge=—3=-Aut(V}) be a representation in a finite dimensional § -
vector space v, (Note: Any continucus representation p: Gal(k/k}
= Aut(V) which is even (resp. cdd) factors through Gal(K/k)
for some CM field ¥, where g is even (resp. odd) if its value
on. complex conjugatien is 1 (resp. =-1); since we shall cnly
considetr such p, there is no loss of generality in taking K to
be a CM field.)

G also acts on the Qp-vectnr space
Xz ® a, (P-P)
by permuting the divisors P-P. We write PY for oP; note

that P%T = grP = (PT)G. Note that complex conjugation acts by -1.
We can combine the action of G on V with its actiomn on X by
locking at the subspace
v@n*
QP
of G-invariant elements in the tensor product, (In cur discussion
of L(1,%) and the Stark-Tate conjecture in §1, we dealt with

VX (® X. For one-dimensional ¥, this is iscmorphic to (V)—(@X)G,
c[c]
reflecting the fact that the behavier of L(s,¥) near s=1 ig
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related by the functional equation to the behavior of L(s,¥%) near
s=0.)

To see what (V@ X)G looks like, suppose that G acts tran-—
gitively on the primes P of K over p (i.e., there is conly one
prime of k over p), and let PO be a fized prime ideal of K
over p. Let D()C & be the decomposition group of PG' We shall
suppose that the representation o is odd].} Then as a vector space
(V@X)G is isomorphic tg the subspace V 0 of Vv left fixed by
p(DO): namely, let veV U correspond to

z c@v®P « @ n°.

o mod DO

To give a simple example, suppose that k = Q, K= L), © a
primitive d-th root of 1, G = (z/dZ)*, and p 1is one-dimensicnal.
Thus, p is given by a Dirichlet character X: G-——Pﬂg. Further

suppose that p = T Pg splits completely in K, i.e., dlp—l.
oeG

s]
In that case (V@X)G is spammed by the vector U;;)((G) PO'

{Compare with the definition (2.4) of G}( 3 ﬂp[G} in the proof
of Leopoldt's conjecture for K/Q abelian.} More generally, if

G . _
p £ 1 (mod d), then the same element spans (V®X) if y(py=1,

but (PO =0 if x(e#1.

Returning to the general case of an odd representation o of
G = cal(K/k), X a CM field and k totzlly real, we see that the
endomorphism 1L0C; of X = @QP (F-P) is GC-equivariant. This
P
is because, for e e E = E(p){K) and Ce G,

(o]
LOG{ge) = ;lnpq)(cre) Pt,‘u = %lnprb(e) Pq;c_—l = ;lnpd)(e) P¢ »

since we have P 1= Pl = GP¢. directly from the definition (3.4).

¢

G -
Thus, L0Gy induces an endomorphism of (V@X) , which we
P .
denote LOGy. Gross’'s regulator for 0 is defined as

Rp,GroSs(p) = Det LOGy .
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If the first Gress conjecture is true, then LC'GV is also an iso-

morphism, and R (p} # 0.

p,Gross

The earlier regul : i i
gulator Rp,Gross(K} is a special case of

R cross(P): Wamely, let k =K', and let p: Gal(X/K'y—3-{11}
be the unique nontrivial character. Then (V@ X)G ~ ¥, and
Rp,Gross(p) = Rp,Gross(K)'

Reeall that if G = Gal{K/k) permutes the primes P of K
lying over p —-i.e., if there is only one prime of k 1lying over
p ——then dim (V@X)G = dim VDO, where D, is one of the decom-
position groups. More generally, if there is mere than one prime

of the ground field k lying over p, we have the picture
ae P iee

VARV

P
Then for each i, G permutes the Pi" j=1,...,gi= lying over
P., and the same argument shows that (V@ X)G is iscmorphic as

D,
& vector space to @ v 1, where Di is the decomposition group
of P,.. We let
il

D,
m, = din V@0 - 2 dim v 1,
1

Then Rp,Gross(p) is the determinant of an mpxmp matrix.

For example, if V 4is one-dimensional, i.e., if p: Gal(E/k)
—’—Q; is a one-dimensional character, then mp is equal to the
number of primes Pi of k lying over p such that 9 is trivial
on one (and hence on all) of the decomposition groups Di of primes
of K lying over Pi' In the case of one-dimensional p, conjec—
turally the mp vanishing Euler factors (l—p(Pi)) in the
Deligne-Ribet [21] function Lp(s,pm) at s=0 should lead to an
mp—fold zero at s=0; and it is further conjectured [29] that the
zero is of order exactly mp. But it has not even been proved that

Lp{s,pw) has a multiple zero at s=0 when mp>l.
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Gross's conjecture, which presumes that the order of zero is at
least mp, concerns the coefficient of s in the Taylor expan~
sionm at s=0 of L (2,0w). In terms of his conjecture, we shall
see that the assertion that IL_(s,pw) has exactly an mb—fold zero

at e€=0 is equivalent to non-vanishing of Rp,Grnss(p)'

Gross's conjectured leading coefficient of Lp(s,pw) at s=0
inéludes a certain algebraic number coming from the complex—analytic
Artin L-series whose special values are p-adically interpolated by
Lp(s,p). We first recall the definition of the Artin L-series
associated to a representation p: Gal(K/ky—sAut(V), where now
V 1is a finite dimensional complex vector space. Let P be any
prime of k (not necessarily iying over p). Let q = Nk/QP' let
P be a prime of K over P. Let IP ¢ ¢al(K/k) be the inertia
group of P, and let Dp © Gal(K/k) be its decomposition group.
Let FpeDp be any automorphism such that Fpx = x% (mod P) for
any x in the ring of integers 0 of K. This Frobenius Fp is
uniquely determined up to an element of Ip. Hence the "local
factor at D"

-5 Ip

ver (1 - a7V ),
where VIP is the subspace of vectors .fixed by p{IP), does not
depend con the choice of Frobenius for P. If we change the choice
of prime P of K lying over P, the effect is to conjugate FP
and Ip by some element of Gal(X/k). Hence the determirant is
unaffected. Thus, the above local factor depends only on p, P,
and the complex variable s. The Artin L-series L{s,p) 1is defined
as the product of these local factors over éll primes P of k.
This Euler product converges for Re(s) > 1 and has a meromorphic
continuation onto the entire complex plane. The Artin conjecture
asserts that it is holomorphic, except for a pole at 5= 1 4if p

contains the trivial representation.

Example. Take the simple case when k =10, K= gy, T a
primitive d-th root of 1, G = Cal(x/k) = {Z/dZ)*, and p 1is &
primitive character X: G — (%, If the ideal (p) of Q divides
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4, then it ramifies in K, and I, (for any Plp) 1is the kernel
of Fhe map (Z/dZ}¥ === {(7/d'2)*, where &' = d/por Pd. Since
¥ 1is primitive, it is ancntrivial on IP, and so VIP:=O. Thus

the local facter at p i1is 1.

If, on the other hand, de, then Fp =pe (Z/d2}*, and the
local factor is (I - 3 % (p))~L. Hence,

Kooy = TT - e = SER = 1y,
pid n
which is the usual Dirichlet L-serias.

Recall that in the case of Dirichlet L~series, before p-adically
interpolating its values at negative integers we had to modify it

by removing the Euler factor at p:

Y s pye- -
L) = 2 M- TTa -0 %en™ = a-pe)ex.
pln 24p

A similar modification is required in the general case of Artin
L-series before we can make the transition to p-adic Artin L-series.
Namely, given our fixed prime p, we define the medified Artin
L-series L*(s,p) to be the product of the local factors at all
primes of k not dividiang p.

in the case of Dirichlet L-series, the values at negative inte-—
gers 1-n are -Bn,x/n € Q(y), the field generated by the values
of Y. A similar fact was proved for Artin L-series L(s,p) by
Siegel [89]. Wamely, first note that the representation p: Gal(X/k)
—4ut{V) can be obtained by extension of scalars from a repre-
sentation in a K-vector space VK, where K is a finite Galois
extension of Q. . (In other words, for & suitable basis of VvV, the
matrix extries in p(0), oeGal{kK/k), are all in X.) Then Siegel
showaed that L(1-n,p) ¢ X, and, if op, 0eGal(XK/Q), denotes the
representation obtained by composing p with the action of o on
Aut(VK), then L(l-n,0p) =oL{i-n,p). The same is then clearl?
true of the modified L-function L#(l-n,p).

By fixing once and for all an imbedding Qe&—»{ , we can
P
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consider p as giving a p-adic representation, which we also denote
p, in VK®Q , which we also denote V. Then there exists a

p )
meromorphic Function Lp(s,p) on 2.p with v_alues in ﬂp which

satisfies
Lp(l—n,p) = L*(l—n,p@m—n), nr?2
(where we use the fixed imbedding ac—-r—ﬂp te identify complex and

p-adic representations and L-function values). When n=1, this
relation

1,€0,0) = 10,0 ®u™H
is also known to hold if @ is one-dimensional (or a direct sum of
representations induced from one-dimensional representations); it
is conjectured to hold for general P. Lp{s,p} is identically

zerc unless p is an even representation.

Grose now defines a second modification L##(s,p) of the Artin
l-series. Recall that to get the first modification L*(s,p), we
threw out the local factors at primes P of 'k over p, by
multipiying by the determinants (here P is any prime of K over

P, gq=NP)
-5 IP
Det (1— q p(FP)|V )
To get L*%(s,p), we put back in part of that local factor, by

dividing by the subdeterminants

Det (1 - q_sp(FPﬂvDP)
for Plp, where we restrict Fp to the part of V invariant under
the whole decomposition group Dp. Since FP eDP, we have
Q(FP)IV P=identity, and so we define .
g =dim VT

L**(S-)p) dgf L*(s’p) P}[ (1-q ) "
P

For example, if p 1is cne—dimensional, this meahs that we put
- 1 _
back in the Euler factors (1 - q Sp(FP)) when, p(FP) 1. For
instance, if k=10, K= (L}, L a primitive d-th root of 1,
¢ = Gal(K/k) = (2/d7)*, and p corresponds to the Dirichlet

112

character ¥, then L#(s,x) = (1-p “x{p}) L(s,¥X), and

Le(s,y) 1f x(p)#1,
L**<S’X) =
Lis,x) if x(p)=1.

The reason for this second modification i1s as follows. The
D,
subdeterminants Tet (1 - qms p(FP)\V P) of the factors

Det (1 - q* D(FP)IVIP) that are thrown in to get L#(s,p) bring
in zeros at s=0 of order dim V P. Hence, L*(s,p} has an
mp—fold zero at s=0, where m, = ZZ; dim V¥ P. Since Lp (l—n,p@mn)
interpolates the values L*(1-n, p), it is conjectured that
Lp(s,pw} also has an mp—fold zerp at =0, buc this by no means

follows from the mere fact that Lp(s,p) interpolates L*{s,p).

To cbtain the coefficient of the leading term of Lp(S,D) at
s=0, Gross therefore divides by the factore that conjecturally

give the zeros at s=0.

Thus, the function whose value at s=0 1is conjecturally

related to this leading term is
_ I, D
L¥(5,0) = L(s,0) | |Det (1 - q7° |V Pry P),

where, as usual, the product is over all primes P of k over p,
qg=RP, and P is some fixed choice of prime of K over P for
each P,

Since Lp(s:p) is only a nonzero function when ¢ is even,
and since its value at s=0 1is related to L(s,p@m_l), if we
replace p by p@w we see chat Lp(s,p@m} at s=0 should
be related te L(s,p), or rather L#%{g,p), for p an odd
representation.

For an odd representation p, Gross defines (A stands for
"algebraic part"): o

s P
dim V
Ay = LR,y T T e,
r

where the product is over all primes P of k over p, Dp is the
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decomposition group of a prime P of K over P, and fP is the
residue degree [0/P: Fp], where 0 is the ring of integers of Lk
(EP should not be confused with the residue degree [0/P: F 1 of
P, or with the relative residue degree [OI'P 0/P] = #D :Ln any

case, this product term is just 1 if k = Q.)

Without further ado, we can finally state Gross's ‘main conjec-
ture.

Gross's second conjecture. If p: Gal{K/k)=Aut(V) is an

odd representation in g finite dimensional Qp—vector space V,

D
then Lp(s,p@m) has a zerc of order exactly mp =L dimV P at
s=0, and

=m
lim s "L (s,p(Du} = R
s=0 P

(0) Alp}.

p,Gross

4. Gross's conjecture in the abelian over G case

We now prove this conjecture when k = Q and G = Gal{(K/Q) is
abelian. The conjecture is unproved in essentially any other case,
even, for example, when k = Q(vD) aad K/k is abelian, Witheout
loss of generality we may suppose that K = Q(T), L a primitive
d-th rcot of 1, since any abelian extension of Q is contained
in such a K, and all of the expressions in the conjecture remain

the same if K 1is replaced by a larger field. We first prove:

Proposition. Gross's first conjecture helds in the abelian over

Q case, i.e., LOG is an automorphism of @Qp P-P.

%

Proof. It suffices to prove that I..OGQIJ is an automorphism
when we extend scalars from Q_ to QP. (We want to go to an
algebraically closed field, so that we can decompose by the action
of characters of € = Gal(K/Q) = (Z/dZ)*.} Thus, we shall show that

L0G: E@Qp—-—a—@ﬂp(P—I—J)
& p—3 21nP(NP(e)) (F-P (4.1)
P

is an isomorphism, where the sum is over primes P of X over p,
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one frem each complex conjugate pair. (Recall that NP (e) denctes

NK /Q (¢(e}), where ¢ is any imbedding KI'—--;»QP for which P =
xeﬂ? |¢(x)| <1}.)

G acts on both E@ﬂ and @Qp (P-P), and we have seen
that LOG ig G—equlvarlant. Let us decompose both sides by
characters y of G. It ie easy to see that the Y-component of
each side is at most one-dimensional; it is nonzero if and only if
X 1s odd and y{p)=1. In that case the ¥-component (E@Q }X
is spanned by ex a5t ) x(n)o (e}, where e = af3 is a p-unlt with
() = P and (@Q (P - P})X is spanned by I E(n) Pgn, where

P is any fixed prime 1deal of K over p. It therefore suffices
to show that LOG(eX) # 0.

If we denote G = (Z/dZ)*, D = Dp = {pj} c G, and f = {D,
then by (4.1) we have

LOG(e.X) = 2f z Z . X (m) In, N (c (e)} (P _Iicn)
meG/HD neG/4D

= 9f ’ = s 11_ In . _m
n,j;:/:r_n X@x3) smlyege) @ 7-FH - G-D

(HZG&D %(n) lnpNPUn{e)) (nZG z ¢ EG“))_

1t

If this is =zero, then from the p-adic Baker theorem (see §2) it

follows that: 1np of the algebraic numbers NPG {e) must be
T
dependent over Q. For brevity let e denote the product
~1
T o (1 £ = ~t
N (Te) aken over all Te¢D, so that NPGn(e) = NP{Un (e)) =
:j)(en) for ¢ any fixed imbedding K%—ﬂp for which P = {x¢Q]
[ (x) Ip <1}. Thus, for scme m €Z mot all zero we have
in (q)( I emn)) - 0.
P\ nee/qp ®
] )
This means that Hen must be a_power of p times a root of unity;
. - B
replacing m, by a suitable multiple, we obtain I enn =" for

. il
some reZ. But the ideal decomposition of e B ig
n
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0—1 0—1 m,) hi
(% 5% ) ,
ne G/+D
a_vwF .
while (p)° = P n) . This contradiction proves the
neG/D
proposition.

It is curious o note the resemblarice between this proof and
the procf of Leopoldt's cenjecture for K/Q abelian: in both cases
the key step was to use the p-adic Baker theorem to conclude from
the vapnishing of a character sum that certain units are multiplica-

tively dependent.

Theorem. Gross's second comjecture holds in the abelian over

Q case.

Proof., Agsin k = ¢, K=0(), L a primitive d-th root of
1, G = Gal(K/Q) =~ (Z/dZ)*. Since any representation of the abelian
group G decomposes into a direct sum of one-dimensional characters,
and since both sides of Gross's conjecture can readily be verified
to be multiplicative with respect to direct sums of representations,
we can reduce tc the case whem 0 is one-dimensional, i.e., is a
Dirichlaet character p: G = (Z/dZ)%=—=m(0%, (We shall continue to
use the letter p for this Dirichlet character, rather than ¥,
since the letter ¥ will soon be needed to denote a complecely
different kind of character, namely, a character of the multiplica-

tive group of a finite field.)

Wow there are two cases, depending on whether or not p is
trivial on the decomposition group D = DP = {pj} <G (P a prime
of K over p), i.e., we must cousider: case (i) pi{p)#1, w, =
dim VP = 0;  and case (ii) pip}=1, mp:l. Without loss of
generality we may suppose that d is the conductor of p; other-
wise, p factors through Gal(Q(z')/Q), where [°' is 2 primitive

(cond p)-th root of 1.

Case (3} m, = 0
i = = L3 = * = .
In this case Rp’GrOSS(D) 1, A(p) = Lx%(0,p} = L*(0,p)

il6

= (1-p(p)) 1{0,p), and Gross's conjecture says that
Lp(O,pw) = L{C,p) (i-p(p)),

vhich is true (see $IT, 4}; in fact, both sides equal —(1- p{p))B
We alse know that this expression is nonzero (since £ 1s odd and
primitive, and e(p) #1), in other words, the order of vanishing

of Lp(s,pm} at s=0 4is mp:O.

Case (i1) mp=l, i.e., p(p)=1

This is the more interesting case.

We first comput :
pute Rp,Gross(p)' Let ¢: Kf'—-—)-ﬂzIJ be a fixed

imbedding, sc that P = {x 0| |¢(x)|P< 1} denotes a fixed prime of
K over p. As before, let D = T, = {pj} C G = (Z/dZ)*, and let
= #D. The one-dimensional vector space (V® X)G iz spanned by

o]
z P{oYPY ¢ x = Q. (PT_p°
o= G/D ce®G/i-D b ¢ .

Recall how LOG was defined on such an element. Let P = {a}
Sin_ce ((u/a) ) = (P/P) for 0eD, it follows that /3 and
(@/a)®  for GeDd differ by a root of wity (since their quotient
is 2 unlt of K with complex absolute value 1), The image of the

diviso i 1
I . G/Dp(o) p? wder the isomorphism ¢ is (see (3.3

1 z -
T i plo) (w/n)” ¢ E®a ,
bt 0'€6/4D ® 3
and, since

N -1 - - -1
N (i) NKPT/QP(¢°T @D = ¢ {(¢/5H " ) eroot of Y,

it follows that

LOG(OZG/ pla) P9) = - L z () z n NPT((G‘/U‘) ) bt

€ D € G/4D Te G/ (SBE (3. 5))

-1
1 o(o) 1 - 0T T
GeG/4D, TeG/D nPlb ((Oi/fl) ) ’

p(T) P H7
(TZG/D )(j;;/.tnp(o}lnpq:((a/u) ))
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Hence

53
@) - LD e ERICSN
oe G/D
where o is any generator of the ideal pl

Rp ,Gross

Gross's conjecture asserts that

.L;(O,puj) = Rp,GrGSS(p) alpy,

where A(p} = 1{0,p) = _Bl,p'

We now use the following results from earlier chapters:

(1) the formula for L;(O,pm) in §11.8

L'(0,pw) = Z pa) l'n. 1" {a/d);

P 0<a<d

{2) the p-adic formula for Gauss sums in SIIL.6, which, after

: 1 P
we take In_  and use the fact that lnP’n' = —P_—llnp(—p) =0, gives
Y
in I _{<abfd>}
1npg(){_ lb oTy) = o Fy

éD
(see 3IIL.6 for notation; here ﬁa is a multiplicative character

of a finite field);
(3) Stickleberger's theorem (8ILL.7), which tells us that

~=1 d . P .
the ideal decomposition of g(xa ,IJJTrﬂTr) , written additively, is

z <a/j>d PUj, where < > denotes least positive residue mod d.
jet
We conclude that

! = ) 1n I‘ {<zb/d>)
LP(O,DUJ) z pla z

ae G/D beD
-1
= z pla) In_g(¥, »¥ °Tr)
a€6/D B

= L z o(a) §<a/3> In ¢(oc 3

dh
G/D €G
mEel : (where h = (0) as before)

= p{a/3} <a/i> p(3) In da(u J)
dhf ’JZG

[}
- D e D ot 1o 96
0<a<d 0eG

1 - 1l [}
1 @) - p(0) 1n_6 (o )),
(d O<a<dap a) (h O’EZG/D P
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which is precisely (_Bl,p) Rp,Gruss(p)’ as desired. Q.E.D.
The above proof of Gross's first and second conjectures in the
abelian over { case is Gress's variant of Ferrero-Greenberg's
original proof in [29] of the simplicity of the zerc of L (s,pw)
at s=0, The proof relies in an essential way upon several basic
and diverse p-adic results: Brumer's p-adic Baker theorem, the
formula relating L;(O,pm} to special values of the p-adic gamma
function, Btickleberger's theorem, and the p-adic formula for

Gauss sums, With -this proof we conclude the main part of the book.
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(see (2.3) of §II.2), Hence f is Krasnmer analytic on ﬂp—Dl(I_).

: . N,

APPENDIX Next, for |z|_ < 1 we have lim 1/(1-zP ) = 1, and so
P - =m0

£(z) = lim z N:b(n) 2t = f(z).

o (<n<p

Finally, if [zlp > 1, then we have

T -n
z § $0) . X = Z N 2" - n) _ZN -
G<n<p 1-2P 0<a<p 2P -1
. -n
1. A theorem of Amice-Frésnal —_— El @{-n) =z
. -

N a P
i = 1-z" )
The measure M on Zu defined by Uz(a +p ZP) z /( »

as N——x, and the theorem is proved.

which was used to study p-adic Dirichlet L-functicns in Chapter 11,

can also be used to give a simple proof of the following general ] 2. The classical Stieltjes transform
o The Stieltjes transform of a function £: [0,*)—=0 is
n F
(Ami 8 = o (=]l o
(Amice and Frésnel [4]). Let f£(=) Laz ¢
fheoren o vt ] 6 - | L gy (2.1)
have the property that the coefficients a  can be p-adically . o
interpolated, i.e., there exists a coptinuous function ¢: Zp—"ﬂp Z for all =z such that the integral comverges. (More generally, cne
such that #{n) = a_. Then £ (whose dis¢ of convergence must_be can replace £(o)dx by dF(x) and define the tramsform of that
. E e ———t : ——— s . .
the copen unit disc DO(l-}) is the restriction te Do(l }y of a measure to be the corresponding Stieltjes integral.) Usually £(x)
£ he complement of D (1) In is a rapidly decreasing function, and the integral converges for
i i on_the ¢ . In ;
Krasner analytic function 1 all z ¢ £ - (-=,0]. The Stieltjes transform is the square of

addition, ¥ has the Taylor series at infinity

the Laplace transform L:

o o

J e‘Zt(J e_txf(x)dx)dt
0 0

I

3]

£(x) Je_(ﬁx)tdt dx =
o .

#(z)

fl

S e 2 lal, > 1. L(L(£)) (=)
n=1 E

f{x)
+z

i = dx.
Proof. Define .

(=]
]

i(z) = J¢ au_ .

hen o - D the c £ 1is the u iform lim as “51'813 in the StUd)i of continued fraction
limit
n 1 4 ), he function n

expansions of analyric functioens (this was Stieltjes' original

N — o of the following rational functions with poles in Dl(l_): o purpose), numerical analysis, and quantum mechanics.
Z ey zn_ The function § mneed not be rapidly decreasing in order for
'q 1
O<n< pN 1- 2P

the Stieltjes transform (2.1) to exist. The Stieltjes transform

120 G 121




also converges for z ¢ (==,0] if f: [0,0)—>C is a periodic

function satisfying the conditions

(1) f{x+d) = £(x); .\ (2.2)
() £ e LY([0,41); @.3
d
@ f £(x) dx = 0. (2.4)
()}
This is because
N i ) _ £C ))
flx)_ flx by (2.4)
alz)| - | dx -
l ! oy} (n—l)d(x+z nd
i d
< const f{xﬂdx < w,
T op=l (nd)z‘[[) 1

where "const" depends on z but mot on mn. It is periodic f
that we shall be particularly interested in from a number theoretie

point of view.

We may suppose that in additiom to (2.2)-(2.4) the function

f: [0,%)=——n-C satisfies

(4) f(x) =0 for x < § for some positive §. (2.5

Example. Let ¥ be a nontrivial even (i.e., X(-1)=1) Pirich-

let character of conductor d. Define

[il
.6)
£(x) = x(ald. (2
X a=1
Then f obviously satisfies (2.2}, (2.3) and (2.3) (with §=1).

To verify (2.4), we compute .

a d
Jo ORI Z (a-a)x{a)y = - Zaxm =By, =0

a=1 a=1
for ¥ even. {(If Y were odd, we would have to add the constant

‘ﬁl ro £, and (2.5) would no longer hold; for simplicity in
e b4

the discussion below, we want tC assume (2.5}.)

Suppose that f: [0,9)—>C satisfies (2.2)-(2.5). Then
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(2.1) converges for z ¢ {-=, -8]. For |z| < & we expand
[++]

6z) = J ) 4

x+tz

0
oo oo
= z (—z)nJ‘ f(x)x_n_ldx. (2.7}
n=0 0 ©
Note that the "negative moments" j f(x)an-ldx are convergent
0
integrals, and are easily seen to be O(ﬁ_n) aF  [Lm—— So

(2.7) is the Taylor series of G{z) in |z| < §.

In our example f , we compute for s>0

A e k
kZl HE -l

-s-1
£ d
{ X(X)X X

B+ s/ e
1Y x| e
S g1 ¥ s 7

Thus for £ = fX we have

(=]
’ L ¢
G(z) == lim JE;K)_ + E LX) ™ ] <1l (2.8)
s=—0 =1 B
Returning to the general situwation, suppose that £: [0,%)
—»C satisfies (2.2)-(2.4) {not mnecessarily (2.5)). Define
f(—l)

to be the integral of f with constant of integration

d
chosen so that f f("l)(x)dx = 0; thus, 1f f is represented by
]

the Fourier series zanemﬁ.nx/d’ with a,=0 because of (2,4},

Q
- a 3
then f( b has Fourier series -+ - . ezmmx/d. Then define
2mi n
n#0
i D
f( b inductively as (f( J)) , 3=1, 2,

We obtain an asymptotic series for G(z) as z—> = (along

any ray other than the negative real axis) by integrating by parts:
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w o

(-1} {-1)
_ £(x) _ f (0) £ (x) o
G{z) _£ xfz dx = - ” + ’L Y dx =

Ve Py geoteShe
. :

z 2 A
et o n!jf(““) @
2 o (x+z)n+l

for any n., For fixed n, 1if =z approaches ianfinity away from
the negative real axis, then 1t is easy to see that the integral
term is  {) ™. Thus, - z (n-1)! £ (0) 2" 1s an

asymptotic series for G{z).

For example, if f = fX (¥ a nontrivial even character), we
have the easily computed Fourier series expansion
[x]
f (x) = z
X( ) x(a)
a=1
. g, =
= Z a eZ'lTLnZ/d’ where a = __&.X_(ﬂ_)
n n  27i =n
n#)
(here g = Z x{a} EZ?Tia/d is the Gauss sum for y). Then
X 0<a<d
| a djg bv!
f(_j)(o) = (d ) _n o _ S X Xn)
" - > e
ami n#0 ~ (2Tri}:'+1 n#0 nd 1
alg -
& 2L+, %0, J odd;
- | et
o, j even
1 :
= 3T =3,

by the functional equation for L(s,X) (see, e.g., [41], p. 104},

124

Thus, for £ = f  we have
X n
n : R
G(z) ™~ - z —J—X—L(_j’ ) P z ——J-‘LL(__‘_] ) (wz) {2.9)
=1 ) i=1
(since L(-j,x) =0 for 1 even).
Comparing (2.8) and (2.9), we see that we have established a

special case of the following theorem of Mellin-LeRoy (see [65],
p. 109, 113).

Theorem. Suppose ¢{s) is a Function which is holomerphic and

bounded on Re § > 0. Then the Tavlor series G(z) = ztﬁ(n) z"

extends holomorphically onto C=- [0,%) 2and has asymptotic series

Glzy ~ -Z¢(-n)z " as z~—— {along any ray other than the

positive real axis).

In our example &(s) = é L(s,¥%) {which is bounded even as
g=—»0, aince L(0,¥) =0 for ¥ even and nontrivial), and we

have replaced =z hy -z.

Remarks. 1, This theorem is the classical analog of the p-adic

theorenm of Amice-Frésnel in §1,

2, Under a weaker assumption on ¢{s), namely, bounded expo-
nential growth, one hasg the same conclusion, except that not only
[0,=) but a whole sector JArpz] < 8 1ust be excluded from the

region where G(z) ds defined.

3. When f = fX, G{z) 1is a "twisted" (by ¥) log gamma

function. In fact, we have

Proposition. Let ¥ be a montrivial even Dirichlet character,

and let £  be defined by (2.6). Then the Stieltjes transform G

of £ is

a
L;ngx = zl x(a) logl"(zza). (2.10)
=

125




Proof. Let G{z) be the left side of (2.10}. Then

nd £ (x)
G{z} = lim f*&_dx
0

Ao x+z
dnﬂl : J
= lim ( log{z+j+1) - log(z+;|) z X(a))
n—w =0 a=1
dn 1
= lim - z log(z+3) x(3)
n—co 'z
d n-1
= 1im 2X(a) ZIOg(z-l-dj-l'a)
T =dr=00 a= =D
= lim - ZX(a) zlog(zza+j).
= - gzl 4=0

On the other hand, using the standard formula

(n-1}!n
z(z+1)***(z+n-1)°

T(z) = 1lim
o

we see that the right side of (2.10) equals

2 X (a2 (1og(n-1)- + 222 50gm - zlog da+j)),

n"*eo a=1

and the first two terms vanish, because . Lx(a) = Zax(a) =0 for

¥ nontrivial and even., This proves (2.10).

4, If y 1is odd or the trivial character, then, in addition to
the Stieltjes tramsform G(2), the asymptotic series for the
twisted log gamma function on the right in (2.10) also includes
a principal term. For example, in the case of the trivial charac-—

ter, we have the "Stirling series" (see [97], p. 261)

T J x=[x]=1/2 4
Tog Ta vaw z-—-)logz—z"o x+z
Zwinz
Note that for the trivial character we take f (x) = “Inin

triv
=-B.{x)= [x]—x+—%. Tn other words, the Stieltjes transform of
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the first Bernoulli polynomial gives the error in Stirling's formula
n! o Jam -
e
5. As menticued Before, the classical Stieltjes transform can
be defined more generally for a Stieltjes measure W = dF(x) on
the positive reals. For example, if ¥ is a nontrivial even

Dirichlet character of conductor d, then the derivative of

dn—-1
z x(a) log I.(zga) = - lim z x(i} log{z+3)
a=1 n-ew =0
(see the proof of (2.10)) is
dn=1 -
< df
- iim w &
e 5 z+3 x+z '

where f>< is the func:tlon (2.6), i.e., de has point mass ¥(j}

at j. Thus,

i azl x(e) log T(238) - _ (2.11)

T af, ()

+z

<

This formula can also be obtained by differentiating (2.10)

under the integral sign and then integrating by parts:

4 2 (z+a J £ (x)
x(a) log T = - dx
=l td ) 0 (x+2)°
£ (x) T af (o) T 4t (x)
= x+z o x z _G x+z °

The formula {2.11) is closely analogous to the formula for the
derivative of the twisted p-adic log gamma function (see (8.8) in
Chapter II1), More precisely, define the p-adic log gamma function

twisted by a nontrivial even character X as follows:
d

X(Z) dot ;l x(a) GP(Z:]-a)
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lim p * z ¥ (a) (z:]—a +j) (1np(2';a+j) - )

. D0 D<a<d, 0<j<p®
= lim i E x (i) (z+3) (1np(z+j) —1),
w—w  dp 0<3<dp™
1
i = 1lim -——
Then GP:X can be expressed in terms of Gg’g(z) = dpn
. d .
g (z+9) (lnp(z+j) —1), where £ =1, £#1, as follows:
e}
0<j<dp - a
o ) = XD T e (2,
X 4 .8 4
where £ is a fixed primitive d-th root of unity and gX = .
a=
X(a)Ea = d/gi. So if we define a measure W, on Zp by
&<y n (a2 B (2.12)
My =72 ji X(b)ugb’ wnere ”Eb TP oot
b=1 1-£&
rhen we have
= - Jin (x+2) au (03
GPbX(Z) J np(x z) Y ;
p .
d & (%)
45 @ e CES R [ 2
dz o= phyod g Xtz

P
which is the p-adic analog of (2.11).

Final remark. In the classical case an integer a prime to

d has peint mass

B - — b
af, (a) = x(a) = X 0 xw ™. (.13

[Nt

I3

b=1

Compare (2.13) to (2.12). As in our discussion of Leopoldt's for-
mula for L (1,X%) in §II.5, we see that the p-adic construction
is fomallypanalogous to the classical case inside the open unit
dise (in (2.12) note that Hgb(a+pNZp)——‘>’Eab 28 Ne———),
but the p-adic case only becomes arithmetically interesting when
we extend to roots of unity, which are on the "boundary" of the

unit dise.

In the remaining sections we shall give a gystematic account of
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the p-adic Stieltjes transform, following Vishik [95]. First we
inttoduce & type of p-adic integration {not to be confused with the
type used in Chapter II) which is the tool used to construct the

inverse Stieltjes transform in the p-adic case.

3. The Shnirelman integral and the p-adic Stieltjes transform

A p-adic analog of the line integral was introduced by
Shnirelman in 1938 [88]. It can be used to prove p-adic analogs
of the Cauchy integral theorem, the residue theorem, and the
maxizmum modulus principle of complex analysis. The main applica-
tions of the Shnirelman integral are in transcendental number
theory (see [ 11, [17]1). Our interest in it will be to construct

the inverse Stieltjes transform.

Definition. Let f£(x) be an Qp—valued function defined on
all x e ﬂp such that |x—a|p=r, where a ¢ ﬂp and r 18 2
positive real number, (We shall always assume that r is in
2
| plp’

|I’ip = r, Then the Shnirelman intégral is defined as the following

i.e., a rational power of p.) Let [ € Qp be such that

limit if it exists:

.o 1
J]" fx)dx acs lim 5 Z fla+ED),

a, Tl oo En= 1

" indicates that the limit is only over n not

where the
divisible by p.

Lemma 1. (1) If J f{x)dx exists, then
a,rl

|j flxydx|_ < max |£(x)] .
a,rl P xwa p=r P

(2} J commutes with limits of fupnctions which are uniform
a,r

iimits on {xl ]x—a‘p=r}.

(3) 1f T <£r < Ty and f(x) is given by a convergent Laurent
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o

series z ck(x—a)k in the annulus rli ix—ai_pirz, then
k=—mo
f(x)dx exists and equals Sg- In particular, the integral does
a,l :
not_depend on the choice of T with ]I‘lp=r or even on T, as

long as . Sr<~r,., More generally,
2ong a5 I, =Xy Hore genexally.

J £(x) (x—.a.)_k dx = €t
a,r

The proof of the lemma is easy. Part {3) uses the fact that if

k£0, then 2 -0 for n>lkl.
n
g =1

Lemma 2. Feor fixed =z ¢ @ and for m>0

ax_ _ [0 if |z—a[P<r;
a,l (x—z)wL

(a—z)"m if Iz—'a!p>r.

To prove this, note that for Ix—alp = r we have the Laurent

expansion o
m
(z (z-a¥ (x—a)_k_l) if |z—a|p<r;
L k=0 o 3.1
m - .
(x-2) (L Z {z-a)"F {x—a)k) if |z-a\P>r.

a—z k=0

Then use part (3) of Lemma 1 (with Ty = r2=3f) .

lL.enma 3. (1)} If £(x) is & function on the closed disc of

radius r with center a, i.e., f: Da(r)—"’"ﬂp, and if

f(x) = z ¢ (x—a)k with rk|c | =0, define [1£li = max

= . kP ok

rk\c | . Then max |£{x)}|_  1is attained when Ex-aln =r and
ke xeD_ (¥) e -

equals [[£]] .

{2) Any Krasmer analytic function f: Da(r)—‘"‘ﬂp (i.e., f

is a uniform limit of rational functions with poles outside Da(r))

is of the form im part (1), i.e., is given by a power series.
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Proof. Making 2 linear change of variables, without loss of
generality we may assume that a=0 and r=1. Meltiplying f by

a constant, we may also suppose that ||le= max [c:k|p =1. Clearly

- k X = e =k =
!f(x)]p = |chx | <1 for xeD (D). ler FGo =7 & x e F [x]

be the reduction modulo MQ s the maximal ideal in QP. If % €
Do(l) is any element whosg reduction meod MQ is nonzero and is
not a root of the polynomial f, then Ex|pp=1 and |f(x)[p=1.
This proves part (1).

It follows from part (1) that, if fn is a sequence of rational
functions approaching f uniformly, and if each fn is vepresented
by a power series on Da(r), then the sequence of power series
approaches (coefficient by coefficient) a power series which
represents f on Da(r). Thus, it suffices to consider the case
when £ is a raticnal function with poles outside Da(r). Again
we make a change of variabies so that a=0 and r=1. Using
decomposition inte partial fractions, we reduce to the case f{x)=
(x-b) ™™, bl > 1. Bue

@ "
(;i—b)_m_l _ (_b)—m—l z (k+m) (}E:) ,
. k=o' ™
which converges on DD(J‘) .

Lemma 4 (p-adic Cauchy integral formula). If £ 4is Krasmer
analytic in Dﬂ(r}, and if |I'|P=r, then for fixed =z e Qp

j f(x) (x-a) dx
all X—-z

0 if fz-al >r.
— P

In particular, this integral does not depend cn the choice of a,

T, or r as long as Iz--z-1|p remains either <r or >zr. More

generally,

mi' f(m)(z) if Ez—a!p<r;
£GOGe8) 4 - 3.9
a, I (z-z}" 0 i [e-al, >



Proof. By Lemma 3 and the linearity and continuity of both

sides (part (2) of Lemma 1}, we reduce to the case Fx) = {z—a)P.

Then write i . . )
k-1 k~m— - . .
{z-a) {x—a) it |z-a|_<x;
1 - k=m+l(_ o ) P
mtl ©
(x—z) e
* (-l)m+1z (k;:n) (z-a) k- 1(x—a)k if |z-a.|p >r.

k=0

Now use part (3) of Lemma ! to conclude (3.3).

Lemma 5 {p-adic residue theorem). Let f(x) = g{x)/h(x), vhere

g(x) is Krasmer analytic in Da(r) (i.e., by Lemma 3, a power

series) and h(x) 1is a polynomial. Let {x.l} be the roots of h

in Da(r), and suppose that all lxi—alp are strietly < r.

1 .

Define res f to be the coefficient of {x—xi) in the Laurent

—_— X, ——
i

expangion of f(x) at Xy Then

J’ fix) {(x-a) dx = Zresx.f.
a,l’

1

Proof. Using the partial fraction decemposition of 1/h(x),

+1 R
we reduce tg the case h(x) = (x—xi)m . Then use (3,3) with f£(x)

replaced by g{x) and 2z replaced By '%;-

The next lemma will be stated and proved in the form we ghall
need it, although some of the assumptions car be eliminated (the
D. can have different radii, and f(x) can approach a nonzero

i
finite limit at infinity).

Lemma 6 (p-adic maximum modulus principle). Let f£(x} hea

Krasner analytic functicn en QP— UDi, where Di = Dai(r ) are

open discs of radius r. Further suppose that f(x}—>0 as lx!p

—- 0, Then If(x) Ip reaches its maximum on tlie boundary,

i.e., if |f(x)|psM for all x with Ix—ai|p=r for some i,

then |f{x)|IJ <M for all x¢ QP— UD,.
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Proof. By the definition of Krasner analyticity, we immedidte—
1y reduce to the case where £(x) ditself is a ratiomal fuaction
with poles bje UDi' Let =z ¢ be such that Ez—aiip>z~ for
all 1, We must show that if(z)gp £ M. Choose r, large enough
so that DO(rZ) = Dz(rz) contains z and all of the D:L’ and so

that If(x)lpgm for |x|p=r. Let |T

2 =r_,. By part (1} of

le 3
Lemma L,
| _[ f(x}dxl < M. (3.4)
z,T P
2
On the other hand, by Lemma 5,

_[ f(x)dx = zresﬁ

2T, x-z
= f{z) + z res f(x)‘ (3.5)
i b, =~z
J
Now let |I'|p=r. By Lemma 5, for each %
f{x) J x-a;
res = £ 7L dx.
b.eD, bj x-2 a;,T xTg

Since Jx—z!P > |K_ai|p for |x—ai|p=r, it follows by part (1)
of Lemma 1 that for each i
l z res, LE < max [f(x)| < M.
'b.eD l.’j -zl T lxra ) =r P
i i'p
Combining this with (3.4) and (3.5) gives |f(z)|p < M.

This concludes the basic lemmas relating to the Shnirelman
integral.

Let ¢ < Qp be a compact subset, such as Zp or Zl’;. Let
g = Qp--cﬁ be its complement. For =z ¢ ¢ let dist(z,0) denote
the minimum of lz—x‘p as x ranges through 0.

Let HO(C_I) denote the set of functions ¢: E—“—"Qp which
are Krasner analytic and vanish at infinity, i.e.,

(1) ¢ dis a limit of rational functions whose poles are con-
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tained in- 0, the Ilimit being uniform in any set 'Dc(r)*de {zeﬂpt
dist(z,0) >r h
(2) lim  &(z) = 0.

|ZE—bm
P

Remark. Strictly speaking, to say that 9 is Xrasnmer amalytic
on 0 & priori means only that for every r>0 it is a uniform
limit on 50(1:) of raticnal functions ¢ with poles in D7)
{ze ﬂp | dist(z,0) <x}. But if, for example, ¢n(z) =1/(z-b)

def ;
-t _b-ayl
with {b_alp =T <T for some ae0, then ¢n(z) 3 (z—a)j+l

can be approximated uniformly on Eo(r) by a rational function
-m .

with pole aeo. Similarly if ¢n(z) = (z-b) *; and any raticmal

function ¢n can be reduced to this case by partial fractlons.

Thus, the peles of q:l'_l can be "shifted" to lie in O,

2 1
d . R _
Examples. 1. Since d—z—i({z+3)(1np(z+]) —l)) =i we have
2
d . -n é 1
=G (2) = 1lim p e B (Z ),
dz? P peeo  0<3<p™ 213 0

where Gp is Diamond's p-adic log gamma function, see (7.4) in
Chapter II. (It is not hard to show that the construction
lim p L f(z+]) discussed in $I1.7 commutes with differentiation

when f is locally znalytic.)

2. Yor any fixed £4 Dl(l_) , the first derivative of the
twisted log gamma function Gp z (see (8.1} of Chapter II) is
- 3
already Krasner amalytic, since, by (8.6) of Chapter II,

. du (x) 1 Ej —_
d = —s TN i .
EEGp,a(Z)“ZIG%-‘m ] m o<z

P

3. If U is any measure on Z_ and £(x) EHO(ZP), then it is

not hard to check that g(z) = Jf(x—z)du(x) € HG(ZP). In other
Z
words, HO(E Y is stable under gonvolution with measures cn Zp'
P

The function 4 G (-z) in Example 2 illustrates this.

dz p,&
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For r>0 the set Do,(r_) is a finite (since © 1is compact)

disjoint union of open discs of radius r: Dd(r_) =UD_ (r). For
5 ‘

- . - -+
example, if O = ZP and tr=p n there are pn 1 such discs.

Similarly, D, (r) s {ze S'Zp | iz—afp <r for some aed} is
a finite disjeint union of Da (r}, a;€ a.
i .
Recall the definition D (¥r) =2 -D (r ) = {z¢@ Zz-aj_zr
o LDy ol z-al

for ali aeo}.

For ¢>eH0(5) 1ét ||r15||r a3f zeg}axr i¢(z)|p. Obviously,

”¢”rl > ”Mr if r <r. By Lemma 6,

lell, = max  [¢(z)] .
dist(z,0)=r P
We introduce a topoclogy om HG (T) by taking as a basis of open
neighborhoods of zero

Utr,e} = {of flofl <el

Note that ”d)ﬂr is a continuous decreasing function of r..
Te see cortinuity, one easily reduces to the case when. ¢ is a
ratlional function with poles in ©, 2and then by partial fractions

to the ¢ase when ¢(x) = (x-a)"™, in which case it's obvious.

We next introduce a space of fumctions which will play a dual

tole te HO(E) via a pairing defined using the Shnirelman integral,

Let

B_= Br(U} ase {f: D (x)—> szp] f is XKrasner analytic on

each Da. (r)c Do(r) }.

By Lemma 3, ) + :

Br = {f! on each Da (r), £ is given by a convergent power

series I, c (z-a,)J, i.e., rJic..\—-—“'D as
i i ij'p

j—— <« for each il.

If r1<r, then restriction to Dd(rl) gives an imbedding
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B B . We denote L{g) = UB,_-- By definition {see the

r r

1 r>0 . -
beginning of 8II.7), L(o) is the set of locally analytic functions

on .

For f eBr we set

3
£ =_ max QCE L
” Hr def 1.7 e

which is Finite by definition. By Lemma 3, Llf||r = max ]f(x)lp.
zeDU(r)
Note that the inclusion Brc—-arBrl for r1<r is continuous
with respect to || Hr in B and || ”r]_ in Brl-

Let L#(o) be the set of continuous functionals on L{o} =

UB , i.e., the set of linear maps U {compatible with the re-
T

striction Br*’—)-Br } sueh that for all T
1
wll, me mex O] /IE]
ol gge 7o el
is finite. Note that |lull_ 2 flull, if r <r. We do pmot re-
1
quire that [|11H_r remain bounded as r——=>0.

Key example. Let U be a measurs on U, i.e., a bounded
additive map from compact—open subsets U of U to .Qp. As in

the case o = Z (see §11.2), the map
H = i u, ., (3.6
[TER h—h—deu 4SF llmz fj(Uij) H( 13)
o] j i
(where £, 1s a sequence of locally comstant functions which
1
approach f uniformly, and the Ui' are compact-open sets on

which £, dis constant) is a well-defined functional on the
J

continuous functions on o, and a fortiori on 1.{3}.

Lemma 7. W eL*(0) comes from a Measure on O if and only if

Hu”r is bounded as r—>0.
Proof. Using (3.6), it is easy to check that rl—iﬁonu“r =

max Iu(U)] < e« whenever | 1is a measure. Conversely, suppose
P
U
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ueL*(a) has ilu”r <M for all r. Define a function, also

denoted 1, on compact-open subsets U of O by
u(U0) = y(characteristic function of U).

(Wote that any locally ccustant function is in Br for r small.)
W is obviously additive, and I],I(U)EP < ”“Hr'

| char £n of ull,
= ”““r s M for all TU. This proves the lemma.

Choose T with IFIp:r, and define

z—an]
f.. () = ( 1) restricted to D_ (r). (3.7)
i],T T a;

By Lemma 3, B_ 1is the set of all series f =2 c,, £_, with
r ij "ij.r
Cij———"’O as j=—= for each of the (finitely many) 1, and

”f”r = max ;Cijlp' For pel*(¢) clearly )
1,]
flull, = max [uce,, )]
r i,j L3, 'p

It can then be shown that the weak rtopology in L#{g), which has

basis of neighborhoods of zero

Vee gz (il lu® [ < el (3.8)

is equivalent to the {a priori stronger} topology having basis of
neighborhoods of zero

Vir,e) = fuf il <<l (3.9}

We shall prove this in the next section as a corollary of a general

lemma on p-adic Banach spaces.

We shall often dencte W(f)} by (u(x), £{x)).

Definition. Fer wel®(g) the Stieltjes transform Su: 5—*—
QP is the map

¢t 2b——(u(x), z%;). : (3.10)

We write ¢ = Syu.

Note that (3.10) makes sense, since for fixed 2.*0, we have
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< i N
w Br(U) as spon as r < dist{z,0)

Remark. If wu comes From a measure on O (alsc denoted 1),
then
o - [
5 Z-X
This is slightly different from our earlier use of the term "Stiel-
tjes transform” for the dlog gamma type functions C{LZG; namely,

%G(z) = Si(-2).

Definition. TFor ¢EH0(6) the Vishik transform Yo of ¢ is
the functional on L(o) =UBr defined by
Br 3 f P> z J ¢ (=) £(x) (x—ai}dx, (3.1
i ai,I"
where this integral is the Shnirelman integral defined at the

beginning of the section,

Lemma 8. (3.11) does not denend on the choice of centers a;

or the choice of T with |F|p=r, and it is compatible with

the inclusion B _ ¢—»B for r. <r,
_— r II e 1
Proof. ¥or fized f, the right side depends continucusly on

¢ (with respect to ”(b“r), 50 we may reduce to the case when ¢
ig a rational function with poles in o©. In that case, by Lemma 5,
the right side of (3.11) is simply I res{(¢f), and the lemma

follows.,

Remark., A function (I}EHO(E) and a function feBr(cF) have
an annulus around O as a common domain of definmition. The pair-
ing (¢,f} = V¢(f) can be thought of as a pairing which evaluates
the sum of the residues of the product. For example, i1f U 1is
simply the point {0}, then ¢(x) = z b xm, f(x) = z e xt,
and m<) B n20 o

($,f) = coefficient of Lo P)E(x) = § b e .
x am
mtn=-1

Theorem (Vishik). ¥ and S are mutually inverse topological

isomorphisms between Ho(a) and L*(0). Under this isomorphism
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the subspace M(¢)C L*(0) of measures on o corresponds ta the

set of ¢EH0(5‘) such that r”¢”r is bounded as r—-0,

-Proof. Step 1. SueHO(E), and $ is continuous.

Notice that for fixed zeﬁd(r) and for r-1<?: and |T| =r_,
p 1

. : ~i-1.3
the image of in Brl ig- i% (z—ai} T fij,rl (x) (where

fij,rl was defined in (3.7)). Then, since I(u,fij "1)]1’ < ””Hr'
: 1
'Hfij,rln'rl = Ifu”rl, it fellows that
1 j
e P N S
Hix), z-x) im 1 (u’fij,r)

D= i f<n (z—ai) 1

is a uniform limit of ratiomal functions with poles a.ec and
1
value zero at infinity. At the same time we see continuity, since
if ueV(rl,E), i.e., if ”uHrl<s, then
: ]

le@aDl = pax @, s nax 2o
z=x"'r zefc(r)l zZ-X Ip - TT-}; LIt ”u“r
£

< 7 (3.12)
in other words, SueU(r,g/r). .

Step 2. rFor EI)EHG(S), the functional V¢ 1is continucus,
i.e., V maps HO(EJ to L#(0).

Let ngr(U). Then

V.0 =] }
[0 '; a.',"I‘qb(X) £ (xmaex
3
< max max  [$(=)£{x) (X"ai)lp

i |x-a,| =r
i'p
by part (1} of Lemma 1. But this is at most

r max le () f = £l .
dist{x,0)=r * ]p dist?il,(cr}m:' (X)]p r“‘b”ri] Hr

Step 3. V: Ho(a‘)—*-l.*(o) is continuous.

If ¢eU(r,e), then we just saw that I(th,f)[p <re Her
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for feBr. Thus |W¢Hr< re, d.e., Vb e V(r,re),

Step 4. VS = identity.
To see this, let We L¥{(c), fe Br(O’), and denote § = Sp.  We
must show that ¥,f) = (,£). A

We have

Vo, £) z J (z-a, yE{z)b(z)de
T

z J (zma )2y (1), i) <2

Siﬁce 4 is linear and continuous, it commutes with the Shnirelman

integral, and we have

Wg,5) = (u60), > e z__a
i ai,l"

z). (3.1

Without loss of generality we may suppose that rai: {}a—b|P I a, b

¢ 0}, 1in which case Ty can be chosen less tham r but close
enough so that Dc{rl) is obtained from Dc(r) by merely shrink-
ing each of the discs Da.{r) (i.e., no elements of ¢ are lost,

i

s0 no new discs have to be added to cover ¢©). Now for =« Da (rl)
i
the integral om the right in (3.13) is equal to £(x), by Lemma

-Ar-N
4, Thus, the restriction of § f f(z) tdz to B is
Z—X T
i ai,I' ) 1

the same as the restriction of f(x). Hence, {V¢,£) = (W, E£).
Step 5. SV = identity.
Let ¢5H0(5).
We first suppose that 2 is large, say |z|p>r= I]"!p, vhere

r is taken large sncugh so that UCDO(r) = Do(r). Let a be
= gel

any point in 6. It is easy to see that o&(x) = zj c (x-a)

for xe"ﬁg(r) (as in the proof of Temma 3).

Then

SV (z) = ('Vd)(x),z—i}z) = J'(x-a)fﬁ(x);};dx

a,

il

1 .
OJPX ¢(X) ;—_X dx

O;J;!_/ _¢(x)z l/ dx

by the definition of the Shnireiman integral. Thus,
Ve = 2 [ oL
o,1r ¥ x-l/z

-1 res 1e(l/x)
z i/z Xx-1/z

It

by Lemma 5

= $(2).

{alternately, we could expand & (x) —Ec N R Y compute

Vo = Doy [t pan - T, JEXM

- Z«:-/zj”L = 8(2). )

By Step 1, we know that SV ¢ (z) EH (@), Since SVo(z) and
¢{z) are both Krasner analytic on © and agree ol EO (r), they
must agree everywhere,

Step 6. If 1 ¢ L*(0) and 9 = Sy, then

Iull, = vlisll_

In Step 1 we saw that for any r,_ >r

2
ol s 2= lull,
2 2

(We have replaced r and Ty by Ty and r, respectively, in

(3.12).) Letting r,—>r and using the fact that |i¢”r is

continucus in rz, we obtain

e loll, < full,

On the other hand, in Step 2 we saw that I(Uaf)|p < ri]:il”r

Hf”r for all feB_, and hence Huﬂr sr H¢”r
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Step 7. S@i(o)) = e uy @[ rigll, is bounded).

This follows immediatély from Step 6 and Lemma 7.

The proof of the theorem is now complete.

Remark. Amice and V&lu [5] and Vishik [94] have studied so-
called 'h-admissible measures” on C. These are elements 1y ¢

L*(¢) which instead of boundedness are required to satisfy the

weaker condition

£ fu¢e,, )| =——>0 as r-——==0 forall i, J
ij,r" 'p
(fij , 1s the function (3.7))}. For example, when ¢ = Zp’ =0,

and r=p"N, so that fi' " is the characteristic function of
s
N .
s0me a+pNZp, this condition szys that |uca+p ZP)IP grows
slower than th. It is not hard to show that h-admissible meas-—
= . h+1

ures U correspond to functions ¢eHy(0) for which r szffr
approaches zero as r=——3-0.

Even the broader class of h-admissible measures are only a
small part of L#(0). Tor example, when © = {0}, then M(0) is
simply the constants, which correspond te elements ¢eHG(E) of
the form ¢{z) = %.

pond to the polynomials of degree at most h in 1/z (with no

The h-admissible measures on {0} corres—

5 =3
constant term); while L*{0) corresponds to all series Ecjz

for which r_jicj[p 0 as j for every r.

4. p-adic spectral theorem

We start by discussing p-adic Banach spaces. For a more com-
plete account, see [82]. 1In the process we fill in a technical
gap in the last section, namely, we prove that in L%(r) the
topology determined by

Ve {u| |u(f)lp < ¢} (4.1)
is equivalent to the topology determined by

V(r,e) = {u] Hu”r < g}, (4.2}
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Let K be a field which is complete under a non-archimedean

norm | .P

(in- practice, K will be a subfield of ﬂp).

Definftion; A Banach space over K is a vector space B
supplied with a norm || || from B to the nonnegative real
numbers such that for all x,y ¢B and aeK: (1) Hxii =0 if and
only 1f x=0; (2 |lx+yl < max((x|l,llvl>5 (3) fax]l = lal Ni=lls
(4) B is complete with respect te || ||.

We shall also assume that {|B]| = {K| , i.e., for every x#0

in B there exists aecK such that Haxﬂ-: 1.

By Hom(Bl,Bz) we mean the vector space of K-linear continu-

ous maps from B to BZ; Hom(Bl’BZ) is clearly a Banach space

1
uvnder the usual operator norm. We dencte End(B) = Hom(E,B).

If B0 is a Banach space over KDC K, by BK = BO®K we

mean the completed tensor product, i.e., the completion of the

vecter space BO® K.
%o

Example, If B ={f =71 _cjxje Qp{[xm [cji;)—--x»o}, with

Nell = max e then B

- _ J
; jip, = E=12 °,x eszp[[xm |cjrp--—>o}.

P

In practice, mest interesting §I -Banach spaces B arve really

defined over a finite extension K of Qp, in the sense that

B = Bo®ﬂp for some K-Banach space By

Canonical example, Let J be any indexing set, and let K(J}
denote the set of all sequences c= {cj}js.] such that for every
€ only finitely many [e,| are > e. Let |[lef| = max |c.]_.

i'p i it

Note that K(J)V®QP = QP(J)-

Proposition. Let K be a discrete valuation ring (for exam—

ple, a finite extension of Qp, or the unramified closure of
Qp). Then any Banach space B over K 1is of the form (i.e.,

isomorphic to) [_((J) for some J.
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Proof. Let 0 = 0K

=10, k=0/M. Let E={xeB| |x|/<1}, E=F/1E, ILet {ej}jEJ

be elements of E whose reductions mod TE fdrm a basis for the

{aek| |a|p51}, M=M= {ac k] |a|P<l}

k—vector space E. Ve claim that B is isomorphic to K({J).

Given xe¢B, find acK such that [|ax[ <1. Then for some

{clj }j o Vitk lclj |p5 1 and only finitely meny o, nonzero
1
we have: ax -L c}.jej ¢ TE, Repeating this process for ﬁ(ax—
. _ i _
Ecljej), we successively find ax = %ﬁ (;"E?T cij) ej . Let cj -

%Eﬂlcij, and let x correspend to {cj}EK(J). Conversely, let
i
every {cj} e K{J} correspond to Ecjej. It is easy to see that

this correspondence gives an iscmorphism B=K(I}.
Such a set {ej}C B is called a "Banach basis" for B.

Example. The space Br(c) in the last section has Banach
basis fij,r (see (3.7)).

Cerollary. If an QP—Banach space B is defined over a fimite

extension of Qp’ then B is_isomorphic to SEP(J) for some J.

Definition. The dual space B* of a K-Banach space B is

Eom(B,K), which is a Banach space with the usual operator morm.

Lemma 1. If B=K(J), then B* is isomorphic to the Banach

space of bounded sequences b = {hj}jeJ with |[[b] dop Mex ij‘p'

In fact, if {e.} is a Banach basis, let {bj} be the map
Le,e,lm==Lb c It is routine te check that this identifies B¥

373 11
with the space of bounded sequences,

Definition. Let B be a K-Banach space. A sequence X, %y,
Hysees is said to be weakly convergent to x if h(xi‘)""_)"h(x)
for all heB*,

Lemma 2. Suppose B=K({J). If X% weakly, then

144

ey - xll——>.

Proof. Since any countable set of elements of B is in the
Banach subspace generated by a countable subset of our Banach basis
for B, without loss of generality we may assume that J is the
positive integers. Replacing Xy by X, - %, without loss of

generality we may suppose that x=0.

Suppose “xlll does not approach zero, By passing to a sub~

sequence, we may suppose that ][xln >& for all i. We identify

B with K(J), and let x = {aij}e K(J). Then x| = m§x|aij|p.
Let o, denote the first j for which |a,.| = {x{[, and Iet

i STty i
Bi denote the last j for which Iaijlp = I[xl]]

Case 1. oy is bounded.

Then there exists some such that cci=jO for infinitely

il
¢
many 1. TLet heB¥ be the jO—th coordinate map. Then for in-

finitely many i we have

I o A N DU
a contradiction.

Case 2, o, is unbounded.

Let
dg =%
— ] L N
i Otil, where i, is chosen so that Ot.il Bl
iy =n; , where i, is chosen so that o, > By
L2 2 N
A i g > .
;[n o where ln jis chosen so that Oti Bi
n : n n-1

Let heB* be the sum of the jn—_th coordinate maps, i.e.,

hi{ia,}) =L a, . Then for all m
] a3,

O R L

= “XiH 7 E,
n wn m i m
m

and again h(xi) fails to approach 0. This concludes the proof.
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Corollary 1. If B~K(J} snd {x}, =x,¢B, has the property
that h(x.) approaches a finite limit for all heB®, then {xi}
. i —_—

converges in the norm to some X.

Proof. Let y, ==x;-x . By Lemma 2, |jyi||—-s-0. But then

{xi} is 2 Cauchy sequence (since HxM—xNH < Mfiﬁ;q”}{i_xi*l”)’

and the corollary follows from the completeness of” B,

Corollary 2. The topologies on L*(C) determined by (&.1) and
(4.2) are eguivalent.

Proof. Since the V¥(r,e)-topology is trivially stronger than

the ~topology, it suffices to show that a sequemce My which

v
£,6

converges to zero in the V ~topology must converge to 2Zero in

i,e
the V(r,e)-topology. Suppose that for every felL{o)= UBr we

have uk(f)—"“—“'O. We must show that for every r, |Euk§§;—""'0-

Without loss of generality we may suppose that « % {|a—b|p ]
a,be o}.

*
For any r, L*(0) maps to the dual B;r—QP(J) , where J

i futf.. )}, ., -and it is easy
indexes the fij,r' Namely, uk—1{u{ 13,1:) 1,3

to see that the norm in B% corresponds to Hu”r Note that the
image of U has coordinates which approach zere as j—*= for
each i. This is because, if we choose rl<r but large enough so

that gnai(rl
compact, and ne be¢ has lb—ai]P=r), then for all 1, ]

) still contains © (this can be done because O is

T 44
= 1
r l)”p_ [U((r} fij,rl)‘p

where !I'l[p=r1

2= ¥,
Eu(fij’ )Ip [1:C

1j,r|Do(r

] v J
oy 1=
- ey 0, ¢ 6
which approaches zero as j=——®, In other words, thg compat—

ibility requirement with Br%}ﬂr forces 11 to be a very
1

special element of B";.

Now the subspace of B§ consisting of elements whose ceordin-

146

ates approach zerc is of course Isomorphic to S'lp(J). By Lemma 2,

to show that ”ukﬂf—)‘o it suffices to show that g(pk)—-—:-—o
for all gEﬂp(J)*. ‘But if g = {gij} under the isomorphism in

Lemma 1, then

T ]

I

glu) = z Big “k(fi_«;,r) = 2 gij(_f) uk(fij’r) = (8,
i3 i,j 1

where f = zgij rJ ot

assumpticn,

. e
1,7y N Brl And  (£) 0 by

We now discuss oparators A ¢ End(B).

. - ] .
f B = K(J) with Banach basis {ej}jeJ’

t i i :
0 a matrix {aij}i,js.] in the usual way

Ae, =Za..e..
| ij 1

It is easy to check that this is & norm-preserving isomorphism

then A corresponds

between End(B) and the Banach space of matrices {aij} having

and having the property that for

finite ”{aij}” £or ?ax 'aijip
=

each j, aij 0 as i ®, In cther words, when B=K(I),
A can be thought of as a matrix whose columns are in B  and whose

rows are in B#,

An operator A is said to be "completely continuous" if it can

be approximated by operators having finite-dimensional image. In

terms of matrices, this means that ai.—“-)-G ag femwwdeco  yni-
formly in j; in cther werds, the norm of the i~th row approaches
zero. Such operators occur in Dwork's theory (e.g. [253]), and in
[82] Serre gives a Riesz and Fredholm theory for them.
However, many simple operateors are not completely continuous:
n
the identity operstor, for example, or the operator ( E}?) on

{Ecixlf ci—>-0} {which has diagonal matrix a,= M.

For simplicity, we shall assume our Banach spaces are of the
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form SE‘(J). As mentioned before, 2ll S]‘.p—Banach spaces which are
defined over a discrete valuation subfield of ﬂp are of this form.

Definiticn. For A<End(B) Iet 0, = {Aesgpt A-)  does not

have an inverse in End{B)} denote the spectrum of A,
Definition. An operator Ae End(B) is-called analytic if the
"resolvent” operator R,(z) = (z—A)_l is Krasner analytic in the
complement of ¢,, in the sense that for all xeB and he B%,
h(R,(z)x) as a function of 2z lies in HO(EA)' If B = Qp-(J)-
then in terms of matrices this is equivalent te the condition that
egeh matrix entry in RA(Z) be a Krasner analytic function of =z

on T (and vanish at infinity).

A
Vishik's spectral theory applies to apalytic operators A
whose spectrum U, 1s & compact subset of Qp.

Example. x% acting on B ={% cixl[ ci—h-O} has spectrum

% , and its resolvent is Krasner analytic on ZP-

It is possible for A tc have a compact spectrum but not sat-
isfy the analyticity condition, Here is am example cof Vishik where
the spectrum is empty. (Since the only Krasner analytic functions
on all of Slp, by Lemma 3 of §3, are everWhére convergent power
series, and since only the zerc power series has value 0 at
infinity, it follows that in the case of an empty spectrum Rﬁ(z)
has no chance of having matrix entries in EO(UA).}

Example. Let B be the set of {ai}iez such that H{al}” def
max |a, | is finite and ap=3-0 as i~—3-=. Tet 4 be the
ieZ )
shift operator A({ai}) = {bi} where bi=ai+l'

Claim. For all zeﬂp, (z-A) has a continucus inverse fz'

Proof of claim. We want te find f: {bj})—)-{ail such that
a, = fz,i({bj}} satisfles za;-a, , = b..

Case (1). |z| <1, Set a, =~b, ,-zb, ‘Zzbi_3""

which converges becaunse bj——*-() as je—m-, Clearly {a,6leBR;
1
za; -a; . * bi; and this map fz is continucus.

-1 -2
Case (2). |-z’p >1. Set .a, =b.z +b .2 "+ er Again
{ai} €B; Bag-a, . = bi; and the map is continuocus.

Let .B be a Banach space of the form QP(J). Let F(x) be
an analytic operator-valued function on the complement of a compact

set O, i.,e., for all yeB and heB* cthe Qp-valued function

Fh,y(x) a5r hEEW

belongs to HD{C-!}. Let ae0, !I‘!--—- r, and suppocse that there are
no b e o such that Ib—afp:r.

Definition. Let s -1 > (a+fl. Then
I

F{x}dx .= lim S . 4.3
alr def ¢ )

n=e, pfa "

Lemma 3. The limit (4.3) converges in the operator morm to a

continucus eperztor.

Proof. Let yeB. For all heB®, since theHO(E), it

follows that the ordinary Shnirelman integral BN (x)dx  exists.
¥y
a,l
That is, h(sny} approaches a finite limit for all h, By Corol-

lary 1 to Lemma 2, Sny converges in the norm. By the uniform

boundedness principle, Sn converges to a centinucus operator,

Note that from the proof of Lemma 3 it follows that

h(a’er(x} dx 3) = f Fh

(x) dx . (4.4
a,T o ¥ )

Spectral theorem {Vishik). ILet B:QP(J), and let Ae End(B)

be analytic with compact spectrum Ty Then the coperator—valued
distribution
Yy oasr VRa
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where V is the Vishik transform in §3, gives & continuous homomor-

phism from the algebra L(OA) to the algebra End(B). For £ ¢
Br(cA), the operator u,(f) is defiped as
f £{=) (x-a) x-a)"t
i ai,I'

where DU(r) = UDa {r) is a covering of ¢ hy discs of radius r.
i
In addition, the following inversiom formula holds:

) = (@, 05) 4.5)

Corollary 1. Foxr all 3jixO0, A= (s xj)-

Proof of corollary. For amy fixed z with |z| > max [x]
P XeQ B

z T tn 6.9,
=

o

and |21p> fall, we can write
Since XZEP > ;|A”, we also have RA(z} z -j—lAj . By the

continuity of 'Ll : L((IA)—-—'D-End(B), this gives us 22‘3-1 'Aj =

Z (uA(x) xJ) Since this holds for all large z, the

coefficients can be equated, and the corollary is proved.

Remark. For J=1, if we write (UA, ) using the fnotatinn,
we obtain the usual form for a spectral theorem:
A= JK d}.LA(x) .
A
Proof of the spectral theorem. First of all, it is easy to see
that uA(f) is a bounded operator, and that 1,3 L(UA}—-)-End(B)

is continuous. The key assertion is multiplieativity:
= £ L{c,).
u, (.5, NSy uA(fz} for £, £, ¢ (o,)

= 3!
Suppose that f,, f, ¢ B. Let rr>r'>ry, [I"Wp-r . H‘llp

= r;. We can choose r' go that ' t {|a-b|p[ a,b ¢o,}, din
which case £ can be chosen so that Dc (rl) is obtained from

A
D (£"y = Up_ (") by merely shrinking each disc. Thus, D (rl)
s 24 A T
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UD {rl). How

(x"-a,)(x-a ) {x")f_ (x)
(f ) U (f y = 2 Z j J’ (}.Ic'—"A) ](_x _ZA) L dxdx'.

Since G—A)I(;:'—_AT — ((x' -A) - (x—A)-l) , this equals
(z-a,)f, (x)
z Z _[— =’ -a; DA ICIEY - f — 5 dx dx"

a,l

z Z f (x—a )f (x) (x-4)" fr'-(f—-—a;])fz—(x)-dx' dx.

X —X
j)

But by Lemma 4 of the last seetion, the imner integral in the first
sum is zero, and the inmer integral in the second sum is gzero for
j#i and is f,(x} for j=1i. Thus,
¥ = z f —. -l =
UA( 1) UA{fz) / . (x ai)fl(x)fz{x) (x-a)" " dx uA(flfz}.
i a,,
i1

'Finally, to prove the inversion formula, for any yeB and

he B*¥ we have

h(R, (2} v) (z) = VR (z) by the theorem in §3

= Byh,y A,y
= (VRA,h,y{x)’%) = h((“A(x)’ﬁ) y) .

Thus, (4.5) is an immediate consequence of the theorem on inverting
the p-adic Stieltjes transform, This completes the proof of the
theorem,

Corollary 2. Under the conditions of the theorem, the follow-

ing two conditions are eguivalent: (1} dist(z,0) HRA(Z)H is

bounded as zew—3; (2) UA is a projection—valued measure,

i.e,, a bounded homemorphism from the Boolean algebra of compact-

open subsets of o, to the algebra TFnd(B). In this case

A
max (dist(z,c) []RA(z)H) = max []uA(U)i] .
zeo‘A U

The proof is exactly like Steps 6 and 7 in the proof of the
thecrem in §3.
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Corollary 3. Let B and A<End(B) be as in the theorem. For

1 . . .
a;l r>0 the resolvent RA(Z) can be uniformly approximacted on

D, (r} by rational functions E g A, (z-a,)" ¥ with operator
A = 4 "ij i’
i j=1i .
o]

coefficients and with poles in e

The proof is just Iike Step 1 in the proof of the thecrem in
§3.

Remarks. 1. One could alterrvately take Corollary 3 as the
- definition of an analytic operator, in which case the spectral
theorem would hold for an arbitrary Banach space. However, in
practice the "weaker' definition is often easier to check than the

strong condition in the corollary.

2. The operators in Corollary Z are the closest p-adic analogs
of normal operators or operators of scalar type [24] in a Hilbert

apace,

3. It is not hard to prove that operators for which

h+1

dist(z, o) IR {e){——30 as z——0 correspond to

"h-adnissible” 9N (see the remark at the end of the last section).

4. vVishik has also proved a generalization to functions of
(the gspectra of} several amalytic operators. MNamely, let Al,...,
An € End(B) be commuting analytic operators with compact spectra

Gy renes Oy Let g = T, x---xcrA < ﬂli and use the completed
1 n 1 n

tensor product to define B (o) and L{g): B (0) =B (o )C) e
T r r Al
@Er(cAn), L{g) = L(UA1)®“'®L(OAn)- Let Y = uAl®'“®uAn

be the continuous homomorphism from the algebra L(o) to the

algebra End(B) which is made up from the in the theorem.

M,
i
For feL(g) denote f(Al,...,An) = u{f). Then Vishik shows that

f(a An) is an analytic operator with compact spectrum

rees

152

PN ’”"A)Cf(UA seaesTy Jo and for z ¢ £(o serasl, ) we
1 n 1 n 1 n
have
. S S
£, ,a ) (“f"l"“”‘n) "y f(xl,...,xn)) .
I o ~ . )
n addition, uf(Al""’An) =f0, t.e,, if EEL(f(UA,...,OA N,
then ' :
M (£) = n(lef).
f(Al,...,An)
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