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MODULAR FORMS
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In this survey there are included results of recent years, concerning the theory of modular forms

and representations connected with them of adele groups and Galois groups. There is discussed

the hypothetical principle of functoriality of automorphic forms and other conjectures of Langlands

concerning automorphic forms and the L-functions connected with them.

The choice of title for this survey may not seem entirely successful: is it really possible, within the
limits of a small paper, to elucidate all aspects of the theory of modular forms, recently enduring a period
of heavy development (cf. the foreword to Lang's book [33] and the survey of Fomenko {41]}). Hence we re-
strict ourselves only to those aspects of it which are directly connected with the theory of representations and
L-functions. This approach allows us to explain the connection between one-dimensional and multidimensional
modular forms from the point of view of the general principle of functoriality of automorphic forms, and also
the connection of modular forms with representations of Galois groups of extensions of global and local fields.
In our view, precisely these connections motivate the fundamental interest in modular forms. We have touched
on here only papers of the last 3-4 years, turning to older papers only when necessary; one can become ac-
quainted with earlier resuits in this domain through the survey [41], which, together with Lang's book [33],
contains a detailed account of the latest achievements in the theory of one-dimensional {classical) modular forms.
Our account is in some measure superficial: the reason for this is the technicality and complexity of the basic
.methods of the contemporary theory of automorphic forms, a complete picture of which is given by the mate-
rials of the summer schools taking place in Antwerp (1972) [174] and Bonn (1976) [175], the symposium on L~
functions, automorphic forms and representations in Corvallis, (1977) [58] and the conference on automorphic
forms in number theory in Oberwolfach (1979) [48].

For the convenience of the reader we recall the connection of the classical theory of modular forms with
representation theory, and also the more general concept of automorphic form on a reductive group. We note
that a better account of the foundations of the classical theory can be found in Rankin's book [191] (cf. also
the references in [41]), and the recent book of Weil [240] recalls the enduring value of the classical traditions
in the theory of elliptic and modular functions.

In the last part of the survey there are noted the most interesting, from our point of view, achievements
of recent years relating to other areas of the theory of modular forms.

1. Modular Forms and L-Functions. Connection with

thé Theory of Group Representations

Classical modular forms are introduced as functions on the upper complex half plane H = {z¢C|Im(z) > 0}.
Let I' be a congruence-subgroup of the modular group SI,(Z), i.e., I'DI'y, for some integer N = 0, where

rv={(2 $)est.@ (¢ 5)=(o 1) moa M}

is the principal congruence-subgroup of level N. The group G;{ = GL; (R) of matrices with positive determinant-
acts on H by linear-fractional transformations z —~ (@z + b) /(cz + d) = o(z), a=(§ g)eG.‘{ .

A holomorphic function f : H — C is called a modular form of weight k with respect to the group T, if

Translated from Itogi Nauki i Tekhniki, Seriya Algebra, Topologiya, Geometriya, Vol. 19, pp.135-180,
1981.
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1) the condition of automorphicity

Faz+b)/(cz+d)(cz+dy*t=f (2) 1.1

holds for elements V=(? g)el’,

2) fis regular at parabolic vertices P¢Q Ui (fixed points of parabolic elements of the group I'); this
means that for any element a=(f 5)65L2 (Z) the function f((ez + b) /(cz + d))(cz + d)‘k admits an expansion in

a Fourier series in nonnegative powers qi/N + e(z/N) (by tradition q = e(z) = exp(27iz)). In particular,

f(z)=2ane (nz/N), (1.2)
n=0

f is called a parabolic form, if f vanishes at parabolic points (i.e., in the Fourier series from 2) only positive
powers q/ Ny [33, 41, 191].

The C-linear space of modular (parabolic) forms of weight k with respect to I' is denoted by My (I")
(respectively, Sk(T')).

Fundamental attention in our survey is given to the investigation of Dirichlet series of the form

N QN [ prrn e
L/(S)—’:Eann"s:: { ;/(1:7)) ff(ty) ys-'dy 1.3
n==1 0

the Mellin transforms of f, and also their generalizations, connected with the consideration of multidimensional
automorphic forms.

Interest in the study of series of the form (1.3) is connected with the following properties of Lg(s):

1) In the space of modular forms M (I') there exists a basis, consisting of forms f such that the arith-
metic functions of the form n — a,, are multiplicative upm = apnay (for (n, m) = 1), here the Dirichlet series
L¢(s) admits an expansion as an Euler product of p~factors, corresponding to prime numbers p, and the co-
efficients «,, are algebraic integers.

2) If f is a modular form, then the Dirichlet series Lg(s), convergent in some right half plane, admits
a meromorphic continuation to all s€C and satisfies a certain functional equation, connecting Lg(s) and L¢(k — s),
Here Lg(s) is an entire function, if f is a parabolic form [114, 33].

Properties 1) and 2) were established by Hecke. As an illustration we consider the example of the
Ramanujan parabolic form:

a@)=qll (l—q")24=”§1r(m) gm,

na=]

A(2) €8;5(SLy(Z)), the Dirichlet series La(s)= 3,7 (n)n"* converges absolutely if Re(s) > 13/2, decomposes in
the Euler product =1

Ly (s)=H[1 —1(p) p~°+ p"®]1 (p — prime numbers),
P

extends to an entire function of order one on C, which satisfies the functional equation [33, 114]:

(2r) s T(8) La (5) = (2m)s "2 T (12 —5) Lo (12— ). 1.4)

3) The property of series (1.2) being a modular form is characterized by the analytic properties of the

series L,(s, x)=2 x(m)a,n~. (y is the Dirichlet character) [243] (in particular, their functional equations).

n=1
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Property 3) is called, in the theory of Dirichlet series connected with modular forms, the inverse the-
orem of Hecke—Well, and property 2) is the direct theorem. Properties 1)~3) for the series L¢(s) and their
generalizations are discussed in Section 2.

4) The Euler products Lf(s) are connected with zeta-functions, having algebrogeometric and arithmetic
origins. Thus, if f¢S,(I'), then f(z)dz defines a differential on the Riemann surface H/ ', which corresponds
to a complete algebraic curve X, defined over the field of algebraic numbers. Here the Dirichlet series
Lg(s) is a factor of the Hasse —Weil zeta-function of the curve X~ [90, 169]. The properties of divisibility
of the coefficients a, are connected with the structure of the set of rational points of the curve X i~ in finite
extensions of the field Q [137, 203}. The values Lf(s) for integral s (for example, for s = 1) are also connec-
ted with rational points (conjecture of Birch—Swinnerton—Dyer [67, 171]). The value of this connection for
Diophantine geometry is illustrated by two recent achievements in the arithmetic of elliptic curves. Mazur
[171] proved the conjecture on the uniform boundedness of the torsion of elliptic curves over Q. The torsion
group E(@Q)!OrS of the elliptic curve E, defined over Q, can be isomorphic only to one of the fifteen groups:
Z/mZ (m =10, m =12), Z/2ZxZ/2vZ (v < 4); here all these possibilities are realized. Coates and Wiles
[67] proved part of the Birch—Swinnerton—Dyer conjecture for elliptic curves E with complex multiplication
by elements of the one class imaginary quadratic field K: If the group E(K) is infinite, then the Hasse~Weil
zeta~function L(E /K, s) vanishes for s =1. Another example is connected with representations of the Galois
group GalQ/Q). Serre and Deligne [76] made correspond to modular forms { of weight 1, two-dimensional
complex representations pf:Gal(Q/ Q) =~ GL;(C), under which the Euler product Lf(s) is identified with the
Artin L-series of the representation p;. Generalizations of this example are discussed in Sec. 3.

5) All generalizations of the series L¢(s), which were mentioned above, are connected with the passage
from modular forms of one variable to modular forms of several variables, more generally to automorphic
forms. In addition there emerge close connections between modular forms of one and several variables, which
are often described in the forms of identities connecting the corresponding L-functions.

These connections can be combined in the framework of a general principle of funtoriality of automor-~
phic forms, to the discussion of which Sec. 4 is devoted.

Properties 1)-5) are more naturally reformulated in the language of representation theory [19, 61]. The
first general connection between representation theory and automorphic forms was noted by Gel'fand and Fomin
{20], although examples of the use of group representations in the theory of modular forms occur already in the
works of Hecke [114]. We recall briefly how one can formulate the classical theory of Hecke with the help of
representation theory. First we note that the automorphicity condition (1.1) is equivalent with the invariance
of the function f with respect to the subgroup I' C Gr*, if the action f -~ flk[o] is defined by the formula:

, b
(Fhish@=i 2% fe @), o=(£ 7)edi,
where j(o,z) = {det orl‘l/ 2(cz + d) is the factor of automorphicity.

It is easy to verify that if 0€GL,*(Q), then fly[o] is a modular form with respect to the congruence~sub-
group ot T oN8L,{Z) {possibly of another level). For ctGQ+ = GL,7(Q) we consider the double coset I'o T =

n
U o' (here the left cosets oI are disjoint and their number is finite).
] o

B
Then if f¢M(T'), then the linear combination 2 fleJe)] now belongs to My(T), which allows one to

=1

0
define the Hecke operators on M (T') with the help of double cosets. In the case I' = S1,(Z) for c=(€ 1) we
set

" .
To(p) f=p*" 3, Flalau).
i=1]
According to Hecke, the existence of an Euler expansion for Lg(s) is equivalent to the fact that fis an
eigenfunction of all Hecke operators. The eigenfunctions are constructed with the help of the Petersson scalar

product on 8 (I'):

8= | f2)E@ y2dxdy
Hir
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(here z = x + iy, y > 0, H/T is the fundamental domain of I'). The operators Ty (") commute with one another
and are normal operators with respect to the scalar product introduced, which allows one to find an orthogonal
basis of the space Sik(I), consisting of common eigenfunctions of the operators Ti(n) {33, 114].

Now we consider the C-linear space ©(f), spanned by the set {fl[0], 0¢G*}. This gives a representa-
tion of the group GQ+. One proves that Q(f) is (algebraically) irreducible if and only if the Dirichlet series
Lg(s) has an Euler expansion (this follows from Hecke's theory, since the algebraic irreducibility of Q(f) is
equivalent with the fact that f is an eigenfunction of the Hecke operators) (cf. [19, 185]).

We consider the completion GQ " in the topology whose basis is the set of congruence-subgroups. Then
Gq* ={g61;IGL2(Q,,)!det g,=r>0, reQ}; where g=11g, Q, is the p-adic numbers (the p are prime numbers).
p

GQ+ acts on Q(f), since any element of Q(f) is invariant with respect to some congruence-subgroup. One can
show [19, 86], that the representation 7 of the group GQ+ on Q(f) admits an expansion as a tensor product ¢ =
® T, £ where T, f is a representation of the group GL,@Qp), while almost all p, f are irreducible.

Instead of the group GQ it is more convenient to consider the adele group
OLo(A)={g=g. Il ¢,12.60L R}, g,6GL,(Q,).
P
here ngGLZ (Zp) for almost all o},

and instead of the functions f on H, the functions % on the group G Ly(R):

r Fg@)ig i)™, if detg>0,
J (g)={f(g(—i»f<g, Ziyr, it detg<o,

where g=(g 3)
Here if f¢Myg(I'), then

Fog=7(@, i ver,
Fxg)=e""9F(g), if x is rotation by an angle 6 (x).

Whence it follows that the function f can be considered in the sarﬁe way as a function on the homogeneous space
T' (V) \GL, (R) = GL, (Q)\.GL, (A);U™",
(where 7 ¥ )————{g=1-Hg,,EGL2(A), g,60Ly(Z,); gpz((l) ?)(modNZp) for pIN}), or as a function on the adele group
P

G1Ly(A); here the action of elements of GQ+ on f goes into the action on f by left translations:

(f eI (€)= F (o).
Modular forms f of weight k with respect to the group

ro)={(% g)eSL, (Z)] ¢ =0 (mod N}}

with Dirichlet character $(mod N), i.e., forms f of level N, satisfying the condition

F 2 ) =v@y ez tarr@, (£ 7)er),
go into functions f such that ’
F =% 7@
where ztZ, = A* (the center of GI,(A), 15 is a character of the group of adele classes zﬁ: A*/Q* —C*, extend-

ing ¥. Here we use the notation f¢ My (N, ) (or f is of type (N, k, ¥)).

For f€My(N, §) we consider the C-linear space Q(f) of functions on GLy(@Q) \GL(A), generated by left
translations of f by means of GLy(A). The representation nf of the group GI,(A) on Q(f) is irreducible, if #f
is irreducible and mf = 7, ®(® 7, ), where 7, is a representation of GL,(R), and the representation 7 f s
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is equivalent to the representation m, ¢. Q(f ) can be considered as a subrepresentation of the regular repre-
sentation of GL,(A) in continuous functions on GL,{A) (such representations are called automorphic). Here, if
f is parabolic, then Q(f)C LI(J), where Li(y) is the space of measurable functions h on GI,(A), square-inte-
grableon ZpGLy(Q) \ GLy(A) with respect to the Haar measure on GL,(A), satisfying the parabolicity condition:

S h(ug)du=0

Ug\Ua
for any subgroup Up, conjugate to

NA={ (1) f)lxeA} over Q (for almost all g).

The Hecke operators act on elements of £(f) as operators of integral convolution with functions from the
Hecke algebra 6. (3, is the algebra with respect to convolution of continuous complex functions on GL,(A)
with compact support, bilaterally invariant with respect to 2 maximal compact subgroup K C GL,(A). Instead
of a representation of the group GL,(A) one can hence consider the corresponding representation of the Hecke
algebra 7, [60-62].

Jacquet and Langlands [123] as the starting point for the construction of L-functions took irreducible
admissible representations of the groups GLQ(Qp). Admissibility means that the vectors of the representation
space Kp are finite (where Kp = G]'_Q(Zp)), i.e., all elements of the representation space, obtained from a fixed
vector by application of elements of a maximal compact subgroup K, lie in a finite-dimensional vector space

[61]. To each such representation LY corresponds some diagonal element #, =(8” I?p ) in the group GL,(C)
[61}. In the special case when Tp = Ind (1, ® 1y) is the representation induced from a one-dimensional repre-

sentation of the group of diagonal matrices: u,®p, (g 2)=p1 (%) 12 () » where py, ung; — C* are unramified

0

o (p))- If 7 = 7@ mp s an irreducible admissible repre-

; * ; w(p)

characters of Qp, the element hp is equal to 0

sentation of GLy(A}, then the L-function L(s, 7) is introduced as the Euler product L (s, n)———HLp (s, m,), where
P

Lp(s, mp) = det(I— hpp's)'1 =l —app™S)1 = Bp)p'f"]‘1 (in this definition, for simplicity we have omitted T,
the factor corresponding to Leo(s, Ty)).

I f (z)zz a.9"6S, (N, ¥) is an eigenfunction of the Hecke operators, a; = 1, then the representation mp ¢

fl==]
corresponds to the p-factor
Ly(s: mp,p)=[l—@,p=s=¢N2 44 (p) ps|
and Lg(s) = L(s + k—-1/2, nf). Here hPESLz(C), if the character ¢ is trivial. In general, if the elements
of the center Z, act trivially in some representation v, then hpESIQ(C); in this case 7 can be considered as
a representation of the group PGL,(A). For irreducible admissible automorphic representations =, Jacquet

and Langlands constructed an analytic continuation of the functions L(s, m) and we get for them a functional
equation of the form:

L(s, ))=¢e(s)L(1—s, ), 1.5)
where 7 is the representation, contragradient to 7, and ¢ is the factor s(s)=Hsp (s) which plays the role of
1
the constant of the functional equation [238]. For the functions L{s, =f) this functional equation goes into the
Hecke functional equation (of type (1.4)).
Interesting classes of Euler products are connected with finite-dimensional representations r of the

group GI,(C):

L(s, 7t =11 L,( 5. 7) (1.6)
P
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where L,(s, Tp» r) =det (I— I‘(hp)p"s)—l. Products of the form (1.6) are absolutely convergent if Re(s) is
sufficiently-large.

Hypothetically [150] such L~functions admit analytic continuation and satisfy some functional equation.
This conjecture is proved only in a few special cases:

1) r= Symi(St) (i=2, 3, 4) (symmetric powers of the standard representation St:GLy(C) — G Ly(C)).
The representation r = Sym?(St) is isomorphic with the adjoint representation; this case is analyzed by Gelbart

and Jacquet [93]. I f(2) =2 a,9"€S, (N, ¥) is an eigenfunction of the Hecke operators, a; =1, then L(s, 7, r)

n==1

coincides with the symmetric square of the Hecke series L(s, m) = Lg(s + (k—1)/2), while

L(s, 9)L(s, 1ty r)==L (25, ) Y, atn—st-0r, (1.4)

n=1
where L(s, 1p)==2 Y(r)yn is the Dirichlet L-series. The casesr= Sym3St, Sym!St are analyzed in [89].
n=1 ’

In this example the L-function L(s, 7nf, Sym?r) gets an interesting interpretation as the Mellin transfor-
mation of some automorphic form on the group GI3(A) (cf. Sections 2, 4).

For a discussion of the analytic properties of L(s, 7np, Sym!r) and their connection with the Sato—Tate
conjecture on the uniformity of the distribution of arguments of the eigenfunctions hy, cf. the survey of Fo-

menko [41]. We give only a result of Kurokawa: if €S, (N, €) and m = 3, then the Dirichlet series Ea,’lﬂn‘s
n=1

and 2 a,mn"¥ can be meromorphically continued to {s€ClRe(s) > 0}, while the line Re(s) = 0 is the natural

n=1

boundary of meromorphicity [147] (cf. with formula (1.7)!).

2) Shahidi [205] investigated the analytic properties of L(s, w, r) in the case when 7 is a parabolic rep~
resentation of PGL,(A), r is an irreducible four-dimensional representation of the group SI,(C).

We note that analogous constructions can be made in more generality, replacing the field Q by an arbi-
trary global field F. Here if F is completely real, then automorphic representations of GLy(Af) (where Ap
is the ring of adeles of the field F) correspond to Hilbert modular forms [35, 194],

Hecke's theory also admits a generalization to this more general case.

1) The theorem on the existence of a basis of eigenfunctions of the Hecke operators in the space of
parabolic forms is now reformulated as the theorem of Gel'fand—Harder [19, 107] that the space L3(w) (for
the precise definition, cf. Sec. 2), where w is a Hecke character (a homomorphism w:Ag* /F* —C*), is a
countable sum of irreducible admissible representations of GL,(Ag), while each of them occurs with finite
multiplicity. This theorem is valid in considerably more generality (for connected reductive algebraic
groups over a global field F).

2) Direct Theorem [123]: The L~function L(s, 7) of an automorphic representation admits meromorphic
continuation to s€¢C and satisfies a functional equation (of the type (6)).

3) Inverse Theorem [123, 238]: the representation « is automorphic, if all functions of the form L(s,
a®y) admit meromorphic continuation to s€C, satisfy a functional equation, and have analytic properties of
the given type; here x is the Hecke character.

Another formulation of the inverse theorem is given by Li [158]. In the case F =@Q, an interesting re-
finement of the inverse theorem was obtained by Razar [195].

The theory of Atkin—Lehner [33, 41] can be interpreted as multiplicity one theorem [186]: the multiplic-
ity of irreducible admissible representations of the Hecke algebra in L%(z,b) does not exceed one. Moreover,
a strong multiplicity one theorem holds: An automorphic representation =, occurring in Li($) (parabolic repre-
sentation), is uniquely determined by giving almost all local factors my [186].

The classical conjecture of Ramanujan— Petersson that for an eigenfunction of the Hecke operators f(z) =

Ea,.q"eSk (N, ¥), a; =1 one has the estimate lapl < 2p(k-1)/2, can be reformulated in the general case as the
n=1

2712



assertion that the eigenvalues of elements hy€G L,(C), corresponding to components wy of the parabolic repre-
sentation m = ® 7y (v runs through the valuations of the field F), are in absolute value equal to1. V. G.
Drinfel'd [24] proved the generalized conjecture for parabolic forms on GL,(AF) over global fields of positive
characteristic. Earlier, Deligne proved this conjecture for F = Q [71].

2. Automorphic Forms and L~-Functions,

Connection with the Theory of Group Representations

We consider the more general case of a linear reductive group G over a global field E . G will denote
the locally compact group of points of G in the ring A = A of adeles of the field F, G is the discrete sub-
group of F-rational points of G, K is a maximal compact subgroup of Ga, Z4 is the adele points of the center
of G (cf. [19, 60, 62]).

An automorphic form f on G is introduced as a continuous function f:C 4 — C, satisfying the conditions:
a) fis invariant with respect to right translations by elements of G
b} fis K-finite;
¢) there exists a Hecke character ¢: Ap* /F* — C* such that
S(z8)=%(2) f(g)
(z€Zp, g€Gp) in the case when Zp = A%;

d) the function x — f(x-y) on the group G, = G(F®R) of Archimedean points of G (i.e., points in F®R)
is annihilated by some ideal of finite codimension in the algebra of biinvariant differential operators on Gw
(such a function is automatically real-analytic, since it is annihilated by an elliptic differential operator);

e) f satisfies some diminution condition;

*} the form f is called parabolic if

% f(ux)dx=0,

UajUE
where U denotes the unipotent radical of any parabolic F-subgroup in G (cf. {60, 62]).

Automorphic representations of G (or of the Hecke algebra 5,) are defined as representations, lying
in the regular representation of G5. Here the parabolic forms f lie in the space 2(p), consisting of measur-
able functions h on G /Gy, satisfying condition c), such that x —h(x}| ¢ (det x1)11/? is square integrable on
G A/ ZAG» and satisfying the parabolicity condition (for almost all x).

Parabolic representations of Gy are defined as subrepresentations of Lﬁ(z/;) (cf. [601),

By the symbol % (G /F) we denote the set of equivalence classes of irreducible admissible representations
of G5. Langlands proved [153] that each n€%(G/F) is a component of a representation, induced from some
parabolic c€%(M/F) , where M is a Levi F-subgroup of a parabolic F-subgroup of bG.

L-functions of irreducible admissible representations of the group G4 are introduced with the help of
expansions 7 = ® yTy, where v runs through the set of valuations of the field F, 7y is a representation of the
group G(Fy) (of points in the v-completion) (or a representation of the local Hecke algebra 76,) (cf. [19, 86]).
Here with almost all my (except for a finite set of valuations v€S) one can associate the conjugacy class of a
semisimple element hy in the Langlands group LG (IG is a certain reductive linear group over C; for G = GL,
the element hy€G L, (C); her'e the group G L,(C) coincides with a connected component of the Langlands group
1G). L-functions of representations 7 are introduced as Euler products of the form:

L(s,m) =11 L(s, 7o) L(s, xo) —=det (I —Nw-sh,)!
’UES
there Ny is the number of elements of the residue field for the valuation v). More generally, for finite-dimen-
sional representations r of the group LG one can define

Lis,t =L L(s, %es 1) L(5: %or r)=det (I —Nv=r (o))
vﬁs

2713



Both products converge absolutely for sufficiently large Re(s), if = is an automorphic representation (cf.
[150] for parabolic w, [60] in the general case).

In the general case the dual of the Langlands group LG of a reductive algebraic group G is constructed
with the help of the root data [221, 60}:

Po (@) =(X*(T), A, X, (T), AY)

of the group G; here T is a maximal torus of G (over the separable closure F8 of the ground field F), X*(T)
(X«(T)) is the group of characters (respectively, of one-parameter subgroups) of the torus T, A(A") is a basis
of the root system &(G, T) with respect to the torus T (respectively, a dual basis of coroots). The connected
component LgY of the Langlands group is defined as the reductive group over C, whose root data are obtained

by inversion ¥, -*z[)(\)’ , i.e., are isomorphic to the collection of data of the form:
Yo (@)Y =(X, (T), 8%, X*(T), A).

If G is simple, then up to a central isogeny G is characterized by one of the types Ap, By, ..., Gy of the
Killing—Cartan classification. It is known that the map ¢4(G) ¥,(G) v permutes the types By, and Cp, and the
remaining types remain fixed. Thus, if G = Sp,, (respectively, GSpy), then LgY - 80,44 (C) (respectively,
LG = Spingy141(C)). The group LG is defined as the semidirect product of LG by the Galois group of a certain
extension of the field F, over which G splits, i.e., the torus T becomes isomorphic to (GL;)T. Such a semi-
direct product is introduced with the help of the action of the Galois group I'x = Gal(FS/F) on the group LG°,
which is defined with the help of the action of I'p on the set of maximal tori, defined over FS [60].

The group °GL can be considered also over other fields, among them over global and local ones.

The construction of the classes hy for many reductive groups is contained in [60] and is based on the
detailed study of representations of reductive groups over local fields. We shall not dwell on this, referring
thz reader to the survey of Cartier [64].

There are several conjectures about analytic properties of L(s, =, r), verified in certain special cases.
(A) If n6¥Y(G/F), then L(s, 7, r) admits a meromorphic continuation to s¢C.

(B) One can define local L- and e-factors at all points such that one has the functional equation:

L{s, = r)=¢(s, =, r)L(1—s, %, rn,
where 7 is the representation contragradient to 7 [60, 228].

(C) In a certain number of cases it is proved that:
(*) if m is parabolic, r is irreducible and nontrivial, then L(s, 7, r) is an entire function.

Property (*) does not always hold. Hypothetically, (*) is violated only when r is "lifted" from a para-
bolic representation of a reductive group H (the lift of automorphic forms will be discussed in Sec. 4) and the
restriction of r to the image of I'H in LG contains the trivial representation.

In the case G = GLy, r = ry is the standard representation of GLy,y(C), properties B) and C) are established
in [123] for n = 2 and in [101] for n > 2. Recently it was shown [223], that analogous results are valid for L~
functions of automorphic representations, not necessarily parabolic.

Recently the theorem on multiplicity one was carried over to the case of G = GL,, over a global field [186],
which is closely connected with the theory of nonvanishing: L(s, m, rn) #0, if Re(s) =1 and v is aparabolic rep-
resentation of GL,(Ap) (Jacquet and Shalika [126]). We note that for n =1, F = Q this is a classical theorem
of Dirichlet. For n = 2 the theorem was established by Rankin in the case when F =Q and 7 corresponds to the
parabolic form of Ramanajan (cf. [41]).

For n = 3 the inverse theorem is proved [124]: if all L-functions of the form L(s, 7®YX, ry) (where xis a
Hecke character, 7 is an irreducible admissible representation) extend holomorphically to s&¢C, then the repre-
Sentation 7 can be realized in parabolic forms. It is noted that for n = 4 the analogous result no longer holds:
hypothetically for the realizability of = in parabolic forms it is necessary to require the holomorphicity of all
L-functions of the form L(s, 7® o), where ¢ is any parabolic representation of GLj(A), l1=j—r +2.

Asg also in the case n = 2, the proof depends essentially on the fact that the function L(s, 7) admits an in-
tegral representation with the help of a certain function on GL3(A), which turns out to be a parabolic form
(analog of the Mellin transform). The construction is based on the theory of models of Whittaker for local and

global representations.
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Jacquet [121] established properties analogous to A)~C) for automorphic representations of the group
G =GL; XGLyandr = ry®ry. In particular, there are defined local factors L(s, m ® =, r) and &(s, M ® m, )
where 7; (i =1, 2) are two irreducible admissible infinite-dimensional representations of GI,(F), F is a non-
archimedean local field. However, such factors were found explicitly only for certain pairs of representations.
The results of Jacquet were refined by Li [159, 160], who explicitly calculated the factors in terms of a sum
of the form:
2.1)

where f(y) denotes the exponential conductor of the Dirichlet character y : F* — C* (an integer). Such sums
turned out to be closely connected with the interesting concept of n-closeness of irreducible supercuspidal
representations 7j (1 =1, 2). Let wj be central quasicharacters of the representations =j, obtained from the
restriction of mj to the center of GILy(F). It is known that = is isomorphic to n, [123] if and only if: 1) w; = w,
and 2) g{s, ;; ®x) = &(s, m® x) for all quasicharacters x; here if m and w, are isomorphic, then they have
identical conductors f(wt) ={(m). In the case when {(m) = f{my), one can introduce a finer concept than n-close-
ness, where m and 7, are ©~close if and only if m is isomorphic with 7, [160].

By definition, '}ri is n-close to m, if f(m) = f(m) and n is the largest integer m such that
£(s, m)e(s, 1y ==c(s, m)e(s, 1)

for all characters x : F* — C* with conductor f(x) = m. Tests are given for the n-closeness of two represen-
tations m and 7, in terms of sums of the form (2.1); in interesting cases such sums are explicitly calculated.
The results are applied [159] for the explicit calculation of constants and local factors of the functional equa-
tion of the convolution of two L-series, connected with primitive parabolic forms (parabolic representations

oo

of GL, over Q). Let f; (z):E a; (n)g* J, (z):z a,(n)q* be the two parabolic forms of weights k;, k, with

n=1 n=1
respect to the groups IT'y(N;), I'y(N,) with Dirichlet characters v, mod N;, v, modN,, respectively. The Dirichlet
series

- Baties
Lio 1 () =L(2s, &) X, @ (n) E(Z)n_(”_;i“l) 2.2)

ft==1

(where L(s, s):z e(m)n=s, e=vvomodN, N=1.c.m. (N1, Nz)) is called the convolution of the L-series con-~
n=1

nected with f; and f,. The series Lf;, f;(s) were first considered by Rankin, who constructed the analytic ex-

tension of such series and got for them a functional equation in the special case N =1. In the general case Li

[159]) established a functional equation, connecting Lf“fz(s) and Lf?f_z (1 —s), where

fi@)= 2 a, (n) e (nz).

The constants and local factors of this functional equation are calculated completely explicitly and are
connected with the action of the Atkin—Lehner involutions [57] (W-operators) on the modular forms with re-
specttothe group I'y(N). W-operators correspond to each prime divisor /N and carry a primitive normalized
form f of level N into another normalized form of the same type, multiplied by a certain number Aq(f) ("pseudo-
eigenvalue" of the W-operator on f). The constants of the functional equation of the series (2.2) are calculated
[159] in terms of products of numbers of the form Aq(fi); in its own right, Aq(fi) is described in [57] in terms of
a Gaussian sum. In special cases this functional equation was obtained earlier {36, 41].

In the considerably more general case G = GLy X GLy, I = ryyy ® rp over a functionally global field F one’
can define [122] local L- and e-factors. Hypothetically (Jacquet dixit, [60]) here properties A) and B) hold and
also holomorphicity (excluding the case when m = n, 7 = m® m, and m is contragradient to m,; here 7j are auto-
morphic representations of GLyy).

Interesting classes of L-functions, connected with symplectic groups, were introduced and studied by
Andrianov [1-6, 47]. In this case G = GSpyp = {gf:GLGlgtJng = r(g)Jn}, where r(g)tGL,

Io=(z o")
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E, is the identity matrix of size n X n. The dual Langlands group LY in this case coincides with the universal
covering Spinyy, {(C) of the orthogonal group SO,,(C). We shall use the standard representation of the orthog-
onal group

St?ll+1 : Sozm_l (C) C’GLﬂnu (C)!

E, 0
Gi=|g. o ('))'

0...0 1

where S0y, ;1 (C) = {g€ Lyn+ (C) 1giGng = Gpl

If 7 is an irreducible admissible representation of the group G over the global field F, 7 =®vyuy, then
for almost all v the representation ny corresponds to the conjugacy class of a semisimple element hy, in
Spingy +;(C), whose image in SOy, ,4(C) is the diagonal matrix

diag [al,,ya .y an o? ax gt n 111 l} GSOZII+X (C)

The element hy itself in the spinor representation pp of dimension 22 of the group Spinyy 4 (C) (or of the
group SOz, 44 (C)) can be described by a diagonal matrix of the form:

diag {ﬁo.a’ ﬁO,val.'a’ e Bo,v“i,,ua'i,,v' . '“i,,uv' oo ds
here for each r < n one considers all products of the form Bo, v@iy, v@iy, v <+« Uiy, vs l=ii<ip<...<ip=n,
and the number By, v up to sign by the normalizing condition:
2 —
ﬂO.WC('].W' ' ’an,v'—l

Here ldet hyl =1

The element hy is defined uniquely up to the action of the Weyl group I' generated by permutations of
the coordinates @y vy, ..., ap,y and by maps
a; e, (f#£0,0 i=1,...,n).

po,o"’ﬂo,v“i,u: @ v"’m, )

For automorphic L-functions of the form L(s, 7, r), where =y is an automorphic representation of the
group G over the field Q, connected with a parabolic Siegel form with respect to I'y = Spyp(Z), r = pp, n =2,
Andrianov [4] established properties A)-B) and investigated for which parabolic forms f one has the holomor-~
phicity property C). Evdokimov [26] and Matsuda [170] extended these results to the case of congruence-sub-
groups of I';. We note that for n =1, GSpy = GLg, Sping(C) = GLy(C), p; =1, (standard representation), and
the L-functions L(s, m, r;) are studied by Jacquet and Langlands [123].

The general case (for n = 2) is analyzed in [180], where there are studied the L-functions corresponding
to irreducible admissible representations of the groups G = GSp; and G = GSp; X G1, over a global field F, and
the representations of L-groups LG of the form: r = p,, r = p X p; (we recall that r, is the standard represen-
tation of GL,). For the case of a functional field F in [180] properties A) and B) are established, and for num-
ber fields F only the part relating to analytic continuation is proved. We note that for n = 3 the analytlc prop-
erties of the: functions L(s, m, p,) have not yet been investigated.

Andrianov and Kalinin [5, 47] studied analytic properties of standard zeta-functions of Siegel modular
forms, which have the form L(s, mf, Styp4), where 77 is an automorphic representation of G over Q, connec-
ted with the Siegel modular form f of genus n with respect to the congruence-subgroup

Io@)={(¢ p) €SP ()| C=0(mod 9)}.

We note that in the case n = 1, L-functions of the form L(s, 7§, St3) coincide with symmetric squares of Hecke’
series; the holomorphicity of such L-functions is investigated by Shimura [41] (cf. also [38]). In [5] there is
constructed the meromorphic continuation of the function L(s, mf, Styn.) for any even n; in the special case

q = 1 under certain additional restrictions it is proved that these L-functions are holomorphic, if one excludes
a finite number of poles, and satisfy a functional equation of the type B). The case n = 2 was analyzed earlier
by Andrianov [47] and Gritsenko [23].

Orthogonal groups of quadratic forms of an odd number of variables are dual according to Langlands {60,
150] to symplectic ones: ¥ G = SOy, then the dual group 1G® is Spy, 4(C) (for n = 2, however, the groups
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8p,(C) and SO4(C) are locally isomorphic: Spy(C) = Sping(C)).

L-functions connected with irreducible admissible representations of orthogonal groups of the form G =
S0y, are studied in the case when the ground field F is a (global) functional field (cf. [181]), and r is the
standard representation of the symplectic group Lg = Spon{C). Here properties A)-C) are established.

We dwell in-more detail on the case of L-functions connected with Siegel modular forms. We recall that
the Siegel modular functions of genus n are introduced as holomorphic functions f:Hn — C on the Siegel upper
half plane of genus n = 1 [4]:

H o= {Z=X+iVeM,(C), ’Z—Z, positive definite}

so that:
1) for each element M ——=<’Cq g) €5p2n (2)
det (CZ4-DYy*f(M(Z))=f(Z), ZEH,,
where M{Z) =(AZ + B) (CZ + D)~! is an analytic automorphism of Hp; k ié called the weight of f;
2) f£(Z) is bounded in each domain of the form |
‘ (Z=X+iYEH ¥ >cE,, ¢>0).

The symbol ME will denote the complex space of Siegel modular forms of genus n of weight k with respect to
I',, = Spn(Z). Analogous definitions are introduced for congruence-subgroups I' C I},.

Each modular form f{ EM’& has a Fourier expansion of the form:

f@= 2 a)e(Tr(NZ),

NG, V>0

where Tr{(NZ) is the trace of the matrix NZ,

Ry ={N =(n,)eM, (Q), ‘N =N, n;;, 2n,;6Z}
is the set of symmetric half-integral matrices of order n.
Parabolic forms are introduced as f EME such that a(N) = 0, if det N = 0, and form a linear space Sﬁ.

Since H,, is a homogeneous space of the group Spy(R) —~ Hy, the image of the Haar measure on Spn(R)
under the map Spp(R) — H,, defines uniquely up to a constant factor a volume element, invariant with respect
to Sph(R):

dz=(det vy " T dxop Il dyoy (2=X+i1).

a<f a<p

For each pair of modular forms f, fléMﬁ the measure on Hy

f @) f12)(dety) dZ
is invariant; here the integral

. o= F@Fi@ detyydz 2.3)
DH
(where Dy, is some fundamental domain of the group I'y) converges absolutely if at least one of the forms f, f;
is parabolic, independent of the choice of fundamental domain and defines a nondegenerate Hermitian pairing.
The orthogonal complement Ef to Sp in M is called the space of Eisenstein series of genus n of weight k (cf.

[4, 29)): M}, = SRO EL.

L-functions are introduced with the help of Hecke operators; these operators correspond to double cosets
of the form I'ngI'y, where

eS8 ={geMy, (Z)|'gSn8=r (&) S, r{@)=1,2,...}.

By definition i
Tp(CagTy) f=r (@y=n+02 ) £, [a)]
i=1
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u AB "
(where anrn = iLJl T,.0; and for ()':(C D)GS( )
(fl:lo]) (Z)=det (CZ+D)* f (AZ+B)(CZ+ D)),
The Hecke algebra L{?) is defined as the free C-module, generated by double cosets I'ngI'y; multiplication in

L{) is introduced so that the product of double cosets corresponds to the product of operators Ty (I'ng Iy): the
map

(CagT )T £ (TngTr)
defines a representation of L) on the space ME, where Sg is an invariant subspace.
We set

T (m)= 3 (T.gT)EL™.

r(g)=m

The local Hecke algebra L (n) (p is a prime) is introduced as the subalgebra of L(n), generated by ele-
ments of the form: (I',gIy,) with r(g) = pf.

The representation @) on Sk(n) decomposes with respect to the characters of the algebra L (n) with
the help of the scalar product (2.3). All characters A: Lp(n) —C can pe written thus: we choose in the double
coset I'pg I triangular representatives gj of the left cosets T',gl',= | I'.g,

i=1

01‘1)“1 .B .
g,=(p 0 g D;)’ D, =diag (p*n, ..., p’in).
Then (cf. 1, 4]) there exist complex numbers «g, @y, ..., oy such that

w n
ATgTa) = Dot I (@,p9,
=1 j=1

For characters A, obtained from the representation Ly (1) on Mﬁ one has the relation:

a%al . a,,=p’f”*"("+1)/2.

We set g, = a,p-(2Kn-nMH)/4 o6 the collection of p-parameters Bg, @y, gy -. -, a,, defines a semisimple
element hp in Spiny, 4, (C) (and in 8Oy +(C)) (cf. above).

To each eigenfunction f EME of the Hecke algebra L(n), thus corresponds a collection of p-parameters
Qgyps Q1,ps --+» Qn,p and eigenvalues Af(I'pngIn):

T, ((Pngrn» f= 7\'/ (P,,an) fi
in particular:

Te(m) f=A;(m)f.

Andrianov proved [4] that the Dirichlet series D;(s) =2 A;(m)m=, which is absolutely convergent on

m=1

some right half plane, admits an expansion as an Euler product

D,(s)= II (zhf 1) P_és) =HDp.f (s)
p \b=0 4

where each p-factor Dp,q(s) is a rational-fraction of p—S:

Dy i(8)=Pop,s (%) Qu.t (P~
where Pp’f(t) and Qp,f(t) are polynomials with real coefficients of degree 2 —2 and 21, respectively; the
polynomniial Qp, £(t) has the form:

Qs (O =1—h, D)t ... +p" 0 (g IT II (1—ae o a0t).

r=llcii<ly...<ly<n
The zeta-funtion of the modular form f is the Euler product:

Z,(5)=11 Qo ().
14

In our earlier notation
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Zy(8)=L(s+ @kn—n(n+1))4, ns, p).

The proof of the theorem on analytic continuation and the functional equation of Zf(‘s) in the case n = 2 is
based on the connection between the Fourier coefficients a(N) of the form f and the eigenvalues Ag(m) of the
Hecke operators, discovered by Andrianov [4]. This connection is that the function Z¢(s) can be represented
in the form of a linear combination of series of the form:

Ry (8)=Run.f(s)= Z a(mN)ms,
=1

where N = (gﬂ g’/ 2} is an arbitrary positive definite half-integral matrix. Here the Dirichlet series Ry(s) can

be obtained by integrating the restriction of the form f to the three-dimensional real domain Hy C H,. On Hy
there acts a certain discrete arithmetic subgroup I'jy of the group SL,(C). The proof of the theorem on the
analytic properties of Zf(s) follows from the properties of Eisenstein series which are automorphic forms with
respect to T';; on Hy.

In the case of arbitrary n the connection between eigenvalues of Hecke operators and Fourier coefficients
is studied in [1], where there is also investigated the interesting question about the action of the Hecke oper-
ators on theta-series of genus n, i.e., functions of the form:

8 (Z)= 3, e(Tr ((XAXZ)/2)= X ra(B)e(Tr(BZ)/2).
XEM g p(2) B

Here Z tHp, B runs through all integral matrices of order n with even diagonal, satisfying the conditions:

!B =B, B = 0 and rA(B) denotes the number of integral representations of the quadratic form with matrix

B/2 by a quadratic form with matrix A/2.

Freitag [88] solved the question about the invariance of the spaces of theta series of genus n of quadratic
forms A of given type with respect to Hecke operators, based on the theory of singular modular forms [188].
Andrianov gave an effective expression for the image of any theta-series of a quadratic form with an even num-
ber of variables under the action of the Hecke operators in the form of a linear combination of theta-series of
the same type. The coefficients of such a linear combination are expressed explicitly in terms of trigono-
metric sums; from these formulas it follows in particular, that all eigenvalues of suitable systems of genera-
tors of the Hecke algebras L™) are algebraic integers.

There are explicitly calculated the expansions into factors of Hecke polynomials for genus n (cf. also
{2, 27}). It is proved, in particular, that the standard zeta-functions
L(s, %y, Styn, ) =L(F, =11 L, (7, 5,
14

n -1
where L,(f, s)==[(1 —p )1 —a,p)(1 —a:},p—S)] can also be expressed in terms of Fourier coefficients,
i=1

more precisely, in terms of series of the form

2 a (MN!M) (det M)-(S+k~l)

MESL_(Z2)\ M}, (2)

(cf. [1, 5]). This allows us to write the integral representation for L(f, s) in the form of the integral convolu-
tion of f with a certain theta-series of genus n. The proof of the theorem on the analytic properties of I(f, s)
is obtained with the help of a modification of Rankin's method {41, 47].

Another class of zeta-functions, connected with Siegel modular forms, was investigated by Arakawa
{49, 50]. If
F@= X a@)e(Tr(NZ)am;
Nen,
is a Siegel modular form of genus n, then one can define a Dirichlet series, using only the coefficients a(N).

For a positive-definite symmetric matrix N we denote by the symbol £(N) the order of the finite group
{U€sLn(Z)ItUNU = N}. It is proved that the Dirichlet series

2719



D.(f» )= a(N)e(N) (det N)-s
N>0

(where the summation is taken over classes of SLy(Z)-equivalent positive definite half-integral symmetric
matrices) admits a meromorphie continuation to s&€C and satisfies a certain functional equation; there are
also calculated the residues. of the function D,(f, s) at its finite number of poles.

3. Automorphic Forms and Artin's Conjecture

An important class of arithmetic L-functions is made up of the Artin L-series, connected with complex
representations of Galois groups of extensions of global fields.

If K is a Galois extension of the global field F with Galois group Gal(K/F) and
o:Gal(K/F)—~GL,(C)

is an n-dimensional complex representation of Gal(K/F), then the Artin L-function is introduced as the Euler
product:

Lis,o)=T1L(s,0,)

over all valuations v of the field F. Here oy denotes the restriction of ¢ to the decomposition group of Gal(K/F)
for the valuation v, while for valuations v, unramified in K,

L(s, 0,)=det (I — o (Fr,) No-5),
where Fry, is the Frobenius element over v (cf. [89]).

Artin Conjecture. If ¢ is irreducible and nontrivial, then L(s, ¢) extends to an entire function on s€C.

For representations, induced from a one-dimensional representation of a subgroup (monomial represen-
tations) L(s, o) reduces to the function L(s, x), where x is a Hecke character of finite order (E. Artin); in the
general case Brauer proved the meromorphic extandability of L(s, o) to s€¢C, using integral virtual expansions
of characters of representations o with respect to characters of monomial representations.

A new approach to the proof of Artin's conjecture was suggested by Langlands, who assumed that L(s, o)
coincide with L-functions of irreducible parabolic representations of GL, over ¥. The validity of Artin's con~
jecture would then follow from the direct theorem of Jacquet (cf. Sec. 2 and [101]).

In the case n = 2, the image of ¢(Gal (K/F)) in PGL,4(C) can only be isomorphic (cf. [33]) to the following
groups:

1) the dihedral group; in this case o is monomial,

2) A, (tetrahedral case),

3) S; (octahedral case),

4) A; (icosahedral case).

Langlands proved the conjecture on the coincidence of L-functions in case 2), 3) (cf. the account in [89]).

The validity of Artin's conjecture in case 4) remains an open question, although Buhler (cf. [63]) gave an
example of a representation of type 4), for which Artin's conjecture is valid. Here F = Q, K is the splitting
field of the polynomial

Xx54-10x3—10x2 4 35x—18.

Buhler's result is based on a construction of Serre and Deligne (cf. [76]), which associated with each
primitive modular form f of type (N, 1, ) with odd Dirichlet character y mod N some two-dimensional com-
plex representation pf:Gal @ /D) = GLy(C). In Buhler's example N = 800.

Langlands' conjecture also relates to a wider class of L-functions, connected with representations of
Weil groups. For a finite extension K/F of a local or global field, the Weil group W/ F is defined as a cer-
tain extension of the group Gal(K/F) by Ck, where Ck = K*, if K is a local field, Cx = Agx /K* (the group of
adele classes of K), if K is global; if the group G(K /F) is Abelian, then cohomologically this extension is given
by the fundamental class a(K/F)€HXG(K/F), Ck) from class field theory (cf. [228, 60]). The Weil group WF
is defined as the projective limit of the groups Wx /-
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In the case when F is a local nonarchimedean field or global functional field, W admits the following
description. We consider the homomorphism v:Gal (F/F) — VA , where 7 is identified with the help of the Fro-
benius element & with the Galois group of the algebraic closure of the residue field (respectively, the field
of constants). Then Wy is identified with the subgroup of elements of the group Gal (F/F), whose image in
% lies in Z, and the topology on Wy is induced by the inclusion of W in Gal (F/F) XZ.

The L-functions of representations of Weil groups are introduced by analogy with Artin L-series as
products of certain local factors. Such L-functions admit meromorphic continuation to the entire complex
plane and satisfy a functional equation with suitably defined e-factors (cf. [228, 73]). Unfortunately, the &-
factors are explicitly defined only for one-dimensional representations. In the general case one has an exis-
tence and uniqueness theorem for e-factors; there are also individual descriptions of e-factors for certain
classes of representations (cf. [72, 73]).

The L-functions so defined include as special cases: a) the Abelian L-series of Hecke with grissenchar~
aktere, b) the nonabelian L-functions of Artin.

Local Langlands Conjecture. Let F be a local field, n = 1, Thereexists aone-to-one correspondence be-
tween classes of isomorphic irreducible n-dimensional complex representations ¢ of the Weil group Wx and
irreducible parabolic (supercuspidal) representations m of the group GLy(E), under which the L- and é-factors
of corresponding representations 7® y and c® y coincide for any Hecke character y (cf. [70, 148, 245, 231,
232]).

For n = 1 Langlands' conjecture is equivalent with local class field theory [70].
For n = 2 this conjecture is proved (cf. [231, 232]).

An interesting generalization of the local Langlands conjecture was made by Tate {228]. Instead of the
group Wy he proposed to consider the Weil —Deligne group scheme Wg (cf. [72]), which is the semidirect pro-
duct of Wx on G, where G, is an additive group scheme on which Wy acts according to the rule: wxw~! = [lwl
%, and [wl = q~VW), q is the order of the residue field. A representation of Wg', on which the geometric
Frobenius element & acts semisimply, we call ¢-semisimple. For such representations one can also define

L~ and e-factors.

Conjecture. There exists a natural bijection between the classes of isomorphic #-semisimple repre-
sentations of Wg' of degree n and the irreducible admissible representations of GL,(F) (not only parabolic
ones!).

Such a generalization of the local Langlands conjecture is motivated by the recent results of Bernshtein
and Zelevinskii [9] on representations of GLy over a local nonarchimedean field. This conjecture is also
proved in [231] for n = 2.

A new approach to the proof of Langlands' conjecture for n > 2 was proposed by Koch [134].

The local Langlands conjecture can be generalized to the case of arbitrary reductive groups [60, 162].
Here instead of complex representations of the Weil group one considers classes of homomorphisms a:WF'—
LG over the Galois group, satisfying certain additional conditions. If ®(G) is the set of such classes, II(G(F))
is the set of irreducible admissible representations of G(F), then hypothetically there exists a partition of
I(G(F)) into nonempty disjoint sets Il, , parametrized by elements ¢ ¢ ®(G). Here the elements of a fixed set
Iy are called L~nondistinct: to all of them correspond identical L-functions (cf. (60, 156, 206]).

The Global Langlands Conjecture can be formulated in terms of A-adic representations. Let F be a global
field with Weil group Wy. If E is a number field, [E:Q] <  with nonarchimedean valuation A, then a A-adic
representation is a homomorphism of topological groups p):Wg — GLg(Vy), where E; is the completion of E,
V, is a finite-dimensional vector space over Ej, and the group GLg,(V)) is considered in the A-adic topology.

A system {p)} (A are points of the field E) is called compatible, if for almost all valuations v of the field
F and almost all A the characteristic polynomials of elements p)(:by) do not depend on A and have coefficients
in E; here &y denotes the Frobenius element ®,¢ Wy, corresponding to the nonarchimedean valuation v (cf.
[228]).

The compatibility condition of representations p; allows one to define for them L-functions analogous
to the Artin L-functions (cf. [228]).

A wide class of examples of A-adic representations is connected with the action of the Galois group on
points of finite order of elliptic curves and Abelian manifolds defined on F. If E is an elliptic curve, defined
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over Q, En is the kernel of the multiplication by {1 in the group of points E(Q) over the algebraic closure Q
of the field Q, then E;, = (Z/IhZ)? as an Abelian group. The action of the Galois group Gal(Q/Q) on the Tate
module T; (E) = lim E; n = Z} gives an /-adic representation

0.+ Gal (Q/Q)~>CL,(Z)),

which is unramified for almost all p. Here if <1>p is the Frobenius p~element, then the trace of the matrix
py(®p) is equal to ap, where Np =1 =ap + p is the number of points on the reduction of the curve E modulo
p. The theory of I-adic cohomology makes it possible to interpret T;(E) as the one-dimensional / -adic co-
homology of the curve E; a more systematic method of constructing A-adic representations consists of con-
sidering the action of Galois groups on the A~adic cohomology of algebraic manifolds X over F. The L-func-
tions of such A-adic representations are factors of the Hasse—Weil zeta function of the manifold X {71, 65,
149].

A larger class of A-adic representations is given by the theory of motifs (cf. [72, 228]). Local nonar-
chimedean factors of L-functions, connected with motifs, are constructed according to Artin, at Archimedean
points, using Hodge structures (cf. 72, 228]). '

The global Langlands conjecture for GL, can now be formulated as the assertion of the existence of a
correspondence (bijection) between equivalence classes of systems of compatible A-adic n-dimensional rep-
resentations of the Weil group Wy, of irreducible admissible representations of GLy(Af) and motifs of rank
n over F. [228]; such a correspondence must preserve L-functions.

As in the local case too, this conjecture can be generalized to arbitrary reductive groups; here instead
of n—dimensional A-adic representations one considers continuous homomorphisms p):Wp — LG(E ) of the
Weil group Wy into the A-adic points of the Langlands group (as already remarked, the Langlands group IG
can be defined over a number field).

For the group G = GL, the Langlands conjecture includes global class field theory, the generalization of
which to the noncommutative case corresponds to the passage from GL; to GLp, n = 2.

Drinfel'd (cf. [25, 78]) proved the Langlands conjecture for GL, over functional fields. We formulate
his result precisely. Let F be a global field of characteristic p > 0. For each number field E we denote by
the symbol Z,(E) the set of classes of isomorphic systems of compatible absolutely irreducible two-dimen-
sional A-adic representations of the Weil group Wy; we set

£, =1lim 5, (E).
£

By the symbol 2, we denote the set of classes of isomorphic irreducible parabolic representations of
G1,, (Ap), defined over Q. LetE C Q, [E:Q] <=, p ={ph} €Z,, 7€Z,. We call 7 compatible with p, if
for some A and almost all points v of the field F

L(s—1/2, st))=det (] —ps (@,)N;)7,

where ¢, is the geometric Frobenius element at v, #y€Wg, L(s, ny) is the Jacquet—Langlands L-function.
Now p€Z,; and 7€ Z, we call compatible, if for some E and pg; ¢ Z (E) p is the image of pg and pg is compatible
with 7. We denote by T the set of pairs (p, m€Z; X Z, such that 7 is compatible with p.

~

THEOREM A. T is the graph of a bijection Z; —~ Z, for irreducible admissible representations Z,.
The surjectivity of the projection I' — Z; was proved earlier by Deligne [72].

The injectivity of the projection I' — Z; follows from the multiplicity one theorem (cf. Sec. 1), and the
injectivity of the projection I' — Z, is a consequence of the theorem of Chebotarev on density of prime ideals
(cf. [203]).

The proof of the surjectivity of the projection I — Z, is based on the study of interesting algebrogeo-
metric objects, EH-bundles and their spaces of modules. Let X be a smooth projective model of the function
field F considered, X = Xg ®'Fq, FH-bundles are certain vector bundles over X, provided with additional
structures, connected with "the action of the geometric Frobenius element. With the help of the Selberg trace
formula one studies the trace of the Frobenius morphism, acting on the cohomology of schemes of modules of
FH-bundles; this leads to an explicit construction of A-adic representations, connected with 7, and proves
Theorem A. Such A-adic representations are connected with motifs, arising from the one-dimensional coho-
mology of spaces of modules of FH-bundles [141].
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THEOREM B. Let 7 be an irreducible unitary representation of GI,(A), lying in the space of para-
bolic forms. Then for each point v of the field F, 7y does not belong to the complementary series. (The
complementary series consists of induced representations of the form Ind (u®v), where y and v are quasi-
characters, but not characters,)

This theorem proves the Ramanujan conjecture over F (cf. Sec. 1).

In the case when F is a number field, the general Langlands conjecture is still very far from proof
even in the case n = 2. The first advance in this domain is connected with the theory of Deligne and Serre:
a construction is given of a system of compatible A-adic representations — 7, lying in the space of parabolic
forms (in the case F = Q). First Deligne (cf. [41]) constructed compatible systems of [ ~adic representations,
connected with parabolic forms with respect to SLy(Z), Let f (z)=2 @.9"6S,(T), a;=1, where I' = SL,{Z).

n=|
The space Si(I') is one-dimensional for k = 12, 16, 18, 20, 22, 26. Deligne proved that for any prime ! there
exists an l-adic representation

p:Gal(K;/Q)—GLy(Z)

(K; is the maximal algebraic extension of Q, ramified only at /) such that for prime p =/ the image of the
Frobenius p-element Fr,, has characteristic polynomial X? —apX + pk-1. Then Ribet generalized Deligne's
construction to the case of congruence-subgroups (cf. [197, 137, 225]). In the language of the theory of rep-
resentations of GL,(A) the construction of A-adic representations was suggested by Langlands [151].

The construction of parabolic forms corresponding to systems of !/ -adic representations on Tate modules
of elliptic curves, constitutes the contents of the famous conjecture of A. Weil on the uniformization of ellip-
tic curves E over Q by modular forms. This conjecture is proved only in certain special cases (for example,
for curves with complex multiplication, cf. Gelbart's survey [90] on other results in this direction). In con-
nection with this, we note the result of Belyi [7]: any algebraic curve, defined over an algebraic number field,
admits a covering by a projective line, ramified only over the three points 0, 1, =, and defined over a number
field; from this result it follows, in particular, that elliptic curves over Q admit uniformization by modular
forms with respect to subgroups of finite index in SL,(Z) (not necessarily congruence-subgroups).

Langlands [149] suggested an approach to the explicit construction of a correspondence between auto-
morphic representations and representations of the Weil groups, preserving L-functions. This approach is
based on one category-theoretic result [199]: any Abelian category with tensor products and direct sums,
provided with a "fiber functor" with values in the category of finite-dimensional vector spaces over the field F,
is equivalent with the category of finite-dimensional representations of a certain reductive algebraic group
over F. In particular, the existence of such a group is assumed for the category of automorphic representa-
tions of G(Ay); here the above-indicated correspondence is given by a2 homomorphism of this group into the
"algebraic hull" of the Weil group [228]. Interesting applications of this construction are connected with the
study of Shimura manifolds [65, 139, 155, 149], whose zeta-functions can hypothetically be expressed in terms
of L-functions of automorphic representations.

4. Lift of Automorphic Forms

In the last 10 years (starting with the paper of Doi and Naganuma [79]) there have appeared many exam-
ples of connections between different classes of automorphic forms, among them, between modular forms of
one and of several variables [46, 55, 68, 84, 96, 125, 165, 183, 189, 246]. As a rule, such connections are
naturally described in the language of L~functions, connected with automorphic forms. All these examples
can be combined in the domain of a general principle of functoriality of automorphic forms, introduced by
Langlands.

To formulate this principle, we consider a connected reductive group G over a global (or local) field F,
and let 1G be the dual Langlands group (cf. Sec. 2). As remarked, LG is the semidirect product of a connected
reductive group Lg0 over C (or over a number field E) by the Galois group Gal (Fl/ F) of a certain extension Fy
of the field F:

1G> *GBGal (F/ F) 1.
If H is another connected reductive group over F, LY is the Langlands group,

1 “Ho—~"H?"Gal (Fy/ F)~ 1,
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then we call the homomorphism u:LH — Lg an L-homomorphism, if the restriction of u to LH%C) is a com-
plex-analytic homomorphism into Lg%c), where F, C F, and the diagram

u

Y tg

=N

Gal(f/F)

is commutative (here » is the composition of the projection p, and the natural map Gal (F,/F) — Gal(F, /F)).

Functoriality Principle. Let F be a global field, u:LH — 1.G be an L~homomorphism, 7 =@ ¢y be an
irreducible admissible representation of the group H(Af), where for almost all v, hvELH corresponds to the
representation 7y of the group H(Fy). Then there exists an irreducible admissible representation u«(n) = n' =
@y’ of the group G(Ag) such that for almost all v the class hy' = uthy) corresponds to the irreducible ad-
missible representation my! = ux(w) of the group G(Fy) (for a more precise formulation, cf. {60]).

Applying the global Langlands conjecture (cf. Sec. 3, [60]), one can also formulate the functoriality
principle in the language of A-adic representations [228].

We consider some examples.

The first two examples are connected with extension of the ground field F. Let F'/F be a finite exten-
sion, G' be a connected reductive group over ¥, G = Rg!/gG' be the connected reductive group over F, ob-
tained from G' by restriction of scalars a la Weil (here for any commutative F-algebra B

G (B)=G'(B'), rae B'=BgF’).
F

Then the L-group LG can be obtained with the help of induction from the group LG' [60]. More precisely,
we consider in the group I' = Gal (FS/F) the subgroup of finite index 'y = Gal (FS/F'), corresponding to the
extension F'. The group Tacts on 1GY, and the group T'; on LG (cf. Sec. 2). We consider the induced
group

indg, ‘g = II “an,
’ ErTN Y
which is the product of IT';\ I'| copies of the group 1G'". Here on IndII:1 (1G") the group T' acts with the help
of the action of I on the set of right cosets (permutation of factors) and the action of I} on each factor. Then
there exists a natural isomorphism (preserving the action of T'):

LGosIndk, (“G).

1) Change of Basis. Let F'/F be a finite Galois extension, H be an F-splitting reductive group over F,
G =Rpr/pH. We consider the natural L-homomorphism u: Ly — LG, whose restriction to LH? is the diagonal
inclusion. In this case G(Ax) and G(F) are canonically isomorphic with H(Ap+) and H(F'), so the functoriality
principle goes into the following problem: to connect with an automorphic representation of H(Ag) an automor-
phic representation of H(Apv).

This problem is solved by Langlands for H-G1, and a cyclic extension F'/F of prime degree [97, 140];
a description is given of the image and fibers of the map u«. This result generalizes the preceding investiga-
tions of Doi and Naganuma {79, 41], Jacquet [121] (in the case of quadratic extensions F'/F), Saito [200],
Shintani [220, 44] (cf. also other descriptions of ux in [54, 55, 68, 84]).

Here the connection between 7 and 7' = u, 7 is intuitively interpreted with the help of A-adic represen-
tations p)':Wg —GL(F)), are obtained with the help of the restriction

(Gal (F ¢/F")~Gal (F¢/F))
of the representations pp:Wp —~GLy(E;), corresponding to m, to the subgroup.

2) L-series with grossencharakiere. Let F'/F be a Galois extension of degree n, H=Rp1/gGL;, G = '
GLy,. Here Iy = Iyt x gal (F'/F), LGO =GLy(C), and there exists a natural inclusion w:LH < LG, under
which IH® 2 GIL; x... X GL goes into the subgroup of diagonal matrices (maximal torus T in GLyn(C), and
Gal (F'/F) into the subgroup of permutation matrices (more precisely, into the normalizer of the maximal .
torus). Automorphic representations of H are identified with Hecke characters A%: H (AR) = GLy(Ap) = Ape.

The functoriality principle reduces in this case to the question of whether L-series L(s, x) with grossen-
charaktere y are L-functions of automorphic representations  of the group G.
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Ifn=2, F=Q, E' is imaginary quadratic, then this was proved by Hecke [114], here = is connected
with a parabolic automorphic form. Ifn =2, F=Q, F' is real quadratic, then Maass proved that = is con-
nected with a nonholomorphic automorphic form {163, 166]. For n = 3 this is proved in [125], cf. also [60].

3) H=GL,y, G =GLs, Ly = GL,y(C), LG =GLg(C) u:GL,y(C) —GLs(C) is the adjoint representation (or
symmetric square of the standard one). In this case the problem of lifting is solved by Gelbart and Jacquet
[93].

In the language of A-adic representations this result means that A-adic representations corresponding
to ux7 are symmetric squares of A-adic representations corresponding to .

4) Let M be a Levi F-subgroup of a parabolic F-subgroup P C G. Then LM is naturally imbedded in
Lg, and the imbedding w:IM — LG is an L-homomorphism [60].

Langlands [152] constructed in a large number of cases u«fr) for parabolic representations 7 of the group
M(AF) with the help of analytic continuation and residues of Eisenstein series.

5) Let H=PGL; X PGL,, G = Sp,. In this case
LH=S8L,(C) XSL:(C), LG=S8p,(C)=Spin; (C) .

We consider the homomorphism u:SLy(C) X SLy(C) — Spy(C) defined by the formula:
a, 05,0

(a1 b1 (112 bg — 0 a2 0 b2
[ dx)x 4 dz) c;0¢ 0}
0 ¢, 0d,

Ifm =®ym,v, T =Dym,v are two irreducible admissible automorphic representations of the group
PGLy(Af), then they determine a representation m ® m, of the group H(Ag), and according to the functoriality
principle there must exist an irreducible automorphic representation ux(n ® m) of the group Spy(Ay).

Andrianov and Maass [46, 167] considered the case when F = Q, m is connected with some parabolic

form fiz) =Zm(n) q" of weight 2k — 2 with respect to SL,(Z), characteristic with respect to the Hecke oper-

ne=3

ators:

2 o(n) ns=11 [1—(p) p= 4 p2-3-25]1,

H==1 D

and m is connected with the (nonholomorphic) Eisenstein series of weight 2:

1 1w .
Ey(@) =gy — o + 20 () 0",
n=1

where o0 (n)=2d.
djin 0
To the representations m p correspond classes hy,p = (g"a_l) € SL,(C), where (1 — app‘s)(l - ap‘ip‘s) =

D

129
poie

the representation ' = ux(m®m,) exists, is given by the Siegel modular parabolic form ¢ of genus 2 of weight k
with respect to Sps(Z), where the L-function of the representation n' coincides with the zeta-function of the
form ©: Zg(s) = Lis ~k + 3/2, =, py) (cf. Sec. 2). Here the image of ux is completely described for feSyi_,
(SLy(Z)), which allows one to formulate the result in the form of a certain theorem about modular descent.

1 -« (p)p-s~(k-1)/2 + p=28  and to the representationsm p = (p(; , classes (cf. Sec. 1). It is proved that

More precisely, in the space M%{ of Siegel modular forms of weight k > 0 with respect to Sp,(Z) one con-
siders the subspace Di, consisting of parabolic forms

(2)= X A(N)e(Tr(NZ)),
NER,
satisfying Maass' condition [167]:

2725



ab/2 O (1 b2
A(b/2 c ): z gt IA(b/Qg ac/g®)
>0

gla, b, c; g>

It is proved that Dy is invariant with respect to all Hecke operators, acting in Mf{ Whence it follows
that there exists a basis &;, &y, ..., Py in Dg, consisting of eigenfunctions of the Hecke operators. Let &
be one of these forms Zg = HQp o(p)

14
THEOREM. For any prime number p,

Qoo () =(1—p* ) (1—p*'t) (1 —o(p) ¢ +p**732).

If one defines the numbers w(n) (n =1,2,...) by

S o n=I[1—a() po-t preva,
P

n=1

then the series

f(z)_—-_z(ﬂ(n) e(nz)

n=1

defines a parabolic form of weight 2k — 2 with respect to SLy(Z).

This theorem proves the Kurokawa conjecture [146], introduced in connection with the study of the eigen-
values of the Hecke operators, acting on the Siegel parabolic forms of genus 2, and the generalized Ramanujan—
Petersson conjecture on the estimation of such eigenvalues. For parabolic forms ¢ of arbitrary genus n with
respect to I'y; of weight k, characteristic with respect to the Hecke operators: T (m)® = Ag(m)®P, this generali-
zation consists of the following. Let Qp’ #(t) be a polynomial of degree 28 giving a p-factor of the zeta-function

Z g(s) of the form &: Zo (s)=HQ,,,¢,(p‘S)'1. Then ¢ satisfies the generalized Ramanujan conjecture if the ab-
3

solute values of the zeros of the polynomial Qp, #(t) are equal to p"n(Zk’n'1)/ ! for all p. Kurokawa gave exam-
ples of parabolic forms of genus 2, which do not satisfy the generalized Ramanujan conjecture and assumed
that such forms are obtained with the help of lifting parabolic forms of genus 1, described above.

In connection with example 5) we note the papers of Yoshida [244, 246], proposing an explicit construc-
tion, putting in correspondence a pair of certain modular forms of genus 1 with a Siegel modular form of
genus 2. This construction is based on the use of theta-series, connected with a definite quaternion algebra
over Q.

Maas [165] proved an analog of Kurokawa's conjecture for Siegel modular forms with respect to Sp,(Z)
with systems of multiplicators. In this case the corresponding one-dimensional parabolic forms are automor-
phic forms with respect to the Hecke group G(V2), generated by the elements

(677) wa (3 7o)

As already noted (cf. Sec. 1), the generalized Ramajujan conjecture can be reformulated in the language of
representation theory. According to this interpretation [119], the local constituents 7, of parabolic representa-
tions n=®,m, of the reductive group G must be moderately increasing (this is a condition on the growth of the
matrix coefficients of the representation), In the case of anisotropic groups, however, this conjecture is not
corroborated [119]. In the case of splitting groups also there are counterexamples: in [119] such examples are
given for G = Sp,; the construction is based on the theory of dual reductive pairs and the Weil representations
[91, 118, 141, 190, 224]: the consideration of the pair (Sp,, O,) gives an imbedding of automorphic forms on O,
in automorphic forms on Sp,.

The construction of [119] is parallel to the construction of automorphic forms, corresponding to Hecke
characters of quadratic fields, which corresponds to the consideration of the dual pair (SL,, O,) (cf. Example2).

An interesting method of lifting automorphic forms with the help of theta-functions was proposed also by
Oda [183] and Kudla [143]. We consider an indefinite quadratic form A (over the field Q of rational numbers)
of signature (p, q):A:Y—A[Y] = tyAYy, YEQR. Let L C Qh be a Z-lattice, A(L) C 2Z and let X be the space of
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all majorants of the quadratic form A, i.e., those matrices REMp(R), n = p + g, such that tR = R, R is posi-
tive definite and RA-'R = A. We set SO(A) = {g€SL,(R) ItgAg = A}, I ={U€SOA)IUL = L}, so X is a sym-
metric space of the orthogonal group SO(A), and SO(A)SOn(R) is a maximal compact subgroup in SO(A). We
consider the theta-function

8 (2, R)=0%/? 2 elnwA+ivR) |1
IGL
of two variables (z, R)¢H xX, where z =u + ivtH v > 0. Then
0(z, R[U])=8(z, R), if U€Iy;
p—q
6(vz, R)=(cz+d) * 6(z, R),
if .
14 b
(¢ ) €T )={(7 J)6SL.(@)|a=d =1mod N, c=0mod V),
N =2det A.

Now if @(z) is a function on H and P(R) is a function on X, which transform with respect to z and R just like
6{z, R), then the integrals

BR— | ¢8R ow-or L4,
H/T:(N)
0" ()= | ¥(R6(z RIAR

x/re

define maps of the spaces of modular forms on H (with respect to I';(N) C SL,(Z) into the space of automorphic
forms on X (with respect to I'7) and conversely [143]. The case (p, q) = (2, n —2) is analyzed in more detail
in [183]; for n = 4 as a consequence one gets the results of Zagier [248] on change of basis for GLp over a real
quadratic extension of Q.

A powerful instrument in the study of the lift of automorphic forms is the Selberg trace formula [149, 155];
this formula is the strongest generalization of the connection between characters of irreducible representations
and conjugacy classes of elements, well-known for finite groups. F¥or GL, over a global field the trace formula
is in the book [123], Sec. 6; a better account (in a more general situation) is given by Gelbart and Jacquet [94].

We note the papers {11, 141, 227], where the case of GL, over an imaginary quadratic field is analyzed
in more detail, and also [110, 120, 140, 97, 201], where G1, over a completely real field is considered. For
parabolic forms of type (N, k, x) (cf. Sec. 1) an elegant account of the trace formula for Hecke operators is
given by Zagier (in Lang's book [33], N = 1) and Oesterle [182]. Arthur [52, 53] studied the generalization of
the trace formula to the case of arbitrary reductive groups; for G = GLg interesting results in this direction
were obtained earlier by Venkov [10]. Trace formulas are closely connected with analytic continuation of
Eisenstein series [29, 15, 152]. One of the most important applications of the trace formula is the calculation
of the dimensions of spaces of automorphic forms {69, 117, 179, 202]; an interesting application is connected
with divisibility properties of coefficients of modular forms [136, 137, 138]. For other applications, connected,
in particular, with analytic properties of the Selberg zeta-function, cf. {11-13, 22, 31, 115, 234].

In conclusion we note the most interesting results, in our view, relating to other aspects of the theory
of modular forms, not entering into this survey.

1) Modular forms of half-integral weight [41, 204, 135, 233} and their interpretation as automorphic
forms on the metaplectic group (two-sheeted covering of SL,, [92, 95, 96]. Generalization to the case of n-
sheeted coverings of SL, of the results of Shimura [41]: [51, 87].

Solution of Kummer's problem on the distribution of the sign of cubical Gaussian sums [113] with the help
of the cubical analog of theta-series, automorphic forms on the three-sheeted covering of SL, [74, 184].

The connection of automorphic forms on the metaplectic group and on orthogonal groups [189].

2) The generation of spaces of modular forms by theta-series [81, 103, 230, 236]. The solution of the
basis problem in spaces of modular forms of ftype (N, k, x) [83, 116}, allowing one to give an algorithm for
finding a basis in such spaces (in the form of an algorithm for ECM) [187].
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The theory of theta-series, connected with indefinite quadratic forms [163, 235], theta-series of genus
n [40, 132, 164], and also theta-series of completely real fields [82, 84].

Connection with quadratic forms; new formulas for the number of representations of integers by quadra-
tic forms {8, 14, 21, 34, 106, 208, 226].

3) The values of L-series at integral points. The construction of p-adic L-functions of Jacquet—Lang-
lands for GL, over a completely real field: cf. the surveys of Yu. I. Manin [35, 169]. The case of GL, over
an imaginary quadratic field is analyzed by Kurchanov [32].

The development of the theory of nonarchimedean integration [16, 18, 35, 129, 130, 161]and the theory
of modular symbols [42, 56, 112, 241], applications to the arithmetic of modular curves {171, 172]; the gene-
ralization to the case G = GLy, [56].

The transcendence of periods of parabolic forms [59]. Integrals of Eisenstein series and values of the
Riemann zeta-function ¢(s) at odd positive points [102].

The method of Zagier [247]. The values at integral points of L-series with Hecke characters [218, 219]
and their generalizations; the connection with the arithmetic of modular forms of Hilbert and automorphic forms
on unitary and orthogonal groups {207, 209, 212, 214-217]. Applications of Rankin's method of convolution to
the calculation of values of L~-functions at integral points [36-39, 100, 109, 213, 216, 217, 222].

Generalization of the Chowla-Selberg formula [66] for calculating periods of integrals of Abelian mani-
folds with complex multiplications [105, 242].

General conjecture on the values of L-functions made by Deligne [75].

4) Congruence and divisibility of coefficients of modular forms and modular functions. Connection with
! -adic representations [44, 77, 80, 111, 133, 136-138, 192, 197, 198, 222, 225]. Generalization to the case
of Siegel modular forms [145, 178].

5) Modular forms and analytic number theory: cf. the survey of Moreno [176], and also {12, 15, 22, 28,
31, 45, 98-100, 177]. '

6) Modular forms in positive characteristic and nonarchimedean modular forms [24, 25, 104, 108, 131,
136, 157].

7) Connection with the theory of simple finite groups (in particular, with the " Fisher —~Griss monster")
and the description of their characters: [127, 128, 229]. The conneetion of modular forms with coding theory,
lattices, and packings of spheres, cf. [14], the survey of Mahler [168], and the literature cited in it.

8) Differentiation of modular forms. Constructions of nonlinear differential operators, acting in spaces
of modular forms (in the spirit of the papers of Kuznetsov [30] and Rankin [193}]): [43, 85].
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