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This Summer School on Theory of Motives and
Number Theory
at the crossroad of automorphic L functions (complex and p-adic),
zeta functions, polyzeta functions and dynamical zeta function, was
conceived as a continuation of a seris of Conferences
"Zeta-functions I-VI", held in J.-V.Poncelet Laboratory UMI 2615
du CNRS, The Higher School of Economics, and Independent
University in Moscow, and mainly organized by Alexey ZYKIN,
professor of the French Polynesia University in Tahiti, who
tragically dissapeared in April 2017 together with his wife Tatiana
MAKAROVA.

The Summer Schools �Algebra and Geometry� (Yaroslavl,
RUSSIA, July 2012-2016), were also largely organized by Alexey
ZYKIN together with Fyodor BOGOMOLOV and Courant Institute
(New York, USA), see the video and pdf of lectures at
http://bogomolov-lab.ru/SHKOLA2012/talks/panchishkin.html



Alexey ZYKIN near Grenoble on June 22, 2012

Figure: Climbing the mountain Chamchaude with Siegfried BOECHERER
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and unitary cases. Modular forms and automorphic forms.
Lecture N◦2. Hermitian modular forms. Automorphic complex
L-functions on classical groups. Hecke algebras. The
Rankin-Selberg method
Lecture N◦3. Distributions, measures, Kummer congruences.
Kubota-Leopoldt p-adic zeta function and Iwasawa algebra.

The analytic structure of YS and p-adic Mellin transform
Lecture N◦4. p-adic L-functions on classical groups. Ordinary case.
Admissible measures, special values.

(L'intervention d'Alexei Pantchichkine:
1) Groupes classiques, le cas GL(n), le cas symplectique et
unitaires. Formes modulaires et formes automorphes, exemples.
2) Formes modulaies hermitiennes. Fonctions L complexes sur les
groupes classiques. Algèbres de Hecke. Methode de Rankin-Selberg
3) Distributions, mesures, congruences de Kummer.Fonction zêta
p-aique de Kubota-Leopoldt et l'algèbre d'Iwasawa.
4) Fonctions L p-adiques sur les groupes classiques : mesures
admissibles, valeurs spéciales)



Lecture N◦1. Classical groups, the case of GL(n)

.
The sympectic and unitary cases. Modular forms and automorphic
forms. ("Groupes classiques, le cas GL(n) le cas symplectique et
unitaires. Formes modulaires et formes automorphes, exemples").

I Linear Algebraic Groups. �1-6 of [Bor66]
I Radical. Parabolic subgroups. Reductive groups.
I Structure theorems for reductive groups.

�6.5 of[MaPa], Automorphic Forms and The Langlands
Program

I �6.5.1 A Relation Between Classical Modular Forms and
Representation Theory

I �I-II of [Bor79]: I. De�nition of the L-group
I II. Quasi-split groups
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Reductive groups
Recall: an algebraic group is irreducible if and only if it is
connected. The connected component of the identity of G will be
denoted by G 0. The index of G 0 in G is �nite.

De�nition
Let G be an algebraic group over a �eld k . The radical R(G ) of G
is the greatest connected normal subgroup of G ; the unipotent
radical Ru(G ) is the greatest connected unipotent normal subgroup
of G . The group G is semisimple (resp. reductive) if R(G ) = {e}
(resp. Ru(G ) = {e}).
The de�nitions of R(G ) and Ru(G ) make sense, because if H,H ′

are connected normal and solvable (resp. unipotent) subgroups,
then so is H · H ′. Both radicals are k-closed if G is a k-group.
Clearly, R(G ) = R(G 0) and Ru(G ) = Ru(G 0). The quotient
G/R(G) is semisimple, and G/Ru(G ) is reductive. In characteristic
zero, the unipotent radical has a complement; more precisely: Let
G be de�ned over k . There exists a maximal reductive k-subgroup
H of G such that G = H · Ru(G ), the product being a semidirect
product of algebraic groups. If H ′ is a reductive subgroup of G
de�ned over k , then H ′ is conjugate over k to a subgroup of H of
G such that G = H · Ru(G ), the product being a semidirect
product of algebraic groups. If H ′ is a reductive subgroup of G
de�ned over k , then H ′ is conjugate over k to a subgroup of H.
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Theorem (5.2 of [Bor66])

Let G be an algebraic group. The following conditions are
equivalent :
(1) G 0 is reductive,
(2) G 0 = S · G ′, where S is a central torus and G ′ is semisimple,

Theorem (5.3 of [Bor66])

Let G be a connected algebraic group.
(1) All maximal tori of G are conjugate. Every semisimple element
is contained in a torus. The centralizer of any subtorus is
connected.
(2) All maximal connected solvable subgroups are conjugate. Every
element of G belongs to one such group.
(3) If P is a closed subgroup of G , then G/P is a projective variety
if and only if P contains a maximal connected solvable subgroup.
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Characters and roots.
A character of G is a rational representation of degree 1;
χ : G → GL1. The set of characters of G is a commutative group,
denoted by X (G ) or Ĝ . The group Ĝ is �nitely generated; it is free
if G is connected [Bor66], p.6. If one wants to write the
composition-law in Ĝ multiplicatively, the value at g ∈ G of χ ∈ Ĝ
should be noted χ(g). But since one is accustomed to add roots of
Lie algebras, it is also natural to write the composition in G
additively. The value of χ at g will then be denoted by gχ. To see
the similarity between roots and characters take Ω = C; if X ∈ g,
the Lie algebra of G , (ex)χ = edχ(X ), where dχ is the di�erential
at e; dχ is a linear form over g. In the sequel, we not make any
notational distinction between a character and its di�erential at e.

Let g ∈ GL(n,Ω), g can be written uniquely as the product
g = gs · gn, where gs is a semisimple matrix (i.e., g. can be made
diagonal) and gn is a unipotent matrix (i.e., the only eigenvalue of
gn is 1, or equivalently gn − I is nilpotent) and gs · gn = gn · gs .
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Example: the case of GL(n)
The rank of G is the common dimension of the maximal tori,
(notation rk(G )). A closed subgroup P of G is called parabolic, if
G/P is a projective variety. A maximal connected closed solvable
subgroup is called Borel subgroup.

Exemple. G = GLn. A �ag F in a vector space V is a properly
increasing sequence of subspaces

F : 0 6= V1 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V .

The sequence (di ) (di = dim vi , i = 1, · · · t)) describes the type of
the �ag. If di = i and t = dimV − 1, we speak of a full �ag.
A parabolic subgroup of GLn is the stability group of a �ag F in
Ωn. G/P is the manifold of �ags of the same type as F , and is well
known to be a projective variety. A Borel subgroup is the stability
group of a full �ag. In a suitable basis, it is the group of all upper
triangular matrices.
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The case of orthogonal group G = SO(F )
of a nondegenerate quadratic form F on a vector space Vk (where,
to be safe, one takes char k 6= 2). In a suitable basis

F (x1, · · · , xn) = x1xn+x2xn−1+· · ·+xqxn−q+1+F0(xq+1, · · · , xn−q)

where F0 does not represent zero rationally. The index of F , the
dimension of the maximal isotropic subspaces in V , is equal to q. A
maximal k-split torus S is given by the set of following diagonal
matrices:

sλ1

sλ2

. . .
sλq

1
. . .

1
s−λq

0 s−λq−1

. . .
s−λ1
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Let SO(F0) denote the proper orthogonal group
of the quadratic form F0 , imbedded in SO(F ) by acting trivially on
x1, · · · , xq, xn−q+1, ..., xn· Then Z (S) = S × SO(F0). The minimal
parabolic k-subgroups are the stability groups of the full isotropic
�ags. For the above choice of S , and ordering of the coordinates,
the standard full isotropic �ag is

[e1] ⊂ [e1, e2] ⊂ · · · ⊂ [e1, · · · eq]

The corresponding minimal parabolic k-subgroup takes then the
form

P =


A0 A1 A2

0 B A3

0 0 A4


where A0 and A4 are upper triangular q × q matrices, B ∈ SO(F0),
with additional relations that insure that P ⊂ SO(F ). The
unipotent radical U of P is the set of matrices in P , where
B = I ,A0,A4 are unipotent, and

A4 = σA−1
0

; Q · A3 + tA1 · J · A4 = 0,
tA4 · J · A2 + tA3 · Q · A3 + tA2 · J · A4 = 0

where Q is the matrix of the quadratic form F0, J is the q × q
matrix with one's in the nonprincipal diagonal and zeros elsewhere,
and σ is the transposition with respect to the same diagonal,
(σM = JtMJ).
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Example: Unitary group
Let us review some background and set up standard notation. Let
E be a quadratic imaginary �eld, embedded in C; 0 ≤ m ≤ n and
Λ = On+m

E . Let

In,m =

 Im
In−m

Im


where I` is the unit matrix of size `, and introduce the perfect
hermitian pairing

(u, v) = t ūIn,mv

on Λ. Let G = GU(Λ, (, )) be the group of unitary similitudes of Λ,
regarded as a group scheme over Z; and denote by ν : G → Gm the
similitude character. For any commutative ring R

G (R) = {g ∈ GLn+m(OE ⊗ R)|∀u, v ∈ Λ⊗ R, (gu, gv) = ν(g)(u, v)}.

Then G (R) = GU(n,m) is the general unitary group of signature
(n,m), and G (C) ∼= GLn+m(C)⊗ C.
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Automorphic complex L-functions on classical groups.

I �6.5. of [MaPa] Automorphic Forms and The Langlands
Program

I Automorphic L-Functions
I Analytic properties of automorphic L-functions
I Hecke algebras.
I Section IV of [Bor79] The L-function of an automorphic

representation.
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Lecture N◦2. Classical and Hermitian modular forms

I Classical modular forms: the case of GL2
I Geometric algebra (see [Dieudonné], [Garrett])
I Sesquilinear formes, Hermitian and antihermitian forms
I Automorphic complex L-functions on classical groups.
I Hermitian modular forms and L functions.
I Hecke algebras.
I The Rankin-Selberg method.

14



Why study L-values attached to modular forms?

A popular proceedure in Number Theory is the following:

Construct a generating
function f =

∑∞
n=0

anq
n

∈ C[[q]] of an arithmetical
function n 7→ an,
for example an = p(n)

 

Compute f via
modular forms,
for example
∞∑
n=0

p(n)qn

= (∆/q)−1/24

 
A number
(solution)

Example :
(Hardy-Ramanujan)

↑ ↑

p(n) =
eπ
√
2/3(n−1/24)

4
√
3λ2n

+O(eπ
√
2/3(n−1/24)/λ3n ),

λn =
√

n − 1/24,

Good bases,
�nite dimensions,
many relations
and identities

Values
of L-functions,
periods,
congruences, . . .

Other examples: Birch and Swinnerton-Dyer conjecture,
. . . L-values attached to modular forms

15



Modular forms, zeta functions, L-functions

Eisenstein series Ek = 1 +
2

ζ(1− k)

∞∑
n=1

∑
d |n

dk−1qn ∈Mk , a

modular forms for even weight k ≥ 4 for SL2(Z), q = e2πiz), and
E2 ∈ QM a quasimodular form. The ring of quasimodular forms,

closed under di�erential operator D = q
d

dq
=

1
2πi

d

dz
, used in

arithmetic, ζ(s) is the Riemann zeta function, ζ(−1) = − 1
12

,

E2 = 1− 24
∑∞

n=1

∑
d |n dq

n is also a p-adic modular form (due to
J.-P.Serre,[Se73], p.211)

Elliptic curves E : y2 = x3 + ax + b , a, b ∈ Z, A.Wiles's

modular forms fE =
∞∑
n=1

anq
n with ap = p − CardE (Fp)

(p 6 | 4a3 + 27b2), and the L-function L(E , s) =
∞∑
n=1

ann
−s .
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Zeta-functions or L-functions
They are attached to various mathematical objects as certain Euler
products.

I L-functions link such objects to each other (a general form of
functoriality);

I Special L-values answer fundamental questions about these
objects in the form of a number (complex or p-adic).

Computing these numbers use integration theory of Dirichlet-Hecke
characters along p-adic and complex valued measures.
This approach originates in the Dirichlet class number formula
using the L-values in order to compute class numbers of algebraic
number �elds through Dirichlet's L-series L(s, χ): for an imaginary
quadratic �eld K of discriminant −D < −4, χD(n) =

(−D
n

)
hD =

√
DL(1, χD)

2π
= L(0, χ) = − 1

D

D−1∑
a=1

χD(a)a.

(Example: disc(Q(
√
−5))) = −20, h20 = 2; in PARI/GP χ20(n) =

kronecker(-20,n), gp > -sum(x=1,19,x*kronecker(-20,x))/20

% 29 = 2

Another famous example: the Millenium BSD Conjecture gives the
rank of an elliptic curve E as the order of L(E , s) at s=1 (i.e. the
residue of its logarithmic derivative, see [MaPa], Ch.6).
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A short story of critical values, see [YS]
Euler discovered ζ(2) =

π2

6
, and

2ζ(2n)

(2πi)2n
= − B2n

(2n)!
∈ Q, (n ≥ 1).

These are examples of critical values (in the sense of Deligne): for a
more general zeta function D(s) the critical values are de�ned
using its gamma factor ΓD(s) such that the product ΓD(s)D(s)
satis�es a standard functional equation under the symmetry
s 7→ v − s. Then D(n), n ∈ Z is a critical value of D(s) if both
ΓD(n) and ΓD(v − n) are �nite.

Hurwitz [Hur1899] showed a striking analogy to Euler's theorem:∑′
α∈Z[i ] α

−4m

Ω4m
=

Hm

(4m)!
∈ Q,Ω = 2

∫
1

0

dx√
1− x4

= 2.6220575542 · · ·

for 1 ≤ m ∈ Z, where α = a + ib, a, b ∈ Z are non-zero Gaussian
integers and Hm are Hurwitz numbers (recursively computed, [Sl]):

H1,H2, · · · =
1
10
,
3
10
,
567
130

,
43659
170

,
392931
10

, · · · . Recall the formula:

Let ℘ be the Weierstrass ℘-function satisfying ℘′2 = 4℘3 − 4℘.

Then ℘(z) =
1
z2

+
∞∑
n=1

24nHnz
4n−2

4n(4n − 2)!
. A rapid computation of these

values: take the Fourier expansion of the Eisenstein series at z = i ,
q = e−2π:

G4m(z) =
∑
a,b

′(az + b)−4m = 2ζ(4m) +
2(2π)4m

(4m − 1)!

∑
d≥1

d4m−1qd

(1− qd)
,

G4m(i)

Ω4m
=

Hm

(4m)!
, π,Ω � periods of ζ(s) and of E : y2 = 4x3 − 4x .
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Classical modular forms
are introduced as certain holomorphic functions on the upper half
plane H = {z ∈ C | Im z > 0}, which can be regarded as a
homogeneous space for the group G (R) = GL2(R):

H = GL2(R)/O(2) · Z , (1)

where Z = {
(
x
0

0

x

)
|x ∈ R×} is the center of G (R) and O(2) is the

orthogonal group. The group GL+
2

(R) of matrices γ =
(
aγ
cγ

bγ
dγ

)
with

positive determinant acts on H by fractional linear transformations; on
cosets this action transforms into the natural action by group shifts.
Let Γ be a subgroup of �nite index in the modular group SL2(Z).
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De�nition of a modular form
A holomorphic function f : H→ C is called a modular form of
(integral) weight k with respect to Γ i� the conditions a) and b) are
satis�ed:
I a) Automorphy condition

f ((aγz + bγ)/(cγz + dγ)) = (cγz + dγ)k f (z) (2)

for all elements γ ∈ Γ;
I b) Regularity at cusps: f is regular at cusps z ∈ Q ∪ i∞ (the

cusps can be viewed as �xed points of parabolic elements of Γ);

this means that for each element σ =
(
a
c
b
d

)
∈ SL2(Z) the

function (cz + d)−k f
(
az+b
cz+d

)
admits a Fourier expansion over

non�negative powers of q1/N = e(z/N) for a natural number N.
One writes traditionally

q = e(z) = exp(2πiz).

A modular form f (z) =
∞∑
n=0

a(n)e(nz/N) is called a cusp form if

f vanishes at all cusps (i.e. if the above Fourier expansion
contains only positive powers of q1/N), see [LangMF], [MaPa]
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The complex vector space of all modular (resp. cusp) forms of weight
k with respect to Γ is denoted by Mk(Γ) (resp. Sk(Γ)).
A basic fact from the theory of modular forms is that the spaces of
modular forms are �nite dimensional. Also, one has
Mk(Γ)Ml(Γ) ⊂Mk+l(Γ). The direct sum

M(Γ) =
∞⊕
k=0

Mk(Γ)

turns out to be a graded algebra over C with a �nite number of
generators.
An example of a modular form with respect to SL2(Z) of weight
k ≥ 4 is given by the Eisenstein series

Gk(z) =
∑

m1,m2∈Z

′
(m1 + m2z)−k (3)

(prime denoting (m1,m2) 6= (0, 0)). For these series the automorphy
condition (2) can be deduced straight from the de�nition. One has
Gk(z) ≡ 0 for odd k and

Gk(z) =
2(2πi)k

(k − 1)!

[
−Bk

2k
+
∞∑
n=1

σk−1(n)e(nz)

]
, (4)

where σk−1(n) =
∑

d |n d
k−1 and Bk is the kth Bernoulli number.

The graded algebra M(SL2(Z)) is isomorphic to the polynomial ring
of the (independent) variables G4 and G6.
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Examples
Recall that Bk denote the Bernoullli numbers de�ned by the
development

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
,

One has for even k ≥ 2, 2ζ(k) = −(2πi)kBk

k!
, Gk(z) =

2(2πi)k

(k − 1)!

[
−Bk

2k
+
∞∑
n=1

σk−1(n)qn

]
, Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn ∈M4(SL(2,Z)),

E6(z) = 1− 504
∞∑
n=1

σ5(n)qn ∈M6(SL(2,Z)),

E8(z) = 1 + 480
∞∑
n=1

σ7(n)qn ∈M8(SL(2,Z)),

E10(z) = 1− 264
∞∑
n=1

σ9(n)qn ∈M10(SL(2,Z)),

E12(z) = 1 +
65520
691

∞∑
n=1

σ11(n)qn ∈M12(SL(2,Z)),

E14(z) = 1− 24
∞∑
n=1

σ13(n)qn ∈M14(SL(2,Z)).(Proof see in [Se70]).

with PARI/GP:

gp > k=14;Ek=1-(2*k)/bernfrac(k)*sum(d=1,20,d^(k-1)*q^d/(1-q^d)+O(q^4>

% = 1 - 24*q - 196632*q^2 - 38263776*q^3 + O(q^4)
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Fast computation of the Ramanujan function:
Put hk :=

∞∑
n=1

∑
d |n

dk−1qn =
∞∑
d=1

dk−1qd

1− qd
. The classical fact is that

∆ = (E 3
4
− E 2

6
)/1728 where E4 = 1 + 240h4 and E6 = 1− 504h6.

Computing with PARI-GP see [BBBCO], The PARI/GP number theory system),

http://pari.math.u-bordeaux.fr hk :=
∞∑
n=1

∑
d |n

dk−1qn =
∞∑
d=1

dk−1qd

1− qd
=⇒

gp > h6=sum(d=1,20,d^5*q^d/(1-q^d)+O(q^20))

gp > h4=sum(d=1,20,d^3*q^d/(1-q^d)+O(q^20)

gp > Delta=((1+240*h4)^3-(1-504*h6)^2)/1728

Congruence of Ramanujan τ(n) ≡
∑
d |n

d11 mod 691 :

gp > (Delta-h12)/691

% = -3*q^2 - 256*q^3 - 6075*q^4 - 70656*q^5 - 525300*q^6 + O(q^7)

More programs of computing τ(n) (see [Sl])

(MAGMA) M12:=ModularForms(Gamma0(1), 12); t1:=Basis(M12)[2];

PowerSeries(t1[1], 100); Coefficients($1);

(PARI) a(n)=if(n<1, 0, polcoeff(x*eta(x+x*O(x^n))^24, n))

(PARI) {tau(n)=if(n<1, 0, polcoeff(x*(sum(i=1, (sqrtint(8*n-7)+1)\2,

(-1)^i*(2*i-1)*x^((i^2-i)/2), O(x^n)))^8, n));}

gp > tau(6911)

%3 = -615012709514736031488
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Geometric algebra (see [Dieudonné], [Garrett])
- GL(n) (geometric study).
- Bilinear and Hermitian forms, classical groups
- Witt theorem and extensions of isometries
This section is based on notions of geometric algebra.
Concerning matrix notation, for a rectangular matrix A = (aij) let
tA denote the transpose of A. If the entries of A belong to a ring
D with involution muni d'involution σ, let Aσ given by Aσij = aσij .
Geometric study of GL(n) and its subgroups. The group GL(n) is
a basic classical group showing the most interesting phenomena
used in many other situations. The general linear group GL(n, k) is
the group of all invertible n × n matrices with entries in a
commutative �eld k .The special linear group SL(n, k) is its
subgroup of all n × n of determinant 1.
For an approach less dependant of coordonnates �x a k-vector
space V of dimension n and let GLk(V ) be the group of all
k-linear automorphisms of V . Any choice of a base in V gives an
isomorphism GLk(V )→ GL(n, k) using the matrix of linear
mapping in the chosen base. Let e1, · · · , en the standard bases of
kn giving the isomorphhism GLk(kn)→ GL(n, k).
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Conjugation of parabolic subgroups.
Let V = kn and F the standard �ag of type (d1, · · · , dm), the
parabolic subgroup PF is represented by blocs
d1 × d1 ∗ ∗ ∗

(d2 − d1)× (d2 − d1) ∗ ∗
. . . ∗

· · · · · ·
0 0 0 (n − dm)× (n − dm)


Any g ∈ P = PF induce a natural mapping on the quotients
Vdi/Vdi−1 , where Vd0 = 0 and Vdm+1

= V ).
Then the unipotent radical RuP =
{p ∈ PF | p = id on Vdi/Vdi−1 on V /Vdm} is represnted by
1d1 ∗ ∗ ∗

1d2−d1 ∗ ∗
. . . ∗

· · · · · ·
0 0 0 1n−dm

 .
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Levi components and conjugation
Choose a complement V ′n−di of Vdi in V with the property
V ′n−dm ⊂ · · · ⊂ V ′n−d1 (an opposit �ag F′ of F) with the opposit
parabolic P ′ = PF′ . Then M = P ∩ P ′ is called a complementary
Levi component in P = M n RuP , a standard semi-direct product.
Then the standard Levi component is the group of matrices of the
form
d1 × d1 0 0 0

(d2 − d1)× (d2 − d1) 0 0
. . . 0

· · · · · ·
0 0 0 (n − dm)× (n − dm)

 .

Proposition

a) All the parabolic subgroups of given type are conjugate in
GLk(V )
b) All the Levi components of parabolic subgroup P are conjugate
by elements of P
c) All the maximal k-split tori are conjugate in GLk(V ).
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Extension to modules over a scew �eld
This section applies unchanged when k is replaced by a scew �eld
(a division ring) D. Without coordinates, de�ne a vector space V
of �nite dimension over a scew �eld (a division ring) D as a �nitely
generated (left or right) module.
If D is not commutative, there is a modi�cation in viewing at
D-lineair endomorphisms.The the ring EndD(V ) of all D-lineair
endomorphisms does not contain D naturallurally. Then a choice of
D-bases for a vector space D of given dimension gives an
isomorphism EndD(V ) to n × n matrices with coe�cients in Dopp,
where Dopp is the opposite ring to D, i.e.with the same additive
group D but with the multiplication ∗, given by x ∗ y = yx where
yx is the multiplication in D. The linear group GL(n,D) over D is
the group of all the invertible n × n matrices over D. A version
without coordinates is GLD(V ),and a choice of D-bases of V gives
an isomorphism GLD(V )→ GL(n,Dopp). De�nitions concerning
�ags and parabolics are identical to the commutative case. A �ag
F in V is a chain F = (Vd1 ⊂ Vd2 ⊂ · ⊂ Vdm) of subspaces.

Proposition

a) All the parabolic subgroups of a given type are conjugate in
GLD(V )
b) All the Levi components of parabolic subgroup P are conjugate
by elements of P .
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Bilinear, sesquilinear and Hermitian forms; classical groups
The classical groups are de�ned as certain isomtries or similitudes
of "formes" on the vector spaces. First, orthogonal and symplectic
groups are de�ned. These can be included into more general
families.

Bilinear forms, symmetric and symplectic forms
Let Q(v) = 〈v , v〉 be the quadratic form attached to a symmetric
bilinear form 〈·, ·〉 on a k-vector space V .
The associated orthogonal group O(Q) is the group of isometries
of Q (or of 〈·, ·〉), de�ned as

O(Q) = O(〈·, ·〉) = {g ∈ GLk(V ) | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = 〈v1, v2〉},
and the group of orthogonal similitudes is GO(Q) = GO(〈·, ·〉)
= {g ∈ GLk(V ),∃ν(g) ∈ k∗ | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = ν(g)〈v1, v2〉}

If ∀v1, v2 ∈ V , 〈gv1, gv2〉 = −〈v1, v2〉, then the bilinear form
f : V × V → k , f (v1, v2) = 〈v1, v2〉 is said symplectic.The
symplectic group attached to f is the group of isometries of the
form f = 〈v1, v2〉 de�ned by
Sp(f ) = {g ∈ GLk(V ) | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = 〈v1, v2〉}, puis
the group of symplectis symilitudes GSp(f ) =
{g ∈ GLk(V ), ∃ν(g) ∈ k∗ | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = ν(g)〈v1, v2〉}.
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Sesquilinear formes, Hermitian and antihermitian forms
Let K be a quadratic extension of k , its sub�eld �xed be the
involution σ.

De�nition
a) A k-bilinear form f : V × V → K , f (v1, v2) = 〈v1, v2〉 on a
K -vectorspace V of �nite dimension is said sesquilinear (with an
implicite reference to σ) if 〈αv1, βv2〉 = ασβ〈v1, v2〉 (∀α, β ∈ K
and v1, v2 ∈ V ).
b) A sesquilinear form f (v1, v2) = 〈v1, v2〉 on a K -vector space V of
�nite dimension is said hermitian if ∀v1, v2 ∈ V , 〈v2, v1〉 = 〈v1, v2〉σ.
The unitary group U(f ) is the group of isometries f (or of 〈·, ·〉),
de�ned as

U(f ) = U(〈·, ·〉) = {g ∈ GLK (V ) | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = 〈v1, v2〉},
and the group of unitary similitudes is GU(f ) = GU(〈·, ·〉)
= {g ∈ GLK (V ),∃ν(g) ∈ K ∗ | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = ν(g)〈v1, v2〉}
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Simultaneuos treatment of general isometries groups
Over a division algebra D with an anti-involution σ. Note that
σ : D → D satis�es the properties

∀α, β ∈ D, ασσ = α, (α + β)σ = ασ + βσ and (αβ)σ = βσασ

Let Z be the center of D. Suppose that D is of �nite dimension
over Z , and that k = {x ∈ Z |xσ = x}. Let V be a D-vector space
of �nite dimension, and �x ε = ±1 . Let f = 〈·, ·〉, f : V × V → D
a k-bilinear form with values in D on V such that ∀α, β ∈ D,
∀v1, v2 ∈ V , 〈v2, v1〉 = ε〈v1, v2〉σ, 〈αv1, βv2〉 = ασ〈v1, v2〉β. Such
a form is said ε-hermitian on V , and such space V (endowed with
〈·, ·〉) is called a (D, σ, ε)-space.
The group of isometries U(f ) of f (or of 〈·, ·〉), is de�ned as

U(f ) = U(〈·, ·〉) = {g ∈ GLD(V ) | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = 〈v1, v2〉},
and the group of isometry similitudes is GU(f ) = GU(〈·, ·〉)
= {g ∈ GLD(V ),∃ν(g) ∈ k∗ | ∀v1, v2 ∈ V , 〈gv1, gv2〉 = ν(g)〈v1, v2〉}
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Orthogonalisation and isotropy vectors
A D - vector subspace U in a (D, ε, σ) - vector space admits an
orthogonal complement U⊥ = {u′ ∈ V 〈u′, u〉 = 0, ∀u ∈ U}. Note
that U ∩ U⊥ = 0 is not valid in general. The kernel V is denoted
V⊥. The form is called non degenerate if V⊥ = 0. Suppose for
simplicity that the space V is non-degenerate.
If V1,V2 are two (D, ε, σ) - vector spaces endowed with forms,
respectively, 〈·, ·〉1, 〈·, ·〉2, then the direct sum V1 ⊕V2 of D- vector
spaces is a (D, ε, σ) - vector space with the form

〈v1 + v2, v
′
1 + v ′2〉 = 〈v1, v ′1〉1〈v2, v ′2〉2

called the orthogonal sum. In general, two subspaces V1,V2 of a
(D, ε, σ) - vector space V are orthogonal if V1 ⊂ V⊥

2
or

equivalently, if V2 ⊂ V⊥
1
.

If 〈v , v〉 = 0 for v ∈ V , then v is called an isotropic vecteur. If
〈v , v ′〉 = 0 for all v , v ′ ∈ U for a subspace U of V then U is a
(totally) isotropic. If there is no isotropic non zero vector in U,
then U is said anisotropic.

Proposition

Let V be a (D, ε, σ)- non degenerate vector space with a subspace
U. Then U is non degenerate i� V = U ⊕ U⊥, with U⊥ non
degenerate.
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Orthogonalisation in (D, σ, ε)-spaces
This is used for classi�cation of orthogonal and hermitians spaces

Proposition

Let V be a (D, ε, σ)- non degenerate vector space. Suppose that
the case where ε = −1, D = k , and σ trivial is excluded. If the
product 〈·, ·〉 does not vanish identically then there exists v ∈ V
with 〈v , v〉 6= 0. If V is non degenerate then it has an orthogonal
basis.

Proof. Suppose that 〈v , v〉 = 0 for all v ∈ V . Then

0 = 〈x + y , x + y〉 = 〈x , x〉+ 〈y , y〉+ 〈x , y〉+ ε〈x , y〉σ.

If ε = 1 and the product 〈x + y , x + y〉 does not vanish identically,
then there exist x , y such that 〈x , y〉 = 1. Contradiction. Suppose
that ε = −1 and σ non trivial on D. Then there exists α ∈ D such
that α 6= ασ, with ω = α− ασ, ω = −ωσ. If 〈x , y〉 does not vanish
identically then there existe x , y such that 〈x , y〉 = 1. Then one has
0 = 〈ωx , y〉+ ε〈ωx , y〉σ = ωσ〈x , y〉+ 〈x , y〉σω = −ω+ εω = −2ω,
Contradiction.
In order to construct an orthogonal basis, one uses induction on
dimension. If the dimension of a non degenerate vector space V is
1, then any non-zero forme admits an orthogonal basis. In general,
one �nds v ∈ V such that 〈v , v〉 6= 0. Then Dv⊥ is non degenerate
and V is the orthogonal direct sum of Dv andDv⊥, by the previous
proposition.
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Hermitian modular forms.
Automorphic complex L-functions on classical groups. Hecke
algebras. The Rankin-Selberg method.
Hermitian modular group Γn,K and the standard zeta function
Z(s; f) (de�nitions)
Let K = Q(

√
−DK ) be an imaginary quadratic �eld, θ = θK its

quadratic character, n ∈ N, n′ =
[
n
2

]
. The Hermitian group

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n)
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Examples of Hermitian cusp forms
The Hermitian Ikeda lift, [Ike08]. Assume n = 2n′ even.

Let f (τ) =
∞∑

N=1

a(N)qN ∈ S2k+1(Γ0(DK ), χ) be a primitive form,

whose L-function is given by

L(f , s) =
∏
p 6 |DK

(1− a(p)p−s + θ(p)p2k−2s)−1
∏
p|DK

(1− a(p)p−s)−1.

For each prime p 6 | DK , de�ne the Satake parameter
{αp, βp} = {αp, θ(p)α−1p } by

(1− a(p)X + θ(p)p2kX 2) = (1− pkαpX )(1− pkβpX )

For p|DK , we put αp = p−ka(p). Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

F (H) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ H2n.
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The �rst Hermitian lift (even case)
Theorem 5.1 (Case E) of [Ike08] Assume that n = 2n′ is
even. Let f (τ), A(H) and F (Z ) be as above. Then we have

F ∈ S2k+2n′(Γ
(n)
K , det−k−n

′
).

In the case when n is odd, consider a similar lifting for a normalized

Hecke eigenform n = 2n′ + 1 is odd. Let f (τ) =
∞∑

N=1

a(N)qN

∈ S2k(SL2(Z)) be a primitive form, whose L-function is given by

L(f , s) =
∏
p

(1− a(p)p−s + p2k−1−2s)−1.

For each prime p, de�ne the Satake parameter {αp, α
−1
p } by

(1− a(p)X + p2k−1X 2) = (1− pk−(1/2)αpX )(1− pk−(1/2)α−1X ).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

F (H) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ Hn.
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The second Hermitian lift (odd case)
Theorem 5.2 (Case O) of [Ike08]. Assume that n = 2n′ + 1
is odd. Let f (τ), A(H) and F (Z ) be as above. Then we have

F ∈ S2k+2n′(Γ
(n)
K , det−k−n

′
).

The lift Lift(n)(f ) of f is a common Hecke eigenform of all Hecke
operators of the unitary group, if it is not identically zero (Theorem
13.6).

Theorem 18.1 of [Ike08]. Let n, n′, and f be as in Theorem
5.1 or as in Theorem 5.2. Assume that Lift(n)(f ) 6= 0. Let
L(s, Lift(n)(f ), st) be the L-function of Lift(n)(f) associated to
st : LG→ GL4n(C). Then up to bad Euler factors,
L(s, Lift(n)(f ), st) is equal to

n∏
i=1

L(s + k + n′ − i +
1
2
, f )L(s + k + n′ − i +

1
2
, f , θ).

Moreover, the 4n charcteristic roots of L(s, Lift(n)(f ), st) given as
follows: for i = 1, · · · , n

αpp
−k−n′+i− 1

2 , α−1p p−k−n
′+i− 1

2 , θ(p)αpp
−k−n′+i− 1

2 , θ(p)α−1p p−k−n
′+i− 1

2
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Functional equation of the lift (Sho Takemori)
There are two cases [Ike08]: the even case (E) and the odd case (O):
f ∈ S2k+1(Γ0(D), θ),F = Lift(n)(f ) (E )

(the lift is of even degree n = 2n′ and of weight 2k + 2n′)

f ∈ S2k(SL(Z)),F = Lift(n)(f ) (O)

(the lift is of odd degree n = 2n′ + 1 and of weight 2k + 2n′).
Then, up to bad Euler factors, the standard L-function of
F = Lift(n)(f ) is given by∏n

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ)

=



∏
2n′

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ) (E )∏n′

i=1
L(t(s, i), f )L(t(s, 2n′ + 1− i), f )

L(t(s, i), f , θ)L(t(s, 2n′ + 1− i), f , θ)∏
2n′+1

i=1
L(s + k + n′ − i + 1

2
, f )

×L(s + k + n′ − i + 1

2
, f , θ) (O)

= L(s + k − 1

2
, f )L(s + k − 1

2
, f , θ)∏n′

i=1
L(t(s, i), f )L(t(s, 2n′ + 2− i), f )

L(t(s, i), f , θ)L(t(s, 2n′ + 2− i), f , θ)

where t(s, i) = s + k + n′ − i + 1

2
.
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The Gamma factor ΓZ(s) of Ikeda's lift
In the even case since (2k + 1)− t(s, i) = t(1− s, 2n′ + 1− i),
using the Hecke functional equation in the symmetric terms of the
product, gives the functional equation of the standard L function of
the form s 7→ 1− s, and the gamma factor is given by

n∏
i=1

ΓC(s + k + n′ − i + 1/2)2 = ΓD(s + n′ +
1
2

).

In the odd case when f ∈ S2k(SL2(Z)), the lift is of degree
n = 2n′ + 1 and of weight 2k + 2n′. By 2k − t(s, i) =
t(1− s, 2n + 2− i), the standard L functions has functional
equation of the form s 7→ 1− s and the gamma factor is the same.
Hence the Gamma factor of Ikeda's lifting, denoted by f, of an
elliptic modular form f and used as a pattern, extends to a general
(not necessarily lifted) Hermitian modular form f of even weight `,
which equals in the lifted case to ` = 2k + 2n′, where
k = (`− 2n′)/2 = `/2− n′=`/2− n′, when the Gamma factor of
the standard zeta function with the symmetry s 7→ 1− s becomes
(see p.37)

∏n
i=1

ΓC(s + `/2− n′ + n′ − i + (1/2))2 =∏n
i=1

ΓC(s + `/2− i + (1/2))2 =
∏n−1

i=0
ΓC(s + `/2− i − (1/2))2.
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Eisenstein series and the Rankin-Selberg method
The (Siegel-Hermite) Eisenstein series E (n)

2` (Z ) of weight 2`,
character det−`, is de�ned by
E

(n)
2` (Z ) =

∑
g∈Γ

(n)
K ,∞\Γ

(n)
K

(det g)`j(g ,Z )−2`. The series converges

absolutely for ` > n. De�ne the normalized Eisenstein series
E

(n)
2` (Z ) by E

(n)
2` (Z ) = 2−n

∏n
i=1

L(i − 2`, θi−1) · E (n)
2` (Z ) If

H ∈ Λn(O)+, then the H-th Fourier coe�cient of E(n)
2` (Z ) is

polynomial over Z in {p`−(n/2)}p, and equals

|γ(H)|`−(n/2)
∏

p|γ(H)

F̃p(H, p−`+(n/2)), γ(H) = (−DK )[n/2] detH.

Here, F̃p(H,X ) is a certain Laurent polynomial in the variables
{Xp = p−s ,X−1p }p over Z. This polynomial is a key point in
proving congruences for the modular forms in a Rankin-Selberg
integral.

Also, we set , for s ∈ C and a Hecke ideal character ψ mod c,

E (Z , s, `, ψ) =
∑

g∈C∞\C

ψ(g)(det g)`j(g ,Z )−2`|(det g)j(g ,Z )|−s .
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A Rankin-Selberg integral representation: the simplest case
Let us recall a Rankin-Selberg integral representation in the
simplest elliptic modular case of GL2.
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An integral representation of Rankin-Selberg type
Include reading in the simplest elliptic modular case of GL2
The integral representation of Rankin-Selberg type in the Hermitian
modular case:
Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13.
Let 0 6= f ∈M`(C , ψ)) of scalar weight `, ψ mod c, such that
∀a, f|T (a) = λ(a)f, and assume that 2` ≥ n, then there exists
T ∈ S+ ∩GLn(K ) and R ∈ GLn(K ) such that

Γ((s))ψ(det(T))Z(s + 3n/2, f, χ) =

Λc(s + 3n/2, θψχ) · C0〈f, θT(χ)E(s̄ + n, `− `θ, χρψ)〉C ′′ ,

where E(Z , s, `− `θ, ψ)C ′′ is a normalized group theoretic
Eisenstein series with components as above of level c′′ divisible by c,
and weight `− `θ. Here 〈·, ·〉C ′′ is the normalized Petersson inner
product associated to the congruence subgroup C ′′ of level c′′.

Γ((s)) = (4π)−n(s+h)Γιn(s + h), Γιn(s) = π
n(n−1)

2

n−1∏
j=0

Γ(s − j),

where h = 0 or 1, C0 a subgroup index.
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Automorphic complex L-functions on classical groups:
Hecke algebras, motives and Galois representations, [La06]

I �6.5. of [MaPa] Automorphic Forms and The Langlands
Program

I 6.2.6 of [MaPa]: The Weil Group and its Representations (cf.
[Ta79], [Wei74a])

I Algebraic Hecke-Weil characters
I 6.2.7 of [MaPa]: Zeta Functions, L-Functions and Motives (cf.

[Man68], [Del79]).
I Automorphic forms and their weights. Complex analytic

weight space. Motivic weights, Introduction to [EHLS].

(reading the following materials)
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Lecture N◦3. Distributions, measures, Kummer congruences.
Kubota-Leopoldt p-adic zeta function and Iwasawa algebra.

Zeta values and Bernoulli Numbers A key result in number
theory is the Euler product expansion of the Riemann zeta ζ(s) :

ζ(s) =
∏
p

(1− p−s)−1 =
∞∑
n=1

n−s (de�ned for Re(s) > 1).

The set of arguments s for which ζ(s) is de�ned was extended by
Riemann to all s ∈ C, s 6= 1. The special values ζ(1− k) at

negative integers are rational numbers: ζ(1− k) = −Bk

k
, satifying

certain Kummer congruences modpm, where Bk are Bernoulli
numbers, de�ned by the

∞∑
n=0

Bnt
n

n!
=

tet

et − 1
;B0 = 1, B1 = −1

2
, B2 =

1
6
, B3 = B5 = · · · = 0,B4 = − 1

30
,

B6 =
1
42
, B8 = − 1

30
,B10 =

5
66
,B12 =

691
2730

, B14 = −7
6
, ζ(2k) = −(2πi)2kB2k

2(2k)!
,

The denominators of Bk are small (Sylvester-Lipschitz):

∀c ∈ Z =⇒ ck(ck − 1)
Bk

k
∈ Z (see in [Mi-St]), Bernoulli

polynomials Bk(x) =
k∑

i=0

(
k

i

)
Bix

k−i = ”(x + B)k”

Sk(N) =
N−1∑
n=1

nk =
1

k + 1
[Bk+1(N)− Bk+1],

B1(x) = x − 1

2
,B2(x) = x2 − x + 1

6
,
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Bernoulli numbers and Kummer congruences
Kubota and Leopoldt constructed [KuLe64] a p-adic interpolation
of these special values, explained by Mazur via a p-adic measure µc
on Zp and Kummer congruences for the Bernoulli numbers, see
[Ka78] (p is a prime number, c > 1 an integer prime to p). Writing
the normalized values

ζ
(c)
(p)(−k) = (1− pk)(1− ck+1)ζ(−k) =

∫
Z∗p

xkdµc(x)

produces the Kummer congruences in the form: for any polynomial
h(x) =

∑n
i=0

αix
i over Z,

∀x ∈ Zp,
n∑

i=0

αix
i ∈ pmZp =⇒

n∑
i=0

αiζ
(c)
(p)(−i) ∈ pmZp,

Indeed, integrating the above polynomial h(x) over µc produces the
congruences. The existence of µc is deduced from the above
formula for the sum of k-th powers Sk(pr ) for r →∞, restricted to
numbers n, prime to p.
In order to de�ne such a measure µc it su�ces for any continuous
function φ : Zp → Zp to de�ne its integral

∫
Zp
φ(x)dµc .

Approximating φ(x) by a polynomial (when the integral is already
de�ned), pass to the limit (which is well de�ned due to Kummer
congruences).

44



Kubota-Leopoldt p-adic zeta-function
The domain of de�nition of p-adic zeta functions is the p-adic
analytic group Yp = Homcont(Z∗p,C∗p) of all continuous p-adic

characters of the pro�nite group Z×p , where Cp = Q̂p denotes the
Tate �eld (completion of an algebraic closure of the p-adic �eld
Qp) (over complex numbers C = Homcont(R∗+,C∗), y run the
characters t 7→ ts .
De�ne ζp : Yp → Cp on the space as the p-adic Mellin transform

ζp(y) =

∫
Z∗p

y(x)dµc(x)

1− cy(c)
=

Lµc (y)

1− cy(c)
,

with a single simple pole at y = y−1p ∈ Yp, where yp(x) = x the
inclusion character Z∗p ↪→ C∗p and y(x) = χ(x)xk−1 is a typical
arithmetical character (y = y−1p becomes k = 0, s = 1− k = 1).

Explicitly: Mazur's measure is given by µc(a + pvZp) =
1

c

[
ca
pv

]
+ 1−c

2c = 1

cB1({ capv })− B1( a
pv ), B1(x) = x − 1

2
, ([LangMF],

Ch.XIII), we see the zeta distribution µs |s=0(a + (N)) = −B1( a
N ).

Then the binomial formula∫
Z

(1 + t)zdµc =
∑∞

n=0
tn
∫
Z

(
z
n

)
dµc , gives the analyticity of

ζp(y) on t = y(1 + p)− 1 in the unit disc {t ∈ Cp‖ |t|p < 1}.
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The abstract Kummer congruences, p-adic Mellin transform
and the Iwasawa algebra

A useful criterion for the existence of a measure with given
properties is:

Proposition (The abstract Kummer congruences, see [Ka78])

Let {fi} be a system of continuous functions fi ∈ C(Xp,Op) in the
ring C(Xp,Op) of all continuous functions on the compact totally
disconnected group Xp with values in the ring of integers Op of C
such that Cp-linear span of {fi} is dense in C(Xp,Cp). Let also
{ai} be any system of elements ai ∈ Op. Then the existence of an
Op-valued measure µ on Xp with the property∫

Xp

fidµ = ai

is equivalent to the following congruences, for an arbitrary choice of
elements bi ∈ Cp almost all of which vanish∑

i

bi fi (x) ∈ pnOp for all x ∈ Xp implies
∑
i

biai ∈ pnOp. (5)

Remark
Since Cp-measures are characterised as bounded Cp-valued
distributions, every Cp-measures on Y becomes a Op-valued
measure after multiplication by some non-zero constant.
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Proof of proposition 8. The necessity is obvious since∑
i

biai =

∫
Xp

(pnOp − valued function)dµ =

= pn
∫
Xp

(Op − valued function)dµ ∈ pnOp.

In order to prove the su�ciency we need to construct a measure µ
from the numbers ai . For a function f ∈ C(Xp,Op) and a positive
integer n there exist elements bi ∈ C such that only a �nite number
of bi does not vanish, and

f −
∑
i

bi fi ∈ pnC(Xp,Op),

according to the density of the C-span of {fi} in C(Xp,C). By the
assumption (5) the value

∑
i aibi belongs to Op and is well de�ned

modulo pn (i.e. does not depend on the choice of bi ). Following
N.M. Katz ([Ka78]), we denote this value by �

∫
Xp

fdµ mod pn �.
Then we have that the limit procedure∫

Xp

fdµ = lim
n→∞

�
∫
Xp

fdµ mod pn � ∈ lim
←−
n

Op/p
nOp = Op,

gives the measure µ.47



Mazur's measure over XS = ZS
Let c > 1 be a positive integer coprime to M0 =

∏
q∈S

q with S

being a �xed set of primes containing p. Using the criterion of the
proposition 8 we show that the Q -valued distribution de�ned by
the formula

E c
k (f ) = Ek(f )− ckEk(fc), fc(x) = f (cx), (6)

turns out to be a measure where Ek(f ) are de�ned in [LangMF],
f ∈ Step(X,Qp) and the �eld Q is viewed as a sub�eld of Cp.

De�ne the generalized Bernoulli polynomials B(M)
k,f (X ) as

∞∑
k=0

B
(M)
k,f (X )

tk

k!
=

M−1∑
a=0

f (a)
te(a+X )t

eMt − 1
, (7)

and the generalized sums of powers

Sk,f (M) =
M−1∑
a=0

f (a)ak .
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Then the de�nition (7) formally implies that

1
k

[B
(M)
k,f (M)− B

(M)
k,f (0)] = Sk−1,f (M), (8)

and also we see that

B
(M)
k,f (X ) =

k∑
i=0

(
k

i

)
Bi ,f X

k−i = Bk,f + kBk−1,f X + · · ·+B0,f X
k . (9)

The last identity can be rewritten symbolically as

Bk,f (X ) = (Bf + X )k .

The equality (8) enables us to calculate the (generalized) sums of
powers in terms of the (generalized) Bernoulli numbers. In particular
this equality implies that the Bernoulli numbers Bk,f can be obtained
by the following p-adic limit procedure (see [LangMF]):

Bk,f = lim
n→∞

1
Mpn

Sk,f (Mpn) (a p-adic limit), (10)

where f is a Cp-valued function on Xp = ZS . Indeed, if we replace M
in (8) by Mpn with growing n and let D be the common denominator

of all coe�cients of the polynomial B(M)
k,f (X ). Then we have from (9)

that

1
k

[
B

(Mpn)
k,f (M)− B

(M)
k,f (0)

]
≡ Bk−1,f (Mpn) (mod

1
kD

p2n). (11)

The proof of (10) is accomplished by division of (11) by Mpn and by
application of the formula (8).49



Now we can directly show that the distribution E c
k de�ned by (6) are

in fact bounded measures. If we use (5) and take the functions {fi}
to be all of the functions in Step(Xp,Op). Let {bi} be a system of
elements bi ∈ Cp such that for all x ∈ Xp the congruence∑

i

bi fi (x) ≡ 0 (mod pn) (12)

holds. Set f =
∑

i bi fi and assume (without loss of generality) that
the number n is large enough so that for all i with bi 6= 0 the
congruence

Bk,fi ≡
1

Mpn
Sk,fi (Mpn) (mod pn) (13)

is valid in accordance with (10). Then we see that

Bk,f ≡ (Mpn)−1
∑
i

Mpn−1∑
a=0

bi fi (a)ak (mod pn), (14)

hence we get by de�nition (6):

E c
k (f ) = Bk,f − ckBk,fc (15)

≡ (Mpn)−1
∑
i

Mpn−1∑
a=0

bi

[
fi (a)ak − fi (ac)(ac)k

]
(mod pn).
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Let ac ∈ {0, 1, · · · ,Mpn − 1}, such that ac ≡ ac (mod Mpn), then the
map a 7−→ ac is well de�ned and acts as a permutation of the set
{0, 1, · · · ,Mpn − 1}, hence (15) is equivalent to the congruence

E c
k (f ) = Bk,f − ckBk,fc ≡

∑
i

akc − (ac)k

Mpn

Mpn−1∑
a=0

bi fi (a)ak (mod pn).

(16)
Now the assumption (11) formally inplies that E c

k (f ) ≡ 0 (mod pn),
completing the proof of the abstact congruences and the construction
of measures E c

k .

Remark
The formula (15) also implies that for all f ∈ C(Xp,Cp) the following
holds

E c
k (f ) = kE c

1 (xk−1p f ) (17)

where xp : Xp −→ Cp ∈ C(Xp,Cp) is the composition of the projection
Xp −→ Zp and the embedding Zp ↪→ Cp.

Indeed if we put ac = ac + Mpnt for some t ∈ Z then we see that

akc − (ac)k = (ac +Mpnt)k − (ac)k ≡ kMpnt(ac)k−1 (mod (Mpn)2),

and we get that in (16):

akc − (ac)k

Mpn
≡ k(ac)k−1

ac − ac

Mpn
(mod Mpn).

The last congruence is equivalent to saying that the abstract Kummer
congruences (5) are satis�ed by all functions of the type xk−1p fi for the
measure E c

1
with fi ∈ Step(Xp,Cp) establishing the identity (17).51



The domain of de�nition of the non-Archimedean zeta
functions

In the classical case the set on which zeta functions are de�ned is the
set of complex numbers C which may be viewed equally as the set of
all continuous characters (more precisely, quasicharacters) via the
following isomorphism:

C ∼−→ Homcont(R×+,C×) (18)

s 7−→ (x 7−→ x s)

The construction which associates to a function h(x) on R×+ (with
certain growth conditions as x →∞ and x → 0) the following integral

Lh(s) =

∫
R×+

h(x)x s
dx

x

(which converges probably not for all values of s) is called the Mellin
transform.
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For example, if ζ(s) =
∑

n≥1 n
−s is the Riemann zeta function, then

the function ζ(s)Γ(s) is the Mellin transform of the function
h(x) = 1/(1− e−x):

ζ(s)Γ(s) =

∫ ∞
0

1
1− e−x

x s
dx

x
, (19)

so that the integral and the series are absolutely convergent for
Re(s) > 1. For an arbitrary function of type

f (z) =
∞∑
n=1

a(n)e2iπnz

with z = x + iy ∈ H in the upper half plane H and with the growth
condition a(n) = O(nc) (c > 0) on its Fourier coe�cients, we see that
the zeta function

L(s, f ) =
∞∑
n=1

a(n)n−s ,

essentially coincides with the Mellin transform of f (z), that is

Γ(s)

(2π)s
L(s, f ) =

∫ ∞
0

f (iy)y s
dy

y
. (20)
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Both sides of the equality (20) converge absolutely for
Re(s) > 1 + c . The identities (19) and (20) are immediately
deduced from the well known integral representation for the
gamma-function

Γ(s) =

∫ ∞
0

e−yy s
dy

y
, (21)

where dy
y is a measure on the group R×+ which is invariant under

the group translations (Haar measure). The integral (21) is
absolutely convergent for Re(s) > 0 and it can be interpreted as
the integral of the product of an additive character y 7→ e−y of the
group R(+) restricted to R×+, and of the multiplicative character
y 7→ y s , integration is taken with respect to the Haar measure
dy/y on the group R×+.
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p-adic Mellin transform

In the theory of the non-Archimedean integration one considers the
group Z×S (the group of units of the S-adic completion of the ring

of integers Z) instead of the group R×+, and the Tate �eld Cp = Q̂p

(the completion of an algebraic closure of Qp) instead of the
complex �eld C. The domain of de�nition of the p-adic zeta
functions is the p-adic analytic group

YS = Homcont(Z×S ,C
×
p ) = Y(Z×S ), (22)

where:
Z×S ∼= ⊕q∈SZ×q ,

and the symbol
Y(G ) = Homcont(G ,C×p ) (23)

denotes the functor of all p-adic characters of a topological group
G .
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The analytic structure of YS
Let us consider in detail the structure of the topological group YS . De�ne

Up = {x ∈ Z×p | x ≡ 1 (mod pν)},

where ν = 1 or ν = 2 according as p > 2 or p = 2. Then we have the
natural decomposition

YS = Y

(Z/pνZ)× ×
∏
q 6=p

Z×q

× Y(Up). (24)

The analytic structure on Y(Up) is de�ned by the following isomorphism
(which is equivalent to a special choice of a local parameter):

ϕ : Y(Up)
∼−→ T = {z ∈ C×p | |z − 1|p < 1},

where ϕ(x) = x(1 + pν), 1 + pν being a topoplogical generator of the
multiplicative group Up

∼= Zp. An arbitrary character χ ∈ YS can be
uniquely represented in the form χ = χ0χ1 where χ0 is trivial on the
component Up, and χ1 is trivial on the other component

(Z/pνZ)× ×
∏
q 6=p

Z×q .
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The character χ0 is called the tame component, and χ1 the wild
component of the character χ. We denote by the symbol χ(t) the
(wild) character which is uniquely determined by the condition

χ(t)(1 + pν) = t

with t ∈ Cp, |t|p < 1.
In some cases it is convenient to use another local coordinate s which
is analogous to the classical argument s of the Dirichlet series:

Op −→ YS

s 7−→ χ(s),

where χ(s) is given by
χ(s)((1 + pν)α) = (1 + pν)αs = exp(αs log(1 + pν)). The character
χ(s) is de�ned only for such s for which the series exp is p-adically
convergent (i.e. for |s|p < pν−1/(p−1)). In this domain of values of the
argument we have that t = (1 + pν)s − 1. But, for example, for
(1 + t)p

n
= 1 there is certainly no such value of s (because t 6= 1), so

that the s-coordonate parametrizes a smaller neighborhood of the
trivial character than the t-coordinate (which parametrizes all wild
characters) (see [Ma73], [Ma76]).57



Recall that an analytic function F : T −→ Cp

(T = {z ∈ C×p | |z − 1|p < 1}), is de�ned as the sum of a series of
the type

∑
i≥0 ai (t− 1)i (ai ∈ _Cp), which is assumed to be absolutely

convergent for all t ∈ T . The notion of an analytic function is then
obviously extended to the whole group YS by shifts. The function

F (t) =
∞∑
i=0

ai (t − 1)i

is bounded on T i� all its coe�cients ai are universally bounded. This
last fact can be easily deduced for example from the basic properties of
the Newton polygon of the series F (t) (see [Ko80], [Am-V]). If we
apply to these series the Weierstrass preparation theorem (see [Ko80],
[Ma73]), we see that in this case the function F has only a �nite
number of zeroes on T (if it is not identically zero).
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p-adic analytic functions on YS

Consider the torsion subgroup Ytors

S ⊂ YS . This subgroup is discrete
in YS and its elements χ ∈ Ytors

S can be obviously identi�ed with
primitive Dirichlet characters χ mod M such that the support
S(χ) = S(M) of the conductor of χ is containded in S . This
identi�cation is provided by a �xed embedding denoted

ip : Q× ↪→ C×p

if we note that each character χ ∈ Ytors

S can be factored through
some �nite factor group (Z/MZ)×:

χ : Z×S → (Z/MZ)× → Q×
ip
↪→ C×p ,

and the smallest number M with the above condition is the
conductor of χ ∈ Ytors

S .
The symbol xp will denote the composition of the natural
projection Z×S → Z×p and of the natural embedding Z×p → C×p , so
that xp ∈ YS and all integers k can be considered as the characters
xkp : y 7−→ yk .
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Let us consider a bounded Cp-analytic function F on YS . The above
statement about zeroes of bounded Cp-analytic functions implies now
that the function F is uniquely determined by its values F (χ0χ), where
χ0 is a �xed character and χ runs through all elements χ ∈ Ytors

S with
possible exclusion of a �nite number of characters in each analyticity
component of the decomposition (24). This condition is satis�ed, for
example, by the set of characters χ ∈ Ytors

S with the S-complete
conductor (i.e. such that S(χ) = S), and even for a smaller set of
characters, for example for the set obtained by imposing the additional
assumption that the character χ2 is not trivial (see [Ma73] ). Let µ be
a (bounded) Cp-valued measure on Z×S . Then the non-Archimedean
Mellin transform of the measure µ is de�ned by

Lµ(x) = µ(x) =

∫
Z×S

xdµ, (x ∈ YS), (25)

which represents a bounded Cp-analytic function

Lµ : YS −→ Cp. (26)

Indeed, the boundedness of the function Lµ is obvious since all
characters x ∈ YS take values in Op and µ also is bounded. The
analyticity of this function expresses a general property of the integral
(25), namely that it depends analytically on the parameter x ∈ YS .
However, we give below a pure algebraic proof of this fact which is
based on a description of the Iwasawa algebra. This description will
also imply that every bounded Cp-analytic function on YS is the Mellin
transform of a certain measure µ.
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The Iwasawa algebra
Let O be a closed subring in Op = {z ∈ Cp | |z |p ≤ 1},

G = lim
←−
i

Gi , (i ∈ I ),

a pro�nite group. Then the canonical homomorphism Gi
πij←− Gj

induces a homomorphism of the corresponding group rings

O[Gi ]←− O[Gj ].

Then the completed group ring O[[G ]] is de�ned as the projective
limit

O[[G ]] = lim
←−
i

O[[Gi ]], (i ∈ I ).

Let us consider also the set Dist(G ,O) of all O-valued distributions
on G which itself is an O-module and a ring with respect to
multiplication given by the convolution of distributions, which is
de�ned in terms of families of functions

µ
(i)
1
, µ

(i)
2

: Gi −→ O,

(see the previous section) as follows:

(µ1 ? µ2)(i)(y) =
∑

y=y1y2

µ
(i)
1

(y1)µ
(i)
2

(y2), (y1, y2 ∈ Gi ) (27)

Recall also that the O-valued distributions are identi�ed with
O-valued measures. Now we describe an isomorphism of O-algebras
O[[G ]] and Dist(G ,O). In this case when G = Zp the algebra
O[[G ]] is called the Iwasawa algebra.

Theorem
(a) Under the same notation as above there is the canonical
isomorphism of O-algebras

;Dist(G ,O)
∼−→ O[[G ]]. (28)

(b) If G = Zp then there is an isomorphism

O[[G ]]
∼−→ O[[X ]], (29)

where O[[X ]] is the ring of formal power series in X over O. The
isomorphism (29) depends on a choice of the topological generator
of the group G = Zp.
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We noticed above that the theorem 9 would imply a description of
Cp-analytic bounded functions on YS in terms of measures. Indeed,
these functions are de�ned on analyticity components of the
decomposition (24) as certain power series with p-adically bounded
coe�cients, that is, power series, whose coe�cients belong to Op after
multiplication by some constant from Cp

×. Formulas for coe�cients of
these series can be also deduced from the proof of the theorem.
However, we give a more direct computation of these coe�cients in
terms of the corresponding measures. Let us consider the component
aUp of the set Z×S where

a ∈ (Z/pνZ)× ×
∏
q 6=

Z×q ,

and let µa(x) = µ(ax) be the corresponding measure on Up de�ned by
restriction of µ to the subset aUp ⊂ Z×S .
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Consider the isomorphism Up
∼= Zp given by:

y = γx (x ∈ Zp, y ∈ Up),

with some choice of the generator γ of Up (for example, we can take
γ = 1 + pν). Let µ′a be the corresponding measure on Zp. Then this
measure is uniquely determined by values of the integrals∫

Zp

(
x

i

)
dµ′a(x) = ai , (30)

with the interpolation polynomials
(x
i

)
, since the Cp-span of the family{(

x

i

)}
(i ∈ Z, i ≥ 0)

is dense in C(Zp,Op) according to Mahler's interpolation theorem for
continuous functions on Zp). Indeed, from the basic properties of the
interpolation polynomials it follows that∑

i

bi

(
x

i

)
≡ 0 (mod pn) (for all x ∈ Zp) =⇒ bi ≡ 0 (mod pn).

We can now apply the abstract Kummer congruences (see proposition
8), which imply that for arbitrary choice of numbers ai ∈ Op there
exists a measure with the property (30).
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Coe�cients of power series and the Iwasawa isomorphism
We state that the Mellin transform Lµa of the measure µa is given
by the power series Fa(t) with coe�cients as in (30), that is∫

Up

χ(t)(y)dµ(ay) =
∞∑
i=0

(∫
Zp

(
x

i

)
dµ′a(x)

)
(t − 1)i (31)

for all wild characters of the form χ(t), χ(t)(γ) = t, |t − 1|p < 1. It
su�ces to show that (31) is valid for all characters of the type
y 7−→ ym, where m is a positive integer. In order to do this we use
the binomial expansion

γmx = (1 + (γm − 1))x =
∞∑
i=0

(
x

i

)
(γm − 1)i ,

which implies that∫
up

ymdµ(ay) =

∫
Zp

γmxdµ′a(x) =
∞∑
i=0

(∫
Zp

(
x

i

)
dµ′a(x)

)
(γm−1)i ,

establishing (31).
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Lecture N◦4. p-adic L-functions on classical groups.
Ordinary case. Admissible measures, special values. ("Fonctions L
p-adiques sur les groupes classiques : cas ordinaire, mesures
admissibles, valeurs spéciales").

Admissible measures: De�nition. Let M be a O-module of
�nite rank where O ⊂ Cp. For h ≥ 1, consider the following
Cp-vector spaces of functions on Z∗p : Ch ⊂ Cloc−an ⊂ C. Then
- a continuous homomorphism µ : C→ M is called a (bounded)
measure M-valued measure on Z∗p.
- µ : Ch → M is called an h admissible measure M-valued measure
on Z∗p measure if the following growth condition is satis�ed∣∣∣∣∣

∫
a+(pv )

(x − a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, · · · , h − 1, and et Yp = Homcont(Z∗p,C∗p) be the space
of de�nition of p-adic Mellin transform.

Theorem ([Am-V], [MTT]) For an h-admissible measure µ, the
Mellin transform Lµ : Yp → Cp exists and has growth o(logh) (with
in�nitely many zeros).
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Complex and p-adic L-functions on classical groups.

I Automorphic forms and their weights. Complex analytic
weight space. Motivic weights, introduction [EHLS].

I 6.2.6 The Weil Group and its Representations (cf. [Ta79],
[Wei74a]).

I 6.2.7 Zeta Functions, L-Functions and Motives (cf. [Man68],
[Del79]). [MaPa]

I Algebraic characters
I Main result stated with Hodge/Newton polygons of D(s)

I Main Theorem in the Hermitian case
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Modular forms as a tool in arithmetic
We view modular forms as:
1) q-power series

f =
∞∑
n=0

anq
n ∈ C[[q]] and as

2) holomorphic functions
on the upper half plane
H = {z ∈ C | Im z > 0}

where q = exp(2πiz),
z ∈ H, and de�ne
L-function

L(f , s, χ) =
∞∑
n=1

χ(n)ann
−s

for a Dirichlet character
χ : (Z/NZ)∗ → C∗ (its Mellin transform)

A famous example: the Ramanujan function τ(n)
The function ∆ (of the variable z)
is de�ned by the formal expansion
∆ =

∑∞
n=1

τ(n)qn

= q
∏∞

m=1
(1− qm)24

= q − 24q2 + 252q3 + · · ·
is a cusp form of weight k = 12
for the group Γ = SL2(Z)).

τ(1) = 1, τ(2) = −24,
τ(3) = 252, τ(4) = −1472
τ(m)τ(n) = τ(mn)
for (n,m) = 1,
|τ(p)| ≤ 2p11/2

for all primes p .
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Analytic p-adic theory: zeta values vs. coe�cients
It was much developed in the 60th in [Iw], [Se73] and [Wa].

Modular methods are applicable to the p-adic analytic continuation
of ζ(s) itself through the normalized Eisenstein series:

(k − 1)!

2(2πi)k
Gk(z) =

ζ(1− k)

2
+
∞∑
n=1

∑
d |n

dk−1qn = −Bk

2k
+
∑
d≥1

dk−1qd

1− qd
,

modular forms of even weight k ≥ 4 for SL2(Z) as follows:

J.-P.Serre noticed [Se73], p.206, that the constant term

ζ(1− k)

2
(1−pk−1) expresses by σ∗k−1(n) =

∑
d |n

dk−1 (p 6 | d , n ≥ 1),

the higher coe�cients of the normalized Eisenstein series modpr .
In this way ζ∗p(1− k) can be continually extended to s ∈ Zp with a
single simple pole at s = 1 starting from s = 1− k (see [Se73]).

The Hurwitz numbers naturally appear as the critical values of the
Hecke L-function of ideal character L(s, ψ) =

∑
a

ψ(a)Na−s ,

ψ((α)) = αm, α ≡ 1 mod (2 + 2i), also de�ned for any imaginary
quadratic �eld K , and gψ =

∑
a ψ(a)qNa is a modular form of

weight m + 1. Its p-adic analytic continuation over m and s was
constructed by Yu.I.Manin and M.M.Vishik (1974, [Ma-Vi]).
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Recall: Hermitian modular group Γn,K and the standard zeta
function Z(s; f)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n)

Main result: p-adic interpolation of all critical values D(s, f, χ),
n ≤ s ≤ `− n, χ mod pr .
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Automorphic forms, p-adic theory of weights.
p-adic analytic weight space. Motivic and arithmetical weights,
introduction to [EHLS]
[Lan13] , Arithmetic compacti�cations of PEL-type shimura
varieties, London Mathematical Society Monographs, vol. 36,
Princeton University Press, 2013.
For the purposes of subsequently de�ning p-adic modular forms for
unitary groups we assume that the PEL data considered also satisfy:
• B has no type D factor;
• 〈·, ·〉: L⊗ Zp × L⊗ Zp → Zp(1) is a perfect pairing;
• p 6 | Disc(OB), where Disc(OB) is the discriminant of (OB) over Z
de�ned in [Lan13, Def. 1.1.1.6]; this condition implies that
(OB)⊗ (OB) is a maximal (OB)-order in B and that OB ⊗ Zp is a
product of matrix algebras.

Associate a group scheme G = GP over Z with such a PEL datum
P : for any Z-algebra R

G (R) = {(g , ν) ∈ GLOB⊗R(L⊗R)×R× : 〈gx , gy〉 = ν〈x , y〉∀x , y ∈ L⊗R}.

Then G/Q is a reductive group, and by our hypotheses with respect
to p, G/Q is smooth and G (Zp) is a hyperspecial maximal compact
of G (Qp).
De�nitions of Xp Yp through B , T .
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Main result stated with Hodge/Newton polygons of D(s)
The Hodge polygon PH(t) : [0, d ]→ R of the function D(s) and
the Newton polygon PN,p(t) : [0, d ]→ R at p are piecewise linear:

The Hodge polygon of pure weight w has the slopes j of
lengthj = hj ,w−j given by Serre's Gamma factors of the functional
equation of the form s 7→ w + 1− s, relating
ΛD(s, χ) = ΓD(s)D(s, χ) and ΛDρ(w + 1− s, χ̄), where ρ is the
complex conjugation of an, and ΓD(s) = ΓDρ(s) equals to the
product ΓD(s) =

∏
j≤w

2

Γj ,w−j(s), where

Γj ,w−j(s) =

{
ΓC(s − j)h

j,w−j
, if j < w ,

ΓR(s − j)h
j,j
+ ΓR(s − j + 1)h

j,j
− , if 2j = w , where

ΓR(s) = π−
s
2 Γ
( s
2

)
, ΓC(s) = ΓR(s)ΓR(s + 1) = 2(2π)−sΓ(s),

hj ,j = hj ,j+ + hj ,j− ,
∑
j

hj ,w−j = d .

The Newton polygon at p is the convex hull of points
(i , ordp(ai )) (i = 0, . . . , d); its slopes λ are the p-adic valuations
ordp(αi ) of the inverse roots αi of Dp(X ) ∈ Q̄[X ] ⊂ Cp[X ]:
lengthλ = ]{i | ordp(αi ) = λ}.
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Main Theorem (the Hermitian case)
Let Ωf = 〈f, f〉 be the period attached to a Hermitian cusp
eigenform f, D(s, f) = Z(s − `

2
+ 1

2
, f) the standard zeta function,

and

αf = αf,p =

∏
q|p

n∏
i=1

tq,i

 p−n(n+1), h = ordp(αf,p),

The number αf turns out to be an eigenvalue of Atkin's type
operator Up :

∑
H AHq

H 7→
∑

H ApHq
H on some f0, and

h = PN(d
2

)− PH(d
2

).
Let f be a Hermitian cusp eigenform of degree n ≥ 2 and of weight
` > 4n + 2. There exist distributions µD,s for s = n, · · · , `− n with
the properties:

i) for all pairs (s, χ) such that s ∈ Z with n ≤ s ≤ `− n,∫
Z∗p
χdµD,s = Ap(s, χ)

D∗(s, f, χ)

Ωf

(under the inclusion ip), with elementary factors
Ap(s, χ) =

∏
q|p Aq(s, χ) including a �nite Euler product, gaussian

sums, the conductor of χ; the integral is a �nite sum.
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(ii) if ordp
(

(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)

= 0 then the above

distributions µD,s are bounded measures, we set µD = µD,s∗ and
the integral is de�ned for all continuous characters
y ∈ Hom(Z∗p,C∗p) =: Yp.

Their Mellin transforms LµD(y) =
∫
Z∗p

ydµD, LµD : Yp → Cp,

give bounded p-adic analytic interpolation of the above L-values to
on the Cp-analytic group Yp; and these distributions are related by:∫
X
χdµD,s =

∫
X
χx s

∗−sdµ∗D, X = Z∗p, where s∗ = `− n, s∗ = n.

(iii) in the admissible case assume that

0 < h ≤ s∗ − s∗ + 1
2

=
`+ 1− 2n

2
, where

h = ordp

(
(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)
> 0, Then there exist

h�admissible measures µD whose integrals
∫
Z∗p
χx spdµD are given by

ip

(
Ap(s, χ)

D∗(s, f, χ)

Ωf

)
∈ Cp with Ap(s, χ) as in (i); their Mellin

transforms LD(y) =
∫
Z∗p

ydµD, belong to the type o(log xhp ).

(iv) the functions LD are determined by (i)-(iii).
Remarks.
(a) Interpretation of s∗: the smallest of the "big slopes" of PH

(b) Interpretation of s∗− 1: the biggest of the "small slopes" of PH .
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Proof of the Main Theorem (ii): Kummer congruences
Let us se the notation Dalg

p (m, f, χ) = Ap(s, χ)
D∗(m, f, χ)

Ωf

The integrality of measures is proven representing D
alg
p (m, χ) as

Rankin-Selberg type integral at critical points s = m. Coe�cients
of modular forms in this integral satisfy Kummer-type congruences
and produce bounded measures µD whose construction reduces to
congruences of Kummer type between the Fourier coe�cients of
modular forms, see also [Bou16]. Suppose that we are given

in�nitely many "critical pairs" (sj , χj) at which one has an integral

representation Dalg
p (sj , f, χj) = Ap(s, χ)

〈f, hj〉
Ωf

with all

hj =
∑

T bj ,Tq
T ∈M in a certain �nite-dimensional space M

containing f and de�ned over Q̄. We prove the following
Kummer-type congruences:

∀x ∈ Z∗p,
∑
j

βjχjx
kj ≡ 0 mod pN =⇒

∑
j

βjD
alg
p (sj , f, χ) ≡ 0 mod pN

βj ∈ Q̄, kj = s∗ − sj , where s∗ = `− n in our case.

Computing the Petersson products of a given modular

form f(Z ) =
∑

H aHq
H ∈M∗(Q̄) by another modular form

h(Z ) =
∑

H bHq
H ∈M∗(Q̄) uses a linear form `f : h 7→ 〈f, h〉

〈f, f〉
de�ned over a sub�eld k ⊂ Q̄.
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Admissible Hermitian case
Let f ∈ Sk(C ;ψ) be a Hecke eigenform for the congruence
subgroup C of level c. Let p be a prime of K prime to c, which is
inert over F . Then we say that f is pre-ordinary at p if there exists
an eigenform 0 6= f0 ∈M{p} ⊂ Sk(Cp, ψ) with Satake parameters
tp,i such that ∥∥∥∥∥

(
n∏

i=1

tp,i

)
N(p)−

n(n+1)
2

∥∥∥∥∥
p

= 1,

where ‖‖p the normalized absolute value at p.

The admissible case corresponds to

∥∥∥∥∥∥
∏

q|p

n∏
i=1

tq,i

 p−n(n+1)

∥∥∥∥∥∥
p

= p−h for a positive h > 0.

An interpretation of h as the di�erence h = PN,p(d/2)− PH(d/2)
comes from the above explicit relations.
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Existence of h-admissible measures
of Amice-Vélu-type gives an unbounded p-adic analytic
interpolation of the L-values of growth loghp(·), using the Mellin
transform of the constructed measures. This condition says that
the product

∏n
i=1

tp,i is nonzero and divisible by a certain power of
p in O:

ordp

∏
q|p

(
n∏

i=1

tq,i

)
p−n(n+1)

 = h.

We use an easy condition of admissibility of a sequence of modular
distributions Φj on X = OK ⊗ Zp with values in O[[q]] as in
Theorem 4.8 of [CourPa] and check congruences of the type

Uκv
( j∑
j ′=0

(
j

j ′

)
(−a0p)j−j

′
Φj ′(a + (pv )

)
∈ CpvjO[[q]]

for all j = 0, 1, . . . ,κh − 1. Here s = j ′ + s∗, Φj ′(a + (pv )) a
certain convolution, i.e.

Φj ′(χ) = θ(χ) · E(s, χ)

of a Hermitian theta series θ(χ) and an Eisenstein series E(s, χ)
with any Dirichlet character χ mod pr . We use a general su�cient
condition of admissibility of a sequence of modular distributions Φj

on X = Zp with values in O[[q]] as in Theorem 4.8 of [CourPa].
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Proof of the Main Theorem (iii): (admissible case)
Using a Rankin-Selberg integral representation for Dalg (s, f, χ) and
an eigenfunction f0 of Atkin's operator U(p) of eigenvalue αf on f0
the Rankin-Selberg integral of Fs,χ := θ(χ) · E(s, χ) gives

Dalg (s, f, χ) =
〈f0, θ(χ) · E(s, χ)〉

〈f, f〉
(the Petersson product on G = GU(ηn))

= α−v
f

〈f0,U(pv )(θ(χ) · E(s, χ))〉
〈f, f〉

= α−v
f

〈f0,U(pv )(Fs,χ)〉
〈f, f〉

.

Modication in the admissible case: instead of Kummer congruences,

to estimate p-adically the integrals of test functions: M = pv :∫
a+(M)

(x − a)jdDalg :=

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′
∫
a+(M)

x j
′
dDalg , using

the orthogonality of characters and the sequence of zeta
distributions∫
a+(M)

x jdDalg =
1

](O/MO)×

∑
χ mod M

χ−1(a)

∫
X
χ(x)x jdDalg ,∫

X χdD
alg
s−+j = Dalg (s∗ − j , f , χ) =:

∫
X χ(x)x jdDalg .
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Congruences between the coe�cients of the Hermitian
modular forms

In order to integrate any locally-analytic function on X , it su�ces
to check the following binomial congruences for the coe�cients of
the Hermitian modular form Fs∗−j ,χ =

∑
ξ v(ξ, s∗ − j , χ)qξ : for

v � 0, and a constant C

1
](O/MO)×

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′ ∑
χ mod M

χ−1(a)v(pvξ, s∗ − j ′, χ)qξ

∈ CpvjO[[q]] (This is a quasimodular form if j ′ 6= s∗)

The resulting measure µD allows to integrate all continuous

characters in Yp = Homcont(X ,C∗p), including Hecke characters, as
they are always locally analytic.
Its p-adic Mellin transform LµD is an analytic function on Yp of the
logarithmic growth O(logh), h = ordp(α).
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Proof of the main congruences
Thus the Petersson product in `f can be expressed through the
Fourier coe�cients of h in the case when there is a �nite basis of
the dual space consisting of certain Fourier coe�cients:
`Ti : h 7→ bTi (i = 1, . . . , n). It follows that `f(h) =

∑
i γibTi , where

γi ∈ k .
Using the expression for `f (hj) =

∑
i γi ,jbj ,Ti , the above

congruences reduce to∑
i ,j

γi ,jβjbj ,Ti ≡ 0 mod pN .

The last congruence is done by an elementary check on the Fourier
coe�cients bj ,Ti .
The abstract Kummer congruences are checked for a family of test
elements.
In the admissible case it su�ces to check binomial congruences for
the Fourier coe�cients as above in place of Kummer congruences.
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Thanks for your attention!

Many thanks to Jean-Louis Verger-Gaugry for his invitation to
this This Summer School on Theory of Motives and Number
Theory at the crossroad of automorphic L functions (complex
and p-adic), zeta functions, polyzeta functions and dynamical
zeta function, held on the scienti�c campus of
Le-Bourget-du-Lac, to Siegfried Boecherer (Mannheim), for
valuable discussions and observations.

My special thought go to the memory of Alexey Zykin , professor of
the French Polynesia University, tragically dissapeared in Tahiti in
2017. The present Summer School on Theory of Motives and
Number Theory was conceived as a continuation of the series of
Conferences "Zeta-functions I-VI", held in J.-V.Poncelet Laboratory
UMI 2615 du CNRS, and to commemorate Alexey.
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