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I n t r o d u c t i o n  

The theory of p-adic modular  forms was initiated by Serre, Katz,  and Dwork, who, 

in the early 1970's, a t t empted  to define objects which would be recognizably modular  
forms but which would be truly p-adic, reflecting the p-adic topology in an essential 

way. Specifically, one wanted a theory where two modular forms with highly congruent 

q-expansion coefficients would be p-adically close, and where limits of modular  forms 

(with respect to this topology) would exist. The  initial motivation for this construction 

was the problem of p-adic interpolation of special values of L-functions. 

The  first difficulty, of course, was to find the correct definitions. Serre's approach (see 

[Se73]) was the most elementary: modular  forms were identified with their q-expansions 

and p-adic modular  forms were considered as limits of such q-expansions. Serre showed 

that  such limits have "weights" (in a suitable sense), and developed the theory suffi- 
ciently to be able to obtain p-adic L-functions by constructing suitable analytic families 

of p-adic modular  forms. His theory of analytic families of modular  forms will be briefly 

discussed in our third chapter. He was also the first to notice that  modular  forms of 
level Np (and appropriate nebentypus) are of level N when considered as p-adic modular 

forms, which is a crucial aspect of the p-adic theory. 

Dwork's approach was more analytic. In [Dw73], for example, he restricts himself 

to p-adic analytic functions on a modular curve (i.e., p-adic modular  forms of weight 

zero); in the same article, he notes the importance of growth conditions and of the fact 

that  the U operator  is completely continuous (in the sense of Serre) in the case which 

he is considering. 

Katz 's  work brought these approaches together,  showing how to define p-adic rnodu- 
lar forms in modular  terms, generalizing the results of Dwork on the U operator  and of 

Serre on congruences ([Ka731, [Ka75a], and [Ka76]). As defined by Katz,  p-adic modu- 
lar forms are clearly modular objects, i.e., they are clearly related to classifying elliptic 

curves with some additional structure. This allows a much more conceptuM approach 

to the theory, but  at the same time makes it less accessible. Using his results, Katz 
was able to obtain impor tant  results on higher congruences between q-expansions of 

modular  forms and several interpolation theorems for L-functions and Eisenstein series. 

It is this approach that  we follow on foundational matters ,  and it will be fully described 
in our first chapter. 

During the preparation of this book, the author received the financial support of the Funda~.o de 
Amparo ~ Pesquisa do Estado de S~o Paulo, Brazil, of the CAPP, S-COFBCUB project, and of the Institut 
des Hautes l~tudes Scientifiques in Bures-sur-Yvette, Prance. 
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More recently, attention has once again been called to the subject of p-adic modular 
forms by the work of Hida, who has used the theory, especially through his construc- 
tion of the "ordinary part" of the space of p-adic modular functions, in several different 
contexts (see [Hi86b], [Hi86a], etc.). Most notably, from our point of view, he has 

shown how to use ordinary p-adic modular forms to construct analytic families of Ga- 
lois representations. This has been considered in more detail by Mazur and Wiles in 
[MW86], and has motivated Mazur's construction of a general theory of deformations 
of Galois representations in [Ma], in relation to which several interesting results have 
been obtained by Mazur and Boston. 

The aim of this book is twofold. In the first place, we have tried to put together 
a unified and coherent exposition of the foundations of the theory, pointing out, in 
particular, the connections between the various approaches of Serre, Katz, and Hida. 
In the course of so doing, we have filled in various gaps and obtained several new 
results. In particular, we have obtained quite a bit of information about the action 
of the U operator, especially as relates to the spaces of overconvergent forms. In the 
second place, we have considered the problem of constructing deformations of residual 
representations, and shown that many of these are attached (as in the classical case) 
to p-adic modular forms which are eigenforms under the action of the Hecke operators, 
provided the original residual representation is absolutely irreducible and attached to a 
classical modular form over a finite field. 

The chapters break down as follows: the first chapter is largely foundational in 
nature, and most of its contents are to be found, implicitly or explicitly, in the works of 
Serre and Katz. It is intended to give the reader ready access to the theory. We have 
tried to give precise references for all the quoted theorems, and have frequently given 
informal descriptions of their proofs. 

The second chapter introduces the Hecke algebra, and, in particular, the U operator, 
and considers the problem of obtaining eigenforms for the Hecke algebra by way of 
studying the spectral theory of the U operator. These results are extensions of those 
obtained by Katz in [Ka73] (he considers only the case of overeonvergent modular forms 
of weight zero). The main payoff here is the fact that there are "very few" overconvergent 
eigenforms for the U operator outside the kernel of U, in the precise sense that the space 
of overconvergent eigenforms for U with fixed weight k C Z and fixed valuation for the 
eigenvalue of U is finite-dimensional. In fact, if one requires that the eigenvalue of U 
be a unit (the "ordinary" case considered by Hida), one knows that any such eigenform 
of weight k >_ 3 will necessarily be classical. In the non-ordinary case (i.e., when 
the eigenvalue is assumed to belong to the maximal ideal of B), one does not know 
any examples that are not classical modular forms. By contrast, if we do not require 
overconvergence, one can produce a large number of (non-ordinary) eigenforms by a 
simple construction. 

The third chapter deals with constructing Galois representations; for this, we first 
construct a good duality theory for the Hecke algebra (related to the one obtained by 
ttida), and then use it in a crucial way to construct a "universal modular deformation" 
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of a given (modular)  absolutely irreducible residual representation,  which defines a sub- 

space of Mazur 's  "universal deformation space". We then s tudy this "universal modular  

deformation space" with a view to the natural  question of determining its dimension, 

and, in particular,  of deciding how close it comes to filling the entire deformation space. 

In this direction, we show that  the Krull dimension of the modular  deformation ring is 

at least three, which implies that  the dimension of the modular  deformation space, as 

a formal scheme, is at least two. One suspects that  all of the deformations are in fact 

modular,  so that  the two deformation spaces are the same; we have not been able to 
show this, even in the well-understood "neat  $3" case considered by Mazur and Boston, 

but  we have several partial  results tha t  tend to support  the conjecture. 

Readers who are already familiar with the theory of p-adic modular  forms as for- 

mulated by Katz  may wish to skip all of the first chapter  and the first sections of the 

second, beginning to read at the point where we begin to s tudy the U operator  and its 

spectral theory. Readers who are only interested in Galois representations can begin 

directly with Chapter  3, and refer back as necessary. 

Most of the work contained herein was done while at Harvard University and at 

the Inst i tut  des Hautes ]~tudes Scientifiques; I would like to thank both  institutions for 

their hospitality, and in particular for having been able to use their  computer  facilities 

so as to give this text  the appearance it has. 

My debt to the mathematical  work of Barry Mazur,  Nicholas M. Katz,  J.-P. Serre, 

and Haruzo Hida, among others, will, I hope, become abundant ly  clear in the text.  

On a more personal level, many people have helped me on the way to the completion 

of this book, which is a expanded and corrected version of my Harvard Ph.D. thesis. 

Barry  Mazur, who was my thesis advisor~ suggested the topic, expressed interest at every 

stage, and supplied crucial help at many points. David Roberts,  Dinesh Thakur ,  Jeremy 

Teitelbaum, Alan Fekete, and others of my fellow graduate students at Harvard were 

always ready to discuss this and other topics, and contr ibuted greatly to the intellectual 

exci tement of doing mathematics.  J. F. Mestre of the ]~cole Normale Superieure helped 

me with the complexities of incompatible computer  equipment at a critical point in the 

preparat ion of the final version. My sons Heitor and Marcos reminded me every night 
tha t  there was more to life than mathematics,  and cheered "Daddy 's  big project"  on 

from day to day. My parents helped in many ways, both financially and personal]y, and 
my wife contr ibuted in more ways than one can count. I thank you all; may God bless 

you all greatly. 

Bures-sur-Yvette,  January  of 1988 

Fernando Quadros Gouv~a 

. . . r~  rose,re,  7r&vrce e~¢ 85~a~, 0co9  ~ro~e~re. 
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Chapter  I 

p-adic Modular  Forms 

We begin by giving an overview of the basic theory of p-adic modular  forms, following, 

for the most  par t ,  the approach of Katz.  First, we explain Katz ' s  "p-adic modular  forms 

with growth conditions" and how they relate to Serre's version of the theory. Then,  we 

go on to discuss "generalized p-adic modular  functions" (which, as the name suggests, 

include all the objects defined previously). The main references for this chapter  are the 

foundat ional  papers of Serre and Katz ,  especially [Se73], [Ka73], [Ka76], and [Ka75b]. 

To unders tand the definition of p-adic modular  forms as functions of elliptic curves 

with extra  s t ructure  (which is what  we mean by a "modular"  definition), we should first 

recall how to interpret  classical modular  forms in these terms. 

Classical (meromorphic)  modular  forms can be interpreted as functions of triples 

(E/A, w, z), composed of an elliptic curve E over A, a non-vanishing invariant differential 

w on E and a level s t ructure  ,, obeying certain t ransformat ion laws. Equivalently, they 

can be thought  of as global sections of certain invertible sheaves over the moduli  space 

of elliptic curves with the given kind of level structure,  which is of course a modular  

curve. If we restrict A to be an algebra over the complex numbers,  then it is easy 

to see tha t  this is equivalent to the classical theory, since the quotient of the upper  

hMf-plane by a congruence subgroup classifies elliptic curves with a level structure.  The 

fact tha t  allowing A to run over R-algebras produces the classical theory of "modular  

forms defined over R" (i.e., complex modular  forms whose Fourier expansion coefficients 

belong to R) is known as the "q-expansion principle". An exposition of the classical 

theory in this spirit can be found in the first chapter  of [Ka73]; the first appendix  to 

the same pape r  explains how this formulation relates to the classical definitions. 

We wish to obtain a p-adic theory of modular  forms, i.e., a theory which reflects 

the p-adic topology in an essential way. This cannot be done by simply mimicking the 

definition of classical modular  forms as functions of elliptic curves with level s t ructure 

and differential, because the space of "classical modular  forms over Zp" thus obtained 

is s imply the tensor product  with Zp of the space of classical modular  forms over Z. 

To obtain a properly p-adic theory, we should take into account the p-adic topology by 

allowing limits of classical forms. This can either be done directly in terms of Fourier 

expansions of modular  forms, or one can try to obtain a "modular"  definition. 
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The  first approach, which is due to Serre (in [Se73]), is to identify a classical modular 
form with the set of its q-expansions, and then to consider limits by using the p-adic 
topology on Zp[[q]]. One is then able to show that  whenever a sequence of classical forms 

tends to a limit, their weights tend to a "p-adic weight" X, which is just a character 

X : ZX ~ Z~. This produces an elementary theory with strong ties to the theory of 

congruences between classical modular forms, which turns out to be a special case of 

the "modular"  theory developed by Katz in [Ka73]. 

To obtain a "modular" theory of p-adic modular  forms, one should define them 

as functions on elliptic curves, or, equivalently, as sections of bundles on a modular 

curve. This is achieved by Katz 's  idea of considering the rigid analytic space obtained 

by deleting p-adic disks around the supersingular points in the (compactified) moduli 

space M ( N )  of elliptic curves with a r~(N)-s t ructure  over Zp. To do this, we recall 

that ,  for p _> 5, the classical modular form Ep-1 is a p-adic lifting of the Hasse invariant 

(this is equivalent to the well-known fact that the q-expansion of Ep-1 is congruent to 

1 modulo p, see [Ka73, Section 2.11), and consider regions on A4(N) where Ep_l is "not 
too near zero". Since we would like to remove as small a disk as possible, we will allow 

the meaning of "not too near zero" to vary in terms of a parameter  r,  which we call the 

"growth condition". Taking r = 1 amounts to restricting ourselves to ordinary curves 

(i.e., to deleting the supersingular disks completely), and the resulting theory is the same 

as Serre's. However, if r is not a p-adic unit, we get a smaller space of "overconvergent" 

forms, which can be evaluated at curves which are "not too supersingular". Many of 

the interesting questions of the theory turn on the relation between these spaces as 

one varies r. The  idea of considering modular forms with growth conditions at the 
supersingular points seems to be originally due to Dwork (for example, in [Dw73]); it 

was first developed systematically by Katz in [Ka73]. 

The  idea of deleting the supersingular curves (more precisely, the curves with super- 
singular reduction) may sound strange at first, but is in fact quite natural  in the context 

of what is wanted. We would like congruences of q-expansions to reflect congruences of 
the modular  forms themselves, so that ,  for example, 

Ep-l(q) -- 1 (mod p) 

in Zp[[q]] should imply that  there exists a modular form f such that  

Ep_, - 1  = p  f; 

this, however, is certainly false if we allow f to be evaluated at (a lifting of) a supersin- 
gular curve since the value of Ep_~ at any such curve must be divisible by p (because it 

lifts the Hasse invariant). It turns out that  omitting the supersingular disks (and pos- 
sibly restricting the choice of differential on the curve) does the trick, and congruence 

properties of q-expansions are then reflected in congruence properties of p-adic modular 
forms. It also turns out that  it is interesting to vary the radius of the omit ted disk, 
introducing growth conditions and making the theory richer. 
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The  choice of Ep-1 as a lifting of the Hasse invariant  automat ica l ly  restricts us to 

primes p > 5. For p = 2 and p = 3, one must  choose a different lifting of the Hasse 

invariant  (of higher level, since there is no lifting of level 1); one knows tha t  such liftings 

exist for p = 3 and N > 2 and for p = 2 and 3 < N < 11. This means tha t  it is possible 

to construct  a theory on the same lines for p = 3 and any  level N > 2 (and then obtain 

a level N = 1 theory by taking the fixed points under the usual group action); for p = 2, 

however, one will only get a theory for levels divisible by some number  between 3 and 

11, and again t ry  to use group actions to get the full theory. In any case, since we 

will la ter  need to restrict our theory to the case p >__ 7 (for the spectral  theory of the 

U operator) ,  we have preferred to avoid these questions entirely by s ta t ing our results 

only for primes p _> 5. In [Ka73], Ka tz  discusses these problems further,  and takes the 

cases p = 2 and p = 3 into account in the s ta tements  of his theorems. 

1.1 L e v e l  S t r u c t u r e s  a n d  T r i v i a l i z a t i o n s  

In what  follows, p will denote a fixed rat ional  prime, p > 5, and N a fixed level with 

(N,p)  = 1. To guarantee  tha t  the moduli  problems under  consideration are repre- 

sentable,  we will often assume tha t  N > 3 (especially when discussing forms with growth 

conditions). We let B denote a "p-adic ring", i. e., a Zp-algebra which is complete and 

separa ted  in the p-adic topology. In most cases, B will be a p-adically complete discrete 

valuat ion ring or a quotient of such. 

Let E be an elliptic curve over a p-adic ring B. We will consider, following Katz,  

level s t ructures  on E of the following kind: 

D e f i n i t i o n  1.1.1 Let E be an elliptic curve over B, and let E[Np ~] denote the kernel  o] 

mult ipl icat ion by Np~on E, considered as a group scheme over B. A n  ar i thmet ic  level 

Np~structure ,  or Fl (Np ' )a ' i th -s t ruc ture ,  on E is an inclusion 

z : ttNp~ ~ E[Np ~] 

of  f inite f lat  group schemes  over B.  

I t  is clear tha t ,  if v > O, the existence of such an inclusion implies tha t  E is fiber- 

by-fiber ordinary, so tha t  we are automat ica l ly  restricting our theory to such curves 

whenever the level is divisible by p. 

We will denote by AA°(Np ~) the moduli space of elliptic curves with an ar i thmetic  

level Np ~ structure.  When  v > O, this is an open subscheme of the moduli  space 

of elliptic curves with a Fl(Np~)-s t ructure  as defined by Ka tz  and Mazur  in [KMSh], 

which we denote by AAI(Np~). This tast space may  be compactified by adding "cusps" 

(see [KM85], [DeRa]); this produces a proper  scheme which we will denote by MI(Np~) ,  

which contains as an (affine when v > 0) open subscheme the scheme obtained by adding 
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the cusps to JVI°(Np~), which we denote by M(Np~) .  Thus  we have a d iagram 

~O(Np~) ~ ~ ( N p  ~) 
.L 

M(Np ~) ~ ~ ( N p  ~) 

Moreover, the horizontal arrows are isomorphisms outside the primes dividing Np"; in 

part icular ,  they are isomorphisms of schemes over Zp when u = 0. (For more comments  

on these moduli  spaces, see [MW86].) 

We will say an ar i thmetic  level Np ' s t ruc tu re  is compatible with an ar i thmet ic  level 

NpU s t ructure  if the obvious d iagram of inclusions commutes .  

We will also want to consider "trivialized elliptic curves over B", which we define as 

follows: 

D e f i n i t i o n  1.1.2 Let  E be an elliptic curve over B. A trivial ization o r E  is an isomor-  

ph i sm 

o f  f o rma l  groups over B, where F, denotes the formal  complet ion of  E along its zero- 

section. A trivialized elliptic curve over B is an elliptic curve E over B together with a 

tr ivial ization ~. 

It  is clear that  such an isomorphism can only exist when E is fiber-by-fiber ordinary; 

conversely, given such an E, one can obtain a trivialization after a base change (see 

[Ka75b]). 

We will say that  a Fl(Np~)~'~th-structure ~ : ttNv~ ~ E[Np "] is compat ible  with a 

tr ivialization ~ if the induced map  

is the canonical inclusion. 

It  is impor t an t  to notice that  a trivialization ~ determines a sequence of mutual ly  

compat ib le  Pl(p~)a' i th-structures.  In fact, since there is an equivalence between the 

categories of p-divisible smooth connected commuta t ive  formal groups over B and of 

connected p-divisible groups over B (see [Ta67]), giving a trivialization is equivalent to 

giving such a sequence of level s tructures (which we might  call a Fl(p°°)~'ith-structure), 

and we will use either without further  comment .  

1.2 p - a d i c  M o d u l a r  F o r m s  w i t h  G r o w t h  C o n d i t i o n s  

In this section we define and review the basic propert ies of Katz ' s  p-adic modular  forms 

with growth conditions, which include as a special case Serre's p-adic modular  forms. 

All of this is due to Katz  in [Ka73], to which we will constant ly  refer for more details. 
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1.2.1 Def in i t ions  

Let B be a p-adic ring and let r E B; we will usually assume B is either a p-adically 

complete  discrete valuat ion ring or a quotient of such a ring. A p-adic modular  form with 

growth condit ion r will be a function on "test  objects with growth condition r"  with 

prescribed t ransformat ion  laws, by analogy with classical modular  forms considered as 

functions of test  objects consisting of elliptic curves with a level s t ructure  and a non- 

vanishing differential. Our  test objects will be elliptic curves with level s t ructures  and a 

non-vanishing differential plus an extra  s t ructure  which guarantees tha t  a p-adic lifting 

of the Hasse invariant of the curve is "not too near zero". 

D e f i n i t i o n  1.2.1 Let A be a p-adicaUy complete and separated B-algebra. A test object 

of level N and growth condition r defined over B is a quadruple (E/A, w, ~, Y ) ,  where E is 
an elliptic curve over A, w is a nonvanishing differential on E, ~ is a Fl(N)~'~th-structure 

on E, and Y E A satisfies 
Y" Ep- I (E ,w)  = r. 

We will sometimes refer to Y as an " r -s t ruc ture"  on the elliptic curve E. It  clearly can 

only exist when the p-adic valuat ion of Ep_I(E, w) is smaller than  the p-adic valuation 

of r; for example,  if r = 1, the existence of Y implies that  Ep_I(E, w) is a unit in A. 

Fur thermore ,  if B is fiat over Zp and we fix a differential w on E, then the r - s t ruc ture  Y 

is uniquely defined when it exists. Thus,  requiring an r - s t ruc ture  restricts us to curves 

which are "not too supersingular" (when r = 1, to ordinary curves). 

Let k E Z be an integer; then we define: 

D e f i n i t i o n  1.2.2 [Ka tz ]  A p-adic modular form of weight k, level N, and growth con- 

dition r defined over B is a rule f which assigns to a test object (E/A, w, z, Y)  of level N 
and growth condition r defined over B an element 

f ( E / A , w , * , Y )  E A 

satisfying the following conditions: 
¢ 

i. f ( E / A , w , z , Y )  depends only on the isomorphism class of the triple (E/A,w,* ,Y) ,  

ii. the formation of Y(E/A, Y) commutes with base change, 

iii. for any )~ E A × we have 

f (E/A,  )~co, z, ~ l - vy )  = A-k f (E/A,  w, z, Y) .  

We denote by  F(B, k, N; r)  the space of all p-adic modular  forms of weight k, level 

N, and growth condition r defined over B. The restriction to p-adic rings A in the 

definitions implies tha t  we have 

lira_ F(B/p"B, k, N; r) = F(B, k, N; 
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We say a p-adic modular  form with growth condition r is overconvergent if r is not a 

unit in B.  

Let f E F ( B , k , N ;  r). Let Tate(q) be the Tate  elliptic curve defined over ~( (q) )  (the 

p-adic complet ion of the ring of Laurent  series with coefficients in B), let Zcan denote 

its canonical ar i thmetic  level N s t ructure  and let wca, denote its canonical differential. 

(For the definitions, see [Ka73, Appendix 1] or [DeRa, Chap. VIII.) Since Tate(q) is 

ordinary, Ep_l(Tate(q) ,  coca,~) is invertible, so that  we can take 

Y = r .  E . _ l ( T a t e ( q ) ,  

and evaluate f on the test  object (Tate(q),cv . . . .  z . . . .  Y) to obtain an element of B((q)) 
( the p-adic complet ion of B((q))). We call 

f(q) = f (Ta te (q ) ,  co . . . .  z . . . .  Y) 

the q-expansion of f ,  and often, as here, denote it by f(q). We say that  f is holomorphic 
if 

f (Ta te (q ) ,  w~,~, ~, Y) E B[[q]] 

for every ar i thmetic  level N s t ructure  z on Tate(q),  and we denote the space of all such 

f by M(B, k, N; r).  (The  reader will note that  our notat ion differs from tha t  of Katz  in 

[Ka73].) In this case we again have 

li_m M(B/p'~B, k, N; r) = M(B, k, N; r) .  
n 

One may  also define the subspace of cusp forms, analogously to the classical case, by 

requiring tha t  the q-expansions at all the cusps belong to qB[[q]], i.e., we say that  

f E M ( B , k , N ; r )  is a cusp form if 

f(Tate(q),co ... .  z,Y) E qB[[q]] 

for any level N s t ructure  z on the Tare curve. We then denote the space of all such by 

S(B, k, N; r). 

R e m a r k :  Alternatively, we can think of modular  forms as global sections of the invert- 

ible sheaves co__~k, where w__ denotes the sheaf on A4(N) obtained by pulling back the sheaf 

of differentials on the universal elliptic curve on 3A(N) via the zero-section. Then  we 

should take as test  objects  triples (E/S, ~, Y), where E is an elliptic curve over a scheme 

S, ~ is an ar i thmet ic  IeveI N structure,  and Y is a global section of ~e(i-p) satisfying 

Y - E , - I ( E / s ,  ~) = r (where of course we view Ep-1 as a global section of w®('-l)).  This 

accounts for the need to change both  Y and w in the t ransformat ion rule above. In this 

approach,  meromorphic  modular  forms are sections over A/g°(N), holomorphic modular  
forms are sections (of a canonically defined extension of ~) over 3A(N), and cusp forms 

of weight k + 2 are sections of w__ ~k ® ft i over Ad(N), where f~l denotes the sheaf of 

differentials on 3A(N). 
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1.2.2 Basic Propert ies  

The  basic propert ies  of the modules of p-adic modula r  forms with growth conditions are 

explored in [Ka73]. We summarize  in this section those which will be useful to us later. 

First ,  we note tha t  when the p is ni lpotent  in the ring B,  one can determine com- 

pletely the module of (meromorphlc)  p-adic modular  forms f rom the classical spaces. 

We have: 

P r o p o s i t i o n  1.2.3 When p is nilpotent in B and N is prime to p, there is a canonical 

isomorphism 

F(B, k, N; r) ~ F ( B , k + j ( p - 1 ) , N )  / ( E , _ l - r ) ,  (I.1) 

where F(B ,  k, N) denotes the space of classical meromorphic modular forms of weight k 
and level N over B. 

Proof: We give an idea of the, proof  for the case when N > 3, in which all the 

functors in question are representable; the cases N = 1, 2 follows by the usual methods. 

The  main  point is tha t  the scheme A4°(N) is afflne, and tha t  the functor  "sections 

of w_ 1-p over 2A°(N) ' ' is represented by the relatively affine (and hence afflne) scheme 

Spee+.o( Svmm( _P- ) ); 

adding the condition tha t  the section satisfy Y • Ep-1 = r gives the scheme 

Spec_.o( Symm(~P-1)/(Ep_~ - r)) ,  

and the Leray spectral  sequence does the rest, since we are looking for global sections 

of certain sheaves. (This shows also tha t  the formal scheme representing the functor 

"elliptic curves over p-adic rings with level s t ructure  z and r -s t ruc ture  Y" is an atone 

formal  scheme.) For details, see [Ka73, Prop. 2.3.1]. [] 

The  analogous result for holomorphic forms is not true unless r is a p-adic unit, in 

which case we might as well assume r = 1. Then we have: 

P r o p o s i t i o n  1.2.4 When p is nilpotent in B and N is prime to p, there is a canonical 

isomorphism 

M ( B , k , N ;  1) - M ( B , k + j ( p - 1 ) , N  / ( E p _ l -  1) , (I.2) 

where M(B,k,N) denotes the space of classical holomorphic modular forms of weight k 
and level N over B. 
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Proof: This is proved in passing (for N >_ 3, when things are representable) in 

[Ka75a]. The  point here is that  the scheme obtained by deleting the supersingular 

points in AA(N) is afflne (because w has positive degree, and hence is ample), and the 

proof of the preceding proposition still works. When r is not a unit, the scheme obtained 

is the covering of 3A(N) given by 

Spec Sy,nm( _ )/ (Ep_  - r) ), 

which is not affine. (This will also follow from the results relating this space to the 

space of generalized p-adic modular functions which we will consider later.) [] 

R e m a r k :  It is worth noting that  the above theorem makes sense even for the case 

k < 0, where we simply take the spaces of classical forms of negative weight to be 0. 

This is also the case for the following results. 

When p is not nilpotent in B, one has a properly p-adic situation. In this case, one 

can give a description of M(B, k, N; r) both as an inverse limit of classical objects and 

in terms of a "basis". First we have: 

P r o p o s i t i o n  1.2.5 Let N > 3, and suppose that k #  1 or that k = 1  and N < 11. Let 

B be any p-adically complete ring, and suppose that r E B is not a zero-divisor in B. 

Then we have an isomorphism 

o o  

M(B, k, N; r) ~ 1L_m H°(AA(N), @ w_ k+j(p-1)) ~ (B/p~B) / (Ev_I  - r ) ,  
n j = 0  v 

where A/t(N) = ~ - I ( N )  denotes the compactified moduIi scheme over Zv for elliptic 

curves with a Fx(N)a"ith-structure and w__ denotes the invertible sheaf on .hd(N) obtained 

by pulling back the sheaf of differentials on the universal elliptic curve via the zero- 

section. 

Proof: Once again, this is a mat te r  of looking at the scheme classifying "test  objects 

with growth condition r" and then using the Leray-Serre spectral sequence; see [Ka73, 

Thin. 2.5.1]. The restriction on the level when k = 1 is due to the fact that  one does 
not have a base-change theorem for modular forms of weight 1 and level N > 12 (see 
the discussion in [Ka73]). [] 

We now give a more interesting description, due to Katz,  of the spaces M(B, k, N; r); 
essentially, we show that  one may choose a "Banach basis" for M(B, k,N; r) in terms 

of classical modular  forms. We first note that  the map of spaces of classical modular  

forms 
E v - a  

M(Zp ,  k + j ( p - 1 ) , N )  , M ( Z v ,  k + ( j + l ) ( p - 1 ) , N )  
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given by multiplication by Ev_a admits a (non-canonical) section (this is [Ka73, Lemma 
2.6.1], which again is a cohomological calculation). Choosing such sections once and for 
all for each j _> 0 (a non-canonical procedure which should be thought of as analogous 
to a choice of basis) we get 

A(Zv, k, j, N) C M(Zp, k + j(p - 1), N) 

such that 

M(Z , ,k  + j ( p -  1),N) ~ Ep_~. M(Zp, k + ( j -  1 ) (p -  1),N) • A(Zp, k, j ,N).  

We also set 

A(Zp, k,0,N) = M(Zp, k,N) 

(which is just 0 when k is negative) and 

A(B,k , j ,N)  = A(Zp, k , j ,N) ®z~ B. 

Thus we have isomorphisms 

J 
~ A ( B , k , a , N )  
a = O  

52bo 

~ ,  M ( B , k  + j ( p -  1),N) 

I ) 
j - -a  

(I3) 

P r o p o s i t i o n  1.2.6 Suppose that either k # 1 or N < 11. Then the inclusion, via (I.3), 
of A'~gid(B, k, N) in the p-adic completion of 

H°(A4 (N), (~  w_ k+j(p-1)) 
d>0 

induces, for any r, an isomorphism 

A" '~ (B ,k ,N)  ~ ,  M(B,k,N;r)  

~b~ ~ ~ ~ rab~ 
E~_ 1 ' 

(I.4) 

Now let A'igid(B, k, N) denote the B-module of all sums 

~ b ~ ,  b~ C A(B,k ,a ,N)  
a=O 

such that b, ~ 0 in the obvious sense, i.e., ba becomes more and more divisible by p in 
M(B,  k + a(p - 1), N) as a ---+ c~. (Notice that A'~gid(B, k, N) does not depend on r, as 
the notation suggests.) It is clear that A'ig~d(B, k, N) is naturally a p-adically complete 

B-module. If B is a p-adically complete discrete valuation ring with fraction field K, 
taking A'~o~d(B, k, N) as the "unit ball" defines a p-adic norm on A"~g~a(B, k, N) ® K 
which makes this a p-adic Banach space over K. 

The spaces of p-adic modular forms then turn out to be all isomorphic (but with 
different isomorphisms) to A'~aia(B,k,N), via an "expansion in terms of the chosen 
basis". 
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where ~ r%a/E~_ 1 is the p-adic modular form with growth condition r defined by 

] (E/A, ¢o,~,Y) = ~b~(E/A ,w ,~) .Y~ .  
a > 0  

In particular, M(B, k, N; r) is a p-adically complete B-module. 

R e m a r k :  In other  words, since we have chosen Y to satisfy 

Y .  Ep_~(E, ~ )  = r ,  

it makes sense to evaluate " r "E  . . . .  p-1 on curves with r-structures,  and, since our ring is 

chosen to be p-adically complete, it makes sense to look at convergent sums of such 

modular  forms. Since modular  forms may be multiplied by Ep-1, one must use the 

splitting referred to above to ensure uniqueness of the expansion. The point of the 

theorem is tha t  all p-adic modular forms with growth condition r are obtained in this 

way, so that  this gives a "Banach basis" (in quotes, because the "basis coemcients" will 

be modular forms rather  than numbers) for our space. 

Proof: see [Ka73, Section 2.6]. D 

The  description we have just obtained has many useful corollaries, especially concerning 

the relation between the spaces of overconvergent forms when one varies the growth 
condition r. 

C o r o l l a r y  1.2.7 Let r 2 = r.r 1 in B. Under the hypotheses above, the canonical mapping 

M(B, k,N; r2) , M(B, k, N; r l )  

defined by transposition from the map of funetors 

(E/A, co, z,Y) , (E/A,W,z,r. Y)  

is injeciive, and is given in terms of the "basis" by 

Ar'9'd(B, k, N) ~ Ar'9~d(B, k, N) 

E b ~  , , E r°bo. 
(I.5) 

This corollary allows us to identify the space of "overconvergent" p-adic modular  

forms M(B, k, N; r) (where r is not a unit in B) as a subspace of the space M(B, k, N; 1) 

of ("non-overconvergent",  because defined only outside the supersingular disks) p-adic 

modular  forms. The description we get amounts to saying that  the overconvergent forms 

are those whose Laurent  expansions around the omit ted supersingular disks converge 
especially rapidly (the "b~" should tend to zero "bet ter  than linearly"). To be precise: 
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Coro l l a ry  1.2.8 Under the previous hypotheses, and assuming r is not a unit in B, let 

f E M(B, k, N; 1), and let 

f= bo 
o>o E~_~ 

be its ezpansion. Then, for any m >_ O, pmf  is in the image of M(B,k ,N;r )  i f  and 

only f f  r o divides pmb= in M(B, ~ + a(p - 1), N) ,  for  every ~ >_ O, and ~-°bo -~ 0 

in the same sense as above. I f  B is a discrete valuation ring, this is equivalent to 

ord,(b~) _> a . o r d s ( r ) - m  and ords(r-%a) --4 0% where we normalize ord by ordp(p) = 1. 
In particular, i f  K is the fraction field of B,  then f E M(B, k, N; r) ® K i f  and only if  

?'-ab a ---+ 0 as a ---+ oo. 

Proof: immediate from the previous corollary. 

Note in particular that 

p m f  E M(B,k ,N;r )  and f E M(B,k,N;1)  

does not imply f C M(B, k, N; r), so that the natural p-adic topologies on the spaces 
M (B, k, N; r) ® K and M(B, k, N; 1) N K are distinct. (In this statement, we are of course 
assuming B is a domain and denoting its fraction field by K.) In fact, 

(M(B,k ,N; r )  ® K) • M(B,k,N;1)  

is dense in M(B, k, N; 1), because it contains all finite sums of the form 

- a  baEp-1, 
f in i t e  

while, as the next result shows, M(B,k ,N;r )  is actually a "very small" subspace of 
M(B, k,N; 1). 

We give M(B, k, N; r) ® K the p-adic topology determined by making the B-sub- 
module M(B,k ,N; r )  the closed unit disk; this is, so to speak, its "natural" p-adic 
topology: it is the p-adic topology which makes the map induced by Proposition 1.2.6 a 
linear homeomorphism of topological B-modules. With this topology, M(B, k, N; r) ® K 
becomes a p-adlc Banach space, and we have the following very significant result: 

Co ro l l a ry  1.2.9 Under the hypotheses above, assume that B is a discrete valuation 

ring, that B/p B is finite, and that r 2 = r . r  1 in B, where r is not a unit in B. Let K be the 

field of fractions orB.  Then the canonical map M(B, k,N; r 2 ) ® K  ----* M(B,  ]c,N; r l ) ® K  

obtained as in the previous corollary is a completely continuous homomorphism of p-adic 

Banaeh spaces. 

Proof: One needs only check that the image of M(B, k,N; r2) (tile unit ball in 
M(B, k, N, r2) @ K) is relatively compact. Since it is contained in M(B, k, N; rl), it is 
bounded, hence one need only check that its reduction modulo a power of p is a finite 
set, which is clear from the expression of the inclusion in terms of the "basis". [] 
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The  next  impor tant  property of our construction has to do with comparing the p- 

adic properties of modular  forms and of their q-expansions. As we remarked above, we 

can only expect these properties to correspond if we exclude the supersingular curves; 

in our setup, that  amounts to taking r = 1. It turns out that  this is also sufficient: 

P r o p o s i t i o n  1.2.10 With hypotheses as in Proposition L2.5, let rc C B be any element 

which divides some power of p. For any p-adic modular form f C M(B, k,N; 1), the 

following are equivalent: 

i. f C x . M ( B , k , N ; 1 ) ,  

ii. the q-expansion o f f  lies in x . B[[q]]. 

Proof: see [Ka73, Prop.  2.7]. 

Thus,  the p-adic norm on M (B, k, N; 1)is induced by the p-adic norm on B[[q]]. (Note 

that  this is definitely not the case i f r  is not a unit in B; in that  case, the topology induced 

by the q-expansion map is weaker than the "natural"  topology. M(B, k, N; r) ® K is not 

complete with the q-expansion topology, since its image is dense in M(B,k ,N;  1) ® K. )  

This shows that  the spaces with growth condition 1 are the ones to consider in order to 

obtain information about  congruences between q-expansions. For example, the following 

is an immediate consequence of Proposit ion 1.2.10 and Corollary 1.2.8: 

C o r o l l a r y  1.2.11 Let f E M(B, k, N; r) ;  then there exists a classical modular form 

b0 E M ( B , k , N )  such that f (q )  = bo(q) (mod p). 

The point here is that  b0 has the same weight and level as f ;  on the other hand, 

it is perfectly possible that  bo(q) = 0 (mod p), in which case the result seems less 
interesting. 

Since Serre's definition of p-adic modular forms is formulated in terms of limits (in 

the p-adic topology of B[[q]]) of q-expansions, one would guess, after Proposi t ion 1.2.10, 

tha t  Serre's space will be related to our space M(B,k ,N;  1). This is in fact the case. 

The  first step is to get another  description of the space of p-adic modular forms with 
growth condition v = 1: 

P r o p o s i t i o n  1.2.12 Under the preceding hypotheses, given a power series f (q )  E B[[q]], 
the following are equivalent: 

i. f (q )  is the q-expansion of a p-adic modular form f C M(B,k ,N ; 1 ) ,  

ii. for every n > 1, there ezists m > 1 such that m - O(mod pr~-l) and a classical 

modular form M(B, N, k + re (p-  1)) whose q-expansion is congruent to f(q) 
modulo p" in B[[q]]. 
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Proof: The main difficulty is to show that the reduction modulo pn of the q-expansion of 
a p-adic modular form is classical (i.e., is the reduction of the q-expansion of a classical 
modular form); see [Ka73, Prop. 2.7.2]. [] 

Thus, the space of p-adic modular forms (of integral weight) defined by Serre in 
terms of limits of (q-expansions of) classical modular forms (see [Se73]) coincides with 
M(B, k, N; 1). Of course, Serre also considers more general weights X C Horn ..... (Z~, Z~). 
We will consider these later, since they appear naturally in the theory of generalized 
p-adic modular functions. 

There are clearly relations between the various spaces of modular forms with growth 
condition when one varies the weight. The simplest of these comes from the obvious 
remark that Ep-1 is "invertible', i.e., that E~_11 ~ M(Zp, 1 - p ,  1; 1). Hence, we have 

Corollary 1.2.13 Multiplication by Ep_l gives an isomorphism 

Ep-1 
M(B, k,N; 1) , M ( B , k + p - I , N ; 1 ) .  

The corresponding map on the "bases" is given by 

A'ig'd(B, k, N) , A~ig~d(B, k + p - 1, N) 

(bo, , , 

As to the image of the subspace of overconvergent forms, we have 

Ep_IM(B,k,N;r) C Ep_IM(B,k,N) + rM(B,k  + p -  I ,N;r)  

C M ( B , k + p - l , N ; r ) .  

In particular, if M(B ,  k, N) = 0 (for ezample, if k < 0), we get an isomorphism 

M(B,k ,N;r )  {s,_, M ( B , k + p - l , N ; r ) .  

Proof: This is all immediate by considering the expansion in (1.4) and using Corol- 
lary 1.2.8. [] 

To some extent, this result shows that the theory of modular forms of negative 
integral weight is determined by the theory for positive integral weight. However, the 
isomorphism is not equivariant for the action of the Hecke operators, which makes it 
less interesting from the point of view of the following chapters, where we will mostly 
be considering eigenforms under the Hecke operators. 

1 .3  G e n e r a l i z e d  p - a d i c  M o d u l a r  F u n c t i o n s  

Generalized p-adic modular functions were first introduced by Katz in his papers [Ka75b], 
[Ks77] [Ks76], and [Ka75a]. They represent a generalization of what was done before, 



14 Chap t e r  I. p-adic Mo d u l a r  Forms 

and, as we shall see, they contain all the spaces we have discussed so far. The ring 

of generalized p-adic modular functions is the ideal context for studying congruences 

between modular  forms of different weights, and also for considering universal problems, 

as we shall do later with respect to Galois representations. 

We begin by giving the definition and the basic properties of p-adic modular  func- 
tions, and define the diamond operators which act on them. Then, using the action 

of the diamond operators,  we define the weight and nebentypus of a p-adic modular 

functions and relate the definition to the classical one. In an appendix,  we explain how 

Serre's "p-adic modular forms of weight X" fit into the picture. 
There  are slight variations in approach among the several papers of Katz  quoted 

above; our approach is closest to that  in [Ka76], and we usually direct the reader there 

for further  details, especially of proofs, most of which we only sketch. For an overview, 

the reader might also check the relevant sections of [Ka75b]. 

1.3.1 Def in i t ion  

We will define generalized p-adic modular  functions as functions on trivialized elliptic 

curves (see Section 1.1). Recall, first, that  we have defined a p-adic ring to be a ring B 

that  is complete and separated in the p-adic topology, so that  we have 

B = li_m B/pnB. 
t l  

We will define a p-adic modular function as something which takes values on trivialized 

elliptic curves defined over such rings. More precisely, the functor from the category of 
p-adic rings (with homomorphisms that  are continuous in the p-adic topology) to the 
category of sets given by 

[ isomorphism classes of triples] 

/(E/A,9),*) where 13 is an elliptic c u r v e |  
{p-adic rings A} ' ~over A, W is a trivialization, and z~ 

[is a compatible ari thmetic level Np~-[ 
t s tructure J 

is representable by a p-adie ring W(Zp,  Np~). For any p-adic ring B, the same functor 

restricted to B-algebras A is represented by W ( B ,  Np ~) = W@B.  

To construct the ring W ,  we first note that,  since it is a p-adic ring, we must have 

W = li_m W/pnW = li_m W ( Z / p n Z ,  N p ' ) ,  
n r ~  

so that  we need only specify the rings W,~ = W(Z/p'~Z, Np~). For this, we recall that 
a trivialization may be thought  of as a compatible family of Pl(p~')-structures. Recall 

that  Ad(Np ~) denotes the moduli space of elliptic curves over Zp with a rl(Np~) o'~h- 
structure (with the cusps added, but of course still aPfine if v > 1), and that 3A°(Np ~) 

is the subscheme obtained by deleting the cusps. For every m > v let W,,,~ denote the 
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coordinate ring of the affine scheme Ad°(Np TM) ® Z/p'~Z (when v = 0 and m = 0, one 

must take the coordinate ring of the affine scheme obtained by deleting the supersingular 

points from ~ ° ( N )  ® Z/p"Z) .  Then  we set 

so that  

W ,  =- li_m W . . . .  (1.6) 
r r l  

W = lim li_m W . . . .  (1.7) 
n m 

Note that  this definition is independent of the exponent  v, so that  we have 

W ( Z . , N p  ~) = W ( Z . , N ) .  

This is also clear from the modular description of W ,  since the trivialization ~ and 
the requirement that  the level s t ructure be compatible with it determine Fl(p~) a'ith- 
structures for all v > 0. (For more details of the construction of W ,  see [Ka75b], 

[Ka76], and [Ka77].) An element f E W is called a generalized p-adic modular function. 
Given a trivialized elliptic curve (E/A,~,z) over a p-adic ring A, and a generalized 

p-adic modular  function f C W ,  we get a value 

f(E/A,~,*) • A, 

which depends only on the isomorphism class of the trivialized curve; this process com- 

mutes with base change of p-adically complete Zp-algebras. The modular function f 

is determined by all of its values (tautologically, since f is its value on the universal 

trivialized elliptic curve over W) .  

We want to define when a p-adic modular function is holomorphic; once again, we 

do this by considering the Tare curve. Thus, let Tate(q) be the Tare elliptic curve over 

Zp((q)); there are canonical maps 

~c~,~: Wate'--(q) - - >  (~.~ 

zc~:  ttNv~ ~-~ Tate(q)[Np~]. 

Then  we can evaluate any f • W at (Tate(q) ,~c~, .~ ,~)  to get an element f(q) • 
Zp((q)), which we call the q-expansion of f .  Mapping f to f(q) gives a homomorphism 

w f f( l 

which we call the q-expansion map. We will say that  f • W is holomorphic if f(q) E 
Zp[[q]] (which in fact implies that  we have f (Ta te (q ) ,  ~o, z) E Zp[[q]] for any level s t ructure 
2 and any trivialization ~), and we denote by V = V(Zp, N) the subring of W consisting 

of the holomorphic generalized p-adic modular functions. Finally, we extend these 

definitions to W ( B ,  N) and V(B ,  N) for any p-adically complete Zp-algebra B in the 

obvious way (i.e., by restricting the functor to be represented to schemes over B, or 

equivalently by restricting our test objects to elliptic curves over B-algebras.) 
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The  ring V of holomorphic modular functions may also be constructed directly by 

noting that  the schemes .hd(Npm)®Z/p"Z are themselves affine when m > 0, and taking 

Vn.m to be their coordinate rings, and by taking V,~.0 to be the coordinate ring of the 

affine scheme Ad°~e(N) ® Z/p'~Z obtained by deleting the supersingular points in the 

scheme AA(N) ® Z/pnZ. Then we get 

v = 1)_~ li_m v . . . .  (I .S) 
m 

as before. This is the approach followed in [Ka75a]. The V,~,m are 6tale over Vn,0, 

and may also be described in terms of the characters of the ~tale fundamental  group of 
Ad°~(N) ® Z/p'~Z defined by the action on the fitale quotient of the kernel of pn on the 

universal elliptic curve. For more details, see Katz 's  t reatment  in [Ka73, Chapter  4]. 

There  is nothing special about the "weight zero" aspect of this construction (i.e., 

the fact that  it uses the coordinate rings, thus the "forms of weight zero" on the 
various incomplete modular curves A4(Np TM) ® Z/p'~Z). In fact, as Katz  observes in 

[Ka75a], if ra >_ 1, one can choose a nonvanishing section of co over each of the affine 
curves AA(Np TM) ® Z/pnZ, so that  we have H°(3d(Np TM) ® Z/p~Z, 59) ~ H°(A4(Np TM) ® 

Z/p'~Z, co___ ~k) for any k. This allows us, so to speak, to think of the construction as 

involving forms of any weight k. In fact, as we shall see, the spaces of p-adic modular 

forms of weight k are all contained in V. 

Finally, we need to define the ideal of parabolic modular functions. For this, we define 
VC,,,, to be the ideal of V,~,,~ determined by the requirement that  the q-expansions at rt ~rrt 

all the cusps (i.e., at the Tate  curve with all possible ari thmetic level Npm-structures) 

be in q. (Z/p'~Z)[[q]], then define 

Vp~, = lim lim V c~'v. 
n rr~ 

Equivalently, we can define, for m > 1, 

~'p w®-2H0(2t4(Np TM) ® Z/p'~Z, ~21), V n rn --- 

w h e r e  f/1 is the sheaf of differentials and co is the canonical nonvanishing section of w__ 

mentioned above. Note, then, that  the analogous construction for a p-adic ring B yields 

Vv, , (B , N) = V w , ~ B ,  and that ,  by construction, Vp~,(B, Np ~) is independent  of u. 

1.3.2 T h e  q-expans ion  map  

The  most fundamental  result about  the relation between p-adic modular  functions and 

their q-expansions is what is known as the q-expansion principle. It captures the fact 

that  by excluding the supersingular curves (via the requirement of a trivialization) we 
have made the p-adic properties of the modular functions correspond well to the p-adic 

properties of their q-expansions. It is this result which gives the q-expansion map its 
fundamental  role in the theory. 
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T h e o r e m  1.3.1 Let B be a p-adic ring. The q-expansion map 

W(B,  N) , B((q)) 

is injective, and the cokernel 

is fiat over B. 

B((-~))/W(B, Np, ) 

Proof: The main point is to show that the q-expansion map is injective irrespective 
of the ring B, and hence in particular for B / p B ,  whence the theorem. This property 
is related to the irreducibility of the moduli space of trivialized elliptic curves; a proof 
taking this approach, but using the language of algebraic stacks, can be found in [Ka75b]. 
(See also the proof in [Ka75a], which uses a different language.) [] 

Another useful result is 

P ropos i t i on  1.3.2 Let B C B' be p-adic rings. Then we have a natural inclusion 
W(B,  Np ~) C W(B',Np~), satisfying: for f e W(B' ,Np ~) we have 

A 

f E W ( B ,  Np ") ¢=~ f (q)  EB((q) ) .  

Proof: see [Ka76, Chapter 5]. [] 

This means that the ring over which a modular function is defined is determined by 
its q-expansion coefficients, and justifies the classical approach of starting with complex 
modular forms and then requiring that the q-expansion coefficients belong to various 
subrings. 

These two results are together known as "the q-expansion principle", and are fun- 
damental in all that follows. In intuitive terms, they mean that the situation "near 
the cusps" determines what happens at all ordinary curves (since we have omitted the 
supersingular disks). One should remark that they clearly remain true if we substitute 
W by V everywhere. 

1 .3 .3  D i a m o n d  o p e r a t o r s  

The diamond operators are defined by varying the level structure and the trivialization 
of the given elliptic curve by the action of the natural groups. In terms of the action of 
these operators, we then define the weight and the nebentypus of a generalized p-adic 
modular function (when they exist!). Let V = V(Zp, N) be the ring of holomorphic 
p-adic modular functions, as above. Since we are mainly interested in V (rather than 
W),  we define the diamond operators only for V; it is clear however, that the same 
definition works in general. 

Let 
Z × G(N) = z; × (/NZ) 
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We define an action of (x, y) e G(N) on V by 

(x, y ) f ( E ,  ~p, z) = f ( E ,  x - l ~ ,  yz), 

where y acts on z by the canonical action of Z/~NZ on jLt N and x -1 acts on T via the 

Zp-action on Fl(p°°)a'ith-structures derived from the action of % ,  z on/~p. .  

(The definition, of course, thinks of V as V(Zp,  N); if we think of V as V(Zp,  Np~), 

then we must  let (x, y) act on a Fl(Np~)~'ith-structure ~ by acting by y on t~ N and by x 

on/~p. ,  preserving the compatibi l i ty  between level s t ructure  and trivialization.) 

There  is a close connection between the diamond operators  and the spaces V,~,m 

which we used to construct  V. Let F = 1 + pZp C Z x denote the subgroup of one-units, 

and let Fi C F denote its unique subgroup of index p*, and let V,,,oo = li_m V,~.m = 
r n  

V ® Z/p'~Z. Then  we have: 

P r o p o s i t i o n  1.3.3 The subring V,~.m C V,~.oo consists precisely of those elements of 
V,~,oo which are fized under the action of Fm via the diamond operators. In particular, 

Vl,a = (V  ® Z / p Z )  r = { f  C V ® Z/pZ]@,  1) f  : f ,  V'r E r} .  

Proof: See [Ka75a]. This result is intuitively clear, since the action of F,~ on the 
trivialization does not change the ari thmetic pro-structure it determines,  and since V,~,m 

is precisely the par t  of V,,oo that  depends only on a level pro-structure. The  proof 

simply makes this precise. [] 

The  diamond operators  are ring homomorphisms,  i.e., we have 

<x, y>(fg) = (<x, y>f)(<x, v>g). 

Thus,  we may  decompose V in terms of the characters of any finite subgroup (of or- 

der pr ime to p, if we wish to avoid denominators)  of G(N), and it will sometimes be 
convenient to do so. 

R e m a r k :  It  is not possible to decompose V in terms of the characters  of all of G(N) (as 

Katz  points out in [Ka75a]); in fact, the sum of the isotropic subspaces corresponding 

to the various characters  of G(N) is a proper  subring of V.  To see this, consider first 

the special case of a character  X : Z~ ~ Z~, given by X(X) = x k, for some integer k, 

and suppose tha t  f E V satisfies <z ,1) f  = X(x)f  = zkf .  Then,  modulo p, f is invariant 

under  the subgroup of one-units F = 1 +pZp C Z~,. It follows from Proposi t ion 1.3.3 that  

the reduction of f rood p belongs to V1,1, which is only a small par t  of the reduction 

of V. Since any continuous character  Z~ ~ Z~ must  map  F into F, this is in fact 

t rue for any f on which the diamond operators  act through such a character .  Thus,  the 

reduction modulo  p of the sum of all the isotropic subspaces corresponding to characters 

Z~, ~ Z~ must  be contained in the proper  subring V1.1 of V ® Fp. 

It  is easy to see tha t  the diamond operators  permute  the trivializations on Tate(q) 

transitively, and stabilize the subspace Vp,,(Zp, N) of parabolic modular  functions. 
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1 . 3 . 4  W e i g h t  a n d  n e b e n t y p u s  

The  diamond operators  allow us to give a natural  definition of the weight and nebentypus 

of a generalized p-adic modular  function (when they exist). Given a continuous character  

X : Z~ , B ×, we say tha t  a generalized p-adic modular  function f C V ( B , N )  has 

weight X (as a modular  function of level N) if 

(x, 1)f = X(x)f,  

for a l l x  E Zp. I f x ( x )  = x ~ for some k E Z, we say f is of weight k. In addition, if 

k E Z and s is a character  of Z/NZ, we say that  f is of weight k and nebentypus  ~ (as 

a modular  function of level N) if 

( x , y ) I  = 

Finally, whenever there is a continuous character  X : G(N) ~ B x giving the action of 

the d iamond operators  on a modular  function f ,  we will say tha t  X is the weight-and- 

nebentypus  character  of f (because it contains the weight and the nebentypus  "mixed 

together";  note tha t  when p divides the order ¢(N) of ( Z / N Z )  × this can be a difficulty). 

As we shall see, these definitions turn  out to be consistent with the usual definitions of 

weight and nebentypus  (for modular  forms of level N). 

An impor tan t  special case is that  of forms of weight (i, k). In [Se73], Serre considers 

continuous characters  X C X = Hom(Z~,  Z~).  Decomposing Z~ as Z~ = Z / ( p -  1)Z x F, 

he shows tha t  X "~ Z / ( p -  1)Z x Zp, where, given x = (u ,s )  E Z~ = Z / ( p -  1)Z x F, 

an element (i,k) C Z / ( p -  1)Z x Zp corresponds to the character  (u,s) H X(i.k)(z) = 

uis ~ C Z~. The  element (1, 0) corresponds then to the TeichmiSller character  w, and we 

can rewrite the character  corresponding to (i, k) as 

• , , = 

when k is an integer, one can write X(,,k)(z) = (w(x))i-kx ~ for any z • Z x, and we 

will sometimes prefer to think in this way. We will say tha t  a p-adic modular  function 

f • V is a of p-adic weight (i, k) if we have (x, 1 ) f  = X(i,k)(x)f. As we will see ahead, 

these are precisely Serre's p-adic modular  forms of weight (i, k). 

As a ma t t e r  of general policy, one should reserve the expression "modular  form" for 

modular  functions which have weights, in contrast  to more general modular  functions 
f • V. The  point of the next two sections is to relate this convention to the spaces of 

modular  forms which we already know, both  classical and p-adic. 

1 . 3 . 5  M o d u l a r  f o r m s  a n d  m o d u l a r  f u n c t i o n s  

Given a trivlalizatlon ~ on E/A, we can pull back the canonical invariant differential 

on G,~ to obtain an invariant differential on ]~, which then extends to an invariant 

differential on E. (If  A is fiat over Zp, ~ is uniquely determined by the differential thus 
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obtained, and one can characterize which differentials correspond to trivializations - -  

see [Ka76, Section 5.4] .) This allows us to define maps from spaces of modular forms 
to V(B,N).  

Let dt/(1 + t) denote the canonical invariant differential on Gin; the map 

defines, for each k, a homomorphism of B-modules 

M(B,k,N) , V ( B , N )  

y ~-~ ] ,  

and hence a homomorphism of rings 

M ( B ,  k, N) , V(B, N), 
k=O 

given by 

](E,~,z)=f(E,~*( dt ) '~)" 

(1.9) 

(I.10) 

defines maps 

ferential w. Hence, the map 

, (E, ~ k i - ~ ) '  ~' (E, I(E, ~" i - - ~  ))- ) 

M(B,k,N;1) , v ( ~ ,  N) 
f , , ] (I.11) 

It is again clear that  this map preserves q-expansions, that  it maps the cusp forms into 
Vp~,, and that ,  for f E M(B, k, N; 1), the image f has weight k in the sense defined above. 

In fact, the p-adic modular forms of weight k and growth condition r = 1 defined above 

are precisely the generalized p-adic modular  functions of weight k. More generally, for 
any character  

X C Hom ..... ( Z ; ,  Z x),  

we have defined generalized p-adic modular  functions of weight X, and these coin- 

cide with Serre's p-adic modular  forms of weight X (which are defined as limits of 
q-expansions). The precise result is: 

This preserves q-expansions, so that  the map (I.9) is injective (by the q-expansion 

principle for classical modular forms). The map (I.10) is injective if and only if B is flat 
over Zp (see [Ka77, 1.1]). It is clear that f E M(B, N, k) implies that  ] is of weight k 

in the sense described above, and similarly for f of weight k and nebentypus e, so that  

the diamond operators map the image of M(B, k, N) in V to itself. Similarly, the image 

of the subspace S(B, k, N) of cusp forms is contained in Vpa, and is mapped to itself by 
all the diamond operators. 

The situation for p-adic modular forms is analogous. Any trivialized elliptic curve 

is fiber-by-fiber ordinary, so that  Ep_I(E/A,w) is invertible in A, for any invariant dif- 
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P r o p o s i t i o n  1.3.4 Let B be a Zp-flat p-adically complete ring, and let X : Z~ ~ Z~ 
be a continuous character. Then the set of f E V ( B ,  N) of weight X coincides with the 
set of "p-adic modular forms of weight X defined over B" in the sense of Serre, i.e., 
with the set of f E V ( B , N )  for which there ezists a sequence f,~ of classical modular 

forms defined over B, of weight k,~ and level N, such that 

• fn(q) ~ f(q) in the p-adic topology of B[[q]], 

• - ( m o d  p ' ) ,  for all  e 

Proof: This is [Ka75a, Prop. A.1.6]. It is clear tha t  the limit of such a sequence 

will necessarily by a generalized p-adic modular  function of weight X. For the converse, 

one needs to construct  a sequence of classical forms. The  difficulty is only in showing 

tha t  each of the approximat ions  constructed is indeed a classical modular  form, that  is, 

tha t  it can be computed  on a test object (E, w, ~) (without needing to assume the curve 

is ordinary, and without having to give a trivialization). [] 

Taking the special case where X is of the form X(x) = x k for some k C Z, we get: 

P r o p o s i t i o n  1.3.5 Let B be a p-adically complete ring, flat over Zp. Then the map 
L l l  is an inclusion, and its image is precisely the set of elements of V ( B ,  N) which are 
of weight k as defined above. 

Proof: This follows f rom the previous proposit ion together  with Proposi t ion 1.2.12. 
[]  

R e m a r k :  One can only expect to find an approximat ion  theorem such as Proposi- 

tion 1.3.4 for forms of weight 
z : Z ~  ) B  x 

in the case when the character  X can itself be approximated  by characters  of the 

form X(a) = x k, with k E Z. Pu t  in other terms, X must  belong to the closure in 

H o m  ..... (Z x, B x) of the image of Z under the map  sending k to the character  Xk such 
× × tha t  )/k(x) = x k. Since we are assuming p _> 5, this closure is just I-Iom ...... (Zp,  Zp),  

so tha t  the proposit ion above is the best possible. This is what  makes Serre's p-adic 

modular  forms of weight X = X(i.k) of special interest.  On the other hand, if we allow the 

approx imat ing  classical forms to have level Np ~ with u >> 0, we can approx imate  any 
element in V; this is a recent result of Hida which we discuss later  (see section III.3). 

One can also define inclusions of spaces of classical modular  forms of level Np ", 

M(B,  k, Np ~) ~-* V ( B ,  Np ~) = V ( B ,  N) 

and 

s(B, Np %o,(B, Np = V,o,(B, N), 
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in a completely analogous manner,  using the fact that  the trivialization determines an 

ari thmetic F1 (pV)-structure 

~ - l l t t  . : ttp~ ~ E. 

However, if f • M(B ,  k, Np~), it will in general not be true that  ] is of weight k in 

V in the sense defined above; rather,  we will have (z, 1}] = z k f  only for z • Z v such 

that  z - l (mod  p ' ) .  For forms with nebentypus,  one gets that  ] is an eigenform for the 

diamond operators,  hence has a weight X which will depend on the classical weight and 
on the p-part  of the nebentypus character.  Precisely, we will have 

(x ,1}f  = ~(x)xkf, 

where ~ is the "p-part" of the nebentypus character,  giving the action of (Z/p~Z) ×. In 
particular,  the image of a modular form of level Np which has a nebentypus (or even a 

p-nebentypus,  i.e., on which Z / ( p -  1)Z • Z~ acts through a character) will be a p-adic 

modular  function of some weight X- 
An impor tant  special case is that  of modular forms on FI(N) A F0(p~), the space 

of which we denote by M ( B , k , r ~ ( N )  n r0(p ' ) )  c M(B,k ,Np~) .  This is the subspace 

where the p-part of the nebentypus character is trivial (i.e., the nebentypus character  

is " tame") .  One can check easily, then, that  for any f • M(B ,  k, r ~ ( N ) n  r0(p~)), the 
i m a g e ]  is of weight k in V, i.e., 

( z , 1} f  = xkf,  

for any x • Z~ (see the formula above!), so that  we get an inclusion 

M(B,  k, r t ( N )  n r0(p~)) ~ M(B, k, N; 1). 

This can be described in modular terms: recall that  modular forms on r ,(N) n r0(p ~) 
can be viewed as functions of quadruples (E/A, w, z, H), where (E/A, w, z) is a test object 

of level N and H is a finite flat subscheme of rank p~ of E; then the inclusion map is 

given by 
. dt 

](E,~o,z) = f(E,~o (~-~--~),z,~o-~(ttv~)). 

The  theory of the fundamental  subgroup will show that  this is in fact independent  of 

the trivialization, as it must be. (It will also follow that  ] is in fact overconvergent.) 
One immediate  consequence is: 

C o r o l l a r y  L3 .6  Let / C M(B ,  k, r l ( N )  n r0(pV)). Then, for some j ~ k (mod p -  1), 

there ezists g C M ( B , j , N )  such that f(q) =- g(q) (mod p). 

Proof: We have just shown that  ] • M(B,k ,N;  1), and we know that  f(q) = ](q). 
By Proposi t ion 1.2.4, ] can be written, modulo p, as a "polynomial  in o-1  ,, ~p-1 ; multiplying 

by a high power of Ep-1 then gives a classical modular  form g with the desired property. 
[] 
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R e m a r k :  For f E M(B,k ,Np  ~) = M(B,k,F~(Np~)), there is no analogous result 

unless we require tha t  f have a nebentypus.  If f does have a nebentypus ,  so that  

(Z /p~Z)  x acts through a character  e = w~¢, where w is the Telchm511er character  and 

¢ is of p-power order, then one can find a classical modular  forms as described in the 

corollary, except that  j will depend not only on the weight k, but  also on the power 

i of the TeichmSller character  appear ing in the nebentypus;  specifically, we will have 

j ~- i + k (rood p - 1). We leave fur ther  e laborat ion of the theory of "modula r  forms 

mod p" when the level is itself divisible by p to the reader. 

1 . 3 . 6  D i v i d e d  c o n g r u e n c e s  

The  last p roper ty  of the ring V which we wish to emphasize is tha t  it contains a dense 

subring which can be described in terms of congruences of classical modular  forms. This 

fact is used in [Ka75a] to determine such congruences. 

Let B be a p-adically complete discrete valuation ring, and let K be its field of 

fractions. We define the module of divided congruences of weight less than  or equal to 

k as 
k 

Dk(B,Np v) = Dk = { f  E O M ( K , j ,  Np~)If(q) E B[[q]]}, 
j=0  

and then define the ring of divided congruences by 

D(B, Np ~) = D : l im Dk. 
k 

Note tha t  D is much larger than  the direct sum of the classical spaces M(B, k, Np ~) of 

modular  forms defined over B. In fact, whenever we have a congruence of q-expansions 

~ f , ( q )  =_~0 (rood p'~), 

we have tha t  

For example,  

1 
~--~ ~-~.f~ E D. 

Ep-1 - 1 
- - E D .  

P 
We claim there is an injection D ~ V ( B ,  N). To see this, let ~" E B be a uniformizer, 

and let f = ~ f~ E D, where fi  E M(K, Np ~',i). Then  we have f(q) E B[[q]], and, for 

some n, 7r'~f E ~ M(B,i ,  Np~), hence ~r"f E V.  Then,  since (Tr'~f)(q) = 7r'~f(q), f(q) 
is a 7r-torsion dement  in the quotient B((q))/V. By the flatness statement in the q- 
expansion principle (see Theorem 1.3.1 above),  it follows tha t  there exists ] E V such 

tha t  ](q) = f(q). Hence we may define 
o t  

D ,--+ V 
f , , ] . ( I . 12 )  

Note tha t  the injectivity follows at once from the equality of the q-expanslons, since B 
is flat over Zp. Then  we have: 
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P r o p o s i t i o n  1.3.7 For any v >_ O, the image of D(B, Np  ~) under the map a is dense 
in V ( B ,  N). 

Proof: This result is the first step in Katz ' s  determinat ion of the higher congruences 

between modular  forms in [Ka75a]. It  is clearly enough to consider the case when v = 0 

(since increasing u only enlarges the subspace in question), and then to show that ,  

af ter  reducing modulo p, the resulting map a l  = a rood p is onto. One shows first the 

following impor tan t  fact: 

L e m m a  1.3.8 The map ol 1 sends ~ M ( B ,  i, N) onto V i a ,  with kernel equal to the ideal 

generated by E p - 1  - 1,  and hence gives an isomorphism 

E M ( B , i , N ) / ( E  p 1 - 1 )  ~ ) V l , 1  

Thus,  V i a  is the same as the space of "modular  forms rood p" considered by Serre 

and Swinnerton-Dyer.  The  proof  of the lemma (which is found in [Ka75a]) involves 

reinterpret ing V i a  slightly and then using the basic theory of the Hasse invariant.  

To complete the proof  of the proposition, Katz  then constructs  a sequence of gen- 

erators for the Artin-Schreier extensions VI,,~ ) V1,,~+1, all of which are "explicitly" 

given divided congruences of classical forms, proving what  we want.  [] 

In what  follows we will identify D with its image in V. The  fact tha t  V possesses 

a dense subspace which is a direct limit of B-modules of finite rank will be crucial in 

what  follows. It is clear that  the diamond operators  on V preserve the ring D of divided 

congruences: if f C D = D(B,N)  and we write f = • f j  with f j  C M ( K , N , j ) ,  we have 

(x ,1} f  = ~ x J f j  C D. It  is hard to see how one could prove directly that  this action 

preserves congruences of q-expansions. 

R e m a r k :  An impor tan t  variat ion in the above should be noted. 

impor tan t  to exclude the constants,  and define 

and 

It is sometimes 

k 

D~,(B, Np ~) = {f C (~  M(K, j, Np ~) If(q) E B[[q]]} 
j = l  

D'(B, Np ~) = lira D~(B, Np~). 
k 

The  ideal of D thus obtained is still dense in V,  because 1 can be approximated  by 

suitably chosen Eisenstein series; for example,  we have 

l im E_V"l = 1. 
rt---+ co Is-  

W e  will make  some use of this different approach when dealing with Hecke operators  

and duali ty theorems 1. 

1By analogy, one might consider the spaces 

D(i) = {f E { ~ M ( K , j , p  v) If(q) E B[[q]]}. 
jki 
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We would also like to obtain similar results for the space of parabolic modular  forms. 

For this, we let 

and 

k 

Sk(B,Np  ~) = { f  E ~ S ( K , j ,  Np')[f(q) e B[[q]]} 
j=0 

S(B, Np ~) = li_m Sk(B, Np~). 
k 

Then,  in the same way as before, we get an inclusion 

S(B, Np ") V,o (B, Np = V,o.(B, N). 

The  previous results then suggest that  the image of the inclusion must  be dense in 

Vp~,(B, N). This is indeed the case. 

P r o p o s i t i o n  1.3.9 For any u > O, the image of S(B,Np ~) is dense in W ~ . ( B , N ) .  

Proof: Let us write S = S(B, Np ~) and Vpa, = Vp, , (B,  N), leaving B and the level 

understood.  Since increasing the level only makes the space S larger, we may  (and will) 

assume that  the level is N, so that  S = S(B,  N). We have a commuta t ive  diagram, 

S ¢----+ V p a  r 

D ~ V 

in which all the arrows are inclusions and the image of the second horizontal arrow is 

dense. 

Note tha t  S = D f3 Vp~; in fact, let f C D, and write f -- ~ f~, with fi of weight i. 

Then  we have, for any z C Z ; ,  (x, 1) f  = ~ z'f~. If we write the q-expansion of f, as 

f,(q) = a0(i) + . . . ,  

then f E Vva, implies 

• ' a o ( i )  = O, 

for all z E Z~.  It  then follows at once that  ao(i) = 0 for all i. Similarly, for (x,y)f ,  
consider ( z t x , y ) f  with z l  E Z x, and it then follows tha t  all the f~ are cusp forms, as 

desired. 

To show tha t  S is dense in Vpa,, it is sufficient to check tha t  the map  S ~ Vpar is 

surjective modulo p. T h a t  is, we want to show that ,  given a parabolic modular  function 

f E Vp,,, we may  find a divided congruence of cusp forms g E S such that  f = g 

(mod p). For this, we use the explicit construct ion of Vpar ® B/pB as a direct limit of 
CttSp J submodules  V,~.m C V,~m, and follow point by point Katz ' s  proof of Proposi t ion 1.3.7. 

These are clearly contained in V, and are they dense in V for every i, for similar reasons. 
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Consider first the graded ideal of the graded ring ~ M(B,  k, N) of classical modular 
forms of level N consisting of the cusp forms, 

O S ( B , k , N )  C S. 
k=0 

We know, by Lemma 1.3.8, that  the image of the ring (~ M(B,  k, N) in V ® B / p B  is 
precisely the subring V1,1. It is then trivial to see that  the image of @k~=0 S(B,  k, N) 
is precisely vc"'P (Only surjectivity is a problem. For that ,  decompose f E V1,1 with --1,1 • 
respect to the action of #p-1 C Z~, say f = ~ fi. The argument above shows that  each 
fl is again parabolic; multiplying enough times by Ep-1, we get the weight in the range 
for which the relevant base change theorem applies, and the fi  may then be lifted to 
classical cusp forms of weight k = i (rood p -  1), and the result follows.) 

To conclude, recall that  Vl.n is fitale over V1.1, and that  we have explicit generators 
(see [Ka75a]), so that  we may write 

V l , n  = Vl ,1  [all, d 2 , . . -  ,(~n--1], 

with dj E D, where tilde denotes the image in VI,~ V ® B/pB.  Identifying vc"'P ---- - -1 ,n  
with the module of Kahler differentials f tvl , ,  of VI,,~ over B / p B  (via multiplication by 
¢o ®=, where w is the canonical section of w_, and noting that  all the curves involved are 
affine), we have an exact sequence 

Veusp 1,1 @ V l , n  > V c u s P  - - I , , ,  > ~ V i , ~ / V 1 , 1  ) O. 

Since V1,,, is 6tale over Vla ,  the third term is zero, and hence we have a surjection 

( @ S ( B , k , N ) ) [ d , , d , , .  d,~_,] v~"'P • " , )) - - l , n  • 

Passing to the limit, and since S is an ideal of D, we get a surjection 

S >> Vl,oo = V ® B/pB,  

which proves the proposition. [] 

In what follows, we will work mostly in the ideal Vpa, of parabolic p-adic modular 
functions, since it has better duality properties with respect to the Hecke operators, 
which is the theme of the next chapter. 

1.3.7 Appendix: p-adic m o d u l a r  f o r m s  of weight X 

We are now able to tie together all the aspects of the theory to give a coherent account 
of the theory of p-adic modular forms of weight X- These were first defined by Serre in 
[Se73] as limlts of q-expansions. We begin by recalling the definition. 

D e f i n i t i o n  1.3.10 Let X E Horn ..... (Z~,Z~)  be a continuous character. We say f(q) E 
B[[q]] is a Serre p-adic modular form of weight X and level N defined over B if there 
exists a sequence of classical modular forms fn of weight k,~, level N, and defined over 
B such that: 
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i. f~(q) --~ f(q) in the p-adic topology of B[[q]], 

ii. X(x) - x k~ ( m o d p ~ ) f o r a l l x E Z ; .  

We have seen above tha t  the continuous characters X E Horn ..... ( Z ~ , Z ; )  can be 

indexed by pairs (i, k) E ( Z / ( p - 1 ) Z ) x Z p ,  via the decomposit ion Z x = (Z / (p -1 )Z)  xF;  

recall tha t  the correspondence is given by the formula 

= 

where the second factor makes sense for any k E Zp because x/w(x) E F is a one-unit. 

Thus,  it is clear that ,  for any X = X(i,k) as above, there exists a sequence k,~ as in the 

definition above, so tha t  

It  is useful to note tha t  this condition determines ks modulo p'~-~(p- 1), and that  we 

may  chose the kn to be increasing with n in the definition above (by multiplying the f,~ 

by appropr ia te  Eisenstein series). 

Serre p-adic modular  forms are, by definition, a kind of q-expansion; we have already 

obtained a modular  interpretat ion,  in Proposi t ion 1.3.4, which we repeat  here: 

P r o p o s i t i o n  1.3.11 A series f(q) E B[[q]] is a Serre p-adic modular form of weight 
X = X(~,k) if and only if it is the q-ezpansion of a p-adic modular function f E V which 
i8 of weight X, that is, which satisfies the transformation law (x, 1) f  = X(x)f ,  for any 
x E  Z x . 

We denote the space of p-adic modular  forms of weight X = X(i,k) of level N defined 

over B by 

M ( B , x , N ; 1 )  = M(B,(i,k),N;1). 

One sees immedia te ly  that ,  just  as in the case of integral  weight, we have 

M(B, X(,,k), N; 1) = lira M(B/pnB, X(i,k), N; 1) = li_m M(B/pnB, kn, N; 1), 
n .t~ 

where the k,~ form an approximat ing sequence to the character  X, as above. This shows 

tha t  we have indeed obtained a modular  interpretat ion,  i.e., that  p-adic modular  forms 

of weight X(i.k) can be evaluated on elliptic curves with differential and level s t ructure 

defined over a p-adic ring (by evaluating the reduction modulo p" on the reduction of 

the given curve, and then taking the limit). The  author  does not know if this is true 

for p-adic modular  functions which are of weight X E Horn ..... (Z~, B×),  which cannot 

necessarily be approximated  by classical modular  forms as above. 

Since we do know when a modular  form of integral weight is overconvergent,  the 

expression of M(B, ( i ,k ) ,N;  1) as an inverse limit allows us to define overconvergent 

p-adic modular  forms of weight (i, k): 
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D e f i n i t i o n  1.3.12 For any r E B and any character 

X(,.k) E Hom ...... ( Z ; ,  Z ; ) ,  

we define the space of p-adic modular forms of weight X(i,k) and growth condition r by: 

M(B, X(i,k), N; r) = lira M(B/p'~B, k,~, N; r),  
r~  

where kn is a sequence of integers satisfying X(i,k)(x) - x k" (mod p"). 

Since for every n there are maps 

M(B/pnB,  kn, N;r)  -~ M ( B / p " B , k , . N ; 1 ) ,  

taking the inverse limit gives a map 

M(B, X(i,k), N; r) , M(B, X(,,k), N; 1). 

It is not clear that  this map is an inclusion, because the maps modulo p'~ are not 

injective. (In the case of integral weight, we showed the injectivity as a consequence of 

the existence of the expansion (I.4) and of the description of the map in terms of that 
expansion.) This suggests the following two questions, which we have not been able to 

settle: 

Q u e s t i o n  1.1 Let the spaces M(B,X(i,~),N;r) and the maps 

M(B,x(~,k),N;r) , M(B, X(i,k), N; 1) 

be defined as above. Are the maps c~ inclusions? In other words, can we think of 
overconvergent forms of weight ( i ,k)  (as defined above) as a certain kind of p-adic 
modular forms of weight (i, k) ? 

Q u e s t i o n  1.2 Is there an analogue of the expansion (1.4)for forms of weight ( i ,k )?  If 
so, does it provide a criterion for deciding if a given form is overconvergent? 

A negative answer to the first question wouId be very surprising; in fact, it would 

indicate that  our definition is wrong. 
A clue as to what is t rue is given by the fact tha t  one may use Eisenstein series to 

relate different spaces of modular forms of weight X(i.k) and growth condition 1 to each 

other. In [Se73], Serre has constructed Eisenstein series E* of p-adic weight (0 , j ) ,  (od), 
satisfying Eios) - 1 (mod p). Then  multiplication by E[0,k_~) gives an isomorphism 

M(B , i ,N ;1 )  - - ,  M(B,x(I,k),N;1) 

(which does not commute with the Hecke action to be defined in the next chapter).  In 

the special case in which k is a positive integer, tile Eisenstein series Ei0.k_i) is actually 
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a classical modular  form of weight k - i, level Np, and nebentypus  w i-k, so that  the 

i somorphism maps the space of modular  forms of weight i on FI(N) N F0(p) to the space 

of modular  forms of weight k, level Np, and nebentypus w ~-k (which is precisely the space 

of modular  forms of level Np which have p-adic weight (i, k)). A similar s ta tement  could 

be made for forms of level Np" with the appropr ia te  nebentypus  characters,  so that  we 

may  say that  the isomorphism we have obtained preserves the classical subspaces (in 

the case when k E Z). It is not immediately  clear what  is the image of the space of 

overconvergent forms under this isomorphism, the difficulty being to decide whether  the 

Eisenstein series in question is "overconvergent" i.e., whether  it can be evaluated at a 

"not too supersingu]ar" curve. This question, however, seems more accessible than  the 

preceding ones. 

The  central  role played by overconvergence in the spectral  theory of the U operator  

(see the next  chapter)  makes it very interesting to obtain an analogue of the theory 

for all of the space V,  i.e., to define "overconvergent p-adic modular  functions" as 

a certain subspace of V and extend the other aspects of the theory (especially the 

corollary measuring the size of the image of the overconvergent spaces in the full space). 

Answering the questions raised in this section would be a step in tha t  direction. 

R e m a r k  (for specialists): There is one subtle distinction between the theories of 

Serre and Katz  that  we have deliberately avoided above, having to do with the definition 

of a classical modular  form over a finite field k. For Katz,  such a thing is a function on 

elliptic curves over k (plus extra  structure) ,  or, equivalently, a section of an invertible 

sheaf defined over the modular  curve corresponding to the si tuat ion (base-changed to 

k). Serre, on the other hand, defines a modular  form over k to be the reduction of 

a classical modular  form over a discrete valuation ring with  residue field k. These 

definitions are known to be equivalent, except in the case when the weight is 1 and the 

level is greater  than  or equal to 12, in which case one simply does not know. This is 

the reason for restricting our results in the case of weight one. Note, however, that  the 

difficulty disappears if we consider all weights together,  since it is easy to see that  any 

modular  form of weight 1 over k will always have the same q-expansion as the reduction 

of some modular  form of weight p = 1 + (p - 1) (just mult iply by Ep-1 and note that  

the reduction m a p  for modular  forms of weight greater  than  one is onto). 



Chapter  II 

The  Hecke and U Operators  

In this chapter  we define p-adic versions of the classical Hecke operators.  For the oper- 

ators Tt with ~ ¢ p, this is quite easy, and may be done either by imitating the classical 

definition in terms of subgroups of order ~ of elliptic curves or by simple extending the 

classical operators by continuity. The remaining case is more interesting. We define the 

Frobenius endomorphism, which corresponds to the "Vp" operator  of Atkin and Lehner, 

and show that  we may obtain a p-adic version of the U operator  essentially as its trace. 

We then s tudy the properties of these operators, especially with regard to their action 

on the spaces of modular  forms with growth conditions, and s tudy the spectral theory 

of the U operator  acting on the spaces of p-adlc modular forms with integral weight. 

This produces a number of interesting results, notably that  U is a completely contin- 

uous operator  on the spaces M(B, k, N; r) ® K of overconvergent modular forms. As a 
consequence, once sees that ,  apart  from the kernel of U, there are few overconvergent 
eigenforms for U. This allows us, for example to consider the characteristic power series 

of the U operator  (which turns out not to depend on r). This connects nicely with the 
results obtained recently by Hida in the case when the eigenvalue is a unit (which im- 

plies overconvergence, as we will point out). By contrast,  if we relax the requirement of 

overconvergence, we obtain a very large number of eigenforms for U, giving the theory 
a completely different aspect in that  case. 

II.1 Hecke Operators  

The goal of this section is to define Hecke operators T t on the ring V of generalized 

p-adic modular  functions. One can do this either by giving an intrinsic modular  defini- 
tion or by noticing that  one can define Hecke operators on D from the classical Hecke 

operators by an inverse limit procedure. Since each of these methods gives important  

information about  the Hecke operators, we will sketch both. In general, the inverse 
limit ~tefinition is more useful whenever we want to pass from classical results to results 

about  p-adic modular  functions, while the modular definition is bet ter  when we want 
to s tudy questions of overconvergence. 



II .1.  Hecke  O p e r a t o r s  31 

I I . l . 1  D i r e c t  def in i t ion  

Let E be an elliptic curve over a p-adic ring A, ~ be  a trivialization, and z a Fl(Np~) a,ith- 

s t ructure  on E. Let ~ be a rat ional  prime, ~ ¢ p, not dividing N. For any subgroup H 

of order ~ in E, we can consider the quotient curve E/ti-I; let 7r denote the canonical 

project ion 

E ~ E/H , 

and let /r denote  the dual isogeny. Since £ does not divide Np ~, bo th  ~r and ~r induce 

isomorphisms between the kernels of mult ipl icat ion by  Np~in E and in the quotient 

curve, so tha t  we may define a level s t ructure  , '  on E/~- I by ~' = ~r-10z. 

E 

]~N ~r 

E/H 
In the same way, we can define a trivialization T' = T °7r-1 (this makes sense because 

7r induces an isomorphism on the formal group over Zp, since ( t ,p)  = 1). 

E/H 
Then  we define, for f E "V, 

1 
( T t f ) ( E  , ~, ~) = ~ ~ f(E/~rI , qo', z'). 

H,--* E 
#H=/  

One can determine the effect of the T t on q-expansions by comput ing  directly in 

te rms of the Tare  curve. If  we take f C V,  and assume tha t  f ( q )  = ~ a,~q '~, one gets 

tha t  

(Tt f ) (q)  = ~ a ~ q  n + ~((e ,£}f ) (q ' ) ,  

where (<e, e>f)(q,) denotes the image of the q-expansion of (l, l> f under the base change 

q ~ qt, as in the classical case. If  f has weight k E Z and nebentypus  e, we have 

(e, t ) f  = , (e)ekf ,  so tha t  we get 

( T t f ) ( q )  = ~_, a,aq" + e(~e)ek-l f ( q t ) ,  
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which is exactly the classical formula for the Hecke operators. Thus, we have indeed 

extended the classical Hecke operators to act on p-adic modular  functions. 

Since the Hecke and the diamond operators clearly commute,  the Hecke operators 

preserve the space of forms of weight k, so that  we get operators on M(B,k ,N;1) ;  to 

check that  these preserve also the spaces of overconvergent forms, it is best to define 

them directly. So, for f E M(B, k, N; r),  we define Tt f  by 

(T,f)(E, Z) = e E f(E/H, 
H ~ E  
# H = t  

where 7r : E ~ E/H is the canonical projection, ~r is the dual isogeny, and z' is as above. 
One can then check immediately that  this coincides with the operator  induced by T z as 

defined above. 

To define Hecke operators T l with g dividing N (but different from p), we follow an 

analogous procedure, but sum only over those subgroups of order g not contained in the 

image in E of the given level N structure. One checks immediately that  the given level 

s t ructure  on E induces canonically a level structure the quotient by such subgroups. 

We thus obtain operators T z on V for giN, whose effect on q-expansions corresponds to 

that  of the "Ut" operators of Atkin-Lehner theory: if f = ~ a~q "~, then 

(Ttf)(q) -- E at,~q '~" 

Finally, we would like to define an operator  corresponding to the prime p, which 

should extend the classical U operator  (and not the classical rip). Doing this in modular 

terms is slightly more subtle than the preceding; we shall do it later in this chapter,  

defining U in terms of the trace of an operator  Frob which extends the classical V 

operator  of Atkin-Lehner theory. This will allow us to see how U acts on the spaces 

of overconvergent forms. Simply to define the U operator  on the full ring V is much 

simpler, and will be done in the next section by the inverse limit procedure explained 

below. On q-expansions, this acts as expected: if f (q)  = ~. a,~q", then 

(Uf)(q)  = E a n p q  '~. 

We define the Hecke algebra T of V to be the completion of the commutat ive 

subalgebra of the space of Zp-linear endomorphisms of V generated by the T l (for all 

g ~ p), by the U operator,  and by the diamond operators,  where we give Endzp(V) 
the compact-open topology. The action of the diamond operators then makes T an 

algebra over the profinite group ring Zp[[G(N)]], and in particular over the algebras 
A = Zp[[Z~ ]] and its subalgebra determined by the action of the one-units, the Iwasawa 
algebra A = Zp[[F]]. Since the Hecke operators defined above clearly preserve the ideal 

of parabolic forms, we may define an associated Hecke algebra as above; it is a quotient 

of T (via the restriction map), and we denote it by To. 

As in the classical case, the inclusion of the operators T l with ~ dividing N and of 
U complicates the s t ructure  of the Hecke algebra (making it non-semisimple). Thus,  as 
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in the classical situation, we will sometimes wish to consider a restricted Hecke algebra 
rr*, which will be the completion of the algebra of endomorphisms of V generated by 

the diamond operators and the T l with g not dividing Np. It is thus a closed subalgebra 

of T.  The analogous restricted Hecke algebra for the space of parabolic p-adic modular 

functions will be denoted T~. As we will see, it is essential to consider the full Hecke 

algebra to obtain duality theorems, but also essential to consider only the restricted 
Hecke algebra when studying the Galois representations at tached to modular forms. 

I I . 1 . 2  Hecke  o p e r a t o r s  o n  d i v i d e d  c o n g r u e n c e s  

In this section, we show that  the action of the Hecke operators on V may also be 

obtained in terms of the dense submodule D' = D'(B, Np ~) of divided congruences of 

modular  forms of level Np ~ (where, for this construction, we must assume v > 1, in 

order to have an action of U). We first note that ,  the operators T l for ~ # p and U 
act on classical modular  forms of weight j > 1 and level Np ~ and preserve congruences 

of modular  forms over Zp, so that  they act on the spaces D~. We define the Hecke 

algebra of D~, denoted by 7-/~, as the Zp-algebra of endomorphisms of D~ generated by 

the endomorphisms induced by the Tt, by U, and by the diamond operators. As before, 

we also define ~ * ,  by excluding the operator  U and the T l with tIN. Then it is clear 
that  we have restriction maps 

! 

and 
1¢¢ 

whenever j < k, and the inverse limits 

and 

T = li~ ~ 
k 

T* = lira ~* 
k 

are p-adically complete algebras of continuous endomorphisms of D', which are uniformly 

continuous in the q-expansion topology (i.e., the topology induced from V).  Since D' is 
dense in V, the actions of T and T* extend to V, and the action thus obtained coincides 

with the one we defined before (because it does so on the dense subspace D'--check on 

q-expansions). Thus, we can obtain the Hecke operators on V directly from the classical 

definition. 

R e m a r k :  There  is no special reason for using the space D' ra ther  than D, other than 

the fact that  later, when we consider the duality between spaces of modular  functions 

and thqir corresponding Hecke algebras, we will need to exclude the constants. The 

construction here, of course, gives the same result whether we use D or D'. 
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Obtaining the Frob operator  on V (which corresponds to the classical V operator) is 

a little more difficult because it does not preserve the level when acting on the classical 

spaces. Still, one need only consider the operator  

F rob :  D'(B, Np ~) , O'(B, Np ~+I) ~ V,  

take the limit, and extend by continuity to an endomorphism of V. In the following 

sections, we show how to interpret  both  this endomorphism and the U operator  in 
modular  terms, by giving an intrinsic definition, which avoids the description of V as 
the p-adic completion of an direct limit of classical spaces. 

In the same way, by taking S instead of D', we may define the parabolic Hecke algebra 

To and its restricted version T ;  as the inverse limit of the classical Hecke algebras on 

the spaces of divided congruences of cusp forms. In what follows, we will mainly be 

working with these algebras rather  than with T.  

Since T 0 ( B , N p  ") is defined to be the closure (in the compact-open topology) of 

the algebra of endomorphisms of V ~ , ( B ,  Np ") generated by the Hecke and diamond 

operators,  and since Vv,~(B , Np ~) = Vp,,(B, N), we have T0(B,  Np ~) = T0(B,  N), and 

of course similarly for T (if one thinks of the Hecke algebras as inverse limits, this 

should be taken as the definition of T0(B,  N), because we want an action of U and not 

of Tp). Note that  the definition of T ,  T*, To, and T ;  as inverse limits of compact Zp- 

algebras implies that  they are compact topological Zp-algebras when given the inverse 

limit topology. We will show in Chapter  III that  this topology can be defined intrinsically 
(rather  than  in terms of the representation as an inverse limit); in fact, it turns out to 

be precisely the compact-open topology we considered in the preceding section. The 
reason this is the correct topology to consider (rather  than, say the p-adic topology) 

is that  it is the one for which the classical duality between modular  forms and Hecke 

operators can be extended to the p-adic situation, as we will see in the next chapter. 

II .2  T h e  F r o b e n i u s  O p e r a t o r  

In the theory of classical modular forms, one considers an operator,  usually denoted 

"V", whose effect on q-expansions is 

a,,q" a.q-.. 

This maps classical modular forms of level N to modular forms of level Np. Since 
modular  forms of level Np ~ are p-adically of level N, it is reasonable to a t tempt  to 

define a p-adic version of this operator,  which should then map the ring V to itself. 

Following Katz ,  we call this the Frobenius operator,  and denote it by Frob. It is an 

endomorphism of V, and its existence is in some sense characteristic of the p-adic theory, 

in the sense that  only p-adically does it preserve the level. As we shall see, it is quite 
interesting to analyze its action on the spaces of modular forms with growth condition. 

We define the Frobenius operator  on the ring V by using the fact that  the trivial- 
ization determines a canonical subgroup of order p in E. 
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D e f i n i t i o n  11.2.1 Let (E/A, T, z) be a trivialized elliptic curve with an arithmetic level 
N structure. The fundamental subgroup of E is the A-sub-group scheme H C E which 
eztends the subgroup T- l (#p )  of the formal completion of E. 

Thus, given a trivialized curve (E, ~, ,), we can consider the quotient E/H of E by its 

fundamental  subgroup. Let 7r denote the canonical projection. Since p does not divide 

N, rr and the dual isogeny ~r induce isomorphisms between the kernel of multiplication 

by N in E and in E/H , so that  we may define a level N structure on E/~ I by ,I = ~-1o,. 
The  picture is: 

E 

# N  ~r 

Furthermore,  the dual isogeny ~" is ~tale, and hence induces an isomorphism on the 

formal completions, so that  we may define a trivialization ~1 of E/H by ~ = ~o~. Thus: 

We have then defined a map of functors 

(E, , (E I, ,'), 

which defines a map, the Frobenius endomorphism of W ,  

Frob : W ~ W ,  

by transposition: for f C W ,  

(Frob f ) ( E ,  qo, ,) - f (E/H , ~,', ,'). 

An easy computat ion with the Tate  curve shows that ,  on q-expansions, we have 

(Frob f)(q) = f(qV), 

where "f(qP)" denotes the image of f(q) E B((q)) under the map q ~-+ qP. 
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Some of the properties of Frob follow immediate ly  f rom the definition and the effect 

on q-expansions. For example,  the fact that  Frob acts via q ~ qV on q-expansions implies 

that  the Frobenius endomorphism Frob : W ~ W generalizes the "Vp operator"  of 

classical Atkin-Lehner  theory; in particular,  if f C M(B ,  k, N) C V,  we have F rob( f )  E 

M ( B ,  k, FI(N)  N r0(p))  C M(B,  k, Np), and analogously for higher levels. It  atso follows 

at once tha t  Frob preserves the subrings V and Vp,~. Finally, note tha t  when B = Fp 

we have F rob( f )  = fP (this also follows from the base change properties of modular  

functions),  so that  when B = Zp we have a lifting of the p-power endomorphism of 

V ® F p .  

It  is clear from the definition that  the endomorphism Frob commutes  with the di- 

amond  operators ,  and hence that  it preserves weights. Therefore,  Frob defines an en- 

domorphism of M(B, k, N; 1) for every integer k, and in fact of M(B, X, N; 1) for any 

character  X : Z~ ~ Z x. It  is not clear, however, what  effect it has on overconvergent 

forms. Given the way we have defined it, this amounts  to asking whether  one can com- 

pute  F r o b f  on a supersingular curve, and hence whether  there is still a fundamental  

subgroup when the curve is "not too supersingular".  It  turns our that  such a subgroup 

does exist for some supersingular curves. This is a result due to Lubin, which we now 

quote. To make the s ta tements  of the following theorems simpler, we here think of 

modular  forms as sections of line bundles, so that  Y should be thought  of as a section 
of w__ ®O-v). Then  we have: 

T h e o r e m  I I . 2 . 2  Let B be a complete discrete valuation ring with residue characteristic 
p and generic characteristic O, and let r e B satisfy ord(r)  < p/(p + l ) ,  where ord is 

normalized by ord(p) -- 1. To every test object (E/A, z, Y) of level N and growth condition 
r we may attach a finite flat subgroup scheme H C E of rank p, called the fundamental 
subgroup of E, satisfying: 

• H depends only on the isomorphism class of (E/A, Y), 

• the formation of H commutes with arbitrary base change of p-adically complete 
B-algebras, 

• i f p / r  = 0 in A, tt is the kernel of the Frobenius map E > E (p), 

• if E/A is the Tare curve Tate(q)  over (A/p'~A)((q)), the fundamental subgroup H 
is the image of the canonical inclusion Izp ~ Tare(q).  

Proof: The proof is a s tep-by-s tep construction of the fundamenta l  subgroup,  first as 

a formal subscheme of the formal group of E, which one then shows is a subgroup and 

extends to E. This requires a delicate analysis of the s t ructure  of the formal group of 

the curve. See [Ka73, Thin.  3.1], where both  this and the following result are a t t r ibuted  
to Lubin. [] 

Given tha t  the fundamenta l  subgroup exists, one must  still check that  it is possible 

to give the quotient curve an r-s t ructure ,  i.e., one must  check whether  the quotient 
curve is more or less supersingu]ar than  the one we s tar ted  with. It  turns out that  it is 
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only possible to give the quotient curve an rP-structure, so that  the valuation of a lifting 
of the Hasse invariant is multiplied by p in the passage from the curve to its quotient 
by the fundamental  subgroup. 

T h e o r e m  I I .2 .3  Under the previous hypotheses on B, suppose that ord(r) < 1 / (p+  1). 
Then there is one and only one way to attach to a test object (E/A, ~, Y )  of level N and 
growth condition r a test object (E'/A, z', Y')  of level N and growth condition r p, where 

E ' =  

Z t = ~ - - l o z  

such that 

Y '  • = 

• Y '  depends only on the isomorphism clas~ of (E/A, Y) ,  

• the formation of Y~ commutes with arbitrary base change of p.adically complete 
B-algebras, 

• i f p / r  = 0 in A, then Y '  is the inverse image Y(P) of Y on E (p) = E ~. 

Proof: See [Ka73, Thm. 3.2]. [] 

Since the quotient by fundamental  subgroup is defined under the hypotheses of 
the theorems above, we can define the Frobenius homomorphism; however, because 
the quotient curve is more supersingular than the initial one, it does not follow that  
the homomorphism we obtain defines an endomorphism of the space of overconvergent 
forms. In fact, what we have is the following: 

T h e o r e m  I I .2 .4  Suppose N > 3, p XN, and that either k 7 L 1 or N < 11. Let r E 

A satisfy ord(r) < 1/(p + 1). For any f • M ( B , k , N ; r ' ) ,  the element Frob(f)  • 

M(B, k,N; 1) defined by 

Frob(f)(E/A, w, ~, Y )  = f (E ' /A ,  ~r*(w), z', r ' -  Y'), 

(with the notation of the previous theorem) satisfies 

(Frob f ) (q)  = f(qP), 

so that the map thus defined coincides with that induced by the Frobenius endomorphism 

of W .  Furthermore, we have 

Frob(f)  - (Ep_l) k • M(B,pk ,  N; r), 

or, equivalently, 
r k Frob(f)  E M(B, k, N; r). 
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Proof: For all but the last statement,  see [Ka73, Thm. 3.3]; the equivalence of the 
last two statements is clear by Corollary 1.2.8. The decrease in overconvergence (from 
r p to r) is, of course, due to the fact that  the quotient curve is more supersingular; 
the non-integrality is due to the fact that the pull-back of a non-vanishing differential 
along the quotient map (or along the dual isogeny) is not non-vanlshing (because both 
isogenies are of degree p). [] 

Thus, the Frobenius endomorphism defined above preserves the space of p-adic mo- 
dular forms with growth condition 1, but, except in the case of weight zero, maps over- 
convergent forms to (less) overconvergent forms only up to multiplication by a power 
of r. In particular, if K denotes the field of fractions of B, Frob is a bounded linear 
homomorphism of p-adic Banach spaces from M(B, k, N; r p) ® K to M(B, k, N; r) ® K, 
but does not map M ( B , k , N ; r  p) to M(B, k, N; r), unless/c -- 0. 

The fact that  the fundamental  subgroup is defined allows to say a little more about 
the inclusion of classical forms into the space of p-adic modular forms discussed in 
Section 1.3.5. 

C o r o l l a r y  11.2.5 Suppose N >_ 3, pXN.  Let f E M ( B , k ,  FI(N) n F0(p)), and let] be 
its image in M(B,k ,N;1) .  Suppose that r • B satisfie~ ord(r) < p / ( p +  1). Then we 
have 

] • M(B, k, N; r). 

In other words, the inclusion 

M(B,k,PI(N) n r0(p)) ~ M(B,k,N;1) 

factors through the subspace M( B, k, N; r), for any r E B of sud~iciently small valuation. 

Proof: Simply define 

](E,w,~ ,Y)  : f(E,03, z,H), 

where H is the fundamental  subgroup. O 

R e m a r k s :  1) This is false if N < 3 (put together Corollary 1.2.11 with the classical 
q-expansion principle!). 

2) In particular, it follows that  if we have 

f e M ( B , k , N )  C M(B,k ,N;r )  and ord(r) < p / (p +  1), 

then Frob(/)  e M(B, k, N; r), since classical forms of level N, which are clearly overcon- 
vergent, are mapped to classical forms on F1 (N) N F0(p), which are overconvergent to 
some degree (measured by the inequality on ord(r)). As we have seen, this is not true 
for all overconvergent forms. 
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Of course, we also have inclusions 

M ( B , k , F I ( N )  • F0(p~)) c M(B, k,N; 1), 

as described in Section 1.3.5; given the preceding results, it is natural  to ask whether  

the image is contained in some space of overconvergent forms. For this, all one needs 

is to define fundamenta l  subgroups of order p~ for every v. For the case of trivialized 

curves, this is of course immediate:  

D e f i n i t i o n  I I . 2 . 6  Let (E/A,~o, z) be a trivialized elliptic curve with an arithmetic level 
N structure. The fundamental subgroup of order p~ of E is the A-sub-group scheme 
H,, C E which extends the subgroup qo-l(Up,) of the formal completion orE.  

This is, in fact, exactly the subgroup we used to define the inclusion of M ( B ,  k, FI(N)N 

F0(p~)) in V.  For ordinary curves, there is also essentially no difficulty. Let F be the 

Frobenius map  E ~ E (p) in characteristic p; the kernel of F '~ has an 6tale dual, which 

can therefore be lifted uniquely, and we take the fundamenta l  subgroup of order p'* to 

be  the dual  of this unique lifting. To obtain  the result on overconvergence, we need 

fundamenta l  subgroups for "not too supersingular" curves; for this, we simply i terate 

the construct ion of the fundamenta l  subgroup of order p. 

T h e o r e m  11.2. '/  Let B be a complete discrete valuation ring with residue characteristic 
p and generic characteristic O, and let r E B have 

1 
ord(r) < 

+ 1)' 

where ord is normalized by ord(p) = 1. To every test object (E/A,z ,Y)  of level N and 
growth condition r we may attach a finite flat subgroup scheme Hv C E of rank p~, called 

the fundamental subgroup of order p~ of E, satisfying: 

• H~ depends only on the isomorphism class of (E/A, Y), 

• the formation of H~ commutes with arbitrary base change of p.adically complete 
B-algebras, 

• i f p . r  -p"-I = 0 in A, H~ is the kernel of the v th iterate of the Frobenius map 
E f ~  E (p~), 

• if E/A is the Tate curve Tate(q)  over (A/p'~A)((q)), the fundamental subgroup H~ 
is the image of the canonical inclusion Up~ ~ Tate(q) .  

Proof: We use induction on v. The  case u = 1 is precisely Theorem II.2.2. For 

v _> 2, assume tha t  we are given a test  object  (E/A,w,, ,  Y) ,  with growth condition r 

such tha t  
1 1 

ord(r)  < p~-2(p + 1) < - -  
- p + l "  
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By Theorem 11.2.2, E has a fundamental  subgroup H1; we consider the quotient E' -- 

E/H I. By Theorem II.2.3, we get a test object (E', w', ~', Y'), with growth condition r p. 

Since 
1 

o rd ( r ' )  = p ord(r)  ~. 
p -3(p + 1)' 

we get, by induction, a fundamental  subgroup It '  C E' of order u - 1. Let E" = Et/~-I ', 

and let f~ be the composite map 

f~, : E > E' ~ E". 

Then  define H~ = ker(f~), which clearly has the required properties (by induction from 

the case L, = 1). One should note that ,  in the case r = 1, the fundamental  subgroup 

is simply the dual of the unique lifting of the ~tale dual of the kernel of the i terated 

Frobenius map, or equivalently, the kernel of multiplication by p~ in the formal group 

of E. [] 

We may read this theorem as saying that  an ordinary curve over Zp comes canonically 

equipped with a coherent sequence of subgroups of order p~ (one might call this a F0(p °°)- 

structure).  For a (lifting of a) supersingular curve, a part of that  sequence might still 

exist, depending in some sense on "how supersingular" the curve is, the measure being 

given by the valuation of Ev_I(E,w) (which coincides with the valuation of any other 

lifting of the Hasse invariant in the range in question; it is interesting to note that  the 

sequence of fundamental  subgroups disappears completely exactly when ord(Ep_l) is 

close to 1, which is also the point at which the p-adic valuation will begin to depend on 

the choice of the lifting). Dividing by the fundamental  subgroup of order p makes the 

curve "more supersingular", i.e., increases ord(Ep_l), and correspondingly shortens the 

sequence of fundamental  subgroups. 

C o r o l l a r y  I I .2 .8  Let N 2 3, p XN. The canonical inclusion 

M(B, k, Np v 

induces inclusions 
M(B,k ,FI(N)  n F 0 ( p ~ ) ) ~  M(B,k,N;r) ,  

for any r satisfying ord(r)  < 1/p~-2(p + 1). 

Proof: Se t] (E,w,z ,Y)  = f (E ,~ ,~ ,H~) .  [] 

In particular,  we have shown that  any classicM modular  form (i.e., any element of 
M(B, k, Np ~) for some positive k E Z and some ~,) which is p-adically of integral weight 

(i.e., is in M(B, k, N; 1)) is an overconvergent p-adic modular form, because having p-adic 
weight k implies that  it belongs to 

M(B,  k, r (s)n 
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of course, the degree of overconvergence will decrease as • increases. Note in part icular  

tha t  Frob is integral  on M ( B , k , N ; 1 )  and maps classical modular  forms on F I ( N ) N  

r0(p ~) to classical modular forms on rl (N)  n r0(p~+~), so that, if I c M(B, k, N; r) is 
classical (hence, since the p-par t  of its nebentypus must  be trivial, is a modular  form 

on I '~(n)  ;? Fo(p ~) for some u), Frob f will be overconvergent (without multiplying by a 

power of p, but. for a different r):  

Frob 
M ( B , k , N ; r ' ) ® K  > M ( B , k , N ; r ) ® K  

U u 
Frob 

M(B,  k, r l (N)  n r0(p~)) , M(B,  k, r l (N)  n r0(p~÷l)) 

where we must  have ord(r)  < 1/p~-l(p + 1), as above, to make the inclusions true. 

Our final result in this chapter  is what  will allow us later  to give the modular  

definition of the U operator;  it extends a result of Katz  in [Ka73] f rom M(B, 0, N; 1) to 

W .  

P r o p o s i t i o n  I I . 2 . 9  Let B be a p-adically complete discrete valuation ring, and let W = 
W ( B ,  N). Then the endomorphism Frob : W ~ W is locally free of rank p. 

Proof: It is clearly enough to prove the theorem for B = Zp, since the general result 

then follows by base change. It is also clear, since W is p-adically complete,  that  the 

result for W = W(Zp ,  N) follows f rom the analogous result for W / p W  = W ( F p ,  N) = 

W l  (in the notat ion of Section 1.3). Thus,  we want to prove that  Frob : W l  ~ W l  

is locally free of rank p. We may suppose N ) 3, since the cases of N = 1,2 will then 

follow by looking at fixed subrings under the action of the appropr ia te  finite groups. 

Recall that  W l  = lira Wl.m, where Wl.m is the coordinate ring of the (affine) moduli 
m 

scheme A/~°(Np TM) ® Fp of elliptic curves over Fp with a Fl(Np'~)~r~th-structure, when 

m > 0, and Wl.0 is the scheme obtained by deleting the supersingular points from 

M ° ( N )  ® Fp. 

As noted above, the Frobenius endomorphism induces f ~-~ fP on W l ,  and hence 

on each Wl.m. Since the p-power morphism is locally free of rank p on the coordinate 

ring of any affine curve, Frob : Wl,m 

commuta t ive  squares 
Frob 

W l , r n + l  > W l , m + l  

Frob 
Wl,m > Wl,m 

> W l ,  m is locally free of rank p. Hence we have 

in which the horizontal  arrows are locally free of rank p. The  vertical arrows, on the 

other hand, are known to be 6tale of rank p when m > 1 (in fact, they are Artin-Schreier 

extens ions--see  [Ka73]). By counting ranks it follows tha t  the squares are cartesian, 

and hence (see, for example,  [EGA, IV.8.2]) tha t  we can pass to the limit to get that  

Frob : W l  ~ W l  is locally free of rank p, as desired, o 
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In the following section, we will use this result to define the U operator  in terms of 

the trace of the Frobenius endomorphism. 

I I .3  T h e  U O p e r a t o r  

In this section we define the U operator  on generalized p-adic modular  functions, show 

that  it preserves the spaces of p-adic modular forms of weight k, and s tudy its action 
on overconvergent forms. To begin with, we show that ,  after tensoring with the field 

of fractions K, the U operator  in fact improves overconvergence. We then show that  U 

induces a bounded linear endomorphism of the p-adic Banach space of modular  forms 

with growth condition r,  for any r such that  ord(r)  < p/(p+ 1). For r in the appropriate 

range, one even has that  U is "almost integral", in the sense that  its norm is equal to 

one in a topology equivalent to the standard p-adic topology. 

We then go on to consider eigenforms for the U operator.  The shape of the theory 

then depends in a fundamental  way on whether we look at the full space of p-adic 

modular  forms of weight k or at the spaces of overconvergent forms. On the full space, 

we show that  one can produce an infinite number of eigenforms with eigenvalue )~ for 

every element )~ in the maxima] ideal of B .  By contrast,  the fact that  the U operator  

improves overconvergence implies that  it is a completely continuous operator  on the 
p-adic Banach space of overconvergent modular forms (in the sense of Serre; see [Se62]). 

One can then study its spectral theory. This allows us to define "slope a eigenspaces" for 
U which generalize (the integral weight case of) Hida's space of "ordinary p-adic modular  

forms". This will also show that  there are few eigenforms for U outside its kernel, in 

the precise sense that  if we fix the weight of f and the valuation of )~, one gets only a 

finite dimensional space of overconvergent forms of the given weight with eigenvalues of 

the given valuation. In contrast,  it is clear that ,  even in the overconvergent case, ker(U) 
is quite large (in fact, infinite-dimensional), because of the Frobenius endomorphism: 

given any f E M(B,k,N;r), we have f - F r o b V f  C ker(U). 
To get a complete g..:neralization of Hida's theory, one would need to extend the 

spectral  theory to the full space V ® K; given our results about  non-overconvergent 

eigenforms, such an extension is clearly impossible. (From this point of view, Hida's 

theory turns on the fact that  ordinary eigenforms are necessarily overconvergent.) It 
might be possible, however, to extend his results to a dense subspace of V ® K  consisting 
of "overconvergent" modular  functions. The possibility of obtaining such a theory seems 

to be related to the question of how the theory for overconvergent p-adic modular  forms 

of weight k varies with the weight. In the last part  of this section, we obtain some 

preliminary results and make some conjectures as to what should be the case. 

II.3.1 Definition 

To define the U operator,  we start  with the Frobenius endomorphism Frob : V ~ V, 

which, as was shown in the last section, is locally free of rank p. Therefore,  there exists 
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a trace homomorph i sm 

TrFrob : V ~ V,  

defined by 

(TrFrobf)(E/A, T, z) : ~ f (E1,  ~1, zl), 

where the sum is taken over the triples (E1,~'1,*1) which map  (by quotient by the 

fundamenta l  subgroup) to the given triple (E,T,z) .  An easy calculation (essentially 

done in [Ka73, pp.22-23]) then shows that  if f (q )  - ~ anq "~ then we have 

(TrFrobf)(q) : p ~ anpq "~ e pB[[q]]. 

By the q-expanslon principle, it follows tha t  "l-Trf~obf" is well defined, so: 
P 

D e f i n i t i o n  I I . 3 . 1  Let f E Y = V ( B , N ) .  We define U f  E V to be the unique element 

of V satisfying 

p .  (Vf) (q)  = (TrF~obf)(q). 

This defines a linear opera tor  U : V ) V,  which acts on q-expansions by 

U 
~ anq n , ~-~ anpq n, 

and satisfies the relation U ( F r o b ( f ) .  g) = f U ( g )  (check on q-expansions). Following 

Monsky in [Mons71], we call operators  with this p roper ty  Dwork operators 1. In partic- 

ular, set t ing g = 1, we have U ( F r o b f )  = f for any f C V;  we will later  explore the 

consequences of this property.  

R e m a r k :  Since the opera tor  U we have just defined coincides with the classical one 

on q-expansions, the two also coincide on classical forms, and in part icular  on divided 

congruences. By continuity, it follows that  the U operator  defined above coincides with 

the one obtained by an inverse limit procedure in Section II.1.2. 

I I . 3 . 2  U a n d  o v e r c o n v e r g e n c e  

Since the U opera tor  commutes  with the diamond operators  (because the Frobenius 

endomorphism does), U must  preserve weights, and therefore maps the space of p-adic 

modular  forms of weight k and growth condition r = I to itself (since this is just the 

space of generalized p-adic modular  functions of weight k). More generally, U preserves 

the spaces of modular  forms of weight X (and growth condition r = 1). I t  is not, 

1The relevance of this property is not completely clear. In [Mons71], Monsky showed that any Dwork 
operator on a "weakly complete, weakly finitely generated" space was automatically a "nuclear operator", 
i.e., had a spectral theory. The result is proved by constructing subspaces that are somehow analogous 
to the spaces of overconvergent forms (i.e., defined by requiting that power-series coefficients converge 
to zero "better than linearly"). Though Monsky's result canno~ be applied directly to our situation, his 
proof served as a guide at many points. 
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however, at all clear that  U preserves the space of overconvergent forms (and in fact 

it is false without qualification). The goal of this section is to try to understand the 

action of U on the various spaces of overconvergent forms. The  difficulties are the same 

as for Frob: first, the question of the existence of the fundamental  subgroup, and second 

(for the case where the weight is not zero), the problem of pulling back a non-vanishing 

differential via an isogeny of degree p. 

We want to determine to what extent  U preserves overconvergence; since Frob only 

had good properties with respect to overconvergence up to tensoring with the fraction 
field K of B, we expect the same sort of behavior in the current case. The first crucial 

result is due to Katz.  

P r o p o s i t i o n  I I .3 .2  Suppose N > 3 and p X N. Then, for any r 6 B such that ord(r)  < 
1/(p + 1), the homomorphism 

Frob :  M(B,0,  N ; r  p) @ K ) M(B,0,  N; r )  @ K 

is finite and dtale of rank p. 

Proo]: This is [Ka73, Theorem 3.10.1]. For r = 1, it is an immediate consequence 

of Proposit ion II.2.9 above. For ord(r)  > 0, the proof is more difficult, and involves 

interpret ing the K-algebras in question as the coordinate algebras of the (affinoid) 

rigid analytic spaces classifying elliptic curves over K satisfying 1 > IEp_l] > ]rPt and 

1 > [Ep-l[ > lrl, respectively, and doing a delicate s tudy of the kernel of multiplication 

by p in the formal group of a "not too supersingular" curve (we quote one of the results 
of this analysis, which is due to Lubin, in Theorem 11.3.5 below). [] 

Given this result, we see that  we can define Tr~ob as the trace map on global sections 

of w_._ ~k defined by the finite $tale map Frob. Thus,  

so that  we have: 

TrFrob(M(B,k,N;r) @ K) C M ( B , k , N ; r  p) @ K,  

C o r o l l a r y  I I .3 .3  Suppose N > 3 and p XN. 
such that ord(r)  < 1/(p + 1), we have 

Then, /or any integer k and any r 6 B 

U ( M ( B , k , N ; r )  ® K) C M(B,k ,N;r  p) ® K. 

We interpret  this as saying that ,  up to tensoring with K, the operator  U improves 
overconvergence. It is not immediately clear, however, that  giving M ( B , k , N ; r ) ®  K 

and M(B, k , N ; r  p) ® K their "natural"  p-adic topologies (in which M(B, k ,N ; r )  and 

M(B, k, N; r p) are the closed unit balls) makes the linear map U : M(B, k, N; r) ® K 

M(B, k, N, r p) @ K a bounded map. (Recall that  the q-expansion topology is strictly 
weaker than the "natural"  topology, as we remarked above.) The case of weight zero 

has been dealt with by Katz: 
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L e m m a  I I . 3 . 4  For  any r e B with ord(r)  < 1/(p + 1), we have 

U(M(B, O, N; r))  C p-IM(B,O,N;r ' ) .  

Proof: This is Lemma 3.11.4 of [Ka73], and of course a special case of the general result 
below. [] 

Thus,  the linear map 

U :  M(B,0,  N ; r ) ® K  ----+ M(B,O,N;rV)®K 

is bounded, and hence a continuous linear map of p-adic Banach spaces. The  situation 

for weight k ~ 0 is more complicated, since then Frob is already not integral. We deal 

with this by looking a little more carefully at the Frobenius map in characteristic zero, 

or equivalently, on the moduli spaces of "not too supersingular" curves. The result we 

need is due to Lubin. Let fl be the completion of the algebraic closure of K, and let Boo 

be its ring of integers. Let E/B~ be a supersingular elliptic curve over Boo, and let T 
be a parameter  for the formal group of E, normalized by [~](T) = ~T for every ( p -  1) st 

root of unity ~ in Zv. Multiplication by p in the formal group is given by 

p 

[p](T) = pT + aT v + ~ c~T '(v-1)+1 + cv+lT v~ + . . .  
i = 2  

with ord(a) > 0 (because E is supersingular), ord(ci) _> 1 for i ~ l (modp) ,  and ord(cv) = 

0 (because  the formal group is of height 2). Note  that  since a - (rood p) 
for any nonvanishing differential w on E, we have that ,  if ord(a) < 1, then ord(a) = 

ord(Ev_l(E,w)) .  We want to determine the curves (if any) that  are mapped to E by 

quotient by their fundamental  group. 

T h e o r e m  I I .3 .5  Let 0 < ord(a) < p/(1 + p), so that the canonical subgroup H0 C E is 
defined, and let H1, H2, . . . ,  Hp be the other finite fiat subgroup schemes of rank p orE. 
Then there exist precisely p curves E (i) having ord(a (~)) < 1/(1 + p) such that 

E : ), 

where tt0(E(q) denotes the fundamental subgroup of E(0. These are precisely the curves 

E (i) = E/ttl, 

i = 1 , 2 , . . . , p .  Furthermore, we have 

ord(a(0) = l o r d ( a ) .  
P 

Proof: This follows from a careful analysis of the kernel of multiplication by p in the 

formal group of E. See [Ka73, Thm.  3.10.7], where several other  cases are examined, 

shedding some light on the question of the existence of the fundamental  group, c] 
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Since it is sufficient to prove U is bounded after tensoring with a large extension of 

B (e.g., because the conditions in Corollary 1.2.8 are independent  of the ring B), we may  

work over Boo, and apply the previous result to deal with the question of which curves 

are mapped  to a given curve by quotient by their fundamenta l  group. To deal with the 

problem of pulling back the differential, we use the theory of the Hasse invariant and 

the fact tha t  it is congruent modulo p to Ep-1. 

P r o p o s i t i o n  I I . 3 . 6  Let N > 3, p XN, and assume ~hat either k # 1 or N < 11. Let 

f C M ( B ~ , k , N ; r ) ,  for any r C B such that ord(r)  < 1 / ( p +  1). Then TrFrobf e 
M(B~,  k ,N;  rP). 

Proof: We want to define the value of TrFrouf on any test object (ElBa, w, z, Y)  of 

level N and growth condition r P ;  o u r  strategy is to compute  formally and hope for the 

best. Thus,  formally, we would have 

(TrF~obf)(E, a~, ,, Y) = ~ f(E1,  wl, ~1, Y1), 

where the sum is over the (El ,wl ,z l ,  Y~) which map  to (E, co, , ,Y) by division by the 

fundamenta l  subgroup. The  point of the proof is to show that  we can give a sense to 

the expression inside the summat ion  above. We do this by an argument  similar to that  

in the proof  of Theorem 3.3 in [KaTa, p.46]. 

As a first step, we determine explicitly the triples 

(gl ,  ~01, .1, Y1) 

lying over the given triple (E, w, ~, Y). It is clear from the Theorem II.3.5 tha t  the only 

possibilities are triples of the form (E~,wl,~r o *,Y1), where E~ = E/~I~, and wl and Y~ 

must  be correctly chosen. Let rri : E i ) E be the project ion on the quotient by the 

fundamenta l  group. The  main difficulty is that ,  since neither 7rl nor its dual are 6tale 

when E is supersingular,  we do not know if the pullback of a non-vanishing differential is 

still non-vanishing (and it will usually not be so). In any case, we may choose )~i E Boo 

so tha t  :r~w =/~ i~o i ,  where wl is a non-vanishing differential o n  E i. Note then tha t  if we 
write ~r~wl = Aw we have )~i)~ = p. 

Since ord(r)  < 1/(p + 1), ?'1 = p / r  has ord(r l )  ) p/(p + 1) and hence is divisible by 

rP; set r2 = rx/r p, and note that  ord(r2) > 0. By Theorem II.2.2, E mod  r ib  is the 

Frobenius t r a n s f o r m  (Ei) (p) of E l ,  so  that  we may  choose ),i above so that  w reduces 

modulo rl to co! ") on (El) (v). Then,  as Katz  shows in [Ka73, p.54], if Y ' .  E, - I (E I ,  wl), 
we must  have 

Y 
( v , ) v  - _ _  

1 - r ~ Y  

Since we are working over Boo, we can solve for y i  by choosing the unique solution of 

the above equation satisfying Y ' .  Ep_l(Ei,wi) = r. 

Since we have ~r*~r*w = pw, we must  have, formally, 

1 . 1Aiwl 1 
5 0 1  ~--- - - 7 i "  0 2  ---- ---- - -  ' 

P P A ~ ' '  
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and 

Hence, formally, we have 

f(E~,~l,,~, Y~) 

1 
Y1 = Ap_---yY'. 

1 1 , 

- Akf(Ei,wi,~roz, Y ') 

= A (E~_lf)(Ei,wi,~roz, y,)" 

This is of course only a formal computa t ion  because A is not a unit in Boo; however, the 

last t e rm is well-defined and independent  of the choices made  because Ep-1 is a lifting 

of the Hasse invariant,  hence differs f rom ~ by multiplication by a unit of B,  (since 

ord(Ep_l(E~, w~)) < 1, all llftlngs of the I-Iasse invariant have the same valuation),  and 

this unit can be interpreted without ambigui ty  by "reduction to the universal case", in 

which B is fiat over Z r One can then check without  difficulty that  this t ransforms as 

expected when we mult iply w by a unit in Boo. Thus,  we obtain a well-defined value 

for Tr~obf, which coincides with the previous one when the curve is not supersingular 

(because then all of our computa t ions  make sense!). This proves the proposition. [] 

Hence we have: 

C o r o l l a r y  I I . 3 . 7  Under the hypotheses of Proposition IL3.6, the map 

U : M ( B , k , N ; r ) ® K  } M ( B , k , N , r  p ) ® K  

is a bounded homomorphism of p-adic Banach spaces. 

For the rest of this section, we assume that  k ~ 1 or tha t  N _< 11, so tha t  we are in 

the s i tuat ion where Proposi t ion II.3.6 holds. Then,  if ord(r)  < 1 / ( p +  1), the U operator  

induces a bounded linear map  

M(B,k ,N;r )  Q K  ~ M ( B , k , N ; r P ) ® K .  

In fact, we know that  

U(M(B,k ,N;r))  C 1M(B ,k ,N; r ' ) ,  
P 

so that  []Vl] < p. Finally, since we have M(B,k ,N; r  p) ~ M(B,k ,N;r) ,  it is clear 

tha t  we can consider U as a continuous linear endomorphism of the Banach space 

M(B, k, N; r) ® K.  In fact, we can do bet ter  than  this, by considering the composit ion 

u 
M(B,k,N;rP) Q K " - * M ( B , k , N ; r ) ® K  , M ( B , k , N ; r P ) ® K ,  

which shows tha t  U defines a continuous linear endomorphism of the Banach  space 

M ( B , k , N ; r  p) ® K.  Finally, given any rl E B with ord(r l )  < p/(p + 1), we may  

assume (since overconvergence propert ies  can be detected by the congruence conditions 

of Corollary 1.2.8, which are independent  of the base ring) tha t  rl  = r p for some r C B, 

and apply the preceding observation. Hence we have: 
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C o r o l l a r y  I I .3 .S  Under the above hypotheses, and if r 6 B with ord(r)  < p/(p + 1), 
the U operator induces a continuous linear endomorphism of the p-adic Banach space 
M ( B , k , N ; r ) ® K .  

We have seen that  U is integral (i.e., Ilgll ~< 1) on v (and hence on the spaces of 

forms with growth condition r = 1). This is not t rue in general. However, for r in the 

appropriate range, it is almost true, in the sense that  there there is an equivalent p-adic 
metric on the space M(B, k, N; r ) ®  K for which U is of norm one. Let 

i~(r) -- M(B, k, N; r) + U(M(B,k,N; r)), 

Then, since 

we have 

U(M(B, k, N; r)) c 1M(B,k,N;r), 
p 

1 
M(B,k ,N; r )  C Lk(r) C - -M(B,k ,N;r) ,  

P 

so that  taking Lk(r) as the unit ball defines a p-adic topology on the Banach space 

M(B, k, N; r) ® K which is equivalent to the canonical one. Then we have the following 

result, which generalizes a result of Dwork to the case of weight k # 0 (the case of 

weight zero is [Ka73, Lemma 3.11.7]): 

P r o p o s i t i o n  I I .3 .9  With hypotheses and definitions as above, assume that p >_ 7 and 

2__2~P 
3(p - 1) < ord(r)  < p+lP--P-- 

Then we have U(Lk(r)) C Lk(r) ,  so that, in the p-adie norm defined by Lk(r)  we have 

IIUII s 1. 

Proof: As pointed out above, we may as well assume that  r = r[,  for rl  satisfying 

2 1 
3 ( p -  1) < ord(rl)  < p+l--" 

(The hypothesis p > 7 is needed for this inequality to be possible.) 

It is sufficient to prove that  f E M ( B , k , N ; r )  implies U2(f)  E L~(r). The proof, 
which is essentially the same as that given by Katz,  amounts to using Corollary 1.2.8 

repeatedly to determine overconvergence. 

tion 1.2.6, we may write 
rbl 

f = bo+ k~_l 

Since bo E M ( B ,  k, N) is classical, 

Thus, let f C M(B,k ,N;r ) ;  by Proposi- 

r2b2 
+ - v - -  + . . .  

Ep--1 

U(bo) C M ( B , k , F ~ ( N ) f l  r0(p)) c M ( B , k , N ; r ) ,  
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so that  U2(b0) 6 Lk(r), and we need not worry about  the first term. Next, note that 

o r d ( r l . )  : ord(rrl .)  
pr~ pr~ 

for any i >_ 2, so that we may write 

= i ( p - 1 ) o r d ( v l ) - I  > O, 

rbl 
f - - bo+~p_ l  +P'g ,  

with g E raM(B, k,N; rl),  where rn denotes the maximal ideal of B (just factor out p), 
so that  U(p.  9) = pU(g) C M(B, k, N; r) and hence U2(p • g) E Lk(r). Hence, it remains 
to show that 

U::(~--~.) C Lk(r). 

Writing 

and noting that 

we can write 

rba r~bl __ p-1 rib1 
Ep_---~-- Ep-1 rl Ep-1 

: 7,P-Iu( ~ 1 ~  ~ ) 

_ ~[-1 b ;+~[b i  ,1% 
p + <T2 + ' '  

rl b 1 
- -  7"1 b'o+ +p.h,  

P 

where, since 
,p~p+p-- 1 

o r d ( ~ )  = (i + 1 ) ( p -  1) ord(rl)  - -  2 > 0 

for i _> 2, we have h E Tr~M(B, k, N; rl). Then, as before, U(p. h) C Lk(r), and it remains 
to show that 

( ] u b; + E,_I } e L~(~). 

Now, the q-expansion of g ( ~ )  is divisible by v = r~ (because U is integral on V, 

and hence on q-expansions), and the q-expansion of p • h is divisible by p, and hence 
also divisible by r. Hence, v must divide the q-expansion of 

I P l I P l 1 1"1P--1 b; ~- r:btl ] ~ T[-1 { bOEp-1 2 7"1bl 
p Ep_l } - 7 -  \ Ep_l ' 
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and therefore also the q-expansion of 

p / (b0Ep_l + ~lb~), 
p 

which is classical of weight k + p - 1. By the q-expansion principle for classical forms, 
there exists a classical modular form b~ of weight k + p - 1 (and level N) such that  

p I plll It --(b;Ep-- 1 + " P l b l )  : r 101  : ' r b l ,  
P 

and so 

Then clearly 

" ' ~b~' "rp-lp b; d- ~ )  ~- Ep_---~ ~ M(B,k,N;r). 

( P'r'lP--I bt ~'rPb~ )~] ('l'b;"~ 
u - - (  o + = u • z~(~), 

proving our claim. [] 

A closer look at the proof will reveal that  we have also proved two congruence 
properties, namely: 

C o r o l l a r y  11.3.10 Under the above hypotheses, write 

i = ~ r ° b o  
g~_l  ' 

and let w~ denote the maximal ideal of B. Then we have 

U(f)  =- U(b0) + U(~ r~b l  ) 
2Jp--1  

and, for some b~ C M ( B , k  + p -  1,N), 

Proof: 
fact that  

(mod va), 

r b  et 

U2(f) ~ U(E~_~ ) (mod zr~). 

The first s tatement is clear from the proof of Proposition II.3.9, as is the 

rb~ 
U2(f) --= U2(bo) + U ( ~ - - )  (mod "n~), 

r~p_l 

for some b~ E M ( B ,  k + p - 1, N). Then, noting that  U(b0) C M(B, k, N; r) (because b0 
is classical), and applying the first s tatement to U(b0) yields the second statement at 
once. [] 

Note that  these results show that  Lk(r) is a U-stable B-lattice 

Lk(T) c M(B, k,N;r) ® K 
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and tha t  the action of U on Lk(r) ® B/~x~ is determined by its action on the classical 

space 

M ( B ,  k + p - 1, N) ® B/vr~; 

for example,  the unit eigenvalues of U acting on Lk(r) will be congruent to unit eigen- 

values of U acting on the space of classical modular  forms of weight k + p - 1 and level 

N (in fact, Hida has shown in [Hi86b] that  for k > 3 any f E M(B, k, N; 1) having a unit 

eigenvalue under  U is necessarily a classical modular  form of weight k and level N). 

It  is interesting that  one can prove integrali ty results for the U opera tor  for ord(r)  = 0 

(i.e., for r = 1) and for 
2 p  p 
a ( p -  1) < ord(r)  < P+-----~' 

which are, so to speak, the "opposite ends" of the range of r for which U gives an 

endomorphism of M(B, k, N; r).  It  seems that  some integrali ty result must  be possible 

in all cases in tha t  range; we will later  look at another  par t  of the range to es t imate  the 

Newton polygon of the characteristic power series of U. 

1 1 . 3 . 3  U a n d  F r o b e n i u s  

The  point of this section is to exploit to the fullest the identi ty U(F rob f )  = f and 

its variants.  The  most impor tan t  consequence, f rom the point of view of the rest of 

this chapter ,  will be to show tha t  the spectral  theory of the U operator  is dramatical ly  

different in the overconvergent and the non-overconvergent cases. Specifically, we will 

see in the next section tha t  the U operator  is completely continuous on the p-adic Banach 

spaces of overconvergent modular  forms, so that  its eigenvalues form a sequence tending 

to zero. By contrast ,  we show in this section that  every element of the maximal  ideal of 

the complet ion of the ring of integers of a separable closure of Qp is an eigenvalue for 

the U opera tor  acting on the full space of p-adic modular  forms of weight k. 

We begin with a simple consequence of the expressions of U and Frob on q-expansions: 

P r o p o s i t i o n  I I . 3 . 1 1  Let B be a p-adic ring, and N an integer prime to p. 
quence 

0 , V ( B ,  N) F~ob V ( B ,  N) ~-F, oboU , V(B,N) " , V ( B , N )  ,0  

is ezaet. 

The ae- 

Proof: We check exactness at each step: 

a) Frob is injective, since, for f (q )  = 2 anq", (Frob(f ) ) (q)  = ~ a,q"P = 0 implies a ,  = 0 

for all n, and hence f = 0 by the q-expansion principle. 

b) First,  (1 - FroboU)(Frob(f ) )  = F rob ( f )  - F rob(U(Frob( f ) ) )  = Frob( f )  - F rob( f )  = 0. 

Conversely, if (1 - FroboU)(f )  -- 0, then f = Frob(U(f ) ) .  

c) First ,  V ( f  - F rob (V( f ) ) )  = U ( f )  - U ( f )  = 0. Conversely, if V ( f )  = 0, then 
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S rob(U(f ) )  = 0, so that  f = (1 - SroboU)(/) .  

d) Finally U is surjective because f = U(Frob(f) ) .  [] 

Of course, since, with the usual hypotheses on B and N, both U and Frob preserve 

the space of modular  forms of weight k, we also have: 

C o r o l l a r y  I I .3 .12  Let B be a p-adically complete discrete valuation ring, let N >_ 3, 

p XN, and assume that either k ¢ 1 or N < 11. Then we have an ezact sequence: 

1 - F r o b o U  
0 ) M ( B , k , N ; 1 )  Frob M(B,k ,N;1 )  ) M(B ,k ,N ; 1 )  u ,  M ( B , k , N ; 1 )  ) 0. 

A version with the spaces M(B, k, N; r) ® K of overconvergent modular forms of 

weight k also follows, with the obvious caution as to the degree of overconvergence at 

each step, as in the previous section. For this section, we concentrate on the larger 

space, and we fix the above hypotheses on 13, N and k. 

We should note in particular that  the operator  (1 - FroboU) is in fact idempotent.  
Thus,  we get: 

C o r o l l a r y  I I .3 .13  With the hypotheses above, we have a direct sum decomposition: 

M(B, k, N; 1) = image(Frob) • ker(U). 

Furthermore, 

kerU = image(1 - FroboU) ~ M(B, k, N; 1 ) / image(Frob)  , 

so that the kernel of U is infinite-dimensional. 

Since the operator  (1 - FroboU) maps the space M(B, k, N; r) ® K to itself (provided 
ord(r)  < p/ (p  + 1)), the analogous result also holds in the overconvergent case. 

To sum up, given any p-adic modular form f C M(B, k, N; 1), one can produce an 

eigenform for the U operator  (with eigenvMue 0) simply by taking f0 = (1 - FroboU)(f).  

One should note, also, that  the q-expansions of f and f0 agree "outside p", i.e., if an(g) 

denotes the coefficient of q'~ in the q-expansion of g, we have an( f )  = a,~(fo) whenever 

p X n .  In particular,  if f is an eigenform for the Hecke operators T t for g ¢ p, then so is 
f0, and the eigenvalues are the same. 

In fact, one can go much further than this, by the following construction. Let 

f0 E M ( B , k , N ; 1 )  be such that  U(f0) = 0. Take any A E B such that  ord(A) > 0, and 
consider the p-adic modular form 

f~ = f0 + 3~Frob(/o) + A2Frob~(/o) + . . .  + A"Frob"(/o) + . . .  

Note, first, that  since )~'~ ---+ 0, the series clearly converges and defines an element of 
M(B, k, N; 1). Furthermore,  

Uf~ = Vfo +  U(Vrobfo) +   U(FrobVo) + . . .  

0 + Afo + A~Frobfo + . . .  

Aft. 
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Thus,  given any fo E ker(U) and any )~ in the maximal ideal of B,  we have con- 

structed a p-adic modular  form f~ E k e r ( U -  A); furthermore,  f0 and f~ clearly have the 
same q-expansion coefficients "outside of p". Thus,  we have proved: 

P r o p o s i t i o n  I I .3 .14  With the hypotheses above, for any )~ in the maximal ideal of B,  
there is a bicontinuous bijection 

ker(U) , ker(U - -  i X )  

fo ~ f~. 

Furthermore,  we also have a,~(fo) = a , ( f~)  whenever pXn.  Thus, if f0 is an eigen- 

form for the Hecke operators T L with ~ ¢ p, then so is f~, and with the same eigenvalues. 

R e m a r k s :  

1) If we look at the above construction from the point of view of q-expansions, it may 

be interpreted in very naive terms. Suppose we wish to construct the q-expansion of an 

eigenform for the U operator  with eigenvalue A. Then  we might proceed as follows: 

i. fix the an with p X n  arbitrari ly (this corresponds to choosing an f0); 

ii. when pin but p2/~n, set an = )~a,vp; 

iii. when p~ln but pa Xn, set a,~ = ~2a,~/f = )~an/p; 

iv. in general, if n = p~m and p X m, set a,~ --- ~a ,~ .  

Notice that  this makes perfect sense for any ,~ in B. The point of the above discus- 

sion, then, is that  if we begin with a p-adic modular  form f0 E ker(U) and if )~ is in 

the maximal ideal of B,  then the resulting q-expansion is in fact the q-expansion of a 

p-adic modular  form. If )~ is a unit in B, this is not necessarily the case, as we shall see 
shortly. (Specifically, what we shall show is that  for each fixed weight there are only a 

finite number of pairs (fo, A) for which A is a unit in B and the q-expansion we have 

just constructed is the q-expansion of a p-adic modular form.) 

2) The fact tha t  the Frobenius endomorphism maps the space M(B, k , N ; r  p) ® K to 

M(B, k , N ; r ) ®  K (i.e., it reduces overconvergence) shows that  even if we start  with 

an overconvergent p-adic modular form f0, we cannot guarantee that  f~ will be also 

overconvergent. In fact, what is true, as will follow from the results in the next section, 

is tha t  for each fixed weight there is only a denumerable set of pairs (fo,,k) for which 
,~ # 0 and the above construction produces the q-expansion of an overconvergent mo- 

dular form, and the possible values of A form a sequence tending to zero. (It would be 

quit~ interesting to obtain an a priori criterion for determining whether a pair (fo,)~) is 
of this kind, if one exists!) 
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To summarize,  one might say that  to consider the spectral theory of the U operator  
on the full space M(B,k,  N; 1) produces very little information, except for the ordinary 

part ,  i.e., the spectral theory for eigenvalues which are units in B. In the next section, 
we consider the spectral theory of U acting on the space of overconvergent forms, and 

show that  this is in fact much more interesting. 

I I . 3 . 4  S p e c t r a l  t h e o r y :  t h e  o v e r c o n v e r g e n t  c a s e  

In this section we s tudy the spectral theory of the U operator  acting on overconvergent 

forms of integral weight k. The fundamental  result is that  the U operator  acting on 

spaces of overconvergent p-adic modular  forms is a completely continuous operator  (so 

that  there is a spectral theory to study).  This turns out to follow immediately from the 

fact that  U improves overconvergence. 

P r o p o s i t i o n  I I .3 .15  Let N > 3, p XN, and assume that either k • l o r N  < 1 1 .  Let B 

be a p-adically complete discrete valuation ring such that B/pB is finite, and let r C B 
satisfy 0 < ord(r)  < p/(p + 1). Then the operator 

U :  M ( B , k , N ; r )  ® K ~ M ( B , k , N ; r )  ® K 

is completely continuous. 

Proof: As before, write r = r~. Then U, considered as an endomorphism of 

M(B, k , N ; r )  ® K,  factors as 

U 
M ( B , k , N ; r ) ® K ~ - + M ( B , k , N ; r l ) ® K  , M ( B , k , N ; r ) ® K .  

By Corollary 1.2.9 the inclusion is a completely continuous homomorphism of p-adic 
Banach spaces, and the corollary follows. [] 

It follows that  the U operator  has all the properties of completely continuous oper- 
ators on p-adic Banach spaces; since many of these are crucial to our theory, we will 

discuss them in more detail. The  reference for all of our s tatements is the paper [Se62] 

of Serre (see also the remarks in Monsky's paper [Mons71]). The first impor tant  re- 
sult is that  there is a spectral theory completely analogous to the classical one. Let 

g(X) C K[X] be a polynomial with g(0) # 0; then we have 

M ( B , k , N ; r )  ® g = M(g) • F(g) ,  

where g(U) is bijective and bicontinuous on F(g) and g(U) = annihilates M(g) for some 
n. Of course, the most common example is g(X) = X - )% where A is an eigenvalue 

of U, in which case M(g) = M(A) is the generalized eigenspace corresponding to the 

eigenvalue A. The point of extending this to polynomials is that  it allows us to consider 

the case when the eigenvalues do not belong to the field K, by taking g(X) to be the 
minimal polynomial. 
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In fact, we can even extend this to sets of polynomials  (essentially by using the fact 

tha t  K[X] is noetherian):  let S C K[X] be a set of polynomials,  and assume that  the 

roots in K of the polynomials in S are bounded away from 0 (so tha t  in part icular  S is 

disjoint f rom the ideal X - K [ X ] ) ;  then M(S) = ~ M ( g )  is finite-dimensional over K, 
gCS 

and we have a direct sum decomposit ion 

M(B,k,N;r) ® K = M(S) G F(S). 

Using the existence of the spectral  decomposit ion,  we can then define the trace and 

the characterist ic power series of the opera tor  U. For any S as above, define T r s ( U " )  = 

t race(U~]M(S))  and Ps(t) = det(1 - tUIM(S)). Noting that  the family of such S form 

a directed set under inclusion, we can view the maps S ~ Trs(U '~) and S ~ Ps(t) as 

nets in K and in K lit]I, respectively, where we give Kilt]] the topology of coefficientwise 

convergence. Then  the limits T r (U  '~) = lims Trs(U '~) and P(t) = lims Ps(t) both  exist. 

The  resulting power series P(t) is the p-adic analogue the Fredholm determinant  det(1 - 

tU) (in the sense of Serre in [Se62]; note, however, that  the construct ion given above is 

different f rom Serre's, and goes through whenever there is a spectral  theory; when the 

operator  in question is completely continuous, it is equivalent to Serre's construction). 

Hence, in part icular,  )~ ¢ 0 is as eigenvalue of U if and only if p()~-a) = 0 and the 

dimension of the generalized eigenspace corresponding to ~ is precisely the multiplicity 
of ~-1 as a root of P(t). 

The  next impor tan t  remark  is that  the power series P(t) defines a p-adic entire 

function. To be specific, we have 

oo 
P(t) = e x p ( -  ~ ( T r ( U " ) t "  

n = l  7/, 

)) = 1 - T r ( U ) t  + . . . .  E clti, 

with 

l im ord_!ci) __ 00, 
Z 

so tha t  P(t) is entire. Hence, we may  write 

P ( t )  = I I ( 1  - 
i 

with hi ~ 0 where hi E K (the algebraic closure of K)  are the eigenvalues of U. In the 

same way, we may  define, following Serre, the Fredholm resolvent 

P (O det(1 - tU) 
F ( t , U ) -  1 - t U -  1 - t U  ' 

as a formal  power series whose coefficients are polynomials  in U, and which again is 

"entire",  in the sense that ,  for every tt E K ,  the series F (# ,  U) converges in the norm 

topology for operators .  This allows us to show: 
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L e m m a  I I . 3 .16  Given g as in (1), let ~bg be the inverse ofg(U)  on the subspace F(g),  
i.e., the function defined by Cg[M(g) = 0 and Cg]F(g) = (g(U)lF(g)) -1, let ~rg be the 
"projection onto F ( g ) "  (which is given by Cg g(U) for n sufficiently large), let ,4 be the 
subalgebra of the algebra of continuous endomorphisms of M ( B ,  k, N; r) ® K generated 

by the identity and U, and let ~i[ be its closure in the norm topology. Then Cg E ~i[ and 
~rg E A. 

Proo]: This is implicit in [Se62], as is noted by Monsky in [Mons71]. The statements 

for ~rg and for Cg are equivalent, and we will concentrate on the projection ~'g. 
Consider first the case where g(X)  = X - ~. Let h denote the multiplicity of ) -1  as 

a root of P(t) ,  and let A denote the operator  on formal power series defined by 

l d "  
A ' H ( t )  - s! dt *H(t)" 

Then  Serre shows that  rg is the h th power of the operator  given by 

(AhP()~-I))-I(1 -- ,~-IU)AhF(,~-I, U), 

where F ( t ,U)  denotes the Fredholm resolvent, as above. Since all the power series 

involved are entire, this gives a power series in U which converges in the norm topology 

(since U is essentially integral, this just means that  the coefficients tend to zero!). This 

proves the assertion for the projection onto F(g),  when g(X)  = X - ~. The  general 

case then follows by writing g(U) -- A -  U1 for some )~ E K and a completely continuous 

operator  U1. The assertion for Cg is proved similarly; we refer the reader to Serre's 
paper for the details. [] 

C o r o l l a r y  I I . 3 .17  For  any g as above, the operators % and Cg commute with the Hecke 
operators T l on M(B, k, N; r) ® g .  

Thus,  we obtain: 

C o r o l l a r y I I . 3 . 1 8  Let p >_ 7, N > 3, and assume k ¢ 1 or N _< 11. Let g (X)  be a 
polynomial with nonzero independent term, and let r be as in Proposition II.3.9. 

Then we have a decomposition 

M ( B , k , N ; r )  ® K = M(g)  @ F(g) 

such that g(U) is nilpotent on M(g)  and invertible with continuous inverse on F(g).  

The space M(g)  is finite-dimensional, independent of r such that ord(r)  < p/(p + 1), 
and consists of the overconvergent modular forms of weight k on which g(U) is nilpotent. 

The characteristic power series P(t)  of the U operator and the spaces M ( S )  are 
independent of r with 0 < ord(r)  < p/(p  + 1). Moreover, P( t )  has integral coefficients, 
i.e., P( t )  E B[[t]], so that the eigenvalues of U are all integral. Finally, for each a >_ O, 
the set of eigenvalues A satisfying 0 <_ ord(),) _< a is finite. 
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Proof: The existence of the decomposition is, of course, an immediate consequence 

of the fact that  U is completely continuous. To show that  M(g) is independent of r for 

any g as above, note that ,  since g(0) # 0, g(U)=(f) = 0, f E M(B,k ,N;r)  ® K implies 

that  f belongs to the span of U f ,  U2f, etc., and hence that  f E M(B,  k, N; r p) $ K;  by 

the same argument  we get f C M(B,  k, N; r p~) ® K ,  and so on until we have 1 / ( p +  1) < 
ord(r  p') < p/(p + 1). It follows immediately that  the same is t rue for any of the spaces 

M(S), and hence that  it is t rue for the characteristic power series P(t). 
Tha t  P(t) C B[[t]] now follows immediately by choosing the appropriate r and 

applying Proposi t ion II.3.9. Finally, the last s tatement  is a s tandard proper ty  of p-adic 

entire functions, o 

It is useful to note that  we may compute the characteristic power series P(t) E B[[t]] 

of U on any space M(B, k, N; v) ® K for any r satisfying 0 < ord(r)  < p/(p + 1), and 

call it the characteristic power series of U, since it is independent of the choice of r. We 

will later  make use of this l iberty in choosing r to obtain further  information about  the 

characteristic power series. 

An interesting special case of the spaces M(S) is the following: for each a > 0 let 

{)'1, ) ,2 , . . . ,  As} be the set of eigenvalues of the U operator  satisfying ord(),~) = a (which 

is finite, as we have seen above), and let 

= I I ( x  - 
i 

Then  M(~) = M(g~) is the space of all generalized eigenforms for U corresponding to 

eigenvalues of valuation a,  which we call the "slope a eigenspace" of M(B, k, N; 1) ® K; 

we have obtained, for each a ,  a direct sum decomposition 

M(B, k, N; 1) ® K = M (~) @ F (~). 

We denote the projection on M (~) by e~; as we have seen, e~ C T(k) ® K.  Finally, we 
know that  M (~) is finite-dimensional and contained in the space M(B, k.N; r) ® K of 

modular  forms with growth condition r, for any r satisfying ord(r)  < p/(p + 1). 

Similarly, one may define subspaces M (<'~) (respectively, M (<~)) corresponding to the 

generalized eigenforms with eigenvalues of valuation less than or equal to a (respectively, 
less than  a) ,  which are also finite-dimensional (again because P(t) is entire), and for 

which we have continuous projections and direct sum decompositions as before. 

It is clear, from the results of the preceding section, that  one cannot extend these 

results to the full space M(B, k, N; 1) ® K.  In fact, we have shown that  the spectrum of 

U on this space contains the maximal ideal of B, so that  the situation is dramatically 
different from what happens in the overconvergent case. It is interesting, in any case, to 

consider the largest subspace of M(B, k, N; 1) on which U still acts "reasonably".  This 

should be the union of all the overconvergent spaces, and that  is essentially how we will 
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define it. However, we have to be a little careful, because we have assumed B to be a 

discrete valuation ring and also that  r C B, so that  we cannot make r tend to I unless 
we consider extensions of B. 

D e f i n i t i o n  I I . 3 . 1 9  Let B and N be as above. For any f E M(B,k ,N;1) ,  we say f 

is overconvergent if there ezist a positive integer m, a finite eztension B1 of B, and 
an element r in the mazimal ideal of B1 such that pmf E M ( B , k , N ; r ) .  We denote 
the set of such f by Mf(B, k,N; 1), and give it the p-adic topology induced by that of 
M(B,k ,N;  1). 

We know that  Mt(B, k, N; 1) is a dense subspace of M(B, k, N; 1), since it contains 
all the finite sums 

baEp---~l- 

The  dagger notat ion is intended to recall the "weakly complete" spaces of Washnitzer 

and Monsky (see [MoWa68]); the analogy is that  in both cases one considers the elements 

which can be writ ten as power series with coet~cients that  tend to zero "bet ter  than 

linearly". To see this in our situation, one uses Corollary 1.2.8, which shows that  

f C M(B, k, N; 1) will be overconvergent (with this definition) if and only if, when we 
write it as 

f = boEp l, 

there exists some rational number ~ such that  ord(ba) - a s  --+ oo as a ---* oo. 

The  interest of the space Mt(B, k, N; 1) is that  the projections e= are still defined on 

it, since any overconvergent form is contained in some space M(B, k, N; r) ® K.  They  

are, however, not continuous in the q-expansion topology when a # 0 (because otherwise 

they would extend to the full space of p-adic modular  forms). Thus, U is a "nuclear 
operator"  on Mt (B ,k ,N;  1 )® K ,  i.e., it has a spectral theory: 

C o r o l l a r y I I . 3 . 2 0  Let p >_ 7, N >_ 3, and assume k 7£ 1 or N < 11. Let g(X) be a 
polynomial with nonzero independent term. 

Then we have a decomposition 

Mt(B ,k ,N ;1 )  ® g = M(g) @ Ft(g)  

such that g(U) is nilpotent on M(g) and invertible on Ft(g) .  The space M(g) is finite- 

dimensional, coincides with the space M(g) in Corollary II.3.18, and consists of the 
overconvergent modular forms of weight k on which g(U) is nilpotent. 

The characteristic power series P(t) of the V operator and the spaces M( S) coincide 
with those in Corollary II.3.18. Finally, for each tx >_ O, the set of eigenvalues )~ 

satisfying 0 <_ ord(~) < a is finite. 

Proof: This is all immediate  from Corollary II.3.18 together  with the fact that  the 

characteristic power series is independent of r; see [Mons71] for a general s ta tement  on 
unions of nuclear spaces, o 
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I I . 3 . 5  S p e c t r a l  t h e o r y :  t h e  o r d i n a r y  c a s e  

The  part  of the spectral theory of U dealing with those eigenvalues which are units in 

the p-adic ring B is especially easy to understand. This seems to have been first noticed 

by Hida, who went on to construct a rich and powerful theory about  this situation. In 

this section, we wish only to point out the most elementary fact about  the ordinary 

case: that  the ordinary projection e0 does extend to the full space M(B, k, N; 1). The 
full implications of this are drawn out in Hida's theory, the first steps of which we trace 

in an appendix to this chapter. 

We use the notations introduced above; in particular, 

eo:Mt(B,k ,N;1)®K ~Mt(B,k ,N;1)®K 

is the projection on the unit-root eigenspace, i.e., on the subspace generated by all 

generalized eigenforms whose eigenvalues are p-adic units, and M (°) = e0Ml(B, k, N; 1). 

We refer to e0 as the "ordinary projection" and to M (°) as the "ordinary subspace". 

To show that  eo extends to M(B, k, N; 1), we will in fact show a much stronger result, 

namely, that  one can define an operator  e0 on all of V ( B ,  N) which restricts to e0 on 
Mr(B, k, N; 1). We do this, following Hida, by using the description of V ( B ,  N) as the 

closure of the space of divided congruences D(B,Np)  = lira Ok(B,Np).  To define e0 as 
k 

an operator  on D(B,Np) ,  it is sufficient to define it on each Dk(B,Np) in a coherent 

way; it will then extend to all of V ( B ,  N) by continuity (because it is an endomorphism 

of D(B, Np), and not merely of D(B,Np)  ® K) .  However, 

Dk(B, Np) ® K = ( ~  M(B, i, Np) ® K C (~) M'(B,  i, N; 1) ® K,  
i<k  i<k 

and we already know that  e0 is defined on this last space. Furthermore,  after finite base- 

change, Dk(B, Np) ® K has a basis {fl} which consists of eigenforms for the U operator 

(because pXN),  and the action of fl on this basis is simply given by eofi = f~ if the 

eigenvalue of U on f~ is a unit, and eof~ = 0 otherwise. Thus,  e0 maps Dk(B,Np) ® K 
to itself. 

It remains to show that  e0Dk(B, Np) C D~(B, Np); to see this, order the basis {fl} 

so that  e0fl = fi for 1 < i < r and eofi = 0 for r + l  < i < m. Suppose we have 

f E Dk(B, Np); then we can write 

f : 
l < i < r n  

with ai C K ,  and we know that  

e B[[q]]. 
l_<i<m 

What  we need to show is that  this implies that  in fact 

,~,y,(q) • B[[q]]. 
l<i<r 
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To see this we note that  U acts integrally on q-expansions, and that  we have U"fi  = ~ f~ ,  
with )~ a unit if I < i < r and in the maximal ideal otherwise. If we choose n large 
enough, we may assume that,  first, ai;~' - (~ E B for 1 < i < r, and second, that  
a l )~ E B for the other i. Thus, 

( eo f ) (q )  = ~ alfi(q) = (U'~f)(q) - ~ (M~a; - a l ) f i (q )  - ~_~ 
l_<i<r l<i_<r r+l<_i<_rn 

Thus we have shown: 

c(i)t~f~(q) E B[[q]]. 

L e m m a  II .3 .21 [Hida] The operator eo induced on D~(B, Np) ® K f r o m  the operator 

eo on (~ Mr(B, i, N; 1) ® K satisfies 

eoDk(B, Np) C Dk(B, N). 

It is clear, then, that  one can go to the inverse limit to get e0 : D(B, N) ~ D(B, N), 
and then extend by continuity to e0 : V(B,  N) ~ V(B,  N). In fact, the proof actually 
shows that  e0 restricted to Dk(B,N) can be expressed as a limit of powers of the U 
operator, and hence that  in fact e0 C T(B,  N), and in particular that  e0 commutes with 
the diamond operators, and hence preserve weights. Hence, finally, we may restrict to 

eo: M(B,k ,N;1)  , M(B,k ,N;1) ,  

which by construction extends the e0 defined on the overconvergent space. 
Thus we get: 

P r o p o s i t i o n  I I .3 .22 Let  p > 7, N > 3, and assume k # 1 or N < 11. Then  we have 

a decomposi t ion 

M(B, k, N; 1) = eoM(B, k, N; 1) @ (1 - eo)M(B, k, N; 1). 

The space eoM(B, k, N; 1) is f in i t e -d imens iona l  and we have 

e0M(B,k,N; 1) C M(B,k ,N ; r )  ® K 

for  any r with ord(r) < p / ( p +  1). In particular,  any ordinary e igenform is overconver- 
gent.  

Proof:  All we need is to note that  e0 extends to M(B, k, N; 1), and that ,  since M (°) 
is finite-dimensional, it is closed (with respect to any topology), c3 

In fact, Hida has shown much more; for example, for k > 3 any ordinary eigenform 
is ~n fact classical, rather than merely overconvergent. Furthermore, he has obtained a 
quite precise understanding of the Hecke algebra in the ordinary case. See the appendix 
for more information. 
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I I . 3 . 6  T h e  c h a r a c t e r i s t i c  p o w e r  s e r i e s  

The  characteristic power series of the U operator  on the space of overconvergent p-adic 

modular  forms of weight k is an intrinsically interesting object, and we would like to 

understand it better.  In [Ka73], for example, Katz  relates the reduction modulo p of 

this characteristic power series to the L-function of a certain algebraic variety. 

in this section, we give somewhat explicit estimates for the coefficients of the char- 

acteristic power series. These give, for example, a lower bound for its Newton polygon, 

and imply several interesting results about  congruences of modular  forms. 

Let us fix an integral weight k E Z, and denote by P(t) the characteristic power 

series of U acting on Mr(B, k, N; 1) ® K.  In order to be able to use the full strength of 

the spectral theory, it is bet ter  to work with spaces of overconvergent forms; we may do 
this, since, as discussed above, P(t) is also the characteristic power series for U acting 

on any space 

M(B, k,N; r p) ® K, 

where r E B is any element satisfying ord(~) < 1/(p + 1), which we interpreted as the 

composition 

M ( B , k , N ; r  p ) ® K ~ - * M ( B , k , N ; r ) ® K  ~ ' , ~ M ( B , k , N ; r ' ) ® K ,  

where u is the map induced by the U operator  on the full space. To obtain our estimates, 

we will in fact prefer to change our space (and our operator) slightly. We may continue 

the sequence of maps above: 

i i 
M ( B , k , N ; r  p ) ® K ~ - - ~ M ( B , k , N ; e ) ® K  ~',M(B,k,N;r p ) ® K ~ - * M ( B , k , N ; r ) ® K  

where we denote the inclusion by i; we have defined the U operator  to be uoi. Note, 

however, that  

det(1 - t(uoi)) = det(1 - t(iou)) 

(see [Se62]), so that  P(t) is also the characteristic polynomial of the operator  

iou:M(B,k,N;r)®K ,M(B,k,N;r)®K, 

which we will also denote by U. (This is, of course, also the operator  induced by the U 

operator  on the full space!) This is the operator we will work with for our estimates. 

We use a method suggested by Dwork in [Dw73]: using the "basis" for the space 

of p-adic modular  forms constructed in Section 1.2.2, we construct an explicit Banach 

basis for M(B, k, N; r) ® K,  and estimate the matr ix  coemcients of U with respect to 

this basis. As in Lemma II.3.9, the chosen basis defines a topology on M(B, k, N; r) ® K  

which is equivalent to the p-adic topology but  with respect to which U is integral, i.e., 

I lv l l  = 1 .  

Let B be a finite extension of Zp, and suppose the level N and the weight k are fixed. 

Since the characteristic power series is independent of r (in the correct range), we may 
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assume (provided p > 7) that  

2 1 
3(p - 1-----~ < ord(r)  < p + l "  

For each i, choose a basis {b~,j, I <_ j <_ rn~} of the space A ( B , k , i , N )  (defined in 
Section 1.2.2) which remains a basis after reduction modulo the maximal ideal 2 (for 

example, by choosing any lifting of a basis of M(k, k, N; 1), where k is the residue field 

of B).  We may assume that  such bases have in fact been chosen consistently for all k 

and i, in the obvious sense (i.e., multiplication by Ep-1 sends basis elements to basis 
elements). Then,  for each rn, the set 

rn--i {Ep_ 1 bi,~ [ 1 < j < ml, 0 < i < m}  

is a basis for the space M ( B , k  + m ( p -  1),N) of classical modular  forms of weight 

k + m(p  - 1), so that  we have: 

m~ = r a n k B M ( B , k  + m ( p  - 1),m) = dim M (K,k  + m ( p  - 1), n) ,  
0<i<m 

which determines the dimensions m l .  (Note that  the r n  i are bounded independent of i.) 
Then,  after Proposit ion 1.2.6, we consider the Banach basis of M(B, k, N; r) ® K given 
by 

i - i  ei,j = r bi,jEp_l, i >_ O, 1 < j < ml. 

This is clearly an or thonormal  basis with respect to the s tandard p-adie topology on 
our space. 

We want to modify the basis el,j to obtain a basis defining an equivalent topology 

for which the U operator  is integral. To see how this can be done, we first look at the 
matr ix  of U with respect to the basis ei,j; write 

t,$ t~$ with uid E K.  To estimate ui,j, recall that  we have 

V(ei,j) e ~ u ( e , k , N , r " ) ,  

so that  we can write it in the form 
1 

U(el,j) = P E r p t b ' t E ~ I  

rt(p-1)rt ( E x t , a b t , , )  "[~p-t_ 1 
= ~ p 

E 7"t(P-- 1) 
= xt,aet,$~ 

p 

~Such a basis is called an orthonormal basis, since, if z = Y~ ; e jb i ,3 ,  w e  have 

[l~l[ = s u p  I~Jl, 
J 

where IJ" I] is the p-adic norm on our space and l" I is the valuation norm on B (normalized, as usual, by 
IPl = l/p). 
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so that  we get 

= o r d ( ¢ ( " - 1 ) )  - ord (p )  + 

t ( p - 1 ) o r d ( r ) - I  

2 2t 2t - 3 
> t ( p - - 1 ) 3 ( p _ l )  1 =  ~ - - 1 =  3 

Thus, we already have ord(u~i~) _> 0 whenever t _> 2, and we need only modify our basis 
slightly to deal with the non-integrality of the other coefficients. 

Define 
{ l-e.. i f i = O  p ~,3 

1--L--e. - if i ---- 1 -e i j  : pl/a "'~ 

e~.~ if i > 2 

where we extend the ring B if necessary. Let _t  ° ui,'~ denote the matrix of U with respect 
to this basis. Then it is easy to see that  

_ t ,  [ 0 i f  t = 0 ,  1 < s < m 0  

ord(u,,~)>_ / ( p - 1 ) o r d ( r ) - 2 / 3 > 0  i f t = l , l < s < m l  

t ( p - 1 ) o r d ( r ) - l > ( 2 t - 3 ) / / 3  i f t > 2 , 1 < s < m t  

This, together with [Se62, Prop. 7], gives the following estimate for the coefficients of 
the characteristic power series: let 

P ( t )  = e . t "  

be the characteristic power series of U on M(B, k, N; r) ® K;  then we have 

ord(cn) > m2 + 3ms -4- 5m4 4 , . . .  4, (2(t - 1) - 3)mr-1 
- 3 ' 

where t is chosen so that  

m0 -4- ml 4, m2 -4- . . .  4, mt >__ n > m04- ml 4- . . .  4, mr-1. 

For a more precise statement,  let 

d, = m o  4. ma 4 , ' "  -4- m ,  = rankzpM(Zp, k 4, i(p - 1), N). 

Then we can say: 

C o r o l l a r y I I . 3 . 2 3  A s s u m e  p >_ 7, N >_ 3, and either k 7 ~ 1 or N _< 11. Let  P ( t )  = 

c . t  '~ be the characteristic power series of  U; then we have: 



i. i f  0 < n < dl, ord(cn) >_ O, 

ii. i f  d I < n < d2, 

iii. i f  d2 < n <_ d3, 

iv. i f  d3 < n < d 4 

v. etc. 

n -- dl 
ord(c,~) > - -  > 0 

- -  3 - -  

rn2 + 3(n  - d2) > m__~2 
ord(c~) >_ 

3 - 3 

or,i/cn~=k J >  m 2 + 3 m 3 + 5 ( n - d 3 )  > m 2 + 3 m 3  
- 3 - 3 

which has 

Proof:  The  result  in [Se62] is tha t  o rd (c , )  is bounded  by the  sum of the  bounds  on 

the  first n ma t r ix  coefficients, so tha t  it is s imply a m a t t e r  of de te rmin ing  which are the 

first n es t imates ,  in te rms  of  the  indices (t,  s). Since the es t imates  depend  only  on the 

index t, this amoun t s  to  compar ing  n to the  dimensions d~. D 

We can res ta te  our  result  in terms of Newton  polygons,  which makes it much  easier 

to grasp:  

C o r o l l a r y  I I . 3 . 2 4  The Newton  polygon of  P ( t )  lies above the polygon 

v 

dl d2 d3 
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i. slope O fov O < z < dl 

ii. slope 1/3  for dl < z < d2 

iii. slope 1 = 3 /3  for dz < x < d3 
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iv. slope 5/3 for  d3 < z < d4 

v. etc. 

As an application of this analysis, consider the following problem: it follows from 

the work of Jochnowitz (see [Jo82b]) that  any eigenform for the U operator  which is 

"ordinary" ,  i.e., has unit eigenvalue, must be congruent (modulo the maximal ideal of B)  

to a classical modular  form of weight at most p +  1; is it possible to give a similar bound 

when the eigenvalue is of valuation a?  (Note that  the point here is the bound on the 

weight, since any p-adic modular  form will be congruent to some classical modular  form, 

almost by definition.) It turns out that  our analysis gives just such a bound. Our result 

will be weaker than  that  of Jochnowitz,  however, on two counts: first, her result applies 

to generalized eigenforrns, i.e., to any f in the slope zero eigenspace denoted above by 

M (°), and second, because any modular form which is congruent to an ordinary form 

must itself be ordinary, and this is unfortunately not the case for forms of higher slope. 

Thus,  let f be an eigenform for the U operator,  of slope a ,  so that  we have V ( f )  = ~f ,  

and ord(A) = a .  As we have shown above, f must be overconvergent, so we may assume 

f E M(B, k, N; r) ,  with r as above. Write f in terms of the first basis constructed above, 
so that  

f = ~ fihe,,~ • 

Then,  with notations as above, we have: 

F,  I, .s , . j  h i  u.f F,I,, Z ~ .  z x t , s e t ,  s 

P 

~-- E ri(P-1) f ¢ , j e i , J  • 

P 

Equat ing the valuations of the coefficients, we get 

ord(A) + ord(fld) = i (p - 1) ord(r)  - 1 + ord(f~'j) 

>_ i(p - 1) ord(r) - 1 

2i - 3 
> 

3 

Hence, if 

> 2(ord()~) + 1), i 

we get 

ord()Q + ord(f~,d ) > ord()Q + 1 - 1 = ord()O, 

so that  

ord(f ld)  > O. 

Let 

n ( a )  = [~(a  + 1)J, 
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where [.J is the greatest integer function. Then,  recalling that  ord(A) = a,  we conclude 

that  

f = 9E;"~ °) + h, 

where g is a classical modular  form of weight k + n(c~)(p - 1) and h G reaM(B, k, N; r)  is 

congruent to zero modulo the maximal ideal w~ of B. Hence, we have shown: 

P r o p o s i t i o n  I I .3 .25  Let f E M(B,k,  N; r) satisfy U f  = ~ f ,  with ord(~) = a, and let 

n(a)  = L~-(~ + 1)J. 

Then th~r~ e~ists a classical moaul,,, fo,-m g of l~,,~t N and weight k + n( ,~)(p-  ~) such 
that 

_~-n(~) (mod wL) f ~ yr~p_ 1 

in M(B, k, N; r) .  

Note that  congruence modulo w~M(B,k,N; r) is a much stronger fact than congru- 

ence in q-expansion. 

This result can be improved in several ways; for example, one should remark that  

the proof will go through if we simply assume that  

u.f -- :,.f (rood pL.j+l). 

This allows us to show: 

C o r o l l a r y  I I . 3 .26  There exists a constant C(a) ,  depending on a but not on k or N, 

such that for k > C(a)  any eigenform f e M ( B , k , N ; r )  satisfying U f  = )~f with 

ord()~) -- a is congruent modulo ~ to a classical eigenform of the same weight k. 

For the case a = 0, the bound obtained in this way is C(0) = p - 1, which is of 
course far weaker than that  obtained Jochnowitz, which is C(0) = 3. As Hida shows 
in [Hi86b], Jochnowitz 's  bound implies that  any ordinary eigenform of sufficiently high 

weight is classical. The  same would follow in the general case if we could show that  

the classical eigenform whose existence is asserted is also of slope a. Such a result, if 

true, would be closely connected with the questions of interpolation discussed in the 
next section. 

I I . 3 . 7  Varying the weight 

From the point of view of the genera] theory of p-adic modular  functions, we would like 

to "put  together" the projections e~ for varying weights in order to get a projection 

defined on some subspace of V[1/p] = V(Zp, N) ® Qp (the subspace of p-adic modular  

functions that  are "overconvergent",  in some sense). For this, one needs to analyze the 
dependence of P( t )  and of the projections e~ on the weight k and the parameter  r.  (Of 



11.3. The  U O p e r a t o r  67 

course, P ( t )  does not depend on r,  but the norm of e~ might very well do so.) What  

one expects is that  both  these constructions should vary analytically with the weight, 

at least within a restricted domain. In the case of e~, we would at least like to obtain 

a uniform bound for the norm when r is fixed and the weight varies. No results of this 

kind are known, except in the case a = 0, which has been considered above. In the 

general case, such results turn out to be quite elusive, and we will limit ourselves, in 

this section, to formulating a few conjectures and pointing out their importance.  
Let Pk(t)  denote the characteristic power series of the U operator  on the space 

Mr(B, k, N; 1) ® K,  obtained as above. Then we have 

i 

where the ),I k) are the eigenvalues of U on Mr(B, k,N; 1) ® K,  so that  we know that  

the )~k) are all integral and form a sequence tending to zero. Hence, to determine 

Pk(t)  (mod p'~), it is enough to know the eigenvalues of valuation less than n, together 

with their multiplicities. However, since reducing modulo p'~ may introduce extraneous 

eigenvalues, this is a quite subtle problem, and we will offer only a few remarks about 

it and hints as to how one might proceed. 

The first natural  conjecture is that  the characteristic power series varies continuously 

as one varies the weight. This amounts to the following conjecture: 

C o n j e c t u r e  I I .1  Suppose k2 = kl  + ip ' -~ (p  - 1). Then we have Pk,( t )  - Pk:(t)  

(mod p"). 

To see that  this is indeed plausible, note that  if k2 = kl + i p " - l ( p  - 1) for some i C Z, 
i p ~  - 1 

multiplication by Ep_ 1 gives an isomorphism 

'i0~--1 
E~-I 

Mr(B, kl,N; 1) , Mr(B, k2,N; 1) 

which is U-equivariant mod p~ (because the q-expansion of Ep_ 1 is congruent to 1 mod 

p"). This suggests that  the characteristic power series will then be necessarily congruent 

modulo p", but  does not furnish a proof. 
The  continuity of the map k ~-* P~(t) would already be a significant result. For 

example, let 

°) c ® g 

denote the slope c~ subspace of the space of overconvergent p-adic modular forms of 

weight k. If we assume that  Conjecture ILl  is true, it follows, by considering Newton 

polygons and their interpretat ion in terms of the number (counting multiplicity) of roots 
of a certain valuation, and hence of the dimension of the slope a eigenspaces, that  the 

map 
k a)  = dimM  °1 

is locally constant .  By compactness, it follows that it is uniformly locally constant,  so 

that  we would get: 
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C o n j e c t u r e  11.2 For every a >_ O, there exists a positive integer re(a) E Z such that, 
whenever kl - ks (mod p~(+(p - 1)), we have d(kl,  a)  = d(k:,  a) .  

Once again, this is known if a = O, in which case we can take re(a) = 0 (see the 

appendix  to this chapter) .  In general, we suspect that  ra(a) and a should have the 

same order of magni tude,  but we have no real evidence for a conjecture. 

Given the conjecture tha t  the characteristic power series varies continuously with 

the weight, one may  go fur ther  and ask if it is not in fact analytic (especially given 

Hida ' s  theory of the ordinary par t) .  We suspect tha t  this is not the case. We will, 

however, formulate  (very tentat ively)  a conjecture as to what  is in fact the case. With  

notat ions as above, let 

II 
o ~ ( ~ ) < .  

be the "slope at most  a "  part  of the characteristic power series. Note tha t  each P~')(t) 
is a polynomial  and tha t  

}irn P(~)(t) = P(t) .  

Then  it seems reasonable to make the following guess: 

C o n j e c t u r e  11.3 The map k ~ P(k~)(t) is locally analytic. 

In addition, one would expect "locally" to depend on a in such a way that  the limit 

P(t)  is not itself analytic. For R = 0, one would expect that ,  for each j ,  0 < j < p - 1, 

there exists p!0) E A[t] specializing to P~°)(t) for each k -= j (mod p -  1). Tha t  this is 

in fact the case follows easily f rom Hida 's  theory of tile ordinary projection. 

The  other  impor tan t  question in relation to variat ion with the weight has to do with 

the projections e~ to the slope a part ,  which we defined above. The  question is whether  

the e,~ "compile well" as one varies the weight. For this to make sense, one must fix the 

pa ramete r  r. 

C o n j e c t u r e  11.4 The projections 

e~:  M ( B , k , N ; r )  ® K - , M ( B , k , N ; r )  ® K 

ave bounded independent of k, i.e., there ezists C ( a , r )  e R such that we have Ile~ll 

C(a ,r )  for any weight k, where we take the operator norm with respect to the p-adic 
topology on M(B, k, N; r) ® K .  

It is easy to see, for example,  tha t  [[e0H _< 1 independent  of k, even in the q- 

expansion topology; this is what  makes Hida 's  theory work. It  is also easy to see that  

the projections are not integral when a > O. Of course, we have shown tha t  they are 

bounded for each k, but our proof  does not seem to provide either explicit bounds or 

est imates on how the bound varies with k. This remains an interesting open question. 
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II.4 Appendix: Hida's theory of the ordinary part 

In this appendix, we give a short introduction to Hida's theory of the ordinary part. 
The crucial fact here, as we have already pointed out, is that we have lie011 <- 1 in the 
q-ezpansion topology, so that in fact we have a projection on V(B,N):  

P r o p o s i t i o n  II.4.1 There ezists an idempotent eo E T(Zp, N) giving a projection eo : 
V(B, N) , V(B ,N)  which induces the projection on the part of slope zero in each of 
the subspaces Mr(B, k, N; 1). 

Cutting everything down by e0 defines the ordinary part: 

Def in i t ion  II .4.2 The ordinary part of V is the subring 

V °'d = e0V; 

the ordinary Hecke algebra T ~d is the corresponding Heckc algebra, so that T °~a = coT. 
Analogously, we define V°~d(B,N) and T°~d(B,N). 

The diamond operators make T °'z a A-Mgebra, where 

A = Zp[[Z;]] 

is the completed group ring. Splitting A into a sum of local rings gives 

A = ~]~ A(1), 
i 

where (Z/pZ) x C Z~ acts via the i-th power of the Teichmiiller character on A(~). Let 
Ti = T°rd ~)A A(1) be the corresponding decomposition of the ordinary Hecke algebra. 
The first crucial result is then the following: 

T h e o r e m  II .4.3 [Hida] With the above definitions, we have: 

i. Ti --- TI(Zp, N) is a finite flat A-algebra of rank r(i) given by 

r(i) = rankz~e0M(Zv, k, N) = dimr~ eoM(F v, k, N), 

for anyk  satisfying k > 3 and k -- i ( m o d p - 1 ) ;  

ii. for any k >_ 3, the ordinary subspace 

M (°) = eoM(Zp, k, N; 1) C M(Zp, k, N; 1) 

consists of ordinary projections of classical modular forms of weight k and level 
N, i.e., 

M~ °) C eoM(Zv, k, N) C M(Zp, k, FI(N) rq F0(p)). 
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Proof: See [Hi86b], but note that,  given the duality theory developed in the next 
chapter (or Hida's analogous results), this follows easily from the work of Jochnowitz 
referred to above (see [Jo82b]). [] 

This theorem is the starting point of Hida's work, which connects to it in several 
different ways. In [tIi86b], Hida has investigated the structure of the Hecke algebra 
TI, relating it to the existence of congruences between systems of eigenforms and to 
Iwasawa theory. In [Ili86a], he uses this to construct families of Galois representations, 
which we discuss ahead. We refer to Hida's papers (for example, [Hi86b] and [Hi86a]) 
for more details. 



Chapter III 

Galois Representations 

The  focus of this chapter  is the construction of Galois representations associated to 

p-adic modular  forms. Specifically, we shall be interested the problem of studying the 

"deformations of a residual Galois representation" as considered by Mazur in [Ma]. 
Thus,  we will begin with an absolutely irreducible Galois representation defined over a 

finite field, which we will assume to be at tached,  as in the work of Deligne and Serre, 

to a modular  form defined over that  field. We will then consider its liftings to complete 

noetherian overrings. In [Ma], Mazur constructed a universal lifting of this kind, and 

studied its properties in some detail. We will show that ,  under the assumption that the 

residual representat ion is at tached to a modular form, a good port ion of the liftings he 

obtains are in fact at tached to p-adic modular  forms. 

The fact that  one can a t tach p-adic representations to p-adic modular  forms was 

first noticed by Hida, who, in [Hi86b] and [Hi86a], constructed analytic families of such 

representations at tached to analytic families of ordinary p-adic modular  forms; he also 

showed how to obtain a large number of such analytic families. This was fur ther  studied, 

still in the ordinary case, by Mazur and Wiles in [MW86], who constructed what may 

be called " the universal ordinary modular  deformation",  i.e., a family of deformations of 

a representat ion (which is assumed absolutely irreducible and at tached to an ordinary 

modular  form) which parametrizes all possible deformations a t tached to ordinary p-adic 
modular  forms. 

In this chapter,  we continue in the spirit of these results, by constructing the univer- 

sal modular  deformation of the given (modular,  absolutely irreducible) residual Galois 

representation,  parametrizing all the deformations that  are a t tached to p-adic modular 

forms of the given level. As in the case of Hida's work, the crucial step is to obtain a good 

theory of the duality between spaces of modular forms and their Hecke algebras, and we 
devote the first section of this chapter  to constructing such a theory. We then outline 

a recent result of Hida which we feel should be bet ter  known, and proceed to consider 

the problem of constructing modular  deformations of a given residual representation. 
Finally, we obtain an estimate on the dimension of the space of modular  deformations, 

and consider its relation to the full space of deformations of the given residual repre- 
sentation. We conclude by formulating several questions that  arise natural ly from the 
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theory as it is known at this point. 

I I I . 1  D u a l i t y  T h e o r e m s  

Our first goal is to study the duahty between spaces of modular forms and their Hecke 
algebras. Our goal is to identify V as a certain space of functions on the Hecke algebra 
T, and similarly, V~, as a certain space of functions on the corresponding Hecke algebra 
To. This works perfectly well in the case of parabolic modular functions, but is a little 
more complicated in the general case because of the presence of the constants in V. 
The result is obtained by starting from V. Miller's results in the finite-dimensional case, 
and using the inverse limit technique of the section on Hecke operators. These results 
are similar to results obtained by Hida in [Hi86b], except that Hida's results give a 
Pontryagin duality while ours give a duality of topological Zp-modules. In particular, 
we show that there is a bijection between (normalized) eigenforms in Vp~r and continuous 
Zv-algebra homomorphisms from T0 to p-adic rings. 

I I I . l . 1  C l a s s i c a l  d u a l i t y  

To fix notation, let "Hk(B, Np ~) denote the Hecke algebra corresponding to the space 
Dk(B, Np ~) of divided congruences of classical modular forms of weight at most k. We 
can define a bilinear form 

7~k(B,Np ~) × Dk(B, Np ~) , B 

(T , f )  , > a~(Tf), 
(IliA) 

where al (T f )  denotes the coefficient of q in the q-expansion of T f .  If we let Sk(B, Np ~) C 
Dk(B, Np ~) denote the subspace of divided congruences of cusp forms, and let h.k(B, Np ~) 
denote the corresponding Hecke algebra, then (III.1) clearly induces a bilinear form 

N f )  x S (B, Np , B. 

Similarly, we get a bilinear form 

! V ~ ( B ,  Np ~) × D~(B, Np ) , B, 

where the primes have the same meaning as above, i.e., if K is the fraction field of B, 
then 

k 

D~(K, Np ~) = ~ M(K, i, Np~), 
i= l  

D~(B,Np ~) = {f  e D~(K, Np")[f(q) • Zv[[q]], } 

and 7-L~ is the corresponding Hecke algebra. Then we have the following result: 
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T h e o r e m  I I I .1 .1  Let K be a finite eztension of Qp, and let OK be its ring of integers. 
Assume B is either K or OK, and let 

mk(Og, Np ") = (K + D~(OK, NpV))/K. 

Then the pairing (III.1) induces perfect pairings of B-modules 

7/~(K, Np') × D~(K, Np ~) , K 

~'k(Og, Np ") × ink(OK, Np ") , OK 

lzk(B, Np") × Sk(B,  Np ~) , B. 

Proof: This is [Hi86b, Proposition 2.1], where the result is at tr ibuted to V. Miller. 

One should note that  Hida shows also that  ']-~(OK, Np ~) (which is defined as the 
Hecke algebra corresponding to D'k(OK, Np~)) "is" the Hecke algebra corresponding to 
ink(OK, Np ~) (the subalgebra of the ring of endomorphisms generated by the Hecke and 
diamond operators); this follows from the (obvious) fact that  

k 
mk(Og, Np") ® K = D~(OK, Np") ® K = D~(K, Np") = ( ~  M ( K ,  i, Np~). 

i=l 

In particular, we have, setting S k -- Sk(Zp, Np") and b~k = b.k(Zp, Np"), we get 

S k ~ Homz~(h.k, Zp) 

(homomorphisms of Zp-modules), and it is easy to see that  a cusp form f C S k corre- 
sponds to a homomorphism of Zp-algebras if and only if it is a normalized eigenform, 
that  is, if and only if it is a simultaneous eigenform for all the Hecke and diamond 
operators and has al( f )  = 1. Conversely, every algebra homomorphism lx k ~ Zp cor- 
responds to a normalized eigenform (so that  given a system of eigenvalues in Zp, there 
is a unique normalized eigenform belonging to it). 

We would llke to extend this to other p-adic rings B. For this, note that,  since b~k is 
Zp-free, 

S k ® B ~ Homz,(hk, Zp) ® B ~ Homzv(b~k, B). 

We will use this fact later, when we pass to the limit situation. 

I I I . 1 . 2  D u a l i t y  f o r  p a r a b o l i c  p - a d i c  m o d u l a r  f u n c t i o n s  

Given the pairing on the finite-dimensional case, one may a t tempt  to pass to the limit 
in order to obtain results for generalized p-adic modular functions. We consider first 
the case of parabolic modular functions, which is clearly simpler (because, as we saw 
above, the constants are a problem: for any constant b C B and any T E T,  we have 
(W, b) ~ 0 under the pairing III.1) 
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Assume first that B = O r  as above, so that we have a perfect pairing 

kk(B, Np ~) × Sk(B, Np ~) > B. 

The l~k form an inverse system of Zp-algebras, while the S k form a direct system of 
Zp-modules. Going to the limit, we get a pairing 

lim Kk(B, Np ") × lim Sk(B, Np ~) = T0(B, N) × S(B, Np ~) , B, 
k k 

which gives maps 

T0(B,N) ~ HomB(S(B,Np' ) ,B)  ~ HomB(Vp~.(B,Np~),B), 

and 

S(B, Np ~) > HomB(T0(B, N), B). 

It is clear that the first map, being the inverse limit of the maps 

kk(B, Np ") ~ ,  Hom.(Sk(B,Np~),B),  

is, as indicated, an isomorpkism; the second isomorphism is immediate since S is p- 
adically dense in Vr~,. As to the map 

S ~ Homs(T0, B), 

we know only that it is injective, since it is the direct limit of the maps 

Sk(B, Np ~) ~ ,  HomB(l~k(B, Np~),B). 

It therefore identifies S with a submodule of Homs(T0(B,  Np~), B), which is easily seen 
to be the suhmodule of all the B-module homomorphisms f : To ~ B which factor 
through the projection To ~ h.k for some k (since S is just the union of the Sk); 
any such homomorphism will be continuous if we give To its inverse limit topology 
(which makes it compact) and B its p-adic topology. Let us denote this submodttle 
by Hom~*(T0, B); it clearly depends on the particular representation of To as an 
inverse limit (as does S). The p-adic topology on S corresponds to the topology of 

Ho m~*r°" B) (i.e., to the sup norm induced by the p-adic uniform convergence on "~'B ~-~0, 
norm on B). Since V~,  is the p-adic completion of S, taking completions induces an 
identification between Vt,, and the completion of Hombre'(T0, B); this last is contained 
in the submodule Horns .... ,,(To, B) of continuous B-module homomorphisms (where To 
is given the inverse limit topology and B the p-adic topology), which is complete (with 
the topology of uniform convergence). Thus, we have obtained an inclusion Vpa, 
Homs .... ,,!T0, B), mapping a parabolic modular function f to the homomorphism ¢! 
defined by e l (T)  = a l (Tf) .  
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P r o p o s i t i o n  111.1.2 Let B = OK be the ring of integers in a finite extension K of Qp, 
and let T0(B, N) have the inverse limit topology, B and Vp~,(B, N) the p-aclic topology, 
and HomB .... , (T0(B ,  N), B) the topology of uniform convergence. Then the mapping 

V.o.(B,N) , nora.  ...... (T0(B, N),B)  

defined by f ~ ¢1 is an isomorphism of topological B-modules. 

Proof: It suffices, after the above discussion, to show that  any continuous homo- 
morphism ¢ : To ) B can be approximated by homomorphisms which factor through 
one of the ]~k. Given ¢, consider its reduction mod p'~, 

¢ ,  : To ~ B/p'~B. 

Since B/p"B is (finite and) discrete, it is clear that  ¢ ,  factors through some h~k, giving 
a map ¢,~ : h.k ---* B/pnB, which can then be lifted to a map ¢,, : b~ k ~ B, because hk 

is a free B-module. Then it is clear that  ¢,~ --* ¢, and we are done. [] 

The restriction to the case when B = OK in the above result can be removed 
without too much trouble by using the fact that ,  for any p-adic ring B, Vp~(B,N) = 
V~,(Zp, N ) ~ B ,  which reduces everything to the case of Zp. More generally, we can 
restrict to algebras over the Wil t  ring W(k) of a finite field k, and get a general duality 
statement.  Recall that  we say an parabolic eigenform for the Hecke algebra To is 
normalized if the coefficient al of q in its q-expansion is equal to 1. Then we have: 

C o r o l l a r y  I I I .1 .3  Let k be a finite field, and let W(k) be its ring of Witt vectors. For 
any p-adically complete W(k)-algebra B (with the p-adic topology), we have 

Vp,,.(B, N) ~ Homw(k) ...... (To(W(k), N), B) 

(continuous homomorphisms of W(k)-mod tes), via the map f el. Moreover, Cj 
is a homomorphism of W(k)-algebras if and only if f E V,a,(B,N) is a normalized 
simultaneous eigenform for the Hecke and diamond operators. In particular, given any 
eigenform for To, there exists a normalized eigenform with the same system of eigen- 
values. 

Proof: For the first assertion, 

V ~ , ( B , N )  = limVp~,(W(k),N) ® B / p " B  

= li_  s (w(k) ,  N) ® B/p"B 

lim Homw(k)__ ,~o-,. (To(W(k), N), Zp) ® B/p'~B 
n 

= lim Hom~¢i (T0(W(k),N),  Z,) ® B/p'~B ~- ( )  
• . f a c t  r t  = lLm - Homw(k ) (To(W(k ) ,N) ,S /p  B) 

= li._m Homw(k) ...... (T0(W(k) ,N) ,B/pnB)  

= H°mw(k) ...... (T0(W(k), N), B). 
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The second assertion is immedia te  from the definition of ¢] ,  and the third is clear, since 

any eigenform defines an algebra homomorphism 

T0(W(k) ,  N) , B 

(its sys tem of eigenvalues), o 

In most  situations, it will be sufficient with the case W(k) = Zp, which is the most 

general. In the theory of deformations of Galois representations,  however, we will want 

to base-change to W(k).  

In part icular ,  the Corollary applies to classical cuspforms. Hence, for any k and u, a 

classical cuspform f of level Np ~, weight k, and defined over B, determines a continuous 

homomorph i sm e f  of Zp-modules To ----+ B. If f is a normalized eigenform for To 

(hence in part icular  has a nebentypus) ,  then e f  is an algebra homomorph i sm whose 

restriction to G(N) is the character  determined by the weight and nebentypus  1. 

R e m a r k :  The reference to the various topologies in the s ta tement  of this general du- 

ality result should be carefully noted. A parabolic generalized p-adic modular  function 

defined over a p-adic ring B may be identified with a continuous Zp-module homomor-  

phism To , B, provided one gives To its inverse limit topology (of which we give a 

more intrinsic description below) and B its p-adic topology. For example,  the identity 

map  To id ~ To does not correspond to a modular  function (because the p-adic topology 

is strictly finer than  the inverse limit topology); in other words, there is no "universal" 

parabolic modular  function. This leads to the definition of a family of modular  functions 
in the next section. 

Since the inverse limit topology on To appears  in such a central  manner  in the 

discussion above, one would like to be able to give an intrinsic characterizat ion of it, 

independent  of the part icular  description of To as an inverse limit of finite Zp-algebras 

(of which there are many,  since one may work with level Np ~ for any u > 1, and see also 

section III.3).  This is indeed possible, at least when B = OK for some finite extension 
K/Qp. 

P r o p o s i t i o n  I I I . 1 . 4  Let B = O K f o r  s o m e  finite extension K/Qp. Under the isomor- 
phism 

T0(B ,N)  - - )  Homz~(Vpa, ,B) ,  

the inverse limit topology of T0(B ,N)  corresponds to the compact-open topology on 
Hom~.,(Vpo,, B) (where V~o~ and B are given their p-adic topologies). 

lIn the preceding chapter, we recalled Hida's theory of the ordinary part eT 0 of the Hecke algebra, 
which is a direct summand of To, and corresponds to the "unit-root eigenspace" for the U operator. It is 
immediate, then, that if the eigenform f satisfies Uf = ;~f with A a p-adic unit, then ¢1 factors through 
the ordinary algebra eT0. 
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Proof: The inverse limit topology is generated by open sets of the form 

(T c TolTf  C U, Vf c Sk}, 

where b / runs  over the open subsets of B and k runs over the integers, which are open 
in the compact-open topology (because the S k, being free of finite rank over Zp, are 

compact in the p-adic topology). Hence, it is clear that  the compact-open topology is 
finer than the inverse limit topology. 

F o r  the converse, we want to show that  sets of the form 

{T C T0[T(K) C •}, 

(K C Vpa, compact,  L/ C B open) are open in the inverse limit topology. It is clearly 
enough to consider the case where K is a compact submodule of Vp~r and L/ = p'~B. 
Since K is compact in the p-adic topology and Zv-free, it must be Zp-free of finite rank; 

let ( f l , - - - ,  f , )  be a basis. Since S is dense in Vp~,, one may choose (gl , . . . ,  g,) such that 

g~ 6 S k (for some fixed, sufficiently large k) and g~ _= f~ (mod p~) with v > n. Then it 
is clear that  

{ T [ T ( K )  C p " B }  = { T ] T f i c p n B ,  i = l , . . . , r }  

= {T ]Tgi E p'~B, i = 1 , . . . , r } ,  

which is clearly open in the inverse limit topology (it is the inverse image under the 

canomeal projection of an open subset of b~). Thus,  the two topologies are equal. D 

I I I .1 .3  T h e  n o n - p a r a b o l i c  c a s e  

To get analogous results for the full ring of p-adic modular functions (not necessarily 

parabolic),  one must somehow get around the fact that  the constants in V will neces- 
sarily pair to zero in the pairing (]II.1). This turns out not to be too difficult, and since 

we will not use it later, we will only sketch the results. 

Let K be a finite extension of Qp, and let B = 0 g .  We have already seen that  we 

have the perfect pairing 

7-/~(B, N) × ink(B, N) , B,  

where m~ is defined as above, rather than a pairing for D~, since it is clear that  a sum of 

modular  forms over K (the field of fractions of B) that  has integral q-expansion except 
for its a0 term will define a map ~ , B. Note that  

rak(B,N) ~ { f  E D~(K,N)If(q) C K + qB[[q]]}, 

so that  going to ink(B, N) gives precisely the desired space. 
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It is again possible to pass to the limit situation. Since we have the obvious maps 

ink(B, N) ~ mk+l(B, N), we may consider the limit, and define 

Then  note that  

mo~(B, N) = lira ink(B, N). 
k 

m ~ ( B , N )  = lim Dk(B,N) + K  _ D(B,N)  + K  
-~" K K ' 

so that  moo(B, N) is not a completely mysterious space. (It may also be described as 

in the preceding paragraph,  as the space of sums of modular forms over K which have 
integral q-expansion except possibly for the first coefficient.) 

As before, we get a pairing 

T ( B , N )  × m ~ ( B , N )  , B,  

which, as before, gives a duality between T ( B ,  N) with its inverse image topology and 

~oo(B,  N), where the bar indicates the p-adic completion. (We have here used the fact 
that  

D' = lira D~ 
k 

is dense in V,  and hence that  its Hecke algebra is the full Hecke algebra, as noted 

above.) The  only difficulty, then, is to determine the relation between V and the p- 

adic completion of moo. The elements of moo are limits of sequences fi E moo(B,N) of 
modular  forms whose q-expansions are integral except perhaps for the a0 term, and the 
p-adic norm is the p-adic norm on q-expansions shorn of their a0 term, i.e., if f = Y~ anq n, 
with an p-integral for n > 1, then we set 

Ilfll = s u p  la . I ,  
n > l  

where I" I denotes the p-adic norm on B. Giving m~(B,N) this topology, we have a 

continuous surjective Hecke-equivariant map 

D(B, N) + K , moo(B, N), 

which extends by continuity to a map 

V ( B ,  N) + K ~ ~oo(B,  N). 

We claim this is still onto. Let [f] denote the image in moo of f G D + K;  it is clear that  

II[f]ll -< Ilfll, where o f  c o u r s e  w e  use the correct norm in each space. However, one can 
make a canonical choice of the lifting f by requiring f(q) C qB[[q]] (which, since the 

constants belong to K ,  can always be done!), in which case we will have Ilfll -- I1[/]11. 

Note also that  such a lifting f will belong to D, and not only to D + K.  Thus,  given a 

Cauchy sequence in moo, we can lift it to a Cauchy sequence in D, whose limit will be 
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mapped to the limit of the given sequence, so that the map on completions is onto. The 
kernel consists precisely of the constants K C V q- K,  so that we get an exact sequence 
of tIecke-equivariant Zp-algebra homomorphisms 

0 , K , V(B, N) + K , ~ ( B ,  N) , 0. 

To summarize, we have shown: 

P r o p o s i t i o n  II I .1 .5  Let K be a finite extension of Qp, and let B = 0 K .  

pairing 

induces isomorphisms 

Then the 

V(B,N) × T(B,N) , B 

( f ,T)  ~-~ a~(Tf) 

T(B, N) ~ HomB(VI(B, N), B) 

(continuous homornorphisms of B-modules) and 

VI(B, N) ~ Homs ...... (T(B,N),  B), 

where we give T(B, N) the inverse limit topology, and where 

V,(B,  N) - V(B, N) + K 
K 

Thus a continuous B-module homomorphism T(B,  N) ~ B determines a unique 
element of VI(B , N); however, in general there is no canonical Hecke-equlvariant way 
to determine a lifting to V(B,N).  If the map is a B-algebra homomorphism, the cor- 
responding element of V~(B,N) is an eigenform (up to constants), and hence has a 
well-defined weight. Provided the weight is not zero (i.e., provided G(N) is not mapped 
to 1), we can then choose canonically a constant term in the q-expansion, so that such 
a map corresponds to a well-defined eigenform in V(B, N)[1/p] which has q-expansion 
f (q)  e g + qB[[q]]. The example of 

f = 1Ep_ 1 
P 

shows that it is not possible, in general, to assume that the resulting eigenform is in 
V(B, N) itself. 

Applying the preceding proposition to the case B = Zp and using an inverse limit 
argument analogous to that in the proof of Corollary III.1.3, we get an analogous result. 
Recall that T = T(Zp, N), and give T its inverse limit topology; then: 

Coro l l a ry  III .1.6 For any p-adic ring B with the p-adic topology, we have 

VI(B, N) -~ Homz, ...... (T ,B)  

f ~-+ eS 
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(continuous homomorphisms of Zp-modules), where 

and 

¢f(T) --- a l ( T f )  

VI(B,  N) - V(B,  N) + K 
K 

Moreover, ¢! is an algebra homomorphism if and only if f E VI(B ,N)  is a normalized 
simultaneous eigenform for the Hecke and diamond operators (up to constants). In this 
case, f E V I(B ,N )  may be canonically lifted to an eigen/orm f E V(B,N)[1/p] whose 
q-expansion satisfies f (q)  E g + qB[[q]], provided ¢](G(N)) # 1, i.e., provided f is not 
of weight zero. 

In what follows, we will usually prefer to consider only the case of parabolic modular 
functions, since the duality theory is then much simpler, but will occasionally mention 
the general case. 

1 1 1 . 2  F a m i l i e s  o f  M o d u l a r  F o r m s  

As we have observed in the preceding section, the general duafity between parabofic 
p-adic modular  functions and the Hecke algebra To is complicated by the necessity of 
keeping the topologies involved straight. The point of this section is to introduce a 
concept that  alleviates the problem somewhat. As before, everything makes sense (and 
is true) for p-adically complete algebras over the Wit t  ring of a finite field; we will 
consider only the case k = Fp (so that  W(k) = Zv) , and leave the extension to the 
reader. 

The concept of an "analytic family of p-adic modular forms" was first introduced by 
Serre in [Se73]. He considered there the Iwasawa algebra A = Zp[[P]] (the completed 
group ring with coefficients in Zp of the pro-p-group F =- 1 + pZp C ZX), given the 
inverse limit topology, with which it is a compact Zv-algebra. Recall that  choosing a 
topological generator 9' of F defines an isomorphism of topological Zp-algebras 

Zp[[F]] , Zpi[T]] 
, , 1 + T, 

where Zp[[T]] is given the (p, T)-adic topology, and where we use angular brackets to 
distinguish elements of the group F from elements of Zp (so that  (7) - 7 is a nonzero 
element of the group ring). Then Serre defined an analytic family of modular forms to 
be a formal q-expansion 

F(q) = Ao + Alq + A2q 2 + .. .  

where Aj C A, such that ,  for every k C Zp and for a fixed i E Z / ( p -  1)Z, the image of 
F(q) under the map A , Zp defined by (7) ~-~ 7k is a p-adlc modular  form of weight 
( i ,k) ,  i.e., belongs to M(Zp, X(~.~),N; 1). To get a family of cusp forms, of course, we 
would require A0 -- 0 and that  each specialization be a cusp form. 
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To translate this definition to our situation (in the cuspidal case), note that To 

is natural ly an algebra over the algebra A = Zp[[Z~]] topologically generated by the 

diamond operators (x,1) for x E Z~. Note that  A = A[Z/(p  - 1)Z] is just a group ring 

over A, which (because p ~ (p - 1)) we may decompose according to the powers of the 

Teichmliller character  (which are the characters of Z / ( p -  1)Z); we write 

A = G A(1). 
imod(p-1) 

Then  it is clear tha t  an analytic family of p-adic modular  forms in the sense above is 

a map T0 ~ A(i) which, when composed with the canonical maps A ~ Zp given by 

(.),) ~ ~/k, gives continuous maps To ~ Zp. This amounts  to a map To ) A(1) which 
is continuous when we give A its inverse limit topology. Thus, an analytic family of p- 

adic modular forms is not necessarily a generalized p-adic modular  function defined over 

A, though it defines p-adic modular forms by "specialization to weight k" for every k. 

(The distinction may be understood as follows: a generalized p-adic modular function 

defined over A can be evaluated at any trivialized elliptic curve defined over any p- 
adically complete A-algebra; a map To ) A does not determine such a rule. Consider, 

for example, a trivialized curve defined over A ® Fp ~ Fp[[T]].) 

Given this re-interpretat ion of Serre's definition, it is clear that  we may extend it as 
follows. 

D e f i n i t i o n  I I I .2 .1  Let B be a p-adically complete topological Zp-algebra. A B-valued 
family of parabolic p-adic modular functions is a continuous Zp-module homomorphism 
f : To ) B. Given any continuous map ¢ : B ~ B to a p-adic ring B (where 
we give B the p-adic topology), we denote by f¢ the modular function defined over B 
corresponding to the composite homomorphism ¢of; we call f¢ the "specialization via ¢"  

(sometimes "to weight ¢")  of the family f. Finally, we say f is a family of eigenforms 
if every specialization f¢ is a simultaneous eigenfunction for the Hecke, diamond, and 
U operators (and hence for the action of To). 

R e m a r k s :  

i. Of course, if the map f i s  continuous when we give B the p-adic topology, then we 

simply obtain a parabolic modular  function defined over B. This makes B-valued 

families of modular  functions a generalization of modular  functions defined over 
B. 

ii. In many  cases, the family f is determined by the set of all its specializations (for 

example, when B = A ) ;  when that  is true, we will sometimes confuse the family f 

with the set {Ix:  X C Horn ,~u(Z~,  Z~)} of its specializations. 

iii. A family of parabolic modular functions has a q-expansion; simply define 

f(q) = ~ f(T,~)q n. 
n>l 
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iv. The  "universal family" of parabolic modular  functions is simply the identity map 

To ~ To. 

The  most interesting case of the above will be when B is a A-algebra, in which case 

one can consider, for each X e Homc~to(Z~, Z ; ) ,  the map 

Cx : B , B x = B/p×B, 

where P×B denotes the ideal generated by the elements (z, 1) - X(z) C A. If these maps 

are continuous when we give the quotient the p-adic topology, we call them "special- 

ization to weight X", and write fx for the corresponding specializations of a family of 

modular  forms f. Note that  we then have fx E M(B x, X, N; 1). For example, if B = A, 

we have B x = Zp for all X, and we recover Serre's situation. 

R e m a r k :  There  is one impor tant  aspect in which the above definition is weaker than 

Serre's: the restriction to parabolic modular functions. In fact, the best-known example 
of an analytic family, Serre's Eisenstein family Gx, is not parabolic. The  problem, of 

course, is the fact that  the duality between modular  functions and Hecke operators gets 

complicated in the non-parabolic case. In particular, it is not clear that  a family of 

eigenforms f : T ~ A in our sense determines a family of eigenforms in Serre's sense, 

i.e., tha t  there is a well-defined A0 E A which is the constant te rm in the q-expansion of 

f. In fact, this is not always true; given the duality theorems, the most we can expect 

is an element of the fraction field of A. Serre has shown (in [Se73]) that  we have two 

cases. First,  suppose i is not divisible by p - 1. Then,  given modular  functions Fk of 
p-adic weight ( i ,k) ,  they are the specializations of an analytic fami]y of modular  forms 
("with values in A") if and only if there are elements Ai E A, i > 1, such that  A~ 
specializes-(via 7 ~-* 7 k) to the ith coefficient of the q-expansion of Fk for each k. (In 

other  words, if the coefficients al(Fk), a2(Fk),.., are specializations of elements of A, 

then so is the first coefficient ao(Fk).) This avoids the difficulties with the integrality of 

the zero-th coefficient, and shows that  in this case an analytic family of (non-parabolic) 
p-adic modular  forms with values in A is a continuous map T ~ A. In the case when 

i = 0 (mod p -  1), however, the Eisenstein family already shows that  this cannot be the 

case; in this case Serre shows that  if al(Fk), a2(Fk),.., are specializations of elements 

of A, then ao(Fk) will be a specialization of an element of the fraction field of A of the 
form 

C 

3" -- 1'  

with c E A. In any case, we may identify "analytic families of modular  forms with values 
in A" with maps T ~ A, provided we allow the zero-th coefficient in the "analytic 

family" to belong to the fraction field of A. This extends to families with values in A, 

for trivial reasons, but  it is not clear what happens for more general rings. 

We should note the following obvious lemma: 
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L e m m a  I I I . 2 . 2  Let B be a A-algebra, and assume that the intersection of all the ideals 
P×B of B is zero. Then a family of parabolic modular forms f : To ) B with values 
in B i8 a family of eigenforms if and only if the map f is a continuous Zv-algebra 
homomorphism. 

Proof: clear. [] 

Analytic families with values in A can be detected, as Serre showed in [Se73], by 

congruence properties. Since A is just a sum of copies of A, the same holds for families 

with values in A. We refer to Serre's paper  for the precise statements:  see [Se73, Section 
4.4]. 

Finally, we note that  one can use Serre's Eisenstein family to construct any number 

of examples of A-valued families of modular forms. For this, let f be a cusp form of 

p-adic weight (i, ko), and let Ek, with k E Zp denote (the specializations of) Serre's 

analytic family of Eisenstein series of weight (0, k). Recall that  E0 = 1. Then  it is 

clear (say, from congruence properties) that  setting fk = f • Ek-k0 defines a family of 

modular  forms with values in A, whose specialization to weight /Co is precisely f .  We 

describe this last fact by saying that  f i s  a "spreading-out" (over A) of the modular form 

f .  Thus,  this construction not only provides examples of families of modular  forms but 

also shows that  one can spread out any modular  form to an analytic family containing it. 

Unfortunately,  the resulting family has few good properties, because the specializations 
of f are not eigenforms for the Hecke algebra, except in very special cases. (For example, 

in the "rank one" case of Hida's theory of the ordinary part ,  we can get a family of 

eigenforms by taking the ordinary part  of f.) We will later show one way of obtaining a 

family of eigenforms by twisting a classical modular form by wild characters. Finding 

other methods for generating families of eigenforms would have significant corollaries for 

the deformation theory of Galois representations discussed ahead, and is an important  
open problem. 

III.3 Changing the Level 

As we have seen above, the ring V of generalized p-adic modular  functions may be 

realized as the closure of a union of Zp-modules of finite rank, by way of divided con- 

gruences. In this section, we give another  description of V in the same spirit, this time 

taking classical modular  forms of constant weight but  varying level. The  advantage 

of this description is that  it does not necessitate the consideration of congruences of 

classical forms, so that  theorems about  classical modular forms over Z v can be more 
easily applied to the situation. 

Let us fix a weight k > 2. We begin by recalling (see Section 1.3.5) that  we have 
defined canonical inclusions 

M ( B ,  k, Np ~) ~ V(B ,  N), 
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and by noting that these submodules of V form a direct system via the canonical 
inclusions 

M(B,  k, Np ~) ~ M(B,  k, Np~+l). 

(Note that all of these maps preserve q-expansions.) Thus, if we set 

M(B, k, Np °*) = lim M(B, k, Np~'), 
1] 

we get a q-expansion preserving inclusion 

M ( B , k , N p  °°) ~ V(B,N).  

Similarly, by restricting to cusp forms, we may define S(B,  k, Np °°) and get a canonical 
inclusion preserving q-expansions, 

S(B,k ,  Np °°) ~ Vv~,(B, N ). 

We are interested in considering the closure of the image (which is, by the q-expansion 
principle, the p-adic completion of S(B, k, Np°°)); let us denote it by S(B, k, Np°°). It 
is clear that the proofs given in Section III.1 allow us to show: 

P ropos i t i on  III.3.1 Let B be a p-adic ring, and let 

Np = 1Lm Np ), 
v 

where I~(B, k, Np ~) denotes the Hecke algebra corresponding to the space S(B,  k, Np ~) of 
cusp forms of weight k and level Np ~. Let Kk( B, Np ~) the inverse limit topology induced 
by the p-adic topology on the K(B, k, Np~). Then the map f H ¢! defined as above gives 
an isomorphism 

S(B, k, Np ~) ~ ,  Homz~ ...... (Kk(Zp, Np~), B). 

Proof: Clear; note that the assumption k > 2 avoids all questions about base change. 
[] 

In fact, we have shown nothing new, because of the following result, which was stated 
without proof in [Hi86a], and whose proof is to appear in a forthcoming paper. 

T h e o r e m  III .3.2 [Hida] Let k >_ 2 and let B be p-adic ring. Then the image of 
S(B,  k, Np *°) under the canonical inclusion is dense in Vv,,(B ,N). Equivalently, the 
surjection 

T0(B, N) ,, Np 

defined by the canonical inclusion is an isomorphism. 
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Proof: The equivalence of the two statements follows from (II1.1.3) and the preced- 
ing proposition (and one may even restrict to the case B=Zp). 

Step 1: We note, first, that Hida has shown ([Hi86a]) that there are Hecke-invariant 
inclusions 

M(B,k ,Np  °~) ® B/p'~B ~ M(B,k  + 1,Np ¢¢) ® B/p"B, 

given by multiplication by the appropriate Eisenstein series. These induce Hecke- 
invariant inclusions 

~(B, k, Np ~) ~ ~(B,k + 1,Np~). 

Since the Hecke actions extend naturally by continuity to the p-adic completions we get 
surjections 

kk+l (B, Np °°) 

Thus we get a diagram of surjections, 

- hk(B, Np ~). 

hk+l(B, Np °°) 

T0(B, N) 

h~(B, Np ~) 

and it follows that it is enough to prove that the map 

T0(B,N) , k2(B, Np °°) 

is an isomorphism, or equivalently, that the image of S(B, 2, Np ~) is dense in Vw,. 
Step 2: The crucial step in the proof is the following result of Hida ([Hi]): 

T h e o r e m  I11.3.3 [Hida] The maps h.k(B, Np ~°) ~ l~k_l(B,Np ~) are all isomor- 
phisms. 

tIida proves this by studying the representation of the Hecke algebras in question 
on the parabolic cohomology of congruence subgroups of SLy(Z), and by invoking a 
result of Shimura and Ohta. (The result is stated by Shimura in [Shi68] and proved, in 
the quaternionic case, by Ohta in [Oht82]; using recent results of Harder, one sees that 
Ohta's proof apphes without change in our situation.) We refer the reader to Hida's 
forthcoming paper. 

Step 3: The fuU result now follows easily. Note, first, that Hida's theorem implies 
that the maps Sk(B, Np ~)  ~ Sk+I(B, Np °°) are isomorphisms. Reducing mod p'~, we 
get that the maps 

Sk(B/p'~B, Np ~°) , Sk+I(B/p"B, Np °~) 
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are isomorphisms, so that  we have the following: 

C o r o l l a r y  I I I . 3 .4  Let n > 1. Fiz ko E Z, ko > 2. Then, for any k > 2 and any 
classical modular form f of weight k and level Np ~, there ezists # > v and a classical 
modular form g of weight ko and level Np ~ such that f - g (mod p'~). 

Now, to conclude the proof, we need to show that  the map 

To * Kk(B, Np °~) 

is an isomorphism (for any fixed k). Since we know it is surjective, we need only show 
that  it is injective. To see this, for each 

x e 

let Px be the ideal of A = Zp[[ZX]] generated by 

{(z,1) - X(x): x e ZX}. 

Then it is clear from the duality theorems that  T0/P×T0 is dual to the space S(B, X, N; 1) 
of p-adic cusp forms of weight X (because this space is precisely the subspace of Vp~ 
consisting of forms satisfying (x, 1)f  = X(x) f ) .  We want to look at the map 

T0/PxT0 , b~(B, Np°o)/Px~k(B , Np°~). 

Dualizing, we get the inclusion 

Sk(B, Np °°) N S(B, x ,N;1)  ~ S(B,x ,  N; 1). 

We claim that  this is a surjection. Given f E S (B ,x ,N ;1 ) ,  we can find a sequence of 
classical cusp forms f,, E S(B ,  k , ,  N) such that  

f (q)  ~ fn(q) (rood p"), 

so that  f,~ ---* f in the q-expansion topology. By the corollary, we can find gn G 
S ( B , k ,  Np ~('~)) such that  g=(q) - fn(q) (mod p"), and then we get that  g= --~ f ,  so 
that  f G Sk(B, Np°°), proving our claim. 

Dualizing again, we see that  the map 

T0/PxT0 ~ kk(B,  Np~)/Pxl~k(B,  Np °°) 

is an isomorphism (for any X). It follows that  the map 

To ~ l~k(B, Np °°) 

is injective: if T is in the kernel, then T E P×T0 for all X; since the divided congruences 
of p-adic cusp forms are dense in V ~ ,  we have I'3 PxTo = 0, so that  T = 0. This proves 
the theorem. [] 
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III .4 D e f o r m a t i o n s  of  Res idual  E igenforms  

In [Ma], Mazur has considered the problem of studying the deformations, in a sense to 
be defined below, of representations of the absolute Galois group of the field of rational 

numbers in GL2(k), where k is a finite field, which he calls a "residual representation".  

It is well known that  some representations of this kind may be obtained from modular 

forms, and it is an interesting question whether it is t rue that  the deformations of a 

residual representat ion arising from a modular  form are in some sense modular.  In this 

and the following section, we consider modular deformations of a residual representation, 

i.e., those arising from modular forms, and show that  one can construct a universal mo- 

dular representation which corresponds to a family of p-adic modular  functions which 

are eigenforms for the ttecke algebra. We begin, in this section, by considering deforma- 

tions of "residual eigenforms' ,  i.e., p-adic modular functions defined over a finite field 
k which are eigenforms for the ttecke algebra. For technical reasons, we restrict the 

discussion to parabohc modular  functions. 

D e f i n i t i o n  I I I . 4 .1  Let B be a p-adic ring. A Katz eigenform defined over B is a 

parabolic generalized modular function which is an eigenform for the Hecke algebra and 

which is normalized in the sense that the coefficient of q in f (q)  is equal to 1; we 

denote the corresponding homomorphism To ~ B by qa f.  This homomorphism induces 

characters X : ZX ~ B x and e : (Z /NZ)  x ~ B x, which we call, respectively, the 

weight and the nebentypus of f .  

Note that  the weight and nebentypus of an eigenform as defined here coincide with 

the classical weight and nebentypus for classical eigenforms of level N, but  not for 

classical eigenforms of level Np~; in the latter case, e is the "prime to p" part  of the 

nebentypus character.  If we need to refer to both terminologies, we will call what we 

have just defined the "p-adic weight" and "p-adic nebentypus".  

D e f i n i t i o n  I I I . 4 . 2  A residual eigenform is a Katz eigenform f defined over a finite 

field k. Its weight is then necessarily a power of the "Teichm~zller" character Z~ 
F~ ~ k × (i.e., the character induced by the canonical map Zp , Fp). 

If f is a residual eigenform, it follows from Proposit ion 1.3.3 that  we have f E Vx,1, 
and hence (because it has a weight) that  f is the reduction of a classical modular  form 

of level N defined over W(k) (the Wit t  ring of k) - -  see [Ka75a]. It then follows from 

a lamina of Serre and Deligne (see ahead) that  f is in fact the reduction of a classical 

eigenform of level N defined over some (totally ramified) extension of W(k).  

D e f i n i t i o n  I I I . 4 . 3  A deformation of a residual eigenform f defined over a finite field 

k is a ga t z  eigenform f defined over an artinian local W(k)-algebra A with residue field 

k such that f H f under the residue map. More generally, one may take A to be a 

complete noetherian local W(k).algebra with residue field k whose quotients by powers 

of the maximal ideal are artinian. 
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Typically, we will be looking at deformations to W(k)-algebras A which are either 
finite extensions of W(k) or their quotients, and at families of such. We will later need 
to modify this notion somewhat, in order to adjust it to the situation of deformations 
of Galois representations. 

I I I . 4 . 1  U n i v e r s a l  d e f o r m a t i o n s  

Fix a residual eigenform f • V(k, N) over a finite field k. Let C denote the category 
of artinian local Zp-algebras A with residue field k, and let C denote the category of 
complete noetherian local W(k)-algebras B with residue field k such that B/m" is an 
object of C for any power of the maximal ideal m C B. 

Consider the functor F : C ~ Set defined by 

F(A) = {deformations of f defined over A} 

= {~ • Homz~_=,g(T0,A) I ~ =  ~]} 

= {~ • H°mw(k)-~ao(To(W(k),N), A) [ ~ =  ~7} 

where HomW(k)_~ @ denotes continuous homomorphisms of W(k)-algebras (note: A is 

given the p-adic topology), and ~ denotes the composition of ~ with the residue map 
A ~ k. We want to study the representability of this functor. 

Since f is an eigenform, it corresponds to a continuous algebra homomorphism 
: To > k; we denote the kernel of this homomorphism by m. Let R denote the 

localization of To at m, with the induced topology. Then every continuous ~ : To > A 
lifting g factors through the canonical map To ) R. This suggests that R will 
represent our functor; the first difficulty is that R is not complete, so that we need 
to pass to its completion, which we denote by 1~. Then, of course, for any p-adic 
ring B (complete local noetherian with residue field k), given a continuous algebra 
homomorphism To ~ B lifting ~, we get a continuous algebra homomorphism R 
B, which then extends to the completion, giving a continuous algebra homomorphism 
1~ , B. The converse, however, is not true (unless k = Fv), because any conjugate 
of T under the Galois group Gal(k/Fv) will determine the same maximal ideal m, and 
hence the same completion R. In other words, 1~ actually represents the functcr 

G(A) = U {deformations of T defined over A}. 
eeG~l(k/Fp) 

We prefer to separate the several Galois conjugates; this can be done by base-changing 
to the Witt ring W(k). Thus, let m now denote the kernel of the map T0(W(k), N) , k 
corresponding to L and let R(f)  denote the completion of T0(W(k),N) at m. Then 
clearly the deformations of f to B correspond precisely to maps R(f)  ~ B, and we 
get: 
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Proposition 111.4.4 For any residual parabolic eigenform f C V(k , N) ,  there ezists 
a complete local W(k)-algebra R ( f )  and a family of parabolic modular functions f : 

T 0 ( W ( k ) , N )  ) a ( f  ) which is universal for the deformations of f ;  that is, so that for 
every deformation f defined over a p-adic ring B,  there exists a continuous homomor- 
phism a : R ( f )  , B such that f is the specialization of f via a. 

R e m a r k :  In general, the universal family f is not a modular  function defined over 

a ( f )  (because the map  T 0 ( W ( k ) , N )  ----* R ( f )  is not continuous if we give R ( f )  the 

p-adic topology),  so tha t  the functor is not, in the strict sense, representable,  in the 

sense tha t  there is no "universal deformation" (to be precise, the universal deformation 

is not a modular  form, but  ra ther  a family of modular  forms). 

It  is interesting to ask if R(f-) is noetherian. This is equivalent to asking if the 

" tangent  space 2'' of R ( f  ) is finite-dimensional, i.e., that  

F(k[e]) = Homatgeb,~,(R(7), k[e]) 

is a finite-dimensional k-vector space, where k[e] = k + ke with e 2 = 0. For example,  if 

U f  = 0, one can obtain a (not very interesting) deformation to k[e] by g = 7 +  e f r o b  7; 

this satisfies Ug -- eg and has the same eigenvalues as 7 for the rest of the Hecke algebra. 

This shows tha t  the dimension of the tangent  space is always at least one. Is it finite? 

We have not been able to answer this in the general situation. 

I I I .4 .2  D e f o r m a t i o n s  ou t s ide  Np 

In the next section, we will relate deformations of residual eigenforms and deformations 

of residual Galois representations.  From this point of view, the deformations considered 

above are not the right thing to consider. The  problem is that  the representat ion 

a t tached  to a modular  form depends only on its eigenvalues for the T t with g XNp, i.e., 

on the eigenvalues for the action of the restricted Hecke algebra T~. Thus,  if two Katz  

eigenforms have the same q-expansion coefficients a,~ whenever n is prime to Np, they 

will determine the same representation.  This shows that  we should look for deformations 

up to a weaker notion of equality. 

D e f i n i t i o n  I I I . 4 . 5  Let B be a p-adie ring. We say two Katz eigenforms f and g defined 
over B are equal outside i p  if we have a,~(f) = aN(g) whenever (n, Np) = 1, where an(h) 
denotes the coefficient of qn in the q-expansion of h. 

Since Katz  eigenforms are by definition normalized, this is equivalent to requiring 

tha t  the eigenvalues under  T t be the same for g such tha t  (g, Np) = 1. 

D e f i n i t i o n  I I I . 4 . 6  Given a residual eigenform f ,  we say that a Katz eigenform g de- 

fined over B is a deformation of f outside Np if a,~(g) reduces to a,~( f )  whenever 
(n, Np) -- 1. 

2In the sense of Schlessinger in [Sch68]; this is actually the "reduced Zariski tangent space", that is, 
the Zariski tangent space of R(f) /pR(f  ). 
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We m a y  re in terpre t  these definitions in terms of our  dua l i ty  theorems:  we have 

T o C To,  and  we say tha t  two algebra h o m o m o r p h i s m s  To > B are equal outs ide Np 

if their  restr ict ions to  the subalgebra  T o coincide. Then ,  of course, two Ka tz  eigenforms 

are equal  outs ide  Np if and  only if the cor responding  algebra h o m o m o r p h i s m s  are. 

Similarly, if we denote  the h o m o m o r p h i s m  cor responding  to 97 by ~ : To > k and its 

restr ic t ion to T ;  by ~ ,  we say a h o m o m o r p h i s m  ¢ : To ) B is a de format ion  of 

outs ide Np if its restr ic t ion to T o reduces to W*. 

D e f i n i t i o n  I I I . 4 . 7  We say a parabolic p-adic modular function f C V is an eigenform 
outside Np if it is an eigenform for the action of the restricted Hecke algebra T O. If 
f is normalized by a l ( f )  = 1 and if we denote the continuous map associated to f by 

¢ : To ~ B,  this is equivalent to requiring that the restriction ¢* of ¢ to T o be an 
algebra homomorphism 

If  we wish to  consider deformat ions  of a residual e igenform f outs ide Np, we must  of 

course ident i fy  all the  maps  To ~ B which have the same restr ic t ion to T 0. This just  

amoun t s  to considering algebra homomorph i sms  T o ~ B,  since it is easy to see tha t  

any  such m a y  be extended to a Zp-module  h o m o m o r p h i s m  To ~ B,  by  considering 
the classical case s 

Let us then  consider deformat ions  of 97 as an eigenform outside Np, i.e., modu la r  

funct ions f reducing to 97 outside Np which are eigenforms under  TO, up to  equal i ty  

outs ide  Np. Equivalently,  the quest ion is to describe the cont inuous  algebra homomor -  

phisms T ; ( W ( k ) , N )  , B lifting the restr ic t ion ~-~ of ~ to T ; ( W ( k ) , N ) .  Let  m* be 

the  kernel of  ~*. It  is clear tha t  this s i tua t ion is complete ly  analogous to the preceding 

one, so tha t  the  func to r  F defined by 

F ( B )  = {homomorph i sms  T ;  , B lifting ~*} 

is represented  by  the  comple t ion  of T ; ( W ( k ) , N )  at the ideal m* = ker(~*).  We will 

denote  this r ing by  R = R(97). Note  tha t  the base-change  to  W(k)  is again  crucial  in 

order  to  avoid the p rob lem of conjuga t ion  by Gal (k /Fp) .  Thus ,  we have: 

P r o p o s i t i o n  I I I . 4 . 8  For any residual parabolic eigenform f E V ( k , N ) ,  there exists a 
complete local W(k)-algebra R ( f )  and a map 

* W  > f : T 0 ( ( k ) , N )  a ( f )  

3In the classical case, any algebra homomorphism from the restricted Hecke algebra to a p-adic ring 
arises by restriction (not only from a Zp-modnle homomorphism, but) from an algebra homomorphism 
from the full Hecke algebra to B (as we remark below, this follows from Atldn-Lehner theory). To put 
it another way, given a classical modular form which is an eigenform for the action of T~, one can find 
an eigenform for all of To which "has the same q-expansion outside Np". It is interesting to ask if this 
is still true in the p-adic case. The author does not know the answer except for the case N = 1, in which 
the construction in Section II.3.3 shows that there exists an algebra homomorphism To ~ T~ mapping 
U to 0, so that the answer is yes. 
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which is universal for the deformations outside Np of f ;  that is, so that for every 
f C V(B,  N) which is an eigenform outside Np and whose reduction modulo the maximal 
ideal is equal to f outside Np, there exists a continuous homomorphism a : R ( f )  , B 

such that the map ¢~ : T~ , B defined by f is obtained by ¢~ = aof.  

The ring R = R ( f )  will have an impor tant  role in what follows, especially in relation 

to constructing modular  deformations of a residual representation, and we will need to 

recall one way to construct it. 
For this, recall tha t  T~)(W(k), N) is given as an inverse limit of Hecke algebras of 

finite rank; for any u > 1, 

T ; (W(k ) ,  N) = li_m k / (W(k) ,  Np~), 
J 

where as above k~(W(k) ,Np ~) denotes the restricted Hecke algebra corresponding to 

the space SJ(W(k) ,Np ~) of divided congruences of cuspforms of level Np ~ and weight 

less than or equal to j defined over W(k). Since the topology on TD(W(k),N ) is the 

inverse limit topology, and k is discrete, the map ~* necessarily factors through some 
b.~(W(k), Np ' ) ,  and hence also through any h.;(W(k), Np ") for any i > j;  let m(j )  denote 

the kernel of the homomorphism b.;(W(k), Np") ) k corresponding to ~*, for each j for 
which it exists. Since these j form an indexing set that  is cofinal with the original one, 

we may as well take the inverse limit only over such j ,  without changing anything. We 

clearly have m* = lira re(j) and that ,  after localizing, a W(k)-algebra homomorphism 
J 

R ) R = lim (h;(Zp, Np~)),~U), 
J 

where R denotes the localization of T~(W(k),  N) at the maximal ideal m* and 

(h,;(Zp, Np~') )m(j) 

denotes the locanzation of r ;(Zp, N;  at the maximal ideal re(j). 

L e m m a  I I I . 4 . 9  The inverse limit 

R ---- li_m (h ; (Z , ,  Np'))mU) 
J 

is the completion of R = (T~(W(k) ,N))m.  with respect to the topology induced by the 
inverse limit topology on T~(W(k),  N). 

Proof: This is easy to see, since the kernels of the maps 

(T ; (W(k ) ,  N))m* , (b,~(W(k),Np~)),~(j) 

are dear ly  a basis of neighborhoods of zero in the induced topology. See also [EGA, 
01.7.6]. [] 
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To summarize what has been accomplished in this section, given a residual eigenform 

f ,  consider the corresponding algebra homomorphism ~ :  T0(W(k) ,N)  ~ k and its 

restriction ~-* to T0(W(k) ,N) ,  then we may identify the three sets 

{eigenforms outside Np defined over B deforming f outside Np}/~,  

where we set f ~ g if they are equal outside Np, 

and 

{W(k)-algebra homomorphisms T*:  T ; (W(k ) ,  N) , B lifting ~*}, 

Hom.,~(R(f) ,  B).  

This allows us to think of the formal spectrum of R = R ( f )  as the space of eigenforms 

outside Np deforming .f. The  point of the next section is to identify this last set with the 
set of modular  representations into GL2(B) deforming the representation associated to 

f .  We will do this directly by constructing a representation associated to the "universal" 

object of the second set given by T0(W(k),  N) , R ,  which of course corresponds to 

the identity map of R in the third set. Before we do so, we need to recall a little of the 
classical theory of the restricted versus the unrestricted Hecke algebra. 

I I I .4 .3  S o m e  c las s i ca l  r e s u l t s  

In the classical situation, the Atkin-Lehner theory of "newforms" tells us that  one 

can find a basis of S(Qp, j, Np) (where the bar denotes algebraic closure) composed of 

"newforms" fi and of "packages of oldforms" 

where gi is a newform of level N1 dividing Np, d runs over the divisors of Np/N1, and 
Vd denotes the map 

S(Qp, j, Np/d) , S('Qp, j, Np) 

given on q-expansions by q H qd. (If d ~ p, lid gives a map V ( B , N / d )  - -~  V ( B , N ) ;  

of course, if d = p, Vd is just Frob.) The  newforms fl are eigenforms for T~ "with 

multiplicity one", and are hence eigenforms for all of T0. As to the rest, every form 
in each "package" is an eigenform for T~, with the same eigenvalues (i.e., T~ acts as 

scalars). It is not always possible to diagonalize the action of To on each package of 

oldforms ( though it is hard to come by an example!), but  there is always at least one 

form in the space generated by the package which is an eigenform for To (simply because 
every matr ix  has at least one eigenvalue). 

Let us call the basis we have been describing the Atkin-Lehner basis of S(Qp, k, Np); 

assume such a basis has been chosen for each weight k. Taking a direct sum, we get a 
basis of 

5k(Qp, Np) = ( ~  S(-Qv, i, np) .  
i < k  
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Then, if we denote the Hecke algebra of Sk(Qp, Np) by h~k(Q,, Np) and the corresponding 
restricted Hecke algebra by ~ ( Q p ,  Np), the choice of an Atkin-Lehner basis for each 
weight defines inclusions 

hk(Qp, Np) ~ (~  K, @ @ M,,i(Kj) 

and 
h~,(Qp, Np) ¢-~ @ K~ @ @ Kj,  

where, in each sum, i runs over the newforms, j runs over the packages of oldforms, nj is 
the number of forms in the jth package of oldforms, and Ki and Kj  are finite extensions 
of Qp. The image of l~k(Qp, Np) is a commutative subalgebra of (~ K, (3 (~ M,~i(Kj), 
which may or may not be contained (up to conjugation) in (~ K, @ (~(Kj) "~i, depending 
on whether the action of To may be diagonalized. It is interesting to consider the images 
of l~k(Zp, Np) and of l~(Zp, Np) under these inclusions. In fact, there is very tittle that  
is known beyond the (obvious) fact that  these are orders ill the images of the Hecke 
algebras over Qp, so that ,  for example, the image of h~(Zp, Np) is contained in a product 
of discrete valuation rings. This is the fact we will use later. One should note that,  
though we have stated everything for Hecke algebras over Zp and Qp, the shape of the 

theory is the same for Hecke algebras over W(k) and its field of fractions (just tensor). 

III.5 D e f o r m a t i o n s  of  Galois  R e p r e s e n t a t i o n s  

We now go on to consider Galois representations and their deformations. As in the 
preceding chapter, we let k denote a finite field, and let C and C be the categories 
defined above. Let G denote the absolute Galois group Ga l (Q/Q)  of the field of rational 

numbers. 
Let B be a p-adic ring. We consider Galois representations "defined over B", i.e., 

representations 
p :  ~ ) GL2(B). 

We will always assume p to be semisimple and unramified outside Np. For any ~ j' Np, let 
(I)t denote a Frobenius element for ~ in U; since p is unramified outside Np, trace(p((I)t)) 
and det(p((I)t)) are well defined. We will say a given Galois representation is modular 
of tame level N if there exists a Katz eigenform f E V ( B , N )  defined over B with 

q-expansion f(q) = Z a~q ~ (recall that  by definition al = 1) such that:  

trace(p((I't)) = at and det(p((I)t)) -- ~X((t,*)), 

where of course X denotes the character of G(N) corresponding to f (its "weight and 
nebentypus" character). We say that  the representation p is at tached to the eigenform 
f (though it would be more precise to say it is at tached to the system of eigenvalues 
outside Np corresponding to f ) .  We will say a representation defned over R is a family 
of modular representations if it is attached, in the same sense as above, to a family of 
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eigenforms f. In this case it is clear that  every specialization R ~ A will define a 

modular  representat ion a t tached to the corresponding specialization of f. 

A residual modular representation will be a modular  representat ion defined over a 

finite field k. Since any residual Katz  eigenform f must  be an eigenform for the diamond 

operators ,  we have f E V1.1, and hence we know that  f is a "modular  form rood p" in the 

sense of Serre and Swinnerton-Dyer,  i.e., that  it is the reduction of a classical modular  

form of level N and some weight j .  (Since residual eigenforms lift to classical eigenforms 

(see ahead),  we know tha t  a residual modular  representat ion will be unramified outside 

Np.) 

It  is reasonable to look for modular  representat ions because of the following well- 

known theorem (whose proof  unfor tunately is not, as far as this writer is aware, available 

in complete form anywhere in the li terature):  

T h e o r e m  I I I . 5 . 1  Let f be a classical modular form of level Np ~ and weight j > 2 

which is an eigenform under the action of  the restricted Heeke algebra. Let X denote the 

character describing the action of the diamond operators, and, for each t ~qp, let al be 

the eigenvalue corresponding to the Hecke operator T L. Let K be a finite extension of Q 
containing the at and the values of X. Let 7 9 be a place of  K, of residual characteristic 

p, and let K79 be the completion of  K at 79. Then there exists a continuous linear 

semi-simple representation 

PS: ~ = G a l ( Q / Q )  , GL2(K~,), 

which is unramified outside Np and satisfies 

1 
t r ace (p / (~ t ) )  = at and det(py(a2t)) = -~X((g,g)), 

for  all g XNp, where as above ~t  denotes a Frobenius element for g. 

Proof: This is Theorem 6.1 of [DS74], where one may  also find remarks  on the 

extent  to which proofs have been published. One should note that ,  since ~ is compact ,  

it is always possible to modify p! so that  the image of ~ is contained in the ring of 

integers of K79. [] 

This shows that ,  at  least for classical eigenforms f defined over valuation rings, one 

can find a representat ion p a t tached to f .  To get the same result for classical residual 

eigenforms f ,  one uses a lifting lemma: 

L e m m a  I I I . 5 . 2  Let ~ be an arbitrary commutative algebra, R be a discrete valuation 

ring, and write R ~  for R ~z  ~ .  Let A and B be RT-l-modules, and let f : A ~ B be a 

surjective R?-~-module homomorphism. Let • : 7"~ ~ R be any map, and assume that 

there exists v G B such that T v  = ~ ( T ) v  ]or any T C ~ .  Let Q be a prime ideal in the 

support of  Rv .  Then there exists a discrete valuation ring R'  of finite type over R and 

a map ~ : 7"~ ~ R'  such that: 
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i. there ezists w C A ®R R ~ such that T w  = ~P(T)w for any T E 7"t, and 

ii. , ( T )  -- ¢(T) (mod Q') for all T e where Q' is the unique p ime ideal of R' 
for which Q' M R = Q. 

Proof: This is [AS86, Prop. 1.2.2], and it is a generalization of [DS74, Lemma 6.11], 

which treats  the case where A is a free R-module of finite rank and B is its reduction 
modulo the maximal ideal. [] 

To apply this to our situation, take A = M ( R , k , N ) ,  B = M ( R , k , N )  ® k = 
M ( R , k , N )  (provided k # 1), and let ~ be the Hecke algebra corresponding to A. 
We get: 

C o r o l l a r y  I I I . 5 .3  Let R be a discrete valuation ring, and let ~ C R be its mazimal 

ideal. Suppose a classical modular form f E M ( R , k ,  N) is an "normalized eigenform 

modulo Ta", i. e., that a l ( f )  -- 1 (mod ~ )  and that, for any W E ~ ,  we have 

T f  = A~rf (mod ~ ) .  

Then there ezists a classical modular form g E M ( R , k , N )  which is an eigenform for 

the Hecke algebra and which satisfies g - f (mod va). 

Proof: The lemma says that  one may find an eigenform g satisfying Tg = /~Tg with 

#W -- AT (mod m).  By the classical theory, we may assume g to be normalized, in 
which case a congruence of eigenvalues implies a congruence of q-expansions, and we 
are done. [] 

Note that  the fact that  the modular  forms in question are classical is crucial to this 

result, since we need to work with R-modules of finite rank. 

Now, using the preceding theorem, we get: 

P r o p o s i t i o n  I I I . 5 . 4  Given a residual (normalized) eigenform f E V(k ,N) ,  there ez- 

ists a residual GaIois representation p unramified outside Np attached to it. 

Proof: Since any residual eigenform is necessarily classical of level N, this follows 

immediately from Lemma III.5.2 and Theorem III.5.1. (See [DS74, Theorem 6.7].) [] 

We will frequently write f for the residual eigenform and ~ for the residual repre- 
sentation under consideration, to emphasize that  these objects are defined over k. In 

what follows, A will always denote an object of the category C, hence in particular a 

noetherian local W(k)-algebra with residue field k. 
We now want to consider deformations of a residual modular  representat ion ~ of 

( tame) level N and defined over k, which we will take as fixed. Since every representation 

coming into consideration will then be unramified outside Np, let us redefine ~ to be the 

Galais group of the maximal extension of Q unramified outside Np (i.e., the quotient of 

G a l ( Q / Q )  through which our representations factor). 
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We follow Mazur's definitions in [Ma], saying that  two continuous homomorphisms 
) GL2(A) are strictly equivalent if they differ by conjugation by an element of 

GL2(A) which is in the kernel of the (residue) map GL2(A) ) GL2(k), and defining a 

representation to be a strict equivalence class of continuous homomorphisms, which we 

will nevertheless denote by p : ~ ) GLz(A). 

We will say a Galois representation p : ~ ~ GL2(A) is a deformation to A of a given 
residual representat ion ~ if any homomorphism ~ ) GL2(A) in the strict equivalence 

class corresponding to p reduces to ~ under the canonical map GL2(A) ) GL2(k). 

(Clearly, this condition depends only on the strict equivalence class, and not on the 

specific homomorphism.)  With  these definitions Mazur has shown that  if-fi is absolutely 
irreducible, there exists a complete noetherian local ring T~ with residue field k (so an 

object of C) and a representat ion p ) GL2(~)  which is a universal deformation of ~, 

i.e., such that  any deformation of ~ defined over a ring A inC is obtained via a (unique) 

map T~ ) A. (For the construction in much greater generality, and many results about 

the ring T~, see [Ma].) 
The  point of this section is to construct a universal family of modular deformations 

of an absolutely irreducible residual representation ~, i.e., a representat ion 

p : G ~ GL2(R), 

where R is some complete noetherian local topological Zp-algebra in C, such that  any 
modular  deformation of ~ defined over a ring A in C is obtained via a (unique) map 

R ) A. We will show that  we may take R equal to the ring 

R = a ( f )  = 
i 

considered in the previous section, which is the completion of the localization of the 

restricted Hecke algebra T~(W(k),  N) at the maximal ideal corresponding to the residual 
eigenform attached to ~. 

We will construct our representation by using the classical representations, Proposi- 

tion III.3.2, and a result on representations due to Mazur (in [Ma]). Let ~ be a residual 

modular  representation, and let f be the associated residual eigenform. In everything 
that follows, we assume the residual representation -fi to be absolutely irreducible. 

We will now construct a representation of G defined over the inverse limit R,  by 

constructing a representat ion defined over each of the localized restricted Hecke algebras 

at finite levels. As we saw above, the classical theory of newforms implies that  we have 
an inclusion 

H O,, 
where the O~ are complete discrete valuation rings (with residue field k). (Localizing 
simply chooses some of the valuation tings obtained above, so that  the residue fields are 

all the same and the residue maps all induce ~*.) Composing with the projections, we 
get W(k)-algebra homomorphisms 

( l~(W(k),  Np))m(j) , 50,, 
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which by (III.1.3) and Atkin-Lehner theory (as above) correspond to normalized classical 
eigenforms of weight less than or equal to j (since a divided congruence which is an 
eigenform for the diamond operators must be a classical modular form of some weight), 
and hence to Galois representations 
Galois representation 

p(j): 
which satisfies, for g XNp, 

trace(p(j)(m )) = 

GL2(OI). Taking the product, we get a 

' GL2(II O,), 

and det (p( j ) (~ t ) )  = g(g,g), 

where tt denotes the image of T~ in (h~(W(k),Np)).~U) , so that the traces of the repre- 
sentation we have constructed actually take values in the subalgebra (h~(W(k), Np))m(j) 
of II O~. It is at this point that we use Mazur's result. 

T h e o r e m  III .5 .5 Let A'  C A be an inclusion of complete semi-local noetherian W(k)- 
algebras, with A' local. Let A = II A~ be the faetovization of A into a product of local 

rings, and assume that A'  and all the Ai have residue field k. Let r : G ~ GL2(A) be 

a continuous homomorphism such that the induced residual representations ~ : ~ 

GL2(A~) ) GL2(k) are all equivalent and absolutely irreducible. Let H be the image of 

one of the rT, and suppose that HI(H,Ad~) = 0, where Ad~ denotes the k-vector space 

M2(k) ° of two-by-two matrices of trace zero over k, endowed with the adjoint action of 
H. 

Suppose the traces of r(g) lie in A' for all g E ~. Then there exists a continuous 

homomorphism r ' :  ~ ~ GL2(A') such that the representation in GL2(A) induced by 
the inclusion A' C A is A-equivalent to r. 

Proof: This is [Ma, §9 ,Cor. 1']. c3 

T h e o r e m  III .5 .6 Suppose that p > 7. Let -fi be an absolutely irreducible modular 

residual representation defined over k and of tame level N, and fix notations as above. 

Let R denote the inverse limit of the loealizations of the restricted Hecke algebras at 

finite levels at the maximal ideals corresponding to the residual eigenform associated to 
-~: 

a = li_m 

Then there exists a deformation 

p :  ~ , GL2(R) 

of-~ to R ,  satisfying 

trace(p(¢ )) = % and d e t ( p ( ¢ , ) )  = 

for any g not dividing Np, i.e., which is a family of modular representations of tame 

level N attached to the family of eigenforms (outside Np) defined by the canonical ho- 
momorphism T~ ~ R .  
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Proof: Given what we have already done, it is only necessary to note that  the 
hypothesis on Hi(H,  Ad~) is  satisfied when p # 5 (see [CPS]). This gives representations 
into GL2((hj(W(k),Np)),~(j)) for all sufficiently large j .  Taking the inverse limit then 

gives p; the properties of traces and determinants follow at once from those of the p(j), 
and we are done. [] 

C o r o l l a r y  I I I . 5 . 7  Under the hypotheses of the Theorem, the ring R = R ( f )  is noethe- 
rian. 

Proof: It is clearly a quotient of Mazur's ring ~ which gives the universal (modular 

or not) deformation of ~, and which is noetherian by construction, o 

C o r o l l a r y  I I I . 5 . 8  Let f be a residual eigenform whose associated Galois representation 
is absolutely irreducible, let A be a p-adic ring with residue field k, and let f C Vpa~(B, N) 

be any eigenform outside Np over A which reduces to f outside Np. Let X be the weight. 
and-nebentypus character of f (i.e., the character giving the action of G(N)).  Then 
there ezists a representation 

p! : ~  ~ GL2(A) 

attached to f ,  i.e., satisfying, for each g ~Np, 

and 

Proof: The eigenform f corresponds to a continuous homomorphism "r~ , A, 

which determines a continuous homomorphism R ~ A mapping T l to at and (g, g) to 
X((g, g)). Composing this map with p gives the desired representation. (Note that  this 
result was previously only known for classical eigenforms.) t2 

Conversely, if a Galois representation deforming an absolutely irreducible residual 

representat ion ~ to a p-adic ring A is at tached to an eigenform f C Vpa~(B, N), then it 

is (up to strict equivalence) perforce obtained from p via the map R ~ A induced by 

the map T~(W(k) ,N)  , A corresponding to the eigenform. Thus,  p is the universal 

family of (level N) modular  deformations of ~. We call the ring R the universal (level 

N) modular  deformation ring of ~; when the dependence on ~ or on f must be made 
explicit, we will write R = R(~) = R ( f ) .  

C a v e a t :  It is important  to note that  this construction is strongly dependent  on the 
" tame level". It takes account of all deformations arising from modular forms of level 

Np ~ for any v, but it does not cover those arising, say, from modular forms of level N2p 

(which are still unramified outside Np!). The whole question of the effect of changing 

the level on our construction is a difficult one, and we will remark further on questions 
of this type in the conclusion of this chapter. 
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If we denote Mazur's universal deformation ring by 7E = ~(~) ,  it follows that  we 

have a tautological epimorphism 

n (~)  , a (~ ) .  

One suspects that  this is in fact an isomorphism, i.e., that  every deformation of a 

modular  residual representat ion is modular.  We want, in the ncxt section, to obtain in- 
formation about  the modular deformation space and its relation to the total  deformation 

space. 

I I I . 6  T h e  m o d u l a r  d e f o r m a t i o n  s p a c e  

In [Ma], Mazur has examined in some detail the s t ructure of the space of deformations of 

a residual representation. His approach is to view a representat ion defined over a p-adic 

ring B (deforming a given residual representation) as a B-valued point in the formal 

scheme Spf(T¢(~)). The problem then gets translated into studying the geometry of 

tha t  formal scheme. The  surjection 7-¢(~) , R(~) should then be viewed as defining 

the closed formal subscheme Spf(R(p))  of modular deformations of the given residual 

representations, and one would like to obtain more information about  this space and its 

inclusion in the space of all deformations. 

III.6.1 Changing the weight 

The  first thing to note is that ,  even staying within the theory of classical modular forms, 

there are many deformations of any given residual representation. Let f be a residual 

eigenform, and let ~ be the at tached representation. Assume that  f is p-adically of 

weight k, with 0 < k < p -  1, i.e., that  it transforms under (Z /pZ)  x via the k th power 

of the Teichmfiller character.  Then we know (Lemma III.5.2 and the fact that  residual 

eigenforms are necessarily classical) that  there exists a classical eigenform f~ of level N 

and weight i - k (mod p - 1) lifting f ;  choose one such with minimal i. 
r n  For each m > 0, we may consider f as the reduction of the modular form fiEp_l, 

which is of weight j = i + m(p - 1). Hence, by the lifting lemma (III.5.3), f can be 

lifted to an eigenform of weight j ,  level N, and defined over some extension of B, for 

each such j .  Thus,  we have shown: 

Proposition I I I . 6 .1  Suppose f is a residual eigenform which is the reduction of a 
classical modular gi C M ( B , i , N )  (not necessarily an eigenform). Then, for each j 
satisfying j - i (rood p -  1) and j > i, there exists a finite extension Bj  of B and a 
classical eigenform f j  C M ( B j , j ,  N) which reduces to f outside Np. 

Of course, to each such f j  one can associate a representation pj, which will be a 

deformation of the representation ~ at tached to f .  This should be viewed as saying that  

one can vary the deformation "in the direction of the weight". 
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In fact, one can improve this result a little if one is willing to change the level. 
Recall, first, that  there exists an Eisenstein series E C M ( B ,  1, Np) (i.e., of weight one 
on r l (Np))  satisfying 

E(q) _= 1 (rood p). 

Hence, if f i  is a lifting to weight i and level Np, u >_ 1 we may multiply by E to get a 

form of weight i + 1 and level Np which still reduces to f .  Applying Corollary III.5.3 

once again gives: 

Propos i t ion  I I I . 6 .2  Let ] be a residual eigenform, and assume that there exists a 

classical modular form gi C M ( B , i ,  Np) reducing to ft. Then, for every j >_ i, there 
exists a finite extension Bj  of B and an eigenform f j  E M ( B j ,  j, Np) which reduces to 

f 

The  p-part  of the nebentypus of f j  is determined by the reduction f ,  so that  we 

know the precise p-adie weight of any deformation to classical forms of level Np: if 7 is 
of p-adic weight k, i.e., if we have 

( x , 1 ) f  = wk(x)7 

(in V ® k), then f j  must have p-adic weight (k , j ) ,  i.e., 

(x ,1 ) f j  ---- wk(x) w ~  = wk-J(x)xJ" 

In classical terms, the p-part  of the nebentypus of a lifting of weight j must be w k-i. 

R e m a r k :  It is of course possible to state a similar proposition for level Np ~', but it 

is not clear that  anything new would be gained. In other words, the forms of which we 

would be asserting the existence could simply be the f i  E M ( B ' ,  j, Np) ( thought  of as 
of level Np ~" via the canonical inclusion). To get things which are indeed of higher level, 
we will need another  method,  which is the theme of the next subsection. 

I I I . 6 . 2  T w i s t i n g  

In the classical theory of modular forms, one encounters the operation of "twisting by a 

Dirichlet character" .  If X is a character  modulo M taking values in a discrete valuation 
ring B and f is a modular form of level N with q-expansion f ( q )  = ~ a,~q '~, this produces 
a modular  form f x  of level NM 2 whose q-expansion is 

f×(q) = ~ x(n)a,~q '~, 

where of course we extend X to all of Z in the usual way. (We will recall the definition 

of f×  below.) We will be interested in the case when M is a power of p, in which case 

X may simply be thought  of as a character of finite order of Z~, i.e., X : Z~ ~ B 
factoring through a quotient (Z/p~Z) x (which we extend to all of Zp by setting it equal 
to zero on pZp). 
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Let Z~ = (Z/pZ)  x x F be the usual decomposition of Z~. We will say that the 

character X is wild if it is trivial on (Z/pZ)  x, i.e., if it is of order a power of p. In that 

case, its values will we p-power roots of unity in B, and hence will be congruent to 1 

modulo the maximal ideal m of B, so that we will have f×(q) =_ f(q) (rood m). Since 

twisting by a character transforms eigenforms into eigenforms, this will give us a new 

source of deformations of a residual eigenform. 

The point of this section is to recall the definition in modular terms of the operation 

of twisting by a character, and show that it can in fact be extended to any character 

of Z~, of finite or infinite order. Let us first consider the classical case of a character 

of finite order. By the q-expansion principle, we may extend our ring as necessary, so 

that  we may as well take B to be the completion of the ring of integers in a separable 

closure of Qp. A trivial check on q-expansions then allows us to determine over which 

ring our forms turn out to be defined. 

Let X be a character of Z~ factoring through (Z/p"Z) x, and let f E V(B ,  N). To 

define the twist fx  E V ( B ,  N), we must specify its value on a trivialized elliptic curve 

with an arithmetic level N structure. Let E/B be an elliptic curve, T : l~. - ~(~,~ be a 

trivialization, and z : /z  N ~ E be an arithmetic level N structure. Then T-1 determines 

(by restriction) an inclusion gtp, ~ E, and we consider the quotient E1 = E A p - I ( / ~ p , , ) ,  

with its induced trivialization qol (if or : E ---+ E1 is the projection, ~1 = ~o~-, which is 

an isomorphism of formal groups because ~r is ~tale). The image of E[p '~] (the kernel of 

p'* in E) in E1 is canonically isomorphic to the constant group scheme Z/pnZ (via the 

Weil pairing), so that we have an isomorphism 

El[p n] ~ ~p~ × Z/p~Z, 

i.e., what Katz calls an arithmetic P(p'~) structure on E1 (see [Ka76, 2.3] for more 

details). 

Suppose now that H C E1 is an 6tale subgroup of order p'*. Then we may use the 

isomorphism above to associate to H a p"-th root of unity (H (in such a way that  we 

associate 1 to the subgroup Z/p'*Z). Then we define: 

D e f i n i t i o n  I I I . 6 . 3  Let f E V(B,  N), and let X be a character of Z x factoring through 

(Z/p'~Z) x. Then we define the twist of f by X by 

fX(E,~,z)  = 1 ~ ~ X(x)CH~f(E~fl-I,~n, Sn), 
pn x m o d p  n H C B t  

# H = p  n 

where E1 is as above, and where ~o H and zH are induced from ~o and ~ in the obvious way. 

This defines f x  as an element of VIi i ;  to show that  it is in fact in V,  we need only 

show that  its q-expansion has integral coefficients. So we must evaluate f× on the Tate 

curve. Let E = Tare(q), and let ~ and z be the canonical trivialization and level N 

structure. Then we have E1 = Tate(qP), and the isomorphism obtained above is: 

~.o × z / p - z  , E~[;"] 
( ~ , j )  ~ ~qJ, 
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where of course we think of Tate(q p) as the quotient of G,~ by qvZ. The Stale subgroups 

of order p'* are then H~ = <  (;q > (the group generated by ~iq), where ~ is a generator 

of Izv,,, and we simply have (H~ = (;. Then it is easy to see that  E1/H~ ~ Tate(q), via 

the map q ~-~ ~iq, and this isomorphism is compatible with the canonical trivialization 
and level N structure.  Hence, if f (q )  = ~ a,~q n, we have: 

1 

z m o d p  n g C i ~ t  
# H = p  ~ 
H ~ t a l e  

_ 1 p°Z 
~ c m o d p  '~ i m o d p  ~ 

_ 1 

: ¢ m o d p  n 

= ~ x ( n ) a n q  n. 
n 

X(x)~H~f(E1/H, ~PH, ~H) 

X(x)~ -'~ ~ ~ina,~qn 
n 

i m o d p  n 

This shows: 

P r o p o s i t i o n  I I I . 6 . 4  Let f e V ( B , N ) ,  and let X : Z~ ~ B x be a character of finite 
order, which we extend to Zp by setting it equal to zero on pZp. Assume f has q- 
ezpansion f ( q )  = ~ a , q ~ ;  then there exists a p-adic modular function f× E V ( B , N )  
whose q-expansion is given by 

f×(q) = ~ x(n)anq n. 

Thus,  we have defined, for each character  of finite order X of Z~ with values in B, 
a B-linear endomorphism 

V(B ,  N) ~ V ( B ,  N) 

f H 

It is immediately clear that  we always have U f  × = 0 by construction; we will show ahead 
that  whenever f is an eigenform, so is f×. First, however, we would like to extend this 

construction to more general characters,  i.e., we would like to show that  there exists 

a twist f×  for any character Z~ ) B. We do this by noting that  the definition of 

f ~_+ fx  can be interpreted as the integral of the character  X with respect to a certain 

measure on Zp taking values in the space Endzr (V(Zp,  N)). 

With  notations as above, we define a measure/z  on Zp as follows: for each a G Zp 
and each n _> 0, consider the endomorphism tz(a,n) of V defined by 

1 
(/~(a, n ) f ) ( E ,  ~, z) = p---g Hc~, 

~ H = p  n 
H ~ t a l e  

Then ~(a, n ) /  is clearly an element of V[~]; to check that  it is in fact in V, we need 

only compute  the effect on q-expansions. This is completely analogous to the preceding 



III .6.  The  modu la r  de fo rmat ion  space 

calculation, and we get: if f ( q )  = ~ anq", then 

103 

(~(a, n ) f ) (q )  = ~_, a .q  '~. 
n - - a  (rood p r') 

This shows: 

L e m m a  111.6.5 Let  f E V = V(Zp, N); then 

i. for  any a 6 Zp and any n >_ O, #(a,  n ) f  E V ,  and 

ii. we have 

.(a,n)f= ~ .(b,~+llf. 
bmodpa+ 1 

b~_a (rood pn) 

Proof:  Given the above computation,  the first s tatement  follows immediately from 

the q-expansion principle. It is enough to check the second s ta tement  on q-expansions, 
in which case it is obvious. [] 

Thus,  for each f E V,  the assignment 

a + p'~Zv , ~ / z ( a , n ) f  

defines a V-valued measure on Zp; varying f we get that  the assignment 

a+p'~Z~ , ) g (a ,n )  

defines a Endz , (V)-va lued  measure, which we will denote simply by ~t. Of course, for 

any p-adic ring B,  we may think of/~ as taking values in EndB(V(B,  N)). Then it is 

clear that ,  for any character  X : Z~ ) B x of finite order, extended to Zp by setting it 

equal to zero on pZp, we have 

so that  the operation of "twisting by X" is the integral of X with respect to our measure 
/_t. This allows us to extend the idea of twisting by a character to any character  X of 
z ; :  

D e f i n i t i o n  I I I . 6 . 6  Let  X : Z~ ) B x be any homomorph i sm ,  and let f E V ( B , N ) .  

Then  we define the "twist  o f  f by X",  denoted f×,  by 

where as before we ez tend  X to Z v by x ( p Z v )  = O. 
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Of course it is just as easy to twist by any function: given a continuous function 

a : Z  v ) B we write 

and sometimes refer to this as "the twist of f by a" .  

We would now like to understand the effect of twisting by a character  on Katz 

eigenforms (or on eigenforms outside Np). As we have already remarked, it is clear 

(from the q-expansions, for example) that  we win have U ( f  ×) -- 0 for any f .  However, 

this is simply an artifact of our construction (to be precise, it is a consequence of 
extending X by zero to Zv) , and the effect of the I-Iecke and diamond operators requires 

analysis. We consider first the case of a character of finite order. 

L e m m a  111.6.7 Let X : Z~ , B × be a character of finite order, factoring through 
(Z/p~Z) x. Then we have, for any f • V ( B , N ) :  

(1,y)( f  ×) = (<l,y)f) x, 

for ann y e (Z/NZ)× 

for any y e 

and 

(Y, 1) ( f  ×) = X(y)2((y, 1)f)  x, 

u(f ) : 0, 

(Ili.2) 

(III.3) 

(III.4) 

(11I..5) T , ( p ' )  = 

for any prime ~ ~ p. 

Proof: Since the definition of twisting by X doesn't  involve the level N structure 
: / t  N ~ E in any way, the first equation is obvious. 

For the second equation, recall that  the action of the diamond operator  (y, 1) is 
given by 

((y, 1 ) f ) (E ,  ~o, z) = f (E ,  y - 1 ,  ~), 

where we use the canonical action of Z x on (~m. Let, as above, E1 = EAo-l( / tv) .  Then  

we need to compare the assignment H ~-+ ~H induced by ~0 to that  induced by y-l~0. The 

twisting by y-1 affects this in two ways: the inclusion/ t  v ~ E1 gets twisted by y - l ,  and 

so does the Well pairing on E[p], and hence the identification E~v]Av-l(/_tv) ~ Z/pZ.  
! /-2 

The  net effect is changing ~H to ~n • To conclude, we simply calculate, using the 
multiplicativity of X: 

(y, l>(fX)(E,~, ,z)  = fX(E,y-l~v, z) 

- -  1 y - 2  --x 
p n E E  X(x)(~H ) f(E1/H'y-I(fl'~) 

x H 

21 
= X(Y)-~-g~-~-~.X(Y-2X)~HU-2~(<Y,I>f)(E1/H,~o,z) 

2" ~ H 

= X(y)2((y, l)f)×(E,~,i)- 
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Hence, we get (y, 1 ) ( f  x) = X(y)a((y ,  1}f) ×, as desired. Pu t t ing  the first two equations 

together,  we get, in part icular,  that ,  for any t XNp,  

(e, e)(f , ,)  = x(e)=((e, e)f), , .  

To get the equat ion for the action of Tt, we may either work as above or compute  

directly on q-expansions; we use the latter.  Given any modular  function g E V ( B , N ) ,  

we write a,~(g) for the coefficient of q'* in the q-expansion of g. Then  we know that ,  if 

t ~ 'N ,  
1 

a . (T tg)  = a~t(g) + 7an/,( (e, g)g), 

where we make the convention that  a. / t (g)  = 0 if g does not divide n; if gIN, the equation 

becomes 

a,(Tzg) = a~t(g). 

Recall that ,  for X of finite order, 

a,.,(/x) = x ( n ) a n ( f ) .  

The  case when gIN then follows immediately.  For the other case, 

a,~(Ttf x) = a, . t ( f  x) + ~a ,# t ( (g ,g) ( f×) )  

1 2 
= a.~(f") + -[an/dX(t) ((e, g)f)") 

= x ( n e ) a ~ ( f ) +  ~x(e)2ao/ , ( ( (e ,e) f )  ,,) 

= x ( n ) x ( e ) a ~ ( f )  + ~X(g )=x(n /e )a~ / , ( (g ,g ) f )  

= X(e )an( (T t f ) x ) .  

By the q-expansion principle, it follows that  T t ( f x  ) = x ( t ) ( m , y ) x ,  and we are done. [] 

if  we examine the calculations above, it is clear that  we have only used the fact that  

X : Zp ~ B is a (locally constant)  multiplicative function. Let a : Zp ) B be any 

multiplicative function, so that  a ( x y )  = a ( x ) a ( y )  for any x, y E Zp. If we approximate  

a by locally constant  functions a,~, these will satisfy 

a.(zy)  - a.(x)an(y) (mod p~(")) 

for some ~(n), so tha t  the calculations above all go through after  changing some of the 

equalities to congruences. Taking the limit, we get: 

Corollary I I I . 6 . 8  Let a : Zp ~ B be any cont inuous multiplicative funct ion,  and let 
f E V ( B ,  N) with q-ezpansion f ( q )  = E a,~q "~. Then: 
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i. (f•)(q) = Ea(n)a , , q  "~, 

ii. ( 1 , y ) ( f  ~) = ( (1 ,y ) f )" ,  for any y C ( Z / N Z )  x, 

i i i  (y, 1 ) ( f  ") = ~( t ) : ( (V,  l>f)", for a,~y V C Z; ,  

iv. U ( f  ×) = a ( p ) ( U f )  ~ and 

v. T t ( f  '~) = a(e ) (T t f )  '~, for any prime e # p. 

In part icular ,  we get: 

C o r o l l a r y  I I I . 6 . 9  Let  X : Z~ ----* B x be any character, extended to Zp by x (pZp)  = O, 

and let f E V ( B ,  N) be a Katz  eigenform with weight-and-nebentypu~ character ¢ : 

G(N) ~ B × and with T J  = )~lf for any prime g ~ p. Then f× is a Katz  eigenform 

with weight-and-nebentypus character eX 2, satisfying U f  x = 0 and Tl( fx  ) = X(g))xtf ×. 

For some special functions a : Zp ) B, the operat ion of twisting by a turns out to 

be a well-known opera tor  on modular  functions. For a first example,  let X : ZX ) ZX 

be the trivial character:  X(X) = 1 for all x C Z ×. Let f E V have q-expansion 
P 

f (q )  = ~ a , q  n. Then 

fX(q)  = ~ a,~q, = ( f  _ Frob(Uf) ) (q) ,  
(n,p)_l 

so tha t  twisting by the trivial character  is the same as 1 - F r o b  oU. For a more interesting 

example,  let ct : Zp ~ Zp be the identity function. Then we get 

= E nanq "~ = q J ~ f ( q ) ,  f•(q) 

so tha t  twisting by the identi ty is the same as the " d ,, q ~  opera tor  considered by Serre 

(in [Se73]) and Katz  (in [Ka76]). Since a is multiplicative, it follows from the l emma 

tha t  q ~  "is of p-adic weight 2", i.e., sends modular  forms of weight ( i , k )  to forms of 

weight (i + 2, k + 2), which is a result obtained by Katz  in [Ka76]. 

I I I . 6 . 3  F a m i l i e s  o f  t w i s t s ,  and  an e s t i m a t e  for t h e  Kru l l  d i m e n -  

s ion  of  t he  m o d u l a r  d e f o r m a t i o n  r ing  

We can now use the twisting process defined above to produce one-parameter  families 

of deformations of a residual eigenform (or, equivalently, of a modular  residual defor- 

mation) .  If we begin with a Katz  eigenform f with weight-and-nebentypus character  

¢ : Z x ~ B x, then twisting by a character  X : Z~ ) B x produces another  Katz  

eigenform f×,  with weight-and-nebentypus character  eX 2. In part icular ,  if X is wild, i.e., 

if X(X) is a one-unit in B x for all x E Z ; ,  then we will have f×  = f (mod rr~), where m 

is the  maximal  ideal of B. Thus,  if f is a deformation of a residual eigenform f ,  we have 

constructed a family of deformations of f indexed by the wild characters  Z~ > B x, 
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where of course we may vary B. In what follows, we will always assume B to be a finite 

extension of Zp. 

To actually construct a family of functions (as defined above) recall the identifica- 

tions of V ( B , N )  with Homzp ...... (T0(W(k) ,N) ,  B)  (Section III.1) and of AB = B[[F]] 

with the space of B-valued measures on F (see, e.g., [Se73]). Let AB = B[[Z;]] -- 

AB[(Z/pZ)×],  which we of course can identify with the space of B-valued measures on 

Z ; .  Given a Katz  eigenform f e V(B ,  N), consider the V ( B ,  N)-valued measure on Z x 

given by (the restriction of) # ( f ) .  For each T C To, evaluation at T gives a B-valued 

measure on Z~, hence an element of AB. This defines a continuous homomorphism 

Ty : T0(W(k) ,  N) ~ AB, and hence a family of modu]ar forms. In explicit terms, v! 
can be described as follows: if 

eS : To > B 

is the canonical homomorphism corresponding to f ,  we have: 

i. ~)((l,y)) ---- ¢i((1,y)), 

ii. "~((y, 1)) = ¢f ( (y ,  1))(y, 1) ~, 

iii. rs(U ) = 0, and 

iv. rs(Wl) = eS(wl)(l,  1). 

Then,  for any character  X, f x  is just the specialization of the family vf via X (and, 

in fact, the result that  v! is a continuous homomorphism follows at once from this fact, 

which is obvious from the q-expansions). If f is a deformation of a residual eigenform 

] ,  and if we restrict to wild characters, which of course are trivial on (Z /pZ)  × C Z ; ,  we 

get a continuous homomorphism T0(W(k) ,  N) > AB, i.e., a family of modular  forms,  

all of which reduce to f outside Np (because X(z) - 1 (mod p) for all z. Thus, we 

get a continuous homomorphism v/*: T ; (W(k ) ,  N) > AB which defines a continuous 

homomorphism R > AB (because every f× reduces to 7). Since AB ~ B[[T]], this 
should be thought  of as a one-dimensional analytic family of deformations of f .  

To summarize: 

P r o p o s i t i o n  I I I . 6 . 1 0  Given any residual eigenform f of level N, and given any Katz 
eigenform f 6 V ( B , N )  reducing to f modulo the mazimal ideal of B, there exists a 
one-dimensional analytic family of deformations 

v /* :R  >As 

giving the twists of f by wild characters of Z~. 

In terms of representations, if ~ is the residual representation at tached to f ,  we 
get, by composing the universal modular  deformation p : Q ~ GL~(R) we get, for 

every modular  deformation p] : Q ~ GL2(B),  a one-dimensional analytic family of 
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deformations ~ ----* GL2(AB), whose specialization under any character  X : F , B x 

is simply the twist of pf by the one dimensional representation of ~ given by X in the 

obvious way. (See Mazur's paper [Ma] for more on twisting representations.) Thus we 

have shown that  any twist of a modular  deformation of f by a wild character  (i.e., a 

character  of F) is again a modular deformation of f .  We will use this to show that the 
Krull dimension of the universal modular deformation ring is at least 3. For this, we 

need two easily-proved facts: 

L e m m a  I I I . 6 .11  Let f E V(B,  N) be a deformation of a residual eigenform fi, and let 

2" : RB = R ~ B  ~ AB be the map induced by the family of twists of f defined above. 
Then T]* is a continuous surjective homomorphism of Zp-algcbras. 

Proof: Everything but  surjectivity has already been noted. To get surjectivity, it is 

enough to check that ,  for any 7 C F, the element (7) is in the image (where, as above, 
we use angular brackets to distinguish elements of F from themselves as elements of Z~). 

But,  since 2 is invertible in Zp and so is the image 3' under the character  corresponding 
to f ,  this is immediate from the formula TS*((y , 1)) = es((Y, 1))(y, 1) 2 above. In fact, 

this shows that  the composite map A B ~ RB ~ AB is already surjective. [] 

L e m m a  I I I . 6 . 1 2  Let f C V ( B , N )  be a deformation of a residual eigenform f ,  and 
assume f is classical, i.e., f E M ( B ,  k, e, Np ~') for some u and appropriate nebentypus 
e. Then 

i. the twist of f by any character of finite order is again classica b specifically, if 
X: Z~ ~ B x factors through (Z /p"Z)  ×, we have f× E M ( B ,  k, eX ~, Np ~+2") 

ii. the twist of f by any character X : Z~ ~ B x of infinite order is not a classical 

modular form. 

Proof: The first claim, is, of course, well-known, and obvious from the definitions. 

For the second claim, we must use considerations of p-adic Hodge structure of the 
corresponding representations. One knows that ,  in the classical case, the p-adic Hodge 
twists (in the sense of [MW86]) of a representation at tached to a classical form of weight 
k whose reduction is absolutely irreducible are (0, k - 1) (see [MW86]); twisting by the 

character  3' ~ 75 gives a representation with twists ( j , j  + k - 1), which is therefore not 

classical. [] 

Then  we get: 

P r o p o s i t i o n  I I I . 6 . 1 3  The Krull dimension of the universal modular deformation space 

R = R ( f  ) = R(~) is at least three. 

Proof: Let k be the least weight for which there is a classical lift fk of level N. 

Then  for each j > k, j = k (rood p - 1), there exists a classical lift f~ of weight j and 
level N. Then,  for each such j ,  we have obtained a continuous surjective homomorphism 
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"r/* : R ~ ABj (where we Bj  is a finite extension of Zv). Since the dimension of ABj is 

two, we need only prove that  the kernel of one (and hence of any) of these maps is not 

a minimal prime ideal of R.  However, the preceding corollary shows that  these ideals 

are all distinct; since R is noetherian,  they cannot be minimal primes (because there is 

only a finite number of such), and we are done. [] 

It would be interesting to get a more precise estimate of the Krull dimension of the 

modular  deformation ring. For example, Mazur and Boston have considered the case of 

a residual representat ion 

~:Q ~ $3 C GL~(Fp), 

where $3 is the symmetric group on three letters. Under some additional hypotheses, 

they show that  the universal deformation space 7¢(~) has Krull dimension four (in fact, 

that  it is a power-series ring in three variables over Zp). Is the modu]ar deformation 

ring also of dimension four in this case? 

I I I . 6 . 4  T h e  o r d i n a r y  c a s e  

In the case where the residual representation is at tached to an ordinary modular form, 

one can consider the "universal ordinary deformation",  i.e., the universal deformation 

associated to ordinary modular forms. Using the work of Hida in [Hi86a], Mazur and 

Wiles (in [MW86]) constructed the universal ordinary deformation (under some restric- 

tive hypotheses) and determined several of its properties, especially with respect to the 

image of the decomposition group at p. In this section, we summarize these results and 

point out their relation to our larger deformation space. 

For simplicity, and to agree with the situation in [MW86], let us assume that  the 

level N -- 1. Let f 6 Vp~,(k, 1) be an ordinary residual parabolic eigenform, and let 

be the at tached residual representation. By duality, ~F corresponds to a map To ~ k, 

which necessarily factors through the ordinary Hecke algebra T $  d -- c0T0. In fact, we 

can say more; a residual eigenform has a weight X : Z~ ~ k, which, as we remarked 

above, must be a power of the Teichmilller character: X = w~. Then it is clear that the 

map e f  : To ~ k corresponding to 7 must in fact factor through the summand T~ of 
T~ rd defined in the Appendix to the last chapter. The  various Hecke algebras and the 

map defined by f fit together like this: 

T~CT0 ~0 T~,d , L  ,k. 

Let m*, m ,  m °*d, and m denote the kernels of eT in each of the Hecke algebras. 

The construction of Mazur and Wiles requires a hypothesis on the weight i. Hence 

assume, for the remainder of this section, that i # 2. In terms of the representation ~, 

this means that  det(-~) is not the cyclotomic character.  

In this situation, Mazur and Wiles construct a representat ion 

p~d : Q , GL2(R), 



110 C h a p t e r  I I I .  Galois R e p r e s e n t a t i o n s  

where R denotes the complet ion of the Hecke algebra T~ at the maximal  ideal m, which 

gives the universal ordinary deformation of the representat ion a t tached to f ,  in the 

same sense as before: any  representat ion deforming ~ which is a t tached to an ordinary 

p-adic modular  form is obtained f rom po, d via the induced map  from R to the ring 

of definition of the a t tached modular  form. They  then obtain  theorems about  the 

action the decomposi t ion and the inertia groups at p, including a description of the 

p-adic Hodge twists of the specializations. We refer to [MW86] for further  details. One 

should note tha t  Mazur  and Wiles have also obtained a necessary condition, in terms 

of the action of the inertia group at p, representat ion to be a t tached to an ordinary 

modular  form. This condition is conjectured to be sufficient, in which case it would 

give representat ion-theoret ic  description of the ordinary deformation space. See the 

discussion in [MW86] and [Ma] for more details. 

We would like to compare  the universal ordinary deformation to the  universal mo- 

dular  deformat ion we constructed before. It  is clear, f rom the universal p roper ty  of the 

constructions,  tha t  there must  exist a map R ----* R so tha t  pond is the representat ion 

obtained f rom p via this map;  it is also clear (compare  the traces of the Frobenii) that  

this map  must  be the map  induced by the canonical maps 

by complet ion at the maximal  ideal. From the analysis in [MW86], we can show: 

P r o p o s i t i o n  I I I . 6 . 1 4  Let f be an ordinary residual eigenform of p-adic weight i 7£ 1 
and level N = 1. Let R = R ( f )  be the universal modular deformation ring and let 
R = R(f)  = (Ti)rn be the completion of the ita component of the ordinary Hecke algebra 
at the ideal corresponding to f . Consider the map R ~ R induced from the composition 
of the inclusion with the projection on T~. Then R is at most a quadratic eatension of 
the image of R.  

Proof: Since we are assuming N = 1, it is clear tha t  R is generated over the image 

of R by ( the image in the complet ion of) the U operator .  To see tha t  U is quadrat ic  

over the image of R ,  we show that  for some unit )~ E A, the element U + )~U -1 C R 

belongs to the image of R.  (Note that  U is invertible in R, by definition of the ordinary 

part . )  This, however, follows at once from the results in [MW86, §8] ment ioned above: 

let ~r be an element of the decomposi t ion group at p mapping  modulo the inertia group 

to a generator  of Z = Gal(Fp/Fp) ;  then we have 

trace(p= ( )) = .  + 

where A is some unit of A; therefore, for any such ~r, 

t r ace (p (~ ) )  ~ U + ;,U -~ ~ R, 

so tha t  U + AU -1 is in the image of R,  as desired. 
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Since R is a flat A-algebra of finite rank (see Section II.4), its Krull dimension is 

two. Taking all possible twists gives a map 

r ° 'd :  R R[[A]], 

as in the preceding section (because a twist of an ordinary modular  form is never 
ordinary).  This last ring has Krull dimension three, so that  we need to study the 

kernel Z -- ker(v°~a); if this is not contained in a minimal prime ideal of R,  it will 

follow that  the dimension of R is at least four. In the example worked out by Mazur 

and Boston ("neat  $3 extensions"),  this would suffice to show that  every deformation 
is modular. 

We have not been able to prove that  the dimension of the modular deformation 

space is at least four. In any case, it is easy to see that  the modular deformation space 

is always strictly larger than the ordinary deformation space, by showing that there 

exist deformations of the representation ~ at tached f which are modular,  but whose 

corresponding modular  forms are neither ordinary nor twists of ordinary modular  forms. 

Assume k _> 3, k _= i (mod p - 1). Then f can be lifted to a classical modular  form of 
weight k which can be assumed to be an eigenform and is necessarily ordinary (because 

it is congruent to f ) .  For deforming the representation, however, all we need is to find 

a lift that  is congruent to f outside Np; we will show that  if the weight is high enough, 

one can always find a deformation outside Np which is not ordinary, but  is classical of 

level N, so that  it is certainly not a twist of a classical modular form. 

Let f be any lift of f to an (ordinary) eigenform of weight k and level N. Assume 

for simplicity that  k = Fp and therefore that  f is defined over some totally ramified 
extension B of Zp. Consider the modular form 

E j I~'k ; M(B ,pk  j ( p - 1 ) , N ) .  gl = v- l ,~v_l j  - (Tpf) v) • + 

It is clear tha t  the reduction of gl is an eigenform (since it is congruent,  modulo the 

maximal ideal of B,  to f - Frob(Uf)) ;  thus, by Lamina III.5.2, there must exist an 

eigenform g • M ( B , p k  + j(p - 1), N) (possibly after base-change) which is congruent 

to gl. Then  g will be a deformation of fi outside Np, it will be classical of weight 
pk + j ( p - 1 )  and level N, and it will not be ordinary. Hence the representation attached 
to g will not be obtained by specializing the universal ordinary representation pO~a. 

Thus, we have shown: 

P r o p o s i t i o n  I I I . 6 .15  Let f be an ordinary residual eigenform defined over k. Suppose 
there exists a classical eigenform f of weight ko and level N defined over a W(k )-algebra 
B reducing to f modulo the maximal ideal, and hence ordinary: Tpf ~ 0 (rood w~). 

Then, for any weight k >_ pko, k - ko (rood p - 1), there exists a classical eigenform g 

of weight k and level N defined over a finite extension B' of B (which will depend on 

k) whose reduction modulo the maximal ideal is equal to f outside Np but which is not 
ordinary: Tpg -- 0 (mod rn~). 
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R e m a r k :  To be absolutely precise, f itself is not ordinary, because it is not an eigenform 
under the U operator.  However, its ordinary projection eof is nonzero and equal to f 

outside p, while eog -- 0. The point is simply that  for each large enough weight, there 
is always at least one ordinary and one non-ordinary deformation which is not the twist 

of any ordinary deformation. 

C o r o l l a r y  111.6.16 I f  the residual representation -~ is attached to an ordinary residual 
eigenform f ,  the modular deformation space of-~ is strictly larger than the ordinary 
deformation space, even if we add all the twists of ordinary deformations. 

Since the Krull dimension of the ordinary-plus-twists deformation ring is three, one 

is led to ask: 

Q u e s t i o n  111.1 Suppose that the residual modular representation -fi is attached to an 
ordinary modular form. Is the Krull dimension of the universal modular deformation 
ring always greater than or equal to four? 

At least in the case when f is ordinary, the preceding discussion suggests that  the 

answer may be yes; in the "neat $3" case considered by Mazur and Boston, this would 

imply that  every deformation of the residual representation in question is at tached to a 

p-adic modular  form. 

111.7 Further Quest ions  

This final section collects some of the questions which seem to arise in relation to the 

topics we have discussed in this book, and that  may suggest paths for further research. 

When appropriate,  we have suggested what we suspect will be the answer, but  we have 
not dignified these suspicions by calling them conjectures, since for the most part there 

is little evidence one way or the other. We use the notations and conventions defined 
above, giving references only when necessary. 

To begin with, there are several questions associated to the subject of Chapter  Ih 
the U operator  and its eigenforms. As we saw, there exists, for each a _> 0 a "slope 
projection" 

e ~ : M t ( B , k , N ; 1 ) ® K  ~ M t ( B , k , N ; 1 ) ® K ,  

defining a splitting 

M*(B, k, N; 1) @ K = M (~) @ F (~), 

where M (~) is the "slope a eigenspace", i.e., the finite-dimensional subspace spanned 
by the generalized eigenforms for the U operators corresponding to eigenvalues with 

valuation a. As we have seen, e~ is a continuous linear endomorphism of the p-adic 

Banach space M ( B , k , N ; r ) ®  K (which is given the p-adic topology for which the B- 
module M(B, k, N; r) is the closed unit ball), but it is not continuous on Mr(B, k, N; 1) ® 
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K when this is given the q-expansion topology (except when a = 0). The first impor tant  

question, then, which we have already mentioned above, is whether for fixed r the norm 

of e ,  is bounded independent of the weight k. 

Q u e s t i o n  I I I . 2  Let e (k) denote the slope ~ projection on M(B, k, N; r)  ® K .  Does there 
exist a bound C(c~,r) (independent of k )  so that ]]e~t ] < C(c~,r)? If  so, can we take 

= pO ? 

As we remarked in Chapter  II, the answer to both  questions is yes when a = 0; we 

conjectured above (Conjecture II.4) that  the bound C(a ,  r)  always exists, but we have 

no idea whether  it is plausible that  C(a ,  r) = p~ in general. 

Closely related are the following two questions: 

Q u e s t i o n  I I I . 3  Suppose f c Mr(B, k,N; 1) satisfies e~f = f ;  so that in particular we 
have f E M(B, k, N; r) ® g for any r such that ord(r)  < p/(p  + 1). If k is large enough, 
do we in fact have f C M ( B , k , N )  ® g = M ( K , k , N ) ?  In other words, is it true that 
any overconvergent modular form of slope ~ and sufficiently high weight is necessarily 
a classical modular form? 

If a = 0, the answer is yes, and "sufficiently high" is k > 3, as was shown by Hida 

(see Section II.4 above). If f is an eigenform, we already know that  f must be congruent 
to a classical modular  form; if we can show that  this classical modular form must also 

be of slope a ,  this would answer the question affirmatively in the case of eigenforms. 

Finally, we have: 

Q u e s t i o n  111.4 Let Pk(t) denote the characteristic power series of the U operator 
acting on M t ( B , k , N ; 1 ) ®  g .  Is it true that if kl --- k2 (mod p = - l ( p _  1)) then 

Phi(t) =-Pk2(t) (rood pn)? I f  so, is the variation in fact locally analytic in k? 

Above, we conjectured that  the answer to the first part  of this question is "yes", 

but made a guess that  the answer to the second question is "no", unless we consider 

truncations of the full characteristic power series at the various slopes. 

Going on to questions suggested by the work in this chapter,  the most natural  and 

impor tant  question has already been stated: 

Q u e s t i o n  I I I . 5  Let -fi be a residual Galois representation attached to a residual eigen- 

form f .  Is it true that every deformation of 7 is attached to a p-adic modular form 
reducing to f ?  

Less ambitiously, one could ask 

Q u e s t i o n  I I I . 6  Let -fi be a residual Galois representation attached to a residual eigen- 

form f .  What is the Krull dimension of the modular deformation ring R ( f  ) f 
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We have shown that  this Krull dimension is at least three, and we have given an 

argument that  suggests that  when fi is ordinary (i.e., of slope 0) this dimension should 

in fact be at least four. It is not clear to what extent this dimension will depend on 97 

(rather  than,  say, only on its weight and level). 

Another  category of question relating to the construction of the Galois representa- 

tions a t tached to the various deformations of a residual eigenform has to do with the 

relation between representation-theoretic properties of the representat ion deforming 

and the properties of the modular form at tached to it. For example, Mazur and Wiles 

have shown that  any representation at tached to an ordinary modular form must satisfy 

a certain condition on the action of an inertia group at p (see [MW86]). 

Q u e s t i o n  I I I . 7  Let -~ be an absolutely irreducible residual representation attached to a 

residual eigenffirm 97. Let p be any modular deformation, and let f be the p-adic modular 
form attached to it. Can one find a condition on p that will hold if and only if f is 

overconvergent? Is it true that f is ordinary if and only if p satisfies the condition of 
Mazur and Wiles ? 

There  are several other crucial questions about the modular deformation space which 

have been touched upon only lightly in this chapter; they have to do with the dependence 

of our construction on the level. As we pointed out above, we have always assumed that 

the level N of our modular  forms was fixed beforehand, and that  all modular forms under 

consideration were (p-adically) of level N. (Recall that  this includes classical modular 

forms of level Np ~ for every u; in general, we may always assume that  all levels are 

prime to p, since introducing powers of p does not alter the spaces of p-adic modular 

forms in question.) In fact, there are two possible ways to vary the level: adding new 

prime divisors to the level or not. 

To begin with, let N1 be a number prime to p, and let N be the product  of its prime 
divisors (this is sometimes called the radical of N1). It is clear that  we have an inclu- 

sion V ( B , N )  ¢--+ V(B,N1) ,  and hence that  we have an epimorphism of Hecke algebras 

T ( B ,  N1) , T ( B ,  N); localizing and completing at the maximal ideal corresponding 

to some eigenform 97 E V(k, N), we get a map between the modular  deformation ring of 
level N1 and the modular  deformation ring of level N: 

Note that  these are both deformation tings for the representation associated to 97, since 

"unramified outside Np" and "unramified outside Nip" are synonymous. 

Q u e s t i o n  I I I .S  What is the relation between these two rings of deformations outside 
Np ~. Do they have the same Krull dimension ? Can they be distinguished representation- 

theoretically, say, by a finer examination of the ramification at the primes dividing N ? 

We may, of course, take the inverse limit over all N1 with the same prime divisors, 

and get a deformation of the representation associated to 97 to an even larger ring 

= R(N1)(97) .  
Nx 
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Q u e s t i o n  I I I . 9  What are the properties of this larger deformation ring R ( ~ ) ( f )  ? In 
particular, what is its Krull dimension? Is it equal to Mazur's full deformation ring? 

Is it equal to the modular deformation ring of level N1 if N1 is sufficiently large ? 

In the case where NIM and there are primes dividing M which do not divide M, the 

situation is even more interesting. If we consider a residual eigenform f E V ( B , N ) ,  

we may think of it as being of level N, in which case we will look for representations 

unramified outside Np, or of level M, in which case we will look for representations 

unramified outside Mp, which form a larger space. Hence we get a map of deformation 

spaces 

which we may think of as defining the space of deformations unramified outside Np as 

a subscheme of the space of deformations unramified outside Mp. 

Q u e s t i o n  I I I . 1 0  What is the relation between the spaces R(M)(f) and R(N)(f)?  Do 
they have the same Krull dimension? 

Even more interesting is the following situation: suppose ~ is a residual Galois 

representat ion unramified outside Np and which is known to be at tached to a residual 

eigenform of level Mp, for some M as above. Then we can consider three deformation 

spaces: first, Mazur's deformation ring TC(M)(~) of ~ considered as unramified outside 
Mp (so we look for deformations deforming ~ which are unramified outside Mp), second, 

the ring R(M)(~), corresponding to (level M) modular deformations, and third, the ring 

7~(N)(~), corresponding to deformations (modular or not) which are unramified outside 

Np. We have a diagram of surjections: 

f 

We can interpret  this as defining two subspaces of the space of deformations unram- 

ified outside Mp: the subspace of level M modular  deformations and the subspace of 
deformations unramified outside Np. 

Q u e s t i o n  I I I . 11  What is the intersection of these two subspaces? In particular, is 
it always non-empty? In other words, does the existence of deformations unramified 
outside Np imply the ezistence of modular  deformations which are of level N ? 

Making N precise is of course crucial here. If this is done correctly, an affirmative 

answer is of course expected, since the problem can be reworded as a part  of a well- 
known conjecture due to Serre: 
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C o n j e c t u r e  I I I .1  Suppose -fi is a residual representation attached to a residual eigen- 
form f of (weight k and) squarefree level M, and suppose that p is in fact unramified at 
some prime e dividing M. Then there exists a residual eigenform of (possibly different 
weight and) level N -= M/e to which -fi is attached. Put in other words, if f is the reduc- 

tion of a classical modular form of level M whose attached representation is unramified 
outside M/e, the~ there exists a ~lassieal modular form of level M/e (but possibly of 
different weight) which also reduces to f .  

Serre's conjecture, of course, goes on to define precisely the minimal possible weight 
for the lifting. It seems to us that  the "level part" of the conjecture should be accessible 
by p-adic methods (the "weight part" is probably not). One might at tempt,  for example, 
to prove it first in the ordinary case. 
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of residual Galois representation, 96 
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r-structure, 5 
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