
algebraic. Thus it is expressible in terms of characters z ∈ C× → zmz̄n, m,n ∈ Z.
Only arithmeticic automorphic representations should correspond to motives. Thus the

second element of our nexus is to be the collection A of automorphic representations π for
F , each attached to a group λH. Because of functoriality, in the stronger form described,
π is no longer bound to any particular group G.

A central problem is to establish a bijective correspondence between the two elements
introduced. Major progress was made by Wiles in his proof of the conjecture of Taniyama
and Shimura. Since he had – and still would have – only an extremely limited form of
functoriality to work with, his arguments do not appear in exactly the form just suggested.
Moreover, there are two further extremely important elements in the nexus in which he
works to which we have not yet come.

To each motive M and each prime p is attached a p-adic representation of the Galois
group Gal(Q̄/F ) of dimension equal to the rank of the motive. The third element of the
nexus is not, however, the collection of p-adic Galois representations – subject to whatever
constraints are necessary and appropriate. Rather it is a foliated space, in which the
leaves are parametrized by p and in which there are passages from one leaf to another,
permitted in so far as each p-adic representation is contained in a compatible family of
representations, one for each prime. We are allowed to move from one leaf to another
provided we move from one element of a compatible family to another element of the same
family. The arguments of Wiles and others, those who preceded and those who followed
him, rely on an often very deep analysis of the connectivity properties of the third element,
either by p-adic deformation within a fixed leaf, in which often little more is demanded
than congruence modulo p, or by passage from one leaf to another in the way described
( cf. [Kh]) and their comparison with analogous properties of yet a fourth element whose
general definition appears to be somewhat elusive.

For some purposes, but not for all, it can be taken to consist of representations of a
suitably defined Hecke algebra. For automorphic representations attached to the group G
over F , the Hecke algebra is defined in terms of smooth, compactly supported functions f

on G(Af
F ), A

f
F being the adèles whose components at infinity are 0. They act by integration

on the space of any representation π of G(AF ), in particular on the space of an automorphic
representation or on automorphic forms.

Let A∞
F be the product of Fv at the infinite places. When the Lie group G(A∞

F ), defines
a bounded symmetric domain – or more precisely when a Shimura variety is attached to
the group G – then there are quotients of the symmetric domain that are algebraic varieties
defined over number fields. There are vector bundles defined over the same field whose
de Rham cohomology groups can be interpreted as spaces of automorphic forms for the
group G on which the Hecke operators will then act. The images of the Hecke algebra will
be finite-dimensional algebras over some number field L and can often even be given an
integral structure and then, by tensoring with the ring Op of integral elements at a place
p of L over p, a p-adic structure, imparted of course to its spectrum. In so far as these
rings form the fourth element of the nexus, the leaves are clear, as is the passage from one
leaf to another. It seems to correspond pretty much to taking two different places p and q

without changing the homomorphism over L.
The four elements form a square, motives at the top left, automorphic representations
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at the top right, the leaves Gp of the p-adic representations at the bottom left, and the
fourth as yet only partly defined element Hp at the bottom right. The heart of the proof
of Fermat’s theorem is to deduce from the existence of one couple {M, µGM} ∈ M and
{π, λHπ} ∈ A of corresponding pairs the existence of others. We pass from {M, µGM} in M

to some leaf in the element below, thus to the corresponding p-adic Galois representation
sp ∈ Gp, and from {π, λHπ} to an object hp ∈ Hp, the fourth element of the nexus. Then
the essence of the arguments of Wiles and Taylor-Wiles is to show that movement in Gp

of the prescribed type is faithfully reflected in permissible movements in Hp and that if in
Gp the movement in leads to an image of a pair in M then the corresponding movement
in Hp leads to an element of A. These two pairs will then necessarily correspond in the
sense that the associated Frobenius-Hecke classes will be the same.

As a summary of the proof of Fermat’s theorem, the preceding paragraph is far too
brief, but it places two features in relief. There has to be an initial seeding of couples with
one term from M and one from A that are known for some reason or another to correspond
and it has to be possible to compare the local structures of the two spaces G and H.
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A M

Hp Gp

The easiest seeds arise for G an algebraic torus, for then an automorphic representation
π is a character of T (AF ) and if the character is of type A0, thus if the representation is
arithmetic, the process begun in [W] and continued by the construction of the Taniyama
group ([LS]), should construct both the p-adic representations and the motive {M, LT} cor-
responding to {π, LT}. From them others can be constructed by functoriality, a formality
for M .

Although they are somewhat technical, it is useful to say a few words about the corre-
spondence for tori, partly because it serves as a touchstone when trying to understand the
general lucubrations, partly because the Taniyama group, the vehicle that establishes the
correspondence between arithmetic automorphic forms on tori and motives, is not familiar
to everyone. Most of what we need about it is formulated either as a theorem or as a
conjecture in one of the papers listed in [LS], but that is clear only on close reading. In
particular, it is not stressed in these papers that the correspondence yields objects with
equal L-functions
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