
6.2.7 Zeta Functions, L-Functions and Motives

(cf. [Man68], [Del79]). As we have seen with the example of the Dedekind zeta
function ζK(s), the zeta function ζ(X, s) of an arithmetic scheme X can often
be expressed in terms of L–functions of certain Galois representations. This
link seems to be universal in the following sense.

Let X → Spec OK be an arithmetic scheme over the maximal order OK

of a number field K such that the generic fiber XK = X ⊗OK
K is a smooth

projective variety of dimension d, and let

ζ(X, s) =
∏
p

ζ(X(p), s)

be its zeta function, where X(p) = X ⊗OK
(OK/p) is the reduction of X

modulo a maximal ideal p ⊂ OK . The shape of the function ζ(X(p), s) is
described by the Weil conjecture (W4). If we assume that all X(p) are smooth
projective varieties over OK/p ∼= Fq then we obtain the following expressions
for ζ(X, s):
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ζ(X, s) =
2d∏

i=0

Li(X, s)(−1)i+1
, (6.2.56)

where
Li(X, s) =

∏
p

Pi,p(X,Np−s)−1,

and Pi,p(X, t) ∈ Q[t] denote polynomials from the decomposition of the zeta
function

ζ(X(p), s) =
2d∏

i=0

Pi,p(X,Np−s)(−1)i+1
.

In order to prove the conjecture (W4) (“the Riemann Hypothesis over a finite
field”), Deligne identified the functions Li(X, s) with the L–functions of certain
rational l–adic Galois representations

ρX,i : GK → Aut Hi
ét(XK ,Ql); Li(X, s) = L(ρX,i, s)

defined by a natural action of the Galois group GK on the l–adic cohomology
groups H∗

ét(XK ,Ql) using the transfer of structure

XK = XK ⊗K⏐6
Spec K σ→ Spec K (σ ∈ Aut K).

If XK is an algebraic curve then there are GK–module isomorphisms

H1
ét(XK ,Ql) ∼= Vl(J) = Tl(X)⊗Zl

Ql

(the Tate module of the Jacobian of X),

H0
ét(XK ,Ql) = Ql, H2

ét(XK ,Ql) ∼= Vl(μ)

(Vl(μ) = Tl(μ)⊗Zl
Ql the Tate module of l–power roots of unity). This implies

the following explicit expressions for the L–functions

L0(X, s) = ζK(s), L2(X, s) = ζK(s− 1),

and the zeta function

L1(X, s) = L(X, s) =
∏
p

P1,p(X,Np−s)−1,

(where degP1,p(X, t) = 2g, g is the genus of the curve XK) is often called the
L–function of the curve X.

For topological varieties cohomology classes can be represented using cy-
cles (by Poincaré duality), or using cells if the variety is a CW–complex.
Grothendieck has conjectured that an analogue of CW–decomposition must
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exist for algebraic varieties over K. In view of this decomposition the factor-
ization of the zeta function (6.2.56) should correspond to the decomposition
of the variety into “generalized cells”, which are no longer algebraic varieties
but motives, elements of a certain larger category MK . This category is con-
structed in several steps, starting from the category VK of smooth projective
varieties over K.

Step 1). One constructs first an additive category M′
K in which Hom(M,N)

are Q–linear vector spaces, and one constructs a contravariant functor H∗

from VK to M′
K , which is bijective on objects (i.e. with objects H∗(X)

one for each X ∈ Ob(VK)). This category is endowed with the following
additional structures:

a) a tensor product ⊗ satisfying the standard commutativity, associativ-
ity and distributivity constraints;

b) the functor H∗ takes disjoint unions of varieties into direct sums and
products into tensor products (by means of a natural transformation
compatible with the commutativity and associativity).

In this definition the group Hom(H∗(X), H∗(Y )) is defined as a certain
group of classes of correspondences between X and Y . For a smooth pro-
jective variety X over K denote by Zi(X) the vector space over Q whose
basis is the set of all irreducible closed subschemes of codimension i, and
denote by Zi

R(X) its quotient space modulo cohomological equivalence
of cycles. Then in Grothendieck’s definition, for fields K of characteristic
zero one puts

Hom(H∗(Y ), H∗(X)) = Z
dim(Y )
R (X × Y ).

Step 2. The category Meff,K of false effective motives. This is obtained from
M′

K by formally adjoining the images of all projections (i.e. of idempo-
tent morphisms). In this category every projection arises from a direct
sum decomposition. Categories with a tensor product and with the latter
property are called caroubien or pseudo–Abelian categories; Meff,K is the
pseudo–Abelian envelope of M′

K , cf. [Del79].

Step 3. The category
◦
MK of false motives. Next we adjoin to Meff,K all

powers of the Tate object Q(1) = Hom(L,Q), where L = Q(−1) = H2(P1)
is the Lefschetz object and Hom denotes the internal Hom in Meff,K . As

a result we get the category
◦
MK of “false motives”. The category

◦
MK

can be obtained by a universal construction which converts the functor

M →M⊗Q(−1) = M(−1) into an invertible functor. Each object of
◦
MK

has the form M(n) with some M from Meff,K .
Note that for X ∈ Ob(VK) the objects Hi(X) are defined as the images
of appropriate projections and
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H∗(X) =
2d⊕

i=0

Hi(X).

The category
◦
MK is a Q–linear rigid Abelian category with the commu-

tativity rule

Ψr,s : Hr(X)⊗Hs(Y ) ∼= Hs(Y )⊗Hr(X), u⊗ v �→ (−1)rsv ⊗ u,

which implies that the rank rk(H(X)) =
∑

(−1)r dim Hr(X) could be
negative (in fact it coincides with the Euler characteristic of X).

Step 4. The category MK of true motives is obtained from
◦
MK by a modi-

fication of the above commutativity constraint, in which the sign (−1)rs

is dropped. This is a Q–linear Tannakian category, formed by direct sums
of factors of the type M ⊂ Hr(X)(m), see [Del79].

Tannakian categories are characterized by the property that every such
category (endowed with a fiber functor) can be realized as the category
of finite dimensional representations of some (pro–) algebraic group.
In particular, the thus obtained category of motives can be regarded as the
category of finite dimensional representations of a certain (pro–) algebraic
group (the so-called motivic Galois group).
Each standard cohomology theory H on VK (a functor from VK to an
Abelian category with the Künneth formula and with some standard func-
toriality properties) can be extended to the category MK . This extension
thus defines the H–realizations of motives.

In order to construct L–functions of motives one uses the following real-
izations:

a) The Betti realization HB : for a field K embedded in C and X ∈ Ob(VK)
the singular cohomology groups (vector spaces over Q) are defined

H : X �→ H∗(X(C),Q) = HB(X).

One has a Hodge decomposition of the complex vector spaces

HB(M)⊗ C = ⊕Hp,q
B (M) (hp,q = dimCH

p,q
B (M)),

so that Hp,q
B (M) = Hq,p

B (M). If K ⊂ R then the complex conjugation on
X(C) defines a canonical involution F∞ on HB(M), which may be viewed
as the Frobenius element at infinity.

b) The l–adic realizations Hl: if Char K = l, X ∈ Ob(VK) then the l–adic
cohomology groups are defined as certain vector spaces over Ql

H : X �→ H∗
ét(XK ,Ql) = Hl(X).
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There is a natural action of the Galois group GK on Hl(X) by way of
which one assigns an l–adic representation to a motive M ∈ MK

ρM,l : GK −→ Aut Hl(M).

A non–trivial fact is that these representations are E–rational for some
E, E ⊂ C in the sense of §6.2.1.

Using the general construction of 6.2.1 one defines the L–functions

L(M, s) =
∏
v

Lv(M, s) (v finite),

where Lv(M, s)−1 = Lpv (M,Np−s
v )−1 are certain polynomials in the variable

t = Np−s
v with coefficients in E.

For Archimedean places v one chooses a complex embedding τv : K →
C defining v. Then the factors Lv(M, s) are constructed using the Hodge
decomposition HB(M)⊗C = ⊕Hp,q

B (M) and the action of the involution F∞
(see the table in 5.3. of [Del79]).

According to a general conjecture the product

Λ(M, s) =
∏
v

Lv(M, s) (v ∈ ΣK).

admits an analytic (meromorphic) continuation to the entire complex plane
and satisfies a certain (conjectural) functional equation of the form

Λ(M, s) = ε(M, s)Λ(M∨, 1− s),

where M∨ is the motive dual to M (its realizations are duals of those of M),
and ε(M, s) is a certain function of s which is a product of an exponential
function and a constant.

One has the following equation

Λ(M(n), s) = Λ(M, s+ n).

A motive M is called pure of weight w if hp,q = 0 for p + q = w. In
this case we put Re(M) = −w

2
. The Weil conjecture W4) (see section 6.1.3)

implies that for a sufficiently large finite set S of places ofK the corresponding
Dirichlet series (and the Euler product)

LS(M, s) =
∏
v ∈S

Lv(M, s)

converges absolutely for Re(M) + Re(s) > 1.
For points s on the boundary of absolute convergence (i.e. for Re(M) +

Re(s) = 1 there is the following general conjecture (generalizing the theorem
of Hadamard and de la Vallée–Poussin):
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a) the function LS(M, s) does not vanish for Re(M) + Re(s) = 1;
b) the function LS(M, s) is entire apart from the case when M has even

weight −2n and contains as a summand the motive Q(n); in the last case
there is a pole at s = 1− n.

For example, for the motive Q(−1) one has

HB(Q(−1)) = H2(P1(C),Q), Hl(Q(−1)) ∼= Vl(μ) = Tl(μ)⊗Zl
Ql,

w = 2, n = −1 and the L -function

L(Q(−1), s) = ζK(s− 1)

has a simple pole at s = 2.
There are some very general conjectures on the existence of a correspon-

dence between motives and compatible systems of l–adic representations.
Nowadays these conjectures essentially determine key directions in arithmeti-
cal research ([CR01], [Tay02], [BoCa79], [Bor79], [Ta79]). We mention only a
remarkable fact that in view of the proof of the theorem of G. Faltings (see
§5.5) an Abelian variety is uniquely determined upto isogeny by the corre-
sponding l–adic Galois representation on its Tate module.

This important result is cruicial also in Wiles’ marvelous proof: in or-
der to show that every semistable elliptic curve E over Q admits a modular
parametrisation (see §7.2), it is enough (due to Faltings) to check that for
some prime p the L–function of the Galois representation ρp,E coinsides with
the Mellin transform of a modular form of weight two (Wiles has used p = 3
and p = 5). In other words, the generating series of such a representation,
defined starting from the traces of Frobenius elements, is a modular form of
weight two which is proved by counting all possible deformations of the Galois
representation in question taken modulo p.




