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Abstract We give an introduction to the theory of Siegel modular forms mod
p and their p-adic refinement from an elementary point of view, following the
lines of Serre’s presentation [21] of the case SL(2).

1 Introduction

the late sixties of the last century Serre [21] and Swinnerton-Dyer [25] created
a theory of p-adic modular forms, which was soon reformulated and refined
by Katz [15] in a geometric language. Later on S.Nagaoka and others started
to generalize that theory (in the classical language) to Siegel modular forms.
In these notes we give a naive introduction, emphasizing level changes and
generalizations of Ramanujan’s theta operator (i.e. derivatives). Compared
with the theory for elliptic modular forms at some points new techniques are
necessary. Also some aspects do not appear at all in the degree one case,
in particular mod p singular modular forms and also vector-valued modular
forms. We will focus on the scalar-valued modular forms, but the vector-
valued case will arise naturally in the context of derivatives. We will not
enter into the intrinsic theory for the vector- valued case (see e.g. [14] and
other papers by the same author); all vector-valued modular forms which
appear in our notes arise from scalar-valued ones.
Our naive point of view is that p-adic modular forms encode number theoretic
properties (congruences) of Fourier coefficents of Siegel modular forms. We
understand that there is a much more sophisticated geometric point of view;
in thes notes we completely ignore the geometric theory (see e.g.[14, 27, 28]).

2 Basics on Siegel modular forms

Mainly to fix notation, we summarize basic facts on Siegel modular forms
here. The reader should consult [1, 11, 17] for details.
The symplectic group

Sp(n,R) := {M ∈ GL(2n,R) | Jn[M ] = Jn}
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acts on the Siegel upper half space

Hn := {Z = Zt = X + iY ∈ C(n,n) | Y > 0}

by
(M,Z) 7−→M < Z >:= (AZ +B)(CZ +D)−1.

Here Jn denotes the alternating form given by the 2n × 2n matrix Jn :=(
0n −1n
1n 0n

)
and for matrices U, V we put U [V ] := V tUV whenever it

makes sense; we decompose the matrix M into block matrices of size n by

M =

(
A B
C D

)
.

There are good reasons to look at vector-valued automorphy factors:
For a finite-dimensional polynomial representation ρ : GL(n,C) −→ GL(Vρ)
we consider V = Vρ-valued functions F : Hn −→ V ; the group Sp(n,R) acts
on such functions from the right via

(F |ρ M) (Z) := ρ(CZ +D)−1F (M < Z >).

As usual, we write |k M instead of F |ρ M if ρ = detk.
We write Γn = Sp(n,Z) for the full modular group and for N ≥ 1 we define
the principle congruence subgroup of level N by

Γ(N) := {M ∈ Γn | M ≡ 12n mod N}.
We will denote by Γ any group which contains some Γ(N) as a subgroup of
finite index; typically we will consider the groups

Γ0(N) := {
(
A B
C D

)
∈ Γn | C ≡ 0 mod N}

and

Γ1(N) := {
(
A B
C D

)
∈ Γn | C ≡ 0 mod N, det(A) ≡ det(D) ≡ 1 mod N}.

The space Mn
ρ (Γ) of Siegel modular forms of degree n for ρ consists of all

holomorphic functions F : Hn −→ V , which satisfy the transformation prop-
erties F |ρ γ = F for all γ ∈ Γ; only for n = 1 we need additional conditions
in the cusps, for n > 1 such conditions are automatically satisfied (“Koecher
principle”).
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The functions F ∈ Mn
ρ (Γ) are periodic, i.e. F (Z + S) = F (Z) for all S ∈

N · Z(n,n)
sym , their Fourier expansion is then conveniently written in the form

F (Z) =
∑
T

aF (T )e2πi 1
N
trace(TZ). (1)

Here T runs over the set Λn
≥ of all symmetric half-integral matrices of size n,

which are positive semidefinite.
If we want to emphasize the formal aspects of such a Fourier expansion, then
we can view (1) as a formal series as follows:
With Z = (zij) ∈ Hn we put qi,j = e2π

√
−1zij and we write for T ∈ Λn

≥

qT :=
∏
i<j

q
2tij
ij

∏
j

q
tjj
jj .

We consider the qij as formal variables and we may then view∑
T

aF (T )qT

as an element of

C[qij, q
−1
ij [[q1, . . . , qn]] with qj := qjj.

We mention two typical examples of number-theoretic interest:
Example 1: Siegel Eisenstein series
We consider ρ = detk with an even integer k > n+ 1 and

En
k (Z) :=

∑
M

1 |k M =
∑
M

det(CZ +D)−k;

here M runs over Sp(n,Z)∞\Sp(n,Z), where Sp(n,Z)∞ is defined by the
condition C = 0.
This defines an element of Mn

k (Γn) with rational Fourier coefficients with
bounded denominators (this is not obvious!).
Example 2: Theta series
Let S ∈ 2 ·Λm

> be a positive definite even integral matrix of size m = 2k and
of level N (i.e. N is the smallest positive integer such that N · S−1 ∈ Λm

> ).
Then

ϑnS(Z) :=
∑

R∈Z(m,n)

eπitrace(X
tSXZ)
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defines an element of

Mn
k (Γ0(N), εS) := {F ∈Mn

k (Γ1(N)) | F |k γ = εS(det(D))·F ∀γ ∈ Γ0(N)}

with the quadratic character

εS(.) =

(
(−1)k det(S)

.

)
.

It is obvious that such theta series have integral Fourier coefficients.

For a subring R of C we denote by Mn
k (Γ)(R) the R submodule of all modu-

lar forms with all their Fourier coefficients in R. This notion can be extended
in an obvious way to the vector-valued case after fixing a basis of the repre-
sentation space of ρ.
Let ξN denote a primitive root of unity and denote by OξN the ring of integral
elements in the the N -th cyclotomic field. Then we have the following
Fundamental property:

Mk(Γ(N)) = Mn
k (Γ(N))(OξN )⊗ C,

in particular, the field of Fourier coefficients of a modular form is finitely
generated and all modular forms and the Fourier coefficients of a modular
form in Mn

k (Γ(N))(Q) have bounded denominators.
The property above will be crucial at several points below (sometimes implic-
itly). We take this for granted and refer to the literature [23]. In some cases
(squarefree levels and large weights) elementary proofs are available, using
the solution of the basis problem (“all modular forms are linear combinations
of the theta series introduced above”, see [3]).
Remark: We note here two important differences between elliptic modular
forms and Siegel modular forms of higher degree:
No obvious normalization: For n > 1 there is no good notion of “first
Fourier coefficient” and (even for Hecke eigenforms) we cannot normalize
modular forms in a reasonable arithmetic way ( note that a normalization
by requesting the Petersson product to be one is not an arithmetic normal-
ization!).
Hecke eigenvalues and Fourier coefficients: Fourier coefficients and
Hecke eigenvalues are different worlds for n > 1. We briefly explain the
reason in the simplest case (scalar-valued modular forms of level one): For
g ∈ GSp+(n,Q) with gtJng = λ · Jn we consider for Γn = Sp(n,Z) the
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double coset Γn ·g ·Γn =
⋃

Γn ·gi with representatives gi =

(
Ai Bi

0 Di

)
with

Ati ·Di = λ. Then we define a Hecke operator acting on F ∈Mn
k (Γn) by

F 7−→ G := F | Γn · g · Γn :=
∑
i

det(Di)
−kF ((Ai · Z +Bi) ·D−1

i .)

We may plug in the Fourier expansion F =
∑
aF (T )qT and we get for the

Fourier coefficients of aG(S) a formula of type

aG(S) = a linear combination of aF (T ) with D−1
i TAi = S,

in particular, S and T are rationally equivalent up to a similitude factor.
The conclusion is that Hecke operators give relations between Fourier coef-
ficients only within a rational similitude class of positive definite matrices
T ∈ Λn

>. For n ≥ 2, the set Λn
> however decomposes into infinitely many

such rational similitude classes. In some sense this is a situation similar to
the perhaps more familiar case of degree one modular forms of half-integral
weight.
Our aim here will be to study congruences among Fourier coefficients of Siegel
modular forms (not congruences among eigenvalues!).
The reader interested in congruences for eigenvalues should consult the work
of Katsurada [16], who studies congruences between eigenvalues of different
types of automorphic forms (lifts and non-lifts); in a different direction (con-
nection to Galois representations) one may look at the work of R.Weissauer
[26].

3 Congruences

3.1 The notion of congruences of modular forms

For a prime p we denote by νp the (addititive) p-adic evaluation νp : Q −→
Z∪ {∞}, normalized by νp(p

t) = t. For a modular form F =
∑

T aF (T )qT ∈
Mn

k (Γ1(N))(Q) we put

νp(F ) := inf{νp(aF (T )) | T ∈ Λn}.

By the boundedness of denominators, this number is > −∞.
We defined this notion only for scalar-valued modular forms with Fourier co-
efficients in Q, but we can easily generalize it to modular forms with Fourier
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coefficients in C by extending νp to the field generated by the Fourier coeffi-
cients. Furthermore, we can define it also for vector- valued modular forms
after fixing coordinates and taking the minimum of νp on the coordinates
(this depends on the choice of coordinates!).
Definition: For F,G ∈Mn

k (Γ1(N))(Q) we define

F ≡ G mod pm ⇐⇒ νp(F −G) > ν(F ) +m.

Note that this definition avoids trivial congruences.
Remark: In case of Hecke eigenforms, such congruences for modular forms
imply congruences for eigenvalues (but not the other way around!).

3.2 Congruences and weights

A first observation is that such congruences cannot occur among modular
forms of arbitrary weights:
Theorem I: For a prime p and a positive integer N coprime to p we consider
Γ = Γ1(N) ∩ Γ0(pl). Then for Fi ∈ Mn

ki
(Γ)( with i = 1, 2 a congruence

F1 ≡ F2 mod pm implies a congruence among the weights:

k1 ≡ k2 mod

{
(p− 1)pm−1 if p 6= 2

2m−2 if p = 2, m ≥ 2.

For n = 1 this is a result of Katz [15, Corollary 4.4.2]. The case of general
degree can be deduced from that by associating to F and G suitable elliptic
modular forms f and g with the same weights (possibly with larger level)
and satisfying the same congruence (see [7] for details).
As a special case, we mention
Corollary: For an odd prime p a modular form F ∈ Mn

k (Γ)(Q) with Γ as
above, can be congruent mod pm to a constant only if (p− 1) · pm−1 | k holds.

3.3 Mod p singular modular forms

Singular modular forms are a topic which is specific for higher degree, see
[11]; there is an analogue mod p:
Definition: We call a modular form F =

∑
aF (T )qT ∈ Mn

k (Γ)(Q) with
νp(F ) = 0 a mod p- singular modular form of rank r, 0 ≤ r ≤ n − 1 iff
aF (T ) ≡ 0 mod p for all T ∈ Λn with rank(T ) > r and if there exists
T0 ∈ Λn with rank(T0) = r such that aF (T0) 6= 0 mod p.
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Theorem II: If F ∈Mn
k (Γ0(N)) is mod p singular of rank r, then

2k − r ≡ 0 mod (p− 1)pm−1

if p is odd.
The proof is inspired by the method used to prove a similar statement for
true singular modular forms [11]: One considers a Fourier-Jacobi-expansion
F (Z) =

∑
S∈Λr

≥
φS(z1, z2)e2πitrace(Sz4) with

Z =

(
z1 z2

zt2 z4

)
, z1 ∈ Hn−r, z4 ∈ Hr.

We choose T0 ∈ Λn with rank r such that aF (T0) 6= 0 mod p; without loss

of generality we may assume that T0 equals

(
0 0
0 So

)
with So ∈ Λr

>. The

“theta expansion” of the special Fourier-Jacobi coefficient φS0 allows us to
arrive at a modular form h of degree r and weight k − r

2
which is constant

mod p. We may then apply the corollary to h2.
Example: Let S be a positive definite even integral quadratic form in m
variables. We assume that S has an integral automorphism σ of order p (the
existence of such quadratic forms will be considered below). Let l be the
maximal number of linearly independent fixed points of σ. Then ϑnS is mod
p singular of rank l.
Other types of examples can be constructed using Siegel Eisenstein series;
here divisibility properties of certain Bernoulli numbers play an important
role, see [4].

3.4 Existence Theorem

In degree 1 the Clausen-von Staudt property of Bernoulli numbers Bp−1

implies that the Eisenstein series of weight p− 1

Ep−1(z) = 1− 2p− 2

Bp−1

∑
n=1

∑
d|n

dp−2

 e2πinz

is congruent 1 mod p for p ≥ 5. In higher degree the situation is more compli-
cated, the Siegel Eisenstein series of weight p−1 is not necessarily congruent
1 modulo p for irregular primes, see [19].
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Before stating a general existence theorem we introduce the “zero dimen-
sional cusps” for a group Γ0(p). It is a consequence of the Bruhat decom-
position for the symplectic group over a finite field that a complete set of
representatives for the double cosets

Γ0(p)\Sp(n,Z)/Sp(n,Z)∞

is given by the n+ 1 elements

ωi :=


0i 0
0 1n−i

−1i 0
0 0n−i

1i 0
0 0n−i

0i 0
0 1n−i

 (0 ≤ i ≤ n). (2)

The theorem below assures the existence of level p modular forms congruent
to 1 mod p and with nice behaviour mod p in the other cusps. This is a very
usefull technical tool. The proof will be based on the existence of certain
quadratic forms with automorphisms of order p. The advantage of theta
series (when compared with Eisenstein series) is that the Fourier expansions
in all cusps are accessable. This point of view is new even for degree one.
We briefly recall the theta transformation formula relevant for us: Let S be
an even integral symmetric matrix, positive definite, det(S) = p2r of size
m = 2k and 0 ≤ j ≤ n. Then

ϑnS |k ωj = w(S)j · p−jr
∑
X

eπiS[X]Z .

Here w(S) = ±1 is the Hasse-Witt invariant of S and X runs over

S−1 · Zm × · · · × S−1 · Zm︸ ︷︷ ︸
j

×Zm . . .Zm︸ ︷︷ ︸
n−j

.

Theorem III:

a) p odd: ∃F ∈Mn
p−1(Γ0(p)) : F ≡ 1 mod p

b) p ≥ n+ 3 : ∃Fp−1 ∈Mn
p−1(Sp(n,Z)) : Fp−1 ≡ 1 mod p

c) p ≥ n+ 3 : ∃kp : ∃F ∈Mn
kp

(Γ0(p)) :

F ≡ 1 mod p and F |kp ωi ≡ 0 mod p (1 ≤ i ≤ n).
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Proof (sketch)
a) We consider the root lattice

Ap−1 := {(x1, . . . , xp) ∈ Zp |
∑
i

xi = 0}

inside the standard euclidean space Rp. We can act on this lattice by the
symmetric group Sp; the only lattice point fixed by a σ ∈ Sp of order p is 0. In
particular, the orthogonal sum Ap−1 ⊥ Ap−1 corresponds to an even integral
positive definite symmetric matrix S of determinant p2 with an (integral)
automorphism of order p without nontrivial fixed point. The theta series ϑnS
has the requested properties ([5]).

b) We put T := p · S−1 with S from above, then

Fp−1 := ±p(p−2)n−n(n+1)
2

∑
γ∈Γ0(p)∈\Sp(n,Z)

ϑnT |p−1 γ.

The sign depends on the Hasse invariant of the underlying quadratic space.

c) This is more complicated: One has to use not only the lattice Ap−1 ⊥
A−1 but several lattices L1 . . .Ln+1 with determinants p2, . . . , p2n+2 (all with
automorphisms of order p without nonzero fixed points). One can construct
such lattices from certain ideals in the cyclotomic field generated by p-th
roots of unity. In a first step one may then use linear combinations of theta
series for such lattices to construct modular forms Gi ∈ Mn

p−1(Γ0(p)) such
that

Gi |p−1 ωj ≡ 1 mod p (0 ≤ j ≤ i)

Gi |p−1 ωi+1 ≡ 0 mod p.

Typically, the Gi have high powers of p in the denominators of their Fourier
coefficients in the cusps ωj with j > i + 1. We may then construct Fkp by
taking suitable products of powers of the Gi.

3.5 The ring of modular forms mod p d’après Raum-
Richter

The existence theorem above is an ingredient in the following beautifull recent
result (the prooof goes beyond our elementary approach).
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We define the ring M̃n,p of modular forms mod p as the image of the ring
⊕kMn

k (Γn)(Z(p)) under the reduction map˜mod p

F =
∑

aF (T )qT 7−→
∑
T

ãF (T )qT .

After Faltings/Chai the ring ⊕kMn
k (Γn)(Z(p)) of modular forms with coeffi-

cients in Z(p) is finitely generated:

⊕kMn
k (Γn)(Z(p)) ' Z(p)[X1, . . . , Xr]/C

with some ideal C describing the relations. One may in particular write the
modular form Fp−1 as a polynomial B in the generators X1, . . . Xr (or rather
their images mod C).
Theorem of Raum-Richter [20]:
For p ≥ n+ 3 we have

M̃n,p ' Fp[X1, . . . , Xr]/C̃+ < B̃ − 1 > .

We can rephrase this by saying that by reduction mod p, the only new relation
among the generators is the one coming from Fp−1 ≡ 1 mod p.

4 p-adic modular forms and level changes

Definition: A formal series

F =
∑
T∈Λn

≥

a(T )qT (a(T ) ∈ Zp)

is called p-adic modular form if there is a sequence Fj of level one mod-
ular forms Fj ∈ Mn

kj
(Sp(Γn))(Z(p)) such that the sequence (Fj) converges

p-adically to F , i.e. νp(F − Fj) −→ ∞, which means that all the sequences
aFj

(T ) converge p-adically to a(T ) uniformly in T .

Some comments

• It follows from our Theorem I that such a p-adic modular form has a
weight in Z/(p− 1) · Z× Zp.

• One can generalize the notion of p-adic modular form to the vector-
valued case in an obvious way.
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• Clearly, all level one Siegel modular forms with Fourier coefficients in
Zp are p-adic modular forms.

• It can happen, that such a p-adic limit is itself a modular form, possi-
bly with nontrivial level: A nice example is exhibited by Nagaoka [18]
following an observation by Serre in the degree one case [21]: the se-
quence of Eisenstein series

(
En
km

)
m∈N with km = 1+ p−1

2
pm−1 converges

p-adically to a weight one modular form for Γ0(p), if p ≡ 3 mod 4, more
precisely, it is proportional to the genus Eisenstein series for the genus
of positive binary quadratic forms of discriminant −p.

Proposition: All modular forms F ∈Mn
k (Γ0(p))(Z(p)) are p-adic (p any odd

prime).
We give here a proof for p ≥ n + 3 and refer to [8] for a different proof
covering the general case.
We use the existence of a modular form Fkp as in Theorem IIIc)
and we consider for N ∈ N a “trace function”

GN :=
∑

γ∈Γ0(p)\Sp(n,Z)

(
F · FNkp

)
|k+Nkp γ.

According to (2), GN decomposes naturally into n+ 1 summands

GN =
∑
i

GN,i with GN,i :=
∑
γi

(
F · FNkp

)
|k+Nkp (ωi · γi),

where the γi run over certain elements of Sp(n,Z)∞.
For i ≥ 1 we have νp(FNkp |Nkp) ≥ N and therefore GN,i will be divisible by
a high power of p if N is large (the denominators which possibly appear in
the Fourier expansion of F |k ωi will be compensated. As for GN,0 = F · FNkp
we observe that FNkp is congruent one modulo pm provided that N is chosen

as N = pm−1.
We therefore get that GN is a level one form congruent to F modulo a high
power of p provided that N = pm with m sufficiently large.
The proposition can be generalized to prime power levels:
Proposition: A modular form F ∈ Mn

k (Γ0(pm)) is p-adic (p odd, m arbi-
trary).
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We can use the U(p)-operator, defined on Fourier series by∑
a(T )q 7−→

∑
a(p · T )qT .

Suc an operator maps modular forms for Γ0(pm) to modular forms for Γ0(pm−1),
provided that m ≥ 2. It is sufficient to show that F is congruent to a mod-
ular form for Γ0(pm−1) modulo high powers of p, m ≥ 2. One can start from
the elementary observation

F p | U(p) ≡ F mod p

and then apply the same procedure (with F as in Theorem IIIa)) to

1

p
(F · F − F p | U(p))

to get a congruence mod p2; iteration gives the desired result; this proof is a
straightforward generalization of the one by Serre [22] for degree one.
Remark: There is a delicate difference between the two propositions: the
first one generalizes in an obvious way to vector-valued situations, whereas
for the second proposition a substitute for taking a p-th power is necessary.
A natural choice is taking the p-th symmetric tensor; one can get results
along this line, but the notion of p-adic modular form has to be generalized,
because one varies the representation space Vρ.

5 Derivatives

In general, derivatives of modular forms are not modular (by derivatives we
mean here holomorphic derivatives!)
But there are bilinear holomorphic differential operators, usually called “Rankin-
Cohen” operators, e.g. for n = 1 and integral weights k, l with l 6= 0

[ , ]k,l :

{
M1

k (Γ)×M1
l (Γ) −→ M1

k+l+2(Γ)

(f, g) 7−→ 1
2πi

(
f ′ · g − k

l
f · g′

)
We explain how one can use such Rankin-Cohen-operators to prove that
derivatives of modular forms are p-adic modular forms; our proof is different
from the usual one which uses the Eisenstein series of weight 2, see [21]; note
that we cannot expect in higher degree to find a function analogous to the
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weight 2 Eisenstein series. We advertise here that the Rankin-Cohen opera-
tors, together with modular forms congruent one mod p are an appropriate
substitute, which alos works in higher degree.
To get a congruence mod p in degree one, we may use

[f,F ]k,p−1 ≡
1

2πi
f ′ mod p

with F as in Theorem IIIa). For congruences mod pm, this does not work
with Fpm−1

, because of l = (p − 1)pm−1 in the denominator of the Rankin-
Cohen-operator. We can avoid this problem, if we use the operator V , defined
by g | V (t)(z) := g(t · z) and consider

[f,Fpm−1 | V (pm)]k,(p−1)pm−1 ≡ 1

2πi
f ′ mod pm.

Here we increase the level by the operator V (pm); this can be avoided by
using a modular form H of level one and some weight h satisfying

H ≡ Fpm−1 | V (pm) mod pm.

Then [f,H]k,h ≡ 1
2πi
f ′ mod pm holds. Note that the existence of H is assured

by our proposition and by Theorem I, the weight of H is under control.
Clearly this line of reasoning also works for higher derivatives. Furthermore,
this proof contains alll the ingredients for generalization to higher degree:
First we introduce a symmetric n× n matrix ∂ of partial derivatives on Hn:

(∂)i,j :=

{
∂
∂zii

if i = j

1
2

∂
∂zij

if i 6= j

We fix a weight k and a (possibly vector-valued) automorphy factor ρ and
l = (p− 1)pm−1 with suitable m. Let Hol(Hn, Vρ; |ρ) denote the vector space
of all holomorphic Vρ-valued functions on Hn, equipped with the action of
Sp(n,R) defined by the automorphy factor ρ; if ρ = detk, we just write
Hol(Hn; |k) We consider a bilinear holomorphic differential operator

[ , ]k,l : Hol(Hn; |k)×Hol(Hn; |l) −→ Hol(Hn, Vρ, |ρ⊗detk+l),

which is equivariant for the action of Sp(n,R), i.e.

[F |k g,G |l g]k,l = [F,G]k,l |ρ⊗detk+l g
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for all holomorphic functions F,G and all g ∈ Sp(n,R), in particular, it maps
(F,G) ∈Mn

k (Γ)×Mn
l (Γ) to an element of Mn

ρ⊗detk+l(Γ).

We impose the following 3 conditions

(RC1) [F,G]k,l is a polynomial in the derivatives of F and G, more precisely,
there exists a Vρ-valued polynomial with rational coefficients in two
matrix variables R1, R2 ∈ Cn,n

sym, homogeneous of degree λ, such that

[F,G]k,l = (2πi)−λP(∂Z1 , ∂z2)(F (Z1) ·G(Z2))|Z=Z1=Z2

(RC2) We write P =
∑

j Pj where the Pj are homogenous of degree j when
viewd as polynomials in the second variable R2 alone. Then P0 should
be independent of l.

(RC3) The coefficients of P depend continously on l (p-adically)

Comment: The existence of such bilinear differential operators is not a
problem if we stay away from finitely many values of k and l; this is a matter
of invariant theory, see [13, 9]. The condition (RC2) however is delicate and
has to be checked case by case as far as I can see.
Using such a Rankin-Cohen operator, we can now define analogues of Ra-
manujan’s theta-operator

f =
∑

atq
t 7−→ θ(f) =

1

2πi
f ′ =

∑
t

t · a(t)qt.

For a Rankin-Cohen operator [ , ]k,l and F ∈ Mn
k (Γ) we define a Vρ-valued

operator by
Θk,ρ(F ) := (2πi)−λP0(F ).

Exactly by the same reasoning as for degree one we may show now

Theorem IV: For a modular form F ∈ Mn
k (Sp(n,Z))(Z(p)) and a Rankin-

Cohen operator [ , ]k,l with properties (RC1). (RC2), (RC3) the theta oper-
ator defines a Vρ-valued p-adic modular form Θk,ρ(F ).

To explain our principle examples, we introduce some convenient notation
following [11, III.6]: For 0 ≤ i ≤ n and a n × n matrix A let A[i] be the
matrix of size

(
n
i

)
×
(
n
i

)
consisting of the determinants of all submatrices of

size i.
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Examples: For 0 ≤ i ≤ n and F =
∑
aF (T )qT ∈Mn

k (Γ) we put

Θ[i]F :=
∑
T

aF (T ) · T [i]qT

For F ∈ Mn
k (Γ0(pr))(Z(p)) this expression Θ[i](F ) is congruent mod pm to a

level one modular form with automorphy factor

k+(p−1)pm
′

det ⊗ (

r︷ ︸︸ ︷
2, . . . , 2, 0, . . . , 0)︸ ︷︷ ︸

highest weight of ρ

for a sufficiently large m′, in particular, Θ[i]F is a p-adic (vector-valued)
modular form. This is in particular true for

Θ[n](F ) =
∑
T

aF (T ) det(T )qT

and
Θ[1](F ) =

∑
T

aF (T ) · TqT .

In fact, the corresponding Rankin-Cohen bracket for Θ[i](F ) can be con-
structed completely explicitly: We define polynomials Qi,j(R, S) in variables

R, S ∈ C(n,n)
sym by

(R + xS)[i] =
i∑

j=0

Qi,j(R, S)xj.

Then there is an explicit linear combination of the

Qi,j(∂Z1 , ∂z2)(F (Z1)) ·G(Z2)Z1=Z2

with leading term (Θ[i]F ) ·G.
Remark: If F ∈Mn

k (Γ)(Z(p)) is mod p singular of rank r, then Θ[r+1](F ) ≡
0 mod p holds, but not only mod p singular modular forms have this prop-
erty: let S be a positive definite quadratic forms in m = 2k variables with
rankFp(S) = n − j < n; we assume that S has no nontrivial integral auto-
morphism. The theta series ϑnS =

∑
T a(T )qT is not mod p singular, because

a(S) = 2. On the other hand, one has

Θ[n−j+1]ϑnS ≡ · · · ≡ Θ[n]ϑnS ≡ 0 mod p.
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6 Outlook: Quasimodular forms

There is a sophisticated theory of nearly holomorphic modular forms due
to Shimura [24]; they behave like modular forms, but they are no longer
holomorphic: they are polynomials in the entries of Y −1 with holomorphic
coefficients. A very famous example is the nonholomorphic Eisenstein series
of weight 2:

−3

πiy
+ 1 +

∑
σ1(n)qn

A quasimodular form is then defined as the constant term of such a nearly
holomorphic function. Using the calculus of Rankin-Cohen operators and
the full theory of nearly holomorphic modular forms, one can then show that
such quasimodular forms are also p-adic modular forms [2].
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