

A *p*-adic measure attached to the zeta functions associated with two elliptic modular forms. I

Haruzo Hida

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

§0. Introduction

Let p be a prime number. The aim of this paper is to construct a p-adic bounded measure of several variables, which establishes the p-adic interpolation of the special values of the Rankin product of two elliptic modular forms of different weight. Let N be an arbitrary positive integer. Let f be a cusp form of weight $k \ge 2$ for the congruence subgroup $\Gamma_0(N)$ with character ψ modulo N, which is, in addition, a primitive form (=normalized new form of level dividing N). Let g be a modular form of weight l < k for $\Gamma_0(N)$, with character ω . Write $e(z) = \exp(2\pi i z)$. Suppose that the Fourier expansions of f and g are given by

$$f = \sum_{n=1}^{\infty} a(n) e(nz), \qquad g = \sum_{n=0}^{\infty} b(n) e(nz).$$

The Rankin product of f and g is defined by

(0.1)
$$\mathscr{D}_{N}(s, f, g) = L_{N}(2s + 2 - k - l, \omega \psi) \sum_{n=1}^{\infty} a(n) b(n) n^{-s},$$

where $L_N(2s+2-k-l,\omega\psi)$ denotes the Dirichlet L-series of $\omega\psi$ with the Euler factors at the primes dividing N removed from its Euler product. It is well known that $\mathcal{D}_N(s, f, g)$ has a holomorphic continuation over the whole complex plane as a function of s. Moreover, when the Fourier coefficients b(n) of g are algebraic numbers (note that the Fourier coefficients of f are automatically algebraic because f is primitive), Shimura [25, 26] has proven the basic result that

(0.2)
$$\frac{\mathscr{D}_N(m, f, g)}{\pi^{2m+1-l} \langle f, f \rangle_N}$$
 is algebraic for all integers m with $l \leq m < k$;

Present address: Department de Mathématiques, Université Paris-Sud, F-91405 Orsay, France

here

160

$$\langle f, f \rangle_N = \int_{B(N)} |f(z)|^2 y^{k-2} dx dy,$$

where B(N) denotes a fundamental domain for $\Gamma_0(N)$. Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q} in \mathbb{C} . Let Ω denote the completion of an algebraic closure of the field of *p*-adic numbers \mathbb{Q}_p , and we normalize its valuation $| |_p$ by $|p|_p = p^{-1}$. We fix once and for all an embedding

(when there is no danger of confusion, we will omit i from our subsequent formulae). We assume for the rest of the paper that the form f is ordinary for p (or more correctly i) in the following sense

(0.4) the image under i of the p-th Fourier coefficient of f is a unit in Ω .

Let V be a vector space over \mathbf{Q} , and let $n: V \to \mathbf{Q}$ be a positive definit quadratic form on V. Define a symmetric bilinear form $S: V \times V \to \mathbf{Q}$ by

$$S(u, v) = n(u+v) - n(u) - n(v).$$

(We note that $n(v) = \frac{1}{2}S(v, v)$). Fix a lattice I in V so that $n(v) \in \mathbb{Z}$ for all $v \in I$. It is then clear that $S(u, v) \in \mathbb{Z}$ for all u and v in I, and hence, if we define

$$I^* = \{ v \in V | S(v, I) \subset \mathbb{Z} \},\$$

we have $I^* \supset I$. Write *M* for the smallest positive integer such that $Mn(I^*) \subset \mathbb{Z}$. This integer *M* is called the level of *I*, and we note that I^*/I is annihilated by *M*. Throughout this paper except in § 1, we assume that the dimension of *V* over \mathbb{Q} is even. Let

 $\eta: V \to \overline{\mathbb{Q}}$

be a spherical function on V with algebraic values (see §1), and let

 $\phi: V \rightarrow \overline{\mathbb{Q}}$

be an arbitrary locally constant function for the p-adic topology on I such that the theta series

$$\theta(z) = \sum_{v \in I} \phi(v) \eta(v) e(n(v) z)$$

gives a modular form of weight l and of character ξ . We now take g to be the theta series $\theta(z)$ and assume that ϕ factors through $I/p^{\beta}I$ for a positive integer $\beta \ge 1$. Take $N = M p^{2\beta}$. It is known that the level of θ divides N. Composing ϕ , η and n with the embedding i, we obtain continuous functions from $I_p = I \otimes_{\mathbb{Z}} \mathbb{Z}_p$ to Ω , which we denote by the same symbols. Let C be the divisor of N which is the exact level of f (i.e. the conductor of f), and define the root number W(f) by

$$f|_{k} \begin{pmatrix} 0 & -1 \\ C & 0 \end{pmatrix} = W(f) f^{\rho},$$

where $f^{p} = \sum_{n=1}^{\infty} \overline{a}(n) e(n z)$ is the complex conjugate form of f. Write $M = M' p^{\lambda}$, $C = C' p^{\mu}$,

where (M', p) = (C', p) = 1 (note that C' divides M' because C divides N).

Theorem 0.1. Assume that $\mu \ge 1$. For each integer b > 1, with (b, N) = 1, there exists a unique bounded measure φ_b on $I_p = I \otimes_{\mathbb{Z}} \mathbb{Z}_p$ with values in Ω satisfying the following interpolation property: for every integer r with $0 \le 2r < k - l$, we let j = l + 2r and we have that the value of the p-adic integral

$$\int_{I_p} \phi \eta n^r d\varphi_b$$

is given by the image under i of

$$W(f)^{-1} t(1 - b^{k-j} \psi \bar{\xi}(b)) a(p)^{\mu - \lambda - 2\beta} \frac{\mathcal{D}_N(j-r, f|_k \gamma, \theta|_l \tau)}{\pi^{j+1} \langle f, f \rangle_C},$$

where $\gamma = \begin{pmatrix} M'/C' & 0\\ 0 & 1 \end{pmatrix}, \ \tau = \begin{pmatrix} 0 & -1\\ N & 0 \end{pmatrix}, \ and$
 $t = (\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-\lambda)(1-k/2)+\beta j} M^{(j-k)/2+1} \Gamma(j-r) \Gamma(r+1)$

A slightly stronger result, including the case when p does not divide C, is given in §2. We also obtain results on the p-adic interpolation of the values (0.2) when g runs over the twists of a modular form (of weight strictly less than k) by all Dirichlet characters whose conductor is a power of p (see Theorem 2.2). Moreover, in a later paper, we shall show that one can naturally extend φ_b to a measure $\mathbb{Z}_p^{n} \times I_p$ by allowing the p-ordinary form f to vary.

Our motivation for studying these *p*-adic measures has been our desire to investigate the Iwasawa theory of certain *p*-adic Lie extensions of number fields, which arise from abelian varieties and modular forms. Some work has been done in this direction in the complex multiplication case (see [5] and [29]), but the non-abelian theory remains shrouded in mystery.

Here is a summary of the contents of the paper. The detailed statements of our results are given in §2. As far as the construction of the measure φ_b is concerned, we first construct a measure on I_p with values in the space of *p*-adic modular forms. This measure can be thought of as a *p*-adic convolution of the Katz's Eisenstein measure in [12] with the *p*-adic measure attached to a theta series. The measure φ_b is then obtained by combining this measure with a bounded linear form on the space of *p*-adic modular forms, which is studied in §4 (our hypothesis that *p* is ordinary for *f* is essential for the construction of this linear form). We make use of Shimura's differential operators [25] to evaluate the *p*-adic integral as in the theorem.

Notation

Let \mathfrak{H} be the upper half complex plane. Then the group $GL_2^+(\mathbb{R})$ of real 2×2 matrices with positive determinant acts on \mathfrak{H} via linear fractional transfor-

mations. If $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ belongs to $GL_2^+(\mathbb{R})$ and f(z) is any function on \mathfrak{H} , we define, for each $k \in \mathbb{Z}$,

$$(f|_k \gamma)(z) = (\det(\gamma))^{k/2} f(\gamma(z)) (c z + d)^{-k}.$$

For each positive integer N, let $\Gamma_0(N)$ (resp. $\Gamma_1(N)$) be the subgroup of $SL_2(\mathbb{Z})$ consisting of all matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $c \equiv 0 \mod N$ (resp. $c \equiv 0 \mod N$, $a \equiv d \equiv 1 \mod N$). If Γ denotes either of these two subgroups of $SL_2(\mathbb{Z})$, we write $\mathcal{M}_k(\Gamma)$ for the space of holomorphic modular forms of weight k for Γ , and $\mathcal{S}_k(\Gamma)$ for the space of cusp forms of weight k for Γ . As usual, for each character ψ modulo N, we write

$$\mathcal{M}_{k}(\Gamma_{0}(N),\psi) = \left\{ f \in \mathcal{M}_{k}(\Gamma_{1}(N)) \middle| f \middle|_{k} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \psi(d) f$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{0}(N) \right\},$

and we put $\mathscr{G}_k(\Gamma_0(N), \psi) = \mathscr{G}_k(\Gamma_1(N)) \cap \mathscr{M}_k(\Gamma_0(N), \psi)$. Finally, we recall that the automorphism group of **C** has a natural action on $\mathscr{M}_k(\Gamma)$ given by

$$\left(\sum_{n=0}^{\infty} a(n) e(n z)\right)^{\sigma} = \sum_{n=0}^{\infty} a(n)^{\sigma} e(n z)$$

for each automorphism σ of \mathbb{C} .

§1. Theta series

Our aim in this section is to briefly recall those transformation formulae of θ -series defined by positive definite quadratic forms, which will be used later in the paper. See Shimura [21], §2 for further details.

In this section, we use the notation defined in Introduction, and we allow the dimension of the quadratic space V to be odd. Let κ denote the half of the dimension of V; therefore, κ is a positive integer or half a positive integer. We also write S for the natural extension of S to a C-bilinear form on $V \otimes_{\mathbb{Q}} \mathbb{C}$. Throughout this section, we write $\eta: V \to \mathbb{C}$ for an arbitrary complex-valued spherical function on V. We recall that this means that either η is homogenous of degree ≤ 1 , or that η can be expressed as follows: there exist finitely many w in $V \otimes_{\mathbb{Q}} \mathbb{C}$ with n(w)=0 such that

$$\eta(v) = \sum_{w} c(w) S(w, v)^{\alpha},$$

where $c(w) \in \mathbb{C}$ and α is an integer ≥ 2 . In general, we write α for the degree of η (or, as it is often called, the order of η). Write Φ for any complex-valued function on I^*/I . For any function $h: I^* \to \mathbb{C}$, we define formally

(1.1)
$$\theta(h)(z) = \sum_{v \in I^*} h(v) e(n(v) z).$$

When $h = \Phi \eta$, this series converges, and defines a holomorphic function on \mathfrak{H} . We define an action of $\Gamma_0(M)$ on the set of all functions $\Phi: I^*/I \to \mathbb{C}$ via

(1.2)
$$(\gamma \cdot \Phi)(v) = e(db n(v)) \Phi(dv),$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. If *m*, *n* are non-zero integers, let the quadratic residue symbol $\begin{pmatrix} m \\ n \end{pmatrix}$ be as defined on p. 442 of [21]. Moreover, we let $\varepsilon_d = 1$ if $d \equiv 0, 1, 2 \mod 4$, and $\varepsilon_d = \sqrt{-1}$ if $d \equiv 3 \mod 4$. For each non-zero complex number *x*, we fix $x^{1/2}$ by taking its argument to be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Finally, let $\Delta = [I^*:I]$.

Proposition 1.1. The function $\theta(\Phi \eta)(z)$ satisfies the transformation formula:

(1.3)
$$\theta(\Phi\eta)(\gamma(z)) = \left(\frac{\Delta}{d}\right) \left(\frac{2c}{d}\right)^{2\kappa} \varepsilon_d^{-2\kappa} (c \ z+d)^{\kappa+\alpha} \theta((\gamma \cdot \Phi)\eta)(z),$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(M).$

The proof of this proposition is essentially contained in [21]. Note, however, that Shimura supposes that 4|M and then proves (1.3) for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $c \equiv 0 \mod \frac{M}{2}$ and $b \equiv 0 \mod 2$. To derive (1.3) from Shimura's result, one needs only to verify (using the Poisson summation formula) the invariance, relative to weight $\kappa + \alpha$, of $\theta(\Phi \eta)(z)$ under the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ M & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -M \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

We omit the details.

§ 2. Statement of main results

We begin by defining the space on which our *p*-adic measure exists. As in §1, let V be a quadratic space over \mathbb{Q} . We shall now assume that V has *even* dimension 2κ over \mathbb{Q} (i.e. that κ is an integer). As before, I will denote a lattice in V with $n(I) \subset \mathbb{Z}$, I^* the dual lattice, and M the least positive integer such that $Mn(I^*) \subset \mathbb{Z}$. For each integer $v \ge 0$, $p^v I$ is a lattice with level $M p^{2v}$. Define

$$X = \varprojlim_{\nu} I^* / p^{\nu} I.$$

In addition, let $\mathcal{W} = \{v \in I^* | n(v) \in \mathbb{Z}\}$, and put

$$W = \varprojlim_{v} \mathscr{W}/p^{v} I.$$

Plainly W is a subset of X, and the quadratic form n has a natural extension n: $W \rightarrow \mathbb{Z}_{p}$.

Let $\eta: V \to \overline{\mathbb{Q}}$ be an arbitrary spherical function on V of degree $\alpha \ge 0$, taking algebraic values. Composing η with the fixed embedding (0.3), we obtain a unique extension of η by continuity to a function from W to Ω , which we again denote by η . Note that the group

$$Z = \lim_{v} \left(\mathbf{Z} / M \, p^{v} \, \mathbf{Z} \right)^{\times}$$

has a natural action on the space X, which leaves stable W. Let $\phi: W \to \overline{\mathbb{Q}}$ be an arbitrary locally constant function satisfying the following property: there exists a character χ of finite order of Z such that

(2.1)
$$\phi(z w) = \chi(z) \phi(w) \quad (z \in Z, w \in W)$$

We then define the θ -series

$$\theta(\phi \eta)(z) = \sum_{w \in \mathscr{W}} \phi(w) \eta(w) e(n(w) z).$$

Put

$$\xi(a) = \chi(a) \left(\frac{-1}{a}\right)^{\kappa} \left(\frac{\Delta}{a}\right),$$

where the symbols on the right are Legendre symbols, and $\Delta = [I^*:I]$. Proposition 1.1 shows that there exists $\beta \ge 0$ such that the conductor of ξ divides $M p^{\beta}$ and $\theta(\phi \eta)$ belongs to $\mathcal{M}_{\kappa+\alpha}(\Gamma_0(M p^{\beta}), \xi)$. In the following, β will denote any fixed integer satisfying this property with $\beta \ge 1$.

As in the introduction, let $f = \sum_{n=1}^{\infty} a(n) e(nz)$ be a fixed primitive cusp form of weight $k \ge 2$ with conductor C, and character ψ modulo C. We define the Petersson inner product of f with $g \in \mathcal{M}_k(\Gamma_0(C), \psi)$ by

$$\langle g, f \rangle_C = \int_{\mathfrak{H}/\Gamma_0(C)} \overline{g(z)} f(z) y^{k-2} dx dy.$$

We now fix the embedding (0.3) of $\overline{\Phi}$ into Ω and assume that this embedding *i* satisfies the condition (0.4), i.e. that i(a(p)) is a unit in Ω . We then write γ for the unique root of the Euler factor

$$X^{2} - i(a(p)) X + i(\psi(p)) p^{k-1}$$

which is not a unit in Ω (hence $\gamma = 0$ if p divides C). We now define the modular form $f_0(z)$ to be either f(z) or $f(z)-i^{-1}(\gamma) f(p z)$, according as p does or does not divide the conductor C of f(z). It is well known (see [28, p. 88] and Lemma 3.3 in the next section) that $f_0(z)$ is a common eigenform of all Hecke operators T(n) ($n \ge 1$) of level p C, including those with n dividing p C. Moreover, $f_0(z)$ is a unique ordinary form of level p C with the same n-th Fourier coefficient as f(z) for every n prime to p (see Lemma 3.3). Let C_0 be the smallest possible level of f_0 , i.e. $C_0 = C$ or p C according as p does or does

not divide the conductor C of f. We then define non-negative integers μ , λ , and C', M' prime to p, by

(2.3)
$$C_0 = C' p^{\mu}, \quad M = M' p^{\lambda}, \quad (M', p) = (C', p) = 1.$$

Finally, we impose the hypothesis

This assumption is not very restrictive, since it can always be achieved by replacing I by a suitable sub-lattice. Let us also write

$$\gamma = \begin{pmatrix} M'/C' & 0\\ 0 & 1 \end{pmatrix}, \quad \tau_{\beta} = \begin{pmatrix} 0 & -1\\ M p^{\beta} & 0 \end{pmatrix}.$$

Theorem 2.1. For each integer b > 1, with (b, Mp) = 1, there exists a unique bounded measure φ_b on W with values in Ω satisfying the following interpolation property: for each non-negative integer r with $0 \leq 2r + \alpha < k - \kappa$, we let $j = \kappa + \alpha + 2r$, and we have that the value of the p-adic integral

$$\int_{W} \phi \eta n^{r} d\varphi_{b}$$

is given by the image under i of

(2.5)
$$t(1-b^{k-j}\psi\,\overline{\xi}(b))\,a(p,f_0)^{\mu-\lambda-\beta}\frac{\mathscr{D}_{Mp^{\beta}}(j-r,f_0|_k\gamma,\theta(\phi\,\eta)|_{\kappa+\alpha}\tau_{\beta})}{\pi^{j+1}\langle h,f_0\rangle_{C_0}}$$

where $a(p, f_0)$ is the p-th Fourier coefficient of f_0 ,

$$h = f_0^{\rho}|_k \begin{pmatrix} 0 & -1 \\ C_0 & 0 \end{pmatrix},$$

and

$$t = t(r, \alpha, \beta) = (\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-\lambda)(1-k/2)+\beta j/2} M^{(j-k)/2+1} \Gamma(j-r) \Gamma(r+1).$$

Here are several remarks about this theorem, whose proof is given in §7. Firstly, it is easy to see directly that (2.5) does not depend on the choice of β . Secondly, the uniqueness of φ_b follows from the fact that any locally constant function on W is a finite sum of those satisfying the condition (2.1). Finally, we note that we do not give the p-adic interpolation at all of the special values

$$\mathscr{D}_{\boldsymbol{M}\boldsymbol{p}^{\boldsymbol{\beta}}}(\boldsymbol{m},f_{0}|_{\boldsymbol{k}}\gamma,\theta(\phi\eta)|_{\boldsymbol{\kappa}+\boldsymbol{\alpha}}\tau_{\boldsymbol{\beta}}),$$

with *m* an integer satisfying $\kappa + \alpha \leq m < k$, where algebraicity is known. This can be partly remedied by using the functional equation (see §9 for the discussion of a special case of this functional equation), but this does not cover all aspects of this interesting question.

We next discuss a result in which g is no longer assumed to be a theta series. Let ∞

$$g = \sum_{n=0}^{\infty} b(n) e(n z)$$

be an arbitrary modular form of weight l < k for $\Gamma_0(N)$ with character ω and assume that

$$b(n) \in \overline{\mathbb{Q}}$$
 for all $n \ge 0$.

Define a compact ring Y by

$$Y = \lim_{v} \mathbb{Z}/N p^{v} \mathbb{Z}, \qquad Y^{\times} = \lim_{v} (\mathbb{Z}/N p^{v} \mathbb{Z})^{\times}.$$

Let $\phi: Y \to \overline{\mathbb{Q}}$ be an arbitrary locally constant function on Y with the property: there is a character χ of finite order of the group Y^{\times} such that

(2.6)
$$\phi(z y) = \chi(z) \phi(y) \quad (z \in Y^{\times}, y \in Y).$$

We then define the twist of g by

$$g(\phi) = \sum_{n=0}^{\infty} \phi(n) b(n) e(n z).$$

Put $\xi = \chi^2 \omega$, and write $N = N' p^{\lambda}$ with (N', p) = 1. Then it is known that $g(\phi)$ belongs to $\mathcal{M}_l(\Gamma_0(NN' p^{\beta}), \xi)$ for a sufficiently large $\beta \ge 1$. Now we fix such a $\beta \ge 1$. Parallel to (2.4), we assume that

and write

$$\gamma = \begin{pmatrix} N'^2/C' & 0\\ 0 & 1 \end{pmatrix}$$
 and $\tau_{\beta} = \begin{pmatrix} 0 & -1\\ NN'p^{\beta} & 0 \end{pmatrix}$.

Theorem 2.2. For each integer b > 1 prime to N p, there exists a unique bounded measure φ_b on Y with values in Ω satisfying the following property: for each non-negative integer r with $0 \leq r < (k-l)/2$, we let j = l+2r, and we have that the value of the p-adic integral

$$\int_{Y} \phi(y) y_{p}^{r} d\varphi_{b}(y)$$

is given by the image under i of

$$t(1-b^{k-j}\psi\,\bar{\xi}(b))\,a(p,f_0)^{\mu-\lambda}\frac{\mathcal{D}_{Mp^{\beta}}(j-r,f_0|_k\gamma,g(\phi)|_l\tau_{\beta})}{\pi^{j+1}\langle h,f_0\rangle_{C_0}},$$

where y_p is the projection of $y \in Y = (\mathbb{Z}/N'\mathbb{Z}) \times \mathbb{Z}_p$ to the factor \mathbb{Z}_p , and

$$t = t(r,\beta) = (\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-\lambda)(1-k/2)+\beta j/2} (NN')^{(j-k)/2+1} \Gamma(j-r) \Gamma(r+1).$$

Since this theorem can be proven in a similar fashion as in the proof of Theorem 2.1, merely a sketch of the proof will be given in §8. By taking the Eisenstein series in [25, (4.3)] as g of Theorem 2.2, we see that $\mathcal{D}_N(s, f, g)$ is a product of Mellin transforms of f and its twist. This suggests to us a relation between our measure and those constructed by Mazur-Swinnerton-Dyer [16] and by Manin [14, 15]. It is an interesting problem to clarify these relations.

§ 3. Some results on Fourier coefficients

For every modular form f, we hereafter write a(n, f) for the *n*-th Fourier coefficient of f, namely,

$$f(z) = \sum_{n=0}^{\infty} a(n, f) e(n z).$$

Terminology. We define a normalized eigenform of level N to be a non-zero common eigenform in $\mathcal{M}_k(\Gamma_1(N))$ of all Hecke operators T(n) for $\Gamma_1(N)$ (including those with n dividing N) such that f|T(n) = a(n, f) f for all n. We say that a form f in $\mathscr{G}_k(\Gamma_1(N))$ is primitive if there exists a divisor C of N such that (i) f is a new form (in the sense of Miyake [17]) of level C, and (ii) f is a normalized eigenform of level C. The number C is called the conductor of f. We say that a normalized eigenform f of level N is ordinary for p (or more precisely, for the embedding i fixed in (0.3) if p divides N and if $i(a(p, f))|_p = 1$. (It is technically important for us to insist that p divides N in our definition of ordinary forms.)

If there is no danger of confusion, we hereafter drop the embedding *i* from our notation, when we consider algebraic numbers of \mathbb{C} in the field Ω .

Let f be a primitive form of conductor C of weight k and with character ψ . Let $C(\psi)$ be the conductor of the character ψ , and define non-negative integers t and s by

$$C = C' p^t, \qquad C(\psi) = C'(\psi) p^s,$$

where $(C', p) = (C'(\psi), p) = 1$.

Proposition 3.1. If a(p, f) is a unit in Ω (i.e. $|a(p, f)|_p = 1$), then we have either t = s or k = 2, t = 1 and s = 0.

Before proving this fact, we recall the following result in Doi-Miyake [7, Th. 4.6.17], whose proof we recall because [7] is written in Japanese.

Lemma 3.2. Let ψ_0 be the primitive character modulo $C(\psi)$ associated with ψ . Then we have

(3.1a)
$$a(p, f) a(p, f)^{\rho} = p^{k-1}$$
 if $t = s$,

(3.1b)
$$a(p, f)^2 = \psi_0(p) p^{k-2}$$
 if $t = 1$ and $s = 0$,

$$(3.1c) a(p, f) = 0 if t \ge 2 and t > s,$$

where ρ denotes complex conjugation.

The facts (3.1a, b) can be proven in exactly the same manner as in Asai [1, Lemma 3], where these are shown for every square-free conductor C. A proof of (3.1c) is as follow: put

$$\Gamma = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid a \equiv d \equiv 1 \mod (C/p), \ c \equiv 0 \mod C \right\}.$$

Then it is well known that, if p^2 divides C,

$$\Gamma\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma_1(C/p)=\Gamma\begin{pmatrix}1&0\\0&p\end{pmatrix}\Gamma$$
 as a subset of $M_2(\mathbb{Z})$,

and thus the Hecke operator T(p) takes $\mathscr{G}_k(\Gamma)$ into $\mathscr{G}_k(\Gamma_1(C/p))$. Then, the assumption of (3.1 c) shows that $f \in \mathscr{G}_k(\Gamma)$ and we know that

$$a(p, f) f = f | T(p) = f \left| \begin{bmatrix} \Gamma \begin{pmatrix} 1 & 0 \\ 0 & p \end{bmatrix} \Gamma_1(C/p) \right]$$

is of level C/p. Since C is the smallest possible level of f, we know that a(p, f) f = 0 and therefore a(p, f) must vanish.

Now we can prove Proposition 3.1. When $k \ge 2$, the proposition is a direct consequence of Lemma 3.2. We now assume that k=1. Since a(p, f) must be an algebraic integer, the case (3.1b) is impossible, whence the proposition is true for k=1.

Lemma 3.3. Suppose that the weight k of f is greater than or equal to 2 and that $|a(p, f)|_p = 1$. Then, there is a unique ordinary form f_0 of weight k such that $a(n, f) = a(n, f_0)$ except for those n divisible by p. Moreover, f_0 is explicitly given by

$$f_0(z) = \begin{cases} f(z) & \text{if } p \text{ divides } C, \\ f(z) - \gamma f(p z) & \text{if } C \text{ is prime to } p, \end{cases}$$

where γ is the unique root of $X^2 - a(p, f) X + \psi(p) p^{k-1}$ with $|\gamma|_p < 1$.

Proof. The cusp form given as above is known to be a normalized eigenform of level pC (cf. [28, Remark 3.59, p. 88]). Thus our task is to show that f_0 is ordinary and that f_0 is unique. If there is a normalized eigenform with the same Fourier coefficients as f except for those for which n is divisible by p, such a form must belong to $\mathscr{G}_k(\Gamma_0(Cp^v), \psi)$ for a suitable v by the theory of primitive forms (cf. [17] and [4]). Put

(3.1)
$$U(Cp^{\nu}, f) = \{g \in \mathscr{S}_{k}(\Gamma_{1}(Cp^{\nu})) | g | T(l) = a(l, f) g \text{ except} \\ \text{for finitely many primes } l\},$$

and $f^{(n)}(z) = f(p^n z)$ for $0 \le n \in \mathbb{Z}$. Then, it is known (e.g. [17]) that $\{f^{(0)}, \ldots, f^{(v)}\}$ gives a basis of $U(Cp^v, f)$. Let β and γ be the roots of $X^2 - a(p, f)X + \psi(p)p^{k-1}$ with $|\beta|_p = 1$ and $|\gamma|_p < 1$. Then, we can choose another basis of $U(Cp^v, f)$ in the following manner:

(3.2a) If C is prime to p, then we put

$$f_0(z) = f(z) - \gamma f(p z), \quad f_1(z) = f(z) - \beta f(p z),$$

$$f_2(z) = f_0(z) - \beta f_0(p z) \text{ and } f_n(z) = f_2(p^{n-2} z)$$

for $2 \le n \le v$;

(3.2b) If p divides C, then we put $f_0 = f$, $f_1(z) = f(z) - a(p, f) f(p z)$ and $f_n(z) = f(p^{n-1} z)$ for $1 \le n \le y$. In the case (3.2a), f_0 , f_1 and f_2 are normalized eigenforms (of level Cp^{ν} for every $\nu \ge 2$) and their eigenvalues for T(p) are β , γ and 0, respectively. Thus f_0 is ordinary, but neither f_1 nor f_2 can be ordinary. Similarly, f_0 and f_1 are normalized eigenforms in the case (3.2b) with eigenvalues a(p, f) and 0, respectively. For the action of T(p) on f_n for a general *n*, we know that

$$f_n \mid T(p) = f_{n-1}$$

if $n \ge 3$ in the case (3.2a) and if $n \ge 2$ in the case (3.2b) (cf. [28, p. 88]). This shows that for any $v \ge 1$, the operator T(p) is nilpotent on $\sum_{n=1}^{v} \mathbb{C} f_n$ or $\sum_{n=2}^{v} \mathbb{C} f_n$ according as p does or does not divide C. Thus the uniqueness of f_0 follows from this if we prove the \mathbb{C} -linear independence of $\{f_0, \ldots, f_v\}$ in $U(Cp^v, f)$. We consider the matrix $(a(p^i, f_j))_{0 \le i, j \le v}$ of the Fourier coefficients of f_n at the powers of the prime p; namely, it is equal to

(3.3)
$$\begin{pmatrix} 1 & 1 & & \\ \beta & \gamma & & \\ \beta^2 & \gamma^2 & 1_{\nu-1} \\ & & \\ \beta^{\nu-2} & \gamma^{\nu-2} & \\ & & \\ \beta^{\nu-1} & \gamma^{\nu-1} & \\ \beta^{\nu} & \gamma^{\nu} & 0 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & & \\ a(p,f) & & \\ a(p,f)^2 & 1_{\nu} \\ & \\ a(p,f)^{\nu-1} & \\ & \\ a(p,f)^{\nu} & 0 \end{pmatrix}$$

according as p does not or does divide C. Here 1_v is the $n \times n$ identity matrix. Since $\beta \neq \gamma$ and $a(p, f) \neq 0$, these matrices are non-singular and thus $\{f_0, \ldots, f_v\}$ gives a basis. Q.E.D.

§4. p-adic Modular Forms and Hecke Operators

We begin by recalling the definition of the space of *p*-adic modular forms in a manner rather more similar to Serre [19] than Katz [11, 12]. Let Γ denote either of the two congruence subgroups $\Gamma_0(N)$ or $\Gamma_1(N)$ for a positive integer *N*. For any subring *A* of $\overline{\mathbb{Q}}$, define an *A*-module $\mathscr{M}_k(\Gamma; A)$ (resp. $\mathscr{M}_k(\Gamma_0(N), \psi; A)$ for each Dirichlet character ψ modulo *N* with values in *A*) to be the subspace of $\mathscr{M}_k(\Gamma)$ (resp. $\mathscr{M}_k(\Gamma_0(N), \psi)$) consisting of all modular forms with *A*-rational Fourier coefficients. For every modular form $f = \sum_{n=0}^{\infty} a(n, f) e(nz)$ with algebraic Fourier coefficients, define a *p*-adic norm $|f|_n$ of *f* by

$$|f|_p = \sup_n |a(n, f)|_p.$$

It is well known (see [24, Th. 1] and [28, Th. 3.52]) that the norm $|f|_p$ is a well defined real number. Let K_0 be a finite extension of \mathbf{Q} , and K be the closure of K_0 in Ω (relative to the fixed embedding $i: \overline{\mathbf{Q}} \to \Omega$ of (0.3)). Let $\mathcal{M}_k(\Gamma; K)$ (resp. $\mathcal{M}_k(\Gamma_0(N), \psi; K)$) denote the completion of $\mathcal{M}_k(\Gamma; K_0)$ (resp. $\mathcal{M}_k(\Gamma_0(N), \psi; K_0)$) for the norm $|\cdot|_p$. Then these spaces become Banach spaces over K.

Let $X_{/\mathbb{Q}}$ be the compactified canonical model of \mathfrak{H}/Γ defined over \mathbb{Q} [28, 6.7 and (7.3.5)]. Then the space $\mathscr{M}_k(\Gamma; K_0)$ (resp. $\mathscr{M}_k(\Gamma; K_0) \otimes_{K_0} K$) can be identified with the space of global sections over K_0 (resp. K) of a certain line bundle on $X_{/\mathbb{Q}}$ rational over \mathbb{Q} (cf. [6, VII.3], [23, Th.6] and [24, Th.3]). Let A be either of the two fields K_0 or K. From this interpretation of these spaces, we know the following three facts: $\mathscr{M}_k(\Gamma; A)$ and $\mathscr{M}_k(\Gamma_0(N), \psi; A)$ are finite dimensional; $\mathscr{M}_k(\Gamma; K) = \mathscr{M}_k(\Gamma; K_0) \otimes_{K_0} K$, $\mathscr{M}_k(\Gamma_0(N), \psi; K) = \mathscr{M}_k(\Gamma_0(N), \psi; K_0) \otimes_{K_0} K$; $\mathscr{M}_k(\Gamma; K)$ and $\mathscr{M}_k(\Gamma_0(N), \psi; K)$ are determined independently of the choice of the dense subfield K_0 . Furthermore, the abstract Hecke ring introduced in [28, (3.3.3) and Th.3.34] acts naturally on $\mathscr{M}_k(\Gamma; A)$ and $\mathscr{M}_k(\Gamma_0(N), \psi; A)$. This action on $\mathscr{M}_k(\Gamma; K_0)$ and $\mathscr{M}_k(\Gamma_0(N), \psi; K_0)$ is induced from the usual action of the Hecke operators T(n) and T(n, n) on $\mathscr{M}_k(\Gamma)$ and $\mathscr{M}_k(\Gamma_0(N), \psi)$ as in [28, 3.4, 3.5]. See below for the precise definition of the action of these operators.

By writing q for e(z), we can embed $\mathcal{M}_k(\Gamma; K_0)$ into $K_0[[q]]$. Then we may regard $\mathcal{M}_k(\Gamma; K)$ as the closure of $\mathcal{M}_k(\Gamma; K_0)$ in K[[q]]. Thus every element of $\mathcal{M}_k(\Gamma; K)$ has a unique q-expansion. For $f = \sum_{n=0}^{\infty} a(n, f)q^n \in \mathcal{M}_k(\Gamma; K)$, the norm of f is again given by $\sup |a(n, f)|_p$. Let \mathcal{O}_K denote the ring of p-adic integers in K, and define

$$\mathcal{M}_{k}(\Gamma; \mathcal{O}_{K}) = \{ f \in \mathcal{M}_{k}(\Gamma; K) | |f|_{p} \leq 1 \} = \mathcal{M}_{k}(\Gamma; K) \cap \mathcal{O}_{K}[[q]],$$
$$\mathcal{M}_{k}(\Gamma_{0}(N), \psi; \mathcal{O}_{K}) = \{ f \in \mathcal{M}_{k}(\Gamma_{0}(N), \psi; K) | |f|_{p} \leq 1 \}.$$

These spaces are complete normed \mathcal{O}_{κ} -modules of finite rank. Let

$$\mathscr{M}_{k}(\Gamma;\Omega) = \mathscr{M}_{k}(\Gamma;K) \otimes_{K} \Omega, \qquad \mathscr{M}_{k}(\Gamma_{0}(N),\psi;\Omega) = \mathscr{M}_{k}(\Gamma_{0}(N),\psi;K) \otimes_{K} \Omega.$$

As already seen, these spaces do not depend on the choice of the subfield K of Ω . All the definitions as above for modular forms can be formulated naturally for cusp forms and the corresponding spaces of cusp forms will be written as $\mathscr{G}_k(\Gamma; K), \mathscr{G}_k(\Gamma_0(N), \psi; K)$, etc.

Let N be an arbitrary positive integer and ψ be a character modulo N. Let A denote either of the field K or the ring \mathcal{O}_{K} . Put

$$\mathcal{M}_k(N; A) = \bigcup_{n=0}^{\infty} \mathcal{M}_k(\Gamma_1(N p^n); A),$$
$$\mathcal{M}_k(N, \psi; A) = \bigcup_{n=0}^{\infty} \mathcal{M}_k(\Gamma_0(N p^n), \psi; A).$$

Clearly, these spaces do not depend on the *p*-primary part of *N*. Let $\overline{\mathcal{M}}(N; A)$ (resp. $\overline{\mathcal{M}}_k(N, \psi; A)$) be the completion of $\mathcal{M}_k(N; A)$ (resp. $\mathcal{M}_k(N, \psi; A)$) for the norm $||_p$. Any element of $\overline{\mathcal{M}}(N; K)$ will be called a *p*-adic modular form. The suffix "k" is dropped for the notation " $\overline{\mathcal{M}}(N; A)$ ", because, as a subspace of A[[q]], the space $\overline{\mathcal{M}}(N; A)$ is determined independently of the weight k if $k \ge 2$. This fact is implicit in the papers of Katz and Serre on *p*-adic modular forms, but we refrain from discussing it in detail, since we do not need this fact later.

However, the space $\overline{\mathcal{M}}_k(N, \psi; A)$ does depend on the weight k and the suffix "k" must be retained (cf. [12, Lemma 5.4.10]).

Let us give here an explicit description of the action of the Hecke operators T(l) and T(l, l) of level N for primes l. For any integer n prime to N, let $\sigma_n \in \Gamma_0(N)$ be the matrix with $\sigma_n \equiv \begin{pmatrix} * & * \\ 0 & n \end{pmatrix} \mod N$. As shown in Deligne-Rapoport [6, VII, Cor. 3.11] and Katz [12, 5.3.2], the action: $f \mapsto f|_k \sigma_n$ of σ_n on $\mathcal{M}_k(\Gamma_1(N); K)$ leaves $\mathcal{M}_k(\Gamma_1(N); \mathcal{O}_K)$ stable. Then the action of the Hecke operators T(l) and T(l, l) for primes l on $\mathcal{M}_k(\Gamma_1(N); K)$ is given by

(4.1)
$$a(n, f | T(l)) = \begin{cases} a(ln, f) + l^{k-1} a\left(\frac{n}{l}, f|_k \sigma_l\right) & \text{if } l \text{ is prime to } N \\ a(ln, f) & \text{of } l \text{ divides } N, \\ a(n, f | T(l, l)) = \begin{cases} l^{k-2} a(n, f|_k \sigma_l) & \text{if } l \text{ is prime to } N, \\ 0 & \text{if } l \text{ divides } N. \end{cases}$$

When N is divisible by p, (4.1) shows that $\mathcal{M}_k(\Gamma_1(N); \mathcal{O}_K)$ and $\mathcal{M}_k(\Gamma_0(N), \psi; \mathcal{O}_K)$ are stable under the operators T(l) and T(l, l). Let A denote either of the field K or the ring \mathcal{O}_K , and let $\mathscr{H}_k(\Gamma_0(N), \psi; A)$ (resp. $\mathscr{H}_k(\Gamma_1(N); A)$) be the A-subalgebra of the ring of all A-linear endomorphisms of $\mathcal{M}_k(\Gamma_0(N), \psi; A)$ (resp. $\mathscr{M}_k(\Gamma_1(N); A)$) generated by T(l) and T(l, l) for all primes l. Especially, we know that (if p divides N)

$$|f|T|_p \leq |f|_p$$
 for every $T \in \mathscr{H}_k(\Gamma_1(N); \mathcal{O}_K)$,

and therefore, any operator in $\mathscr{H}_k(\Gamma_1(N); \mathcal{O}_K)$ is uniformly continuous. These algebras are the Hecke algebras of the corresponding spaces of modular forms.

Next we consider the Hecke algebras of the space of *p*-adic modular forms. The restriction of operators in $\mathscr{H}_k(\Gamma_1(Np^n); \mathscr{O}_K)$ (resp. $\mathscr{H}_k(\Gamma_0(Np^n), \psi; \mathscr{O}_K)$) to the subspace $\mathscr{M}_k(\Gamma_1(Np^m); \mathscr{O}_K)$ (resp. $\mathscr{M}_k(\Gamma_0(Np^m), \psi; \mathscr{O}_K)$) for $n \ge m \ge 1$ gives a \mathscr{O}_{K^-} algebra homomorphism of $\mathscr{H}_k(\Gamma_1(Np^n); \mathscr{O}_K)$ (resp. $\mathscr{H}_k(\Gamma_0(Np^n), \psi; \mathscr{O}_K)$) onto $\mathscr{H}_k(\Gamma_1(Np^m); \mathscr{O}_K)$ (resp. $\mathscr{H}_k(\Gamma_0(Np^m), \psi; \mathscr{O}_K)$). This fact follows from [28, Th. 3.34-5]. Taking the projective limit of these morphisms, we obtain compact topological algebras:

(4.2)
$$\mathcal{H}(N; \mathcal{O}_{K}) = \lim_{n} \mathcal{H}_{k}(\Gamma_{1}(N p^{n}); \mathcal{O}_{K}),$$
$$\mathcal{H}_{k}(N, \psi; \mathcal{O}_{K}) = \lim_{n} \mathcal{H}_{k}(\Gamma_{0}(N p^{n}), \psi; \mathcal{O}_{K})$$

which naturally act on $\mathcal{M}_k(N; A)$ and $\mathcal{M}_k(N, \psi; A)$ for A = K or \mathcal{O}_K . The action of $\mathcal{H}(N; \mathcal{O}_K)$ (resp. $\mathcal{H}_k(N, \psi; \mathcal{O}_K)$) can be naturally extended to an action on $\overline{\mathcal{M}}(N; A)$ (resp. $\overline{\mathcal{M}}_k(N, \psi; A)$) by the uniform continuity.

Let us now introduce the idempotent *e* attached to T(p) in the Hecke algebra. Let *R* denote either of the two algebras $\mathscr{H}_k(\Gamma_0(N p^m), \psi; \mathcal{O}_K)$ or $\mathscr{H}_k(\Gamma_1(N p^m); \mathcal{O}_K)$ for $m \ge 1$. Then the algebra R/pR over the field \mathbb{F}_p with *p*elements is commutative and finite dimensional [28, Th. 3.51]. The image $\tilde{T}(p)$ of T(p) in R/pR can be decomposed into the unique sum s+n of a semi-simple element s and a nilpotent element n of R/pR. Thus, for a sufficiently large integer r, the element $\tilde{T}(p)^{p^r}$ coincides with s^{p^r} and becomes semi-simple. Then, we can choose a positive integer u so that $\tilde{T}(p)^{p^{ru}}$ gives an idempotent of R/pR. This idempotent can be lifted to a unique idempotent e_m of R (cf. [3, 111.4.6]). In fact, this idempotent can be given as a p-adic limit in R by

$$e_m = \lim_{r \to \infty} T(p)^{p^r u}$$

This idempotent is clearly independent of the choice of the integer u, and its construction is plainly compatible with the projective limit (4.2). Thus we can define an idempotent e of $\mathscr{H}(N; \mathscr{O}_K)$ and $\mathscr{H}_k(N, \psi; \mathscr{O}_K)$ by the projective limit $\lim_{k \to \infty} e_m$. For any module \mathscr{M} over these Hecke algebras, we define the ordinary

part \mathcal{M}° of \mathcal{M} to be the corresponding component $e\mathcal{M}$ for the idempotent e. A remarkable fact is

Proposition 4.1. The ordinary part $\overline{\mathcal{M}}_{k}^{\circ}(N,\psi;\mathcal{O}_{K})$ of the space $\overline{\mathcal{M}}_{k}(N,\psi;\mathcal{O}_{K})$ is free of finite rank over \mathcal{O}_{K} . Moreover, let $C(\psi)$ be the conductor of the Dirichlet character ψ , and define positive integers N' and s by

$$N = N' p^r$$
 and $s = \max(s', 1)$ for $C(\psi) = C'(\psi) p^{s'}$,

where $(N', p) = (C'(\psi), p) = 1$. Then the ordinary part $\overline{\mathcal{M}}_k^o(N, \psi; \mathcal{O}_K)$ is contained in $\mathcal{M}_k(\Gamma_k(N'p^s), \psi; \mathcal{O}_K)$.

Proof. As shown in the proof of Lemma 3.2, the Hecke operator $T(p)^m$ for a sufficiently large integer *m* takes $\mathcal{M}_k(\Gamma_0(N p^n), \psi; \mathcal{O}_K)$ into $\mathcal{M}_k(\Gamma_0(N' p^s), \psi; \mathcal{O}_K)$ for each $n \ge 1$. Then the assertion is clear from the definition (4.3) of the idempotent e.

In contrast with this result, the ordinary part of $\overline{\mathcal{M}}(N; \mathcal{O}_K)$ is usually of infinite rank. The relation between ordinary forms and the idempotent ε is given as follows: Let f be an element of $\mathcal{M}_k(N, \psi; K)$ and let C be the smallest possible level of f. Assume that $f|T_C(p) = af$ with $a \in K$ for the Hecke operator $T_C(p)$ of level C.

Lemma 4.2. If C is divisible by p, then the image $f|_e$ of f under e is either f itself or 0 according as the eigenvalue a is or is not a unit in \mathcal{O}_K .

Proof. We may assume that f is a modular form for $\Gamma_0(Np^m)$ for a suitable positive integer m. Note that the action of the operator T(p) of level Np^m on f is the same as that of $T_C(p)$. Then, with the notation of (4.3), the eigenvalue of e at f is given by the p-adic limit

$$\lim_{r\to\infty}a^{p^r u}$$

The lemma is obvious from this.

From this lemma, it is clear that, especially when f is a normalized form with level divisible by p, then

f is ordinary if and only if $f|_e = f$.

Lemma 4.3. Put, for each non-negative integer m,

$$f^{(m)}(z) = f(p^m z) = \sum_{n=0}^{\infty} a(n, f) q^{p^m n},$$

and for a positive integer n,

$$U=\sum_{m=0}^{n}Kf^{(m)}.$$

Then the subspace U of $\mathcal{M}_k(N; K)$ is stable under the idempotent e. Moreover, assume that either $k \ge 2$ or p divides C. Then, if a is not a unit in \mathcal{O}_K , the space U is annihilated by e.

Proof. Let T(p) be the Hecke operator in $\mathcal{H}(N, \psi; \mathcal{O}_K)$. Note that T(p) and $T_C(p)$ are different if C is prime to p. It is well known (e.g. [28, p. 88]) that

$$f^{(m)}|T(p) = f^{(m-1)} \quad \text{for } m \ge 1,$$

$$f^{(0)}|T(p) = \begin{cases} a f^{(0)} & \text{if } p \text{ divides } C, \\ a f^{(0)} - \psi_0(p) p^{k-1} f^{(1)} & \text{if } C \text{ is prime to } p, \end{cases}$$

where ψ_0 is the primitive character associated with ψ . This shows that U and even its \mathcal{O}_K -lattice $U(\mathcal{O}_K) = \sum_{m=0}^n \mathcal{O}_K f^{(m)}$ are stable under T(p) and hence, under *e*. Let \mathfrak{P} be the prime ideal of \mathcal{O}_K . Assume that $a \in \mathfrak{P}$ (i.e. that *a* is not a unit). Then the above formulae show that if $k \ge 2$ or *p* divides *C*,

$$U(\mathcal{O}_{\kappa})|T(p)^{n+1} \subset \mathfrak{P}U(\mathcal{O}_{\kappa}).$$

Then the second assertion follows from the definition (4.3) of e.

Hereafter, let f be a primitive form of conductor C in $\mathcal{M}_k(\Gamma_0(N), \psi; K_0)$. Thus N is a multiple of C. Put, for each integer $n \ge 1$,

$$U(N p^{n}, f; K) = \{g \in \mathcal{M}_{k}(\Gamma_{1}(N p^{n}); K) | g | T(l) = a(l, f)g \text{ except}$$
for finitely many primes $l\}.$

Define non-negative integers t, r, N' and C' by

$$N = N' p^r$$
 and $C = C' p^t$,

where (N', p) = (C', p) = 1.

Proposition 4.4. Assume that $k \ge 2$ and $|a(p, f)|_p = 1$. Let f_0 be the ordinary form associated with f defined in Lemma 3.3. Then we have, for every $n \ge 1$,

$$e U(N p^{n}, f; K) = \sum_{0 < t \mid N'/C'} K f_{0}(t z).$$

Before proving this result, let us give some remarks. Firstly, the ordinary part $e U(Np^n, f; K)$ does not depend on the integer *n*, and we have

(4.4a)
$$\dim_{K} e U(N p^{n}, f; K) = 1 \quad \text{if and only if } C' = N'.$$

Secondly, let P be the set of all primitive forms in $\mathcal{M}_k(N, \psi; \Omega)$ whose p-th Fourier coefficients are units in Ω . Then P is a finite set, and thus we may assume that $P \subset \mathcal{M}_k(N, \psi; K)$ by replacing K by its finite extension if necessary. By the theory of primitive forms, Propositions 4.1 and 4.4 show

(4.4b)
$$\overline{\mathcal{M}}_{k}^{o}(N,\psi;K) = \sum_{g \in P} e U(N p, g; K).$$

Thirdly, let P_0 be the subset of P consisting of all elements with the property (4.4a), and put

$$U_0 = \sum_{g \in P_0} K g_0,$$

where g_0 is the ordinary form associated with g. Write \mathcal{H}_0 for the subalgebra of the ring of all K-linear endomorphisms of U_0 generated over K by all Hecke operators T(l) and T(l, l). Then

$$(4.4c) \qquad \qquad \mathscr{H}_0 \text{ is a semi-simple algebra over } K.$$

In view of these properties, one may regard the ordinary forms g_0 for $g \in P_0$ as an analogue of primitive forms of conductor N in the theory of ordinary forms.

Now we shall prove Proposition 4.4. Let us take a basis $\{f_m\}_{m=0,...,j}$ of $U(Cp^j, f)$ as in (3.2a, b). For j=n+r-t, we see $Np^n/Cp^j=N/Cp^{r-t}=N'/C'$. We see then from [17] that

$$U(N p^{n}, f; K) = \sum_{m=0}^{J} \sum_{0 < t \mid N'/C'} K f_{m}(t z).$$

Since t is prime to p, the operation: $g(z) \mapsto g(tz)$ commutes with the Hecke operator T(p), and hence, with the idempotent e. This shows that

$$e U(N p^{n}, f; K) = \sum_{0 < t \mid N'/C'} K f_{0}(t z),$$

since f_0 is a unique ordinary form in $U(Cp^j, f)$ and f_m with $m \ge 1$ is annihilated by e.

Let f be a primitive form of conductor C, of weight $k \ge 2$ and with character ψ . Assume that $|a(p, f)|_p = 1$. Now we are ready to define a continuous linear form ℓ_f (attached to f) on $\overline{\mathcal{M}}_k(C, \psi; K)$ into K. Let f_0 be the ordinary form associated with f and let C_0 be the exact level of f_0 . By Proposition 4.4 (or more precisely by (4.4c)), the natural ring homomorphism of $\mathcal{H}_k(\Gamma_0(C_0), \psi; K)$ onto K, which assign $a(n, f_0)$ to T(n), is split, and thus, there is a simple direct summand of the Hecke algebra $\mathcal{H}_k(\Gamma_0(C_0), \psi; K)$, isomorphic to K, through which this morphism factors. Let A be the subalgebra of this Hecke algebra which is the complementary direct summand. Namely, we have the algebra direct sum decomposition:

(4.5)
$$\mathscr{H}_{k}(\Gamma_{0}(C_{0}),\psi;K)\cong A\oplus K.$$

Let 1_f be the idempotent corresponding to the direct summand K of (4.5). Note that the idempotent e sends $\overline{\mathcal{M}}_k(C_0, \psi; K)$ into $\mathcal{M}_k(\Gamma_0(C_0), \psi; K)$ by A p-adic measure attached to the zeta function of modular forms. I

Proposition 4.1. Then the linear form $\ell_f: \overline{\mathcal{M}}_k(C_0, \psi; K) \to K$ is defined by

(4.6)
$$\ell_f(g) = a(1, g | e 1_f) \quad \text{for } g \in \overline{\mathcal{M}}_k(C_0, \psi; K),$$

where $a(1, g | e 1_f)$ is the first q-expansion coefficient of $g | e 1_f$.

Proposition 4.5. Assume that K_0 contains all the Fourier coefficients of the ordinary form f_0 . Then, the linear form ℓ_f has values in the finite algebraic number field K_0 on $\mathcal{M}_k(\Gamma_0(C_0p^n), \psi; K_0)$ for every $n \ge 0$. Furthermore, we have

$$\ell_f(g) = a(p, f_0)^{-n} p^{n(k-1)} \frac{\langle h_n, g \rangle_{Cp^n}}{\langle h, f_0 \rangle_{C_0}} \qquad (g \in \mathcal{M}_k(\Gamma_0(C_0 p^n), \psi; K_0))$$

where $h = f_0^{\rho}|_k \begin{pmatrix} 0 & -1 \\ C_0 & 0 \end{pmatrix}$ and $h_n(z) = h(p^n z)$ for the complex conjugation ρ .

Proof. First we shall deal with the case: n=0. We know that $\mathscr{H}_k(\Gamma_0(C_0), \psi; K) = \mathscr{H}_k(\Gamma_0(C_0), \psi; K_0) \otimes_{K_0} K$. Since K_0 contains the eigenvalues for f_0 of all Hecke operators, the decomposition (4.5) is induced from the similar decomposition:

$$\mathscr{H}_{k}(\Gamma_{0}(C_{0}),\psi;K_{0})\cong A_{0}\oplus K_{0}$$
 (algebra direct sum).

Thus, by definition, the linear form ℓ_f has values in K_0 on $\mathcal{M}_k(\Gamma_0(C_0), \psi; K_0)$. Now we consider the general case: n > 0. As explained in the proof of Lemma 3.2, the operator $T(p)^n$ takes $\mathcal{M}_k(\Gamma_0(C_0p^n), \psi; K_0)$ into $\mathcal{M}_k(\Gamma_0(C_0), \psi; K_0)$. By the definition of 1_f , it commutes with T(p) and e. Thus, we have

$$g | T(p)^n e \mathbf{1}_f = g | e \mathbf{1}_f T(p)^n = a(p, f_0)^n g | e \mathbf{1}_f \qquad (g \in \mathcal{M}_k(\Gamma_0(C_0 p^n), \psi; K_0)).$$

This shows that

$$(4.7) \qquad \ell_f(g) = a(p, f_0)^{-n} \ell_f(g \mid T(p)^n) \in K_0 \qquad (g \in \mathcal{M}_k(\Gamma_0(C_0 p^n), \psi; K_0)).$$

Next, we shall show that

$$\ell_f(g) = \langle h, g \rangle_{C_0} / \langle h, f_0 \rangle_{C_0} \quad \text{for } g \in \mathcal{M}_k(\Gamma_0(C_0), \psi; K_0).$$

We can naturally extend ℓ_f to a linear form of $\mathcal{M}_k(\Gamma_0(C_0), \psi)$ with values in \mathbb{C} so that it coincides with the original one on K_0 -rational modular forms. We denote it by the same symbol. Since Eisenstein series are contained in the kernel of ℓ_f , we can find an element h' in $\mathscr{S}_k(\Gamma_0(C_0), \psi)$ so that

$$\langle h', g \rangle_{C_0} = \ell_f(g)$$
 for all $g \in \mathcal{M}_k(\Gamma_0(C_0), \psi)$

For each primitive form \mathscr{G} in $\mathscr{G}_k(\Gamma_0(C_0), \psi)$, let

$$U(g) = \{g \in \mathcal{G}_k(\Gamma_0(C_0), \psi) | g | T(l) = a(l, g) g \text{ except for}$$
finitely many primes $l\}.$

Then, we have the well known orthogonal decomposition under \langle , \rangle :

$$\mathscr{S}_{k}(\Gamma_{0}(C_{0}),\psi) = \bigoplus_{\mathscr{G}} U(\mathscr{G}).$$

Therefore, h' must be in U(f), since ℓ_f annihilates U(g) for $g \neq f$. Put $\tau = \begin{pmatrix} 0 & -1 \\ C_0 & 0 \end{pmatrix}$ and let $T^*(m)$ be the adjoint operator of T(m) under \langle , \rangle . Then, it is known (cf. [28, Chap. 3] and [7, Th. 4.5.5]) that, as operators on $\mathscr{G}_k(\Gamma_0(C_0), \psi)$,

$$\tau^2 = (-1)^k, \quad T^*(m) = \tau^{-1} \circ T(m) \circ \tau \quad \text{for all } m > 0,$$

and if m is prime to C_0 ,

$$T^*(m) = \overline{\psi(m)} T(m)$$

Especially, f^{ρ} is an eigenform of $T^*(m)$ with eigenvalue a(m, f) if m is prime to C_0 . Thus, we see that, for m prime to C_0 ,

$$h |T(m) = (f_0^{\rho} |T^*(m))|_k \tau = a(m, f) h.$$

This shows that $0 \neq h \in U(f)$. When C is divisible by p, then $C_0 = C$, $f_0 = f$ and $U(f) = \mathbb{C} f$. Then, it is obvious that

$$h' = h/\langle \overline{h, f_0} \rangle$$

We now assume that C is prime to p. Take a basis $\{f_0, f_1\}$ of U(f) as in (3.2a). Then, we know that $f_0 | T(p) = \beta f_0$ and $f_1 | T(p) = \gamma f_1$ for the elements β and γ of K_0 with $|\beta|_p = 1$ and $|\gamma|_p < 1$. Thus $\ell_f(f_0) = 1$ and $\ell_f(f_1) = 0$. Then, in order to see $h' = h/\langle h, f_0 \rangle$, what we have to show is the vanishing:

$$\langle h, f_1 \rangle = 0.$$

Since $\beta \neq \gamma$, this is a consequence of the following equality:

$$\begin{aligned} \gamma \langle h, f_1 \rangle &= \langle h, f_1 | T(p) \rangle = \langle h | T^*(p), f_1 \rangle \\ &= \langle (f_0^{\rho} | T(p)) |_k \tau, f_1 \rangle = \langle \beta^{\rho} h, f_1 \rangle = \beta \langle h, f_1 \rangle. \end{aligned}$$

This shows the last assertion for n=0. For $g \in \mathcal{M}_k(\Gamma_0(C_0 p^n), \psi)$ with each n>0, we know $g | T(p)^n \in \mathcal{M}_k(\Gamma_0(C_0), \psi)$, and we have

$$a(p^{n}, f_{0}) \langle h, f_{0} \rangle_{C_{0}} \ell_{f}(g) = \langle h, f_{0} \rangle_{C_{0}} \ell_{f}(g|T(p)^{n}) \text{ by } (4.7)$$

$$= \langle h, g|T(p)^{n} \rangle_{C_{0}}$$

$$= \left\langle h, g \middle| \left[\Gamma_{0}(C_{0}p^{n}) \begin{pmatrix} 1 & 0 \\ 0 & p^{n} \end{pmatrix} \Gamma_{0}(C_{0}) \right] \right\rangle_{C_{0}}$$

$$= \left\langle h \middle| \left[\Gamma_{0}(C_{0}) \begin{pmatrix} p^{n} & 0 \\ 0 & 1 \end{pmatrix} \Gamma_{0}(C_{0}p^{n}) \right], g \right\rangle_{C_{0}p^{n}} \text{ by } [28, (3.4.5)].$$
nce $\Gamma_{0}(C_{0}) \begin{pmatrix} p^{n} & 0 \\ 0 & 1 \end{pmatrix} \Gamma_{0}(C_{0}p^{n}) = \Gamma_{0}(C_{0}) \begin{pmatrix} p^{n} & 0 \\ 0 & 1 \end{pmatrix} \text{ we have}$

Since $\Gamma_0(C_0) \begin{pmatrix} p^n & 0 \\ 0 & 1 \end{pmatrix} \Gamma_0(C_0 p^n) = \Gamma_0(C_0) \begin{pmatrix} p^n & 0 \\ 0 & 1 \end{pmatrix}$, we have $h \left| \left[\Gamma_0(C_0) \begin{pmatrix} p^n & 0 \\ 0 & 1 \end{pmatrix} \Gamma_0(C_0 p^n) \right] = p^{n(k-1)} h(p^n z).$

This shows the last assertion for every $n \ge 0$.

§ 5. Differential operators

In this section, we recall some of Shimura's results on differential operators on \mathfrak{H} , and prove several additional facts. Define the differential operators on \mathfrak{H} by

$$\delta_{s} = \frac{1}{2\pi\sqrt{-1}} \left(\frac{s}{2\sqrt{-1}y} + \frac{\partial}{\partial z} \right),$$

$$d = \frac{1}{2\pi\sqrt{-1}} \frac{\partial}{\partial z} = q \frac{d}{dq} \quad (q = e(z), \ z = x + \sqrt{-1}y),$$

$$\delta_{s}^{r} = \delta_{s+2r-2} \dots \delta_{s+2} \delta_{s} \quad \text{for } 0 \leq r \in \mathbb{Z},$$

where we understand that $\delta_s^0 = 1$ is the identity operator. These operators satisfy

(5.1)
$$\delta_{s+t}(fg) = g \,\delta_s(f) + f \,\delta_t(g) \quad \text{and} \quad \delta_k^r(f|_k \gamma) = (\delta_k^r f)|_{k+2r} \gamma$$

for $\gamma \in GL_2^+(\mathbb{R})$ and every positive integer k [23, (1.5), (1.8)]. The relation between δ and d is given in [27, (1.16a, b)] as

(5.2)
$$\delta_s^r = \sum_{0 \le t \le r} {r \choose t} \frac{\Gamma(s+r)}{\Gamma(s+t)} (-4\pi y)^{t-r} d^t$$

Let K_0 be a subfield of $\overline{\mathbb{Q}}$ and l and m be positive integers. Let $g \in \mathcal{M}_l(\Gamma_0(N), \xi; K_0)$ and $h \in \mathcal{M}_m(\Gamma_0(N), \chi; K_0)$. Then we have

(5.3)
$$g \,\delta_m^r h = \sum_{n=0}^r \delta_{k-2n}^n g_n \quad \text{with elements } g_n \text{ of } \mathcal{M}_{k-2n}(\Gamma_0(N), \xi \chi; K_0)$$

for $k = l + m + 2r$.

These modular forms g_n are uniquely determined by g and h. This fact is shown in [25, Lemma 7]. We write $H(g \delta_m^r h)$ for g_0 in (5.3), and call it the holomorphic projection of $g \delta_m^r h$. This terminology is justified by the property given in [25, Lemma 6] (see also [27, Lemma 2.3]):

(5.4)
$$\langle f, g \, \delta_m^r h \rangle_N = \langle f, H(g \, \delta_m^r h) \rangle_N$$
 for every element f of $\mathcal{G}_k(\Gamma_0(N), \xi \chi)$.

Here the Petersson inner product $\langle f, g \, \delta_m^r h \rangle_N$ is defined as usual, since $g \, \delta_m^r h$ transforms under $\Gamma_0(N)$ as if it were an element of $\mathcal{M}_k(\Gamma_0(N), \xi \chi)$.

Lemma 5.1. Let $\mathcal{O}_{K_0} = \{x \in K_0 | |x|_p \leq 1\}$, and suppose that $g \in \mathcal{M}_1(N; \mathcal{O}_{K_0})$ and $h \in \mathcal{M}_m(N; \mathcal{O}_{K_0})$. Then, we can find a positive integer C independently of g and h such that

$$CH(g \, \delta_m^r h) \in \mathcal{M}_k(N; \mathcal{O}_{K_0}) \quad (k = l + m + 2r).$$

The integer C depends only on l, m and r.

Proof. By applying (5.2) to the equality (5.3), we have

$$\sum_{\substack{0 \leq t \leq r \\ n = 0}} {r \choose t} \frac{\Gamma(m+r)}{\Gamma(m+t)} (g d^t h) (-4\pi y)^{t-r}$$
$$= \sum_{n=0}^r \sum_{\substack{0 \leq t \leq n \\ n = 0}} {n \choose t} \frac{\Gamma(k-n)}{\Gamma(k-2n+t)} (d^t g_n) (-4\pi y)^{t-n}.$$

We consider this to be an equality of polynomials in the variable $(-4\pi y)^{-1}$. By comparing the coefficients of $(-4\pi y)^{-t}$ for each $0 \le t \le r$, we have

(5.5)
$$\binom{r}{t} \frac{\Gamma(m+r)}{\Gamma(m+t)} g d^{t} h = \sum_{n=r-t}^{r} \binom{n}{t-r+n} \frac{\Gamma(k-n)}{\Gamma(k-n+t-r)} d^{t-r+n} g_{n}$$

When t=0, we see from (5.5) that $gh = \frac{\Gamma(m)\Gamma(k-r)}{\Gamma(m+r)\Gamma(k-2r)}g_r$. Define C_r to be the

numerator of $\frac{\Gamma(m)\Gamma(k-r)}{\Gamma(m+r)\Gamma(k-2r)}$. Then C_rg_r has Fourier coefficients in \mathcal{O}_{K_0} whenever g and h have their Fourier coefficients in \mathcal{O}_{K_0} . Now, let j be an integer with $0 \leq j \leq r$, and assume that there are positive integers C_n for $j < n \leq r$ such that C_ng_n has Fourier coefficients in \mathcal{O}_{K_0} whenever g and h do. Then we see from (5.5) for t=r-j that

$$\frac{\Gamma(k-j)}{\Gamma(k-2j)}g_j = \binom{r}{r-j}\frac{\Gamma(m+r)}{\Gamma(m+r-j)}g\,d^{r-j}h - \sum_{n=j+1}^r \binom{n}{n-j}\frac{\Gamma(k-n)}{\Gamma(k-n-j)}d^{n-j}g_n$$

Since $C_n d^{n-j} g_n$ for every n > j has coefficients in \mathcal{O}_{K_0} , we can find a positive integer C_j so that $C_j g_j$ has \mathcal{O}_{K_0} -integral Fourier coefficients whenever g and h are \mathcal{O}_{K_0} -integral. Thus, by induction on j, we obtain the lemma.

Lemma 5.2. Suppose that $g \in \mathcal{M}_l(\Gamma_1(N); K_0)$ and $h \in \mathcal{M}_m(\Gamma_1(N); K_0)$, and define $g_n \in \mathcal{M}_{k-2n}(\Gamma_1(N); K_0)$ $(0 \le n \le r, k = l+m+2r)$ for a positive integer r by (5.3). Put $g' = -\sum_{n=0}^{r-1} d^n g_{n+1}$. Then, the p-adic norm $|a(n,g')|_p$ of the Fourier coefficients of g' for all n is bounded, and we have that

$$H(g\,\delta_m^r\,h) = g\,d^r\,h + dg'.$$

Moreover, $H(g \delta_m^r h)$ is a cusp form if r > 0.

Proof. We see from (5.5) for t = r that

(5.6)
$$g d^r h = H(g \delta^r_m h) + \sum_{n=1}^r d^n g_n = H(g \delta^r_m h) - dg'.$$

Since g_n is a K_0 -rational modular form by (5.3), the norm $|g'|_p$ is a well defined real number; namely, $|a(n,g')|_p$ is bounded. For an arbitrary $\gamma \in SL_2(\mathbb{Q})$, by substituting $g|_l \gamma$ and $h|_m \gamma$ for g and h in (5.3), we see easily from (5.1) and (5.6) that

$$H(g\,\delta_m^r\,h)|_k\,\gamma = H[(g|_l\,\gamma)\,\delta_m^r(h|_m\,\gamma)] = (g|_l\,\gamma)\,d^r(h|_m\,\gamma) - \sum_{n=1}^r d^n(g_n|_{k-2n}\,\gamma).$$

This vanishes at $i\infty$, and therefore $H(g \delta_m^r h)$ is a cusp form when r > 0.

Lemma 5.3. For arbitrary elements g of $\mathcal{M}_{l}(\Gamma_{1}(N))$ and h of $\mathcal{M}_{m}(\Gamma_{1}(N))$, we have

$$H(g\,\delta_m^r\,h) = (-1)^r\,H(h\,\delta_l^r\,g).$$

Proof. The assertion is trivially true for r=0; thus, we assume that r>0. Then $H(g \, \delta_m^r h)$ and $H(h \, \delta_l^r g)$ are cusp forms. For any C^{∞} -functions f and f' with the same automorphic property as elements of $\mathcal{M}_k(\Gamma_1(N))$, put

$$\langle f, f' \rangle = \int_{\mathfrak{H}/\Gamma_1(N)} \overline{f(z)} f'(z) y^{k-2} dx dy,$$

if it is well defined. Let ϕ and ψ be arbitrary C^{∞} -functions on \mathfrak{H} satisfying $\phi|_i \gamma = \phi$ and $\psi|_j \gamma = \psi$ for all $\gamma \in \Gamma_1(N)$. If ϕ and ψ are slowly increasing in the sense of [27, (2.17)], then $\langle f, \phi \delta_j \psi \rangle$, $\langle f, \psi \delta_i \phi \rangle$ and $\langle f, \delta_{i+j}(\phi \psi) \rangle$ for every f of $\mathscr{S}_{i+j+2}(\Gamma_1(N))$ are finite. Especially, $\langle f, \delta_{i+j}(\phi \psi) \rangle$ vanishes by [27, Lemma 2.3]. In addition to this, we see from (5.1) that $\delta_{i+j}(\phi \psi) = \phi \delta_j \psi + \psi \delta_i \phi$. Then, we have

(5.7)
$$\langle f, \phi \, \delta_j \psi \rangle = -\langle f, \psi \, \delta_i \phi \rangle$$
 for every $f \in \mathcal{G}_{i+j+2}(\Gamma_1(N))$

Substituting $\delta_l^{r-n}g$ and $\delta_m^{n-1}h$ for ϕ and ψ in (5.7), we have

$$\langle f, (\delta_l^{r-n} g) (\delta_m^n h) \rangle = - \langle f, (\delta_l^{r-n+1} g) (\delta_m^{n-1} h) \rangle.$$

Then, by induction on *n*, we know

$$\langle f, g \, \delta_m^r h \rangle = (-1)^r \langle f, h \, \delta_1^r g \rangle.$$

Then (5.4) shows that, for all $f \in \mathcal{G}_k(\Gamma_1(N))$ (k = l + m + 2r),

$$\langle f, H(g \, \delta_m^r h) \rangle = (-1)^r \langle f, H(h \, \delta_l^r g) \rangle.$$

Since $H(g \delta_m^r h)$ and $H(h \delta_l^r g)$ are cusp forms, the non-degeneracy of the Petersson inner product on $\mathcal{G}_k(\Gamma_1(N))$ shows the lemma.

§6. Bounded measures with values in p-adic modular forms

Firstly, we recall the theory of bounded measures according to Mazur and Swinnerton-Dyer [16]. Let A be a closed subring of Ω . Let \mathscr{M} be an A-module complete under a norm $| |_{\mathscr{M}}$ with the following properties: $|x|_{\mathscr{M}} = 0$ if and only if x = 0 $(x \in \mathscr{M})$; $|ax|_{\mathscr{M}} = |a|_p |x|_{\mathscr{M}}$ for $a \in A$ and $x \in \mathscr{M}$; $|x + y|_{\mathscr{M}} \leq \max(|x|_{\mathscr{M}}, |y|_{\mathscr{M}})$. For our later use, A will be a finite extension of \mathbb{Q}_p and \mathscr{M} will be the space $\overline{\mathscr{M}}(N; A)$ of p-adic modular forms. Let T be a projective limit of finite discrete sets T_n . Let $\mathscr{C}(T; A)$ be the space of all continuous functions on T with values in A. We can define a norm $||\phi||$ of $\phi \in \mathscr{C}(T; A)$ by

$$\|\phi\| = \sup_{t\in T} |\phi(t)|_p.$$

Then $\mathscr{C}(T; A)$ becomes a complete normed A-module [2, X.1.6, X.3.3]. A linear functional ψ on $\mathscr{C}(T; A)$ into \mathscr{M} is called a bounded measure on T with values

in \mathcal{M} if there is a positive constant B such that $|\psi(\phi)|_{\mathcal{A}} \leq B ||\phi||$ for all $\phi \in \mathscr{C}(T; A)$. Usually, the value $\psi(\phi)$ is written as $\int_{T} \phi d\psi$. For a point $t \in T_n$, let $\chi_{n,t}$ be the pull back to T of the characteristic function of the one point subset $\{t\}$ of T_n . Put $\psi_n(t) = \int_{T} \chi_{n,t} d\psi$. Since locally constant functions are dense in $\mathscr{C}(T; A)$, the measure ψ is uniquely determined by the system $\{\psi_n(t)\}_{n \geq u, t \in T_n}$ for any given integer u. This system satisfies

(6.1)
$$\sum_{\pi_{ij}(t)=s} \psi_i(t) = \psi_j(s) \quad \text{for any } i \ge j \ge u \text{ and every } s \in T_j,$$

where π_{ij} is the projection of T_i onto T_j . Conversely, if a system $\{\psi_n(t)\}_{n \ge u, t \in T_n}$ satisfying (6.1) is given and if the norm $|\psi_n(t)|_{\mathscr{M}}$ is bounded independently of nand $t \in T_n$, then this system comes from a unique bounded measure on T. For a given measure ψ on T and any continuous function Φ in $\mathscr{C}(T; A)$, the product measure $\Phi \cdot \psi$ (or occasionally written as $\Phi d\psi$) of Φ and ψ is defined by

(6.2)
$$(\boldsymbol{\Phi} \cdot \boldsymbol{\psi})(\boldsymbol{\phi}) = \boldsymbol{\psi}(\boldsymbol{\Phi} \boldsymbol{\phi}) = \int_{T} \boldsymbol{\phi} \, \boldsymbol{\Phi} \, d\boldsymbol{\psi} \quad \text{for any } \boldsymbol{\phi} \in \mathscr{C}(T; A).$$

Let M be an arbitrary positive integer and put

$$Z_{\nu} = (\mathbb{Z}/M p^{\nu} \mathbb{Z})^{\times}$$
 and $Z = \varprojlim_{\nu} Z_{\nu}.$

We shall introduce the Eisenstein measure on the space Z. Let us define an Eisenstein series for each $a \in Z_v$ by giving its Fourier expansion: for each positive integer m,

(6.3)
$$E_{m,\nu}(a) = \zeta(1-m; a, M p^{\nu}) + \sum_{n=1}^{\infty} \left(\sum_{\substack{d \mid n \\ d \equiv a \mod M p^{\nu}}} \operatorname{sgn}(d) d^{m-1}\right) e(n z),$$

where $\zeta(s; a, Mp^{\nu}) = \sum_{\substack{0 < n \equiv a \mod Mp^{\nu} \\ 0 < n \equiv a \mod Mp^{\nu}}} n^{-s}$ is the partial zeta function modulo Mp^{ν} . It is known by Hecke [8] that the series of (6.3) belongs to $\mathcal{M}_m(\Gamma_1(Mp^{\nu}); \mathbb{Q})$ if $Mp^{\nu} > 2$. The system $\{E_{m,\nu}(a)\}_{\nu \geq 2, a \in \mathbb{Z}_{\nu}}$ for each *m* satisfies the condition (6.1), but their norms in $\mathcal{M}(M; \mathbb{Q}_p)$ are unbounded. For each integer b > 1 prime to Mp, put

(6.4a)
$$E_{m,\nu}^{b}(a) = E_{m,\nu}(a) - b^{m} E_{m,\nu}(b^{-1}a),$$

where we take the inverse b^{-1} in Z_v considering b to be an element of Z_v naturally. Define another system $\{\varepsilon_{m,v}^b(a)\}_{v \ge 1, a \in Z_v}$ by

(6.4b)
$$\varepsilon_{m,v}^{b}(a) = \zeta(1-m; a, M p^{v}) - b^{m} \zeta(1-m; b^{-1} a, M p^{v}) \in \mathbb{Q}.$$

Then, it is well known that $|\varepsilon_{m,\nu}^b(a)|_p$ is bounded independently of $a \in \mathbb{Z}_{\nu}$ and ν (e.g. [13, Chap. 2]). Thus the system (6.4a, b) for each positive integer *m* gives bounded measures on *Z* with values in $\overline{\mathcal{M}}(N; \mathbb{Q}_p)$ and \mathbb{Q}_p , respectively. We will denote these measures by E_m^b and ε_m^b . The measures ε_m^b are related to the

Kubota-Leopoldt *p*-adic *L*-functions (cf. [9] and [13]), and the measure E_1^b is a one-dimensional part of the Eisenstein measure introduced in [11, 12].

Hereafter in this section, we return to the situation of Theorem 2.1. Especially, M denotes the level of the fixed lattice I of the quadratic space V. Recall $\mathscr{W} = \{v \in I^* | n(v) \in \mathbb{Z}\}, W_v = \mathscr{W}/p^v I$ for each positive integer v and $W = \lim_{v \to v} W_v$. We shall now define a measure associated with the quadratic form n on

W. Take a spherical function $\eta: V \to \overline{\mathbb{Q}}$ of degree α with algebraic values on V. By composing η with the embedding *i* of $\overline{\mathbb{Q}}$ into Ω fixed in (0.3), we extend it by continuity to a function on W into Ω . We denote the extension again by η . Fix a finite extension K of \mathbb{Q}_p so that η has values in K. For each $w \in W_p$, put

(6.5)
$$\theta_{\nu}(w,\eta) = \sum_{\substack{v \in \mathscr{W} \\ v \equiv w \bmod p^{\nu}I}} \eta(v) e(n(v) z) \in \mathscr{M}_{\kappa+\alpha}(\Gamma_1(M p^{2\nu}); K).$$

Then, the system $\{\theta_v(w,\eta)\}_{v \ge 0, w \in W_v}$ defines a measure on W with values in the K-Banach space $\overline{\mathcal{M}}(M; K)$. When η is the constant function with value 1 on V, this measure will be called the theta measure attached to the quadratic space V, and will be denoted by θ or $d\theta$. For any continuous function $\phi \in \mathscr{C}(W; K)$, the value $\theta(\phi) = \int_{-\infty}^{\infty} \phi \, d\theta$ has the following q-expansion:

$$\theta(\phi) = \int_{W} \phi \, d\theta = \sum_{w \in \mathcal{W}} \phi(w) \, q^{n(w)} \in \widetilde{\mathcal{M}}(M; K).$$

Then, it is obvious that the product measure $\eta \cdot d\theta$ for the general spherical function η gives the measure attached to the system (6.5).

Next, we shall construct another bounded measure on W, which may be regarded as a convolution product of the theta measure and the Eisenstein measure. Write the level M of I as $M'p^{\lambda}$ with a positive integer M' prime to p, and let ω be a Dirichlet character modulo $M p^{u}$ for some integer $u \ge -\lambda$. By definition, $Z_{\nu} = (\mathbb{Z}/M p^{\nu}\mathbb{Z})^{\times}$ naturally acts on $I^{*}/p^{\nu}I$, and the subset W_{ν} of $I^{*}/p^{\nu}I$ is stable under the action of Z_{ν} . Thus, we can consider $\theta_{\nu}(aw, \eta)$ for $w \in W_{\nu}$ and $a \in Z_{\nu}$. For each non-negative integer r and each positive integer m, we define a system $\{\Phi_{\nu}(w)\}_{\nu,w \in W_{\nu}}$ by

(6.6)
$$\Phi_{\nu}(w) = \Phi_{\nu}(w; r, m, \omega, \eta)$$
$$= \sum_{a \in \mathbb{Z}_{\nu}} \omega(a) H[\theta_{\nu}(a w, \eta) \, \delta_{m}^{r} E_{m,\nu}^{b}(a)] \in \mathcal{M}_{k}(\Gamma_{1}(M \, p^{2\nu}); K),$$

where $k = \kappa + \alpha + m + 2r$, δ'_m is Shimura's differential operator defined in §5 and H denotes the holomorphic projection map. We have to assume that $v \ge 2$ and $v \ge u$ in (6.6). By Lemma 5.1, we know

(6.7)
$$|\Phi_{v}(w)|_{p}$$
 is bounded independently of v and $w \in W_{v}$.

In order to show that the system $\{\Phi_v(w)\}$ comes from a bounded measure, we have to check the condition (6.1). The calculation may be done as follows: for any $i \ge j \ge \max(u, 2)$,

$$\sum_{\substack{w \in W_{i} \\ w \equiv x \mod p^{j}I}} \Phi_{i}(w) = \sum_{a \in Z_{i}} \omega(a) H\left[\left(\sum_{\substack{w \in W_{i} \\ w \equiv x \mod p^{j}I}} \theta_{i}(a w, \eta)\right) \delta_{m}^{r} E_{m, i}^{b}(a)\right]$$
$$= \sum_{a \in Z_{i}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r} E_{m, i}^{b}(a)\right]$$
$$= \sum_{a \in Z_{j}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r} \left(\sum_{\substack{c \in Z_{i} \\ c \equiv a \mod Mp^{j}}} E_{m, j}^{b}(c)\right)\right]$$
$$= \sum_{a \in Z_{j}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r} E_{m, j}^{b}(a)\right] = \Phi_{j}(x).$$

Let us denote by $\Phi = \Phi(r, m, \omega, \eta)$ for the measure defined by (6.6).

Lemma 6.1. Let γ be an element of $\Gamma_0(M p^{\nu})$ with $\gamma \equiv \begin{pmatrix} t & * \\ 0 & t^{-1} \end{pmatrix} \mod M p^{\nu}$. Then, we have

$$E_{m,\nu}(a)|_m \gamma = E_{m,\nu}(at) \quad \text{if } M p^{\nu} > 2.$$

Proof. Let χ be a Dirichlet character modulo $M p^{\nu}$ with $\chi(-1) = (-1)^m$, and put

$$E(\chi) = \frac{1}{2}L(1-m,\chi) + \sum_{n=1}^{\infty} \left(\sum_{0 < d \mid n} \chi(d) d^{m-1}\right) e(nz).$$

It is well known that $E(\chi)$ belongs to $\mathcal{M}_m(\Gamma_0(M p^{\nu}), \chi)$ if $M p^{\nu} > 2$ (cf. [8] and [25, (3.4)]). The explicit q-expansion (6.3) of $E_{m,\nu}(a)$ shows that

$$E_{m,\nu}(a) = 2 |Z_{\nu}|^{-1} \sum_{\chi} \bar{\chi}(a) E(\chi),$$

where χ runs over all Dirichlet character modulo $M p^{\nu}$ with $\chi(-1) = (-1)^m$ and $|Z_{\nu}|$ denotes the number of elements in Z_{ν} . Then, we know

$$E_{m,\nu}(a)|_{m} \gamma = 2 |Z_{\nu}|^{-1} \sum_{\chi} \bar{\chi}(a t) E(\chi) = E_{m,\nu}(a t).$$

This shows the lemma.

We know from Proposition 1.1 that, for $\gamma \in \Gamma_0(M p^{2\nu})$ with $\gamma \equiv \begin{pmatrix} t & * \\ 0 & t^{-1} \end{pmatrix}$ mod $M p^{2\nu}$,

 $\theta_{\nu}(w,\eta)|_{\kappa+\alpha} \gamma = \chi_0(t) \theta_{\nu}(t w,\eta),$

where $\chi_0(t) = \left(\frac{(-1)^{\kappa}\Delta}{t}\right)$ for $\Delta = [I^*:I]$ is the Legendre symbol. Then, Lemma 6.1 shows that $\Phi_v(w)$ belongs to $\mathcal{M}_k(\Gamma_0(M p^{2\nu}), \omega \chi_0; K)$ for $k = \kappa + \alpha + m + 2r$. Thus

(6.8) $\Phi(r, m, \omega, \eta)$ has values in $\overline{\mathcal{M}}_k(M, \omega \chi_0; K)$ for $k = \kappa + \alpha + m + 2r$.

We shall clarify possible relations between the measures Φ for various r, m, ω and η .

Proposition 6.2. Let k be a positive integer greater than κ , and assume that the degree α of the spherical function η is less than $k - \kappa$. Then, we have

$$\Phi(0, k-\kappa-\alpha, \omega, \eta) = \eta \cdot \Phi(0, k-\kappa, \omega, 1),$$

where we denote by the symbol "1" the constant function with value 1 on W.

Proof. Note that the two measures $\Phi(0, k - \kappa - \alpha, \omega, \eta)$ and $\Phi(0, k - \kappa, \omega, 1)$ have values in the same space $\overline{\mathcal{M}}_k(M, \omega \chi_0; K)$. Thus it is sufficient to show that

(6.9)
$$|\Phi_{v}(w; 0, k-\kappa-\alpha, \omega, \eta) - \eta(w) \Phi_{v}(w; 0, k-\kappa, \omega, 1)|_{p}$$
 is convergent to 0
uniformly in $w \in W$ as v approaches to the infinity.

By definition, we have

$$E_{m,\nu}^{b}(a) = \varepsilon_{m,\nu}^{b}(a) + \sum_{n=1}^{\infty} \left(\sum_{\substack{d \mid n \\ d \equiv a \mod M p^{\nu}}} \operatorname{sgn}(d) d^{m-1} - b \sum_{\substack{d \mid n \\ b d \equiv a \mod M p^{\nu}}} \operatorname{sgn}(b d) (b d)^{m-1} \right) e(n z).$$

As for the constant term $\varepsilon_{m,v}^{b}(a)$, we have that, for every $a \in \mathbb{Z}$,

$$|\varepsilon_{m,\nu}^b(a) - a_p^{m-1} \varepsilon_{1,\nu}^b(a)|_p \leq p^{-\nu},$$

where $a_p \in \mathbb{Z}_p^{\times}$ is the projection of $a \in \mathbb{Z} = (\mathbb{Z}/M'\mathbb{Z})^{\times} \times \mathbb{Z}_p^{\times}$ into the second factor. A similar inequality can be verified more easily for the non-constant terms of $E_{m,v}^b(a)$, and then, we have

$$|E^b_{m,\nu}(a) - a^{m-1}_p E^b_{1,\nu}(a)|_p \leq p^{-\nu} \quad \text{for every } a \in \mathbb{Z}.$$

Here, we use the norm $| |_p$ defined by $\left| \sum_{n=0}^{\infty} c(n) q^n \right|_p = \sup_n |c(n)|_p$ for any element of $\mathcal{O}_K[[q]]$. Replacing η by its constant multiple if necessary, we may assume that η has values in the *p*-adic integer ring \mathcal{O}_K of *K*. Note that $\eta(aw) = a^x \eta(w)$ for any $a \in \mathbb{Z}$. Then, we have that, for any $w \in W$,

$$(6.10) \quad \left| \eta(w) \, \Phi_{v}(w; 0, k - \kappa, \omega, 1) - \sum_{\substack{a=1\\(a, mp)=1}}^{Mp^{v}} a^{k-\kappa-\alpha-1} \, \omega(a) \, E_{1, v}^{b}(a) \, \eta(aw) \, \theta_{v}(aw, 1) \right|_{p}$$

$$= \left| \eta(w) \, \Phi_{v}(w; 0, k - \kappa, \omega, 1) - \eta(w) \sum_{a} a^{k-\kappa-1} \, \omega(a) \, E_{1, v}^{b}(a) \, \theta_{v}(aw, 1) \right|_{p}$$

$$= \left| \eta(w) \sum_{a} \omega(a) \left[E_{k-\kappa, v}^{b}(a) - a^{k-\kappa-1} \, E_{1, v}^{b}(a) \right] \, \theta_{v}(aw, 1) \right|_{p}$$

$$\leq \sup_{a} \left(|\eta(w)|_{p} \, |E_{k-\kappa, v}^{b}(a) - a^{k-\kappa-1} \, E_{1, v}^{b}(a) |_{p} \, |\theta_{v}(aw, 1)|_{p} \right)$$

$$\leq p^{-v}.$$

Since η is a polynomial function, we can find a constant $C \ge 1$ so that if $v \equiv w \mod p^{\nu} I_p$ for any $v, w \in W$, then

$$|\eta(v) - \eta(w)|_p \leq C p^{-\nu}.$$

Then, the definition of $\theta_{\nu}(w, \eta)$ and $\theta_{\nu}(w, 1)$ in (6.5) shows that

$$|\theta_{\nu}(w,\eta)-\eta(w) \theta_{\nu}(w,1)|_{p} \leq C p^{-\nu}$$
 for every $w \in W$.

Thus, we have that, for every $w \in W$,

$$(6.11) \quad \left| \Phi_{\nu}(w; 0, k - \kappa - \alpha, \omega, \eta) - \sum_{\substack{a=1\\(a, Mp)=1}}^{Mp\nu} a^{k-\kappa-\alpha-1} \omega(a) E_{1,\nu}^{b}(a) \eta(aw) \theta_{\nu}(aw, 1) \right|_{p}$$

$$= \left| \Phi_{\nu}(w; 0, k - \kappa - \alpha, \omega, \eta) - \sum_{a} \omega(a) E_{k-\kappa-\alpha,\nu}^{b}(a) \eta(aw) \theta_{\nu}(aw, 1) \right|_{p}$$

$$+ \sum_{a} \omega(a) E_{k-\kappa-\alpha,\nu}^{b}(a) \eta(aw) \theta_{\nu}(aw, 1)$$

$$- \sum_{a} a^{k-\kappa-\alpha-1} \omega(a) E_{1,\nu}^{b}(a) \eta(aw) \theta_{\nu}(aw, 1) \right|_{p}$$

$$\leq \sup_{a} \left[|E_{k-\kappa-\alpha,\nu}^{b}(a)|_{p} |\theta_{\nu}(aw, \eta) - \eta(aw) \theta_{\nu}(aw, 1)|_{p}, |\eta(aw) \theta_{\nu}(aw, 1)|_{p} |E_{k-\kappa-\alpha,\nu}^{b}(a) - a^{k-\kappa-\alpha-1} E_{1,\nu}^{b}(a)|_{p} \right]$$

$$\leq C p^{-\nu}.$$

Then, (6.9) follows from (6.10) and (6.11). Q.E.d.

For any $\phi \in \mathscr{C}(W; K)$, the value $\theta(\phi) = \sum_{w \in \mathscr{W}} \phi(w) q^{n(w)}$ is an element of $\widetilde{\mathscr{M}}(M; K)$. Then, it is plain that, for $0 \leq r \in \mathbb{Z}$,

$$d^r \,\theta(\phi) = \theta(n^r \,\phi),$$

where d is the differential operator $q \frac{d}{dq}$. It is known (e.g. [12, 5.8]) that the differential operator d takes $\overline{\mathcal{M}}(M; K)$ into itself. Extend the Hecke operator T(p) to an operator on K[[q]] by

$$\left(\sum_{n=0}^{\infty} a(n) q^n\right) \left| T(p) = \sum_{n=0}^{\infty} a(n p) q^n,$$

and put

$$\left|\sum_{n=0}^{\infty} a(n) q^n\right|_p = \sup_n |a(n)|_p.$$

Then, we can define a valuation ring by

$$\mathcal{U} = \{F \in K[[q]] \mid |F|_p \text{ is finite}\}.$$

Then, \mathcal{U} is stable under the differential operator d and the Hecke operator T(p). We see easily that

(6.12)
$$\lim_{m \to \infty} (dF) |T(p)^m = 0 \quad \text{if } F \in \mathcal{U}$$

Note that the space $\mathcal{M}(M; K)$ may be regarded as a subspace of \mathcal{U} through q-expansion. Then, the definition of the idempotent e of $\mathcal{H}(M; \mathcal{O}_K)$ in (4.3) shows that

(6.13) The idempotent ε can be naturally extended to an operator on $d\mathcal{U} + \overline{\mathcal{M}}(M; K)$ so that ε annihilates $d\mathcal{U} (\supset d\overline{\mathcal{M}}(M; K))$.

We shall define the ordinary part $\Phi^0 = \Phi^0(r, m, \omega, \eta)$ of the measure $\Phi(r, m, \omega, \eta)$ by

A p-adic measure attached to the zeta function of modular forms. I

(6.14)
$$\int_{W} \phi \, d\Phi^{0}(r, m, \omega, \eta) = \varepsilon \left[\int_{W} \phi \, d\Phi(r, m, \omega, \eta) \right] \quad \text{for } \phi \in \mathscr{C}(W; K)$$

Then, the measure Φ^0 has values in the finite dimensional K-vector space $\overline{\mathcal{M}}_k^0(M, \omega \chi_0; K)$ (Proposition 4.1).

Proposition 6.3. Let k and r be integers with $k > \kappa$ and $0 \leq r < \frac{1}{2}(k-\kappa)$, and assume that the degree α of η is less than $k-\alpha-2r$. Then, we have

$$\Phi^{0}(r,k-\kappa-\alpha-2r,\omega,\eta)=(-1)^{r}\eta n^{r}\cdot\Phi^{0}(0,k-\kappa,\omega,1).$$

Proof. Put, for each $\phi \in \mathscr{C}(W; K)$,

$$\theta_{v}(w,\phi) = \sum_{\substack{v \equiv w \mod p^{v}I \\ v \in \mathcal{W}}} \phi(w) q^{n(w)} \in \widetilde{\mathcal{M}}(M;K) \quad (w \in W_{v}).$$

Then, we can define a bounded measure $\Phi(0, m, \omega, \phi)$ on W by the system

$$\Phi_{\nu}(w; 0, m, \omega, \phi) = \sum_{a \in \mathbb{Z}_{\nu}} \omega(a) E^{b}_{m,\nu}(a) \theta_{\nu}(a, w, \phi) \in \overline{\mathscr{M}}(M; K).$$

We can apply the argument which proves (6.9) to any homogenous polynomial ϕ on W in place of η there. Let us take ηn^r as ϕ . Then, in exactly the same manner as in the proof of (6.9), we obtain

(6.15)
$$|\Phi_{\nu}(w; 0, k-\kappa-\alpha-2r, \omega, \eta n^{r}) - \eta(w) n(w)^{r} \Phi_{\nu}(w; 0, k-\kappa, \omega, 1)|_{r}$$

converges to 0 uniformly in $w \in W$ as v approaches to the infinity.

For simplicity, we write Φ^0 for $\Phi^0(0, k - \kappa, \omega, 1)$. In order to prove the assertion, what we have to show is

(6.16) $|\Phi_{\nu}^{0}(w; r, k - \kappa - \alpha - 2r, \omega, \eta) - (-1)^{r} (\eta n^{r}) (w) \Phi_{\nu}^{0}(w)|_{p}$ converges to 0 uniformly in $w \in W$ as ν approaches to ∞ .

On the other hand, by Lemma 5.2, there is an element $g \in \overline{\mathcal{M}}(M; K)$ such that

$$H[E_{m,\nu}^{b}(a)\,\delta_{\kappa+\alpha}^{r}\,\theta_{\nu}(a\,w,\eta)] = E_{m,\nu}^{b}(a)\,d^{r}\,\theta_{\nu}(a\,w,\eta) + dg$$

Then, (6.13) shows that e(dg) = 0, and we thus have

$$e[H(E^{b}_{m,\nu}(a) \,\delta^{r}_{\kappa+\alpha} \,\theta_{\nu}(a\,w,\eta))] = e[E^{b}_{m,\nu}(a) \,d^{r} \,\theta_{\nu}(a\,w,\eta)]$$
$$= e[E^{b}_{m,\nu}(a) \,\theta_{\nu}(a\,w,\eta\,n^{r})].$$

This shows that

$$\begin{split} \Phi_{\nu}^{0}(w; r, m, \omega, \eta) &= \sum_{a \in \mathbb{Z}_{\nu}} \omega(a) \, e \left[H(\theta_{\nu}(a \, w, \eta) \, \delta_{m}^{r} E_{m, \nu}^{b}(a)) \right] \\ &= (-1)^{r} \sum_{a} \omega(a) \, e \left[H(E_{m, \nu}^{b}(a) \, \delta_{\kappa + \alpha}^{r} \, \theta_{\nu}(a \, w, \eta)) \right] \quad \text{by Lemma 5.3} \\ &= (-1)^{r} \sum_{a} \omega(a) \, e \left[E_{m, \nu}^{b}(a) \, \theta_{\nu}(a \, w, \eta \, n^{r}) \right] \\ &= (-1)^{r} \, e \left[\Phi_{\nu}(w; 0, m, \omega, \eta \, n^{r}) \right]. \end{split}$$

Then, (6.16) follows from (6.15). Q.E.D.

§7. Proof of Theorem 2.1

Before proving Theorem 2.1, we list some formulae among several Eisenstein series, which are found in [8, 21] and [26]. Let ω be a Dirichlet character modulo N for a positive integer N and m be a positive integer with $\omega(-1) = (-1)^m$. Define Eisenstein series by

$$J_{m,N}(z,s,\omega) = \sum_{\substack{0 \neq (c,d) \in \mathbb{Z}^2}} \omega(c)(c\,z+d)^{-m}|c\,z+d|^{-2s},$$

$$E_{m,N}(z,s;a,b) = \sum_{\substack{0 \neq (c,d) \equiv (a,b) \mod N}} (c\,z+d)^{-m}|c\,z+d|^{-2s}$$

for $a, b \in \mathbb{Z}/N\mathbb{Z}$, and

$$E_{m,N}(\omega) = E_{m,N}(z,\omega) = \frac{1}{2}L_N(1-m,\omega) + \sum_{n=1}^{\infty} (\sum_{0 < d \mid n} \omega(d) d^{m-1}) e(nz).$$

The series $J_{m,N}(z, s, \omega)$ and $E_{m,N}(z, s; a, b)$ have analytic continuations as functions of s. We write simply $E_{m,N}(z; a, b)$ and $J_{m,N}(z, \omega)$ for their values at s=0. As shown in [25, (2.4)] (see also [26, p. 217]), we know that, for every positive integer r,

(7.1)
$$J_{m+2r,N}(z,-r,\omega) = \frac{\Gamma(m)}{\Gamma(m+r)} (-4\pi y)^r \, \delta_m^r [J_{m,N}(z,\omega)],$$

where y = Im(z). The function $E_{m,N}(\omega)$ belongs to $\mathcal{M}_m(\Gamma_0(N), \omega)$ except in the case where m=2 and N=1. Let ω_0 be the primitive character modulo N_0 associated with ω , and define another positive integer N_1 by $N = N_0 N_1$. Then, obviously, we have

(7.2)
$$E_{m,N}(z,\omega) = \sum_{0 < t \mid N_1} \mu(t) \,\omega_0(t) \, t^{m-1} E_{m,N_0}(t \, z, \omega_0),$$

where μ denotes the Moebius function.

Lemma 7.1. For
$$\tau = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix}$$
, we have

(7.3)
$$E_{m,N}(\omega)|_{m}\tau = \frac{\Gamma(m)N^{m/2}G(\omega_{0})}{2(2\pi i)^{m}N_{0}} \sum_{0 < t|N_{1}} \mu(t)\omega_{0}(t)t^{-1}J_{m,N_{0}}(t^{-1}N_{1}z,\bar{\omega}_{0}),$$

where $G(\omega_0) = \sum_{u=1}^{N_0} \omega_0(u) e\left(\frac{u}{N_0}\right)$ is the Gauss sum for ω_0 .

Proof. It is known by Hecke [8] that

$$E_{m,N}(z;a,b) = \operatorname{constant} + \frac{(-2\pi i)^m}{N^m \Gamma(m)} \cdot \sum_{\substack{jk>0\\k \equiv a \mod N}} j^{m-1} \operatorname{sgn}(j) e\left(\frac{j(b+kz)}{N}\right).$$

Write simply A for the constant

$$\frac{N_0^m \Gamma(m)}{2(-2\pi i)^m G(\bar{\omega}_0)}$$

A p-adic measure attached to the zeta function of modular forms. I

An easy calculation shows that

$$E_{m,N_0}(z,\omega_0) - A \sum_{a \in \mathbb{Z}/N_0} \tilde{\omega}_0(a) E_{m,N_0}(z;0,a)$$

is a constant; hence, we know

$$E_{m,N_0}(\omega_0) = A \sum_{a \in (\mathbb{Z}/N_0\mathbb{Z})^{\times}} \overline{\omega}_0(a) E_{m,N_0}(z; 0, a)$$

= $A \cdot \sum_{0 \neq (c,d) \in \mathbb{Z}^2} \overline{\omega}_0(d) (c N_0 z + d)^{-m} |c N_0 z + d|^{-2s}|_{s=0}.$

Then, we know from this formula that

(7.4)
$$E_{m,N_0}(\omega_0)|_m \begin{pmatrix} 0 & -1 \\ N_0 & 0 \end{pmatrix} = N_0^{-m/2} A J_{m,N_0}(z, \bar{\omega}_0).$$

This is a special case of (7.3) by the well known equality:

$$G(\omega_0) G(\bar{\omega}_0) = \omega_0(-1) N_0 = (-1)^m N_0.$$

The formula (7.3) in general follows from (7.2) and (7.4) because of the identity:

$$\begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} \tau = t \begin{pmatrix} 0 & -1 \\ N_0 & 0 \end{pmatrix} \begin{pmatrix} N_1 t^{-1} & 0 \\ 0 & 1 \end{pmatrix} .$$

Now, we are ready to give a proof of Theorem 2.1. We use the same notation as in the theorem. Especially, M denotes the level of the lattice I of V, f is the fixed primitive form of conductor C, with character ψ and of weight $k > \kappa$. Assume that the *p*-th Fourier coefficient a(p, f) of f is a unit in Ω . Let f_0 be the ordinary form associated with f defined in Lemma 3.3 and write C_0 for the smallest possible level of f_0 . Define integers $\mu \ge 1$ and $\lambda \ge 0$ by

$$C_0 = C' p^{\mu}, \qquad M = M' p^{\lambda},$$

where (C', p) = (M', p) = 1. Then, we assume that C' divides M'. Then, the space $\mathcal{M}_k(\Gamma_0(C_0), \psi)$ is a subspace of $\mathcal{M}_k(\Gamma_0(M p^{\mu-\lambda}), \psi)$, and we know that $M p^{\mu-\lambda}/C_0 = M'/C'$.

We first construct the measure φ_b in the theorem for each b>1 prime to Mp. Let K be a sufficiently large finite extension of the p-adic field \mathbb{Q}_p which contains all the Fourier coefficients of f_0 . Let χ_0 be the Dirichlet character modulo M defined by

$$\chi_0(a) = \left(\frac{(-1)^{\kappa} \Delta}{a}\right) \quad \text{for } \Delta = [I^*:I].$$

Let $\Phi^0 = \Phi^0(0, k - \kappa, \psi\chi_0, 1)$ be the bounded measure on $\mathscr{C}(W; K)$ defined in (6.14). Then, the measure Φ^0 has values in the space $\overline{\mathscr{M}}_k^0(M, \psi; K)$, which is a subspace of $\mathscr{M}_k(\Gamma_0(Mp^{\mu-\lambda}), \psi; K)$ (see Proposition 4.1). Let Tr denote the trace operator of $\mathscr{M}_k(\Gamma_0(Mp^{\mu-\lambda}), \psi; \Omega)$ onto $\mathscr{M}_k(\Gamma_0(C_0), \psi; \Omega)$ defined by

(7.5)
$$\operatorname{Tr}(g) = \sum_{\gamma} \overline{\psi}(\gamma) g|_{k} \gamma,$$

where γ runs over a representative set for $\Gamma_0(Mp^{\mu-\lambda}) \setminus \Gamma_0(C_0)$ and $\bar{\psi} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ = $\overline{\psi(d)}$. Then, Tr is a bounded linear operator. The finite extension K can be chosen so that the trace operator sends $\mathscr{M}_k(\Gamma_0(Mp^{\mu-\lambda}),\psi;K)$ onto $\mathscr{M}_k(\Gamma_0(C_0),\psi;K)$. Then, define the measure φ_b by

(7.6)
$$\int_{W} \phi \, d\varphi_b = \ell_f [\operatorname{Tr}(\int_{W} \phi \, d\Phi^0)] \quad \text{for } \phi \in \mathscr{C}(W; K),$$

where $\ell_f: \overline{\mathcal{M}}_k(C_0, \psi; K) \to K$ is the bounded linear form associated with f given in (4.6).

Let η be an arbitrary algebraic valued spherical function on V with degree α less than $k-\kappa$, and ϕ be an algebraic valued locally constant function on W such that $\phi(aw) = \chi(a)\phi(w)$ for every $a \in Z$ and $w \in W$ with a character χ of finite order of Z. Define a Dirichlet character ξ by

$$\xi(a) = \chi(a) \chi_0(a)$$
 for $a \in \mathbb{Z}$ prime to Mp .

Then, for a sufficiently large $\beta \ge 1$, the theta series $\theta(\phi \eta)$ belongs to $\mathcal{M}_{\kappa+\alpha}(\Gamma_0(Mp^{\beta}), \xi)$ by Proposition 1.1. We know fix such a $\beta \ge 1$. Let r be an arbitrary integer with $0 \le 2r + \alpha < k - \kappa$. Now, we shall evaluate the integral $\int_W \phi \eta n^r d\varphi_b$ as in (2.5). We may assume that the functions η and ϕ on W have values in K. Take a positive integer ν so that ϕ factors through $W_{\nu} = \mathcal{W}/p^{\nu}I$. We may assume that $\nu \ge \beta$ and $\nu \ge \mu - \lambda$. Then, Proposition 6.3 shows

$$(-1)^r \int_W \phi \eta n^r d\Phi^0 = e \left[\sum_{w \in W_v} \phi(w) \Phi_v(w; r, m, \psi \chi_0, \eta) \right],$$

where $m = k - \kappa - \alpha - 2r$ and $\Phi_v(w)$ is as in (6.6). We see from (6.6) that

(7.7)
$$\sum_{w \in W_{\nu}} \phi(w) \Phi_{\nu}(w; r, m, \psi \chi_{0}, \eta)$$
$$= \sum_{w \in W_{\nu}} \phi(w) \sum_{a \in Z_{\nu}} \psi \chi_{0}(a) H[\theta_{\nu}(aw, \eta) \delta_{m}^{r} E_{m,\nu}^{b}(a)]$$
$$= \sum_{a} \psi \chi_{0}(a) \sum_{w} \phi(a^{-1}w) H[\theta_{\nu}(w, \eta) \delta_{m}^{r} E_{m,\nu}^{b}(a)]$$
$$= \sum_{a} \psi \chi_{0} \bar{\chi}(a) H[\sum_{w} \phi(w) \theta_{\nu}(w, \eta) \delta_{m}^{r} E_{m,\nu}^{b}(a)]$$
$$= H[\theta(\phi\eta) \delta_{m}^{r}(\sum_{a} \psi \bar{\xi}(a) E_{m,\nu}^{b}(a))].$$

Note that $E_{m,Mp^{\beta}}(\psi \bar{\xi}) = E_{m,Mp^{\nu}}(\psi \bar{\xi}) = \frac{1}{2} \sum_{a \in \mathbb{Z}_{\nu}} \psi \bar{\xi}(a) E_{m,\nu}(a)$. Then, (7.7) is equal to

$$2(1-b^m\psi\,\overline{\xi}(b))\,H[\theta(\phi\,\eta)\,\delta^r_m E_{m,M\,p^\beta}(\psi\,\overline{\xi})]$$

We have by the definition of φ_b that

$$(-1)^{r} \int_{W} \phi \eta n^{r} d\varphi_{b} = 2(1 - b^{m} \psi \overline{\xi}(b)) \ell_{f} [\operatorname{Tr} \{ e(H(\theta(\phi \eta) \delta_{m}^{r} E_{m,M p^{\beta}}(\psi \overline{\xi}))) \}].$$

A p-adic measure attached to the zeta function of modular forms. I

Let us now choose a complete representative set R for

$$\Gamma_0(M p^{\beta}) \setminus \Gamma_0(C_0 p^{\beta+\lambda-\mu}).$$

Note that $Mp^{\beta} = M'p^{\beta+\lambda}$, $C_0 p^{\beta+\lambda-\mu} = C'p^{\beta+\lambda}$, and that C' and M' are prime to p. Therefore, the set R may be regarded as a complete representative set for $\Gamma_0(Mp^{\mu-\lambda})\setminus\Gamma_0(C_0)$. Thus, one can extend the operator Tr defined in (7.5) to the trace operator of $\mathcal{M}_k(\Gamma_0(Mp^{\beta}), \psi; \Omega)$ onto $\mathcal{M}_k(\Gamma_0(C_0p^{\beta+\lambda-\mu}), \psi; \Omega)$; namely, we put

$$\operatorname{Tr}(g) = \sum_{\gamma \in R} \overline{\psi}(\gamma) g|_k \gamma \quad \text{for } g \in \mathcal{M}_k(\Gamma_0(M p^\beta), \psi; \Omega).$$

Then, we see easily that

 $\operatorname{Tr} \circ T(p) = T(p) \circ \operatorname{Tr}$ and $\operatorname{Tr} \circ e = e \circ \operatorname{Tr}$.

Since $\operatorname{Tr}(g)|T(p)^{\beta+\lambda-\mu}$ for $g \in \mathcal{M}_k(\Gamma_0(M p^{\beta}), \psi; \overline{\mathbb{Q}})$ belongs to $\mathcal{M}_k(\Gamma_0(C_0), \psi; \overline{\mathbb{Q}})$, Proposition 4.5 and (4.7) show that

$$\ell_{f}[\operatorname{Tr}(e(g))] = \ell_{f}[e(\operatorname{Tr}(g))]$$

$$= a(p, f_{0})^{\mu-\beta-\lambda}\ell_{f}[\operatorname{Tr}(g)|T(p)^{\beta+\lambda-\mu}]$$

$$= a(p, f_{0})^{\mu-\beta-\lambda_{p}(\beta+\lambda-\mu)(k-1)}\frac{\langle h_{\beta+\lambda-\mu}, \operatorname{Tr}(g) \rangle_{C_{0}p^{\beta+\lambda-\mu}}}{\langle h, f_{0} \rangle_{C_{0}}},$$

$$h_{p} = f_{0}^{\alpha} \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix} \quad \text{where } f_{0} = f_{0}^{\alpha} = f_{0}^{\alpha} \quad \text{where } f_{0}^{\alpha} = f_{0}^{\alpha}$$

where $h = f_0^{\beta} |_k \begin{pmatrix} 0 & -1 \\ C_0 & 0 \end{pmatrix}$ and $h_{\beta+\lambda-\mu}(z) = h(p^{\beta+\lambda-\mu}z)$. Note that, for $\tau = \begin{pmatrix} 0 & -1 \\ M p^{\beta} & 0 \end{pmatrix}$,

$$\langle h_{\beta+\lambda-\mu}, \operatorname{Tr}(g) \rangle_{C_0 p^{\beta+\lambda-\mu}} = \langle h_{\beta+\lambda-\mu}, g \rangle_{M p^{\beta}} = \langle h_{\beta+\lambda-\mu}|_k \tau, g|_k \tau \rangle_{M p^{\beta}}.$$

Applying these formulae to $g = H[\theta(\phi \eta) \, \delta_m^r E_{m,M\,p^{\beta}}^b(\psi \,\overline{\xi})]$, we have by (5.4)

(7.8)
$$(-1)^{r} \int_{W} \phi \eta n^{r} d\phi_{b} = 2(1 - b^{m} \psi \bar{\xi}(b)) p^{(\beta + \lambda - \mu)(k-1)} a(p, f_{0})^{\mu - \beta - \lambda} \times \frac{\langle h_{\beta + \lambda - \mu}|_{k} \tau, (\theta(\phi \eta) \delta_{m}^{r} E_{m, M p^{\beta}}(\psi \bar{\xi}))|_{k} \tau \rangle_{M p^{\beta}}}{\langle h, f_{0} \rangle_{C_{0}}},$$

where $m = k - \kappa - \alpha - 2r$.

On the other hand, Lemma 7.1 combined with (7.1) shows that

$$\begin{aligned} (\delta_m^r E_{m,Mp^{\beta}}(\omega))|_{k-\kappa-\alpha}\tau \\ &= Ty^{-r}\sum_{0 < t \mid N_1} \mu(t) \,\omega_0(t) t^{-1} J_{k-\kappa-\alpha,N_0}(t^{-1}N_1z,-r,\bar{\omega}_0), \end{aligned}$$

where $\omega = \psi \bar{\xi}$, N_0 is the conductor of ω , ω_0 is the primitive character associated with ω , $N = M p^{\beta} = N_0 N_1$ and

$$T = N_0^{-1} G(\omega_0) \pi^{-m-r} 2^{2r-m-1} (\sqrt{-1})^{2r-m} (M p^{\beta})^{m/2} \Gamma(m+r)$$

for $m = k - \kappa - \alpha - 2r$. Note that

$$p^{(\beta+\lambda-\mu)(k-1)}h_{\beta+\lambda-\mu}|_k\tau = (-1)^k p^{(\beta+\lambda-\mu)(k/2-1)} f_0^{\beta}|_k\gamma$$

for $\gamma = \begin{pmatrix} M'/C' & 0\\ 0 & 1 \end{pmatrix}$. Applying these formulae to (7.8), we know that $\int_{W} \phi \eta n^{r} d\varphi_{b}$ is equal to

$$S(1-b^{m}\psi\bar{\xi}(b))a(p,f_{0})^{\mu-\beta-\lambda}G(\omega_{0})\langle h,f_{0}\rangle^{-1}$$

$$\cdot\sum_{0 < t|N_{1}}\mu(t)\omega_{0}(t)t^{-1}\langle f_{0}|_{k}\tau, (\theta(\phi\eta)|_{\kappa+\alpha}\tau)J_{k-\kappa-\alpha,N_{0}}(t^{-1}N_{1}z,-r,\bar{\omega}_{0})y^{-r}\rangle_{Mp^{\beta}},$$

where

$$S = \pi^{-m-r} 2^{-m-2r} (\sqrt{-1})^{2k-m} M^{m/2} p^{m\beta/2 + (\beta + \lambda - \mu)(k/2 - 1)} N_0^{-1} \Gamma(m+r).$$

Then, the evaluation (2.5) follows from the formula given in [26, p. 217]:

$$\mathcal{D}_{Mp^{\beta}}(\kappa+\alpha+\theta,f_{0}|_{k}\gamma,\theta(\phi\eta)|_{\kappa+\alpha}\tau) = U\sum_{0 < t \mid N_{1}} \mu(t) \omega_{0}(t)t^{-1} \cdot \langle f_{0}^{\rho}|_{k}\gamma, (\theta(\phi\eta)|_{\kappa+\alpha}\tau) J_{k-\kappa-\alpha,N_{0}}(t^{-1}N_{1}z,-r,\bar{\omega}_{0})y^{-r} \rangle_{Mp^{\beta}}$$

where

$$U = \pi^{k-r-2m+1} 2^{2k-2r-2m-1} M^{m-1} p^{\beta(m-1)} N_0^{-1} G(\omega_0) \frac{\Gamma(m+r)}{\Gamma(\kappa+\alpha+r) \Gamma(r+1)}$$

§8. A sketch of the Proof of Theorem 2.2

In this section, we use the same notation as in Theorem 2.2. Especially, $g = \sum_{n=0}^{\infty} b(n) e(nz)$ is the fixed modular form in $\mathcal{M}_l(\Gamma_0(N), \omega)$ with $b(n) \in \overline{\mathbb{Q}}$. Let v be a psoitive integer and ϕ be an arbitrary function on $Y_v = \mathbb{Z}/N p^v \mathbb{Z}$ with values in \mathbb{C} . Put

$$g(\phi) = \sum_{n=0}^{\infty} \phi(n) b(n) e(nz),$$

as a function on S.

Proposition 8.1. For any $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N^2 p^{2\nu})$, we have the following transformation formula:

$$g(\phi)|_{l} \gamma = \omega(d) g(\phi_{a}),$$

where ϕ_a is a function on $\mathbb{Z}/Np^{\nu}\mathbb{Z}$ defined by

$$\phi_a(y) = \phi(a^{-2}y).$$

Proof (cf. [20, Lemma 2]). We simply write n for Np^{ν} for a fixed $\nu \ge 1$, and define a $n \times n$ matrix by

$$A = (e(x y/n))_{x, y \in Y_{v}}.$$

The matrix A is invertible, and thus we can find $x(u, y) \in \mathbb{C}$ for any pair $u, y \in Y_v$ so that

$$\sum_{u \in Y_{v}} x(u, y) e(uv/n) = \begin{cases} 1 & \text{if } v = y, \\ 0 & \text{otherwise.} \end{cases}$$

For any $t \in Y_v^{\times}$ and $v \in Y_v$, we have that

$$\sum_{u \in Y_v} x(tu, y) e(uv/n) = \sum_{u \in Y_v} x(u, y) e(t^{-1}uv/n) = \begin{cases} 1 & \text{if } t^{-1}v = y, \\ 0 & \text{otherwise.} \end{cases}$$

This shows

(8.1)
$$x(tu, y) = x(u, ty)$$
 for every $t \in Y_v^{\times}$.

Put

(8.2)
$$g(y) = g_{v}(y) = \sum_{m \equiv y \mod Np^{v}} b(m) e(mz) \quad \text{for } y \in Y_{v}.$$

Since we can express $g(\phi) = \sum_{y \in Y_{\nu}} \phi(y) g(y)$, our task is to show

(8.3)
$$g(y)|_{l} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \omega(d) g(a^{2} y)$$
 for every $y \in Y_{v} \left(\text{if } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_{0}(n^{2}) \right)$

For each $u \in Y_v$, take $u_0 \in \mathbb{Z}$ with $u_0 \equiv u \mod n$, and put $\alpha_u = \begin{pmatrix} 1 & u_0/n \\ 0 & 1 \end{pmatrix}$. Then, by the definition of x(u, y), we have

$$g(y) = \sum_{u \in Y_{v}} x(u, y) g|_{l} \alpha_{u}.$$

As in the proof of [28, Prop. 3.64], for each $u \in Y_v$, we can find $\gamma_u = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \Gamma_0(N)$ so that

$$\alpha_u \gamma = \gamma_u \alpha_{a^{-2}u}$$
 and $d \equiv d' \mod N \quad \left(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)$.

Then (8.3) can be shown as follows:

$$g(y)|_{l} \gamma = \sum_{u \in Y_{\nu}} x(u, y) g|\gamma_{u} \alpha_{a^{-2}u} = \omega(d) \sum_{u} x(a^{2}u, y) g|_{l} \alpha_{u}$$
$$= \omega(d) \sum_{u} x(u, a^{2}y) g|_{l} \alpha_{u} = \omega(d) g(a^{2}y).$$

Now we shall give a sketch of a proof of Theorem 2.2. Fix an integer b > 1 prime to Np, and let r and m be integers with $r \ge 0$ and m > 0. Define the Eisenstein series $E_{m,\nu}^{b}(a)$ for each $a \in Y_{\nu}^{\times}$ by (6.3) and (6.4a) for N in place of M there. Write $N = N'p^{\lambda}$ with an integer N' prime to p and let ψ' be a Dirichlet character modulo Np^{μ} for some $u \ge 1$. Define, for each $y \in Y_{\nu}(\nu \ge u)$,

(8.4)
$$\Phi_{\nu}(y) = \Phi_{\nu}(y; r, m, \psi') = \sum_{a \in Y_{\nu}} \psi'(a) H[g_{\nu}(a^{2} y) \delta_{m}^{r} E_{m,\nu}^{b}(a)].$$

Then, the system $\{\Phi_{v}(y)\}$ defines a bounded measure $\Phi(r, m, \psi')$ with values in $\overline{\mathcal{M}}_{l+m+2r}(NN', \psi'\omega; K)$ for a suitable finite extension K of \mathbb{Q}_{p} . We now define, parallel to (6.14), the ordinary part $\Phi^{0}(r, m, \psi')$ of the measure $\Phi(r, m, \psi')$ by

(8.5)
$$\int_{Y} \phi d\Phi^{0}(r, m, \psi') = e \left[\int_{Y} \phi d\Phi(r, m, \psi') \right].$$

Then, the measure $\Phi^0(r, m, \psi')$ has values in the finite dimensional vector space $\mathcal{M}_{l+m+2r}(\Gamma_0(NN'p^u), \psi'\omega; K)$ by Proposition 4.1. Let k be an integer with k > l. If r is an integer with $0 \le 2r < k - l$, we have, for any $\phi \in \mathscr{C}(Y; K)$,

(8.6)
$$\int_{Y} \phi d\Phi^{0}(r, k-l-2r, \psi') = (-1)^{r} \int_{Y} \phi(y) y_{p}^{r} d\Phi^{0}(y; 0, k-l, \psi')$$

where y_p is the projection of $y \in Y = \mathbb{Z}/N'\mathbb{Z} \times \mathbb{Z}_p$ to the factor \mathbb{Z}_p . This can be proved in exactly the same manner as in the proof of Propositions 6.2 and 6.3. Let f be a primitive form of weight k > l, of conductor C and with character ψ . Assume that $|a(p, f)|_p = 1$ and that K contains all the Fourier coefficients of f. Let f_0 be the ordinary form associated with f and let C_0 be the smallest level of f_0 . Write $C_0 = C'p^{\mu}$ with an integer C' prime to p and assume the divisibility of N' by C'. Then the measure $\Phi^0 = \Phi^0(0, k - l, \psi \bar{\omega})$ has values in the space $\mathcal{M}_k(\Gamma_0(N'^2 p^{\mu}), \psi; K)$. Let Tr denotes the trace operator of $\mathcal{M}_k(\Gamma_0(N'^2 p^{\mu}), \psi; K)$ onto $\mathcal{M}_k(\Gamma_0(C_0), \psi; K)$. Then, the bounded measure φ_b on Yin Theorem 2.2 can be defined by

$$\int_{Y} \phi \, d\varphi_b = \ell_f [\mathrm{Tr}(\int_{Y} \phi \, d\Phi^0)],$$

where ℓ_f is the linear form on $\overline{\mathcal{M}}_k(C_0, \psi; K)$ attached to f. The evaluation of the integral $\int_Y \phi(y) y'_p d\varphi_b(y)$ for any locally constant function ϕ with (2.6) can be carried out in exactly the same fashion as in §7.

§ 9. Functional equations of $\mathcal{D}_N(s, f, g)$

The functional equations and the meromorphy of the zeta functions $\mathcal{D}_N(s, f, g)$ was proved by Jacquet [10, Th. 19.14] for any primitive forms f and g through a representation theoretic generalization of Rankin's method [18]. However, the familiarity with the representation theory is necessary to understand his results; so, for the reader's convenience, we give here a brief exposition of this in a special case where the original method of [18] can be applied. The details of our arguments may be found in [21, 25, 26]. Let

$$f = \sum_{n=1}^{\infty} a(n) e(nz)$$
 and $g = \sum_{n=1}^{\infty} b(n) e(nz)$

be primitive forms of conductor C(f) and C(g), respectively. Let k and ψ (resp. l and ξ) be the weight and the character of f (resp. g). For any Dirichlet

character ω , we write $C(\omega)$ for the conductor of ω . We now assume that:

- (9.1a) N is the least common multiple of C(f) and C(g);
- (9.1 b) k > l;
- (9.1 c) $N = C(\psi \xi).$

Now we define the root numbers W(f) and W(g) by

(9.2)
$$f|_{k} \begin{pmatrix} 0 & -1 \\ C(f) & 0 \end{pmatrix} = W(f) f^{\rho}, \quad g|_{l} \begin{pmatrix} 0 & -1 \\ C(g) & 0 \end{pmatrix} = W(g) g^{\rho},$$

where ρ is the complex conjugation. Let $G(\omega)$ denote the Gauss sum for a primitive character ω and put $W(\omega) = G(\omega)/|G(\omega)|$. Write M(g) = N/C(g) and M(f) = N/C(f), and put

$$W(f,g) = a(M(g))^{\rho} b(M(f))^{\rho} W(f) W(g) W(\psi \xi).$$

Theorem 9.1. Put

$$R(s, f, g) = (2\pi)^{-2s} \Gamma(s) \Gamma(s+1-l) \mathcal{D}_N(s, f, g).$$

Then, R(s, f, g) can be continued as an entire function on the whole complex plane and satisfies the functional equation:

(9.3)
$$R(k+l-1-s, f, g) = (-1)^{l} W(f, g) N^{s-k-l+\frac{1}{2}} C(f)^{s-\frac{k}{2}} C(g)^{s-\frac{l}{2}} R(s, f^{\rho}, g^{\rho}).$$

Even when k = l, a similar functional equation holds, but the holomorphy is not necessarily valid (see [22]).

Proof. Let us define an Eisenstein series of weight m and of character ω modulo N by

$$F_{m,N}(z,s,\omega) = \pi^{-s} y^s \Gamma(s+m) \sum_{a \mod N} \omega(a) E_{m,N}(z,s;0,a).$$

Then, $F_{m,N}(z, s, \omega)$ is an entire function in s if m > 0. If ω is primitive, it satisfies the functional equation:

(9.4)
$$F_{m,N}(z, 1-m-s, \omega) = W(\omega) N^{3s+m-\frac{4}{2}} z^{-m} F_{m,N}(-1/Nz, s, \bar{\omega})$$

(cf. [26, (19)]). On the other hand, we know from [26, (22)]

(9.5)
$$R(s, f, g) = 2^{-1} \pi^{1-k} \int_{\mathfrak{H}/\Gamma_0(N)} \overline{f^{\rho}(z)} g(z) F_{m,N}(z, s+1-k, \psi \xi) y^{k-2} dx dy$$

for m=k-l. This shows the holomorphy of R(s, f, g) on the whole complex plane. Since $\psi \xi$ is primitive by (9.1c), we know from (9.4) that

$$R(k+l-1-s, f, g) = A_1(s) \int_{\mathfrak{H}/\Gamma_0(N)} \overline{f^{\rho}} g F_{m,N} \left(\frac{-1}{Nz}, s+1-k, \overline{\psi} \xi\right) z^{-m} y^{k-2} dx dy,$$

where

$$A_1(s) = 2^{-1} \pi^{1-k} N^{3s-2k-1+\frac{k}{2}} W(\psi \xi).$$

Note that

$$f^{\rho}(-1/Nz) = (-1)^{k} W(f) N^{k/2} M(f)^{k/2} f(M(f)z) z^{k},$$

$$g(-1/Nz) = W(g) N^{1/2} M(g)^{1/2} g^{\rho}(M(g)z) z^{l}.$$

Substituting z for -1/Nz in the formula of R(k+l-1-s, f, g), we have by (9.5) that

$$R(k+l-1-s, f, g) = A_2(s) L(2s+2-k-l, \overline{\psi\xi}) \sum_{n=1}^{\infty} a(n/M(f))^{\rho} \cdot b(n/M(g))^{\rho} n^{-s}$$

where

$$A_{2}(s) = (-1)^{l} W(f) W(g) W(\psi \xi) M(f)^{\frac{k}{2}} M(g)^{\frac{l}{2}}$$
$$\cdot N^{3s - \frac{3}{2}(k+l-1)} (2\pi)^{-2s} \Gamma(s) \Gamma(s+1-l).$$

Define complex numbers α_p , α'_p , β_p , β'_p for every prime p by the Euler products:

$$\sum_{n=1}^{\infty} a(n)^{\rho} n^{-s} = \prod_{p} \left[(1 - \alpha_{p} p^{-s}) (1 - \alpha'_{p} p^{-s}) \right]^{-1},$$
$$\sum_{n=1}^{\infty} b(n)^{\rho} n^{-s} = \prod_{p} \left[(1 - \beta_{p} p^{-s}) (1 - \beta'_{p} p^{-s}) \right]^{-1}.$$

Since N is the least common multiple of C(f) and C(g), M(f) is prime to M(g). Then, we know from [25, Lemma 1] that

$$\sum_{n=1}^{\infty} a(n/M(f))^{\rho} b(n/M(g))^{\rho} n^{-s}$$

= $(M(f) M(g))^{-s} \sum_{n=1}^{\infty} a(M(g) n)^{\rho} b(M(f) n)^{\rho} n^{-s}$
= $(M(f) M(g))^{-s} \prod_{p} X_{p}^{*}(s)/Y_{p}(s),$

where $X_p^*(s)$ and $Y_p(s)$ are given by

$$X_{p}^{*}(s) = \begin{cases} 1 - \alpha_{p} \alpha'_{p} \beta_{p} \beta'_{p} p^{-2s} & \text{if } p \not \mid M(f) M(g), \\ a(p)^{\rho \operatorname{ord}_{p}(M(g))} & \text{if } p \mid M(g), \\ b(p)^{\rho \operatorname{ord}_{p}(M(f))} & \text{if } p \mid M(f), \end{cases}$$

$$Y_{p}(s) = (1 - \alpha_{p} \beta_{p} p^{-s}) (1 - \alpha_{p} \beta_{p}' p^{-s}) (1 - \alpha_{p}' \beta_{p} p^{-s}) (1 - \alpha_{p}' \beta_{p}' p^{-s})$$

The above expression of $X_p^*(s)$ for the prime factor p of M(f)M(g) follows from [25, (3.1)], since M(f) (resp. M(g)) is a divisor of C(g) (resp. C(f)) by (9.1a). Then, by [25, Lemma 1], we have

$$\sum_{n=1}^{\infty} a(n/M(f))^{\rho} b(n/M(g))^{\rho} n^{-s}$$

= $a(M(g))^{\rho} b(M(f))^{\rho} (M(f) M(g))^{-s} \sum_{n=1}^{\infty} a(n)^{\rho} b(n)^{\rho} n^{-s}.$

This proves (9.3).

194

References

- 1. Asai, T.: On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution. J. Math. Soc. Japan 28, 48-61 (1976)
- 2. Bourbaki, N.: General topology. Paris: Hermann 1961
- 3. Bourbaki, N.: Commutative algebra. Paris: Hermann 1972
- 4. Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301-314 (1973)
- 5. Coates, J., Wiles, A.: On *p*-adic *L*-functions and elliptic units. J. Austral. Math. Soc. 26, 1–25 (1978)
- Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques, In: Modular functions of one variable, II. Lecture notes in Math., vol. 349, pp. 143–316. Berlin-Heidelberg-New York: Springer 1973
- 7. Doi, K., Miyake, T.: Automorphic forms and number theory (in Japanese). Tokyo: Kinokuniya Shoten 1976
- 8. Hecke, E.: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Hamburg 5, 199–224 (1927)
- 9. Iwasawa, K.: Lectures on p-adic L-functions. Ann. of Math. Studies 74. Princeton: Princeton University Press 1972
- 10. Jacquet, H.: Automorphic forms on GL(2), II. Lecture notes in Math., vol. 278. Berlin-Heidelberg-New York: Springer 1972
- 11. Katz, N.M.: The Eisenstein measure and *p*-adic interpolation. Amer. J. Math. 99, 238-311 (1977)
- 12. Katz, N.M.: p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104, 459-571 (1976)
- 13. Lang, S.: Cyclotomic fields. Grad. Texts in Math., vol. 59. Berlin-Heidelberg-New York: Springer 1978
- Manin, Y.I.: Periods of parabolic forms and p-adic Hecke series. Mat. Sbornik 92 (134), 371– 393 (1974)
- 15. Manin, Y.I.: The values of *p*-adic Hecke series at integer points of the critical strip. Mat. Sbornik **93** (135), 631-637 (1974)
- 16. Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math. 25, 1-61 (1974)
- 17. Miyake, T.: On automorphic forms on GL_2 and Hecke operators. Ann. of Math. 94, 174–189 (1971)
- 18. Rankin, R.A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, I, II. Proc. Cambridge Phil. Soc. 35, 351-372 (1939)
- Serre, J-P.: Formes modulaires et fonctions zeta p-adiques. In: Modular functions of one variable, III, Lecture notes in Math., vol. 350, pp. 191-268. Berlin-Heidelberg-New York: Springer 1973
- 20. Shimura, G.: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J. 43, 199-208 (1971)
- 21. Shimura, G.: On modular forms of half integral weight. Ann. of Math. 97, 440-481 (1973)
- 22. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. 31, 79-98 (1975)
- 23. Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. of Math. 102, 491-515 (1975)
- 24. Shimura, G.: On the Fourier coefficients of modular forms of several variables. Göttingen Nachr. Akad. Wiss. pp. 261–268 (1975)
- 25. Shimura, G.: The special values of zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29, 783-804 (1976)
- 26. Shimura, G.: On the periods of modular forms. Math. Ann. 229, 211-221 (1977)
- 27. Shimura, G.: On certain zeta functions attached to two Hilbert modular forms, I. Ann. of Math. 114, 127-164 (1981)
- 28. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Tokyo Princeton: Iwanami Shoten and Princeton University Press 1971
- 29. Yager, R.I.: On two variable p-adic L-functions. Ann. of Math. 115, 411-449 (1982)