
Root system
In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties.

The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representations

theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have

become important in many parts  of  mathematics during the twentieth century,  the  apparently  special  nature  of  root

systems belies the number of  areas in which they are applied. Further, the classification scheme for root systems, by

Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory).

Finally, root systems are important for their own sake, as in spectral graph theory.[1]
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Further reading

External links

As a first example, consider the six vectors in 2-dimensional Euclidean

space,  R2,  as  shown in the image at the right;  call  them roots.  These

vectors span the whole space. If you consider the line perpendicular to any

root, say β, then the reflection of R2 in that line sends any other root, say

α, to another root. Moreover, the root to which it is sent equals α + nβ,

where n is an integer (in this case, n equals 1). These six vectors satisfy the

following definition, and therefore they form a root system; this one is

known as A2.

Let V be a finite-dimensional Euclidean vector space, with the standard

Euclidean inner product denoted by .  A root system  in V  is  a

finite  set  of  non-zero  vectors  (called  roots)  that  satisfy  the  following

conditions:[2][3]

The roots span V.1. 

The only scalar multiples of a root  that belong to  are  itself and .2. 

For every root , the set  is closed under reflection through the hyperplane perpendicular to .3. 

(Integrality) If  and  are roots in , then the projection of  onto the line through  is an integer or half-integer

multiple of .

4. 

An equivalent way of writing conditions 3 and 4 is as follows:

For any two roots , the set  contains the element 3. 

For any two roots , the number  is an integer.4. 

Some authors only include conditions 1–3 in the definition of a root system.[4]  In this context, a root system that also

satisfies the integrality condition is known as a crystallographic root system.[5] Other authors omit condition 2; then

they call root systems satisfying condition 2 reduced.[6] In this article, all root systems are assumed to be reduced and

crystallographic.

In view of property 3, the integrality condition is equivalent to stating that β and its reflection σα(β) differ by an integer

multiple of α. Note that the operator

defined by property 4 is not an inner product. It is not necessarily symmetric and is linear only in the first argument.

The rank of a root system Φ is the dimension of V. Two root systems may be combined by regarding the Euclidean spaces

they span as mutually orthogonal subspaces of a common Euclidean space. A root system which does not arise from such a

Definitions and examples

The six vectors of the root system A2.

Definition

Root system - Wikipedia https://en.wikipedia.org/wiki/Root_system

2 of 14 2/22/2018, 8:26 PM



Root system Root system 

Root system Root system 

Root system Root system 

Rank-2 root systems
combination, such as the systems A2, B2, and G2 pictured to the

right, is said to be irreducible.

Two root systems (E1, Φ1) and (E2, Φ2) are called isomorphic if

there  is  an  invertible  linear  transformation  E1  →  E2  which

sends Φ1 to Φ2 such that for each pair of roots, the number 

is preserved.[7]

The root lattice  of  a root system Φ is the Z-submodule of  V

generated by Φ. It is a lattice in V.

The group of isometries of  V  generated by  reflections  through

hyperplanes associated to the roots of Φ is called the Weyl group

of Φ. As it acts faithfully on the finite set Φ, the Weyl group is

always  finite.  In  the   case,  the  "hyperplanes"  are  the  lines

perpendicular  to  the  roots,  indicated  by  dashed  lines  in  the

figure. The Weyl group is the symmetry group of an equilateral

triangle, which has six elements. In this case, the Weyl group is

not the full symmetry group of the root system (e.g., a 60-degree

rotation is a symmetry of the root system but not an element of

the Weyl group).

There is only one root system of rank 1, consisting of two nonzero

vectors . This root system is called .

In  rank  2  there  are  four  possibilities,  corresponding  to

, where .[8] Note that a root system

is not determined by the lattice that it generates:  and

 both generate a square lattice while  and  generate a

hexagonal lattice, only two of the five possible types of lattices in

two dimensions.

Whenever Φ is a root system in V, and U is a subspace of V spanned by Ψ = Φ ∩ U, then Ψ is a root system in U. Thus, the

exhaustive list of four root systems of rank 2 shows the geometric possibilities for any two roots chosen from a root system

of arbitrary rank. In particular, two such roots must meet at an angle of 0, 30, 45, 60, 90, 120, 135, 150, or 180 degrees.

If  is a complex semisimple Lie algebra and  is a Cartan subalgebra, we can construct a root system as follows. We say

that  is a root of  relative to  if  and there exists some  such that

for all . One can show[9]  that there is an inner product for which the set of roots forms a root system. The root

Weyl group

Rank two examples

Root systems arising from semisimple Lie algebras
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system  of   is  a  fundamental  tool  for  analyzing  the  structure  of   and

classifying its representations. (See the section below on Root systems and Lie

theory.)

The concept  of  a  root  system was originally  introduced by Wilhelm Killing

around 1889 (in German, Wurzelsystem[10]).[11] He used them in his attempt to

classify  all  simple  Lie  algebras  over  the  field  of  complex  numbers.  Killing

originally made a mistake in the classification, listing two exceptional rank 4

root systems, when in fact there is only one, now known as F4.  Cartan later

corrected  this  mistake,  by  showing  Killing's  two  root  systems  were

isomorphic.[12]

Killing investigated the structure of a Lie algebra ,  by considering (what is

now called) a Cartan subalgebra . Then he studied the roots of the characteristic polynomial , where .

Here a root is considered as a function of , or indeed as an element of the dual vector space . This set of roots form a

root system inside , as defined above, where the inner product is the Killing form.[13]

The cosine of the angle between

two roots is constrained to be a

half-integral  multiple  of  a

square root of an integer. This

is because  and  are

both  integers,  by  assumption,

and

Since , the only possible values for  are  and ,  corresponding to

The Weyl group of the  root

system is the symmetry group of an

equilateral triangle

History

Elementary consequences of the root system axioms

The integrality condition for  is fulfilled only for β on one of the vertical lines,

while the integrality condition for  is fulfilled only for β on one of the red

circles. Any β perpendicular to α (on the Y axis) trivially fulfills both with 0, but does

not define an irreducible root system.

Modulo reflection, for a given α there are only 5 nontrivial possibilities for β, and 3

possible angles between α and β in a set of simple roots. Subscript letters

correspond to the series of root systems for which the given β can serve as the first

root and α as the second root (or in F4 as the middle 2 roots).
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angles of 90°, 60° or 120°, 45° or 135°, 30° or 150°, and 0° or 180°. Condition 2 says that no scalar multiples of α other

than 1 and -1 can be roots, so 0 or 180°, which would correspond to 2α or −2α, are out. The diagram at right shows that an

angle of 60° or 120° corresponds to roots of equal length, while an angle of 45° or 135° corresponds to a length ratio of 

and an angle of 30° or 150° corresponds to a length ratio of .

In summary, here are the only possibilities for each pair of roots.[14]

Angle of 90 degrees; in that case, the length ratio is unrestricted.

Angle of 60 or 120 degrees, with a length ratio of 1.

Angle of 45 or 135 degrees, with a length ratio of .

Angle of 30 or 150 degrees, with a length ratio of .

Given a root system Φ we can always choose (in many ways) a set of positive

roots. This is a subset  of Φ such that

For each root  exactly one of the roots , –  is contained in .

For any two distinct  such that  is a root, .

If a set of positive roots  is chosen, elements of  are called negative

roots.

An element of  is called a simple root if it cannot be written as the sum of

two elements of . (The set of simple roots is also referred to as a base for 

.) The set  of simple roots is a basis of  with the following additional special

properties:[15]

Every root  is linear combination of elements of  with integer

coefficients.

For each , the coefficients in the previous point are either all non-

negative or all non-positive.

For each root system  there are many different choices of the set of positive

roots—or, equivalently, of the simple roots—but any two sets of positive roots differ by the action of the Weyl group.[16]

If Φ is a root system in V, the coroot α∨ of a root α is defined by

The set of coroots also forms a root system Φ∨ in V, called the dual root system (or sometimes inverse root system). By

definition, α∨ ∨ = α, so that Φ is the dual root system of Φ∨. The lattice in V spanned by Φ∨ is called the coroot lattice.

Both Φ and Φ∨ have the same Weyl group W and, for s in W,

If Δ is a set of simple roots for Φ, then Δ∨ is a set of simple roots for Φ∨.[17]

Positive roots and simple roots

The labeled roots are a set of

positive roots for the  root

system, with  and  being the

simple roots

Dual root system and coroots
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In  the  classification described  below,  the  root  systems  of  type  and   along  with  the  exceptional  root  systems

 are all  self-dual,  meaning that  the dual  root system is  isomorphic to the original  root  system. By

contrast, the  and  root systems are dual to one another, but not isomorphic (except when ).

A  root  system  is  irreducible  if  it

can  not  be  partitioned  into  the

union  of  two  proper  subsets

,  such  that

 for  all   and

 .

Irreducible  root  systems

correspond to  certain  graphs,  the

Dynkin  diagrams  named  after

Eugene Dynkin.  The classification

of these graphs is a simple matter

of combinatorics, and induces a classification of irreducible root systems.

Given a root system, select a set Δ of  simple roots as in the preceding section. The vertices of the associated Dynkin

diagram correspond to the roots in Δ. Edges are drawn between vectors as follows, according to the angles. (Note that the

angle between simple roots is always at least 90 degrees.)

No edge if the vectors are orthogonal,

An undirected single edge if they make an angle of 120 degrees,

A directed double edge if they make an angle of 135 degrees, and

A directed triple edge if they make an angle of 150 degrees.

The term "directed edge" means that double and triple edges are marked with an arrow pointing toward the shorter vector.

(Thinking of the arrow as a "greater than" sign makes it clear which way the arrow is supposed to point.)

Note  that  by  the  elementary properties  of  roots noted above,  the  rules for  creating the  Dynkin diagram can also be

described as follows. No edge if the roots are orthogonal; for nonorthogonal roots, a single, double, or triple edge according

to whether the length ratio of the longer to shorter is 1, , . In the case of the  root system for example, there are

two simple roots at an angle of 150 degrees (with a length ratio of ). Thus, the Dynkin diagram has two vertices joined

by a triple edge, with an arrow pointing from the vertex associated to the longer root to the other vertex. (In this case, the

arrow is a bit redundant, since the diagram is equivalent whichever way the arrow goes.)

Although a given root system has more than one possible set of simple roots, the Weyl group acts transitively on such

choices.[18] Consequently, the Dynkin diagram is independent of the choice of simple roots; it is determined by the root

system itself. Conversely, given two root systems with the same Dynkin diagram, one can match up roots, starting with the

roots in the base, and show that the systems are in fact the same.[19]

Thus the problem of classifying root systems reduces to  the problem of classifying possible Dynkin diagrams.  A root

Classification of root systems by Dynkin diagrams

Pictures of all the connected Dynkin diagrams

Constructing the Dynkin diagram

Classifying root systems
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systems is irreducible if and only if its Dynkin diagrams is connected.[20] Dynkin diagrams encode the inner product on E

in terms of the basis Δ, and the condition that this inner product must be positive definite turns out to be all that is needed

to get the desired classification.

The actual connected diagrams are as indicated in the figure. The subscripts indicate the number of vertices in the diagram

(and hence the rank of the corresponding irreducible root system).

If  is a root system, we may consider the hyperplane perpendicular to

each root . Recall that  denotes the reflection about the hyperplane and

that the Weyl group is the group of transformations of  generated by all the

's.  The  complement  of  the  set  of  hyperplanes  is  disconnected,  and  each

connected component is called a Weyl chamber. If we have fixed a particular

set  Δ  of  simple  roots,  we  may  define  the  fundamental  Weyl  chamber

associated to Δ as the set of points  such that  for all .

Since  the  reflections   preserve  ,  they  also  preserve  the  set  of

hyperplanes  perpendicular  to  the  roots.  Thus,  each  Weyl  group  element

permutes the Weyl chambers.

The figure illustrates the case of the  root system. The "hyperplanes" (in this

case, one dimensional) orthogonal to the roots are indicated by dashed lines.

The six 60-degree sectors are the Weyl chambers and the shaded region is the

fundamental Weyl chamber associated to the indicated base.

A basic general theorem about Weyl chambers is this:[21]

Theorem: The Weyl group acts freely and transitively on the Weyl chambers. Thus, the order of

the Weyl group is equal to the number of Weyl chambers.

In the  case, for example, the Weyl group has six elements and there are six Weyl chambers.

A related result is this one:[22]

Theorem: Fix a Weyl chamber . Then for all , the Weyl-orbit of  contains exactly one

point in the closure  of .

Irreducible root systems classify a number of related objects in Lie theory, notably the following:

simple complex Lie algebras (see the discussion above on root systems arising from semisimple Lie algebras),

simply connected complex Lie groups which are simple modulo centers, and

simply connected compact Lie groups which are simple modulo centers.

In each case, the roots are non-zero weights of the adjoint representation.

We now give a brief indication of how irreducible root systems classify simple Lie algebras over , following the arguments

in Humphreys.[23] A preliminary result says that a semisimple Lie algebra is simple if and only if the associated root system

is irreducible.[24] We thus restrict attention to irreducible root systems and simple Lie algebras.

Weyl chambers and the Weyl group

The shaded region is the

fundamental Weyl chamber for the

base 

Root systems and Lie theory
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I D

An (n ≥ 1) n(n + 1) n + 1 (n + 1)!

Bn (n ≥ 2) 2n2 2n 2 2 2n n!

Cn (n ≥ 3) 2n2 2n(n − 1) 2n−1 2 2n n!

Dn (n ≥ 4) 2n(n − 1) 4 2n − 1 n!

E6 72 3 51840

E7 126 2 2903040

E8 240 1 696729600

F4 48 24 4 1 1152

G2 12 6 3 1 12

First, we must establish that for each simple algebra  there is only one root system. This assertion follows from the

result that the Cartan subalgebra of  is unique up to automorphism,[25] from which it follows that any two Cartan

subalgebras give isomorphic root systems.

Next, we need to show that for each irreducible root system, there can be at most one Lie algebra, that is, that the root

system determines the Lie algebra up to isomorphism.[26]

Finally, we must show that for each irreducible root system, there is an associated simple Lie algebra. This claim is

obvious for the root systems of type A, B, C, and D, for which the associated Lie algebras are the classical algebras. It

is then possible to analyze the exceptional algebras in a case-by-case fashion. Alternatively, one can develop a

systematic procedure for building a Lie algebra from a root system, using Serre's relations.[27]

For connections between the exceptional root systems and their Lie groups and Lie algebras see E8, E7, E6, F4, and G2.

Irreducible root systems are named according to

their corresponding connected Dynkin diagrams.

There are four infinite families (An, Bn, Cn,  and

Dn, called the classical root systems) and five

exceptional  cases  (the  exceptional  root

systems). The subscript indicates the rank of the

root system.

In an irreducible root system there can be at most

two values for the length (α, α)1/2, corresponding

to short  and  long  roots.  If  all  roots  have  the

same  length  they  are  taken  to  be  long  by

definition  and  the  root  system  is  said  to  be

simply laced; this occurs in the cases A, D and

E.  Any two roots  of  the  same length lie  in  the

same orbit of the Weyl group. In the non-simply

laced cases B, C, G and F, the root lattice is spanned by the short roots and the long roots span a sublattice, invariant under

the Weyl group, equal to r2/2 times the coroot lattice, where r is the length of a long root.

In the adjacent table, |Φ<| denotes the number of short roots, I  denotes the index in the root lattice of the sublattice

generated by long roots, D denotes the determinant of the Cartan matrix, and |W| denotes the order of the Weyl group.

Let V be the subspace of Rn+1 for which the coordinates sum to 0, and let Φ be the set of vectors in V of length √2 and

which are integer vectors, i.e. have integer coordinates in Rn+1. Such a vector must have all but two coordinates equal to 0,

one coordinate equal to 1, and one equal to –1, so there are n2 + n roots in all. One choice of simple roots expressed in the

standard basis is: αi = ei – ei+1, for 1 ≤ i ≤ n.

The reflection σi through the hyperplane perpendicular to αi is the same as permutation of the adjacent i-th and (i + 1)-th

coordinates.  Such transpositions generate the full  permutation group. For adjacent simple roots,  σi(αi+1)  = αi+1  + αi

= σi+1(αi) = αi + αi+1, that is, reflection is equivalent to adding a multiple of 1; but reflection of a simple root perpendicular

to a nonadjacent simple root leaves it unchanged, differing by a multiple of 0.

Properties of the irreducible root systems

Explicit construction of the irreducible root systems

An
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e1 e2 e3 e4

α1 1 −1 0 0

α2 0 1 −1 0

α3 0 0 1 −1

Simple roots in A3

e1 e2 e3 e4

α1  1 -1 0 0

α2 0   1 -1 0

α3 0 0  1 -1

α4 0 0 0  1

Simple roots in B4

e1 e2 e3 e4

α1  1 -1 0 0

α2 0  1 -1 0

α3 0 0  1 -1

α4 0 0 0  2

Simple roots in C4

The An root lattice - that is, the lattice generated by

the An roots - is most easily described as the set of

integer vectors in Rn+1  whose components sum to

zero.

The A3 root lattice is known to crystallographers as

the  face-centered cubic  (fcc)  (or  cubic  close

packed) lattice.[28]

The A3 root system (as well as the other rank-three

root  systems)  may  be  modeled  in  the  Zometool

Construction set.[29]

Let V = Rn, and let Φ consist of all integer vectors in V of length 1 or √2. The total number of

roots is 2n2. One choice of simple roots is: αi = ei – ei+1, for 1 ≤ i ≤ n – 1 (the above choice of

simple roots for An-1), and the shorter root αn = en.

The reflection σn through the hyperplane perpendicular to the short root αn is of course simply

negation of the nth coordinate. For the long simple root αn-1, σn-1(αn)  = αn  + αn-1,  but  for

reflection perpendicular to the short root, σn(αn-1) = αn-1 + 2αn, a difference by a multiple of 2

instead of 1.

The Bn root lattice - that is, the lattice generated by the Bn roots - consists of all integer vectors.

B1 is isomorphic to A1 via scaling by √2, and is therefore not a distinct root system.

Let V = Rn, and let Φ consist of all

integer  vectors  in  V  of  length  √2

together with all vectors of the form

2λ, where λ is an integer vector of

length 1. The total number of roots

is  2n2.  One choice of  simple roots

is: αi  = ei  – ei+1, for 1 ≤ i ≤ n – 1

(the  above  choice  of  simple  roots

for An-1), and the longer root αn  =

2en. The reflection σn(αn-1) = αn-1 + αn, but σn-1(αn) = αn + 2αn-1.

The Cn root lattice - that is, the lattice generated by the Cn roots - consists of all integer vectors

whose components sum to an even integer.

C2 is isomorphic to B2 via scaling by √2 and a 45 degree rotation, and is therefore not a distinct root system.

Model of the  root system in the

Zometool system.

Bn

Cn

Root system B3, C3, and A3=D3 as points within a

cube and octahedron

Root system - Wikipedia https://en.wikipedia.org/wiki/Root_system

9 of 14 2/22/2018, 8:26 PM



e1 e2 e3 e4

α1  1 -1 0 0

α2 0  1 -1 0

α3 0 0  1 -1

α4 0 0  1  1

Simple roots in D4

Let V = Rn, and let Φ consist of all integer vectors in V of length √2. The total number of roots is

2n(n – 1). One choice of simple roots is: αi = ei – ei+1, for 1 ≤ i < n (the above choice of simple

roots for An-1) plus αn = en + en-1.

Reflection through the hyperplane perpendicular to αn is the same as transposing and negating

the adjacent n-th and (n – 1)-th coordinates. Any simple root and its reflection perpendicular to

another simple root differ by a multiple of 0 or 1 of the second root, not by any greater multiple.

The Dn root lattice - that is, the lattice generated by the Dn roots - consists of all integer vectors

whose components sum to an even integer. This is the same as the Cn root lattice.

The Dn roots are expressed as the vertices of a rectified n-orthoplex, Coxeter-Dynkin diagram:

... . The 2n(n-1) vertices exist in the middle of the edges of the n-orthoplex.

D3 coincides with A3, and is therefore not a distinct root system. The 12 D3 root vectors are expressed as the vertices of ,

a lower symmetry construction of the cuboctahedron.

D4 has additional symmetry called triality. The 24 D4 root vectors are expressed as the vertices of , a lower symmetry

construction of the 24-cell.

72 vertices of 122 represent the

root vectors of E6

(Green nodes are doubled in this

E6 Coxeter plane projection)

126 vertices of 231 represent the root

vectors of E7
240 vertices of 421 represent the root

vectors of E8

The E8 root system is any set of vectors in R8 that is congruent to the following set:

D8 ∪ { ½( ∑i=1
8 εiei) : εi = ±1, ε1•••ε8 = +1}.

The root system has 240 roots. The set just listed is the set of vectors of length √2 in the E8 root lattice, also known simply

Dn

E6, E7, E8
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1 -1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0

0 0 0 0 1 -1 0 0

0 0 0 0 0 1 -1 0

0 0 0 0 0 1 1 0

-½-½-½-½-½-½-½-½

Simple roots in E8

even coordinates:

1 -1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0

0 0 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0

0 0 0 0 1 -1 0 0

0 0 0 0 0 1 -1 0

0 0 0 0 0 0 1 -1

-½-½-½-½-½ ½ ½ ½

Simple roots in E8: odd

coordinates

as the E8 lattice or Γ8. This is the set of points in R8 such that:

all the coordinates are integers or all the coordinates are half-integers (a mixture of integers and half-integers is not

allowed), and

1. 

the sum of the eight coordinates is an even integer.2. 

Thus,

E8 = {α ∈ Z8 ∪ (Z+½)8 : |α|2 = ∑αi
2 = 2, ∑αi ∈ 2Z}.

The root system E7 is the set of vectors in E8 that are perpendicular to a fixed root in E8. The root system E7 has 126

roots.

The root system E6 is not the set of vectors in E7 that are perpendicular to a fixed root in E7, indeed, one obtains D6

that way. However, E6 is the subsystem of E8 perpendicular to two suitably chosen roots of E8. The root system E6

has 72 roots.

An alternative description of the E8 lattice which is sometimes convenient is as the set Γ'8 of

all points in R8 such that

all the coordinates are integers and the sum of the coordinates is even, or

all the coordinates are half-integers and the sum of the coordinates is odd.

The lattices Γ8 and Γ'8 are isomorphic; one may pass from one to the other by changing the

signs  of  any  odd  number  of  coordinates.  The  lattice  Γ8  is  sometimes  called  the  even

coordinate system for E8 while the lattice Γ'8 is called the odd coordinate system.

One choice of simple roots for E8 in the even coordinate system with rows ordered by node

order in the alternate (non-canonical) Dynkin diagrams (above) is:

αi = ei – ei+1, for 1 ≤ i ≤ 6, and

α7 = e7 + e6

(the above choice of simple roots for D7) along with

α8 = β0 =  = (-½,-½,-½,-½,-½,-½,-½,-½).

One choice of simple roots for E8 in the odd coordinate system with rows ordered by node

order in alternate (non-canonical) Dynkin diagrams (above) is:

αi = ei – ei+1, for 1 ≤ i ≤ 7

(the above choice of simple roots for A7) along with

α8 = β5, where

βj = .

(Using β3 would give an isomorphic result. Using β1,7 or β2,6 would simply give A8 or D8. As

for β4, its coordinates sum to 0, and the same is true for α1...7, so they span only the 7-dimensional subspace for which the

coordinates sum to 0; in fact –2β4 has coordinates (1,2,3,4,3,2,1) in the basis (αi).)

Since perpendicularity to α1 means that the first two coordinates are equal, E7 is then the subset of E8 where the first two

coordinates are equal,  and similarly E6  is the subset of E8  where the first three coordinates are equal.  This facilitates

explicit definitions of E7 and E6 as:

Root system - Wikipedia https://en.wikipedia.org/wiki/Root_system

11 of 14 2/22/2018, 8:26 PM



e1 e2 e3 e4

α1 1 -1 0 0

α2 0 1 -1 0

α3 0 0 1 0

α4 -½ -½ -½ -½

Simple roots in F4

e1 e2 e3

α1 1  -1   0

α2 -1 2 -1

Simple roots in G2

E7 = {α ∈ Z7 ∪ (Z+½)7 : ∑αi
2 + α1

2 = 2, ∑αi + α1 ∈ 2Z},

E6 = {α ∈ Z6 ∪ (Z+½)6 : ∑αi
2 + 2α1

2 = 2, ∑αi + 2α1 ∈ 2Z}

Note that deleting α1 and then α2 gives sets of simple roots for E7 and E6. However, these sets of simple roots are in

different E7 and E6 subspaces of E8 than the ones written above, since they are not orthogonal to α1 or α2.

For F4, let V = R4, and let Φ denote the set of vectors α of length 1 or √2

such that the coordinates of 2α are all integers and are either all even or

all odd. There are 48 roots in this system. One choice of simple roots is:

the choice of simple roots given above for B3, plus α4 = – .

The F4 root lattice - that is, the lattice generated by the F4 root system -

is the set of points in R4 such that either all the coordinates are integers

or all the coordinates are half-integers (a mixture of integers and half-

integers  is  not  allowed).  This  lattice  is  isomorphic  to  the  lattice  of

Hurwitz quaternions.

The root system G2 has 12 roots, which form the vertices of a hexagram. See the picture above.

One choice of simple roots is: (α1, β = α2 – α1) where αi = ei – ei+1 for i = 1, 2 is the above choice of

simple roots for A2.

The G2 root lattice - that is, the lattice generated by the G2 roots - is the same as the A2 root lattice.

The set of positive roots is naturally ordered by saying that  if and only if  is a nonnegative linear combination

of simple roots. This poset is graded by , and has many remarkable combinatorial properties,

one of them being that one can determine the degrees of the fundamental invariants of the corresponding Weyl group from

this poset.[30] The Hasse graph is a visualization of the ordering of the root poset.

ADE classification

Affine root system

Coxeter–Dynkin diagram

Coxeter group

F4

48-root vectors

of F4, defined

by vertices of

the 24-cell and

its dual, viewed

in the Coxeter

plane

G2

The root poset

See also
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Coxeter matrix

Dynkin diagram

root datum

Semisimple Lie algebra

Weights in the representation theory of semisimple Lie

algebras

Root system of a semi-simple Lie algebra

Weyl group

"Graphs with least eigenvalue −2; a historical survey and

recent developments in maximal exceptional graphs"

(http://www.sciencedirect.com/science/article

/pii/S0024379502003774). Linear Algebra and its

Applications. 356: 189–210.

doi:10.1016/S0024-3795(02)00377-4 (https://doi.org

/10.1016%2FS0024-3795%2802%2900377-4).
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