MAT 445/1196 - Complex symplectic Lie algebras

Let n be an integer greater than or equal to 2. Let J = ( 0 I )

-1, O
Then
Span(C) ={g € GL2,(C) | 'gJg = J }

Or, define a nondegenerate bilinear symplectic form on C?" by Q(z,y) = tz.Jy.
Then

Spon(C) = {g € GL2,(C) | Qg gy) = Q(x,y), Yo,y € C*™}
5P, (C) = { X € gy, (C) | Q(Xz,y) + Q(z,Xy) =0, Y,y € C" }

We can write elements of g = sp,,,(C) in block form: X = (é —]?A)’

where A, B, C € M, «,(C) and B =B, C = 'C. Note that the dimension
of sp,, (C) is n(2n + 1).

The set of diagonal matrices b in g = sp,,,(C) is an abelian subalgebra of
g. The elements H; = F; ; — Epyipnti, 1 <1 <n, form a basis of the vector
space h. The subalgebra b is a Cartan subalgebra of g.

Let { A\1,..., A, } be the basis of h* that is dual to the basis { Hy, ..., H, }
of bh: that is, )\( i) =05, 1 <i,j <n.

Consider the adjoint representation X +— ad X of g: adX : g — g is
defined by ad X(Y) = [X,Y], Y € g. Theset adh ={adH | H € h}isa
commuting family of semisimple endomorphisms of g. Hence the operators in
ad b are simultaneously diagnonalizable. There exists a finite set ® = ®(g, h)
of nonzero elements of h* such that

g=hOEP 9o, where go ={X € gladH(X)=[H,X]=a(H)XVH €h}.

aed

This is called the Cartan decomposition of g. Any semisimple Lie algebra has
an analogous Cartan decomposition, relative to the restriction of the adjoint
representation of g to a Cartan subalgebra of g. The given Cartan subalgebra
h is always equal to the space {X € g | [H,X]| = OVH € h}. The elements
of ® are called the roots of g (relative to h). If a € @, the subspace g, is
one-dimensional and is called the root space corresponding to .



Root spaces for sps, (C):
If 1 <i+#j<mn,then Xj; :=F;; — Ej1jny; Spans gx,_x,-
If1<i<j<mn,then Y :=E;,i;+ Ejni;spans gy, yx,-
fi1<i< 1< n, then Zij ‘= L T En—l—j,i spans g, —x;-
If 1 <i<mn,then U, := E; ,1; spans gay,.
If1 <i<mn,thenV;:=E,;,;; spans g_ay,.

Hence the roots for spy, (C) are
q):{ﬂ:()\%—kj),ﬂ:()\@ﬁ—)\]), 1 <<y <ny +2X\;, 1 SZSR}

In the case of sp,(C), we have H; = diag(1,0,—1,0), H, = diag(0,1,0,—1),

0100\ 000 0
00 0 0 1 0 0 0
X12_00 0 0 X21_000—1
00—10/ 000 0
00 0 1 00 0 0
00 1 0 00 0 0
Y12(0000 Z2=10 1 0 0
0000/ 1 0 0 0
00 1 0 00 0 0
00 0 0 0 0 0 1
Ul(oooo U2=10 0 0 0
00 0 0 00 0 0
00 00 00 00
00 0 0 00 0 0
V1_1000V2_0000
00 0 0 01 0 0

Let o, B € ®. Let X, € g, and X3 € gg. The element [X,, Xg], being
an element of g has a decomposition as a sum of an element in  and some
elements in various root spaces. To determine this decomposition, we evaluate
[H, [ X, Xp]] for H € h. The Jacobi identity tells us that

H, [Xo, Xpl] + [Xa, [Xp, H]] + [Xp, [H, Xa]] = 0.

Since [Xg,H] = —[H, Xg| = —B(H)X 3 and [H, X,]| = a(H)X,, this can be
rewritten to get

[H7 [XOHXﬁH - B(H)[meﬁ] - a(H)[XﬁvXa] — (a —I—ﬁ)(H)[Xa,Xg].
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It follows that
b? lf ﬁ = —q,
(X0, X5] €1 Gats, fa+p8e@,.
{0},  otherwise.

We can see that in the example g = sp,,,(C), we have a € ® if and only
if —a € ®. This is true in general.

There are certain distinguished subalgebras s, of g attached to elements
a of ®. Each of these subalgebras is isomorphic to sly(C). Consider the root
a = A — Ay of sp,(C). Note that X125 € go, Xo1 € g_q, and [X12, Xo1] =
diag(1,—1,—1,1) = H; — Hy. We can easily see that the subspace s, :=
Span{ Hy — Hsy, X12, X21, } is a subalgebra of sp,(C) that is isomorphic to
sl5(C). More generally, it is possible to prove that if & € ®, then [g,,9-o] # 0
(hence it is a one-dimensional subspace of ). Also [[ga, 8al, 8] # 0. These
facts can be used to show that s, := [ga, §—a] D ga D g is a subalgebra of
g that is isomorphic to sly(C). In fact, if we let H, be the unique element
of the one-dimensional subspace [gq, §—a] of h such that a(H,) = 2, fixing a
nonzero element X, € g., we can find a nonzero element Y, € g_, such that

0 1
(X4, Ys] = H,. With these choices, H, — diag(1l,—1), X, — <0 0) and

Y, — <(1) 8) extends to a Lie algebra isomorphism between s, and sls(C).

If g=1s5p,(C), set @« = A1 — Ay and =2 Ay. Then
d = {+a,£8,+(a+ ), +2a+3) }.

With this labelling we have

Ha = Hl - H2 = dlag(l, —1, —]., 1)

Hg = Hy = diag(0,1,0,—1)

Hoyp=H; +Hy = diag(1,1,—1,—1).

H2o¢+ﬁ = Hl.

It is immediate from the definition that H_, = —H, for v € . When
referring to the case g = sp,(C), we will reserve the notation a for A\; — As.

However, when referring to general complex semisimple Lie algebras, o will
simply denote any element of ®.

Let Ag be the subset of h* made up of all integral linear combinations of
elements of ®, and let Ay = {A € b* | A(Hy) € Z, YVa € P }.
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Given a root a € ®, let w, be the involution of the vector space h*
defined as follows: wy(a) = —a, and wa(A) = A for all A € Q, := {\ €
h* | A\(Hy) =0}. Then

wWa(A) = A — (2AN(Ha)/a(Ha))a = A — A(Ha)a, A€ b,

The Weyl group of g (or of @) is defined to be the subgroup of GL(h*) gener-
ated by the set { w, | @ € & }. Note that it is immediate from the definitions
that w, = w_,, for all o« € P.

In the case of g = sp,(C), the set { a, 3} is a basis of h* and

Qo ={Ae€b” | A(H1) = AM(H2) } = Span{ a + (3 }
Qs ={Aebh” | \(Ha) =0} = Span{ 2+ 3}
wa(B) =20+ 6, wg(a) =a+

It is easy to check that w,wg has order 4, W is generated by { w,,ws }, and
W is isomorphic to the dihedral group of order 8. Furthermore, W (®) = & -
this is true in general.

It is possible to show that evey element of W is induced by an automor-
phism of g that carries § to itself. In fact, if G is a complex Lie group with
Lie algebra g, and T is the Cartan subgroup of G that corresponds to b (that
is, T' is the closed subgroup of G that is generated by the exponentials of the
elements of h), the group W can be realized as Ng(T')/T, where Ng(T) is
the normalizer of T in G. Given « € @, there is an element g, € Ng(T') such
that conjugation by g, induces an automorphism Ad g, of g that preserves h
and restricts to an automorphism of h that corresponds to the automorphism
we, of h*.

In the example g = sp,(C), T is the group of diagonal matrices in Spy(C).
For the given choice of & = A1 — Ao, we can take

0 1 0 0
=10 0 o0

Ja=1 0 0o 0o 1]
0 0 -1 0

and Ad go(X) = go X g, !, X € 5p,(C). Restricting to b and then composing,
we obtain the involution w, of b*.

Up so multiplication by scalars, there is a unique inner product on h* that
is W-invariant. For g = sp,(C), since W is generated by w, and wg, it suffices
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to take an inner product on h* that is w, and wg-invariant. Denoting the inner
product by (-, -), we must have « orthogonal to Q,, that is, (a,a + 3) = 0,
and 3 orthogonal to {2g. Hence

(o, B) = —(o, @) = (B, B)/2.

We can (and do) normalize so that « is a unit vector. For convenience, we fix
an isometry between our inner product space h* and with the inner product
space C? (relative to the standard inner product), with « identified with (1, 0).
In that case, there are two possible choices for the vector that we identify with
B: (—1,£1). We choose to take (—1,1). Then « + ( is identified with (0, 1)
and 2o + (8 with (1,1).

It is convenient to partition ® as a disjoint union of two sets ®* and &~
in a nice way. One of the properties we need from such a partition is: o € &+
if and only if —a € ®~. Also, if a and 3 belong to ®T, we require that if
a + 3 belongs to @, it belongs to ®.

For example, we can choose a (real) linear functional ¢ on the space
Spang (®) that is nonvanishing on the subset ®. Then we can set T = {«a €
¢ la)>0}and P~ ={a € @ |l a) <0}. The elements of T are referred
to as positive roots, and the elements of &~ are negative roots. A choice of
®T (and hence ®7) is called an ordering on ®.

In our sp,(C) example, one possible choice for T is &+ = {a, 8, a +
B,2a+ 3 }.

A positive root is said to be simple (or primitive) if it cannot be expressed
as a sum of two positive roots. (A similar definition can be made for negative
roots). For the choice of ®* that we have made for sp,(C), @ and 3 are the
simple roots in ®T.

In general, suppose that A = {aq,...,ap } is the set of simple roots in
®*. Then A is a basis for h* and

y4
(I>+C{Zmiozimi€Z,mi>O}.

=1

To be continued....



