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w O. Introduction 

Let p be a prime number. The aim of this paper is to construct a p-adic 
bounded measure of several variables, which establishes the p-adic interpo- 
lation of the special values of the Rankin product of two elliptic modular 
forms of different weight. Let N be an arbitrary positive integer. Let f be a 
cusp form of weight k > 2  for the congruence subgroup Fo(N ) with character q/ 
modulo N, which is, in addition, a primitive form (=  normalized new form of 
level dividing N). Let g be a modular form of weight l<  k for Fo(N), with 
character 09. Write e(z)=exp(2xiz) .  Suppose that the Fourier expansions of f 
and g are given by 

f= ~ a(n)e(nz) ,  g= ~" b(n)e(nz) .  
n=l n=0 

The Rankin product of f and g is defined by 

(0.1) ~u(s, f, g) = LN(2s + 2 -- k - l, 09 qJ) ~ a(n) b(n) n -  s, 
n=l  

where LN(2s + 2 -  k -  l, 09 q~) denotes the Dirichlet L-series of 09qJ with the Euler 
factors at the primes dividing N removed from its Euler product. It is well 
known that ~u(s ,  f,  g) has a holomorphic continuation over the whole complex 
plane as a function of s. Moreover, when the Fourier coefficients b(n) of g are 
algebraic numbers (note that the Fourier coefficients of f are automatically 
algebraic because f is primitive), Shimura [25, 26] has proven the basic result 
that 

(0.2) ~N(m, f, g) 

x z " + l - ' ( f ,  f>N 
is algebraic for all integers m with l<=m<k; 
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here 

( f , f ) N  = ~ l f(z)12yk-Zdxdy, 
B(N) 

where B(N) denotes a fundamental domain for Fo(N ). Let Q denote the 
algebraic closure of ~ in ~2. Let O denote the completion of an algebraic 
closure of the field of p-adic numbers Qp, and we normalize its valuation ] Ip 
by [pip=p-1. We fix once and for all an embedding 

(0.3) i: ~ g 2  

(when there is no danger of confusion, we will omit i from our subsequent 
formulae). We assume for the rest of the paper that the form f is ordinary for p 
(or more correctly i) in the following sense 

(0.4) the image under i of the p-th Fourier coefficient of f is a unit in f2. 

Let V be a vector space over Q, and let n: V--,Q be a positive definit 
quadratic form on V. Define a symmetric bilinear form S: Vx V ~ Q  by 

S (u, v) = n(u + v ) -  n(u) -  n( v). 

(We note that n(v)=�89 v)). Fix a lattice I in V so that n(v)~71 for all vEI. It 
is then clear that S(u, v)EZ for all u and v in I, and hence, if we define 

1" = {v~ VlS(v, I) = z } ,  

we have I * ~ I .  Write M for the smallest positive integer such that M n ( I * ) c Z  
This integer M is called the level of I, and we note that I*/I is annihilated by 
M. Throughout  this paper except in w 1, we assume that the dimension of V over if) is 
even. Let 

r/: V ~  

be a spherical function on V with algebraic values (see w 1), and let 

4~: V--,O 

be an arbitrary locally constant function for the p-adic topology on 1 such that 
the theia series 

0(z)= ~' ~b(v) rl(v) e(n(v) z) 
oEI 

gives a modular form of weight l and of character 4. We now take g to be the 
theta series O(z) and assume that ~b factors through l /paI for a positive integer 
/ ~ 1 .  Take N = M p  2a. It is known that the level of 0 divides N. Composing $, 
r /and n with the embedding i, we obtain continuous functions from lp= I |  p 
to O, which we denote by the same symbols. Let C be the divisor of N which 
is the exact level of f (i.e. the conductor of f ) ,  and define the root number 
W(f)  by 
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where f P =  ~ ~(n)e(n z) is the complex conjugate form of f .  Write 
n = l  

M = M ' p  ~, C=C'pU, 

where (M' ,p)=(C' ,p)= 1 (note that C' divides M' because C divides N). 

Theorem 0.1. Assume that #>  1. For each integer b> 1, with (b, N)= 1, there 
exists a unique bounded measure q~b on Ip=I| p with values in t2 satisfying 
the following interpolation property: for every integer r with 0 <2r < k - l ,  we let 
j = l +  2r and we have that the value of the p-adic integral 

S r 
Iv 

is given by the image under i of 

W ( f ) -  x t(l  - b k- s 0 ((b)) a(p) u- ~- Eft ~N(J - -  F, flk 7, O[t Z) 
rd+ 1 <f ,  f > c  ' 

where y= ( M ;  C' ~),  Z = ( N  0 - lo), and 

t=(/~l)k+J21-~-Jp(U-~)O-k/2)+MM (j-k)/2+l/'(j-- r) r ( r  + 1). 

A slightly stronger result, including the case when p does not divide C, is given 
in w We also obtain results on the p-adic interpolation of the values (0.2) 
when g runs over the twists of a modular form (of weight strictly less than k) 
by all Dirichlet characters whose conductor is a power of p (see Theorem 2.2). 
Moreover, in a later paper, we shall show that one can naturally extend % to 
a measure 7z~ x Ip by allowing the p-ordinary form f to vary. 

Our motivation for studying these p-adic measures has been our desire to 
investigate the Iwasawa theory of certain p-adic Lie extensions of number 
fields, which arise from abelian varieties and modular forms. Some work has 
been done in this direction in the complex multiplication case (see [5] and 
[29]), but the non-abelian theory remains shrouded in mystery. 

Here is a summary of the contents of the paper. The detailed statements of 
our results are given in w As far as the construction of the measure Cpb is 
concerned, we first construct a measure on I v with values in the space of p-adic 
modular forms. This measure can be thought of as a p-adic convolution of the 
Katz's Eisenstein measure in [12] with the p-adic measure attached fo a theta 
series. The measure % is then obtained by combining this measure with a 
bounded linear form on the space of p-adic modular forms, which is studied in 
w (our hypothesis that p is ordinary for f is essential for the construction of 
this linear form). We make use of Shimura's differential operators [25] to 
evaluate the p-adic integral as in the theorem. 

Notation 

Let ~ be the upper half complex plane. Then the group GL+2(I() of real 2 x 2 
matrices with positive determinant acts on .~ via linear fractional transfor- 
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/a b\ 
mations. If 7 = [ ;  d )be longs  to GL+2(II.)and f ( z ) i s  any function on .~, we 

i 

define, for each keZ, 

(fir Y) (z) = (det (7)) k/2 f(7 (z)) (c z + d)- k. 

For each positive integer N, let Fo(N ) (resp. FI(N)) be the subgroup of SL2(~ ) 

of all matrices (a ~ ) w i t h  c = 0 m o d N  
/ 

consisting (resp. c ~ 0 m o d N ,  

a-d=-i  modN). If F denotes either of these two subgroups of SL2(~), we 
write ~k(F)  for the space of holomorphic modular forms of weight k for F, and 
5~k(F ) for the space of cusp forms of weight k for F. As usual, for each character 
~9 modulo N, we write 

for all ( :  bd)~Fo(N)}, 

and we put 5~k(Fo(N),~)=5~k(Fx(N))n./gk(Fo(N),~). Finally, we recall that the 
automorphism group of ~ has a natural action on Jgk(F) given by 

))" i a(n) e(n z = a(n) ~ e(n z) 
\ n = O  n~O 

for each automorphism a of 112. 

w 1. Theta series 

Our aim in this section is to briefly recall those transformation formulae of 0- 
series defined by positive definite quadratic forms, which will be used later in 
the paper. See Shimura [21], w for further details. 

In this section, we use the notation defined in Introduction, and we allow 
the dimension of the quadratic space V to be odd. Let ~: denote the half of the 
dimension of V; therefore, ~: is a positive integer or half a positive integer. We 
also write S for the natural extension of S to a C-bilinear form on V| 112. 
Throughout this section, we write t/: V ~  for an arbitrary complex-valued 
spherical function on V. We recall that this means that either q is homogenous 
of degree < 1, or that t /can be expressed as follows: there exist finitely many w 
in V| with n(w)=0 such that 

,l(v)= Z c(w) S(w, vy, 
W 

where c(w)eC and �9 is an integer >__2. In general, we write ~ for the degree of 
t/ (or, as it is often called, the order of t/). Write �9 for any complex-valued 
function on I*/I. For any function h: I * ~  C, we define formally 

(1.1) O(h) (z)= ~ h(v) e(n(v) z). 
VEI* 



A p-adic measure attached to the zeta function of modular forms. I 163 

When h=cbtl, this series converges, and defines a holomorphic function on 9. 
We define an action of Fo(M ) on the set of all functions 4~: l*/l~ffJ via 

(1.2) (7" q~) (v) = e(db n(v)) cb(dv), 

where y = ( ~  bd). If m,n are non-zero integers, let the quadratic residue 

symbol (m) be as defined on p. 442 of [21]. Moreover, we let ~d=l if 

d=0 ,  1,2 mod4,  and e d = t / ~ l  if d - 3  mod4.  For each non-zero complex num- 

ber x, we fix x 1/2 by taking its argument to be in the interval I - ~ ,  ~ ] .  
Finally, let A = [I*: I]. . L J  

Proposition 1.1. The function O(~tl)(z) satisfies the transformation formula: 

(1.3) 0(tb~/)(y(z))= (A) (~)2~8~2K(cz-'kd)K+~O((y'~)tl)(z), 

whe e , : ( :  b 

The proof of this proposition is essentially contained in [21]. Note, how- 

that Shimura supposes that 41M and then proves (1.3)for y=  (a ~) with ever, 

c---0 mod M and b- -0  mod2.  To derive (1.3) from Shimura's result, one needs 

only to verify (using the Poisson summation formula) the invariance, relative to 
weight ~c + e, of 0(4~t/)(z) under the matrices 

(10 i ) a n d  ( 1  01)=(__01 ; ) (10 - M ) ( ~ - 1 0 ) "  

We omit the details. 

w 2. Statement of main results 

We begin by defining the space on which our p-adic measure exists. As in w 1, 
let V be a quadratic space over II~. We shall now assume that V has even 
dimension 2~c over I1~ (i.e. that ~ is an integer). As before, 1 will denote a lattice 
in V with n(1)cZ, 1" the dual lattice, and M the least positive integer such 
that Mn(I*)cZ.  For each integer v>O, p~I is a lattice with level Mp 2v. Define 

X = lim I*/p ~ I. 
v 

In addition, let ~W = {v~I*[ n(v)~Z}, and put 

W= lim ~g'/p" I. 
v 
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Plainly W is a subset of X, and the quadratic form n has a natural extension n: 
W~Zp. 

Let t/: V ~  be an arbitrary spherical function on V of degree a >0, taking 
algebraic values. Composing t/ with the fixed embedding (0.3), we obtain a 
unique extension of t /by continuity to a function from W to O, which we again 
denote by r/. Note that the group 

Z = lim (Z/M pV Z) • 
v 

has a natural action on the space X, which leaves stable W. Let q~: W ~  be 
an arbitrary locally constant function satisfying the following property: there 
exists a character Z of finite order of Z such that 

(2.1) qS(zw)=x(z)qS(w) (z~Z, weW).  

We then define the 0-series 

0(qSq)(z)= ~ qb(w)tl(w)e(n(w)z ). 
W ~ U  

Put 

where the symbols on the right are Legendre symbols, and A = [I* :I]. Proposi- 
tion 1.1 shows that there exists fl__>0 such that the conductor of ~ divides M p  ~ 
and 0(qSq) belongs to Jl~+~(Fo(Mp~),~). In the following, fl will denote any 
fixed integer satisfying this property with fl >__ 1. 

As in the introduction, let f =  ~ a(n)e(nz) be a fixed primitive cusp form 
n = l  

of weight k_>_ 2 with conductor C, and character 0 modulo C. We define the 
Petersson inner product o f f  with ge~k(Fo(C), O) by 

( g , f ) c  = I g ( z ) f ( z ) yk -2dxdy  �9 
5~to(C) 

We now fix the embedding (0.3) of ~ into O and assume that this embedding i 
satisfies the condition (0.4), i.e. that i(a(p)) is a unit in ~2. We then write 7 for 
the unique root of the Euler factor 

X 2 - i(a(p)) X + i(~(p)) pk-1 

which is not  a unit in f2 (hence 7=0  if p divides C). We now define the 
modular form fo(Z) to be either f (z )  or f ( z ) - i - l ( y ) f ( p  z), according as p does 
or does not divide the conductor C of f(z). It is well known (see [28, p. 88] 
and Lemma 3.3 in the next section) that fo(Z) is a common eigenform of all 
Hecke operators T(n) (n> 1) of level p C, including those with n dividing p C. 
Moreover, fo(Z) is a unique ordinary form of level p C with the same n-th 
Fourier coefficient as f(z) for every n prime to p (see Lemma 3.3). Let C o be 
the smallest possible level of f0, i.e. C o = C or p C according as p does or does 
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not  divide the conductor  C of f. We then define non-negat ive  integers #, 2, and 
C', M' prime to p, by 

(2.3) C0 = C'p",  M = M ' p  ~ , ( M ' , p ) = ( C ' , p ) = l .  

Finally, we impose  the hypothesis  

(2.4) C' divides M'. 

This assumpt ion  is not very restrictive, since it can always be achieved by  
replacing I by a suitable sub-lattice. Let  us also write 

01 ' _10t 
Theorem 2.1. For each integer b > l ,  with (b, M p ) = l ,  there exists a unique 
bounded measure ~o b on W with values in ~ satisfying the following interpolation 
property: for each non-negative integer r with 0=<2r+c~<k-~c ,  we let j=~c+c~ 
+ 2 r ,  and we have that the value of  the p-adic integral 

w 

is given by the image under i of 

(2.5) t ( 1 - b k - i t ~ ( b ) ) a ( p ,  Jo) "-z-~Mp~(j-r ' f~ 
TcJ+'<h, fo>co 

where a(p, fo) is the p-th Fourier coefficient o f f  o, 

h= f fl) lk ( O ~ --10), 

and 

t ---- t (r, ~, fl) = ( r  -- 1)k + j 21 - k- j p(~- ,~)tl - k/2~ + ~j/2 M o-  k)/Z + 1 F(j  -- r) r (r  + 1). 

Here  are several remarks  abou t  this theorem,  whose p roof  is given in w 
Firstly, it is easy to see directly that  (2.5) does not  depend on the choice of ft. 
Secondly, the uniqueness of ~Pb follows from the fact tha t  any locally constant  
function on W is a finite sum of those satisfying the condit ion (2.1). Finally, we 
note that  we do not  give the p-adic interpolat ion at all of  the special values 

~Mp~ (m, fO[k 7, 0 (~b t/)]K + ~ T~), 

with m an integer satisfying sc + a < m < k, where algebraicity is known.  This can  
be part ly remedied by using the functional equat ion (see w for the discussion 
of a special case of  this functional  equation), bu t  this does not  cover all aspects 
of  this interesting question. 

We next discuss a result  in which g is no longer assumed to be  a the ta  
series. Let  0 o  

g = ~ b(n) e(n z) 
n = O  
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be an arbitrary modular  form of weight I<  k for Fo(N ) with character ~o and 
assume that 

b(n)e~ for all n>0 .  

Define a compact  ring Y by 

Y = lim Z / N  pV Z, Y • = lim (Z/N pV Z) • 
v v 

Let q~: Y ~  be an arbitrary locally constant function on Y with the property: 
there is a character Z of finite order of the group Y • such that 

(2.6) 49(zy)=z(z)qS(y) ( z e Y  • yEY).  

We then define the twist of g by 

g(tk) = ~ qS(n) b(n) e(n z). 
n = O  

Put r and write N = N ' p  ~ with ( N ' , p ) = l .  Then it is known that g(qS) 
belongs to ~lz(Fo(NN'pt3),r for a sufficiently large f l > l .  Now we fix such a 
fl > 1. Parallel to (2.4), we assume that 

C' divides N'. (2.7) 

and write 

and 

Theorem 2.2. For each integer b > 1 prime to N p, there exists a unique bounded 
measure tpb on Y with values in g2 satisfying the following property: for each non- 
negative integer r with O<=r<(k-l)/2, we let j = l + 2 r ,  and we have that the 
value of the p-adic integral 

d~ (y) yp dq~b(y ) 
r 

is given by the image under i of  

t(1 - b k -~ ~ ~(b)) a (p, fo) ~- ~ @Mp~ (J -  r, folk 7, g(~b)[z zg) 
rcJ+l (h, fo)co 

where yp is the projection of ye  Y=(Z /N 'Z )  x Zp to the factor Zp, and 

t = t (r, fl) = (]/-- 1)k +j 21- k-j p(,- 4)(1 - k12)+ ~il2 (NN,)O- k)12 + 1 r ( j  -- r) r(r + 1). 

Since this theorem can be proven in a similar fashion as in the proof  of 
Theorem 2.1, merely a sketch of the proof will be given in w By taking the 
Eisenstein series in [25, (4.3)] as g of Theorem 2.2, we see that ~N(s, f, g) is a 
product of Mellin transforms of f and its twist. This suggests to us a relation 
between our measure and those constructed by Mazur-Swinnerton-Dyer [16] 
and by Manin [14, 153. It is an interesting problem to clarify these relations. 



A p-adic  measure  a t tached  to the zeta  funct ion of m o d u l a r  forms. I 167 

w 3. Some results on Fourier coefficients 

For every modular form f, we hereafter write a(n , f )  for the n-th Fourier 
coefficient of f, namely, 

o o  

f (z)  = ~ a(n, f )  e(n z). 
n=O 

Terminology. We define a normalized eigenJbrm of level N to be a non-zero 
common eigenform in Jgk(FI(N)) of all Hecke operators T(n) for FI(N ) (includ- 
ing those with n dividing N) such that f l T ( n ) = a ( n , f ) f  for all n. We say that a 
form f in 5~k(Fa(N)) is primitive if there exists a divisor C of N such that (i) f is 
a new form (in the sense of Miyake [17]) of level C, and (ii) f is a normalized 
eigenform of level C. The number C is called the conductor of f We say that a 
normalized eigenform f of level N is ordinary for p (or more precisely, for the 
embedding i fixed in (0.3) if p divides N and if i(a(p, f ) )  is a unit in ~2 (i.e. 
[i(a(p,f))lp=l). (It is technically important for us to insist that p divides N in 
our definition of ordinary forms.) 

If there is no danger of confusion, we hereafter drop the embedding i from 
our notation, when we consider algebraic numbers of C in the field ~. 

Let f be a primitive form of conductor C of weight k and with character ~. 
Let C(O) be the conductor of the character ~, and define non-negative integers 
t and s by 

C = C' p', C(~) = C'(~) p~, 

where (C', p)=(C'(O), p)= 1. 

Proposition 3.1. / f  a(p, f )  is a unit in Q (i.e. la(P, f ) [p= 1), then we have either t 
=s or k=2,  t = l  and s=0.  

Before proving this fact, we recall the following result in Doi-Miyake [7, 
Th. 4.6.17], whose proof we recall because [7] is written in Japanese. 

Lemma 3.2. Let ~o be the primitive character modulo C(~) associated with ~. 
Then we have 

(3.1a) a(p, f )  a(p, f)o = pa- 1 

(3.1b) a(p, f)2 = 0o(P) pa- z 

(3.1 c) a (p, f )  = 0 

where p denotes complex conjugation. 

if t=s,  

/ f t = l  and s=O, 

if t>2  and t>s ,  

The facts (3.1a, b) can be proven in exactly the same manner as in Asai [1, 
Lemma 3], where these are shown for every square-free conductor C. A proof 
of (3.1c) is as follow: put 
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Then it is well known that, if p2 divides C, 

F (10 ~)F~(C/p)=F (10 ; ) F  as asubset  of M2(Z), 

and thus the Hecke operator T(p) takes 5~(F) into 5~k(Fl(C/p)). Then, the 
assumption of (3.1c) shows that f~5~k(F) and we know that 

a (P , f ) f= f lT (p )= f  [F(lo ~)FI(C/P)] 

is of level C/p. Since C is the smallest possible level of f, we know that 
a(p, f ) f =  0 and therefore a(p, f )  must vanish. 

Now we can prove Proposition 3.1. When k>2,  the proposition is a direct 
consequence of Lemma 3.2. We now assume that k =  1. Since a(p, f )  must be 
an algebraic integer, the case (3.1b) is impossible, whence the proposition is 
true for k = 1. 

Lemma 3.3. Suppose that the weight k o f f  is greater than or equal to 2 and that 
la(p,f)lv=l. Then, there is a unique ordinary form fo of weight k such that 
a(n, f )= a(n, fo) except for those n divisible by p. Moreover, fo is explicitly given 
by 

~f(z) if p divides C, 
fo(z) [f(z)--Tf(pz) if C is prime to p, 

where y is the unique root of X z -a (p , f )  X + ~b(p)p k-1 with 17hp< 1. 

Proof The cusp form given as above is known to be a normalized eigenform of 
level p C (cf. [28, Remark 3.59, p. 88]). Thus our task is to show that fo is 
ordinary and that fo is unique. If there is a normalized eigenform with the 
same Fourier coefficients as f except for those for which n is divisible by p, 
such a form must belong to ~(Fo(Cp~),O) for a suitable v by the theory of 
primitive forms (cf. [17] and [4]). Put 

(3.1) U(Cp v, f )  = {g~5~k(Fl(Cp~))[gl T(l) = a(l, f ) g  except 
for finitely many primes l}, 

and f(")(z)=f(p"z) for 0 < n s Z .  Then, it is known (e.g. [17]) that {f(o) . . . . .  f(~)} 
gives a basis of U(Cp~,f). Let fl and ~ be the roots of X 2 - a ( p , f ) X  
+qj(p)pk-1 with Ifllp=l and 171p<l. Then, we can choose another basis of 
U(Cp ~, f )  in the following manner: 

(3.2a) If C is prime to p, then we put 

fo(z)=f(z)-Tf(pz) ,  f l (z)=f(z)- f l f (Pz) ,  

f2(z)=fo(z)-flfo(pz ) and f,(z)=fz(p"-2z) 
for 2 < n < v ;  

(3.2b) If p divides C, then we put 

fo=L f l ( z )=f (z ) -a(p , f ) f (pz )  and f ,(z)=f(p"-lz) 
for l<n<v.  
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In the case (3.2a), fo, f l  and f2 are normalized eigenforms (of level Cp ~ for 
every v > 2) and their eigenvalues for T(p) are fl, y and 0, respectively. Thus f0 
is ordinary, but neither fl nor f2 can be ordinary. Similarly, fo and fl  are 
normalized eigenforms in the case (3.2b) with eigenvalues a(p, f )  and 0, respec- 
tively. For the action of T(p) on f ,  for a general n, we know that 

LIT(p)=L_, 

if n > 3  in the case (3.2a) and if n > 2  in the case (3.2b) (cf. [28, p. 88]). This 

shows that for any v > 1, the operator T(p) is nilpotent on ~ Ir f ,  or ~ II?f, 
n = l  n = 2  

according as p does or does not divide C. Thus the uniqueness of fo follows 
from this if we prove the C-linear independence of {fo . . . .  ,fv} in U(Cp ~,f). 
We consider the matrix (a(p i, f~))o<= i,j<=~ of the Fourier coefficients of f .  at the 
powers of the prime p; name1% it is equal to 

(3.3) 

l 1 
f12 ])2 

o r  
v--2  ,~,v-- 2 

a(p,f) 2 

according as p does not or does divide C. Here 1 v is the n x n identity matrix. 
Since fl=~7 and a(p, f ) 4 0 ,  these matrices are non-singular and thus {fo . . . . .  fv} 
gives a basis. Q.E.D. 

w 4. p-adic Modular Forms and Hecke Operators 
We begin by recalling the definition of the space of p-adic modular forms in a 
manner rather more similar to Serre [19] than Katz [11, 12]. Let F denote 
either of the two congruence subgroups Fo(N ) or F~(N) for a positive integer N. 
For any subring A of I~, define an A-module Jlk(F; A) (resp. S/[k(Fo(N), ~b; A) 
for each Dirichlet character ~ modulo N with values in A) to be the subspace 
of Jgk(F) (resp. dCk(Fo(N ), ~)) consisting of all modular forms with A-rational 

Fourier coefficients. For every modular form f =  ~, a(n, f)e(nz) with algebraic 
rl=O 

Fourier coefficients, define a p-adic norm Iflp o f f  by 

Iflp = Sup [a(n, f)lp. 
n 

It is well known (see [24, Th. 1] and [28, Th. 3.52]) that the norm Iflp is a well 
defined real number. Let K o be a finite extension of Q, and K be the closure of 
K o in f2 (relative to the fixed embedding i: Q ~ f 2  of (0.3)). Let Jgk(F; K) (resp. 
~l[k(Fo(N ), ~; K)) denote the completion of JCk(F ; Ko) (resp. JCk(Fo(N), tp; Ko)) 
for the norm IIp. Then these spaces become Banach spaces over K. 
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Let X/~ be the compactified canonical model of ~/F defined over II~ [28, 
6.7 and (7.3.5)1. Then the space Jlk(F; Ko) (resp. Jt'k(F; Ko)| K) can be 
identified with the space of global sections over K o (resp. K) of a certain line 
bundle on X/~ rational over Q (cf. [6, VII.31, [23, Th. 6] and [24, Th. 3]). Let A 
be either of the two fields K o or K. From this interpretation of these spaces, 
we know the following three facts: Jlgk(F;A ) and J#k(Fo(N), O; A) are finite 
dimensional; ~k(F  ; K) = ~k(F ;  Ko)| K, ~4fk(F 0 (N), tp; K) = , / g k ( F o  (N), 0; K o) 
|  ~gk(F;K) and Jgk(Fo(N), O; K) are determined independently of the 
choice of the dense subfield K 0. Furthermore, the abstract Hecke ring in- 
troduced in [28, (3.3.3) and Th. 3.34] acts naturally on ./gk(F;A) and 
./gk(Fo(N), O; A). This action on J/lk(F;Ko) and Jgk(Fo(S),O;Ko) is induced 
from the usual action of the Hecke operators T(n) and T(n, n) on J/lk(F ) and 
~gk(Fo(N), 0) as in [28, 3.4, 3.51. See below for the precise definition of the 
action of these operators. 

By writing q for e(z), we can embed ./gk(F; Ko) into Ko[[q] 1. Then we may 
regard J/lk(F; K) as the closure of Jlk(F; Ko) in K[[q]] .  Thus every element of 

Jg~(F; K) has a unique q-expansion. For f-- ~ a(n,f)q"~J//lk(F; K), the norm 
n = 0  

o f f  is again given by Sup la(n,f)lp. Let (9 K denote the ring of p-adic integers in 
K, and define 

Jgk(F; (_gK) = {f~ Jt'~(F; K) [ If[p < 1 } = ~ '~(r ;  K) c~ C9 r [[q11, 

Jlk(Fo(N), 0; (gr)= {/~ Jt'k(Fo (U), 0; K) [ [flp < 1}. 

These spaces are complete normed Or-modules of finite rank. Let 

Jgk(F; (2) = dt'k(F; K)| Jlk(Fo(N), 0; (2)= M/k(Fo (N), 0; K)| 

As already seen, these spaces do not depend on the choice of the subfield K of 
~2. All the definitions as above for modular forms can be formulated naturally 
for cusp forms and the corresponding spaces of cusp forms will be written as 
~k(F; K), ~k(F0(N), ~b; K), etc. 

Let N be an arbitrary positive integer and 0 be a character modulo N. Let 
A denote either of the field K or the ring (9~. Put 

~k(N; A)= U ~gk(F~(Np"); A), 
n = 0  

~lk(N, 0; A)= [~ M/lk(Fo(U P"), 0; A). 
n = 0  

Clearly, these spaces do not depend on the p-primary part of N. Let ~ ( N ;  A) 
(resp. ,/~k(N,O; A)) be the completion of Jgk(N; A) (resp. dClk(N,O; A)) for the 
norm IIp. Any element of ~ ( N ;  K) will be called a p-adic modular form. The 
suffix "k"  is dropped for the notation "~r A)", because, as a subspace of 
A[[q]], the space J/7(N; A) is determined independently of the weight k if k > 2. 
This fact is implicit in the papers of Katz and Serre on p-adic modular forms, 
but we refrain from discussing it in detail, since we do not need this fact later. 
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However, the space ~k(N, ~k; A) does depend on the weight k and the suffix 
"k" must be retained (cf. [12, Lemma 5.4.10]). 

Let us give here an explicit description of the action of the Hecke operators 
T(1) and T(l,l) of level N for primes I. For any integer n prime to N, let 

a,~Fo(N) be the matrix with a , - ( ;  ; ) m o d N .  As shown in Deligne-Ra- 

poport [6, VII, Cor. 3.11] and Katz [12, 5.3.2], the action: f~--~flka, of a, on 
J/k(FI(N); K) leaves J/k(Fl(N); (gr) stable. Then the action of the Hecke oper- 
ators T(1) and T(l, l) for primes l on J/gk(FI(N); K) is given by 

/ (n ) 
a(ln, f )+ l  k la ~,fIkat i f l i s p r i m e t o N ,  

a(n, f l T(l)) = [ a(I n, f )  of /d iv ides  N, 
(4.1) 

{ ~ - 2 a ( n , f [ k a , ) i f l i s p r i m e t o N ,  
a(n, f l  T(l, l)) = if l divides N. 

When N is divisible by p, (4.1) shows that ~k(F~(N); Or) and ~/gk(Fo(N), ~; Or) 
are stable under the operators T(l) and T(l, I). Let A denote either of the field 
K or the ring (gx, and let ~ (F0(N) ,0 ;A  ) (resp. ~(FI(N);A)) be the A-sub- 
algebra of the ring of all A-linear endomorphisms of ~k(Fo(N),tp; A) (resp. 
J//k(F~(N); A)) generated by T(l) and T(l, l) for all primes l. Especially, we know 
that (if p divides N) 

If[ Tip<If Iv for every T~k(FI(N);  CK), 

and therefore, any operator in ~(F~(N); (gx) is uniformly continuous. These 
algebras are the Hecke algebras of the corresponding spaces of modular forms. 

Next we consider the Hecke algebras of the space of p-adic modular forms. 
The restriction of operators in ~ffk(F1(Np"); (_gr) (resp. ~(Fo(Np" ), O; Cr)) to the 
subspace ~tk(Fl(Np"); (~x) (resp. J[k(Fo(Np"),tp; (gr)) for n > m > l  gives a 0 r- 
algebra homomorphism of Jfk(Fx(Np"); (gr) (resp. ~ffk(Fo(NP"),O; Or)) onto 
JYk(Fl(Np'); (_gr) (resp. ~(Fo(Np"), ~; Or)). This fact follows from [28, Th. 3.34- 
5]. Taking the projective limit of these morphisms, we obtain compact to- 
pological algebras: 

(4.2) 

W(N; CgK) =}im ~Yk(Fl (N p"); OK), 
n 

~ ( N ,  0;  (gK)=lim 9~k(Fo(N p"), ~; (gr) 
n 

which naturally act o n  ,/[4fk(N; A) and Jlk(N, ~k; A) for A = K  or C K. The action 
of ~(N;OK)  (resp. ~ ( N ,  0;  0K)) can be naturally extended to an action on 
J#(N; A) (resp. Jlk(N, 0; A)) by the uniform continuity. 

Let us now introduce the idempotent e attached to T(p) in the Hecke 
algebra. Let R denote either of the two algebras ~(F0(Npm),O;d~r) or 
~(FI(Np");CK) for m > l .  Then the algebra R/pR over the field lFp with p- 
elements is commutative and finite dimensional [28, Th. 3.51]. The image 7"(p) 
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of T(p) in Rip R can be decomposed into the unique sum s + n of a semi-simple 
element s and a nilpotent element n of R/pR. Thus, for a sufficiently large 
integer r, the element ~F(p) pr coincides with s pr and becomes semi-simple. Then, 
we can choose a positive integer u so that ~l'(p) p~u gives an idempotent of R/p R. 
This idempotent can be lifted to a unique idempotent e m of R (cf. [3, II1.4.6]). 
In fact, this idempotent can be given as a p-adic limit in R by 

(4.3) e m = lim T(p) pr'. 
r ~ o r  

This idempotent is clearly independent of the choice of the integer u, and its 
construction is plainly compatible with the projective limit (4.2). Thus we can 
define an idempotent e of ~(N;(gK) and ~ ( N ,  fi; (9/<) by the projective limit 
li._i_~me m. For  any module J /  over these Hecke algebras, we define the ordinary 

m 

part j [ o  of J / t o  be the corresponding component e ~#/for the idempotent e. A 
remarkable fact is 

Proposition 4.1. The ordinary part ~t~ (N, fi; Or) of the space ~ k ( N ,  fig; (gK) is 
free of finite rank over (9 r. Moreover, let C(fi) be the conductor of the Dirichlet 
character fi, and define positive integers N' and s by 

N = N ' p  r and s=max(s ' , l )  for C(fi)=C'(fi)p s', 

where (N', p)= (C'(fi), p)= 1. Then the ordinary part ~ ( N ,  fi; (gr) is contained in 
~ (rk(N' pS), fi; (~K). 

Proof. As shown in the proof of Lemma 3.2, the Hecke operator T(p) m for a 
sufficiently large integer m takes JCk(Fo(Npn), fi; (gx) into Jlk(Fo(N'pS), fi; (fix) for 
each n >= 1. Then the assertion is clear from the definition (4.3) of the idem- 
potent e. 

In contrast with this result, the ordinary part of JT(N; OK) is usually of 
infinite rank. The relation between ordinary forms and the idempotent e is 
given as follows: Let f be an element of .ilk(N, fi, K) and let C be the smallest 
possible level of f. Assume that f lTc(P)=a f with a~K for the Hecke operator 
Tc(P) of level C. 

Lemma 4.2. I f  C is divisible by p, then the image f i e  of f under e is either f 
itself or 0 according as the eigenvalue a is or is not a unit in (ilK" 

Proof. We may assume that f is a modular form for Fo(Np m) for a suitable 
positive integer m. Note that the action of the operator T(p) of level Npm on f 
is the same as that of Tc(P ). Then, with the notation of (4.3), the eigenvalue of e 
at f is given by the p-adic limit 

l ima p~. 
r ~ o o  

The lemma is obvious from this. 
From this lemma, it is clear that, especially when f is a normalized form 

with level divisible by p, then 

f is ordinary if and only i f f l . = f .  



A p-adic measure attached to the zeta function of modular forms. I 173 

Lemma 4.3. Put, for each non-negative integer m, 

o0 

f(")(z) =f(p" z) = E a(n, f )  qP'", 
n = 0  

and for a positive integer n, 

U= ~ K f ("). 
m = 0  

Then the subspace U of JCk(N; K) is stable under the idempotent e. Moreover, 
assume that either k > 2 or p divides C. Then, if a is not a unit in (9 K, the space 
U is annihilated by ~. 

Proof Let T(p) be the Hecke operator in ~f(N,O;(gr).  Note that T(p) and 
Tc(P ) are different if C is prime to p. It is well known (e.g. [28, p. 88]) that 

f~")lT(p)=f ~"-1) for m>=l, 

~ a f  ~~ if p divides C, 
f~~162176 if C is prime to p, 

where ~o is the primitive character associated with 0. This shows that U and 

even its OK-lattice U((-0r)= ~ (9~:f ~') are stable under T(p) and hence, under 
m = 0  

e. Let ~ be the prime ideal of (gg. Assume that aE~  (i.e. that a is not a unit). 
Then the above formulae show that if k>  2 or p divides C, 

U(CK) I T(p) "+ ' c ~3 U(CK). 

Then the second assertion follows from the definition (4.3) of e. 
Hereafter, let f be a primitive form of conductor C in ~r 

Thus N is a multiple of C. Put, for each integer n > l, 

U (N p", f ;  K) = {g~Jlk(~ (N p"); K) Igl T(I)= a(l, f )  g except 

for finitely many primes l}. 

Define non-negative integers t, r, N' and C' by 

N = N ' p '  and C = C ' f f ,  

where (N', p) = (C', p) = 1. 

Proposition 4.4. Assume that k > 2 and la(p, f)lp = 1. Let fo be the ordinary form 
associated with f defined in Lemma 3.3. Then we have, for every n > 1, 

e U ( N p " , f ; K ) =  ~, Kfo(tZ ). 
O <tIN'/C'  

Before proving this result, let us give some remarks. Firstly, the ordinary 
part e U(Np", f ;  K) does not depend on the integer n, and we have 

(4.4a) dimKeU(Np", f ;  K ) = I  if and only if C'=N'.  
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Secondly, let P be the set of all primitive forms in d [ k ( N  , ~/; ~) whose p-th 
Fourier coefficients are units in f2. Then P is a finite set, and thus we may 
assume that P c  Jt'k(N , ~;  K) by replacing K by its finite extension if necessary. 
By the theory of primitive forms, Propositions 4.1 and 4.4 show 

J/-f~ (N, ~; K)=  ~ e U(Np, g; K). (4.4b) -o  
geP 

Thirdly, let Po be the subset of P consisting of all elements with the property 
(4.4a), and put 

to= 2Kgo, 
g~Po 

where go is the ordinary form associated with g. Write J~fo for the subalgebra 
of the ring of all K-linear endomorphisms of U o generated over K by all Hecke 
operators T(l) and T(l, l). Then 

(4.4c) ~o is a semi-simple algebra over K. 

In view of these properties, one may regard the ordinary forms go for g~Po as 
an analogue of primitive forms of conductor N in the theory of ordinary forms. 

Now we shall prove Proposition 4.4. Let us take a basis {fro}m=0 ..... j of 
U(Cp~,f) as in (3.2a, b). For j = n + r - t ,  we see Npn/CpJ=N/Cpr-t=N'/C '. 
We see then from [17] that 

J 
U(Np~,f;K) = ~ ~ Kfm(tZ) �9 

ra=O O<tlN'/C" 

Since t is prime to p, the operation: g(z)~--,g(tz) commutes with the Hecke 
operator T(p), and hence, with the idempotent e. This shows that 

eU(Np" , f ;K)= ~, Kfo(tZ), 
O <tlN'/C' 

since fo is a unique ordinary form in U(Cp~,f) and fm with m > l  is annihilated 
by e. 

Let f be a primitive form of conductor C, of weight k_>2 and with 
character ~. Assume that la(p,f)[p= 1. Now we are ready to define a con- 
tinuous linear form ~y (attached to f )  on ~k(C,O; K) into K. Let fo be the 
ordinary form associated with f and let C O be the exact level of fo. By 
Proposition 4.4 (or more precisely by (4.4c)), the natural ring homomorphism 
of ~(Fo(Co) ,O;K ) onto K, which assign a(n, fo ) to T(n), is split, and thus, 
there is a simple direct summand of the Hecke algebra ~(Fo(Co),~k;K), 
isomorphic to K, through which this morphism factors. Let A be the sub- 
algebra of this Hecke algebra which is the complementary direct summand. 
Namely, we have the algebra direct sum decomposition: 

(4.5) Xfk(Fo (Co), ~k; K)~-AOK. 

Let 11 be the idempotent corresponding to the direct summand K of (4.5). 
Note that the idempotent e sends ~ k ( C 0 , 0 ; K )  into Sgk(Fo(Co),O;K ) by 
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Proposition 4.1. Then the linear form fI: ~r ' r K ) ~ K  is defined by 

(4.6) EI(g) =a(1, gle ll) for geJCk(Co, r K), 

where a(1, g[ elf)  is the first q-expansion coefficient of g le ly. 

Proposition 4.5. Assume that K o contains all the Fourier coefficients of the 
ordinary form fo. Then, the linear form {f has values in the finite algebraic 
number field K o on ~lk(Fo(Cop" ), O;Ko) for every n >0. Furthermore, we have 

(h,, g)cp, (geJgk(Fo(Cop"), ~9; Ko)), Ef(g)=a(P' f~ (h, fo)co 

( 0  -lo) andh,(z)=h(p,z)fortheeomplexconjugationp" where h=f~lk Co 

Proof First we shall deal with the case: n=0.  We know that ~(Fo(Co), r K) 
=o~ifk(Fo(Co),q/;Ko)| Since K o contains the eigenvalues for fo of all 
Hecke operators, the decomposition (4.5) is induced from the similar decom- 
position: 

~(Fo(Co), r Ko)~-Ao| o (algebra direct sum). 

Thus, by definition, the linear form {j, has values in K o on JCk(Fo(Co), q/; Ko). 
Now we consider the general case: n>0.  As explained in the proof of Lemma 
3.2, the operator T(p)" takes Jgk(Fo(CoP"), r Ko) into Jlk(Fo(Co), ~; Ko). By the 
definition of ly, it commutes with T(p) and ~. Thus, we have 

glT(p)nels=glelsT(p)n=a(P, fo)ngl~ly (geJCk(Fo(fopn),~k;go)). 

This shows that 

(4 .7 )  fi(g)=a(P, fo)-nfi(glr(p)")sKo (ges/lk(Fo(CoP"),r 

Next, we shall show that 

fy(g) = (h, g)co/(h, fo)co for ge J/k(Fo (Co), O; Ko). 

We can naturally extend {y to a linear form of Stfk(Fo(Co), r with values in tE 
so that it coincides with the original one on Ko-rational modular forms. We 
denote it by the same symbol. Since Eisenstein series are contained in the 
kernel of fy, we can find an element h' in ~(Fo(Co), tp) so that 

h' ( , g)co = {y(g) for all ge~/k(Fo(Co), r 

For each primitive form p in ~(Fo(Co), ~), let 

U (e) = {g e 5~k (F o (Co), ~) I g I T(I) = a (l, e) g except for 
finitely many primes I}. 

Then, we have the well known orthogonal decomposition under ( , ) :  

~(ro(Co), r174 
g 
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Therefore, h' must be in U(f), since d; annihilates U(r for r  Put 

( 0  - ~ )  and let T*(m) be the adjoint operator of T(m) under ( , >. Then, "c= Co 
it is known (cf. [28, Chap. 3] and [7, Th. 4.5.5]) that, as operators on 
~(ro(Co), 0), 

z 2 = ( -  1) k, 

and if m is prime to Co, 

T*(m)='r-loT(m)oz for all m>0 ,  

T*(m)=~(m) T(m). 

Especially, fo is an eigenform of T*(m) with eigenvalue a(m,f) if m is prime to 
C o. Thus, we see that, for m prime to Co, 

hi T(m) = (f~l T* (m))lk z = a(m, f )  h. 

This shows that 04=heU(f). When C is divisible by p, then Co= C, f o = f  and 
U ( f ) = l E f  Then, it is obvious that 

h' = h/(h, fo>. 

We now assume that C is prime to p. Take a basis {fo, fl} of U(f) as in (3.2a). 
Then, we know that fo}r(p)=Bfo and fliT(p)--T fl  for the elements fi and y of 
K o with [fllp=l and Iylv<l. Thus {s(fo)= 1 and { l ( f0=0 .  Then, in order to see 
h'=h/(h, fo>, what we have to show is the vanishing: 

<h, fl> = O. 

Since fl 4= Y, this is a consequence of the following equality: 

? <h, fl> = <h, fl[ T(p)> = <hi T* (p), fl> 

= <(fop I T(P))], ~, fl> = <fl vh, fl> = fl <h, f,>. 

This shows the last assertion for n=0.  For ge~k(Fo(Cop"),O) with each n>0,  
we know gl T(P)"eJC/k(Fo(Co), ~'), and we have 

a(p", fo) (h, fo>co 6(g) = <h, fo)co 6(g  [ T(P) ") 

= <h, g l T(P)">c~ 

Since Fo(Co)(O" ~ )F~1 7 6 1 7 6 1 7 6  

This shows the last assertion for every n >0. 

by (4.7) 

~) F~176 ' g>cov-by [28, (3.4.5)]. 

we ave 
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w 5. Differential operators 

In this section, we recall some of Shimura's results on differential operators on 
.~, and prove several additional facts. Define the differential operators on .~ by 

_l(s2 >ly 6s-2=1/_--- ]_ 4- , 

1 O d x+l/-ly), d=2=l/~ ~z=q~ (q=e(z), z=  

a:=as+2r_2.. ,  a~+2 a ~ for 0<reT*, 

where we understand that 6~ 1 is the identity operator. These operators 
satisfy 

( 5 . 1 )  6,+,(fg)=ga,(f)+fa,(g) and 6~(flkT)=(a~f)lk+2ry 

for 7eGL+2(R) and every positive integer k [23, (1.5), (1.8)]. The relation 
between 6 and d is given in [27, (1.16a, b)] as 

(r] F(s + r) d'. 
(5.2) ~ =  Y, \ t lF ( - f (~ ( -4r t y ) t - r  

O<t<=r 

Let K o be a subfield of t~ and I and m be positive integers. Let 
ged/l(Fo(N ), ~; Ko) and heW#m(Fo(N),x; Ko). Then we have 

(5.3) ga~,h= ~, 6~_2,g . with elements g, of ~/k_ 2,(Fo(S), {;(; K0) 
n = O  

for k=l+m+2r .  

These modular forms g, are uniquely determined by g and h. This fact is 
shown in [25, Lemma 7]. We write H(g6~h) for go in (5.3), and call it the 
holomorphic projection of gfi~,h. This terminology is justified by the property 
given in [25, Lemma 6] (see also [27, Lemma 2.3]): 

(5.4) (f ,  g ~,  h)N = ( f ,  H(g r h))~ for every element f of ..~k(Fo (N), ~ X)- 

Here the Petersson inner product (f ,  g 6~, h)N is defined as usual, since g a~, h 
transforms under Fo(N ) as if it were an element of dlk(Fo(N ), ~ Z). 

Lemma 5.1. Let (gro={xeKotlXiv<l}, and suppose that ged/l(N;(gKo) and 
hesCl=(N; (flao). Then, we can find a positive integer C independently of g and h 
such that 

CH(g6~h)e~k(N; CKo ) (k=l+m+2r).  

The integer C depends only on 1, m and r. 
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Proof By applying (5.2) to the equality (5.3), we have 

~ ( g d t h ) (  - 4 n  y ) t - r  

o<t<r  

= ~" F (k -2n+t )  (dtg")(-4nY)t-"" 
n = O  O<-t~n 

We consider this to be an equality of polynomials in the variable ( - 4 n y ) - L  
By comparing the coefficients of ( - 4 n y )  - t  for each O<t<r, we have 

F(m + r) dt h n F ( k -  n) 

r ( m )  r ( k  - r) 
When t=0 ,  we see from (5.5) that gh=F(m+r)F(k_2r)g  r. Define C r to be the 

r(m) r (k -  r) 
numerator of F(m+r)F(k-2r)" Then C,g, has Fourier coefficients in (9*: o 

whenever g and h have their Fourier coefficients in (9,: o. Now, let j be an 
integer with 0 < j <  r, and assume that there are positive integers C, for j < n < r  
such that C, g. has Fourier coefficients in (gro whenever g and h do. Then we 
see from (5.5) for t =  r - j  that 

C(k-2j)  gj= r - j  C(m+r- j )  g d ' - j h -  ~ n - j  F ( k - n - j )  
n = j + l  

Since C,d"-Jg, for every n>j has coefficients in (9*:., we can find a positive 
integer C s so that C s gj has (gKo-integral Fourier coefficients whenever g and h 
are (gro-integral. Thus, by induction on j, we obtain the lemma. 

Lemma 5.2. Suppose that gedlt(Fl(N);Ko) and he~m(Fl(N); Ko), and define 
g,eJ/k_2,(Fl(N);Ko) (O<=n<=r, k=l+m+2r)  for a positive integer r by (5.3). 

r--1 

Put g ' = -  ~2 d"g,+l �9 7hen, the p-adic norm [a(n,g')lp of the Fourier coefficients 
n = 0  

of g' for all n is bounded, and we have that 

I-I(g6~h)=gd" h+dg'. 

Moreover, H(g 6",, h) is a cusp form if r > O. 

Proof. We see from (5.5) for t=r that 
r 

(5.6) g d" h = H(g 6~ h) + 2 d" g,, = H(g 6~ h) - dg'. 
n = l  

Since g, is a Ko-rational modular form by (5.3), the n o r m  Ig'lp is a well defined 
real number; namely, [a(n,g')l p is bounded. For an arbitrary TESL2(@) , by 
substituting gllY and hlmY for g and h in (5.3), we see easily from (5.1) and (5.6) 
that r 

H(g 6",. h)lk ? ---- H[(gl, y) 6~, (hi,, y)] = (gl, 7)d'(hlm y) -  ~, d"(g.lk_ z, 7)" 
n - - 1  

This vanishes at ioo, and therefore H(g6;.h) is a cusp form when r>0 .  
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L e m m a  5.3. For arbitrary elements g of ~/t(FI(N)) and h of J[,,(F~(N)), we have 

H(g 6~, h) = ( - 1)" H(h 5~ g). 

Proof The assertion is trivially true for r = 0 ;  thus, we assume that r>0 .  Then 
H(g 6[, h) and H(h 5~ g) are cusp forms. For any C~-functions f and f '  with the 
same automorphic property as elements of Jgk(F~(N)), put 

( f  f ' } =  ~ f(z) f '(z)yk-Edxdy, 
~/rl(N) 

if it is well defined. Let q5 and ff be arbitrary C~-functions on .~ satisfying qSll 7 
=~b and ~lj~=tk for all ?eFI(N ). If q~ and ~b are slowly increasing in the sense 
of [27, (2.17)], then (f, qb6jO}, (f,~tt~i~P) and ( f ,  61+j((~O)} for every f of 
~+j+  2(F~(N)) are finite. Especially, ( f ,  6i+j(~b O)) vanishes by [27, Lemma 2.3]. 
In addition to this, we see from (5.1) that 61+j((~)=496jO+O6i(a. Then, we 
have 

(5.7) ( f ,  ~bfj~9} = - ( f ,  ~O6iq~ } for every f~5~i+j+2(FI(N)). 

Substituting fi~-"g and 6",,-lh for q5 and qJ in (5.7), we have 

fir-,, 6" h __/ r tfi"-"+l ( f ' (  t g)( ,, ) }=  \ J "  t g)(6~, 'h)}. 

Then, by induction on n, we know 

( f ,  g 6[, h} = ( - 1)' ( f ,  h 5~" g}. 

Then (5.4) shows that, for all feS~k(Fl(N)) (k=l+m+2r), 

( f ,  n (g  6~, h)} = ( - 1)" ( f ,  n(h 6~ g)}. 

Since H(g6~ h) and H(h 6~ g) are cusp forms, the non-degeneracy of the Peters- 
son inner product on ~(FI(N)) shows the lemma. 

w 6. Bounded measures  with values  in p-adic modular  forms  

Firstly, we recall the theory of bounded measures according to Mazur and 
Swinnerton-Dyer [16]. Let A be a closed subring of O. Let J/g be an A-module 
complete under a norm I 1~ with the following properties: Ix]~=0 if and only 
if x = 0  (xe~ ' ) ;  laxl~=lalplx],~ for aeA and x e J g ;  [x+yl~<max(lxl~, ]yl~). 
For our later use, A will be a finite extension of ~p and ~ '  will be the space 
dC'(N; A) of p-adic modular forms. Let T be a projective limit of finite discrete 
sets T,. Let Cg(T; A) be the space of all continuous functions on T with values 
in A. We can define a norm 11r of qSe~(T; A) by 

It r It = Sup ]~b (t)lp. 
tET  

Then Cg(T; A) becomes a complete normed A-module [2, X.1.6, X.3.3]. A linear 
functional ~b on Cg(T; A) into Jg is called a bounded measure on T with values 
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in dr' if there is a positive constant B such that 1O(~b)l~<BIl~bll for all 
~be~(r; A). Usually, the value O(~b) is written as S qSd$. For a point teT., let 

T 

X.,t be the pull back to T of the characteristic function of the one point subset 
{t} of T,. Put O,(t)= S z,,tdO. Since locally constant functions are dense in 

T 

(d(T; A), the measure ~k is uniquely determined by the system {O.(t)},>=,,t~r, for 
any given integer u. This system satisfies 

(6.1) ~ Oi(t)=Os(s ) for any i>=j>=u and every seT~, 
: t~ j ( t )=  s 

where nls is the projection of Ti onto Tj. Conversely, if a system {~ tn ( t ) }n>=u ,  t e T  , 

satisfying (6.1) is given and if the norm [~.(t)[~ is bounded independently of n 
and te T,, then this system comes from a unique bounded measure on T. For a 
given measure qJ on T and any continuous function 45 in Cg(T; A), the product 
measure ~.  ~0 (or occasionally written as (bd~) of 4~ and ~ is defined by 

(6.2) (~. ~9)(q~)=~(~qS)= ~c~d~9 for any 4)~Cd(T; A). 
T 

Let M be an arbitrary positive integer and put 

Zv=(Z/MpVZ) • and Z = l i m Z , .  
( 

v 

We shall introduce the Eisenstein measure on the space Z. Let us define an 
Eisenstein series for each aeZ~ by giving its Fourier expansion: for each 
positive integer m, 

(6 .3 )  E,,,~(a) = ~(1 -m;  a, MpV)+ ~ ( ~ sgn(d) d "-1) e(nz), 
n = l  din 

d---a m o d M p  v 

where ~(s; a, Mp~) = ~ n -~ is the partial zeta function modulo MpL It 
0 <n=-a m o d M p  v 

is known by Hecke [8] that the series of (6.3) belongs to J/,.(Fi(MpV); @) if 
Mp~>2. The system {E,,,,(a)},>2,,~z, for each m satisfies the condition (6.1), 
but their norms in ~ ( M ;  Qp) are unbounded. For each integer b>  1 prime to 
M p, put 

(6.4 a) E~,~ (a) = E,,, ~ (a) - b m E,,,~ (b -~ a), 

where we take the inverse b -~ in Zv considering b to be an element of Z,, 
b a naturally. Define another system {~,,,,( )},->_X,a~Z~ by 

(6.4b) e~, ~(a)= ~(1 -m;  a, Mp ~) - b "  ~(1 -m;  b -~ a, M p ~ ) ~ .  

Then, it is well known that le~,~(a)lp is bounded independently of a~Z~ and v 
(e.g. [13, Chap. 2]). Thus the system (6.4a, b) for each positive integer m gives 
bounded measures on Z with values in ,///7(N; Qp) and ~p, respectively. We will 
denote these measures by E~ and e,,.b The measures e~ are related to the 
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Kubota-Leopoldt  p-adic L-functions (cf. [9] and [13]), and the measure E] is a 
one-dimensional part of the Eisenstein measure introduced in [11, 12]. 

Hereafter in this section, we return to the situation of Theorem 2.1. Es- 
pecially, M denotes the level of the fixed lattice I of the quadratic space V. 
Recall ~W={vEI*{n(v)EZ}, W~=~tF/p~I for each positive integer v and W =  
lim Wv. We shall now define a measure associated with the quadratic form n on 

v 

W. Take a spherical function r/: V ~  of degree ~ with algebraic values on V. 
By composing r/ with the embedding i of Q into /2 fixed in (0.3), we extend it 
by continuity to a function on W into f2. We denote the extension again by q. 
Fix a finite extension K of Qp so that r /has values in K. For each we W~, put 

(6.5) O,.(w, q)= ~ q(v) e(n(v)z)~dg~+,(F~(MpZV); K). 
ve~W 

v ~- w r o o d  p V l  

Then, the system {O~(w, q)}~o,~Ewv defines a measure on W with values in the 
K-Banach space J I ( M ;  K). When r/ is the constant function with value 1 on V, 
this measure will be called the theta measure attached to the quadratic space V, 
and will be denoted by 0 or dO. For  any continuous function ~becg(W; K), the 
value 0(~b)= ~ q5 dO has the following q-expansion: 

W 

0(~) = ~ dp dO= ~ (p(w) q"~ K). 
W we'r162 

Then, it is obvious that the product measure r/-d0 for the general spherical 
function q gives the measure attached to the system (6.5). 

Next, we shall construct another bounded measure on W, which may be 
regarded as a convolution product of the theta measure and the Eisenstein 
measure. Write the level M of I as M'p ~ with a positive integer M' prime to p, 
and let ~o be a Dirichlet character modulo Mp u for some integer u > - 2 .  By 
definition, Zv=(~E/Mp~Z) • naturally acts on l*/pVl, and the subset W~ of 
I*/p~I is stable under the action of Zv. Thus, we can consider O~(aw, q) for 
weW~ and aeZ~. For each non-negative integer r and each positive integer m, 
we define a system {q~(w)} . . . .  w~ by 

(6.6) ~(w)=~(w;r ,m,~o,q)  

= ~" ~o(a) H[O,(a w, rl) b~ Eb~.v(a)]e,//gk(Fi(M p2~); K), 
a ~ Z  v 

where k = x + ~ + m + 2 r ,  6~, is Shimura's differential operator defined in w and 
H denotes the holomorphic projection map. We have to assume that v>  2 and 
v>u in (6.6). By Lemma 5.1, we know 

(6.7) [~(W)[p is bounded independently of v and w~ W~. 

In order to show that the system {~(w)} comes from a bounded measure, we 
have to check the condition (6.1). The calculation may be done as follows: for 
any i > j  > max(u, 2), 
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41(w)= ~ ~o(a)H[( ~ Oi(aw, tl))b~.,E~.,(a)] 
w~W~ a~Z~ w~Wi 

w=_xmodpJl w=_xmodpJl 

= ~ o~(a)H[Oj(ax, ~ b ~) ,~.. E~. ~(a)] 
aeZi 

= ~ co(a)H[O~(ax, tl)CS"m( ~ E~,~(c))] 
aEZj c~Z, 

c =- a rood MpJ 

= ~ ~(a) n[Oj(a x, tl) 6~, E~,j(a)] = 4j(x). 
aEZj 

Let us denote by �9 = 4(r, m, ~o, r/) for the measure defined by (6.6). 

(; *) Lemma 6.1. Let 7 be an element of Fo(Mp ~) with 7 -  mod M r .  Then, 
we have t - 1 

E,~.~(a)[mT=Em,~(at) if Mp~>2. 

Proof. Let )~ be a Dirichlet character modulo Mp ~ with ) ~ ( - 1 ) = ( - 1 )  m, and put 

E ( Z ) = � 8 9  ~ ( 2 z(d)dm-')e(nz) �9 
n = l  O < d [ n  

It is well known that E(Z) belongs to .A%(Fo(M p*), Z) if Mp*>2 (cf. [8] and 
[25, (3.4)]). The explicit q-expansion (6.3) of E,,,~(a) shows that 

Era, ~(a) = 2 IZ~l- x ~ )~(a) E(Z), 
Z 

where Z runs over all Dirichlet character modulo M f  with ) ~ ( - 1 ) = ( - 1 )  m and 
IZ~l denotes the number of elements in Z~. Then, we know 

E.,,~(a) l., 7 = 2 I zvl-1 y~ Z(a t) E(Z)-- Em,~(a t). 
Z 

This shows the lemma. 
We know from Proposition 1.1 that, for 7eF0(Mp 2v) with 7 = 0 t -1 

mod M p2 ~ 

O~(w, t/)[~ + ~ 7 = Zo(t) Ov(t w, tl) , 

Zo(t)= ( ~ )  for A = [ I * : I ]  is the Legendre symbol. Then, Lemma where 

6.1 shows that 4~(w) belongs to Jgk(Fo(Mp2"),~OZo;K) for k=~c+a+m+2r.  
Thus 

(6.8) 4(r,m, co, t/) has values in ~'~(M, coZo; K) for k=~c+~+m+2r.  

We shall clarify possible relations between the measures 4 for various r, m, 
and q. 

Proposition 6.2. Let k be a positive integer greater than ~, and assume that the 
degree a of the spherical function ~1 is less than k - x. Then, we have 

4(0, k - ~  -~ ,  co, it) = tt �9 4(0, k - x ,  co, 1), 

where we denote by the symbol "1" the constant function with value 1 on W. 
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Proof. Note  that the two measures ~(0, k - ~ c - a ,  co, r/) and ~(0, k - x ,  co, 1) have 
values in the same space ~'k(M, coXo; K). Thus it is sufficient to show that 

(6.9) I4~v(w; O, k - ~c - ~, co, q) - rl(w) q~v(W; O, k - to, co, 1)1 p is convergent to 0 

uniformly in w e  W as v approaches to the infinity. 

By definition, we have 

Ebm,~(a)=e~,~(a) + ~ ( ~, sgn(d) dm-l-b Z sgn(bd)(bd)m-1)e(nz) �9 
n = l  din  d in  

d =- a m o d M p  v bd =~a m o d M p  v 

As for the constant  term eb v(a), we have that, for every a e Z ,  m ,  

le~,, v(a) - a p -  1 e~, ~ (a)lp _-< p -  v, 

where ape7Z; is the project ion of a e Z = ( 7 7 / M ' Z )  • x 7Z,; into the second factor. 
A similar inequality can be verified more  easily for the non-constant  terms of 
E~,,,(a), and then, we have 

'n- i  Eb.v(a)lp<=p-~ for every a e Z .  IE~,v(a)-a~ 

o3 

Here, we use the no rm [ [p defined by ,=0~c(n)q ~ p=Sup[c(n)lp,  for any element 

of CK[[q]].  Replacing q by its constant  multiple if necessary, we may assume 
that r/ has values in the p-adic integer ring Or of K. Note  that q ( a w ) = a ~ l ( W )  
for any ae~E. Then, we have that, for any we W, 

tl(w) Mp~ 1) p (6.10) ~ ( w ; 0 ,  k-~c, co, 1 ) -  ~ a* . . . . .  'co(a)Ebl,,.(a)rl(aw)O~(aw, 
a = l  

(a, rap) = 1 

= It/(w) ~ ( w ;  0, k - ~:, co, 1) - r/(w) ~ a k-  ~ - '  co (a) Eb,,(a) O, (a w, l)[p 
a 

= Itt(w) Y, co(a) [E~ . . . . .  (a) - a  k - ~ - I  E~,,,(a)] O,(a w, l)[p 
a 

_-< Sup(lt/(W)lp IE~ . . . .  ( a ) - a  *-~-~ E~,,(a)lp IO~(a w, Dip) 
a 

p--V 

Since t/ is a polynomial  function, we can find a constant  C >  1 so that if 
v = w  rood p ' Ip  for any v, weW, then 

In(v)-  n(w)lp_-__ c p-v. 

Then, the definition of Ov(w, tl) and O,.(w, 1) in (6.5) shows that 

IOv(w,~l)-q(w)Ov(w, 1 ) l p ~ C p - "  for every weW. 

Thus, we have that,  for every weW, 
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4~(w; O, k - x - ~ ,  Mp~ 1) p (6.11) co, r l ) -  ~ a k . . . . .  l o9(a)Eb,~(a)~l(aw)Ov(aw, 
a = l  

( a ,  M p )  = 1 

= I~v(w; O, k - x - ~, 09, q) - ~. og(a) Ebk . . . . . .  (a) rl(a w) Ov(a w, 1) 
a 

+Y Ia) b Ek . . . . . .  (a) q(a w) Ov(a w, 1) 
a 

_ y ,  a k . . . . .  1 E ,v(a) • ( a w )  O (aw, l)lp 
a 

< Sup b [lEg . . . . . .  (a)lp IOv(aw, rl)--rl(aw) O~(aw, 1)1~, 
a 

E b k . . . . .  XEb Iq(aw) Ov(aw, 1)lp I k . . . . . .  (a) - -a  1,v(a)ip] 
=< Cp  -v. 

Then, (6.9) follows from (6.10) and (6.11). Q.E.d. 

For any tkecg(W;K), the value 0(~b)= ~ ~(w)q  "tw) is an element of 

J//(M; K). Then, it is plain that, for 0 < r ~ Z ,  

d ~ O(c~) = O(n" q~), 

d 
where d is the differential operator q~qq. It is known (e.g. [12, 5.8]) that the 

differential operator d takes ~ ( M ;  K) into itself. Extend the Hecke operator 
T(p) to an operator on K [[q]] by 

~ a(n) q" a(np) q", 

and put 

=o~176 q" p 
~ a ( n )  = Sup [a(n)[,. 

n n 

Then, we can define a valuation ring by 

= {FEK[[q]]I IFI  e is finite}. 

Then, ~ is stable under the differential operator d and the Hecke operator 
T(p). We see easily that 

(6.12) lim (dF)t T(p) m = 0  if F~/ / .  
n l ~ o o  

Note  that the space ~ ( M ;  K) may be regarded as a subspace of q / through q- 
expansion. Then, the definition of the idempotent e of ~ ( M ;  (9~:) in (4.3) shows 
that 

(6.13) The idempotent ~ can be naturally extended to an operator on d ~  
+~r  K)  so that e annihilates dql (Dd.~C(M; K)). 

We shall define the ordinary part q~~176 rn, co, q) of the measure 
q~(r, m, co, r/) by 
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(6.14) S4)d4~ co, t l )=~[~4)d4(r ,m,  co, tl)] for ~becg(W; K). 
w w 

Then, the measure 4 ~ has values in the finite dimensional  K-vector  space 
-/g~ co Zo; K) (Proposi t ion 4.1). 

Proposition 6.3. Let k and r be integers with k > x  and 0=<r<�89 and 
assume that the degree ~ of  q is less than k - c t - 2 r .  Then, we have 

4~ k - x -  ~ - 2 r ,  to, q )= (  -1 ) r  r/n r- 4~ k - x ,  co, 1). 

Proof. Put, for each c, becg(W; K), 

O~(w, 4~)= ~ (a(w) q" tW)e~(M;  K) (weWv). 
v ~ w m o d  pVl 

Then, we can define a bounded  measure 4(0, m, co, ~) on W by the system 

4~(w; O, m, co, cb) = ~ co(a) E~, ~(a) O~(a w, ~b)e JZC(M; K). 
a~Zv 

We can apply the argument  which proves (6.9) to any homogenous  polynomial  
q~ on W in place of ~/ there. Let  us take ~/n r as ~. Then, in exactly the same 
manner  as in the proof  of  (6.9), we obtain 

(6.15) ] 4 ~ ( w ; O , k - ~ c - ~ - 2 r ,  co, r lnr ) -q (w)n(w)r4v(w;O,k - tc ,  co, l)lp 

converges to 0 uniformly in we W as v approaches to the infinity. 

For  simplicity, we write 4 o for 4~ k - x ,  co, 1). In order  to prove the asser- 
tion, what  we have to show is 

(6.16) 14~ r, k - x - ~  - 2 r ,  co, t/) - (  - 1)r(q n ~) (w) 4~ converges to 0 

uniformly in we  W as v approaches to oo. 

On the other  hand, by L e m m a  5.2, there is an element g e J l ( M ;  K) such that 

n [Ebm,~ (a) 6~, + ~ 0~ (a w, r/)] = E~,~ (a) d r 0~ (a w, ~/) + d g. 

Then, (6.13) shows that e(dg)=O, and we thus have 

e [H(Ebm, ~(a) 6~ +, O~(a w, q))] = e [E~, ,.(a) d ~ O~(a w, r/)] 

= e [E~, ~(a) O~(a w, rl n')]. 
This shows that 

4~ r, m, co, q )=  ~ co(a)e[H(O~(aw, rl)6~,E~,~(a))] 
a~Zv 

= ( - 1) r ~ co(a) e [H(E~, ~(a) 6~ + ~ O~ (a w, r/))] by Lemma  5.3 
a 

= ( - 1y ~ co(a) e[E~, v(a) O~(a w, t I nr)] 
a 

= ( -  1) r e[4~(w; 0, m, co, q n")]. 

Then, (6.16) follows from (6.15). Q.E.D. 



186 H. Hida 

w 7. Proof  of Theorem 2.1 

Before proving Theorem2.1, we list some formulae among several Eisenstein 
series, which are found in [8, 21] and [26]. Let ~o be a Dirichlet character 
modulo N for a positive integer N and m be a positive integer with c o ( - 1 ) =  
( - 1 ) " .  Define Eisenstein series by 

Jm, ~(z, s, ~o) = 

Era,/v(2, s ; a ,  b) = 

for a, b~TZ/NTZ, and 

co(c)(c z + d)-" lc  z + d[ - 2~, 
0 * (c, d)E 72 

(cz +d)-mlcz + d[ - 2s 
0 :r (c,d) -= (a, b) mod N 

Em.N(~o)=Era, N(z, og)=�89 og)+ ~ (  ~ o~(d)d~-l)e(nz). 
n = l  O < d J n  

The series Jm,N(z,s, co) and E,,,N(z,s;a,b) have analytic continuations as func- 
tions of s. We write simply Em, N(z;a,b) and Js, N(z,~o) for their values at s=0 .  
As shown in [25, (2.4)] (see also 1-26, p. 217]), we know that, for every positive 
integer r, 

r(m) 
(7.1) J,, + 2r, u(z ,  - r, co) - F ( m  + r--) ( - 4 7z y)r firm [dm,u(z ,  C0)], 

where y= Im(z ) .  The function E.,,N(og) belongs to .//gm(Fo(N),o) except in the 
case where m = 2  and N = I .  Let COo be the primitive character modulo No 
associated with co, and define another positive integer ?Ca by N =NoNx. Then, 
obviously, we have 

(7.2) E,,,u(z, co)= ~ p(t) OOo(t)tm-lEm,No(tZ, OOo), 
0 <tiN1 

where # denotes the Moebius function. 

(o _10) Lemma 7.1. For ~ = , we have 

(7.3) r(m) N m/2 G(~oo) ~ #( t) ~Oo( t) t-1 j~,No( t -  1 N1 z, ~o), 
E.,,~,(og)[,. r = 2(2rci)mNo o <,IN, 

where G(ooo)= ~ Ogo(u)e u 
U = I  

is the Gauss sum for 0%. 

Proof It is known by Hecke [8] that 

E,,,N(z; a, b) = constant -~ - -  j. N m r(m) ~ - 1 sgn(j) e 
jk>O 

k =_amodN 

Write simply A for the constant 

N~ r(m) 
2( -- 2hi)" G(oTo) ' 
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An easy calculation shows that 

Em,No(Z,O)o)-A ~, (5o(a)E,,,,No(z;O,a) 
a ~ Z / N o Z  

is a constant; hence, we know 

E,~,No(COo) ---- A ~, eSo(a) Em.No(Z; 0. a) 
a ~ ( Z / N o Z  ) • 

=A" ~,, (5o(d)(cNoz+d)-'lcNoz+dl-2Sls= o. 
0 �9 ( c , d ) eZ  2 

Then, we know from this formula that 

(7.4) Em,No(O)O)lm (N0o -lo)=No"/ZAJ,,,No(Z,~o). 

This is a special case of (7.3) by the well known equality: 

G(~,9o) G(~o)=~Oo(- 1)No = ( -  1)m No. 

The formula (7.3) in general follows from (7.2) and (7.4) because of the identity: 

(; 01) T~I (NO O --10)(N1;-1 ~). 
Now, we are ready to give a proof of Theorem2.1. We use the same 

notation as in the theorem. Especially, M denotes the level of the lattice I of V, 
f is the fixed primitive form of conductor C, with character ~O and of weight 
k>x.  Assume that the p-th Fourier coefficient a(p,f) of f is a unit in f2. Let fo 
be the ordinary form associated with f defined in Lemma 3.3 and write Co for 
the smallest possible level of fo. Define integers/t > 1 and 2 > 0 by 

Co = C' p ~', M = M' p ~, 

where (C' ,p)=(M',p)=l.  Then, we assume that C' divides M'. Then, the space 
J//k(Fo(Co),~O) is a subspace of J/gk(Fo(Mp~'-~),~,), and we know that Mp~'-~/Co 
=M'/C'. 

We first construct the measure qob in the theorem for each b> 1 prime to 
Mp. Let K be a sufficiently large finite extension of the p-adic field ~p which 
contains all the Fourier coefficients of fo. Let )~o be the Dirichlet character 
modulo M defined by 

%o(a) = ( ~ )  for A=[I*:I] .  

Let ~~176 be the bounded measure on cg(W;K) defined in 
(6.14). Then, the measure q~o has values in the space ir176 which is a 
subspace of J/gk(Fo(Mp ~'- ~), ~b; K) (see Proposition 4.1). Let Tr denote the trace 
operator of J[k(Fo(Mp ~'- z), qt; f2) onto .///,(Fo(Co), ~; f2) defined by 

(7.5) Tr(g) = ~ ~(7)g Ik 7, 
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=O(d). Then, Tr  is a bounded  linear operator.  The  finite extension K can be 
chosen so that the trace opera tor  sends JCk(Fo(MpU-~),O;K) onto 
Jgk(Fo(Co), ~k; K). Then, define the measure COb by 

(7.6) S qSdcob=fI[Tr(S qSd~~ for q~c~(W;K), 
w w 

where fI: Jk(Co, ~b;K)~  K is the bounded  linear form associated with f given 
in (4.6). 

Let r/ be an arbi t rary algebraic valued spherical function on V with degree 
less than k - x ,  and q5 be an algebraic valued locally constant  function on W 

such that 49(aw)=x(a)q~(w) for every a~Z and w~W with a character  ~ of finite 
order  of Z. Define a Dirichlet character  ~ by 

~(a)=x(a)xo(a) for a~7/ pr ime to Mp. 

Then, for a sufficiently large f l > l ,  the theta  series 0(~b~/) belongs to 
~[,+,(Fo(MpO),~) by Proposi t ion 1.1. We know fix such a f l > l .  Let r be an 
arbi t rary integer with 0 < 2 r + a < k - ~ c .  Now, we shall evaluate the integral 

c~qnrdcob as in (2.5). We may assume that  the functions ~/ and q~ on W have 
w 
values in K. Take a positive integer v so that q~ factors through W~ = ~W/p*I. 
We may assume that  v > fl and v > # - 2 .  Then, Proposi t ion 6.3 shows 

( - 1 )  r ~ c~rln'd~~ ~ c~(w)~(w;r, rn,~kZo, q)], 
W w ~ W v  

where m = k - x - ~ - 2 r  and ~ ( w )  is as in (6.6). We see from (6.6) that 

(7.7) ~ q~(w) ~ ( w ;  r, m, ~'Zo, r/) 
w 6 W  v 

= ~ q~(w) ~, ~bZo(a)HEO~(aw, rl) " b ~.Em,v(a)] 
w E W v  a ~ Z v  

=~Xo(a)~c~(a - lw)  ~ b H[ O~(w, ~l) 6,,E,.,~(a)] 
a w 

= ~ r ~o Z(a) H [~ c~ (w) O~(w, rl) 6~ E~,~(a)] 
a w 

= H[0 (O. )  ~;,(~ ~, ~(a) E~,~(a))]. 
a 

Note  that E.,,M~o(~b~)=E,,,~(~9~-)=�89 ~ ~(a)E,.,~(a). Then, (7.7) is equal to 
a ~ Z  v 

2 (1 - b m ~k ~(b)) H [0 (tk r/) 6~ Era, Up~ (~b ~)]. 

We have by the definition of COb that  

( - 1) ~ ~ ~b r/n" dCOb = 2 (1 - b m ~k ~-(b)) ~f I-Tr {e (H(O(q~ rl) 6",, E ,~ ,~(~  ~')))} ]. 
w 
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Let  us now choose a comple te  representat ive set R for 

Fo( M pP) \ Fo( Co p# + Z- "). 

Note  that  MpC=M'p ~+z, C o p P + Z - " =  C'p #+z, and that  C' and M'  are pr ime to 
p. Therefore,  the set R may  be regarded as a comple te  representat ive set for 
Fo(MpU-Z)\Fo(Co). Thus, one can extend the opera to r  Tr  defined in (7.5) to the 
trace opera to r  of  ~'k(Fo(MpP),O;s onto  Jgk(Fo(C0p~+z-") ,O;~);  namely,  we 
put  

Tr(g) = ~. ~(7)glk]; for gs~lk(Fo(Mp~), ~9; ~). 

Then, we see easily that  

T r o T ( p ) = T ( p ) o T r  and T r o e = e o T r .  

Since Tr(g)IT(p)  p+z-u for ge~gk(Fo(Mp~),O;~) belongs to J/k(Fo(Co),O;t~), 
Proposi t ion4.5  and (4.7) show tha t  

YI[Tr (e (g))] = ff [e (Tr (g))] 

= a (p, fo) u-  p -  z f f [Tr  (g)[ T(p) p + z -  u] 

= a (p, fo)"-  o-  z.to + z -  .)(k - -  1)(hp + z - . ,  Tr(g))copo + .~-., 
<h, fo>co 

( o  - ; t  and h'+~-"(z)=h(P"+~-"z)" Note  that,  for z where h=f~]k Co 

< = pp 

(h~ + z-u,  Tr  (g))copo + ~-,. = (htj + z- u, g)Mp~ = (hp + z-ulgZ, glkZ)Mp~. 

Applying these formulae  to g=H[0(4~q)6~,E~,Mp#(~'~)], we have  by (5.4) 

(7.8) ( - 1 )  r S q~qnrd~~ 1 -b"~'~(b))Pt~ fo)U-~ 
W 

(h~ + z-,lk Z,(O(d?tl) O~Em,Mr~(ql ~)) Ik Z)Mp~ 
X 

(h, fo)co 
wherc m = k - ~ - ~ x - 2 r .  

On the other  hand,  Lemma7 .1  combined  with (7.1) shows that  

=Ty-" ~ #(t)(Oo(t)t-lA . . . . .  No(t-lNlz,--r,(~o), 
O<t[Nl 

where co=~k~, No is the conductor of co, COo is the primitive character as- 
sociated with co, N=MpP=NoNx and 

T = N o  i G(COo) ~ . . . .  2 2 . . . .  1 ( ~ / ~  l)2r-,,(MpP),,/2 r(m + r) 



for 

is equal to 

t 9 0  

for m = k - ~ - . - 2 r .  Note  that  

p(l~ + ;~- u)(k--1) h ~ + ,~_ u[k Z = (  - -  1)k p(ll + a -  u)(k/Z - 1 ) f  (~ lk 7 

0] .  Applying these formulae 
11 

H .  H i d a  

to (7.8), we know that  ~ c~qnrdtpb 
w 

S(1 - b m ~ ~-(b)) a (p, fo) u-  p -  a G((o o) (h,  f0 ) - t 

#(t) O~o(t)t- l ( fO[k Z, (O(~bq)[~ +. Z)Jk . . . . .  No( t -  l Nl z, --r, ~o) y-r)~t.o, 
0 <t [N~ 

where 

S = n . . . .  2 - m -- 2 r ( ] / / _ _  1)2k -- m Mm/2 p,n~/2 + (~ + ;~ -/a)(k/2 - 1 ) N  O- 1 F ( m  + r). 

Then,  the evaluat ion (2.5) follows f rom the formula  given in [26, p. 217]: 

~Mp,(~ + ~ + 0. folk ~. 0(~ q)l~ +.z) 

= U ~, #(t)COo(t)t -1" (f~lky,(O(r . . . . .  so(t-iN1 z, --r,~o)Y-~)Mpa, 
0 <tiN1 

where 

U =lrk_r_ 2m+122k_ 2r_ 2m_ l Mm_l ptS(m_ l) N~ l F(m + r) 
G(~~176 r(K + ~ + r) r(r +-0" 

w 8. A sketch of the Proof of Theorem 2.2 

In this section, we use the same nota t ion  as in Theorem2.2 .  Especially, 

g= ~ b(n)e(nz) is the fixed modu la r  form in Jlz(Fo(N), ~o) with b ( n ) ~ .  Let  v be 
n = 0  

a psoitive integer and cp be an arbi t rary  function on Y v = Z / N f ~  with values 
in ~ ,  Put 

g(~b)= ~ cp(n)b(n)e(nz), 
n = 0  

as a function on .~. 

Propositiong.l. For any v = ( ~  bd)6Fo(N2p2V), we have the following transfor- 
mation formula: 

g(~) [l ~' = eJ(d) g((a.), 

where c~. is a function on 7Z/NpVZ defined by 

d?.(y) = (o(a- : y). 

Proof (cf. [20, L e m m a 2 ] ) .  We simply write n for Np ~ for a fixed v > l ,  and 
define a n x n matr ix  by 

A =(e(xy/n))x,y~rv. 
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The matr ix  A is invertible, and thus we can find x(u, y)eC for any pair  u, y e  Y~ 
so that  

x(u,y)e(uv/n)={1 if v=y, 
,~r~ 0 otherwise. 

For  any tel:,, • and wY~, we have that  

1 {l x(tu, y)e(uv/n)= ~ x(u,y)e(t- uv/n)= 
u E Y v  u E Y v  0 

This shows 

if t-iv=y, 
otherwise. 

(8.1) x(tu, y)=x(u, ty) for every teY~ • 

Put 

(8.2) g(y) = g,.(y) = ~ b(m) e(mz) for y e  Y~. 
m ~ y r n o d N p  v 

Since we can express g(q~)= ~ qS(y)g(y), our  task is to show 
yEYv 

(8.3) g(Y)ll(~ bd)=e)(d)g(aZY) for every y~Y~ ( i f ( ~  bd)~Fo(n2) ). 

[1 
For  each u~ Y~, take Uo~Z with u 0 = u  mod  n, and put  ~ , =  [~ 
the definition of x(u, y), we have 

\ v  

g(y )=  ~ x(u,y)glt~. 
u E Y v  

As in the p roof  of  [28, 

t = c' d' eFo(N) so that  

ul/n).Then, by 

Prop. 3.64], for each ueY~, we can find 7, 

Then  (8.3) can be shown as follows: 

g(Y)lt7 = ~ x(u,y)gl?,~,-2,=e)(d) ~ x(a2u, y)glz~,, 
U~y  v U 

= e)(d) ~ x(u, a z Y)gJt an = e)(d) g(a 2 y). 
tl 

N o w  we shall give a sketch of a p roof  of  T h e o r e m  2.2. Fix an integer b > I 
p r ime to Np, and let r and m be integers with r > 0  and m > 0 .  Define the 
Eisenstein series E~,~(a) for each aeY~ • by (6.3) and (6.4a) for N in place of  M 
there. Write N=N'p ~ with an integer N '  p r ime  to p and let q/ be a Dirichlet 
character  modu lo  Np" for some u >  1. Define, for each y~Y~ (v>u), 

(8.4) ~ ( y )  = ~ ( y ;  r, m, ~') = ~ ~O'(a) H[g~(aZy) 6"~E~,~(a)]. 
a ~ Y  v 
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Then, the system {q~v(Y)} defines a bounded measure ~(r, m, q/) with values in 
./I[I+,,+2,(NN',@'oo;K) for a suitable finite extension K of ~p. We now define, 

(r, m, ~k ) of the measure ~(r, m, 0') by parallel to (6.14), the ordinary part o 

(8.5) ~ 49d~~ m, ~k')= .[ ~ 49driP(r, m, ~k')]. 
Y Y 

Then, the measure ~~ m, r has values in the finite dimensional vector space 
Jgl+,,+ 2,(Fo(NN'pU), ~b'~o; K) by Proposition 4.1. Let k be an integer with k > l. 
If r is an integer with O<2r<k-l, we have, for any 49~cg(y; K), 

(8.6) I 49 d~~ k - l - 2 r, ~k') = ( - 1)" ~ 49 (y) y; d~~ O, k - l, r 
Y Y 

where Yv is the projection of yeY=~E/N'Zx~Ep to the factor Zp. This can be 
proved in exactly the same manner as in the proof of Propositions 6.2 and 6.3. 
Let f be a primitive form of weight k > l, of conductor C and with character r 
Assume that la(p,f)lp=l and that K contains all the Fourier coefficients of f. 
Let fo be the ordinary form associated with f and let Co be the smallest level 
of fo- Write Co = C'p ~ with an integer C' prime to p and assume the divisi- 
bility of N' by C'. Then the measure ~o=~o(0  ,k_ l ,0o3)  has values in the 
space ~/k(Fo(N'2p"),~k;K). Let Tr denotes the trace operator of 
,A[k(i'o(N'2pu), ~;K)  onto J//[k(Fo(Co), ~k;K). Then, the bounded measure q~b on Y 
in Theorem 2.2 can be defined by 

49 d~0b = El [Tr  (~ 49 d~~ 
Y Y 

where Ys is the linear form on ~r attached to f The evaluation of 
the integral S ~b(y)y'pdq~b(y) for any locally constant function 49 with (2.6) can be 

Y 

carried out in exactly the same fashion as in w 7. 

w 9. Functional equations of ~N(S, f, g) 

The functional equations and the meromorphy of the zeta functions ~N(S, f, g) 
was proved by Jacquet [-10, Th. 19.14] for any primitive forms f and g through 
a representation theoretic generalization of Rankin's method [18]. However, 
the familiarity with the representation theory is necessary to understand his 
results; so, for the reader's convenience, we give here a brief exposition of this 
in a special case where the original method of [18] can be applied. The details 
of our arguments may be found in [21, 25, 26]. Let 

f =  ~a(n)e(nz) and g =  ~b(n)e (nz )  
n = l  n = l  

be primitive forms of conductor C(f) and C(g), respectively. Let k and ~k (resp. 
l and ~) be the weight and the character of f (resp. g). For any Dirichlet 
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character co, we write C(co) for the conductor of co. We now assume that: 

(9.1a) N is the least common multiple of C(f) and C(g); 

(9.1 b) k>l;  

(9.1 c) N = C(O 3). 

Now we define the root numbers W(f)  and W(g) by 

( 9 . 2 )  f l k ( C ( f )  - ; ) = W ( f ) f  p, gl,(C(O) - ; ) = W ( g ) g  p, 

where p is the complex conjugation. Let G(co) denote the Gauss sum for a 
primitive character co and put W(o3)=G(co)/lG(co)l. Write M(g)=N/C(g) and 
M(f )  = g / c ( f ) ,  and put 

W(f, g) = a(M(g)) ~ b(M(f)) p W( f )  W(g) W(O 3). 

Theorem 9.1. Put 

R(s, f, g) - (2 x)- 2~ F(s) F(s + 1 - l) ~N(s, f, g). 

Then, R(s, f, g) can be continued as an entire function on the whole complex plane 
and satisfies the functional equation: 

(9.3) R(k + l - 1 - s ,  f, g) 
k l 

= ( -- 1)t W(f, g) N ~-k-' + ~ C(f) ~- ~ C(g) ~- ~ R(s, fP' gP). 

Even when k=l ,  a similar functional equation holds, but the holomorphy is 
not necessarily valid (see [22]). 

Proof Let us define an Eisenstein series of weight m and of character ~o 
modulo N by 

Fm,N(Z,S,O~)=n-'Y~F(s+m) ~ ~o(a)Em.N(z,s;O,a). 
amodN 

Then, F,~,N(Z,S, CO) is an entire function in s if m>0.  If r is primitive, it satisfies 
the functional equation: 

(9.4) Fm.N(z, 1 --m --s, ~o) = W(co)N3~+m-r - 1/Nz, s, ~b) 

(cf. [26, (19)]). On the other hand, we know from [26, (22)] 

(9.5) R(s , f ,g)=2-1n 1-k S f~ g(z)Fm,N(Z,s+l-k ,~t~)yk-2dxdy 
SS/Fo(N) 

for m = k - l .  This shows the holomorphy of R(s, f g )  on the whole complex 
plane. Since $~ is primitive by (9.1c), we know from (9.4) that 

R ( k + l - l - s , f , g ) = A a ( s )  S f - ~  
.~/ro(N) 
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where 

Note  that  
Ax(s)= 2-1rcl-k N3~- zk-z+ ~ W(r  ~). 

f o ( _  1 /Nz )=(  - 1) k W ( f )  N k/z M(f)k/2 f ( M ( f ) z ) z  k, 

g( - 1/U z)= W(g)N u2 M(g) u2 g~ 1. 

Substituting z for - l / N z  in the formula of R ( k + l - 1 - s ,  f, g), we have by (9.5) 
that  

R(k + l - 1 - s, f, g) = A 2(s) L(2 s + 2 - k - l, ~ ~) ~ a (n /M(f) )  ~ b (n/M(g)) ~ n-S 
n = l  

where 
k 1 

a 2(s) = ( - 1)' W(T) W(g) W(t) ~) M ( f )  -~ M(g) ~- 

�9 N35-~Ck+l-a)(2n) -zs  F(s) F(s + 1 -1). 

Define complex numbers  ap, a'v, tip, fl'v for every pr ime p by the Euler pro- 
ducts: 

a(,,)" , , - ' =  [ ]  I - (1 p - ' ) (1  - p - ' ) ]  - ' ,  
n = l  p 

b (n) ~ n -~ = I~ [(1 - tip p -  s) ( 1 - fl; p -  ~)] - '. 
n = l  p 

Since N is the least c o m m o n  multiple of C( f )  and C(g), M ( f )  is prime to 
M(g). Then, we know from [25, Lemma 1] that 

a(n /M( f ) )  ~ b(n/M(g)) p n -~ 
n = l  

= ( M ( / )  M(g)) -~ ~ a(M(g) n) p b ( M ( f )  n) ~ n -~ 
n = l  

= ( M ( f )  M(g)) - '  I-I X *  (s)/Vp(s), 
P 

where X*(s)  and Yp(s) are given by 

[1 _~p@flpfl,pp-2S if p , g M ( f ) M ( g ) ,  
X~ (S)= la(p)O~ if p lM(g), 

I,b(p) ~176 if p[ M ( f ) ,  

Yp (s) = (1 - ap tip p - ' )  (1 - ap fl'p p -  5) (t - @ tip p -  ") (1 - @ fl'e P-  5). 

The  above expression of X*(s)  for the prime factor p of M ( f ) M ( g )  follows 
from [25, (3.1)], since M(f) (resp. M(g)) is a divisor of C(g) (resp. C(f)) by 
(9.1a). Then,  by [25, Lemma  1], we have 

a(n /M( f ) )  ~ b(n/M(g)) p n -~ 
n = l  

= a(M(g)) ~ b ( M ( f ) )  ~ ( M ( f )  M(g)) -~ ~ a(n) ~ b(n) ~ n-~, 
n = l  

This proves (9.3). 
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