A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I

Haruzo Hida

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

§ 0. Introduction

Let p be a prime number. The aim of this paper is to construct a p-adic bounded measure of several variables, which establishes the p-adic interpolation of the special values of the Rankin product of two elliptic modular forms of different weight. Let N be an arbitrary positive integer. Let f be a cusp form of weight $k \geqq 2$ for the congruence subgroup $\Gamma_{0}(N)$ with character ψ modulo N, which is, in addition, a primitive form ($=$ normalized new form of level dividing N). Let g be a modular form of weight $l<k$ for $\Gamma_{0}(N)$, with character ω. Write $e(z)=\exp (2 \pi i z)$. Suppose that the Fourier expansions of f and g are given by

$$
f=\sum_{n=1}^{\infty} a(n) e(n z), \quad g=\sum_{n=0}^{\infty} b(n) e(n z) .
$$

The Rankin product of f and g is defined by

$$
\begin{equation*}
\mathscr{D}_{N}(s, f, g)=L_{N}(2 s+2-k-l, \omega \psi) \sum_{n=1}^{\infty} a(n) b(n) n^{-s}, \tag{0.1}
\end{equation*}
$$

where $L_{N}(2 s+2-k-l, \omega \psi)$ denotes the Dirichlet L-series of $\omega \psi$ with the Euler factors at the primes dividing N removed from its Euler product. It is well known that $\mathscr{D}_{N}(s, f, g)$ has a holomorphic continuation over the whole complex plane as a function of s. Moreover, when the Fourier coefficients $b(n)$ of g are algebraic numbers (note that the Fourier coefficients of f are automatically algebraic because f is primitive), Shimura [25,26] has proven the basic result that
(0.2) $\frac{\mathscr{D}_{N}(m, f, g)}{\pi^{2 m+1-l}\langle f, f\rangle_{N}}$ is algebraic for all integers m with $l \leqq m<k$;

[^0]here
$$
\langle f, f\rangle_{N}=\int_{B(N)}|f(z)|^{2} y^{k-2} d x d y
$$
where $B(N)$ denotes a fundamental domain for $\Gamma_{0}(N)$. Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q} in \mathbb{C}. Let Ω denote the completion of an algebraic closure of the field of p-adic numbers \mathbb{Q}_{p}, and we normalize its valuation $\left|\left.\right|_{p}\right.$ by $|p|_{p}=p^{-1}$. We fix once and for all an embedding
\[

$$
\begin{equation*}
i: \overline{\mathbb{Q}} \rightarrow \Omega \tag{0.3}
\end{equation*}
$$

\]

(when there is no danger of confusion, we will omit i from our subsequent formulae). We assume for the rest of the paper that the form f is ordinary for p (or more correctly i) in the following sense
(0.4) the image under i of the p-th Fourier coefficient of f is a unit in Ω.

Let V be a vector space over \mathbb{Q}, and let $n: V \rightarrow \mathbb{Q}$ be a positive definit quadratic form on V. Define a symmetric bilinear form $S: V \times V \rightarrow \mathbb{Q}$ by

$$
S(u, v)=n(u+v)-n(u)-n(v) .
$$

(We note that $n(v)=\frac{1}{2} S(v, v)$). Fix a lattice I in V so that $n(v) \in \mathbb{Z}$ for all $v \in I$. It is then clear that $S(u, v) \in \mathbb{Z}$ for all u and v in I, and hence, if we define

$$
I^{*}=\{v \in V \mid S(v, I) \subset \mathbb{Z}\},
$$

we have $I^{*} \supset I$. Write M for the smallest positive integer such that $M n\left(I^{*}\right) \subset \mathbb{Z}$. This integer M is called the level of I, and we note that I^{*} / I is annihilated by M. Throughout this paper except in $\S 1$, we assume that the dimension of V over \mathbb{Q} is even. Let

$$
\eta: V \rightarrow \overline{\mathbb{Q}}
$$

be a spherical function on V with algebraic values (see $\S 1$), and let

$$
\phi: V \rightarrow \overline{\mathbb{Q}}
$$

be an arbitrary locally constant function for the p-adic topology on I such that the theta series

$$
\theta(z)=\sum_{v \in I} \phi(v) \eta(v) e(n(v) z)
$$

gives a modular form of weight l and of character ξ. We now take g to be the theta series $\theta(z)$ and assume that ϕ factors through $I / p^{\beta} I$ for a positive integer $\beta \geqq 1$. Take $N=M p^{2 \beta}$. It is known that the level of θ divides N. Composing ϕ, η and n with the embedding i, we obtain continuous functions from $I_{p}=I \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ to Ω, which we denote by the same symbols. Let C be the divisor of N which is the exact level of f (i.e. the conductor of f), and define the root number $W(f)$ by

$$
\left.f\right|_{k}\left(\begin{array}{rr}
0 & -1 \\
C & 0
\end{array}\right)=W(f) f^{p},
$$

where $f^{p}=\sum_{n=1}^{\infty} \widetilde{a}(n) e(n z)$ is the complex conjugate form of f. Write

$$
M=M^{\prime} p^{\lambda}, \quad C=C^{\prime} p^{\mu},
$$

where $\left(M^{\prime}, p\right)=\left(C^{\prime}, p\right)=1$ (note that C^{\prime} divides M^{\prime} because C divides N).
Theorem 0.1. Assume that $\mu \geqq 1$. For each integer $b>1$, with $(b, N)=1$, there exists a unique bounded measure φ_{b} on $I_{p}=I \otimes_{\mathbb{Z}} \mathbb{Z}_{p}$ with values in Ω satisfying the following interpolation property: for every integer r with $0 \leqq 2 r<k-l$, we let $j=l+2 r$ and we have that the value of the p-adic integral

$$
\int_{I_{p}} \phi \eta n^{r} d \varphi_{b}
$$

is given by the image under iof

$$
W(f)^{-1} t\left(1-b^{k-j} \psi \bar{\xi}(b)\right) a(p)^{\mu-\lambda-2 \beta} \frac{\mathscr{D}_{N}\left(j-r,\left.f\right|_{k} \gamma,\left.\theta\right|_{t} \tau\right)}{\pi^{j+1}\langle f, f\rangle_{C}},
$$

where $\gamma=\left(\begin{array}{cc}M^{\prime} / C^{\prime} & 0 \\ 0 & 1\end{array}\right), \tau=\left(\begin{array}{rr}0 & -1 \\ N & 0\end{array}\right)$, and

$$
t=(\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-1)(1-k / 2)+\beta j} M^{(j-k) / 2+1} \Gamma(j-r) \Gamma(r+1) .
$$

A slightly stronger result, including the case when p does not divide C, is given in $\S 2$. We also obtain results on the p-adic interpolation of the values (0.2) when g runs over the twists of a modular form (of weight strictly less than k) by all Dirichlet characters whose conductor is a power of p (see Theorem 2.2). Moreover, in a later paper, we shall show that one can naturally extend φ_{b} to a measure $\mathbb{Z}_{p}^{\times} \times I_{p}$ by allowing the p-ordinary form f to vary.

Our motivation for studying these p-adic measures has been our desire to investigate the Iwasawa theory of certain p-adic Lie extensions of number fields, which arise from abelian varieties and modular forms. Some work has been done in this direction in the complex multiplication case (see [5] and [29]), but the non-abelian theory remains shrouded in mystery.

Here is a summary of the contents of the paper. The detailed statements of our results are given in $\S 2$. As far as the construction of the measure φ_{b} is concerned, we first construct a measure on I_{p} with values in the space of p-adic modular forms. This measure can be thought of as a p-adic convolution of the Katz's Eisenstein measure in [12] with the p-adic measure attached to a theta series. The measure φ_{b} is then obtained by combining this measure with a bounded linear form on the space of p-adic modular forms, which is studied in $\S 4$ (our hypothesis that p is ordinary for f is essential for the construction of this linear form). We make use of Shimura's differential operators [25] to evaluate the p-adic integral as in the theorem.

Notation

Let \mathfrak{S} be the upper half complex plane. Then the group $G L_{2}^{+}(\mathbb{R})$ of real 2×2 matrices with positive determinant acts on $\mathfrak{5}$ via linear fractional transfor-
mations. If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ belongs to $G L_{2}^{+}(\mathbb{R})$ and $f(z)$ is any function on \mathfrak{F}, we define, for each $k \in \mathbb{Z}$,

$$
\left(\left.f\right|_{k} \gamma\right)(z)=(\operatorname{det}(\gamma))^{k / 2} f(\gamma(z))(c z+d)^{-k} .
$$

For each positive integer N, let $\Gamma_{0}(N)$ (resp. $\Gamma_{1}(N)$) be the subgroup of $S L_{2}(\mathbb{Z})$ consisting of all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \equiv 0 \bmod N($ resp. $c \equiv 0 \bmod N$, $a \equiv d \equiv 1 \bmod N$). If Γ denotes either of these two subgroups of $S L_{2}(\mathbb{Z})$, we write $\mathscr{M}_{k}(\Gamma)$ for the space of holomorphic modular forms of weight k for Γ, and $\mathscr{S}_{k}(\Gamma)$ for the space of cusp forms of weight k for Γ. As usual, for each character ψ modulo N, we write

$$
\begin{aligned}
\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi\right)= & \left\{f \in \mathscr{M}_{k}\left(\Gamma_{1}(N)\right)|f|_{k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\psi(d) f\right. \\
& \text { for all } \left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N)\right\},
\end{aligned}
$$

and we put $\mathscr{S}_{k}\left(\Gamma_{0}(N), \psi\right)=\mathscr{S}_{k}\left(\Gamma_{1}(N)\right) \cap \mathscr{M}_{k}\left(\Gamma_{0}(N), \psi\right)$. Finally, we recall that the automorphism group of \mathbb{C} has a natural action on $\mathscr{M}_{k}(\Gamma)$ given by

$$
\left(\sum_{n=0}^{\infty} a(n) e(n z)\right)^{\sigma}=\sum_{n=0}^{\infty} a(n)^{\sigma} e(n z)
$$

for each automorphism σ of \mathbb{C}.

§ 1. Theta series

Our aim in this section is to briefly recall those transformation formulae of θ series defined by positive definite quadratic forms, which will be used later in the paper. See Shimura [21], $\$ 2$ for further details.

In this section, we use the notation defined in Introduction, and we allow the dimension of the quadratic space V to be odd. Let κ denote the half of the dimension of V; therefore, κ is a positive integer or half a positive integer. We also write S for the natural extension of S to a \mathbb{C}-bilinear form on $V \otimes_{\mathbb{Q}} \mathbb{C}$. Throughout this section, we write $\eta: V \rightarrow \mathbb{C}$ for an arbitrary complex-valued spherical function on V. We recall that this means that either η is homogenous of degree $\leqq 1$, or that η can be expressed as follows: there exist finitely many w in $V \otimes_{\mathbb{Q}} \mathbb{C}$ with $n(w)=0$ such that

$$
\eta(v)=\sum_{w} c(w) S(w, v)^{x},
$$

where $c(w) \in \mathbb{C}$ and α is an integer $\geqq 2$. In general, we write α for the degree of η (or, as it is often called, the order of η). Write Φ for any complex-valued function on I^{*} / I. For any function $h: I^{*} \rightarrow \mathbb{C}$, we define formally

$$
\begin{equation*}
\theta(h)(z)=\sum_{v \in I^{*}} h(v) e(n(v) z) . \tag{1.1}
\end{equation*}
$$

When $h=\Phi \eta$, this series converges, and defines a holomorphic function on \mathfrak{f}. We define an action of $\Gamma_{0}(M)$ on the set of all functions $\Phi: I^{*} / I \rightarrow \mathbb{C}$ via

$$
\begin{equation*}
(\gamma \cdot \Phi)(v)=e(d b n(v)) \Phi(d v), \tag{1.2}
\end{equation*}
$$

where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. If m, n are non-zero integers, let the quadratic residue symbol $\left(\frac{m}{n}\right)$ be as defined on p. 442 of [21]. Moreover, we let $\varepsilon_{d}=1$ if $d \equiv 0,1,2 \bmod 4$, and $\varepsilon_{d}=\sqrt{-1}$ if $d \equiv 3 \bmod 4$. For each non-zero complex number x, we fix $x^{1 / 2}$ by taking its argument to be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Finally, let $\Lambda=\left[I^{*}: I\right]$. Finally, let $\Delta=\left[I^{*}: I\right]$.

Proposition 1.1. The function $\theta(\Phi \eta)(z)$ satisfies the transformation formula:

$$
\begin{equation*}
\theta(\Phi \eta)(\gamma(z))=\left(\frac{\Delta}{d}\right)\left(\frac{2 c}{d}\right)^{2 \kappa} \varepsilon_{d}^{-2 \kappa}(c z+d)^{\kappa+\alpha} \theta((\gamma \cdot \Phi) \eta)(z), \tag{1.3}
\end{equation*}
$$

where $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(M)$.
The proof of this proposition is essentially contained in [21]. Note, however, that Shimura supposes that $4 \mid M$ and then proves (1.3) for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $c \equiv 0 \bmod \frac{M}{2}$ and $b \equiv 0 \bmod 2$. To derive (1.3) from Shimura's result, one needs only to verify (using the Poisson summation formula) the invariance, relative to weight $\kappa+\alpha$, of $\theta(\Phi \eta)(z)$ under the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \quad\left(\begin{array}{ll}
1 & 0 \\
M & 1
\end{array}\right)=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -M \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

We omit the details.

§ 2. Statement of main results

We begin by defining the space on which our p-adic measure exists. As in $\S 1$, let V be a quadratic space over \mathbb{Q}. We shall now assume that V has even dimension 2κ over \mathbb{Q} (i.e. that κ is an integer). As before, I will denote a lattice in V with $n(I) \subset \mathbb{Z}, I^{*}$ the dual lattice, and M the least positive integer such that $M n\left(I^{*}\right) \subset \mathbb{Z}$. For each integer $v \geqq 0, p^{v} I$ is a lattice with level $M p^{2 v}$. Define

$$
X={\underset{\varkappa}{v}}_{\lim _{v}} I^{*} / p^{v} I .
$$

In addition, let $\mathscr{W}=\left\{v \in I^{*} \mid n(v) \in \mathbb{Z}\right\}$, and put

$$
W=\lim _{\hookleftarrow} \mathscr{W} / p^{v} I .
$$

Plainly W is a subset of X, and the quadratic form n has a natural extension n : $W \rightarrow \boldsymbol{Z}_{p}$.

Let $\eta: V \rightarrow \overline{\mathbb{Q}}$ be an arbitrary spherical function on V of degree $\alpha \geqq 0$, taking algebraic values. Composing η with the fixed embedding (0.3), we obtain a unique extension of η by continuity to a function from W to Ω, which we again denote by η. Note that the group

$$
Z=\lim _{\leftarrow}\left(\mathbb{Z} / M p^{v} \mathbb{Z}\right)^{\times}
$$

has a natural action on the space X, which leaves stable W. Let $\phi: W \rightarrow \overline{\mathbb{Q}}$ be an arbitrary locally constant function satisfying the following property: there exists a character χ of finite order of Z such that

$$
\begin{equation*}
\phi(z w)=\chi(z) \phi(w) \quad(z \in Z, w \in W) . \tag{2.1}
\end{equation*}
$$

We then define the θ-series

$$
\theta(\phi \eta)(z)=\sum_{w \in \mathscr{W}} \phi(w) \eta(w) e(n(w) z)
$$

Put

$$
\xi(a)=\chi(a)\left(\frac{-1}{a}\right)^{\kappa}\left(\frac{\Delta}{a}\right),
$$

where the symbols on the right are Legendre symbols, and $\Delta=\left[I^{*}: I\right]$. Proposition 1.1 shows that there exists $\beta \geqq 0$ such that the conductor of ξ divides $M p^{\beta}$ and $\theta(\phi \eta)$ belongs to $\mathscr{M}_{\kappa+\alpha}\left(\Gamma_{0}\left(M p^{\beta}\right), \xi\right)$. In the following, β will denote any fixed integer satisfying this property with $\beta \geqq 1$.

As in the introduction, let $f=\sum_{n=1}^{\infty} a(n) e(n z)$ be a fixed primitive cusp form of weight $k \geqq 2$ with conductor C, and character ψ modulo C. We define the Petersson inner product of f with $g \in \mathscr{M}_{k}\left(\Gamma_{0}(C), \psi\right)$ by

$$
\langle g, f\rangle_{C}=\int_{\mathfrak{G} / \Gamma_{0}(\mathcal{C})} \overline{g(z)} f(z) y^{k-2} d x d y
$$

We now fix the embedding (0.3) of $\overline{\mathbb{Q}}$ into Ω and assume that this embedding i satisfies the condition (0.4), i.e. that $i(a(p))$ is a unit in Ω. We then write γ for the unique root of the Euler factor

$$
X^{2}-i(a(p)) X+i(\psi(p)) p^{k-1}
$$

which is not a unit in Ω (hence $\gamma=0$ if p divides C). We now define the modular form $f_{0}(z)$ to be either $f(z)$ or $f(z)-i^{-1}(\gamma) f(p z)$, according as p does or does not divide the conductor C of $f(z)$. It is well known (see [28, p.88] and Lemma 3.3 in the next section) that $f_{0}(z)$ is a common eigenform of all Hecke operators $T(n)(n \geqq 1)$ of level $p C$, including those with n dividing $p C$. Moreover, $f_{0}(z)$ is a unique ordinary form of level $p C$ with the same n-th Fourier coefficient as $f(z)$ for every n prime to p (see Lemma 3.3). Let C_{0} be the smallest possible level of f_{0}, i.e. $C_{0}=C$ or $p C$ according as p does or does
not divide the conductor C of f. We then define non-negative integers μ, λ, and C^{\prime}, M^{\prime} prime to p, by

$$
\begin{equation*}
C_{0}=C^{\prime} p^{\mu}, \quad M=M^{\prime} p^{\lambda}, \quad\left(M^{\prime}, p\right)=\left(C^{\prime}, p\right)=1 \tag{2.3}
\end{equation*}
$$

Finally, we impose the hypothesis

$$
\begin{equation*}
C^{\prime} \text { divides } M^{\prime} . \tag{2.4}
\end{equation*}
$$

This assumption is not very restrictive, since it can always be achieved by replacing I by a suitable sub-lattice. Let us also write

$$
\gamma=\left(\begin{array}{cc}
M^{\prime} / C^{\prime} & 0 \\
0 & 1
\end{array}\right), \quad \tau_{\beta}=\left(\begin{array}{cr}
0 & -1 \\
M p^{\beta} & 0
\end{array}\right) .
$$

Theorem 2.1. For each integer $b>1$, with $(b, M p)=1$, there exists a unique bounded measure φ_{b} on W with values in Ω satisfying the following interpolation property: for each non-negative integer r with $0 \leqq 2 r+\alpha<k-\kappa$, we let $j=\kappa+\alpha$ $+2 r$, and we have that the value of the p-adic integral

$$
\int_{W} \phi \eta n^{r} d \varphi_{b}
$$

is given by the image under i of

$$
\begin{equation*}
t\left(1-b^{k-j} \psi \bar{\xi}(b)\right) a\left(p, f_{0}\right)^{\mu-\lambda-\beta} \frac{\mathscr{D}_{M p^{\beta}}\left(j-r,\left.f_{0}\right|_{k} \gamma,\left.\theta(\phi \eta)\right|_{\kappa+\alpha} \tau_{\rho}\right)}{\pi^{j+1}\left\langle h, f_{0}\right\rangle_{C_{0}}}, \tag{2.5}
\end{equation*}
$$

where $a\left(p, f_{0}\right)$ is the p-th Fourier coefficient of f_{0},

$$
h=\left.f_{0}^{\rho}\right|_{k}\left(\begin{array}{rr}
0 & -1 \\
C_{0} & 0
\end{array}\right)
$$

and

$$
t=t(r, \alpha, \beta)=(\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-\lambda)(1-k / 2)+\beta j / 2} M^{(j-k) / 2+1} \Gamma(j-r) \Gamma(r+1) .
$$

Here are several remarks about this theorem, whose proof is given in $\S 7$. Firstly, it is easy to see directly that (2.5) does not depend on the choice of β. Secondly, the uniqueness of φ_{b} follows from the fact that any locally constant function on W is a finite sum of those satisfying the condition (2.1). Finally, we note that we do not give the p-adic interpolation at all of the special values

$$
\mathscr{D}_{M p^{\beta}}\left(m,\left.f_{0}\right|_{k} \gamma,\left.\theta(\phi \eta)\right|_{\kappa+\alpha} \tau_{\beta}\right),
$$

with m an integer satisfying $\kappa+\alpha \leqq m<k$, where algebraicity is known. This can be partly remedied by using the functional equation (see $\S 9$ for the discussion of a special case of this functional equation), but this does not cover all aspects of this interesting question.

We next discuss a result in which g is no longer assumed to be a theta series. Let

$$
g=\sum_{n=0}^{\infty} b(n) e(n z)
$$

be an arbitrary modular form of weight $l<k$ for $\Gamma_{0}(N)$ with character ω and assume that

$$
b(n) \in \overline{\mathbb{Q}} \quad \text { for all } n \geqq 0
$$

Define a compact ring Y by

$$
Y=\lim _{\leftarrow} \mathbb{Z} / N p^{v} \mathbb{Z}, \quad Y^{\times}=\lim _{\leftarrow v}\left(\mathbb{Z} / N p^{v} \mathbb{Z}\right)^{\times}
$$

Let $\phi: Y \rightarrow \overline{\mathbb{Q}}$ be an arbitrary locally constant function on Y with the property: there is a character χ of finite order of the group Y^{\times}such that

$$
\begin{equation*}
\phi(z y)=\chi(z) \phi(y) \quad\left(z \in Y^{\times}, y \in Y\right) . \tag{2.6}
\end{equation*}
$$

We then define the twist of g by

$$
g(\phi)=\sum_{n=0}^{\infty} \phi(n) b(n) e(n z)
$$

Put $\xi=\chi^{2} \omega$, and write $N=N^{\prime} p^{\lambda}$ with $\left(N^{\prime}, p\right)=1$. Then it is known that $g(\phi)$ belongs to $\mathscr{M}_{l}\left(\Gamma_{0}\left(N N^{\prime} p^{\beta}\right), \xi\right)$ for a sufficiently large $\beta \geqq 1$. Now we fix such a $\beta \geqq 1$. Parallel to (2.4), we assume that

$$
\begin{equation*}
C^{\prime} \text { divides } N^{\prime} . \tag{2.7}
\end{equation*}
$$

and write

$$
\gamma=\left(\begin{array}{cc}
N^{\prime 2} / C^{\prime} & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \tau_{\beta}=\left(\begin{array}{cr}
0 & -1 \\
N N^{\prime} p^{\beta} & 0
\end{array}\right) .
$$

Theorem 2.2. For each integer $b>1$ prime to $N p$, there exists a unique bounded measure φ_{b} on Y with values in Ω satisfying the following property: for each nonnegative integer r with $0 \leqq r<(k-l) / 2$, we let $j=l+2 r$, and we have that the value of the p-adic integral

$$
\int_{Y} \phi(y) y_{p}^{r} d \varphi_{b}(y)
$$

is given by the image under i of

$$
t\left(1-b^{k-j} \psi \bar{\xi}(b)\right) a\left(p, f_{0}\right)^{\mu-\lambda} \frac{\mathscr{D}_{M p^{\beta}}\left(j-r,\left.f_{0}\right|_{k} \gamma,\left.g(\phi)\right|_{\imath} \tau_{\beta}\right)}{\pi^{j+1}\left\langle h, f_{0}\right\rangle_{C_{0}}}
$$

where y_{p} is the projection of $y \in Y=\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right) \times \mathbb{Z}_{p}$ to the factor \mathbb{Z}_{p}, and

$$
t=t(r, \beta)=(\sqrt{-1})^{k+j} 2^{1-k-j} p^{(\mu-\lambda)(1-k / 2)+\beta_{j} / 2}\left(N N^{\prime}\right)^{(j-k) / 2+1} \Gamma(j-r) \Gamma(r+1)
$$

Since this theorem can be proven in a similar fashion as in the proof of Theorem 2.1, merely a sketch of the proof will be given in $\S 8$. By taking the Eisenstein series in $[25,(4.3)]$ as g of Theorem 2.2 , we see that $\mathscr{D}_{N}(s, f, g)$ is a product of Mellin transforms of f and its twist. This suggests to us a relation between our measure and those constructed by Mazur-Swinnerton-Dyer [16] and by Manin $[14,15]$. It is an interesting problem to clarify these relations.

§ 3. Some results on Fourier coefficients

For every modular form f, we hereafter write $a(n, f)$ for the n-th Fourier coefficient of f, namely,

$$
f(z)=\sum_{n=0}^{\infty} a(n, f) e(n z)
$$

Terminology. We define a normalized eigenform of level N to be a non-zero common eigenform in $\mathscr{M}_{k}\left(\Gamma_{1}(N)\right.$) of all Hecke operators $T(n)$ for $\Gamma_{1}(N)$ (including those with n dividing N) such that $f \mid T(n)=a(n, f) f$ for all n. We say that a form f in $\mathscr{S}_{k}\left(\Gamma_{1}(N)\right)$ is primitive if there exists a divisor C of N such that (i) f is a new form (in the sense of Miyake [17]) of level C, and (ii) f is a normalized eigenform of level C. The number C is called the conductor of f. We say that a normalized eigenform f of level N is ordinary for p (or more precisely, for the embedding i fixed in (0.3) if p divides N and if $i(a(p, f)$) is a unit in Ω (i.e. $|i(a(p, f))|_{p}=1$). (It is technically important for us to insist that p divides N in our definition of ordinary forms.)

If there is no danger of confusion, we hereafter drop the embedding i from our notation, when we consider algebraic numbers of \mathbb{C} in the field Ω.

Let f be a primitive form of conductor C of weight k and with character ψ. Let $C(\psi)$ be the conductor of the character ψ, and define non-negative integers t and s by

$$
C=C^{\prime} p^{t}, \quad C(\psi)=C^{\prime}(\psi) p^{s}
$$

where $\left(C^{\prime}, p\right)=\left(C^{\prime}(\psi), p\right)=1$.
Proposition 3.1. If $a(p, f)$ is a unit in Ω (i.e. $|a(p, f)|_{p}=1$), then we have either t $=s$ or $k=2, t=1$ and $s=0$.

Before proving this fact, we recall the following result in Doi-Miyake [7, Th. 4.6.17], whose proof we recall because [7] is written in Japanese.

Lemma 3.2. Let ψ_{0} be the primitive character modulo $C(\psi)$ associated with ψ. Then we have

$$
\begin{array}{ll}
a(p, f) a(p, f)^{\rho}=p^{k-1} & \text { if } t=s, \\
a(p, f)^{2}=\psi_{0}(p) p^{k-2} & \text { if } t=1 \quad \text { and } s=0, \\
a(p, f)=0 & \text { if } t \geqq 2 \text { and } t>s, \tag{3.1c}
\end{array}
$$

where ρ denotes complex conjugation.
The facts ($3.1 \mathrm{a}, \mathrm{b}$) can be proven in exactly the same manner as in Asai [1, Lemma 3], where these are shown for every square-free conductor C. A proof of (3.1 c) is as follow: put

$$
\Gamma=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, a \equiv d \equiv 1 \bmod (C / p), c \equiv 0 \bmod C\right\}
$$

Then it is well known that, if p^{2} divides C,

$$
\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{1}(C / p)=\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma \quad \text { as a subset of } M_{2}(\mathbb{Z})
$$

and thus the Hecke operator $T(p)$ takes $\mathscr{S}_{k}(\Gamma)$ into $\mathscr{S}_{k}\left(\Gamma_{1}(C / p)\right)$. Then, the assumption of (3.1 c) shows that $f \in \mathscr{S}_{k}(\Gamma)$ and we know that

$$
a(p, f) f=f|T(p)=f|\left[\Gamma\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{1}(C / p)\right]
$$

is of level C / p. Since C is the smallest possible level of f, we know that $a(p, f) f=0$ and therefore $a(p, f)$ must vanish.

Now we can prove Proposition 3.1. When $k \geqq 2$, the proposition is a direct consequence of Lemma 3.2. We now assume that $k=1$. Since $a(p, f)$ must be an algebraic integer, the case (3.1 b) is impossible, whence the proposition is true for $k=1$.

Lemma 3.3. Suppose that the weight k of f is greater than or equal to 2 and that $|a(p, f)|_{p}=1$. Then, there is a unique ordinary form f_{0} of weight k such that $a(n, f)=a\left(n, f_{0}\right)$ except for those n divisible by p. Moreover, f_{0} is explicitly given by

$$
f_{0}(z)= \begin{cases}f(z) & \text { if } p \text { divides } C \\ f(z)-\gamma f(p z) & \text { if } C \text { is prime to } p\end{cases}
$$

where γ is the unique root of $X^{2}-a(p, f) X+\psi(p) p^{k-1}$ with $|\gamma|_{p}<1$.
Proof. The cusp form given as above is known to be a normalized eigenform of level $p C$ (cf. [28, Remark 3.59, p. 88]). Thus our task is to show that f_{0} is ordinary and that f_{0} is unique. If there is a normalized eigenform with the same Fourier coefficients as f except for those for which n is divisible by p, such a form must belong to $\mathscr{S}_{k}\left(\Gamma_{0}\left(C p^{v}\right), \psi\right)$ for a suitable v by the theory of primitive forms (cf. [17] and [4]). Put

$$
\begin{align*}
U\left(C p^{v}, f\right)= & \left\{g \in \mathscr{S}_{k}\left(\Gamma_{1}\left(C p^{v}\right)\right)|g| T(l)=a(l, f) g\right. \text { except } \tag{3.1}\\
& \text { for finitely many primes } l\},
\end{align*}
$$

and $f^{(n)}(z)=f\left(p^{n} z\right)$ for $0 \leqq n \in \mathbb{Z}$. Then, it is known (e.g. [17]) that $\left\{f^{(0)}, \ldots, f^{(v)}\right\}$ gives a basis of $U\left(C p^{v}, f\right)$. Let β and γ be the roots of $X^{2}-a(p, f) X$ $+\psi(p) p^{k-1}$ with $|\beta|_{p}=1$ and $|\gamma|_{p}<1$. Then, we can choose another basis of $U\left(C p^{v}, f\right)$ in the following manner:
(3.2a) If C is prime to p, then we put
$f_{0}(z)=f(z)-\gamma f(p z), \quad f_{1}(z)=f(z)-\beta f(p z)$,
$f_{2}(z)=f_{0}(z)-\beta f_{0}(p z)$ and $f_{n}(z)=f_{2}\left(p^{n-2} z\right)$
for $2 \leqq n \leqq v$;
(3.2b) If p divides C, then we put
$f_{0}=f, \quad f_{1}(z)=f(z)-a(p, f) f(p z) \quad$ and $\quad f_{n}(z)=f\left(p^{n-1} z\right)$
for $1 \leqq n \leqq v$.

In the case (3.2a), f_{0}, f_{1} and f_{2} are normalized eigenforms (of level $C p^{v}$ for every $v \geqq 2$) and their eigenvalues for $T(p)$ are β, γ and 0 , respectively. Thus f_{0} is ordinary, but neither f_{1} nor f_{2} can be ordinary. Similarly, f_{0} and f_{1} are normalized eigenforms in the case (3.2 b) with eigenvalues $a(p, f)$ and 0 , respectively. For the action of $T(p)$ on f_{n} for a general n, we know that

$$
f_{n} \mid T(p)=f_{n-1}
$$

if $n \geqq 3$ in the case (3.2a) and if $n \geqq 2$ in the case (3.2b) (cf. [28, p.88]). This shows that for any $v \geqq 1$, the operator $T(p)$ is nilpotent on $\sum_{n=1}^{v} \mathbb{C} f_{n}$ or $\sum_{n=2}^{v} \mathbb{C} f_{n}$ according as p does or does not divide C. Thus the uniqueness of f_{0} follows from this if we prove the \mathbb{C}-linear independence of $\left\{f_{0}, \ldots, f_{v}\right\}$ in $U\left(C p^{v}, f\right)$. We consider the matrix $\left(a\left(p^{i}, f_{j}\right)\right)_{0 \leqq i, j \leq v}$ of the Fourier coefficients of f_{n} at the powers of the prime p; namely, it is equal to

$$
\left(\begin{array}{cc|c}
1 & 1 & \tag{3.3}\\
\beta & \gamma & \\
\beta^{2} & \gamma^{2} & 1_{v-1} \\
\beta^{v-2} & \gamma^{v-2} & \\
\hline \beta^{v-1} & \gamma^{v-1} & 0 \\
\beta^{v} & \gamma^{v} & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{c|c}
1 & \\
a(p, f) & \\
a(p, f)^{2} & 1_{v} \\
a(p, f)^{v-1} & \\
\hline a(p, f)^{v} & 0
\end{array}\right)
$$

according as p does not or does divide C. Here 1_{v} is the $n \times n$ identity matrix. Since $\beta \neq \gamma$ and $a(p, f) \neq 0$, these matrices are non-singular and thus $\left\{f_{0}, \ldots, f_{v}\right\}$ gives a basis. Q.E.D.

§4. p-adic Modular Forms and Hecke Operators

We begin by recalling the definition of the space of p-adic modular forms in a manner rather more similar to Serre [19] than Katz [11, 12]. Let Γ denote either of the two congruence subgroups $\Gamma_{0}(N)$ or $\Gamma_{1}(N)$ for a positive integer N. For any subring A of $\overline{\mathbb{Q}}$, define an A-module $\mathscr{M}_{k}(\Gamma ; A)$ (resp. $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; A\right)$ for each Dirichlet character ψ modulo N with values in A) to be the subspace of $\mathscr{M}_{k}(\Gamma)$ (resp. $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi\right)$) consisting of all modular forms with A-rational Fourier coefficients. For every modular form $f=\sum_{n=0}^{\infty} a(n, f) e(n z)$ with algebraic Fourier coefficients, define a p-adic norm $|f|_{p}$ of f by

$$
|f|_{p}=\operatorname{Sup}_{n}|a(n, f)|_{p} .
$$

It is well known (see [24, Th. 1] and [28, Th. 3.52]) that the norm $|f|_{p}$ is a well defined real number. Let K_{0} be a finite extension of \mathbb{Q}, and K be the closure of K_{0} in Ω (relative to the fixed embedding $i: \overline{\mathbb{Q}} \rightarrow \Omega$ of (0.3)). Let $\mathscr{M}_{k}(\Gamma ; K)$ (resp. $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K\right)$) denote the completion of $\mathscr{M}_{k}\left(\Gamma ; K_{0}\right)$ (resp. $\left.\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K_{0}\right)\right)$ for the norm $\left|\left.\right|_{p}\right.$. Then these spaces become Banach spaces over K.

Let $X_{/ \mathbb{Q}}$ be the compactified canonical model of \mathfrak{S} / Γ defined over \mathbb{Q} [28, 6.7 and (7.3.5)]. Then the space $\mathscr{M}_{k}\left(\Gamma ; K_{0}\right)$ (resp. $\left.\mathscr{M}_{k}\left(\Gamma ; K_{0}\right) \otimes_{K_{0}} K\right)$ can be identified with the space of global sections over K_{0} (resp. K) of a certain line bundle on $X_{/ Q}$ rational over \mathbb{Q} (cf. [6, VII.3], [23, Th. 6] and [24, Th.3]). Let A be either of the two fields K_{0} or K. From this interpretation of these spaces, we know the following three facts: $\mathscr{M}_{k}(\Gamma ; A)$ and $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; A\right)$ are finite dimensional; $\mathscr{M}_{k}(\Gamma ; K)=\mathscr{M}_{k}\left(\Gamma ; K_{0}\right) \otimes_{K_{0}} K, \mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K\right)=\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K_{0}\right)$ $\otimes_{K_{0}} K ; \mathscr{M}_{k}(\Gamma ; K)$ and $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K\right)$ are determined independently of the choice of the dense subfield K_{0}. Furthermore, the abstract Hecke ring introduced in [28, (3.3.3) and Th.3.34] acts naturally on $\mathscr{M}_{k}(\Gamma ; A)$ and $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; A\right)$. This action on $\mathscr{M}_{k}\left(\Gamma ; K_{0}\right)$ and $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K_{0}\right)$ is induced from the usual action of the Hecke operators $T(n)$ and $T(n, n)$ on $\mathscr{M}_{k}(\Gamma)$ and $\mathscr{M}_{\mathbf{k}}\left(\Gamma_{0}(N), \psi\right)$ as in $[28,3.4,3.5]$. See below for the precise definition of the action of these operators.

By writing q for $e(z)$, we can embed $\mathscr{M}_{k}\left(\Gamma ; K_{0}\right)$ into $K_{0}[[q]]$. Then we may regard $\mathscr{M}_{k}(\Gamma ; K)$ as the closure of $\mathscr{M}_{k}\left(\Gamma ; K_{0}\right)$ in $K[[q]]$. Thus every element of $\mathscr{M}_{k}(\Gamma ; K)$ has a unique q-expansion. For $f=\sum_{n=0}^{\infty} a(n, f) q^{n} \in \mathscr{M}_{k}(\Gamma ; K)$, the norm of f is again given by $\operatorname{Sup}|a(n, f)|_{p}$. Let \mathcal{O}_{K} denote the ring of p-adic integers in K, and define

$$
\begin{aligned}
& \mathscr{M}_{k}\left(\Gamma ; \mathcal{O}_{K}\right)=\left\{\left.f \in \mathscr{M}_{k}(\Gamma ; K)| | f\right|_{p} \leqq 1\right\}=\mathscr{M}_{k}(\Gamma ; K) \cap \mathcal{O}_{K}[[q]], \\
& \mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; \mathcal{O}_{K}\right)=\left\{\left.f \in \mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K\right)| | f\right|_{p} \leqq 1\right\} .
\end{aligned}
$$

These spaces are complete normed \mathcal{O}_{K}-modules of finite rank. Let

$$
\mathscr{A}_{k}(\Gamma ; \Omega)=\mathscr{M}_{k}(\Gamma ; K) \otimes_{K} \Omega, \quad \mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; \Omega\right)=\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K\right) \otimes_{K} \Omega
$$

As already seen, these spaces do not depend on the choice of the subfield K of Ω. All the definitions as above for modular forms can be formulated naturally for cusp forms and the corresponding spaces of cusp forms will be written as $\mathscr{S}_{k}(\Gamma ; K), \mathscr{S}_{k}\left(\Gamma_{0}(N), \psi ; K\right)$, etc.

Let N be an arbitrary positive integer and ψ be a character modulo N. Let A denote either of the field K or the ring \mathcal{O}_{K}. Put

$$
\begin{aligned}
\mathscr{M}_{k}(N ; A) & =\bigcup_{n=0}^{\infty} \mathscr{M}_{k}\left(\Gamma_{1}\left(N p^{n}\right) ; A\right), \\
\mathscr{M}_{k}(N, \psi ; A) & =\bigcup_{n=0}^{\infty} \mathscr{M}_{k}\left(\Gamma_{0}\left(N p^{n}\right), \psi ; A\right) .
\end{aligned}
$$

Clearly, these spaces do not depend on the p-primary part of N. Let $\bar{M}(N ; A)$ (resp. $\overline{\mathscr{M}}_{k}(N, \psi ; A)$) be the completion of $\mathscr{M}_{k}(N ; A)$ (resp. $\mathscr{M}_{k}(N, \psi ; A)$) for the norm $\left|\left.\right|_{p}\right.$. Any element of $\overline{\mathscr{M}}(N ; K)$ will be called a p-adic modular form. The suffix " k " is dropped for the notation " $\bar{M}(N ; A)$ ", because, as a subspace of $A[[q]]$, the space $\bar{M}(N ; A)$ is determined independently of the weight k if $k \geqq 2$. This fact is implicit in the papers of Katz and Serre on p-adic modular forms, but we refrain from discussing it in detail, since we do not need this fact later.

However, the space $\overline{\mathscr{M}}_{k}(N, \psi ; A)$ does depend on the weight k and the suffix " k " must be retained (cf. [12, Lemma 5.4.10]).

Let us give here an explicit description of the action of the Hecke operators $T(l)$ and $T(l, l)$ of level N for primes l. For any integer n prime to N, let $\sigma_{n} \in \Gamma_{0}(N)$ be the matrix with $\sigma_{n} \equiv\left(\begin{array}{ll}* & * \\ 0 & n\end{array}\right) \bmod N$. As shown in Deligne-Rapoport [6, VII, Cor. 3.11] and Katz [12, 5.3.2], the action: $\left.f \mapsto f\right|_{k} \sigma_{n}$ of σ_{n} on $\mathscr{M}_{k}\left(\Gamma_{1}(N) ; K\right)$ leaves $\mathscr{M}_{k}\left(\Gamma_{1}(N) ; \mathcal{O}_{K}\right)$ stable. Then the action of the Hecke operators $T(l)$ and $T(l, l)$ for primes l on $\mathscr{M}_{k}\left(\Gamma_{1}(N) ; K\right)$ is given by

$$
\begin{align*}
a(n, f \mid T(l)) & = \begin{cases}a(l n, f)+l^{k-1} a\left(\frac{n}{l},\left.f\right|_{k} \sigma_{l}\right) & \text { if } l \text { is prime to } N, \\
a(l n, f) & \text { of } l \text { divides } N,\end{cases} \\
a(n, f \mid T(l, l)) & = \begin{cases}l^{k-2} a\left(n,\left.f\right|_{k} \sigma_{l}\right) & \text { if } l \text { is prime to } N, \\
0 & \text { if } l \text { divides } N .\end{cases} \tag{4.1}
\end{align*}
$$

When N is divisible by p, (4.1) shows that $\mathscr{A}_{k}\left(\Gamma_{1}(N) ; \mathcal{O}_{K}\right)$ and $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; \mathcal{O}_{K}\right)$ are stable under the operators $T(l)$ and $T(l, l)$. Let A denote either of the field K or the ring \mathcal{O}_{K}, and let $\mathscr{H}_{k}\left(\Gamma_{0}(N), \psi ; A\right)$ (resp. $\mathscr{H}_{k}\left(\Gamma_{1}(N) ; A\right)$) be the A-subalgebra of the ring of all A-linear endomorphisms of $\mathscr{A}_{k}\left(\Gamma_{0}(N), \psi ; A\right)$ (resp. $\left.\mathscr{A}_{k}\left(\Gamma_{1}(N) ; A\right)\right)$ generated by $T(l)$ and $T(l, l)$ for all primes l. Especially, we know that (if p divides N)

$$
\left.|f| T\right|_{p} \leqq|f|_{p} \quad \text { for every } T \in \mathscr{H}_{k}\left(\Gamma_{1}(N) ; \mathcal{O}_{K}\right)
$$

and therefore, any operator in $\mathscr{H}_{k}\left(\Gamma_{1}(N) ; \mathcal{O}_{K}\right)$ is uniformly continuous. These algebras are the Hecke algebras of the corresponding spaces of modular forms.

Next we consider the Hecke algebras of the space of p-adic modular forms. The restriction of operators in $\mathscr{H}_{k}\left(\Gamma_{1}\left(N p^{n}\right) ; \mathcal{O}_{K}\right)$ (resp. $\mathscr{H}_{k}\left(\Gamma_{0}\left(N p^{n}\right), \psi ; \mathcal{O}_{K}\right)$) to the subspace $\mathscr{M}_{k}\left(\Gamma_{1}\left(N p^{m}\right) ; \mathcal{O}_{K}\right)\left(\right.$ resp. $\left.\mathscr{M}_{k}\left(\Gamma_{0}\left(N p^{m}\right), \psi ; \mathcal{O}_{K}\right)\right)$ for $n \geqq m \geqq 1$ gives a $\mathcal{O}_{K^{-}}$ algebra homomorphism of $\mathscr{H}_{k}\left(\Gamma_{1}\left(N p^{n}\right) ; \mathcal{O}_{K}\right)$ (resp. $\mathscr{H}_{k}\left(\Gamma_{0}\left(N p^{n}\right), \psi ; \mathcal{O}_{K}\right)$) onto $\mathscr{H}_{k}\left(\Gamma_{1}\left(N p^{m}\right) ; \mathscr{O}_{K}\right)\left(\operatorname{resp} . \mathscr{H}_{k}\left(\Gamma_{0}\left(N p^{m}\right), \psi ; \mathscr{O}_{K}\right)\right)$. This fact follows from [28, Th. 3.345]. Taking the projective limit of these morphisms, we obtain compact topological algebras:

$$
\begin{align*}
& \mathscr{H}\left(N ; \mathcal{O}_{K}\right)=\underset{n}{\lim } \mathscr{H}_{k}\left(\Gamma_{1}\left(N p^{n}\right) ; \mathcal{O}_{K}\right), \\
& \mathscr{H}_{k}\left(N, \psi ; \mathcal{O}_{K}\right)=\underset{n}{\lim _{\leftrightarrows}} \mathscr{H}_{k}\left(\Gamma_{0}\left(N p^{n}\right), \psi ; \mathcal{O}_{K}\right) \tag{4.2}
\end{align*}
$$

which naturally act on $\mathscr{M}_{k}(N ; A)$ and $\mathscr{M}_{k}(N, \psi ; A)$ for $A=K$ or \mathcal{O}_{K}. The action of $\mathscr{H}\left(N ; \mathcal{O}_{K}\right)$ (resp. $\left.\mathscr{H}_{k}\left(N, \psi ; \mathcal{O}_{K}\right)\right)$ can be naturally extended to an action on $\overline{\mathscr{M}}(N ; A)$ (resp. $\left.\overline{\mathscr{M}}_{k}(N, \psi ; A)\right)$ by the uniform continuity.

Let us now introduce the idempotent e attached to $T(p)$ in the Hecke algebra. Let R denote either of the two algebras $\mathscr{H}_{k}\left(\Gamma_{0}\left(N p^{m}\right), \psi ; \mathcal{O}_{K}\right)$ or $\mathscr{H}_{k}\left(\Gamma_{1}\left(N p^{m}\right) ; \mathcal{O}_{K}\right)$ for $m \geqq 1$. Then the algebra $R / p R$ over the field \mathbb{F}_{p} with p elements is commutative and finite dimensional [28, Th. 3.51]. The image $\tilde{T}(p)$
of $T(p)$ in $R / p R$ can be decomposed into the unique sum $s+n$ of a semi-simple element s and a nilpotent element n of $R / p R$. Thus, for a sufficiently large integer r, the element $\tilde{T}(p)^{p^{r}}$ coincides with $s^{p^{r}}$ and becomes semi-simple. Then, we can choose a positive integer u so that $\tilde{T}(p)^{p^{n u}}$ gives an idempotent of $R / p R$. This idempotent can be lifted to a unique idempotent e_{m} of R (cf. [3, 1II.4.6]). In fact, this idempotent can be given as a p-adic limit in R by

$$
\begin{equation*}
e_{m}=\lim _{r \rightarrow \infty} T(p)^{p^{r_{u}}} \tag{4.3}
\end{equation*}
$$

This idempotent is clearly independent of the choice of the integer u, and its construction is plainly compatible with the projective limit (4.2). Thus we can define an idempotent e of $\mathscr{H}\left(N ; \mathcal{O}_{K}\right)$ and $\mathscr{H}_{k}\left(N, \psi ; \mathcal{O}_{K}\right)$ by the projective limit $\lim _{\leftarrow} e_{m}$. For any module \mathscr{M} over these Hecke algebras, we define the ordinary
part \mathscr{M}° of \mathscr{M} to be the corresponding component $e \mathscr{M}$ for the idempotent e. A remarkable fact is

Proposition 4.1. The ordinary part $\overline{\mathcal{M}}_{k}^{0}\left(N, \psi ; \mathcal{O}_{K}\right)$ of the space $\overline{\mathcal{M}}_{k}\left(N, \psi ; \mathcal{O}_{K}\right)$ is free of finite rank over \mathcal{O}_{K}. Moreover, let $C(\psi)$ be the conductor of the Dirichlet character ψ, and define positive integers N^{\prime} and s by

$$
N=N^{\prime} p^{r} \quad \text { and } \quad s=\max \left(s^{\prime}, 1\right) \quad \text { for } \quad C(\psi)=C^{\prime}(\psi) p^{s^{\prime}}
$$

where $\left(N^{\prime}, p\right)=\left(C^{\prime}(\psi), p\right)=1$. Then the ordinary part $\overline{\mathscr{M}}_{k}^{\circ}\left(N, \psi ; \mathcal{O}_{K}\right)$ is contained in $\mathscr{M}_{k}\left(\Gamma_{k}\left(N^{\prime} p^{s}\right), \psi ; \mathcal{O}_{K}\right)$.

Proof. As shown in the proof of Lemma 3.2, the Hecke operator $T(p)^{m}$ for a sufficiently large integer m takes $\mathscr{M}_{k}\left(\Gamma_{0}\left(N p^{n}\right), \psi ; \mathcal{O}_{K}\right)$ into $\mathscr{M}_{k}\left(\Gamma_{0}\left(N^{\prime} p^{s}\right), \psi ; \mathcal{O}_{K}\right)$ for each $n \geqq 1$. Then the assertion is clear from the definition (4.3) of the idempotent e.

In contrast with this result, the ordinary part of $\overline{\mathscr{M}}\left(N ; \mathcal{O}_{K}\right)$ is usually of infinite rank. The relation between ordinary forms and the idempotent e is given as follows: Let f be an element of $\mathscr{M}_{k}(N, \psi ; K)$ and let C be the smallest possible level of f. Assume that $f \mid T_{c}(p)=a f$ with $a \in K$ for the Hecke operator $T_{C}(p)$ of level C.

Lemma 4.2. If C is divisible by p, then the image $\left.f\right|_{e}$ of f under e is either f itself or 0 according as the eigenvalue a is or is not a unit in \mathcal{O}_{K}.

Proof. We may assume that f is a modular form for $\Gamma_{0}\left(N p^{m}\right)$ for a suitable positive integer m. Note that the action of the operator $T(p)$ of level $N p^{m}$ on f is the same as that of $T_{C}(p)$. Then, with the notation of (4.3), the eigenvalue of e at f is given by the p-adic limit

$$
\lim _{r \rightarrow \infty} a^{p^{p^{\prime}}}
$$

The lemma is obvious from this.
From this lemma, it is clear that, especially when f is a normalized form with level divisible by p, then

Lemma 4.3. Put, for each non-negative integer m,

$$
f^{(m)}(z)=f\left(p^{m} z\right)=\sum_{n=0}^{\infty} a(n, f) q^{p^{m_{n}}}
$$

and for a positive integer n,

$$
U=\sum_{m=0}^{n} K f^{(m)}
$$

Then the subspace U of $\mathscr{M}_{k}(N ; K)$ is stable under the idempotent e. Moreover, assume that either $k \geqq 2$ or p divides C. Then, if a is not a unit in \mathcal{O}_{K}, the space U is annihilated by e.

Proof. Let $T(p)$ be the Hecke operator in $\mathscr{H}\left(N, \psi ; \mathcal{O}_{K}\right)$. Note that $T(p)$ and $T_{C}(p)$ are different if C is prime to p. It is well known (e.g. [28, p.88]) that

$$
\begin{aligned}
& f^{(m)} \mid T(p)=f^{(m-1)} \quad \text { for } m \geqq 1, \\
& f^{(0)} \left\lvert\, T(p)= \begin{cases}a f^{(0)} & \text { if } p \text { divides } C \\
a f^{(0)}-\psi_{0}(p) p^{k-1} f^{(1)} & \text { if } C \text { is prime to } p\end{cases} \right.
\end{aligned}
$$

where ψ_{0} is the primitive character associated with ψ. This shows that U and even its \mathcal{O}_{K}-lattice $U\left(\mathcal{O}_{K}\right)=\sum_{m=0}^{n} \mathcal{O}_{K} f^{(m)}$ are stable under $T(p)$ and hence, under e. Let \mathfrak{P} be the prime ideal of \mathcal{O}_{K}. Assume that $a \in \mathfrak{P}$ (i.e. that a is not a unit). Then the above formulae show that if $k \geqq 2$ or p divides C,

$$
U\left(\mathcal{O}_{K}\right) \mid T(p)^{n+1} \subset \mathfrak{P} U\left(\mathcal{O}_{K}\right)
$$

Then the second assertion follows from the definition (4.3) of e.
Hereafter, let f be a primitive form of conductor C in $\mathscr{M}_{k}\left(\Gamma_{0}(N), \psi ; K_{0}\right)$. Thus N is a multiple of C. Put, for each integer $n \geqq 1$,

$$
\begin{aligned}
U\left(N p^{n}, f ; K\right)= & \left\{g \in \mathscr{M}_{k}\left(\Gamma_{1}\left(N p^{n}\right) ; K\right)|g| T(l)=a(l, f) g\right. \text { except } \\
& \text { for finitely many primes } l\} .
\end{aligned}
$$

Define non-negative integers t, r, N^{\prime} and C^{\prime} by

$$
N=N^{\prime} p^{r} \quad \text { and } \quad C=C^{\prime} p^{\prime}
$$

where $\left(N^{\prime}, p\right)=\left(C^{\prime}, p\right)=1$.
Proposition 4.4. Assume that $k \geqq 2$ and $|a(p, f)|_{p}=1$. Let f_{0} be the ordinary form associated with f defined in Lemma 3.3. Then we have, for every $n \geqq 1$,

$$
e U\left(N p^{n}, f ; K\right)=\sum_{0<t \mid N^{\prime} / \mathcal{C}^{\prime}} K f_{0}(t z)
$$

Before proving this result, let us give some remarks. Firstly, the ordinary part $e U\left(N p^{n}, f ; K\right)$ does not depend on the integer n, and we have

$$
\begin{equation*}
\operatorname{dim}_{K} e U\left(N p^{n}, f ; K\right)=1 \quad \text { if and only if } C^{\prime}=N^{\prime} . \tag{4.4a}
\end{equation*}
$$

Secondly, let P be the set of all primitive forms in $\mathscr{M}_{k}(N, \psi ; \Omega)$ whose p-th Fourier coefficients are units in Ω. Then P is a finite set, and thus we may assume that $P \subset \mathscr{M}_{k}(N, \psi ; K)$ by replacing K by its finite extension if necessary. By the theory of primitive forms, Propositions 4.1 and 4.4 show

$$
\begin{equation*}
\overline{\mathcal{M}}_{k}^{\mathrm{o}}(N, \psi ; K)=\sum_{\mathrm{g} \in P} e U(N p, g ; K) . \tag{4.4b}
\end{equation*}
$$

Thirdly, let P_{0} be the subset of P consisting of all elements with the property (4.4a), and put

$$
U_{0}=\sum_{g \in P_{0}} K g_{0}
$$

where g_{0} is the ordinary form associated with g. Write \mathscr{H}_{0} for the subalgebra of the ring of all K-linear endomorphisms of U_{0} generated over K by all Hecke operators $T(l)$ and $T(l, l)$. Then

$$
\begin{equation*}
\mathscr{H}_{0} \text { is a semi-simple algebra over } K . \tag{4.4c}
\end{equation*}
$$

In view of these properties, one may regard the ordinary forms g_{0} for $g \in P_{0}$ as an analogue of primitive forms of conductor N in the theory of ordinary forms.

Now we shall prove Proposition 4.4. Let us take a basis $\left\{f_{m}\right\}_{m=0, \ldots, j}$ of $U\left(C p^{j}, f\right)$ as in (3.2a, b). For $j=n+r-t$, we see $N p^{n} / C p^{j}=N / C p^{r-t}=N^{\prime} / C^{\prime}$. We see then from [17] that

$$
U\left(N p^{n}, f ; K\right)=\sum_{m=0}^{j} \sum_{0<t \mid N^{\prime} / C^{\prime}} K f_{m}(t z) .
$$

Since t is prime to p, the operation: $g(z) \mapsto g(t z)$ commutes with the Hecke operator $T(p)$, and hence, with the idempotent e. This shows that

$$
e U\left(N p^{n}, f ; K\right)=\sum_{0<t \mid N^{\prime} / C^{\prime}} K f_{0}(t z)
$$

since f_{0} is a unique ordinary form in $U\left(C p^{j}, f\right)$ and f_{m} with $m \geqq 1$ is annihilated by e.

Let f be a primitive form of conductor C, of weight $k \geqq 2$ and with character ψ. Assume that $|a(p, f)|_{p}=1$. Now we are ready to define a continuous linear form ℓ_{f} (attached to f) on $\overline{\mathscr{M}}_{k}(C, \psi ; K)$ into K. Let f_{0} be the ordinary form associated with f and let C_{0} be the exact level of f_{0}. By Proposition 4.4 (or more precisely by (4.4 c)), the natural ring homomorphism of $\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$ onto K, which assign $a\left(n, f_{0}\right)$ to $T(n)$, is split, and thus, there is a simple direct summand of the Hecke algebra $\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$, isomorphic to K, through which this morphism factors. Let A be the subalgebra of this Hecke algebra which is the complementary direct summand. Namely, we have the algebra direct sum decomposition:

$$
\begin{equation*}
\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right) \cong A \oplus K . \tag{4.5}
\end{equation*}
$$

Let 1_{f} be the idempotent corresponding to the direct summand K of (4.5). Note that the idempotent e sends $\overline{\mathscr{M}}_{\mathrm{k}}\left(C_{0}, \psi ; K\right)$ into $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$ by

Proposition 4.1. Then the linear form $\ell_{f}:{\overline{\mathcal{M}_{k}}}_{\boldsymbol{k}}\left(C_{0}, \psi ; K\right) \rightarrow K$ is defined by

$$
\begin{equation*}
\ell_{f}(g)=a\left(1,\left.g\right|_{e} 1_{f}\right) \quad \text { for } g \in \bar{M}_{k}\left(C_{0}, \psi ; K\right), \tag{4.6}
\end{equation*}
$$

where $a\left(1,\left.g\right|_{e} 1_{f}\right)$ is the first q-expansion coefficient of $\left.g\right|_{e} 1_{f}$.
Proposition 4.5. Assume that K_{0} contains all the Fourier coefficients of the ordinary form f_{0}. Then, the linear form ℓ_{f} has values in the finite algebraic number field K_{0} on $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi ; K_{0}\right)$ for every $n \geqq 0$. Furthermore, we have

$$
\ell_{f}(g)=a\left(p, f_{0}\right)^{-n} p^{n(k-1)} \frac{\left\langle h_{n}, g\right\rangle_{C_{p^{n}}}}{\left\langle h, f_{0}\right\rangle_{c_{0}}} \quad\left(g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi ; K_{0}\right)\right),
$$

where $h=\left.f_{0}^{p}\right|_{k}\left(\begin{array}{rr}0 & -1 \\ C_{0} & 0\end{array}\right)$ and $h_{n}(z)=h\left(p^{n} z\right)$ for the complex conjugation ρ.
Proof. First we shall deal with the case: $n=0$. We know that $\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$ $=\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K_{0}\right) \otimes_{K_{0}} K$. Since K_{0} contains the eigenvalues for f_{0} of all Hecke operators, the decomposition (4.5) is induced from the similar decomposition:

$$
\mathscr{H}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K_{0}\right) \cong A_{0} \oplus K_{0} \quad \text { (algebra direct sum). }
$$

Thus, by definition, the linear form ℓ_{f} has values in K_{0} on $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K_{0}\right)$. Now we consider the general case: $n>0$. As explained in the proof of Lemma 3.2, the operator $T(p)^{n}$ takes $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi ; K_{0}\right)$ into $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K_{0}\right)$. By the definition of 1_{f}, it commutes with $T(p)$ and e. Thus, we have

$$
g\left|T(p)^{n} e 1_{f}=g\right| e 1_{f} T(p)^{n}=a\left(p, f_{0}\right)^{n} g \mid e 1_{f} \quad\left(g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi ; K_{0}\right)\right) .
$$

This shows that

$$
\begin{equation*}
\ell_{f}(g)=a\left(p, f_{0}\right)^{-n} \ell_{f}\left(g \mid T(p)^{n}\right) \in K_{0} \quad\left(g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi ; K_{0}\right)\right) . \tag{4.7}
\end{equation*}
$$

Next, we shall show that

$$
\ell_{f}(g)=\langle h, g\rangle_{c_{0}} /\left\langle h, f_{0}\right\rangle_{c_{0}} \quad \text { for } g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K_{0}\right) .
$$

We can naturally extend ℓ_{f} to a linear form of $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$ with values in \mathbb{C} so that it coincides with the original one on K_{0}-rational modular forms. We denote it by the same symbol. Since Eisenstein series are contained in the kernel of ℓ_{f}, we can find an element h^{\prime} in $\mathscr{S}_{\boldsymbol{k}}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$ so that

$$
\left\langle h^{\prime}, g\right\rangle_{C_{0}}=\ell_{f}(g) \quad \text { for all } g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right) .
$$

For each primitive form g in $\mathscr{S}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$, let

$$
\begin{aligned}
U(g)= & \left\{g \in \mathscr{S}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)|g| T(l)=a(l, g) g\right. \text { except for } \\
& \text { finitely many primes } l\} .
\end{aligned}
$$

Then, we have the well known orthogonal decomposition under \langle,$\rangle :$

$$
\mathscr{S}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)=\underset{g}{\oplus} U(g) .
$$

Therefore, h^{\prime} must be in $U(f)$, since ℓ_{f} annihilates $U(g)$ for $g \neq f$. Put $\tau=\left(\begin{array}{rr}0 & -1 \\ C_{0} & 0\end{array}\right)$ and let $T^{*}(m)$ be the adjoint operator of $T(m)$ under \langle,$\rangle . Then,$ it is known (cf. [28, Chap. 3] and [7, Th. 4.5.5]) that, as operators on $\mathscr{S}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$,

$$
\tau^{2}=(-1)^{k}, \quad T^{*}(m)=\tau^{-1} \circ T(m) \circ \tau \quad \text { for all } m>0
$$

and if m is prime to C_{0},

$$
T^{*}(m)=\overline{\psi(m)} T(m)
$$

Especially, f^{ρ} is an eigenform of $T^{*}(m)$ with eigenvalue $a(m, f)$ if m is prime to C_{0}. Thus, we see that, for m prime to C_{0},

$$
h\left|T(m)=\left(f_{0}^{\rho} \mid T^{*}(m)\right)\right|_{k} \tau=a(m, f) h
$$

This shows that $0 \neq h \in U(f)$. When C is divisible by p, then $C_{0}=C, f_{0}=f$ and $U(f)=\mathbb{C} f$. Then, it is obvious that

$$
h^{\prime}=h /\left\langle\overline{h, f_{0}}\right\rangle
$$

We now assume that C is prime to p. Take a basis $\left\{f_{0}, f_{1}\right\}$ of $U(f)$ as in (3.2a). Then, we know that $f_{0} \mid T(p)=\beta f_{0}$ and $f_{1} \mid T(p)=\gamma f_{1}$ for the elements β and γ of K_{0} with $|\beta|_{p}=1$ and $|\gamma|_{p}<1$. Thus $\ell_{f}\left(f_{0}\right)=1$ and $\ell_{f}\left(f_{1}\right)=0$. Then, in order to see $h^{\prime}=h / \overline{\left\langle h, f_{0}\right\rangle}$, what we have to show is the vanishing:

$$
\left\langle h, f_{1}\right\rangle=0 .
$$

Since $\beta \neq \gamma$, this is a consequence of the following equality:

$$
\begin{aligned}
\gamma\left\langle h, f_{1}\right\rangle=\left\langle h, f_{1} \mid T(p)\right\rangle & =\left\langle h \mid T^{*}(p), f_{1}\right\rangle \\
& =\left\langle\left.\left(f_{0}^{\rho} \mid T(p)\right)\right|_{k} \tau, f_{1}\right\rangle=\left\langle\beta^{\rho} h, f_{1}\right\rangle=\beta\left\langle h, f_{1}\right\rangle
\end{aligned}
$$

This shows the last assertion for $n=0$. For $g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{n}\right), \psi\right)$ with each $n>0$, we know $g \mid T(p)^{n} \in \mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$, and we have

$$
\begin{aligned}
a\left(p^{n}, f_{0}\right)\left\langle h, f_{0}\right\rangle_{C_{0}} \ell_{f}(g) & =\left\langle h, f_{0}\right\rangle_{C_{0}} \ell_{f}\left(g \mid T(p)^{n}\right) \quad \text { by }(4.7) \\
& =\left\langle h, g \mid T(p)^{n}\right\rangle_{C_{0}} \\
& =\left\langle h, g \left\lvert\,\left[\Gamma_{0}\left(C_{0} p^{n}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & p^{n}
\end{array}\right) \Gamma_{0}\left(C_{0}\right)\right]\right.\right\rangle_{c_{0}} \\
& =\left\langle h \left\lvert\,\left[\Gamma_{0}\left(C_{0}\right)\left(\begin{array}{cc}
p^{n} & 0 \\
0 & 1
\end{array}\right) \Gamma_{0}\left(C_{0} p^{n}\right)\right]\right., g\right\rangle_{C_{0} p^{n}} \text { by }[28,(3.4 .5)] .
\end{aligned}
$$

Since $\Gamma_{0}\left(C_{0}\right)\left(\begin{array}{cc}p^{n} & 0 \\ 0 & 1\end{array}\right) \Gamma_{0}\left(C_{0} p^{n}\right)=\Gamma_{0}\left(C_{0}\right)\left(\begin{array}{cc}p^{n} & 0 \\ 0 & 1\end{array}\right)$, we have

$$
h \left\lvert\,\left[\Gamma_{0}\left(C_{0}\right)\left(\begin{array}{cc}
p^{n} & 0 \\
0 & 1
\end{array}\right) \Gamma_{0}\left(C_{0} p^{n}\right)\right]=p^{n(k-1)} h\left(p^{n} z\right)\right.
$$

This shows the last assertion for every $n \geqq 0$.

§ 5. Differential operators

In this section, we recall some of Shimura's results on differential operators on $\mathfrak{5}$, and prove several additional facts. Define the differential operators on $\mathfrak{5}$ by

$$
\begin{aligned}
\delta_{s} & =\frac{1}{2 \pi \sqrt{-1}}\left(\frac{s}{2 \sqrt{-1} y}+\frac{\partial}{\partial z}\right), \\
d & =\frac{1}{2 \pi \sqrt{-1}} \frac{\partial}{\partial z}=q \frac{d}{d q} \quad(q=e(z), z=x+\sqrt{-1} y), \\
\delta_{s}^{r} & =\delta_{s+2 r-2} \cdots \delta_{s+2} \delta_{s} \quad \text { for } 0 \leqq r \in \mathbb{Z}
\end{aligned}
$$

where we understand that $\delta_{s}^{0}=1$ is the identity operator. These operators satisfy

$$
\begin{equation*}
\delta_{s+t}(f g)=g \delta_{s}(f)+f \delta_{t}(g) \quad \text { and } \quad \delta_{k}^{r}\left(\left.f\right|_{k} \gamma\right)=\left.\left(\delta_{k}^{r} f\right)\right|_{k+2 r} \gamma \tag{5.1}
\end{equation*}
$$

for $\gamma \in G L_{2}^{+}(\mathbb{R})$ and every positive integer $k[23,(1.5),(1.8)]$. The relation between δ and d is given in [27, (1.16a, b)] as

$$
\begin{equation*}
\delta_{s}^{r}=\sum_{0 \leqq t \leqq r}\binom{r}{t} \frac{\Gamma(s+r)}{\Gamma(s+t)}(-4 \pi y)^{t-r} d^{t} \tag{5.2}
\end{equation*}
$$

Let K_{0} be a subfield of $\overline{\mathbb{Q}}$ and l and m be positive integers. Let $g \in \mathscr{M}_{l}\left(\Gamma_{0}(N), \xi ; K_{0}\right)$ and $h \in \mathscr{A}_{m}\left(\Gamma_{0}(N), \chi ; K_{0}\right)$. Then we have

$$
\begin{align*}
& g \delta_{m}^{r} h=\sum_{n=0}^{r} \delta_{k-2 n}^{n} g_{n} \quad \text { with elements } g_{n} \text { of } \mathscr{M}_{k-2 n}\left(\Gamma_{0}(N), \xi \chi ; K_{0}\right) \tag{5.3}\\
& \text { for } k=l+m+2 r .
\end{align*}
$$

These modular forms g_{n} are uniquely determined by g and h. This fact is shown in [25, Lemma 7]. We write $H\left(g \delta_{m}^{r} h\right)$ for g_{0} in (5.3), and call it the holomorphic projection of $\mathrm{g} \delta_{m}^{r} h$. This terminology is justified by the property given in [25, Lemma 6] (see also [27, Lemma 2.3]):

$$
\begin{equation*}
\left\langle f, g \delta_{m}^{r} h\right\rangle_{N}=\left\langle f, H\left(g \delta_{m}^{r} h\right)\right\rangle_{N} \quad \text { for every element } f \text { of } \mathscr{S}_{k}\left(\Gamma_{0}(N), \xi \chi\right) . \tag{5.4}
\end{equation*}
$$

Here the Petersson inner product $\left\langle f, g \delta_{m}^{r} h\right\rangle_{N}$ is defined as usual, since $g \delta_{m}^{r} h$ transforms under $\Gamma_{0}(N)$ as if it were an element of $\mathscr{M}_{k}\left(\Gamma_{0}(N), \xi \chi\right)$.

Lemma 5.1. Let $\mathcal{O}_{K_{0}}=\left\{\left.x \in K_{0}| | x\right|_{p} \leqq 1\right\}$, and suppose that $g \in \mathscr{M}_{l}\left(N ; \mathcal{O}_{K_{0}}\right)$ and $h \in \mathscr{M}_{m}\left(N ; \mathcal{O}_{K_{0}}\right)$. Then, we can find a positive integer C independently of g and h such that

$$
C H\left(g \delta_{m}^{r} h\right) \in \mathscr{M}_{k}\left(N ; \mathcal{O}_{K_{0}}\right) \quad(k=l+m+2 r) .
$$

The integer C depends only on l, m and r.

Proof. By applying (5.2) to the equality (5.3), we have

$$
\begin{aligned}
\sum_{0 \leqq t \leqq r}\binom{r}{t} & \frac{\Gamma(m+r)}{\Gamma(m+t)}\left(g d^{t} h\right)(-4 \pi y)^{t-r} \\
& =\sum_{n=0}^{r} \sum_{0 \leqq t \leqq n}\binom{n}{t} \frac{\Gamma(k-n)}{\Gamma(k-2 n+t)}\left(d^{t} g_{n}\right)(-4 \pi y)^{t-n}
\end{aligned}
$$

We consider this to be an equality of polynomials in the variable $(-4 \pi y)^{-1}$. By comparing the coefficients of $(-4 \pi y)^{-t}$ for each $0 \leqq t \leqq r$, we have

$$
\begin{equation*}
\binom{r}{t} \frac{\Gamma(m+r)}{\Gamma(m+t)} g d^{t} h=\sum_{n=r-t}^{r}\binom{n}{t-r+n} \frac{\Gamma(k-n)}{\Gamma(k-n+t-r)} d^{t-r+n} g_{n} \tag{5.5}
\end{equation*}
$$

When $t=0$, we see from (5.5) that $g h=\frac{\Gamma(m) \Gamma(k-r)}{\Gamma(m+r) \Gamma(k-2 r)} g_{r}$. Define C_{r} to be the numerator of $\frac{\Gamma(m) \Gamma(k-r)}{\Gamma(m+r) \Gamma(k-2 r)}$. Then $C_{r} g_{r}$ has Fourier coefficients in $\mathcal{O}_{K_{0}}$ whenever g and h have their Fourier coefficients in $\mathcal{O}_{K_{0}}$. Now, let j be an integer with $0 \leqq j \leqq r$, and assume that there are positive integers C_{n} for $j<n \leqq r$ such that $C_{n} g_{n}$ has Fourier coefficients in $\mathcal{O}_{K_{0}}$ whenever g and h do. Then we see from (5.5) for $t=r-j$ that

$$
\frac{\Gamma(k-j)}{\Gamma(k-2 j)} g_{j}=\binom{r}{r-j} \frac{\Gamma(m+r)}{\Gamma(m+r-j)} g d^{r-j} h-\sum_{n=j+1}^{r}\binom{n}{n-j} \frac{\Gamma(k-n)}{\Gamma(k-n-j)} d^{n-j} g_{n}
$$

Since $C_{n} d^{n-j} g_{n}$ for every $n>j$ has coefficients in $\mathcal{O}_{K_{0}}$, we can find a positive integer C_{j} so that $C_{j} g_{j}$ has $\mathscr{O}_{K_{0}}$-integral Fourier coefficients whenever g and h are $\mathscr{O}_{K_{0}}$-integral. Thus, by induction on j, we obtain the lemma.
Lemma 5.2. Suppose that $g \in \mathscr{M}_{l}\left(\Gamma_{1}(N) ; K_{0}\right)$ and $h \in \mathscr{M}_{m}\left(\Gamma_{1}(N) ; K_{0}\right)$, and define $g_{n} \in \mathscr{M}_{k-2 n}\left(\Gamma_{1}(N) ; K_{0}\right)(0 \leqq n \leqq r, k=l+m+2 r)$ for a positive integer r by (5.3). Put $\mathrm{g}^{\prime}=-\sum_{n=0}^{r-1} d^{n} g_{n+1}$. Then, the p-adic norm $\left|a\left(n, g^{\prime}\right)\right|_{p}$ of the Fourier coefficients of g^{\prime} for all n is bounded, and we have that

$$
H\left(g \delta_{m}^{r} h\right)=g d^{r} h+d g^{\prime}
$$

Moreover, $H\left(\mathrm{~g} \delta_{m}^{r} h\right)$ is a cusp form if $r>0$.
Proof. We see from (5.5) for $t=r$ that

$$
\begin{equation*}
g d^{r} h=H\left(g \delta_{m}^{r} h\right)+\sum_{n=1}^{r} d^{n} g_{n}=H\left(g \delta_{m}^{r} h\right)-d g^{\prime} \tag{5.6}
\end{equation*}
$$

Since g_{n} is a K_{0}-rational modular form by (5.3), the norm $\left|g^{\prime}\right|_{p}$ is a well defined real number; namely, $\left|a\left(n, g^{\prime}\right)\right|_{p}$ is bounded. For an arbitrary $\gamma \in S L_{2}(\mathbb{Q})$, by substituting $\left.g\right|_{1} \gamma$ and $\left.h\right|_{m} \gamma$ for g and h in (5.3), we see easily from (5.1) and (5.6) that

$$
\left.H\left(g \delta_{m}^{r} h\right)\right|_{k} \gamma=H\left[\left(\left.g\right|_{t} \gamma\right) \delta_{m}^{r}\left(\left.h\right|_{m} \gamma\right)\right]=\left(\left.g\right|_{l} \gamma\right) d^{r}\left(\left.h\right|_{m} \gamma\right)-\sum_{n-1}^{r} d^{n}\left(\left.g_{n}\right|_{k-2 n} \gamma\right)
$$

This vanishes at $i \infty$, and therefore $H\left(g \delta_{m}^{r} h\right)$ is a cusp form when $r>0$.

Lemma 5.3. For arbitrary elements g of $\mathscr{M}_{i}\left(\Gamma_{1}(N)\right)$ and h of $\mathscr{M}_{m}\left(\Gamma_{1}(N)\right)$, we have

$$
H\left(g \delta_{m}^{r} h\right)=(-1)^{r} H\left(h \delta_{l}^{r} g\right)
$$

Proof. The assertion is trivially true for $r=0$; thus, we assume that $r>0$. Then $H\left(g \delta_{m}^{r} h\right)$ and $H\left(h \delta_{l}^{r} g\right)$ are cusp forms. For any C^{∞}-functions f and f^{\prime} with the same automorphic property as elements of $\mathscr{M}_{\boldsymbol{k}}\left(\Gamma_{1}(N)\right)$, put

$$
\left\langle f, f^{\prime}\right\rangle=\int_{\Im / I_{1}(N)} \overline{f(z)} f^{\prime}(z) y^{k-2} d x d y
$$

if it is well defined. Let ϕ and ψ be arbitrary C^{∞}-functions on \mathfrak{G} satisfying $\left.\phi\right|_{i} \gamma$ $=\phi$ and $\left.\psi\right|_{j} \gamma=\psi$ for all $\gamma \in \Gamma_{1}(N)$. If ϕ and ψ are slowly increasing in the sense of $[27,(2.17)]$, then $\left\langle f, \phi \delta_{j} \psi\right\rangle,\left\langle f, \psi \delta_{i} \phi\right\rangle$ and $\left\langle f, \delta_{i+j}(\phi \psi)\right\rangle$ for every f of $\mathscr{F}_{i+j+2}\left(\Gamma_{1}(N)\right)$ are finite. Especially, $\left\langle f, \delta_{i+j}(\phi \psi)\right\rangle$ vanishes by [27, Lemma 2.3]. In addition to this, we see from (5.1) that $\delta_{i+j}(\phi \psi)=\phi \delta_{j} \psi+\psi \delta_{i} \phi$. Then, we have

$$
\begin{equation*}
\left\langle f, \phi \delta_{j} \psi\right\rangle=-\left\langle f, \psi \delta_{i} \phi\right\rangle \quad \text { for every } f \in \mathscr{S}_{i+j+2}\left(\Gamma_{1}(N)\right) . \tag{5.7}
\end{equation*}
$$

Substituting $\delta_{l}^{r-n} g$ and $\delta_{m}^{n-1} h$ for ϕ and ψ in (5.7), we have

$$
\left\langle f,\left(\delta_{l}^{r-n} g\right)\left(\delta_{m}^{n} h\right)\right\rangle=-\left\langle f,\left(\delta_{l}^{r-n+1} g\right)\left(\delta_{m}^{n-1} h\right)\right\rangle .
$$

Then, by induction on n, we know

$$
\left\langle f, g \delta_{m}^{r} h\right\rangle=(-1)^{r}\left\langle f, h \delta_{l}^{r} g\right\rangle .
$$

Then (5.4) shows that, for all $f \in \mathscr{S}_{k}\left(\Gamma_{1}(N)\right)(k=l+m+2 r)$,

$$
\left\langle f, H\left(g \delta_{m}^{r} h\right)\right\rangle=(-1)^{r}\left\langle f, H\left(h \delta_{l}^{r} g\right)\right\rangle .
$$

Since $H\left(g \delta_{m}^{r} h\right)$ and $H\left(h \delta_{i}^{r} g\right)$ are cusp forms, the non-degeneracy of the Petersson inner product on $\mathscr{S}_{k}\left(\Gamma_{1}(N)\right)$ shows the lemma.

§ 6. Bounded measures with values in p-adic modular forms

Firstly, we recall the theory of bounded measures according to Mazur and Swinnerton-Dyer [16]. Let A be a closed subring of Ω. Let \mathscr{M} be an A-module complete under a norm $\left.\left|\left.\right|_{\mathcal{M}}\right.$ with the following properties: $| x\right|_{\mathcal{M}}=0$ if and only if $x=0(x \in \mathscr{M}) ;|a x|_{\mathcal{M}}=|a|_{p}|x|_{\mathscr{M}}$ for $a \in A$ and $x \in \mathscr{M} ;|x+y|_{\mathscr{M}} \leqq \max \left(|x|_{\mathscr{M}},|y|_{\mathscr{A}}\right)$. For our later use, A will be a finite extension of \mathbb{Q}_{p} and \mathscr{M} will be the space $\overline{\mathscr{M}}(N ; A)$ of p-adic modular forms. Let T be a projective limit of finite discrete sets T_{n}. Let $\mathscr{C}(T ; A)$ be the space of all continuous functions on T with values in A. We can define a norm $\|\phi\|$ of $\phi \in \mathscr{C}(T ; A)$ by

$$
\|\phi\|=\operatorname{Sup}_{t \in T}|\phi(t)|_{p}
$$

Then $\mathscr{C}(T ; A)$ becomes a complete normed A-module [2, X.1.6, X.3.3]. A linear functional ψ on $\mathscr{C}(T ; A)$ into \mathscr{M} is called a bounded measure on T with values
in \mathscr{M} if there is a positive constant B such that $|\psi(\phi)|_{\mathscr{M}} \leqq B\|\phi\|$ for all $\phi \in \mathscr{C}(T ; A)$. Usually, the value $\psi(\phi)$ is written as $\int_{T} \phi d \psi$. For a point $t \in T_{n}$, let $\chi_{n, t}$ be the pull back to T of the characteristic function of the one point subset $\{t\}$ of T_{n}. Put $\psi_{n}(t)=\int_{T} \chi_{n, t} d \psi$. Since locally constant functions are dense in $\mathscr{C}(T ; A)$, the measure ψ is uniquely determined by the system $\left\{\psi_{n}(t)\right\}_{n \geqq u, t \in T_{n}}$ for any given integer u. This system satisfies

$$
\begin{equation*}
\sum_{\pi_{i j}(t)=s} \psi_{i}(t)=\psi_{j}(s) \quad \text { for any } i \geqq j \geqq u \text { and every } s \in T_{j}, \tag{6.1}
\end{equation*}
$$

where $\pi_{i j}$ is the projection of T_{i} onto T_{j}. Conversely, if a system $\left\{\psi_{n}(t)\right\}_{n \geq u, t \in T_{n}}$ satisfying (6.1) is given and if the norm $\left|\psi_{n}(t)\right|_{\mu}$ is bounded independently of n and $t \in T_{n}$, then this system comes from a unique bounded measure on T. For a given measure ψ on T and any continuous function Φ in $\mathscr{C}(T ; A)$, the product measure $\Phi \cdot \psi$ (or occasionally written as $\Phi d \psi$) of Φ and ψ is defined by

$$
\begin{equation*}
(\Phi \cdot \psi)(\phi)=\psi(\Phi \phi)=\int_{T} \phi \Phi d \psi \quad \text { for any } \phi \in \mathscr{C}(T ; A) \tag{6.2}
\end{equation*}
$$

Let M be an arbitrary positive integer and put

$$
Z_{v}=\left(\mathbb{Z} / M p^{v} \mathbb{Z}\right)^{\times} \quad \text { and } \quad Z=\lim _{\leftarrow} Z_{v}
$$

We shall introduce the Eisenstein measure on the space Z. Let us define an Eisenstein series for each $a \in Z_{v}$ by giving its Fourier expansion: for each positive integer m,

$$
\begin{equation*}
E_{m, v}(a)=\zeta\left(1-m ; a, M p^{v}\right)+\sum_{n=1}^{\infty}\left(\sum_{\substack{d \mid n \\ d \equiv a \bmod M p^{v}}} \operatorname{sgn}(d) d^{m-1}\right) e(n z), \tag{6.3}
\end{equation*}
$$

where $\zeta\left(s ; a, M p^{v}\right)=\sum_{0<n \equiv a \bmod M p^{v}} n^{-s}$ is the partial zeta function modulo $M p^{v}$. It is known by Hecke [8] that the series of (6.3) belongs to $\mathscr{M}_{m}\left(\Gamma_{1}\left(M p^{v}\right) ; \mathbb{Q}\right)$ if $M p^{v}>2$. The system $\left\{E_{m, v}(a)\right\}_{v \geqq 2, a \in Z_{v}}$ for each m satisfies the condition (6.1), but their norms in $\overline{\mathscr{M}}\left(M ; \mathbb{Q}_{p}\right)$ are unbounded. For each integer $b>1$ prime to Mp, put

$$
\begin{equation*}
E_{m, v}^{b}(a)=E_{m, v}(a)-b^{m} E_{m, v}\left(b^{-1} a\right) \tag{6.4a}
\end{equation*}
$$

where we take the inverse b^{-1} in Z_{v} considering b to be an element of Z_{v} naturally. Define another system $\left\{\varepsilon_{m, v}^{b}(a)\right\}_{v \geqq 1, a \in Z_{v}}$ by

$$
\begin{equation*}
\varepsilon_{m, v}^{b}(a)=\zeta\left(1-m ; a, M p^{v}\right)-b^{m} \zeta\left(1-m ; b^{-1} a, M p^{v}\right) \in \mathbb{Q} . \tag{6.4b}
\end{equation*}
$$

Then, it is well known that $\left|\varepsilon_{m, v}^{b}(a)\right|_{p}$ is bounded independently of $a \in Z_{v}$ and v (e.g. [13, Chap. 2]). Thus the system (6.4a, b) for each positive integer m gives bounded measures on Z with values in. $\bar{M}\left(N ; \mathbb{Q}_{p}\right)$ and \mathbb{Q}_{p}, respectively. We will denote these measures by E_{m}^{b} and ε_{m}^{b}. The measures ε_{m}^{b} are related to the

Kubota-Leopoldt p-adic L-functions (cf. [9] and [13]), and the measure E_{1}^{b} is a one-dimensional part of the Eisenstein measure introduced in [11, 12].

Hereafter in this section, we return to the situation of Theorem 2.1. Especially, M denotes the level of the fixed lattice I of the quadratic space V. Recall $\mathscr{W}=\left\{v \in I^{*} \mid n(v) \in \mathbb{Z}\right\}, W_{v}=\mathscr{W} / p^{\nu} I$ for each positive integer v and $W=$ $\lim _{W_{v}}$. We shall now define a measure associated with the quadratic form n on
W. Take a spherical function $\eta: V \rightarrow \overline{\mathbb{Q}}$ of degree α with algebraic values on V. By composing η with the embedding i of $\overline{\mathbb{Q}}$ into Ω fixed in (0.3), we extend it by continuity to a function on W into Ω. We denote the extension again by η. Fix a finite extension K of \mathbb{Q}_{p} so that η has values in K. For each $w \in W_{v}$, put

$$
\begin{equation*}
\theta_{v}(w, \eta)=\sum_{\substack{v \in \mathscr{W} \boldsymbol{W}^{\prime} \\ v \equiv w \bmod p^{\nu}}} \eta(v) e(n(v) z) \in \mathscr{M}_{\kappa+\alpha}\left(\Gamma_{1}\left(M p^{2 v}\right) ; K\right) . \tag{6.5}
\end{equation*}
$$

Then, the system $\left\{\theta_{v}(w, \eta)\right\}_{v \geq 0, w \in W_{v}}$ defines a measure on W with values in the K-Banach space $\bar{M}(M ; K)$. When η is the constant function with value 1 on V, this measure will be called the theta measure attached to the quadratic space V, and will be denoted by θ or $d \theta$. For any continuous function $\phi \in \mathscr{C}(W ; K)$, the value $\theta(\phi)=\int_{W} \phi d \theta$ has the following q-expansion:

$$
\theta(\phi)=\int_{W} \phi d \theta=\sum_{w \in \mathscr{W}} \phi(w) q^{n(w)} \in \overline{\mathscr{M}}(M ; K) .
$$

Then, it is obvious that the product measure $\eta \cdot d \theta$ for the general spherical function η gives the measure attached to the system (6.5).

Next, we shall construct another bounded measure on W, which may be regarded as a convolution product of the theta measure and the Eisenstein measure. Write the level M of I as $M^{\prime} p^{2}$ with a positive integer M^{\prime} prime to p, and let ω be a Dirichlet character modulo $M p^{u}$ for some integer $u \geqq-\lambda$. By definition, $Z_{v}=\left(\mathbb{Z} / M p^{v} \mathbb{Z}\right)^{\times}$naturally acts on $I^{*} / p^{v} I$, and the subset W_{v} of $I^{*} / p^{\nu} I$ is stable under the action of Z_{v}. Thus, we can consider $\theta_{v}(a w, \eta)$ for $w \in W_{v}$ and $a \in Z_{v}$. For each non-negative integer r and each positive integer m, we define a system $\left\{\Phi_{v}(w)\right\}_{v, w \in W_{v}}$ by

$$
\begin{align*}
\Phi_{v}(w) & =\Phi_{v}(w ; r, m, \omega, \eta) \tag{6.6}\\
& =\sum_{a \in Z_{v}} \omega(a) H\left[\theta_{v}(a w, \eta) \delta_{m}^{r} E_{m, v}^{b}(a)\right] \in \mathscr{M}_{k}\left(\Gamma_{1}\left(M p^{2 v}\right) ; K\right),
\end{align*}
$$

where $k=\kappa+\alpha+m+2 r, \delta_{m}^{r}$ is Shimura's differential operator defined in $\S 5$ and H denotes the holomorphic projection map. We have to assume that $v \geqq 2$ and $v \geqq u$ in (6.6). By Lemma 5.1, we know

$$
\begin{equation*}
\left|\Phi_{v}(w)\right|_{p} \text { is bounded independently of } v \text { and } w \in W_{v} \text {. } \tag{6.7}
\end{equation*}
$$

In order to show that the system $\left\{\Phi_{v}(w)\right\}$ comes from a bounded measure, we have to check the condition (6.1). The calculation may be done as follows: for any $i \geqq j \geqq \max (u, 2)$,

$$
\begin{aligned}
\sum_{\substack{w \in W^{W_{2}} \\
w \equiv x \bmod p^{j} I}} \Phi_{i}(w) & =\sum_{a \in \mathcal{Z}_{i}} \omega(a) H\left[\left(\sum_{\substack{w \in W_{\dot{d}} \\
w \equiv x \bmod j^{j}}} \theta_{i}(a w, \eta)\right) \delta_{m}^{r} E_{m, i}^{b}(a)\right] \\
& =\sum_{a \in Z_{i}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r} E_{m, i}^{b}(a)\right] \\
& =\sum_{a \in Z_{j}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r}\left(\sum_{\substack{c \in Z_{j} \\
c \equiv a \bmod M p^{j}}} E_{m, j}^{b}(c)\right)\right] \\
& =\sum_{a \in Z_{j}} \omega(a) H\left[\theta_{j}(a x, \eta) \delta_{m}^{r} E_{m, j}^{b}(a)\right]=\Phi_{j}(x) .
\end{aligned}
$$

Let us denote by $\Phi=\Phi(r, m, \omega, \eta)$ for the measure defined by (6.6).
Lemma 6.1. Let γ be an element of $\Gamma_{0}\left(M p^{v}\right)$ with $\gamma \equiv\left(\begin{array}{cc}t & * \\ 0 & t^{-1}\end{array}\right) \bmod M p^{v}$. Then,
we have

$$
\left.E_{m, v}(a)\right|_{m} \gamma=E_{m, v}(a t) \quad \text { if } M p^{v}>2
$$

Proof. Let χ be a Dirichlet character modulo $M p^{v}$ with $\chi(-1)=(-1)^{m}$, and put

$$
E(\chi)=\frac{1}{2} L(1-m, \chi)+\sum_{n=1}^{\infty}\left(\sum_{0<d \mid n} \chi(d) d^{m-1}\right) e(n z) .
$$

It is well known that $E(\chi)$ belongs to $\mathscr{M}_{m}\left(\Gamma_{0}\left(M p^{v}\right), \chi\right)$ if $M p^{v}>2$ (cf. [8] and [25, (3.4)]). The explicit q-expansion (6.3) of $E_{m, v}(a)$ shows that

$$
E_{m, v}(a)=2\left|Z_{v}\right|^{-1} \sum_{\chi} \bar{\chi}(a) E(\chi),
$$

where χ runs over all Dirichlet character modulo $M p^{v}$ with $\chi(-1)=(-1)^{m}$ and $\left|Z_{v}\right|$ denotes the number of elements in Z_{v}. Then, we know

$$
\left.E_{m, v}(a)\right|_{m} \gamma=2\left|Z_{v}\right|^{-1} \sum_{\chi} \bar{\chi}(a t) E(\chi)=E_{m, v}(a t) .
$$

This shows the lemma.
We know from Proposition 1.1 that, for $\gamma \in \Gamma_{0}\left(M p^{2 v}\right)$ with $\gamma \equiv\left(\begin{array}{cc}t & * \\ 0 & t^{-1}\end{array}\right)$ $\bmod M p^{2 v}$,

$$
\left.\theta_{v}(w, \eta)\right|_{\kappa+\alpha} \gamma=\chi_{0}(t) \theta_{v}(t w, \eta)
$$

where $\chi_{0}(t)=\left(\frac{(-1)^{\kappa} \Delta}{t}\right)$ for $\Delta=\left[I^{*}: I\right]$ is the Legendre symbol. Then, Lemma 6.1 shows that $\Phi_{v}(w)$ belongs to $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{2 v}\right), \omega \chi_{0} ; K\right)$ for $k=\kappa+\alpha+m+2 r$. Thus
(6.8) $\Phi(r, m, \omega, \eta)$ has values in $\overline{\mathscr{M}}_{k}\left(M, \omega \chi_{0} ; K\right)$ for $k=\kappa+\alpha+m+2 r$.

We shall clarify possible relations between the measures Φ for various r, m, ω and η.

Proposition 6.2. Let k be a positive integer greater than κ, and assume that the degree α of the spherical function η is less than $k-\kappa$. Then, we have

$$
\Phi(0, k-\kappa-\alpha, \omega, \eta)=\eta \cdot \Phi(0, k-\kappa, \omega, 1),
$$

where we denote by the symbol " 1 " the constant function with value 1 on W.

Proof. Note that the two measures $\Phi(0, k-\kappa-\alpha, \omega, \eta)$ and $\Phi(0, k-\kappa, \omega, 1)$ have values in the same space $\overline{\mathscr{M}}_{k}\left(M, \omega \chi_{0} ; K\right)$. Thus it is sufficient to show that
(6.9) $\left|\Phi_{v}(w ; 0, k-\kappa-\alpha, \omega, \eta)-\eta(w) \Phi_{v}(w ; 0, k-\kappa, \omega, 1)\right|_{p}$ is convergent to 0 uniformly in $w \in W$ as v approaches to the infinity.

By definition, we have
$E_{m, \nu}^{b}(a)=\varepsilon_{m, \nu}^{b}(a)+\sum_{n=1}^{\infty}\left(\sum_{\substack{d \mid n \\ d \equiv a \bmod M p^{\nu}}} \operatorname{sgn}(d) d^{m-1}-b \sum_{\substack{d \mid n \\ b d \equiv a \bmod M p^{v}}} \operatorname{sgn}(b d)(b d)^{m-1}\right) e(n z)$.
As for the constant term $\varepsilon_{m, v}^{b}(a)$, we have that, for every $a \in Z$,

$$
\left|\varepsilon_{m, v}^{b}(a)-a_{p}^{m-1} \varepsilon_{1, v}^{b}(a)\right|_{p} \leqq p^{-v}
$$

where $a_{p} \in \mathbb{Z}_{p}^{\times}$is the projection of $a \in Z=\left(\mathbb{Z} / M^{\prime} \mathbb{Z}\right)^{\times} \times \mathbb{Z}_{p}^{\times}$into the second factor. A similar inequality can be verified more easily for the non-constant terms of $E_{m, v}^{b}(a)$, and then, we have

$$
\left|E_{m, v}^{b}(a)-a_{p}^{m-1} E_{1, v}^{b}(a)\right|_{p} \leqq p^{-v} \quad \text { for every } a \in Z
$$

Here, we use the norm $\left.\left|\left.\right|_{p}\right.$ defined by $| \sum_{n=0}^{\infty} c(n) q^{n}\right|_{p}=\operatorname{Sup}_{n}|c(n)|_{p}$ for any element of $\mathscr{O}_{K}[[q]]$. Replacing η by its constant multiple if necessary, we may assume that η has values in the p-adic integer ring \mathcal{O}_{K} of K. Note that $\eta(a w)=a^{\alpha} \eta(w)$ for any $a \in \mathbb{Z}$. Then, we have that, for any $w \in W$,

$$
\begin{align*}
\mid \eta(w) & \Phi_{v}(w ; 0, k-\kappa, \omega, 1)-\left.\sum_{\substack{a=1 \\
(a, m p)=1}}^{M p^{v}} a^{k-\kappa-\alpha-1} \omega(a) E_{1, v}^{b}(a) \eta(a w) \theta_{v}(a w, 1)\right|_{p} \tag{6.10}\\
& =\left|\eta(w) \Phi_{v}(w ; 0, k-\kappa, \omega, 1)-\eta(w) \sum_{a} a^{k-\kappa-1} \omega(a) E_{1, v}^{b}(a) \theta_{v}(a w, 1)\right|_{p} \\
& =\left|\eta(w) \sum_{a} \omega(a)\left[E_{k-\kappa, v}^{b}(a)-a^{k-\kappa-1} E_{1, v}^{b}(a)\right] \theta_{v}(a w, 1)\right|_{p} \\
& \leqq \operatorname{Sup}_{a}\left(|\eta(w)|_{p}\left|E_{k-\kappa, v}^{b}(a)-a^{k-\kappa-1} E_{1, v}^{b}(a)\right|_{p}\left|\theta_{v}(a w, 1)\right|_{p}\right) \\
& \leqq p^{-v} .
\end{align*}
$$

Since η is a polynomial function, we can find a constant $C \geq 1$ so that if $v \equiv w \bmod p^{v} I_{p}$ for any $v, w \in W$, then

$$
|\eta(v)-\eta(w)|_{p} \leqq C p^{-v} .
$$

Then, the definition of $\theta_{v}(w, \eta)$ and $\theta_{v}(w, 1)$ in (6.5) shows that

$$
\left|\theta_{v}(w, \eta)-\eta(w) \theta_{v}(w, 1)\right|_{p} \leqq C p^{-v} \quad \text { for every } w \in W
$$

Thus, we have that, for every $w \in W$,

$$
\begin{align*}
& \left\lvert\, \begin{array}{l}
\left|\Phi_{v}(w ; 0, k-\kappa-\alpha, \omega, \eta)-\sum_{\substack{a,=1 \\
(a, M p)=1}}^{M_{p v}} a^{k-\kappa-\alpha-1} \omega(a) E_{1, v}^{b}(a) \eta(a w) \theta_{v}(a w, 1)\right|_{p} \\
=\mid \Phi_{v}(w ; 0, k-\kappa-\alpha, \omega, \eta)-\sum_{a} \omega(a) E_{k-\kappa-\alpha, v}^{b}(a) \eta(a w) \theta_{v}(a w, 1) \\
\quad+\sum_{a} \omega(a) E_{k-\kappa-\alpha, v}^{b}(a) \eta(a w) \theta_{v}(a w, 1) \\
\quad-\left.\sum_{a} a^{k-\kappa-\alpha-1} \omega(a) E_{1, v}^{b}(a) \eta(a w) \theta_{v}(a w, 1)\right|_{p} \\
\leqq \operatorname{Sup}_{a}\left[\left|E_{k-\kappa-\alpha, v}^{b}(a)\right|_{p}\left|\theta_{v}(a w, \eta)-\eta(a w) \theta_{v}(a w, 1)\right|_{p},\right. \\
\left.\leqq C p^{-v} . \quad\left|\eta(a w) \theta_{v}(a w, 1)\right|_{p}\left|E_{k-\kappa-\alpha, v}^{b}(a)-a^{k-\kappa-\alpha-1} E_{1, v}^{b}(a)\right|_{p}\right]
\end{array} .\right. \tag{6.11}
\end{align*}
$$

Then, (6.9) follows from (6.10) and (6.11). Q.E.d.
For any $\phi \in \mathscr{C}(W ; K)$, the value $\theta(\phi)=\sum_{w \in \mathscr{W}} \phi(w) q^{n(w)}$ is an element of $\overline{\mathscr{M}}(M ; K)$. Then, it is plain that, for $0 \leqq r \in \mathbb{Z}$,

$$
d^{r} \theta(\phi)=\theta\left(n^{r} \phi\right),
$$

where d is the differential operator $q \frac{d}{d q}$. It is known (e.g. $[12,5.8]$) that the differential operator d takes $\overline{\mathscr{M}}(M ; K)$ into itself. Extend the Hecke operator $T(p)$ to an operator on $K[[q]]$ by

$$
\left(\sum_{n=0}^{\infty} a(n) q^{n}\right) \mid T(p)=\sum_{n=0}^{\infty} a(n p) q^{n},
$$

and put

$$
\left|\sum_{n=0}^{\infty} a(n) q^{n}\right|_{p}=\operatorname{Sup}_{n}|a(n)|_{p} .
$$

Then, we can define a valuation ring by

$$
\mathscr{U}=\left\{\left.F \in K[[q]]| | F\right|_{p} \text { is finite }\right\} .
$$

Then, \mathscr{U} is stable under the differential operator d and the Hecke operator $T(p)$. We see easily that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}(d F) \mid T(p)^{m}=0 \quad \text { if } F \in \mathscr{U} . \tag{6.1.1}
\end{equation*}
$$

Note that the space $\overline{\mathscr{M}}(M ; K)$ may be regarded as a subspace of \mathscr{U} through q expansion. Then, the definition of the idempotent e of $\mathscr{H}\left(M ; \mathcal{O}_{K}\right)$ in (4.3) shows that
(6.13) The idempotent e can be naturally extended to an operator on d 4 $+\bar{M}(M ; K)$ so that e annihilates $d \mathscr{U}(\supset d \bar{M}(M ; K))$.

We shall define the ordinary part $\Phi^{0}=\Phi^{0}(r, m, \omega, \eta)$ of the measure $\Phi(r, m, \omega, \eta)$ by

$$
\begin{equation*}
\int_{W} \phi d \Phi^{0}(r, m, \omega, \eta)=e\left[\int_{W} \phi d \Phi(r, m, \omega, \eta)\right] \quad \text { for } \phi \in \mathscr{C}(W ; K) . \tag{6.14}
\end{equation*}
$$

Then, the measure Φ^{0} has values in the finite dimensional K-vector space $\overline{\mathscr{M}}_{k}^{0}\left(M, \omega \chi_{0} ; K\right)$ (Proposition 4.1).
Proposition 6.3. Let k and r be integers with $k>\kappa$ and $0 \leqq r<\frac{1}{2}(k-\kappa)$, and assume that the degree α of η is less than $k-\alpha-2 r$. Then, we have

$$
\Phi^{0}(r, k-\kappa-\alpha-2 r, \omega, \eta)=(-1)^{r} \eta n^{r} \cdot \Phi^{0}(0, k-\kappa, \omega, 1) .
$$

Proof. Put, for each $\phi \in \mathscr{C}(W ; K)$,

$$
\theta_{v}(w, \phi)=\sum_{\substack{v \equiv w \bmod \\ v \in \mathscr{W}}} \phi(w) q^{n(w)} \in \overline{\mathscr{M}}(M ; K) \quad\left(w \in W_{v}\right) .
$$

Then, we can define a bounded measure $\Phi(0, m, \omega, \phi)$ on W by the system

$$
\Phi_{v}(w ; 0, m, \omega, \phi)=\sum_{a \in Z_{v}} \omega(a) E_{m, v}^{b}(a) \theta_{v}(a w, \phi) \in \overline{\mathscr{M}}(M ; K)
$$

We can apply the argument which proves (6.9) to any homogenous polynomial ϕ on W in place of η there. Let us take ηn^{r} as ϕ. Then, in exactly the same manner as in the proof of (6.9), we obtain

$$
\begin{equation*}
\left|\Phi_{v}\left(w ; 0, k-\kappa-\alpha-2 r, \omega, \eta n^{r}\right)-\eta(w) n(w)^{r} \Phi_{v}(w ; 0, k-\kappa, \omega, 1)\right|_{p} \tag{6.15}
\end{equation*}
$$

converges to 0 uniformly in $w \in W$ as v approaches to the infinity.
For simplicity, we write Φ^{0} for $\Phi^{0}(0, k-\kappa, \omega, 1)$. In order to prove the assertion, what we have to show is

$$
\begin{align*}
& \left|\Phi_{v}^{0}(w ; r, k-\kappa-\alpha-2 r, \omega, \eta)-(-1)^{r}\left(\eta n^{r}\right)(w) \Phi_{v}^{0}(w)\right|_{p} \text { converges to } 0 \tag{6.16}\\
& \text { uniformly in } w \in W \text { as } v \text { approaches to } \infty .
\end{align*}
$$

On the other hand, by Lemma 5.2 , there is an element $g \in \bar{M}(M ; K)$ such that

$$
H\left[E_{m, v}^{b}(a) \delta_{\kappa+\alpha}^{r} \theta_{v}(a w, \eta)\right]=E_{m, v}^{b}(a) d^{r} \theta_{v}(a w, \eta)+d g .
$$

Then, (6.13) shows that $e(d g)=0$, and we thus have

$$
\begin{aligned}
e\left[H\left(E_{m, v}^{b}(a) \delta_{\kappa+\alpha}^{r} \theta_{v}(a w, \eta)\right)\right] & =e\left[E_{m, v}^{b}(a) d^{r} \theta_{v}(a w, \eta)\right] \\
& =e\left[E_{m, v}^{b}(a) \theta_{v}\left(a w, \eta n^{r}\right)\right]
\end{aligned}
$$

This shows that

$$
\begin{aligned}
\Phi_{v}^{0}(w ; r, m, \omega, \eta) & =\sum_{a \in \mathcal{Z}_{v}} \omega(a) e\left[H\left(\theta_{v}(a w, \eta) \delta_{m}^{r} E_{m, v}^{b}(a)\right)\right] \\
& =(-1)^{r} \sum_{a} \omega(a) e\left[H\left(E_{m, v}^{b}(a) \delta_{\kappa+\alpha}^{r} \theta_{v}(a w, \eta)\right)\right] \quad \text { by Lemma } 5.3 \\
& =(-1)^{r} \sum_{a} \omega(a) e\left[E_{m, v}^{b}(a) \theta_{v}\left(a w, \eta n^{r}\right)\right] \\
& =(-1)^{r} e\left[\Phi_{v}\left(w ; 0, m, \omega, \eta n^{r}\right)\right] .
\end{aligned}
$$

Then, (6.16) follows from (6.15). Q.E.D.

§7. Proof of Theorem 2.1

Before proving Theorem 2.1, we list some formulae among several Eisenstein series, which are found in [8,21] and [26]. Let ω be a Dirichlet character modulo N for a positive integer N and m be a positive integer with $\omega(-1)=$ $(-1)^{m}$. Define Eisenstein series by

$$
\begin{aligned}
J_{m, N}(z, s, \omega) & =\sum_{0 \neq(c, d) \in \mathbb{E}^{2}} \omega(c)(c z+d)^{-m}|c z+d|^{-2 s}, \\
E_{m, N}(z, s ; a, b) & =\sum_{0 \neq(c, d) \equiv(a, b) \bmod \mathbb{N}}(c z+d)^{-m}|c z+d|^{-2 s}
\end{aligned}
$$

for $a, b \in \mathbb{Z} / N \mathbb{Z}$, and

$$
E_{m, N}(\omega)=E_{m, N}(z, \omega)=\frac{1}{2} L_{N}(1-m, \omega)+\sum_{n=1}\left(\sum_{0<d \mid n} \omega(d) d^{m-1}\right) e(n z) .
$$

The series $J_{m, N}(z, s, \omega)$ and $E_{m, N}(z, s ; a, b)$ have analytic continuations as functions of s. We write simply $E_{m, N}(z ; a, b)$ and $J_{m, N}(z, \omega)$ for their values at $s=0$. As shown in [25, (2.4)] (see also [26, p.217]), we know that, for every positive integer r,

$$
\begin{equation*}
J_{m+2 r, N}(z,-r, \omega)=\frac{\Gamma(m)}{\Gamma(m+r)}(-4 \pi y)^{r} \delta_{m}^{r}\left[J_{m, N}(z, \omega)\right], \tag{7.1}
\end{equation*}
$$

where $y=\operatorname{Im}(z)$. The function $E_{m, N}(\omega)$ belongs to $\mathscr{M}_{m}\left(\Gamma_{0}(N), \omega\right)$ except in the case where $m=2$ and $N=1$. Let ω_{0} be the primitive character modulo N_{0} associated with ω, and define another positive integer N_{1} by $N=N_{0} N_{1}$. Then, obviously, we have

$$
\begin{equation*}
E_{m, N}(z, \omega)=\sum_{0<t \mid N_{1}} \mu(t) \omega_{0}(t) t^{m-1} E_{m, N_{0}}\left(t z, \omega_{0}\right), \tag{7.2}
\end{equation*}
$$

where μ denotes the Moebius function.
Lemma 7.1. For $\tau=\left(\begin{array}{rr}0 & -1 \\ N & 0\end{array}\right)$, we have

$$
\begin{equation*}
\left.E_{m, N}(\omega)\right|_{m} \tau=\frac{\Gamma(m) N^{m / 2} G\left(\omega_{0}\right)}{2(2 \pi i)^{m} N_{0}} \sum_{0<t \mid N_{1}} \mu(t) \omega_{0}(t) t^{-1} J_{m, N_{0}}\left(t^{-1} N_{1} z, \bar{\omega}_{0}\right), \tag{7.3}
\end{equation*}
$$

where $G\left(\omega_{0}\right)=\sum_{u=1}^{N_{0}} \omega_{0}(u) e\left(\frac{u}{N_{0}}\right)$ is the Gauss sum for ω_{0}.
Proof. It is known by Hecke [8] that

$$
E_{m, N}(z ; a, b)=\mathrm{constant}+\frac{(-2 \pi i)^{m}}{N^{m} \Gamma(m)} \cdot \sum_{\substack{j k>0 \\ k=a \bmod N}} j^{m-1} \operatorname{sgn}(j) e\left(\frac{j(b+k z)}{N}\right) .
$$

Write simply A for the constant

$$
\frac{N_{0}^{m} \Gamma(m)}{2(-2 \pi i)^{m} G\left(\bar{\omega}_{0}\right)} .
$$

An easy calculation shows that

$$
E_{m, N_{0}}\left(z, \omega_{0}\right)-A \sum_{a \in \mathbb{Z} / N_{0} \mathbb{Z}} \bar{\omega}_{0}(a) E_{m, N_{0}}(z ; 0, a)
$$

is a constant; hence, we know

$$
\begin{aligned}
E_{m, N_{0}}\left(\omega_{0}\right) & =A \sum_{a \in\left(\mathbb{Z} / N_{0} \mathbb{Z}\right)^{\times}} \bar{\omega}_{0}(a) E_{m, N_{0}}(z ; 0 . a) \\
& =\left.A \cdot \sum_{0 \neq(c, d) \in \mathbb{Z}^{2}} \bar{\omega}_{0}(d)\left(c N_{0} z+d\right)^{-m}\left|c N_{0} z+d\right|^{-2 s}\right|_{s=0} .
\end{aligned}
$$

Then, we know from this formula that

$$
\left.E_{m, N_{0}}\left(\omega_{0}\right)\right|_{m}\left(\begin{array}{rr}
0 & -1 \tag{7.4}\\
N_{0} & 0
\end{array}\right)=N_{0}^{-m / 2} A J_{m, N_{0}}\left(z, \bar{\omega}_{0}\right)
$$

This is a special case of (7.3) by the well known equality:

$$
G\left(\omega_{0}\right) G\left(\bar{\omega}_{0}\right)=\omega_{0}(-1) N_{0}=(-1)^{m} N_{0} .
$$

The formula (7.3) in general follows from (7.2) and (7.4) because of the identity:

$$
\left(\begin{array}{ll}
t & 0 \\
0 & 1
\end{array}\right) \tau=t\left(\begin{array}{rr}
0 & -1 \\
N_{0} & 0
\end{array}\right)\left(\begin{array}{rr}
N_{1} t^{-1} & 0 \\
0 & 1
\end{array}\right) .
$$

Now, we are ready to give a proof of Theorem 2.1. We use the same notation as in the theorem. Especially, M denotes the level of the lattice I of V, f is the fixed primitive form of conductor C, with character ψ and of weight $k>\kappa$. Assume that the p-th Fourier coefficient $a(p, f)$ of f is a unit in Ω. Let f_{0} be the ordinary form associated with f defined in Lemma 3.3 and write C_{0} for the smallest possible level of f_{0}. Define integers $\mu \geqq 1$ and $\lambda \geqq 0$ by

$$
C_{0}=C^{\prime} p^{\mu}, \quad M=M^{\prime} p^{\lambda}
$$

where $\left(C^{\prime}, p\right)=\left(M^{\prime}, p\right)=1$. Then, we assume that C^{\prime} divides M^{\prime}. Then, the space $\mathscr{A}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi\right)$ is a subspace of $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\mu-\lambda}\right), \psi\right)$, and we know that $M p^{\mu-\lambda} / C_{0}$ $=M^{\prime} / C^{\prime}$.

We first construct the measure φ_{b} in the theorem for each $b>1$ prime to $M p$. Let K be a sufficiently large finite extension of the p-adic field \mathbb{Q}_{p} which contains all the Fourier coefficients of f_{0}. Let χ_{0} be the Dirichlet character modulo M defined by

$$
\chi_{0}(a)=\left(\frac{(-1)^{\kappa} \Delta}{a}\right) \quad \text { for } \Delta=\left[I^{*}: I\right]
$$

Let $\Phi^{0}=\Phi^{0}\left(0, k-\kappa, \psi \chi_{0}, 1\right)$ be the bounded measure on $\mathscr{C}(W ; K)$ defined in (6.14). Then, the measure Φ^{0} has values in the space $\overline{\mathscr{M}}_{k}^{0}(M, \psi ; K)$, which is a subspace of $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\mu-\lambda}\right), \psi ; K\right)$ (see Proposition 4.1). Let Tr denote the trace operator of $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\mu-\lambda}\right), \psi ; \Omega\right)$ onto $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; \Omega\right)$ defined by

$$
\begin{equation*}
\operatorname{Tr}(g)=\left.\sum_{\gamma} \bar{\psi}(\gamma) g\right|_{k} \gamma \tag{7.5}
\end{equation*}
$$

where γ runs over a representative set for $\Gamma_{0}\left(M p^{\mu-\lambda}\right) \backslash \Gamma_{0}\left(C_{0}\right)$ and $\bar{\psi}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ $=\overline{\psi(d)}$. Then, Tr is a bounded linear operator. The finite extension K can be chosen so that the trace operator sends $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{u-\lambda}\right), \psi ; K\right)$ onto $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$. Then, define the measure φ_{b} by

$$
\begin{equation*}
\int_{W} \phi d \varphi_{b}=\ell_{f}\left[\operatorname{Tr}\left(\int_{W} \phi d \Phi^{\circ}\right)\right] \quad \text { for } \phi \in \mathscr{C}(W ; K), \tag{7.6}
\end{equation*}
$$

where $\ell_{f}: \overline{\mathcal{M}}_{k}\left(C_{0}, \psi ; K\right) \rightarrow K$ is the bounded linear form associated with f given in (4.6).

Let η be an arbitrary algebraic valued spherical function on V with degree α less than $k-\kappa$, and ϕ be an algebraic valued locally constant function on W such that $\phi(a w)=\chi(a) \phi(w)$ for every $a \in Z$ and $w \in W$ with a character χ of finite order of Z. Define a Dirichlet character ξ by

$$
\zeta(a)=\chi(a) \chi_{0}(a) \quad \text { for } a \in \mathbb{Z} \text { prime to } M p .
$$

Then, for a sufficiently large $\beta \geqq 1$, the theta series $\theta(\phi \eta)$ belongs to $\mathscr{M}_{x+\alpha}\left(\Gamma_{0}\left(M p^{\theta}\right), \xi\right)$ by Proposition 1.1. We know fix such a $\beta \geqq 1$. Let r be an arbitrary integer with $0 \leqq 2 r+\alpha<k-\kappa$. Now, we shall evaluate the integral $\int_{W} \phi \eta n^{r} d \varphi_{b}$ as in (2.5). We may assume that the functions η and ϕ on W have values in K. Take a positive integer v so that ϕ factors through $W_{v}=\mathscr{W} / p^{v} I$. We may assume that $v \geqq \beta$ and $v \geqq \mu-\lambda$. Then, Proposition 6.3 shows

$$
(-1)^{r} \int_{W} \phi \eta n^{r} d \Phi^{0}=e\left[\sum_{w \in W_{v}} \phi(w) \Phi_{v}\left(w ; r, m, \psi \chi_{0}, \eta\right)\right],
$$

where $m=k-\kappa-\alpha-2 r$ and $\Phi_{v}(w)$ is as in (6.6). We see from (6.6) that

$$
\begin{align*}
\sum_{w \in W_{v}} & \phi(w) \Phi_{v}\left(w ; r, m, \psi \chi_{0}, \eta\right) \tag{7.7}\\
& =\sum_{w \in W_{v}} \phi(w) \sum_{a \in Z_{v}} \psi \chi_{0}(a) H\left[\theta_{v}(a w, \eta) \delta_{m}^{r} E_{m, v}^{b}(a)\right] \\
& =\sum_{a} \psi \chi_{0}(a) \sum_{w} \phi\left(a^{-1} w\right) H\left[\theta_{v}(w, \eta) \delta_{m}^{r} E_{m, v}^{b}(a)\right] \\
& =\sum_{a} \psi \chi_{0} \bar{\chi}(a) H\left[\sum_{w} \phi(w) \theta_{v}(w, \eta) \delta_{m}^{r} E_{m, v}^{b}(a)\right] \\
& =H\left[\theta(\phi \eta) \delta_{m}^{r}\left(\sum_{a} \psi \bar{\xi}(a) E_{m, v}^{b}(a)\right)\right] .
\end{align*}
$$

Note that $E_{m, M p^{\beta}}(\psi \bar{\xi})=E_{m, M p^{v}}(\psi \bar{\xi})=\frac{1}{2} \sum_{a \in Z_{\nu}} \psi \bar{\xi}(a) E_{m, v}(a)$. Then, (7.7) is equal to

$$
2\left(1-b^{m} \psi \bar{\xi}(b)\right) H\left[\theta(\phi \eta) \delta_{m}^{r} E_{m, M_{p} p^{\beta}}(\psi \bar{\xi})\right] .
$$

We have by the definition of φ_{b} that

$$
(-1)^{r} \int_{W} \phi \eta n^{r} d \varphi_{b}=2\left(1-b^{m} \psi \bar{\xi}(b)\right) \ell_{f}\left[\operatorname{Tr}\left\{e\left(H\left(\theta(\phi \eta) \delta_{m}^{r} E_{m, M p^{\beta}}(\psi \bar{\xi})\right)\right)\right\}\right] .
$$

Let us now choose a complete representative set R for

$$
\Gamma_{0}\left(M p^{\beta}\right) \backslash \Gamma_{0}\left(C_{0} p^{\beta+\lambda-u}\right) .
$$

Note that $M p^{\beta}=M^{\prime} p^{\beta+\lambda}, C_{0} p^{\beta+\lambda-\mu}=C^{\prime} p^{\beta+\lambda}$, and that C^{\prime} and M^{\prime} are prime to p. Therefore, the set R may be regarded as a complete representative set for $\Gamma_{0}\left(M p^{\mu-\lambda}\right) \backslash \Gamma_{0}\left(C_{0}\right)$. Thus, one can extend the operator Tr defined in (7.5) to the trace operator of $\mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\beta}\right), \psi ; \Omega\right)$ onto $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0} p^{\beta+\lambda-\mu}\right), \psi ; \Omega\right)$; namely, we put

$$
\operatorname{Tr}(g)=\left.\sum_{\gamma \in \mathbb{R}} \bar{\psi}(\gamma) g\right|_{k} \gamma \quad \text { for } g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\beta}\right), \psi ; \Omega\right) .
$$

Then, we see easily that

$$
\operatorname{Tr} \circ T(p)=T(p) \circ \operatorname{Tr} \quad \text { and } \quad \operatorname{Tr} \circ e=e \circ \operatorname{Tr} .
$$

Since $\operatorname{Tr}(\mathrm{g}) \mid T(p)^{\beta+\lambda-\mu}$ for $g \in \mathscr{M}_{k}\left(\Gamma_{0}\left(M p^{\theta}\right), \psi ; \overline{\mathbb{Q}}\right)$ belongs to $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; \overline{\mathbb{Q}}\right)$, Proposition 4.5 and (4.7) show that

$$
\begin{aligned}
\ell_{f}[\operatorname{Tr}(e(g))] & =\ell_{f}[e(\operatorname{Tr}(g))] \\
& =a\left(p, f_{0}\right)^{\mu-\beta-\lambda} \ell_{f}\left[\operatorname{Tr}(g) \mid T(p)^{\beta+\lambda-\mu}\right] \\
& =a\left(p, f_{0}\right)^{\mu-\beta-\lambda_{p}(\beta+\lambda-\mu)(k-1)} \frac{\left\langle h_{\beta+\lambda-\mu}, \operatorname{Tr}(g)\right\rangle c_{0} p^{\beta+\lambda-\mu}}{\left\langle h, f_{0}\right\rangle C_{0}},
\end{aligned}
$$

where $h=f g_{i k} i_{k}\left(\begin{array}{rr}0 & -1 \\ C_{0} & 0\end{array}\right)$ and $h_{\beta+\lambda-\mu}(z)=h\left(p^{\beta+\lambda-\mu} z\right)$. Note that, for τ $=\left(\begin{array}{cr}0 & -1 \\ M p^{\beta} & 0\end{array}\right)$,

$$
\left.\left\langle h_{\beta+\lambda-\mu}, \operatorname{Tr}(g)\right\rangle_{C_{0} p^{\beta+\lambda-\mu}}=\left\langle h_{\beta+\lambda-\mu}, g\right\rangle_{M p^{\beta}}=\left\langle h_{\beta+\lambda-\mu}\right| k \tau,\left.g\right|_{k} \tau\right\rangle_{M p^{\beta}} .
$$

Applying these formulae to $g=H\left[\theta(\phi \eta) \delta_{m}^{r} E_{m, M p^{\beta}}^{b}(\psi \bar{\xi})\right]$, we have by (5.4)

$$
\begin{gather*}
(-1)^{r} \int_{W} \phi \eta \eta^{r} d \varphi_{b}=2\left(1-b^{m} \psi \bar{\xi}(b)\right) p^{(\beta+\lambda-\mu)(k-1)} a\left(p, f_{0}\right)^{\mu-\beta-\lambda} \tag{7.8}\\
\times \frac{\left\langle h_{\beta+\lambda-\mu} k_{k} \tau,\left.\left(\theta(\phi \eta) \delta_{m}^{r} E_{m, M p^{\beta}}(\psi \bar{\xi})\right)\right|_{k} \tau\right\rangle_{M p^{\beta}}}{\left\langle h, f_{0}\right\rangle_{c_{0}}},
\end{gather*}
$$

where $m=k-\kappa-\alpha-2 r$.
On the other hand, Lemma 7.1 combined with (7.1) shows that

$$
\begin{aligned}
& \left.\left(\delta_{m}^{r} E_{m, M^{p}}(\omega)\right)\right|_{k-\kappa-\alpha} \tau \\
& \quad=T y^{-r} \sum_{0<t \mid N_{1}} \mu(t) \omega_{0}(t) t^{-1} J_{k-\kappa-\alpha, N_{0}}\left(t^{-1} N_{1} z,-r, \bar{\omega}_{0}\right),
\end{aligned}
$$

where $\omega=\psi \bar{\xi}, N_{0}$ is the conductor of ω, ω_{0} is the primitive character associated with $\omega, N=M p^{\beta}=N_{0} N_{1}$ and

$$
T=N_{0}^{-1} G\left(\omega_{0}\right) \pi^{-m-r} 2^{2 r-m-1}(\sqrt{-1})^{2 r-m}\left(M p^{\beta}\right)^{m / 2} \Gamma(m+r)
$$

for $m=k-\kappa-\alpha-2 r$. Note that

$$
\left.\left.p^{(\beta+\lambda-\mu)(k-1)} h_{\beta+\lambda-\mu}\right|_{k} \tau=(-1)^{k} p^{(\beta+\lambda-\mu)(k / 2-1}\right)\left.f_{\delta}^{\rho}\right|_{k} \gamma
$$

for $\gamma=\left(\begin{array}{cc}M^{\prime} / C^{\prime} & 0 \\ 0 & 1\end{array}\right)$. Applying these formulae to (7.8), we know that $\int_{W} \phi \eta n^{r} d \varphi_{b}$ is equal to

$$
\begin{aligned}
& S\left(1-b^{m} \psi \bar{\xi}(b)\right) a\left(p, f_{0}\right)^{\mu-\beta-\lambda} G\left(\omega_{0}\right)\left\langle h, f_{0}\right\rangle^{-1} \\
& \quad \cdot \sum_{0<\tau \mid N_{1}} \mu(t) \omega_{0}(t) t^{-1}\left\langle\left. f_{0}\right|_{k} \tau,\left(\left.\theta(\phi \eta)\right|_{\kappa+\alpha} \tau\right) J_{k-\kappa-\alpha, N_{0}}\left(t^{-1} N_{1} z,-r, \bar{\omega}_{0}\right) y^{-r}\right\rangle_{M p^{p}},
\end{aligned}
$$

where

$$
S=\pi^{-m-r} 2^{-m-2 r}(\sqrt{-1})^{2 k-m} M^{m / 2} p^{m \beta / 2+(\beta+\lambda-\mu)(k / 2-1)} N_{0}^{-1} \Gamma(m+r)
$$

Then, the evaluation (2.5) follows from the formula given in [26, p.217]:

$$
\begin{aligned}
& \mathscr{D}_{M p^{\beta}}\left(\kappa+\alpha+\theta,\left.f_{0}\right|_{k} \gamma,\left.\theta(\phi \eta)\right|_{\kappa+\alpha} \tau\right) \\
& \quad=U \sum_{0<t \mid N_{1}} \mu(t) \omega_{0}(t) t^{-1} \cdot\left\langle f f_{k} \gamma,\left(\left.\theta(\phi \eta)\right|_{\kappa+\alpha} \tau\right) J_{k-\kappa-\alpha, N_{0}}\left(t^{-1} N_{1} z,-r, \bar{\omega}_{0}\right) y^{-r}\right\rangle_{M p^{\beta}},
\end{aligned}
$$

where

$$
U=\pi^{k-r-2 m+1} 2^{2 k-2 r-2 m-1} M^{m-1} p^{\beta(m-1)} N_{0}^{-1} G\left(\omega_{0}\right) \frac{\Gamma(m+r)}{\Gamma(\kappa+\alpha+r) \Gamma(r+1)}
$$

§8. A sketch of the Proof of Theorem 2.2

In this section, we use the same notation as in Theorem 2.2. Especially, $g=\sum_{n=0}^{\infty} b(n) e(n z)$ is the fixed modular form in $\mathscr{M}_{l}\left(I_{0}(N), \omega\right)$ with $b(n) \in \overline{\mathbb{Q}}$. Let v be a psoitive integer and ϕ be an arbitrary function on $Y_{v}=\mathbb{Z} / N p^{v} \mathbb{Z}$ with values in \mathbb{C}. Put

$$
g(\phi)=\sum_{n=0}^{\infty} \phi(n) b(n) e(n z),
$$

as a function on $\mathfrak{5}$.
Proposition 8.1. For any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}\left(N^{2} p^{2 v}\right)$, we have the following transfor-
mation formula. mation formula:

$$
\left.g(\phi)\right|_{\imath} \gamma=\omega(d) g\left(\phi_{a}\right)
$$

where ϕ_{a} is a function on $\mathbb{Z} / N p^{v} \mathbb{Z}$ defined by

$$
\phi_{a}(y)=\phi\left(a^{-2} y\right)
$$

Proof (cf. [20, Lemma 2]). We simply write n for $N p^{\nu}$ for a fixed $v \geqq 1$, and define a $n \times n$ matrix by

$$
A=(e(x y / n))_{x, y \in Y_{v}}
$$

The matrix A is invertible, and thus we can find $x(u, y) \in \mathbb{C}$ for any pair $u, y \in Y_{v}$ so that

$$
\sum_{u \in Y_{v}} x(u, y) e(u v / n)= \begin{cases}1 & \text { if } v=y \\ 0 & \text { otherwise } .\end{cases}
$$

For any $t \in Y_{v}{ }^{\times}$and $v \in Y_{v}$, we have that

$$
\sum_{u \in Y_{v}} x(t u, y) e(u v / n)=\sum_{u \in Y_{v}} x(u, y) e\left(t^{-1} u v / n\right)= \begin{cases}1 & \text { if } t^{-1} v=y \\ 0 & \text { otherwise }\end{cases}
$$

This shows

$$
\begin{equation*}
x(t u, y)=x(u, t y) \quad \text { for every } t \in Y_{v}{ }^{\times} . \tag{8.1}
\end{equation*}
$$

Put

$$
\begin{equation*}
g(y)=g_{v}(y)=\sum_{m=y \bmod N p^{v}} b(m) e(m z) \quad \text { for } y \in Y_{v} . \tag{8.2}
\end{equation*}
$$

Since we can express $g(\phi)=\sum_{y \in Y_{v}} \phi(y) g(y)$, our task is to show

$$
\left.g(y)\right|_{l}\left(\begin{array}{ll}
a & b \tag{8.3}\\
c & d
\end{array}\right)=\omega(d) g\left(a^{2} y\right) \quad \text { for every } y \in Y_{v} \quad\left(\text { if }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}\left(n^{2}\right)\right)
$$

For each $u \in Y_{v}$, take $u_{0} \in \mathbb{Z}$ with $u_{0} \equiv u \bmod n$, and put $\alpha_{u}=\left(\begin{array}{cc}1 & u_{0} / n \\ 0 & 1\end{array}\right)$. Then, by the definition of $x(u, y)$, we have

$$
g(y)=\left.\sum_{u \in \boldsymbol{Y}_{v}} x(u, y) g\right|_{l} \alpha_{u} .
$$

As in the proof of [28, Prop. 3.64], for each $u \in Y_{v}$, we can find γ_{u} $=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right) \in \Gamma_{0}(N)$ so that

$$
\alpha_{u} \gamma=\gamma_{u} \alpha_{a^{-2} u} \quad \text { and } \quad d \equiv d^{\prime} \bmod N \quad\left(\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) .
$$

Then (8.3) can be shown as follows:

$$
\begin{aligned}
\left.g(y)\right|_{i} \gamma & =\sum_{u \in Y_{v}} x(u, y) g\left|\gamma_{u} \alpha_{a-2}=\omega(d) \sum_{u} x\left(a^{2} u, y\right) g\right|_{l} \alpha_{u} \\
& =\left.\omega(d) \sum_{u} x\left(u, a^{2} y\right) g\right|_{\imath} \alpha_{u}=\omega(d) g\left(a^{2} y\right) .
\end{aligned}
$$

Now we shall give a sketch of a proof of Theorem 2.2. Fix an integer $b>1$ prime to $N p$, and let r and m be integers with $r \geqq 0$ and $m>0$. Define the Eisenstein series $E_{m, v}^{b}(a)$ for each $a \in Y_{v}{ }^{\times}$by (6.3) and (6.4a) for N in place of M there. Write $N=N^{\prime} p^{\lambda}$ with an integer N^{\prime} prime to p and let ψ^{\prime} be a Dirichlet character modulo $N p^{u}$ for some $u \geqq 1$. Define, for each $y \in Y_{v}(v \geqq u)$,

$$
\begin{equation*}
\Phi_{v}(y)=\Phi_{v}\left(y ; r, m, \psi^{\prime}\right)=\sum_{a \in Y_{v}^{*}} \psi^{\prime}(a) H\left[g_{v}\left(a^{2} y\right) \delta_{m}^{r} E_{m, v}^{b}(a)\right] . \tag{8.4}
\end{equation*}
$$

Then, the system $\left\{\Phi_{v}(y)\right\}$ defines a bounded measure $\Phi\left(r, m, \psi^{\prime}\right)$ with values in $\bar{M}_{l+m+2 r}\left(N N^{\prime}, \psi^{\prime} \omega ; K\right)$ for a suitable finite extension K of \mathbb{Q}_{p}. We now define, parallel to (6.14), the ordinary part $\Phi^{0}\left(r, m, \psi^{\prime}\right)$ of the measure $\Phi\left(r, m, \psi^{\prime}\right)$ by

$$
\begin{equation*}
\int_{Y} \phi d \Phi^{0}\left(r, m, \psi^{\prime}\right)=e\left[\int_{Y} \phi d \Phi\left(r, m, \psi^{\prime}\right)\right] . \tag{8.5}
\end{equation*}
$$

Then, the measure $\Phi^{0}\left(r, m, \psi^{\prime}\right)$ has values in the finite dimensional vector space $\mathscr{M}_{l+m+2 r}\left(\Gamma_{0}\left(N N^{\prime} p^{u}\right), \psi^{\prime} \omega ; K\right)$ by Proposition 4.1. Let k be an integer with $k>l$. If r is an integer with $0 \leqq 2 r<k-l$, we have, for any $\phi \in \mathscr{C}(Y ; K)$,

$$
\begin{equation*}
\int_{Y} \phi d \Phi^{0}\left(r, k-l-2 r, \psi^{\prime}\right)=(-1)^{r} \int_{Y} \phi(y) y_{p}^{r} d \Phi^{0}\left(y ; 0, k-l, \psi^{\prime}\right) \tag{8.6}
\end{equation*}
$$

where y_{p} is the projection of $y \in Y=\mathbb{Z} / N^{\prime} \mathbb{Z} \times \mathbb{Z}_{p}$ to the factor \mathbb{Z}_{p}. This can be proved in exactly the same manner as in the proof of Propositions 6.2 and 6.3. Let f be a primitive form of weight $k>l$, of conductor C and with character ψ. Assume that $|a(p, f)|_{p}=1$ and that K contains all the Fourier coefficients of f. Let f_{0} be the ordinary form associated with f and let C_{0} be the smallest level of f_{0}. Write $C_{0}=C^{\prime} p^{\mu}$ with an integer C^{\prime} prime to p and assume the divisibility of N^{\prime} by C^{\prime}. Then the measure $\Phi^{0}=\Phi^{0}(0, k-l, \psi \bar{\omega})$ has values in the space $\mathscr{M}_{k}\left(\Gamma_{0}\left(N^{\prime 2} p^{\mu}\right), \psi ; K\right)$. Let Tr denotes the trace operator of $\mathscr{A}_{k}\left(\Gamma_{0}\left(N^{\prime 2} p^{\mu}\right), \psi ; K\right)$ onto $\mathscr{M}_{k}\left(\Gamma_{0}\left(C_{0}\right), \psi ; K\right)$. Then, the bounded measure φ_{b} on Y in Theorem 2.2 can be defined by

$$
\int_{Y} \phi d \varphi_{b}=\ell_{f}\left[\operatorname{Tr}\left(\int_{Y} \phi d \Phi^{0}\right)\right],
$$

where ℓ_{f} is the linear form on $\overline{\mathcal{M}}_{k}\left(C_{0}, \psi ; K\right)$ attached to f. The evaluation of the integral $\int_{Y} \phi(y) y_{p}^{r} d \varphi_{b}(y)$ for any locally constant function ϕ with (2.6) can be carried out in exactly the same fashion as in § 7.

§9. Functional equations of $\mathscr{D}_{N}(s, f, g)$

The functional equations and the meromorphy of the zeta functions $\mathscr{D}_{N}(s, f, g)$ was proved by Jacquet [10, Th. 19.14] for any primitive forms f and g through a representation theoretic generalization of Rankin's method [18]. However, the familiarity with the representation theory is necessary to understand his results; so, for the reader's convenience, we give here a brief exposition of this in a special case where the original method of [18] can be applied. The details of our arguments may be found in [21, 25, 26]. Let

$$
f=\sum_{n=1}^{\infty} a(n) e(n z) \quad \text { and } \quad g=\sum_{n=1}^{\infty} b(n) e(n z)
$$

be primitive forms of conductor $C(f)$ and $C(g)$, respectively. Let k and ψ (resp. l and ξ) be the weight and the character of f (resp. g). For any Dirichlet
character ω, we write $C(\omega)$ for the conductor of ω. We now assume that:
(9.1 a) N is the least common multiple of $C(f)$ and $C(g)$;
(9.1b) $k>l$;
(9.1c) $\quad N=C(\psi \xi)$.

Now we define the root numbers $W(f)$ and $W(g)$ by

$$
\left.f\right|_{k}\left(\begin{array}{cr}
0 & -1 \tag{9.2}\\
C(f) & 0
\end{array}\right)=W(f) f^{\rho},\left.\quad g\right|_{l}\left(\begin{array}{cr}
0 & -1 \\
C(g) & 0
\end{array}\right)=W(g) g^{\rho}
$$

where ρ is the complex conjugation. Let $G(\omega)$ denote the Gauss sum for a primitive character ω and put $W(\omega)=G(\omega) /|G(\omega)|$. Write $M(g)=N / C(g)$ and $M(f)=N / C(f)$, and put

$$
W(f, g)=a(M(g))^{\rho} b(M(f))^{\rho} W(f) W(g) W(\psi \xi)
$$

Theorem 9.1. Put

$$
R(s, f, g)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s+1-l) \mathscr{D}_{N}(s, f, g) .
$$

Then, $R(s, f, g)$ can be continued as an entire function on the whole complex plane and satisfies the functional equation:

$$
\begin{align*}
& R(k+l-1-s, f, g) \tag{9.3}\\
& \quad=(-1)^{l} W(f, g) N^{s-k-l+\frac{s}{2}} C(f)^{s-\frac{k}{2}} C(g)^{s-\frac{l}{2}} R\left(s, f^{\rho,} g^{\rho}\right) .
\end{align*}
$$

Even when $k=l$, a similar functional equation holds, but the holomorphy is not necessarily valid (see [22]).

Proof. Let us define an Eisenstein series of weight m and of character ω modulo N by

$$
F_{m, N}(z, s, \omega)=\pi^{-s} y^{s} \Gamma(s+m) \sum_{a \bmod N} \omega(a) E_{m, N}(z, s ; 0, a) .
$$

Then, $F_{m, N}(z, s, \omega)$ is an entire function in s if $m>0$. If ω is primitive, it satisfies the functional equation:

$$
\begin{equation*}
F_{m, N}(z, 1-m-s, \omega)=W(\omega) N^{3 s+m-\frac{3}{2}} z^{-m} F_{m, N}(-1 / N z, s, \bar{\omega}) \tag{9.4}
\end{equation*}
$$

(cf. $[26,(19)]$). On the other hand, we know from $[26,(22)]$

$$
\begin{equation*}
R(s, f, g)=2^{-1} \pi^{1-k} \int_{\mathfrak{\xi} / \Gamma_{0}(N)} \overline{f^{\rho}(z)} g(z) F_{m, N}(z, s+1-k, \psi \xi) y^{k-2} d x d y \tag{9.5}
\end{equation*}
$$

for $m=k-l$. This shows the holomorphy of $R(s, f, g)$ on the whole complex plane. Since $\psi \xi$ is primitive by (9.1 c), we know from (9.4) that

$$
R(k+l-1-s, f, g)=A_{1}(s) \int_{\mathfrak{G} / \Gamma_{0}(N)} \overline{f^{\rho}} g F_{m, N}\left(\frac{-1}{N z}, s+1-k, \overline{\psi \xi}\right) z^{-m} y^{k-2} d x d y
$$

where

$$
A_{1}(s)=2^{-1} \pi^{1-k} N^{3 s-2 k-1+\frac{s}{2}} W(\psi \xi)
$$

Note that

$$
\begin{aligned}
f^{\rho}(-1 / N z) & =(-1)^{k} \overline{W(f)} N^{k / 2} M(f)^{k / 2} f(M(f) z) z^{k} \\
g(-1 / N z) & =W(g) N^{l / 2} M(g)^{l / 2} g^{\rho}(M(g) z) z^{l}
\end{aligned}
$$

Substituting z for $-1 / N z$ in the formula of $R(k+l-1-s, f, g)$, we have by (9.5) that

$$
R(k+l-1-s, f, g)=A_{2}(s) L(2 s+2-k-l, \overline{\psi \xi}) \sum_{n=1}^{\infty} a(n / M(f))^{\rho} \cdot b(n / M(g))^{\rho} n^{-s}
$$

where

$$
\begin{aligned}
A_{2}(s)= & (-1)^{l} W(f) W(g) W(\psi \xi) M(f)^{\frac{k}{2}} M(g)^{\frac{l}{2}} \\
& \cdot N^{3 s-\frac{3}{2}(k+i-1)}(2 \pi)^{-2 s} \Gamma(s) \Gamma(s+1-l)
\end{aligned}
$$

Define complex numbers $\alpha_{p}, \alpha_{p}^{\prime}, \beta_{p}, \beta_{p}^{\prime}$ for every prime p by the Euler products:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a(n)^{\rho} n^{-s}=\prod_{p}\left[\left(1-\alpha_{p} p^{-s}\right)\left(1-\alpha_{p}^{\prime} p^{-s}\right)\right]^{-1} \\
& \sum_{n=1}^{\infty} b(n)^{\rho} n^{-s}=\prod_{p}\left[\left(1-\beta_{p} p^{-s}\right)\left(1-\beta_{p}^{\prime} p^{-s}\right)\right]^{-1}
\end{aligned}
$$

Since N is the least common multiple of $C(f)$ and $C(g), M(f)$ is prime to $M(g)$. Then, we know from [25, Lemma 1] that

$$
\begin{aligned}
\sum_{n=1}^{\infty} a(n / M & (f))^{\rho} b(n / M(g))^{\rho} n^{-s} \\
& =(M(f) M(g))^{-s} \sum_{n=1}^{\infty} a(M(g) n)^{\rho} b(M(f) n)^{\rho} n^{-s} \\
& =(M(f) M(g))^{-s} \prod_{p} X_{p}^{*}(s) / Y_{p}(s)
\end{aligned}
$$

where $X_{p}^{*}(s)$ and $Y_{p}(s)$ are given by

$$
\begin{gathered}
X_{p}^{*}(s)= \begin{cases}1-\alpha_{p} \alpha_{p}^{\prime} \beta_{p} \beta_{p}^{\prime} p^{-2 s} & \text { if } p \nmid M(f) M(g), \\
a(p)^{\rho \operatorname{ord}_{p}(M(g))} & \text { if } p \mid M(g), \\
b(p)^{\rho o r d_{p}(M(f))} & \text { if } p \mid M(f),\end{cases} \\
Y_{p}(s)=\left(1-\alpha_{p} \beta_{p} p^{-s}\right)\left(1-\alpha_{p} \beta_{p}^{\prime} p^{-s}\right)\left(1-\alpha_{p}^{\prime} \beta_{p} p^{-s}\right)\left(1-\alpha_{p}^{\prime} \beta_{p}^{\prime} p^{-s}\right) .
\end{gathered}
$$

The above expression of $X_{p}^{*}(s)$ for the prime factor p of $M(f) M(g)$ follows from [25, (3.1)], since $M(f)$ (resp. $M(g)$) is a divisor of $C(g)$ (resp. $C(f)$) by (9.1a). Then, by [25, Lemma 1], we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} a(n / M(f))^{\rho} b(n / M(g))^{\rho} n^{-s} \\
&=a(M(g))^{\rho} b(M(f))^{\rho}(M(f) M(g))^{-s} \sum_{n=1}^{\infty} a(n)^{\rho} b(n)^{\rho} n^{-s}
\end{aligned}
$$

This proves (9.3).

References

1. Asai, T.: On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution. J. Math. Soc. Japan 28, 48-61 (1976)
2. Bourbaki, N.: General topology. Paris: Hermann 1961
3. Bourbaki, N.: Commutative algebra. Paris: Hermann 1972
4. Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301-314 (1973)
5. Coates, J., Wiles, A.: On p-adic L-functions and elliptic units. J. Austral. Math. Soc. 26, 1-25 (1978)
6. Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques, In: Modular functions of one variable, II. Lecture notes in Math., vol. 349, pp. 143-316. Berlin-HeidelbergNew York: Springer 1973
7. Doi, K., Miyake, T.: Automorphic forms and number theory (in Japanese). Tokyo: Kinokuniya Shoten 1976
8. Hecke, E.: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Hamburg 5, 199-224 (1927)
9. Iwasawa, K.: Lectures on p-adic L-functions. Ann. of Math. Studies 74. Princeton: Princeton University Press 1972
10. Jacquet, H.: Automorphic forms on GL(2), II. Lecture notes in Math., vol. 278. Berlin-Heidel-berg-New York: Springer 1972
11. Katz, N.M.: The Eisenstein measure and p-adic interpolation. Amer. J. Math. 99, 238-311 (1977)
12. Katz, N.M.: p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104, 459-571 (1976)
13. Lang, S.: Cyclotomic fields. Grad. Texts in Math., vol. 59. Berlin-Heidelberg-New York: Springer 1978
14. Manin, Y.I.: Periods of parabolic forms and p-adic Hecke series. Mat. Sbornik 92 (134), 371393 (1974)
15. Manin, Y.I.: The values of p-adic Hecke series at integer points of the critical strip. Mat. Sbornik 93 (135), 631-637 (1974)
16. Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math. 25, 1-61 (1974)
17. Miyake, T.: On automorphic forms on $G L_{2}$ and Hecke operators. Ann. of Math. 94, 174-189 (1971)
18. Rankin, R.A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, I, II. Proc. Cambridge Phil. Soc. 35, 351-372 (1939)
19. Serre, J-P.: Formes modulaires et fonctions zeta p-adiques. In: Modular functions of one variable, III, Lecture notes in Math., vol. 350, pp.191-268. Berlin-Heidelberg-New York: Springer 1973
20. Shimura, G.: On elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J. 43, 199-208 (1971)
21. Shimura, G.: On modular forms of half integral weight. Ann. of Math. 97, 440-481 (1973)
22. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. 31, 7998 (1975)
23. Shimura, G.: On some arithmetic properties of modular forms of one and several variables. Ann. of Math. 102, 491-515 (1975)
24. Shimura, G.: On the Fourier coefficients of modular forms of several variables. Göttingen Nachr. Akad. Wiss. pp. 261-268 (1975)
25. Shimura, G.: The special values of zeta functions associated with cusp forms. Comm. Pure Appl. Math. 29, 783-804 (1976)
26. Shimura, G.: On the periods of modular forms. Math. Ann. 229, 211-221 (1977)
27. Shimura, G.: On certain zeta functions attached to two Hilbert modular forms, I. Ann. of Math. 114, 127-164 (1981)
28. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Tokyo Princeton: Iwanami Shoten and Princeton University Press 1971
29. Yager, R.I.: On two variable p-adic L-functions. Ann. of Math. 115, 411-449 (1982)

[^0]: Present address: Department de Mathématiques, Université Paris-Sud, F-91405 Orsay, France

