Introduction to L-functions II: Automorphic L-functions

References:

- D. Bump, Automorphic Forms and Representations.
- J. Cogdell, Notes on L-functions for GL(n)
- S. Gelbart and F. Shahidi, *Analytic Prop*erties of Automorphic L-functions.

First lecture:

Tate's thesis, which develop the theory of Lfunctions for Hecke characters (automorphic forms of GL(1)). These are degree 1 L-functions, and Tate's thesis gives an elegant proof that they are "nice".

Today: Higher degree L-functions, which are associated to automorphic forms of GL(n) for general n.

Goals:

(i) Define the L-function $L(s, \pi)$ associated to an automorphic representation π .

(ii) Discuss ways of showing that $L(s,\pi)$ is "nice", following the praradigm of Tate's thesis.

The group G = GL(n) over F

F = number field.

Some subgroups of G:

(i) $Z \cong \mathbb{G}_m$ = the center of G;

(ii) B = Borel subgroup of upper triangular matrices = $T \cdot U$;

(iii) T = maximal torus of of diagonal elements $\cong (\mathbb{G}_m)^n;$

(iv) U = unipotent radical of B = upper triangular unipotent matrices;

(v) For each finite v,

 $K_v = \operatorname{GL}_n(\mathcal{O}_v) = \operatorname{maximal}$ compact subgroup.

Automorphic Forms on G

An automorphic form on G is a function

 $f: G(F) \backslash G(\mathbb{A}) \longrightarrow \mathbb{C}$

satisfying some smoothness and finiteness conditions.

The space of such functions is denoted by $\mathcal{A}(G)$. The group $G(\mathbb{A})$ acts on $\mathcal{A}(G)$ by right translation:

$$(g \cdot f)(h) = f(hg).$$

An irreducible subquotient π of $\mathcal{A}(G)$ is an automorphic representation.

Cusp Forms

Let $P = M \cdot N$ be any parabolic subgroup of G. For example, P is a subgroup of block upper triangular matrices.

Given $f \in \mathcal{A}(G)$, one may consider its "constant term" along N:

$$f_N(g) := \int_{N(F)\setminus N(\mathbb{A})} f(ng) \, dn.$$

Definition: Say that f is a cusp form if $f_N = 0$ for all $P = M \cdot N$.

Let $\mathcal{A}_0(G)$ denote the subspace of cusp forms. It is a $G(\mathbb{A})$ -submodule of $\mathcal{A}(G)$.

In fact, this submodule is semisimple:

$$\mathcal{A}_0(G) = \bigoplus_{\pi} m(\pi) \,\pi,$$

as π ranges over irreducible representations of $G(\mathbb{A})$. A basic result says that $m(\pi) = 0$ or 1.

Restricted Tensor Product

Proposition: An irreducible automorphic representation π has the form

$$\pi \cong \otimes'_v \pi_v$$

where

- π_v is an irreducible representation of $G(F_v)$;
- for almost all v, π_v is an unramified representation, i.e.

$$\pi_v^{K_v} \neq 0.$$

• \otimes'_v denotes restricted tensor product relative to the a K_v -fixed vector for almost all v.

To an irreducible automorphic representation, we would like to associate

$$L(s,\pi)=\prod_{v}L(s,\pi_{v}).$$

So we should first address the local questions:

(i) How to associate $L(s, \pi_v)$ to any π_v ?

or less ambitiously

(ii) How to associate $L(s, \pi_v)$ to an unramified π_v ?

Unramified Representations

Recall that the set of irreducible unramified representations of $G(F_v)$ has been classified.

Theorem: There is a natural bijection between

{ irreducible unramified reps of $GL_n(F_v)$ } and

{ unordered n-tuples of elements of \mathbb{C}^{\times} }

Elements of the 2nd set can be thought of as diagonal matrices

$$s_v = \operatorname{diag}(a_1, ..., a_n) \in \operatorname{GL}_n(\mathbb{C}),$$

taken up to conjugacy.

Noting that $GL_n(\mathbb{C})$ is the Langlands dual group of G = GL(n), have:

Restatement: The unramified irred reps of $GL_n(F_v)$ are in natural bijection with conjugacy classes of semisimple elements in the Langlands dual group

 $\widehat{G} = \mathsf{GL}_n(\mathbb{C}).$

This is the unramified "local Langlands correspondence" for GL(n). For n = 1, it reduces to the "unramified local class field theory".

Observe that the conjugacy class of a diagonal matrix

$$s_v = diag(a_1, \dots, a_n).$$

as above is determined by its characteristic polynomial

$$P_{s_v}(T) = (1 - a_1 T) \dots (1 - a_n T).$$

Standard L-factors for unramified representations

Given this, we make the following definition

Definition: If π_v is an unramified representation, the standard L-factor associated to π_v is:

$$= \frac{1}{\frac{1}{P_{s_v}(q^{-s})}} = \frac{1}{\frac{1}{\prod_v (1 - a_i q_v^{-s})}} = \frac{1}{\frac{1}{\det(1 - s_v q_v^{-s})}}.$$

Thus, $L(s, \pi_v)$ determines s_v and hence π_v .

This is the analog of defining

$$L(s,\chi_v) = 1/(1-\chi(\varpi_v)q_v^{-s})$$

for unramified χ_v , so that it is compatible with local class field theory and local Artin L-factor.

What if π_v is not unramified?

Should we simply set $L(s, \pi_v) = 1$, like in n = 1 case?

We would like to consider a family of zeta integrals associated to π_v , whose GCD is equal to $L(s, \pi_v)$ when π_v is unramified. Then we would define $L(s, \pi_v)$ for general π_v as the GCD of this family of zeta integral.

Such an approach was carried out by Godement-Jacquet, generalizing the zeta integrals of Tate.

Matrix Coefficients

Fix the irreducible rep π_v and let π_v^{\vee} denote the contragredient rep of π_v .

So there is a natural $G(F_v)$ -invariant pairing

 $\langle -, - \rangle : \pi_v^{\vee} \otimes \pi_v \longrightarrow \mathbb{C}$

This is an element of

$$\operatorname{Hom}_{G(F_v)}(\pi_v^{\vee}\otimes\pi_v,\mathbb{C}).$$

By Schur's lemma, this Hom space is 1-dimensional.

For fixed vectors

$$f_v \in \pi_v$$
 and $f_v^{\vee} \in \pi_v^{\vee}$,

one can form a function on $G(F_v)$:

$$\Phi_{f_v, f_v^{\vee}} : g \mapsto \langle f_v^{\vee}, g f_v \rangle.$$

Such a function is called a matrix coefficient of π_v .

The map

$$f_v \otimes f_v^{\lor} \mapsto \Phi_{f_v, f_v^{\lor}}$$

gives a $G(F_v)$ -equivariant embedding

$$\pi_v^{\vee} \otimes \pi_v \hookrightarrow C^{\infty}(G(F_v)).$$

If the image of this map is contained in the space of functions which are compactly supported modulo $Z(F_v)$, then π_v is said to be a **supercuspidal** representation.

Local Zeta Integrals of Godement-Jacquet

Suppress v from notations.

Given

• $f \in \pi$;

•
$$f^{\vee} \in \pi^{\vee}$$
;

• $\phi \in S(M_n(F))$, where $M_n(F) = n \times n$ matrices over F, and

 $S(M_n(F)) = \{$ Schwarz-Bruhat functions $\}$

we set

$$Z(s,\phi,f,f^{\vee}) = \int_{\mathsf{GL}_n(F)} \phi(g) \cdot \langle f^{\vee}, g \cdot f \rangle \cdot |\det(g)|^s dg.$$

Observe that when n = 1, this reduces to the local zeta integral of Tate.

Local Theorem:

(i) There is a c such that whenever Re(s) > c, the integral $Z(s, \phi, f, f^{\vee})$ converges absolutely for all ϕ , f and f^{\vee} .

(ii) The zeta integral is given by a rational function in q^{-s} and thus has meromorphic continuation to \mathbb{C} .

(iii) When π is unramified, the function

$$Z(s+\frac{n-1}{2},\phi,f,f^{\vee})/L(s,\pi)$$

is entire. Moreover, if ϕ , f and f^{\vee} are unramified vectors,

$$Z(s + \frac{n-1}{2}, \phi, f, f^{\vee}) = L(s, \pi).$$

14

Given the local theorem, we make the following

Definition: For any π , set $L(s,\pi)$ to be the GCD of the family $Z(s + \frac{n-1}{2}, \phi, f, f^{\vee})$.

By (iii), it gives the right answer for unramified reps. So it is not unreasonable.

Example: Assume π is supercuspidal. Then

$$Z(s,\phi,f,f^{\vee}) = \int_{Z\setminus G} \langle f^{\vee},g\cdot f\rangle \cdot |\det(g)|^s \cdot$$

$$\left(\int_Z \phi(zg) \cdot |z|^{ns} \cdot \omega_\pi(z) \, dz\right) \, dg$$

This is entire, so that

$$L(s,\pi)=1.$$

Local Functional Eqn

Fix additive character ψ of F. This gives an additive character on $M_n(F)$:

$$\psi \circ Tr : x \mapsto \psi(Tr(x)).$$

For an additive Haar measure dx on $M_n(F)$, have the Fourier transform relative to $\psi \circ Tr$:

$$\phi\mapsto \widehat{\phi}$$

Then one has:

$$\frac{Z(\frac{n+1}{2}-s,\hat{\phi},f^{\vee},f)}{L(1-s,\pi^{\vee})} = \epsilon(s,\pi,\psi) \cdot \frac{Z(s+\frac{n-1}{2},\hat{\phi},f,f^{\vee})}{L(s,\pi)}$$

for some local epsilon factor

$$\epsilon(s,\pi,\psi) = a \cdot q^{bs}.$$

When π is unramified, and $\psi \circ Tr$ has conductor $M_n(\mathcal{O})$, one has

$$\epsilon(s,\pi,\psi)=1.$$

16

Summary:

By considering a family of zeta integrals which naturally extends the case treated by Tate, we have defined the local L-factor

 $L(s,\pi_v)$

and the local epsilon factor

 $\epsilon(s,\pi,\psi),$

together with a local functional eqn.

So given a cuspidal automorphic $\pi = \otimes_v \pi_v$, we could define

$$L(s,\pi) = \prod_{v} L(s,\pi_{v})$$
$$\epsilon(s,\pi) = \epsilon(s,\pi_{v},\psi_{v})$$

"Cuspidal automorphicity" implies that the first product converges when $Re(s) \gg 0$. But is $L(s,\pi)$ nice?

17

Global Matrix Coefficients

Suppose that

$$\pi = \otimes'_v \pi_v \subset \mathcal{A}_0(G)$$

Then its contragredient π^{\vee} is also cuspidal automorphic, so that

$$\pi^{\vee} \subset \mathcal{A}_0(G).$$

A $G(\mathbb{A})$ -invariant pairing

$$\pi^{\vee}\otimes\pi\longrightarrow\mathbb{C}$$

can be given by the explicit integral

$$f^{\vee} \otimes f \mapsto \int_{Z(\mathbb{A}) \setminus \mathsf{GL}_n(F) \setminus \mathsf{GL}_n(\mathbb{A})} f^{\vee}(h) \cdot f(h) \, dh.$$

Denote this linear form by $\langle -, - \rangle_{Pet}$.

Then the function (a global matrix coeff)

$$g \mapsto \langle f^{\vee}, g \cdot f \rangle_{Pet}$$

is explicitly given by

$$g \mapsto \int_{Z(\mathbb{A}) \cdot \mathsf{GL}_n(F) \setminus \mathsf{GL}_n(\mathbb{A})} f^{\vee}(h) \cdot f(hg) \, dh.$$

Note that

dim Hom_{$$G(F_v)$$} $(\pi_v^{\vee} \otimes \pi_v, \mathbb{C}) = 1,$

for all $\boldsymbol{v}\text{,}$ and

$$\dim \operatorname{Hom}_{G(\mathbb{A})}(\pi^{\vee} \otimes \pi, \mathbb{C}) = 1$$

So, if we pick some

$$\langle -, - \rangle_v \in \operatorname{Hom}_{G(F_v)}(\pi_v^{\vee} \otimes \pi_v, \mathbb{C})$$

then we get a factorization

$$\langle f^{\vee}, f \rangle_{Pet} = \prod_{v} \langle f_v^{\vee}, f_v \rangle_v.$$

Global Zeta Integrals

Given cuspidal π and $\pi^{\vee},$ we can now define the global zeta integral

$$Z(s,\phi,f,f^{\vee}) = \int_{G(\mathbb{A})} \phi(g) \cdot \langle f^{\vee}, g \cdot f_v \rangle_{Pet} \cdot |\det(g)|^s \, dg$$

for $f \in \pi$, $f^{\vee} \in \pi^{\vee}$ and $\phi \in S(M_n(\mathbb{A}))$.

Because of the factorization

$$\langle f^{\vee}, f \rangle_{Pet} = \prod_{v} \langle f_v^{\vee}, f_v \rangle_v,$$

we obtain at least formally

$$Z(s,\phi,f,f^{\vee}) = \prod_{v} Z(s,\phi_{v},f_{v},f_{v}^{\vee})$$

when ϕ , f and f^{\vee} are factorizable.

This allows us to pass from global to local zeta integrals.

Main Global Theorem

(i) There is a c such that $Z(s, \phi, f, f^{\vee})$ converges for all ϕ , f and f^{\vee} whenever Re(s) > c.

(ii) $Z(s,\phi,f,f^{\vee})$ has analytic continuation to \mathbb{C} .

(iii) There is a global functional eqn

$$Z(n-s,\widehat{\phi},f^{\vee},f)=Z(s,\phi,f,f^{\vee}).$$

Corollary: The global L-function

$$\Lambda(s,\pi) = \prod_{v} L(s,\pi_{v})$$

has analytic continuation to $\ensuremath{\mathbb{C}}$ and satisfies a functional eqn

$$\epsilon(s,\pi) \cdot L(1-s,\pi^{\vee}) = L(s,\pi).$$

Summary:

At this point, we have realized our goals for GL(n) by generalizing the paradigm of Tate's thesis. Thus we have produced many "nice" L-functions (to the extent that we know cuspidal representations exist!)

Is this the end of the story?

Summary:

At this point, we have realized our goals for GL(n) by generalizing the paradigm of Tate's thesis. Thus we have produced many "nice" L-funcitons (to the extent that we know cuspidal representations exist!)

Is this the end of the story?

Mmmm.....not quite.....

Let's examine the case n = 2, where the theory of L-functions of modular forms was developed by Hecke.

L-functions of Modular Forms

Given a cusp form of level 1 and even weight k,

$$f(z) = \sum_{n \ge 0} a_n(f) e^{2\pi i n z},$$

one may consider the Dirichlet series:

$$L(s,f) = \sum_{n \ge 1} \frac{a_n(f)}{n^s}.$$

The proof that this is nice relies on the fact that L(s, f) is related to f by a Mellin transform:

$$\int_0^\infty f(iy) \cdot y^s \cdot \frac{dy}{y} = (2\pi)^{-s} \cdot \Gamma(s) \cdot L(s, f)$$

Proof: When Re(s) is large, we have:

$$\Lambda(s,f) = \int_0^\infty f(iy) \cdot y^s \cdot \frac{dy}{y}.$$

But the RHS is convergent for all s (and thus gives (i)). This is because:

- f(iy) is exponentially decreasing as $y \to \infty$, since f is cuspidal.
- \bullet since f is modular with respect to

$$w = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right),$$

we have:

$$f(iy) = (-1)^{k/2} \cdot y^{-k} \cdot f(i/y).$$

So as $y \to 0$, $f(iy) \to 0$ faster than any power of y.

To see (ii), note that

$$\Lambda(s, f)$$

$$= \int_0^\infty f(iy) \cdot y^s \cdot \frac{dy}{y}$$

$$= \int_0^\infty (-1)^{k/2} y^{-k} f(i/y) y^s \frac{dy}{y}$$

$$= (-1)^{k/2} \cdot \int_0^\infty f(it) t^{k-s} \cdot \frac{dt}{t} \qquad (t = 1/y).$$

$$= \Lambda(k - s, f)$$

What is the point?

By a well-known dictionary,

{cuspidal Hecke eigenforms f}

 \uparrow

{cuspidal representations π of GL(2)}. In this dictionary,

```
\Lambda(s,f) \leftrightarrow \Lambda(s,\pi).
```

But does Hecke's proof of the "niceness" of $\Lambda(s, f)$ translate to the proof by Godement-Jacquet of the "niceness" of $\Lambda(s, \pi)$ (for n = 2)?

If not, what does it translate to?

This suggests: an L-function may be amenable to the "zeta integral" treatment in more than one way!

Variants of L(s, f)

Let $f = \sum_{n} a_n q^n$ be as above.

Twist by characters

If χ is a Dirichlet character, then consider

$$L(s, f, \chi) = \sum_{n \ge 1} \frac{a_n \cdot \chi(n)}{n^s}.$$

If f is a Hecke eigenform, this L-function is "nice". This is proved via the integral representation:

$$L(s, f, \chi) \approx \int_0^\infty f(it) \cdot \chi(t) \cdot t^{s-1} d^{\times} t,$$

which is just a simple variant of Hecke's treatment of L(s, f). Moreover,

$$L(s, f, \chi) = \prod_{p} \frac{1}{1 - a_p \cdot \chi(p) \cdot p^{-s}}.$$

Rankin-Selberg L-function

If

$$g = \sum_{n} b_n q^n,$$

is another cuspidal Hecke eigenform of level 1, then Rankin and Selberg independently considered

$$L(s, f \times g) = \sum_{n} \frac{a_n b_n}{n^s}.$$

They showed this is "nice" via the integral representation:

$$L(s, f \times g) \approx \int_{\mathcal{H}} f(z) \cdot g(z) \cdot E(z, s) \frac{dz}{Im(z)^2}$$

where E(s, z) is a non-holomorphic Eisenstein series.

Moreover, if

$$L(s,f) = \prod_{p} \frac{1}{(1 - a_{1,p}p^{-s})(1 - a_{2,p}p^{-s})}$$
$$L(s,g) = \prod_{p} \frac{1}{(1 - b_{1,p}p^{-s})(1 - b_{2,p}p^{-s})},$$

then the local Euler factor at p of $L(s, f \times g)$ is

$$\prod_{i,j=1}^{2} \frac{1}{(1 - a_{i,p}b_{j,p}p^{-s})}$$

These classical examples suggest:

At least for n = 2, one can obtain more nice Lfunctions from cuspidal π besides the standard L-function $L(s, \pi)$.

Indeed, it suggests that:

For cuspidal automorphic representations

$$\begin{cases} \pi_1 \text{ of } \mathsf{GL}(n_1) \\ \pi_2 \text{ of } \mathsf{GL}(n_2), \end{cases}$$

one might expect to define a "nice" L-function

$$L(s,\pi_1\times\pi_2)$$

in some way.

Automorphic Rankin-Selberg L-function

Suppose

 $\pi_1 = \otimes_v \pi_{1,v}$ and $\pi_2 = \otimes_v \pi_{2,v}$.

Outside a finite set S of places of F:

$$\pi_1 \longrightarrow \{ s_v \in \mathsf{GL}_{n_1}(\mathbb{C}) = \mathsf{GL}(V_1) \},\$$

$$\pi_2 \longrightarrow \{ t_v \in \operatorname{GL}_{n_2}(\mathbb{C}) = \operatorname{GL}(V_2) \}.$$

Now we have the tensor product rep of complex groups:

 $r : \operatorname{GL}(V_1) \times \operatorname{GL}(V_2) \longrightarrow \operatorname{GL}(V_1 \otimes V_2)$ So we obtain:

$$\{r(s_v, t_v) = s_v \otimes t_v \in \mathsf{GL}(V_1 \otimes V_2)\}.$$

Definition:

 $L(s,\pi_{1,v}\times\pi_{2,v})=\frac{1}{\det(1-q_v^{-s}\cdot s_v\otimes t_v|V_1\otimes V_2)}.$

This allows one to define $L^{S}(s, \pi_{1} \times \pi_{2})$ ($Re(s) \gg 0$).

Automorphic L-functions à la Langlands

The above construction can be generalized.

Let $\pi = \bigotimes_v \pi_v$ be a cuspidal automorphic rep of $G(\mathbb{A})$. Then outside of a finite set S,

$$\pi \longrightarrow \{ s_v \in \widehat{G}(\mathbb{C}) \}.$$

Given a representation

$$r: \widehat{G}(\mathbb{C}) \longrightarrow \mathsf{GL}(V),$$

one obtains a collection of semisimple elements $r(s_v)$ for $v \notin S$, well-defined up to conjugacy.

Then one sets

$$L(s,\pi_v,r) := \frac{1}{\det(1-q_v^{-s}r(s_v)|V)}$$

and

$$L^S(s,\pi,r) := \prod_{v \notin S} L(s,\pi_v,r).$$

31

Langlands' Conjecture

One can define $L(s, \pi_v, r)$ and $\epsilon(s, \pi, r)$ for general π_v , so that the global $\Lambda(s, \pi, r)$ is nice.

Examples: Let's take G = GL(n), so that $\widehat{G} = GL_n(\mathbb{C}) = GL(V)$. Some common r's are:

$$r = id : \operatorname{GL}(V) \longrightarrow \operatorname{GL}(V)$$
$$r = Sym^k : \operatorname{GL}(V) \longrightarrow \operatorname{GL}(\operatorname{Sym}^k V)$$
$$r = \wedge^k : \operatorname{GL}(V) \longrightarrow \operatorname{GL}(\wedge^k V).$$

Upshot: Nice L-functions are associated to pairs (π, r) .

The Zeta Integral for $GL(n) \times GL(n-1)$

In the rest of the lecture, we will describe the relevant zeta integrals for the Rankin-Selberg L-functions. The analog of Tate's thesis was developed by Jacquet-Piatetski-Shapiro-Shalika.

Let π and π' be cuspidal reps of GL(n) and GL(n-1) resp. We consider

$$Z(s+1/2, f, f') = \int_{\mathsf{GL}_{n-1}(F) \setminus \mathsf{GL}_{n-1}(\mathbb{A})} f\begin{pmatrix}h & 0\\0 & 1\end{pmatrix} \cdot f'(h) \cdot |\det(h)|^s dh,$$

for $f \in \pi$ and $f' \in \pi'$.

When n = 2, observe that this is just the automorphic version of Hecke's classical work and was done by Jacquet-Langlands.

The Zeta Integral for $GL(n) \times GL(n)$

Suppose now π_1 and π_2 are two cuspidal reps of GL(n). The global zeta integral for this case is:

 $Z(s, f_1, f_2, \phi) =$

$$= \int_{\mathsf{GL}_n(F)\backslash\mathsf{GL}_n(\mathbb{A})} f_1(g) \cdot f_2(g) \cdot E(s,\phi) \, dg$$

where $E(s, \phi)$ is an Eisenstein series attached to a Schwarz function ϕ on \mathbb{A}^n .

Again, when n = 2, this is simply the automorphic analog of the classical work of Rankin-Selberg.

Convergence

Proposition: The zeta integrals above converges absolutely for all $s \in \mathbb{C}$ and thus define entire functions.

(Contrast this with Tate and Godement-Jacquet)

Consider the case $GL(2) \times GL(1)$. Let π be a cuspidal rep. of GL_2 and χ a Hecke character. Assume for simplicity that π has trivial central character.

The global zeta integral is:

$$Z(s+1/2, f, \chi) =$$
$$\int_{F^{\times} \setminus \mathbb{A}^{\times}} f\left(\begin{array}{cc} t & 0\\ 0 & 1 \end{array}\right) \cdot \chi(t) \cdot |t|^{s} d^{\times} t.$$

Proof

Using

$$F^{\times} \setminus \mathbb{A}^{\times} \cong \mathbb{R}_{+}^{\times} \times (F^{\times} \setminus \mathbb{A}^{1}),$$

one has

$$\int_{F^{\times}\backslash\mathbb{A}^{\times}} = \int_{0}^{\infty} t^{s} \cdot \left(\int_{F^{\times}\backslash\mathbb{A}^{1}} f\left(\begin{array}{cc} tx & 0\\ 0 & 1\end{array}\right) dx\right) d^{\times}t.$$

The inner integral is over a compact set, and defines a function of t with the following properties:

(i) as $t \to \infty$, it decreases rapidly, since f is cuspidal;

(ii) as $t \rightarrow 0$, one has

$$f\begin{pmatrix} tx & 0\\ 0 & 1 \end{pmatrix}$$
$$=f\begin{pmatrix} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} tx & 0\\ 0 & 1 \end{pmatrix} \end{pmatrix}$$
$$=f\begin{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & tx \end{pmatrix} \cdot \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \end{pmatrix}$$
$$=(w \cdot f)\begin{pmatrix} 1 & 0\\ 0 & tx \end{pmatrix}$$
$$=(w \cdot f)\begin{pmatrix} 1/tx & 0\\ 0 & 1 \end{pmatrix}$$

which is rapidly decreasing as $t \rightarrow 0$.

Compare this with Hecke's classical argument.

Whittaker-Fourier coefficients

It is not clear why these zeta integrals factor into product of local integrals. It is also not clear what are the local zeta integrals.

Let f be an automorphic form on $G = GL_n$. If $N \subset G$ is a unipotent subgroup, say the unipotent radical of a parabolic subgroup, one can consider the Fourier coefficients of f along N.

Namely, if χ is a unitary character of $N(\mathbb{A})$ which is trivial on N(F), we have

$$f_{N,\chi}(g) = \int_{N(F)\setminus N(\mathbb{A})} \overline{\chi(n)} \cdot f(ng) \, dn$$

Note that if N is abelian, then we have:

$$f(g) = \sum_{\chi} f_{N,\chi}(g).$$

We apply the above to the unipotent radical U of the Borel subgroup B of upper triangular matrices.

Definition: A character χ of $U(\mathbb{A})$ is **generic** if the stabilizer of χ in $T(\mathbb{A})$ is the center $Z(\mathbb{A})$ of $GL_n(\mathbb{A})$.

Examples:

(i) When $G = GL_2$, a generic character of $U(F)\setminus U(\mathbb{A})$ just means a non-trivial character of $F\setminus\mathbb{A}$. If we fix a character ψ of $F\setminus\mathbb{A}$, then all others are of the form

$$\chi_a(x) = \psi(ax)$$

for some $a \in F$.

(ii) When $G = GL_3$, a character of $U(\mathbb{A})$ trivial on U(F) has the form

$$\chi_{a_1,a_2} \begin{pmatrix} 1 & x_1 & * \\ 0 & 1 & x_2 \\ 0 & 0 & 1 \end{pmatrix} = \psi(a_1x_1 + a_2x_2)$$

for some a_1 and $a_2 \in F$.

Saying that χ_{a_1,a_2} is generic means that a_1 and a_2 are both non-zero.

Definition: A Whittaker-Fourier coefficient of f is a Fourier coefficient $f_{U,\chi}$ with χ generic.

Easy to see that the group $Z(F)\setminus T(F)$ acts simply transitively on the generic characters of $U(\mathbb{A})$ trivial on U(F). If $t \cdot \chi = \chi'$ with $t \in T(F)$, then

$$f_{U,\chi'}(g) = f_{U,\chi}(t^{-1}g).$$

So $f_{U,\chi} \neq 0$ iff $f_{U,\chi'} \neq 0$ for generic χ and χ' .

Definition: A representation $\pi \subset \mathcal{A}(G)$ is said to be **globally generic** if there exists $f \in \pi$ whose Fourier-Whittaker coefficient $f_{U,\chi} \neq 0$ for some (and hence all) generic characters χ .

Equivalently, the linear form on π :

$$f \mapsto f_{U,\chi}(1)$$

is a nonzero element of

Hom_{$$U(\mathbb{A})$$} (π, \mathbb{C}_{χ}) .

Whittaker functionals

One can define the notion of a "generic representation" locally.

Let π_v be a representation of $G(F_v)$ and let

 $\chi_v : U(F_v) \longrightarrow \mathbb{C}$

be a generic unitary character.

Definition: π_v is an **abstractly generic** representation if

$$\operatorname{Hom}_{U(F_v)}(\pi_v, \mathbb{C}_{\chi_v}) \neq 0.$$

An element in this Hom space is called a local **Whittaker functional**.

Theorem (Local uniqueness of Whittaker functionals):

Let π_v be an irreducible smooth representation of $G(F_v)$. Then

dim Hom_{$$U(F_v)$$} $(\pi_v, \mathbb{C}_{\chi_v}) \leq 1.$

Fourier Expansion of a Cusp Form

Proposition: We have the expansion

$$f(g) = \sum_{\gamma \in U_{n-1}(F) \setminus GL_{n-1}(F)} f_{U,\chi} \left(\left(\begin{array}{cc} \gamma & 0 \\ 0 & 1 \end{array} \right) g \right).$$

Here U_{n-1} is the unipotent radical of the Borel subgroup of GL_{n-1} and χ is a generic character of U_n .

Corollary: A cuspidal rep of GL_n is globally generic.

Though not too deep, the proof of this proposition is quite intricate to execute, except when n = 2:

$$\begin{split} f(g) &= \sum_{\chi \neq 1} f_{U,\chi}(g) \\ &= \sum_{a \in F^{\times}} f_{U,\chi_a}(g) \\ &= \sum_{a \in F^{\times}} f_{U,\chi} \left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g \right) \end{split}$$

Euler Product of Zeta Integrals

Work with $GL_n \times GL_{n-1}$ case.

$$Z(s+1/2, f, f') =$$

$$= \int_{\mathsf{GL}_{n-1}(F) \setminus \mathsf{GL}_{n-1}(\mathbb{A})} \sum_{\gamma \in U_{n-1}(F) \setminus \mathsf{GL}_{n-1}(F)} f_{U,\chi} \begin{pmatrix} \gamma h & 0 \\ 0 & 1 \end{pmatrix} \cdot f'(h) \cdot |\det(h)|^s \, dh.$$

$$= \int_{U_{n-1}(F)\backslash \operatorname{GL}_{n-1}(\mathbb{A})} f_{U,\chi} \begin{pmatrix} h & 0 \\ 0 & 1 \end{pmatrix} \cdot f'(h) \cdot |\det(h)|^s dh$$

$$= \int_{U_{n-1}(\mathbb{A})\backslash \mathsf{GL}_{n-1}(\mathbb{A})} \int_{U_{n-1}(F)\backslash U_{n-1}(\mathbb{A})} f_{U,\chi}(uh) \cdot f'(uh) \cdot |\det(h)|^s \, du \, dh$$

$$= \int_{U_{n-1}(\mathbb{A})\backslash \mathsf{GL}_{n-1}(\mathbb{A})} |\det(h)|^s \cdot f_{U,\chi}(h)$$
$$\cdot \left(\int_{U_{n-1}(F)\backslash U_{n-1}(\mathbb{A})} \chi(u) \cdot f'(uh) du \right) dh$$

$$= \int_{U_{n-1}(\mathbb{A})\backslash \mathsf{GL}_{n-1}(\mathbb{A})} |\det(h)|^s \cdot f_{U,\chi}(h) \cdot f'_{U',\chi'}(h) \, dh$$

with

$$\chi' = \chi^{-1}|_{U_{n-1}}$$

By the local uniqueness of Whittaker functionals,

$$f_{U,\chi}(h) = \prod_v W_v(h_v \cdot f_v)$$

for some

$$W_v \in \operatorname{Hom}_{N(F_v)}(\pi_v, \mathbb{C}_{\chi_v}).$$

This gives, at least formally,

$$Z(s, f, f') = \prod_{v} Z_v(s, f_v, f'_v)$$

where

$$Z_v(s+1/2, f_v, f_v') =$$

 $\int_{U(F_v)\backslash \mathsf{GL}_{n-1}(F_v)} W_v(h \cdot f_v) \cdot W'_v(h \cdot f'_v) \cdot |\det(h)|^s \, dh.$

It remains to develop the local theory for this family of local zeta integrals.....

Summary:

(i) We explained how (partial) automorphic L-functions $L(s, \pi, r)$ are defined, following Lang-lands.

(ii) We examined Rankin-Selberg L-functions for $GL(n) \times GL(m)$, following the paradigm of Tate's thesis.

(iii) We noted that a given L-function can be attacked by possibly more than one family of zeta integrals.

As for finding a zeta integral that actually works for a given $L(s, \pi, r)$, it is truly an art.