Lecture $m N^\circ 3$. The abstract Kummer congruences and the *p*-adic Mellin

transform

A useful criterion for the existence of a measure with given properties is:

Proposition (The abstract Kummer congruences)

(see [Kat]). Let $\{f_i\}$ be a system of continuous functions $f_i \in \mathbb{C}(Y, O_p)$ in the ring $\mathbb{C}(Y, O_p)$ of all continuous functions on the compact totally disconnected group Y with values in the ring of integers O_p of \mathbb{C}_p such that \mathbb{C}_p -linear span of $\{f_i\}$ is dense in $\mathbb{C}(Y, \mathbb{C}_p)$. Let also $\{a_i\}$ be any system of elements $a_i \in O_p$. Then the existence of an O_p -valued measure μ on Y with the property

$$\int_{Y} f_i d\mu = a_i$$

is equivalent to the following congruences, for an arbitrary choice of elements $b_i \in \mathbb{C}_p$ almost all of which vanish

$$\sum_{i} b_{i} f_{i}(y) \in p^{n} \mathcal{O}_{p} \text{ for all } y \in Y \text{ implies } \sum_{i} b_{i} a_{i} \in p^{n} \mathcal{O}_{p}.$$
(4.11)

Remark

Since \mathbb{C}_p -measures are characterised as bounded \mathbb{C}_p -valued distributions, every \mathbb{C}_p -measures on Y becomes a O_p -valued measure after multiplication by some non-zero constant.

Proof of proposition 4.1. The necessity is obvious since

$$\sum_{i} b_{i}a_{i} = \int_{Y} (p^{n}O_{p} - \text{valued function})d\mu =$$
$$= p^{n} \int_{Y} (O_{p} - \text{valued function})d\mu \in p^{n}O_{p}$$

In order to prove the sufficiency we need to construct a measure μ from the numbers a_i . For a function $f \in \mathcal{C}(Y, \mathcal{O}_p)$ and a positive integer n there exist elements $b_i \in \mathbb{C}_p$ such that only a finite number of b_i does not vanish, and

$$f-\sum_i b_i f_i \in p^n \mathcal{C}(Y, \mathcal{O}_p),$$

according to the density of the \mathbb{C}_{p} -span of $\{f_i\}$ in $\mathcal{C}(Y, \mathbb{C}_p)$. By the assumption (4.11) the value $\sum_i a_i b_i$ belongs to O_p and is well defined modulo p^n (i.e. does not depend on the choice of b_i). Following N.M. Katz ([Kat]), we denote this value by " $\int_Y fd\mu \mod p^n$ ". Then we have that the limit procedure

$$\int_{Y} f d\mu = \lim_{n \to \infty} " \int_{Y} f d\mu \mod p^{n} " \in \varprojlim_{n} O_{p} / p^{n} O_{p} = O_{p};$$

gives the measure μ .

Mazur's measure

Let c > 1 be a positive integer coprime to

$$M_0=\prod_{q\in S}q$$

with S being a fixed set of prime numbers. Using the criterion of the proposition 4.1 we show that the \mathbb{Q} -valued distribution defined by the formula

$$E_k^c(f) = E_k(f) - c^k E_k(f_c), \quad f_c(x) = f(cx), \quad (4.12)$$

turns out to be a measure where $E_k(f)$ are defined by (4.8), $f \in \text{Step}(Y, \mathbb{Q}_p)$ and the field \mathbb{Q} is viewed as a subfield of \mathbb{C}_p . Define the generelized Bernoulli polynomials $B_{k,f}^{(M)}(X)$ as

$$\sum_{k=0}^{\infty} B_{k,f}^{(M)}(X) \frac{t^k}{k!} = \sum_{a=0}^{M-1} f(a) \frac{te^{(a+X)t}}{e^{Mt} - 1},$$
(4.13)

and the generalized sums of powers

$$S_{k,f}(M) = \sum_{a=0}^{M-1} f(a)a^k.$$

Then the definition (4.13) formally implies that

$$\frac{1}{k} [B_{k,f}^{(M)}(M) - B_{k,f}^{(M)}(0)] = S_{k-1,f}(M), \qquad (4.14)$$

and also we see that

$$B_{k,f}^{(M)}(X) = \sum_{i=0}^{k} \binom{k}{i} B_{i,f} X^{k-i} = B_{k,f} + k B_{k-1,f} X + \dots + B_{0,f} X^{k}.$$
 (4.15)

The last identity can be rewritten symbolically as

$$B_{k,f}(X) = (B_f + X)^k.$$

The equality (4.14) enables us to calculate the (generalized) sums of powers in terms of the (generalized) Bernoulli numbers. In particular this equality implies that the Bernoulli numbers $B_{k,f}$ can be obtained by the following *p*-adic limit procedure (see [La76]):

$$B_{k,f} = \lim_{n \to \infty} \frac{1}{Mp^n} S_{k,f}(Mp^n) \quad (a \ p\text{-adic limit}), \tag{4.16}$$

where f is a \mathbb{C}_p -valued function on $Y = \mathbb{Z}_S$. Indeed, if we replace M in (4.14) by Mp^n with growing n and let D be the common denominator of all coefficients of the polynomial $B_{k,f}^{(M)}(X)$. Then we have from (4.15) that

$$\frac{1}{k} \left[B_{k,f}^{(Mp^n)}(M) - B_{k,f}^{(M)}(0) \right] \equiv B_{k-1,f}(Mp^n) \pmod{\frac{1}{kD}p^2 n}.$$
 (4.17)

The proof of (4.16) is accomplished by division of (4.17) by Mp^n and by application of the formula (4.14).

Now we can directly show that the distribution E_k^c defined by (4.12) are in fact bounded measures. If we use (4.11) and take the functions $\{f_i\}$ to be all of the functions in $\text{Step}(Y, O_p)$. Let $\{b_i\}$ be a system of elements $b_i \in \mathbb{C}_p$ such that for all $y \in Y$ the congruence

$$\sum_{i} b_i f_i(y) \equiv 0 \pmod{p^n} \tag{4.18}$$

holds. Set $f = \sum_{i} b_i f_i$ and assume (without loss of generality) that the number n is large enough so that for all i with $b_i \neq 0$ the congruence

$$B_{k,f_i} \equiv \frac{1}{Mp^n} S_{k,f_i}(Mp^n) \pmod{p^n}$$
(4.19)

is valid in accordance with (4.16). Then we see that

$$B_{k,f} \equiv (Mp^{n})^{-1} \sum_{i} \sum_{a=0}^{Mp^{n}-1} b_{i} f_{i}(a) a^{k} \pmod{p^{n}}, \qquad (4.20)$$

hence we get by definition (4 12):

$$E_{k}^{c}(f) = B_{k,f} - c^{k} B_{k,f_{c}}$$

$$\equiv (Mp^{n})^{-1} \sum_{i} \sum_{a=0}^{Mp^{n}-1} b_{i} \left[f_{i}(a)a^{k} - f_{i}(ac)(ac)^{k} \right] \pmod{p^{n}}.$$
(4.21)

Let $a_c \in \{0, 1, \dots, Mp^n - 1\}$, such that $a_c \equiv ac \pmod{Mp^n}$, then the map $a \mapsto a_c$ is well defined and acts as a permutation of the set $\{0, 1, \dots, Mp^n - 1\}$, hence (4.21) is equivalent to the congruence

$$E_k^c(f) = B_{k,f} - c^k B_{k,f_c} \equiv \sum_i \frac{a_c^k - (ac)^k}{Mp^n} \sum_{a=0}^{Mp^n - 1} b_i f_i(a) a^k \pmod{p^n}.$$
(4.22)

Now the assumption (4.17) formally inplies that $E_k^c(f) \equiv 0 \pmod{p^n}$, completing the proof of the abstact congruences and the construction of measures E_k^c .

Remark

The formula (4.21) also implies that for all $f \in \mathcal{C}(Y, \mathbb{C}_p)$ the following holds

$$E_k^c(f) = k E_1^c(x_p^{k-1}f)$$
(4.23)

where $x_p : Y \longrightarrow \mathbb{C}_p \in \mathbb{C}(Y, \mathbb{C}_p)$ is the composition of the projection $Y \longrightarrow \mathbb{Z}_p$ and the embedding $\mathbb{Z}_p \hookrightarrow \mathbb{C}_p$.

Indeed if we put $a_c = ac + Mp^n t$ for some $t \in \mathbb{Z}$ then we see that

$$a^k_c-(ac)^k=(ac+Mp^nt)^k-(ac)^k\equiv kMp^nt(ac)^{k-1}\pmod{(Mp^n)^2},$$

and we get that in (4.22):

$$\frac{a_c^k-(ac)^k}{Mp^n}\equiv k(ac)^{k-1}\frac{a_c-ac}{Mp^n} \pmod{Mp^n}.$$

The last congruence is equivalent to saying that the abstract Kummer congruences (4.11) are satisfied by all functions of the type $x_p^{k-1}f_i$ for the measure E_1^c with $f_i \in \text{Step}(Y, \mathbb{C}_p)$ establishing the identity (4.23).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September, 2009 30 / 56

The domain of definition of the non-Archimedean zeta functions

In the classical case the set on which zeta functions are defined is the set of complex numbers \mathbb{C} which may be viewed equally as the set of all continuous characters (more precisely, quasicharacters) via the following isomorphism:

The construction which associates to a function h(y) on \mathbb{R}^{\times}_+ (with certain growth conditions as $y \to \infty$ and $y \to 0$) the following integral

$$L_h(s) = \int_{\mathbb{R}^{\times}_+} h(y) y^s \frac{dy}{y}$$

(which converges probably not for all values of s) is called the *Mellin transform*.

For example, if $\zeta(s) = \sum_{n \ge 1} n^{-s}$ is the Riemann zeta function, then the function $\zeta(s)\Gamma(s)$ is the Mellin transform of the function $h(y) = 1/(1 - e^{-y})$:

$$\zeta(s)\Gamma(s) = \sum_{0}^{\infty} \frac{1}{1 - e^{-y}} y^{s} \frac{dy}{y},$$
(4.25)

so that the integral and the series are absolutely convergent for $\operatorname{Re}(s) > 1$. For an arbitrary function of type

$$f(z) = \sum_{n=1}^{\infty} a(n) e^{2i\pi nz}$$

with $z = x + iy \in \mathbb{H}$ in the upper half plane \mathbb{H} and with the growth condition $a(n) = O(n^c)$ (c > 0) on its Fourier coefficients, we see that the zeta function

$$L(s,f)=\sum_{n=1}^{\infty}a(n)n^{-s},$$

essentially coincides with the Mellin transform of f(z), that is

$$\frac{\Gamma(s)}{(2\pi)^s}L(s,f) = \int_0^\infty f(iy)y^s \frac{dy}{y}.$$
(4.26)

Both sides of the equality (4.26) converge absolutely for Re(s) > 1 + c. The identities (4.25) and (4.26) are immediately deduced from the well known integral representation for the gamma-function

$$\Gamma(s) = \int_0^\infty e^{-y} y^s \frac{dy}{y},\tag{4.27}$$

where $\frac{dy}{y}$ is a measure on the group \mathbb{R}^{\times}_+ which is invariant under the group translations (Haar measure). The integral (4.27) is absolutely convergent for $\operatorname{Re}(s) > 0$ and it can be interpreted as the integral of the product of an additive character $y \mapsto e^{-y}$ of the group $\mathbb{R}^{(+)}$ restricted to \mathbb{R}^{\times}_+ , and of the multiplicative character $y \mapsto y^s$, integration is taken with respect to the Haar measure dy/y on the group \mathbb{R}^{\times}_+ .

In the theory of the non-Archimedean integration one considers the group \mathbb{Z}_{S}^{\times} (the group of units of the *S*-adic completion of the ring of integers \mathbb{Z}) instead of the group \mathbb{R}_{+}^{\times} , and the Tate field $\mathbb{C}_{p} = \widehat{\mathbb{Q}}_{p}$ (the completion of an algebraic closure of \mathbb{Q}_{p}) instead of the complex field \mathbb{C} . The domain of definition of the *p*-adic zeta functions is the *p*-adic analytic group

$$X_{\mathcal{S}} = \operatorname{Hom}_{\operatorname{cont}}(\mathbb{Z}_{\mathcal{S}}^{\times}, \mathbb{C}_{p}^{\times}) = X(\mathbb{Z}_{\mathcal{S}}^{\times}), \qquad (4.28)$$

where:

$$\mathbb{Z}_{S}^{\times} \cong \oplus_{q \in S} \mathbb{Z}_{q}^{\times},$$

and the symbol

$$X(G) = \operatorname{Hom}_{\operatorname{cont}}(G, \mathbb{C}_p^{\times})$$
(4.29)

denotes the functor of all p-adic characters of a topological group G (see [Vi76]).

The analytic structure of X_S

Let us consider in detail the structure of the topological group X_S . Define

$$U_p=\{x\in\mathbb{Z}_p^ imes \ \mid \ x\equiv 1 \pmod{p^
u}\},$$

where $\nu = 1$ or $\nu = 2$ according as p > 2 or p = 2. Then we have the natural decomposition

$$X_{\mathcal{S}} = X\left((\mathbb{Z}/\rho^{\nu}\mathbb{Z})^{\times} \times \prod_{q \neq \rho} \mathbb{Z}_{q}^{\times} \right) \times X(U_{\rho}).$$
(4.30)

The analytic dstructure on $X(U_p)$ is defined by the following isomorphism (which is equivalent to a special choice of a local parameter):

$$\varphi: X(U_p) \xrightarrow{\sim} T = \{ z \in \mathbb{C}_p^{\times} \mid |z-1|_p < 1 \},\$$

where $\varphi(x) = x(1 + p^{\nu})$, $1 + p^{\nu}$ being a topoplogical generator of the multiplicative group $U_p \cong \mathbb{Z}_p$. An arbitrary character $\chi \in X_S$ can be uniquely represented in the form $\chi = \chi_0 \chi_1$ where χ_0 is trivial on the component U_p , and χ_1 is trivial on the other component

$$(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times} imes \prod_{q \neq p} \mathbb{Z}_q^{\times}.$$

The character χ_0 is called the *tame component*, and χ_1 the *wild component* of the character χ . We denote by the symbol $\chi_{(t)}$ the (wild) character which is uniquely determined by the condition

$$\chi_{(t)}(1+p^{\nu})=t$$

with $t \in \mathbb{C}_p$, $|t|_p < 1$.

In some cases it is convenient to use another local coordinate *s* which is analogous to the classical argument *s* of the Dirichlet series:

where $\chi^{(s)}$ is given by $\chi^{(s)}((1 + p^{\nu})^{\alpha}) = (1 + p^{\nu})^{\alpha s} = \exp(\alpha s \log(1 + p^{\nu}))$. The character $\chi^{(s)}$ is defined only for such s for which the series exp is p-adically convergent (i.e. for $|s|_p < p^{\nu-1/(p-1)})$. In this domain of values of the argument we have that $t = (1 + p^{\nu})^s - 1$. But, for example, for $(1 + t)^{p^n} = 1$ there is certainly no such value of s (because $t \neq 1$), so that the s-coordonate parametrizes a smaller neighborhood of the trivial character than the t-coordinate (which parametrizes all wild characters) (see [Ma73], [Man76]).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September, 2009 36 / 56

p-adic analytic functions on X_S

Recall that an analytic function $F: T \longrightarrow \mathbb{C}_p$ $(T = \{z \in \mathbb{C}_p^{\times} \mid |z - 1|_p < 1\})$, is defined as the sum of a series of the type $\sum_{i \ge 0} a_i(t-1)^i \ (a_i \in \mathbb{C}_p)$, which is assumed to be absolutely convergent for all $t \in T$. The notion of an analytic function is then obviously extended to the whole group X_S by shifts. The function

$${\sf F}(t)=\sum_{i=0}^\infty {\sf a}_i(t-1)^i$$

is bounded on T iff all its coefficients a_i are universally bounded. This last fact can be easily deduced for example from the basic properties of the Newton polygon of the series F(t) (see [Kob80], [Vi76]). If we apply to these series the Weierstrass preparation theorem (see [Kob80], [Man71]), we see that in this case the function F has only a finite number of zeroes on T (if it is not identically zero). In particular, consider the torsion subgroup $X_S^{\text{tors}} \subset X_S$. This subgroup is discrete in X_S and its elements $\chi \in X_S^{\text{tors}}$ can be obviously identified with primitive Dirichlet characters $\chi \mod M$ such that the support $S(\chi) = S(M)$ of the conductor of χ is containded in S. This identification is provided by a fixed embedding denoted

$$i_p:\overline{\mathbb{Q}}^{\times}\hookrightarrow\mathbb{C}_p^{\times}$$

if we note that each character $\chi \in X_S^{\text{tors}}$ can be factored through some finite factor group $(\mathbb{Z}/M\mathbb{Z})^{\times}$:

$$\chi: \mathbb{Z}_{\mathcal{S}}^{\times} \to (\mathbb{Z}/M\mathbb{Z})^{\times} \to \overline{\mathbb{Q}}^{\times} \stackrel{\prime_{p}}{\hookrightarrow} \mathbb{C}_{p}^{\times},$$

and the smallest number M with the above condition is the conductor of $\chi \in X_{\mathsf{S}}^{\mathsf{tors}}$.

The symbol x_p will denote the composition of the natural projection $\mathbb{Z}_S^{\times} \to \mathbb{Z}_p^{\times}$ and of the natural embedding $\mathbb{Z}_p^{\times} \to \mathbb{C}_p^{\times}$, so that $x_p \in X_S$ and all integers k can be considered as the characters $x_p^k : y \longmapsto y^k$.

Let us consider a bounded \mathbb{C}_p -analytic function F on X_S . The above statement about zeroes of bounded \mathbb{C}_p -analytic functions implies now that the function F is uniquely determined by its values $F(\chi_0\chi)$, where χ_0 is a fixed character and χ runs through all elements $\chi \in X_S^{\text{tors}}$ with possible exclusion of a finite number of characters in each analyticity component of the decomposition (4.30). This condition is satisfied, for example, by the set of characters $\chi \in X_S^{\text{tors}}$ with the S-complete conductor (i.e. such that $S(\chi) = S$), and even for a smaller set of characters, for example for the set obtained by imposing the additional assumption that the character χ^2 is not trivial (see [Ma73], [Man76], [Vi76]).

p-adic Mellin transform

Let μ be a (bounded) \mathbb{C}_p -valued measure on \mathbb{Z}_S^{\times} . Then the *non-Archimedean Mellin transform* of the measure μ is defined by

$$L_{\mu}(x) = \mu(x) = \int_{\mathbb{Z}_{\mathcal{S}}^{\times}} x \,\mathrm{d}\mu, \quad (x \in X_{\mathcal{S}}), \tag{4.31}$$

which represents a bounded \mathbb{C}_p -analytic function

$$L_{\mu}: X_{\mathcal{S}} \longrightarrow \mathbb{C}_{p}. \tag{4.32}$$

Indeed, the boundedness of the function L_{μ} is obvious since all characters $x \in X_S$ take values in O_p and μ also is bounded. The analyticity of this function expresses a general property of the integral (4.31), namely that it depends analytically on the parameter $x \in X_S$. However, we give below a pure algebraic proof of this fact which is based on a description of the lwasawa algebra. This description will also imply that every bounded \mathbb{C}_{p} -analytic function on X_S is the Mellin transform of a certain measure μ .

The Iwasawa algebra

Let O be a closed subring in
$$O_p = \{z \in \mathbb{C}_p \mid |z|_p \le 1\},\$$

$$G = \lim_{i \to i} G_i, \quad (i \in I),$$

a profinite group. Then the canonical homomorphism $G_i \xleftarrow{\pi_{ij}} G_j$ induces a homomorphism of the corresponding group rings

 $O[G_i] \longleftarrow O[G_j].$

Then the completed group ring O[[G]] is defined as the projective limit $O[[G]] = \lim_{i \to i} O[[G_i]], \quad (i \in I).$

Let us consider also the set Dist(G, O) of all O-valued distributions on G which itself is an O-module and a ring with respect to multiplication given by the *convolution of distributions*, which is defined in terms of families of functions

$$\mu_1^{(i)}, \mu_2^{(i)} : G_i \longrightarrow \mathcal{O},$$

(see the previous section) as follows:

We noticed above that the theorem 4 would imply a description of \mathbb{C}_p -analytic bounded functions on X_S in terms of measures. Indeed, these functions are defined on analyticity components of the decomposition (4.30) as certain power series with *p*-adically bounded coefficients, that is, power series, whose coefficients belong to O_p after multiplication by some constant from \mathbb{C}_p^{\times} . Formulas for coefficients of these series can be also deduced from the proof of the theorem. However, we give a more direct computation of these coefficients in terms of the corresponding measures. Let us consider the component aU_p of the set \mathbb{Z}_S^{\times} where

$$\mathsf{a} \in (\mathbb{Z}/\rho^{
u}\mathbb{Z})^{ imes} imes \prod_{q
eq} \mathbb{Z}_q^{ imes},$$

and let $\mu_a(x) = \mu(ax)$ be the corresponding measure on U_p defined by restriction of μ to the subset $aU_p \subset \mathbb{Z}_S^{\times}$.

Consider the isomorphism $U_p \cong \mathbb{Z}_p$ given by:

$$y = \gamma^x \quad (x \in \mathbb{Z}_p, y \in U_p),$$

with some choice of the generator γ of U_p (for example, we can take $\gamma = 1 + p^{\nu}$). Let μ'_a be the corresponding measure on \mathbb{Z}_p . Then this measure is uniquely determined by values of the integrals

$$\int_{\mathbb{Z}_p} \binom{x}{i} d\mu'_a(x) = a_i, \qquad (4.36)$$

with the interpolation polynomials $\binom{x}{i}$, since the \mathbb{C}_p -span of the family

$$\left\{ \begin{pmatrix} x \\ i \end{pmatrix} \right\} \quad (i \in \mathbb{Z}, i \ge 0)$$

is dense in $\mathcal{C}(\mathbb{Z}_p, O_p)$ according to Mahler's interpolation theorem for continuous functions on \mathbb{Z}_p). Indeed, from the basic properties of the interpolation polynomials it follows that

$$\sum_{i} b_i \binom{x}{i} \equiv 0 \pmod{p^n} \quad (\text{for all } x \in \mathbb{Z}_p) \Longrightarrow b_i \equiv 0 \pmod{p^n}.$$

We can now apply the abstract Kummer congruences (see proposition 4.1), which imply that for arbitrary choice of numbers $a_i \in O_p$ there exists a measure with the property (4.36).

Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September, 2009 43 / 56

Coefficients of power series and the lwasawa isomorphism We state that the Mellin transform L_{μ_a} of the measure μ_a is given by the power series $F_a(t)$ with coefficients as in (4.36), that is

$$\int_{U_{p}} \chi_{(t)}(y) \mathrm{d}\mu(ay) = \sum_{i=0}^{\infty} \left(\int_{\mathbb{Z}_{p}} \binom{x}{i} \mathrm{d}\mu'_{a}(x) \right) (t-1)^{i}$$
(4.37)

for all wild characters of the form $\chi_{(t)}$, $\chi_{(t)}(\gamma) = t$, $|t-1|_p < 1$. It suffices to show that (4.37) is valid for all characters of the type $y \mapsto y^m$, where m is a positive integer. In order to do this we use the binomial expansion

$$\gamma^{mx} = (1 + (\gamma^m - 1))^x = \sum_{i=0}^{\infty} {\binom{x}{i}} (\gamma^m - 1)^i,$$

which implies that

$$\int_{u_{p}} y^{m} \mathrm{d}\mu(ay) = \int_{\mathbb{Z}_{p}} \gamma^{mx} \mathrm{d}\mu'_{a}(x) = \sum_{i=0}^{\infty} \left(\int_{\mathbb{Z}_{p}} \binom{x}{i} \mathrm{d}\mu'_{a}(x) \right) (\gamma^{m} - 1)^{i},$$

establishing (4.37). Alexei PANCHISHKIN (Grenoble) p-adic L-functions and modular forms ICTP, September,2009 44 / 56

Example: Mazur's measure and the non-Archimedean Kubota-Leopoldt zeta function

Let us first consider a positive integer $c \in \mathbb{Z}_{S}^{\times} \cap \mathbb{Z}$, c > 1 coprime to all primes in S. Then for each complex number $s \in \mathbb{C}$ there exists a complex distribution μ_{s}^{c} on $G_{s} = \mathbb{Z}_{S}^{\times}$ which is uniquely determined by the following condition

$$\mu_{s}^{c}(\chi) = (1 - \chi^{-1}(c)c^{-1-s})L_{M_{0}}(-s,\chi), \qquad (4.38)$$

where $M_0 = \prod_{q \in S} q$. Moreover, the right hand side of (4.38) is holomorphic for all $s \in \mathbb{C}$ including s = -1. If s is an integer and $s \ge 0$ then according to criterion of proposition 4.1 the right hand side of (4.38) belongs to the field

$$\mathbb{Q}(\chi) \subset \mathbb{Q}^{\mathrm{ab}} \subset \overline{\mathbb{Q}}$$

generated by values of the character χ .

Thus we get a distribution with values in \mathbb{Q}^{ab} . If we now apply to (4.38) the fixed embedding $i_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$ we get a \mathbb{C}_p -valued distribution $\mu^{(c)} = i_p(\mu_0^c)$ which turns out to be an O_p -measure in view of proposition 4.1, and the following equality holds

$$\mu^{(c)}(\chi x_p^r) = i_p(\mu_r^c(\chi)).$$

This identity relates the special values of the Dirichlet *L*-functions at different non-positive points. The function

$$L(x) = \left(1 - c^{-1}x(c)^{-1}\right)^{-1}L_{\mu^{(c)}}(x) \quad (x \in X_{\mathcal{S}})$$
(4.39)

is well defined and it is holomorphic on X_S with the exception of a simple pole at the point $x = x_p \in X_S$. This function is called the *non-Archimedean zeta-function of Kubota-Leopoldt*. The corresponding measure $\mu^{(c)}$ will be called the *S-adic Mazur measure*.