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Abstract

For a prime number p ≥ 5, consider a primitive cusp eigenform f = fk of weight
k ≥ 2, f =

P∞

n=1
anqn, and consider a family of cusp eigenforms fk′ of weight k′ ≥ 2,
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k′ 7→ fk′ =
P∞

n=1
an(k′)qn, containing f for k′ = k, such that the Fourier coefficients

an(k′) are given by certain p-adic analytic functions k′ 7→ an(k′) for (n, p) = 1, and
let αp(k′) be a Satake p-parameter of fk′ .

In "The Eigencurve" (1998), R.Coleman and B.Mazur stated the following prob-
lem:

Given a prime p and Coleman’s family {fk′} of cusp eigenforms of a fixed positive
slope σ = ordp(αp(k

′)) > 0, to construct a two variable p-adic L-function interpo-
lating on k′ the Amice-Vélu p-adic L-functions Lp(fk′).

A solution (2003) is described using the Rankin-Selberg method and the theory
of p-adic integration with values in a p-adic algebra A.

Our p-adic L-functions are p-adic Mellin transforms of certain A-valued measures.
Such measures come from Eisenstein distributions with values in certain Banach A-
modules M

† = M
†(N ; A) of families of overconvergent forms over A.

Another approach, based on overconvergent families of modular symbols, was
developed by Glenn Stevens. Applications of these results to the p-adic Birch and
Swinnerton-Dyer conjecture were discussed by P.Colmez (Bourbaki talk, June 2003,
[Colm03]).
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0 Statement of the problem of Coleman-Mazur

This report is on [PaTV] by A.P., Two variable p-adic L functions attached to eigenfamilies
of positive slope, Invent. Math. v. 154, N3 (2003), pp. 551 - 615.

The Tate field Cp

Fix a prime p, and let Cp = Q̂p be the Tate field
(the completion of the field of p-adic numbers)

We fix an embedding ip : Q → Cp,
and view algebraic numbers as
p-adic numbers via ip.

A primitive cusp eigenform f

f = fk =
∑

n≥1

anq
n ∈ Sk(Γ0(N), ψ),

(where q = e(z) = exp(2πiz), Im(z) > 0)

A primitive cusp eigenform f = fk

of weight k ≥ 2 for Γ0(N)
with a Dirichlet character ψ (mod N).



The special values of the L-function attached to f at s = 1, · · · , k − 1:

Lf(s, χ) =
∑

n≥1

χ(n)ann
−s,

(χ are Dirichlet characters)

where 1 − apX + ψ(p)pk−1X2 = (1 − αX)(1 − α′X)
is the Hecke polynomial
α and α′ are called the Satake parameters of f

Periods of f

Following a known theorem of Manin [Ma73], there exist two non-zero complex constants
c+(f), c−(f) ∈ C× (the periods of f) such that for all s = 1, · · · , k − 1 and for all Dirich-
let characters χ of fixed parity, (−1)k−sχ(−1) = ±1, the normalized special values are
algebraic numbers:

L∗
f (s, χ) =

(2iπ)−sΓ(s)Lf (s, χ)

c±(f)
∈ Q. (0.1)



A family of slope σ > 0 of cusp eigenforms fk′ of weight k′ ≥ 2 containing f

k′ 7→ fk′ =

∞∑

n=1

an(k′)qn ∈ Q[[q]]

1) the Fourier coefficients an(k′) of fk′

and the Satake p-parameter αp(k
′) are given by certain

p-adic analytic functions k′ 7→ an(k′) for (n, p) = 1
2) the slope is constant and positive:
ord(αp(k

′)) = σ > 0

A model example of a p-adic family (not cusp and σ = 0): Eisenstein series

an =
∑

d|n

dk′−1, fk′ = Ek′
the fk′ the Fourier coefficients an(k′) of Ek′

and one of the Satake p-parameters αp(k
′) = 1

ordp(αp(k
′)) = ordp(1) = 0

The existence of families of slope σ > 0: R.Coleman, [CoPB]

He gave an example with p = 7, f = ∆, k = 12

a7 = τ(7) = −7 · 2392, σ = 1, and

a program in PARI for computing
such families is contained in [CST98]
(see also the Web-page of W.Stein,
http://modular.fas.harvard.edu/ )



The Problem, see [Co-Ma] R. Coleman, B. Mazur, The eigencurve. Galois
representations in arithmetic algebraic geometry, (Durham, 1996), London
Math. Soc. Lecture Note Ser., 254, at p.6

Given a p-adic analytic family k′ 7→ fk′ =
∞∑

n=1

an(k′)qn ∈ Q[[q]] of positive slope σ > 0, to

construct a two-variable p-adic L-function interpolating L∗
fk′

(s, χ) on (s, k′).

Known cases:

•
One-variable case
(k = k′ is fixed, σ > 0),

treated in [Am-Ve] by Y. Amice, J. Vélu,
in [Vi76] by M.M. Višik, and in
[MTT] by B. Mazur; J. Tate; J. Teitelbaum

•
σ = 0 (H.Hida)
("ordinary families")

(see in [Hi93] H. Hida, Elementary theory of L-functions
and Eisenstein series, London Mathematical Society
Student Texts. 26, Cambridge University Press, 1993



•

Special values of L-functions attached to
families fk of Yu.I. Manin and M. M.Vishik, [Ma-Vi]

fk =
∑

a⊂OK

λk−1(a)qNa

and of N.M.Katz, [Kat]),
which are are certain ordinary families

they correspond to powers of a
grössen-character λ of an imaginary
quadratic field K at a splitting prime p,
(resp. to grössencharacters of type A0

of the idèle class group A∗
K/K

∗

(in the sense of Weil [We56],)
of a CM-field K.



Motivation:

comes from the conjecture of Birch and Swinnerton-Dyer, see in [Colm03] , Colmez, P.: La
conjecture de Birch et Swinnerton-Dyer p-adique. Séminaire Bourbaki. [Exposé No.919]
(Juin 2003). For a cusp eigenform f = f2, corresponding to an elliptic curve E by Wiles
[Wi], we consider a family containing f .

One can try to approach k = 2, s = 1
from the other direction, taking k′ → 2 ,
instead of s→ 1, this leads to a formula
linking the derivative over s at s = 1
of the p-adic L-function with the
derivative over k′ at k′ = 2
of the p-adic analytic function
αp(k

′), see in [CST98]:

L′
p,f (1) = Lp(f)Lp,f (1)

with Lp(f) = −2
dαp(k

′)

dk′
∣∣
k′=2

0 1 2 3 4 5
0

1

2

3

4

5

s

k′

The validity of this formula needs

the existence of our two variable L-function!



Our method

is a combination of the Rankin-Selberg method with the theory of p-adic integration
with values in p-adic Banach algebras A and the spectral theory of Atkin’s U -operator:
U = Up : A[[q]] → A[[q]] defined by:

U




∑

n≥1

anq
n



 =
∑

n≥1

apnq
n ∈ A[[q]].

Here A = A(B) is a certain p-adic Banach algebra of functions on an open analytic subspace

B on the weight space X = Homcont(Y,C
∗
p). This is an analytic space over Cp, which

consists of all continuous characters of a certain profinite group Y over Z∗
p.

The classical analogue of the weight space is the complex plane

C = Homcont(R
∗
+,C

∗), s 7→ (y 7→ ys).

The weights k′ correspond to certain points in the neighborhood B of the given weight k.
Any series f =

∑
n≥1 anq

n ∈ A[[q] produces a family of q-expansions
{
fk′ = evk′(f) =

∑

n≥1

evk′(an)qn ∈ Cp[[q]]
}
, which can be classical modular forms in Q[[q]].



• We construct first an analytic function Lµ : X → A = A(B) as the Mellin transform

Lµ(x) =

∫

Y

xdµ

of a certain measure µ on our profinite group Y with values in A.

• For each s ∈ B, there is the evaluation homomorphism evs : A(B) → Cp; we obtain
Lµ(x, s) by evaluation of an A-valued integral:

Lµ(x, s) = Lµ(x)(s) = evs

(∫

Y

xdµ

)
(x ∈ X, Lµ(x) ∈ A).

This gives a p-adic analytic L-function in two variables (x, s) ∈ X × B ⊂ X ×X .

• We check an equality relating the algebraic numbers L∗
fk′

(s, χ) (s = 1, · · · , k′ − 1)
with the values Lµ(x, k′) at certain arithmetic characters x ∈ X .

Another approach (Glenn Stevens, unpublished)

uses overconvergent families of modular symbols, see [Ste]. As noted by Stevens, it yields
a formula for the derivative at s = k − 1 of the p-adic L-function of fk′ .



1 p-adic integration and the p-adic weight space

Consider Y = lim
←−

v

Yv, Yv = (Z/NpvZ)×

X = XN = Homcont(Y,C
×
p ) ∋ χ, yn

p ,
where
χ mod NpvZ : (Z/NpvZ)× → C×

p

yp : Y → Z×
p

( a profinite group, endowed with
a projection yp : Y → Z×

p )

(the p-adic weight space,
which is a Cp-analytic group)
(a Dirichlet character)
(the canonical projection,
a p-adic character of Y )

The p-adic weight space X = XN = Homcont(Y,C
×
p ) has the following analytic structure

over Cp:
X

∼
→ Hom((Z/NpZ)×,C×

p ) × Homcont(Γ,C
×
p )

where Y ∼= (Z/NpZ)× × Γ, Γ = (1 + pZp)
×, is a procyclic group of generator γ = 1 + p,

and there is a unique decomposition yp(y) = ǫ(y) · 〈y〉 with the Teichmüller character
ǫ : Y → µp−1

∼= (Z/pZ)× ⊂ Z×
p and 〈y〉 ∈ Γ, and we see that X is a finite cover of the

p-adic unit disc:

X →→ Homcont(Γ,C
×
p )

∼
→ U = {t ∈ Cp | |t− 1|p < 1} ∼= {χt : γ 7→ t | t ∈ U}.



Notation

(k, ψ) = yk
pψ ∈ X

A

V

C(Y,A)
∪
C

loc−const(Y,A)

is a point on the weight space X ,
were we view ψ : (Z/NZ)× → C×

p as a locally constant on Y
(a p-adic Banach algebra)
(a Banach A-module)

(the A-Banach algebra of continuous functions on Y )

(the A-algebra of locally constant functions on Y )

Definition 1.0.1 a) A distribution D on Y with values in V is an A-linear form

D : C
loc−const(Y,A) → V, ϕ 7→

∫

Y

ϕD.

b) A measure µ on Y with values in V is a continuous A-linear form

µ : C(Y,A) → V, ϕ 7→

∫

Y

ϕµ.



Admissible measures of Amice-Vélu

A more delicate notion of an h-admissible measure was introduced in [Am-Ve] by Y.
Amice, J. Vélu (see also [MTT], [Vi76]):

Definition 1.0.2

a) For h ∈ N, h ≥ 1 let P
h(Y,A) denote the A-module of locally polynomial functions of

degree < h of the variable yp : Y → Z×
p →֒ A×; in particular,

P
1(Y,A) = C

loc−const(Y,A)

(the A-submodule of locally constant functions). Let also denote Cloc−an(Y,A) the
A-module of locally analytic functions, so that

P
1(Y,A) ⊂ P

h(Y,A) ⊂ C
loc−an(Y,A) ⊂ C(Y,A).



b) Let V be a normed A-module with the norm | · |p,V . For a given positive integer h an
h-admissible measure on Y with values in V is an A-module homomorphism

Φ̃ : P
h(Y,A) → V

such that for fixed a ∈ Y and for v → ∞ the following growth condition is satisfied:
∣∣∣∣∣

∫

a+(Npv)

(yp − ap)
h′dΦ̃

∣∣∣∣∣
p,V

= o(p−v(h′−h)) (1.1)

for all h′ = 0, 1, . . . , h− 1, ap := yp(a)

The condition (1.1) allows one to integrate all locally-analytic functions: there exists a
unique extension of Φ̃ to Cloc−an(Y,A) → V (via the embedding Ph(Y,A) ⊂ Cloc−an(Y,A)).
The integral is defined using generalized Riemann sums : take the beginning of the Taylor
expansion of a locally-analytic function φ ∈ Cloc−an(Y,A) (of order h− 1) instead of just
values of a function φ.



The p-adic Mellin transform and two variable p-adic analytic functions

Any h-admissible measure µ̃ on Y with values in a p-adic Banach algebra A can be carac-
terized by the logarithmic growth o(logh(·)) of its Mellin transform Lµ̃(x) (see [Am-Ve],
[Vi76], [HaH]):

Lµ̃ : X → A, defined by Lµ̃(x) =

∫

Y

x(y)dµ̃(y),

where x ∈ X, Lµ̃(x) ∈ A, X ⊂ C
loc−an(Y,A)×

Key property of h-admissible measures µ̃: its Mellin transform Lµ̃ is analytic with values in
A.

Moreover, if A is a p-adic Banach algebra of functions on the weight space X , then
for each s with (s, ψ) from a neigbourhood B of (k, ψ) ∈ X , we obtain by evaluation at
(s, ψ) a Cp-linear form

evs(µ) = µ(s) : C
loc−an(Y,Cp) → Cp.



This function produces a p-adic analytic function in two variables (x, s) ∈ X×B ⊂ X×X :

Lµ(x, s) = Lµ(x)(s) =

∫

Y

xdµ(s) (x ∈ X, Lµ(x) ∈ A).

Example 1.0.3 ([Am-Ve], [MTT], [Vi76]) For a primitive cusp eigenform f = fk =∑

n≥1

anq
n ∈ Sk(Γ0(N), ψ), of weight k ≥ 2 for Γ0(N) with a Dirichlet character ψ and

positive slope σ = ordp(α) put h = [σ]+1 (where σ < k−1, and 1−apX+ψ(p)pk−1X2 =
(1 − αX)(1 − α′X) as above).

Then there exists an h-admissible Cp-valued measure µ̃ = µ̃α,f (y) on Y such that for
all couples (j, χ) with 0 ≤ j ≤ k − 2, and for any nontrivial primitive Dirichlet character
χ mod pv satisfying χξ(−1) = (−1)k−1−j, there is the following equality (in Cp):

∫

Y

χ(y) yj
p dµ̃ = ip

(
pvjG(χ)

αv
L∗

f (1 + j, χ̄)

) (
= Lµ̃(χ yj

p)
)
, (1.2)

where G(χ) is the Gauss sum of the character χ mod pv, and L∗
f(1 + j, χ̄) is given by a

choice of periods (0.1).
In other words, the complex L-values (1.2) attached to f coincide with the values

Lµ̃(χ yj
p) of the p-adic Mellin transform of µ̃.



2 Coleman’s families

The proof of the existence of families of slope σ > 0 by R.Coleman, [CoPB], uses the
following ideas:

Notation

[K : Qp] <∞

A = AK(B)

evk′ : A → K

M
†(N ; A) =

⋃

v≥1

M
†(Npv, ψ; A) ⊂ A[[q]]

– a finite extension of Qp

contaning all the Fourier coefficients ip(an) of f
– the K-Banach algebra of rigid-analytic functions
in a neighbourhood B of (k, ψ) ∈ X
– the evaluation map defined for all (k′, ψ) ∈ B

(a neigbourhood around (k, ψ) ∈ X).

– a Banach A-module of overconvergent
families of modular forms:
it can be generated by some g =

∑∞
n=1 bnq

n ∈ A[[q]]
such that evk′(g) ∈ K[[q]]
are classical cusp eigenforms for all k′

with (k′, ψ) in a neigbourhood B around (k, ψ) ∈ X .



Coleman proved:

•

The operator U
acts as a completely continuous operator
on each A-submodule M†(Npv; A) ⊂ A[[q]]
(i.e. it is a limit of finite-dimensional operators)

=⇒ there exists
the Fredholm determinant

PU (T ) = det(Id− T · U) ∈ A[[T ]]

•
there is a version of the Riesz theory:
for any inverse root α ∈ A∗ of PU (T )
there exists an eigenfunction g, Ug = αg.

such that evk′(g) ∈ K[[q]]
are classical cusp eigenforms for all k′

such that (k′, ψ) is in a neigbourhood
B around (k, ψ) ∈ X (see in [CoPB])

Definition 2.0.1

a) A function g ∈ M
†(Npv; A) ⊂ A[[q]] is called Coleman’s family if Ug = αg, and

the functions evk′ (g) ∈ K[[q]] are cusp eigenforms for all k′ such that (k′, ψ) is in a
neigbourhood B around (k, ψ) in the p-adic weight space X, and ordp(α(k′)) = σ > 0
is constant and positive, where α(k′) = evk′ (α) ∈ K ∩ ip(Q)

b) Let fk′ ∈ Q[[q]] denote the primitive cusp eigenform attached to evk′(g) ∈ K[[q]]. Then
the family {fk′} of classical primitive cusp forms is also called Coleman’s family.



Remark 2.0.2 Hida’s families correspond to σ = 0, they were constructed in [Hi86] (see
also [Hi93]).

There exist analogues of Hida’s families in the Siegel modular case (see [Bue], [Hi04]).

In the ordinary case such p-adic families of Siegel modular forms were studied by
K.Buecker (Dissertation of Cambridge University, UK, 1994, under the direction of Prof.
R. Taylor, see in [Bue]), and by J.Tilouine and E.Urban [Ti-U]. A more general approach
is developed in new Hida’s book [Hi04].



3 Main results

Main Theorem 3.0.1 Consider a nonzero rigid-analytic function α = α(s) ∈ A× defined
in an affinoid neigbourhood B around (k, ψ) ∈ X, and Coleman’s family

f =

{
fk′ =

∞∑

n=1

an(k′)qn

}
∈ A[[q]]

(with coefficients in the affinoid algebra A = A(B) of B) attached to the family of the
eigenvalues α(k′). Suppose that the slope ordp(α) = σ > 0 is fixed for all α = α(k′) with
(k′, ψ) in B, and put h = [σ] + 1.

Then there exists an h-admissible A-valued measure µ̃ = µα,f on Y such that for all
couples (j, χ) with 0 ≤ j ≤ k′−2, k′ > 2σ+2, any primitive Dirichlet character χ mod pv

satisfying χξ(−1) = (−1)k′−1−j, there is the following equality for the A-valued integral
at s = k′

evk′

(∫

Y

χ(y) yj
p dµ̃

)
= ip

(
Rk′ ·

pvjG(χ)

αp(k′)v
L∗

fk′
(1 + j, χ̄),

)
(3.1)

where G(χ) is the Gauss sums of χ mod pv, and Rk′ ∈ Q× is an elementary factor coming
from an explicit choice of periods c±(fk′ ).



Let us fix an auxiliary non-trivial Dirichlet character ξ mod p such that ip(Q(ξ)) ⊂ K
and assume the following non-vanishing condition:

Lfk′
(k′ − 1, ξ) 6= 0 (nvξ)

for all k′ > 2σ + 2 with (k′, ψ) in an affinoid neighbourhood B around (k, ψ) ∈ W. Note
that for all k′ > 3 we have Lfk′

(k′ − 1, ξ) 6= 0 in view of the absolute convergence of the

Euler product Lfk′
(s, ξ) for Re(s) > k′+1

2 .
Let us use the following choice of periods:

c±(fk′) =
(−2iπ)k′−1〈fk′ , fk′〉Np

Γ(k′ − 1)Lfk′
(k′ − 1, ξ̄)

, where ξ(−1) = ±(−1)j. (3.2)

It is known from [Ra52] and [Sh77] that the numbers

Lf(1 + j, χ̄)Lf(k′ − 1, ξ̄)

πk′+r〈fk′ , fk′〉Np
are algebraic for all j ∈ Z with 0 ≤ j ≤ k′ − 2,

χξ(−1) = (−1)k′−1−j (here 〈fk′ , fk′〉Np denotes the Petersson scalar product given by
∫

Γ0(Np)\H

| fk′ |
2 yk′−2dx dy, H = {z = x+ iy ∈ C | Im(z) > 0}, z = x+ iy).



A key ingredient in our construction is the use of a linear form

ℓα : M(Np, ψ,Q) → Q
×
,

such that α ∈ Q×, ℓα(Uph) = αℓα(h) for all h ∈ M(Np, ψ,Q), and 1−apX+ψ(p)pk−1X2 =

(1−αX)(1−α′X) for a primitive cusp eigenform f =

∞∑

n=1

anq
n ∈ Sk(Γ0(N), ψ,Q) of weight

k ≥ 2 for Γ0(N) with a Dirichlet character ψ (mod N). One can define such linear form

by ℓα : h 7−→
〈f0, h〉

〈f0, f0〉
, where f0 is an eigenfunction of Up: f0|Up = αf0,

f0 =
∑

n≥1

anq
n − α

∑

n≥1

anq
pn =

∑

n≥1

a(f0, n)qn ∈ Sk(Γ0(Np), ψ,Q), and

f0 = fρ
0

∣∣∣
k

(
0 −1
Np 0

)
, fρ

0 =
∑

n≥1

a(f0, n)qn ∈ Sk(Γ0(Np), ψ,Q)

is an eigenfunction of the adjoint operator U∗
p , and 〈f0, f0〉/〈f, f〉 ∈ Q

×
(see [Go-Ro]).



Theorem 3.0.2 Under the assumptions and notations of Theorem 3.0.2 there exists a
unique p-adic analytic function on X × B (of two variables x, s),

Lα,f (·1, ·2, ξ, f) : X × B → Cp (3.3)

such that
i) for any fixed (s, ψ) ∈ B, the function Lα,f (x, s; ξ, f) of the variable x is Cp-analytic
and has the logarithmic growth o(logh(x)),
ii) for each couple (χ, j) with 0 ≤ j ≤ k′ − 2, k′ > 2σ + 2 and any primitive Dirichlet
character χ mod pv ∈ Xtors with values in K× satisfying v ≥ 2, χξ(−1) = (−1)k′−1−j,
the special value L(χyj

p, k
′; ξ, fk′) is given by the image under ip of the algebraic number

Rk′ ·
pvjG(χ)

αp(k′)v
L∗

fk′
(1 + j, χ̄),

where G(χ) is the Gauss sums of χ mod pv, and Rk′ ∈ Q× is an elementary factor coming
from the explicite choice of periods c±(fk′) given by (3.2).

The function (3.3) answers the question of Coleman–Mazur. The proof uses the Mellin

transform Lµ̃(x) =

∫

Y

x(y)dµ̃(y), which is an A-valued analytic function on X .



4 Construction of the admissible measure

µ̃ : Ph(Y,A) → A

Recall that by Definition 1.0.2, an h-admissible measure on a profinite group Y with values
in an A-module V is given as an A-module homomorphism

µ̃ : P
h(Y,A) → V,

satisfying a certain growth condition (1.1), where V be a normed A-module with the norm
| · |p,V , h a given positive integer.

This means that µ̃ is given by sequence {µj} of certain distributions on Y , in such a
way that for j = 0, 1, · · · , h− 1 and for all compact open subsets U ⊂ Y one has

∫

U

yj
pdµ̃ = µj(U). (4.1)



In terms of {µj}, the growth condition (1.1) takes the form: for t = 0, 1, · · · , h− 1

∣∣∣∣∣

∫

a+(Npv)

(yp − ap)
tdµ̃

∣∣∣∣∣
p

(4.2)

=

∣∣∣∣∣∣

t∑

j=0

(
t

j

)
(−ap)

t−jµj(a+ (Npv))

∣∣∣∣∣∣
p

= o(pv(h−t)) for v → ∞.

We construct {µj} out of the algebraic special values L∗
fk′

(1 + j, χ) in such a way that
the equality (3.1) of the Main Theorem 3.0.1 is satisfied:

evk′

(∫

Y

χ(y) yj
p dµα(y; f)

)
= ip

(
Rk′ ·

pvjG(χ)

αp(k′)v
L∗

fk′
(1 + j, χ̄),

)



We construct the distributions µj = µf,α,j out of three more simple objects:

µf,α,j = ℓα(πα(Φj)), (j = 0, 1, · · · , k − 2)

• Φj is a sequence of modular distributions on Y with values in an A-module M =
M(N,ψ; A) of overconvergent families of modular forms (it has infinite rank):

M(N,ψ; A) :=
⋃

v≥0

M
†(Npv, ψ; A), where M

†(Npv, ψ; A) = M
†
k(Γ0(Np

v), ψ; A)

(the modular forms Φj(χ) are products of certain classical Eisenstein series in A[[q]])

• πα is the canonical projector over the characteristic A-submodule Mα = Mα(A) of

Atkin’s operator U
(∑

n≥0 bnq
n
)

=
∑

n≥0 bpnq
n

(Key point: the A-module Mα(A) is locally free of finite rank)

• ℓα ∈ HomA(Mα,A) is a A-linear form (coming from the method of Rankin-Selberg,
and interpolating over Mα the Petersson scalar product with h ∈ Mα, as in Section

3: h 7−→ 〈f0,h〉
〈f0,f0〉

, normalized by the equality ℓα(g) = 1 for Coleman’s eigenfunction

g = f0; 〈f0, f0〉 is studied in [Go-Ro] ).



5 Criterion of admissibility

Theorem 5.0.1 Let 0 < |α|p < 1 and h = [ordpα]+1. Suppose that there exists a positive
integer κ such that the following conditions are satisfied: for all j = 0, 1, · · ·,κh− 1 and
v ≥ 1,

Φj(a+ (Npv)) ∈ M(Npκv) (the level condition) (5.1)

and the following estimate holds: for all w ≥ max(κv, 1) and for all t = 0, 1, · · ·,κh− 1

Uw
t∑

j=0

(
t

j

)
(−ap)

t−jΦj(a+ (Npv)) ≡ 0 mod p−vt(the divisibility condition) (5.2)

Then the linear form

Φ̃α : P
hκ(Y,Q) → M

α ⊂ M (5.3)

given by Φ̃α(δa+(Npv)y
j
p) := πα(Φj(a+ (Npv))

(
=

∫

a+(Npv)

yj
pdΦ̃

α

)

(for all j = 0, 1, · · ·, hκ − 1), is an hκ-admissible measure.



Proof uses the commutative diagramm:

M†(Npv+1, ψ; A)
πα,v

−→ M†α(Npv+1, ψ; A)

Uv
y

y≀ Uv

M†(Np, ψ; A) −→
πα,0

M†α(Np, ψ; A) = M†α(Npv+1, ψ; A)

(5.4)

The existence of the projectors πα,v comes from Coleman’s Theorem A.4.3 [CoPB].
On the right: U acts on the locally free A-module M

α(Npv+1,A) via the matrix:




α · · · · · · ∗
0 α · · · ∗

0 0
. . . · · ·

0 0 · · · α




and α ∈ A

× =⇒ this is an isomorphism over Frac(A),

and one controls the denominators of the modular forms of all levels v by the relation:

πα,v(h) = U−vπα,0(U
vh) =: πα(h) (5.5)

The equality (5.5) can be used as the definition of πα. The growth condition (1.1) for
πα(Φj) is deduced from the congruences (5.2) using the relation (5.5) between modular
forms.



6 Modular Eisenstein distributions

Φj : Cloc−const(Y ) → M(N,ψ; A)

Let us fix an auxiliary Dirichlet character ξ mod p, ξ(−1) = ±1, and use the method of
Rankin-Selberg for the convolution

D(s, f, g) =LN (2s+ 2 − k − l, ψξχ)

∞∑

n=1

anbnn
−s, where (6.1)

bn =σl−1,χ̄,ξ̄(n) =
∑

d|n,d>0

χ̄(d)ξ̄(n/d)dl−1,

are the Fourier coefficients of an Eisenstein series g =
∑∞

n=0 bnq
n of weight l (and of

Dirichlet character χ̄ξ̄) if χξ(−1) = (−1)l, so that

Lg(s) =

∞∑

n=1

bnn
−s = L(s− l + 1, χ̄)L(s, ξ̄).

The Rankin lemma (cf. [Ra52]) expresses D(s, f, g) through the function

Lf (s− l + 1, χ̄)Lf(s, ξ̄). (6.2)



Let us define the modular distributions Φj on a profinite group Y = lim
←−

v

(Z/MpvZ)×

(for some suitable M , divisible by N) in such a way that the modular form Φj(χ) ∈ A[[q]]
is a product of two Eisenstein series:
evk′(Φj(χ)) = (−1)jEk′−1−j(ξ, χ)E1+j(ψξχ) =: Φj,k′(χ).
Explicitely, the Fourier coefficients of Φj (for j = 0, . . . , k′ − 2) are given by

Φj(a+Mpv) =
∑

b∈YMpv

ψξ(b)
∞∑

n≥0

∑

n1+n2=n

Aj(n1, ab)vBj(n2, b)vq
n ∈ A[[q]], where (6.3)

Aj(n1, ab)v(k
′) =

∑

d1|n1

(n1/d1)≡ab mod Mpv

ξ(d1)sgn (d1)d
k′−2−j
1 (6.4)

Bj(n2, b)v(k
′) =

∑

d2|n2

d2≡b mod Mpv

sgn (d2)(n2/d2)
j for n2 > 0.

(Note that the last series has constant coefficients). One verifies coefficient-by-coefficient
that the distributions Φj satisfy the level condition with κ = 1, and the divisibility
condition (5.1), (5.2):



Main congruence: For all w ≥ w0(v) one has

Uw
t∑

j=0

(
t

j

)
(−ap)

t−jΦj(a+ (Mpv)) (6.5)

=

t∑

j=0

(
t

j

)
(−ap)

t−j
∞∑

n≥0

∑

n1+n2=pwn

(−1)jAj(n1, ab)vBj(n2, b)vq
n ?
≡0(modptv).

Let us fix n1 et n2 with n1 + n2 = pwn, d1|n1 and d2|n2 with (n1/d1) ≡ ab mod Mpv et
d2 ≡ b mod Mpv, and write only the terms which depend on j:

t∑

j=0

(
t

j

)
(−a)t−j(−1)jdk′−2−j

1

(
n2

d2

)j

= dk′−2
1

(
−a−

(
n2

d1d2

))t

(6.6)

≡ dk−2
1 d−t

2

(
−ad2 +

(
n1

d1

))t

≡ 0 mod pvt

The congruence (6.6) is then satisfied for all w ≥ v(k′ − 1) > tv because p ∤ d2 and

dk′−2−j
1 dj

2

(
−

n2

d1d2

)j

≡ dk′−2
1

(
n1

d1

)j

mod ptv.



7 Algebraic A-linear form ℓα : M(N,ψ; A)α → A

Let us describe a linear form ℓα on the locally free module M(A;N,ψ)α = πα(M(A;N,ψ))
of finite rank.

Let us use a basis {gi} of M(A;N,ψ)α over the field of fractions Frac(A), such that
g1 = g is fixed Coleman’s eigenvector as above, and gi are eigenfunctions of all Hecke
operators Tl, (l ∤ Np).

Define

ℓα(h) = x1, where h =
∑

i

xig
i, x ∈ A (the first coordinate of h ∈ M(A;N,ψ)α)

An explicit evaluation shows:

evk′(ℓα(h)) = ℓα(k′)(hk′), where hk′ = evk′(h) ∈ Mk′(N,ψ).

The R.H.S can be computed for classical modular forms hk′ through the (normalized)
Petersson scalar product, moreover, ℓα(g) = 1.



8 Proof of Main Theorem 3.0.1

Take the admissible measure µ̃α := ℓα,f (Φ̃α), with Φ̃α constructed by the admissibility
criterium of Theorem 5.0.1 out of products of Eisenstein series Φj and the linear form
ℓα,f (the Petersson product over A). Let us compute the integrals

evk′

(∫

Y

χyj
p dµ̃α,f

)
= evk′(ℓα(πα(Φj(χ))) = evk′(ℓα(U−vπα,0U

vΦj(χ))) (8.1)

= ℓα(k′)(πα(k′)Φj,k′(χ)) = α(k′)−v 〈fk′ , U
vΦj,k′(χ)〉

〈fk′ , fk′〉

for primitive Dirichlet characters χ mod pv, using the relation (5.5): πα(h) = U−vπα,0(U
vh),

where Φj,k′ = evk′(Φj) = (−1)jEk′−1−j(ξ, χ)E1+j(ψξχ). The value (8.1) can be computed
using the Rankin–Selberg convolution:

Lfk′
(s− l + 1, χ̄)Lfk′

(s, ξ̄) = LN (2s+ 2 − k′ − l, ψξχ)

∞∑

n=1

an(k′)bnn
−s, (8.2)

where bn = σl−1,χ̄,ξ̄(n) =
∑

d|n,d>0 χ̄(d)ξ̄(n/d)dl−1, are the Fourier coefficients of an

Eisenstein series g =
∑∞

n=0 bnq
n of weight l with character χ̄ξ̄) (if χξ(−1) = (−1)l).



Put s = k′ − 1, l = k′ − 1 − j, j = 0, · · · k′ − 2 with k′ > 2 + j, into (8.2):

Lfk′
(1 + j, χ̄)Lfk′

(k′ − 1, ξ̄) = LN (1 + j, ψξχ)
∞∑

n=1

an(k′)bnn
−k′+1.

Using this equality, the R.H.S. of (8.1): can be computed using the Rankin–Selberg inte-
gral in the form:

evk′(ℓα(πα(Φj(χ))) = tk′ ·
pνjG(χ)

α(k′)ν
L∗

fk′
(1 + j, χ̄), c±(fk′ ) =

(−2iπ)k′−1〈fk′ , fk′〉

Γ(k − 1)Lfk′
(k − 1, ξ)

,

where G(χ) is the Gauss sum of the character χ mod pν and tk′ ∈ Q× is an explicit
elementary constant. Then one applies directly theorem 5.0.1 (the admissibility criterion)
with κ = 1, and the congruences (6.5) in order to obtain the required h-admissibles
measures µ̃ = µf,α in the form µf,α = ℓf,α(Φ̃α) (given by the sequence of the distributions
Φα

j = πα(Φj)).
Note that this method gives also an alternative proof of the result of Yu.I.Manin on

the algebraicity (0.1).
After having Φ̃α, we construct the required (A-valued) h-admissibles measures µ̃ =

µ̃f,α in the form µ̃f,α = ℓα(Φ̃α), as explained above.



9 Open questions and remarks

9.1 Families of symmetric squares

Take Coleman’s family k′ 7→ fk′ =

∞∑

n=1

an(k′)qn ∈ Q[[q]] of slope σ > 0 of cusp eigenforms

fk′ of weight k′ ≥ 2 containing f , and consider the symmetric square L-function:

D(s, fk′ , χ) = L(2s− 2k′ + 2, ψ2χ2)

∞∑

n=1

χ(n)an2(k′)n−s = (9.1)

∏

l prime

{
(1 − χ(l)α2

l (k
′)l−s)(1 − χ(l)αl(k

′)βl(k
′)l−s)(1 − χ(l)β2

l (k′)l−s)
}−1

• Holomorphy of the function: (9.1) G.Shimura, [Sh75]

• Algebraicity for critical values of the function (9.1)
Don Zagier, [Za77]
J.Sturm, [St80]

• Admissible p-adic L-functions attached to (9.1) A.Da̧browski, D.Delbourgo, [Da-De]



Question:

To construct two variable p-adic symmetric squares attached to Coleman’s families.

For ordinary families this was done by Hida, and for Coleman’s families this is the
topic of the PhD Thesis of B.Gorsse, (Institut Fourier, Grenoble). He uses Cohen-Zagier
Eisenstein series of half integral weight, and the admissibility criterion of Theorem 5.0.1
with κ = 2. See also [Go-Ro] for a related algebraic computation of a certain Petersson
product.

Related techniques were used by W.Kim (Berkeley) in [Kim], who developed the
method of Hida [Hi81], and suggested a conjectural description of the zeroes of such
L-function in terms of the ramification points of the eigencurve.

An altenative approach was suggested by Don Zagier, using the construction in [Za77]
Modular Forms whose Fourier Coefficients involve Zeta-Functions of Quadratic Fields,
In: Modular Functions. V, Springer-Verlag, Lect. Notes in Math. N◦ 627 (1977), p. 106-
168 (for the ordinary case, see [Gue]: P.Guerzhoy, Jacobi-Eisenstein series and p-adic
interpolation of symmetric squares of cusp forms, Annales de l’Institut Fourier (1995)).



9.2 Families of triple products

Consider the A-module
M :=

⋃

m≥0

Mk(Γ1(A;Npv))⊗3

Take three Coleman’s families

k′ 7→ fk′ =

∞∑

n=1

an(k′)qn, k′ 7→ gk′ =

∞∑

n=1

bn(k′)qn, k′ 7→ hk′ =

∞∑

n=1

cn(k′)qn ∈ Q[[q]]

of cusp eigenforms fk′ , gk′ , hk′ of weight k′ ≥ 2 containing f, g, h.
Let L(f ⊗g⊗h, s) be the triple L attached to f⊗g⊗h ∈ Sk(Γ1(N))⊗3 with a nonzero

eigenvalue αβγ. Let us use the restriction on the diagonal Φ = E3
k′(z1, z2, z3) ∈ M of the

Siegel-Eisenstein distribution (see [PaSE]) viewed as a formal Fourier series. One obtains
distributions Φj on Y 3 with values M using the action of certain differential operators on
the modular form Φ (see [PTr]).

Put lfk′⊗gk′⊗hk′ ,α(k′)β(k′)γ(k′)(Φj) := ip

(
〈fk′ ⊗ gk′ ⊗ hk′ ,Φ

αβγ
j 〉

〈fk′ , fk′〉〈gk′ , gk′〉〈hk′ , hk′〉

)



Theorem 9.2.1 Put H = [2ordp(αβγ)] + 1. There exist a sequence of distributions
lf⊗g⊗h,αβγ(Φj) on Y 3 with values in Mα ⊂ M giving (via the admissibility criterion
of Theorem 5.0.1 as above) an H-admissible measure,

lfk′⊗gk′⊗hk′ ,α(k′)β(k′)γ(k′)(Φ̃
α(k′)β(k′)γ(k′))

such that the integrals

lfk′⊗gk′⊗hk′ ,α(k′)β(k′)γ(k′)(Φ)(χ1 ⊗ χ2 ⊗ χ3)

on the products of Dirichlet characters χ1 ⊗ χ2 ⊗ χ3 coincide with the special values

L∗(fk′(χ1) ⊗ gk′(χ2) ⊗ hk′(χ3), k
′ + j), (j = 0, . . . , k′ − 2),

where the normalisation of L∗ includs at the same time some Gauss sums, Petersson
scalar products, powers of π and of α(k′)β(k′)γ(k′), and a certain finite Euler product.

(A joint work in progress with S.Boechrer: we use the Siegel-Eisenstein mea-
sure, constructed in [PaSE], and the admissibility criterion of Theorem 5.0.1 with κ = 2).



9.3 Other special values in families

In [CourPa] we gave a conceptual explanation of the p–adic properties satisfyied by the
special values of the standard L-function D(s, f, χ), where f is a Siegel cusp form of an
even degree m and of weight k > 2m + 2, χ is a varying Dirichlet character. We have
shown that these admissible measures can be lifted to arithmetical nearly holomorphic
Siegel modular forms studied by G.Shimura [Sh2000]. This lifting is given by a universal
sequence Φ±

s (χ) of distributions with values in arithmetical nearly holomorphic Siegel
modular forms (for critical pairs (s, χ), see Proposition 5.4). It would be interesting to
extend these lifting results to Siegel cusp eigenforms of odd degree, using the method of
Böcherer-Schmidt [BöSch].



9.4 Some advantages of the new p-adic method

The construction can be splitted in several independent steps:

1) Construction of distributions Φj (on a profinite or adelic space Y like Y = A∗
K/K

∗

for a number field K) with values in an infinite dimensional modular tower M(ψ)
over complex numbers (or in an A-module of infinite rank over some algebra A).

2) Application of a canonical projector of type πα onto a finite dimensional subspace
Mα(ψ) of Mα(ψ) (or over locally free A-module of finite rank over some algebra A):

πα(g) = (Uα)−vπα,0(U
v(g)) ∈ M

α(Γ0(Np), ψ,C) (this works only for nonzero α!)

(this is the α-characteristic projector of g ∈ M(Γ0(Np
v+1), ψ,C) (independant of

v)).

3) One proves the admissibility criterium 5.1 saying that the sequence πα(Φj) of distri-
butions with values in Mα(ψ) determines an h-admissible measure Φ̃ with values in
this finite dimensional space for a suitable h (determined by the slope ordp(α)).



4) Application of a linear form ℓ of type g 7→ 〈f0, πα(g)〉/〈f, f〉 produces distributions
µj = ℓ(πα(Φj)), and (automatically ) an admissible measure: the growth condition
is automatically satisfied starting from congruences between modular forms πα(Φj)

5) One shows that certain integrals µj(χ) of the distributions µj coincide with certain
L-values; however, these integrals are not necessary for the construction of measures
(already done at stage 4).

6) One shows a resultat on uniqueness for the constructed h-admissibles measures: they
are determined by many of their integrals over Dirichlet characters (not all), for
example, only over Dirichlet characters with sufficiently large conductor (this stage
is not necessary, but it is nice to have uniqueness of in the construction), see [Hu].

7) If we are lucky, we can prove a functional equation for the constructed measure µ
(using the uniqueness in 6), and using a functional equation for the L-values (over
complex numbers, comuted at stage 5), for example, for Dirichlet characters with
sufficiently large conductor (again, this stage is not necessary, but it is nice to have
a functional equation)

This strategy is applicable in various cases (described above), cf. [PaJTNB], [Puy],
[Go02].



9.5 Remarks on modular forms of positive slope

According to R.Coleman, F. Gouvêa and B. Mazur, the structure of modular forms of
a given positive slope is more complicated than in the ordinary case, even for elliptic
modular forms (see the theory of "ferns" in [Gou-Ma], and [Co-Ma]). Our key point is
that in order to describe a good p-adic behaviour of p-adic L-functions one needs to fix
not only the slope but also the eigenvalue itself, see also [PaTV].

This would be extremely important for constructions of rigid–analytic families of Cole-
man type [CoPB] in the Siegel modular case, and the corresponding families of p-adic L-
functions. Notice that the structure of weights is more complicated in the Siegel modular
case due to vector-valued modular forms. The results of [CourPa] show that a description
of p-adic families depends not only on a positive slope, but one needs visibly some addi-
tional and more subtle parameters, given probably by an analogue of "ferns" in [Gou-Ma],
which could provide a good understanding of overconvergency in the Siegel modular case.
In the future, it would be interesting to combine our method in [CourPa] with geometric
methods of Faltings–Chai [Fa-Ch90] and of Coleman–Mazur [Co-Ma].



Relation to the context of Wiles’ proof

Note that the problem of construction of families of modular forms is closely related to
the context of Wiles’ proof [Wi] which is based on a Galois cohomological construction of
p-adic families of classical elliptic modular forms. It seems that a natural thing would be
to try to extend constructions of such families to other classes of modular forms; the paper
[CourPa] gives an example: a canonical lift of previously known p–adic distributions to
distributions with values in an appropriate subspace of arithmetical Siegel modular forms.
This lift depends on a choice of a non-zero Satake parameter, and it produces families by
integration of arithmetical characters.



Applications of this theory to construction of certain new p-adic families of mod-
ular forms (families of Siegel-Eisenstein series, families of theta-series with spherical
polynomials. . .) is based on the following main sources:

• Serre’s theory of p-adic modular forms as certain formal q-expansions, [Se2].

• Shimura’s theory of arithmeticity for nearly holomorphic forms, [Sh2000].

• Hida’s theory of p-adic modular forms and p-adic Hecke algebras, [Hi93].

• Constructions of p-adic Siegel-Eisenstein series, and of p-adic Klingen–Eisenstein
series by the author, [PaSE].

Note that the eigenspaces M(α) of U are contained in the primary subspaces Mα,
and they where used by D. Kazhdan, B. Mazur, C.-G. Schmidt, see [KMS2000], in the
p-ordinary case via a p–adic limit procedure. Notice that we do not need a p–adic limit
procedure, and we treat the general case of any positive slope.
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