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Abstract

1) Congruences and p-adic numbers. Hensel's lemma. The Tate �eld

2) Continuous and p-adic analytic functions. Mahler's criterion. Newton polygons
Zeroes of analytic functions. The Weierstrass preparation theorem and its generalizations.

3) Distributions, measures, and the abstract Kummer congruences.
The Kubota and Leopoldt p-adic L-functions and the Iwasawa algebra

4) Modular forms and L-functions.
Congruences and families of modular forms.

5) Method of canonical projection of modular distributions.
Examples of construction of p-adic L-functions
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Related topics (for discussions, not included in the text of
these materials)

6) Other approaches of constructing p-adic L-functions by
Mazur-Tate-Teitelbaum, J.Coates, P.Colmez, H.Hida ... (using modular
symbols by Manin-Mazur and their generalizations; Euler systems, work of
D.Delbourgo, T.Ochiai, L.Berger, ..., overconvergent modular symbols by
R.Pollack, G.Stevens, H.Darmon, ...)

7) Relations to the Iwasawa Theory

8) Applications of p-adic L-functions to Diophantine geometry

9) Open questions and problems in the theory of p-adic L-functions
(Basic sources: Coates 60th Birthday Volume, Bourbaki talks by P.Colmez,
J.Coates ...)
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Lecture N◦1. p-adic numbers and congruences

Originally p-adic numbers were invented by Hensel as a tool of solving congruences
modulo powers of a prime number p.

Example. p = 7. Solve the congruence x2 ≡ 2 mod 7n.

Solution. If n = 1, put x0 = ±3 then x2
0
≡ 2 mod 7.

If n = 2, put x1 = x0 + 7t1, x0 = 3 then (x0 + 7t1)2 ≡ 2 mod 72 gives:
9 + 6 · 7t1 + 72t2

1
≡ 2 mod 72 ⇒ 9 + 6t1 ≡ 0 mod 7⇒ t1 = 1

⇒ x1 = 3 + 7 · 1 = 10.
If n = 3, put x2 = x1 + 72t2, x1 = 10 then (10 + 72t2)2 ≡ 2 mod 73 gives:
100 + 20 · 72t2 + 74t2

2
≡ 2 mod 73 ⇒ t2 ≡ −2/20 mod 7⇒ t2 ≡ 2 mod 7

⇒ x2 = 3 + 7 · 1 + 2 · 72 = 108.
In this way we obtain a sequence x0, x1, x2, . . . , so that xn ≡ xn+1 mod pn.
This is in strong analogy with approximation of a real number by rationls, for
example:√
2 = 1.414213562373095048801688724 · · ·

= 1 + 4 · 10−1 + 1 · 10−2 + 4 · 10−3 + 2 · 10−4 + · · ·
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p-adic numbers as a completion of rationals

The idea of extending the �eld Q appears in algebraic number theory in
various di�erent guises. For example, the embedding Q ⊂ R often gives
useful necessary conditions for the existence of solutions to Diophantine
equations over Q or Z. The important feature of R is its completeness:
every Cauchy sequence {αn}∞n=1

in R has a limit α (a sequence is called
Cauchy if for any ε > 0 we have |αn − αm| < ε whenever n and m are
greater than some large N = N(ε)). Also, every element of R is the limit
of some Cauchy sequence {αn}∞n=1

with αn ∈ Q.
An analogous construction exists using the p�adic absolute value | · |p of Q:

| · |p : Q→ R≥0 = {x ∈ R |x ≥ 0}
|a/b|p = pordpb−ordpa, |0|p = 0,

where ordpa is the highest power of p dividing the integer a.
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This general construction of �adjoining the limits of Cauchy sequences� to
a �eld k with an absolute value | · | leads to a completion of k . This
completion, often denoted k̂ , is complete, and contains k as a dense
sub�eld with respect to the extended absolute value | · |, [?], [?].
As was noted at the end of �2, all absolute values of Q are equivalent
either to the usual Archimedean absolute value, or to the p�adic absolute
value. Thus any completion of Q is either R, or Qp, the �eld of p-adic
numbers, i.e. the completion of the �eld of rational numbers Q with
respect to the p-adic absolute value. Using the embeddings Q ↪→ R and
Q ↪→ Qp (for all primes p) many arithmetical problems can be simpli�ed.
An important example is given by the following Minkowski�Hasse theorem
[?], Ch.1. the equation

Q(x1, x2, . . . , xn) = 0, (2.1)

given by a quadratic form Q(x1, x2, . . . , xn) =
∑

i ,j aijxixj , aij ∈ Q has a
non�trivial solution in rational numbers, i� it is non�trivially solvable over
R and over all Qp. There are very e�ective tools for �nding solutions in Qp.
These tools are somewhat analogous to those for R such as the �Newton -
Raphson algorithm�, which in the p�adic case becomes Hensel's lemma.
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The simplest way to de�ne the p�adic numbers is to consider expressions of
the type

α = amp
m + am+1p

m+1 + . . . , (2.2)

where ai ∈ {0, 1, . . . .p − 1} are digits to the base p, and m ∈ Z. It is
convenient to write down α as a sequence of digits, in�nite to the left:

α =

· · · am+1am

m−1 zeros︷ ︸︸ ︷
000 . . . 0(p), if m ≥ 0,

· · · a1a0.a−1 · · · am(p), if m < 0.

These expressions form a �eld, in which algebraic operations are executed
in the same way as for natural numbers n = a0 + a1p + . . . arp

r , written as
sequences of digits to the base p. Consequently, this �eld contains all the
natural numbers and hence all rational numbers.
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Expression of rational numbers as p-adic numbers
For example,

−1 =
p − 1
1− p

= (p− 1) + (p− 1)p + (p− 1)p2 + · · · = · · · (p− 1)(p− 1)(p);

−a0
p − 1

= a0 + a0p + a0p
2 + · · · = · · · a0a0a0(p).

For n ∈ N the expression for −n = n · (−1) of type (??) is obtained if we
multiply the above expressions for n and for −1. Generally, for α ∈ Q write
α = c − a

b , where a, c ∈ Z, b ∈ N, 0 ≤ a < b, i.e. a/b is a proper fraction.
Then by an elementary theorem of Euler, pϕ(b) − 1 = bu, u ∈ N. Hence

−a

b
=

au

pϕ(b) − 1
,

and au < bu = pr − 1, r = ϕ(b). Now let au be written to the base p as
ar−1 · · · a0(p), then the expression of type (??) for α is obtained as the sum
of the expression for c ∈ N and

−a

b
= · · · a0

r digits︷ ︸︸ ︷
ar−1 · · · a0

r digits︷ ︸︸ ︷
ar−1 · · · a0(p).
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For example, if p = 5,

9
7

= 2− 5
7

= 2 +
5 · 2232
1− 56

c = 2 a = 5, b = 7,

so that

2232 = 32412(5) = 3 · 54 + 2 · 53 + 4 · 52 + 1 · 5 + 2,

thus
9
7

= · · ·
︷ ︸︸ ︷
324120

︷ ︸︸ ︷
324120324122(5).

It is easy to verify that the completion of Q with respect to the p�adic
metric | · |p can be identi�ed with the described �eld of p�adic expansions
(??), where |α|p = pm for α as in (??) with am 6= 0 (see Koblitz N.
(1980)).
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It is curious to compare the expansions (??) in�nite to the left with the
ordinary expansions of real numbers α ∈ R, in�nite to the right:

α = amam−1 · · · a0.a−1 · · · = am10
m +am−110

m−1+ · · · a0+a−110
−1+ · · · ,

where ai ∈ {0, 1, · · · , 9} are digits, am 6= 0. These expansions to any
natural base lead to the same �eld R. Also, a given α can possess various
expressions of this type, e.g. 2.000 · · · = 1.999 · · · . However, in the p�adic
case the expressions (??) are uniquely determined by α. This fact provides
additional comfort when calculating with p�adic numbers.
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Computation with PARI/GP (see [?])

gp > forprime(p=2,131,print("p="p,",""9/7="9/7+O(p^6)))
p=2,9/7=1 + 2 + 2^2 + 2^3 + 2^5 + O(2^6)
p=3,9/7=3^2 + 3^3 + 2*3^5 + O(3^6)
p=5,9/7=2 + 2*5 + 5^2 + 4*5^3 + 2*5^4 + 3*5^5 + O(5^6)
p=7,9/7=2*7^-1 + 1 + O(7^6)
p=11,9/7=6 + 9*11 + 7*11^2 + 4*11^3 + 9*11^4 + 7*11^5 + O(11^6)
p=13,9/7=5 + 9*13 + 3*13^2 + 9*13^3 + 3*13^4 + 9*13^5 + O(13^6)
p=17,9/7=11 + 14*17 + 4*17^2 + 7*17^3 + 2*17^4 + 12*17^5 + O(17^6)
p=19,9/7=4 + 8*19 + 5*19^2 + 16*19^3 + 10*19^4 + 13*19^5 + O(19^6)
p=23,9/7=21 + 9*23 + 16*23^2 + 19*23^3 + 9*23^4 + 16*23^5 + O(23^6)
p=29,9/7=22 + 20*29 + 20*29^2 + 20*29^3 + 20*29^4 + 20*29^5 + O(29^6)
p=31,9/7=19 + 26*31 + 8*31^2 + 13*31^3 + 4*31^4 + 22*31^5 + O(31^6)
p=37,9/7=33 + 15*37 + 26*37^2 + 31*37^3 + 15*37^4 + 26*37^5 + O(37^6)
p=41,9/7=13 + 29*41 + 11*41^2 + 29*41^3 + 11*41^4 + 29*41^5 + O(41^6)
p=43,9/7=32 + 30*43 + 30*43^2 + 30*43^3 + 30*43^4 + 30*43^5 + O(43^6)
p=47,9/7=8 + 20*47 + 13*47^2 + 40*47^3 + 26*47^4 + 33*47^5 + O(47^6)
p=53,9/7=24 + 45*53 + 37*53^2 + 22*53^3 + 45*53^4 + 37*53^5 + O(53^6)
p=59,9/7=35 + 50*59 + 16*59^2 + 25*59^3 + 8*59^4 + 42*59^5 + O(59^6)
p=61,9/7=10 + 26*61 + 17*61^2 + 52*61^3 + 34*61^4 + 43*61^5 + O(61^6)
p=67,9/7=30 + 57*67 + 47*67^2 + 28*67^3 + 57*67^4 + 47*67^5 + O(67^6)
p=71,9/7=52 + 50*71 + 50*71^2 + 50*71^3 + 50*71^4 + 50*71^5 + O(71^6)
p=73,9/7=43 + 62*73 + 20*73^2 + 31*73^3 + 10*73^4 + 52*73^5 + O(73^6)
p=79,9/7=69 + 33*79 + 56*79^2 + 67*79^3 + 33*79^4 + 56*79^5 + O(79^6)
p=83,9/7=25 + 59*83 + 23*83^2 + 59*83^3 + 23*83^4 + 59*83^5 + O(83^6)
p=89,9/7=14 + 38*89 + 25*89^2 + 76*89^3 + 50*89^4 + 63*89^5 + O(89^6)
p=97,9/7=29 + 69*97 + 27*97^2 + 69*97^3 + 27*97^4 + 69*97^5 + O(97^6)
p=101,9/7=59 + 86*101 + 28*101^2 + 43*101^3 + 14*101^4 + 72*101^5 + O(101^6)
p=103,9/7=16 + 44*103 + 29*103^2 + 88*103^3 + 58*103^4 + 73*103^5 + O(103^6)
p=107,9/7=93 + 45*107 + 76*107^2 + 91*107^3 + 45*107^4 + 76*107^5 + O(107^6)
p=109,9/7=48 + 93*109 + 77*109^2 + 46*109^3 + 93*109^4 + 77*109^5 + O(109^6)
p=113,9/7=82 + 80*113 + 80*113^2 + 80*113^3 + 80*113^4 + 80*113^5 + O(113^6)
p=127,9/7=92 + 90*127 + 90*127^2 + 90*127^3 + 90*127^4 + 90*127^5 + O(127^6)
p=131,9/7=20 + 56*131 + 37*131^2 + 112*131^3 + 74*131^4 + 93*131^5 + O(131^6)
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Topology of p-adic numbers
The �eld Qp is a complete metric space with the topology generated by the
�open discs�:

Ua(r) = {x | |x − a| < r} (x , a ∈ Qp, r > 0)

(or �closed discs� Da(r) = {x | |x − a| ≤ r}). From the topological point of
view, the sets Ua(r) and Da(r) are both open and closed in Qp.
An important topological property of Qp is its local compactness: all discs of
�nite radius are compact. The easiest way to show this is to consider any
sequence {αn}∞n=1

of elements αn ∈ Da(r) and to construct a limit point. Such a
point may be found step�by�step using the p�adic digits (??). One knows that
the number of digits �after the point� is bounded on any �nite disc. In particular,
the disc

Zp = D0(1) = {x | |x |p ≤ 1} =
{
x = a0 + a1p + a2p

2 + · · ·
}

is a compact topological ring, whose elements are called p�adic integers. Zp is
the closure of Z in Qp. The ring Zp is local, i.e. it has only one maximal ideal
pZp = U0(1) with residue �eld Zp/pZp = Fp. The set of invertible elements
(units) of Zp is

Z×p = Zp\pZp = {x | |x |p = 1} =
{
x = a0 + a1p + a2p

2 + · · · | a0 6= 0
}
.
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Applications of p�adic Numbers to Solving Congruences.
The �rst appearances of p�adic numbers, in papers by Hensel, were related
to the problem of �nding solutions to congruences modulo pn. An
application of this method by his student H.Hasse to the theory of
quadratic forms has lead to an elegant reformulation of this theory, without
the use of considerations over the residue rings Z/pnZ. These
considerations are tiring because of the zero�divisors in Z/pnZ. From the
above presentation of Zp as the projective limit

lim
←−
n

Z/pnZ

it follows that for f (x1, . . . , xn) ∈ Zp[x1, . . . , xn], the congruences

f (x1, . . . , xn) ≡ 0(mod pn)

are solvable for all n ≥ 1 i� the equation

f (x1, . . . , xn) = 0

is solvable in p�adic integers. Solutions in Zp can be obtained using the
following p�adic version of the �Newton - Raphson algorithm�.
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Theorem (Hensel's Lemma)

Let f (x) ∈ Zp[x ] be a polynomial in one variable x , f ′(x) ∈ Zp[x ] its
formal derivative, and suppose that for some α0 ∈ Zp the initial condition

|f (α0)/f ′(α0)2|p < 1 (2.3)

is satis�ed.
Then there exists a unique α ∈ Zp such that

f (α) = 0, |α− α0| < 1.

We prove this by induction using the sequence of �successive
approximations�:

αn = αn−1 −
f (αn−1)

f ′(αn−1)
.

Taking into account the formal Taylor expansion of f (x) at x = αn−1 one
shows that this sequence is Cauchy, and its limit α has all the desired
properties (cf. [?], [?]).
For example, if f (x) = xp−1 − 1, then any α0 ∈ {1, 2, . . . , p − 1} satis�es
the condition |f (α0)|p < 1 At the same time
f ′(α0) = (p − 1)αp−2

0
6≡ 0 mod p, hence the initial condition (??) is

satis�ed. The root α coincides then with the uniquely de�ned Teichmüller
representative of α0: α = ω(α0).
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Lecture N◦2. Continuous and analytic functions over a non-Archimedean �eld

Let K be a closed sub�eld of the Tate �eld Cp. For a subset W ⊂ K we
consider continuous functions f : W → Cp. The standard examples of
continuous functions are provided by polynomials, by rational functions (at
points where they are �nite), and also by locally constant functions. If W is
compact then for any continuous function f : W → Cp and for any ε > 0
there exists a polynomial h(x) ∈ Cp[x ] such that |f (x)− h(x)|p < ε for all
x ∈W . If f (W ) ⊂ L for a closed sub�eld L of Cp then h(x) can be chosen
so that h(x) ∈ L[x ] (see [?], [?]).

Interesting examples of continuous p-adic functions are provided by
interpolation of functions, de�ned on certain subsets, such as W = Z or N
with K = Qp. Let f be any function on non-negative integers with values in
Qp or in some (complete) Qp-Banach space. In order to extend f (x) to all
x ∈ Zp we can use the interpolation polynomials(

x

n

)
=

x(x − 1) · · · (x − n + 1)

n!
.

Then we have that
(x
n

)
is a polynomial of degree n of x , which for x ∈ Z,

x ≥ 0 gives the binomial coe�cient. If x ∈ Zp then x is close (in the p-adic
topology) to a positive integer, hence the value of

(x
n

)
is also close to an

integer, therefore
(x
n

)
∈ Zp.
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Mahler's criterion
The classical Mahler's interpolation theorem says that any continuous
function f : Zp → Qp can be written in the form (see [?], [?]):

f (x) =
∞∑
n=0

an

(
x

n

)
, (3.4)

with an → 0 (p-adically) for n→∞. For a function f (x) de�ned for x ∈ Z,
x ≥ 0 one can write formally

f (x) =
∞∑
n=0

an

(
x

n

)
,

where the coe�cients can be founded from the system of linear equations

f (n) =
n∑

m=0

am

(
n

m

)
,

that is

am =
m∑
j=0

(−1)m−j
(
m

j

)
f (j).
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The series for f (x) is always reduced to a �nite sum for each x ∈ Z, x ≥ 0.
If an → 0 then this series is convergent for all x ∈ Zp. As was noticed
above, the inverse statement is also valid (�Mahler's criterion�). If
convergence of an to zero is so fast that the series de�ning the coe�cients
of the x-expansion of f (x) also converge, then f (x) can be extended to an
analytic function. Unfortunately, for an arbitrary sequence an with an → 0
the attempt to use (??) for continuation of f (x) out of the subset Zp in
Cp may fail. However, in the sequel we mostly consider anlytic functions,
that are de�ned as sums of power series.
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Distributions and measures.
Let us consider a commutative associative ring R , an R-module A and a
pro�nite (i.e. compact and totally disconnected) topological space Y . Then
Y is a projective limit of �nite sets:

Y = lim
←−
I

Yi

where I is a (partially ordered) inductive set and for i ≥ j , i , j ∈ I there are
surjective homomorphisms πi ,j : Yi → Yj with the condition πi ,j ◦ πj ,k = πi ,k
for i ≥ j ≥ k . The inductivity of I means that for any i , j ∈ I there exists
k ∈ I with the condition k ≥ i , k ≥ j . By the universal property we have that
for each i ∈ I a unique map πi : Y → Yi is de�ned, which satis�es the
property πi ,j ◦ πi = πj (for each i , j ∈ I ).
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Let Step(Y ,R) be the R-module consisting of all R-valued locally constant
functions φ : Y → R .

De�nition

A distribution on Y with values in a R-module A is a R-linear homomorphism

µ : Step(Y ,R) −→ A.

For ϕ ∈ Step(Y ,R) we use the notations

µ(ϕ) =

∫
Y
ϕdµ =

∫
Y
ϕ(y)dµ(y).

Each distribution µ can be de�ned by a system of functions µ(i) : Yi → A,
satisfying the following �nite-additivity condition

µ(j)(y) =
∑

x∈π−1i,j (y)

µ(i)(x) (y ∈ Yj , x ∈ Yi ). (4.5)

In order to construct such a system it su�ces to put

µ(i)(x) = µ(δi ,x) ∈ A (x ∈ Yi ),

where δi ,x is the characteritic function of the inverse image π−1i (x) ⊂ Y with
respect to the natural projection Y → Yi . For an arbitrary function
ϕj : Yj → R and i ≥ j we de�ne the functions

ϕi = ϕj ◦ πi ,j , ϕ = ϕj ◦ πj , ϕ ∈ Step(Y ,R), ϕi : Yi
πi,j−→ Yj −→ R.
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A convenient criterion of the fact that a system of functions µ(i) : Yi → A

satis�es the �nite additivity condition (??) (and hence is associated to
some distribution) is given by the following condition (compatibility
criterion): for all j ∈ I , and ϕj : Yj → R the value of the sums

µ(ϕ) = µ(i)(ϕi ) =
∑
y∈Yi

ϕi (y)µ(i)(y), (4.6)

is independent of i for all large enough i ≥ j . When using (??), it su�ces
to verify the condition (??) for some �basic� system of functions. For
example, if

Y = G = lim
←−
i

Gi

is a pro�nite abelian group, and R is a domain containing all roots of unity
of the order dividing the order of Y (which is a �supernatural number�)
then it su�ces to check the condition (??) for all characters of �nite order
χ : G → R , since their R ⊗Q -linear span coincides with the whole ring
Step(Y ,R ⊗Q) by the orthogonality properties for characters of a �nite
group (see [?], [?]).
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Example: Bernoulli distributions

Let M be a positive integer, f : Z→ C is a periodic function with the
period M (i.e. f (x + M) = f (x), f : Z/MZ→ C). The generalized
Bernoulli number (see [?] ) Bk,f is de�ned as k! times the coe�cient by tk

in the expansion in t of the following rational quotient

M−1∑
a=0

f (a)teat

eMt − 1
,

that is,
∞∑
k=0

Bk,f

k!
tk =

M−1∑
a=0

f (a)teat

eMt − 1
. (4.7)
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Now let us consider the pro�nite ring

Y = ZS = lim
←−
M

(Z/MZ)

(S(M) ⊂ S), the projective limit being taken over the set of all positive
integers M with support S(M) in a �xed �nite set S of prime numbers.
Then the periodic function f : Z/MZ→ C with S(M) ⊂ S may be viewed
as an element of Step(Y ,C). We claim that there exists a distribution
Ek : Step(Y ,C)→ C which is uniquely determined by the condition

Ek(f ) = Bk,f for all f ∈ Step(Y ,C). (4.8)

In order to prove the existence of this distribution we use the above
criterion (??) and check that for every f ∈ Step(Y ,C) the right hand side
in (??) (i.e. Bk,f ) does not depend on the choice of a period M of the
function f . It follows directly from the de�nition (??); however we give
here a di�erent proof which is based on an interpretation of the numbers
Bk,f as certain special values of L-functions.
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For a function f : Z/MZ→ C let

L(s, f ) =
∞∑
n=1

f (n)n−s

be the corresponding L-series which is absolutely convergent for all s with
Re(s) > 1 and admits an analytic continuation over all s ∈ C. For this series
we have that

L(1− k , f ) = −
Bk,f

k
. (4.9)

For example, if f ≡ 1 is the constant function with the period M = 1 then we
have that

ζ(1− k) = −Bk

k
,

∞∑
k=0

Bk

k!
tk =

t

et − 1
,

Bk being the Bernoulli number. The formula (??) is established by means of
the contour integral discovered by Riemann. formula apparently implies the
desired independence of Bk,f on the choice of M. We note also that if K ⊂ C
is an arbitrary sub�eld, and f (Y ) ⊂ K then we have from the formula (??)
that Bk,f ∈ K hence the distribution Ek is a K -valued distribution on Y .
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Measures
Let R be a topological ring, and C(Y ,R) be the topological module of all
R-valued functions on a pro�nite set Y .

De�nition

A measure on Y with values in the topological R-module A is a continuous
homomorphism of R-modules

µ : C(Y ,R) −→ A.

The restriction of µ to the R-submodule Step(Y ,R) ⊂ C(Y ,R) de�nes a
distribution which we denote by the same letter µ, and the measure µ is
uniquely determined by the corresponding distribution since the R-submodule
Step(Y ,R) is dense in C(Y ,R). The last statement expresses the well known
fact about the uniform continuity of a continuous function over a compact
topological space.
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Now we consider any closed subring R of the Tate �eld Cp, R ⊂ Cp, and let
A be a complete R-module with topology given by a norm | · |A on A

compatible with the norm | · |p on Cp so that the following conditions are
satis�e:
• for x ∈ A the equality |x |A = 0 is equivalent to x = 0,
• for a ∈ R , x ∈ A: |ax |A = |a|p|x |A,
• for all x , y ∈ A: |x + y |A < max(|x |A, |y |A).
Then the fact that a distribution (a system of functions µ(i) : Yi → A) gives
rise to a A-valued measure on Y is equivalent to the condition that the
system µ(i) is bounded, i.e. for some constant B > 0 and for all i ∈ I ,
x ∈ Yi the following uniform estimate holds:

|µ(i)(x)|A < B. (4.10)

This criterion is an easy consequence of the non-Archimedean property

|x + y |A ≤ max(|x |A, |y |A)

of the norm | · |A (see [?], [?]). In particular if
A = R = Op = {x ∈ Cp | |x |p ≤ 1} is the subring of integers in the Tate
�eld Cp then the set of Op-valued distributions on Y coincides with
Op-valued measures (in fact, both sets are R-algebras with multiplication
de�ned by convolution.
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Lecture N◦3. The abstract Kummer congruences and the p-adic Mellin

transform
A useful criterion for the existence of a measure with given properties is:

Proposition (The abstract Kummer congruences)

(see [?]). Let {fi} be a system of continuous functions fi ∈ C(Y ,Op) in
the ring C(Y ,Op) of all continuous functions on the compact totally
disconnected group Y with values in the ring of integers Op of Cp such
that Cp-linear span of {fi} is dense in C(Y ,Cp). Let also {ai} be any
system of elements ai ∈ Op. Then the existence of an Op-valued measure
µ on Y with the property ∫

Y
fidµ = ai

is equivalent to the following congruences, for an arbitrary choice of
elements bi ∈ Cp almost all of which vanish∑

i

bi fi (y) ∈ pnOp for all y ∈ Y implies
∑
i

biai ∈ pnOp. (4.11)

Remark

Since Cp-measures are characterised as bounded Cp-valued distributions,
every Cp-measures on Y becomes a Op-valued measure after multiplication
by some non-zero constant.
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Proof of proposition ??. The necessity is obvious since∑
i

biai =

∫
Y

(pnOp − valued function)dµ =

= pn
∫
Y

(Op − valued function)dµ ∈ pnOp.

In order to prove the su�ciency we need to construct a measure µ from the
numbers ai . For a function f ∈ C(Y ,Op) and a positive integer n there exist
elements bi ∈ Cp such that only a �nite number of bi does not vanish, and

f −
∑
i

bi fi ∈ pnC(Y ,Op),

according to the density of the Cp-span of {fi} in C(Y ,Cp). By the
assumption (??) the value

∑
i aibi belongs to Op and is well de�ned modulo

pn (i.e. does not depend on the choice of bi ). Following N.M. Katz ([?]), we
denote this value by �

∫
Y fdµ mod pn �. Then we have that the limit

procedure ∫
Y
fdµ = lim

n→∞
�
∫
Y
fdµ mod pn � ∈ lim

←−
n

Op/p
nOp = Op,

gives the measure µ.
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Mazur's measure
Let c > 1 be a positive integer coprime to

M0 =
∏
q∈S

q

with S being a �xed set of prime numbers. Using the criterion of the
proposition ?? we show that the Q -valued distribution de�ned by the
formula

E c
k (f ) = Ek(f )− ckEk(fc), fc(x) = f (cx), (4.12)

turns out to be a measure where Ek(f ) are de�ned by (??),
f ∈ Step(Y ,Qp) and the �eld Q is viewed as a sub�eld of Cp.

De�ne the generelized Bernoulli polynomials B(M)
k,f (X ) as

∞∑
k=0

B
(M)
k,f (X )

tk

k!
=

M−1∑
a=0

f (a)
te(a+X )t

eMt − 1
, (4.13)

and the generalized sums of powers

Sk,f (M) =
M−1∑
a=0

f (a)ak .
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Then the de�nition (??) formally implies that

1
k

[B
(M)
k,f (M)− B

(M)
k,f (0)] = Sk−1,f (M), (4.14)

and also we see that

B
(M)
k,f (X ) =

k∑
i=0

(
k

i

)
Bi ,f X

k−i = Bk,f + kBk−1,f X + · · ·+ B0,f X
k . (4.15)

The last identity can be rewritten symbolically as

Bk,f (X ) = (Bf + X )k .

The equality (??) enables us to calculate the (generalized) sums of powers in
terms of the (generalized) Bernoulli numbers. In particular this equality implies
that the Bernoulli numbers Bk,f can be obtained by the following p-adic limit
procedure (see [?]):

Bk,f = lim
n→∞

1
Mpn

Sk,f (Mpn) (a p-adic limit), (4.16)

where f is a Cp-valued function on Y = ZS . Indeed, if we replace M in (??)
by Mpn with growing n and let D be the common denominator of all
coe�cients of the polynomial B(M)

k,f (X ). Then we have from (??) that

1
k

[
B

(Mpn)
k,f (M)− B

(M)
k,f (0)

]
≡ Bk−1,f (Mpn) (mod

1
kD

p2n). (4.17)

The proof of (??) is accomplished by division of (??) by Mpn and by
application of the formula (??).
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Now we can directly show that the distribution E c
k de�ned by (??) are in fact

bounded measures. If we use (??) and take the functions {fi} to be all of the
functions in Step(Y ,Op). Let {bi} be a system of elements bi ∈ Cp such
that for all y ∈ Y the congruence∑

i

bi fi (y) ≡ 0 (mod pn) (4.18)

holds. Set f =
∑

i bi fi and assume (without loss of generality) that the
number n is large enough so that for all i with bi 6= 0 the congruence

Bk,fi ≡
1

Mpn
Sk,fi (Mpn) (mod pn) (4.19)

is valid in accordance with (??). Then we see that

Bk,f ≡ (Mpn)−1
∑
i

Mpn−1∑
a=0

bi fi (a)ak (mod pn), (4.20)

hence we get by de�nition (??):

E c
k (f ) = Bk,f − ckBk,fc (4.21)

≡ (Mpn)−1
∑
i

Mpn−1∑
a=0

bi

[
fi (a)ak − fi (ac)(ac)k

]
(mod pn).
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Let ac ∈ {0, 1, · · · ,Mpn − 1}, such that ac ≡ ac (mod Mpn), then the map
a 7−→ ac is well de�ned and acts as a permutation of the set
{0, 1, · · · ,Mpn − 1}, hence (??) is equivalent to the congruence

E c
k (f ) = Bk,f − ckBk,fc ≡

∑
i

akc − (ac)k

Mpn

Mpn−1∑
a=0

bi fi (a)ak (mod pn). (4.22)

Now the assumption (??) formally inplies that E c
k (f ) ≡ 0 (mod pn),

completing the proof of the abstact congruences and the construction of
measures E c

k .

Remark

The formula (??) also implies that for all f ∈ C(Y ,Cp) the following holds

E c
k (f ) = kE c

1 (xk−1p f ) (4.23)

where xp : Y −→ Cp ∈ C(Y ,Cp) is the composition of the projection
Y −→ Zp and the embedding Zp ↪→ Cp.

Indeed if we put ac = ac + Mpnt for some t ∈ Z then we see that

akc − (ac)k = (ac + Mpnt)k − (ac)k ≡ kMpnt(ac)k−1 (mod (Mpn)2),

and we get that in (??):

akc − (ac)k

Mpn
≡ k(ac)k−1

ac − ac

Mpn
(mod Mpn).

The last congruence is equivalent to saying that the abstract Kummer
congruences (??) are satis�ed by all functions of the type xk−1p fi for the
measure E c

1
with fi ∈ Step(Y ,Cp) establishing the identity (??).
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The domain of de�nition of the non-Archimedean zeta functions

In the classical case the set on which zeta functions are de�ned is the set of
complex numbers C which may be viewed equally as the set of all continuous
characters (more precisely, quasicharacters) via the following isomorphism:

C ∼−→ Homcont(R×+,C×) (4.24)

s 7−→ (y 7−→ y s)

The construction which associates to a function h(y) on R×+ (with certain
growth conditions as y →∞ and y → 0) the following integral

Lh(s) =

∫
R×+

h(y)y s
dy

y

(which converges probably not for all values of s) is called the Mellin transform.
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For example, if ζ(s) =
∑

n≥1 n
−s is the Riemann zeta function, then the

function ζ(s)Γ(s) is the Mellin transform of the function h(y) = 1/(1− e−y ):

ζ(s)Γ(s) =
∞∑
0

1
1− e−y

y s
dy

y
, (4.25)

so that the integral and the series are absolutely convergent for Re(s) > 1. For
an arbitrary function of type

f (z) =
∞∑
n=1

a(n)e2iπnz

with z = x + iy ∈ H in the upper half plane H and with the growth condition
a(n) = O(nc) (c > 0) on its Fourier coe�cients, we see that the zeta function

L(s, f ) =
∞∑
n=1

a(n)n−s ,

essentially coincides with the Mellin transform of f (z), that is

Γ(s)

(2π)s
L(s, f ) =

∫ ∞
0

f (iy)y s
dy

y
. (4.26)
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Both sides of the equality (??) converge absolutely for Re(s) > 1 + c . The
identities (??) and (??) are immediately deduced from the well known
integral representation for the gamma-function

Γ(s) =

∫ ∞
0

e−yy s
dy

y
, (4.27)

where dy
y is a measure on the group R×+ which is invariant under the group

translations (Haar measure). The integral (??) is absolutely convergent for
Re(s) > 0 and it can be interpreted as the integral of the product of an
additive character y 7→ e−y of the group R(+) restricted to R×+, and of the
multiplicative character y 7→ y s , integration is taken with respect to the
Haar measure dy/y on the group R×+.
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In the theory of the non-Archimedean integration one considers the group
Z×S (the group of units of the S-adic completion of the ring of integers Z)
instead of the group R×+, and the Tate �eld Cp = Q̂p (the completion of
an algebraic closure of Qp) instead of the complex �eld C. The domain of
de�nition of the p-adic zeta functions is the p-adic analytic group

XS = Homcont(Z×S ,C
×
p ) = X (Z×S ), (4.28)

where:
Z×S ∼= ⊕q∈SZ×q ,

and the symbol
X (G ) = Homcont(G ,C×p ) (4.29)

denotes the functor of all p-adic characters of a topological group G (see
[?]).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September,2009 35 / 1



The analytic structure of XS
Let us consider in detail the structure of the topological group XS . De�ne

Up = {x ∈ Z×p | x ≡ 1 (mod pν)},

where ν = 1 or ν = 2 according as p > 2 or p = 2. Then we have the natural
decomposition

XS = X

(Z/pνZ)× ×
∏
q 6=p

Z×q

× X (Up). (4.30)

The analytic dstructure on X (Up) is de�ned by the following isomorphism (which
is equivalent to a special choice of a local parameter):

ϕ : X (Up)
∼−→ T = {z ∈ C×p | |z − 1|p < 1},

where ϕ(x) = x(1 + pν), 1 + pν being a topoplogical generator of the
multiplicative group Up

∼= Zp. An arbitrary character χ ∈ XS can be uniquely
represented in the form χ = χ0χ1 where χ0 is trivial on the component Up, and
χ1 is trivial on the other component

(Z/pνZ)× ×
∏
q 6=p

Z×q .
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The character χ0 is called the tame component, and χ1 the wild component of
the character χ. We denote by the symbol χ(t) the (wild) character which is
uniquely determined by the condition

χ(t)(1 + pν) = t

with t ∈ Cp, |t|p < 1.
In some cases it is convenient to use another local coordinate s which is
analogous to the classical argument s of the Dirichlet series:

Op −→ XS

s 7−→ χ(s),

where χ(s) is given by χ(s)((1 + pν)α) = (1 + pν)αs = exp(αs log(1 + pν)).
The character χ(s) is de�ned only for such s for which the series exp is
p-adically convergent (i.e. for |s|p < pν−1/(p−1)). In this domain of values of
the argument we have that t = (1 + pν)s − 1. But, for example, for
(1 + t)p

n
= 1 there is certainly no such value of s (because t 6= 1), so that the

s-coordonate parametrizes a smaller neighborhood of the trivial character than
the t-coordinate (which parametrizes all wild characters) (see [?], [?]).
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p-adic analytic functions on XS

Recall that an analytic function F : T −→ Cp

(T = {z ∈ C×p | |z − 1|p < 1}), is de�ned as the sum of a series of the type∑
i≥0 ai (t − 1)i (ai ∈ Cp), which is assumed to be absolutely convergent for all

t ∈ T . The notion of an analytic function is then obviously extended to the
whole group XS by shifts. The function

F (t) =
∞∑
i=0

ai (t − 1)i

is bounded on T i� all its coe�cients ai are universally bounded. This last fact
can be easily deduced for example from the basic properties of the Newton
polygon of the series F (t) (see [?], [?]). If we apply to these series the
Weierstrass preparation theorem (see [?], [?]), we see that in this case the
function F has only a �nite number of zeroes on T (if it is not identically zero).
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In particular, consider the torsion subgroup X tors
S ⊂ XS . This subgroup is

discrete in XS and its elements χ ∈ X tors
S can be obviously identi�ed with

primitive Dirichlet characters χ mod M such that the support
S(χ) = S(M) of the conductor of χ is containded in S . This identi�cation
is provided by a �xed embedding denoted

ip : Q× ↪→ C×p

if we note that each character χ ∈ X tors
S can be factored through some

�nite factor group (Z/MZ)×:

χ : Z×S → (Z/MZ)× → Q×
ip
↪→ C×p ,

and the smallest number M with the above condition is the conductor of
χ ∈ X tors

S .
The symbol xp will denote the composition of the natural projection
Z×S → Z×p and of the natural embedding Z×p → C×p , so that xp ∈ XS and
all integers k can be considered as the characters xkp : y 7−→ yk .
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Let us consider a bounded Cp-analytic function F on XS . The above statement
about zeroes of bounded Cp-analytic functions implies now that the function F
is uniquely determined by its values F (χ0χ), where χ0 is a �xed character and
χ runs through all elements χ ∈ X tors

S with possible exclusion of a �nite
number of characters in each analyticity component of the decomposition (??).
This condition is satis�ed, for example, by the set of characters χ ∈ X tors

S with
the S-complete conductor (i.e. such that S(χ) = S), and even for a smaller set
of characters, for example for the set obtained by imposing the additional
assumption that the character χ2 is not trivial (see [?], [?], [?]).
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p-adic Mellin transform
Let µ be a (bounded) Cp-valued measure on Z×S . Then the non-Archimedean
Mellin transform of the measure µ is de�ned by

Lµ(x) = µ(x) =

∫
Z×S

xdµ, (x ∈ XS), (4.31)

which represents a bounded Cp-analytic function

Lµ : XS −→ Cp. (4.32)

Indeed, the boundedness of the function Lµ is obvious since all characters
x ∈ XS take values in Op and µ also is bounded. The analyticity of this
function expresses a general property of the integral (??), namely that it
depends analytically on the parameter x ∈ XS . However, we give below a pure
algebraic proof of this fact which is based on a description of the Iwasawa
algebra. This description will also imply that every bounded Cp-analytic
function on XS is the Mellin transform of a certain measure µ.
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The Iwasawa algebra
Let O be a closed subring in Op = {z ∈ Cp | |z |p ≤ 1},

G = lim
←−
i

Gi , (i ∈ I ),

a pro�nite group. Then the canonical homomorphism Gi
πij←− Gj induces a

homomorphism of the corresponding group rings

O[Gi ]←− O[Gj ].

Then the completed group ring O[[G ]] is de�ned as the projective limit

O[[G ]] = lim
←−
i

O[[Gi ]], (i ∈ I ).

Let us consider also the set Dist(G ,O) of all O-valued distributions on G
which itself is an O-module and a ring with respect to multiplication given
by the convolution of distributions, which is de�ned in terms of families of
functions

µ
(i)
1
, µ

(i)
2

: Gi −→ O,

(see the previous section) as follows:

(µ1 ? µ2)(i)(y) =
∑

y=y1y2

µ
(i)
1

(y1)µ
(i)
2

(y2), (y1, y2 ∈ Gi ) (4.33)

Recall also that the O-valued distributions are identi�ed with O-valued
measures. Now we describe an isomorphism of O-algebras O[[G ]] and
Dist(G ,O). In this case when G = Zp the algebra O[[G ]] is called the
Iwasawa algebra.

Theorem

(a) Under the same notation as above there is the canonical isomorphism
of O-algebras

;Dist(G ,O)
∼−→ O[[G ]]. (4.34)

(b) If G = Zp then there is an isomorphism

O[[G ]]
∼−→ O[[X ]], (4.35)

where O[[X ]] is the ring of formal power series in X over O. The
isomorphism (??) depends on a choice of the topological generator of the
group G = Zp.
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We noticed above that the theorem ?? would imply a description of
Cp-analytic bounded functions on XS in terms of measures. Indeed, these
functions are de�ned on analyticity components of the decomposition (??) as
certain power series with p-adically bounded coe�cients, that is, power series,
whose coe�cients belong to Op after multiplication by some constant from
C×p . Formulas for coe�cients of these series can be also deduced from the
proof of the theorem. However, we give a more direct computation of these
coe�cients in terms of the corresponding measures. Let us consider the
component aUp of the set Z×S where

a ∈ (Z/pνZ)× ×
∏
q 6=

Z×q ,

and let µa(x) = µ(ax) be the corresponding measure on Up de�ned by
restriction of µ to the subset aUp ⊂ Z×S .
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Consider the isomorphism Up
∼= Zp given by:

y = γx (x ∈ Zp, y ∈ Up),

with some choice of the generator γ of Up (for example, we can take
γ = 1 + pν). Let µ′a be the corresponding measure on Zp. Then this measure
is uniquely determined by values of the integrals∫

Zp

(
x

i

)
dµ′a(x) = ai , (4.36)

with the interpolation polynomials
(x
i

)
, since the Cp-span of the family{(

x

i

)}
(i ∈ Z, i ≥ 0)

is dense in C(Zp,Op) according to Mahler's interpolation theorem for
continuous functions on Zp). Indeed, from the basic properties of the
interpolation polynomials it follows that∑

i

bi

(
x

i

)
≡ 0 (mod pn) (for all x ∈ Zp) =⇒ bi ≡ 0 (mod pn).

We can now apply the abstract Kummer congruences (see proposition ??),
which imply that for arbitrary choice of numbers ai ∈ Op there exists a
measure with the property (??).
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Coe�cients of power series and the Iwasawa isomorphism
We state that the Mellin transform Lµa of the measure µa is given by the
power series Fa(t) with coe�cients as in (??), that is∫

Up

χ(t)(y)dµ(ay) =
∞∑
i=0

(∫
Zp

(
x

i

)
dµ′a(x)

)
(t − 1)i (4.37)

for all wild characters of the form χ(t), χ(t)(γ) = t, |t − 1|p < 1. It su�ces
to show that (??) is valid for all characters of the type y 7−→ ym, where m
is a positive integer. In order to do this we use the binomial expansion

γmx = (1 + (γm − 1))x =
∞∑
i=0

(
x

i

)
(γm − 1)i ,

which implies that∫
up

ymdµ(ay) =

∫
Zp

γmxdµ′a(x) =
∞∑
i=0

(∫
Zp

(
x

i

)
dµ′a(x)

)
(γm − 1)i ,

establishing (??).
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Example: Mazur's measure and the non-Archimedean
Kubota-Leopoldt zeta function
Let us �rst consider a positive integer c ∈ Z×S ∩ Z, c > 1 coprime to all primes
in S . Then for each complex number s ∈ C there exists a complex distribution
µcs on GS = Z×S which is uniquely determined by the following condition

µcs (χ) = (1− χ−1(c)c−1−s)LM0(−s, χ), (4.38)

where M0 =
∏

q∈S q. Moreover, the right hand side of (??) is holomorphic for
all s ∈ C including s = −1. If s is an integer and s ≥ 0 then according to
criterion of proposition ?? the right hand side of (??) belongs to the �eld

Q(χ) ⊂ Qab ⊂ Q

generated by values of the character χ.
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Thus we get a distribution with values in Qab. If we now apply to (??) the
�xed embedding ip : Q ↪→ Cp we get a Cp-valued distribution
µ(c) = ip(µc

0
) which turns out to be an Op-measure in view of proposition

??, and the following equality holds

µ(c)(χx rp) = ip(µcr (χ)).

This identity relates the special values of the Dirichlet L-functions at
di�erent non-positive points. The function

L(x) =
(
1− c−1x(c)−1

)−1
Lµ(c)(x) (x ∈ XS) (4.39)

is well de�ned and it is holomorphic on XS with the exception of a simple
pole at the point x = xp ∈ XS . This function is called the
non-Archimedean zeta-function of Kubota-Leopoldt. The corresponding
measure µ(c) will be called the S-adic Mazur measure.
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Lecture N◦4. Method of canonical projection of modular distributions.

1 Modular forms, L-functions and congruences between modular forms
2 A traditional method of p-adic interpolation and the method of

canonical projection of modular distributions
3 The use of the Eisenstein series and of the Rankin-Selberg method

The Eisenstein measure by N.M.Katz, . . . Convolutions of Eisenstein
distributions with other distributions

4 Examples of construction of p-adic L-functions
5 Families of modular forms and L-functions.
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Modular forms as a tool in arithmetic
We view modular forms as:
1) q-power series

f =
∞∑
n=0

anq
n ∈ C[[q]] and as

2) holomorphic functions
on the upper half plane
H = {z ∈ C | Im z > 0}

where q = exp(2πiz),
z ∈ H, and de�ne
L-function

L(f , s, χ) =
∞∑
n=1

χ(n)ann
−s

for a Dirichlet character
χ : (Z/NZ)∗ → C∗ (its Mellin transform)

A famous example: the Ramanujan function τ(n)
The function ∆ (of the variable z)
is de�ned by the formal expansion
∆ =

∑∞
n=1

τ(n)qn

= q
∏∞

m=1
(1− qm)24

= q − 24q2 + 252q3 + · · ·
is a cusp form of weight k = 12
for the group Γ = SL2(Z)).

τ(1) = 1, τ(2) = −24,
τ(3) = 252, τ(4) = −1472
τ(m)τ(n) = τ(mn)
for (n,m) = 1,
|τ(p)| ≤ 2p11/2

for all primes p .
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Classical modular forms

are introduced as certain holomorphic functions on the upper half plane
H = {z ∈ C | Im z > 0}, which can be regarded as a homogeneous space
for the group G (R) = GL2(R):

H = GL2(R)/O(2) · Z , (4.40)

where Z = {
(
x
0

0

x

)
|x ∈ R×} is the center of G (R) and O(2) is the

orthogonal group. The group GL+
2

(R) of matrices γ =
(
aγ
cγ

bγ
dγ

)
with

positive determinant acts on H by fractional linear transformations; on
cosets (??) this action transforms into the natural action by group shifts.
Let Γ be a subgroup of �nite index in the modular group SL2(Z).
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De�nition of a modular form
A holomorphic function f : H→ C is called a modular form of (integral)
weight k with respect to Γ i� the conditions a) and b) are satis�ed:

a) Automorphy condition

f ((aγz + bγ)/(cγz + dγ)) = (cγz + dγ)k f (z) (4.41)

for all elements γ ∈ Γ;
b) Regularity at cusps: f is regular at cusps z ∈ Q ∪ i∞ (the cusps can
be viewed as �xed points of parabolic elements of Γ); this means that for

each element σ =
(
a
c
b
d

)
∈ SL2(Z) the function (cz + d)−k f

(
az+b
cz+d

)
admits a Fourier expansion over non�negative powers of q1/N = e(z/N)
for a natural number N. One writes traditionally

q = e(z) = exp(2πiz).

A modular form

f (z) =
∞∑
n=0

a(n)e(nz/N)

is called a cusp form if f vanishes at all cusps (i.e. if the above Fourier
expansion contains only positive powers of q1/N), see [?], [?]
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The complex vector space of all modular (resp. cusp) forms of weight k with
respect to Γ is denoted by Mk(Γ) (resp. Sk(Γ)).
A basic fact from the theory of modular forms is that the spaces of modular
forms are �nite dimensional. Also, one has Mk(Γ)Ml(Γ) ⊂Mk+l(Γ). The
direct sum

M(Γ) =
∞⊕
k=0

Mk(Γ)

turns out to be a graded algebra over C with a �nite number of generators.
An example of a modular form with respect to SL2(Z) of weight k ≥ 4 is
given by the Eisenstein series

Gk(z) =
∑

m1,m2∈Z

′
(m1 + m2z)−k (4.42)

(prime denoting (m1,m2) 6= (0, 0)). For these series the automorphy
condition (??) can be deduced straight from the de�nition. One has
Gk(z) ≡ 0 for odd k and

Gk(z) =
2(2πi)k

(k − 1)!

[
−Bk

2k
+
∞∑
n=1

σk−1(n)e(nz)

]
, (4.43)

where σk−1(n) =
∑

d |n d
k−1 and Bk is the kth Bernoulli number.

The graded algebra M(SL2(Z)) is isomorphic to the polynomial ring of the
(independent) variables G4 and G6.
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Examples
Recall that Bk denote the Bernoullli numbers de�ned by the development

x

ex − 1
=
∞∑
k=0

Bk
xk

k!

(Numerical table:

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = B5 = · · · = 0, B4 = − 1

30
, B6 =

1
42
,

B8 = − 5
66
, B12 =

691
2730

B14 = −7
6
, B16 =

3617
510

B18 = −43867
798

, . . . ).

One has

ζ(k) = −(2πi)k

2
,Gk(z) =

(2πi)k

(k − 1)!

[
−Bk

2k
+
∞∑
n=1

σk−1(n)qn

]
.

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn ∈M4(SL(2,Z)),

E6(z) = 1− 504
∞∑
n=1

σ5(n)qn ∈M6(SL(2,Z)),

E8(z) = 1 + 480
∞∑
n=1

σ7(n)qn ∈M8(SL(2,Z)),

E10(z) = 1− 264
∞∑
n=1

σ9(n)qn ∈M10(SL(2,Z)),

E12(z) = 1 +
65520
691

∞∑
n=1

σ11(n)qn ∈M12(SL(2,Z)),

E14(z) = 1− 24
∞∑
n=1

σ13(n)qn ∈M14(SL(2,Z)).

Proof see in [?].
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Fast computation of the Ramanujan function:
Put hk :=

∞∑
n=1

∑
d |n

dk−1qn =
∞∑
d=1

dk−1qd

1− qd
. The classical fact is that ∆ = (E 3

4
− E 2

6
)/1728

where E4 = 1 + 240h4 and E6 = 1− 504h6.

Computing with PARI-GP see [?], The PARI/GP number theory system),
http://pari.math.u-bordeaux.fr

hk :=
∞∑
n=1

∑
d |n

dk−1qn =
∞∑
d=1

dk−1qd

1− qd
=⇒

gp > h6=sum(d=1,20,d^5*q^d/(1-q^d)+O(q^20))

gp > h4=sum(d=1,20,d^3*q^d/(1-q^d)+O(q^20)

gp > Delta=((1+240*h4)^3-(1-504*h6)^2)/1728

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7

+ 84480*q^8 - 113643*q^9 - 115920*q^10 + 534612*q^11

- 370944*q^12 - 577738*q^13 + 401856*q^14 + 1217160*q^15

+ 987136*q^16 - 6905934*q^17+ 2727432*q^18 + 10661420*q^19

+ O(q^20)
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Congruence of Ramanujan
τ(n) ≡

∑
d |n

d11 mod 691 :

gp > (Delta-h12)/691

%10 = -3*q^2 - 256*q^3 - 6075*q^4 - 70656*q^5 - 525300*q^6

- 2861568*q^7 - 12437115*q^8 - 45414400*q^9

- 144788634*q^10 - 412896000*q^11 - 1075797268*q^12

- 2593575936*q^13 - 5863302600*q^14 - 12517805568*q^15

- 25471460475*q^16 - 49597544448*q^17

- 93053764671*q^18 - 168582124800*q^19 + O(q^20)

More programs of computing τ(n) (see [?])

PROGRAM

(MAGMA) M12:=ModularForms(Gamma0(1), 12); t1:=Basis(M12)[2];

PowerSeries(t1[1], 100); Coefficients($1);

(PARI) a(n)=if(n<1, 0, polcoeff(x*eta(x+x*O(x^n))^24, n))

(PARI) {tau(n)=if(n<1, 0, polcoeff(x*(sum(i=1, (sqrtint(8*n-7)+1)\2,

(-1)^i*(2*i-1)*x^((i^2-i)/2), O(x^n)))^8, n));}

gp > tau(6911)

%3 = -615012709514736031488

gp > ##

*** last result computed in 3,735 ms.
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