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First lecture:

Tate’s thesis, which develop the theory of L-

functions for Hecke characters (automorphic

forms of GL(1)). These are degree 1 L-functions,

and Tate’s thesis gives an elegant proof that

they are “nice”.

Today: Higher degree L-functions, which are

associated to automorphic forms of GL(n) for

general n.

Goals:

(i) Define the L-function L(s, π) associated to

an automorphic representation π.

(ii) Discuss ways of showing that L(s, π) is

“nice”, following the praradigm of Tate’s the-

sis.
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The group G = GL(n) over F

F = number field.

Some subgroups of G:

(i) Z ∼= Gm = the center of G;

(ii) B = Borel subgroup of upper triangular

matrices = T · U ;

(iii) T = maximal torus of of diagonal elements
∼= (Gm)n;

(iv) U = unipotent radical of B = upper trian-

gular unipotent matrices;

(v) For each finite v,

Kv = GLn(Ov) = maximal compact subgroup.
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Automorphic Forms on G

An automorphic form on G is a function

f : G(F)\G(A) −→ C

satisfying some smoothness and finiteness con-

ditions.

The space of such functions is denoted by A(G).

The group G(A) acts on A(G) by right trans-

lation:

(g · f)(h) = f(hg).

An irreducible subquotient π of A(G) is an au-

tomorphic representation.
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Cusp Forms

Let P = M ·N be any parabolic subgroup of G.

For example, P is a subgroup of block upper

triangular matrices.

Given f ∈ A(G), one may consider its “con-

stant term” along N :

fN(g) :=

∫

N(F )\N(A)
f(ng) dn.

Definition: Say that f is a cusp form if fN = 0

for all P = M ·N .

Let A0(G) denote the subspace of cusp forms.

It is a G(A)-submodule of A(G).

In fact, this submodule is semisimple:

A0(G) =
⊕

π
m(π)π,

as π ranges over irreducible representations of

G(A). A basic result says that m(π) = 0 or 1.
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Restricted Tensor Product

Proposition: An irreducible automorphic rep-

resentation π has the form

π ∼= ⊗′
vπv

where

• πv is an irreducible representation of G(Fv);

• for almost all v, πv is an unramified repre-

sentation, i.e.

πKvv 6= 0.

• ⊗′
v denotes restricted tensor product rela-

tive to the a Kv-fixed vector for almost all

v.
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To an irreducible automorphic representation,

we would like to associate

L(s, π) =
∏

v
L(s, πv).

So we should first address the local questions:

(i) How to associate L(s, πv) to any πv?

or less ambitiously

(ii) How to associate L(s, πv) to an unramified

πv?



Unramified Representations

Recall that the set of irreducible unramified

representations of G(Fv) has been classified.

Theorem: There is a natural bijection be-

tween

{ irreducible unramified reps of GLn(Fv)}

and

{ unordered n-tuples of elements of C
×}

Elements of the 2nd set can be thought of as

diagonal matrices

sv = diag(a1, ..., an) ∈ GLn(C),

taken up to conjugacy.
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Noting that GLn(C) is the Langlands dual group

of G = GL(n), have:

Restatement: The unramified irred reps of

GLn(Fv) are in natural bijection with conjugacy

classes of semisimple elements in the Lang-

lands dual group

Ĝ = GLn(C).

This is the unramified “local Langlands corre-

spondence” for GL(n). For n = 1, it reduces

to the “unramified local class field theory”.

Observe that the conjugacy class of a diagonal

matrix

sv = diag(a1, ..., an).

as above is determined by its characteristic

polynomial

Psv(T) = (1 − a1T).....(1 − anT).
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Standard L-factors for unramified repre-

sentations

Given this, we make the following definition

Definition: If πv is an unramified representa-

tion, the standard L-factor associated to πv is:

L(s, πv)

=
1

Psv(q
−s)

=
1

∏
v(1 − aiq

−s
v )

=
1

det(1 − svq
−s
v )

.

Thus, L(s, πv) determines sv and hence πv.

This is the analog of defining

L(s, χv) = 1/(1 − χ(̟v)q
−s
v )

for unramified χv, so that it is compatible with

local class field theory and local Artin L-factor.
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What if πv is not unramified?

Should we simply set L(s, πv) = 1, like in n = 1

case?

We would like to consider a family of zeta inte-

grals associated to πv, whose GCD is equal to

L(s, πv) when πv is unramified. Then we would

define L(s, πv) for general πv as the GCD of this

family of zeta integral.

Such an approach was carried out by Godement-

Jacquet, generalizing the zeta integrals of Tate.
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Matrix Coefficients

Fix the irreducible rep πv and let π∨v denote the

contragredient rep of πv.

So there is a natural G(Fv)-invariant pairing

〈−,−〉 : π∨v ⊗ πv −→ C

This is an element of

HomG(Fv)(π
∨
v ⊗ πv,C).

By Schur’s lemma, this Hom space is 1-dimensional.

For fixed vectors

fv ∈ πv and f∨v ∈ π∨v ,

one can form a function on G(Fv):

Φfv,f∨v
: g 7→ 〈f∨v , gfv〉.

Such a function is called a matrix coefficient

of πv.
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The map

fv ⊗ f∨v 7→ Φfv,f∨v

gives a G(Fv)-equivariant embedding

π∨v ⊗ πv →֒ C∞(G(Fv)).

If the image of this map is contained in the

space of functions which are compactly sup-

ported modulo Z(Fv), then πv is said to be a

supercuspidal representation.
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Local Zeta Integrals of Godement-Jacquet

Suppress v from notations.

Given

• f ∈ π;

• f∨ ∈ π∨;

• φ ∈ S(Mn(F)), where

Mn(F) = n× n matrices over F ,

and

S(Mn(F)) = {Schwarz-Bruhat functions}

we set

Z(s, φ, f, f∨) =

∫

GLn(F )
φ(g)·〈f∨, g·f〉·|det(g)|sdg.

Observe that when n = 1, this reduces to the
local zeta integral of Tate.
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Local Theorem:

(i) There is a c such that whenever Re(s) > c,

the integral Z(s, φ, f, f∨) converges absolutely

for all φ, f and f∨.

(ii) The zeta integral is given by a rational

function in q−s and thus has meromorphic con-

tinuation to C.

(iii) When π is unramified, the function

Z(s+
n− 1

2
, φ, f, f∨)/L(s, π)

is entire. Moreover, if φ, f and f∨ are unrami-

fied vectors,

Z(s+
n− 1

2
, φ, f, f∨) = L(s, π).
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Given the local theorem, we make the following

Definition: For any π, set L(s, π) to be

the GCD of the family Z(s+
n− 1

2
, φ, f, f∨).

By (iii), it gives the right answer for unramified

reps. So it is not unreasonable.

Example: Assume π is supercuspidal. Then

Z(s, φ, f, f∨) =
∫

Z\G
〈f∨, g · f〉 · |det(g)|s·

(∫

Z
φ(zg) · |z|ns · ωπ(z) dz

)
dg

This is entire, so that

L(s, π) = 1.
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Local Functional Eqn

Fix additive character ψ of F . This gives an

additive character on Mn(F):

ψ ◦ Tr : x 7→ ψ(Tr(x)).

For an additive Haar measure dx on Mn(F),

have the Fourier transform relative to ψ ◦ Tr:

φ 7→ φ̂

Then one has:

Z(n+1
2 − s, φ̂, f∨, f)

L(1 − s, π∨)
= ǫ(s, π, ψ)·

Z(s+ n−1
2 , φ̂, f, f∨)

L(s, π)

for some local epsilon factor

ǫ(s, π, ψ) = a · qbs.

When π is unramified, and ψ◦Tr has conductor

Mn(O), one has

ǫ(s, π, ψ) = 1.
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Summary:

By considering a family of zeta integrals which

naturally extends the case treated by Tate, we

have defined the local L-factor

L(s, πv)

and the local epsilon factor

ǫ(s, π, ψ),

together with a local functional eqn.

So given a cuspidal automorphic π = ⊗vπv, we

could define

L(s, π) =
∏

v
L(s, πv)

ǫ(s, π) = ǫ(s, πv, ψv)

“Cuspidal automorphicity” implies that the first

product converges when Re(s) ≫ 0. But is

L(s, π) nice?
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Global Matrix Coefficients

Suppose that

π = ⊗′
vπv ⊂ A0(G)

Then its contragredient π∨ is also cuspidal au-

tomorphic, so that

π∨ ⊂ A0(G).

A G(A)-invariant pairing

π∨ ⊗ π −→ C

can be given by the explicit integral

f∨ ⊗ f 7→
∫

Z(A)\GLn(F )\GLn(A)
f∨(h) · f(h) dh.

Denote this linear form by 〈−,−〉Pet.
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Then the function (a global matrix coeff)

g 7→ 〈f∨, g · f〉Pet

is explicitly given by

g 7→
∫

Z(A)·GLn(F )\GLn(A)
f∨(h) · f(hg) dh.

Note that

dimHomG(Fv)(π
∨
v ⊗ πv,C) = 1,

for all v, and

dimHomG(A)(π
∨ ⊗ π,C) = 1

So, if we pick some

〈−,−〉v ∈ HomG(Fv)(π
∨
v ⊗ πv,C)

then we get a factorization

〈f∨, f〉Pet =
∏

v
〈f∨v , fv〉v.
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Global Zeta Integrals

Given cuspidal π and π∨, we can now define

the global zeta integral

Z(s, φ, f, f∨) =

∫

G(A)
φ(g)·〈f∨, g·fv〉Pet·|det(g)|

s dg

for f ∈ π, f∨ ∈ π∨ and φ ∈ S(Mn(A)).

Because of the factorization

〈f∨, f〉Pet =
∏

v
〈f∨v , fv〉v,

we obtain at least formally

Z(s, φ, f, f∨) =
∏

v
Z(s, φv, fv, f

∨
v )

when φ, f and f∨ are factorizable.

This allows us to pass from global to local zeta

integrals.
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Main Global Theorem

(i) There is a c such that Z(s, φ, f, f∨) con-

verges for all φ, f and f∨ whenever Re(s) > c.

(ii) Z(s, φ, f, f∨) has analytic continuation to

C.

(iii) There is a global functional eqn

Z(n− s, φ̂, f∨, f) = Z(s, φ, f, f∨).

Corollary: The global L-function

Λ(s, π) =
∏

v
L(s, πv)

has analytic continuation to C and satisfies a

functional eqn

ǫ(s, π) · L(1 − s, π∨) = L(s, π).
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Summary:

At this point, we have realized our goals for

GL(n) by generalizing the paradigm of Tate’s

thesis. Thus we have produced many ”nice” L-

funcitons (to the extent that we know cuspidal

representations exist!)

Is this the end of the story?
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Summary:

At this point, we have realized our goals for

GL(n) by generalizing the paradigm of Tate’s

thesis. Thus we have produced many ”nice” L-

funcitons (to the extent that we know cuspidal

representations exist!)

Is this the end of the story?

Mmmm.......not quite..........

Let’s examine the case n = 2, where the theory

of L-functions of modular forms was developed

by Hecke.
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L-functions of Modular Forms

Given a cusp form of level 1 and even weight

k,

f(z) =
∑

n≥0

an(f)e
2πinz,

one may consider the Dirichlet series:

L(s, f) =
∑

n≥1

an(f)

ns
.

The proof that this is nice relies on the fact

that L(s, f) is related to f by a Mellin trans-

form:

∫ ∞

0
f(iy) · ys ·

dy

y
= (2π)−s · Γ(s) · L(s, f)
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Proof: When Re(s) is large, we have:

Λ(s, f) =

∫ ∞

0
f(iy) · ys ·

dy

y
.

But the RHS is convergent for all s (and thus

gives (i)). This is because:

• f(iy) is exponentially decreasing as y → ∞,

since f is cuspidal.

• since f is modular with respect to

w =

(
0 1
−1 0

)

,

we have:

f(iy) = (−1)k/2 · y−k · f(i/y).

So as y → 0, f(iy) → 0 faster than any

power of y.
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To see (ii), note that

Λ(s, f)

=
∫ ∞

0
f(iy) · ys ·

dy

y

=
∫ ∞

0
(−1)k/2y−k f(i/y) ys

dy

y

=(−1)k/2 ·
∫ ∞

0
f(it) tk−s ·

dt

t
(t = 1/y).

=Λ(k − s, f)



What is the point?

By a well-known dictionary,

{cuspidal Hecke eigenforms f}

l

{cuspidal representations π of GL(2)}.

In this dictionary,

Λ(s, f) ↔ Λ(s, π).

But does Hecke’s proof of the ”niceness” of

Λ(s, f) translate to the proof by Godement-

Jacquet of the ”niceness” of Λ(s, π) (for n =

2)?

If not, what does it translate to?

This suggests: an L-function may be amenable

to the “zeta integral” treatment in more than

one way!
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Variants of L(s, f)

Let f =
∑
n anq

n be as above.

Twist by characters

If χ is a Dirichlet character, then consider

L(s, f, χ) =
∑

n≥1

an · χ(n)

ns
.

If f is a Hecke eigenform, this L-function is

“nice”. This is proved via the integral repre-

sentation:

L(s, f, χ) ≈
∫ ∞

0
f(it) · χ(t) · ts−1d×t,

which is just a simple variant of Hecke’s treat-

ment of L(s, f). Moreover,

L(s, f, χ) =
∏

p

1

1 − ap · χ(p) · p−s
.
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Rankin-Selberg L-function

If

g =
∑

n
bnq

n,

is another cuspidal Hecke eigenform of level 1,

then Rankin and Selberg independently consid-

ered

L(s, f × g) =
∑

n

anbn

ns
.

They showed this is “nice” via the integral rep-

resentation:

L(s, f × g) ≈
∫

H
f(z) · g(z) ·E(z, s)

dz

Im(z)2

where E(s, z) is a non-holomorphic Eisenstein

series.
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Moreover, if

L(s, f) =
∏

p

1

(1 − a1,pp−s)(1 − a2,pp−s)

L(s, g) =
∏

p

1

(1 − b1,pp−s)(1 − b2,pp−s)
,

then the local Euler factor at p of L(s, f × g) is

2∏

i,j=1

1

(1 − ai,pbj,pp−s)



These classical examples suggest:

At least for n = 2, one can obtain more nice L-

functions from cuspidal π besides the standard

L-function L(s, π).

Indeed, it suggests that:

For cuspidal automorphic representations




π1 of GL(n1)

π2 of GL(n2),

one might expect to define a “nice” L-function

L(s, π1 × π2)

in some way.
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Automorphic Rankin-Selberg L-function

Suppose

π1 = ⊗vπ1,v and π2 = ⊗vπ2,v.

Outside a finite set S of places of F :

π1 −→ {sv ∈ GLn1(C) = GL(V1)},

π2 −→ {tv ∈ GLn2(C) = GL(V2)}.

Now we have the tensor product rep of com-

plex groups:

r : GL(V1) × GL(V2) −→ GL(V1 ⊗ V2)

So we obtain:

{r(sv, tv) = sv ⊗ tv ∈ GL(V1 ⊗ V2)}.

Definition:

L(s, π1,v× π2,v) =
1

det(1 − q−sv · sv ⊗ tv|V1 ⊗ V2)
.

This allows one to define LS(s, π1×π2) (Re(s) ≫
0).
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Automorphic L-functions à la Langlands

The above construction can be generalized.

Let π = ⊗vπv be a cuspidal automorphic rep

of G(A). Then outside of a finite set S,

π −→ {sv ∈ Ĝ(C)}.

Given a representation

r : Ĝ(C) −→ GL(V ),

one obtains a collection of semisimple elements

r(sv) for v /∈ S, well-defined up to conjugacy.

Then one sets

L(s, πv, r) :=
1

det(1 − q−sv r(sv)|V )

and

LS(s, π, r) :=
∏

v/∈S

L(s, πv, r).
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Langlands’ Conjecture

One can define L(s, πv, r) and ǫ(s, π, r) for gen-

eral πv, so that the global Λ(s, π, r) is nice.

Examples: Let’s take G = GL(n), so that

Ĝ = GLn(C) = GL(V ). Some common r’s are:

r = id : GL(V ) −→ GL(V )

r = Symk : GL(V ) −→ GL(SymkV )

r = ∧k : GL(V ) −→ GL(∧kV ).

Upshot: Nice L-functions are associated to

pairs (π, r).
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The Zeta Integral for GL(n) ×GL(n− 1)

In the rest of the lecture, we will describe the

relevant zeta integrals for the Rankin-Selberg

L-functions. The analog of Tate’s thesis was

developed by Jacquet-Piatetski-Shapiro-Shalika.

Let π and π′ be cuspidal reps of GL(n) and

GL(n− 1) resp. We consider

Z(s+ 1/2, f, f ′) =

∫

GLn−1(F )\GLn−1(A)
f

(
h 0
0 1

)

·f ′(h)·|det(h)|s dh,

for f ∈ π and f ′ ∈ π′.

When n = 2, observe that this is just the auto-

morphic version of Hecke’s classical work and

was done by Jacquet-Langlands.
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The Zeta Integral for GL(n) ×GL(n)

Suppose now π1 and π2 are two cuspidal reps

of GL(n). The global zeta integral for this case

is:

Z(s, f1, f2, φ) =

=

∫

GLn(F )\GLn(A)
f1(g) · f2(g) ·E(s, φ) dg

where E(s, φ) is an Eisenstein series attached

to a Schwarz function φ on An.

Again, when n = 2, this is simply the automor-

phic analog of the classical work of Rankin-

Selberg.
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Convergence

Proposition: The zeta integrals above con-

verges absolutely for all s ∈ C and thus define

entire functions.

(Contrast this with Tate and Godement-Jacquet)

Consider the case GL(2) × GL(1). Let π be a

cuspidal rep. of GL2 and χ a Hecke character.

Assume for simplicity that π has trivial central

character.

The global zeta integral is:

Z(s+ 1/2, f, χ) =

∫

F×\A×
f

(
t 0
0 1

)

· χ(t) · |t|s d×t.
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Proof

Using

F×\A
× ∼= R

×
+ × (F×\A

1),

one has

∫

F×\A×
=

∫ ∞

0
ts ·

(∫

F×\A1
f

(
tx 0
0 1

)

dx

)

d×t.

The inner integral is over a compact set, and

defines a function of t with the following prop-

erties:

(i) as t → ∞, it decreases rapidly, since f is

cuspidal;
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(ii) as t→ 0, one has

f

(
tx 0
0 1

)

=f

((
0 1
−1 0

)

·

(
tx 0
0 1

))

=f

((
1 0
0 tx

)

·

(
0 −1
1 0

))

=(w · f)

(
1 0
0 tx

)

=(w · f)

(
1/tx 0
0 1

)

which is rapidly decreasing as t→ 0.

Compare this with Hecke’s classical argument.
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Whittaker-Fourier coefficients

It is not clear why these zeta integrals factor

into product of local integrals. It is also not

clear what are the local zeta integrals.

Let f be an automorphic form on G = GLn. If

N ⊂ G is a unipotent subgroup, say the unipo-

tent radical of a parabolic subgroup, one can

consider the Fourier coefficients of f along N .

Namely, if χ is a unitary character of N(A)

which is trivial on N(F), we have

fN,χ(g) =

∫

N(F )\N(A)
χ(n) · f(ng) dn

Note that if N is abelian, then we have:

f(g) =
∑

χ
fN,χ(g).

We apply the above to the unipotent radical

U of the Borel subgroup B of upper triangular

matrices.
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Definition: A character χ of U(A) is generic

if the stabilizer of χ in T(A) is the center Z(A)

of GLn(A).

Examples:

(i) When G = GL2, a generic character of

U(F)\U(A) just means a non-trivial character

of F\A. If we fix a character ψ of F\A, then

all others are of the form

χa(x) = ψ(ax)

for some a ∈ F .

(ii) When G = GL3, a character of U(A) trivial

on U(F) has the form

χa1,a2




1 x1 ∗
0 1 x2
0 0 1



 = ψ(a1x1 + a2x2)

for some a1 and a2 ∈ F .

Saying that χa1,a2 is generic means that a1 and

a2 are both non-zero.
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Definition: A Whittaker-Fourier coefficient

of f is a Fourier coefficient fU,χ with χ generic.

Easy to see that the group Z(F)\T(F) acts

simply transitively on the generic characters of

U(A) trivial on U(F). If t·χ = χ′ with t ∈ T(F),

then

fU,χ′(g) = fU,χ(t
−1g).

So fU,χ 6= 0 iff fU,χ′ 6= 0 for generic χ and χ′.

Definition: A representation π ⊂ A(G) is said

to be globally generic if there exists f ∈ π

whose Fourier-Whittaker coefficient fU,χ 6= 0

for some (and hence all) generic characters χ.

Equivalently, the linear form on π:

f 7→ fU,χ(1)

is a nonzero element of

HomU(A)(π,Cχ).
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Whittaker functionals

One can define the notion of a “generic repre-

sentation” locally.

Let πv be a representation of G(Fv) and let

χv : U(Fv) −→ C

be a generic unitary character.

Definition: πv is an abstractly generic rep-

resentation if

HomU(Fv)(πv,Cχv) 6= 0.

An element in this Hom space is called a local

Whittaker functional.

Theorem (Local uniqueness of Whittaker

functionals):

Let πv be an irreducible smooth representation

of G(Fv). Then

dimHomU(Fv)(πv,Cχv) ≤ 1.
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Fourier Expansion of a Cusp Form

Proposition: We have the expansion

f(g) =
∑

γ∈Un−1(F )\GLn−1(F )

fU,χ

((
γ 0
0 1

)

g

)

.

Here Un−1 is the unipotent radical of the Borel

subgroup of GLn−1 and χ is a generic character

of Un.

Corollary: A cuspidal rep of GLn is globally

generic.

Though not too deep, the proof of this propo-

sition is quite intricate to execute, except when

n = 2:
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f(g) =
∑

χ 6=1

fU,χ(g)

=
∑

a∈F×

fU,χa(g)

=
∑

a∈F×

fU,χ

((
a 0
0 1

)

g

)



Euler Product of Zeta Integrals

Work with GLn × GLn−1 case.

Z(s+ 1/2, f, f ′) =

=
∫

GLn−1(F )\GLn−1(A)

∑

γ∈Un−1(F )\GLn−1(F )

fU,χ

(
γh 0
0 1

)

· f ′(h) · |det(h)|s dh.

=

∫

Un−1(F )\GLn−1(A)
fU,χ

(
h 0
0 1

)

·f ′(h)·|det(h)|s dh
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=

∫

Un−1(A)\GLn−1(A)

∫

Un−1(F )\Un−1(A)

fU,χ(uh) · f
′(uh) · |det(h)|s du dh

=
∫

Un−1(A)\GLn−1(A)
|det(h)|s · fU,χ(h)

·

(∫

Un−1(F )\Un−1(A)
χ(u) · f ′(uh)du

)

dh

=

∫

Un−1(A)\GLn−1(A)
|det(h)|s·fU,χ(h)·f

′
U ′,χ′(h) dh

with

χ′ = χ−1|Un−1
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By the local uniqueness of Whittaker function-

als,

fU,χ(h) =
∏

v
Wv(hv · fv)

for some

Wv ∈ HomN(Fv)(πv,Cχv).

This gives, at least formally,

Z(s, f, f ′) =
∏

v
Zv(s, fv, f

′
v)

where

Zv(s+ 1/2, fv, f
′
v) =

∫

U(Fv)\GLn−1(Fv)
Wv(h·fv)·W

′
v(h·f

′
v)·|det(h)|

s dh.

It remains to develop the local theory for this

family of local zeta integrals..........
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Summary:

(i) We explained how (partial) automorphic L-

functions L(s, π, r) are defined, following Lang-

lands.

(ii) We examined Rankin-Selberg L-functions

for GL(n) × GL(m), following the paradigm of

Tate’s thesis.

(iii) We noted that a given L-function can be

attacked by possibly more than one family of

zeta integrals.

As for finding a zeta integral that actually works

for a given L(s, π, r), it is truly an art.
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