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AUTOMORPHIC L-FUNCTIONS 

A. BOREL 

This paper is mainly devoted to the L-functions attached by Langlands [35] to an 
irreducible admissible automorphic representation re of a reductive group G over a 
global field k and to local and global problems pertaining to them. In the context 
of this Institute, it is meant to be complementary to various seminars, in particular 
to the GL2-seminars, and to stress the general case. We shall therefore start directly 
with the latter, and refer for background and motivation to other seminars, or to 
some expository articles on this topic in general [3] or on some aspects of it [7], [14], 
[15], [23]. 

The representation re is a tensor product re = @,re, over the places of k, where 
re, is an irreducible admissible representation of G(k,) [11]. Accordingly the L-func­
tions associated to re will be Euler products of local factors associated to the 7r:.'s. 
The definition of those uses the notion of the L-group LG of, or associated to, G. 
This is the subject matter of Chapter I, whose presentation has been much influ­
enced by a letter of Deligne to the author. The L-function will then be an Euler 
product L(s, re, r) assigned to re and to a finite dimensional representation r of LG. 
(If G = GL"' then the L-group is essentially GLn(C), and we may tacitly take for r 
the standard representation r n of GLn(C), so that the discussion of GLn can be 
carried out without any explicit mention of the L-group, as is done in the first six 
sections of [3].) The local L- ands-factors are defined at all places where G and 1T: 

are "unramified" in a suitable sense, a condition which excludes at most finitely 
many places. Chapter II is devoted to this case. The main point is to express the 
Satake isomorphism in terms of certain semisimple conjugacy classes in LG (7. l ). At 
this time, the definition of the local factors at the ramified places is not known in . 
general. For GLn and r no however, there is a direct definition [19], [25]. In the 
general case, the most ambitious scheme is to associate canonically to an irreducible 
admissible representation of a reductive group H over a local field E a representa­
tion of the Weil-Deligne group We of E into LH, and then use L- ands-factors 
associated to representations of We [60]. This problem is the main topic of Chapter 
III. 

The L-function L(s, re, r) associated to re and r as above is introduced in §13. In 
fact, it is defined in general as a product oflocal factors indexed by almost all places 
of k. It converges absolutely in some right half-plane (13.3; 14.2). Some of the main 
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28 A. BOREL 

conjectural analytic properties (meromorphic continuation, functional equation), 
and the evidence known so far, are discussed in §14. 

From the point of view of[35], a great many problems on automorphic represen­
tations and their £-functions are special cases of one, the so-called lifting problem 
or problem of functoriality with respect to L-groups. It is discussed in Chapter V. 
It is closely connected with Artin's conjecture (see §17 and the base-change sem­
inar [17]). In §18 brief mention is made of some known or conjectured relations 
between automorphic £-functions and the Hasse-Weil zeta-function of certain 
varieties, to be discussed in more detail in the seminars on Shimura varieties [8], 
[40]. 

Thanks are due to H. Jacquet and R. P. Langlands for various very helpful com­
ments on an earlier draft of this paper. 
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CHAPTER I. L-GROUPS. 

k is afield, k an algebraic closure of k, k, the separable closure of kink, and rk 
the Galois group of k, over k. G is a connected reductive group, over kin I.I, 1.2, 
2.1, 2.2, over k otherwise. 

§§1, 2 will be used throughout, §3 from Chapter III on. The reader willing to take 
on faith various statements about restriction of scalars need not read §§4, 5. 
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1. Classification. We recall first some facts discussed in [58]. 
1.1. There is a canonical bijection between isomorphism classes of connected 

reductive k-groups and isomorphism classes of root systems. It is defined by as­
sociating to G the root datum cj;(G) = (X*(T), rp, X*(T), rpv) where Tis a maximal 
torus of G, X*(T) (X*(T)) the group of characters (I-parameter subgroups) of T 
and(/) ((/)v) the set ofroots (coroots) of G with respect to T. 

1.2. The choice of a Borel subgroup B ::::> Tis equivalent to that of a basis L1 of 
W(G, T). The previous bijection yields one between isomorphism classes of triples 
(G, B, T) and isomorphism classes of based root data cj;0(G) = (X*(T), Ll, X*(T), 
LJv). There is a split exact sequence 

(1) (1)--------> Int G--------> Aut G--------> Aut cj;0(G)--------> (1). 

To get a splitting, we may choose Xa E Ga (a E Ll) and then have a canonical bijec­
tion 

(2) 

Two such splittings differ by an inner automorphism Int t (t ET). 
1.3. Given r Erk there isgEG(ks) such thatg-rT-g-1 = T, g-TB·g-1 = B, whence 

an automorphism of cj;0(G), which depends only on r· We let µc: I'k---> Aut cj;0(G) 
be the homomorphism so defined. If G' is a k-group which is isomorphic to G over 
k (hence over ks), then µc = µ(;, <o> G, G' are inner forms of each other. 

1.4. Let/: G ---> G' beak-morphism, whose image is a normal subgroup. Then f 
induces a map cj;(f): cj;(G)---> cj;(G') (contravariant (resp. covariant) in the first (last) 
two arguments). Given B, Tc Gas above, there exists a Borel subgroup B' (resp. 
a maximal torus T') of G' such that/(B) c B',f(T) c T', whence also a map cj;0(f): 
c/;o( G) ---> c/;o( G'). 

2. Definition of the £-group. 
2.1. The inverse system lff"6 to the based root datum If! 0 = ( M, Ll, M*, LJV) is cJ; "6 = 

(M*, LJV, M, Ll). To the k-group G we first associate the group LG0 over C such that 
¢0(LG0 ) = cj;0(G)V. We let LT0 , LB0 be the maximal torus and Borel subgroup de­
fined by ¢'cf, and say they define the canonical splitting of LG0 • 

Let/ be as in 1.4. Then/ also induces a map ¢"6(f) : cj;0(G')V ---> ¢0(G)v. An alge­
braic group morphism of LG'0 into LG0 associated to it will be denoted Lf0

• Given 
one, any other is of the form Int f0Lf00Int t' (t E LT0, t' E LT'0), and maps LT'0 

(resp. LB'0) into LT0 (resp. LB0 ). 

2.2. EXAMPLES. (1) Let G = GLn. Then LG0 = GLn. In fact, let M = zn with 
{x;} its canonical basis. Let {e;} be the dual basis of M* = zn. Then lf!0(GLn) = 

(M, Ll, M*, LJV) with LI= {(x; - X;+1), 1 ~ i < n}, LJV = {(e; - ei+l), I ~ i < n}, 
hence c/;o = cJ; "6. 

(2) Let G be semisimple and lf!0(G) = (M, (/), M*, cpv). As usual, let P(W) c 
M ® Q be the lattice of weights of (/) and Q(W) the group generated by (/) in M. 
Define P((/)V) and Q(wv) similarly. 

As is known G is simply connected (resp. of adjoint type) if and only if P(¢) = 
M (resp. Q(</>) = M). Moreover 

P(W) = {A EM@ Qj(,l., cpv) c Z}, P((/)V) = {A E Mx @ Qj(,l., (/)) E Z}. 
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Therefore: 
G simply connected ¢>- LG0 of adjoint type; 
G of adjoint type ¢>- LG0 simply connected. 
(3) Let G be simple. Up to central isogeny, it is characterized by one of the types 

Am ... , G2 of the Killing-Cartan classification. It is well known that the map 
r/J0{G) -+ rjJ0{G)• permutes Bn and Cn and leaves all other types stable. Thus if G = 

SP2n (resp. G = PSpzn), then LG0 = S02n+1 (resp. LG0 = SpiDzn+1). In all other 
cases, G ,_ LG0 preserves the type (but goes from simply connected group to adjoint 
group, and vice versa). 

(4) Let again G be reductive and let/: G -+ G' be a central isogeny. Let 

N = coker f *: X*(T)---+ X*(T') 
N' = coker f*: X*(T') ---+ X*(T). 

(T' =f(T)), 

Then N and N' are isomorphic and ker Lf° = Hom(N, C*) _:. N. In particular, 
y 0 is an isomorphism if and only if/is one. 

(5) Let f: G -+ G' be a central surjective morphism, Q = ker f, and Q0 the 
identity component of Q. Then ker Lf° ~ Q/Q0 • 

If Q is connected, then T" = T n Q is a maximal torus of Q, and the injectivity 
of Lf0 follows from the fact that the exact sequence I -+ T" -+ T -+ T' -+ 1 neces­
sarily splits. If Q is not connected, then r : H = G/Q0 -+ G' is a nontrivial separable 
isogeny, with kernel Q/Q 0 • y 0 factors through Lr 0 and, by the first part and (4), 
ker Lf0 = ker Lr 0 ~ Q/Q 0 • In particular, if we apply this to the case where G' = Gad 

is the adjoint group of G, and use (2), we see that the derived group of LG0 is simply 
connected if and only ifthe center of G is connected. As an example, let G = GSp2n 
be the group of symplectic similitudes on a 2n-qimensional space. Then the derived 
group of LG0 is isomorphic to Spinzn+I· In fact, we have LG0 = (GL1 x Spinzn+1)/A 
where A = { 1, a} and a = (ai. a2), with a 1 of order two in GL1 and a2 the nontrivial 
central element of Spinzn+i· If n = 2, then Spin2n+l = Sp2n. It follows that if G = 
GSp4, then LG0 = GSp4(C). 

2.3. We have canonically Aut If! 0 = Aut IJJ'ti. Therefore we may view µc as a homo­
morphism of I'k into Aut r/JYi. Choose a monomorphism 

(I) 

as in 1.2(2). We have then a homomorphism 

µ'r;: rk---+ Aut (LG 0 , LB 0 , LT0 ). 

The associated group to, or L-group of, G is then by definition the semidirect 
product 

(2) 

with respect toµ(;. We note that µ'c is well defined up to an inner automorphism 
by an element of LT0 • The group LG is viewed as a topological group in the obvious 
way. The canonical splitting of LG0 (2.1) is stable under I'k. 

We have a canonical projection LG -+ rk with kernel LG0 • The splittings of the 
exact sequence 

(3) 1 ___.. LG0 ___..LG~ rk ___.. 1 
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defined as in 1.2 via an isomorphismAutW~-=. Aut(LG0 , LB0 , LT0 , {xa}) are called 
admissible. They differ by inner automorphisms Int t (t e LT0 ). Note that if G splits 
over k, then I' k acts trivially on LG0 and LG is simply the direct product of LG0 and 
rk. 

2.4. REMARKS. (I) So far, we can in this definition take LG0 over any field. We 
have chosen C since this is the most important case at present, but it is occasionally 
useful to use other local fields. 

(2) There are various variants of this notion, which may be more convenient in 
certain contexts. For instance we can divide I'k by a closed normal subgroup which 
acts trivially on wv, hence on LG0 , e.g., by I'k' if k' is a Galois extension of k over 
which G splits. Then I'k is replaced by Gal(k'/k), and LG is a complex reductive Lie 
group. 

We can also define a semidirect product LG0 )(I z, for any group Z endowed 
with a homomorphism into I'k, e.g., the Weil group of k, if k is a local or global 
field. In that case, we get the "Weil form" of LG. 

(3) Let G' beak-group which is isomorphic to Gover k. Then G and G' are inner 
forms of each other if and only if LG is isomorphic to LG' over I' k· In fact, the first 
condition is equivalent to µG = µG'• and the latter is easily seen to be equivalent to 
the second condition. In particular, since two quasi-split groups over k which are 
inner forms of each other are isomorphic over k, it follows that if G, G' are quasi­
split and LG..:. LG' over I'k then G and G' are k-isomorphic. 

2.5. Functoriality. Let/: G --+ G' be a k-morphism whose image is a normal 
subgroup. Then /q,0 : cp0(G) --+ cp0(G') clearly commutes with I'!,, hence so does 

fq,'¥ : ¢0( G')• --+ ¢0( G)v and Lf°: LG' 0 --+ LG0 • We get therefore a continuous homo­
morphism Lf : LG' --+ LG such that 

is commutative, which extends Lf°. 
2.6. Representations. For brevity, by representation of LG we shall mean a conti­

nuous homomorphism r: LG--+ GLm(C) whose restriction to LG0 is a morphism 
of complex Lie groups. 

Clearly, ker r always contains an open subgroup of I'k, hence r factors through 
LG0 )(I rk'lk• where k' is a finite Galois extension of k over which G splits. The group 
LG0 )(I I' k' lk is canonically a complex algebraic group and r is a morphism of com­
plex algebraic groups. 

3. Parabolic subgroups. 
3.1. Notation. We let f/J(G/k) denote the set of parabolic k-subgroups of G, and 

write ~(G) for ~(G/k). Let p(G/k) be the set of conjugacy classes (with respect to 
G(k) or G(k), it is the same) of parabolic k-subgroups, and p(G) = p(G/k). Let 
p(G)k be the set of conjugacy classes of parabolic subgroups which are defined over 
k (i.e., if p E (J ep(G)k, then rp E (J for all r E I'k). In particular p(G/k) 4 p(G)k. 
There is equality if G is quasi-split/k. 

3.2. We recall there is a canonical bijection between p(G) and the subsets of L1. 
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Then p(Gh corresponds to the I'k-stable subsets of L1 and p(G/k) to those I'k­
stable subsets which contain the set L10 of simple roots of a Levi subgroup of a 
minimal parabolic k-group. In particular we have p(G/k) = p(G)k if G is quasi­
split over k. Given PE &P(G), we let J(P) be the subset of L1 assigned to the class 
of P 

Since two conjugate parabolic subgroups whose intersection is a parabolic sub­
group are identical, we see in particular that if Pis defined over k, P' :::i P, and the 
class of P' is defined over k, then P' is defined over k. 

3.3. Parabolic subgroups of LG. A closed subgroup P of LG is parabolic if rc(P) = 
rk and P 0 = LG0 n pis a parabolic subgroup of LG0 • Then p = NLc(P 0 ). In other 
words, a parabolic subgroup is the normalizer of a parabolic subgroup P 0 of LG0 , 

provided the normalizer meets every class modulo LG 0
• We say Pis standard if it 

contains LB. The standard parabolic subgroups are the subgroups 

(1) 

where LP 0 runs through the standard parabolic subgroup of LG0 such that J(LP 0 ) c 

LJV is stable under I' k· 

Every parabolic subgroup of LG is conjugate (under LG or, equivalently, LG0
) 

to one and only one standard parabolic subgroup. 
We let &f>(LG) be the set of parabolic subgroups of LG and p(LG) the set of their 

conjugacy classes. 
The given bijection L1 ...... LJV yields then, in view of 3.2, a bijection 

(2) 

We shall say that a parabolic subgroup of LG is relevant if its class corresponds to 
one of p(G/k) under this map. We let Lg>(LG) be the set of relevant parabolic sub­
groups and Lp(LG) the set of their conjugacy classes, the relevant conjugacy classes 
of parabolic subgroups. Thus, by definition 

(3) p(Gjk) .._. Lp(LG). 

Thus, if G and G' are inner forms of each other, p( LG) and p( LG') are the same, but 
Lp(LG) and Lp(LG') are not. If G' is quasi-split, then Lp(LG') == p(LG'); hence we 
have an injection 

(4) Lp(LG) c Lp(LG') = p(LG'). 

If ~G is anisotropic over k, then Lp(LG) consists of G alone. 
3.4. Levi subgroups. Let P be a parabolic subgroup of LG. The unipotent radical 

N of P 0 is normal in P and will also be called the unipotent radical of P. Then 
P/N-.'.:'.. P 0 /N ~ I'k· In fact, it follows from (1) that P is a split extension of N, 
and is the semidirect product of N by the normalizer in P of any Levi subgroup 
M 0 of P 0 • Those normalizers will be called the Levi subgroups of P. 

Let PE f/J(G/k), Ma Levi k-subgroup of P. Let Lp be the standard parabolic 
subgroup in the class associated to that of P (see (3)). Then LM may be identified 
to a Levi subgroup of LP. In fact if M corresponds to (X*(T), J, X*(T), Jv), then 
LM0 corresponds to (X*(T), Jv, X*(T), J) and LM0 ~ I'k is equal to LMbydefinition 
and is a Levi subgroup of LP, as defined above. 

A Levi subgroup of a parabolic subgroup P of LG is relevant if P is. 
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For the sake of brevity, we shall sometimes say "Levi subgroup in G" for "Levi 
subgroup of a parabolic subgroup of G." Similarly for LG. 

3.5. LEMMA. The proper Levi subgroups in LG are the centralizers in LG of tori in 
g&(LG0 ), which project onto I'k· 

Let M be a proper Levi subgroup in LG. It is conjugate to a subgroup 
fl'(S) 0 ><l I'k, where S c: LT0 is the identity component of the kernel of a subset 
J ~ L1• stable under rk. Let then S' be the one-dimensional subtorus of s n 9)(LG0 ) 

on which the remaining simple roots are all equal. It is clear that fl'(S') 0 = fl'(S), 
and that S' is pointwise fixed under I'k. We have then M = fl'(S'). 

Let now S be a nontrivial torus in 9)(LG0 ) such that fl'(S) meets every connected 
component of LG. Fix an ordering on X*(S). There is a proper parabolic subgroup 
P° of LG0 of the form fl'(S) 0 • U, such that the weights of S in the unipotent radical 
U of P 0 are the roots of LG0 with respect to S which are positive for this ordering. 
U is normalized by fl'(S); hence fl'(S)· U is a proper parabolic subgroup P of LG, 
and then fl'(S) is a Levi subgroup of P. 

3.6. PROPOSITION. Let H be a subgroup of LG whose projection on rk is dense in 
rk. Then the Levi subgroups in LG which contain H minimally form one conjugacy 
class with respect to the centralizer of Hin LG0 • 

Let C be the identity component of the centralizer of H in g&(LG0 ), and D a 
maximal torus of H. If D = {1}, then, by 3.5, His not contained in any proper 
Levi subgroup in LG, and there is nothing to prove. So assume D #- {l }. 

Let I'' be a normal open subgroup of I'k which acts trivially on LG0 • It is then 
normal in LG, and H ·I" projects onto I' k· Since fl'(D) contains H ·I", it projects onto 
I'k, hence is a proper Levi subgroup by 3.5. Let M be a Levi subgroup containing 
H. By 3.5, M = Z(S), where Sis a torus in g&(LG0 ). Then Sc: C, there exists c EC 
such that c · S · c-1 c D, hence c · M · c-1 = fl'(S') => fl'(D). 

4. Remarks on induced groups. (To be used mainly to discuss restriction of scalars 
in §5 and 6.4.) 

4.1. Let A be a group, A' a subgroup of finite index of A and Ea group on which 
A' operates by automorphisms. Then we let 

(1) Ind1-(E) = J~,(E) = {f: A--+ Eif(a'a) =a' ·f(a) (a EA; a' eA')}. 

It is a group (composition being defined by taking products of values). It is viewed 
as an A-group by right translations: 

(2) r af(x) = f(xa) (x, a EA). 

For s E A'\A, let 

(3) E. = {f e 11-(E) if(a) = 0 if a¢ s}. 

Then E. is a subgroup, J~,(E) is the direct product of the E.'s (s E A'\A), and 
these subgroups are permuted by A. The subgroup E8 is stable under A' and is 
isomorphic to E as an A' module under the mapf f--+f(e). The product of the E;s 
(s e A'\A, s #- e) is also stable under A'. We have therefore canonical homomor­
phisms 
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(4) E XI A' ---+ I(E) XI A' --+E XI A' 

whose composition is the identity. 
4.2. Let B be a group, µ:B-+ A a homomorphism. Let B' = µ-l(A') and assume 

thatµ induces a bijection: B'\B ~ A'\A. Let Ebe a group on which A' operates 
by automorphisms, also viewed as a B'-group viaµ. Then/ ..... µ of induces an 
isomorphism 

(1) µ': I 1·(E)----.'.:'...... IB,(E), 

whose inverse is µ-equivariant. 
This follows immediately from the definitions. 
4.3. Let A, E be as before, C a group and v: C -+ A a homomorphism. Let 

rp: C-+ E XI A be a homomorphism over A. The map cjJ: C -+ E such that rp(c) = 
( cjJ( c ), v( c)) ( c e C) is a 1-cocycle of C in E and rp ...... cjJ induces a bijection 

Hl(C; E)----.'.:'...... <fJA(C, E), 

where, by definition, <fJA(C, E) denotes the set of homomorphisms rp:C-+ E XI A 
over A, modulo inner automorphisms by elements of E. 

4.4. Let A, A', B, B' and Ebe as in 4.2. We have a commutative diagram with 
exact rows 

1 ---+ J1,(E)---+ 11-(E) XI A ---+A ---+ 1 

(1) i i i 
1 ---+ E ---+ E IX A' ---+ A' ---+ 1 

where the vertical maps are natural inclusions (4.1). 
Let rp: B-+ 11,(E) XI A be a homomorphism over A. Using 4.1(4), we get by 

restriction a homomorphsim q;: B' -+ E XI A' over A'. 

4.5. LEMMA. The map rp ...... q; of 4.4 induces a bijection rpA(B, J1,(E)) ~ 
<p A'(B', E). 

We have, using 4.2, 4.3: 

(1) 

(2) 

<fJA(B, 11,(E)) = Hl(B; 11-(E)) = HI(B; IB-(E)), 

</JA,(B', E) = Hl(B'; E). 

By a variant of Shapiro's lemma, contained, e.g., in [4, 1.29]: 

Hl(B; IB-(E))----.'.:'...... HI(B'; E), 

and it is clear that the isomorphisms (1), (2) carry this isomorphism over to rp ...... q;. 

5. Restriction of scalars. In this section, k' is a finite extension of k in k., G' is a 
connected k'-group, and G = Rk'tk G'. 

5.1. The Galois group I'k' of k. over k' is an open subgroup (of finite index) of 
rk and zk',k = rk.\I'k may be identified with the set of k-monomorphisms of k' 
into k •. We have, in the notation of 4.1 (with A = I'k, A' = I'k,) 

(1) G(k) = If{.(G'(k)) = IT 11G'(k). 
11EI'k•\I'k 
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Assume G' to be reductive. Then we see easily that cf;(G) = (M, tp, M*, tp'V) is related 
to cf;(G') = (M', tp', M'*, tp'") by 

(2) M =IF!. (M'), 'P = LJ tp' ·a. 
aEA'\A 

Similarly, if L1' is a basis of tp', then 

(3) 

is one for 'P· 
From this it follows that we have a natural isomorphism 

(4) 

We have then a commutative diagram 

5.2. The map P' 1--> Rk'tk P' induces a bijection between fll'(G' /k') and fll'(G/k). 
Moreover P' is a Borel subgroup of G' if and only if Rk'tk P' is one of G. Hence 
G' is quasi-split/k' if and only if G is quasi-split over k (see [5, §6]). 

Since G(k)...:::. G'(k'), we also get a bijection p(G' /k')...:::. p(G/k). 
If J' c L1' is stable under rk' then J = UaEA'\Ara(J') is stable under rk. This 

map is easily seen to yield a bijection between I' k,-stable subsets of L1' and I' k-stable 
subsets of L1, whence also canonical bijections 

CHAPTER II. QUASI-SPLIT GROUPS. THE UNRAMIFIED CASE. 

In this chapter, G is a connected reductive quasi-split k-group. From 6.2 on, G 
is assumed to split over a cyclic extension k' of k, and a denotes a generator of 
Gal(k'/k). 

6. Semisimple conjugacy classes in LG. 
6.1. Assume Band T to be defined over k. Then the action of I'k on X*(T) or 

X*(T) given by µc coincides with the ordinary action. The greatest k-split subtorus 
Td of Tis maximal k-split in G, and its centralizer is T; in particular, Td contains 
regular elements of G. Hence any element w e W which leaves Td stable is com­
pletely determined by its restriction to Td. It follows that kW may be identified with 
the subgroup of the elements of Wwhich leave Td stable or, equivalently, with the 
fixed-point set of I'k in W. Ifwe go over to the £-group and identify canonically W 
with W(LG0 , LT0 ), then kW is also the fixed-point set of I'k in W, and it operates on 
the greatest subtorus S of LT0 which is pointwise fixed under I' k· The group S always 
contains regular elements; hence any element of kW is determined by its restriction 
to S. We let kN be the inverse image of kW in the normalizer N of LT0 in LG0 • 

6.2. LEMMA. Every element w e kW has a representative in kN which is fixed under 
(1. 
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Write L1• = D1 U · · · U Dm, where the D/s are the distinct orbits of I'(k' /k) in Ll•. 
Let o; be the common restriction to S of the elements of D,. and s,. the identity 
component of the kernel of o,.. Then kW, viewed as a group of automorphisms of 
S, is generated by the reflections s,. to the s,. (1 ~ i ~ m), and it suffices to prove the 
lemma for w = s,- (1 ~ i ~ m). [The "reflection" s,. is the unique element # 1 of W 
which leaves S stable, fixes s,. pointwise and is of order two.] 

We let Lie(M) denote the Lie algebra of the complex Lie group M. For a E Ll•, 
let, as usual 

(1) Ba = {XE Lie(LG0 )IAd t(X) = a(t) . x (t E LT0 )}. 

It is one-dimensional. Fix i between 1 and m. By construction of LG, we can find 
nonzero elements ea E Ba (resp. e_a EB-a (a ED,.)) which are permuted by (}". We 
have then 

(2) 

where c is # 0, and independent of a E D,. since I'(k' / k) is transitive on D,.. Here 
x iLT0 ) ® c is identified with Lie(LT0 ), and a with a ® 1. The element 

(3) f +· = "' e+-, -' £..J _a 
deD; 

is fixed under(}". Moreover, since the difference of two simple roots is not a root, 
we have 

(4) 

Using (3) and (4), we get 

(5) 

By the transitivity of Gal(k'/k) on D,., the number 

(6) d = ~ (a, ~) 
deD; 

is also independent of~ ED,.; therefore 

(7) 

We claim that d # 0, in fact that d = 1, 2. The irreducible components of D; are 
permuted transitively by Gal(k' /k) and have a transitive group of automorphisms. 
Therefore they are of type A1 or A2• Then, accordingly, d = 2 or d = 1. It follows 
that h,., f; and/_,. span a three-dimensional simple algebra pointwise fixed under(}". 
Then so is the corresponding analytic subgroup G,. of LG0 • The group G,. centralizes 
S; and S n G; is a maximal torus of G,., with Lie algebra spanned by h,.. Then the 
nontrivial element of W (G,., S n G;) is the required element. 

REMARK. An equivalent statement is proved, in a different manner, in [35, pp. 
19-22]. 

6.3. We let Y = L(Td)0 • The group X *(Td) may be identified to the fixed-point set 
of I'k in X*(T). The inclusion of X iTd) = X*(Y) into X* (T) = X*(LT 0

) induces 
a surjective morphism LT0 -> Y, to be denoted v. 

The map A : t 1-+ rt. 111 is an endomorphism of LT0 , whosedifferentialdA at 1 is 
(d(f - Id). Let 
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(1) U = (ker A)0 , V = imA. 

Then U is pointwise fixed under (J, the Lie algebra of U (resp. V) is the kernel (resp. 
image) of dA. Since dA is semisimple, they are transversal to each other; hence 

(2) LT0 = U· v, and u n vis finite. 

Moreover, 

(3) V = ker v, v(U) = Y. 

In the rest of this chapter, we let LG stand for the "finite Galois form" 
LG0 >4 Gal(k' /k) of the L-group. We now want to discuss the semisimple conjugacy 
classes in LG0 >4 (J with respect to LG0 • We have 

(4) (g, h E LG0 ); 

therefore LG0 -conjugacy in LG0 >4 (J is equivalent to (!-conjugacy in LG0 • 

6.4. LEMMA. Let v' : LT0 >4 (J -+ Y be defined by v' (t x (J) = v(t) (t E LT0 ). Then 
v' induces a bijection 

(1) 

Let n E kN. By 6.2, we m!lY write n = w·s with w = 11w ands E LT0 • Then the 
LT0 -component of n-l(t >4 (J) n is 

s-1.w-I.t·w"s = s-I. 11s·(w-1.t·w) E V·w-1.t·w; 

hence 

v'(n-1.(t >4 (J)·n) = v(w-I.t·w) = w-1.v(t)·w = w-1.v'(t >4 (J)·w. 

Thus v' is equivariant with respect to the projection kN -+ kW and therefore induces 
a map of the left-hand side of(l) into the right-hand side of(l), which is obviously 
surjective. Let t, t' e LT0 and assume that v'(t >4 (J) = w-1 · v'(t' >4 (J) · w for some 
we kW. Then we have v(t) = v(w-1 · t' · w), where w is a representative of w fixed 
under (J, whence t= v·(w-1.t'·w), with veV. We can write v=rl. 11sfor 
some s E LT0 , and get t >4 (J = n-1 (t' >4 (J)n, with n = ws. 

6.5. LEMMA. Let (LG0 >4 (J) •• be the set of semisimple elements in LG0 >4 (J. Then 
the map 

p. : (LT 0 >4 (J)/IntkN-----+ (LG 0 x (J) •• /Int LG0 , 

induced by inclusion is a bijection. 

By results of F. Gantmacher [12, Theorem 14], p. is surjective. Let nows, t E LT0 

and g E LG0 be such that g-1.(s >4 (J)·g = t >4 (J, i.e., such that g-1.s·"g = t. 
Using the Bruhat decomposition of LG0 with respect to LB0 , we can write uniquely 
g = u·n·v, with u, v in the unipotent radical of LB0 and n in the normalizer N 
of LT0 • These groups are stable under (J, and normalized by LT0 • We have then 

hence 11n · rl = n · t. Therefore the connected component of n in N is stable under 
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a, i.e., n represents an element of kW; hence n e kN, and (t XI a) and (s XI a) 
are conjugate under ,,N. 

REMARK. This proof was suggested to me by T. Springer. 
6.6. If Mis a complex affine variety, we let C[M] denote its coordinate algebra. 

The algebra C[Y] may be identified with the group algebra of X*(Y) = X*(Td). 
The quotient Y/ kW is also an affine variety (in fact isomorphic to an affine space) 
and C[Y/kW] = C[Y]~w. 

Let Rep(LG) c C[LG] be the subalgebra generated by the characters of finite 
dimensional holomorphic representations. Its elements are constant on conjugacy 
classes. In particular, they define by restriction functions on (LG 0 XI a) •• /Int LG0 • 

6.7. PROPOSITION. The map 

a= p.ov-1: Y/kW----+(LG 0 XI a) .. /IntLG0 

is a bijection, which induces an isomorphism of C[ Y/,, W] onto the algebra A of restric­
tions of elements of Rep( LG). 

REMARK. We shall use 6.7 only when k is a nonarchimedean local field. In that 
case 6.7 is proved in [35, pp. 18-24]. 

PROOF. That a is bijective follows from 6.4, 6.5. We prove the second assertion 
as in [35]. Let p be a finite dimensional holomorphic representation of LG andfp the 
function on LT0 defined by fp(t) = tr p(t XI a). It can be written as a finite linear 
combination/= I:ci.:l of characters A e X*(LT 0 ). Since tr pis a class function on 
LG, we havefp(s-1. t ·"s) =fp(t) for alls, teLT0 • By the linearindependenceofcharac­
ters, it follows that if ci :/:- 0, then A is trivial on V {cf. 6.3(1)), hence is fixed under 
a, i.e., may be identified to an element of X*(Y). Thus we may view fp as an element 
of C[Y]. But invariance by conjugation and 6.4 imply that/ e C[Y/kW], whence a 
map {3 : A-+ C[Y/kW], which is obviously induced by a. There remains to see that 
{3 is surjective. Note that C[Y/kW] is spanned, as a vector space, by the functions 

(1) 

where A runs through a fundamental domain C of kW on XiTd). But it is standard 
that we may take for C the intersection of X*(Td) with the Weyl chamber of Win 
X*(T) defined by B. Therefore every .:le C is a dominant weight for LG0 with respect 
to LT0 • It is then the highest weight of an irreducible representation ni of LG0 • Since 
it is fixed under a, the representation "ni : g ...... ni("g) is equivalent to ni. From this 
it is elementary that ni extends to an irreducible representation ir:i of LG of the same 
degree as ni. The highest weight space is one-dimensional, stable under a. Let c be 
the eigenvalue of <7 on it. Then the trace gives rise to a function equal to c ·<pi modulo 
a linear combination of functions 'Pw withµ < .:l, in the usual ordering. That im {3 
contains <pi (A e C) is then proved by induction on the ordering. 

7. The Satake isomorphism and the L-group. Local factors. 
7.1. We keep the previous notation and conventions. We assume moreover k to 

be a nonarchimedean local field, k' to be unramified over k, and a to be the image 
of a Frobenius element Fr in I' k· 

Let Q be a special maximal compact subgroup of G(k) [61]. We assume Q n Tis 
the greatest compact subgroup of T(k) and Q contains representatives of kW. Let 
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H(G(k), Q) be the Hecke algebra of locally constant, Q-bi-invariant, and compactly 
supported complex valued functions on G(k). The Satake isomorphism provides a 
canonical identification H ...'.:'., C[ Y/ kW], hence also one of YI kW with the characters 
of H [6]. 

By 6. 7, we have now a canonical isomorphism of H with the algebra A of restric­
tions of characters of finite dimensional representations of LG to semisimple LG0 -

conjugacy classes in (LG0 ><1 a), hence also a canonical bijection between characters 
of H(G(k), Q) and semisimple classes in LG0 ><1 a. Furthermore, each suchclasscan 
be represented by an element of the form (t, a), with t e LT0 fixed under a (and is 
determined modulo the finite group u n v, in the notation of6.3). 

7 .2. Local factors. Assume now that U is hyper special [61]. Let cp be an additive 
character of k. Let (n, U,,) be an irreducible admissible representation of G(k) of 
class 1 for Q and r a representation of LG. Then the space of fixed vectors of Q in 
U,, is one-dimensional, acted upon by H via a character x,,. To the latter is assigned 
by 7.1 a semisimple class Sx in LG0 ><1 a. We then put 

(I) L(s, n, r) = det(l - r((g ><1 a)), q-•)-I, e(s, n, r, cp) = 1, 

where q is the order of the residue field, and (g, a) any element of Sx. 

CHAPTER III. WEIL GROUPS AND REPRESENTATIONS. LOCAL FACTORS. 

In this section, k is a local.field, Wk (resp. w;) the absolute Weil group (resp. Weil­
Deligne group) ofk. /f His a reductive k-group, then H(H(k)) is the set of infinitesimal 
equivalence classes of irreducible admissible representations of H(k). 

G denotes a connected reductive k-group. 
The main local problem is to define a partition of U(G(k)) into finite sets Drp,G or 

Hrp indexed by the set </J(G) of admissible homomorphisms of w; into LG, modulo 
inner automorphisms (see §8 for </J(G)), and satisfying a certain number of condi­
tions. So far, this has been carried out for any G if k = R, C [37], for tori over any 
k [34] and (essentially) for G = GL2 (cf. 12.2). §9 recalls the results for tori; §10 
describes some of the conditions to be imposed on this parametrization; § 11 
summarizes the construction over R or C. Such a parametrization would allow one 
to assign canonically local L- and e-factors to any n e U(G(k)) and any complex 
representation of LG. Two elements n, n' in the same set Drp would always have the 
same local factors, and are hence called L-indistinguishable. In the case of GL,. 
however, local factors have been defined in an a priori quite different way, so that 
the parametrization problem becomes subordinated to one concerning L- and 
e-factors. This is discussed in §12. 

8. Definition of </J( G). 
8.1. Jordan decomposition in w;. If k = R, C, then w; = Wk and, by definition, 

every element of Wk is semisimple. 
Let k be nonarchimedean. Then x e w; is said to be unipotent if and only if it 

belongs to Ga; the element xis semisimple if either e(x) # 0 or xis in the inertia 
group. Here e: w; --> Z is the canonical homomorphism w; --> Wk --> k* --> Z. 
Every element x e w; admits a unique Jordan decomposition x = x, · xu with x, 
semisimple, Xu unipotent and x,xu = xuxs [60]. 
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8.2. The set <JJ(G). We consider homomorphisms a : w;.--+ LG over rk, i.e., such 
that the diagram 

is commutative, and which satisfy moreover the following conditions: 
(i) a is continuous, a(Ga) is unipotent, in LG0 , and a maps semisimple elements 

into semisimple elements (in LG: x = (u, r) is said to be semisimple if its image 
under any representation (2.6) is so). 

(ii) If a(W/.) is contained in a Levi subgroup of a parabolic subgroup P of LG, 
then P is relevant (3.3). 

Such a's are called admissible. We let <JJ(G) be the set of their equivalence classes 
modulo inner automorphisms by elements of LG0 • 

If we write a(w) = (a(w), v(w)) with a(w) e LG0 then w 1-> a(w) is a 1-cocycle of 
w;. (acting on LG0 via w;. --+ I' k) in LG0 • It follows that 

(1) 

Let H be a subgroup of w;.. Then a: w;. --+ LG is said to be trivial on H if v(H) 
acts trivially on LG0 and a(H) = {l}. Note thatif v(H)!actstriviallyonLG0 , then 
al8 is a homomorphism. 

8.3. Assume G' is an inner quasi-split form of G. Then 

(1) <JJ(G) c <JJ(G'). 

In fact LG~ LG' and Lp(LG') -=:JLp(LG); therefore a e </J(G) =a e </J(G'). 

8.4. PROPOSITION. Let k' be a.finite separable extension of k; let G' be a connected 
reductive k-group and G = Rk'lkG'. Then there is a canonical bijection <JJ(G)....::, </J(G'). 

We consider the situation of 5.2, 5.4 with A = I'k, A' = I'k'• B = W/., B' = w;.,. 
E = LG' 0 • We have the injections (8.2): 

<JJ(G) c fll(W/.; LG0 ), </J(G') C fll(W/.,; LG' 0 ). 

Moreover LG0 = Ifz.(LG' 0 ) (see 5.1); whence, by Shapiro's lemma and 5.2: 

fll( w;.; LG0 ) __::::____, fll( w;.,; LG' 0 ). 

But it is clear that this isomorphism maps <JJ(G) onto <JJ(G'). 
8.5. Let ZL = C(LG0 ). If a: wk --+ ZL and b: w;.--+ LG0 are 1-cocycles, then 

ab: w I-> a(w)b(w) is again a 1-cocycle of w;. in LG0 • If a is continuous and b cor­
responds to <p e </J(G), then ab corresponds to an element of <JJ(G). We get therefore 
maps 

(1) 

(2) 

fll(Wk; ZL) x Hl(W/. ; LG0 ) - Hl(W/. ; LG0 ), 

H 1(Wk ; ZL) x </J(G) - </J (G), 

which define actions of the group Hl(Wk; ZL) on the sets fll(W/.; LG0 ) and <JJ(G). 
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8.6. PROPOSITION. Let <p: w~ --> LG be an admissible homomorphism. Then the 
Levi subgroups in LG which contain <p( W~) minimally form one conjugacy class with 
respect to the centralizer of <p(W~) in LG0 • 

Since <p(W;) projects onto a dense subgroup of I'k by definition, this follows from 
3.6. 

REMARK. Formally, this also applies to the archimedean case, but the proof in 
that case is simpler [37, pp. 78-79]. In fact, the argument there applies in all cases to 
admissible homomorphisms of the Weil (rather than Weil-Deligne) group because 
<p(Wk) is always fully reducible. In this case, the Levi subgroups which contain 
cp(Wk) minimally are those of the parabolic subgroups which contain <p(Wk) mini­
mally. Those parabolic subgroups form therefore one class of associated groups. 

9. The correspondence for tori. 
9.1. Let T be a complex torus. A continuous homomorphism cp: T--> C* is 

described by a pair of elements il, µ e X*(T) ® C such that il - µ e X*(D, by the 
rule <p(t) = tJ.(µ. 

Similarly, a continuous homomorphism <p :C* --> Tis given by µ, v e X *(D ® C 
such thatµ - v e X*(T); we have <p(z) = zµz>, meaning that, for any A e X*(T), 
il o cp: C*--> C* is given by 

il(cp(z)) = z<A, µ> :z<A. ». 

This can also be interpreted in the following way: identify X*(T) ® C with 
the Lie algebra Lie(T(C)). Then the exponential map yields an isomorphism 
(X*(T) ®C)/2'11:iX*(T) = T(C). Then µ, v e Lie(T(C)) are such that <p(eh) = 
eh·µ+h·µ (he C). 

9.2. Let G = Tbe a k-torus, and I= dim T. 
Any <p e r/J(G) is trivial on G0 ; hence 

(1) 

where HA refers to continuous cocycles. 
On the other hand 

(2) 

We have canonically [34, Theorem I] 

(3) H(G) = r/J(G). 

In fact, LT and Wk are replaced in [34] by a finite Galois form LT0 :><1 I'k'lk and a 
relative Weil group Wk'lk• where k' is a finite Galois extension of k whose Galois 
group acts trivially on LT0 ; this is easily seen not to change r/J(G). The proof then 
consists in showing first that the transfer from Wk'lk to k'* yields an isomorphism 

and second that the pairing 

(5) 

associated to the evaluation map (t, il) ....... il(t) (t e LT0 ; il e X*(T)) yields an 
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isomorphism of the first group onto the group of characters of the second group, 
which is then (3) by definition. 

For illustrations, we discuss some simple cases. 
9.3. k = C. Then Wk = C* and </J(G) = Hom(C*, LT0 ). The correspondence 

follows from 9.1 since both Hom(C*,LT 0 ) and Hom(T, C*)are canonically identi­
fied with {(A, µ)lil, µ E X*(T) ® C, il - µ E X*(T)}. 

9.4. k = R. We have 

(1) Wn = C* ~ {z-} with z-2 = - 1, z-·z·z--1 = z(zeC*). 

Put C* = S x R+, with S = {z EC*, z· z = 1 }. Then Inti- is the identity on R+, 
the inversion on S. 

Write <p(z-) = (a, O"), where a is determined modulo q-conjugacy, hence may be 
assumed to be fixed under O' (6.3(3)). We have then <p( - 1) = az. Letµ, v be the 
elements of X*(T) ® C such that 

(2) <p(z) = zµ · z" (z E C*), µ - v E X*(T), 

(see 9.1). We have <p(z) = O'(<p(z)) (z EC*); hence v = q(µ). Fix h E X*(T) ® C such 
that a = exp 2nih. Then the character n associated to <p is given by 

(3) n(ex) = exp((h, x - O' · x)) · exp((µ, x + O' · x) )/2 (x E X*(T) ® C) 

[37, p. 27]. Here - denotes the complex conjugation of Lie(T(C)) = X*(T) ® C 
with respect to X*(T) ® R; hence x >-> O' ·xis the complex conjugation with respect 
to Lie(T(R)). It follows that e" E T(R) if and only if x - O' · x E 2ni · X*(T). 

EXAMPLES. (a) Let T be anisotropic over R. Then O' = - 1 and we may assume 
a = 1, h = 0. We have e" E T(R) if xis purely imaginary and then (3) yields n = µ. 
The fact that<p( - 1) = 1 shows thatµ E X*(T), confirming that ll(T(R)) = X*(T). 

(b) Let T be split over R. Then O' = 1, µ = v, <p(z) = (z · z)µ, a2 = 1 and 
h E X*(T)/2. We have e" E T(R)if and only if x - x E 2ni ·X*(T). It is then easily 
checked that n is given by µ on the connected identity component of T(R), while 
its restriction to the torsion subgroup of T(R) is the character naturally. defined 
byh. 

9.5. The unramified case. Let k be nonarchimedean, and assume Tto split over an 
unramified extension k' of k. A character x of T(k) is said to be unramified if it is 
trivial on the greatest compact subgroup OT(k) of T(k). On the other hand, <p E <P (T) 
is unramified if it is trivial (see 6.2) on the inertia group. The bijection <P(T) _::::. ll(T) 
induces a bijection between the sets <PunrCT) and DunrCT) of unramified elements 
[34]. In view of its importance, we describe it in more detail. 

Given t E T(k'), let v(t) E Hom(X*(T), Z) be defined by v(t)(m) = ord m(t) 
(m E X*(T)). It is well known, and easily deduced from Hilbert's Theorem 90, that 
Hl(I'k'lk; ot-) = 0, where of, is the group of units in the ring ok' of integers of k'. 
Since T splits over k', it follows that Hl(I'k'lk; OT(k')) = 0. By Galois cohomology, 
this implies that (T(k')/OT(k'))I'k = T(k)/OT(k), therefore t >-> v(t) yields a bijection 

(1) 

where Td is the greatest k-split torus of T (this can also be expressed by saying that 
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the inclusion Td c T induces an isomorphism Tik)/0Tik) ..::::. T(k)/OT(k), cf. [6]). 
We have then 

(2) 

The group I' k operates on LTD via the cyclic group I' k' lk which is generated by the 
image a of a Frobenius element Fr. An unramified <pis completely determined by 
<p(Fr), which can be written <p(Fr) = (t, Fr), where t E LTD is determined up to con­
jugacy by LTD. Thus qJunr(T) =(LTD ><i/a)/Int LTD; and elementary special case 
of 6.4 provides a canonical isomorphsim of the latter set onto Y, whence the de­
sired isomorphism. 

10. Desiderata. In order to formulate them, we need two preliminary construc­
tions. 

10.1. The character x'P of C(G) associated to <p E qJ(G) (cf [37, pp. 20--34]). We 
want to associate canonically to <p E qJ(G) a character of the center C(G) of G. Let 
@rad be the greatest central torus of@. Then Grad 4 G yields a surjective homomor­
phism LG 4 LG rad• whence a map qJ( G) 4 qJ( Grad). In view of 7 .2, this allows us to 
associate to <p E qJ(G) a character X'P of Grad· Thus, if C(G(k)) c Grad(k), our prob­
lem is solved. 

In the general case, G is enlarged to a bigger connected reductive G1 generated by 
G and a central torus, whose center is a torus. One shows that qJ(G1) 4 qJ(G) is 
surjective. Using the previous step, we get a character of C(G1), hence one of C(G) 
by restriction. It is shown to be independent of the choice of G1 (Joe. cit.), and is 
x'P by definition. 

The map <p f-+ x'P is compatible with restriction of scalars [37, 2.11]. 
10.2. The character 1T:a associated to a E Hl(W~; ZL) [37, pp. 34-36]. We recall 

that ZL denotes the center of LGD (8.5). We can always find a k-torus D such that 
Hl(I'k; D) = 0, and a k-group G isogeneous to G x D such that there is an exact 
sequence 

(1) 1 ---. D ---. G ---. G ---. 1. 

Since H 1(I'k; D) = 0, the mapµ: G(k) 4 G(k) is surjective. Let Gsc be the universal 
covering of the derived group f»G of G. We have a commutative diagram 

1 

1 
1~ 

l --->G5c--->G--->G / G5c---> 1 

~1 
G 

1 
1 
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Going 6ver to £-groups, we get 

1 

r 
LDO 

r ~o 
LGO ..-L(JO ..-L(G/G )0 

~ r SC 

LGO 

r 
1 

Since LG~c is of adjoint type (2.2), we see that ZL = ker La 0
• Moreover, it is easily 

seen that 

(2) 

This yields a map 

This allows us to associate to a E Hl(W~; ZL) a character aa of (G/G.c)(k) which 
is trivial on D(k), hence a character na of G(k) = G(k)/D(k). It can be shown to be 
independent of the choice of D. The map a >--+ na is compatible with restriction of 
scalars [37, 2.12] and satisfies: 

(4) 

10.3. Conditions on the sets n'P. (I) If,,. E n'P, then n(z) = x'P(z). Id (z E C(G)). 
(2) If g:>' =a. g:> (g:>, g:>' E <P(G), a E H1(W~; ZL)) (see 6.5), then n'P, = {na®nln E U'P}. 
(3) The following conditions on a set U'P are equivalent: 

(i) One element of U'P is square-integrable modulo C(G). 
(ii) All elements of U'P are square-integrable modulo C(G). 

(iii) q:>(W~) is not contained in any proper Levi subgroup in LG. 
(4) Assume g:>(Ga) = {l }. The following conditions on a set U'P are equivalent: 

(i) One element of U'P is tempered. 
(ii) All elements of U'P are tempered. 
(iii) g:>(Wk) is bounded. 

(5) Let H be a connected reductive k-group and r;: H --+ G a k-morphism with 
commutative kernel and cokernel. Let g:> E </J(G) and g:>' = Lr; o g:>. Then any n E U'P, 
viewed as an H(k)-module, is the direct sum of finitely many irreducible admissible 
representations belonging to n'P'" 

10.4. The unramified case. We say that g:> E </J(G) is unramified if it is trivial, in the 
sense of 6.2, on Ga and on the inertia group I. If so, Im g:> may be assumed to be in 
LT. Therefore, if </J(G) contains an unramified element, then G is quasi-split (see 
8.2 (ii)). 

Assume now G to be quasi-split, to split over an unramified Galois extension 
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k' of k, and let <p E <P(G) be unramified. There exists t E (LT 0 )I'k such that 

(1) 

(9.5) and we have 

(2) 

<p(Fr) = (t, Fr), 

<p(w) = (t, Fr)dwl (w E W~), 

45 

where e: W~ --. Z is the canonical homomorphism. The element t defines an un­
ramified character x of a maximal k-torus T of a Borel k-subgroup B of G (9.5). 
It is then required that ll<P consists of the constituents of the unramified normalized 
principal series PS(x) which have a nonzero vector fixed under some hyperspecial 
maximal compact subgroup. Conversely let (n, V) be an irreducible admissible 
representation with a nonzero vector fixed under some hyperspecial maximal 
compact subgroup. There exists then an unramified character x of T such that 
(n, V) is a constituent of PS(x) (and x is determined modulo the relative Weyl 
group). We have then (n, V) E llrp, for the unramified <p which maps Fr to (t, Fr), 
where t represents x (9.5). Note that if U is a special maximal compact subgroup of 
G(k), then G(k) = B(k) · U; hence the fixed-point set of U in PS(x) is at most one­
dimensional. It follows that PS(x) has at most one irreducible constituent with 
nonzero fixed vectors under U. 

This assignment is consistent with 7.2. Namely, if n E llrp, then the semisimple 
class Sx in LG0 ><l a corresponding to the character of the Hecke algebra defined by 
n is indeed represented by t ><J a. This follows from [6]. 

REMARK. Originally, it was thought that llrp should consist of those constituents 
of PS(x) which had a nonzero fixed vector under some special maximal compact 
subgroup. However it was pointed out during the Institute by I. Macdonald that 
such representations may belong to the discrete series. If so, this condition would 
contradict 10.3(3). Upon a suggestion of J. Tits, this has led to the restriction to 
hyperspecial maximal compact subgroups made above. Those cannot belong to the 
discrete series, so that 10.3(3) and 10.4 are consistent. 

10.5. EXAMPLE. Assume that k = Rand that G is semisimple, possesses a Cartan 
subgroup T which is anisotropic over R, and is an inner form of a split group. 
Then LG is the direct product of LG0 and rk, the Weyl group w contains -Id and 
G(R) has a discrete series. We want to describe the parametrization of the latter in 
terms of <P(G). As the notation implies, we shall view LT as the L-group of T. Let 
<p E <P(G). It is given by a continuous homomorphism <p': WR -> LG0 • We may 
assume that Im <p' is contained in the normalizer of LT0

• Let n = <p(-r) and let w E W 
be the element of W represented by n. Then w2 = I. Letµ, J.i E X*(T) ® C be such 
that 

(I) <p(z) = zµ · z" (z EC*), µ - J.i E X*(T) 

(see 9.1). We have 

(2) 

hence µ = w · J.i, J.i = w · µ. Assume now that Im <p is not contained in any proper 
Levi subgroup in LG or, equivalently, that Im <p' is not contained in any proper 
Levi subgroup in LG0 • Then w = - Id and µ is regular: in fact, the proper Levi 
subgroups in LG0 are the centralizers of nontrivial tori. This implies first that w does 
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not fix pointwise any nontrivial torus in LT0 , hence w = - Id; if nowµ were sin­
gular, then the centralizer of µ(C*)would contain a semisimple subgroup H :F {1} 
stable under Int n, the latter would leave pointwise fixed a torus S :F { 1} of H, and 
Im <p' would be contained in the centralizer Z(S) of S, a contradiction. Since 1.1 = 
w·µ = - µ, wehave 

(3) il(<p(- 1)) = (- 1)<2µ.A>, for all ). e X*(T). 

Let o be half the sum of the roots a of G with respect to T such that (µ, a) > 0. 
Then, Lemma 3.2 of [37] implies in particular 

(4) il(<p'(- 1)) = (- t)<26·A>, for all;. e x.(T). 

It follows that 

(5) µ e o + X*(T). 

Thereforeµ is among the elements of X*(T) ® Q which parametrize the discrete 
series in Harish-Chandra's theorem. We then let Drp be the set of discrete series 
representations of G(R) with infinitesimal character 'X,µ· If G(R) is compact, then 
nrp consists of the irreducible finite dimensional representation with dominant 
weightµ - o. In that case, no proper parabolic subgroup of LG is relevant; hence 
<P(G) consists of the <p considered here. 

10.6. Let G = GLm k nonarchimedean. Let cjJ be an admissible representation 
of W~. If it is irreducible, then cp(Ga) = 1. If it is indecomposable, then it is a 
tensor product p ® sp(m), where m divides n, p is irreducible of degree n/m, and 
sp(m) is m-dimensional, trivial on 1, maps a generator of the Lie algebra of Ga 
onto the nilpotent matrix with ones above the diagonal, zero elsewhere, and 
we W~ onto the diagonal matrix with entries a(w)i (0 ~ i < n) [9, 3.1.3]. If xis 
a character of Wk (hence of k*), and <p = x ® sp(n), then Drp consists of the special 
representation with central character determined by X· In fact, the Weil-Deligne 
group came up for the first time precisely to fit the special representations of GL2 

into the general scheme (see [9]). 

11. Outline of the construction over R, C. We sketch here the various steps which 
yield the sets Drp when k = R. For the proofs see [37]. 

We note first that we may always assume <p(Wk) c N(LT0 ), and we can write 
(9.1) 

<p(z) = zµzv (z e C*; µ, 1.1 e X*(T) ® C, µ - 1.1 e X*(T)). 

11.1. LEMMA. Let <p e <P( G). Assume <p( W 8 ) is not contained in any proper Levi 
subgroup in LG. Then 

(i) G has a Cartan k-subgroup C such that (!?)G n S)(R) is compact [28, 3.1]. 
(ii)µ is regular; <p(C*) contains regular elements [37, 3.3]. 
The group LC0 may be viewed as a maximal torus of LG0 ; hence there is an 

isomorphism LC-+- LT defined modulo an element .of W. Therefore <p defines an 
orbit of Win <P(C), hence, by 9.2, an orbit Xrp of Win X(C(R)). [Note that W, 
which is defined in G(C), operates on C(R), since C(R) n f')G is compact, hence 
on X(C(R)).] 

11.2. Let G0 = C(R)((!?)G)(R)) 0 • Let Ao be the set of representations of G0 which 
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are square-integrable modulo the center, and have infinitesimal character 
.:v (A. E X!D). The induced representations n = Ifio?/Mn0) (no E A0) are irreducible 
[37, p. 50]. By definition, DID is the set of equivalence classes of these representa­
tions [37, p. 54]. 

11.3. Let qi E tP(G). Let LM be a minimal relevant Levi subgroup containing 
Im qi. It is essentially unique (8.6). We assume LM # LG; we may view qi as an ele­
ment of <P(M). By 11.2, there is associated to it a finite set of ll\fJ.M of discrete 
series representations of M. 

We may assume LM to be a Levi subgroup of a relevant parabolic subgroup Lp 
corresponding to PE fl'(G/k). Then U = X*(T) ® R = X*(LT 0

) ® R. Let V be 
the subspace of elements of U which are orthogonal to roots of L M, and fixed 
under I' k· It may be identified with the dual a; of the Lie algebra of a split compo­
nent A of P. 

Let.; be the character of C(M) defined by the elements of ll!D,M· We may assume 
that 1.;1 E Cl(a;+). Let Pi be the smallest parabolic k-subgroup containing P such 
that 1.;1, when restricted to ap1, is an element of the Weyl chamber ag. Let Mi = 
z(ap) and P' = P n Mi. Then P' is a parabolic subgroup of Mi. Moreover the 
restriction of lel to the split component Mi n Ap of P' is one; therefore, for each 
p E n!fJ.M• the induced representation Ind'}{/(p) is tempered. Let ll'\D be the set of all 
constituents of such representations. Then by definition, DID is the set of Langlands 
quotients J(Pi. O') with O' Ell~ (cf. [37, p. 82]). 

11.4. Complex groups. Assume now k = C. Then Wk= C*, and <P(G) may be 
identified to the set of homomorphisms of C* into LT0 , modulo the Weyl group 
W, i.e., to 

(1) {(.?.,µ),where.?.,µ E X*(T) ® C, A - µ E X*(T)} 

modulo the (diagonal) action of W. In this case Im qi is in the Levi subgroup LT 
ofLB, which is the Lp of 11.3. The set ll!fJ.M consists of one character of T (cf. 9.1). 
Choose Pi. M, as in 11.3. Since the unitary principal series of a complex group are 
irreducible (N. Wallach), the set ll~ consists of one element. Hence so does DID. Thus 
each DID is a singleton. The classification thus obtained is equivalent to that of 
Zelovenko. 

11.5. Let G = GLn, k = R. In this case, it is also true that the tempered re­
presentations induced from discrete series are irreducible [22]; therefore each set 
n~ (cf. 9.3) consists of only one element, hence so does n\D and we get a bijection 
between <Jj(G) and UG(R). 

Let n = 2. If qi is reducible, then Im qi is commutative; hence qi factors through 
(WR)•b = R* and is described by two charactersµ, v of R*. Then DID consists of a 
principal series representation n(µ, v) (including finite dimensional representations, 
as usual). In particular there are three p's with kernel C*, to which correspond 
respectively n(l, 1), n(sgn, sgn) and n(l, sgn), where sgn is the sign character. If 
qi is irreducible, then q.i(z") may be assumed to be equal to (s0, Z"), where s0 is a fixed 
element of the normalizer of LT0 inducing the inversion on it. q.i(R+) belongs to the 
center of LGo, and q.i(S) is sum of two characters, described by two integers. Then 
DID consists of a discrete series representation, twisted by a one-dimensional re­
presentation. 

11.6. As is clear from these two examples, the main point to get explicit knowl-
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edge of the sets nrp is the decomposition of representations induced from tempered 
representations of parabolic subgroups. This last problem has been solved by A. 
Knapp and G. Zuckerman [29], [30]. 

11.7. Remark on the nonarchimedean case. Langlands' classification [37] is also 
valid over p-adic fields [57]. In view of 8.6, it is then clear that the last step (11.3) 
of the previous construction can also be carried out in the nonarchimedean case. 
Thus, besides the decomposition of tempered representations, the main unsolved 
problem in the p-adic case is the construction and parametrization of the discrete 
series. 

12. Local factors. 
12.1. Let 'JC E D(G(k)) and r be a representation of LG (2.6). Assume that 'JC E Drp 

for some <p E </J(G). For a nontrivial additive character cjJ of k, we let 

(I) L(s, 'JC, r) = L(s, r o <p), e(s, 'JC, r) = e(s, 'JC, r, cp) = e(s, r o <p, cp), 

where on the right-hand sides we have the L- and e-factors assigned to the represen­
tation r o <p of Wk [60]. In the unramified situation of 10.4, this coincides with the 
definition given in 7.2. 

In view of what has been recalled so far, these local factors are defined if k is 
archimedean, or if k is nonarchimedean in the unramified case, or if G is a torus. 

12.2. Let now G = GL,.. In this case there are associated to 'JC E D(G(k)) local 
factors L(s, 'JC) and e(s, 'JC, cp) defined by a generalization of Tate's method, in [25] 
for n = 2, in [19] for any n, which play a considerable role in the parametrization 
problem and in the local lifting. A natural question is then whether these factors 
can be viewed as special cases of 12.1, where r = r,. is the standard representation 
of GL,., i.e., whether we have equalities 

(I) L(s, 'JC) = L(s, 'JC, r,.), e(s, 'JC, ¢) = e(s, 'JC, r,., cjJ), 

with the right-hand side defined by the rule of 12.1. 
(a) Let n = 2. It has been shown in [25] that the equivalence class of 'JC is charac­

terized by the functions L(s, 'JC ® x), e(s, 'JC ® X• cp), where x varies through the 
characters of k*. In this case, the parametrization problem and the proof of (I) 
are part of the following problem: 

(*)Given q E </J(G), find 'JC = 7e(<J) such that 

(2) L(s, <J ® x) = L(s, 7e ® x), e(s, <J ® X• ¢) = e(s, 'JC ® X• cp) 

for all x's, and prove that <J ...... 7e(<J) establishes a bijection between </J(G) and 
D(G(k)). 

This problem was stated and partially solved in [25]. The most recent and most 
complete results in preprint form are in [62]; they still leave out some cases of even 
residual characteristic, although some arguments sketched by Deligne might take 
care of them (see [63] for a survey). 

As stated, the problem is local, but, except at infinity, progress was achieved first 
mostly by global methods: one uses a global field E whose completion at some 
place vis k, a reductive E-group H isomorphic to G over k, an element p E </J(H/k) 
whose restriction to L(H/k0 ) = LG is <J, chosen so that there exists an automorphic 
representation 7e(p) with the L-series L(s, p) (see §14 for the latter). This construe-
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tion relies, among other things, on Artin's conjecture in some cases, and [38]. In 
fact, it was already shown in [25] that ( *) for odd residual characteristics follows 
from Artin's conjecture, leading to a proof in the equal characteristic case. At 
present, there are in principle purely local proofs in the odd residue characteristic 
case [6J]. Note also that the injectivity assertion is a statement on two-dimensional 
admissible representations of w;, namely, whether such a representation O" is 
determined, up to equivalence, by the factors L(s, O" a x) and e(s, O" a x, <fl). But, so 
far, the known proofs all use admissible representations of reductive groups [63]. 

(b) For arbitrary n, (I) has been proved in the unramified case, for special re­
presentations, and by H. Jacquet for k = R, C [24]. 

(c) Local L- and e-factors are also introduced for G = GL2 x GL2 in [21], at any 
rate for products n x n' of infinite dimensional irreducible representations. Partial 
extensions of this to GLm x GLn for other values of m, n are known to experts. 

(d) For n = 3, n e D(G(k)) is again characterized uniquely by the factors 
L(s, n ® x) and e(s, n ® x. <fl) [27], [46]. For n G 4 on, this is false [46]. How­
ever, it may be there are still such characterizations if x is allowed to run through 
suitable elements of ll(GLn-i(k)) or maybe just ll(GLn_2(k)). 

12.3. Local factors have also been defined directly for some other classical 
groups, in particular for GSp4 by F. Rodier [48], extending earlier work of M. E. 
Novodvorsky and I. Piatetskii-Shapiro, for split orthogonal groups, in an odd 
number 2n + 1 of variables by M. E. Novodvorsky [41]. In the latter case LG0 = 
Sp2n, and in the unramified case, the local factors coincide (up to a translation in 
s) with those associated by 7.2 to the standard 2n-dimensional representation of the 
£-group. See also [42]. 

CHAPTER IV. THE £-FUNCTION OF AN AUTOMORPHIC REPRESENTATION. 

From now on, k is a global field, o = ok the ring of integers of k, Ak or A the ring of 
adeles of k, V (resp. V00 , resp. V1) the set of places (resp. infinite places, resp. finite 
places) of V. For v e V, k 0 , 0 0 and Nv have the usual meaning. Unless otherwise 
stated, G is a connected reductive k-group. 

13. The £-function of an irreducible admissible representation of GA. 
13.1. Let n be an irreducible admissible representation of GA and r a representa­

tion of LG. There exists a finite Galois extension k' of k over which G splits and 
such that r factors through LG0 ><1 I'k'tk· We want to associate ton and r infinite 
Euler products L(s, n, r) and e(s, n, r), whose factors are defined (at least) for al­
most all places of k. 

Let v Ev. By restriction, r defines a representation r. of L(G/k.) = LG0 )<I rk. 
On the other hand, n = ®.n., with n. e ll(G(k.)) [11]. Assume the parametriza­
tion problem of Chapter III solved. Then there is a unique 'Pv e <P(G/k0 ) such that 
n. E nrp .. Then we let 

(I) 

(2) 

L(s, n, r) = ll0L(s, n., r0 ), 

e(s, n, r) = n.e(s, n., r., </l.), 

where </J. is an additive character of k. associated to a given nontrivial additive 
character of k, and the factors on the right are given by 12.1(1). 
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The local problem is solved for archimedean v's, and for almost all finite v's 
(see below) so that the factors on the right are defined except for at most finitely 
many v e V1. For questions of convergence or meromorphic analytic continuation 
this does not matter, and we shall also denote such partial products by L(s, 7C, r). 

By I 0.4, 'Pv is well defined if the following conditions are fulfilled: G is quasi-split 
over kv, G( 0 0 ) is a very special maximal compact subgroup of G(k.), k' is unramified 
over k, and 7Cv is of class one with respect to G(o.). All but finitely many v e V1 

satisfy those conditions [61]. 

13.2. THEOREM [35]. Let 7C be an irreducible admissible unitarizable representation 
of GA and r be a representation of LG (2.6). Then L(s, 7C, r) converges absolutely for 
Res sufficiently large. 

We may and do view r as a complex analytic representation of LG0 ~ I'k'lk> 
where k' is a finite Galois extension of k over which G splits (2.7). We let V1 be the 
set of v e V1 satisfying the conditions listed at the end of 13.1. We have to show that 

(1) L' = IT L(s, 7Cv, r.), 
vEV1 

converges in some right half-plane. 
Let Fr. be the Froberiius element of rk'v•lk,• where v' E vk' lies over v E V1. We 

have 

(2) <p0(Fr0 ) = (t., Fr.), with t. e LT0 

and 

(3) L(s, 7C., r.) = (det(I - r((t., Fr0))N;•))-1. 

To prove the theorem, it suffices therefore to show the existence of a constant a > 0 
such that 

(4) jµj ~ (Nv)0 for every v e V1 and eigenvalue µ of r((t., Fr.)). 

Let n = [k': k]. Since we may assume t. fixed under I'k, (6.3), we have t~ = 
(t., Frv)n; hence it is equivalent to show (4) for all eigenvalues µof r(t.). These 
are of the form t;, where il runs through the set P, of weights of r, restricted to LG0

• 

Thus we have to show the existence of a > 0 such that 

(5) jt.jReA ~ (Nv) 0 for all v e Vi and il e P,. 

Let G' be a quasi-split inner k-form of G. Then LG = LG', and G is isomorphic 
to G' over k. for all v e Vi. We may therefore replace G by G'; changing the nota­
tion slightly, we may (and do) assume G to be quasi-split over k. We then fix a 
Borel k-subgroup B of G and view LT as the £-group of a maximal k-torus T of G. 

For a cyclic subgroup D of rk'lk• let VD be the set of v E Vi for which I'k, is equal 
to the inverse image of Din I',,. The group U = X*(T)D is then the group of one­
parameter subgroups of a subtorus S of T such that S/k. is a maximal k.-split torus 
ofG/k. for all v e VD. The group 

(6) Y = Hom(U, C*) = Hom(X*(T)D, C*) (v e VD), 

is independent of v, and is the Y of §6 for G/k •. The root datum cp(G/k.), which is 
determined by the action of D, is also independent of v e VD. 
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Given ye Y, let y0 be a "logarithm" of y, i.e., an element of Hom(X*(T)D, C) 
such that 

(7) y(u) = NvYo(u) = Nv<Yo.u>, for u e XiT)D. 

This element is determined modulo a lattice, but its real part Re y0 e Hom(U, R), 
defined by 

(8) y(u) = Nv<Reyo.u> 

is well defined. If y has values in R.'J'., then we choose y0 to be equal to its real part. 
The space a* is the dual of a = U ® R (the so-called real Lie algebra of Sf kv), and 
is acted upon canonically by "Was a reflection group. We let a*+ be the positive 
Weyl chamber defined by B. 

Let Pv be the unramified character of T(kv), given by t ...... lo(t)lv, where I Iv is the 
normalized valuation at v and o half the sum of the positive roots. Then its real 
logarithm p0 is independent of v e VD· In fact, it is a positive integral power of Nv 
whose exponent is determined by the kv-roots, their multiplicities, and the indices 
qa of the Bruhat-Tits theory [61]. But those are determined by the previous data 
and the action of I'"· on the completed Dynkin diagram [61], which is also in­
dependent of v e VD. We write po instead of Pv.O· We have p0 ea*+. 

The representation 'lT:v is a constituent of an unramified principal series PS(xv), 
where Xv is an unramified character of T(kv), or, equivalently, of S(kv), determined 
up to a transformation by an element of kW. Thus we may assume Xv.o to be con­
tained in the closure ~l'{a*+) of a*+. Since 'lT:v is unitary, the associated spherical 
function is bounded, and hence Re Xv.o is contained in the convex hull of k W(p0), 

i.e., we have 

(9) (po - Xv.O• .A.) ~ 0, for all .A.ea*+. 

(See remark following the proof.) 
For .A. e X*(LT 0 ), let .A.' be the restriction of .A. to X*(TD). In view of 10.4 and our 

conventions, we have then 

(10) 

Let A = "W(.A.') n ~l'{a*+). Since Re Xv.OE ~l'(a*+), we have 

(II) Nv<Re X,.o..l'> ~ Nv<Re X..o..i>. 

Combined with (9), this implies 

(12) 

If now .A. runs through P,, there are only finitely many possibilities for A, whence 
(4), with a = sup(p0, A) (.A. e Pr), for v e VD. Since Vi is a finite union of such 
sets, this proves ( 4). 

REMARK. The relation (9) is proved in [35, pp. 27-29] for the split case. For a 
general semisimple simply connected group, see I. Macdonald, Spherical functions 
on a group of p-adic type, Puhl. Ramanujan Institute 2, Madras, Theorem 4. 7 .1, or 
H. Matsumoto, Lecture Notes in Math., vol. 590, Springer-Verlag, Berlin and New 
York, Proposition 4.4.11. In fact, we have used it for a general connected reductive 
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group but the reduction to the case of simply connected semisimple groups is 
easily carried out by going over to the universal covering of the derived group. 

13.3. COROLLARY. Let P be a parabolic k-subgroup of G, P = M ·Na Levi decom­
position over k of P. Assume that n is a constituent of a representation Ind ~~(O') 
induced from a unitarizable irreducible admissible representation O' of MA, viewed as 
a representation of PA trivial on NA- Then L(s, n, r) is absolutely convergent in some 
right half-plane. 

We view L Mas a subgroup of LG (3.3). Let r' be the restriction of r to L M. 
Let v E V1 be such that the conditions listed at the end of 13.1 are satisfied by 

M, G, O'v and n •. Then, by the transitivity of induction, it follows that there exists 
Xv as in the above proof such that O'v (resp. nv) is the constituent of class 1 with 
respect to M(o.)(resp. G(o,)) of the principal series PS(x.) for M(kv) (resp. G(kv)). 
Then L(s, nv, r) = L(s, O'v, r') (7.2, 10.4). This being true for almost all v's, we are 
reduced to 13.2. 

14. The £-function of an automorphic representation. 
14.1. A smooth representation of GA is automorphic if it is a subquotient of the 

regular representation of GA in Gk\G A- It is cuspidal if it consists of cusp forms. If 
so, it is unitary modulo the center. We let W.(G/k) denote the set of equivalence 
classes of irreducible admissible automorphic representations of GA- By Proposi­
tion 2 of [39], every n E W.(G/k) is a constituent of a representation induced from 
some cuspidal O' E W.(M/k), where Mis a Levi k-subgroup of a parabolic k-subgroup 
of G. Combined with 13.3 this yields the 

14.2. THEOREM (LANGLANDS). Let n E W.(G/k) and r be a representation of LG. 
Then L(s, n, r) is absolutely convergent in some right half-plane. 

The £-function of an irreducible admissible automorphic representation will 
also be called an automorphic £-function. 

14.3. There are several conjectures on the analytic character of L(s, n, r) for auto­
morphic n, all checked in some special cases, going back to the work of Hecke on 
L-series attached to Grossencharaktere and to modular forms. 

(a) If n E W.(G/k), then L(s, n, r) admits a meromorphic continuation to the whole 
complex plane. 

(b) Assume that n and G are such that the local solution to the local problem 
yields factors L and e at all places. It is then conjectured that there is a functional 
equation L(s, n, r) = e(s, n, r) · L(I - s, fr, r), where fr is the contragredient re­
presentation to n. 

(c) In a number of cases, it has been shown that: 
(*)If n is cuspidal, r irreducible nontrivial, then L(s, n, r) is entire. 
Here and there, conjectures to the effect that this should be a general pheno­

menon have been stated. However, there are counterexamples. Heuristically, one 
sees this is likely to happen if n is lifted from a cuspidal representation of a reduc­
tive group H (in the sense of V below) and the restriction of r to L H contains the 
trivial representation. 

14.4. (a) Let G = GLn and r = rn be the standard representation of GLn(C). 
Then 14.3(b), (c) are proved in [25] for n = 2, in [19] for n ~ 2, if Land e are de-
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fined to be the products of the L- and .s-factors mentioned in 12.4. As recalled in 
12.4, these are the same as those considered here at almost all places, and for n = 2, 
at all places. 

(b) If G = GL2 x GL2 and r = r2 ® r2, similar results are established by Jac­
quet in [21]. 

(c) Let G = GL2• If r: GL2(C) --+ GL3(C) is the adjoint representation, then 
14.3(b), (c) are announced in [16]. This extends results of Shimura [54]. If r = 
Sym3(r2), Sym4(r2), then 14.3(b) is stated in [15], in the context of the global lifting 
(see V); for Sym3(r2), it is also proved in [51], in the framework of 14.5 below. 

( d) Let k be a function field, G = GLm x GLn and r = rm ® r n· Let 7r: (resp. 
7r:') be a cuspidal automorphic representation of the first (resp. second) factor. By 
the methods of [19], [26], [27], one can define L and e, and (Jacquet dixit) show 
14.3(b), and also the holomorphy, except when m = n and 7r: is contragredient to 
7r:'. These methods also yield further examples for other groups and for other re­
presentations. It is expected that similar results hold over number fields. 

(e) 14.3(a) has also been checked when G = PSp(4) in some cases in [1], and, in 
general, in [42]. A functional equation is also established. 14.3(a), (b) are announced 
in [41] for orthogonal groups in an odd number of variables over functional fields, 
for the local factors mentioned in 12.3. For a survey and earlier references, see 
[43]. See also [44]. 

14.5. We describe some cases in which 14.3(a) has been verified in [33] (see also 
[18] for a survey). Let C be a split k-group, of adjoint type, endowed with its canoni­
cal o-structure. Fix a Borel subgroup B of C and a maximal torus T of B defined 
over o. Let P be a maximal proper standard parabolic subgroup and P = M · N its 
standard Levi decomposition. Since C is adjoint, it is easily seen that C(M) is a 
torus. The group M/C(M) is semisimple, split over k, of adjoint type, of rank equal 
to rk(C) - l. We let G = M/C(M). The group LG0 is simply connected (2.2(2)). 
We have a natural inclusion LG --+ L M, and L M is the Levi subgroup of a standard 
parabolic subgroup Lp = LM · U with unipotent radical U (3.3). Let A be the split 
component of Pin T, and LA0 the split component of Lp 0 in LT0 • The group LA0 

acts on the Lie algebra u of U and its eigenspaces are irreducible LG0 -modules. We 
let Fp denote the set of contragredient representations to these LG0 -modules. The 
£-functions considered in [33] are of the form L(s, 7r:, r) with re Fp and 7r: an ir­
reducible cuspidal automorphic representation of G. A number of examples are 
given in which L(s, 7r:, r) admits a meromorphic continuation. This is deduced from 
the results of [32]: let m be the length of a composition series of u with respect to 
M. Then, for suitable numbering of the elements of Fp and strictly positive integers 
a;, there is a relation 

(I) M(s) = TI L(a;s, 7r:, r;) · L(sa; + 1, 7r:, r;)-I, 
l~i~m 

where M(s) is the intertwining operator occurring in the theory of Eisenstein series 
with respect to P, and is known to have a meromorphic continuation to the complex 
plane [32]. If r = 1, this and 13.2 yield the meromorphic continuation. In general, 
if we have the analytic continuation for all r/s except one, (1) gives it for the remain­
ing one. 

14.6. The converse problem is to what extent automorphic representations can 
be characterized by analytic properties of their £-functions, or to give analytic 
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conditions on a given L-function which will insure that it is automorphic. The 
first main result was Hecke's characterization of the Mellin transform of a parabolic 
modular form. Then came Weil's extension of this theorem to congruence sub­
groups [64], [65], its generalization in the context of representations in [25], and the 
extension to GL3 [46], [27]. In those results, conditions are imposed on the L-func­
tions of 7r: and of the twists 7r: ® x of 7r: by characters. However, the analogous 
statement is false from n = 4 on [46]. It may remain true if one imposes conditions 
on the twist n ® p of 7r: by representations of GLn-l or only of GLn_2• For results 
in that direction, over function fields, see [45]. 

Note however that in the general problem outlined here, one wishes rather to turn 
things around and deduce the analytical properties of some given L-series by show­
ing directly that it is automorphic (see the seminars on base change and on zeta­
functions of Shimura varieties [17], [8], [40]). 

14.7. Other problems. (1) One "representation theoretic" form of "Ramanujan's 
conjecture" is the following: if n = ®nv is an irreducible nontrivial admissible 
cuspidal automorphic representation (and G is simple), then each 'lr:v is tempered. 
It is now well known to be false for certain orthogonal or unitary groups, and even 
for one split group [20]. 

(2) Let n be a unitary irreducible representation of GA. If G = GL2, then its 
multiplicity in the space of cusp forms o L2( G(k)\G(A)) is at most one, "multiplicity 
one theorem" [25]. In fact there is even a "strong multiplicity one theorem" [38]: 
given nv for almost all v's, there is at most one constituent 7r: of the space of cusp­
forms with those local factors. 

The multiplicity one theorem has been proved for GLn [52] and the strong form 
for GL3 [28]. It is unknown whether it is true for SL2• On the other hand, there are 
counterexamples for some inner forms ofSL2 [31]. 

CHAPTER V. LIFTING PROBLEMS. 

Although the problems on automorphic £-functions discussed in §14 are only 
partially solved, the solutions provide practically all cases in which an L-series 
(automorphic or not) has been proved to have meromorphic or holomorphic analy­
tic continuation with functional equation. This suggests trying, given an L-series 
and a reductive group G, to see whether G has an automorphic representation with 
the given L-series. Many instances of such questions can be viewed more precisely 
as special cases of the "lifting problem" or of the "problem of functoriality with 
respect to morphisms of L-groups." There is also a local version. For the sake of 
exposition, we shall start with the latter, but it should be borne in mind that the 
motivation and requirements stem from the global one, and that local and global 
are at present inextricably linked in many proofs. These questions were raised by 
Langlands in [35]. 

15. L-homomorphisms of L-groups. 
15.1. Let Ebe a field and H, G connected reductive £-groups. A homomorphism 

u: LH-+ LG over I'k is said to be an L-homomorphism if it is continuous and if its 
restriction to L H 0 is a complex analytic homomorphism of L H 0 into LG0 • Let E be 
local and G quasi-split. If <p e <P(H), then u o <p e <P(G). In fact, condition 8.2(i) is 
clearly satisfied, by u o <p, and so is 8.2(ii) because every parabolic subgroup of LG 
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is relevant, G being assumed to be quasi-split. Therefore <p ...... u o <p defines a map 
</J(H) --+ </J(G), to be denoted </J(u). 

15.2. Let E = k be a global field. For v E v, the Galois group rk. is a subgroup 
of I'k; hence the L-group of G viewed as a k0-group, to be denoted L(G/k0 ), is a 
subgroup of LG = L(G/k). Thus, in particular, the £-homomorphism u of 15.1 
defines by restriction an £-homomorphism u0 : L(H/k0 )--+ L(G/k0 ), hence also a 
map </J(u0 ): </J(H/k0 ) --+ </J(G/k0 ) (v E V). 

The "lifting problem" is, roughly speaking, whether such maps are mirrored by 
maps of representations in the local case, or of automorphic representations in the 
global case. 

15.3. EXAMPLE: BASE CHANGE. Let H be a split over E, Fa finite Galois extension 
of E, and G = RFIEH. Then LG0 is a product of copies of LH0 , indexed and per­
muted by I'FIE (5.1). There is then anaturalL-homomorphism u which is the iden­
tity on I'E and the diagonal map on LH0 • If Eis a local field, then W], is an open 
normal subgroup of W£, and the map </J(u) may be viewed as given by the restric­
tion to W],. 

16. Local lifting. 
16.1. Let k = Ebe a local field, G quasi-split over E, Ha connected reductive 

E-group and u: LH--+ LG an L-homomorphism. The problem of local lifting is, 
roughly, to establish a correspondence ll(u): ll(H(k))--+ ll(G(k)) which preserves 
L- and e-factors. If the local parametrization problem of III is solved, then ll(u) 
is the map between indistinguishable classes which assigns llu•rp, G to llrp.H 
(<p E </J(H)). The element ll E ll(G(k)) is said to be a lift of 7r E ll(H(k)) if ll E 

lluorp, G> where <p E </J(H) is such that 'Ir E nrp.H· We have then 

(1) L(s, ll, r) = L(s, 'Ir, r o <p), e(s, n, r, cp) = e(s, 'Ir, r 0 u, cp). 

for every representation r of LG. 
16.2. The local lifting is thus viewed as a map between classes of L-indistinguish­

able representations rather than one between representations. However it is pos­
sible to single out one lifting under assumptions which, in the global case, are 
satisfied almost everywhere: assume H, G to be quasi-split, split over an unrami­
fied extension F of E, endowed with an OE-structure such that H(oE) and G(oE) 
are very special maximal compact subgroups, and 7r of class one with respect to 
H(oE). Then rp such that 7r e Drp.H> and the set lluorp,G are well defined. Moreover, 
llu•rp,G contains exactly one element of class one (with respect to G(oE)), to be called 
the natural lift of 'fr. 

16.3. A full solution of the local parametrization problem does not seem to be 
in sight, and it is conceivable that it may require proving at the same time global 
results such as Artin's conjecture. Meanwhile, one wants to settle some approxima­
tions to it, notably to be able to prove some cases of Artin's conjecture. Note that 
if G = GLm then the sets Drp.G are either known or conjectured to consist of one 
element (12.2, 12.3). Such a lifting problem can then be stated as one of construct­
ing a map u*: ll(H(k)) = ll(G(k)) satisfying certain conditions. So far, there are 
two examples: 

(a) Base change (cf. 15.3) when H = GL2 and Fis cyclic of prime degree over E 
[17], [38], [49], [56]. Besides some naturality conditions and 16.3, the main require-
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ments relate the characters of n and of the hypothetical u*(n). The results also 
describe the fibres and the image of u*. [Note that the results of [38] on this problem 
are used in [62], so that we cannot invoke the solution of the local parametrization 
problem (12.4) for GLdust to use the map U(u) of 16.1. Ifwe could, then the local 
questions [38] would be mainly to relate the characters of n and ll(u)(n).] 

(b) H = GL2, G = GL3, and 

(1) U: L H 0 = GL2( C) --> LG0 = GL3( C) 

is given by the adjoint representation of LH0 (see [16]). 
In this case, n = u*(n) must be trivial on the center of LG0 and be such that the 

L- and e-factors of u*(n) ® x (X character of E*) are certain given functions. There 
is at most one such U(12.4(d)). In [16], n is stated to exist, except possibly if E has 
even residual characteristic and n is "extraordinary." 

16.4. In 16.3(a), the lifting problem was connected with the existence of relations 
between characters. This is a direct connection between U(H) and ll(G), which is 
of great importance for the use of the trace formula in proving or using the local or 
global lifting. We now mention two other examples of such relations. Assume that 
G is a quasi-split inner form of H. There is then an isomorphism u: L H...::. LG and 
an embedding </J(u): </J(H) c: </J(G). If/: H--+ G is a k,-isomorphism such that 
1-1 · rf is an inner automorphism of G for every re I'k• then/ establishes a bijection 
between conjugacy classes which are stable under I'k. Using results of Steinberg 
[59], one then sees easily that maximal k-tori in Hare isomorphic over k to maximal 
k-tori in G. This allows one in some cases to assign regular semisimple classes in 
G(k) to such classes in H(k), so that it makes sense to compare values of characters 
of H(k) and of G(k) on such classes. 

(a) Let k be either R or nonarchimedean with odd residual characteristic. Let 
G = GL2 and H be the group of invertible elements in the quaternion algebra over 
k. The sets Drp are singletons, <JJ(u) assigns to a (finite dimensional) irreducible 
representation n of H(k) a discrete series representation n' of G(k). In this case, 
the semisimple classes of H(k) correspond to the elliptic classes in G(k). It is proved 
in [25] that the characters of n and n' differ only by a sign on those classes. 

(b) Let k = R. For <p e </J(H), </J(G), let Xrp be the sum of the characters of the 
elements in nrp. Choose <p E </J(H) such that Drp consists of tempered representations. 
Then Xrp and Xu•rp are equal on the regular semisimple classes of H(k), up to a sign 
depending only on Hand G [53, 6.3]. 

16.5. We could also take the Weil forms of the L-groups. In that case an L­
homomorphism, restricted to WE, is assumed to satisfy the obvious analogue of 
8.2(i). Take in particular the case where H = { 1 }. Then u is just an element of </J(G). 
The lifting problem in this case is part of the local problem of III. 

17. Global lifting. 
17 .1. Assume G to be quasi-split. Let H be a reductive k-group and u: L H --+ LG 

an L-homomorphism. Let uv: L(Hfkv)--+ L(Gfkv) and </J(uv): </J(H/k.)--+ </J(G/k.) 
be the associated maps (v e V) (see 15.1). 

Let 1C = ®.n. (resp. n = @.n.) be an irreducible admissible representation of 
HA (resp. GA). Then Dis said to be a lift of n if n. is one of n. for every v e V (16.1). 
If that is the case, then, for every representation r of LG, we have 

(1) L(s, ll, r) = L(s, n, r o u), e(s, n, r) = e(s, 1C, r 0 u). 
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It is also usually requested that n. be the natural lift (16.2) of 'R:v for almost all v's. 
The question is then whether every automorphic 7r: has a lift, which is automorphic, 
or, somewhat more ambitiously, whether there is a map u*: 11!.(H/k)-+ 11!.(G/k) 
with reasonable properties, which sends 7r: e 11!.(H/k) onto a lift of 'R:. One also wants 
to describe the fibres and the image of u*. 

In that degree of generality, the problem appears to be inaccessible at present. 
However, there are many results, old and recent, which are very striking illustra­
tions of this principle, some of which will be extensively discussed in various semi­
nars. Here, for orientation, and to give an idea of the scope of the problem, I shall 
list briefly some special cases, referring to the literature or to other seminars for 
more details. 

REMARK. Let r be a representation of L Hof degree n. Then it defines an £-homo­
morphism u : LH-+ LGLn = GLn(C) x I'k in the obvious way. A positive answer 
to the lifting problem would imply in particular that if 7r: is an automorphic repre­
sentation of H, then L(s, 7r:, r) = L(s, ff, rn) where ff is an automorphic representa­
tion of GLn and r n the standard representation. This would therefore to a large 
extent reduce the study of automorphic £-functions to those of GLn, with respect 
to the standard representation. 

17.2. Let H = {1 }, G = GLn. Then an £-homomorphism u is just a continuous 
complex n-dimensional representation of I'k. The question is then whether the 
Artin £-series L(s, u) is an automorphic £-series of GLn (with respect to the stand­
ard representation of GLn(C)), which should be cuspidal if u is irreducible. In view 
of known results on GLn (cf. 14.4) this would imply Artin's conjecture. 

For n = I, a positive answer is given by class-field theory. For n = 2, 3, a posi­
tive answer is equivalent to Artin's conjecture, since there are converses to Hecke 
theory [25], [65], [27], [46]. For n = 2, it has been proved for dihedral or tetrahedral 
representations of I'k, and for some others over Q (see [38], [17], [15]). 

17.3. Let k' be a Galois extension of k, n the degree of k' over k. Take H = 
Rk'/kGLh G = GLn. There is a natural homomorphism/: LH0 XI rk'lk into the 
normalizer of a maximal torus LT0 of LG0 • Since the former group is a quotient of 
LH, and LG= LG0 x rk, we can define an £-homomorphism u: LH-+ LG by 
u(h, r) = (f(h), r) (he LH0

, re I'k). An automorphic representation of H is a 
Grossencharakter X of k'. The problem is then whether the Artin £-series L(s, x) 
is the £-series of an automorphic representation of G. 

If n = 2, k = Q, and k' is imaginary, this was proved by Hecke; 7r: is associated 
to a cuspidal holomorphic automorphic form. If n = 2, k = Q, and k' is real 
quadratic, this was established by H. Maass. 7r: is then as.sociated to a nonholomor­
phic automorphic form. 

For n = 3, this is proved in [26], [27]. 
17.4. Base change. This is the global counterpart to 16.3(a). Let k' be a finite 

Galois extension of k. Assume H to be k-split and G = Rk'tkH. There is again an 
£-homomorphism u: L H -+ LG whose restriction to L H 0 is a diagonal map. In this 
case G(A) and G(k) are canonically isomorphic to H(Ak,) and H(k'); therefore the 
problem is to associate an automorphic representation of H(Ak') to an automorphic 
representation of H(Ak). Again, it should be a counterpart to the restriction to Wk' 
of homomorphisms wk -+ L H 0 • 

If H = GL2 and k' is cyclic of prime degree, the lifting map u* for representa­
tions is constructed in [38], which also gives a description of its image and fibres. 



58 A. BOREL 

This extends work of Doi-Naganuma, Jacquet [21] (on the quadratic case) and of 
Saito [49], Shintani [55], [56] (cf. [17)). 

17.5. Let G be quasi-split, and Han inner form of G. Then L H = LG and </J(H/kv) 
c </J(G/kv) for all v's (8.3). Moreover, for almost all v's, Hand G are isomorphic 
over k •. ; hence </J(H/kv) = </J(Gfkv) and D(H(kv)) = D(G(kv)). The question is 
then, given 'Ii: = ©v'li:v, is there an automorphic representation D = ©vllv of G 
such that Dv = 'li:v for almost all v's? 

If G = GL2 and His the group of invertible elements of a quaternion algebra D 
over k, a positive answer is given by Jacquet-Langlands [25]. Note that, in that case, 
because of the "strong multiplicity one theorem," at most one D may be associated 
to a given 'Ii: in this way. The possible D's are in fact the cuspidal automorphic 
representations for which Dv belongs to the discrete series for all v's over which D 
does not split (loc. cit.). 

17.6. If G = GL2, G = GL3 and u is given by the adjoint representation, as in 
13.4, the global lifting problem has been solved by Gelbart-Jacquet [16], the "local 
lifting" being the one of 16.2(b). 

17. 7. Let M be a Levi k-subgroup of a parabolic k-subgroup P of G. Then L M 
imbeds naturally into LG (3.3), whence an L-homomorphism u: LM--> LG. If 'Ii: 
is cuspidal, then the analytic continuation and residues of Eisenstein series [32] are 
known to yield a unitary u*('!i:) in many cases, and, conjecturally, in general. 

18. Relations with other types of L-functions. 
18.1. In 17.2, the lifting problem amounts to identifying an Artin L-function 

with an automorphic L-function on GLn- One can also include in this problem 
more general representations of Weil groups if one passes to the Weil form of the 
L-groups. For simplicity, let us limit ourselves to relative Weil groups Wk'!k• where 
k' is a finite Galois extension of k over which Hand G split. An L-homomorphism 
u: LH0 ~ wk'/k--> LG0 ~ wk'/k is then a continuous homomorphism compatible 
with the projections on Wk'lk• whose restriction to LH 0 is a complex analytic homo­
morphism into LG0

, and such that, for w E Wk'lk• u(w) = (u'(w), w) with u(w) semi­
simple (cf. 8.2(i)). 

If H = {I}, an L-homomorphism is said to be an admissible homomorphism of 
Wk,lk into LG. In analogy with the definition of </J(G) in the local case, we can con­
sider the set </Jk,1iG) of equivalence classes of such homomorphisms, modulo inner 
automorphisms of LG0

, and then pass to a suitable limit </J(G) over k'. 
The lifting problem asks in this case to associate to any rp E </J(G) an automorphic 

representation 'Ii:, such that, for any representation r of LG, L(s, 'Ii:, r) is equal to the 
Artin-Hecke L-series of r o u. In particular, is every Artin-Hecke L-series that of an 
automorphic representation of GLm with respect to the standard representation? 

If G is a torus, then [34] provides a positive answer. In fact, in this case the irredu­
cible admissible automorphic representations of Gare the characters of G(k)\G(A), 
and [34] gives a homomorphism with finite kernel of </Jk,1iG) onto the set of such 
characters. 

18.2. In the same vein, it is natural to ask whether Hasse-Weil zeta-functions (or 
even L-functions of compatible systems of /-adic representations of Galois groups) 
can be expressed in terms of automorphic L-functions. For elliptic curves over 
function fields, it is a theorem. That it should be the case for elliptic curves over 
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Q is the Taniyama-Weil conjecture; it has been checked in a number of special 
cases (see [2], [14] for surveys from the classical and representation theoretic points 
of view respectively). Apart from that, this problem has been pursued mostly for 
Shimura curves and certain Shimura varieties; we refer to the corresponding semi­
nars for a description of the present state of affairs. 

Finally, one may ask whether it is possible to characterize a priori those auto­
morphic representations whose L-series have an arithmetic or algebraico-geome­
tric significance. A necessary condition if k is a number field is that for an infinite 
place v, nv should be associated to a representation a0 of Wk, whose restriction to 
C* is rational, C* being viewed as real algebraic group, i.e., be of type A0 in 
[3, 6.5]. If the L-series of n is to be an Artin L-series, then n should even be of type 
A00 (loc. cit.), i.e., a. should be trivial on C*. Let k = Q. Then there are three pos­
sibilities for n 00 (11.5). If n 00 = n(I, sgn), then n corresponds to 2-dimensional 
representations of I'0 with odd determinant by the theorem of Deligne-Serre [10], 
[50]. Modulo the Artin conjecture for such representations, the correspondence is 
bijective. However, I am not aware of any result for the other two possible values 
of n00 • A positive answer would involve nonholomorphic automorphic forms. In 
[36], it is shown in many cases for GL2 over Q that the L-series of a representation 
of type A0 is that of a compatible system of /-adic representations of I' 0 • Over a 
function field, there is no condition such as A0• In fact, for GL2, Drinfeld has shown 
that all irreducible admissible automorphic representations are associated to /-adic 
representations (see the lectures on his work by G. Harder and D. Kazhdan). 
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