Modular Symbols and p-adic L-functions

Karim Belabas, Bernadette Perrin-Riou after Pollack and Stevens

Acknowledgements

This talk is expository with little original content. I am closely following papers and talks by Bernadette Perrin-Riou, Robert Pollack and Glenn Stevens.

Modular curves

Let $G \subset \mathrm{PSL}_{2}(\mathbb{Z})$ be a subgroup of finite index. It acts on Poincarés upper half plane $\mathfrak{h}:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ by fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z:=\frac{a z+b}{c z+d},
$$

as well as on its boundary, the real projective line $\mathbb{P}^{1}(\mathbb{R})$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot(p: q):=\frac{a p+b q}{c p+d q}
$$

N.B. We identify the point at infinity $(1: 0)$ with $i \infty$ on the Riemann sphere.

Let $\mathfrak{h}^{*}=\mathfrak{h} \cup \mathbb{P}^{1}(\mathbb{Q})$ be the completed upper half plane. The quotient space $G \backslash \mathfrak{h}$ is compactified by adding a finite number of cusps from $G \backslash \mathbb{P}^{1}(\mathbb{Q})$. The result is the modular curve $X(G)=G \backslash \mathfrak{h}^{*}$, a compact Riemann surface.

Motivating example:

$$
G=\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \quad(\bmod N)\right\}
$$

in this case, $X(G)$ is the classical modular curve $X_{0}(N)$.

Modular forms (1/2)

For a given integer k, the group G acts in weight k on functions on \mathfrak{h}

$$
\left.f\right|_{k} \gamma:=(c z+d)^{-k} f(\gamma \cdot z), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G .
$$

A modular function of weight k for G is a meromorphic function on \mathfrak{h}^{*} (on \mathfrak{h} and at all cusps) satisfying

$$
\left.f\right|_{k} \gamma=f, \quad \forall \gamma \in G
$$

For instance, a modular function of weight 0 is a function on $X(G)$; a form of weight 2 is a differential on $X(G)$: since $d(\gamma \cdot z)=(c z+d)^{-2} d z$, we have

$$
\gamma^{*}(f(z) d z):=f(\gamma \cdot z) d(\gamma \cdot z)=\left(\left.f\right|_{2} \gamma\right)(z) d z=f(z) d z
$$

Forms of higher (even) weights $2 k$ are sections of appropriate line bundles on $X(G)$ (k-fold differentials).

Modular forms (2/2)

A modular form for G is a holomorphic modular function on \mathfrak{h}^{*}. Let $M_{k}(G)$ be the \mathbb{C}-vector space of modular forms of weight k for G.

Theorem . $\operatorname{dim}_{\mathbb{C}} M_{k}(G)<+\infty$.
For instance, for $G=\Gamma_{0}(N)$, we have $\operatorname{dim}_{\mathbb{C}} M_{k}(G) \approx \frac{k N}{12}$.

Cusp forms, L-series

Assume for the moment that $G=\Gamma_{0}(N)$: the definitions implies that $f \in M_{k}(G)$ satisfies $f(z+1)=f(z)$ and has a Fourier expansion at infinity $f(z)=\sum_{n \geqslant 0} a_{n} q^{n}$, where $q=\exp (2 i \pi z)$. (For a general congruence subgroup and a general cusp, there is an expansion in $q^{1 / H}$, depending on the width $H \geqslant 1$ of the cusp, for an appropriate local parameter q.)

Let $S_{k}(G) \subset M_{k}(G)$ be the subspace of cusp forms: vanishing at all cusps. In particular, $a_{0}=0$ and we can define associated L-series, for $f \in S_{k}(G)$:

$$
L(f, s)=\sum_{n \geqslant 1} a_{n} n^{-s}, \quad L(f, \chi, s)=\sum_{n \geqslant 1} a_{n} \chi(n) n^{-s}
$$

where χ is a Dirichlet character. The $a_{n}=O\left(n^{C}\right)$ are polynomially bounded \Rightarrow those functions are in principle defined for Re s big enough, in a right half-plane. In fact, they are entire functions. Completing them by a gamma factor, we obtain $\Lambda(f, s)$ satisfying a functional equation relating s to $k-s$. Critical values $L(f, j)$, for integers $0<j<k$, are of particular interest.

Hecke operators, Atkin-Lehner theory (1/2)

Still assume that $G=\Gamma_{0}(N)$. (Analogous results hold for $\Gamma_{1}(N)$.) There is a canonical decomposition

$$
S_{k}(G)=S_{k}(G)_{\text {old }} \oplus S_{k}(G)_{\text {new }}
$$

where $S_{\text {old }}$ contains the forms from $S_{k}\left(\Gamma_{0}(M)\right), M$ a strict divisor of N; and $S_{\text {new }}$ is the interesting part. (A basis of $S_{\text {new }}$ can be computed via the intersection of kernels of explicit linear operators associated to divisors of N.)

For any integer $n \geqslant 1$ we have a Hecke operator T_{n} on $M_{k}(G)$. These linear "averaging" operators commute and satisfy nice multiplicativity relations, e.g. $T_{m n}=T_{m} T_{n}$ when $(m, n)=1$ and $(m n, N)=1$, or formulas expressing $T_{p^{i}}$ in terms of T_{p} for p prime. Formally,

$$
T_{n} f:=\left.\sum_{\gamma \in \Gamma_{0}(N) \backslash D_{n}} f\right|_{k} \gamma
$$

where D_{n} is the set of matrices of determinant n in $M_{2}(\mathbb{Z}) /\{-\mathrm{Id}, \mathrm{Id}\}$. (The sum is finite. We extend the action $\left.f\right|_{k} \gamma$ from $\mathrm{PSL}_{2}(\mathbb{Z})$ to D_{n} by multiplying our formula for $\gamma \in \mathrm{PSL}_{2}(\mathbb{Z})$ by n^{k-1}.)

Hecke operators, Atkin-Lehner theory (2/2)

Nice properties of Hecke operators:

- all T_{n} with $(n, N)=1$ are diagonalizable, their eigenvalues are algebraic integers;
- they stabilize $S_{k}(G)$, in fact both $S_{\text {new }}$ and $S_{\text {old }}$ separately;
- there exist a \mathbb{C}-basis of $S_{\text {new }}$ of simultaneous eigenvectors for all T_{n};
- if $f=\sum_{n \geqslant 1} a_{n} q^{n} \in S_{\text {new }}$ is an eigenvector for all T_{n}, then $a_{1} \neq 0$ and we can normalize f so that $a_{1}=1$; then $T_{n} f=a_{n} f$. Such a form is called primitive.
- a primitive form satisfies a product formula

$$
L(f, s)=\prod_{p \mid N}\left(1-a_{p} p^{-s}\right)^{-1} \prod_{p \nmid N}\left(1-a_{p} p^{-s}+p^{k-1-2 s}\right)^{-1}
$$

- if $f=\sum a_{n} q^{n}$ is primitive, then $\mathbb{Q}(f):=\mathbb{Q}\left(a_{2}, a_{3}, \ldots\right)$ is a number field.

Example

The simplest example is

$$
\Delta(q)=q \prod_{n \geqslant 1}\left(1-q^{n}\right)^{24}=q-24 q^{2}+252 q^{3}-1472 q^{4} \ldots
$$

the only primitive form in $S_{12}\left(\mathrm{PSL}_{2}(\mathbb{Z})\right)$.
Let E / \mathbb{Q} be an elliptic curve of conductor N and $L(E, s)=\sum_{n \geqslant 1} a_{n} n^{-s}$ its L-series. Then

$$
\sum_{n \geqslant 1} a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)_{\text {new }} \quad \text { is primitive. }
$$

For instance, let

$$
E: y^{2}+y=x^{3}-x^{2}-10 x-20 \quad(=11 \mathrm{a} 1)
$$

then the corresponding primitive form is

$$
q \prod_{n \geqslant 1}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}=q-2 q^{2}-q^{3}+2 q^{4}+q^{5} \ldots
$$

Periods and critical L-values (1/2)

Let $f \in S_{k}(G)$, the period

$$
\int_{r}^{s} f(z) z^{j} d z, \quad j \in \mathbb{Z}_{\geqslant 0}
$$

is well-defined for any $r, s \in \mathbb{P}^{1}(\mathbb{Q})$. (The integral does not depend on the path in \mathfrak{h} joining the cusps since f is holomorphic in \mathfrak{h}, and it converges since f decreases exponentially at cusps.)

Let $f=\sum_{n} a_{n} q^{n} \in S_{2}(G)$; heuristically, periods should be related to L-values, barring convergence issues...

$$
2 i \pi \int_{i \infty}^{0} f(z) z^{j} d z \approx \sum_{n} a_{n} \underbrace{\int_{i \infty}^{0} 2 i \pi \exp (2 i \pi n z) z^{j} d z}_{=(-2 i \pi n)^{-j} \cdot \frac{1}{n} \cdot \Gamma(j+1)} \approx \frac{j!}{(-2 i \pi)^{j}} L(f, j+1)
$$

Periods and critical L-values (2/2)

It can actually be proven rigorously in a more general form:
Theorem . Let $f \in S_{k}(G), G$ a congruence subgroup. Then

$$
2 i \pi \int_{i \infty}^{0} f(z) z^{j} d z=\frac{j!}{(-2 i \pi)^{j}} L(f, j+1)
$$

for all critical $0 \leqslant j \leqslant k-2$.
Similarly for twists by a primitive Dirichlet character of conductor $D>1$, in weight 2 :

$$
\frac{\tau(\chi)}{D} \sum_{a \bmod D} \bar{\chi}(a) 2 i \pi \int_{i \infty}^{-a / D} f(z) d z=L(f, \chi, 1)
$$

as well as more complicated generalizations in higher weight.
Periods know all about (twisted) critical L-values.

Complex modular symbols, weight 2

Let $\Delta_{0}:=\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$: given $s, r \in \mathbb{P}^{1}(\mathbb{Q})$, think of the divisor $[s]-[r]$, as an oriented path in \mathfrak{h} connecting $r \rightarrow s$. E.g., the semicircle connecting s to r, or a vertical line through r if $s=i \infty$. Those divisors generate Δ_{0}. Note that Δ_{0} is a $\mathrm{GL}_{2}(\mathbb{Q})$-module : for $g \in \mathrm{GL}_{2}(\mathbb{Q})$,

$$
g \cdot([s]-[r]):=[g \cdot s]-[g \cdot r] .
$$

In matrix form, if $r=(a: c), s=(b: d)$, the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ codes the path $[s]-[r]$: then the path $g \cdot([s]-[r])$ is identified with the matrix $g \times\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Let $f \in S_{2}(G)$, we define a map ψ_{f} from Δ_{0} to \mathbb{C} by

$$
[s]-[r] \mapsto 2 i \pi \int_{r}^{s} f(z) d z
$$

(Well-defined: Chasles relation.) Since $f \in S_{2}(G)$, we have

$$
\int_{\gamma \cdot r}^{\gamma \cdot s} f(z) d z=\int_{\gamma \cdot r}^{\gamma \cdot s} f(\gamma \cdot z) d(\gamma \cdot z)=\int_{r}^{s} f(z) d z
$$

Thus $\psi_{f} \in \operatorname{Hom}_{G}\left(\Delta_{0}, \mathbb{C}\right): \psi(\gamma \cdot D)=\psi(D)$ for all $\gamma \in G$.

Complex modular symbols, general weight k

The relevant period integrals attached to $f \in S_{k}(G)$ are the

$$
\int_{r}^{s} f(z) z^{j} d z, \quad 0 \leqslant j \leqslant k-2
$$

Let $V:=\operatorname{Sym}^{k-2}\left(\mathbb{C}^{2}\right)$, realized as the space of homogeneous polynomials of degree $k-2$ in $\mathbb{C}[X, Y]$, together with the right $\mathrm{SL}_{2}(\mathbb{Z})$ action: $(P \mid \gamma)(X, Y):=P\left((X, Y) \times \gamma^{-1}\right)$. There is a natural right action on $\operatorname{Hom}\left(\Delta_{0}, V\right):$ for $\phi \in \operatorname{Hom}\left(\Delta_{0}, V\right)$, define $\phi \mid \gamma$ by

$$
(\phi \mid \gamma)(D):=\phi(\gamma \cdot D) \mid \gamma, \quad \forall D \in \Delta_{0}
$$

Define $\psi_{f} \in \operatorname{Hom}\left(\Delta_{0}, V\right)$ by

$$
\psi_{f}([s]-[r]):=2 i \pi \int_{r}^{s} f(z)(z X+Y)^{k-2} d z \in V
$$

Then $\psi_{f} \mid \gamma=\psi_{f}$ for any $\gamma \in G!$ Again, $\psi_{f} \in \operatorname{Hom}_{G}\left(\Delta_{0}, V\right)$.

Proof of $\psi_{f} \in \operatorname{Hom}_{G}\left(\Delta_{0}, V\right)$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$. Recall that

$$
\begin{gathered}
\left.f\right|_{k} \gamma=f, \\
(P \mid \gamma)(X, Y):=P\left((X, Y) \times \gamma^{-1}\right), \quad P \in V, \\
(\phi \mid \gamma)(D):=\phi(\gamma \cdot D) \mid \gamma, \\
\psi_{f}([s]-[r]):=2 i \pi \int_{r}^{s} f(z)(z X+Y)^{k-2} d z \in V .
\end{gathered}
$$

We have

$$
\begin{aligned}
\psi_{f}([s]-[r]) \mid \gamma^{-1} & =2 i \pi \int_{r}^{s} f(z)\left((X, Y) \gamma\binom{z}{1}\right)^{k-2} d z \\
& =2 i \pi \int_{r}^{s} f(\gamma \cdot z) /(c z+d)^{k}\left((X, Y)\binom{a z+b}{c z+d}\right)^{k-2} d z \\
& =2 i \pi \int_{r}^{s} f(\gamma \cdot z)\left((X, Y)\binom{\gamma \cdot z}{1}\right)^{k-2} d(\gamma \cdot z) \\
& =2 i \pi \int_{\gamma \cdot r}^{\gamma \cdot s} f(z)\left((X, Y)\binom{z}{1}\right)^{k-2} d z=\psi_{f}(\gamma \cdot([s]-[r]))
\end{aligned}
$$

Cohomological interpretation

Let $G \subset \operatorname{PSL}(2, \mathbb{Z})$ be a congruence subgroup, and V be a right G-module. One defines the cohomology of the modular curve $X(G)$ with coefficients in V, the group of interest being $H_{c}^{1}(X(G), V)$; one can again define Hecke operators in this context.

Back to previous example: $G=\Gamma_{0}(N), V=\operatorname{Sym}^{k-2} \mathbb{C}^{2}$,

$$
(P \mid \gamma)(X, Y)=P\left((X, Y) \gamma^{-1}\right), \quad P \in V
$$

We recover classical \mathbb{C}-vector spaces of holomorphic modular forms for G :
Theorem (Eichler-Shimura).

$$
H_{c}^{1}(X(G), V) \simeq_{\text {Hecke }} S_{k}(G) \oplus M_{k}(G)
$$

Cohomology classes are not that explicit...

Abstract modular symbols (1/3)

Classical modular symbols for $G=\Gamma_{0}(N)$ provide

- an algebraic version of periods of holomorphic forms,
- a way to describe (and compute!) $M_{k}(G)$ as a Hecke-module from finite rational data, For general G (congruence subgroup) and V (over $\mathbb{C}, \mathbb{F}_{p}, \mathbb{Q}_{p}, \mathbb{Z}$, infinite dimensional...), they also are
- a concrete realization of cohomology classes $H_{c}^{1}(X(G), V)$ that afford a painless way to define (and compute!) general spaces of "modular forms", or rather systems of Hecke eigenvalues, using basic linear algebra.

Abstract modular symbols (2/3)

Let $\Delta_{0}:=\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$, generated by the divisors $[\beta]-[\alpha]$, which we denote by $\{\alpha, \beta\}$ and see as a path through the completed upper half plane \mathfrak{h}^{*} linking the two cusps $\alpha \rightarrow \beta$. This is a left $G L(2, \mathbb{Q})$-module via fractional linear transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot[(u: v)]:=[(a u+b v: c u+d v)] .
$$

Let $G \subset \mathrm{PSL}_{2}(\mathbb{Z})$ be a subgroup of finite index and let V be a right G-module. $\operatorname{Hom}\left(\Delta_{0}, V\right)$ becomes a right G-module via

$$
(\phi \mid \gamma)(D):=\phi(\gamma \cdot D) \mid \gamma
$$

We define the V-valued modular symbols on G by

$$
\operatorname{Symb}_{G}(V):=\operatorname{Hom}_{G}\left(\Delta_{0}, V\right), \quad \phi \mid \gamma=\phi, \forall \phi \in G
$$

N.B. Δ_{0} is "almost free" as a $\mathbb{Z}[G]$-module, of finite type ! A symbol is defined by the set of values (satisfying simple relations) it takes on chosen generators.

Abstract modular symbols (3/3)

Theorem (Ash-Stevens). Let G be a congruence subgroup and V a right G-module. Provided that the orders of torsion elements of G act invertibly on V (e.g. if V is a vector space), we have a canonical isomorphism

$$
\operatorname{Symb}_{G}(V) \simeq H_{c}^{1}(X(G), V) .
$$

Assume V also allows a right action by the semi-group $\mathrm{GL}(2, \mathbb{Q}) \cap M_{2}(\mathbb{Z})$, then we can define a Hecke action on $\operatorname{Symb}_{G}(V)$. E.g. if $G=\Gamma_{0}(N)$ and ℓ is prime, then

$$
T_{\ell} \phi: \left.=\underbrace{\phi \left\lvert\,\left(\begin{array}{ll}
\ell & 0 \\
0 & 1
\end{array}\right)\right.}_{\mathrm{i} \ell \ell \uparrow N}+\sum_{a=0}^{\ell-1} \phi \right\rvert\,\left(\begin{array}{ll}
1 & a \\
0 & \ell
\end{array}\right) .
$$

If $\sigma:=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ normalizes G, then it acts as an involution on $\operatorname{Symb}_{G}(V)$; if 2 acts invertibly on V, this yields a decomposition

$$
\operatorname{Symb}_{G}(V)=\operatorname{Symb}_{G}(V)^{+} \oplus \operatorname{Symb}_{G}(V)^{-}
$$

into eigenspaces for this action.

Computing Δ_{0} as a $\mathbb{Z}[G]$-module (1/5)

Let $G \subset \Gamma=\operatorname{PSL}(2, \mathbb{Z})$ and $B=[\Gamma: G]<+\infty$. The subgroup G is given via an enumeration $\left(m_{1}, \ldots, m_{B}\right)$ of matrices representing $G \backslash \operatorname{PSL}(2, \mathbb{Z})$. Assume that

- the coset representatives m_{i} have size $O(\log B)^{C}$,

๑ the map $\left(\gamma \in \Gamma \mapsto\right.$ its coset), i.e. the unique i such that $G \gamma=G m_{i}$, is computed in polynomial time $O(\log \|\gamma\|+\log B)^{C}$.

In particular, both the membership problem ($\gamma \in G$?) and test for equivalence ($\gamma_{1} \sim_{G} \gamma_{2}$?) are solved in polynomial time in the size of the $\gamma_{i} \in \Gamma$.
Theorem (Manin). If $B=1(G=\Gamma)$, then

$$
\Delta_{0} \simeq_{\Gamma} \mathbb{Z}[\Gamma] / I, \quad \text { where } \quad I:=\mathbb{Z}[\Gamma](1+\sigma)+\mathbb{Z}[\Gamma]\left(1+\tau+\tau^{2}\right)
$$

where $\sigma=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \tau=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ and $\Gamma=\langle\sigma, \tau\rangle$.
In this case a V-valued modular symbol $\phi \in \operatorname{Hom}_{\Gamma}\left(\Delta_{0}, V\right)$ is defined by $v_{\sigma}, v_{\tau} \in V$ s.t.

$$
v_{\sigma}\left|(1+\sigma)=v_{\tau}\right|\left(1+\tau+\tau^{2}\right)=0
$$

Computing Δ_{0} as a $\mathbb{Z}[G]$-module (2/5)

In principle, Manin's theorem yields a presentation of Δ_{0} as a $\mathbb{Z}[G]$ module: $\mathbb{Z}[\Gamma]$ is free (generated by the m_{i}), and quotienting out yields relations of the form

$$
m_{i}(1+\sigma)=m_{i}+m_{i} \sigma=m_{i}+\gamma_{i, j} m_{j} \in I
$$

for some j and $\gamma_{i, j} \in G$. There's a neater, simpler, way.
Fact: the torsion elements in $\mathrm{PSL}_{2}(\mathbb{Z})$ have order 2 or 3 .
Theorem (Pollack-Stevens). Let $G \subset \operatorname{PSL}_{2}(\mathbb{Z})$ be a subgroup of finite index B without 3-torsion. There exist a connected fundamental domain \mathcal{F} for the action of G on \mathfrak{h}^{*} all of whose vertices are cusps and whose boundary is a union of unimodular paths.

Computing Δ_{0} as a $\mathbb{Z}[G]$-module (3/5)

Proof. Start from the hyperbolic triangle $R=(0,1, i \infty)$, a fundamental domain for $\Gamma_{0}(2)$. We use Farey dissection to add further triangles until we obtain the full domain : given 2 cusps $(a: b)<(c: d)$ on the boundary of current domain

$$
\alpha_{1} R \cup \cdots \cup \alpha_{r} R
$$

such that $a d-b c=1$, the third vertex of the triangle $\left(\begin{array}{cc}a & c \\ b & d\end{array}\right) R$ is the mediant $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$. Add the new triangle to the domain if and only if
$\alpha_{i} \tau^{j}\left(\begin{array}{cc}a & c \\ b & d\end{array}\right)^{-1} \notin \Gamma, \forall 1 \leqslant i \leqslant r, 0 \leqslant j \leqslant 2$. The algorithm stops after at most B triangles are added.

If G has 3-torsion : assentially the same, but we must split triangles in 3: $R=T \cup \tau T \cup \tau^{2} T$, where $T=\left(0, e^{i \pi / 3}, i \infty\right)$, and we sometimes add only $1 / 3$ of a triangle (αT instead of αR). Theorem . Under our asumptions on G, the fundamental domain \mathcal{F} can be computed in time $\widetilde{O}(B)$.
N.B. some complexity estimates only depend on the number of cusps rather than B, which is advantageous: $G=\Gamma_{0}(p)$ has index $p+1$ but only 2 cusps.

Computing Δ_{0} as a $\mathbb{Z}[G]$-module (4/5)

- If G has no torsion then Δ_{0} is generated by the $g_{i}:=\left[c_{i+1}\right]-\left[c_{i}\right]$, paths between consecutive vertices of \mathcal{F}, with the single relation $\sum_{i} g_{i}=0$!
- If G has 2 -torsion, then it can happen that $\gamma_{i} g_{i}=-g_{i}$ for some $\gamma_{i} \in G$ swapping c_{i} and c_{i+1} (implies γ_{i} has order 2). Then $\left(1+\gamma_{i}\right) \cdot g_{i}=0$ and g_{i} is torsion.
- If G has 3-torsion, then we have extra torsion relations corresponding to going around a triangle αR fixed by an element of order 3 .

Computing Δ_{0} as a $\mathbb{Z}[G]$-module (5/5)

Summary: In general, we obtain

- a "minimal" system of generators $\left(g_{i}\right), i \leqslant n, g_{n}=[\infty]-[0]$.
- relations explicitly written down (without computation):
- one relation for each conjugacy class of 2-torsion elements in G: $\left(1+\gamma_{i}\right) \cdot g_{i}=0$, $1 \leqslant i \leqslant s$
- one for each pairs of conjugacy classes of 3 -torsion elements: $\left(1+\gamma_{i}+\gamma_{i}^{2}\right) \cdot g_{i}=0$, $s+1 \leqslant i \leqslant s+r$.
- and one "boundary relation" (walk around the fundamental domain and come back to starting point).
Corollary . Given G a finite index subgroup and V a right G-module. Choose any $n-1$ elements $v_{i} \in V$, compatible with the torsion relations when $i \leqslant s+r$ (e.g. $v_{i}\left(1+\gamma_{i}\right)=0$, i.e restrict v_{i} to an eigenspace $V_{i} \subset V$). Solve for v_{n} so that the boundary relation is satisfied. Then $\phi\left(g_{i}\right)=v_{i}$ uniquely defines a modular symbol ϕ, and all modular symbols arise in this way.

Discrete logarithm in Δ_{0} as $\mathbb{Z}[G]$-module

Recall that a (non-trivial) path $(a: c) \rightarrow(b: d)$ is encoded by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{Z}) \cap \mathrm{GL}_{2}(\mathbb{Q})^{+}$. A unimodular path has determinant 1 .

Recall that the subgroup G is given via an enumeration $\left(m_{1}, \ldots, m_{B}\right)$ of matrices representing $G \backslash \operatorname{PSL}(2, \mathbb{Z})$.

- the discrete logs $m_{i}=\sum \lambda_{i, j} g_{j}, i \leqslant B$, are precomputed: $\widetilde{O}\left(B^{2}\right)$ time and space.
- a path $\infty \rightarrow(b: d)$ can be written as a sum of $O(\log \max (|b|,|d|))$ unimodular paths. Proof: write the finite continued fraction of b / d. The successive convergents satisfy $\left(p_{-1}: q_{-1}\right)=(1: 0), \ldots,\left(p_{n}: q_{n}\right)=(b: d)$ and $\operatorname{det}\binom{p_{i} p_{i+1}}{q_{i} q_{i+1}}= \pm 1$.
- a path $(a: c) \rightarrow(b: d)$ can be written as a sum of $O(\log \max (|a|,|b|,|c|,|d|))$ unimodular paths. Proof: $(a: c) \rightarrow(1: 0) \rightarrow(b: d)$. Better (halve number of paths on average), $U^{-1}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & b^{\prime} \\ 0 & d^{\prime}\end{array}\right)(H N F)$, then $U \cdot \gamma_{i}$.
- a unimodular path is uniquely written as $\gamma \cdot m_{i}$ for some $\gamma \in G$.

p-adic L functions (1/4)

Let $f \in S_{k}(G), V=\mathbb{C}[X, Y]_{k-2}$. Recall that $\psi_{f} \in \operatorname{Symb}_{G}(V)$ defined by

$$
\psi_{f}([s]-[r]):=2 i \pi \int_{r}^{s} f(z)(z X+Y)^{k-2} d z \in V
$$

knows about critical L-values:

$$
\psi_{f}([0]-[i \infty])=\sum_{0 \leqslant j \leqslant k-2} X^{j} Y^{k-2-j}\binom{k-2}{j} \frac{j!}{(-2 i \pi)^{j}} L(f, j+1)
$$

Theorem (Manin, Shimura). There exist $\Omega_{f}^{ \pm} \in \mathbb{C}$ such that

$$
\frac{L(f, \chi, j+1)}{(-2 i \pi)^{j}} \in \Omega_{f}^{ \pm} \overline{\mathbb{Q}}
$$

for all Dirichlet characters χ and $j \leqslant k-2$. (Precisely in $\Omega_{f}^{(-1)^{j} \chi(-1)} \overline{\mathbb{Q}}$.)
By fixing an embedding of $\overline{\mathbb{Q}} \subset \overline{\mathbb{Q}_{p}}$, we can consider those renormalized $\mathcal{L}(f, \chi, j+1)$ as p-adic numbers!

p-adic L functions (2/4)

Fix a prime p. Let Γ be a congruence sugroup of level prime to p and $G:=\Gamma \cap \Gamma_{0}(p)$. Let $f \in S_{k}(G)$ be a normalized eigenform, with $T_{p} f=\alpha f$.

The p-adic L-function μ_{f} associated to f should be a way to associate $(j, \chi) \mapsto \mathcal{L}(f, \chi, j+1)$. It's going to be a p-adic distribution, mapping "nice functions" (characters, polynomials) to p-adic numbers. Precisely, assume that $v_{p}(\alpha)<k-1$; for any finite order character χ of \mathbb{Z}_{p}^{\times}of conductor p^{n} and any integer $0 \leqslant j \leqslant k-2$, we want

$$
\mu_{f}\left(z^{j} \cdot \chi\right):=\alpha^{-n} p^{n(j+1)} \frac{j!}{\tau\left(\chi^{-1}\right)} \mathcal{L}\left(f, \chi^{-1}, j+1\right) \in \overline{\mathbb{Q}_{p}}
$$

This defines μ_{f} uniquely, for a given choice of complex periods $\Omega_{f}^{ \pm}$. The distribution μ_{f} can be evaluated on locally analytic functions (χ is locally constant but not analytic!); we write $\int g(t) d \mu_{f}(t)$ for $\mu_{f}(g)$.

Hard to compute when defined this way: Riemann sums with (at least) p^{n} terms to evaluate modulo p^{n}.

p-adic L functions (3/4)

Let $V=\mathcal{D}_{k}\left(\mathbb{Z}_{p}\right)=: \mathcal{D}$, the space of locally analytic p-adic distributions on \mathbb{Z}_{p}, with weight $k-2$ action of G :

$$
\left(\left.\mu\right|_{k} \gamma\right)(g):=\mu(\gamma \cdot g), \quad \text { where } \quad(\gamma \cdot g)(z):=(a+c z)^{k-2} f\left(\frac{b+d z}{a+c z}\right)
$$

This defines $\operatorname{Symb}_{G}(\mathcal{D})$, the space of overconvergent modular symbols.
Composing with the p-adic period map $\rho_{k}: \mathcal{D} \rightarrow \operatorname{Sym}^{k-2} \mathbb{Q}_{p}^{2}$, given by

$$
\mu \mapsto \int(Y-t X)^{k-2} d \mu(t)
$$

defines specializations

$$
\operatorname{Symb}_{G}(\mathcal{D}) \rightarrow \operatorname{Symb}_{G}\left(\operatorname{Sym}^{k-2} \mathbb{Q}_{p}^{2}\right)
$$

The target of this map is finite dimensional while the source has infinite dimension!
Nevertheless, by restricting to natural subspaces, Pollack and Stevens obtain a Hecke-equivariant isomorphism.

p-adic L functions (4/4)

The p-adic slope of a primitive form $f \in S_{k}(G)$ is $v_{p}\left(a_{p}\right)$, it is $\leqslant k-1$. (Critical slope when equality.)

Theorem (Stevens). The map

$$
\operatorname{Symb}_{G}(\mathcal{D})^{(<k-1)} \rightarrow \operatorname{Symb}_{G}\left(\operatorname{Sym}^{k-2} \mathbb{Q}_{p}\right)^{(<k-1)}
$$

is an isomorphism, compatible with Hecke action.
Theorem . Let f be primitive for G of non-critical slope and $\phi_{f} \in \operatorname{Symb}_{G}\left(\mathrm{Sym}^{k-2} \mathbb{Q}_{p}\right)$ be the corresponding classical modular eigensymbol. Let Φ_{f} be the unique overconvergent eigensymbol lifting ϕ_{f}. Then $\Phi_{f}([0]-[i \infty])$ is the p-adic L-function of g.

The case of critical slope can also be dealt with in a similar way.
Theorem . The $\Phi_{f}([0]-[i \infty])\left(z^{j}\right)$ modulo $p^{M-j}, j \leqslant M$ can be computed in time $p M^{O(1)}$: polynomial time for fixed p.

