MAT 445/1196 - Complex symplectic Lie algebras

Let *n* be an integer greater than or equal to 2. Let $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. Then

$$Sp_{2n}(\mathbb{C}) = \{ g \in GL_{2n}(\mathbb{C}) \mid {}^{t}gJg = J \}$$

$$\mathfrak{sp}_{2n}(\mathbb{C}) = \{ X \in \mathfrak{gl}_{2n}(\mathbb{C}) \mid {}^{t}XJ + JX = 0 \}.$$

Or, define a nondegenerate bilinear symplectic form on \mathbb{C}^{2n} by $Q(x, y) = {}^t x J y$. Then

$$Sp_{2n}(\mathbb{C}) = \{ g \in GL_{2n}(\mathbb{C}) \mid Q(gx, gy) = Q(x, y), \ \forall x, y \in \mathbb{C}^{2n} \}$$

$$\mathfrak{sp}_{2n}(\mathbb{C}) = \{ X \in \mathfrak{gl}_{2n}(\mathbb{C}) \mid Q(Xx, y) + Q(x, Xy) = 0, \ \forall x, y \in \mathbb{C}^{2n} \}$$

We can write elements of $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ in block form: $X = \begin{pmatrix} A & B \\ C & -{}^tA \end{pmatrix}$, where $A, B, C \in M_{n \times n}(\mathbb{C})$ and $B = {}^tB, C = {}^tC$. Note that the dimension of $\mathfrak{sp}_{2n}(\mathbb{C})$ is n(2n+1).

The set of diagonal matrices \mathfrak{h} in $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ is an abelian subalgebra of \mathfrak{g} . The elements $H_i = E_{i,i} - E_{n+i,n+i}$, $1 \leq i \leq n$, form a basis of the vector space \mathfrak{h} . The subalgebra \mathfrak{h} is a *Cartan* subalgebra of \mathfrak{g} .

Let $\{\lambda_1, \ldots, \lambda_n\}$ be the basis of \mathfrak{h}^* that is dual to the basis $\{H_1, \ldots, H_n\}$ of \mathfrak{h} : that is, $\lambda_j(H_i) = \delta_{ij}, 1 \leq i, j \leq n$.

Consider the adjoint representation $X \mapsto \operatorname{ad} X$ of $\mathfrak{g}: \operatorname{ad} X : \mathfrak{g} \to \mathfrak{g}$ is defined by $\operatorname{ad} X(Y) = [X, Y], Y \in \mathfrak{g}$. The set $\operatorname{ad} \mathfrak{h} = \{ \operatorname{ad} H \mid H \in \mathfrak{h} \}$ is a commuting family of semisimple endomorphisms of \mathfrak{g} . Hence the operators in $\operatorname{ad} \mathfrak{h}$ are simultaneously diagnonalizable. There exists a finite set $\Phi = \Phi(\mathfrak{g}, \mathfrak{h})$ of nonzero elements of \mathfrak{h}^* such that

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}, \text{ where } \mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} \mid \text{ad } H(X) = [H, X] = \alpha(H)X \, \forall H \in \mathfrak{h} \}.$$

This is called the *Cartan decomposition* of \mathfrak{g} . Any semisimple Lie algebra has an analogous Cartan decomposition, relative to the restriction of the adjoint representation of \mathfrak{g} to a Cartan subalgebra of \mathfrak{g} . The given Cartan subalgebra \mathfrak{h} is always equal to the space $\{X \in \mathfrak{g} \mid [H, X] = 0 \forall H \in \mathfrak{h}\}$. The elements of Φ are called the *roots* of \mathfrak{g} (relative to \mathfrak{h}). If $\alpha \in \Phi$, the subspace \mathfrak{g}_{α} is one-dimensional and is called the *root space* corresponding to α . Root spaces for $sp_{2n}(\mathbb{C})$:

If $1 \leq i \neq j \leq n$, then $X_{ij} := E_{i,j} - E_{n+j,n+i}$ spans $\mathfrak{g}_{\lambda_i - \lambda_j}$. If $1 \leq i < j \leq n$, then $Y_{ij} := E_{i,n+j} + E_{j,n+i}$ spans $\mathfrak{g}_{\lambda_i + \lambda_j}$. If $1 \leq i < j \leq n$, then $Z_{ij} := E_{n+i,j} + E_{n+j,i}$ spans $\mathfrak{g}_{-\lambda_i - \lambda_j}$. If $1 \leq i \leq n$, then $U_i := E_{i,n+i}$ spans $\mathfrak{g}_{2\lambda_i}$. If $1 \leq i \leq n$, then $V_i := E_{n+i,i}$ spans $\mathfrak{g}_{-2\lambda_i}$.

Hence the roots for $sp_{2n}(\mathbb{C})$ are

$$\Phi = \{ \pm (\lambda_i - \lambda_j), \pm (\lambda_i + \lambda_j), \ 1 \le i < j \le n; \ \pm 2\lambda_i, \ 1 \le i \le n \}.$$

In the case of $\mathfrak{sp}_4(\mathbb{C})$, we have $H_1 = \text{diag}(1, 0, -1, 0), H_2 = \text{diag}(0, 1, 0, -1),$

Let $\alpha, \beta \in \Phi$. Let $X_{\alpha} \in \mathfrak{g}_{\alpha}$ and $X_{\beta} \in \mathfrak{g}_{\beta}$. The element $[X_{\alpha}, X_{\beta}]$, being an element of \mathfrak{g} has a decomposition as a sum of an element in \mathfrak{h} and some elements in various root spaces. To determine this decomposition, we evaluate $[H, [X_{\alpha}, X_{\beta}]]$ for $H \in \mathfrak{h}$. The Jacobi identity tells us that

$$[H, [X_{\alpha}, X_{\beta}]] + [X_{\alpha}, [X_{\beta}, H]] + [X_{\beta}, [H, X_{\alpha}]] = 0.$$

Since $[X_{\beta}, H] = -[H, X_{\beta}] = -\beta(H)X_{\beta}$ and $[H, X_{\alpha}] = \alpha(H)X_{\alpha}$, this can be rewritten to get

$$[H, [X_{\alpha}, X_{\beta}]] = \beta(H)[X_{\alpha}, X_{\beta}] - \alpha(H)[X_{\beta}, X_{\alpha}] = (\alpha + \beta)(H)[X_{\alpha}, X_{\beta}].$$

It follows that

$$[X_{\alpha}, X_{\beta}] \in \begin{cases} \mathfrak{h}, & \text{if } \beta = -\alpha, \\ \mathfrak{g}_{\alpha+\beta}, & \text{if } \alpha + \beta \in \Phi, \\ \{0\}, & \text{otherwise.} \end{cases}$$

We can see that in the example $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$, we have $\alpha \in \Phi$ if and only if $-\alpha \in \Phi$. This is true in general.

There are certain distinguished subalgebras \mathfrak{s}_{α} of \mathfrak{g} attached to elements α of Φ . Each of these subalgebras is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. Consider the root $\alpha = \lambda_1 - \lambda_2$ of $\mathfrak{sp}_4(\mathbb{C})$. Note that $X_{12} \in \mathfrak{g}_{\alpha}, X_{21} \in \mathfrak{g}_{-\alpha}$, and $[X_{12}, X_{21}] = \operatorname{diag}(1, -1, -1, 1) = H_1 - H_2$. We can easily see that the subspace $\mathfrak{s}_{\alpha} := \operatorname{Span}\{H_1 - H_2, X_{12}, X_{21},\}$ is a subalgebra of $\mathfrak{sp}_4(\mathbb{C})$ that is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. More generally, it is possible to prove that if $\alpha \in \Phi$, then $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \neq 0$ (hence it is a one-dimensional subspace of \mathfrak{h}). Also $[[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}], \mathfrak{g}_{\alpha}] \neq 0$. These facts can be used to show that $\mathfrak{s}_{\alpha} := [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$ is a subalgebra of \mathfrak{g} that is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$. In fact, if we let H_{α} be the unique element of the one-dimensional subspace $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ of \mathfrak{h} such that $\alpha(H_{\alpha}) = 2$, fixing a nonzero element $X_{\alpha} \in \mathfrak{g}_{\alpha}$, we can find a nonzero element $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ such that $[X_{\alpha}, Y_{\alpha}] = H_{\alpha}$. With these choices, $H_{\alpha} \mapsto \operatorname{diag}(1, -1), X_{\alpha} \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $Y_{\alpha} \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ extends to a Lie algebra isomorphism between \mathfrak{s}_{α} and $\mathfrak{sl}_2(\mathbb{C})$. If $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, set $\alpha = \lambda_1 - \lambda_2$ and $\beta = 2\lambda_2$. Then

$$\Phi = \{ \pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (2\alpha + \beta) \}.$$

With this labelling we have

$$\begin{split} H_{\alpha} &= H_1 - H_2 = \text{diag}(1, -1, -1, 1) \\ H_{\beta} &= H_2 = \text{diag}(0, 1, 0, -1) \\ H_{\alpha+\beta} &= H_1 + H_2 = \text{diag}(1, 1, -1, -1). \\ H_{2\alpha+\beta} &= H_1. \end{split}$$

It is immediate from the definition that $H_{-\gamma} = -H_{\gamma}$ for $\gamma \in \Phi$. When referring to the case $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, we will reserve the notation α for $\lambda_1 - \lambda_2$. However, when referring to general complex semisimple Lie algebras, α will simply denote any element of Φ .

Let Λ_{Φ} be the subset of \mathfrak{h}^* made up of all integral linear combinations of elements of Φ , and let $\Lambda_W = \{ \lambda \in \mathfrak{h}^* \mid \lambda(H_\alpha) \in \mathbb{Z}, \forall \alpha \in \Phi \}.$

Given a root $\alpha \in \Phi$, let w_{α} be the involution of the vector space \mathfrak{h}^* defined as follows: $w_{\alpha}(\alpha) = -\alpha$, and $w_{\alpha}(\lambda) = \lambda$ for all $\lambda \in \Omega_{\alpha} := \{\lambda \in \mathfrak{h}^* \mid \lambda(H_{\alpha}) = 0\}$. Then

$$w_{\alpha}(\lambda) = \lambda - (2\lambda(H_{\alpha})/\alpha(H_{\alpha}))\alpha = \lambda - \lambda(H_{\alpha})\alpha, \qquad \lambda \in \mathfrak{h}^*.$$

The Weyl group of \mathfrak{g} (or of Φ) is defined to be the subgroup of $GL(\mathfrak{h}^*)$ generated by the set $\{w_{\alpha} \mid \alpha \in \Phi\}$. Note that it is immediate from the definitions that $w_{\alpha} = w_{-\alpha}$ for all $\alpha \in \Phi$.

In the case of $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, the set $\{\alpha, \beta\}$ is a basis of \mathfrak{h}^* and

$$\Omega_{\alpha} = \{ \lambda \in \mathfrak{h}^* \mid \lambda(H_1) = \lambda(H_2) \} = \operatorname{Span}\{ \alpha + \beta \}$$

$$\Omega_{\beta} = \{ \lambda \in \mathfrak{h}^* \mid \lambda(H_2) = 0 \} = \operatorname{Span}\{ 2\alpha + \beta \}$$

$$w_{\alpha}(\beta) = 2\alpha + \beta, \ w_{\beta}(\alpha) = \alpha + \beta$$

It is easy to check that $w_{\alpha}w_{\beta}$ has order 4, W is generated by $\{w_{\alpha}, w_{\beta}\}$, and W is isomorphic to the dihedral group of order 8. Furthermore, $W(\Phi) = \Phi$ - this is true in general.

It is possible to show that evey element of W is induced by an automorphism of \mathfrak{g} that carries \mathfrak{h} to itself. In fact, if G is a complex Lie group with Lie algebra \mathfrak{g} , and T is the Cartan subgroup of G that corresponds to \mathfrak{h} (that is, T is the closed subgroup of G that is generated by the exponentials of the elements of \mathfrak{h}), the group W can be realized as $N_G(T)/T$, where $N_G(T)$ is the normalizer of T in G. Given $\alpha \in \Phi$, there is an element $g_\alpha \in N_G(T)$ such that conjugation by g_α induces an automorphism $\operatorname{Ad} g_\alpha$ of \mathfrak{g} that preserves \mathfrak{h} and restricts to an automorphism of \mathfrak{h} that corresponds to the automorphism w_α of \mathfrak{h}^* .

In the example $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, *T* is the group of diagonal matrices in $Sp_4(\mathbb{C})$. For the given choice of $\alpha = \lambda_1 - \lambda_2$, we can take

$$g_{\alpha} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix},$$

and $\operatorname{Ad} g_{\alpha}(X) = g_{\alpha} X g_{\alpha}^{-1}, X \in \mathfrak{sp}_4(\mathbb{C})$. Restricting to \mathfrak{h} and then composing, we obtain the involution w_{α} of \mathfrak{h}^* .

Up so multiplication by scalars, there is a unique inner product on \mathfrak{h}^* that is *W*-invariant. For $\mathfrak{g} = \mathfrak{sp}_4(\mathbb{C})$, since *W* is generated by w_α and w_β , it suffices to take an inner product on \mathfrak{h}^* that is w_{α} and w_{β} -invariant. Denoting the inner product by $\langle \cdot, \cdot \rangle$, we must have α orthogonal to Ω_{α} , that is, $\langle \alpha, \alpha + \beta \rangle = 0$, and β orthogonal to Ω_{β} . Hence

$$\langle \alpha, \beta \rangle = -\langle \alpha, \alpha \rangle = -\langle \beta, \beta \rangle/2.$$

We can (and do) normalize so that α is a unit vector. For convenience, we fix an isometry between our inner product space \mathfrak{h}^* and with the inner product space \mathbb{C}^2 (relative to the standard inner product), with α identified with (1,0). In that case, there are two possible choices for the vector that we identify with β : $(-1, \pm 1)$. We choose to take (-1, 1). Then $\alpha + \beta$ is identified with (0, 1)and $2\alpha + \beta$ with (1, 1).

It is convenient to partition Φ as a disjoint union of two sets Φ^+ and $\Phi^$ in a nice way. One of the properties we need from such a partition is: $\alpha \in \Phi^+$ if and only if $-\alpha \in \Phi^-$. Also, if α and β belong to Φ^+ , we require that if $\alpha + \beta$ belongs to Φ , it belongs to Φ^+ .

For example, we can choose a (real) linear functional ℓ on the space $\operatorname{Span}_{\mathbb{R}}(\Phi)$ that is nonvanishing on the subset Φ . Then we can set $\Phi^+ = \{ \alpha \in \Phi \mid \ell(\alpha) > 0 \}$ and $\Phi^- = \{ \alpha \in \Phi \mid \ell(\alpha) < 0 \}$. The elements of Φ^+ are referred to as *positive* roots, and the elements of Φ^- are *negative* roots. A choice of Φ^+ (and hence Φ^-) is called an *ordering* on Φ .

In our $\mathfrak{sp}_4(\mathbb{C})$ example, one possible choice for Φ^+ is $\Phi^+ = \{\alpha, \beta, \alpha + \beta, 2\alpha + \beta\}.$

A positive root is said to be *simple* (or *primitive*) if it cannot be expressed as a sum of two positive roots. (A similar definition can be made for negative roots). For the choice of Φ^+ that we have made for $\mathfrak{sp}_4(\mathbb{C})$, α and β are the simple roots in Φ^+ .

In general, suppose that $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ is the set of simple roots in Φ^+ . Then Δ is a basis for \mathfrak{h}^* and

$$\Phi^+ \subset \left\{ \sum_{i=1}^{\ell} m_i \alpha_i \mid m_i \in \mathbb{Z}, \, m_i \ge 0 \right\}.$$

To be continued....