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NON-ARCHIMEDEAN RANKIN £-FUNCTIONS 
AND THEIR FUNCTIONAL EQUATIONS 

A. A. PANCHISHKIN 

ABSTRACT. A functional equation is established for the S-adic £-functions obtained 
by non-Archimedean interpolation of the special values of the convolution of two cusp 
forms on the upper half-plane. 
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§1. Introduction and statement of results 

':5':·· 1 .1. Let p be a prime, and let S be a finite set of primes including p. In this article 
construct non-Archimedean Rankin £-functions which interpolate S-adically the 

%,. !:pe<;ial values of the convolution of two cusp forms on the complex upper half-plane, 
we also establish a functional equation which these £-functions satisfy. Let N 

arbitrary natural number. We consider a cusp form f of weight k 2': 2 for 
congruence subgroup r 0 (N) with Dirichlet character 1f1 mod N. We suppose that 

is primitive, i.e., it is a normalized newform of some level Cf dividing N; Cj is 
;:• •.. ;.o•wit•u the conductor off. Let g be another primitive cusp form of conductor Cg 
''>•···.,,~weight I< k for r 0 (N) with Dirichlet character w mod N. We set e(z) = e2";', 

,_., • "···- we Jet 
00 00 

f = L a(n)e(nz), g(z) = Lb(n)e(nz) (I.I) 
n=l n=I 

the Fourier expansions of f and g. The Rankin convolution of the modular forms 
f and g is introduced by means of the equality 

.'Jif(s, f, g) = LN(2s + 2 - k -1. Wlfl)L(s, f, g), ( 1.2) 

00 

L(s,f,g) = L:a(n)b(n)n-', 
n=I 

and LN(S, Wlfl) denotes the Dirichlet L-series with character Wlfl, with the subscript 
N indicating that the factors corresponding to the prime divisors of N are omitted 
from the Euler product. A classical method of Rankin and Selberg [25], [30] enables 
one to construct a holomorphic continuation of the function .'Ji! (s, f, g) to the whole 
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complex plane and prove that it satisfies a functional equation, which in the simplest 
case N = 1 has the form 

'l'(s,f,g) = (-l)k'l'(k+l-1-s,f,g), ( 1.3) 

where 
'l'(s, f, g) = y(s).f!?(s, f, g), ( 1.4) 

and y(s) = (2n)- 2'r(s)r(s + 1 -1) denotes the r-factor. 
It later became clear that the same method can be used to establish the following 

algebraicity property for special values of .f!?(s, f, g) (see [26], [28], [6], and [33]): 
the numbers 

'l'(l+r,f,g)(n1-1(f,f))-1 EQ ( 1. 5) 

are algebraic for all integers r for which 0 S r s k -1 - 1. Here (f, f) = (f, f)c, is - 1 

the Petersson inner product, i.e., 

(f, !)cf = r lf(z)l2yk-l dx dy, z = x + iy, 
J H/r0 (Cr) 

where H/r0 (C1) is a fundamental domain for the upper half-plane H modulo the 
action ofr0(C1). The integers s = l +r in (1.5) are "critical" in the sense ofDeligne 
[14]: they are precisely the values of s for which both of the functions y(s) and 
y(k + l - 1 - s) do not have poles. 

We propose to use an S-adic version of the Rankin-Selberg method in order to 
obtain a non-Archimedean interpolation of the numbers (1.5). The paper is con­
ceptually similar to Hida's article [18], in which p-adic modular forms are used to 
find a method for constructing the p-adic interpolation of half of the critical values 
(s = l + r with 0 s rs (k -1)/2 - 1). We extend this result to all of the remaining 
points of the critical strip l s Re(s) s k - 1 and to a set of several primes in S. 
Our construction is more explicit in the sense that, instead of using p-adic modular 
forms, we give congruences between usual modular forms. Other variants on our 
construction are contained in [9]-[12] and [27]. 

1.2. The domain of definition of the S-adic zeta-functions is the C.-analytic Lie 
group 

Xs = X(z;), 

where X(G) = Homcontin(G,C~) denotes the group of p-adic characters of the topo· 
A 

logical group G; C P = Qp is the Tate field, the completion of the algebraic closure of 
the field Qp of p-adic numbers, with the p-adic absolute value I · Iv normalized by 
the condition that IPlv = p- 1

; and z; = EBqESZ~ is the group of units of the S-adic 
completion Zs of the ring of rational integers, see[!] and [3]. We set 

U={xEZ;lx=l (modp")}, 

where v = 1 or 2 depending on whether p < 2 or p = 2; then we have the decompo· 
sition 

Xs = x ((Z/p"Z)x x IT z~) x X(U). 
qh 

( 1.6) 

An analytic structure on the subgroup X ( U) c Xs is defined by means of the isomor­
phism 

qi:X(U).'.:,T={tEC;llt-llv<l}, 
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which qi(x) = x(l + pv), 1 + pv being a topological generator of the multi-
licative group U. An analytic function F: T __, Cp is defined to be the sum of a 

~eries L::0 a;(t - l)', a; E Cp, which converges for all t ET, and then the notion 
of analyticity is extended to all of Xs using translation of the argument by elements 
of the group. If we fix an imbedding ip: Q <--> Cp, then the characters of finite or­
der XE X}0

" c Xs, which form a discrete subgroup of X}0
", can be identified with 

Dirichlet characters (denoted by the same symbol x) whose conductor C, is divis­
ible only by primes in S. The symbol Xp denotes the composition of the natural 
projection Z~ __, z; with the imbedding z; <--> c; and the inclusion Xp E Xs. For 
X E X}0 " we let S (X) be the support (the set of prime divisors) of the conductor 
Cx· Recall that any bounded Cp-analytic function on Xs is uniquely determined l;>y 
its values F (XoX), where Xo E Xs is fixed, and x runs through all elements of X}0

" 

with the possible exception of finitely many, in each analytic component of the de­
composition (1.6). Ifµ is a bounded Cp-valued measure on Z~ (see §2), then the 
non-Archimedean Mellin transform, defined as 

Lµ(X) = µ(x) = { xdµ, x E Xs. (1.7) lz; 
gives a bounded Cp-analytic function Lµ: Xs __, Cp. 

t.3. For a precise statement of the results we introduce the notation 
00 

g(x) = LX(n)b(n)e(nz) 
n=I 

·· for the cusp form g twisted by a Dirichlet character x E X}0
". Using the imbedding 

i,: Q <--> C,, we construct an S-adic interpolation of the numbers 

. ('¥(/ + r, f, g(x))) 
Ip nl-l(f,f) , 

r = 0, 1, ... , k - I - 1 obtaining a bounded C,-analytic function on Xs. The most 
essential assumption is that f is a p-ordinary form, i.e., that a(p) is a p-adic unit in 
Cp: 

li,(a(p))lp = I. ( 1.8) 

In addition, we suppose that 

Mo= IT q, ( 1.9) 
qES 

(Cr. Cg)= 1, (1.10) 

and we set C = c1 C8 • We let a(q) denote the root of the Hecke polynomial X 2 -

a(q)X + lfl(q)qk-I, for which lip(a(q))lp = l for q ES, and we let a'(q) be the other 
root. Then the numbers 

&(q) = lfl(q)a(q), &'(q) = lfl(q)a'(q), qES, (1.11) 

coincide with the roots of the complex conjugate polynomial 

X 2 - a(q)X + lf/(q)qk-I = (X - &(q))(X - &'(q)) 

because the Hecke operator T ( q) ( q t C 1 ) acting on the space Bk ( C, 'fl) of weight k 
cusp forms for fo(C) with Dirichlet character If/ mod C is 'fl-Hermitian. Similarly, 
if 

X 2 - b(q)X + w(q)q1- 1 = (X - fi(q))(X - P'(q)). 
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then 
/J(q) = w(q)p(q), /J'(q) = w(q)p'(q) (l.lia) 

are the roots of the polynomial X 2 - b(q)X + w(q)q1- 1. 
We extend the definition of a(n), oi(n), P(n), and P'(n) by multiplicativity to all 

natural numbers n. We set 
00 00 

JP= La(n)e(nz) E .'/k(C, 'If), gP = Lb(n)e(nz) ES'/(C,w). 
n=I n=I 

From the theory of newforms (see [2] and [22]) it follows that 

(I.I 2} 

where W(A) = (~ (/),and A(f) and A(g) are the constants in the functional equa­
tions of the series 

00 

L(s, f) = L a(n)n-' =II[(! - a(q)q-')( 1 - a'(q)q-')r 1
, 

n=I q 

00 

L(s, g) = L b(n)n-' =II[(! - p(q)q-')(1 - p'(q)q-')]- 1• 

n=I q 

If the conductor c, of the primitive Dirichlet character x is prime to Cg, then the 
cusp form g(x) E S'{(CgCi, wx2) is a primitive form of conductor Cg Cf, and 

A(g(x)) = w(C,)x(Cg) Gg)' A(g), 
x 

where 

G(x) = L x(u)e (~) 
u mod Cx X 

is the Gauss sum. 
1.4. FUNDAMENTAL THEOREM. Under the assumptions (1.8)-(1.10), there exists a 

bounded Cp-analytic function 

'¥: X, _, Cp, '¥(x) = '¥,(x;f, g), ( 1.13) 

which is uniquely determined by the following condition: for all characters x E X}0~ 
and all integers r with 0 :Sr :S k-1- 1, the value '¥(xx;) is given by the image under 
i P of the following algebraic number: 

G(X)2c;+21-1 '¥(/ + r, f, gP(X)) 
w(C,) a(C,)2 . nl-l(f,f)c, A(r,x). (1.14) 

where 

A(r,x) = II [(l -x(q)a-'(q)p(q)q')(l -x(q)a- 1(q)P'(q)q') 
qES\S(x) 
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1.5. THEOREM (non-Archimedean functional equation). Suppose that the condi­
···· tions of the fundamental theorem are fa/filled, and along with 'l'(x) consider the func­
.. tion 'i'(x) = 'l's(x;f P, gP). obtained by rep/acing (f, g, a) by (f P, gP, &). Then the 

functional equation 
ck-1-1 

"'( ) A .;,( k-1-1 -1) 
r x = f.g x( C)2 T xv x (l.16) 

holds for all x E Xs; here 

AJ.g = iv((-1/+1w(Cf)!fl(Cg)A(f)2A(gP) 2
). ( 1.17) 

t.6. The proof of Theorems 1.4 and 1.5 makes constant use of the classical Rankin­
Selberg method, which has two essential components: 

1) the Euler expansion of the convolution [25], [28]: 

5lf(s, f, g) = ITl(l - a(q)f3(q)q-s)( 1 - a(q)f3 1(q)q- 5
) 

q (1.18) 
x (1 - a'(q)f3(q)q-5 )(1- a'(q)f31(q)q-')r 1

; 

2) the integral representation of the convolution [28], [33]: for s EC with Re(s) » 
Owe have 

2(4n)-'r(s)51J(s, f. g) = (f P, gE(z, s - k + l))c, ( 1.19) 

where the Petersson inner product on the right contains the Eisenstein series 

E(z, s) = y' 
(c,d)EZ'\{(0,0)} 

which is absolutely convergent for Re(2s)+k-I > 2 and can be analytically continued 
toallsEC. 

Property 1) is a consequence of an elementary lemma on series expansions of 
rational functions: if 

00 00 

I:;A;X1 = [(l -aX)(l -a'X)]- 1
, LB;X1 = [(l -/3X)(l -/3'X)r 1

, 

i=O 

then 

i=O 

00 

1 1-aa'f3/3'X2 . 

LA;B;X = (1-af3X)(l-af3 1X)(l-a 1 f3X)(l-a 1/3 1X)' 
l=O 

it is obtained by applying ( 1.20) to all of the Euler factors in ( 1.18). 

( 1.20) 

1.7. Plan of the paper. The functions 'l'(x) in the fundamental theorem are con­
structed as non-Archimedean Mellin transforms of certain bounded C v-valued mea­
sures on the group Z~. In §2 we recall the general properties of measures and 
distributions. The non-Archimedean measures in Theorem 1.4 are obtained from 
complex-valued distributions which we construct in §3 directly from the definition 
of the convolutions (1.2) in the form of a series. In §4 we obtain an integral repre­
sentation for these distributions using the Rankin-Selberg method. In § 5 we use a 
holomorphic projection operator to derive from this the algebraicity and integrality 
properties of the values of these distributions which enable us to complete the proof 
of the fundamental theorem and the derivation of Theorem 1.5 from the fundamen­
tal theorem. The S-adic functional equation is proved using the uniqueness property 
of the functions 'l'(x) and the Archimedean functional equation [6], [22]. 
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1.8. According to the general program described by Manin in [4] and [5], non­
Archimedean £-functions must, alongside the more traditional Archimedean (com. 
plex) £-functions, correspond to objects of various sorts: automorphic forms, al­
gebraic varieties over number fields, representations of Galois groups. Relations 
between different types of £-functions give connections between these objects and 
provide essentially new arithmetic identities, while the method of making the iden­
tifications is related to comparisons between the different cohomology theories for 
these objects [14]. 

Our non-Archimedean £-functions correspond to automorphic representations of 
holomorphic type for the group GL(2) x GL(2), and the question of an arithmetic in­
terpretation of these £-functions is very interesting. The non-Archimedean Kubota­
Leopoldt zeta-function [21] is given by a certain power series in the ringA = Zp[[T]], 
and, according to the main conjecture of Iwasawa [19], which was proved by Mazur 
and Wiles [24], this series generates the module of relations of a certain A-module of 
ideal class p-groups in a tower of cyclotomic fields. Another example is given by the 
non-Archimedean £-function which interpolates the special values of the symmetric 
square of the £-function of an elliptic curve over the field of rational numbers. It 
is conjectured that these non-Archimedean £-functions describe relations in the A­
module of Selmer p-groups of this curve in a certain tower of extensions generated by 
the coordinates of points of p-primary order (see [13]). These functions have been 
constructed by the author's method (see [JO], [12], and [27]), and they are closely 
connected with the functions considered in the present article: they correspond to 
certain automorphic representations of the adele group GL(3). 

1.9. Additional preliminary facts and notation. Let H = {z = x + iy/y > O} denote 
the complex upper half-plane, on which the group GLj (R) of real 2 x 2 matrices with 
positive determinant acts by fractional linear transformations. For any function 
f: H --+ C, any 

r=(a, b,)EGLj(R) 
c, d, 

and any natural number k we have an action of weight k: 

(f/kY)(z) = detyk/l f(y(z))(c,z + d,)-k. 

For any natural number N we have the following congruence subgroups: 

ro(N) = {y E SL2(Z)/c, = 0 mod N}, 

r1 (N) = {y E r 0 (N)/a, = d, = l mod N}, 

r(N) = {y E SL2(Z)/y = 12 mod N}. 

If r is any of these groups, then .Atk (r) denotes the complex vector space of holo­
morphic modular forms of weight k for r, and .9k (r) denotes the subspace of cusp 
forms. If If/ mod N is a Dirichlet character, we set 

.Atk(N, I//)= {f E .. ~Ur1 (N))/f/kY = lf/(d,)f for ally E ro(N)}, 

Yk(N, If/)= .9k(r1 (N)) nLk(N, If/). 

For an arbitrary modular form h E .Atk ( N, If/) with k 2: I and f E .9k ( N, If/) one has 
the Petersson inner product, defined by 

(f,h)N = { f(z)h(z)yk- 2 dxdy, 
J H/r0 (N) 

where H/r0 (N) is a fundamental domain for the action of r 0(N). 
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Operators acting on a modular form 
00 

f = I>(n)e(nz) E S'k(N, !fl). 
n=l 

If d is a natural number, then 

flU(d) = f,a(dn)e(nz) = Jkfl-l I; flk ( 6 ~), 
n=l umodd 

flV(d) = f(dz) = d-k1 2flk ( ~ ~) EYk(Nd, !fl), 

00 

f P(z) = f(-z) = I;a(n)e(nz), (0 -1) flW(d) = f\k d o , 
n=I 

f P JI W(N) E S'k(N, !fl). 

The Hecke operators T(d):,,{4(N, !fl)___, Lk(N, !fl) for (d, N) = 1 can be defined by 

f\T(d) = L !fl(d1)d~- 1 f\U(di)V(d/d1). 
ddd 

By a primitive cusp form 
00 

f =I; a(n)e(nz) 
n=I 

of conductor N we mean a normalized eigenfunction f E S'k(N, !fl) for the Hecke 
operators which is a newform, i.e., it is orthogonal to all of the images of the maps 
V(d):S'k(N/d, !fl) ___, S'k(N, !fl) for d\N. In this case, f is uniquely determined by 
the eigenvalues of the Hecke operators T(p) (with the possible exception of a finite 
number), and then we automatically have f\T(p) = a(p)f and f\U(q) = a(q)f 
respectively for all pf N and for q\N. We have the Euler product 

00 

L(s,f) = I;a(n)n-' =no - a(q)q-')- 1 IT (I - a(p)p-' + !fl(p)pk-1-2,)-1. 
n=l qlN pfN 

§2. Distributions, measures, and abstract Kummer congruences 

2.1. Distributions. Let R be a commutative associative ring, and let sf be an R­
module. We consider a profinite (i.e., compact and totally disconnected) topological 
space Y. Then Y is a projective limit of finite sets: 

Y=limY, 
;-----

(2.1) 

where I is a directed set, the n ii are surjective homomorphisms, and canonical pro­
jections n,: Y ___, Y, are defined for all i EI. We consider the R-module Step(Y, R) 
consisting of all R-valued locally constant functions rp: Y ___, R. . 

DEFINITION. A distribution on Y with values in the R-modules sf is a homomor­
phism of R-modules 

µ: Step(Y, R) ___,sf. (2.2) 

For rp E Step( Y, R) we use the notation 

µ(rp) = l rpdµ = l rp(y)dµ(y). 
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Any distribution µ can be given by a set of functions µUl: Y1 --> sf, satisfying the 
following finite additivity condition: 

µUl(x) = E µUl(x), yEYi, XEY1. (2.3) 

To do this it suffices to set µU) (y) = µ( ihx) E sf, where 51.x is the characteristic 
function of the preimage ir[ 1(x). 

The following is a useful criterion for when an arbitrary set of functions µlil: Y1 __, 

sf satisfies the finite additivity condition (2.3). For any function rp j'. Yi --> R and 
any i 2:: }, we define the functions rp 1 = 'Pio 1tij, rp = 'Pio ni E Step(Y, R). Then 
the set of functions {µlil: Y 1 __,sf} satisfies (2.3) if and only if, for all j E I and all 
rpj'. Yi__, R, 

the sum µ(rp) = µlil(rp 1) = l:yEY, rp 1(y)µUl(y) does not depend on i, i 2:: 
j, for i sufficiently large; 

(2.4) 

here it is sufficient to verify (2.4) for any "basis" family of functions. For example, 
if Y = G = lim G; is a profinite abelian group and R is an integral domain containing 

+--
all roots of 1 of degree dividing the order of G (perhaps a transfinite cardinal), 
then one need only verify (2.4) for all characters of finite order x: G --> RX, since 
the orthogonality relation implies that their linear span over R 0 Q coincides with 
Step( G, R 0 Q) (see [23]). 

2.2. Measures. If R is a topological ring, then let ~(Y, R) denote the topological 
module of continuous R-valued functions on Y. 

DEFINITION. A measure on Y with values in a topological R-module sf is a con­
tinuous homomorphism of R-modules µ: ~(Y, R) __,sf. 

The restriction ofµ to the R-submodule Step(Y, R) c ~(Y, R) is a distribution, 
which we denote by the same symbol. We take for Ra closed subring of Cp, and we 
let sf be a complete normed R-module with norm I · l.w. Then the condition that a 
distribution (set of functions) µUl: Y; __,sf extend to an sf-valued measure on Y is 
equivalent to boundedness of µUl: for some constant B > 0 and all i EI and x E Y1, 

we have lµlil(x)l.w < B. The proof of this is easy using the non-Archimedean property 
of the norm I· l.w (see [3] and [20]). In particular, if sf = R = &'p = {x E Cp I lxlp :<; 1} 
is the ring of integers in the Tate field, then &'p-valued distributions are the same as 
&'p-valued measures. 

The most important tool in our non-Archimedean construction is the following 
criterion for the existence of a measure with prescribed properties. 

2.3. Abstract Kummer cougruences (compare with [20], p. 258). Let {Ji) be a 
family of functions Ji E ~(Y, &'p) such that the Cp-linear span of {!1} is everywhere 
dense in ~(Y, Cp)· Let {a;) be a family of elements a1 E &'P. Then the existence of 
an &'p-valued measureµ with fy Ji· dµ = a1 is equivalent to the following congruence 
condition: for any set of elements b; E CP of which only finitely many are nonzero, 

if l:b;f;(y) E p»&p (y E Y) then l:b;a; E p»&p. (2.5) 

2.4. Non-Archimedean Mellin transform. Let Xs = Hom,00110 (Z~, q;) be the Cp­
analytic Lie group in §1.2, and letµ be a bounded Cp-valued measure on Z~. Then 
the non-Archimedean Mellin transform is defined by 

Lµ(X) = µ(x) = /, x dµ, 
z.~ 

(2.6) 
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which gives a bounded Cp-analytic function Lµ: Xs --+ Cp. In fact, boundedness 
of the function (2.6) follows from the definition, and analyticity reflects the general 
property that the integral (2.6) depends analytically on the parameter x E Xs. The 
converse is also true: any bounded Cp-analytic function on Xs is the Mellin transform 
of some measure µ; these measures with the convolution operation form an algebra, 
which essentially coincides with the Iwasawa algebra (see [l]-[3]). 

§3. Complex-valued distributions 
corresponding to convolutions of cusp forms 

3.1. We first define the complex-valued distributions associated with the convolu­
tions 'l'(s, f, g) by introducing the auxiliary cusp form 

00 

fo = L µ(d)a'(d)f(dz) = La(n,f0)e(nz), (3.1) 
d[Mo n=l 

where, as before, f = 2::1 a(n)e(nz) E S'k(C1 , l/f) is a primitive cusp form. The 
definition ( 3.1) is equivalent to the following identity for the corresponding Dirichlet 
series: 

L(s.fo) = IT (1 - a'(q)q-s)L(s,f), (3.2) 
qi Mo 

in which 
00 

L(s.fo) = L a(n.fo)n-s. 
n=l 

From (3.1) it immediately follows that / 0 E S'k(C1Mo. l/f) and we have the general 
multiplicativity property 

a(Mn.fo) = a(M)a(n.fo) (3.3) 

for all natural numbers M with S(M) c S. In fact, the Dirichlet series (3.2) has an 
Euler product, in which the factors corresponding to primes q E S have degree 1. 

3.2. PROPOSITION. a) For every s EC there exists a complex-valued distribution'¥ s,s 
on the group z; which is uniquely given by the following condition: for an arbitrary 
Dirichlet character x: z; --+ ex of conductor c, one has the equality 

p(MI( ) = (M'Moy- 11
2
cr

112
x(C,)A(g)- 1 . '¥(s.folV(C1). gMo(X)IW(CoM')) 

S,s X a(M'Mo) 711-l(f,f)cf 

where M and M' are arbitrary natural numbers for which 

MoCxlM, MJ'CJIM', S(M) = S(M') = S, 
00 

gMo(X) = L x(n)b(n)e(nz) E .9/(CgCJMJ', wx 2
), 

n=l 
(n,Mo)=I 

(3.4) 

gm0 (x)IW(CoM')(z) = (yC0M'z)-1gM0 (X)(-l/C0M'z) E.9/(C0M',wx 2
). (3.5) 

b) Let A(s -1, x) be the product defined in (1.15). Then.for all Mand M' as in a), 

p(MJ( ) = w(Cx)G(x)2c;s-1-1 . 'l'(s, f, gP(X)) A( -1 ) (3.6) 
S.s X a(C,)2 11 1-l(J,f)cf S 0 X · 

REMARK. By the criterion (2.4), part a) follows from b), since the right side of 
(3.6) does not depend on M or M'. 
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3.3. To prove part b ), we simplify the right side of (3.4), where, by the definition 
( 1.3), 

'¥(s.fo!V(C1 ), gM,(X)IW(CoM')) 

= (2ir)2'r(s)r(s +I - l)LM,c(2s + 2 - k - l, l/fWX2) (3.7) 

x L(s.fo!V(C1). gM,(X)IW(CoM')). 

We define the numbers A(n) and B(n) to be the coefficients in the Dirichlet series 
00 

l::A(n)n-' = L(s.fo), 
n=l 

00 

l::B(n)n-' = L(s, gM0 (x)IW(CgMJCi)). 
n=l 

Then, by the multiplicativity property (3.3), 

A(nM1) = a(M1)A(n) for S(M1) c S. 

We set M' = MoCiM1. From the definition (3.5) it then follows that 

gM,(X)IW(CoM') = (M1C1)112gM0 (x)IW(CgMcfC;')V(M1C1) 
00 

= (M1 C1 )112 I: B(n)e(M1 C1nz). 

(3.8) 

(3.8a) 

(3.9) 

(3.10) 

Taking (3.9) and (3.10) into account, we transform the convolution in (3.7) to the 
form 

L(s, Jo!V( C1 ), gM,(X)IW(CoM')) 
00 

= (M1 c 1 )
112 .L: A(nCj1)B(nM1-

1Cj1)n-' 
n=I 
00 

= (M1 C1 )112 I: A(nM1)B(n)(C1 M1n)-' (3.11) 
n=I 

= (M1 Cf /l2-'a(M1)L(s, Jo. gM0 (X)I W( CgMcfC;')) 

M'1;2-,c112-, 
(MoCJ:)ii2-, L(s, Jo, gM,(X)IW(CgMcC;')). 

a(M') 
= 

a(MoC}) 

This property suffices for the proof of a): if we substitute (3.11) in (3.4), we see that 
(3.4) does not depend on M or M'. In order to obtain the more precise formula 
(3.6), it is enough to establish the following equality: 

where 

'l'(s.fo, gM0 (X)IW(CgMJCi)J 

= a(Mo) 2 M~-2' A(s - /, X)A(g(x))'l'(s, f, gP(X)), 

g(x)IW(CgC;') = A(g(x))gP(X), 

A(g(x)) = w(C,)x(Cg)G(x)2C; 1A(g) 

is the constant in the functional equation for g(x) E S'/(CgCiwx2 ). 

3.4. To derive (3.12) we use the properties of the Miibius function µ(n ): 

.z::µ(d)={O, ifn=I, 
din I, If n > I. 

( 3.12) 

(3.13) 
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00 

gM, = L x(n)b(n)e(nz) 
n=l 

(n.M0)~1 

00 

= I:: µ(d) L: xidn)b(dn)e(dn) 
d\Mo n=l 

= L: µ(d)g(x)IU(d)V(d). 
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(3.14) 

We now express the operators U(d) in terms of the Hecke operators: for prime 
q, q f Cg, we have 

g(x)IT(q) = g(x)IU(q) + wx 2(q)q1-
1 g(x))V(q) = x(q)b(q)g(x). (3.15) 

g(xJIU(dJ = g(xl [rrx(q)b(q)- x 2(q)w(q)q1
-

1v(q)] 
q\d 

= g(x) [Lµ(d1)w(d1)di- 1b(ddJ' 1)x(dd1)V(d1)] , 
d,\d 

since dis square-free and (d, Cg)= I. From (3.14) and (3.15) it now follows that 

gM,(X) = L: µ(d)µ(d1)w(d1)d;- 1b(dd[ 1)x(ddi)g(x))V(dd1). (3.16) 
d,\d\Mo 

We apply the involution W( Cg Ci) to the function (3.16), where we use the following 
obvious commutation property of matrix operators: for natural numbers A, A' and 
B with A')B we have 

g)V(A')W(AB) = A112 AH g)W(B)V(A/ A'). 

If in (3.17) we substitute A= MJ, A'= dd1, and B = c.c;, we obtain 

g(X))V(dd1)W(CgMJCiJ = MJ(dd1)-1 g(X))W(CgCiJV(MJ(ddi)- 1) 

= MJ(dd1)-1 A(g(x))gP(x))V(MJ(dd1 i- 1
) 

by (3.13). Substituting (3.18) in (3.16), we have 

gM,(X))W(CgMJc;i = MJA(g(x)) 

x L: µ(d)µ(d1 )w(d1Jd;- 1b(ddi 1 )x(dd1)(dd1 )-1 gP(x)I V(MJ(dd1)- 1 J. 
dild\Mo 

We apply (3. 19) to prove (3.12): 

L(s, f 0 , gM,(X)) W(CgMJCi)) 

(3.17) 

(3.18) 

(3.19) 

= MJA(g(x)l L: µ(d)µ(di)w(di)d;- 1 b(dd[1 Jx(dd1)(dd1J-1 
(3.20) 

d,\d\Mo 

x L(s.fo. gP(x))V(Mc(dd1)- 1)). 

''·." 
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xamination of the Dirichlet series coefficients in ( 3.20) shows that 

L(s, Jo. gP(x)I V(MJ(dd1)- 1 )) 

= (MC(dd1)- 1 )-s L(s, JolU(MC(dd1)- 1 ), gP(X)) 

= a(MC(dd1r1 )(MC(dd1)-1 )-s L(s, Jo. gP(X)). 

;o the convolution (3.12) is reduced to the form 

'I'(s, Jo. gM0 (X)I W(CgMJC;J) 

= M6- 2
' a(Mo)2 A(g(x))'I'(s, Jo. gP(x)) 

x I: µ(d)µ(d1 )w(d1 Jd(- 1 x(dd1)a(dd1 J- 1 (dd1y-1 b(dd11 ). 
d.JdlMo 

(3.21) 

(3.22) 

it is not hard to find the Euler factors of this Dirichlet series, using the properties 
:) and ( 1.20) of the convolution, from which it follows that 

1,Jo. gP(X)) = 'I'(s,f, gP(X)) Il[(l - (xa' /J)(q)q-')(1 - (Xa' /J')(q)q-')J. (3.23) 
qES 

Ldition, from the definition of the Hecke polynomial 

1 - b(q)X + w(q)ql-I X 2 = (1 - {J(q)X)(l - {J'(q)X) 

ave 

d,idlMo 
(3.24) 

qi Mo 

bining (3.22)-(3.24), we obtain (3.12). This completes the proof of Proposition 

§4. Archimedean integral representation for the distributions 

I. We shall prove an S-adic analog of the following classical integral formula of 
'in (see (1.19)): for FE .fk(N, l/f) and GE J/fi(N, w) we have · 

'I'(s,F, G) = 2- 1qs +I - l)n-'(FP, GE(s- k + l))N. (4.1) 

e 
FP(z) = F(-z) E .fk(N, l/f), 

E(s) = E(z, s) = E(z, s; k - I, l/fW, N) 

= y' L 11/fW(n)(mNz + n)-(k-IHlsl 
(4.2) 

Eisenstein series of weight k - I> 0, and in ( 4.2) we have adopted the notation 
Isl = z-klzl-s fork E Zand s EC (see [14]); here the prime afterthe summation 

101 indicates summation over all (0, 0) # (m, n) E Z2 • 

Jplying ( 4.1) in the case when 

F = JolV(Cr) E .fk(MoC}, l/f) c .fk(CoCr, l/f), 

G = gM0 (X)IW(CoM') E S/(CoM', wx2
) c S/(CoCrM', wx2

), 

ansform the definition of the distributions (3.4) by means of the equality 

'I'(s.folV(Cr ), gM0 (X)I W(CoM')) 

= 2- 1 r(s + I - l)n-s (FP, GE(s - k + l))c
0
c

1
M•, 

(4.3) 

( 4.4) 

wh 

is i 
for 

tht 

wl 
ex 
N 

SI 

ii 

1 

' 
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where 
E(s) = E(z,s;k-1, IJIWX2, CoC1M') 

is in the vector space Afk_, ( CoCf M', l/fWX2), which consists of C00 -modular forms 
for f 0 (CoC1 M') with character IJIWX2. If we set 

K(s) = G · E(s) E Afk( CoC1 M', IJI), (4.5) 

then the formula for the values of the distribution (3.4) takes the form 

'¥1~1(xl = (M' Moy-112a(M' Mo)-1cr'12X(Cg) 

x A(g)-1z-1r(s + 1 - l)n-s (FP, K~~~ (>f~~~CoCrM' (4.6) 

4.2. We define the trace operator TrZM' :Lk(NM', 1/1)--+ Lk(N, IJI) by the equality 

KITrZM' = I: Klky, (4.7) 
yH0 (NM')\ro(N) 

where the set of representatives of the right cosets f 0 (NM')\fo(N) is chosen, for 
example, in the form{("~ ~)iu mod M'}. We apply the operator (4.7) to (4.6) with 
N = CoC1; as a result, 

(FP. K(s))c0crM' = (FP, K(s)ITr~:~~M')c,cf' (4.8) 

since 
FE :/k(CoCf, IJI). 

We use the following identity from [6] for explicit computations: 

KITrZM' = M'l-kf2KIW(NM')U(M')W(N). (4.9) 

in which 

KIU(M') = M'k/2-1 I: Kl ( 6 ~I). 
u mod M 1 k 

( 4.10) 

The identity (4.9) follows immediately from the matrix equality 

(u~ ~)=-(NM')-i(N~' r/)(6 ;;)(~ r/). 
We apply (4.9) in (4.8) with N = CoCf, obtaining 

(FP, K(s))c0crw = M't-kf'(FP, K'(s)i U(M')W(CoCr ))c,c
1

, (4.11) 

where 
K'(s) = K(s)IW(C0C1M') E Lk(C0CrM', 1/1) 

is a function whose Fourier coefficients can be computed completely explicitly for 
special values of s (more precisely, for I - k ::; s ::; 0, s E Z). In fact, we first note 
that, by definition, 

gM0(X)IW(CoM')W(CoC1M') = (-1) 1CJ 2gM,(X)iV(C1), (4.12) 

and we set E'(z, s) = E(z, s)I W(CoCjM'). The Fourier expansion of the Eisenstein 
series will be computed in §4.5, after which we obtain the Fourier expansion of the 
function 

( 4.13) 

' \ 
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4.3. We now give a general result about Fourier expansions of Eisenstein series 
in terms of the Whittaker functions W(y, '" f3), which for y > 0 and '" f3 E C 
Re(/3) > 0, are defined by the integral ' 

W(y, a, /3) = f(/3)- 1 fo 00 

(u + 1)"-1uP- 1e-yu du (4.14) 

and for arbitrary a, f3 E C are defined by analytic continuation and the functional 
equation 

W(y, a, /3) = yl-a-p W(y, I - /3. 1 - a). 

If r is a nonnegative integer, then 

W( ) ~( l)' ( r) f(a) r-i y,a,-r = L- - i f(a-i)y · 
1=0 

( 4.15) 

Suppose that N and m are integers, s EC, N ::". 1, and rp: Z/NZ x Z/ NZ_, C is 
an arbitrary function. Then for m + 2 Re(s) > 2 one can define the Eisenstein series 

(4.16) 

which can be analytically continued in s E C and satisfy a certain functional equation; 
here it is possible for m to be negative. In order to write out the Fourier expansion 
of the functions ( 4.16), we define a partial Fourier transform P, (n 1, n2) of rp(c, d) by 
the formula 

( 4.17) 
a mod N 

which has inverse given by 

(P- 1rp)(n 1, n1) = N- 1 L rp(a, n1)e(-an1/N). (4.17a) 
a mod N 

For an arbitrary function h:Z/NZ _, C we set 
00 

L(s, h) = Lh(n)n-s. 
n=l 

4.4. PROPOSITION. Ifs is an integer for which m + s > 0, s ~ 0, then one has the 
following Fourier expansion: 

Nm+2sf(m + s) 
(-2ni)m+2s(-4ny )-s E(Nz, s; m, rp) 

= (-4ny)'f(m +s)L(l - -2 p (· 0)) 
f(m + 2s) m s, rp ' 

f(m+2s- l) 
+ (4ny)m+s-l[(s)L(m+2s-l,Prp(-.0)1m1) 

+ (4ny)' L sgn(d)dm+2s-lprp(d,d')W(4ndd'y, m +s.s)e(dd'z). 
dd'>O 

( 4.18) 

The proof of the proposition is based on a classical computation of Hecke [I 7], a 
version of which is contained in Katz's paper [20]. It follows rather easily from the 
Fourier expansion of the function ' 

F(z) = L(z + n)-"(z + n)-P (z EH). ( 4.19) 
nEZ 
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Namely, 
F(z) = L ln(Y, a, fJ)e(nx), 

nEZ 

where the coefficients ln(Y, a, fJ) are given by the relations (see [31]) 

{ 

n•+P-le-2nnyf(a)-1 W(4nny, a, fJ), 

i"-P (2n)-a-P ln(Y, a, fJ) = lni•+P-le-2njnjyf(fJ)-1W(4nlnly, /J, a), 

f(a)- 1f(fJ)- 1f(a + fJ -1)(4ny) 1-•-P, 

n > 0, 

n < 0, 

n = 0, 

353 

which at the same time give an analytic continuation of the function F(z) = F(z; a, fJ) 
to all (a,/J) E C2, whereas (4.19) converges only for Re(a + fJ) >I. We omit the 
details of the proof of (4.18). 

4.5. We apply the result in Proposition 4.4 to the Eisenstein series in §4.2: 

E(z, s) = E(z, s; m, x, N), 

For convenience we introduce the normalized Eisenstein series 

- N(m+2s)/2f(m + s) ' 
G*(z, s) - (-2ni)m+2s(-4n)-sE (z, s) 

f(m +s) 
(-2ni)m+2s(-4ny)-s E( z, s; m, rpz), 

where rp 2(n 1, n2 ) = x(n2) and the series 

E(z, s; m, rpz) =I:' x(c)(cz + d)-m-JZsl 

( 4.20) 

depends on the character x but not on N. Then in (4.18) we have that Prp2(d, d') = 

Nx(d') or 0 depending on whether or not dis divisible by N. As a result, we obtain 
the expansion 

G'(z,s) = (4ny)'e(s, m, x) 

+(4ny)' L sgn(d)dm+Zs- 1x(d')W(4ndd'y,m+s,s)e(dd'z). (4.21) 
dd'>O 

4.6. We apply ( 4.20) to ( 4.13) withs equal to s - k +I and m equal to k -1. Then 
in (4.20) we have thats+ mis equal to s - I+ I, m + 2s is equal to 2s + 2 - k - /, 
and 

E'(z,s -k + !) = (CoCiM')-12s+2-k-l)f2(-1)'-1+1ik-l 

x 2k-lns-1+1qs - l + l)- 1o•(z,s- k + 1). 
( 4.22) 

Combining this with (4.6), (4.11), and (4.13), we obtain the following Archimedean 
integral representation for the distributions: 

'1'1~ 1 (x) = y(M')(f, f)(::(FP, K'(s - k + l)IU(M')W(CoC1))c0 cf' (4.23) 

in which we have set 

and 

K'(s) = (-l)'Cj'x(C,)Ci'gM,(X)IV(C1)G'(z,s), 

G'(z,s) = G'(z,s;k-1, lf1Wx2, CoC1M'), 
( 4.24) 

"' i 
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a p-integral algebraic number. It follows from the Fourier expansion (4.21) that 
r integers s with I - k < s S 0 we have 

00 

K*(s) =I; I; d(n 1, n2; y, s)e(nz), 
n=l Cn 1+n2=n 

(n1.Mo)=l 

iere for (n, Mo)> 1 the Fourier coefficients are given by 

d(n1, n2;y,s) = (-l)'Cj'x(Cg)Ci"'x(n 1)b(ni) 

( 4.26) 

x ( 4ny )' I: l/fW X2(d')sgn(d)d2s+k-l-t W( 4nn2Y, s - l + k, s). 

( 4.27) 
We now state the basic result of the section. 

4.7. PROPOSITION. In the above notation, for s E Z with l S s S k - I one has the 
1uality 

'¥1~)(X) = y(M')(f, nc) (f61V(C1 ), KM·(S - k + l)IW(CoC1 lkocf' (4.28) 

1 which, for s E Z with 1 + l - k S s S 0 
00 

KM'(s) =I; I; d(n 1, nz;s.x)e(nz) E S'k(CoCf, l/f) 
n=l Cn 1+n2=M'n 

: a cusp form with algebraic Fourier coefficients given by 

d(n1, nz;s.x) = (-l)'Cj'x(Cg)C;-'x(n1)b(n1) 

x I: l/fW x2(d')sgn(d)d2s+k-l-l P,(n2, n), 
n1=dd 1 

nd 

~ ·(- s)l(k-l+s)l(k-i-1) . 
P,(x, y) = L...(-l)' i l(k -1 + s - i)l(k - 1) x_,_, y' 

1=0 

= x-s + yQ,(x, y) E Z[x, y] 

s a polynomial with integer coefficients. 

(-s 2 0) 

The proposition is proved using the holomorphic projection operator 

)?1§2':Lk(CoC1, l/f) _, S'k(CoC1, l/f), 

which is defined by the condition 

(h, )?1§5f'(K))c0c1 
= (h, K)c0c1 

( 4.29) 

( 4.30) 

( 4.31) 

'or all h E S'i( C0 C1 , l/f ). We apply the general integral formula for the action of the 
)perator )11§2' (see [16] and [32]) to the function 

KM·(s) = )?1§2'(K'(s)IU(M')). 

Here this function takes the form: for n E N, Cn 1 + n2 = M' n 

d( . _ nn d . ) -2nny k-2 d (4 )k-1 100 
n1,n2,s.x)- l(k- l) 

0 
(n1,n2,y,s e Y y. ( 4.32) 

I 
I 

I ., 

I 
I 

·1 

I 

' I 
l 
I 
) 
) 
I 
I 
I 
I 

' j 
.l 

"" 
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The proof of the proposition is completed by integrating in ( 4.32), taking ( 4.27) 
and (4.15) into account, and also using the standard integral representation for the 
r-function. 

§5. Algebraicity, integrality, and congruences for the distributions 

5.1. We now specialize the general definition of the distribution in (3.4) to the 
case s = l + r, where 0 :':: r :':: k - I - 1; it then follows from Proposition 4. 7 that 

'¥~~l,(X) = y(M1)(f.f)"C)(FP,KM1(r -k +I+ l)IW(CoC1))c0c1 
I I " = y(M )(/. f)c1 (FPIW(CoC1 ), KM 1 (r - k + l + l))c0 c1 

(5.1) 

and all of the numbers (5.1) are algebraic. In fact, the cusp form KM'(r-k +l + 1) 
in §4. 7 with algebraic Fourier coefficients can be decomposed with respect to an 
orthogonal basis of the vector space Yk(C0C1 , 'If) such that one of the basis vectors 
is the cusp form fo"IW(Co) = Cjl2FPIW(C0C1). Here one must take into account 
that the inner products (f. f)c

1 
and (FPIW(C0C1 ), FPIW(C0C1 ))c,c1 differ only by 

an algebraic factor [29]. This fact can be established using the Euler products 

L(s,f), L(s, FPI W(CoC1 )), (5.2) 

which differ from one another only in a finite number of Euler factors; at the same 
time the corresponding inner products can be interpreted in terms of the special 
values of (5.2) at the points= k - I. This also implies that the linear functional 

:?:Kr-. (f.flc)(FP,KIW(CoC1))c,c1 (5.3) 

on the complex vector space Yk(CoC1, 'If) is defined over Q, i.e., for a finite set of 
natural numbers n; EN and fixed algebraic coefficients l;(n;) E Q we have 

Y(K) = Li;(n;)a(n;,K), (5.4) 

in which, by definition, K(z) = 2:;:1 a(n. K)e(nz). 
5.2. We now apply our fixed embedding ip: Q <--> Cp to the algebraic numbers (5.1), 

as a result obtaining the Cp-valued distributions ip('¥s,1Hl· We set 'i's = ip('¥s.1). 
We note that, if we use the definition of the functional (5.3), the formulas (5.1) for 
the distributions take the form 

'I'~~l,(x) = y(M')Y(KM'(r - k +I+ 1)), (5.5) 

where M' is a sufficiently large natural number which is chosen depending on x. y(M') 
was defined in (4.25), and we have the property lip(y(M'))lp = I by our assumption 
that the cusp form f is p-ordinary (see ( I. 8)): 

lip(a(q))lp = 1 (q ES), lip(a(M'))lp = I. 

5.3. Proposition. a) The Cµ-valued distributions ip('I's.IH) on Z~ are bounded for 
all integers r = 0. 1, ... , k - I - I. 

b) The following S-adic equality holds: 

(5.6) 

Proposition 5.3 is proved using the abstract Kummer congruences in §2.3. Here 
we make use of the set of functions on Z~ of the form xx;, where x E Xl!'", 



A. A. PANCHISHKIN 

1, ... , k - l - 1. For any finite set of characters x E Xl0
" we choose a common 

of M and a sufficiently large M' so that the integral formula (5.5), coming 
'roposition 4.7, holds for each of these characters. We now use the description 
>f the linear functions Y. As a result we find that proving the abstract Kum­
mgruences for the numbers i P ('1'¥~l, (X)) is equivalent to proving the following 
iences for the Fourier coefficients ( 4.29): 

d(n1,n2;r-k+l + l,x) . Cfn1 +n2 =M'n. 

(4.29) and (4.30), along with the equality Cfn1 + n2 = M'n, it follows that 

P,(n2, n) = n~- 1- 1 -' = (dd'/-1- 1- 1 (modM'), 

x(ni) =X(-Cf)X(n2) =x(-Cf)X(dd'). 

~quently, we have the congruences 

1, ni; r - k + l + 1, X) 

= X(-C)(-C)-r+k-l-1b(n1) L x(d')d'k-l-l-fsgn(d)x(d)d' (mod M'). 

(5.7) 
w remains only to note that the abstract Kummer congruences are obviously 
led for the expressions on the right in ( 5. 7). Since we have considered the 
tions xx; with r = 0, 1, ... , k - l - 1 simultaneously, both parts of Proposition 
mmediately follow. · 
4. The non-Archimedean Rankin £-functions in the fundamental theorem can 
be constructed as the non-Archimedean Mellin transforms of the measure 'I's = 
's.i). These functions are bounded C p-analytic functions on Xs which are uniquely 
rmined by the special values 'I's (xx;). These values are given in Propositions 
) and 5.3b): 

i; 1 ('l'(xx;Jl = w( Cx )G(x)2Ci+21- 1a( Cx )-2 A(r, X) 'l'~;<-_;;J J;:;)) 
re A(r, X) is the product in (1.15). Theorem 1.4 is proved. 
.5. To prove the S-adic functional equation (1.16), we use the Archimedean func­
al equation for the convolutions: if f E .9'k( Cf. If/) and g E .9/(Cg, w) are prim­
~ cusp forms and (Cf, Cg) = l, then for any primitive Dirichlet character x 
i Cx we have (see [22]) 

'l'(s, f, gP(x)) = B,(s)'l'(k + l - 1 - s,f P, g(x )) , ( 5.9) 

:re (Cf, C,) =(Cg, C,) = l, and 

Bx(s) = (CfCgCi/+1- 2'(-l)kw(Cf)lf/(Cg) 

x x 2(CfCg)lf/05(Cx) G~t A(f)2A(g)2, 
x 

ere A(f) and A(g) are the constants in the functional equations (1.12). In (5.9) we 
w sets= I +r, and we compare the values of the functions 'l'(x) and 'i'(x;-1- 1 x- 1) 

the points x = xx;. Here we take into account that the product A(r, xl = 
r, x; j, g, a) does not change if we replace(/, g, a, p, X, r) by (f P, gP, a, /3, X, k-f­
- r). As a result we find that the functional equation (1.16) holds for these special 
lues, and it remains once again to use the fact that bounded C p-analytic functions 

are 
the 

248 

31 

Aci 

Ma 

10! 

Na 

23' 

77 

29 

19 

an 
P> 

(I 

th 

Jo 

p, 

A 

(I 

fi 

A 

j> 



NON-ARCHIMEDEAN RANK.IN £-FUNCTIONS 357 

are uniquely determined by their values at the points x = xx;. With this observation 
the proof of Theorem 1.5 is complete. 
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