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Preface 

The primary goal of these lectures is to introduce a beginner to the finite
dimensional representations of Lie groups and Lie algebras. Since this goal is 
shared by quite a few other books, we should explain in this Preface how our 
approach differs, although the potential reader can probably see this better 
by a quick browse through the book. 

Representation theory is simple to define: it is the study of the ways in 
which a given group may act on vector spaces. It is almost certainly unique, 
however, among such clearly delineated subjects, in the breadth of its interest 
to mathematicians. This is not surprising: group actions are ubiquitous in 20th 
century mathematics, and where the object on which a group acts is not a 
vector space, we have learned to replace it by one that is (e.g., a cohomology 
group, tangent space, etc.). As a consequence, many mathematicians other 
than specialists in the field (or even those who think they might want to be) 
come in contact with the subject in various ways. It is for such people that 
this text is designed. To put it another way, we intend this as a book for 
beginners to learn from and not as a reference. 

This idea essentially determines the choice of material covered here. As 
simple as is the definition of representation theory given above, it fragments 
considerably when we try to get more specific. For a start, what kind of group 
G are we dealing with-a finite group like the symmetric group 6" or the 
general linear group over a finite field GLn(!Fq), an infinite discrete group 
like SLn(Z), a Lie group like SL"C, or possibly a Lie group over a local 
field? Needless to say, each of these settings requires a substantially different 
approach to its representation theory. Likewise, what sort of vector space is 
G acting on: is it over C, IR, Q, or possibly a field of finite characteristic? Is it 
finite dimensional or infinite dimensional, and if the latter, what additional 
structure (such as norm, or inner product) does it carry? Various combinations 
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of answers to these questions lead to areas of intense research activity in 
representation theory, and it is natural for a text intended to prepare students 
for a career in the subject to lead up to one or more of these areas. As a 
corollary, such a book tends to get through the elementary material as quickly 
as possible: if one has a semester to get up to and through Harish-Chandra 
modules, there is little time to dawdle over the representations of 6 4 and 
SL3 C. 

By contrast, the present book focuses exactly on the simplest cases: repre
sentations of finite groups and Lie groups on finite-dimensional real and 
complex vector spaces. This is in some sense the common ground of the 
subject, the area that is the object of most of the interest in representation 
theory coming from outside. 

The intent of this book to serve nonspecialists likewise dictates to some 
degree our approach to the material we do cover. Probably the main feature 
of our presentation is that we concentrate on examples, developing the general 
theory sparingly, and then mainly as a useful and unifying language to describe 
phenomena already encountered in concrete cases. By the same token, we for 
the most part introduce theoretical notions when and where they are useful 
for analyzing concrete situations, postponing as long as possible those notions 
that are used mainly for proving general theorems. 

Finally, our goal of making the book accessible to outsiders accounts in 
part for the style of the writing. These lectures have grown from courses of 
the second author in 1984 and 1987, and we have attempted to keep the 
informal style of these lectures. Thus there is almost no attempt at efficiency: 
where it seems to make sense from a didactic point of view, we work out many 
special cases of an idea by hand before proving the general case; and we 
cheerfully give several proofs of one fact if we think they are illuminating. 
Similarly, while it is common to develop the whole semisimple story from one 
point of view, say that of compact groups, or Lie algebras, or algebraic groups, 
we have avoided this, as efficient as it may be. 

It is of course not a strikingly original notion that beginners can best learn 
about a subject by working through examples, with general machinery only 
introduced slowly and as the need arises, but it seems particularly appropriate 
here. In most subjects such an approach means one has a few out of an 
unknown infinity of examples which are useful to illuminate the general 
situation. When the subject is the representation theory of complex semisimple 
Lie groups and algebras, however, something special happens: once one has 
worked through all the examples readily at hand-the "classical" cases of the 
special linear, orthogonal, and symplectic groups-one h11-s not just a few 
useful examples, one has all but five "exceptional" cases. 

This is essentially what we do here. We start with a quick tour through 
representation theory of finite groups, with emphasis determined by what is 
useful for Lie groups. In this regard, we include more on the symmetric groups 
than is usual. Then we turn to Lie groups and Lie algebras. After some 
preliminaries and a look at low-dimensional examples, and one lecture with 
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some general notions about semisimplicity, we get to the heart of the course: 
working out the finite-dimensional representations of the classical groups. 

For each series of classical Lie algebras we prove the fundamental existence 
theorem for representations of given highest weight by explicit construction. 
Our object, however, is not just existence, but to see the representations. in 
action, to see geometric implications of decompositions of naturally occurnng 
representations, and to see the relations among them caused by coincidences 
between the Lie algebras. 

The goal of the last six lectures is to make a bridge between the example
oriented approach of the earlier parts and the general theory. Here we make 
an attempt to interpret what has gone before in abstract terms, trying to make 
connections with modern terminology. We develop the general theory enough 
to see that we have studied all the simple complex Lie algebras with five 
exceptions. Since these are encountered less frequently than the classical series, 
it is probably not reasonable in a first course to work out their representations 
as explicitly, although we do carry this out for one of them. We also prove the 
general Weyl character formula, which can be used to verify and extend many 
of the results we worked out by hand earlier in the book. 

Of course, the point we reach hardly touches the current state of affairs in 
Lie theory, but we hope it is enough to keep the reader's eyes from glazing 
over when confronted with a lecture that begins: "Let G be a semisimple 
Lie group, P a parabolic subgroup, ... " We might also hope that working 
through this book would prepare some readers to appreciate the elegance (and 
efficiency) of the abstract approach. 

In spirit this book is probably closer to Weyl's classic [Wel] than to others 
written today. Indeed, a secondary goal of our book is to present many of the 
results of Weyl and his predecessors in a form more accessible to modern 
readers. In particular, we include Weyl's constructions of the representations 
of the general and special linear groups by using Young's symmetrizers; and 
we invoke a little invariant theory to do the corresponding result for the 
orthogonal and symplectic groups. We also include Weyl's formulas for the 
characters of these representations in terms of the elementary characters of 
symmetric powers of the standard representations. (Interestingly, Weyl only 
gave the corresponding formulas in terms of the exterior powers for the general 
linear group. The corresponding formulas for the orthogonal and symplectic 
groups were only given recently by Koike and Terada. We include a simple 
new proof of these determinantal formulas.) 

More about individual sections can be found in the introductions to other 
parts of the book. 

Needless to say, a price is paid for the inefficiency and restricted focus of 
these notes. The most obvious is a lot of omitted material: for example, we 
include little on the basic topological, differentiable, or analytic properties of 
Lie groups, as this plays a small role in our story and is well covered in dozens 
of other sources, including many graduate texts on manifolds. Moreover, there 
are no infinite-dimensional representations, no Harish-Chandra or Verma 
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modules, no Steifel diagrams, no Lie algebra cohomology, no analysis on 
symmetric spaces or groups, no arithmetic groups or automorphic forms, and 
nothing about representations in characteristic p > 0. There is no consistent 
attempt to indicate which of our results on Lie groups apply more generally 
to algebraic groups over fields other than ~ or C (e.g., local fields). And there 
is only passing mention of other standard topics, such as universal enveloping 
algebras or Bruhat decompositions, which have become standard tools of 
representation theory. (Experts who saw drafts of this book agreed that some 
topic we omitted must not be left out of a modern book on representation 
theory-but no two experts suggested the same topic.) 

We have not tried to trace the history of the subjects treated, or assign 
credit, or to attribute ideas to original sources-this is far beyond our knowl
edge. When we give references, we have simply tried to send the reader to 
sources that are as readable as possible for one knowing what is written here. 
A good systematic reference for the finite-group material, including proofs of 
the results we leave out, is Serre [Se2]. For Lie groups and Lie algebras, 
Serre [Se3], Adams [Ad], Humphreys [Hut], and Bourbaki [Bour] are 
recommended references, as are the classics Weyl [Wel] and Littlewood 
[Litt]. 

We would like to thank the many people who have contributed ideas and 
suggestions for this manuscript, among them J-F. Burnol, R. Bryant, J. Carrell, 
B. Conrad, P. Diaconis, D. Eisenbud, D. Goldstein, M. Green, P. Griffiths, 
B. Gross, M. Hildebrand, R. Howe, H. Kraft, A. Landman, B. Mazur, 
N. Chriss, D. Petersen, G. Schwartz, J. Towber, and L. Tu. In particular, we 
would like to thank David Mumford, from whom we learned much of what 
we know about the subject, and whose ideas are very much in evidence in this 
book. 

Had this book been written 10 years ago, we would at this point thank the 
people who typed it. That being no longer applicable, perhaps we should 
thank instead the National Science Foundation, the University of Chicago, 
and Harvard University for generously providing the various Macintoshes on 
which this manuscript was produced. Finally, we thank Chan Fulton for 
making the drawings. 

Bill Fulton and Joe Harris 

Using This Book 

A few words are in order about the practical use of this book. To begin with, 
prerequisites are minimal: we assume only a basic knowledge of standard 
first-year graduate material in algebra and topology, including basic notions 
about manifolds. A good undergraduate background should be more than 
enough for most of the text; some examples and exercises, and some of the 
discussion in Part IV may refer to more advanced topics, but these can readily 
be skipped. Probably the main practical requirement is a good working 
knowledge of multilinear algebra, including tensor, exterior, and symmetric 
products offinite dimensional vector spaces, for which Appendix B may help. 
We have indicated, in introductory remarks to each lecture, when any back
ground beyond this is assumed and how essential it is. 

For a course, this book could be used in two ways. First, there are a number 
of topics that are not logically essential to the rest of the book and that can 
be skimmed or skipped entirely. For example, in a minimal reading one could 
skip§§4, 5, 6, 11.3, 13.4, 15.3-t5.5, 17.3, 19.5, 20, 22.1, 22.3, 23.3-23.4, 25.3, and 
26.2; this might be suitable for a basic one-semester course. On the other hand, 
in a year-long course it should be possible to work through as much of the 
material as background and/or interest suggested. Most of the material in the 
Appendices is relevant only to such a long course. Again, we have tried 
to indicate, in the introductory remarks in each lecture, which topics are 
inessential and may be omitted. 

Another aspect of the book that readers may want to approach in different 
ways is the profusion of examples. These are put in largely for didactic rea~o.ns: 
we feel that this is the sort of material that can best be understood by gammg 
some direct hands-on experience with the objects involved. For the most part, 
however, they do not actually develop new ideas; the reader whose tastes run 
more to the abstract and general than the concrete and special may skip many 
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of them without logical consequence. (Of course, such a reader will probably 
wind up burning this book anyway.) 

We include hundreds of exercises, of wildly different purposes and difficulties. 
Some are the usual sorts of variations of the examples in the text or are 
straightforward verifications of facts needed; a student will probably want to 
attempt most of these. Sometimes an exercise is inserted whose solution is a 
special case of something we do in the text later, if we think working on it will 
be useful motivation (again, there is no attempt at "efficiency," and readers 
are encouraged to go back to old exercises from time to time). Many exercises 
are included that indicate some further directions or new topics (or standard 
topics we have omitted); a beginner may best be advised to skim these for 
general information, perhaps working out a few simple cases. In exercises, we 
tried to include topics that may be hard for nonexperts to extract from the 
literature, especially the older literature. In general, much of the theory is in 
the exercises-and most of the examples in the text. 

We have resisted the idea of grading the exercises by (expected) difficulty, 
although a "problem" is probably harder than an "exercise." Many exercises 
are starred: the • is not an indication of difficulty, but means that the reader 
can find some information about it in the section "Hints, Answers, and 
References" at the back of the book. This may be a hint, a statement of the 
answer, a complete solution, a reference to where more can be found, or 
a combination of any of these. We hope these miscellaneous remarks, as 
haphazard and uneven as they are, will be of some use. 
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PART I 

FINITE GROUPS 

Given that over three-quarters of this book is devoted to the representation 
theory of Lie groups and Lie algebras, why have a discussion of the represen
tations of finite groups at all? There are certainly valid reasons from a logical 
point of view: many of the ideas, concepts, and constructions we will introduce 
here will be applied in the study of Lie groups and algebras. The real reason 
for us, however, is didactic, as we will now try to explain. 

Representation theory is very much a 20th-century subject, in the following 
sense. In the 19th century, when groups were dealt with they were generally 
understood to be subsets of the permutati.ons of a set, or of the automor
phisms GL(V) of a vector space V, closed under composition and inverse. Only 
in the 20th century was the notion of an abstract group given, making it 
possible to make a distinction between properties of the abstract group and 
properties of the particular realization as a subgroup of a permutation group 
or GL(V). To give an analogy, in the 19th century a manifold was always a 
subset of~"; only in the 20th century did the notion of an abstract Riemannian 
manifold become common. 

In both cases, the introduction of the abstract object made a fundamental 
difference to the subject. In differential geometry, one could make a crucial 
distinction between the intrinsic and extrinsic geometry of the manifold: which 
properties were invariants of the metric on the manifold and which were 
properties of the particular embedding in ~". Questions of existence or non
existence, for example, could be broken up into two parts: did the abstract 
manifold exist, and could it be embedded. Similarly, what would have been 
called in the 19th century simply "group theory" is now factored into two 
parts. First, there is the study of the structure of abstract groups (e.g., the 
classification of simple groups). Second is the companion question: given a 
group G, how can we describe all the ways in which G may be embedded in 

1: 
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(or mapped to) a linear group GL(V)?. This, of course, is the subject matter 
of representation 'theory. 

Given this point of view, it makes sense when first introducing representa
tion theory to do so in a context where the nature of the groups G in question 
is itself simple, and relatively well understood. It is largely for this reason that 
we are starting off with the representation theory of finite groups: for those 
readers who are not already familiar with the motivations and goals of 
representation theory, it seemed better to establish those first in a setting where 
the structure of the groups was not itself an issue. When we analyze, for 
example, the representations of the symmetric and alternating groups on 3, 4, 
and 5 letters, it can be expected that the reader is already familiar with the 
groups and can focus on the basic concepts of representation theory being 
introduced. 

We will spend the first six lectures on the case offinite groups. Many of the 
techniques developed for finite groups will carry over to Lie groups; indeed, 
our choice of topics is in part guided by this. For example, we spend quite a 
bit of time on the symmetric group; this is partly for its own interest, but also 
partly because what we learn here gives one way to study representations of 
the general linear group and its subgroups. There are other topics, such as the 
alternating group ~4• and the grou::>s SL2 (1Fq) and GL2 (1Fq) that are studied 
purely for their own interest and do not appear later. (In general, for those 
readers primarily concerned with Lie theory, we have tried to indicate in the 
introductory notes to each lecture which ideas will be useful in the succeeding 
parts of this book.) Nonetheless, this is by no means a comprehensive treat
ment of the representation theory of finite groups; many important topics, 
such as the Artin and Brauer theorems and the whole subject of modular 
representations, are omitted. 

LECTURE 1 

Representations of Finite Groups 

In this lecture we give the basic definitions ofre~res~ntatio~ theo~y, an~::;~;~r~::u~~ 
the basic results, showing that every reprhesentat1onf tsbea ~::qg~~:p•:e~:d the simplest 
'bl W ork out as examples t e case o a ' . 
t e ones. e w . 3 letters In the latter case we give an 
nonabelian gro~p, the symmetnc ~oupf ~nfor the st~dy of finite groups, but whose 
analysis that wdl turn out not to use u . . 
main idea is central to the study of the representations of Lie groups. 

§1.1: Definitions 
§1.2: Complete reducibility; Schur's lemma 
§1.3: Examples: Abelian groups; 63 

§1.1. Definitions 

A repres~ntation of a finiht~ gro~~ G o~~(e~i!~-~i~:~~:~~o~~~~l:~t::~~~ 
space Vis a homomorp ism P· -+ .r G d l When 

P
hisms of v· we say that such a map gives V the structure o,. a -mo u e. t' 

' h (and we're afraid even some imes 
there is little ambiguity about t e i:nap P ' t t' of(;. in this vein we 
when there is) we sometimes call V itself a represen a ion , Th d' . 
will often suppress the symbol p and write g. v or gv for p(g)(v). e imension 

of V is sometimes called the degree ~f p. d W f G . a vector space map 
A map cp between two representations V an o is 

cp: V-+ W such that 
V~W 

. \ \· 
v~w 
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c~~mutes for every g e G. (We will call this . 
d1stmguish it from an arbitr r a G-lmear map when we want to 
W.) We can then define Ker '~ri mear mdaCp between the vector spaces V and 

A b .,,, m <p, an oker <fJ which l G 
su representation of a representati V. • are a so -modules. 

is invariant under G A repres t t. on . ts a vector subspace W of V which . en a ion V is called i d .bl . 
proper nonzero invariant subspace W of V. rre uc1 e tf there is no 

If V and Ware representations, the direct sum V 
V ® W are also representations, the latter via E9 Wand the tensor product 

g(v ® w) = gv ® gw. 

For a representation V, the nth tensor ower ®n . • 
G by this rule, and the exterior power; N V ts agam ~ representation of 
are subrepresentations1 of it Th d l V*(V) and symmetric powers Symn(V) 
sentation, though not in the ·m et uba. = Hom(V, q of Vis also a repre-
. OS 0 VIOUS way· we t th 

hons of.G to respect the natural pairin (d . wan e two representa-
so that 1f p: G-+ GL(V) is g. enoted < • )) between v• and v, 
we should have a representation and p*: G-+ GL(V*) is the dual • 

(p*(g)(v*), p(g)(v)) = (v*, v) 

for all g e G, v e V. and v* e v• Th. . representation by ' · is 10 turn forces us to define the dual 

p*(g) = 'p(g-1 ): v• -+ v• 
for all g e G. 

Ext~rficised 1.1. Verify that with this definition of p* sa 1s 1e . • the relation above is 

Having defined the dual of a re res . 
representations, it is likewise the c!e t~n:~;1:n a:d the tensor product of two 
Hom(V, W) is also a representation a .1 than .d W ~re re~resentations, then 
V* ® W. Unraveling this if we view • ~ta e I enttficatton Hom(V, W) = 
<fJ from V to W, we have• an e ement ofHom(V, W) as a linear map 

(g<p)(v) = g<p(g-1 v) 

for all v e V. In oth d h .. . er wor s, t e defimt1on is such that the diagram 

v _____!__,. w 

·] ]· 
v~w 

commutes. Note that the dual representation is, in turn, a special case of this: 

' For more on exterior and symmetric ower . . powers, see Appendix B. p s, mcludmg descriptions as quotient spaces of tensor 

§1.2. Complete Reducibility; Schur's Lemma 

when W = C is the trivial representation, i.e., gw = w for all w e C, this makes 
V* into a G-module, with g<p(v) = <p(g-1 v), i.e., g<p = 

1
(g-

1 
)<p. 

Exercise 1.2. Verify that in general the vector space of G-linear maps between 
two representations V and W of G is just the subspace Hom(V, W)

6 

of 
elements of Hom(V, W) fixed under the action of G. This subspace is often 

denoted Hom6 (V, W). 

We have, in effect, taken the identification Hom(V, W) = V* ®Was the 
definition of the representation Hom(V, W). More generally, the usual iden
tities for vector spaces are also true for representations, e.g., 

V ®(U E9 W) = (V® U) Ea(V® W), 

N(VE9 W) = EB NV® NW. 
a+b=k 

N(V*) = N(V)*, 

and so on. 

Exercise 1.3*. Let p: G-+ GL(V) be any representation of the finite group G 
on an n-dimensional vector space V and suppose that for any g e G, the 
determinant of p(g) is 1. Show that the spaces NV and N-k V* are iso-

morphic as representations of G. 

If X is any finite set and G acts on the left on X, i.e., G-+ Aut(X) is a 
homomorphism to the permutation group of X, there is an associated per
mutation representation: let V be the vector space with basis {ex: x e X}, and 

let G act on V by 
g. 'L. axex = 'L. a"egx· 

The regular representation, denoted R6 or R, corresponds to the left action of 
G on itself. Alternatively, R is the space of complex-valued functions on G, 
where an element g e G acts on a function ix by (gix)(h) = ix(g-

1 

h). 

Exercise 1.4*. (a) Verify that these two descriptions of R agree, by identifying 
the element ex with the characteristic function which takes the value 1 on x, 

0 on other elements of G. 
(b) The space of functions on G can also be made into a G-module by the 

rule (gix)(h) = ix(hg). Show that this is an isomorphic representation. 

§1.2. Complete Reducibility; Schur's Lemma 

As in any study, before we begin our attempt to classify the representations 
of a finite group G in earnest we should try to simplify life by restricting our 
search somewhat. Specifically, we have seen that representations of G can be 
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built up out of other representations by linear algebraic operations, most 
simply by taking the direct sum. We should focus, then, on representations 
that are "atomic" with respect to this operation, i.e., that cannot be expressed 
as a direct sum of others; the usual term for such a representation is inde
composable. Happily, the situation is as nice as it could possibly be: a repre
sentation is atomic in this sense if and only if it is irreducibl~ (i.e., contains no 
proper subrepresentations); and every representation is the direct sum of 
irreducibles, in a suitable sense uniquely so. The key to all this is 

Proposition l.S. If W is a subrepresentation of a representation V of a finite 
group G, then there is a complementary invariant subspace W' of V, so that 
V= W$ W'. 

PROOF. There are two ways of doing this. One can introduce a (positive 
definite) Hermitian inner product H on V which is preserved by each g e G 
(i.e., such that H(gv, gw) = H(v, w) for all v, w E V and g E G). Indeed, if H0 is 
any Hermitian product on V, one gets such an H by averaging over G: 

H(v, w) = L H0 (gv, gw). 
geG 

Then the perpendicular subspace w.i is complementary to Win V. Alterna
tively (but similarly), we can simply choose an arbitrary subspace U comple
mentary to W, let n0 : V-+ W be the projection given by the direct sum 
decomposition V = W E9 U, and average the map n0 over G: that is, take 

n(v) = L g(n0 (g-1 v)). 
geG 

This will then be a G-linear map from V onto W, which is multiplication by 
IGI on W; its kernel will, therefore, be a subspace of V invariant under G and 
complementary to W. D 

Corollary 1.6. Any representation is a direct sum of irreducible representations. 

This property is called complete reducibility, or semisimplicity. We will see 
that, for continuous representations, the circle S1

, or any compact group, has 
this property; integration over the group (with respect to an invariant measure 
on the group) plays the role of averaging in the above proof. The (additive) 
group IR does not have this property: the representation 

leaves the x axis fixed, but there is no complementary subspace. We will see 
other Lie groups such as SL"(IC) that are semisimple in this sense. Note also 
that this argument would fail if the vector space V was over a field of finite 
characteristic since it might then be the case that n(v) = O for v e W. The failure 

§1.2. Complete Reducibility; Schur's Lemma 7 

of complete reducibility is one of the things that makes the subject of modular 
representations, or representations on vector spaces over finite fields, so tricky. 

The extent to which the decomposition of an arbitrary representation into 
a direct sum of irreducible ones is unique is one of the consequences of the 

following: 

Schur's Lemma 1.7. If V and W are irreducible representations of G and 
<p: V -+ W is a G-module homomorphism, then 

(1) Either <pis an isomorphism, or <p = 0. 
(2) If V = W, then <p = A.· I for some A. E IC, I the identity. 

PROOF. The first claim follows from the fact that Ker <p and Im <pare invariant 
subspaces. For the second, since IC is algebraically closed, <p must have an 
eigenvalue A., i.e., for some A. E IC, <p - A.I has a nonzero kernel. By (1), then, 
we must have <p - A.I = 0, so <p = A.I. D 

We can summarize what we have shown so far in 

Proposition 1.8. For any representation V of a finite group G, there is a 

decomposition 

V = ViE!la 1 E9 ... E9 V,.Ellak, 

where the Vi are distinct irreducible representations. The decomposition of V 
into a direct sum of the k factors is unique, as are the Vi that occur and their 

multiplicities a1• 

PROOF. It follows from Schur's lemma that if W is another representation of 
G, with a decomposition W = E9 H'JEllbJ, and <p: V -+ W is a map of represen
tations, then <p must map the factor JllE!la' into that factor H'JEllbJ for which 
H-j ~ J't; when applied to the identity map of V to V, the stated uniqueness 

follows. D 

In the next lecture we will give a formula for the projection of V onto ViE!la'. 
The decomposition of the ith summand into a direct sum of a1 copies of Vi is 
not unique if a1 > 1, however. 

Occasionally the decomposition is written 
(1.9) 

especially when one is concerned only about the isomorphism classes and 
multiplicities of the J't. · 

One more fact that will be established in the following lecture is that a finite 
group G admits only finitely many irreducible representations Vi up to iso
morphism (in fact, we will say how many). This, then, is the framework of the 
classification of all representations of G: by the above, once we have described 
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the irreducible representations of G, we will be able to describe an arbitrary 
representation as a linear combination of these. Our first goal, in analyzing 
the representations of any group, will therefore be: 

(i) Describe all the irreducible representations of G. 

Once we have done this, there remains the problem of carrying out in practice 
the description of a given representation in these terms. Thus, our second goal 
will be: 

(ii) Find techniques for giving the direct sum decomposition (1.9), and in 
particular determining the multiplicities a1 of an arbitrary representation V. 

Finally, it is the case that the representations we will most often be concerned 
with are those arising from simpler ones by the sort of linear- or multilinear
algebraic operations described above. We would like, therefore, to be able to 
describe, in the terms above, the representation we get when we perform these 
operations on a known representation. This is known generally as 

(iii) Plethysm: Describe the decompositions, with multiplicities, of represen
tations derived from a given representation V, such as V ® V, V*, N(V), 
Symk(V), and N(N V). Note that if V decomposes into a sum of two represen
tations, these representations decompose accordingly; e.g., if V = U E9 W, then 

NV= EB NU®NW, 
i+j=k 

so it is enough to work out this plethysm for irreducible representations. 
Similarly, if V and Ware two irreducible representations, we want to decom
pose V ® W; this is usually known as the Clebsch-Gordon problem. 

§1.3. Examples: Abelian Groups; 6 3 

One obvious place to look for examples is with abelian groups. It does not 
take long, however, to deal with this case. Basically, we may observe in general 
that if V is a representation of the finite group G, abelian or not, each g e G 
gives a map p(g): V-+ V; but this map is not generally a G-module homomor
phism: for general he G we will have 

g(h(v)) ::/: h(g(v)). 

Indeed, p(g): V-+ V will be G-linear for every p if (and only if) g is in the center 
Z(G) of G. In particular if G is abelian, and Vis an irreducible representation, 
then by Schur's lemma every element g e G acts on V by a scalar multiple of 
the identity. Every subspace of V is thus invariant; so that V must be one 
dimensional. The irreducible representations of an abelian group G are thus 
simply elements of the dual group, that is, homomorphisms 

p: G-+ C*. 

§1.3. Examples: Abelian Groups; 6 3 
9 

We consider next the simplest nonabelian group, G = 63. To begin ~ith, 
we have (as with any symmetric group) two one-dimensional representatlo~s: 
we have the trivial representation, which we will denote U, and the alternating 

representation U', defined by setting 

gv = sgn(g)v 

forge G, v e c. Next, since G com.est~ us a~ a permutation ~roup, we h~ve 
a natural permutation representation, 1? which G acts o~ C by permutmg 
the coordinates. Explicitly, if {e1, e2 , e3 } ts the standard basts, then g · e; = eg(ll• 

or, equivalently, · 

g·(z1, Z2, Z3) = (zg-•(t)> Zg-•(2)> Zg-•(3)). 

This representation, like any permutation representation, i_s ~ot ir~educi~le: 
the line spanned by the sum (1, 1, 1) of the basis vectors ts mvanant, with 

complementary subspace 

V = {(z1, z 2, z 3) e C3
: z 1 + z2 + Z3 = O}. 

This two-dimensional representation Vis easily seen to be irreducible; we call 
it the standard representation of 6 3 • . 

Let us now turn to the problem of describing an arbitrary representation 
of 5

3
• We will see in the next lecture a wonderful tool for ~oing this, called 

character theory; but, as inefficient as this may be, we would hke he~e to ~dopt 
a more ad hoc approach. This has some virtues as a didactic techmqu~ m the 
present context (admittedly dubious ones, consisting mainly of makmg the 
point that there are other and far worse ways of doing things th.an character 
theory). The real reason we are doing it is that it will se~ve to mt~oduce an 
idea that, while superfluous for analyzing the representations of fi~tte grou~s 
in general, will prove to be the key to understanding representations of Lte 

groups. . 
The idea is a very simple one: since we have just seen that the representat10_n 

theory of a finite abelian group is virtually trivi~l, w_e will start ou_r analysts 
of an arbitrary representation W of 6 3 by lookmg JUSt at the action of the 
abelian subgroup m

3 
= Z/3 c 6 3 on W. This yields a very simple decom

position: if we taker to be any generator of m3 (~hat is, any three~cycle), the 
space w is spanned by eigenvectors v1 for the action of r, whose eigenvalues 
are of course all powers of a cube root of unity w = e2

"
113

• Thus, 

W= EfJY;, 

where 

v; = Cv1 and rv1 = w«•v1• 

Next we ask how the remaining elements of 6 3 act on Win terms of this 
decom~osition. To see how this goes, let u be any transposition, so that r and 
u together generate 6 3 , with the relation uru = r 2

• We want to know where 
u sends an eigenvector v for the action of r, say with eigenvalue ro

1
; to answer 

. _., 
·· ... ~ I' Tl 



10 1. Representations of Finite Groups 

this, we look at how r acts on a(v). We use the basic relation above to write 

r(a(v)) = a(r2 (v)) 

= a(w2i·v) 

= w 21 ·a(v). 

The conclusion, then, is that if v is an eigenvector for r with eigenvalue wi then 
a(v) is again an eigenvector fort, with eigenvalue w2i. ' 

Exercise ~.10. Verify that with a= (12), t = (123), the standard representation 
has a basis oi = (w, 1, w2

), p = (1, w, w2
), with 

toi = woi, t/3 = w2 /3, aoi = p, a/3 = oi. 

S~pp~se now that we start with such an eigenvector v for r. If the eigenvalue 
?f v is w' =I- 1, then a(v) is an eigenvector with eigenvalue w 21 =f. w1

, and so is 
mdependent of v; and v and a(v) together span a two-dimensional subspace 
V' of~ inva~iant under 6 3 . In fact, V' is isomorphic to the standard repre
sentation, .which follows from Exercise 1.10. If, on the other hand, the eigen
value of vis 1, then a(v) may or may not be independent of v. If it is not then 
v spans a o?e-~imensional subrepresentation of W, isomorphic to the ;rivial 
representation 1.f a(v) = v and to the alternating representation if a(v) = -v. 
If a(v) and v are mdependent, then v + a(v) and v - a(v) span one-dimensional 
represe~tations of W isomorphic to the trivial and alternating representations, 
respectively. 

We have thus accomplished the first two of the goals we have set for 
ourselves above in the case of the group G = 6 3 • First, we see from the above 
that the only three irreducible representations of 6 3 are the trivial, alternating, 
and st~ndard representations U, U' and V. Moreover, for an arbitrary repre
sentation W of 6 3 we can write 

W = u@a ES U'fI!b ES y@c; 

~nd we have a w~y to determin~ the multiplicities a, b, and c: c, for example, 
is the .number o~ i~d~pendent eigenvectors for r with eigenvalue w, whereas 
a + c is the m~ltiphc1ty of 1 as an eigenvalue of a, and b + c is the multiplicity 
of -1 as an eigenvalue of a. 

I? fact, this appro~~h gives us as well the answer to our third problem, 
fin~mg the decomp?s1tion o~ the .symmetric, alternating, or tensor powers of 
a given re~resentation W, smce if we know the eigenvalues of r on such a 
representation, we know the eigenvalues of r on the various tensor powers of 
W For example, w~ can .use this method to decompose V ® v, where Vis 
the standard two-d1mens1onal representation. For v ®Vis spanned by the 
v~ctors oi ® oi, oi ® /3, /3 ® oi, and f3 ® f3; these are eigenvectors for r with 
~1,i~nvalues w2

, 1, 1, and w, respectively, and a interchanges oi ® oi with 
, \?:$! fl and IX ® p · h p · wit ® oi. Thus oi ® oi and f3 ® p span a subrepresentation 

§1.3. Examples: Abelian Groups; 5-' 11 

isomorphic to V, oi ® f3 + f3 ® oi spans a trivial representation U, and 
oi ® f3 - f3 ® oi spans U', so 

V ® V ~ U ES U' ES V. 

Exercise 1.11. Use this approach to find the decomposition of the represen

tations Sym2 V and Sym3 V. 

Exercise 1.12. (a) Decompose the regular representation R of 6 3 . 

(b) Show that Symk+6V is isomorphic to SymkV E9 R, and compute 

Symk V for all k. 

Exercise 1.13*. Show that Sym2 (Sym3 V) ~ Sym
3
(Sym

2
V). Is 

Symm(Sym"V) isomorphic to Sym"(SymmV)? 

As we have indicated, the idea of studying a representation V of a group G 
by first restricting the action to an abelian subgroup, getting a decomposition 
of V into one-dimensional invariant subspaces, and then asking how the 
remaining generators of the group act on these subspaces, does not work well 
for finite G in general; for one thing, there will not in general be a convenient 
abelian subgroup to use. This idea will turn out, however, to be the key to 
understanding the representations of Lie groups, with a torus subgroup 
playing the role of the cyclic subgroup in this example. 

Exercise 1.14*. Let V be an irreducible representation of the finite group G. 
Show that, up to scalars, there is a unique Hermitian inner product on V 

preserved by G. 



LECTURE 2 

Characters 

This lecture contains the heart of our treatment of the representation theory of finite 
groups: the definition in §2.1 of the character of a representation, and the main theorem 
(proved in two steps in §2.2 and §2.4) that the characters of the irreducible representa
tions form an orthonormal basis for the space of class functions on G. There will be 
more examples and more constructions in the following lectures, but this is what you 
need to know. 

§2.1: Characters 
§2.2: The first projection formula and its consequences 
§2.3: Examples: 6 4 and 214 

§2.4: More projection formulas; more consequences 

§2.1. Characters 

As we indicated in the preceding section, there is a remarkably effective 
tool for understanding the representations of a finite group G, called 
character theory. This is in some ways motivated by the example worked out 
in the last section where we saw that a representation of 6 3 was determined 
by knowing the eigenvalues of the action of the elements rand a E 6 3. For a 
general group G, it is not clear what subgroups and/or elements should play 
the role of 21 3 , r, and a; but the example certainly suggests that knowing 
all the eigenvalues of each element of G should suffice ·to describe the 
representation. 

Of course, specifying all the eigenvalues of the action of each element of G 
is somewhat unwieldy; but fortunately it is redundant as well. For example, 
if we know the eigenvalues { A.1} of an element g E G, then of course we know 
the eigenvalues {A.t} of gk for each k as well. We can thus use this redundancy 

§2.1. Characters 13 

to simplify the data we have to specify. The key observation here is it is enough 
to give, for example, just the sum of the eigenvalues of each element of G, since 
knowing the sums L A.t of the kth powers of the eigenvalues of a given element 
g E G is equivalent to knowing the eigenvalues { A.1} of g themselves. This then 
suggests the following: 

Definition. If Vis a representation of G, its character Xv is the complex-valued 
function on the group defined by 

Xv((}) = Tr(g Iv), 

the trace of g on V. 

In particular, we have 

Xv(hgh- 1
) = Xv(g), 

so that Xv is constant on the conjugacy classes of G; such a function is called 
a class function. Note that xv(l) = dim V. 

Proposition 2.1. Let V and W be representations of G. Then 

Xvew = Xv + Xw• Xv®w = Xv· Xw• 

Xv' = Xv and Xi\2v(g) = Hxv((J) 2 
- Xv(g 2

)]. 

PROOF. We compute the values of these characters on a fixed element g E G. 
For the action of g, V has eigenvalues {A.1} and W has eigenvalues {µ1}. Then 
{A1 + µ1} and {A1 • µ1} are eigenvalues for V_EF> Wand V ® W, from which the 
first two formulas follow. Similarly { A.j 1 = A.1} are the eigenvalues for g on v•, 
since all eigenvalues are nth roots of unity, with n the order of g. Finally, 
{ A.1A.11 i < j} are the eigenvalues for g on NV, and 

~ A. A. = (LA.1)
2 

- LAt. 
L... I 1 2 • 
l<l 

and since g2 has eigenvalues {A.t}, the last formula follows. 

Exercise 2.2. For Sym2 V, verify that 

Xsrm2v(g) = Hxv((J)2 + Xv((J 2
)]. 

Note that this is compatible with the decomposition 

V® V = Sym2V$ NV. 

Exercise 2.3•. Compute the characters of SymkV and NV. 

D 

Exercise 2.4•. Show that if we know the character Xv of a representation V, 
then we know the eigenvalues of each element g of G, in the sense that we 
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know the coefficients of the characteristic polynomial of g: V-+ V. Carry this 
out explicitly for elements g e G of orders 2, 3, and 4, and for a representation 
of G on a vector space of dimension 2, 3, or 4. 

Exercise 2.5. (The original fixed-point formula). If Vis the permutation repre
sentation associated to the action of a group G on a finite set X, show that 
Xv(g) is the number of elements of X fixed by g. 

As we have said the character of a representation of a group G is really a 
function on the set ~f conjugacy classes in G. This suggests expressing the basic 
information about the irreducible representations of a group G in the form of 
a character table. This is a table with the conjugacy classes [g] of G list~d 
across the top, usually given by a representative g, with (for .reasons that will 
become apparent later) the number of elements in each conjugacy class over 
it· the irreducible representations V of G listed on the left; and, in the appro
p~iate box, the value of the character Xv on the conjugacy class [g]. 

Example 2.6. We compute the character table of 6 3 . This is easy: to. begin 
with the trivial representation takes the values (1, 1, 1) on the three conjugacy 
clas;es [1], [(12)], and [(123)], whereas the alternating representation has 
values (1 - 1 1). To see the character of the standard representation, note 

' ' 3 . h that the permutation representation decomposes: C = U E9 V; smce t e 
character of the permutation representation has, by Exercise 2.5, the values 
(3, 1, 0), we have Xv = Xo - Xu = (3, 1, 0) - (1, 1, 1) = (2, 0, -1). In sum, 
then, the character table of 6 3 is 

3 2 

63 (12) (123) 

trivial U 1 1 1 

alternating U' 1 -1 1 

standard V 2 0 -1 

This gives us another solution of the basic problem posed in Lecture 1: if 
W is any representation of 6 3 and we decompose W into irreducible re~re
sentations w ~ uea E9 U'$b E9 yec, then Xw = axu + bxu· + CXv· In particu
lar, since the functions Xu• Xu· and Xv are independent, we see that W is 
determined up to isomorphism by its character Xw· 

Consider, for example, V ® V. Its character is (Xv)2
, which has values 4, 0, 

and 1 on the three conjugacy classes. Since V E9 U E9 U' has the same char
acter this implies that V ® V decomposes into V E9 U E9 U', as we have seen 
direc~ly. Similarly, V ® U' has values 2, 0, and - l, so V ® U' ~ V. 

§2.2. The First Projection Formula and Its Consequences 15 

Exercise 2.7*. Find the decomposition of the representation V®n using char
acter theory. 

Characters will be similarly useful for larger groups, although it is rare to 
find simple closed formulas for decomposing tensor products. 

§2.2. The First Projection Formula and 
I ts Consequences 

In the last lecture, we asked (among other things) for a way of locating 
explicitly the direct sum factors in the decomposition of a representation into 
irreducible ones. In this section we will start by giving an explicit formula for 
the projection of an irreducible representation onto the direct sum of the trivial 
factors in this decomposition; as it will turn out, this formula alone has 
tremendous consequences. 

To start, for any representation V of a group G, we set 

V 6 = { v e V: gv = v '<lg e G}. 

We ask for a way of finding V 6 explicitly. The idea behind our solution to 
this is already implicit in the previous lecture. We observed there that for any 
representation V of G and any g e G, the endomorphism g: V-+ V is, in 
general, not a G-module homomorphism. On the other hand, if we take the 
average of all these endomorphisms, that is, we set 

1 
cp = fGI 9~6 g e End(V), 

then the endomorphism cp will be G-linear since LY= Lhgh-1
• In fact, we 

have 

Proposition 2.8. The map cp is a projection of V onto V 6
. 

PROOF. First, suppose v = cp(w) = (1/I GI) L gw. Then, for any he G, 

1 1 
hv = fGI L hgw = fGI L gw, 

so the image of cp is contained in V 6
• Conversely, if v e V 6

, then cp(v) = 
(1/IGl)Lv = v, so V6 c Im(cp); and cp o cp = cp. D 

We thus have a way of finding explicitly the direct sum of the trivial 
subrepresentations of a given representation, although the formula can be 
hard to use if it does not simplify. If we just want to know the number m of 
copies of the trivial representation appearing in the decomposition of V, we 
can do this numerically, since this number will be just the trace of the 
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projection cp. We have 

m =dim V 6 = Trace(cp) 

1 1 
= - L Trace(g) = - L Xv(g). 

IGI geG IGI geG 

(2.9) 

In particular, we observe that for an irreducible representation V other than 
the trivial one, the sum over all g E G of the values of the character Xv is zero. 

We can do much more with this idea, however. The key is to use Exercise 
1.2: if Vand Ware representations of G, then with Hom(V, W), the representa
tion defined in Lecture l, we have 

Hom(V, W)6 = {G-module homomorphisms from V to W}. 

If Vis irreducible then by Schur's lemma dim Hom(V, W)6 is the multiplicity 
of Vin W; similarly, if Wis irreducible, dim Hom(V, W)6 is the multiplicity 
of Win V, and in the case where both V and Ware irreducible, we have 

{
1 if v;;;::: w 

dim Hom6 (V, W) = 0 if V 1. W. 

But now the character XHom(V,W) of the representation Hom(V, W) = V* ® W 
is given by 

XHom(V, W)(g) = Xv(g) · Xw(g). 

We can now apply formula (2.9) in this case to obtain the striking 

1 ~ - {1 ifV;;;:: W 
fGI g~G Xv(g)xw(g) = 0 if V 1. W. 

To express this, let 

C01 ••• (G) = {class functions on G} 

and define an Hermitian inner product on C01 ... (G) by 

1 ~ -
(ex, p) = fGI ka cx(g)p(g). 

Formula (2.10) then amounts to 

(2.10) 

(2.11) 

Theorem 2.12. In terms of this inner product, the characters of the irreducible 
representations of G are orthonormal. 

For example, the orthonormality of the three irreducible representations 
of 6

3 
can be read from its character table in Example 2.6. The numbers over 

each conjugacy class tell how many times to count entries in that column. 

Corollary 2.13. The number of irreducible representations of G is less than or 
equal to the number of conjugacy classes. 
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We will soon show that there are no nonzero class functions orthogonal 
to the characters, so that equality holds in Corollary 2.13. 

Corollary 2.14. Any representation is determined by its character. 

Indeed if V ;;;::: ViE!lo, EB · · · E9 V,.Ell0 k, with the Vi distinct irreducible characters, 
then Xv = L a1xv

1
• and the Xv, are linearly independent. 

Corollary 2.15. A representation Vis irreducible if and only if (xv. Xv) = 1. 

In fact, if V;;;::: ViE!lo, EB··· EB V,.Ell0 k as above, then (Xv• Xv) = L af. 
The multiplicities a1 can be calculated via 

Corollary 2.16. The multiplicity a1 of Vi in Vis the inner product of Xv with Xv,• 
i.e., a, = (Xv• XvJ 

We obtain some further corollaries by applying all this to the regular 
representation R of G. First, by Exercise 2.5 we know the character of R; it is 
simply 

{
o ifg#e 

XR(g) = IGI if g = e. 

Th us, we see first of all that R is not irreducible if G # { e}. In fact, if we set 
R = EB JljEll01

, with Vi distinct irreducibles, then 

1 
a, = (Xv,• XR) = fGI Xv1(e) ·I GI = dim Jlj. (2.17) 

Corollary 2.18. Any irreducible representation V of G appears in the regular 
representation dim V times. 

In particular, this proves again that there are only finitely many irreducible 
representations. As a numerical consequence of this we have the formula 

IGI = dim(R) = L dim(Jlj)2
• (2.19) 

I 

Also, applying this to the value of the character of the regular representation 
on an element g E G other than the identity, we have 

0 = L (dim Jlj) · Xv,(g) if g # e. (2.20) 

These two formulas amount to the Fourier inversion formula for finite groups, 
c~. Example 3.32. For example, if all but one of the characters is known, they 
give a formula for the unknown character. 

Exercise 2.21. The orthogonality of the rows of the character table is equiv
alent to an orthogonality for the columns (assuming the fact that there are as 
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many rows as columns). Written out, this says: 
(i) For g E G, 

"- IGI 
L... x(g)x(g) = -( )' 
x. cg 

---~----~-- ----- -

2. Characters 

where the. sum is over all irreducible characters, and c(g) is the number of 
elements in the conjugacy class of g. 

(ii) If g and h are elements of G that are not conjugate, then 

L x(g)x(h) = o. 
x. 

Note that for g = e these reduce to (2.19) and (2.20). 

§2.3. Examples: 6 4 and fil4 

To see how the analysis of the characters of a group actually goes in practice, 
we no~ work out the character table of 6 4 • To start, we list the conjugacy 
classes m 6 4 and the number of elements of64 in each. As with any symmetric 
group 6d, the conjugacy classes correspond naturally to the partitions of d 
that is, expressions of d as a sum of positive integers a 1 , a2, ... , ak, wher~ 
the correspondence associates to such a partition the conjugacy class of a 
permutation consisting of disjoint cycles of length a 1 , a2, ... , ak. Thus, in 6

4 
we have the classes of the identity element 1 (4 = 1 + 1 + 1 + 1), a trans
position such as (12), corresponding to the partition 4 = 2 + 1 + l; a three
cycle (123) corresponding to 4 = 3 + 1; a four-cycle (1234) (4 = 4); and the 
product of two disjoint transpositions (12)(34) (4 = 2 + 2). 

Exercise 2.22. Show that the number of elements in each of these conjugacy 
classes is, respectively, 1, 6, 8, 6, and 3. 

As for the irreducible representations of 6 4 , we start with the same ones 
that We had in the case of 6 3 : the trivial U, the alternating U', and the 
standard representation V, i.e., the quotient of the permutation representation 
associated to the standard action of 6 4 on a set of four elements by the 
trivial subrepresentation. The character of the trivial representation on the 
five conjugacy classes is of course (1, 1, 1, 1, 1), and that of the alternating 
representation is (1, -1, 1, -1, 1). To find the character of the standard 
representation, we observe that by Exercise 2.5 the character of the permuta
tion representation on C4 is Xe•= (4, 2, 1, 0, 0) and, correspondingly, 

Xv =Xe• - Xu = (3, 1, 0, -1, -1). 

Note that I xvi = 1, so Vis irreducible. The character table so far looks like 
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6 8 6 3 

64 (12) (123) (1234) (12)(34) 

trivial U 1 1 1 1 1 
alternating U' 1 -1 1 -1 1 

standard V 3 0 -1 -1 

Clearly, we are not done yet: since the sum of the squares of the dimensions 
of these three representations is 1 + 1 + 9 = 11, by (2.19) there must be 
additional irreducible representations of 6 4 , the squares of whose dimensions 
add up to 24 - 11 = 13. Since there are by Corollary 2.13 at most two of them, 
there must be exactly two, of dimensions 2 and 3. The latter of these is easy 
to locate: if we just tensor the standard representation V with the alternating 
one U', we arrive at a representation V' with character Xv· = Xv· Xu· = 
(3, - l, 0, 1, -1). We can see that this is irreducible either from its character 
(since I Xv· I = 1) or from the fact that it is the tensor product of an irreducible 
representation with a one-dimensional one; since its character is not equal to 
that of any of the first three, this must be one of the two missing ones. As for 
the remaining representation of degree two, we will for now simply call it W; 
we can determine its character from the orthogonality relations (2.10). We 
obtain then the complete character table for 6 4 : 

6 8 6 3 

64 (12) (123) (1234) (12)(34) 

trivial U 1 1 1 1 1 
alternating U' 1 -1 1 -1 1 

standard V 3 1 0 -1 -1 
V' = V®U' 3 -1 0 1 -1 

Another W 2 0 -1 0 2 

Exercise 2.23. Verify the last row of this table from (2.10) or (2.20). 

We now get a dividend: we can take the character of the mystery represen
tation W, which we have obtained from general character theory alone, and 
use it to describe the representation W explicitly! The key is the 2 in the last 
column for xw: this says that the action of (12)(34) on the two-dimensional 
vector space Wis an involution of trace 2, and so must be the identity. Thus, 
Wis really a representation of the quotient group 1 

1 If N is a normal subgroup of a group G, a representation p: G-+ GL(V) is trivial on N if and 
only if it factors through the quotient 

G-+ G/N-+ GL(V). 

Representations of G/N can be identified with representations of G that are trivial on N. 
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64/{l, (12)(34), (13)(24), (14)(23)} ~ 63. 

[One may see this isomorphism by letting 6 4 act on the elements of the 
conjugacy class of(12)(34); equivalently, if we realize 6 4 as the group of rigid 
motions of a cube (see below), by looking at the action of 6 4 on pairs of 
opposite faces.] W must then be just the standard representation of 6 3 pulled 
back to 6 4 via this quotient. 

Example 2.24. As we said above, the group of rigid motions of a cube is the 
symmetric group on four letters; 6 4 acts on the cube via its action on the four 
long diagonals. It follows, of course, that 6 4 acts as well on the set of faces, 
of edges, of vertices, etc.; and to each of these is associated a permutation 
representation of 6 4 • We may thus ask how these representations decompose; 
we will do here the case of the faces and leave the others as exercises. 

We start, of course, by describing the character x of the permutation 
representation associated to the faces of the cube. Rotation by 180° about a 
line joining the midpoints of two opposite edges is a transposition in 6 4 and 
fixes no faces, so x(l2) = 0. Rotation by 120° about a long diagonal shows 
x(123) = 0. Rotation by 90° about a line joining the midpoints of two opposite 
faces shows x(1234) = 2, and rotation by 180° gives x((12)(34)) = 2. Now 
(x. x) = 3, so x is the sum of three distinct irreducible representations. From 
the table, (x. Xu)= (x. Xv·)= (x, xw) = 1, and the inner products with the 
others are zero, so this representation is U Et> V' Et> W. In fact, the sums of 
opposite faces span a three-dimensional subrepresentation which contains U 
(spanned by the sum of all faces), so this representation is U Et> W. The 
differences of opposite faces therefore span V'. 

Exercise 2.25*. Decompose the permutation representation of 6 4 on (i) the 
vertices and (ii) the edges of the cube. 

Exercise 2.26. The alternating group fil4 has four conjugacy classes. Three 
representations U, U', and U" come from the representations of 

fil4 /{1, (12)(34), (13)(24), (14)(23)} ~ Z/3, 

so there is one more irreducible representation V of dimension 3. Compute 
the character table, with w = e21"13

: 

4 4 3 

~4 (123) (132) (12)(34) 

u 1 1 . 
U' 1 w (1)2 

U" 1 (1)2 (1) 1 
v 3 0 0 -1 

,
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. 2 27 Consider the representations of 6 4 and their restrictions to ~4· 
Exc.rc1sc • t.'11 t'rreducible when restricted, and which decompose? Which 
WI ch are s 1 . h' h 

.
11

. f nisomorphic representations of 6 4 become 1somorp 1c w en 
·urs o no · · t' f 6 ? P• '. d? Which representations of fil4 anse as restr1c ions rom 4. 

rcstnctc . 

.2 4 More Pro1ection Formulas; More Consequences 
~ . • J 

· . 1·0n we complete the analysis of the characters of the irreducible 
In this sec I ' . 2 2 d . al 

. , tat ions of a general finite group begun m § . an give a more gener 
rcprcscn · v th d' t m 

I. f r the projection of a general representation onto e tree su 
fonnu a o . d 'bl t f W The f h factors in V isomorphic to a given irre uc1 e represen a ion .. 
o t. c. dea for both is a generalization of the "averaging" of the endomorphisms 
main 1 

· d f · I · g all the l/'. v ___. v used in §2.2, the point being that ms~ea . o s1mp y averagm . 
· " . sk the question' what linear combmattons of the endomorphisms 
11 we c,rn a · . . . 
. v -+ v are G-linear endomorphisms? The answer ts given by 

!f. 

Proposition 2.28. Let oc: G-+ IC be any function on the group G, and for any 

representation V of G set 

<PIZ,v = L oc(g)·g: V-+ V. 

Then m is a homomorphism of G-modules for all V if and only if oc is a class 
~'IZ, V 

jimction. 

PROOF. We simply write out the condition that <PIZ. v be G-linear, and the result 

falls out: we have 

<PIZ, v(hv) = L oc(g) · g(hv) 

(substituting hgh-1 for g) 

(if '1. is a class function) 

= L oc(hgh-1
) • hgh-1 (hv) 

= h(L oc(hgh- 1
) • g(v)) 

= h(L oc(g) · g(v)) 

= h(cplZ,v(v)). 

Exercise 2.29*. Complete this proof by showing that convers~ly if oc is ~ot a 
class function, then there exists a representation V of G for which <Po. v fads to 
he G-linear. D 

!\s an immediate consequence of this proposition, we have 
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Proposition 2.30. The number of irreducible representations of G is equal to the 
number of conjugacy classes of G. Equivalently, their characters {Xv} form an 
orthonormal basis for Cc1 ... (G). 

PROOF. Suppose ix: G-+ C is a class function and (ix, Xv) = 0 for all irreducible 
representations V; we must show that ix = 0. Consider the endomorphism 

<p,.,v = L ix(g)·g: V-+ V 

as defined above. By Schur's lemma, <p,., v = A.· Id; and if n = dim V, then 

1 
A.= -·trace(<p,. v) n . 

1 
= -· L ix(g)xv(g) 

n 

=0. 

Thus, <p,., v = 0, or L ix(g) · g = 0 on any representation V of G; in particular, 
this will be true for the regular representation V = R. But in R the elements 
{g e G}, thought of as elements of End(R), are linearly independent. For 
example, the elements {g(e)} are all independent. Thus ix(g) = 0 for all g, as 
re~~d D 

This proposition completes the description of the characters of a finite 
group in general. We will see in more examples below how we can use this 
information to build up the character table of a given group. For now, we 
mention another way of expressing this proposition, via the representation 
ring of the group G. 

The representation ring R(G) of a group G is easy to define. First, as a group 
we just take R(G) to be the free abelian group generated by all (isomorphism 
classes of) representations of G, and mod out by the subgroup generated by 
elements of the form V + W - (V El:3 W). Equivalently, given the statement of 
complete reducibility, we can just take all integral linear combinations L a1 • Vi 
of the irreducible representations Vi of G; elements of R( G) are correspondingly 
called virtual representations. The ring structure is then given simply by tensor 
product, defined on the generators of R(G) and extended by linearity. 

We can express most of what we have learned so far about representations 
of a finite group G in these terms. To begin, the character defines a map 

x: R(G)-+ Cciass(G) 

from R(G) to the ring of complex-valued functions on G; by the basic formulas 
of Proposition 2.1, this map is in fact a ring homomorphism. The statement 
that a representation in determined by its character then says that xis injective; 
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the images of x are called virtual characters and correspond thereby to virtual 
representations. Finally, our last proposition amounts to the statement that 
x induces an isomorphism 

Xe: R(G) ® C-+ Cclass(G). 

The virtual characters of G form a lattice A ~ zc in Cc••••( G), in which the 
actual characters sit as a cone A0 ~ Ne c zc. We can thus think of the 
problem of describing the characters of Gas having two parts: first, we have 
to find A, and then the cone A0 c A (once we know A0 , the characters of the 
irreducible representations will be determined). In the following lecture we 
will state theorems of Artin and Brauer characterizing A ® IQ and A. 

The argument for Proposition 2.30 also suggests how to obtain a more 
general projection formula. Explicitly, if Wis a fixed irreducible representation, 
then for any representation V, look at the weighted sum 

1 -I/I= - L Xw(g)·g e End(V). 
IGI geG 

By Proposition 2.28, I/I is a G-module homomorphism. Hence, if Vis irreduc
ible, we have I/I = A.· Id, and 

For arbitrary V, 

1 
A. = --Trace I/I 

dim V 

1 1 "-= dim V. TG1 L.. Xw(g). Xv(g) 

{

_l_ ifV= W 
= dim V 

0 ifV# W. 

(2.31) 

is the projection of V onto the factor consisting of the sum of all copies of W 
appearing in V. In other words, if V = EB Jt1Ell01

, then 

1 " -7t1 =dim Vi· TG1 ka Xv,(g) · g (2.32) 

is the projection of V onto Viea,. 

Exercise 2.33*. (a) In terms of representations V and Win R(G), the inner 
product on Ccia .. (G) takes the simple form 

(V, W) =dim Hom6 (V, W). 
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(b) If XE Cclass(G) is a virtual character, and (X, X) = 1, then either X or -x 
is the character of an irreducible representation, the plus sign occurring when 
x(l) > 0. If (x, x) = 2, and x(l) > 0, then xis either the sum or the difference 
of two irreducible characters. 

(c) If U, V, and Ware irreducible representations, show that U appears in 
V ® W if and only if W occurs in V* ® U. Deduce that this cannot occur 
unless dim U ~ dim W/dim V. 

We conclude this lecture with some exercises that use characters to work 
out some standard facts about representations. 

Exercise 2.34*. Let V and W be irreducible representations of G, and 
L0 : V-+ W any linear mapping. Define L: V-+ W by 

1 
L(v) = fGI gfG 9-1. Lo(9. v). 

Show that L = 0 if V and Ware not isomorphic, and that L is multiplication 
by trace(L0 )/dim(V) if V = W. 

Exercise 2.35*. Show that, if the irreducible representations of G are represented 
by unitary matrices [cf. Exercise 1.14], the matrix entries of these representa
tions form an orthogonal basis for the space of all functions on G [with inner 
product given by (2.11)]. 

Exercise 2.36*. If G1 and G2 are groups, and Vi and V2 are representations of 
G1 and G2, then the tensor product Vi® V2 is a representation of G1 x G2, 
by (91 x 92) · (v1 ® v2) = 91 · v1 ® 92 • v2 • To distinguish this "external" tensor 
product from the internal tensor product-when G1 = G2-this external 
tensor product is sometimes denoted V1 [El V2 • If Xi is the character of Vi, then 
the value of the character x of Vi [El V2 is given by the product: 

x(91 x 92) = x1(9i)x2(92). 

If Vi and V2 are irreducible, show that Vi [El V2 is also irreducible and show 
that every irreducible representation of G1 x G2 arises this way. In terms of 
representation rings, 

In these lectures we will often be given a subgroup G of a general linear 
group GL(V), and we will look for other representations inside tensor powers 
of V. The following problem, which is a theorem of Burnside and Molien, 
shows that for a finite group G, all irreducible representations can be found 
this way. 
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Problem 2.37*. Show that if Vis a faithful representation of G, i.e., p: G-+ 
G L( V) is injective, then any irreducible representation of G is contained in 
some tensor power v$n of v. 

Problem 2.38*. Show that the dimension of an irreducible representation of 
G divides the order of G. 

Another challenge: 

Problem 2.39*. Show that the character of any irreducible representation of 
dimension greater than 1 assumes the value 0 on some conjugacy class of the 
group. 



LECTURE 3 

Examples; Induced Representations; 
Group Algebras; Real Representations 

This lecture is something of a grabbag. We start in §3.1 with examples illustrating the 
use of the techniques of the preceding lecture. Section 3.2 is also by way of an example. 
We will see quite a bit more about the representations of the symmetric groups in 
general later; §4 is devoted to this and will certainly subsume this discussion, but this 
should provide at least a sense of how we can go about analyzing representations of 
a class of groups, as opposed to individual groups. In §§3.3 and 3.4 we introduce two 
basic notions in representation theory, induced representations and the group algebra. 
Finally, in §3.5 we show how to classify representations of a finite group on a real 
vector space, given the answer to the corresponding question over C, and say a few 
words about the analogous question for subfields of Cother than IR. Everything in this 
lecture is elementary except Exercises 3.9 and 3.32, which involve the notions of Clifford 
algebras and the Fourier transform, respectively (both exercises, of course, can be 
skipped). 

§3.1: Examples: 6 5 and ~5 
§3.2: Exterior powers of the standard representation of 6 4 

§3.3: Induced representations 
§3.4: The group algebra 
§3.5: Real representations and representations over subfields of C 

§3.1. Examples: 6 5 and ~{ 5 
We have found the representations of the symmetric and alternating groups 
for n =::;;; 4. Before turning to a more systematic study of symmetric and alter
nating groups, we will work out the next couple of cases. 
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Representations of the Symmetric Group 6 5 

As before, we start by listing the conjugacy classes of 6 s and giving the number 
of elements of each: we have 10 transpositions, 20 three-cycles, 30 four-cycles 
and 24 five-cycles; in addition, we have 15 elements conjugate to (12)(34) and 
10 elements conjugate to (12)(345). As for the irreducible representations, we 
have, of course, the trivial representation U, the alternating representation U', 
and the standard representation V; also, as in the case of 6 4 we can tensor 
the standard representation V with the alternating one to obtain another 
irreducible representation V' with character XV' = Xv· Xu·· 

Exercise 3.1. Find the characters of the representations V and V'; deduce in 
particular that V and V' are distinct irreducible representations. 

The first four rows of the character table are thus 

10 20 30 24 15 20 

65 (12) (123) (1234) (12345) (12)(34) (12)(345) 

u 1 1 1 1 1 1 
U' 1 -1 -1 1 1 -1 
v 4 2 0 -1 0 -1 

V' 4 -2 0 -1 0 1 

Clearly, we need three more irreducible representations. Where should we 
look for these? On the basis of our previous experience (and Problem 2.37), a 
natural place would be in the tensor products/powers of the irreducible 
representations we have found so far, in particular in V ® V (the other two 
possible products will yield nothing new: we have V' ® V = V ® V ® U' and 
V' ® V' = V ® V). Of course, V ® V breaks up into NV and Sym2 V, so we 
look at these separately. To start with, by the formula 

X!\ 2v(g) = !(xv(g)2 
- Xv(g2

)) 

we calculate the character of !\2V: 

X/\2v = (6, 0, 0, 0, 1, - 2, O); 

we see from this that it is indeed a fifth irreducible representation (and that 
1\2 V ® U' = NV, so we get nothing new that way). 

We can now find the remaining two representations in either of two ways. 
First, if n1 and n2 are their dimensions, we have 

5! = 120 = 12 + 12 + 42 + 42 + 62 + nf + ni, 
so ni + ni = 50. There are no more one-dimensional representations, since 
these are trivial on normal subgroups whose quotient group is cyclic, and ~s 



28 3. Examples; Induced Representations; Group Algebras; Real Representations 

is the only such subgroup. So the only possibility is ni = n2 = 5. Let W denote 
one of these five-dimensional representations, and set W' = W ® U'. In the 
table, if the row giving the character of W is 

(5 IXi IX2 IX3 IX4 IXs 1X6), 

that of W' is (5 -IXi IX2 -IX3 IX4 IXs -ix6 ). Using the orthogonality 
relations or (2.20), one sees that W' '*- W; and with a little calculation, up to 
interchanging Wand W', the last two rows are as given: 

10 20 30 24 15 20 

65 (12) (123) (1234) (12345) (12)(34) (12)(345) 

u 1 1 1 1 1 1 1 
U' 1 -1 1 -1 1 1 -1 
v 4 2 1 0 -1 0 -1 

V' 4 -2 1 0 -1 0 1 
/\2V 6 0 0 0 1 -2 0 

w 5 1 -1 -1 0 1 1 
W' 5 -1 -1 1 0 1 -1 

From the decomposition V E9 U = ics, we have also NV= Nies = U', 
and V* = V. The perfect pairingi 

V x NV--+ NV= V', 

taking v x (vi /\ v2 /\ v3) to v /\ vi /\ v2 /\ v3 shows that .NV is isomorphic 
to V* ® U' = V'. 

Another way to find the representations W and W' would be to proceed 
with our original plan, and look at the representation Sym2V. We will leave 
this in the form of an exercise: 

Exercise 3.2. (i) Find the character of the representation Sym2V. 
(ii) Without using any knowledge of the character table of 6s, use this to 

show that Sym2Vis the direct sum of three distinct irreducible representations. 
(iii) Using our knowledge of the first five rows of the character table, show 

that Sym2 Vis the direct sum of the representations U, V, and a third irreduc
ible representation W. Complete the character table for 6s. 

Exercise 3.3. Find the decomposition into irreducibles of the representations 
NW, Sym2W, and V ® W. 

1 If V and W are n-dimensional vector spaces, and U is one dimensional, a perfect pairing is a 
bilinear map P: V x W-+ U such that no nonzero vector v in V has p(v, W) = 0. Equivalently, 
the map V-+ Hom(W, U) = w• ® U, v1-+(w1-+p(v, w)), is an isomorphism. 
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Representations of the Alternating Group ~5 

What happens to the conjugacy classes above if we replace 6d by md? 
Obviously, all the odd conjugacy classes disappear; but at the same time, since 
conjugation by a transposition is now an outer, rather than inner, auto
morphism, some conjugacy classes may break into two. 

Ex;ercise 3.4. Show that the conjugacy class in 6d of permutations consisting 
of products of disjoint cycles oflengths bi, b2 , ••• will break up into the union 
of two conjugacy classes in md if all the bk are odd and distinct; if any b,. are 
even or repeated, it remains a single conjugacy class in md. (We consider a 
fixed point as a cycle oflength 1.) 

In the case of ms, this means we have the conjugacy class of three-cycles 
(as before, 20 elements), and of products of two disjoint transpositions (15 
elements); the conjugacy class of five-cycles, however, breaks up into the 
conjugacy classes of (12345) and (21345), each having 12 elements. 

As for the representations, the obvious first place to look is at restrictions 
to ~1 5 of the irreducible representations of 6s found above. An irreducible 
representation of 6s may become reducible when restricted to ms; or two 
distinct representations may become isomorphic, as will be the case with U 
and U', V and V', or W and W'. In fact, U, V, and W stay irreducible 
since their characters satisfy (x, x) = 1. But the character of NV has values 
(6, 0, -2, 1, 1) on the conjugacy classes listed above, so (x, x) = 2, and NV is 
the sum of two irreducible representations, which we denote by Yand Z. Since 
the sums of the squares of all the dimensions is 60, (dim Y)2 +(dim Z)2 = 18, 
so each must be three dimensional. 

Exercise 3.5. Use the orthogonality relations to complete the character table 
of ~1 5 : 

20 15 12 12 

fils (123) (12)(34) (12345) (21345) 

u 1 1 1 1 1 
v 4 1 0 -1 -1 
w 5 -1 1 0 0 

y 3 0 -1 1 +JS 1-JS 
2 2 

z 3 0 -1 
1-JS 1 +JS 

2 2 

The representations Y and Z may in fact be familiar: m5 can be realized as 
the group of motions of an icosahedron (or, equivalently, of a dodecahedron) 
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and Y is the corresponding representation. Note that the two representations 
fil5 -+ GL3 (1R) corresponding to Y and Z have the same image, but (as you 
can see from the fact that their characters differ only on the conjugacy classes 
of (12345) and (21345)) differ by an outer automorphism of fil5 • 

Note also that NV does not decompose over Q; we could see this directly 
from the fact that the vertices of a dodecahedron cannot all have rational 
coordinates, which follows from the analogous fact for a regular pentagon in 
the plane. 

Exercise 3.6. Find the decomposition of the permutation representation of fil 5 

corresponding to the (i) vertices, (ii) faces, and (iii) edges of the icosahedron. 

Exercise 3.7. Consider the dihedral group D2n, defined to be the group of 
isometries of a regular n-gon in the plane. Let r ~ Z/n c: D2" be the subgroup 
of rotations. Use the methods of Lecture 1 (applied there to the case 6 3 ~ D6 ) 

to analyze the representations of D2": that is, restrict an arbitrary representa
tion of D2n to r, break it up into eigenspaces for the action of r, and ask how 
the remaining generator of D2" acts of these eigenspaces. 

Exercise 3.8. Analyze the representations of the dihedral group D2" using the 
character theory developed in Lecture 2. 

Exercise 3.9. (a) Find the character table of the group of order 8 consisting of 
the quaternions {±1, ±i, ±j, ±k} under multiplication. This is the case 
m = 3 of a collection of groups of order 2m, which we denote Hm. To describe 
them, let Cm denote the complex Clifford algebra generated by v 1, ••• , vm with 

l . 2 re at1ons V1 = -1 and V1 ·VJ = -VJ· V1, SO Cm has a basis V1 = v1 • ••• • V1 , as 
I = { i1 < · · · < i,} varies over subsets of { 1, ... , m}. (See §20. l for n~tation" and 
basic facts about Clifford algebras). Set 

Hm = {±v1 : III is even} c: (c:,v•0 )*. 

This group is a 2-to-1 covering of the abelian 2-group of m x m diagonal 
matrices with ± 1 diagonal entries and determinant 1. The center of Hm is 
{ ± 1} if m is odd and is { ± 1, ± v11 , ... ,m}} if m is even. The other conjugacy 
classes consist of pairs of elements { ± v1 }. The isomorphisms of c:,v•n with a 
matrix algebra or a product of two matrix algebras give a 2"-dimensional 
"spin" representation S of H2n+l • and two 2"-1-dimensional "spin" or "half
spin" representations s+ ands- of H 2n. 

(b) Compute the characters of these spin representations and verify that 
they are irreducible. 

(c) Deduce that the spin representations, together with the 2m-1 one
dimensional representations coming from the abelian group Hm/{ ± 1} give a 
complete set of irreducible representations, and compute the character table 
for Hm. 
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For odd m the groups Hm are examples of extra-special 2-groups, cf. [Grie], 

[Qu]. 

Exercise 3.10. Find the character table of the group SL2 (Z/3). 

Exercise 3.11. Let H(Z/3) be the Heisenberg group of order 27: 

H(Z/3) ~ w ~ ;)• ~ b, c e Z/3} c SL,(Z/3) 

Analyze the representations of H(Z/3), first by the methods of Lecture 1 
(restricting in this case to the center 

z~ {(~ r nbeZ/3} ~Z/3 
of H(Z/3)), and then by character theory. 

§3.2. Exterior Powers of the Standard 
Representation of 6d 

How should we go about constructing representations of the symmetric 
groups in general? The answer to this is not immediate; it is a subject that will 
occupy most of the next lecture (where we will produce all the irreducible 
representations of 6d). For now, as an example of the elementary techniques 
developed so far we will analyze directly one of the obvious candidates: 

Proposition 3.12. Each exterior power NV of the standard representation V of 
Gd is irreducible, 0 ~ k ~ d - 1. 

PROOF. From the decomposition Cd = V EB U, we see that V is irreducible if 
and only if (X Cd• x Cd) = 2. Similarly, since 

Ned= (NV® A°U) EB (N-1 V ®NU) = NV EB N-1 V, 

it suffices to show that (x, x) = 2, where xis the character of the representation 
~kCd. Let A= {l, 2, ... , d}. For a subset B of A with k elements, and g e G = 
~d• let 

{g}B = { ~ 
-1 

if g(B) =!- B 

if g(B) =Band gl8 is an even permutation 

if g(B) =Band gl8 is odd. 



Here, if g(B) = B, gl 8 denotes the permutation of the set B determined by g. 
Then x(g) = L {g}n, and 

(x. x> = d1, L (L: {u}B)
2 

•geG B 

1 
= d! JG~~ {g}B{9}c 

1 
= d' LL L (sgn 9IB)'(sgn glc), 

• B C g 

where the sums are over subsets B and C of A with k elements, and in the last 
equation, the sum is over those g with g(B) =Band g(C) = C. Such g is given 
by four permutations: one of B n C, one of B1B n C, one of C1B n C, and one 
of A 1 B u C. Letting l be the cardinality of B n C, this last sum can be written 

1 
d! ~ ~ af61 be ~k-1 CE ~k-1 he 6~2k+I (sgn a)l(sgn b)(sgn C) 

= ~!LLl!(d-2k+l)!( ) sgnb)() sgnc). 
B C be "e'k-I c e "e'k-1 

These last sums are zero unless k - l = 0 or 1. The case k = l gives 

~! ~ k!(d - k)! = 1! (~) k!(n - k)! = 1. 

Similarly, the terms with k - l = 1 also add up to 1, so (x, x) = 2, as required. 
0 

Note by way of contrast that the symmetric powers of the standard repre
sentation of $dare almost never irreducible. For example, we already know 
that the representation Sym2 V contains one copy of the trivial representation: 
this is just the statement that every irreducible real representation (such as V) 
admits an inner product (unique, up to scalars) invariant under the group 
action; nor is the quotient of Sym2 V by this trivial subrepresentation neces
sarily irreducible, as witness the case of 6 5 • 

§3.3. Induced Representations 

If H c G is a subgroup, any representation V of G restricts to a representation 
of H, denoted Res~ V or simple Res V. In this section, we describe an impor
tant construction which produces representations of G from representations 
of H. Suppose Vis a representation of G, and W c V is a subspace which is 
H-invariant. For any gin G, the subspace g · W = {g · w: we W} depends only 
on the left coset gH of g modulo H, since gh · W = g · (h · W) = g · W; for a coset 

*3.3. Induced Representations 
jj 

<Tin G/H, we write q · W for this subspace of V. We say that Vis induced by W 
if every element in V can be written uniquely as a sum of elements in such 

translates of W, i.e., 

V= EB q·W. 
aeG/H 

In this case we write V = Ind~ W = Ind W. 

Example 3.13. The permutation representation associated to the left action of 
G on G/H is induced from the trivial one-dimensional representation W of H. 
flere V has basis {e,,: <Te G/H}, and W = C · eH, with H the trivial coset. 

Example 3.14. The regular representation of G is induced from the regular 
representation of H. Here V has basis { e9 : g e G}, whereas W has basis 

{eh: he H}. 

We claim that, given a representation W of H, such V exists and is unique 
up to isomorphism. Although we will later give several fancier ways to see 
this, it is not hard to do it by hand. Choose a representative g,, e G for each 
coset <Te G/H, withe representing the trivial coset H. To see the uniqueness, 
note that each element of V has a unique expression v = Lg,, w,,, for elements 
w,, in W. Given gin G, write g · g,, = g, · h for some t e G/H and he H. Then 

we must have 

g·(g,,w,,) = (g·g,,)w,, = (g.-h)w,, = g.(hw,,). 

This proves the uniqueness and tells us how to construct V = Ind(W) from 
W. Take a copy W" of Wfor each left coset <Te G/H; for we W, let g,,w denote 
the element of W" corresponding to w in W. Let V = EB W", so every 

aeG/H 

element of V has a unique expression v = L g,,w,, for elements w,, in W. Given 

g e G, define 

g · (g,, w,,) = g.(hw,,) if g · g,, = 9? h. 

To show that this defines as action of G on V, we must verify that g' · (g · (g,, w,,)) 
= (g' · g) · (g,, w,,) for another element g' in G. Now if g' · g, = gP · h', then 

g'·(g·(g,,w,,)) = g'·(g.(hw,,)) = gp(h'(hw,,)). 

Since (g' · g)' g,, = g' · (g · g,,) = g' · g.- h = gP · h' · h, we have 

(g'·g)·(g,,w,,) = gp((h'·h)w,,) = gp(h'·(hw,,)), 

as required. 

Example 3.15. If W = EB Wj, then Ind W = EB Ind Wj. 

The existence of the induced representation follows from Examples 3.14 
and 3.15 since any Wis a direct sum of summands of the regular representation. 
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Exercise 3.16. (a) If U is a representation of G and W a representation of H 
show that (with all tensor products over q ' 

U ® Ind W = Ind(Res(U) ® W). 

In particular, Ind(Res(U)) = U ® P, where Pis the permutation representa
tion of G on G/H. For a formula for Res(Ind(W)), for W a representation of 
H, see [Se2, p. 58]. 

(b) Like restriction, induction is transitive: if H c Kc G are subgroups, 
iliowili~ . 

Ind~(W) = Ind~(Ind~ W). 

Note that Example 3.15 says that the map Ind gives a group homomor
phism between the representation rings R(H) and R(G), in the opposite direc
tion from the ring homomorphism Res: R(G)----. R(H) given by restriction; 
Exercise 3.16(a) says that this map satisfies a "push-pull" formula oc · Ind(p) = 
Ind(Res(oc) · p) with respect to the restriction map. 

Proposition 3.17. Let W be a representation of H, U a representation of G, and 
suppose V =Ind W. Then any H-module homomorphism <p: W----. U extends 
uniquely to a G-module homomorphism ip: V----. U. i.e., 

Hom8 (JV, Res U) = Hom6 (Ind W, U). 

In particular, this universal property determines Ind W up to canonical 
isomorphism. 

PROOF. With V = EBaea;8 u· Was before, define ip on u· W by 
-I 

u·W~W~U~U. 

which is independent of the representative ga for u since <p is H-linear. D 

To compute the character of V = Ind W, note that g e G maps u W to gu W, 
so the trace is calculated from those cosets u with gu = u, i.e., s-1gs e H for 
s Eu. Therefore, 

X1nd w(g) = L Xw(s- 1gs) (s Eu arbitrary). (3.18) 
ga=a 

Exercise 3.19. (a) If C is a conjugacy class of G, and C n H decomposes into 
conjugacy classes D1, ... , D, of H, (3.18) can be rewritten as: the value of the 
character of Ind W on C is 

IGI ' IDd 
X1nd w(C) = fH1 ,fu TCf Xw(D,). 

(b) If Wis the trivial representation of H, then 

[G:H] 
X1ndw(C)= ICI ·ICnHj. 
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Corollary 3.20 (Frobenius Reciprocity). If Wis a representation of H, and U a 
representation of G, then 

PROOF. It suffices by linearity to prove this when W and U are irreducible. 
The left-hand side is the number of times U appears in Ind W, which is 
the dimension of Hom6 (Ind W, U). The right-hand side is the dimension of 
Hom8 (W, Res U). These dimensions are equal by the proposition. D 

If Wand U are irreducible, Frobenius reciprocity says: the number of times 
U appears in Ind Wis the same as the number of times W appears in Res U. 

Frobenius reciprocity can be used to find characters of G if characters of 
Hare known. 

Example 3.21. We compute Ind~ W, when H = 6 2 c G = 6 3 , W = V2 (the 
standard representation)= U2 (the alternating representation). We know the 
irreducible represenatations of 6 3 : U3, U), V3 , which restrict to U2 , U2 = V2 , 

U2 EF> U2, respectively. Thus, by Frobenius, Ind V2 = u3 EF> V3 . 

Example3.22.ConsidernextH = 6 3 c G = 6 4 , W= V3 .Againweknowthe 
irreducible representations, and Res U4 = U3 , Res U~ = U), Res V4 = U3 EF> V3 

[the vector 

(1, 1, 1, -3) E V4 = {(x 1, x 2 , X3, X4): L X; = O} 

is fixed by HJ, Res V~ = U) EF> V~, with V~ = V3 , and Res W4 = V3 (as one may 
see directly). Hence, Ind V3 = V4 EF> V~ E9 W4 • (Note that the isomorphism 
Res W4 = V3 actually follows, since one W4 is all that could be added to 
V4 EF> V~ to get Ind V3 .) 

Exercise 3.23. Determine the isomorphism classes of the representations of 6 4 

induced by (i) the one-dimensional representation of the group generated by 
(1234) in which (1234)·v = iv, i = v'=t; (ii) the one-dimensional representa
tion of the group generated by (123) in which (123)·v = e2'"13v. 

Exercise 3.24. Let H = 21 5 c G = 6 5 • Show that Ind U = U EB U', Ind V = 
V E9 V', and Ind W = W EF> W', whereas Ind Y = Ind Z = NV. 

Exercise 3.25•. Which irreducible representations of 6d remain irreducible 
when restricted to 2ld? Which are induced from 2ld? How much does this tell 
you about the irreducible representations of 2ld? 

Exercise 3.26•. There is a unique nonabelian group of order 21, which can be 
realized as the group of affine transformations x f-+ ocx + p of the line over the 
field with seven elements, with oc a cube root of unity in that field. Find the 
irreducible representations and character table for this group. 
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Now that we have introduced the notion of induced representation, we can 
state two important theorems describing the characters of representations of 
a finite group. In the preceding lecture we mentioned the notion of virtual 
character; this is just an element of the image A of the character map 

x: R(G)-+ Cc1as•(G) 

from the representation ring R(G) of virtual representations. The following 
two theorems both state that in order to generate A ® Q (resp. A) it is enough 
to consider the simplest kind of induced representations, namely, those induced 
from cyclic (respective elementary) subgroups of G. For the proofs of these 
theorems we refer to [Se2, §9, 10]. We will not need them in these lectures. 

Artin's Theorem 3.27. The characters of induced representations from cyclic 
subgroups of G generate a lattice of finite index in A. 

A subgroup H of G is p-elementary if H = A x B, with A cyclic of order 
prime to p and B a p-group. 

Brauer's Theorem 3.28. The characters of induced representations from elemen
tary subgroups of G generate the lattice A. 

§3.4. The Group Algebra 

There is an important notion that we have already dealt with implicitly but 
not explicitly; this is the group algebra CG associated to a finite group G. This 
is an object that for all intents and purposes can completely replace the group 
G itself; any statement about the representations of G has an exact equivalent 
statement about the group algebra. Indeed, to a large extent the choice of 
language is a matter of taste. 

The underlying vector space of the group algebra of G is the vector space 
with basis {eg} corresponding to elements of the group G, that is, the under
lying vector space of the regular representation. We define the algebra struc
ture on this vector space simply by 

eg ·eh= e9h. 

By a representation of the algebra CG on a vector space V we mean simply 
an algebra homomorphism 

CG-+ End(V), 

so that a representation V of CG is the same thing as a left CG-module. Note 
that a representation p: G-+ Aut(V) will extend by linearity to a map p: CG-+ 
End(V), so that representations of CG correspond exactly to representations 
of G; the left CG-module given by CG itself corresponds to the regular 
representation. 
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If { Wi} are the irreducible representations of G, then we have seen that the 
regular representation R decomposes 

R = EB (W;)Efldim(W,). 

We can now refine this statement in terms of the group algebra: we have 

Proposition 3.29. As algebras, 

CG ~ EB End(W;). 

PROOF. As we have said, for any representation W of G, the map G-+ Aut(W) 
extends by linearity to a map CG-+ End(W); applying this to each of the 
irreducible representations W; gives us a canonical map 

<p: CG-+ EB End(W;). 

This is injective since the representation on the regular representation is 
faithful. Since both have dimension L (dim W;)2

, the map is an isomorphism. 
D 

A few remarks are in order about the isomorphism <p of the proposition. 
First, <p can be interpreted as the Fourier transform, cf. Exercise 3.32. Note 
also that Proposition 2.28 has a natural interpretation in terms of the group 
algebra: it says that the center of CG consists of those L 11.(g)eg for which 11. is 
a class function. 

Next, we can thinkof <pas the decomposition of the semisimple algebra CG 
into a product of matrix algebras. It implies that the matrix entries of the 
irreducible representations give a basis for the space of all functions on G, cf. 
Exercise 2.35. 

Note in particular that any irreducible representation is isomorphic to a 
(minimal) left ideal in CG. These left ideals are generated by idempotents. In 
fact, we can interpret the projection formulas of the last lecture in the language 
of the group algebra: the formulas say simply that the elements 

1 "'-dim W·fGI g~G Xw(g)·eg ECG 

are the idempotents in the group algebra corresponding to the direct sum 
factors in the decomposition of Proposition 3.29. To locate the irreducible 
representations Wi of a group G [not just a direct sum of dim(W;) copies], we 
want to find other idempotents of CG. We will see this carried out for the 
symmetric groups in the following lecture. 

The group algebra also gives us another description of induced representa
tions: if W is a representation of a subgroup H of G, then the induced 
representation may be constructed simply by 

Ind W= CG®cn W, 
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where G acts on the first factor: g · (eg' ® w) = egg' ® w. The isomorphism of 
the reciprocity theorem is then a special case of a general formula for a change 
of rings CH -+ CG: 

Homc8 (W, U) = Homc6 (CG ®CH W, U). 

Exercise 3.30*. The induced representation Ind(W) can also be realized con
cretely as a space of W-valued functions on G, which can be useful to produce 
matrix realizations, or when trying to decompose Ind(W) into irreducible 
pieces. Show that Ind(W) is isomorphic to 

Hom8 (CG, W) ~ {!: G-+ W:f(hg) = hf(g), Vh EH, g E G}, 

where G acts by (g' · f)(g) = f(gg'). 

Exercise 3.31. If CG is identified with the space of functions on G, the function 
<p corresponding to LgeG <p(g)e9 , show that the product in CG corresponds 
to the convolution • of functions: 

(<p * l/!Hu> = I <p(h)l/J(h-1u>· 
heG 

(With integration replacing summation, this indicates how one may extend 
the notion of regular representation to compact groups.) 

Exercise 3.32*. If p: G-+ GL(Vp) is a representation, and <pis a function on G, 
define the Fourier transform ¢>(p) in End(V,,) by the formula 

<t><P> = I <p(u>. p(u>. 
geG 

A "" A (a) Show that <p • l/J(p) = <p(p)" l/l(p). 
(b) Prove the Fourier inversion formula 

<p(g) = I ~I I dim(V,,) · Trace(p(g-1 
)" ¢'(p)), 

the sum over the irreducible representations p of G. This formula is equivalent 
to formulas (2.19) and (2.20). 

(c) Prove the Plancherel formula for functions <p and ljJ on G: 

L <p(g-1 )1/J(g) = IGl I I dim(V,,)·Trace(¢'(p)~(p)). 
geG p 

Our choice of left action of a group on a space has been perfectly arbitrary, 
and the entire story is the same if G acts on the right instead. Moreover, there 
is a standard way to change a right action into a left action, and vice versa: 
Given a right action of G on V, define the left action by 

g·v=v"(g-1), geG,veV. 
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If A = CG is the group algebra, a right action of G on V makes V a right 
A-module. To turn right modules into left modules, we can use the anti
involution a 1-+ d of A defined by (~:;age9)" = ~:;a11 e11 -1. A right A-module is 
then turned into a left A-module by setting a· v = v · d. 

The following exercise will take you back to the origins of representation 
theory in the 19th century, when Frobenius found the characters by factoring 
this determinant. 

Exercise 3.33*. Given a finite group G of order n, take a variable x 11 for each 
clement gin G, and order the elements of G arbitrarily. Let F be the deter
minant of the n x n matrix whose entry in the row labeled by g and column 
labeled by his x 11 .h-•· This is a form of degree n in then variables x9 , which is 
independent of the ordering. Normalize the factors of F to take the value 1 
when x., = 1 and x 11 = 0 for g #- e. Show that the irreducible factors of F 
correspond to the irreducible representations ofG. Moreover, if FP is the factor 
corresponding to the representation p, show that the degree of FP is the degree 
d(p) of the representation p, and that each FP occurs in F d(p) times. If xP is 
the character of p, show that xp(g) is the coefficient of x

11 
• x~<p)-l in FP. 

§3.5. Real Representations and Representations 
over Subfields of C 

If a group G acts on a real vector space V0 , then we say the corresponding 
complex representation of V = V0 ®R C is real. To the extent that we are 
interested in the action of a group G on real rather than complex vector 
spaces, the problem we face is to say which of the complex representations of 
G we have studied are in fact real. 

Our first guess might be that a representation is real if and only if its 
character is real-valued. This turns out not to be the case: the character of a 
real representation is certainly real-valued, but the converse need not be true. 
To find an example, suppose G c SU (2) is a finite, nonabelian subgroup. Then 
G acts on C2 = V with a real-valued character since the trace of any matrix 
in SU(2) is real. If V were a real representation, however, then G would be a 
subgroup ofS0(2) = S1, which is abelian. To produce such a group, note that 
SU(2) can be identified with the unit quaternions. Set G = { ± 1, ± i, ±j, ± k}. 
Then G/{ ± 1} is abelian, so has four one-dimensional representations, which 
give four one-dimensional representations of G. Thus, G has one irreducible 
two-dimensional representation, whose character is real, but which is not real. 

Exercise 3.34*. Compute the character table for this quaternion group G, and 
compare it with the character table of the dihedral group of order 8. 
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A more successful approach is to note that if V is a real representation of 
G, coming from V0 as above, then one can find a positive definite symmetric 
bilinear form on V0 which is preserved by G. This gives a symmetric bilinear 
form on V which is preserved by G. Not every representation will have such 
a form since degeneracies may arise when one tries to construct one following 
the construction of Proposition 1.5. In fact, 

Lemma 3.35. An irreducible representation V of G is real if and only if there is 
a nondegenerate symmetric bilinear form Bon V preserved by G. 

PROOF. Ifwe have such B, and an arbitrar) nondegenerate Hermitian form H, 
also G-invariant, then 

v! v•! v 
gives a conjugate linear isomorphism <p from V to V: given x E V, there is a 
unique <p(x) E V with B(x, y) = H(<p(x), y), and <p commutes with the action 
of G. Then <p2 =<po <p is a complex linear G-module homomorphism, so 
cp 2 = )., ·Id. Moreover, 

H(<p(x), y) = B(x, y) = B(y, x) = H(<p(y), x) = H(x, <p(y)), 

from which it follows that H(<p2(x), y) = H(x, <p 2(y)), and therefore )., is a 
positive real number. Changing H by a scalar, we may assume )., = 1, so 
<p 2 = Id. Thus, Vis a sum of real eigenspaces V+ and V_ for <p corresponding 
to eigenvalues 1 and - 1. Since <p commutes with G, V+ and V_ are G-invariant 
subspaces. Finally, <p(ix) = -i<p(x), so iV+ = V_, and V = V+ ® C. O 

Note from the proof that a real representation is also characterized by the 
existence of a conjugate linear endomorphism of V whose square is the 
identity; if V = V0 ®R C, it is given by conjugation: v0 ® )., 1--+ v0 ®I 

A warning is in order here: an irreducible representation of G on a vector 
space over IR may become reducible when we extend the group field to C. To 
give the simplest example, the representation of 7L/n on IR 2 given by 

p: k 1--+ 

( 

2nk 
cosn 

. 2nk 
sm

n 

. 2nk) -smn 

2nk 
cos

n 

is irreducible over IR for n > 2 (no line in IR 2 is fixed by the ac~ion of 7L/n), but 
wiU be reducible over C. Thus, classifying the irreducible representations of G 
over C that are real does not mean that we have classified all the irreducible 
real representations. However, we will see in Exercise 3.39 below how to finish 
the story once we have found the real representations of G that are irreducible 
over C. 
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Suppose Vis an irreducible representation of G with Xv real. Then there is 
a G-equivariant isomorphism V ~ V*, i.e., there is a G-equivariant (non
degenerate) bilinear form Bon V; but, in general, B need not be symmetric. 
Regarding B in 

v• ® v• = Sym2 v• Et> Nv•, 
and noting the uniqueness of B up to multiplication by scalars, we see that B 
is either symmetric or skew-symmetric. If Bis skew-symmetric, proceeding as 
above one can scale so <p 2 = - Id. This makes V "quaternionic," with <p 
becoming multiplication2 by j: 

Definition 3.36. A quaternionic representation is a (complex) representation V 
which ~as a G-invariant homomorphism J: V-+ V that is conjugate linear, 
and satisfies 1

2 
= - Id. Thus, a skew-symmetric nondegenerate G-invariant 

B determines a quaternionic structure on V. 

Summarizing the preceding discussion we have the 

Theoem 3.37. An irreducible representation V is one and only one of the 
fiJllowing: 

(1) Complex: Xv is not real-valued; V does not have a G-invariant non
degenerate bilinear form. 

(2) Real: V = Vo ® C, a real representation; V has a G-invariant symmetric 
nondegenerate bilinear form. 

(3) Quaternionic: Xv is real, but Vis not real; V has a G-invariant skew
symmetric nondegeneate bilinear form. 

Exercise 3.38. Show that for V irreducible , 

if Vis complex 

if Vis real 

if Vis quaternionic . 

This .verifies that the three cases in the theorem are mutually exclusive. It also 
1mphes that if the order of G is odd, all nontrivial representations must be 
complex. 

Exercise 3.39. Let Vo be a real vector space on which G acts irreducibly, 
.v = Vo ® C the corresponding real representation of G. Show that if Vis not 
irreducible, then it has exactly two irreducible factors, and they are conjugate 
complex representations of G. 

2 
See §7.2 for more on quaternions and quaternonic representations. 
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Exercise 3.40. Classify the real representations of ~4 • 

Exercise 3.41 *.The group algebra IRG is a product of simple IR-algebras corre
sponding to the irreducible representations over IR. These simple algebras are 
matrix algebras over C, IR, or the quaternions IHI according as the representa
tion is complex, real, or quaternionic. 

Exercise 3.42*. (a) Show that all characters of a group are real if and only if 
every element is conjugate to its inverse. 

(b) Show that an element a in a split conjugacy class of md is conjugate to 
its inverse if and only if the number of cycles in a whose length is congruent 
to 3 modulo 4 is even. 

(c) Show that the only d's for which every character ofm:d is real-valued are 
d = 1, 2, 5, 6, 10, and 14. 

Exercise 3.43*. Show that: (i) the tensor product of two real or two quater
nionic representations is real; (ii) for any V, V* ® V is real; (iii) if Vis real, so 
are all NV; (iv) if Vis quaternionic, NV is real for k even, quaternionic for 
k odd. 

Representations over Subfields of C in General 

We consider next the generalization of the preceding problem to more general 
subfields of C. Unfortunately, our results will not be nearly as strong in 
general, but we can at least express the problem neatly in terms of the 
representation ring of G. 

To begin with, our terminology in this general setting is a little different. 
Let K c C be any subfield. We define a K-representation of G to be a vector 
space V0 over K on which G acts; in this case we say that the complex 
representation V = V0 ® C is defined over K. 

One way to measure how many of the representations of Gare defined over 
a field K is to introduce the representation ring RK(G) of G over K. This is 
defined just like the ordinary representation ring; that is, it is just the group 
of formal linear combinations of K-representations of G modulo relations of 
the form V + W - (V Ef) W), with multiplication given by tensor product. 

Exercise 3.44*. Describe the representation ring of G over IR for some of the 
groups G whose complex representation we have analyzed above. In partic
ular, is the rank of RIR(G) always the same as the rank of R(G)? 

Exercise 3.45*. (a) Show that RK( G) is the subring of the ring of class functions 
on G generated (as an additive group) by-characters of representations defined 
over K. 
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(b) Show that the characters of irreducible representations over K form an 
orthogonal basis for Rx(G). 

(c) Show that a complex representation of G can be defined over K if and 
only if its character belongs to RK( G). 

For more on the relation between RK(G) and R(G), see [Se2]. 



LECTURE 4 

Representations of 6d: Young Diagrams 
and Frobenius's Character Formula 

In this lecture we get to work. Specifically, we give in §4.l a complete description of 
the irreducible representations of the symmetric group, that is, a construction of the 
representations (via Young symmetrizers) and a formula (Frobenius' formula) for their 
characters. The proof that the representations constructed in §4.1 are indeed the 
irreducible representations of the symmetric group is given in §4.2; the proof of 
Frobenius' formula, as well as a number of others, in §4.3. Apart from their intrinsic 
interest (and undeniable beauty), these results turn out to be of substantial interest in 
Lie theory: analogs of the Young symmetrizers will give a construction of the irreduc
ible representations of SL. C. At the same time, while the techniques of this lecture are 
completely elementary (we use only a few identities about symmetric polynomials, 
proved in Appendix A), the level of difficulty is clearly higher than in preceding 
lectures. The results in the latter half of §4.3 (from Corollary 4.39 on) in particular are 
quite difficult, and inasmuch as they are not used later in the text may be skipped by 
readers who are not symmetric group enthusiasts. 

§4.1: Statements of the results 
§4.2: Irreducible representations of 6d 
§4.3: Proof of Frobenius's formula 

§4.1. Statements of the Results 

The number of irreducible representaton of 6 4 is the number of conjugacy 
classes, which is the number p(d) of partitions 1 of d: d = A.1 + · · · + A.k, 
A. 1 ~ • • • ~ A.k ~ 1. We have 

1 It is sometimes convenient, and sometimes a nuisance, to have partitions that end in one or 
more zeros; if convenient, we allow some of the A.1 ~n the end to be zero. Two sequences define 
the same partition, of course, if they differ only by zeros at the end. 
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Jo p(d)td = JJ (1 ~ t") 

= (1 + t + t2 + ... )(1 + t 2 + t4 + ... )(1 + t 3 + .. -) .... 
which converges exactly in Jtl < 1. This partition number is an interesting 
arithmetic function, whose congruences and growth behavior as a function of 
d have been much studied (cf. [Har], [And]). For example, p(d) is asymptoti-

cally equal to (l/a.d)eflJd, with a.= 4j3 and {J = n.j2/3. 
;'o a partition A.= (A. 1, ••• , A.k) is associated a Young diagram (sometimes 

called a Young frame or Ferrers diagram) 

with A.; boxes in the ith row, the rows of boxes lined up on the left. The 
conjugate partition A.' = (A.'1 , ••• , A.~) to the partition A. is defined by inter
changing rows and columns in the Young diagram, i.e., reflecting the diagram 
in the 45° line. For example, the diagram above is that of the partition 
(3, 3, 2, t, t ), whose conjugate is (5, 3, 2). (Without reference to the diagram, the 
conjugate partition to A. can be defined by saying A.; is the number of terms in 
the partition A. that are greater than or equal to i.) 

Young diagrams can be used to describe projection operators for the 
regular representation, which will then give the irreducible representations of 
6d. For a given Young diagram, number the boxes, say consecutively as 
shown: 

' 
5 
7 

8 

More generally, define a tableau on a given Young diagram to be a numbering 
of the boxes by the integers 1, ... , d. Given a tableau, say the canonical one 
shown, define two subgroups2 of the symmetric group 

' If a tableau other than the canonical one were chosen, one would get different groups in place of 
Pand Q, and different elements in the group ring, but the representations constructed this way 
will be isomorphic. 
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P =PA= {g E 6 4: g preserves each row} 

and 

Q = QA= {g E 6d: g preserves each column}. 

In the group algebra C6d, we introduce two elements corresponding to these 
subgroups: we set 

(4.1) 

To see what aJ. and bJ. do, observe that if Vis any vector space and 6 4 acts 
on the dth tensor power V®d by permuting factors, the image of the element 
al E C6d-. End(V®d) is just the subspace 

Im(al) = SymA1 V® SymA2 V® ··· ® SymlkV c V®4
, 

where the inclusion on the right is obtained by grouping the factors of V®
4 

according to the rows of the Young tableaux. Similarly, the image of bJ. on 
this tensor power is 

Im(b},) = N 1V® N 2 V® ··· ® N•V c V®4
, 

where µ is the conjugate partition to A.. 
Finally, we set 

(4.2) 

this is called a Young symmetrizer. For example, when A.= (d), c<d> = a(dl = 
Lge 6 de

9
, and the image of c<d> on V®d is SymdV. When A.= (1, .. ., 1), 

c0 ..... o = b0 , ... , tJ = Lge 6 d sgn(g)e9 , and the image of c0 , .... lJ on V®d is NV. 
We will eventually see that the image of the symmetrizers CJ. in V®d provide 
essentially all the finite-dimensional irreducible representations of GL(V). 
Here we state the corresponding fact for representations of 6 4: 

Theorem 4.3. Some scalar multiple of CJ. is idempotent, i.e., d = nJ.cJ., and the 
image of cl (by right multiplication on C6d) is an irreducible representation 
Vi of 6d. Every irreducible representation of 6d can be obtained in this 
way for a unique partition. 

We will prove this theorem in the next section. Note that, as a corollary, 
each irreducible representation of 6d can be defined over the rational numbers 
since cJ. is in the rational group algebra Q6d. Note also that the theorem gives 
a direct correspondence between conjugacy classes in 6d and irreducible 
representations of 6d, something t.rhich has never been achieved for general 
groups. 

For example, for A. = (d), 

J'(dl = C64· L e9 = C· L e9 
ge6d ge6d 
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is the trivial representation U, and when A. = (1, ... , 1), 

J'(1, .... 1i = C64 · L sgn(g)e9 = C · L sgn(g)e9 
ge 6d ge 6d 

is the alternating representation U'. For A. = (2, 1), 

cc2,1i = (e1 + e02i)·(e1 - ec 13i) = 1 + ec12i - e03> - ec132> 

in IC6 3 , and J'(2,1i is spanned by cc2.1i and (13)-cc2.1» so J'(2,1i is the standard 
representation of 6 3. 

Exercise 4.4*. Set A = C6d, so VA= Acl = Aa},b},. 
(a) Show that VA ~ Ab},a},. 
(b) Show that VJ. is the image of the map from Aa}, to Ab}, given by right 

multiplication by bl. By (a), this is isomorphic to the image of AbJ.-. Aa given 
by right multiplication by aJ.. A 

(c) Using (a) and the description of VA in the theorem show that 

VA'= VA® U', 

where A' is the conjugate partition to A. and V' is the alternating representation. 

Examples 4.5. In earlier lectures we described the irreducible representations 
of 6 d for d ~ 5. From the construction of the representation corresponding to 
a Young diagram it is not hard to work out which representations come from 
which diagrams: 

rn trivial B alternating 

ITIJ U trivial § U' alternating 

fj:1 V standard 

U ~ U' 

~ v ~ V' EE w 
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Ss u § U' 

EFITI v f V' ~ /\2V 

§j w EfP W' 

Exercise 4.6*. Show that for general d, the standard representation V corre
sponds to the partition d = (d - 1) + 1. As a challenge, you can try to prove 
that the exterior powers of the standard representation V are represented by 
a "hook": 

er ~v 
Note that this recovers our theorem that the NV are irreducible. 

Next we turn to Frobenius's formula for the character X.i. of V;., which 
includes a formula for its dimension. Let C1 denote the conjugacy class in 6., 
determined by a sequence 

i =(ii. i2, ... , i.,> with L 11.i(Jl = d: 

C1 consists of those permutations that have i 1 1-cycles, i2 2-cycles, ... , and i., 
d-cycles. 

Introduce independent variables x 1 , ••• , xk, with k at least as large as the 
number of rows in the Young diagram of A.. Define the power sums lj(x), 
1 ~ j ~ d, and the discriminant A(x) by 

lj(x)= x{ + x~ + .. ·+xi, 

A(x) = fl (x1 - x1). 
i<J 

(4.7) 

If f(x) = f(x 1 , ••• , xk) is a formal power series, and (1 1 , ••• , lk) is a k-tuple 
of non-negative integers, let 

J 

[f(x)] = coefficient of x 11 
• • • • • x 1

k inf. (I, ..... lk) 1 k (4.8) 

Given a partition A.: A. 1 ~ • • • ~ A.k ~ 0 of d, set 

(4.9) 
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a strictly decreasing sequence of k non-negative integers. The character of Vi. 
evaluated on g e C1 is given by the remarkable 

Frobenius Formula 4.10 

X.i.(C1) = [A(x)· fl lj(x)11
] • 

J (l ..... ,lk) 

For example, if d = 5, A. = (3, 2), and C1 is the conjugacy class of (12)(345), 
i.e., ii = 0, i2 = 1, i3 = 1, then 

X<3,21(C1) =[(xi - X2)'(x~ + x~)(x~ + x~)](4.2) = 1. 

Other entries iii our character tables for 6 3 , 6 4 , and 6 5 can be verified as 
easily, verifying the assertions of Examples 4.5. 

In terms of certain symmetric functions S;. called Schur polynomials, Fro
benius's formula can be expressed by 

n lj(x)11 = L X;.(C,)S;., 
J 

the sum over all partitions A. of d in at most k parts (cf. Proposition 4.37 
and (A.27)). Although we do not use Schur polynomials explicitly in this 
lecture, they play the central role in the algebraic background developed in 
Appendix A. 

Let us use the Frobenius formula to compute the dimension of v ... The 
conjugacy class of the identity corresponds to i = (d), so 

dim V;. = X.i.(C<.,i) = [A(x) ·(xi + .. · + xk)"J(l1 ..... 1k1. 

Now A(x) is the Vandermonde determinant: 

1 x1 

The other term is 

= } (sgn a')x:o1-i · · · · · xr<k>-i. 
a:1;k 

(x + ... + x )" =" d! x'1x'2 • ·x'k 
1 k Li ' '1 2 ... k• 

rl." .. ."rk. 

the sum over k-tuples (r1, ... , rk) that sum to d. To find the coefficient of 
x:' · .. ~ · x~k in the product, we pair off corresponding terms in these two sums, 
getting 

d! 
L sgn(u). (11 - u(k) + 1)! · · · (lk - u(l) + 1)!' 

the sum over those a in 6k such that lH+t - u(i) + 1 ~ 0 for all 1 ~ i ~ k. 
This sum can be written as 
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d! k 

1
, ... 

1
, 'L sgn(u)n1jo1 -1)· ... ·oj-u(k-j+1)+2) 

1• k•aE6k J=l 

d! 
1 lk lilk - 1) 

=/!::Tl 
i· k• 1 11 1101 - 1) 

By column reduction this determinant reduces to the van der Monde deter

minant, so 
(4.11) 

with 11 = ).1 + k - i. 
There is another way of expressing the dimensions of the V;.. The hook 

length of a box in a Young diagram is the number of squares directly below 
or directly to the right of the box, including the box once. 

In the following diagram, each box is labeled by its hook length: 

Hook Length Formula 4.12. 

d
. v d! 
1m ,,= . CT (Hook lengths) 

For the above partition 4 + 3 + 1 of 8, the dimension of the corresponding 

representation of 6 8 is therefore 8!/6 · 4 · 4 · 2 · 3 = 70. 

Exercise 4.13*. Deduce the hook length formula from the Frobenius formula 

(4.11). 

Exercise 4.14*. Use the hook length formula to show that the only irreducible 
representations of 6d of dimension less than d are the trivial and alternating 
representations U and U' of dimension 1, the standard representation V 
and V' = V ® U' of dimension d - 1, and three other examples: the two
dimensional representation of 64 corresponding to the partition 4 = 2 + 2, 
and the two five-dimensional representations of 6 6 corresponding to the 

partitions 6 = 3 + 3 and 6 = 2 + 2 + 2. 

§4. l. Statements of the Results 

Exercise 4.15*. Using Frobenius's formula or otherwise, show that: 

X<d-1,1J(C1) = i1 - 1; 

X<d-2,1,1)(C1) = !01 - l)(i1 - 2) - i2; 

X(d-2,2)(C1) = W1 - l)(i1 - 2) + i2 - 1. 

Can you continue this list? 
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Exercise 4.16*. ~f g ~s a cycle of length din 6,, show that X (g) is + 1 "f). . 
hook, and zero 1f). 1s not a hook: " -

1 
is a 

x,,(g) = {( -1)" if;.= (d - s, 1, ... , t), o =:;;; s =:;;; d _ 1 

0 otherwise. 

Exercise 4.17. Frobenius [Frol] used his formula to compute the value of X 
on a cycle of length m =:;;; d. " 

(a) Following the procedure that led to (4.11)-which was the case 
m = l-show that 

x,,((12 ... m)) = dim v,, ± l/l(lp) (4.18) 
-m2hm p=l <p'(lp)' 

where hm = d!/(d - m)!m is the number of cycles of length m (if m > 1), and 

k m 

<p(x) = CT (x - 11), l/f(x) = <p(x - m) n (x - j + 1). 
1=1 J=1 

The su~ in (4.18) can be realized as the coefficient of x-1 in the L t 
expansion of l/J(x)/<p(x) at x = oo. auren 
diaD~fine the rank r ofa partition to be the length of the diagonal of its Young 
the ~ram, and let a, _and b, be the number of boxes below and to the right of 

th ~ox of the diagonal, reading from lower right to upper left. Frobenius 

called ( 1 a2 • • • a,) . . b1 b2 ... b, the characteristics of the partition. (Many writers now use 

a reverse notation for the characteristics writin (b b . 
For the partition (10 9 

9 4 4 4 
l)· ' g '' · · · • 1 I a,, · · ·, a,) mstead.) 

' ' ' ' ' ' . 

' 
l 

r=4 
I 

I I 
I I 

characteristics = (~ ! ~ :) 
.___ 

Algebr~ically, r and the characteristics ai < ... < a and b ... 
determined by requiring the equality of the two sets ' i < < b, are 
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{1
1

, ••• ,lk,k-1-a1 , ••• ,k-l-a,} and 

{O, 1, ... , k - 1, k + b1, .•. , k + b,}. 

(b) Show that l/l(x)/cp(x) = g(y)/f(y), where y = x - d and 

, n (y- b,) 
f(y) = -,~i=_::._1 __ _ 

n (y +a,+ 1) 

m 

g(y) = f(y - m) n (y - j + 1). 
J=l 

i=l 

Deduce that the sum in (4.18) is the coefficient of x-
1 

in g(x)/f(x). 
(c) When m = 2, use this to prove the formula 

dim Vi. ' ( 1)) X.i.((12)) = L (bi(b1 + 1) - a1 a,+ . 
d(d - 1) i=l 

Hurwitz [Hur] used this formula of Frobenius to calculat~. the number ~f 
ways to write a given permutation as a product of transpositions. From this 
he gave a formula for the number of branched coverings of th~ Riemann sphere 
with a given number of sheets and given simple branch points. Ingra~ [In] 
has given other formulas for X.i.(g), when g is a somewhat more comphcated 

conjugacy class. 

Exercise 4.19*. If vis the standard representation of 6 4, prove the decom

positions into irreducible representations: 

Sym2 V ~ U $ V $ l'{4-2.2» 

V ® V = Sym2 V $NV~ U $ V $ l-{4-2,2> $ Jt{4-2, 1,1)" 

Exercise 4.20*. Suppose A. is symmetric, i.e., A.= A.', and le~ qi > q2 > · · · > 
q, > o be the lengths of the symmetric hooks that form the diagr~~ ~f A.; thus, 

2 , 1 - 2, - 3 Show that if g is a product of disjoint cycles 
ql = l'..1 - , q2 - l'..2 , •••• 

oflengths q 1, q2, ... , q,, then 

( ) 
_ ( 1)(4-r)/2 X.i. g - - . 

§4.2. Irreducible Representations of 6d 

We show next that the represent11tions V;. constructed in the first se~tion are 
exactly the irreducible representations of 64. This proof app~ars m m~ny 
standard texts (e.g. [C-R], [Ja-Ke], [N-S], [Wel]), so we will be a httle 

concise. . . , f d 1 t p d Q 
Let A = C6

4 
be the group ring of 6 4 • For a partition I'.. o , e an 

be the corresponding subgroups preserving the rows and columns of a Young 
tableau T corresponding to A., let a= a)., b = b)., and let c = c). =ab be 
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the corresponding Young symmetrizer, so V;. =Ac;. is the corresponding 
representation. (These groups and elements should really be subscripted by 
T to denote dependence on the tableau chosen, but the assertions made 
depend only on the partition, so we usually omit reference to T.) 

Note that P n Q = { 1 }, so an element of 6 4 can be written in at most one 
way as a product p·q, p E P, q E Q. Thus, c is the sum L. ±e9 , the sum over 
all g that can be written asp· q, with coefficient ± 1 being sgn(q); in particular, 
the coefficient of e1 inc is 1. 

Lemma 4.21. (1) For p E P, p·a =a· p =a. 
(2) For q E Q, (sgn(q)q) · b = b · (sgn(q)q) = b. 
(3) For all p E P, q E Q, p · c · (sgn(q)q) = c, and, up to multiplication by a 

scalar, c is the only such element in A. 

PROOF. Only the last assertion is not obvious. If L. n9e
9 

satisfies the condition 
in (3), then npgq = sgn(q)n9 for all g, p, q; in particular, nP4 = sgn(q)n 1 . Thus, 
it suffices to verify that n

9 
= 0 if g ¢ PQ. For such g it suffices to find a 

transposition t such that p = t E P and q = g-1tg E Q; for then g = pgq, so 
n" = - n

9
• If T' = gT is the tableau obtained by replacing each entry i of T 

hy ~J(i), the claim is that there is are two distinct integers that appear in the 
same row of T and in the same column of T'; t is then the transposition of 
these two integers. We must verify that if there were no such pair of integers, 
then one could write g = p · q for some p E P, q E Q. To do this, first take p1 E P 
and q~ e Q' = gQg- 1 so that p1 T and q~ T' have the same first row; repeating 
on the rest of the tableau, one gets p E P and q' E Q' so that pT = q'T'. Then 
pT = q'gT, so p = q'g, and therefore g = pq, where q = g-1(q'f 1g E Q, as 
required. D 

We order partitions lexicographically: 

A. > µ if the first nonvanishing A.1 - µ1 is positive. (4.22) 

Lemma4.23.(l)/f A.>µ, then for all x EA, a;.· x · b,, = 0. In particular, if A.>µ, 
then C;. • c,, = 0. 

( 2) For all x E A, c;. · x · c;. = is a scalar multiple of c;.. In particular, c;. · c;. = 
n,c, for some n;. EC. 

PRo<)F. For (1), we may take x = g E 6 4. Since g · b,, · g-1 is the element con
structed from gT', where T' is the tableau used to construct b,,, it suffices to 
show that a;.· b,, = 0. Une verifies that A. > µimplies that there are two integers 
in the same row of T and the same column of T'. If tis the transposition of 
these integers, then a).·t =a,_, t·b,, = -b,,, so a;.·b,, = a).·t·t·b,, = -a;.·b,,, 
as required. Part (2) follows from Lemma 4.21 (3). D 

Exercise 4.24*. Show that if A. #µ,then c;. ·A· c,, = O; in particular, c). · c,, = 0. 
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Lemma 4.25. (1) Each Vi. is an irreducible representation of 6 4• 

(2) If A. "# µ, then Vi. and V,, are not isomorphic. 

PROOF. For (1) note that c4 V.. c Cc,_ by Lemma 4.23. If W c V.. is a 
subrepresentation, then c 4 W is either Cc 4 or 0. If the first is true, then 
V._ =A· c4 c W. Otherwise W · W c A· c._ W = 0, but this implies W = 0. 
Indeed, a projection from A onto W is given by right multiplication by an 
element <p e A with <p = <p 2 e W · W = 0. This argument also shows that 
c 4 v._ "# 0, i.e., that the number n4 of the previous lemma is nonzero. 

For (2), we may assume A.>µ. Then c4 V.. =Cc._"# 0, but c4 V,, = c._ ·Ac,,= 
0, so they cannot be isomorphic A-modules. D 

PROOF. Let F be right multiplication by c4 on A. Since Fis multiplication by 
n,_ on ¥;.,and zero on Ker(c4), the trace of Fis n4 times the dimension of V,_. 
But the coefficient of e11 in e11 ·c4 is 1, so trace(F) = 164 I = d!. D 

Since there are as many irreducible representations V.. as conjugacy classes 
of 6 4, these must form a complete set of isomorphism classes of irreducible 
representations, which completes the proof of Theorem 4.3. In the next section 
we will prove Frobenius's formula for the character of V._, and, in a series of 
exercises, discuss a little of what else is known about them: how to decompose 
tensor products or induced or restricted representations, how to find a basis 
for JI)., etc. 

§4.3. Proof of Frobenius's Formula 

For any partition A. of d, we have a subgroup, often called a Young subgroup, 

6,_ = 6._, x ... x 6._. C+ 6d. (4.27) 

Let u._ be the representation of 6d induced from the trivial representation of 
6 4 • Equivalently, U._ = A· a,_, with a._ as in the preceding section. Let 

1/14 = Xu,= character of U._. (4.28) 

Key to this investigation is the relation between U._ and v.., i.e., between 1/14 

and the character x .. of v._. Note first that V._ appears in U4, since there is a 
surjection 

(4.29) 

Alternatively, 
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by Exercise 4.4. For example, we have 

u<4-1,1> ~ l-'{4-1,1> E9 l-'(4> 

which expresses the fact that the permutation representation C4 of 6
4 

is the 
sum of the standard representation and the trivial representation. Eventually 
we will see that every U._ contains V._ with multiplicity one, and contains only 
other V,. forµ > A.. 

The character of U,_ is easy to compute directly since U._ is an induced 
repiesentation, and we do this next. 

For i = (ii. .. ., i4) ad-tuple of non-negative integers with L aim = d, denote 
by 

C1 c 6 4 

the ~onjugacy class consisting of elements made up of i1 1-cycles, i
2 

2-cycles, 
... , 14 d-cycles. The number of elements in C1 is easily counted to be 

IC I - d! (4.30) 
I - 111 i1!212i2!· ... ·d1di4!° 

By the formula for characters of induced representations (Exercise 3.19), 
1 

1/1,_(C,) = ICil [64 : 6 4 ] • IC111641 

11·i1 ! ..... d'di4! d! " nk A. , 
~~~~~· "L.. p 

d! A.1 ! ..... A.k! p;l 1 rptrpl ! .... d'pdrp4!' 

where the sum is over all collections {rP9: 1 s; p s; k, 1 s; q s; d} of non
negative integers satisfying 

iq = r 19 + r29 + · · · + rkq• 

A.P = rP 1 + 2rP2 + · · · + drP4. 

(To count C, 11 6._, write the pth component of an element of 6
4 

as a product 
of rp 1 I-cycles, rP2 2-cycles, .... ) Simplifying, 

d . ' 

t/l,_(c,) =In , :~· . ,. (4.31) 
9;1 r19 .r29 .... rkq· 

the su.m ove~ the same collections of integers {rpq}. 

This sum is exactly the coefficient of the monomial X 4 = xt• · ... · x{• in the 
power sum symmetric polynomial 

pO> = (x 1 + ·" + xk)11 · (xf + "· + xf )1
" ••• • (xt + · · · + x:)1d. (4.32) 

So we have the formula 

t/l,_(C1) = [P0>]._ =coefficient of X 4 in po>. (4.33) 

To pr~ve Frobenius's formula, we need to compare these coefficients with the 
coefficients w4(i) defined by 
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wl(i) = [A· p0>]1, l = (A. 1 + k - 1, A.2 + k - 2, ... , A.k). (4.34) 

Our goal, Frobenius's formula, is the assertion that !A(C1) = w~(i). . 
There is a general identity, valid for any symmetnc polynomial P, relating 

such coefficients: 

[P]). = L K,,).[A. P](,,,+k-l,µ,+k-2, ... ,,,k)' 

" 
where the coefficients K A are certain universally defined integers, called 
Kostka numbers. For any ;artitions A. andµ of d, the integer K,,A may be ~efined 
combinatorially as the number of ways to fill the boxes of the You~g d!agram 
~ "th 1 l's 1 2's up to A. k's in such a way that the entnes in each ior µ wi 11.1 , 11.2 • k • • • • h 
row are nondecreasing, and those in each column are st.nctly increasing; sue 
are called semistandard tableaux onµ of type A.. In particular, 

K - 1 and K ). = 0 for µ < .t 
).).- ' " 

The integer K,,A may be also be defined to be the coefficien~ of the monomial 
x). = xt• ..... xtk in the Schur polynomial s,, corresponding to µ. For t~e 
proof that these are equival~nt definitions, see (A.9) and (A.l?) of ~p~~di: 
A. In the present case, applying Lemma A.26 to the polynomial P - P , w 
deduce 

t/JA(C1) = L K,,Aw,,(i) = w).(i) + L K,,Aw,,(i). (4.35) 
" µ>). 

The result of Lemma A.28 can be written, using (4.30), in the form 

_!__ L I C11w ).(i)w,,(i) = b).,,. (4.36) 
d! I 

This indicates that the functions wA, regarded as functions on the_conjug~cy 
classes of $ 4 , satisfy the same orthogonality relations as the ir~educible 
characters of $ 4 • In fact, one can deduce formally fro'!1 t~ese equations t~at 
the w must be the irreducible characters of 6 4 , which is what Frobemus 
proved. A little more work is needed to see that wA is actually the character 
of the representation v)., that is, to prove 

Proposition 4.37. Let XA = Xv, be the character of VA. Then for any conjugacy 
class C1 of $4, 

PRooF. We have seen in (4.29) that the representation U~, ~hose character is 
tjJA, contains the irreducible representation VA. In f~ct, ~his is all that we need 
to know about the relation between U). and V).. It imphes that we have 

t/J). = L nA,,X,,. n).). ~ 1, all nA,, ~ 0. (4.38) 

" 
Consider this equation together with (4.35). We deduce first that each w). is a 
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virtual character: we can write 

But thew)., like the XA• are orthonormal by (4.36), so 

1 = (w)., w).) = L mi,,, 
" 
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and hence wA is ± x for some irreducible character X· (It follows from the hook 
length formula that the plus sign holds here, but we do not need to assume 
th.is.) 

Fix .A., and assume inductively that x,, = w,, for all µ > A., so by (4.35) 

t/IA = wA + L K,,AXw 
µ>). 

Comparing this with (4.38), and using the linear independence of characters, 
the only possibility is that w A = XA· O 

Corollary 4.39 (Young's rule). The integer K,,A is the multiplicity of the irreduc
ible representation ¥µ in the induced representation UA: 

u). ~ v). E9 E9 K,,). ¥µ, t/I). = x). + r K,,).x,,. 
µ>). µ>). 

Note that when A. = (1, ... , 1), UA is just the regular repres~ntation, so 
K,,< 1 •... , 1) =dim V,,. This shows that the dimension of V;. is the number of 
standard tableaux on A., i.e., the number of ways to fill the Young diagram of 
.A with the numbers from 1 to d, such that all rows and columns are increasing. 
The hook length formula gives another combinatorial formula for this dimen
sion. Frame, Robinson, and Thrall proved that these two numbers are equal. 
For a short and purely combinatorial proof, see [G-N-W]. For another proof 
that the dimension of V;. is the number of standard tableaux, ·see [Jam]. The 
latter leads to a canonical decomposition of the group ring A = C$

4 
as the 

direct sum of left ideals AeT, summing over all standard tableaux, with 
eT =(dim VAfd!)·cT, and cT the Young symmetrizer corresponding to T, cf. 
Exercises 4.47 and 4.50. This, in turn, leads to explicit calculation of matrices 
of the representations VA with integer coefficients. 

For another example of Young's rule, we have a decomposition 

a 

q4-a,a) = ffi l-{4-1,I)• 
l=O 

In fact, the only µ whose diagrams can be filled with d - a l's and a 2's, 
nondecreasing in rows and strictly increasing in columns, are those with at 
most two rows, with the second row no longer than a; and such a diagram 
has only one such tableau, so there are no multiplicities. 

Exercise 4.40*. The characters t/JA of $ 4 have been defined only when A. is a 
partition of d. Extend the definition to any k-tuple a = (a

1
, ... , ak) of integers 
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that add up to d by setting I/la = 0 if any of the a1 are negative, and otherwise 
I/la= l/J;., where A. is the reordering of a 1, ... , akin descending order. In this 
case I/la is the character of the representation induced from the trivial represen
tation by the inclusion of Sa, x · · · x Sak in S 4 • Use (A.5) and (A.9) of 
Appendix A to prove the determinantal formula for the irreducible characters 
X;. in terms of the induced characters 1/1,,: 

X;. = L sgn(t)l/J(;., +t(t)-t,;.2 +«2>-2 ..... ;.k+t(kl-k>· 
te 6k · 

If one writes I/la as a formal product I/la,· l/Ja
2 

• ••• • l/lak• the preceding formula 
can be written 

I/I;., +1 I/I;., +k-1 

1/1;.2 ... 

The formal product of the preceding exercise is the character version of an 
"outer product" of representations. Given any non-negative integers d1, ... , 

dk, and representations Vi of S4,, denote by Vi 0 ••• 0 v,. the (isomorphism class 
of the) representation of S 4, d = Ld1, induced from the tensor product repre
sentation Vi IEl .. •IE] v,. of S4 x ... x S4k by the inclusion of S4, x ... x S4k 
in S 4 (see Exercise 2.36). Thts product is commutative and associative. It will 
turn out to be useful to have a procedure for decomposing such a representa
tion into its irreducible pieces. For this it is enough to do the case of two 
factors, and with the individual representations Vi irreducible. In this case, one 
has, for V;. the representation of S 4 corresponding to the partition A. of d and 
V,, the representation of Sm corresponding to the partition µ of m, 

V;. 0 v,, = L N;.,,. v.. (4.41) 

the sum over all partitions v of d + m, with N;.11 , the coefficients given by the 
Littlewood-Richardson rule (A.8) of Appendix A. Indeed, by the exercise, the 
character of V;. o Vµ is the product of the corresponding determinants, and, by 
(A.8), that is the sum of the characters N;.11 ,Xv· 

When m = 1 and µ = (m), V,, is trivial; this gives 

Ind e•••V _ ~ v. s. ). - L... .. (4.42) 

the sum over all v whose Young diagram is obtained from that of A. by adding 
one box. This formula uses only a Mmpler form of the Littlewood-Richardson 
rule known as Pieri's formula, which is proved in (A.7). 

Exercise 4.43"'. Show that the Littlewood-Richardson number N;.,,, is the 
multiplicity of the irreducible representation V;. IEJ V,, in the restriction of V, 
from S 4+m to S 4 x Sm. In particular, taking m = 1, µ = (1), Pieri's formula 
(A.7) gives 
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the sum over all A. obtained from v by removing one box. This is known as 
the "branching theorem," and is useful for inductive proofs and constructions, 
particularly because the decomposition is multiplicity free. For example, you 
can use it to reprove the fact that the multiplicity of V;. in U,, is the number of 
semistandard tableaux onµ of type A.. It can also be used to prove the assertion 
made in Exercise 4.6 that the representations corresponding to hooks are 
exterior powers of the standard representation. 

Exercise 4.44* (Pieri's rule). Regard S 4 as a subgroup of S 4+m as usual. Let A. 
be a partition of d and v a partition of d + m. Use Exercise 4.40 to show that 
the multiplicity of V. in the induced representation Ind(V;.) is zero unless the 
Young diagram of A. is contained in that of v, and then it is the number of 
ways to number the skew diagram lying between them with the numbers from 
l to m, increasing in both row and column. By Frobenius reciprocity, this is 
the same as the multiplicity of V;. in Res(V,.). 

When applied to d = 0 (or 1), this implies again that the dimension of V. is 
the number of standard tableaux on the Young diagram of v. 

For a sampling of the many applications of these rules, see [Dia §7, §8]. 

Problem 4.45*. The Murnaghan-Nakayama rule gives an efficient inductive 
method for computing character values: If A. is a partition of d, and g E S 4 is 
written as a product of an m-cycle and a disjoint permutation h E S 4_m• then 

X;.(g) =I (- l)'(">x,,(h), 

where the sum is over all partitions µ of d - m that are obtained from A. by 
removing a skew hook of length m, and r(µ) is the number of vertical steps in 
the skew hook, i.e., one less than the number of rows in the hook. A skew hook 
for A. is a connected region of boundary boxes for its Young diagram such 
that removing them leaves a smaller Young diagram; there is a one-to-one 
correspondence between skew hooks and ordinary hooks of the same size, as 
indicated: 

A. = (7, 6, 5, 5, 4, 4, 1, 1) 

µ = (7,4,4, 3, 3, l, 1, 1) 

hook length = 9, r = 4 

For example, if A. has no hooks oflength m, then X;,(g) = 0. 
The Murnaghan-Nakayama rule may be written inductively as follows: If 

Y is a written as a product of disjoint cycles of lengths m1 , m2, ... , mP, with 
the lengths m1 taken in any order, then X;.(g) is the sum :Lc-1r•>, where the 
sum is over all ways s to decompose the Young diagram of A. by successively 
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removing p skew hooks of lengths m1 , •.• , mp, and r(s) is the total number of 
vertical steps in the hooks of s. 

(a) Deduce the Murnaghan-Nakayama rule from (4.41) and Exercise 4.16, 
using the Littlewood-Richardson rule. Or: 

(b) With the notation of Exercise 4.40, show that 

Exercise 4.46*. Show that Corollary 4.39 implies the "Snapper conjecture": 
the irreducible representation V11 occurs in the induced representation U;. if 
and only if 

± A.; ~ ± µ; for all j ~ 1. 
i=l i=l 

Problem 4.47*. There is a more intrinsic construction of the irreducible 
representation V;., called a Specht module, which does not involve of the choice 
of a tableau; it is also useful for studying representations of 6d in positive 
characteristic. Define a tabloid { T} to be an equivalence class of tableaux 
(numberings by the integers 1 to d) on A., two being equivalent if the rows are 
the same up to order. Then 6d acts by permutations on the tabloids, and the 
corresponding representation, with basis the tabloids, is isomorphic to U;.. 
For each tableau T, define an element Er in this representation space, by 

Er= br{T} = L sgn(q){qT}, 

the sum over the q that preserve the columns of T. The span of all Er's is " 
isomorphic to V;., and the E/s, where T varies over the standard tableaux, 
form a basis. 

Another construction of V;. is to take the subspace of the polynomial ring 
C[x1' ... ' xd] spanned by all polynomials Fr, where FT= n (x; - X1), the 
product over all pairs i < j which occur in the same column in the tableau T. 

Exercise 4.48*. Let Vi be the representation A· b;., which is the representation 
of 6d induced from the tensor product of the alternating representations on 
the subgroup 6

11 
= 6

111 
x · · · x 6

11
,, where µ = A.' is the conjugate partition. 

Show that the decomposition of U~ is 
/ 

Deduce that V;. is the only irreducible representation that occurs in both U;. 
and Vi, and it occurs in each with multiplicity one. 

Note, however, that in general A· c;. ,;: A· a;. n A· b;. since A· c;. may not be 
contained in A· a;.. 
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Exercise 4.49*. With notation as in ( 4.41 ), if U' = J.( i. .... 1 > is the alternating 
representation of 6m, show that V;. o J.( 1, ...• lJ decomposes into a direct sum 
EEl V,,, the sum over all 7t whose Young diagram can be obtained from that of 
A. by adding m boxes, with no two in the same row. 

Exercise 4.50. We have seen that A= C6d is isomorphic to a direct sum of 
m;. copies of V;. = Ac;., where m;. =dim V;. is the number of standard tableaux 
on A.. This can be seen explicitly as follows. For each standard tableau Ton 
each A., let cr be the element of C6d constructed from T. Then A = $A· cr. 
Indeed, an argument like that in Lemma 4.23 shows that Cr· cT' = 0 whenever 
T and T' are tableaux on the same diagram and T > T', i.e., the first entry 
(reading from left to right, then top to bottom) where the tableaux differ has 
the entry of T larger than that of T'. From this it follows that the sum I:A ·Cr 

is direct. A dimension count concludes the proof. (This also gives another 
proof that the dimension of V;. is the number of standard tableaux on A., 
provided one verifies that the sum of the squares of the latter numbers is d!, 
cf. [Boe] or [Ke].) 

Exercise 4.51 *. There are several methods for decomposing a tensor product 
of two representations of 6d, which amounts to finding the coefficients C;. • 
in the decomposition 

11 

V;. ® V11 ~ I:.C;.11• V,,, 

for A., µ, and v partitions of d. Since one knows how to express i-;, in terms 
of the induced representations u., it suffices to compute V;. ® u., which 
is isomorphic to Ind(Res(V;.)), restricting and inducing from the subgroup 
6. = 6., x 6.

2 
x · · ·; this restriction and induction can be computed by the 

Littlewood-Richardson rule. Ford~ 5, you can work out these coefficients 
using only restriction to 6d-l and Pieri's formula. 

(a) Prove the following closed-form formula for the coefficients, which 
shows in particular that they are independent of the ordering of the subscripts 
A.,µ, and v: 

C;.11• = L (l')ro;.(i)roµ(i)w.(i), 
I Z I 

the sum over all i = (i1, ... ,id) with I:rxi~ = d, and with ro;.(i) = X;.(C1) and 
z(i) = i1!11,. i2!2i2 ..... id!did. • 

(b) Show that 

c - {1 ifµ= A, 
J.µ(dJ - 0 otherwise, 

c - {1 ifµ = A,' 
J.µ(1, ... ,lJ - 0 otherwise. 

Exercise 4.52*. Let Rd= R(6d) denote the representation ring, and set 
R = EBd'=o Rd. The outer product of (4.41) determines maps 
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which makes R into a commutative, graded Z-algebra. Restriction determines 
maps 

Rn+m = R(6n+m)-+ R(6n X 6m) = Rn® Rm, 

which defines a co-product <5: R-+ R ® R. Together, these make R into a 
(graded) Hopf algebra. (This assertion implies many of the formulas we have 
proved in this lecture, as well as some we have not.) 

(a) Show that, as an algebra, 

R ~ Z[H1, ... , Hd, ... ], 

where Hd is an indeterminate of degree d; Hd corresponds to the trivial 
representation of 6d. Show that the co-product <5 is determined by 

b(Hn) = Hn ® 1 + Hn-1 ® H 1 + ... + 1 ® Hn. 

If we set A= .Z[H1, ••• , Hd, ... ] = Ef)Ad, we can identify Ad with the 
symmetric polynomials of degree d in k ~ d variables. The basic symmetric 
polynomials in Ad defined in Appendix A therefore correspond to virtual 
representations of 6d. 

(b) Show that Ed corresponds to the alternating representation U', and 

H). +-+ U)., s). ..... v)., 
(c) Show that the scalar product ( , ) defined on Ad in (A.16) corresponds 

to the scalar product defined on class functions in (2.11). 
(d) Show that the involution 8 of Exercise A.32 corresponds to tensoring 

a representation with the alternating representation U'. 
(e) Show that the inverse map from Rd to Ad takes a representation W to 

) 1 (I) 
"r' z(i)Xw(C<l>)P , 

where z(i) = i 1!111 • i2 !212 • ••• • id!d1
d. 

The (inner) tensor product of representations of 6d gives a map Rd® Rd -+ 
Rd which corresponds to an "inner product" on symmetric functions, some
times denoted •. 

(f) Show that 

01 01 _ {o for j -:/= i 
p • p - (')po> 'f ' ' Z I 1 J =I. 

Since these pO> form a basis for Ad ® Q, this formula determines the inner 
product. 

LECTURE 5 

Representations of 2!d and GL2 (1Fq) 

In this lecture we analyze the representation of two more types of groups: the alternat
ing groups 214 and the linear groups GL2 (1Fq) and SL2 (1Fq) over finite fields. In the former 
case, we prove some general results relating the representations of a group to the 
representations of a subgroup of index two, and use what we know about the symmetric 
group; this should be completely straightforward given just the basic ideas of the 
preceding lecture. In the latter case we start essentially from scratch. The two sections 
can be read (or not) independently; neither is logically necessary for the remainder of 
the book. 

~5.1: Representations of 214 

*5.2: Representations of GL2 (1Fq) and SL2 (1Fq) 

§5.1. Representations of fild 
The alternating groups md, d ~ 5, form one of the infinite families of simple 
groups. In this section, continuing the discussion of §3.1, we describe their 
irreducible representations. The basic method for analyzing representations 
of md is by restricting the representations we know from 6d. 

In general when H is a subgroup of index two in a group G, there is a close 
relatfonship between their representations. We will see this phenomenon again 
in Lie theory for the subgroups son of the orthogonal groups on. 

Let U and U' denote the trivial and nontrivial representation of G obtained 
from the two representations of G/H. For any representation V of G, ~et 
V' = V ® U'; the character of V' is the same as the character of V on 
clements of H, but takes opposite values on elements not in H. In particular, 
Res* V' = Res* V. 
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If Wis any representation of H, there is a conjugate representation defined 
by conjugating by any element t of G that is not in H; if ljJ is the character 
of W, the character of the conjugate is h 1-+ l/l(tht-1 

). Since t is unique up to 
multiplication by an element of H, the conjugate representation is unique up 
to isomorphism. 

Proposition 5.1. Let V be an irreducible representation of G, and let W = ResZ V 
be the restriction of V to H. Then exactly one of the following holds: 

(1) Vis not isomorphic to V'; Wis irreducible and isomorphic to its conjugate; 
IndZ w ~ V E9 V'. 

(2) V ~ V'; W = W' E9 W", where W' and W" are irreducible and conjugate 
but not isomorphic; IndZ W' ~ IndZ W" ~ V. 

Each irreducible representation of H arises uniquely in this way, noting that 
in case (1) V' and V determine the same representation. 

PROOF. Let x be the character of V. We have 

IGI = 21HI = L lx(h)l 2 + L lx(t)l2. 
heH t;H 

Since the first sum is an integral multiple of IHI, this multiple must be 1 or 2, 
which are the two cases of the proposition. This shows that W is either 
irreducible or the sum of two distinct irreducible representations W' and W". 
Note that the second case happens when x(t) = 0 for all t ¢ H, which is the 
case when V' is isomorphic to V. In the second case, W' and W" must be 
conjugate since Wis self-conjugate, and if W' and W" were self-conjugate V 
would not be irreducible. The other assertions in (1) and (2) follow from the 
isomorphism Ind(Res V) = V ® (U E9 U') of Exercise 3.16. Similarly, for any 
representation W of H, Res(Ind W) is the direct sum of Wand its conjugate
as follows say from Exercise 3.19-from which the last statement follows 
readily. D 

Most of this discussion extends with little change to the case where H is a 
normal subgroup of arbitrary prime index in G, cf. [B-tD, pp. 293-296]. 
Clifford has extended much of this proposition to arbitrary normal subgroups 
of finite index, cf. [Dor, §14]. 

There are two types of conjugacy classes c in H: those that are also 
conjugacy classes in G, and those such that cu c' is a conjugacy class in G, 
where c' = tcC1

, t ¢ H; the latter are called split. When Wis irreducible, its 
character assumes the same values-those of the character of the representa
tion V of G that restricts to W-on pairs of split conjugacy classes, whereas 
in the other case the characters of W' and W" agree on nonsplit classes, but 
they must disagree on some split classes. If Xw·(c) = Xw .. (c') = x, and Xw·(c') = 
Xw .. (c) = y, we know the sum x + y, since it is the value of the character of 
the representation V that gives rise to W' and W" on cu c'. Often the exact 
values of x and y can be determined from orthogonality considerations. 
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Exercise 5.2*. Show that the number of split conjugacy classes is equal to the 
number of irreducible representations V of G that are isomorphic to V', or 
to the number of irreducible representations of H that are not isomorphic 
to their conjugates. Equivalently, the number of nonsplit classes in H is same 
as the number of conjugacy classes of G that are not in H. 

We apply these considerations to the alternating subgroup of the symmetric 
group. Consider restrictions of the representations Vi. from 6d to md. Recall 
that if A.' is the conjugate partition to A., then 

Vi: = Vi.® U', 

with U' the alternating representation. The two cases of the proposition 
correspond to the cases (1) A.' i= A. and (2) A.' = A.. If A.' i= A., let W;. be the 
restriction of Vi. to m:d. If A.' = A., let W{ and W{' be the two representations 
whose sum is the restriction of V;.. We have 

Ind JV;. = V;. El) V;.., Res V;. = Res Vi.· = W;. when A.' i= A., 

Ind W{ = Ind W{' = V;., Res Vi. = W{ E9 W{' when A.' = A.. 

Note that 

#{self-conjugate representations of 6d} 

= # {symmetric Young diagrams} 

= # {split pairs of conjugacy classes in md} 

= #{conjugacy classes in 6d breaking into two classes in md}· 

Now a conjugacy class of an element written as a product of disjoint cycles 
is split if and only if there is no odd permutation commuting with it, which is 
equivalent to all the cycles having odd length, and no two cycles having the 
same length. So the number of self-conjugate representations is the number 
of partitions of d as a sum of distinct odd numbers. In fact, there is a natural 
correspondence between these two sets: any such partition corresponds to a 
symmetric Young diagram, assembling hooks as indicated: 

I I 
I I 

I'" -I 

>-->--

- -
If .l. is the partition, the lengths of the cycles in the corresponding split 
conjugacy classes are q1 = 2.l. 1 - 1, q2 = 2A.2 - 3, q3 = 2.l.3 - 5, .... 



66 5. Representations of \ll4 and GL2 (1F4) 

For a self-conjugate partition A., let X~ and x~ denote the characters of W{ 
and W{', and let c and c' be a pair of split conjugacy classes, consisting of cycles 
of odd lengths q1 > q2 > · · · > q,. The following proposition of Frobenius 
completes the description of the character table of ~d· 

Proposition 5.3. (1) If c and c' do not correspond to the partition A., then 

x~(c) = x~(c') = x~(c) = x~(c') = !x,,(c u c'). 

(2) If c and c' correspond to A., then 

x~(c) = x~(c') = x, x~(c') = x~(c) = y, 

with x and y the two numbers 

t((-1r ± J(-1rq1 · ... ·q,), 

and m = t(n qi - 1) = !(d - r). 

For example, if d = 4 and A.= (2, 2), we haver= 2, q 1 = 3, q2 = 1, and x 
and y are the cube roots of unity; the representations W{ and W{' are the 
representations labeled U' and U" in the table in §2.3. Ford = 5, A. = (3, 1, 1), 
r = 1, q1 = 5, and we find the representations called Y and Z in §3.1. For 
d :S; 7, there is at most one split pair, so the character table can be derived 
from orthogonality alone. 

Note that since only one pair of character values is not taken care of by 
the first case of Frobenius's formula, the choice of which representation is W{ 
and which W{' is equivalent to choosing the plus and minus sign in (2). Note 
also that the integer m occurring in (2) is the number of squares above the 
diagonal in the Young diagram of A.. 

We outline a proof of the proposition as an exercise: 

Exercise 5.4•. Step 1. Let q = (q 1 > · · · > q,) be a sequence of positive odd 
integers adding to d, and let c' = c'(q) and c" = c"(q) be the corresponding 
conjugacy classes in ~d· Let A. be a self-conjugate partition of d, and let x~ and 
x~ be the corresponding characters of ~d· Assume that x~ and x~ take on the 
same values on each element of ~d that is not in c' or c". Let u = x~(c') = 
x~(c") and v = x~(c") = x~(c'). 

(i) Show that u and v are real when m = !I:(q1 - 1) is even, and u = v when 
mis odd. 

(ii) Let 8 = X~ - X~· Deduce from the equation (8, 8) = 2 that lu - vl 2 = 
ql ..... q,. 

(iii) Show that A. is the partition that corresponds to q and that u + v = 
(-tr, and deduce that u and v are the numbers specified in (2) of the 
proposition. 

Step 2. Prove the proposition by induction on d, and for fixed d, look at 
that q which has smallest q1 , and for which some character has values on the 
classes c'(q) and c"(q) other than those prescribed by the proposition. 
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(i) Tfr = 1, so q1 = d = 2m + 1, the corresponding self-conjugate partition 
is i. = (m + 1, 1, ... , 1). By induction, Step 1 applies to x~ and X~· 

(ii) If r > 1, consider the imbedding H = ~q, x ~d-q, c G = ~d• and let 
X' and X" be the representations of G induced from the representations 
W' 0 W' and W;' 0 Wi, where w; and W;' are the representations of ~q, 
co1rresp~nding to q1, i.e., to the self-conjugate partition (!(q1 - 1), 1, ... , 1) of 

I . W' is one of the representations of~d-q corresponding to (q2 , ••• , q,); and 
( l • 2 I 

0 denotes the external tensor product (see Exercise 2.36). Show that X' and 
X" are conjugate representations of ~d• and their characters x' and x" take 
equal values on each pair of split conjugacy classes, with the exception of c'(q) 
and c"(q), and compute the values of these characters on c'(q) and c"(q). 

(iii) Let 8 = x' - x", and show that (8, 8) = 2. Decomposing X' and X" 
into their irreducible pieces, deduce that X' = Y Et> W{ and X" = Y Et> W{' for 
some self-conjugate representation Y and some self-conjugate partition A. of d. 

(iv) Apply Step 1 to the characters x~ and x~, and conclude the proof. 

Exercise 5.5*. Show that if d > 6, the only irreducible representations of 
IJld of dimension less than d are the trivial representation and the (n - 1)
dimensional restriction of the standard representation of 6d. Find the excep
tions for d :S; 6. 

We have worked out the character tables for all 6d and ~d ford :S; 5. With 
the formulas of Frobenius, an interested reader can construct the tables for a 
few more d-until the number of partitions of d becomes large. 

The groups GL2(1Fq) of invertible 2 x 2 matrices with entries in the finite field 
IFq with q elements, where q is a prime power, form another important series 
of finite groups, as do their subgroups SL2 (1Fq) consisting of matrices of 
determinant one. The quotient PGL2 (1Fq) = GL2 (1Fq)/IF: is the automor
phism group of the finite projective line 1? 1(1Fq). The quotients PSL2 (1Fq) = 
SL 2 (1Fq)/{ ± l} are simple groups if q =I= 2, 3 (Exercise 5.9). In this section we 
sketch the character theory of these groups. 

We begin with G = GL2 (1Fq). There are several key subgroups: 

(This "Borel subgroup" B and the group of upper triangular unipotent 
matrices N will reappear when we look at Lie groups.) Since G acts transitively 
on the projective line 1?1 (1F4), with B the isotropy group of the point (1:0), we 
have 

!GI= !Bl· l1? 1(1F4)1 = (q - 1)2q(q + 1). 
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We will also need the diagonal subgroup 

D = {(~ ~)}=IF* x IF*, 

where we write IF for IF . Let IF' = IFq, be the extension of IF of degree two, unique 
up to isomorphism. We can identify GL2 (1Fq) as the group of all IF-linear 
invertible endomorphisms of IF'. This makes evident a large cyclic subgroup 
K = (IF')* of G. At least if q is odd, we may make this isomorphism explicit by 
choosing a generator e for the cyclic group IF* and choosing a square root Je 
in IF'. Then 1 and Je form a basis for IF' as a vector space over IF, so we can 
make the identification: 

K is a cyclic subgroup of G of order q2 - 1. We often make this identification, 
leaving it as an exercise to make the necessary modifications in case q is even. 

The conjugacy classes in G are easily found: 

Representative 

ax=(~ ~) 

bx=(~ !) 
Cx,y=(~ ~),x#y 

d -(x exy), y # 0 x,y - Y 

No. Elements in Class 

q2 - 1 

q2 + q 

q2 - q 

No. Classes 

q - 1 

q-1 

(q - l)(q - 2) 

2 

q(q - 1) 

2 

Here cx,y and cy,x are conjugate by ( _ ~ ~).and. dx,y and dx, -y are conjugate 

by any (a -ec). To count the number of elements in the conjugacy class 
c -a 

of bx, look at the action of G on this class by conjugation; the isotropy group 

is { ( ~ ~)}, so the number of elements in the class is the index of this group 

in G, which is q2 
- 1. Similarly the isotropy group for cx,y is D, and the isotropy 

group ford is K. To see that the classes are disjoint, consider the eigenvalues x,y 
and the Jordan canonical forms. Since they account for IGI elements, the list 
is complete. 

There are q2 
- 1 conjugacy classes, so we must find the same number of 

irreducible representations. Consider first the permutation representation of 
G on IP 1 (1F), which has dimension q + 1. It contains the trivial representation; 
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let v be the complementary q-dimensional representation. The values of the 
character x of v on the four types of conjugacy classes are x(ax) = q, x(bx) = 0, 
x(cx,y) = 1, x(dx,y) = -1, which we display as the table: 

V: q 0 1 -1 

Since (x, X) = 1, Vis irreducible. 
For each of the q - 1 characters IX: IF*-+ C* of IF*, we have a one

dirncnsional representation Va of G defined by Va(g) = 1X(det(g)). We also 
have the representations V.. = V ® Va. The values of the characters of these 
representations are 

Va: 1X(x)2 1X(x)2 1X(X)1X(y) 1X(x2 
- ey2

) 

V,.: q1X(x)2 0 1X(X)1X(y) -1X(x2 - ey2
) 

Note that if we identify C ~)with'= x + yJe in IF', then 

2 2 (x 6Y) _ N (Y) _ r. rq _ rq+1 x - ey = det Y x - ormF'/F "' - "' "' - "' . 

The next place to look for representations is at those that are induced 
from large subgroups. For each pair IX, p of characters of IF*, there is a character 
of the subgroup B: 

B-+ B/N = D = IF* x IF*-+ C* x C*-!+ C*, 

which takes(~ !) to 1X(a)P(d). Let W,,,p be the representation induced from 

H to G by this representation; this is a representation of dimension [G: BJ = 
q + 1. By Exercise 3.19 its character values are found to be: 

W:,,p: (q + l)1X(x)P(x) 1X(x)P(x) 1X(x)p(y) + 1X(y)p(x) 0 

We see from this that W,,,p ~ Wfi,a• that W:..a ~ Va EB V,., and that for IX # P 
the representation is irreducible. This gives t(q - l)(q - 2) more irreducible 
representations, of dimension q + 1. 

Comparing with the list of conjugacy classes, we see that there are tq(q - 1) 
irreducible characters left to be found. A natural way to find new characters 
is to induce characters from the cyclic subgroup K. For a representation 

q>: K =(IF')*-+ C*, 

the character values of the induced representation of dimension [G: K] = 
11 2 

- I are 

Ind(<p): q(q - l)<p(x) 0 0 

Here again ' = x + yJe EK =(IF')*. Note that Ind(<pq) ~ Ind(<p), so the 
representations Ind(<p) for <pq # <p give !q(q - 1) different representations. 

! 
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However, these represenations are not irreducible: the character x of Ind(<p) 
satisfies (x, x) = q - 1 if <pq =I= <p, and otherwise (x, x) = q. We will have to 
work a little harder to get irreducible representations from these Ind(<p). 

Another attempt to find more representations is to look inside tensor 
products ofrepresentations we know. We have V,. ®Uy= V,.y, and W...p ®UY~ 
W..r.Pr• so there are no new ones to be found this way. But tensor products of 
the V,.'s and W.../s are more promising. For example, V ® W... 1 has character 
values: 

q(q + l)IX(x) 0 IX(x) + 1X(y) 0 

We can calculate some inner products of these characters with each other 
to estimate how many irreducible representations each contains, and how 
many they have in common. For example, 

(Xv®w.,,• Xw.) = 2, 

(X1nd(qiJ>Xw.) = 1 if 'PllF• =IX, 

(Xv®w•.•' Xv®w.) = q + 3, 

(Xv®W•. •' X1nd(qi)) = q if <Pl IF" = IX, 

Comparing with the formula (Xind(qiJ> Xind(qiJ) = q - 1, one deduces that 
V® W... 1 and Ind(<p) contain many of the same representations. With any 
luck, Ind(q>) and W.., 1 should both be contained in V® W... 1 • This guess is 
easily confirmed; the virtual character 

lqi = Xv®w •. 1 - Xw •. 1 - X1nd(qi) 

takes values (q - 1)1X(x), -IX(x), 0, and -(<p(() + q>(()q) on the four types of 
conjugacy classes. Therefore, (X"' x") = 1, and x"(l) = q - 1 > 0, so x" is, 
in fact, the character of an irreducible subrepresentation of V ® W... 1 of 
dimension q - 1. We denote this representation by X". These !q(q - 1) 
representations, for <p =I= q>q, and with X" = X"'' therefore complete the list 
of irreducible representations for GL2 (1F). The character table is 

q2 -1 q2 + q q2 -q 

GL2(1Fq) a=e % 0 ~) b =(x 
% 0 :) (x c -%,Y- 0 ~) d%,, = G ~)=c 

v. ix(x2) ix(x2) ix(xy) ix((•) 

v. qix(x2) 0 ix(xy) -ix((•) 

w.., (q + l)ix(x)P(x) ix(x)P(x) ix(x)p(y) + ix(y)p(x) 0 
x,, (q - l)<p(x) -<p(x) 0 -(<p(C) + <p((')) 

Exercise 5.6. Find the multiplicity of each irreducible representation in the 
representations V ® W... 1 and Ind( <p ). 
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Exercise 5.7. Find the character table of PGL2(1F) = GL2(1F)/IF*. Note that its 
characters are just the characters of GL2(1F) that take the same values on 
clements equivalent mod IF*. 

We turn next to the subgroup SL2 (1Fq) of 2 x 2 matrices of determinant 
one, with q odd. The conjugacy classes, togeth_er with the number of elements 
in each conjugacy class, and the number of conjugacy classes of each type, are 

ReQresentative No. Elements in Class No. Classes 

(l) e=G ~) 1 1 

(2) -e=(-~ -~) 

(~ !) 
q2 - 1 

(3) 2 

G ;) 
q2 - 1 

1 (4) 2 

(-1 1) 
q2 - 1 

(5) 
0 -1 2 

(6) (-~ ~1) 
q2 - 1 

1 
2 

(~ x~1). x =I= ± 1 q(q + 1) 
q-3 

(7) 2 

(~ ~).x=l=±l q(q - 1) 
q-1 

(8) 2 

The verifications are very much as we did for GL2 (1Fq). In (7), the classes of 

( ~ x~ 1) and ( x~
1 

~)are the same. In (8), the classes for (x, y) and (x, -y) 

are the same; as before, a better labeling is by the element C in the cyclic group 

C = {CE (IF')*: Cq+l = 1 }; 

the elements ± 1 are not used, and the classes of' and C 1 are the same. 
The total number of conjugacy classes is q + 4, so we turn to the task of 

finding q + 4 irreducible representations. We first see what we get by restrict
ing representations from GL2 (1F

4
). Since we know the characters, there is no 

problem wolking this out, and we simply state the results: 

( l) The U
11 

all restrict to the trivial representation U. Hence, if we restrict any 
representation, we will get the same for all tensor products by U11's. 
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(2) The restriction V of the V,.'s is irreducible. 
(3) The restriction W,, of W,,, 1 is irreducible if a.2 

-::/:- 1, and W,, ~ Wp when fJ = a. 
or fJ = a.-1

• These give !(q - 3) irreducible representations of dimension 
q + l. 

(3') Let r denote the character of IF* with r 2 = 1, r -::/:- l. The r~striction of W., 1 

is the sum of two distinct irreducible representations, which we denote 
W'and W". 

(4) The restriction of X., depends only on the restriction of <P to the subgroup 
C, and <P and <P-1 determine the same representation. The representation 
is irreducible if <P 2 .;:. l. This gives !(q - 1) irreducible representations of 
dimension q - 1. 

(4') If t/J denotes the character of C with t/1 2 = 1, t/I -::/:- l, the restriction of X t/I 
is the sum of two distinct irreducible representations, which we denote 
X' andX". 

Altogether this list gives q + 4 distinct irreducible representations, and it 
is therefore the complete list. To finish the character table, the problem is to 
describe the four representations W', W", X', and X". Since we know the sum 
of the squares of the dimensions of all representations, we can deduce that the 
sum of the squares of these four repffSentations is q2 + 1, which is only 
possible if the first two have dimension t(q + 1) and the other two !(q - 1). 
This is similar to what we saw happens for restrictions of representations to 
subgroups of index two. Although the index here is larger, we can use what 
we know about index two subgroups by finding a subgroup H of index two 
in GL2(1F4) that contains SL2(1F4 ), and analyzing the restrictions of these four 
representations to H. 

For H we take the matrices in GL2 (1F4) whose determinant is a square. The 
representatives of the conjugacy classes are the same as those for GL2 (1F4), 

including, of course, only those representatives whose determinant is a square, 

but we must add classes represented by the elements(~ :). x e IF*. These 

are conjugate to the elements(~ !) in OL2 (1F4), but not in H. These are the 

q - 1 split conjugacy classes. The procedure of the preceding section can be 
used to work out all the representations of H, but we need only a little of this. 

Note that the sign representation U' from G/H is U,, so that W. 1 ~ . . 
W.. 1 ® U' and X t/I ~ X t/I ® U'; their restrictions to H split into sums of conju-
gate irreducible representations of half their dimensions. This shows these 
representations stay ir.r~ducible on restriction from H to SL2 (1F4), so that W' 
and W" are conjugate representations of dimension t(q + th and X' and X" 
are conjugate representations of dimension !(q - 1). In addition, we know 
that their character values on all nonsplit conjugacy classes are the same as 
half the characters of the representations W.. 1 and X "" respectively. This is all 
the information we need to finish the character table. Indeed, the only values 
not covered by this discussion are 

§5.2. Representations ofGL2 (1F9) and SL2(1F
9

) 73 

(~ !) (~ ;) (-1 1) 
0 -1 

(-1 8 ) 
0 -1 

W' s t s' t' 

W" s t' s' 

X' u v u' v' 

X" v u v' u' 

The first two rows are determined as follows. We know that s + t = 

xw,_, ( G D) = l. In addition, since G ~r1 

= G -!) is conjugate to 

(I 1) "f . (1 e) 
0 1 t ~ congruent to 1 modulo 4, and to 

0 1 
otherwise, and since 

x(g-
1

) = :x(g) for any character, we conclude that s and t are real if q = 
1 mod(4), ands= tif q = 3 mod(4). In addition, since -e acts as the identity 
or minus the identity for any irreducible representation (Schur's lemma), 

x( - g) = :x(g) · ;x(l)/x( -e) 

for any irreducible character ;x. This gives the relations s' = r(- l)s and 
t' = t( - l)t. Finally, applying the equation (;x, ;x) = 1 to the character of W' 
gives a formula fo! st+ tS. Solving !hese equations gives s, t = ! ± !faq, 
where w = r(-1) ts 1 or -1 accordmg as q = 1 or 3 mod(4). Similarly one 

computes that u and v are -! ± !faq. This concludes the computations 
needed to write out the character table. 

Exercise 5.8. By considering the action of SL2(1F
4

) on the set 1? 1 (1F
4

), show that 
SL2(1F2) ~ 53, PSL2(1F3) ~ m'.4 , and SL2(1F4 ) ~ m'.5 • 

~xercise 5.9*. Use the character table for SL2(1F ) to show that PSL2(1F ) is a 
simple group if q is odd and greater than 3. ' ' 

~xercise 5.~0. Compute the character table of PSL2(1F,), either by regarding 
1t as a quotient of SL2 (1F,), or as a subgroup of index two in PGL2 (1F,). 

Exercise 5.11 *.Find ~he conjugacy classes of GL3(1F,), and compute the char
acte.rs of the .per~utation representations obtained by the action of GL

3
(1F,) 

on (1) ~he ~roJecttve plane 1?2(1F,) and (ii) the "flag variety" consisting of a point 
on a lme m 1?2(1F,). Show that the first is irreducible and that the second is a 
sum of the trivial representation, two copies of the first representation and 
an irreducible representation. ' 

. Altho~gh the characters of the above groups were found by the early 
pioneers m representation theory, actually producing the representations in 
a natural way is more difficult. There has been a great deal of work extending 
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this story to GL"(IFq) and SL"(IFq) for n > 2 (cf. [Gr]), an~ for corresponding 
groups, called finite Chevalley groups, relate~ to o~her Lte groups: For some 
hints in this direction see [Hu3], as well as [Tt2]. Smee all but a fimte number 
of finite simple groups are now known to arise this way (or are cycli~ or 
alternating groups, whose characters we already know), such ~epr~sentat10~s 
play a fundamental role in group theory. In recent wor~ their Lte-theoret~c 
origins have been exploited to produce their representations, but to tell this 
story would go far beyond the scope of these lecture(r)s. 

LECTURE 6 

Weyl's Construction 

In this lecture we introduce and study an important collection offunctors generalizing 
the symmetric powers and exterior powers. These are defined simply in terms of the 
Young symmetrizers c;. introduced in §4: given a representation V of an arbitrary group 
G, we consider the dth tensor power of V, on which both G and the symmetric group 
on d letters act. We then take the image of the action of C;. on V® 4

; this is again a 
representation of G, denoted §;.(V). This gives us a way of generating new representa
tions, whose main application will be to Lie groups: for example, we will generate all 
representations ofSL"C by applying these to the standard representation C" ofSL"C. 
While it may be easiest to read this material while the definitions of the Young 
symmetrizers are still fresh in the mind, the construction will not be used again until 
§ 15, so that this lecture can be deferred until then. 

§6. l: Schur functors and their characters 
§6.2: The proofs 

§6.1. Schur Functors and Their Characters 

For any finite-dimensional complex vector space V, we have the canonical 
decomposition 

The group GL(V) acts on V ® V, and this is, as we shall soon see, the decom
position of V ® Vinto a direct sum of irreducible GL(V)-representations. For 
the next tensor power, 

V® V® V= Sym3V$NV$ another space. 

We shall see that this other space is a sum of two copies of an irreducible 
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GL(V)-representation. Just as SymdV and NV are images of symmetrizing 
operators from V®d = V ® V ® · · · ® V to itself, so are the other factors. The 
symmetric group 6d acts on V®d, say on the right, by permuting the factors 

(Vi @ ... @ Vd). <T = Va(i)@ ... @ Va(d)" 

This action commutes with the left action of GL(V). For any partition A. of d 
we have from the last lecture a Young symmetrizer c;. in C6d. We denote the 
image of c;. on V®d by§;. V: 

§;. V = Im(c;.lv®d) 

which is again a representation ofGL(V). We call the functori V """§;. V ~he 
Schur functor or Weyl module, or simply Weyl's construction, correspondmg 
to A.. It was Schur who made the correspondence between representations of 
symmetric groups and representations of general linear groups, and Weyl who 
made the construction we give here. 2 We will give other descriptions later, cf. 
Exercise 6.14 and §15.5. 

For example, the partition d = d corresponds to the functor V ~ Symd V, 
and the partition d = 1 + · · · + 1 to the functor V ~'NV. 

We find something new for the partition 3 = 2 + 1. The corresponding 

symmetrizer c;. is 
c(2,i> = 1 + e02> - e(iJJ - e032>, 

so the image of c;. is the subspace of V® 3 spanned by all vectors 

Vi @ v2@ v3 + V2@ Vi@ V3 - V3@ V2@ Vi - V3@ Vi@ V2° 

If NV® Vis embedded in V® 3 by mapping 

(Vi/\ V3)@ V2l--+Vi@ V2@ V3 - V3@ V2@ Vi, 

then the image of c;. is the subspace of NV® V spanned by all vectors 

(vi /\ V3) ® V2 + (v2 /\ V3) ®Vi. 

It is not hard to verify that these vectors span the kernel of the canonical map 
from NV® V to NV, so we have 

§<2.i> V = Ker(NV® V--. NV). 

(This gives the missing factor in the decomposition of V® 3
) . . 

Note that some of the§;. V can be zero if V has small dimension. We will 
see that this is the case precisely when the number of rows in the Young 
diagram of A. is greater than the dimension of V. 

1 The functoriality means simply that a linear map <p: V-+ W of vector spaces determines a linear 
map §;(<p): §, V-+ §, W, with §,(<po 1/1) = §,(<p) o §,(I/I) and §,(Idv) = lds,v 

2 The notion goes by a variety of names and notations in the literature, depending on the context. 
Constructions differ markedly when not over a field of characteristic zero; and many authors now 
parametrize them by the conjugate partitions. Our choice of notation is guide~ by the corre
spondence between these functors and Schur polynomials, which we will see are theu characters. 
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When G = GL(V), and for important subgroups G c GL(V), these §;. V 
give many of the irreducible representations of G; we will come back to this 
later in the book. For now we can use our knowledge of symmetric group 
representations to prove a few facts about them-in particular, we show that 
they decompose the tensor powers V®d, and that they are irreducible repre
sentations of GL(V). We will also compute their characters; this will eventually 
be seen to be a special case of the Weyl character formula. 

Any endomorphism g of V gives rise to an endomorphism of§;. V. In order 
to tell what representations we get, we will need to compute the trace of this 
endomorphism on§;. V; we denote this trace by Xs,v(g). For the computation, 
let x 1 , ••• , xk be the eigenvalues of g on V, k = dim V. Two cases are easy. For 
). = (d), 

§<d> V = SymdV, Xscd>v(g) = Hixi, ... , xk), (6.1) 

where Hixi, ... , xk) is the complete symmetric polynomial of degreed. The 
definition of these symmetric polynomials is given in (A.l) of Appendix A. 
The truth of (6.1) is evident when g is a diagonal matrix, and its truth for the 
dense set of diagonalizable endomorphisms implies it for all endomorphisms; 
or one can see it directly by using the Jordan canonical form of g. For 
). = (I, ... , 1 ), we have similarly 

§(i, ... ,l)V=NV, Xs
0 

.... 
0
v(g)=EAxi, ... ,xk), (6.2) 

with EAxi, ... , xk) the elementary symmetric polynomial [see (A.3)]. The 
polynomials Hd and Ed are special cases of the Schur polynomials, which we 
denote by S;. = S;.(Xi, ... , xk). As A. varies over the partitions of d into at most 
k parts, these polynomials S;. form a basis for the symmetric polynomials of 
degree din these k variables. Schur polynomials are defined and discussed in 
Appendix A, especially (A.4)-(A.6). The above two formulas can be written 

Xs,v(g) = S;.(Xi, ... , xk) for A.= (d) and A.= (1, ... , 1). 

We will show that this equation is valid for all A.: 

Theorem 6.3. (1) Let k =dim V. Then §;. V is zero if A.k+i =I= 0. If A.= 
(),1 ~ · · • ~ A.k ~ 0), then 

dim§;. V = S;.(1, ... , 1) = fl 
i s;i<js;k 

A.; - A.1 + j - i 

j-i 

(2) Let m;. be the dimension of the irreducible representation V;. of 6d 
corresponding to A.. Then 

V®d ~EB§;. v®m•. 
;. 

(3) For any g e GL(V), the trace of g on §;. V is the value of the Schur 
P<>lynomial on the eigenvalues xi· ... , xk of g on V: 

Xs,v(g) = S;.(Xi, ... , xk). 
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(4) Each §.i. Vis an irreducible representation of GL(V). 

This theorem will be proved in the next section. Other formulas for the 
dimension of §.i. V are given in Exercises A.30 and A.31. The following is 

another: 

Exercise 6.4*. Show that 

. m). . . n (k - i + j) 
dim§). V =-di n (k - I+ J) = h ' 

. ij 

where the products are over the d pairs (i,j) that number the row and column 
of boxes for A., and hiJ is the hook number of the corresponding box. 

Exercise 6.5. Show that V® 3 ~ Sym3 V $NV$ (§<2, 1i V)e
2
, and 

V®4 ~ Sym4 V$ /\4Ve;> (§<3 , 1i V)e 3 $ (§<2.2i V)e2 $ (§<2.1,1i V)e
3

• 

Compute the dimensions of each of the irreducible factors. 

The proof of the theorem actually gives the following corollary: 

Corollary 6.6. If c e C64, and (C64) • c = EB.i. v..e,, as representations of 6d, 
then there is a corresponding decomposition of GL(V)-spaces: 

V®d. c =EB§). ve• •. 
). 

If x 
1

, ••• , xk are the eigenvalues of an endomorphism of V, the trace of the 
induced endomorphism of V®4 

• c is L r.i.S.i.(X1, ... , xk). 

If A. and µ are different partitions, each with at most k = dim V parts, the 
irreducible GL(V)-spaces §.i. V and §I' V are not isomorphic. Indeed, their 
characters are the Schur polynomials S.i. and Sit, which are different. More 
generally, at least for those representations of GL(V) which can be decom
posed into a direct sum of copies of the represenations § .i. V's, the representa
tions are completely determined by their characters. This follows immediately 
from the fact that the Schur polynomials are linearly independent. 

Note, however, that we cannot hope to get all finite-dimensional irreducible 
representations of GL(V) this way, since the duals of these representations 
are not included. We will see in Lecture 15 that this is essentially the only 
omission. Note also that although the operation that takes representations of 
6d to representations of GL(V) preserves direct sums, the situation with 
respect to other linear algebra constructions such as tensor products is more 

complicated. 
One important application of Corollary 6.6 is to the decomposition of a 

tensor product §.i. V ®§it V of two Weyl modules, with, say, A. a partition of 
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d and µ a partition of m. The result is 

§.i.V®§l'V~ EBN.i.l'v§vV; (6.7) 
v 

here the sum is over partitions v of d + m, and N.i.itv are numbers determined 
by the Littlewood-Richardson rule. This is a rule that gives N.i.itv as the number 
of ways to expand the Young diagram of A., usingµ in a.n appropriate way, to 
achieve the Young diagram for v; see (A.8) for the precise formula. Two 
important special cases are easier to use and prove since they involve only the 
simpler Pieri formula (A.7). Forµ= (m), we have 

§.i.V®Symmv~ EB§.V, (6.8) 
v 

the sum over all v whose Young diagram is obtained by adding m boxes to 
the Young diagram of A., with no two in the same column. Similarly for 
/l = ( 1, ... ' 1), 

(6.9) 

the sum over all partitions n whose Young diagram is obtained from that of 
). by adding m boxes, with no two in the same row. 

To prove these formulas, we need only observe that 

§.i.V®§itV= V®"·c.i.® V®m·cit 

= V®"® V®m·(c.i.®cit) = V®<n+m>.c, 

with c = C.i. ®cl' E C64 ® C6m = C(6d x 6m) c C64+m· This proves that 
§, V ®§it V has a decomposition as in Corollary 6.6, and the coefficients are 
given by knowing the decomposition of the corresponding character. The 
character of a tensor product is the product of the characters of the factors; 
so this amounts to writing the product S.i.Sit of Schur polynomials as a linear 
combination of Schur polynomials. This is done in Appendix A, and formulas 
(6.7): (6.8), and (6.9) follow from (A.8), (A.7), and Exercise A.32 (v), respectively. 

For example, from Sym4V ® V = Symd+l V $ §<d, lJ V, it follows that 

§<d, 1> V = Ker(Sym4 V ® V-+ Symd+l V), 

and similarly for the conjugate partition, 

§<2.i. .... 1) V = Ker(NV® V-+ N+1V). 

Exercise 6.10*. One can also derive the preceding decompositions of tensor 
products directly from corresponding decompositions of representations of 
symmetric groups. Show that, in fact, § .i. V ® §it V corresponds to the "inner 
product" representation v .. 0 vi' of 6d+m described in (4.41). 

Exercise 6.11*. (a) The Littlewood-Richardson rule also comes into the de
composition of a Schur functor of a direct sum of vector spaces V and W. This 
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generalizes the well-known identities 

Sym"(V (f) W) = EB (Sym0 V ® SymbW), 
a+b=n 

/\"(V(f) W) = EB (NV® NW). 
a+b=n 

Prove the general decomposition over GL(V) x GL(W): 

§,(V (f) W) = EB N;.µv(§;. V ® §µ W), 

the sum over all partitions A., µ such that the sum of the numbers partitioned 
by A. andµ is the number partitioned by v. (To be consistent with Exercise 
2.36 one should use the notation ll!l for these "external" tensor products.) 

(b) Similarly prove the formula for the Schur functor of a tensor product: 

§,(V® W) =EB C;.µ,(§;.V® §µW), 

where the coefficients C ;.µ•are defined in Exercise 4.51. In particular show that 

Symd(V® W) =EB§;. V® §;. W. 

the sum over all partitions A. of d with at most dim V or dim W rows. Replacing 
w by w•' this gives the decomposition for the space of polynomial functions 
of degreed on the space Hom(V, W) over GL(V) x GL(W). For variations 
on this theme, see [Ho3]. Similarly, 

N(V ® W) = EB§;. v ® § ).' w, 
the sum over partitions A. of d with at most dim V rows and at most dim W 
columns. 

Exercise 6.12. Regarding 

GLn IC= GL" IC x {1} c GL" IC x GLm IC c GLn+m IC, 

the preceding exercise shows how the restriction of a representation de
composes: 

Res(§,(IC"+m)) = L (N;.µv dim §µ(ICm))§;.(IC"). 

In particular, for m = 1, Pieri's formula gives 

Res(§,(IC"+1)) = EB§ ;.(IC"), 

the sum over all A. obtained from v by removing any number of boxes from 
its Young diagram, with no two in any column. 

Exercise 6.13*. Show that for any partition µ = (µ 1, ... , µ,) of d, 

N1V®N2V®···®N·V~ EBK;.µ§)_.v, 
;. 

where K;.µ is the Kostka number and A.' the conjugate of A.. 
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Exercise 6.14*. Let µ = A.' be the conjugate partition. Put the factors of the 
dth tensor power V®d in one-to-one correspondence with the squares of the 
Young diagram of A.. Show that §;.Vis the image of this composite map: 

@1 (N• V)-+ @1 (®µ'V)-+ V®d-+ @1 (®;.W)-+ @1 (Sym;.W), 

the first map being the tensor product of the obvious inclusions, the second 
grouping the factors of V®d according to the columns of the Young diagram, 
the third grouping the factors according to the rows of the Young diagram, 
and the fourth the obvious quotient map. Alternatively,§;. Vis the image of 
a composite map 

@1 (Sym;.•V)-+ @1 (®;.'V)-+ V®d-+ @1 (®µW)-+ @1 (NW). 

In particular, §;. V can be realized as a subspace of tensors in V ®d that are 
invariant by automorphisms that preserve the rows of a Young tableau of 
)., or a subspace that is anti-invariant under those that preserve the columns, 
but not both, cf. Exercise 4.48. 

Problem 6.15*. The preceding exercise can be used to describe a basis for the 
space §;. V. Let v1, ... , vk be a basis for V. For each semistandard tableau T 
on A, one can use it to write down an element Vr in @1(/\µ•V); Vr is a tensor 
product of wedge products of basis elements, the ith factor in N•Vbeing the 
wedge product (in order) of those basis vectors whose indices occur in the ith 
column of T. The fact to be proved is that the images of these elements Vr 

under the first composite map of the preceding exercise form a basis for§;. V. 

At the end of Lecture 15, using more representation theory than we have 
at the moment, we will work out a simple variation of the construction of§;. V 
which will give quick proofs of refinements of the preceding exercise and 
problem. 

Exercise 6.16*. The Pieri formula gives a decomposition 

SymdV ® SymdV = EB §(d+a,d-a) V. 

the sum over 0 :s; a :s; d. The left-hand side decomposes into a direct sum of 
Sym 2 (SymdV) and N(SymdV). Show that, in fact, 

Sym2(SymdV) = §<2d,o> V (f) §<2d-2, 2> V (f) §<2d-4.4l V E9 ... , 

N(SymdV) = §<2d-1, 1) V (f) §(2d-3,3) V E9 §<2d-S,S> V E9 · · · · 

Similarly using the dual form of Pieri to decompose NV® NV into the sum 
EB§;. V, the sum over all A. = (2, ... , 2, 1, ... , 1) consisting of d - a 2's and 2a 
1 's, 0 :s; a :s; d, show that Sym2(NV) is the sum of those factors with a even, 
and N(NV) is the sum of those with a odd. 
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Exercise 6.17*. If A. andµ are any partitions, we can form the composite functor 
§µ(§;. V). !he original "plethysm" problem-which remains very difficult in 
general-is to decompose these composites: 

§µ(§;. V) =EB M;.µv§v V, 
v 

the sum over all ~artitions _v of dm,_ where A. is a partition of d andµ is a partition 
of m. The precedmg exercise earned out four special cases of this. 

(a). Sh?w that there always exists such a decomposition for some non
negative mtegers M;.µv by constructing an element c in C6dm• depending on 
A. andµ, such that §µ(§;. V) is V®dm. c. 

(b) Compute Sym2(§,2 , 2> V) and /\2(§,2 , 2> V). 

Exercise 6.18* "Hermite reciprocity." Show that if dim V = 2 there are iso
morphisms 

SymP(SymqV) ~ Symq(SymPV) 

of GL(V)-representations, for all p and q. 

Exercise 6.19*. Much of the story about Young diagrams and representations 
o~ symmetric. and .general_linear groups can be generalized to skew Young 
d1ag~~ms, w~ich are the differences of two Young diagrams. If A. and µ are 
p~rtltlons with_µ,::;; A., for all i, A./µ denotes the complement of the Young 
diagram forµ m that of A.. For example, if A. = (3, 3, 1) andµ = (2, 1), A./µ is 
the numbered part of 

~ 
~ 

To each A./µ we ha~e a_skew Schur function S;.1µ, which can be defined by 
an~ of several generalizations of constructions of ordinary Schur functions. 
Usmg the notation of Appendix A, the following definitions are equivalent: 

(i) 

(ii) 

(iii) 

S;./µ = IH;.,-µr1+1I, 

S;./µ = IE;.;-µ;-1+11, 

S,/ = ~ m Xa1. ·xak 
,,.µ £.., a 1 ••• k' 

where »ta is the number of ways to number the boxes of A./µ with a 1 's a 2's 
k' . h . 1 ' 2 ' · · ·, ak s, wit nondecreasmg rows and strictly increasing columns. 

In terms of ordinary Schur polynomials, we have 

(iv) S ~ N S J./µ = £.., µvJ. ., 

where Nµv;. is the Littlewood-Richardson number. 
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Each A.jµ determines elements a;.1µ, bJ.fµ• and Young symmetrizers c;.1µ = 
u· h;.

111 
in A= C6d, d = LA.1 - µ1, exactly as in §4.1, and hence a representa

ti:1~ denoted V;,1µ = AcJ.fµ of 6d. Equivalently, VJ./µ is the image of the map 
Ah;iµ-+ Aa;.1µ given by right multiplication by a;.1µ, or the image of the map 
Aa;.

111
-+ AbJ.fµ given by right multiplication by b;.1µ. The decomposition of V;.1µ 

into irreducible representations is 

(v) 

Similarly there are skew Schur functors § J.fµ• which take a vector space V 
to the image of c;.1µ on V®d; equivalently,§ J.fµ Vis the image of a natural map 
(generalizingthat in the Exercise 6.14) 

(vi) @1 (N1-µ'V)-+ V®d-+ @1 (Sym;.rµ1 V), 

or 

(vii) 

Given a basis v1, ... , vk for Vanda standard tableau Ton A./µ, one can write 
down an element vT in Q91(NJ-µJV); for example, corresponding to the dis
played tableau, vT = v4 ® v2 ® (v1 A v3 ). A key fact, generalizing the result of 
Exercise 6.15, is that the images of these elements under the map (vi) form a 
basis for § J./µ V. 

The character of §;.1µ V is given by the Schur function S;.1µ: if g is an 
endomorphism of V with eigenvalues x 1 , ••• , xk, then 

(viii) 

In terms of basic Schur functors, 

(ix) 

Exercise 6.20*. (a) Show that if A. = (p, q), §(p,qJ Vis the kernel of the contrac
tion map 

cp,q: SymPV ® SymqV-+ Symp+t V ® Symq-l V. 

(b) If A. = (p, q, r), show that §(p,q,rJ V is the intersection of the kernels of 
two contraction maps cp,q ® 1, and lP ® cp,r• where 11 denotes the identity map 
on Sym1 V. 

In general, for A.= (A. 1 , •• ., A.k), §;. V c Sym;. 1 V® · · · ® Sym;.kV is the inter
section of the kernels of the k - 1 maps 

t/11 = 1;.1 @ · · ·@ l;.1-1@ C;.,,;.<+
1

@ 1;.<+
2

@ · · ·@ 1;.k, 1 ::;; i::;; k - 1. 

(c) For A.= (p, 1, .... , 1), show that §;.Vis the kernel of the contraction 
map: 

§(p, 1, ...• 1> V = Ker(SymPV ® N-pv-+ SymP+1 V ® N-p-l V). 

In general, for any choice of a between 1 and k - 1, the intersection of 
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the kernels of all t/11 except t/Ja is §., V ® §, V, where a = (A. 1 , ••• , A.0 ) and 
r = (A.a+l • ... , A.k); so §;. V is the kernel of a contraction map defined on 
§., V ® §, V. For example, if a is k - 1, and we set r = A.k, Pieri's formula writes 
§., V ® Sym'V as a direct sum of§;. V and other factors §. V; the general 
assertion in (b) is equivalent to the claim that §;. V is the only factor that is 
in the kernel of the contraction, ie., 

§ V = Ker(§ V ® Sym'V--+ V®<d-r+t> ® Sym•-1 V). 
). ().I•·· .,).k-1) 

These results correspond to writing the representations V;. C: U;. of the sym
metric group as the intersection of kernels of maps to U;.

1
,. • .,;.,+i,;. .. 1-1,. . .,;.k· 

Exercise 6.21. The functorial nature of Weyl's construction has many conse
quences, which are not explored in this book. For example, if E• is a complex 
of vector spaces, the tensor product E:d is also a complex, and the symmetric 
group Sd acts on it; when factors in EP and Eq are transposed past each other, 
the usual sign ( - 1 r is inserted. The image of the Young symmetrizer c;. is a 
complex §;.(E.), sometimes called a Schur complex. Show that if E• is the 
complex E_1 = V--+ E0 = V, with the boundary map the identity map, and 
A.= (d), then §;.(E.) is the Koszul complex 

o ...... N ...... N-1 ® s1 ...... N-2 ® s 2 ...... · · · ...... N ® sd-I ...... sd ...... o, 
where N =NV, and Si= SymlV. 

§6.2. The Proofs 

We need first a small piece of the general story about semisimple algebras, 
which we work out by hand. For the moment G can be any finite group, 
although our application is for the symmetric group. If U is a right module 
over A = CG, let 

B = HomG(U, U) = {cp: U--+ U: cp(v·g) = cp(v)·g, Vv EU, g E G}. 

Note that B acts on U on the left, commuting with the right action of A; Bis 
called the commutator algebra. If U = EB U/ifi"• is an irreducible decomposition 
with U1 nonisomorphic irreducible right A-modules, then by Schur's Lemma 
1.7 

B = EB1 HomG(U,ffi"•, U,ffi"•) = EB1 Mn,(C), 

where Mn,(C) is the ring of n1 x n1 complex matrices. 
If Wis any left A-module, the tensor product 

U ®A W = U ®c W/subspace generated by { va ® w - v ® aw} 

is a left B-module by acting on the first factor: b · (v ® w) = (b · v) ® w. 
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Lemma 6.22. Let Ube a finite-dimensional right A-module. 
(i) For any c EA, the canonical map U ®A Ac--+ Uc is an isomorphism of left 

B-modules. 
(ii) ~f W =Ac is an irreducible left A-module, then U ®A W = Uc is an 

irreducible left B-module. 
(iii) If Wi = Ac1 are the distinct irreducible left A-modules, with m

1 
the 

dimension of Jti, then 

U ~ EB1 (U ®A Jtj)ffim, ~ EB1 (Uc,)ffim, 

is the decomposition of U into irreducible left B-modules. 

PROOF. Note first that Ac is a direct summand of A as a left A-module; this is 
a consequence of the semisimplicity of all representations of G (Proposition 
1.5). To prove (i), consider the commutative diagram 

U®AA~ 

j 
u ~ U·c u 

where the vertical maps are the maps v ® a 1-+ v ·a; since the left horizontal 
maps are surjective, the right ones injective, and the outside vertical maps are 
isomorphisms, the middle vertical map must be an isomorphism. 

For (ii), consider first the case where U is an irreducible A-module so 
B = C. It suffices to show that dim U ®A W :$; 1. For this we use Proposi;ion 
3.29 t.o identify A with a direct sum EBr=i Mm,C ofr matrix algebras. We can 
1dent1fy W with a minimal left ideal of A. Any minimal ideal in the sum of 
ma.trix algebras is isomorphic to one which consists of r-tuples of matrices 
which are zero except in one factor, and in this factor are all zero except for 
one column. Similarly, U can be identified with the right ideal ofr-tuples which 
arc zero except in one factor, and in that factor all are zero except in one row. 
Then U ®A W will be zero unless the factor is the same for U and W, in which 
case U ®..t W can be identified with the matrices which are zero except in one 
r~iw and column of that factor. This completes the proof when U is irreducible. 
F. or the general case of (ii), decompose U = EBi U1ffin, into a sum of irreducible 
ng~t A-modules, so U ®..t W = EB1(U1 ®A W)ffin, = Cffink for some k, which is 
visibly irreducible over B =EB Mn (C). 

Part (iii) follows, since the isom~rphism A ~ EB Jtjffim, determines an iso
morphism 

U ~ U ®A A~ U ®A (EB1 Jtjffim') ~ EB1(U ®A Jtj)ffim,. D 

To prove Theorem 6.3, we will apply Lemma 6.22 to the right CS -module 
U-v~ d 

- · That lemma shows how to decompose U as a B-module, where B 
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is the algebra of all endomorphisms of U that commute with all permuta
tions of the factors. The endomorphisms of U induced by endomorphisms of 
V are certainly in this algebra B. Although B is generally much larger than 
End(V), we have 

Lemma 6.23. The algebra Bis spanned as a linear subspace of End(V 1814 ) by 
End(V). A subspace of V®4 is a sub-B-module if and only if it is invariant by 
GL(V). 

PROOF. Note that if Wis any finite-dimensional vector space, then Sym4W is 
the subspace of W®4 spanned by all w4 = d!w ®···®was w runs through 
W. Applying this to W = End(V) = V* ® V proves the first statement, since 
End(V 1814) = (V*)®4 ® V®4 = W®4, with compatible actions of 6 4• The second 
follows from the fact that GL(V) is dense in End(V). D 

We turn now to the proof of Theorem 6.3. Note that§;. Vis Uc;., so parts 
(2) and (4) follow from Lemmas 6.22 and 6.23. We use the same methods to 
give a rather indirect but short proof of part (3); for a direct approach see 
Exercise 6.28. From Lemma 6.22 we have an isomorphism ofGL(V)-modules: 

§;. V ~ V 1814 ®..t V;. (6.24) 

with V;. =A· c;.. Similarly for U;. = A· a;., and since the image of right multi
plication by a;. on V®4 is the tensor product of symmetric powers, we have 

Sym.i. 1 V ® Sym.i.2 v ® · · · ® Sym.i.•v ~ V®4 ®..t U;.. (6.25) 

But we have an isomorphism U;. ~EB,, K,,;. V,. of A-modules by Young's rule 
(4.39), so we deduce an isomorphism of GL(V)-modules 

Sym;.1 V ® Sym.i.2 v ® · ·· ® Sym.i.•v ~EB K,,;.§,, V. (6.26) 
µ 

By what we saw before the statement of the theorem, the trace of g on the 
left-hand side of(6.26) is the product H;.(x 1, ••• , xk) of the complete symmetric 
polynomials H;.,(x 1, ••• , xk). Let §;.(g) denote the endomorphism of §;. V 
determined by an endomorphism g of V. We therefore have 

H;.(x1 , ••• , xk) = r.,,K,,;. Trace(§,,(g)). 

But these are precisely the relations between the functions H;. and the Schur 
polynomials S,, [see formula (A.9)], and these relations are invertible, since 
the matrix (K ,,;.) of coefficients is triangular with l's on the diagonal. It follows 
that Trace(§;.(g)) = S;.(x1, ••• , xk), which proves part (3). 

Note that if A. = (A. 1 , ••• , A.4 ) with d > k and A.k+1 -::/= 0, this same argument 
shows that the trace is S;.(x 1 , .•• , xk, 0, ... , 0), which is zero, for example by 
(A.6). For g the identity, this shows that §;. V = 0 in this case. From part (3) 
we also get 

~6.2. The Proofs 

dim §;.V = S;.(l, ... , 1), 

and computing S;.(l, ... , 1) via Exercise A.30(ii) yields part (1). 
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(6.27) 

D 

Exercise 6.28. If you have given an independent proof of Problem 6.15, part 
(3) of Theorem 6.3 can be seen directly. The basis elements vT for§;. V specified 
in Problem 6.15 are eigenvectors for a diagonal matrix with entries x 1, ••• , xk, 
with eigenvalue X" = x~ 1 

• ••• • x:•, where the tableau T has a 1 l's, a2 2's, ... , 
ak k's. The trace is therefore :LK.i.aX", where K.i.a is the number of ways to 
number the boxes of the Young diagram of A. with a1 l's, a2 2's, ... , ak k's. This 
is just the expression for S;. obtained in Exercise A.3l(a). 

We conclude this lecture with a few of the standard elaborations of these 
ideas, in exercise form; they are not needed in these lectures. 

Exercise 6.29*. Show that, in the context of Lemma 6.22, if U is a faithful 
A-module, then A is the commutator of its commutator B: 

A= {If!: U-+ U: l/l(bv) = blf!(v), Vv EU, b EB}. 

If U is not faithful, the canonical map from A to its bicommutator is surjective. 
Conclude that, in Theorem 6.3, the algebra of endomorphisms of V®4 that 
commute with GL(V) is spanned by the permutations in 6 4 . 

Exercise 6.30. Show that, in Lemma 6.22, there is a natural one-to-one cor
respondence between the irreducible right A-modules U1 that occur in U and 
the irreducible left B-modules V;. Show that there is a canonical decomposition 

U = EB(V; ®c U1) 
i 

as a left B-module and as a right A-module. This shows again that the number 
of times V; occurs in U is the dimension of U1, and dually that the number of 
times U1 occurs is the dimension of V;. Deduce the canonical decomposition 

V®4 = EB§.i. V ®c V;., 

the sum over partitions A. of d into at most k = dim V parts; this decomposition 
is compatible with the actions of GL(V) and 6 4• In particular, the number of 
times ~;.occurs in the representation V®4 of 6 4 is the dimension of§;. V. 

Exercise 6.31. Let e be an idempotent in the group algebra A= CG, and let 
U = eA be the corresponding right A-module. Let E = eAe, a subalgebra of 
A. The algebra structure in A makes eA a left E-module. Show that this defines 
an isomorphism of C-algebras 

E = eAe ~ HomA(eA, eA) = HomG(U, U) = B. 
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Exercise 6.32. If His a subgroup of G, and e E CH is an idempotent, corre
sponding to a representation W = CH· e of H, show that CG· e is the induced 
representation Ind*(W). For example, if 8: H-+ c• is a one-dimensional 
representation, then 

1 """'Ind*(8) =CG· ea, where ea= fGI 9~6 8(g)e9 • 

PART II 

LIE GROUPS AND 
LIE ALGEBRAS 

From a naive point of view, Lie groups seem to stand at the opposite end of 
the spectrum of groups from finite ones. 1 On the one hand, as abstract groups 
they seem enormously complicated: for example, being of uncountable order, 
there is no question of giving generators and relations. On the other hand, 
they do come with the additional data of a topology and a manifold structure; 
this makes it possible-and, given the apparent hopelessness of approaching 
them purely as algebraic objects, necessary-to use geometric concepts to 
study them. 

Lie groups thus represent a confluence of algebra, topology, and geometry, 
which perhaps accounts in part for their ubiquity in modern mathematics. It 
also makes the subject a potentially intimidating one: to have to understand, 
both individually and collectively, all these aspects of a single object may be 
somewhat daunting. 

Happily,just because the algebra and the geometry /topology of a Lie group 
are so closely entwined, there is an object we can use to approach the study 
of Lie groups that extracts much of the structure of a Lie group (primarily 
its algebraic structure) while seemingly getting rid of the topological com
plexity. This is, of course, the Lie algebra. The Lie algebra is, at least according 
to its definition, a purely algebraic object, consisting simply of a vector space 
with bilinear operation; and so it might api)ear that in associating to a Lie 
group its Lie algebra we are necessarily giving up a lot of information about 
the group. This is, in fact, not the case: as we shall see in many cases (and 
perhaps all of the most important ones), encoded in the algebraic structure of 
a Lie algebra is almost all of the geometry of the group. In particular, we will 

' In spite of this there are deep, if only partially understood, relations between finite and Lie 
groups, extending even to their simple group classifications. 
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see by the end of Lecture 8 that there is a very close relationship between 
representations of the Lie group we start with and representations of the Lie 
algebra we associate to it; and by the end of the book we will make that 
correspondence exact. 

We said that passing from the Lie group to its Lie algebra represents a 
simplification because it eliminates whatever nontrivial topological structure 
the group may have had; it "flattens out," or "linearizes," the group. This, in 
turn, allows for a further simplification: since a Lie algebra is just a vector 
space with bilinear operation, it makes perfect sense, if we are asked to study 
a real Lie algebra (or one over any subfield of C) to tensor with the complex 
numbers. Thus, we may investigate first the structure and representations of 
complex Lie algebras, and then go back to apply this knowledge to the study 
of real ones. In fact, this turns out to be a feasible approach, in every respect: 
the structure of complex Lie algebras tends to be substantially simpler than 
that of real Lie algebras; and knowing the representations of the complex Lie 
algebra will solve the problem of classifying the representations of the real one. 

There is one further reduction to be made: some very elementary Lie 
algebra theory allows us to narrow our focus further to the study of semisimple 
Lie algebras. This is a subset of Lie algebras analogous to simple groups in 
that they are in some sense atomic objects, but better behaved in a number 
of ways: a semisimple Lie algebra is a direct sum of simple ones; there are easy 
criteria for the semisimplicity of a given Lie algebra; and, most of all, their 
representation theory can be approached in a completely uniform manner. 
Moreover, as in the case of finite groups, there is a complete classification 
theorem for simple Lie algebras. 

We may thus describe our approach to the representation theory of Lie 
groups by the sequence of objects 

Lie group 

~Lie algebra 

.-v-v> complex Lie algebra 

nJV+ semisimple complex Lie algebra. 

We describe this progression in Lectures 7-9. In Lectures 7 and 8 we intro
duce the definitions of and some basic facts about Lie groups and Lie algebras. 
Lecture 8 ends with a description of the exponential map, which allows us to 
establish the close connection between the first two objects above. We then 
do, in Lecture 9, the very elementary classification theory of Lie algebras that 
motivates our focus on semisimple complex Lie algebras, and at least state 
the classification theorem for these. This establishes the fact that the second, 
third, and fourth objects above have essentially the same irreducible repre
sentations. (This lecture may also serve to give a brief taste of some general 
theory, which is mostly postponed to later lectures or appendices.) In Lecture 
10 we discuss examples of Lie algebras in low dimensions. 
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From that point on we will proceed to devote ourselves almost exclusively 
to the study of semisimple complex Lie algebras and their representations. 
We do this, we have to say, in an extremely inefficient manner: we start with 
a couple of very special cases, which occupy us for three lectures ( 11-13); 
enunciate the general paradigm in Lecture 14; carry this out for the classical 
Lie algebras in Lectures 15-20; and (finally) finish off the general theory in 
Lectures 21-26. Thus, it will not be until the end that we go back and use the 
kno~ledge we have gained to say something about the original problem. In 
view of this long interlude, it is perhaps a good idea to enunciate one more 
time our basic 

Point of View: The primary objects of interest are Lie groups and their 
representations; these are what actually occur in real life and these are what 
we want to understand. The notion of a complex Lie algebras is introduced 
primarily as a tool in this study; it is an essential tool2 and we should consider 
ourselves incredibly lucky to have such a wonderfully effective one; but in the 
end it is for us a means to an end. 

The special cases worked out in Lectures 11-13 are the Lie algebras of SL2 
and SL3 . Remarkably, most of the structure shared by all semisimple Lie 
algebras can be seen in these examples. We should probably point out that 
much of what we do by hand in these cases could be deduced from the Weyl 
construction we saw in Lecture 6 (as we will do generally in Lecture 15), but 
we mainly ignore this, in order to work from a "Lie algebra" point of view 
and motivate the general story. 

' Perhaps not logically so; cf. Adams' book [Ad]. 



LECTURE 7 

Lie Groups 

In this lecture we introduce the definitions and basic examples of Lie groups and Lie 
algebras. We assume here familiarity with the definition of differentiable manifolds and 
maps between them, but no more; in particular, we do not mention vector fields, 
differential forms, Riemannian metrics, or any other tensors. Section 7.3, which 
discusses maps of Lie groups that are covering space maps of the underlying manifolds, 
may be skimmed and referred back to as needed, though working through it will help 
promote familiarity with basic examples of Lie groups. 

§7.1: Lie groups: definitions 
§7.2: Examples of Lie groups 
§7.3: Two constructions 

§7.1. Lie Groups: Definitions 

You probably already know what a Lie group is; it is just a set endowed 
simultaneously with the compatible structures of a group and a CC00 manifold. 
"Compatible" here means that the multiplication and inverse operations in 
the group structure 

x:GxG-+G 

and 
z: G-+ G 

are actually differentiable maps (logically, this is equivalent to the single 
requirement that the map G x G -+ G sending (x, y) to x · y-1 is CC00

). 

A map, or morphism, between two Lie groups G and H is just a map 
p: G-+ H that is both differentiable and a group homomorphism. In general, 
qualifiers applied to Lie groups refer to one or another of the two structures, 

.,. 

,, 
' .. 

,·1'1 
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usu.ally ~ithout much ambiguity; thus, abelian refers to the group structure, 
n-d1menswnal or connected refers to the manifold structure. Sometimes a 
condition on one structure turns out to be equivalent to a condition on the 
other; for example, we will see below that to say that a map of connected Lie 
groups <p: G--+ His a surjective map of groups is equivalent to saying that the 
differential d<p is surjective at every point. 

One area where there is some potential confusion is in the definition of a 
Lie subgroup. This is essentially a difficulty inherited directly from manifold 
theory, where we have to make a distinction between a closed submanifold of 
a manifold M, by which we mean a subset X c M that inherits a manifold 
structure from M (i.e., that may be given, locally in M, by setting a subset of 
the local coordinates equal to zero), and an immersed submanifold, by which 
we mean the image of a manifold X under a one-to-one map with injective 
differential everywhere-that is, a map that is an embedding locally in X. 
The distinction is necessary simply because the underlying topological space 
structure of an immersed submanifold may not agree with the topological 
structure induced by the inclusion of X in M. For example, the map from X 
to M could be the immersion of an open interval in IR into the plane IR 2 as a 
figure "6": 

-
Another standard example of this, which is also an example in the category 
of groups, would be to take M to be the two-dimensional real torus IR 2 /7L 2 = 
S1 x S1, and X the image in M of a line V c IR 2 having irrational slope: 

The upshot of this is that we define a Lie subgroup (or closed Lie subgroup, 
if we want to emphasize the point) of a Lie group G to be a subset that is 
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simultaneously a subgroup and a closed submanifold; and we define an 
immersed subgroup to be the image of a Lie group H under an injective 
morphism to G. (That a one-to-one morphism of Lie groups has everywhere 
injective differential will follow from discussions later in this lecture.) 

The definition of a complex Lie group is exactly analogous, the words 
"differentiable manifold" being replaced by "complex manifold" and all 
related notions revised accordingly. Similarly, to define an algebraic group one 
replaces "differentiable manifold" by "algebraic variety" and "differentiable 
map'• by "regular morphism." As we will see, the category of complex Lie 
groups is in many ways markedly different from that of real Lie groups (for 
example, there are many fewer complex Lie groups than real ones). Of course, 
the study of algebraic groups in general is quite different from either of these 
since an algebraic group comes with a field of definition that may or may not 
be a subfield of IC (it may, for that matter, have positive characteristic). In 
practice, though, while the two are not the same (we will see examples of this 
in Lecture 10, for example), the category of algebraic groups over IC behaves 
very much like the category of complex Lie groups. 

§7.2. Examples of Lie Groups 

The basic example of a Lie group is of course the general linear group GL"IR 
of invertible n x n real matrices; this is an open subset of the vector space of 
all n x n matrices, and gets its manifold structure accordingly (so that the 
entries of the matrix are coordinates on GL"IR). That the multiplication 
map GL"IR x GL"IR--+ GL"IR is differentiable is clear; that the inverse map 
G L" IR --+ GL" IR is follows from Cramer's formula for the inverse. Occasionally 
G L" 1R will come to us as the group of automorphisms of an n-dimensional 
real vector space V; when we want to think of GL"IR in this way (e.g., without 
choosing a basis for V and thereby identifying G with the group of matrices), 
we will write it as GL(V) or Aut(V). A representation of a Lie group G, of 
course, is a morphism from G to GL(V). 

Most other Lie groups are defined initially as subgroups of GL" (though 
they may appear in other contexts as subgroups of other general linear groups, 
which is, of course, the subject matter of these lectures). For the most part, 
such subgroups may be described either by equations on the entries of an 
n x n matrix, or as the subgroup of automorphisms of V ~ IR" preserving some 
structure on IR". For example, we have: 

the special linear group SL"IR of automorphisms of IR" preserving the 
volume element; equivalently, n x n matrices A with determinant 1. 

the group Bn of upper-triangular matrices; equivalently, the subgroup of 
automorphism~ of IR" preserving the flag 1 

1 In general, a flag is a sequence of subspaces of a fixed vector space, each properly contained in 
the next; it is a complete flag if each has one dimension larger than the preceding, and partial 
otherwise. 

i·: 
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0 = Vo c: Vi c: V2 c: · · · V..-1 c: V,, = !Rn, 

wh~re Vi is the ~pan of the standard basis vectors e 1 , ••• , e1• Note that choosing 
a different basts and correspondingly a different flag yields a different sub
group of GLn!R, but one isomorphic to (indeed, conjugate to) Bn. Somewhat 
more generally, for any sequence of positive integers a1 , ••• , ak with sum n we 
can look at the group of block-upper-triangular matrices; this is the subgroup 
of .automorphisms of !Rn preserving a partial flag 

0 = Vo c: Vi c: V2 c: · · · c: Vi-1 c: Vi = !Rn, 

where the dimension of Vi is a1 + · · · + a1• If the subspace Vi is spanned by the 
first a1 + · · · + a, basis vectors, the group will be the set of matrices of the form 

( 
* * * * 
0 * * * 
0 0 * * 
0 0 0 * 

The group Nn of upper-triangular unipotent matrices (that is, upper triangular 
with 1 'son the diagonal); equivalently, the subgroup of automorphisms of !Rn 
preserving the complete flag { 111} where Vi is the span of the standard basis 
vectors e 1 , •.. , e1, and acting as the identity on the successive quotients J1i+

1 
/V;. 

As before, we can, for any sequence of positive integers a1 , ••• , ak with sum n, 
look at the group of block-upper-triangular unipotent matrices; this is the 
subgroup of automorphisms of !Rn preserving a partial flag and acting as 
the identity on successive quotients, i.e., matrices of the form 

( 
I * * * 
0 I * * 
0 0 I * 
0 0 0 I 

Next, there are the subgroups of GLn!R defined as the group of transforma
tions of V = !Rn of determinant 1 preserving some bilinear form Q: V x V-+ V. 
If the bilinear form Q is symmetric and positive definite, the group we get 
is called the (special) orthogonal group SOn!R (sometimes written SO(n); see 
p. 100). If Q is symmetric and nondegenerate but not definite-e.g., if it has k 
positive eigenvalues and I negative-the group is denoted SOk, 11R or SO(k, /); 
note that SO(k, l) ~ SO(/, k). If Q is skew-symmetric and nondegenerate, the 
group is called the symplectic group and denoted Spn IR; note that in this case 
n must be even. 

The equations that define the subgroup ofGLn!R preserving a bilinear form 
Qare easy to write down. Ifwe represent Q by a matrix M-that is, we write 

Q(v, w) = 'v · M · w 

&7.2. Examples of Lie Groups 

for all v, we !Rn-then the condition 

Q(Av, Aw)= Q(v, w) 

translates into the condition that 

'v·'A·M·A·w = 'v·M·w 

for all v and w; this is equivalent to saying that 

'A·M·A=M. 
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Thus, for example, if Q is the symmetric form Q(v, w) = 'v · w given by the 
identity matrix M = In, the group SOn IR is just the group of n x n real matrices 
A of determinant 1 such that 'A = A-1

• 

Exercise 7.1*. Show that in the case of Sp2n!R the requirement that the 
transformations have determinant 1 is redundant; whereas in the case of SOn IR 
if we do not require the transformations to have determinant 1 the group we 
get (denoted On!R, or sometimes O(n)) is disconnected. 

Exercise 7.2*. Show that SO(k, I) has two connected components if k and I are 
both positive. The connected component containing the identity is often 
denoted so+(k, /). (Composing with a projection onto !Rk or IR1, we may 
associate to an automorphism A e SO(k, /) automorphisms of !Rk and IR1

; 

so+(k, /)will consist of those A e SO(k, /)whose associated automorphisms 
preserve the orientations of !Rk and IR1

.) 

Note that if the form Q is degenerate, a transformation preserving Q will 
carry its kernel 

Ker(Q) = {v e V: Q(v, w) = 0 Vw e V} 

into itself; so that the group we get is simply the group of matrices preserving 
the subspace Ker(Q) and preserving the induced nondegenerate form Q on the 
quotient V/Ker(Q). Likewise, if Q is a general bilinear form, that is, neither 
symmetric nor skew-symmetric, a linear transformation preserving Q will 
preserve the symmetric and skew-symmetric parts of Q individually, so we just 
get an intersection of the subgroups encountered already. At any rate, we 
usually limit our attention to nondegenerate forms that are either symmetric 
or skew-symmetric. 

Of course, the group G Ln C of complex linear automorphisms of a complex 
vector space V = en can be viewed as subgroup of the general linear group 
G L2. ~;it is, thus, a real Lie group as well, as is the subgroup SLnC of n x n 
complex matrices of determinant 1. Similarly, the subgroups SOnC c: SLnC 
and Sp2nC c: SL2nC of transformations of a complex vector space preserving 
a symmetric and skew-symmetric nondegenerate bilinear form, respectively, 
arc real as well as complex Lie subgroups. Note that since all nondegenerate 
bilinear symmetric forms on a complex vector space are isomorphic (in partic-
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ular, there is no such thing as a signature), there is only one complex 
orthogonal subgroup SOnC c SLnC up to conjugation; there are no analogs 
of the groups SOk, 1 IR. 

Another example we can come up with here is the unitary group Un or U(n), 
defined to be the group of complex linear automorphisms of an n-dimensional 
complex vector space V preserving a positive definite Hermitian inner product 
H on V. (A Hermitian form H is required to be conjugate linear in the 
first2 factor, and linear in the second: H(Av, µw) = IH(v, w)µ, and H(w, v) = 
H(v, w); it is positive definite if H(v, v) > 0 for v =F 0.) 

Just as in the case of the subgroups SO and Sp, it is easy to write down the 
equations for U(n): for some n x n matrix M we can write the form H as 

H(v,w)='v·M·w, Vv,wecn 

(note that for H to be conjugate symmetric, M must be conjugate symmetric, 
i.e., 1 M = M); then the group U(n) is just the group of n x n complex matrices 
A satisfying 

1A-M·A=M. 

In particular, if His the "standard" Hermitian inner product H(v, w) = 'V· w 
given by the identity matrix, U(n) will be the group ef n x n complex matrices 
A such that 'A= A-1. 

Exercise 7.3. Show that if His a Hermitian form on a complex vector space 
V, then the real part R = Re(H) of H is a symmetric form on the underlying 
real space, and the imaginary part C = Im(H) is a skew-symmetric real 
form; these are related by C(v, w) = R(iv, w). Both R and C are invariant by 
multiplication by i: R(iv, iw) = R(v, w). Show conversely that any such real 
symmetric R is the real part of a unique Hermitian H. Show that if H is • 

standard, so is R, and C corresponds to the matrix J = ( O In). Deduce 
-In 0 

that 

U(n) = 0(2n) n Sp2n1R. 

Note that the determinant ofa unitary matrix can be any complex number 
of modulus 1; the special unitary group, SU(n), is the subgroup of U(n) of 
automorphisms with determinant 1. The subgroup of GLnC preserving an 
indefinite Hermitian inner product with k positive eigenvalues and I negative 
ones is denoted Uk.I or U(k, /); the subgroup of those of determinant 1 is 
denoted suk,I or SU(k, /). 

In a similar vein, the group GLnlHI of quaternionic linear automorphisms 
of an n-dimensional vector space V over the ring IHI of quaternions is a real 

2 This choice of which factor is linear and which conjugate linear is less common than the other. 
It makes little difference in what follows, but it does have the small advantage of being compatible 
with the natural choice for quaternions. 

§7.2. Examples of Lie Groups 
99 

Lie subgroup of the group GL4n!R, as are the fur~her su~groups of IHl-lin~ar 
transformations of v preserving a bili~ear form. S10c~ IHI 1s not commuta~1ve, 
care must be taken with the conventions here, and 1t may be worth a l~ttle 
digression to go through this now. We take the vector spaces ~ t? b~ nght 
IHJ-modules; IHln is the space of column vectors ~it~ right ~ult1pbcat1on by 

1 In this way the n x n matrices with entnes 10 IHI act 10 the usual way 
sea ars. 1 ) • IHI l" 
on won the left. Scalar multiplication on the left (on Y is - 10ear. . 

View IHI = C $ jC ~ C2. Then left multiplication by elements of IHI give 
![>linear endomorphisms of C2, which determines a mapping IHI --+ ~i.C to 
the 2 x 2 complex matrices. In particular, IHI* = GL1 IHI c:.+ GL2 C. Similarly 
W = C" $ jC" = C 2", so we have an embedding GL"IHI c:.+ ?L2"C. Note t~at 
a C-linear mapping cp: IHI"--+ IHI" is IHI-linear exactly ~hen 1t co~~ute~ with 
j: cp(vj) = cp(v)j. If v = v1 + jv2 , then v · j = -v2 + jv1, so mult1pbcat1on by 

·takes (v1) to (0 -I) (~1). It follows that if J is the matrix of the preceding 
1 v2 I 0 v2 

exercise, then 
GLnlHI ={A E GL2nC: AJ = JA}. 

Those matrices with real determinant 1 form a subgroup SLnlHI. . . 
A Hermitian form (or "symplectic scalar product") on~ quaterm.omc ~ector 

space vis an IR-bilinear form K: V x V--+ IHI that is c~nJugate IHl-hnear 1~ the 
first factor and IHI-linear in the second: K(vA, wµ) = AK(v, w)µ, and s~Usfies 
K(w, v) = K(v, w). It is positive definite if K(v, v) > 0 for v =F ~·(Th~ conjugate 
)_ of a quaternion A = a + bi + cj + dk is defined to be a - bi - CJ -: dk.) The 
standard Hermitian form on IHln is I:v1w1• The group of automorphisms of an 
n-dimensional quaternionic space preserving such a form is called the compact 
s ymplectic group and denoted Sp(n) or U H(n). The standard Hermitian form on 

nnn is I:v,w,. 

Exercise 7.4. Regarding Vas a complex vector space, show that every quater

nionic Hermitian form K has the form 

K(v, w) = H(v, w) + jQ(v, w), 

where H is a complex Hermitian form and Q is a skew-symmetric co.mp~ex 
linear form on V, with Hand Q related by Q(v, w) = H(vj, w), an? .H sat~fy10g 
the condition H(vj, wj) = H(v, w). Conversely, an~ such Her~1tl~n H 1s the 
complex part of a unique K. If K is standard, so 1s H, and Q 1s given by the 

same matrix as in Exercise 7.3. Deduce that 

Sp(n) = U(2n) n SpznC. 

This shows that the two notions of "symplectic" are compatible. 

More generally, if K is not positive definite, but has signature. (p, ~), say the 
standard Lf=i v1w1 - Lf~:+i v1w1, the autom~r.phisms pres~rv1~g 1t form a 
group Up,qlHI. Or if the form is a skew Hermitian form (sat1sfy10g the same 
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linearity conditions, but with K(w, v) = -K(v, w)), the group is denoted 
u:ll-D. 

Exercise 7.5. Identify, among all the real Lie groups described above, which 
ones are compact. 

Complex Lie Groups 

So far, all of our examples have been examples of real ~ie groups. As for 
complex Lie groups, these are fewer in number. The general hnear group G Ln C 
is one and again, all the elementary examples come to us as subgroups of the 
gener~l linear group GLnC. There is, for example, the subgroup. SOnC of 
automorphisms of an n-dimensional complex vector space V havmg deter
minant 1 and preserving a nondegenerate symmetric bilinear form Q (note 
that Q no longer has a signature); and likewise the subg!ou~. SpnC of trans
formations of determinant 1 preserving a skew-symmetric bilinear form. 

Exercise 7.6. Show that the subgroup SU(n) c SLnC is no~ a co.mplex Lie 
subgroup. (It is not enough to observe that the defining equations given above 
are not holomorphic.) 

Exercise 7.7. Show that none of the complex Lie groups described above is 
compact. 

We should remark here that both of these exercises are immediate c~n
sequences of the general fact that any compact complex Lie group is.abelian; 
we will prove this in the next lecture. A representation of a complex Lie group 
G is a map of complex Lie groups from G to GL(V) = ?LnC ~or an n
dimensional complex vector space V; note that such a map is required to be 
complex analytic. 

Remarks on Notation 

A common convention is to use a notation without subscripts or mention of 
ground field to denote the real groups: 

O(n), SO(n), SO(p, q), U(n), SU(n), SU(p, q), Sp(n) 

and to use subscripts for the algebraic groups GLn, SLn, ~On, and Spn. Thi~ 
of course, introduces some anomalies: for example: SO?IR is ~O(n), but S~n 
is not Sp(n)· but some violation of symmetry seems mevitable m any notation. 
The notati~ns GL(n, IR) or GL(n, C) are often used in place of our GLnlR or 
GLnC, and similarly for SL, SO, and Sp. . . 

Also where we have written SP2n• some write Spn. In practice, it seems that 
those ~ost interested in algebraic groups or Lie algebras use the former 
notation and those interested in compact groups the latter. Other c~mmond 

' · 1 f GL 11-D Sp(p q) for our U 1n1, an notations are U*(2n) m pace o our n • • p,q 

0*(2n) for our u:ll-D. 

§7.3. Two Constructions 
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Exercise 7.8. Find the dimensions of the various real Lie groups GLnlR, SLnlR, 
B., N., SOnlR, SOk, 11R, Sp2n1R, U(n), SU(n), GLnC, SLnC, GL.11-D, and Sp(n) 
introduced above. 

§7.3. Two Constructions 

There are two constructions, in some sense inverse to one another, that arise 
frequently in dealing with Lie groups (and that also provide us with further 
examples of Lie groups). They are expressed in the following two statements. 

Proposition 7.9. Let G be a Lie group, Ha connected manifold, and <p: H-+ Ga 
covering space map. 

3 
Let e' be an element lying over the identity e of G. Then 

there is a unique Lie group structure on H such that e' is the identity and <p is 
a map of Lie groups; and the kernel of <p is in the center of H. 

Proposition 7.10. Let H be a Lie group, and r c Z(H) a discrete subgroup of 
its center. Then there is a unique Lie group structure on the quotient group 
G = H/r such that the quotient map H-+ G is a Lie group map. 

The proof of the second proposition is straightforward. To prove the first, one 
shows that the multiplication on G lifts uniquely to a map H x H-+ H which 
takes (e', e') toe', and verifies that this product satisfies the group axioms. In 
fact, it suffices to do this when H is the universal covering of G, for one can 
then apply the second proposition to intermediate coverings. O 

Exercise 7.11 •. (a) Show that any discrete normal subgroup of a connected 
Lie group Gisin the center Z(G). 

(b) If Z(G) is discrete, show that G/Z(G) has trivial center. 

These two propositions motivate a definition: we say that a Lie group map 
between two Lie groups G and His an isogeny if it is a covering·space map 
of the underlying manifolds; and we say two Lie groups G and Hare isogenous 
if there is an isogeny between them (in either direction). Isogeny is not an 
equivalence relation, but generates one; observe that every isogeny equiv
alence class has an initial member (that is, one that maps to every other one 
hy an isogeny)-that is, just the universal covering space G of any one-and, 
if the center of this universal cover is discrete, as will be the case for all our 
semisimple groups, a final object G/Z(G) as well. For any group Gin such an 
~quiv~lence class, we will call G the simply connected form of the group G, and 
G/Z(G)(if it exists) the adjoint form (we will see later a more general definition 
of adjoint form). 

·' This means that <p is a continuous map with the property that every point of G has a 
neighborhood U such that <p-

1
(U) is a disjoint union of open sets each mapping homeomor

phically to U. 
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Exercise 7.12. If H ~ G is a covering of connected Lie groups, show that Z ( G) 
is discrete if and only if Z(H) is discrete, and then H/Z(H) = G/Z(G). There
fore, if Z(G) is discrete, the adjoint form of G exists and is G/Z(G). 

To apply these ideas to some of the examples discussed, note that the center 
of SL" (over IR or C) is just the subgroup of multiples of the identity by an nth 
root of unity; the quotient may be denoted PSL"IR or PSL"C. In the complex 
case, PSL"C is isomorphic to the quotient of GL"C by its center c• of scalar 
matrices, and so one often writes PG L" C instead of PSL" C. The center of the 
group SO" is the subgroup { ± J} when n is even, and trivial when n is odd; in 
the former case the quotient will be denoted PSO"IR or PSO"C. Finally the 
center of the group Sp2" is similarly the subgroup { ± J}, and the quotient is 
denoted PSp2nlR or PSP2nC. 

Exercise 7.13•. Realize PGL"C as a matrix group, i.e., find an embedding 
(faithful representation) PGL"C c:.+ GLNC for some N. Do the same for the 
other quotients above. 

In the other direction, whenever we have a Lie group that is not simply 
connected, we can ask what its universal covering space is. This is, for example, 
how the famous spin groups arise: as we will see, the orthogonal groups SO"IR 
and sonc have fundamental group "11./2, and so by the above there exist 
connected, two-sheeted covers of these groups. These are denoted Spin"IR and 
Spin"C, and will be discussed in Lecture 20; for the time being, the reader may 
find it worthwhile (if frustrating) to try to realize these as matrix groups. The 
last exercises of this section sketch a few steps in this direction which can be 
done now by hand. 

Exercise 7.14. Show that the universal covering of U(n) can be identified 
with the subgroup of the product U(n) x IR consisting of pairs (g, t) with 
det(g) = e"11

• 

Exercise 7.15. We have seen in Exercise 7.4 that 

SU(2) = Sp(2) = {q e IHI: qq = l}. 

Identifying IR3 with the imaginary quaternions (with basis i, j, k), show that, 
for qq = 1, the map v1-+qvqmaps IR3 to itself, and is an isometry. Verify that 
the resulting map 

SU(2) = Sp(2) ~ S0(3) 

is a 2: 1 covering map. Since the equation qq = 1 describes a 3-sphere, SU(2) 
is the universal covering of S0(3); and S0(3) is the adjoint form of SU(2). 

Exercise 7.16. Let M 2C = C4 be the space of 2 x 2 matrices, with symmetric 
form Q(A, B) = t Trace(A.81), where .81 is the adjoint of the matrix B; the 
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quadratic form associated to Q is the determinant. For g and h in SL2C, the 
mapping A1-+gAh-1 is in S04 C. Show that this gives a 2: 1 covering 

SL2C x SL2C ~ S04 C, 

which, since SL2 C is simply connected, realizes the universal covering of 
S04 C. 

Exercise 7.17. Identify C3 with the space of traceless matrices in M2C, so 
q e•SL2 C acts by A 1-+ gAg-1

• Show that this gives a 2: 1 covering 

SL2C ~so3C, 

which realizes the universal covering of S03 C. 

11 
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LECTURE 8 

Lie Algebras and Lie Groups 

In this crucial lecture we introduce the definition of the Lie algebra associated to a Lie 
group and its relation to that group. All three sections are logically necessary for what 
follows; §8.1 is essential. We use here a little more manifold theory: specifically, the 
differential of a map of manifolds is used in a fundamental way in §8.1, the notion of 
the tangent vector to an arc in a manifold is used in §8.2 and §8.3, and the notion of a 
vector field is introduced in an auxiliary capacity in §8.3. The Campbell-Hausdorff 
formula is introduced only to establish the First and Second Principles of §8.1 below; 
if you are willing to take those on faith the formula (and exeroises dealing with it) can 
be skimmed. Exercises 8.27-8.29 give alternative descriptions of the Lie algebra 
associated to a Lie group, but can be skipped for now. 

§8.1: Lie algebras: motivation and definition 
§8.2: Examples of Lie algebras 
§8.3: The exponential map 

§8.1. Lie Algebras: Motivation and Definition 

Given that we want to study the representations of a Lie group, how do we 
go about it? As we have said, the notions of generators and relations is hardly 
relevant here. The answer, of course, is that we have to use the continuous 
structure of the group. The first step in doing this is 

Exercise 8.1. Let G be a connected Lie group, and U c G any neighborhood 
of the identity. Show that U generates G. 

This statement implies that any map p: G-+ H between connected Lie 
groups will be determined by what it does on any open set containing the 
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identity in G, i.e., pis determined by its germ ate e G. In fact, we can extend 
this idea a good bit further: later in this lecture we will establish the 

First Principle: Let G and H be Lie groups, with G connected. A map p: G -+ H 
is uniquely determined by its differential dp.,: T.,G-+ T.,H at the identity. 

This is, of course, great news: we can completely describe a homomorphism 
of Lie groups by giving a linear map between two vector spaces. It is not really 
worth that much, however, unless we can give at least some answer to the 
next, obvious question: which maps between these two vector spaces actually 
arise as differentials of group homomorphisms? The answer to this is expressed 
in the Second Principle below, but it will take us a few pages to get there. To 
start, we have to ask ourselves what it means for a map to be a homomor
phism, and in what ways this may be reflected in the differential. 

To begin with, the definition of a homomorphism is simply a CC00 map p 
such that 

p(gh) = p(g). p(h) 

for all g and h in G. To express this in a more confusing way, we can say that 
a homomorphism respects the action of a group on itself by left or right multi
plirntion: that is, for any g e G we denote by m : G-+ G the differentiable map 
given by multiplication by g, and observe that a CC00 map p: G-+ H of Lie 
groups will be a homomorphism if it carries m tom < >in the sense that the 
d

. g pg 

1agram 

commutes. 

G-H 
p 

The problem with this characterization is that, since the maps m have no 
fixed points, it is hard to associate to them any operation on the tan;ent space 
to G at one point. This suggests looking, not at the diffeomorphisms m , but 
at the automorphisms of G given by conjugation. Explicitly, for any g e 

9 

G we 
define the map 

by 

('I' . . " is actually a Lie group map, but that is not relevant for our present 
purposes.) It is now equally the case that a homomorphism p respects the action 
of a group G on itself by conjugation: that is, it will carry 'I' into 'I' in the 
sense that the diagram 

9 
P<B> 

' 

" 

I 
I 
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G---+ H 
p 
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commutes. We have, in other words, a natural map 

'I': G--+ Aut(G}. 

The advantage of working with 'l'g is that it fixes the identity element e E G; 
we can therefore extract some of its structure by looking at its differential at 

e: we set 
(8.2) 

This is a representation 
(8.3) 

of the group G on its own tangent space, called the adjoint representation of 
the group. This gives a third characterization 1 : a homomorphism p respects the 
adjoint action of a group G on its tangent space TeG at the identity. In other 
words, for any g E G the actions of Ad(g) on 4G and Ad(p(g)) on TeH must 
commute with the differential (dp)e: TeG--+ TeH, i.e., the diagram 

TeG~ 4H 

""' l \ """" 
TeG ~ TeH 

commutes; equivalently, for any tangent vector v E TeG, 

dp(Ad(g)(v}} = Ad(p(g))(dp(v)). (8.4) 

This is nice, but does not yet answer our question, for preservation of the 
adjoint representation Ad: G--+ Aut(4G) still involves the map p on the group 
G itself, and so is not purely a condition on the differential (dp)e· We have 
instead to go one step further, and take the differential of the map Ad. The 
group Aut(4G) being just an open subset of the vector space of endomor
phisms of TeG, its tangent space at the identity is naturally identified with 
End(4G); taking the differential of the map Ad we arrive at a map 

ad: 4G--+ End('I'eG). (8.5) 

This is essentially a trilinear gadget on the tangent space TeG; that is, we can 
view the image ad(X)(Y} of a tangent vector Y under the map ad(X} as a 

1 "Characterization" is not the right word here (or in the preceding case), since we do not 
mean an equivalent condition, but rather something implied by the condition that P be a 

homomorphism. 
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function of the two variables X and Y, so that we get a bilinear map 

'I'eG x 4G--+ 4G. 
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We use the notation [ , ] for this bilinear map; that is, for a pair of tangent 
vectors X and Y to G at e, we write 

[X, Y] ~ ad(X)(Y). (8.6) 

As desir~d, the map ad involves only the tangent space to the group G at 
e, and _so gives us ~ur final characterization: the differential (dp)e of a homo
morph1s~ p on a L~e. group G respects the adjoint action of the tangent space 
to~ o~ 1tse_lf. ~xphc1tly, the fact that p and dpe respect the adjoint represen
tation 1mphes m turn that the diagram 

4G~ 

~·'] 
T.G-e (dp). 

'I'eH 

]~·•(•)) 
'I'eH 

commutes; i.e., for any pair of tangent vectors X and Y to G at e 

dpe(ad(X)(Y)) = ad(dpe(X))(dpe(Y)). 

or, equivalently, 

, 

(8.7) 

dpe([X, Y]) = [dpe(X), dpe(Y)]. (8.8) 

All t?is m~y be fairly confusing (if it is not, you probably do not need to 
~~e~eadmg this book). Two things, however, should be borne in mind. They 

(i) It is not so bad, in the sense that we can make the bracket operation, 
as defined above, reasonably explicit. We do this first for the general linear 
group G = GLnlR. Note that in this case conjugation extends to the ambient 
hnea~~pace E ~ End(~n) = MnlR ~f?LnlR by the same formula: Ad(g)(M) = 
~Mg , ~n~ t~1s a~b1ent s~ace is identified with the tangent space 4G; 

ifferenttatlon m Eis usual differentiation of matrices. For any pair of tangent 
vectors X and Y to GLnlR ate, let y: I--+ G be an arc with y(O) = e and tangent 
vector y'(O) = X. Then our definition of [X, Y] is that 

[X, Y] = ad(X)(Y) =!!__I (Ad(y(t))(Y)). 
dt t=O 

Applying the product rule to Ad(y(t))(Y) = y(t) Yy(t(1, this is 

= y'(O) · Y · y(O) + y(O) · Y · ( -y(0(1 
• y'(O) · y(0(1

) 

= X· Y- Y·X, 

~r~:ch,. of ~ourse, explains the bracket notation. In general, any time a Lie 
g u P is given as a subgroup of a general linear group G Ln IR, we can view its 
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tangent space T.,G at the identity as a subspace of the space of endomorphisms 
of IR"; and since bracket is preserved by (differentials of) maps of Lie groups, 
the bracket operation on T.,G will coincide with the commutator. 

(ii) Even if it were that bad, it would be worth it. This is becau~e it turns .out 
that the bracket operation is exactly the answer to the question we raised 
before. Precisely, later in this lecture we will prove the 

Second Principle: Let G and H be Lie groups, with G connected and simply 
connected. A linear map T.,G-+ TeH is the differential of a homomorphism 
p: G -+ H if and only if it preserves the bracket operation, in the sense of (8.8) 
above. 

We are now almost done: maps between Lie groups are classified by maps 
between vector spaces preserving the structure of a bilinear map from the 
vector space to itself. We have only one more question to answer: when does 
a vector space with this additional structure actually arise as the tangent sp~ce 
at the identity to a Lie group, with the adjoint or bracket product? Happily, 
we have the answer to this as well. First, though it is far from clear from our 
initial definition, it follows from our description of the bracket as a comm~
tator that the bracket is skew-symmetric, i.e, [X, Y] = -[Y, X]. Second, 1t 
likewise follows from the description of [X, Y] as a commutator that it 
satisfies the Jacobi identity: for any three tangent vectors X, Y, and Z, 

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0. 

We thus make the 

Definition 8.9. A Lie algebra g is a vector space together with a skew-symmetric 
bilinear map 

[ ' ]: g x g-+ g 

satisfying the Jacobi identity. 

We should take a moment out here to make one important point. Why, 
you might ask, do we define the bracket operation in terms of the relatively 
difficult operations Ad and ad, instead of just defining [X, Y] to be the 
commutator X · Y - Y · X? The answer is that the "composition" X · Y of 
elements of a Lie algebra is not well defined. Specifically, any time we em~ed 
a Lie group G in a general linear group GL(V), we get a correspondmg 
embedding of its Lie algebra gin the space End(V), and can talk about the 
composition X ·Ye End(V) of elements of g in this context; but it m~st be 
borne in mind that this composition X · Y will depend on the embeddmg of 
g, and for that matter need not even be an element of g. Only the com?1utator 
X · Y - Y ·Xis always an element of g, independent of the representation. The 
terminology sometimes heightens the confusion: for example, when we speak 
of embedding a Lie algebra in the algebra End(V) of endomorphisms of V, the 
word algebra may mean two very different things. In general, when we want 
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to refer to the endomorphisms of a vector space V (resp. !Rn) as a Lie algebra, 
we will write gl(V) (resp. gln!R) instead of End(V) (resp. Mn!R). 

To return to our discussion of Lie algebras, a map of Lie algebras is a linear 
map of vector spaces preserving the bracket, in the sense of (8.8); notions like 
Lie subalgebra are defined accordingly. We note in passing one thing that will 
turn out to be significant: the definition of Lie algebra does not specify the 
field. Thus, we have real Lie algebras, complex Lie algebras, etc., all defined 
in the same way; and in addition, given a real Lie algebra g we may associate 
to it·a complex Lie algebra, whose underlying vector space is g ® C and whose 
bracket operation is just the bracket on g extended by linearity. 

Exercise 8.10*. The skew-commutativity and Jacobi identity also follow from 
the naturality of the bracket (8.8), without using an embedding in gl(V): 

(a) Deduce the skew-commutativity [X, X] = 0 from that fact that any X can 
be written the image of a vector by dpe for some homomorphism p: IR-+ G. 
(See §8.3 for the existence of p.) 

(b) Given that the bracket is skew-commutative, verify that the Jacobi identity 
is equivalent to the assertion that 

ad = d(Ad)e: g-+ End(g) 

preserves the bracket. In particular, ad is a map of Lie algebras. 

To sum up our progress so far: taking for the moment on faith the state
ments made, we have seen that 

(i) the tangent space g at the identity to a Lie group G is naturally endowed 
with the structure of a Lie algebra; 

(ii) if G and H are Lie groups with G connected and simply connected, 
the maps from G to H are in one-to-one correspondence with maps of 
the associated Lie algebras, by associating to p: G -+ H its differential 
(dp)e: g-+ ~· 

Of course, we make the 

Definition 8.11. A representation of a Lie algebra g on a vector space V is 
simply a map of Lie algrbras 

p: g-+ gl(V) = End(V), 

i.e., a linear map that preserves brackets, or an action of g on V such that 

[X, Y](v) = X(Y(v)) - Y(X(v)). 

Statement (ii) above implies in particular that representations of a connected 
and simply connected Lie group are in one-to-one correspondence with repre-

. .. 
'•. 

.\ 
" , 

i \ 
I 
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sentations of its Lie algebra. This is, then, the first step of the series of 
reductions outlined in the introduction to Part II. 

At this point, a few words are in order about the relation ~tween _repr~
sentations of a Lie group and the corresponding representat~ons of its Lie 
algebra. The first remark to make is about tensors. Recall that i~ V and Ware 
representations of a Lie group G, then w_e define the representation V ® W to 
be the vector space V ® W with the action of G described by 

g(v ® w) = g(v) ® g(w). 

The definition for representations of a Lie algebra, however, is qui_te different. 
For one thing, if g is the Lie algebra of G, so that the representation of G on 
the vector spaces V and W induces representations of g on these spaces, we 
want the tensor product of the representations V and W of g to be the 
representation induced by the action of G on V ® W abov~. But now suppose 
that { y,} is an arc in G with Yo = e and tangent vector Yo = X e g. Then by 
definition the action of X on V is given by 

X(v) = dd I y,(v) 
t t=O 

and similarly for we W; it follows that the action of X on the tensor product 

v® w is 

X(v ® w) = :t \,=o (y1(v) ® y,(w)) 

= (~\ y,(v)) ® w + v ® (:t\ _ y,(w)), 
dt t=O t-0 

so 

X(v ® w) = X(v) ® w + v ® X(w). (8.12) 

This, then, is how we define the action of a Lie algebra g on the tensor product 
of two representations of g. This describes as well other tensors: for example, 
if Vis a representation of the group G, v e Vis any vector and v

2 
e Sym

2 
V 

its square, then for any g e G, 

g(v2) = g(v)2. 

On the other hand, if V is a representation of the Lie algebra g and X e 9 is 
any element, we have 

X(v2
) = 2 · v · X(v). (8.13) 

One further example: if p: G-+ GL(V) is a representation of the group G, the 
dual representation p': G-+ GL(V*) is defined by setting 

p'(g) = 'p(g- 1 
): v•-+ v•. 

Differentiating this, we find that if p: g-+ gl(V) is a representation of a Lie 
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algebra g, the dual representation of g on v• will be given by 

p'(X) = 1p(-X) = - 1p(X): v•-+ v•. 
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(8.14) 

A second and related point to be made concerns terminology. Obviously, 
when we speak of the action of a group G on a vector space V preserving some 
extra structure on V, we mean that literally: for example, if we have a quadratic 
form Q on V, to say that G preserves Q means just that 

Q(g(v), g(w)) = Q(v, w), Vg e G and v, we V. 

Equivalently, we mean that the associated action of G on the vector space 
Sym 2 V* fixes the element Q e Sym2 V*. But by the above calculation, the 
action of the associated Lie algebra g on V satisfies 

Q(v, X(w)) + Q(X(v), w) = 0, VX e g and v, we V (8.15) 

or, equivalently, Q(v, X(v)) = 0 for all Xe g and v e V; in other words, the 
induced action on Sym2 V* kills the element Q. By way of terminology, then, 
we will in general say that the action of a Lie algebra on a vector space preserves 
some structure when a corresponding Lie group action does. 

The next section will be spent in giving examples. In §8.3 we will establish 
the basic relations between Lie groups and their Lie algebras, to the point 
where we can prove the First and Second Principles above. The further 
statement that any Lie algebra is the Lie algebra of some Lie group will follow 
from the statement (see Appendix E) that every Lie algebra may be embedded 
in nI.IR. 

Exercise 8.16*. Show that if G is connected the image of Ad: G-+ GL(g) is the 
adjoint form of the group G when that exists. 

Exercise 8.17*. Let V be a representation of a connected Lie group G and 
p: !1-+ End(V) the corresponding map of Lie algebras. Show that a subspace 
W of Vis invariant by G if and only if it is carried into itself under the action 
of the Lie algebra g, i.e., p(X)(W) c W for all X in g. Hence, V is irreducible 
over G if and only if it is irreducible over g. 

§8.2. Examples of Lie Algebras 

We start with the Lie algebras associated to each of the groups mentioned in 
Le~tur~ 7. Each of these groups is given as a subgroup ofGL(V) = GL.IR, so 
their Lie algebras will be subspaces of End(V) = gl.IR. 

Consider first the special linear group SL. IR. If {A,} is an arc in SL. IR with 
Ao = I and tangent vector A~ = X at t = 0, then by definition we have for 
any basis e1, ••• , e. of V = IR", 

A,(ei) " · · · " A,(e.) = e1 " • · • " e •. 

,/ 

•" ,. 
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Taking the derivative and evaluating at t = 0 we have by the product rule 

0 = dd l (A 1(ei) /\ .. · /\ A1(en)) 
t t=O 

= ~>1 /\ .. • /\ X(e1) /\ .. • /\ en 

= Trace(X) · (e 1 " .. • " e"). 

The tangent vectors to SL" IR are thus all endomorphisms of trace O; comparing 
dimensions we can see that the Lie algebra sl" IR is exactly the vector space of 
traceless n x n matrices. 

The orthogonal and symplectic cases are somewhat simpler. For example, 
the orthogonal group O" IR is defined to be the automorphisms A of an 
n-dimensional vector space V preserving a quadratic form Q, so that if { A1} 

is an arc in On IR with A0 = I and A~ = X we have for every pair of vectors v, 
weV 

Q(A1(v), A1(w)) = Q(v, w). 

Taking derivatives, we see that 

Q(X(v), w) + Q(v, X(w)) = 0 (8.18) 

for all v, w e V; this is exactly the condition that describes the orthogonal Lie 
algebraso"IR = o"IR. In coordinates, if the quadratic form Q is given on V = IR" 
as 

Q(v, w) = 1v·M·w (8.19) 

for some symmetric n x n matrix M, then as we have seen the condition on 
A e GL"IR to be in O"IR is that 

1A·M·A = M. (8.20) 

Differentiating, the condition on an n x n matrix X to be in the Lie algebra 
so" IR of the orthogonal group is that 

'X · M + M · X = 0. (8.21) 

Note that if M is the identity matrix-i.e., Q is the "standard" quadratic 
form Q(v, w) = 1v ·won IR"-then this says that so"IR is the subspace of skew
symmetric n x n matrices. To put it intrinsically, in terms of the identification 
of V with V* given by the quadratic form Q, and the consequent identification 
End(V) = V ® V* = V ® V, the Lie algebra so" IR c End(V) is just the sub
space /\2 V c V ® V of skew-symmetric tensors: 

so"IR = /\2 V c End(V) = V ® V. (8.22) 

All of the above, with the exception of the last paragraph, works equally 
well to describe the Lie algebra sp2"1R of the Lie group Sp2"1R of transforma
tions preserving a skew-symmetric bilinear form Q; that is, sp 2.IR is the 
subspace of endomorphisms of V satisfying (8.18) for every pair of vectors v, 
we V, or, if Q is given by a skew-symmetric 2n x 2n matrix Mas in (8.19), the 
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space of matrices satisfying (8.21). The one statement that has to be substan
tially m~dified i.s. the last ?ne o~ the last paragraph: because Q is skew
symmetnc, cond1tton (8.18) 1s eqmvalent to saying that 

Q(X(v), w) = Q(X(w), v) 

for all v, w.e V; thus, in terms of the identification of V with v• given 
by Q, the Lie algebra sp2"1R c End(V) = V ® V* = V ®Vis the subspace 
Sym 2 V c V® V: 

SP2nlR = Sym2 V c End(V) = V ® V. (8.23) 

faercise 8.24*. With Q a standard skew form, say of Exercise 7.3, describe 
Spz.IR and its Lie algeb~a sp2"1R (as subgroup of GL2"1R and subalgebra of 
nl 2.IR). Do a correspondmg calculation for sok.,IR. 

One mor~ s~milar exam~le is that of the Lie algebra u" of the unitary group 
U(n); by a s~mtlar calculation we find that the Lie algebra of complex linear 
endomorphisms of C" preserving a Hermitian inner product His just the space 
of matrices X satisfying 

H(X(v), w) + H(v, X(w)) = 0, 'r/v, we V; 

if H is given b~ 1!(v, w) = '.!!· w, this amounts to saying that Xis conjugate 
skew-symmetric, 1.e., that 'X = - X. 

Exercise 8.25: Find the Lie algebras of the real Lie groups SL"C and SL"IHl
thc clements m GL"IHI whose real determinant is 1. 

Exerci~e 8.26. Show that the Lie algebras of the Lie groups B and N intro
d uccd m §7.2 are the algebra b" 1R of upper triangular n x n m;trices ~nd the 
algebra n"IR of strictly upper triangular n x n matrices, respectively. 

as :f G is a complex Lie group, its Lie algebra is a complex Lie algebra. Just 
· n the real case, we have the complex Lie algebras gl C sl C so c and 

5P2.IC of the Lie groups GL c SL c so c and Sp c" ' n ' rn ' 
n ' n ' m ' 2n · 

~.xercis.e 8.27. Let A be any (real or complex) algebra, not necessarily finite 
f 

1
.mcnsional: o~ even associative. A derivation is a linear map D: A-+ A satis

ying the Le1bmtz rule D(ab) = aD(b) + D(a)b. 

(a) Show that the derivations Der(A) form a Lie algebra under the bracket 
(b) ~~· E] = D 0 E - E 0 D. If A is finite dimensional, so is Der(A). 

C e group. of automorphisms of A is a closed subgroup G of the group 
JL(A) of hnear automorphisms of A. Show that the Lie algebra of G is 

Der( A). 

(c) ~~- the algebra A ~s a Lie alge~ra, the map A -+ Der(A), X 1-+ Dx, where 
.d Y) = [X, Y], ts a map of Lte algebras. 

' , .. 
I 
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Exercise 8.28*. If g is a Lie algebra, the Lie algebra automorphisms of g form 
a Lie subgroup Aut(g) of the general linear group GL(g). 

(a) Show that the Lie algebra of Aut(g) is rier(g). If G is a simply connected 
Lie group with Lie algebra g, the map Aut(G)-+ Aut(g) by cp 1-+ dcp is 
one-to-one and onto, giving Aut(G) the structure of a Lie group with Lie 
algebra Der(g). 

(b) Show that the automorphism group of any connected Lie group is a Lie 
subgroup of the automorphism group of its Lie algebra. 

Exercise 8.29*. For any manifold M, the C00 vector fields on M form a Lie 
algebra o(M), as follows: a vector field v can be identified with a derivation of 
the ring A of C00 functions on M, with v(f) the function whose value at a 
point x of M is the value of the tangent vector v" on f at x. Show that the 
vector fields on M form a Lie algebra, in fact a Lie subalgebra of the Lie 
algebra Der(A). If a Lie group G acts on M, the G-invariant vector fields form 
a Lie subalgebra o6 M of o(M). If the action is transitive, the invariant vector 
fields form a finite-dimensional Lie algebra. 

If G is a Lie group, o6 (G) = T,,G becomes a Lie algebra by the above 
process. Show that this bracket agrees with that defined using the adjoint map 
(8.6). This gives another proof that the bracket is skew-symmetric and satisfies 
Jacobi's identity. 

§8.3. The Exponential Map 

The essential ingredient in studying the relationship between a Lie group G 
and its Lie algebra g is the exponential map. This may be defined in very 
straightforward fashion, using the notion of one-parameter subgroups, which 
we study next. Suppose that X e g is any element, viewed simply as a tangent 
vector to G at the identity. For any element g e G, denote by mg: G-+ G the 
map of manifolds given by multiplication on the left by g. Then we can define 
a vector field vx on all of G simply by setting 

vx(g) = (mg).(X). 

This vector field is clearly invariant under left translation (i.e., it is carried 
into itself under the diffeomorphism mg for all g); and it is not hard to see that 
this gives an identification of g with the space of all left-invariant vector fields 
on G. Under this identification, the bracket operation on the Lie algebra 9 
corresponds to Lie bracket of vector fields; indeed, this may be adopted as the 
definition of the Lie algebra associated to a Lie group (cf. Exercise 8.29). For 
our present purposes, however, all we need to know is that Vx exists and is 
left-invariant. 

Given any vector field v on a manifold M and a point p e M, a basic 
theorem from differential equations allows us to integrate the vector field. This 
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gives a differentiable map cp: I-+ M, defined on some open interval / con
taining 0, with cp(O) = p, whose tangent vector at any point is the vector 
assigned to that point by v, i.e., such that 

cp'(t) = v(cp(t)) 

for all tin/. The map cp is uniquely characterized by these properties. Now 
suppose the manifold in question is a Lie group G, the vector field the field 
l'x associated to ~n element Xe g, and p the identity. We arrive then at a map 
cp: I-+ G; we claim that, at least where cp is defined, it is a homomorphism, i.e., 
cp(s + t) = cp(s)cp(t) whenever s, t, and s + t are in /. To prove this, fix s and 
let t vary; that is, consider the two arcs Q: and p given by Q:(t) = cp(s) · cp(t) and 
/i(t) = cp(s + t). Of course, Q:(O) = {3(0); and by the invariance of the vector field 
l'x, we see that the tangent vectors satisfy Q:'(t) = vx(Q:(t)) and fj'(t) = vx(f3(t)) 
for all t. By the uniqueness of the integral curve of a vector field on a manifold 
we deduce that Q:(t) = {3(t) for all t. ' 

From the fact that cp(s + t) = cp(s)cp(t) for all s and t near O, it follows that 
cp extends uniquely to all of IR, defining a homomorphism 

cpx: IR-+ G 

with cp.Y(t) = Vx(cp Xt) = (m<P<,,).(X) for all t. 

~x~rcise 8.30. Establi~h the product rule for derivatives of arcs in a Lie group 
G: 1f Q: and (3 are arcs in G and y(t) = Q:(t) · fj(t), then 

y'(t) = dm«<t>(/J'(t)) + dnp<i>(Q:'(t)), 

wher_e f?r ~ny g e G, the map mg (resp. ng): G -+ G is given by left (resp. right) 
multtphcahon by g. Use this to give another proof that cp is a homomorphism. 

Exercise 8.31. Show that cpx is uniquely determined by the fact that it is a 
homomorphism of IR to G with tangent vector cp.Y(O) at the identity equal to 
X. Deduce that if l/J: G-+ His a map of Lie groups, then cpt/l,x = l/J o cpx. 

. The Lie group map cpx: IR-+ G is called the one-parameter subgroup of G 
With tangent vector X at the identity. The construction of these one-parameter 
~~bgroups for each x. amounts to the verification of the Second Principle of 
~ . I for homomorphisms from IR to G. The fact that there exists such a 
onc-?arameter subgroup of G with any given tangent vector at the identity is 
crucial. For example, it is not hard to see (we will do this in a moment) that 
~~se ~ne-par~mete~ su~groups ~ll up ~ n~ighborhood of the identity in G, 

•ch immediately implies the First Principle of §8.1. To carry this out, we 
define the exponential map 

exp: g-+ G 
by 

exp(X) = cpx(l). (8.32) 
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Note that by the uniqueness of <f'x, we have 

'Po.x1(t) = 'Px(A.t); 

so that the exponential map restricted to the lines through the origin in g 
gives the one-parameter subgroups of G. Indeed, Exercise 8.31 implies the 
characterization: 

Proposition 8.33. The exponential map is the unique map from g to G taking 0 
to e whose differential at the origin 

(exp.)0 : T0 g = g--+ T,,G = g 

is the identity, and whose restrictions to the lines through the origin in g are 
one-parameter subgroups of G. 

This in particular implies (cf. Exercise 8.31) that the exponential map is 
natural, in the sense that for any map tjJ: G--+ Hof Lie groups the diagram 

commutes. 

"'· -
G-H 

"' 
Now, since the differential of the exponential map at the origin in g is an 

isomorphism, the image of exp will contain a neighborhood of the identity in 
G. If G is connected, this will generate all of G; from this follows the First 
Principle: if G is connected, then the map t/J is determined by its differential (dt/I). 
at the identity. 

Using (8.32), we can write down the exponential map very explicitly in the 
case ofGLn!R, and hence for any subgroup ofGLn!R. We just use the standard 
power series for the function eX, and set, for Xe End(V), 

x2 x3 
exp(X) = 1 + X + T + 6 + · · · . (8.34) 

Observe that this converges and is invertible, with inverse exp( -X). Clearly, 
the differential of this map from '9 to G at the origin is the identity; and by 
the standard power series computation, the restriction of the map to any line 
through the origin in g is a one-parameter subgroup of G. Thus, the map 
coincides with the exponential as defined originally; and by naturality the 
same is true for any subgroup of G. (Note that, as we have pointed out, the 
individual terms in the expression on the right of (8.34) are very much depen
dent of the particular embedding of G in a general linear group GL(V) and 
correspondingly of gin End(V), even though the sum on the right in (8.34) is 

not.) 
This explicit form of the exponential map allows us to give substance to 
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the assertion that "the group structure of G is encoded in the Lie algebra." 
Explicitly, we claim that not only do the exponentials exp(X) generate G, but 
for X and Yin a sufficiently small neighborhood of the origin in g, we can 
write down the product exp(X)" exp(Y) as an exponential. To do this, we 
introduce first the "inverse" of the exponential map: forge G c GLn!R, we set 

(g - /)2 (g - /)3 
log(g) = (g - /) -

2 
+ --

3 
-- - · · · E gln IR. 

Of course, this will be defined only for g sufficiently close to the identity in G; 
but where it is defined it will be an inverse to the exponential map. 

Now, we define a new bilinear operation on gln!R: we set 

X • Y = log(exp(X)" exp(Y)). 

We have to be careful what we mean by this, of course; we substitute for gin 
the expression above for log(g) the quantity 

exp(X)"exp(Y) = (1 + X + ~
2 

+ ···}(1 + y + ~
2 

+ ···) 

= I + (X + Y) + ( ~
2 

+ X · Y + ~
2

) + · · · , 

being careful, of course, to preserve the order of the factors in each product. 
Doing this, we arrive at 

X•Y=(X+ Y)+(-(X~-n~+(~~+X·Y+~~))+··· 
= X + Y + t(X, Y] + · · · . 

Observe in particular that the terms of degree 2 in X and Y do not in
vol vc the squares of X and Y or the product X · Y alone, but only the com
mutator. In fact, this is true of each term in the formula, i.e., the quantity 
log(cxp(X)" exp(Y)) can be expressed purely in terms of X, Y, and the bracket 
operation; the resulting formula is called the Campbell-Hausdorff formula 
(although the actual formula in closed form was given by Dynkin). To degree 
three, it is 

X * Y = X + Y + t(X, Y] ± /2 [X, [X, Y]] ± /2 [Y, [Y, X]] + · · ·. 

~:xerci~e 8.35*. Verify (and find the correct signs in) the cubic term of the 
Campbell-Hausdorff formula. 

Exercise 8.36. Prove the assertion of the last paragraph that the power series 
log(cxp(X)" exp(Y)) can be expressed purely in terms of X, Y, and the bracket 
operation. 

Exercise 8.37. Show that for X and Y sufficiently small, the power series 
log(cxp(X)" exp(Y)) converges. 
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Exercise 8.38*. (a) Show that there is a constant C such that for X, Ye gin, 
X • Y = X + Y + [X, Y] + E, where llEll ~ C(llXll + 11 Yi1)3

• 

(b) Show that exp(X + Y) = limn .... 00 (exp(X /n) · exp(Y/n))n. 
(c) Show that 

exp([X, Y]) = !~ (exp(~}exp(~}exp(-~}exp(-~) )"

2 

Exercise 8.39. Show that if G is a subgroup of GLn!R, the elements of its 
Lie algebra are the "infinitesimal transformations" of G in the sense of von 
Neumann, i.e., they are the matrices in gin IR which can be realized as limits 

1
. A1 - I 
tm--, 

r-+O Br 
A1 e G, e1 > 0, e1 -+ 0. 

Exercise 8.40. Show that exp is surjective for G = GLnlC but not for G = GL; IR 
ifn > 1, or for G = SL2 1C. 

By the Campbell-Hausdorff formula, we can not only identify all the 
elements of Gin a neighborhood of the identity, but we can also say what their 
pairwise products are, thus making precise the sense in which g and its bracket 
operation determines G and its group law locally. Of course, we have not 
written a closed-form expression for the Campbell-Hausdorff formula; but, 
as we will see shortly, its very existence is significant. (For such a closed form, 
see [Sel, 1§4.8].) 

We now consider another very natural question, namely, when a vector 
subspace q c g is the Lie algebra of (i.e., tangent space at the identity to) an 
immersed subgroup of G. Obviously, a necessary condition is that q is closed 
under the bracket operation; we claim here that this is sufficient as well: 

Proposition 8.41. Let G be a Lie group, g its Lie algebra, and q c g a Lie 
subalgebra. Then the subgroup of the group G generated by exp@ is an 
immersed subgroup H with tangent space TeH = q. 

PROOF. Note that the subgroup generated by exp(q) is the same as the sub
group generated by exp(U), where U is any neighborhood of the origin in q. It 
will suffice, then (see Exercise 8.42), to show that the image of q under the 
exponential map is "locally" closed under multiplication, i.e., that for a suffi
ciently small disc A c q, the product exp(/l) · exp(/l) (that is, the set of pairwise 
products exp(X) · exp( Y) for X, Y e /l) is contained in the image of q under 
the exponential map. 

We will do this under the hypothesis that G may be realized as a subgroup 
of a general linear group GLn!R, so that we can use the formula (8.34) for the 
exponential map. This is a harmless assumption, given the statement (to be 
proved in Appendix E) that any finite-dimensional Lie algebra may be 
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embedded in the Lie algebra glnR the subgroup of GLn!R generated by 
cxp(g) will be a group isogenous to G, and, as the reader can easily check, 
proving the proposition for a group isogenous to G is equivalent to proving 

it for G. 
It thus suffices to prove the assertion in case the group G is GLn!R. But this 

is exactly the content of the Campbell-Hausdorff formula. D 

When applied to an embedding of a Lie algebra g into gin, we see, in 
particular, that every finite-dimensional Lie algebra is the Lie algebra of a Lie 
woup. From what we have seen, this Lie group is unique if we require it to be 
~imply connected, and then all others are obtained by dividing this simply 
connected model by a discrete subgroup of its center. 

Exercise 8.42*. Suppose G0 is an open neighborhood of the identity in a Lie 
group G such that G0 • G0 c G0 and G01 = G0 . Suppose H0 is a closed sub
manifold of G0 such that H0 • H0 c H0 and H01 = H0 . Show that the subgroup 
II of G generated by H0 is an immersed Lie subgroup of G. 

As a fairly easy consequence of this proposition, we can finally give a proof 
of the Second Principle stated in §8.1, which we may restate as 

Second Principle. Let G and H be Lie groups with G simply connected, and let 
n and I) be their Lie algebras. A linear map oc: g -+ q is the differential of a map 
A: G --+ H of Lie groups if and only if oc is a map of Lie algebras. 

PROOF. To see this, consider the product G x H. Its Lie algebra is just g EEl q. 
Let i c g $ q be the graph of the map oc. Then the hypothesis that oc is a map 
of Lie algebras is equivalent to the statement that j is a Lie subalgebra of g $ q; 
and given this, by the proposition there exists an immersed Lie subgroup 
J c G x H with tangent space TeJ = j. 

Look now at the map n: J--+ G given by projection on the first factor. By 
hypothesis, the differential of this map dne: j -+ g is an isomorphism, so that 
the map J _... G is an isogeny; but since G is simply connected it follows that 
n is an isomorphism. The projection t'/: G ~ J -+ H on the second factor is then 
a Lie group map whose differential at the identity is oc. D 

Exercise 8.43*. If g-+ g' is a homomorphism of Lie algebras with kernel q, 
show that the kernel H of the corresponding map of simply connected Lie 
groups G-+ G' is a closed subgroup of G with Lie group q. This does not 
extend to non-normal subgroups, i.e., to the situation when q is not the kernel 
of a homomorphism: give an example of an immersed subgroup of a simply 
connected Lie group G whose image in G is not closed. 

Exercise 8.44. Use the ideas of this lecture to prove the assertion that a 
compact complex connected Lie group G must be abelian: 

'~ 
'',,. 
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(a) Verify that the map Ad: G-+ Aut('I'eG) c End('I'eG) is holomorphic, and, 
therefore (by the maximum principle), constant. 

(b) Deduce that if 'l'g is conjugation by g, then d'l'g is the identity, so 
'l'g(exp(X)) = exp(d'l'g(X)) = exp(X) for all Xe 'I'eG, which implies that 
G is abelian. 

(c) Show that the exponential map from 'I'eG to G is surjective, with the kernel 
a lattice A, so G = 'I'eG/A is a complex torus. 

LECTURE 9 

Initial Classification of Lie Algebras 

In this lecture we define various subclasses of Lie algebras: nilpotent, solvable, semi
sim pie, etc., and prove basic facts about their representations. The discussion is entirely 
elementary (largely because the hard theorems are stated without proof for now); there 
are no prerequisites beyond linear algebra. Apart from giving these basic definitions, 
the purpose of the lecture is largely to motivate the narrowing of our focus to 
semisimple algebras that will take place in the sequel. In particular, the first part of 
§9.3 is logically the most important for what follows. 

§9.1: Rough classification of Lie algebras 
§9.2: Engel's Theorem and Lie's Theorem 
§9.3: Semisimple Lie algebras 
§9.4: Simple Lie algebras 

§9 .1. Rough Classification of Lie Algebras 

We will give, in this section, a preliminary sort of classification of Lie algebras, 
reflecting the (fegree to which a given Lie algebra g fails to be abelian. As we 
have indic'ated, the goal ultimately is to narrow our focus onto semisimple Lie 
algebras. 

Before we begin, two definitions, both completely straightforward: First, 
we define the center Z(g) of a Lie algebra g to be the subspace of g of elements 
XE g such that [X, Y] = 0 for all Ye g. Of course, we say g is abelian if all 
brackets are zero. 

Exercise 9.1. Let G be a Lie group, g its Lie algebra. Show that the subgroup 
of G generated by exponentiating the Lie subalgebra Z(g) is the connected 
component of the identity in the center Z(G) of G. 
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Next, we say that a Lie subalgebra q c g of a Lie algebra g is an ideal if it 
satisfies the condition 

[X, Y] E q for all x E g, y E g. 

Just as connected subgroups of a Lie group correspond to subalgebras of its 
Lie algebra, the notion of ideal in a Lie algebra corresponds to the notion of 
normal subgroup, in the following sense: 

Exercise 9.2. Let G be a connected Lie group, H c G a connected subgroup 
and g and g their Lie algebras. Show that H is a normal subgroup of G if and 
only if g is an ideal of g. 

Observe also that the bracket operation on g induces a bracket on the quotient 
space g/g if and only if g is an ideal in g. 

This, in turns, motivates the next bit of terminology: we say that a Lie 
algebra g is simple if dim g > 1 and it contains no nontrivial ideals. By the last 
exercise, this is equivalent to saying that the adjoint form G of the Lie algebra 
g has no nontrivial normal Lie subgroups. 

Now, to attempt to classify Lie algebras, we introduce two descending 
chains of subalgebras. The first is the lower central series of subalgebras .@kg, 
defined inductively by 

.@lg= [g, g] 

and 

.@kg = [g, .@k-1 g]. 

Note that the subalgebras .@kg are in fact ideals in g. The other series is called 
the derived series {.@kg}; it is defined by 

.@lg= [g, g] 

and 

Exercise 9.3. Use the Jacobi identity to show that .@kg is also an ideal in g. 
More generally, if g is an ideal in a Lie algebra g, show that [g, g] is also an 
ideal in g; hence all .@kg are ideals in g. 

Observe that we .have .@kg c .@kg for all k, with equality when k = 1; we 
often write simply .@g for .@1 g = .@ 1 g and call this the commutator subalgebra. 
We now make the 

Definitions 

(i) We say that g is nilpotent if .@kg = 0 for some k. 
(ii) We say that g is solvable if .@kg = 0 for some k. 
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(iii) We say that g is perfectif.@g = g (this is not a concept we will use much). 
(iv) We say that g is semisimple if g has no nonzero solvable ideals. 

The standard example of a nilpotent Lie algebra is the algebra nn!R of 
strictly upper-triangular n x n matrices; in this case the kth subalgebra .@kg 
in the lower central series will be the subspace nk+l.n!R of matrices A = (a1,1) 

such that a1,1 = 0 whenever j ~ i + k, i.e., that are zero below the diagonal 
and within a distance k of it in each column or row. (In terms of a complete 
flag { Jtl} as in §7.2, these are just the endomorphisms that carry Vi into Vi-k-1.) 
It follows also that any subalgebra of the Lie algebra nn IR is likewise nilpotent; 
we will show later that any nilpotent Lie algebra is isomorphic to such a 
subalgebra. We will also see that if a Lie algebra g is represented on a vector 
space V, such that each element acts as a nilpotent endomorphism, there is a 
basis for V such that, identifying gl(V) with gln!R, g maps to the subalgebra 
tin IH C !lln !R. 

Similarly, a standard example of a solvable Lie algebra is the space bn 1R of 
upper-triangular n x n matrices; in this Lie algebra the commutator .@bn!R is 
the algebra nn!R and the derived series is, thus, .@kbn!R = n2k- •,n!R. Again, it 
follows that any subalgebra of the algebra bn!R is likewise solvable; and we 
will prove later that, conversely, any representation of a solvable Lie algebra 
on a vector space V consists, in terms of a suitable basis, entirely of upper
triangular matrices (i.e., given a solvable Lie subalgebra g of gl(V), there exists 
a basis for V such that under the corresponding identification of 9l(V) with 
nI.IH, the subalgebra g is contained in b"IR c gl"IR). 

It is clear from the definitions that the properties of being nilpotent or 
solvable are inherited by subalgebras or homomorphic images. We will see 
that the same is true for semisimplicity in the case of homomorphic images, 
though not for subalgebras. 

Note that 9 is solvable if and only if 9 has a sequence of Lie subalgebras 
n = g0 ::i 91 ::i • • • ::i gk = 0, such that 91+1 is an ideal in g1 and g;/91+1 is 
abclian. Indeed, if this is the case, one sees by induction that .@19 c 91 for all 
i. (One may also refine such a sequence to one where each quotient 9;/91+1 is 
one dimensional.) It follows from this description that if g is an ideal in a Lie 
algebra g, then g is solvable if and only if g and g/q are solvable Lie algebras. 
(The analogous assertion for nilpotent Lie algebras is false: the ideal "" is 
nilpotent in the Lie algebra bn of upper-triangular matrices, and the quotient 
is the nilpotent algebra 'On of diagonal matrices, but 'On is not nilpotent.) If 9 is 
the Lie algebra of a connected Lie group G, then g is solvable if and only if 
there is a sequence of connected subgroups, each normal in G (or in the next 
in the sequence}, such that the quotients are abelian. 

In particular, the sum of two solvable ideals in a Lie algebra 9 is again 
solvable [note that (a+ b)/b ~ a/(a 11 b)]. It follows that the sum of all solv
able ideals in g is a maximal solvable ideal, called the radical of 9 and denoted 
Rad(g). The quotient g/Rad(g) is semisimple. Any Lie algebra g thus fits into 
an exact sequence 
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0 --+ Rad(9) --+ 9 --+ 9/Rad(9) --+ 0 (9.4) 

where the first algebra is solvable and the last is semisimple. With this 
somewhat shaky justification (but see Proposition 9.17), we may say that to 
study the representation theory of an arbitrary Lie algebra, we have to 
understand individually the representation theories of solvable and semi
simple Lie algebras. Of these, the former is relatively easy, at least as regards 
irreducible representations. The basic fact about them-that any irreducible 
representation of a solvable Lie algebra is one dimensional-will be proved 
later in this lecture. The representation theory of semisimple Lie algebras, on 
the other hand, is extraordinarily rich, and it is this subject that will occupy 
us for most of the remainder of the book. 

Another easy consequence of the definitions is the fact that a Lie algebra 
is semisimple if and only if it has no nonzero abelian ideals. Indeed, the last 
nonzero term in the derived sequence of ideals £i?kRad(9) would be an abelian 
ideal in 9 (cf. Exercise 9.3). A semisimple Lie algebra can have no center, so 
the adjoint representation of a semisimple Lie algebra is faithful. 

It is a fact that the sequence (9.4) splits, in the sense that there are sub
algebras of 9 that map isomorphically onto 9/Rad(9). The existence of such 
a Levi decomposition is part of the general theory we are postponing. To show 
that an arbitrary Lie algebra has a faithful representation (Ado's theorem), one 
starts with a faithful representation of the center, and then builds a represen
tation of the radical step by step, inserting a string of ideals between the center 
and the radical. Then one uses a splitting to get from a faithful representation 
on the radical to some representation on all of 9; the sum of this representation 
and the adjoint representation is then a faithful representation. See Appendix 

E for details. 
One reason for the terminology simple/semisimple will become clear later 

in this lecture, when we show that a semisimple Lie algebra is a direct sum of 

simple ones. 

Exercise 9.5. Every semisimple Lie algebra is perfect. Show that the Lie group 
of Euclidean motions of !R3 has a Lie algebra 9 which is perfect, i.e., .@9 = 9, 
but 9 is not semisimple. More generally, if l) is semisimple, and V is an 
irreducible representation of l), the twisted product 

9 = {(v, X)lv e V, Xe l)} with [(v, X), (w, Y)] = (Xw - Yv, [X, YJ) 

is a Lie algebra with .@9 = 9, Rad(9) = V abelian, and 9/Rad(9) = l). 

Exercise 9.6. (a) Show that the following are equivalent for a Lie algebra 9: (i) 
9 is nilpotent. (ii) There is a chain of ideals 9 = 90 :::> 91 :::> • • • => 9n = 0 with 
9;/9

1
+

1 
contained in the center of 9/9;+i · (iii) There is an integer n such that 

ad(Xi) o ad(X
2

) o · · · o ad(Xn)(Y) = [X1 , [X2 , .•. , [Xn, YJ ... ]] = 0 

for all X1 , ... , Xn, Yin 9. 
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(b) Conclude that a connected Lie group G is nilpotent if and only if it can 
be realized as a succession of central extensions of abelian Lie groups. 

Exercise 9.7*. If G is connected and nilpotent, show that the exponential map 
exp: 9--+ G is surjective, making 9 the universal covering space of G. 

Exercise 9.8. Show that the following are equivalent for a Lie algebra 9: (i) 9 
is solvable. (ii) There is a chain of ideals 9 = 90 :::> 91 :::> • • • :::> 9n = 0 with 
g;/9;+1 abelian. (iii) There is a chain of subalgebras 9 = 90 :::> 91 :::> • • • :::i 9n = 0 
such that 9;+i is an ideal in 9;. and 9;/9;+i is abelian. 

~9.2. Engel's Theorem and Lie's Theorem 

We will now prove the statement made above about representations of solv
able Lie algebras always being upper triangular. This may give the reader an 
idea of how the general theory proceeds, before we go back to the concrete 
examples that are our main concern. The starting point is 

Theorem 9.9 (Engel's Theorem). Let 9 c 9I(V) be any Lie subalgebra such that 
euery X e 9 is a nilpotent endomorphism of V. Then there exists a nonzero vector 
11 E V such that X(v) = 0 for all Xe 9. 

Note this implies that there exists a basis for Vin terms of which the matrix 
representative of eac~ X e 9 is strictly upper triangular: since 9 kills v, it will 
act on the quotient V of V by the span of v, and by induction we can find a 
basis v2 , ••• , vn for Vin terms of which this action is strictly upper triangular. 
Lifting v1 to any v1 e V and setting v1 = v then gives a basis for Vas desired. 

PROOF OF THEOREM 9.9. One observation before we start is that if Xe 9I(V) 
is any nilpotent element, then the adjoint action ad(X): 9I(V)--+ 9I(V) is nil
potent. This is straightforward: to say that X is nilpotent is to say that 
there exists a flag of subspaces 0 c Vi c V2 c · · · c V,. c Vi.+1 = V such that 
X( Vi) c J1;_1 ; we can then check that for any endomorphism Y of V the 
endomorphism ad(Xr(Y) carries v; into v;+k-m· 

We now proceed by induction on the dimension of 9. The first step is to 
sho~ that, under the hypotheses of the problem, 9 contains an ideal l) of 
md1mension one. In fact, let l) c 9 be any maximal proper subalgebra; we 
chum that l) has codimension one and is an ideal. To see this we look at the 
;'djoint representation of 9; since l) is a subalgebra the adjoin; action ad@ of 
l on !-1 preserves the subspace l) c 9 and so acts on 9/l). Moreover, by our 
observation above, for any X el) ad(X) acts nilpotently on 9I(V), hence on 9, 
hence on 1-1/l). Thus, by induction, there exists a nonzero element Y e 9/l) killed 
by ad(X) for all Xe l); equivalently, there exists an element Ye 9 not in l) such 
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that ad(X)(Y) El) for all XE l). But this is to say that the subspace l)' of g 
spanned by l) and Y is a Lie subalgebra of g, in which l) sits as an ideal of 
codimension one; by the maximality of l) we have l)' = g and we are done. 

We return now to the representation of g on V. We may apply the induction 
hypothesis to the subalgebra l) of g found in the preceding paragraph to 
conclude that there exists a nonzero vector v E V such that X (v) = 0 for all 
X E l); let W c: V be the subspace of all such vectors v E V. Let Y be any 
element of g not in l); since l) and Y span g, it will suffice to show that there 
exists a (nonzero) vector v E W such that Y(v) = 0. Now for any vector w E W 
and any X E l), we have 

X(Y(w)) = Y(X(w)) + [X, Y](w). 

The first term on the right is zero because by hypothesis w E W, X E l) and so 
X(w) = O; likewise, the second term is zero because [X, Y] = ad(X)(Y) El). 
Thus, X(Y(w)) = 0 for all XE l); we deduce that Y(w) E W. But this means that 
the action of Yon V carries the subspace W into itself; since Y acts nilpotently 
on V, it follows that there exists a vector v E W such that Y(v) = 0. D 

Exercise 9.10*. Show that a Lie algebra g is nilpotent if and only if ad(X) is a 
nilpotent endomorphism of g for every X E g. 

Engel's theorem, in turn, allows us to prove the basic statement made 
above that every representation of a solvable Lie group can be put in upper
triangular form. This is implied by 

Theorem 9.11 (Lie's Theorem). Let g c: gl(V) be a complex solvable Lie algebra. • 
Then there exists a nonzero vector v E V that is an eigenvector of X for all X E g. 

Exercise 9.12. Show that this implies the existence of a basis for V in terms of 
which the matrix representative of each X E g is upper triangular. 

PROOF OF THEOREM 9.11. Once more, the first step in the argument is to assert 
that g contains an ideal l) of codimension one. This time, since g is solvable 
we know that ~g =I= g, so that the quotient a= g/~g is a nonzero abelian Lie 
algebra; the inverse image in g of any codimension one subspace of a will 
then be a codimension one ideal in g. 

Still following the lines of the previous argument, we may by induction 
assume that there is a vector v0 E V that is an eigenvector for all X E l). Denote 
the eigenvalue of X corresponding to v0 by A.(X). We then consider the 
subspace W c: V of all vectors satisfying the same relation, i.e., we set 

w = {v EV: X(v) = A.(X)·v vx El)}. 

Let Y now be any element of g not in l). As before, it will suffice to show that 
Y carries some vector v E W into a multiple of itself, and for this it is enough 

tj9.2. Engel's Theorem and Lie's Theorem 127 

to show that Y carries W into itself. We prove this in a general context in the 
following lemma. 

Lemma 9.13. Let l) be an ideal in a Lie algebra g. Let V be a representation of 
q, and A.: l) -+ C a linear function. Set 

W = {v EV: X(v) = A.(X)·v VX El)}. 

Then Y(W) c: W for all YE g. 

PROOF. Let w be any nonzero element of W; to test whether Y(w) E W we let 
X be any element of l) and write 

X(Y(w)) = Y(X(w)) + [X, Y] (w) 

= A.(X) · Y(w) + A.([X, Y]) · w (9.14) 

since [X, Y] El). This differs from our previous calculation in that the second 
term on the right is not immediately seen to be zero; indeed, Y(w) will lie in 
W if and only if A.([X, Y]) = 0 for all X E l). 

To verify this, we introduce another subspace of V, namely, the span U of 
the images w, Y(w), Y2(w), ... of w under successive applications of Y. This 
subspace is clearly preserved by Y; we claim that any XE l) carries U into 
itself as well. It is certainly the case that l) carries w into a multiple of itself, 
and hence into U, and (9.14) says that l) carries Y(w) into a linear combination 
of Y(w) and w, and so into U. In general, we can see that l) carries Yk(w) into 
U by indµction: for any X E l) we write 

X(Yk(w)) = Y(X(Yk-1(w))) + [X, Y](Yk-1 (w)). (9.15) 

Since X(Yk-1(w)) E U by induction the first term on the right is in U, and 
since [X, Y] El) the second term is in U as well. 

In fact, we see something more from (9.14) and (9.15): it follows that, in 
terms of the basis w, Y(w), Y2(w), ... for U, the action of any X El) is upper 
triangular, with diagonal entries all equal to A.(X). In particular, for any XE l) 
the trace of the restriction of X to U is just the dimension of U times A.(X). 
On the other hand, for any element XE l) the commutator [X, Y] acts on U, 
and being the commutator of two endomorphisms of Uthe trace of this action 
is zero. It follows then that A.([X, Y]) = 0, and we are done. O 

Exercise 9.16. Show that any irreducible representation of a solvable Lie 
algebra g is one dimensional, and ~g acts trivially. · 

At least for irreducible representations, Lie's theorem implies they will all 
be known for an arbitrary Lie algebra when they are known for the semisimple 
case. In fact, we have: 

Proposition 9.17. Let g be a complex Lie algebra, g,. = g/Rad(g). Every irre
ducihle representation of g is of the form V = V0 ® L, where V0 is an irreducible 
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representation of g •• [i.e., a representation of g that is trivial on Rad(g)], and 
L is a one-dimensional representation. 

PROOF. By Lie's theorem there is a A. e (Rad(g))* such that 

W = {v e V: X(v) = A.(X)· v '<IX e Rad(g)} 

is not zero. Apply the preceding lemma, with ~ = Rad(g). Since V is irreduc
ible, we must have W = V. Now extend A. in any way to a linear function on 
g, and let L be the one-dimensional representation of g determined by A.; in 
other words, Y(z) = A.(Y) · z for all Ye g and z e L. Then V ® L* is a repre
sentation that is trivial on Rad(g), so it comes from a representation of g.., 
as required. D 

Exercise 9.18. Show that if g' is a subalgebra of g that maps isomorphically 
onto g/Rad(g), then any irreducible representation of g restricts to an irre
ducible representation of g', and any irreducible representation of g' extends 
to a representation of g. 

§9.3. Semisimple Lie Algebras 

As is clear from the above, many of the aspects of the representation theory 
of finite groups that were essential to our approach are no longer valid in the 
context of general Lie algebras and Lie groups. Most obvious of these is 
complete reducibility, which we have seen fails for Lie groups; another is the 
fact that not only can the action of elements of a Lie group or algebra on a • 
vector space be nondiagonalizable, the action of some element of a Lie algebra 
may be diagonalizable under one representation and not under another. 

That is the bad news. The good news is that, if we just restrict ourselves to 
semisimple Lie algebras, everything is once more as well behaved as possible. 
For one thing, we have complete reducibility again: 

Theorem 9.19 (Complete Reducibility). Let V be a representation of the semi
simple Lie algebra g and W c V a subspace invariant under the action of g. 
Then there exists a subspace W' c V complementary to Wand invariant under g. 

The proof of this basic result will be deferred to Appendix C. 

The other question, the diagonalizability of elements of a Lie algebra under 
a representation, requires a little more discussion. Recall first the statement 
of Jordan decomposition: any endomorphism X of a complex vector space V 
can be uniquely written in the form 

X = X. + Xn 
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where x. is diagonalizable, X" is nilpotent, and the two commute. Moreover, 
X, and Xn may be expressed as polynomials in X. 

Now, suppose that g is an arbitrary Lie algebra, X e g any element, and 
p: g-+ gl"C any representation. We have seen that the image p(X) need not 
be diagonalizable; we may still ask how p(X) behaves with respect to the 
Jordan decomposition. The answer is that, in general, absolutely nothing need 
be true. For example, just taking g = C, we see that under the representation 

p1: t1-+(t) 

every element is diagonalizable, i.e., p(X). = p(X); under the representation 

P2: t1-+(~ ~) 
every element is nilpotent [i.e., p(X). = OJ; whereas under the representation 

p3: tl-+G ~) 
not only are the images p(X) neither diagonalizable nor nilpotent, the dia
gonalizable and nilpotent parts of p(X) are not even in the image p(g) of the 
representation. 

If we assume the Lie algebra g is semisimple, however, the situation is 
radically different. Specifically, we have 

Theorem 9.20 (Preservation of Jordan Decomposition). Let g be a semisimple 
Lie algebra. For any element Xe g, there exist x. and Xn e g such that for any 
representation p: g-+ gl(V) we have 

p(X), = p(X.) and p(X)n = p(Xn). 

In other words, if we think of p as injective and g accordingly as a Lie 
subalgebra of gl(V), the diagonalizable and nilpotent parts of any element X of 
n are again in g and are independent of the particular representation p. 

!he proofs we will give of the last two theorems both involve introducing 
objects that are not essential for the rest of this book, and we therefore relegate 
them to Appendix C. It is worth remarking, however, that another approach 
was used classically by Hermann Weyl; this is the famous unitary trick, which 
we will describe briefly. 

A Digression on "The Unitary Trick" 

Basic~lly, the idea is that the statements above (complete reducibility, pre
scr~atlon of Jordan decomposition) can be proved readily for the represen
tations of a compact Lie group. To prove complete reducibility, for example, 
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we can proceed more or less just as in the case of a finite gro~~: if the c~mpact 
group G acts on a vector space, we see th~t there is ~ Hermitian_ metnc on V 
invariant under the action of G by takmg an arbitrary metnc on ~ a~d 
averaging its images under the action of G. If G fixes a subspace W c_ V, it w~ll 
then fix as well its orthogonal complement W.L with resix;ct to this metnc~ 
(Alternatively, we can choose an arbitrary c?m~lement W to ~ ~o~ ~~~~~l 
sarily fixed by G, and average ov~r G t~e projection map to g(W) wit 
w· this average will have image mvanant under G.) . . . 

'How does this help us analyze the representation of _a semi~imp~e Lie 

1 
b ? The key fact here (to be proved in Lecture 26) is that if g is a~y 

~o~pr:; semisimple Lie algebra, there exists a (unique) real Lie algeb~~ 9ho wth 

1 .. at1'on g '°' "' - g such that the simply connected form O; t e ie 
comp exif1c o 'OJ >u - • • • • t t" . L" up G Thus restnctmg a given represen a ion 
algebra g is a compact ie gro . ' . h" h 
of to . o' we can exponentiate to obtain a representati?n of G, for w ic 
co!plet~o reducibility holds; and we can deduce from t~is ~h~ com~le1te ~~~ ducibility of the original representation. For example, while it is certain y V 

. f th Lie group SL JR on a vector space 
true that any representation p o . e . . " l 't . th trivial 
admits an invariant Hermitian metnc (m fact, it cannot, un ess i is e 

representation), we can 
(i) let p' be the corresponding (complex) representation of the Lie algebra 

sl JR· t' 11 of 
(ii) b; li~earity extend the representation p' of sl"JR to a representa ion p 

sl"IC; b 1 b c sl IC· 
(iii) restrict to a representation p"' of the _su a ,~e ra sun . " ' SU . 
(iv) exponentiate to obtain a representation p of the unitary group " 

We can now argue that . 
If a subspace W c Vis invariant under the action of SL"JR, 

it must be invariant under sin JR; and since sl"IC = sl" JR ® IC, it follows that 
it will be invariant under sl"IC; so of course 
it will be invariant under su"; and hence 
it will be invariant under sun. 

Now, since SU" is compact, there will exist a complementary subspace W' 

preserved by SU"; we argue that 
. . . d · I IC = su ® IC it follows W' will then be mvanant under sun, an smce s n n • 

that . . th t 
it will be invariant under sl"IC. Restnctmg, w~ s~e a 
it will be invariant under sl"JR, and exponentiating, 
it will be invariant under SL"JR. 

Similarly, if one wants to know that the diagonal elem~nts of SL"JR ac! 
semisimply in any representation, or equivalently that the ~iagonal_ele~~~tn 
of sl"JR act semisimply, one goes through the_ same_ reaso~mg, commgact 
to the fact that the group of diagonal elements m sun is abehan and comp . 
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In general, most of the theorems about the finite-dimensional represen
tation of semisimple Lie algebras admit proofs along two different lines: either 
algebraically, usingjust the structure of the Lie algebra; or by the unitary trick, 
that is, by associating to a representation of such a Lie algebra a representation 
of a compact Lie group and working with that. Which is preferable depends 
very much on taste and context; in this book we will for the most part go with 
the algebraic proofs, though in the case of the Weyl character formula in Part 
IV the proof via compact groups is so much more appealing it has to be 
mentioned. 

The following exercises include a few applications of these two theorems. 

Exercise 9.21 *. Show that a Lie algebra g is semisimple if and only if every 
finite-dimensional representation is semisimple, i.e., every invariant subspace 
has a complement. 

Exercise 9.22. Use Weyl's unitary trick to show that, for n > 2, all represen
tations of sonic are semisimple, so that, in particular, the Lie algebras sonic 
arc semisimple. Do the same for Sp2.IC and sp2nlC, n;;::: 1. Where does the 
argument break down for S02 IC? 

Exercise 9.23. Show that a real Lie algebra g is solvable if and only if the 
complex Lie algebra g ®RIC is solvable. Similarly for nilpotent and semisimple. 

Exercise 9.24*. If~ is an ideal in a Lie algebra g, show that g is semisimple if 
and only if~ and g/~ are semisimple. Deduce that every semisimple Lie algebra 
is a direct sum of simple Lie algebras. 

Exercise 9.25*. A Lie algebra is called reductive if its radical is equal to its 
center. A Lie group is reductive if its Lie algebra is reductive. For example, 
GL"IC is reductive. Show that the following are true for a reductive Lie algebra 
f1: (i) illg is semisimple; (ii) the adjoint representation of g is semisimple; (iii) g 
is a product of a semisimple and an abelian Lie algebra; (iv) g has a finite
dimensional faithful semisimple representation. In fact, each of these condi
tions is equivalent to g being reductive. 

§9.4. Simple Lie Algebras 

There is one more basic fact about Lie algebras to be stated here; though its 
proof will have to be considerably deferred, it informs our whole approach to 
the subject. This is the complete classification of simple Lie algebras: 

Theorem 9.26. With five exceptions, every simple complex Lie algebra is iso
morphic to either sl"IC, so"IC, or sp2nlC for some n. 

.r 

,.,1 

,\ 
" ' 
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The five exceptions can all be explicitly described, though none is par
ticularly simple except in name; they are denoted g2 , f4 , e6 , e7 , and e8 • We 
will give a construction of each later in the book (§22.3). The algebras sl.C 
(for n > 1), so.C (for n > 2), and sp 2.C are commonly called the classical Lie 
algebras (and the corresponding groups the classical Lie groups); the other five 
algebras are called, naturally enough, the exceptional Lie algebras. 

The nature of the classification theorem for simple Lie algebras creates a 
dilemma as to how we approach the subject: many of the theorems about 
simple Lie algebras can be proved either in the abstract, or by verifying them 
in turn for each of the particular algebras listed in the classification theorem. 
Another alternative is to declare that we are concerned with understanding 
only the representations of the classical algebras sl.C, so.C, and sp 2.C, and 
verify any relevant theorems just in these cases. 

Of these three approaches, the last is in many ways the least satisfactory; 
it is, however, the one that we shall for the most part take. Specifically, what 
we will do, starting in Lecture 11, is the following: 

(i) Analyze in Lectures 11-13 a couple of examples, namely, sl2 C and sl3 C, 
on what may appear to be an ad hoc basis. 

(ii) On the basis of these examples, propose in Lecture 14 a general paradigm 
for the study of representations of a simple (or semisimple) Lie algebra. 

(iii) Proceed in Lectures 15-20 to carry out this analysis for the classical 
algebras sl.C, so.C, and sp2.C. 

(iv) Give in Part IV and the appendices proofs for general simple Lie algebras 
of the facts discovered in the preceding sections for the classical ones (as 
well as one further important result, the Weyl character formula). 

We can at least partially justify this seemingly inefficient approach by • 
saying that even if one makes a beeline for the general theorems about the 
structure and representation theory of a simple Lie algebra, to apply these 
results in practice we would still need to carry out the sort of explicit analysis 
of the individual algebras done in Lectures 11-20. This is, however, a fairly 
bald rationalization: the fact is, the reason we are doing it this way is that this 
is the only way we have ever been able to understand any of the general results. 

LECTURE 10 

Lie Algebras in Dimensions One, Two, 
and Three 

Just to get a sense of what a Lie algebra is and what groups might be associated to it, 
we will classify here all Lie algebras of dimension three or less. We will work primarily 
with complex Lie algebras and Lie groups, but will mention the real case as well. 
Needless to say, this lecture is logically superfluous; but it is easy, fun, and serves a 
didactic purpose, so why not read it anyway. The analyses of both the Lie algebras 
and the Lie groups are completely elementary, with one exception: the classification 
of the complex Lie groups associated to abelian Lie algebras involves the theory of 
complex tori, and should probably be skipped by anyone not familiar with this subject. 

~ 10.1: Dimensions one and two 
~ 10.2: Dimension three, rank one 
~10.3: Dimension three, rank two 
~ 10.4: Dimension three, rank three 

§ l 0.1. Dimensions One and Two 

~ o begin with, any one-dimensional Lie algebra g is clearly abelian, that is, 
C with all brackets zero. 

The simply connected Lie group with this Lie algebra is just the group C 
under addition; and other connected Lie groups that have g as their Lie 
algebra must all be quotients ofC by discrete subgroups Ac C. If A has rank 
one, then the quotient is just C* under multiplication. If A has rank two, 
however, G may be any one of a continuously varying family of complex tori 
0 1 dimension one (or Riemann surfaces of genus one, or elliptic curves over C). 
The set of isomorphism classes of such tori is parametrized by the complex 
plane with coordinate j, where the function j on the set of lattices A c C is 
as described in, e.g., [Ahl]. 

Over the real numbers, the situation is completely straightforward: the only 
real Lie algebra of dimension one is again ~ with trivial bracket; the simply 



134 10. Lie Algebras in Dimensions One, Two, and Three 

connected Lie group associated to it is IR under addition; and the only other 
connected real Lie group with this Lie algebra is IR/Z ~ S1 . 

Dimension Two 

Here we have to consider two cases, depending on whether g is abelian or not. 

Case 1: g abelian. This is very much like the previous case; the simply con
nected two-dimensional abelian complex Lie group is just C2 under addition, 
and the remaining connected Lie groups with Lie algebra g are just quotients 
of C2 by discrete subgroups. Such a subgroup A c C2 can have rank 1, 2, 3, 
or 4, and we analyze these possibilities in turn (the reader who has seen enough 
complex tori in the preceding example may wish to skip directly to Case 2 at 
this point). 

If the rank of A is 1, we can complete the generator of A to a basis for C2
, 

so that A= Ze1 c Ce1 EB Ce2 and G ~ C* x C. If the rank of A is 2, there are 
two possibilities: either A lies in a one-dimensional complex subspace of C2 

or it does not. If it does not, a pair of generators for A will also be a basis 
for C2 over C, so that A= Ze1 EB Ze2, C2 = Ce 1 EE> Ce2, and G ~ C* x C*. 
If on the other hand A does lie in a complex line in C2, so that we have 
A= Ze1 EE> '1Lte1 for some re C11R, then G =Ex C will be the product of 
the torus C/(Z EE> Zr) and C; the remarks above apply to the classification of 
these (see Exercise 10.1). 

The cases where A has rank 3 or 4 are a little less clear. To begin with, if 
the rank of A is 3, the main question to ask is whether any rank 2 sublattice 
A' of A lies in a complex line. If it does, then we can assume this sublattice is 
saturated (i.e., a pair of generators for A' can be completed to a set of 
generators for A) and write A = Ze1 EB Zre1 EE> Ze2, so that we will have 
G = E x C*, where Eis a torus as above. 

Exercise 10.1 *. For two one-dimensional complex tori E and E', show that 
the complex Lie groups G = E x C and G' = E' x C are isomorphic if and 
only if E ~ E'. Similarly for E x C* and E' x C*. 

If, on the other hand, no such sublattice of A exists, the situation is much 
more mysterious. One way we can try to represent G is by choosing a generator 
for A and considering the projection of C2 onto the quotient of C2 by the line 
spanned by this generator; thus, if we write A = Ze 1 EE> '1Le 2 E9 Z(oce 1 + f3e2) 
then (assuming f3 is not real) we have maps 

c2 

l 
C/(Z EE> Z/3) 

expressing Gas a bundle over a torus E = C/(Z EB Z/3), with fibers isomorphic 
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to C*. This expression of G does not, however, help us very much to describe 
the family of all such groups. For one thing, the elliptic curve Eis surely not 
determined by the data of G: if we just exchange e1 and e2 , for example, we 
replace E by C/(Z EB Zoe), which, of course, need not even be isogenous to E. 
Indeed, this yields an example of different algebraic groups isomorphic as 
complex Lie groups: expressing G as a C* bundle in this way gives it the 
structure of an algebraic variety, which, in turn, determines the elliptic curve 
E (for example, the field of rational functions on G will be the field of rational 
functiops on E with one variable adjoined). Thus, different expressions of the 
complex Lie group Gas a C* bundle yield nonisomorphic algebraic groups. 

Finally, the case where A has rank 4 remains completely mysterious. 
Among such two-dimensional complex tori are the abelian varieties; these are 
just the tori that may be embedded in complex projective space (and hence 
may be realized as algebraic varieties). For polarized abelian varieties (that is, 
abelian varieties with equivalence class of embedding in projective space) there 
exists a reasonable moduli theory; but the set of abelian varieties forms only 
a countable dense union in the set of all complex tori (indeed, the general 
complex torus possesses no nonconstant meromorphic functions whatsoever). 
No satisfactory theory of moduli is known for these objects. 

Needless to say, the foregoing discussion of the various abelian complex 
Lie groups in dimension two is completely orthogonal to our present pur
poses. We hope to make the point, however, that even in this seemingly trivial 
case there lurk some fairly mysterious phenomena. Of course, none of this 
occurs in the real case, where the two-dimensional abelian simply connected 
real Lie group is just IR x IR and any other connected two-dimensional abelian 
real Lie group is the quotient of this by a sublattice Ac IR x IR of rank 1 or 
2, which is to say either IR x S1 or S1 x S1. 

Case 2: g not abelian. Viewing the Lie bracket as a linear map [ , ] : Ng-+ g, 
we see that ifit is not zero, it must have one-dimensional image. We can thus 
choose a basis {X, Y} for g as vector space with X spanning the image of 
[ , ]; after multiplying Y by an appropriate scalar we will have [X, Y] = X, 
which of course determines g completely. There is thus a unique nonabelian 
two-dimensional Lie algebra g over either IR or C. 

What are the complex Lie groups with Lie algebra g? To find one, we start 
with the adjoint representation of g, which is faithful: we have 

ad(X): X1-+0, ad(Y): Xt-+ -X, 

Y1-+X, 

or in matrix notation, in terms of the basis { X, Y} for g, 

(0 1) (-1 0) ad(X) = 
0 0 

, ad( Y) = 
0 0 

. 

. (* fhese generate the algebra g = 
0 

at the adjoint form 

~) c gl2 C; we may exponentiate to arrive 

--, 
.. I 
,. I 

/ ( 
I 

I 

' ) 
"'I ',,, 

,. .......... . 
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Go={(~ ~}a#O}cGL2C. 
Topologically this group is homeomorphic to C x C*. To take its universal 
cover, we write a general member of Go as 

The product of two such matrices is given by 

( ~ ~} (e~· s;) = (e'~
1

• s +e's') 
1 ' 

so we may realize the universal cover G of G0 as the group of pairs (t, s) E 

C x C with group law 

(t, s) · (t', s') = (t + t', s + e1 s'). 

The center of G is just the subgroup 

Z(G) = {(2nin, O)} ~ "11., 

so that the connected groups with Lie algebra g form a partially ordered tower 

G 

! 

! 
Gn = G/nZ = {(a, b) E C* x C; (a, b) ·(a', b') = (aa', b + a"b') }. 

! 

! 
Go 

Exercise 10.2*. Show that for n # m the two groups Gn and G'" are not 

isomorphic. 

Finally, in the real case things are simpler: when we ~xponentia~e the 
adjoint representation as above, the Lie group ~e arrive ~t is a~rea.dy simply 
connected, and so is the unique connected real Lie group with this Lie algebra. 

§ 10.2. Dimension Three, Rank 1 

As in the case of dimension two, we look at the Lie bracket as a linea.r map 
from Ng to g and begin our classification by considering the rank of this map 
(that is, the dimension of ~g), which may be either 0, 1, 2, or 3. For the case 
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of rank 0, we refer back to the discussion of abelian Lie groups above. We 
begin with the case of rank 1. 

Here the kernel of the map [ , ] : Ng -+ g is two dimensional, which means 
that for some X E g it consists of all vectors of the form X A Y with Y ranging 
over all of g (X here will just be the vector corresponding to the hyperplane 
ker([ , ]) c Ng under the natural (up to scalars) duality between a three
dimensional vector space and its exterior square). Completing X to a basis 
[ X, Y, Z} of g, we can write g in the form 

[X, Y] = [X, Z] = 0, 

[Y, ZJ = (X,x +PY+ yZ 

for some (X., p, y E C. If either P or y is nonzero, we may now rechoose our basis, 
replacing Yby a multiple of the linear combination (X,X +PY+ yZ and either 
leaving Z alone (if P # 0) or replacing Z by Y (if y # 0). We will then have 

[X, Y] = [X, Z] = 0, 

[Y, Z] = y 

from which we see that g is just the product of the one-dimensional abelian 
Lie algebra CX with the non-abelian two-dimensional Lie algebra CY$ CZ 
described in the preceding discussion. We may thus ignore this case and 
assume that in fact we have P = y = O; replacing X by (X,X we then have the 
Lie algebra 

[X, Y] = [X, Z] = 0, 

[Y, Z] = X. 

How do we find the Lie groups with this Lie algebra? As before, we need 
to start with a faithful representation of g, but here the adjoint representation 
is useless, since Xis in its kernel. We can, however, arrive at a representation 
of g by considering the equations defining g: we want to find a pair of 
endomorphisms Y and Z on some vector space that do not commute, but that 
do commute with their commutator X = [Y, Z]; thus, 

Y(YZ - ZY) - (YZ - ZY)Y = Y2 Z - 2YZY + ZY2 = 0 

and similarly for [Z, [Y, Z]]. One simple way to find such a pair of endo
morphisms is make all three terms Y2 Z, YZY, and Z 2 Yin the above equation 
zero, e.g., by making Y and Z both have square zero, and to have YZ = O 
while ZY # 0. For example, on a three-dimensional vector space with basis 
e" e2, and e3 we could take Y to be the map carrying e3 to e2 and killing 
et and e2, and Z the map carrying e2 to e1 and killing e1 and e3; we then have 
YZ = 0 while ZY sends e3 to e1 • We see then that g is just the Lie algebra n3 

of strictly upper-triangular 3 x 3 matrices. When we exponentiate we arrive 
at the group 
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which is simply connected. Now the center of G is the subgroup 

Z(G)= m l nbeC} ~C, 
so the discrete subgroups of Z(G) are just lattices A of rank 1 or 2; thus any 
connected group with Lie algebra g is either G, G(ll, or G/(Z x Z)-that is, 

an extension of C x C by either C, C*, or a torus E. 

Exercise 10.3. Show that G/A is determined up to isomorphism by the one

dimensional Z(G)/A. 

A similar analysis holds in the real case: just as before, n 3 is the unique real 
Lie algebra of dimension three with commutator subalgebra of dimension one; 
its simply connected form is the group G of unipotent 3 x 3 matrices and (the 
center of this group being IR) the only other group with this Lie algebra is the 

quotient H = G/Z. 
Incidentally, the group H represents an interesting example of a group that 

cannot be realized as a matrix group, i.e., that admits no faithful finite
dimensional representations. One way to see this is to argue that in any 
irreducible finite-dimensional representation V the center S

1 
of H, being 

compact and abelian, must be diagonalizable; and so under the corresponding 
representation of the Lie algebra g the element X must be carried to a 
diagonalizable endomorphism of V. But now Jf v E Vis any eigenvector for X 
with eigenvalue A., we also have, arguing as in §9.2, 

X(Y(v)) = Y(X(v)) = Y(A.v) = A.Y(v) 

and similarly X(Z(v)) = A.Z(v), i.e., both Y(v) and Z(v) are also eigenvectors 
for X with eigenvalue A.. Since Y and Z generate g and the representation V 
is irreducible, it follows that X must act as a scalar multiple A.· I of the identity; 
but since X = [ Y, Z] is a commutator and so has trace 0, it follows that A. = 0. 

Exercise 10.4*. Show that if G is a simply connected Lie group, and its Lie 
algebra is solvable, then G cannot contain any nontrivial compact subgroup 

(in particular, it contains no elements of finite order). 

The group H does, however, have an important infinite-dimensional repre
sentation. This arises from the representation of the Lie algebra g on the space 
V of <c00 functions on the real line IR with coordinate x, in which Y, Z, and X 

are the operators 
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Y: ft-+ nix· f, 

Z:ft-+ df 
dx 
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and X = [ Y, Z] is - ni times the identit Ex 0 · . 
on a function f by multiplying it b th ~ ~ nenttatmg, we see that e'r acts 
f to the function F, where F,(x) ~ f(: ~nc)tton dco~;x + i ·sin tx); e'z sends 
mult~ple e-"''. f. x' an e sends f to the scalar 
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In this case, write the commutator subal b 
clements y and Z. The commut t f y ge ra ~g c g as the span of two a or o and Z can then be written 

[Y, Z] = ixY + pz. 
Rut now the endomorphism d(Y) f . . ~o IX y + pz, and so has trace;; on t~e ;t~ames g m_to ~g, kill~ Y, and sends Z 
m End(g), it must have trace 0 Thus er h~nd.' smce ad(Y) is a commutator 
subalgebra ~g must be abelia~ It foli p, a~d s1mil_arly ix, must be zero; i.e., the 
not in !'fig, the map . ows rom this that for any element X E g 

ad(X): ~g --+ ~g 

must be an isomorphism W . . . 
ad(X) is diagonalizible or. it i; :::,:.y now d1stmgmsh two possibilities: either 

(Note that for the first time we see a real Lie algebra will be m r case where the classification of the 
case we will have to deal :~~hc~~~h~~~ted t~~;.that of the complex: in the real 
over C but not over IR i e th t "t h poss1 I ity that ad(X) is diagonalizible 
Though we have not se~~ i~ m:ch1 in ~~ two co~plex ~onjugate eigenvalues. 
it is generally the case that the real p"ctese ~ow-~1men~1onal examples, in fact 
than the complex one, for essentially1ju~;~~~ss~eass~:.~1ally more complicated 

Possibility A. ad(X) is d" t for 'Zig a pair .of eigenve:;gon; zzable. In this case it is natural to use as a basis 
scalar we can assume tha~r~n~ ~:~~ ad_(X); and by multiplying X by a suitable 
is 1. We thus have the eq t" c e eigenvalues (both of which are nonzero) 

ua JOOS !OT g 

r [X, Y] = Y, [X, Z] = ixZ, [Y, Z] = 0 (10.5) 

•or some IX e C*. 

Fxc . 1 .' rc1s~ 0.6. Show that two Lie al b . 
scalars m the structure equations(~~ ;)as 9or: 9or· corres_p~ndmg to two different 

. are isomorphic if and only if ix = ix' or 

...., 
II .. I 

.. I 
/ I 

:·::1' 
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h t have for the first time a continuously varying family ex = 1/ex'. Observe t a we . 
of nonisomorphic complex Lie algebras. 

. b we 0 to the adjoint represen-To find the groups with these Lie alge ras g. X to y and kills y 
. . f 1 E r ·tly ad(Y) carnes -

tation, which her~ is faith u · xp 
1~1 ls~ kills y and Z; and ad(X) carries _Y 

and Z; ad(Z) carries X to - exZ an a 
1 

ber aX _ by _ cZ of the Lie 
d k ·n x A genera mem 

to itself, Z to exZ, an 
1 

s ·. h t to the basis { Y, z, X} for g) by the algebra is thus represented (wit respec 
matrix 

(~ ~ ~) 
t. t" g we find that a group with Lie algebra g is Exponen ia m , 

G~m .; :).•.~veC}cGL,C. 
. . . cumstance If the complex number ex 

Here we run across a very mtere~tmg cir f to G is one-to-one, and hence 
is not rational, then the ex_ponen~1a\ma~ ~o~r!ply connected. If, on the other 
a homeomorphism; thus,_m partJcu a;,. _1~ :undamental group. To see this, 
hand ex is rational, G will have non nv1a 
obse;ve that we always have an exact sequence of groups 

1 -+ B -+ G -+ A -+ 1, 

where 

and 

B~ m : ;).u.veC} ~C x C 

u A ~ IC is simply connected; but when ex E Q
Now when ex~ Q, ~he gro P h- A~ IC*andcorrespondinglyn

1
(G) = l. whatever its denommator-we ave -

o · · the h center and hence when ex # "-!!, it is 
Exercise 10.7. Show that ? a~ no b ' F E Q describe the universal 
uni ue connected group with Lie alge _ra g. . or ex ' 

q . f G and classify all groups with Lie algebra g. covermg o 

h h we have a continuously varying Observe that in this case, even t oug ding continuously varying 
family of Lie algebras g .. , we have no correspon 
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family of the adjoint (linear) Lie groups; the simply-connected forms do form 
a family, however. 

Possibility B: ad(X) is not diagonalizable. In this case the natural thing to do 
is to choose a basis { Y, Z} of ~g with respect to which ad(X) is in Jordan 
normal form; replacing X by a multiple, we may assume both its eigenvalues 
are l so that we will have the Lie algebra 

[X, Y] = Y, [X,Z] = Y + Z, [Y, Z] = 0. (10.8) 
With respect to the basis { Y, Z, X} for g, then, the adjoint action of the general 
clement aX - b Y - cZ of the Lie algebra is represented by the matrix 

(
a a b+c) 
0 a c 

0 0 0 

and exponentiating we find that the corresponding group is 

Exercise 10.9. Show that this group has no center, and hence is the unique 
connected complex Lie group with its Lie algebra. 

Note that the real Lie groups obtained by exponentiating the adjoint action 
of the Lie algebras given by (10.5) and (10.8) are all homeomorphic to IR 3 and 
have no center, and so are the only connected real Lie groups with these Lie algebras. 

Exercise 10.10. Complete the analysis of real Lie groups in Case 2 by con
sidering the third possibility mentioned above: that ad(X) acts on ~g with 
distinct complex conjugate eigenvalues. Observe that in this way we arrive 
at our first example of two nonisomorphic real Lie algebras whose tensor 
Products with IC are isomorphic. 

§ 10.4. ·Dimension Three, Rank 3 

Our analysis of this final case begins, as in the preceding one, by looking for 
eigenvectors of the adjoint action of a suitable element X E g. Specifically, we 
claim that we can find an element HE g such that ad(H): g-+ g has an 
eigenvector with nonzero eigenvalue. To see this, observe first that for any 
nonzero XE g, the rank of ad(X) must be 2; in particular, we must have 
I<er(ad(X)) = ICX. Now start with any XE g. Either ad(X) has an eigenvector 
With nonzero eigenvalue or it is nilpotent; if it is nilpotent, then there exists a 

~' ... 

:\ 

.•·"' 
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t . the kernel of ad(X) but in the kernel of ad(X)2-that 
vector Ye g, no 

10 
nonzero ex e c. But then of course 

is, such that ad(X)(Y) = cxXXf~r som:igenvector for ad(Y) with nonzero ad(Y)(X) = -cxX, so that ts an 

eigenvalue. th t X is an eigenvector with nonzero eigenvalue 
So: choose H a~d X E g so_ a X S. H e ~g ad(H) is a commutator in 

for ad(H), and wnte [H0~J ~-u:~s t~~ead(H) m~st have a third eigenvector 
End(g), and so has trace 'it o "be the structure of g completely it now 
y with eigenvalue -ex. To descrf1X d Y· but this follows from the Jacobi 
remains to find the commutator o an ' 
identity. We have 

[H, [X, Y]] = -[X, [Y, H]] - [Y, [H, X]] 

= -[X, cxY] - [Y, cxX] 

=0, 

[ X Y] must be a multiple of H; since it must be 
from which we .deduce that 'i l X or y by a scalar to make it 1. Similarly 
a nonzero multiple, we can mult p y . 1 or any other nonzero scalar. 

· 1 · H b scalar we can assume ex ts d 
multtp ymg. y a "bl lex Lie algebra g of this type. One coul 
Thus, there ts only on~ posst e compd y whose commutators satisfy these 
look for endom?rphtsms H, X, an . l ealize that the three-dimensional 
relations, as we dtd before. Or we may s1mp Yi~ must be this last possibility. In 
Lie algebra sl2C has not yet _been seen, so 
fact, a natural basis for sl2 C ts 

H=G -~). X=(~ ~). Y=(~ ~) 
whose Lie algebra is given by 

[x Y] H (10.11) [H, X] = 2X, [H, Y] = -2Y, ' = . 

L' 1 b a sl C? To begin with, the What groups other than SL2C have tea ge r 2 SL c-+ c2 - {(O, O)} 

group SL2 C is ~impl~ connected: for ~~::;~~:~~:C,~~gic;l space SL
2 
C as a 

sending a matnx to its fir:t ro~ e~p Also it is not hard to see that the center 
bundle with fiber Cover C - { ( ' ) }. 

1 
• t · so that the only other 

of SL2 C is just the subgroup {±I} of s~a ahr ma rt1.censt, PSL C = Sl2C/{ +I}. 
· h L" l bra sl C ts t e quo te 2 -

connected group wit te a ge 2. f l three dimensional Lie algebras 
As in the preceding case, the a?~lys1~ o re~bility ~t the outset of the argu

g with ~g = g involves o~e add1t1~na poss~ a~d said that if ad(H) had no 
ment above, we started with an arbtt~ary ~d : to be nilpotent. Of course, 
eigenvector ot~e~ than H it~~~f, :~e~ ~~~)uhas t~v: distinct complex conjugate 
in the real case it ts ~lso posst e .a t t ·n End(g) and so has trace 
eigenvalues A. and A.. Since ~d(H~ ts a ~omn.m a o~ ~nd so multiplying H by a 
0 A. will have to be purely tmag~nar~ m this case, . d - i It follows then 
r~al scalar we can assume that its eigenvalues are I an . 
that we can find X, Ye 9 with 
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[H,X] = Y and [H, Y] = -X. 

Using the Jacobi identity as before we may conclude that the commutator of 
x and Y is a multiple of H; after multiplying each of X and Y by a real scalar 
we can assume that it is either H or - H. Finally, if [X, Y] = - H, then 
we observe that we are in the case we considered before: ad(Y) will have 
x + Has an eigenvector with nonzero eigenvalue, and following our previous 
analysis we may conclude that g ~ sl2 llt Thus, we are left with the sole 
additional possibility that g has structure equations 

[H, X] = Y, [H, Y] = -X, [X, Y] = H. (10.12) 

This, finally, we may recognize as the Lie algebra su2 of the real Lie group 
SU(2) (as you may recall, the isomorphism su2 ® C ~ sl2C was used in the 
last lecture). 

What are the real Lie groups with Lie algebras sl2 IR and su
2

? To start, the 
center of the group SL2 IR is again just the scalar matrices {±I}, so the only 
group dominated by SL2 IR is the quotient PSL2 IR. On the other hand, unlike 
the complex case SL2 !R is not simply connected: now the map associating to 
a 2 x 2 matrix its first row expresses SL2 IR as a bundle with fiber IR over 
IR

2 

- { (0, 0) }, so that n 1 (SL2 !R) = "ll.. More precisely PSL2 !R maps to the real 
projective line ?

1 
IR, which is homeomorphic to the circle, with fiber homeo

morphic to IR
2
, so n1 (PSL2 !R) = "ll.. We thus have a tower of covering spaces of 

PSL 2 !R, consisting of the simply-connected group S with center "1l. and its 
quotients Sn = S/n"ll. (not all of these are covers of SL2 IR, despite the diagram 
below). 

A note: In §10.2 we encountered a real Lie group with no faithful finite
dimensional representations; only its universal cover could be represented as 
a matri~ grou_e. Here we find in some sense the opposite phenomenon: the 
groups Sand Sn have no faithful finite-dimensional representations, all finite
dimensional representations factoring through SL2 !R or PSL

2 
!R. This fact will 

be proved as a consequence of our discussion of the representations of the Lie 
algebra sl2C in the next lecture. 

What about groups with Lie algebra su2? To begin with, there is SU(2), 
which (again via the map sending a matrix to its first row vector) is homeo
morphic to S

3 
and thus simply connected. The center of this group is again 

{±I}, so that the quotient PSU(2) is the only other group with Lie algebra 5
Hz. (Alternatively, we may realize SU(2) as the group ofunit quaternions, cf. 

Exercise 7.15.) 

Finally, we remark that there are other representations of the real and 
complex Lie groups discussed above. As we will see, the Lie algebra so

3 
C is 

isomorphic to sl2 C, which induces an isomorphism between the correspond
ing adjoint forms PSL2 C and S03 C (and between the simply-connected forms 
SLz C and the spin group Spin3 C). This in turn suggests two more real forms 
of this group: S03 Rand so+(2, 1). In fact, it is not hard to see that S0

3 
!R ~ 

PSlJ(2), while S0+(2, 1) ~ PSL2R. Lastly the isomorphism su
1

,
1 

® C ~ 

I 
~. ,\ ' 

,,,, 
,I 

'' 1, 

" : ~i ' 
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su2 ® C ~ sl2 C implies that the real Lie algebra su 1, 1 is isomorphic to either 
su2 or sl2 ~; in fact, the latter is the case and this induces an isomorphism of 
groups SU 1, 1 ~ SL2 R We summarize the isomorphisms mentioned in the 
diagram below: 

s 

j 
s" Spin3 ~ 

j II 
SU(l, 1) = SL2 ~ ~ SL2 C +------=> SU(2) ={unit quaternions} 

j j j 
PSL2 ~ ~ PSL2 C +------=> PSU(2) ={unit quaternions}/± 1 

II II II 
(10.13) 

Note also the coincidences: 

(10.14) 

which follow from the fact that Sp refers to preserving a skew-symmetric 
bilinear form, and for 2 x 2 matrices the determinant is such a form. 

Exercise 10.15. Identify the Lie algebras so 3 , su 2 , su 1, 1 , so 2 , 1 , and verify the 
assertions made about the corresponding Lie groups in the diagram. 

Exercise 10.16. For each of the Lie algebras encountered in this lecture, 
compute the lower central series and the derived series, and say whether the 
algebra is nilpotent, solvable, simple, or semisimple. 

Exercise 10.17. The following are Lie groups of dimension two or three, so 
must appear on our list. Find them: (i) the group of affine transformations of 
the line (x H ax + b, under composition); (ii) the group of upper-triangular 
2 x 2 matrices; (iii) the group of orientation preserving Euclidean transforma
tions of the plane (compositions of translations and rotations). 

Exercise 10.18. Locate ~3 with the usual cross-product on our list of Lie 
algebras. More generally, consider the family of Lie algebras parametrized by 
real quadruples (a, b, c, d), each with basis X, Y, Z with bracket given by 

[X, Y] = aZ + dY, [Y, Z] = bX, [Z, X] = c Y - dZ. 
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Classify this ~ie al~ebra a~ (a, b, c, d) varies in ~4, showing in particular that 
every three-d1mens1onal Lie algebra can be written in this way. 

Exercise 10.19. Realize the isomorphism ofSU(l t) with SL ITb b ·d if · 
h · h h ' 2 11'1 Y 1 ent ymg 

t em wit t e groups o~ complex automorphisms of the unit disk and th 
upper half-plane, respectively. e 

E.xe~cise 10.20. Classify all Lie ~lgebras of dimension four and rank 1; in 
particular, show that they are all direct sums of Lie algebras described above. 

~xercise 10.21. Show more generally that there exists a Lie algebra of dimen
~1on .m and ~ank 1 that is not a direct sum of smaller Lie algebras if and onl 
~f m is o~d; m case m is odd show that this Lie algebra is unique and realiz~ 
1t as a Lie subalgebra of sl"C. 
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LECTURE 11 

Representations of sl2 C 

This is the first of four lectures-§11-14-that comprise in some sense the heart of 
the book. In particular, the naive analysis of §11.1, together with the analogous parts 
of§12 and §13, form the paradigm for the study offinite-dimensional representations 
of all semisimple Lie algebras and groups. §11.2 is less central; in it we show how the 
analysis carried out in §11.1 can be used to explicitly describe the tensor products of 
irreducible representations. §11.3 is least important; it indicates how we can interpret 
geometrically some of the results of the preceding section. The discussions in § 11.1 and 
§11.2 are completely elementary (we do use the notion of symmetric powers of a vector 
space, but in a non-threatening way). §11.3 involves a fair amount of classical projectivo. 
geometry, and can be skimmed or skipped by those not already familiar with the 
relevant basic notions from algebraic geometry. 

§11.1: The irreducible representations 
§11.2: A little plethysm 
§11.3: A little geometric plethysm 

§ 11.1. The Irreducible Representations 

We start our discussion of representations of semisimple Lie algebras with the 
simplest case, that of sl2 C. As we will see, while this case does not exhibit anY 
of the complexity of the more general case, the basic idea that informs the 
whole approach is clearly illustrated here. 

This approach is one already mentioned above, in connection with the 
representations of the symmetric group on three letters. The idea in that case 
was that given a representation of our group on a vector space V we first 
restrict the representation to the abelian subgroup generated by a 3-cycle -r. 
We obtain a decomposition 
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V= EBYa 
of V into eigenspaces for the action of r; the commutation relations satisfied 
by the remaining elements u of the group with respect to • implied that such u 
simply permuted these subspaces Jt;., so that the representation was in effect 
determined by the collection of eigenvalues of r. 

Of course, circumstances in the case of Lie algebra representations are quite 
different: to name two, it is no longer the case that the action of an abelian 
object on any vector space admits such a decomposition; and even if such a 
decomposition exists we certainly cannot expect that the remaining elements 
of our Lie algebra will simply permute its summands. Nevertheless, the idea 
remains essentially a good one, as we shall now see. 

To begin with, we choose the basis for the Lie algebra s12 1C from the last 
Jccture: 

H=(~ -~). x = (~ ~). y = (~ ~) 
satisfying 

[H,X] = 2X, [H, Y] = -2Y, [X, Y] = H. (11.1) 

These seem like a perfectly natural basis to choose, but in fact the choice is 
dictated by more than aesthetics; there is, as we will see, a nearly canonical 
way of choosing a basis of a semisimple Lie algebra (up to conjugation), which 
will yield this basis in the present circumstance and which will share many of 
the properties we describe below. 

In any event, let V be an irreducible finite-dimensional representation of 
sl2 IC. We start by trotting out one of the facts that we quoted in Lecture 9, 
the preservation of Jordan decomposition; in the present circumstances it 
implies that 

The action of H on V is diagonalizable. (11.2) 

We thus have, as indicated, a decomposition 

V= ffiJt;., (11.3) 

where the IX run over a collection of complex numbers, such that for any vector 
v E V0 we have 

H(v) =IX' v. 

The next question is obviously how X and Y act on the various spaces 
(:We claim that X and Y must each carry the subspaces Yr, into other sub
. paces Yr.·. In fact, we can be more specific: if we want to know where the 
image of a given vector v e Yr, under the action of X sits in relation to the 
decomposition (11.3), we have to know how H acts on X(v)· this is given by 
the ' 
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Fundamental Calculation (first time): 

H(X(v)) = X(H(v)) + [H, X] (v) 

= X(ix · v) + 2X(v) 

= (ix + 2) · X(v); 

i.e., if vis an eigenvector for H with eigenvalue ix, then X(v) is also an eigenvector 
for H, with eigenvalue ix + 2. In other words, we have 

X: Va--.. Va+2· 
The action of Yon each Va is similarly calculated; we have Y(Va) c Va- 2. 
Observe that as an immediate consequence of this and the irreducibility of 

V, all the complex numbers ix that appear in the decomposition (11.3) must be 
congruent to one another mod 2: for any ix0 that actually occurs, the subspace 

EB v~o+2n 
ne Z 

would be invariant under sl2 C and hence equal to all of V. Moreover, by the 
same token, the Va that appear must form an unbroken string of numbers of 
the form p, P + 2, ... , p + 2k. We denote by n the last element in this sequence; 
at this point we just know n is a complex number, but we will soon see that 
it must be an integer. 

To proceed with our analysis, we have the following picture of the action 
of sl2 C on the vector space V: 

x x x 
~ ~ ~ 

y 
V n-4 y 

V n-2 y 
v. 

u u u 
H H H 

Choose any nonzero vector v e V,,; since V..+ 2 = (0), we must have X(v) = 0. 
We ask now what happens when we apply the map Y to the vector v. To begin 
with, we have 

Claim 11.4. The vectors { v, Y(v), Y 2 (v), ... } span V. 

PROOF. From the irreducibility of V it is enough to show that the subspace 
W c V spanned by these vectors is carried into itself under the action of sl2 C. 
Clearly, Y preserves W, since it simply carries the vector ym(v) into ym+ 1(v). 
Likewise, since the vector ym(v) is in V..- 2m, we have H(Ym(v)) = (n - 2m)· 
ym(v), so H preserves the subspace W. Thus, it suffices to check that X(W) c 
W, i.e., that for each m, X carries ym(v) into a linear combination of the Y1(v). 
We check this in turn form = 0, 1, 2, etc. 

To begin with, we have X(v) = 0 e W. To see what X does to Y(v), we use 
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the commutation relations for sl2 C: we have 

Next, we see that 

X(Y(v)) = [X, Y](v) + Y(X(v)) 

= H(v) + Y(O) 

= n·v. 

X(Y 2 (v)) = [X, Y](Y(v)) + Y(X(Y(v))) 

= H(Y(v)) + Y(n · v) 

= (n - 2)· Y(v) + n· Y(v). 
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The pattern now is clear: X carries each vector in the sequence v, Y(v), Y2(v), 
... into a multiple of the previous vector. Explicitly, we have 

X(Ym(v)) = (n + (n - 2) + (n - 4) + · · · + (n - 2m + 2))· ym-1(v), 

or 

X(Ym(v)) = m(n - m + l)· ym-1(v), 

as can readily be verified by induction. 

(11.5) 

D 

There are a number of corollaries of the calculation in the above Claim. 
To begin with, we make the observation that 

all the eigenspaces Va of H are one dimensional. (11.6) 

Second, since we have in the course of the proof written down a basis for V 
and said exactly where each of H, X, and Y takes each basis vector, the 
representation Vis completely determined by the one complex number n that 
we started with; in particular, of course, we have that 

V is determined by the collection of ix occurring in the decomposition 
v = EB Va- (11.1) 

To complete our analysis, we have to use one more time the finite dimen
sionality of V. This tells us that there is a lower bound on the ix for which 
V, ¥ (0) as well as an upper one, so that we must have Yk(v) = 0 for sufficiently 
large k. But now if m is the smallest power of Y annihilating v, then from the 
relation .(11.5), 

0 = X(Ym(v)) = m(n - m + 1)· ym- 1(v), 

and the fact that ym-1(v) # 0, we conclude that n - m + 1 = O; in particular, 
it follows that n is a non-negative integer. The picture is thus that the eigen
values ix of Hon V form a string of integers differing by 2 and symmetric about 
the origin in Z. In sum, then, we see that there is a unique representation v<n> 
for each non-negative integer n; the representation v<n> is (n + 1)-dimensional, 
With H having eigenvalues n, n - 2, ... , -n + 2, -n. 

··1' 
,1 

,., 
~ I " I 

' 



150 11. Representations ohl2 C 

Note that the existence part of this statement may be deduced by checking 
that the actions of H, X, and Y as given above in terms of the basis v, Yv, 
y2(v), ... , Y"(v) for V do indeed satisfy all the commutation relations for sl2C. 
Alternatively, we will exhibit them in a moment. Note also that by the 
symmetry of the eigenvalues we may deduce the useful fact that any re~resen
tation V of sl2 C such that the eigenvalues of H all have the same parity and 
occur with multiplicity one is necessarily irreducible; more generally, the number 
of irreducible factors in an arbitrary representation V of sl2 C is exactl Y the sum 
of the multiplicities of 0 and 1 as eigenvalues of H. . 

We can identify in these terms some of the standard representations of sl2 C. 
To begin with, the trivial one-di~ensional representatio~ ~is clearly just v<0 >. 
As for the standard representation of sl2 C on V = C , tf x and y are the 
standard basis for C 2, then we have H(x) = x and H(y) = -y, so that V = 
C · x E9 C · y = V_1 E0 V1 is just the representation v<l) above. Similarly, a basis 

2 2<'"'2 • • b { 2 2} d for the symmetric square W = Sym V = Sym \(_, ts given Y x , xy, Y , an 
we have 

H(x·x) = x·H(x) + H(x)·x = 2x·x, 

H(x· y) = x· H(y) + H(x)· y = 0, 

H(y· y) = y· H(y) + H(y)· y = -2y· y, 

so the representation W = C · x 2 EB C · xy EB C · Y2 = W_2 EB. Wo ® W2 is t~e 
representation v<2

> above. More generally, the nth symmetric power Sym V 
of V has basis { x", x"-1 y, ... , y"}, and we have 

H(x"-k yk) = (n - k). H(x). xn-k-1 yk + k. H(y). x"-k yk-1 

= (n - 2k). xn-k yk 

so that the eigenvalues of H on Sym" V are exactly n, n - 2, ... , - n. By the 
observation above that a representation for which all eigenvalues of H occur 
with multiplicity 1 must be irreducible, it follows that Sym"V is irreducible, 
and hence that 

v<n> = Sym"V. 

In sum then, we can say simply that 

Any irreducible representation of sl2 C is a symmetric power of the 
standard representation v ~ C2

• (11.8) 

Observe that when we exponentiate the image of sl2 C under the embedding 
sI2C-+ sln+l C corresponding to the representation Sym"V, we arrive at the 
group SL C when n is odd and PGL2 C when n is even. Thus, the represen-

2 ~v. tations of the group PGL2C are exactly the even powers Sym . 

Exercise 11.9. Use the analysis of the representations of sl2C _to prove the 
statement made in the previous lecture that the universal cover S of SL2 IR has 
no finite-dimensional representations. 
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~ 11.2. A Little Plethysm 

('!early, knowing the eigenspace decomposition of given representations tells 
us the eigenspace decomposition of all their tensor, symmetric, and alternating 
products and powers: for example, if V = EB Ya and W = EB Wp then V ® W = 
ffi( V~ ® W11 ) and Ya® W11 is an eigenspace for H with eigenvalue Cl + p. We 
can use this to describe the decomposition of these products and powers into 
irreducible representations of the algebra sl2 C. 

For example, let V ~ C 2 be the standard representation of sl2 C; and 
suppose we want to study the representation Sym 2 V ® Sym3 V; we ask in 
particular whether if it irreducible and, if not, how it decomposes. We have 
seen that the eigenvalues of Sym2 V are 2, 0, and -2, and those of Sym3 V are 
3, I, -1, and -3. The 12 eigenvalues of the tensor product Sym2 V ® Sym3 V 
arc thus 5 and - 5, 3 and - 3 (taken twice), and 1 and -1 (taken three times); 
we may represent them by the diagram 

• • 
-5 0 5 

The eigenvector with eigenvalue 5 will generate a subrepresentation of the 
tensor product isomorphic to Sym5 V, which will account for one occurrence 
of each of the eigenvalues 5, 3, 1, -1, - 3, and -5. Similarly, the complement 
of Sym 5 V in the tensor product will have eigenvalues 3 and -3, and 1 and 
- I (taken twice), and so will contain a copy of the representation Sym3 V, 
which will account for one occurrence of the eigenvalues 3, 1, -1 and - 3; 
and the complement of these two subrepresentations will be simply a copy of 
V. We have, thus, 

Sym2 V ® Sym3 V ~ Sym 5V E9 Sym3 V E9 V. 

Note that the projection map 

Sym2 V ® Sym3 V-+ Sym 5 V 

on the first factor is just multiplication of polynomials; the other two projec
tions do not admit such obvious interpretations. 

Exercise 11.10. Find, in a similar way, the decomposition of the tensor product 
Sym 2 v ® Sym 5 V. 

Exercise 11.11 *. Show, in general, that for a ~ b we have 

Sym0 V ® SymbV = Syma+bv EB Syma+b-iv EB··· EB Sym0 -bV. 

As indicated, we can also look at symmetric and exterior powers of given 
representations; in many ways this is more interesting. For example, let 

'' ' 
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V ~ C2 be as above the standard representation of sl2 C, and let W = Sym2 V 
be its symmetric squa~e; i.e., in the notation introduced above, take W = v<2>. 
We ask now whether the symmetric square of Wis irreducible, and if not what 
its decomposition is. To answer this, observe that ~ has eigenvalue~ - 2, 0, 
and 2 each occurring once, so that the symmetnc square of W will have 
eigen~alues the pairwise sums of these num hers-that is, - 4, - 2, 0 (occurring 
twice), 2, and 4. We may represent Sym2 Wby the diagram: 

• • • • 
-4 -3 -2 -1 0 2 3 4 

From this it is clear that the representation Sym2 W must decompose into 
one copy ~f the representation y<4 > = Sym4 V, plus one copy of the trivial 
(one-dimensional) representation: 

Sym2 (Sym 2 V)) = Sym4 V El3 Sym0 V. (11.12) 

Indeed, we can see this directly: we have a natural map 

Sym2 (Sym2 V))-+ Sym4 V 

obtained simply by evaluation; this will have a one-dimensional kernel (if~ 
and y are as above the standard basis for V we can write a generator of this 

kernel as (x2 ) • (y 2
) - (x · y)2

). 

Exercise 11.13. Show that the exterior square/\~~ is isomor~hic to W its~lf. 
Observe that this, together with the above descnptton of Sym W, agrees with 
the decomposition of W ® W given in Exercise 11.11 above. 

We can, in a similar way, describe the decomposition of all the symmetr~c 
powers of the representation W = Sym2 V. Fo~ example, the third symmetn~ 
power Sym3 W has eigenvalues given by the tnple sums ~f the set { --;-2, 0, 2}, 
these are - 6, - 4, - 2 (twice), 0 (twice), 2 (twice), 4, and 6; diagrammatically, 

• 
-6 

• 
-4 -2 

• • 

Again there is no ambiguity about the decomposition; this collection of 
eigens~aces can only come from the direct sum of Sym6 V with Sym

2 V. so we 
must have 

Sym3 (Sym2 V) = Sym6 V El3 Sym2 V. 

As before, we can see at least part of this directly: we have a natural evaluation 

map 
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and the eigenspace decomposition tells us that the kernel is the irreducible 
representation Sym2 V. 

Exercise 11.14. Use the eigenspace decomposition to establish the formula 

[n/2] 

Sym"(Sym2 V) = E9 Sym2n-4ay 
«=0 

for all n . 

§11.3. A Little Geometric Plethysm 

We want to give some geometric interpretations of these and similar decom
positions of higher tensor powers of representations of sl2 C. One big difference 
is that instead of looking at the action of either the Lie algebra sl2 C or the 
groups SL2 C or PG L2 C on a representation W, we look at the action of the 
group PGL2 C on the associated projective space1 !PW. In this context, it is 
natural to look at various geometric objects associated to the action: for 
example, we look at closures of orbits of the action, which all turn out to be 
algebraic varieties, i.e., definable by polynomial equations. In particular, our 
goal in the following will be to describe the symmetric and exterior powers of 
W in terms of the action of PG L2 C on the projective spaces IP W and various 
loci in !PW. 

The main point is that while the action of PG L2 C on the projective space 
!Jl>V ~. IP 1 associated to the standard representation Vis transitive, its action 
on the spaces IP(Sym"V) ~ IP" for n > 1 is not. Rather, the action will preserve 
various orbits whose closures are algebraic subvarieties of IP"-for example, 
the locus ot points 

C = { [ v · v · ... · v]: v e V} c IP(Sym" V) 

corresponding to nth powers in Sym"V will be an algebraic curve in 
!Jl>(Sym"V) ~ IP", called the rational normal curve; and this curve will be carried 
into itself by any element of PGL2 C acting on IP" (more about this in a 
moment). Thus, a knowledge of the geometry of these subvarieties of i? W may 
illuminate the representation W, and vice versa. This approach is particularly 
useful·in describing the symmetric powers of W, since these powers can be 
viewed as the vector spaces of homogeneous polynomials on the projective 
space IP(W*) (or, mod scalars, as hypersurfaces in that projective space). 
Decomposing these symmetric powers should therefore correspond to some 
interesting projective geometry. 

' ~Where denotes the projective space of lines through the origin in W, or the quotient space of 
W\ {O} by multiplication by nonzero scalars; we write [w] for the point in l?W determined by the 
nonzero vector w. For W = C"'+1

, (z0 , ••• , z.,] is the point in I?"'= l?W determined by a point 
(zo .... , z.,) in C"'+1• 
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Digression on Projective Geometry 

First, as we have indicated, we want to describe representations of Lie groups 
in terms of the corresponding actions on projective spaces. The following fact 
from algebraic geometry is therefore of some moral (if not logical) importance: 

Fact 11.15. The group of automorphisms of projective space ?"-either as 
algebraic variety or as complex manifold-is just the group PGLn+1 IC. 

For a proof, see [Ha]. (For the Riemann sphere 1Jll 1 at least, this should be 
a familiar fact from complex analysis.) 

For any vector space W of dimension n + 1, SymkW* is the space of 
homogeneous polynomials of degree k on the projective space IJll" = l?W of 
lines in W; dually, SymkW will be the space of homogeneous polynomials of 
degree k on the projective space IJll" = IJll(W*) oflines in W*, or of hyperplanes 
in W Thus, the projective space IJll(SymkW) is the space of hypersurfaces of 
degree kin IJll" = IJll(W*). (Because of this duality, we usually work with objects 
in the projective space IJll(W*) rather than the dual space l?W in order to derive 
results about symmetric powers SymkW; this may seem initially more con
fusing, but we believe it is ultimately less so.) 

For any vector space V and any positive integer n, we have a natural map, 
called the Veronese embedding 

l?V* c.+ IJll(Sym"V*) 

that maps the line spanned by v EV* to the line spanned by v" E Sym"V*. We 
will encounter the Veronese embedding of higher-dimensional vector spaces 
in later lectures; here we are concerned just with the case where V is two 
dimensional, so l?V* = 1Jll 1

• In this case we have a map 

1": 1? 1 C+ IJll" = IJll(Sym"V*) 

whose image is called the rational normal curve e = e" of degree n. Choosing 
bases {ex, P} for V* and { ... [n!/k!(n - k)!]exkpn-k ... } for Sym"V* and ex
panding out (xex + y/J)" we see that in coordinates this map may be given as 

[x, y JI-+ [x", x"-1 y, xn-2 y2, ...• xy"-1, y"]. 

From the definition, the action of PGL2 IC on IJll" preserves e"; conversely, 
since any automorphism of IJll" fixing e" pointwise is the identity, from Fact 
11.15 it follows that the group G of automorphisms of I?" that preserve e" is 
precisely PGL21C. (Note that conversely if W is any (n + 1)-dimensional 
representation of SL21C and IJllW ~ IJll" contains a rational normal curve of 
degree n preserved by the action of PGL21C, then we must have W ~ Sym"V; 
we leave this as an exercise. 2) 

When n = 2, e is the plane conic defined by the equation 

2 Note that any confusion between IP'W and IP'W* is relatively harmless for us here, since the 
representations Sym•v are isomorphic to their duals. 
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F(Z0 , Z 1 , Z2) = Z0 Z2 - Zf = 0. 

for n = 3, e is the twisted cubic curve in 1?3
, and is defined by three quadratic 

polynomials 

and 

More generally, the rational normal curve is the common zero locus of the 
2 x 2 minors of the matrix 

M = (ZoZ1 · · · Zn-1) 
Z1Z2 ... Zn ' 

that is, the locus where the rank of M is 1. 

Back to Plethysm 

We start with Example (11.12). We can interpret the decomposition given 
t~crc (or rather the decomposition of the representation of the corresponding 
Lie group SL2C) geometrically via the Veronese embedding 12: 1Jll1 c.+ 1Jll2. As 
noted, SL2 IC acts on 1Jll2 = 1Jll(Sym2 V*) as the group of motions of 1Jll 2 carrying 
the conic curve e 2 into itself. Its action on the space Sym2(Sym2 V)) of 
quadratic polynomials on 1Jll 2 thus must preserve the one-dimensional sub
space IC· F spanned by the polynomial F above that defines the conic e 2 • At 
the same time, we see that pullback via z2 defines a map from the space of 
quadratic polynomials on 1Jll 2 to the space of quartic polynomials on 1Jll1, which 
has kernel IC· F; thus, we have an exact sequence 

0--+ IC= Sym0 V--+ Sym2(Sym2 V))--+ Sym4 V--+ 0, 

which implies the decomposition of Sym2(Sym2 V)) described above. 
Note that what comes to us at first glance is not actually the direct sum 

decomposition (11.12) of Sym2(Sym2 V)), but just the exact sequence above. 
The splitting of this sequence of SL2 1C-modules, guaranteed by the general 
theory, is less obvious. For example, we are saying that given a conic curve e 
m the plane 1Jll2, there is a subspace Uc of the space of all conics in 1Jll 2, 

~omp.lementary to the one-dimensional subspace spanned by e itself and 
tnvana~t under the action of the group of motions of the plane 1Jll 2 carrying 
C into itself. Is there a geometric description of this space? Yes: the following 
Proposition gives one. 

Proposition 11.16. The subrepresentation Sym4 V c Sym2(Sym2V) is the space 
01 conics spanned by the family of double lines tangent to the conic e = e2 • 

P.RooF. One way to prove this is to simply write out this subspace in coor
~mates: in terms of homogeneous coordinates Z1 on 1Jll 2 as above, the tangent 
hne to the conic eat the point [l, ex, ex 2 ] is the line 
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La.= {Z:oc2Z0 - 2ocZ1 + Z2 = O}. 

The double line 2La. is, thus, the conic with equation 

oc4 ZJ - 4oc3 Z0 Z 1 + 2oc2z0 z2 + 4oc2Zr - 4ocZ1 Z2 + Zi = 0. 

The subspace these conics generate is thus spanned by ZJ, Z0 Z 1 , Z 1 Z2, Zi, 
and Z0 Z2 + 2Zr. By construction, this is invariant under the action of SL2 C, 
and it is visibly complementary to the trivial subrepresentation C · F == 
c. (ZoZ2 - Zr). 

For those familiar with some algebraic geometry, it may not be necessary 
to write all this down in coordinates: we could just observe that the map from 
the conic curve C to the projective space IP(Sym2(Sym2V)) of conics in IP'2 -
sending each point p EC to the square of the tangent line to C at p is the 
restriction to C of the quadratic Veronese map IP 2 -+ IPs, and so has image a 
quartic rational normal curve. This spans a four-dimensional projective sub
space of IP(Sym2(Sym2V)), which must correspond to a subrepresentation 
isomorphic to Sym4 V. D 

We will return to this notion in Exercise 11.26 below. 
We can, in a similar way, describe the decomposition of all the symmetric 

powers of the representation W = Sym2V; in the general setting, the geo
metric interpretation becomes quite handy. For example, we have seen that 
the third symmetric power decomposes 

Sym3 (Sym2V) = Sym6 V EB Sym2V. 

This is immediate from the geometric description: the space of cubics in the 
plane IP 2 naturally decomposes into the space of cubics vanishing on the conic • 
C = C2, plus a complementary space isomorphic (via the pullback map 1!) to 
the space of sex tic polynomials on IP 1 ; moreover, since a cubic vanishing on 
C2 factors into the quadratic polynomial F and a linear factor, the space of 
cubics vanishing on the conic curve Cc IP 2 may be identified with the space 
oflines in IP 2. 

One more special case: from the general formula (11.14), we have 

Sym4 (Sym2V) ~ Sym8 V EB Sym4 V EF> Sym0 V. 

Again, this is easy to see from the geometric picture: the space of quartic 
polynomials on IP 2 consists of the one-dimensional space of quartics spanned 
by the square of the defining equation F of C itself, plus the space of quartics 
vanishing on C modulo multiples of F 2, plus the space of quartics modulo 
those vanishing on C. (We use the word "plus," suggesting a direct sum, but 
as before only an exact sequence is apparent). 

Exercise 11.17. Show that, in general, the order of vanishing on C defines a 
filtration on the space of polynomials of degree n in IP2, whose successi~e 
quotients are the direct sum factors on the right hand side of the decomposi
tion of Exercise 11.14. 
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We can similarly analyze symmetric powers of the representation U ::;:: 
Sym3 V. For example, since Uhas eigenvalues _-3, -1, ~·and 3, t~e symmetric 
square of Uhas eigenvalues -6, -4, -2 (twice), 0 (twice), 2 (twice), 4, and 6; 
diagrammatically, we have 

• • • • 
-6 

This implies that 

(11.18) 

We can interpret this in terms of the twisted cubic C = C3 c IP 3 as follows: 
the space of quadratic polynomials on IP 3 contains, as a subrepresentation, the 
three-dimensional vector space of quadrics containing the curve C itself; and 
the quotient is isomorphic, via the pullback map z!, to the space of sex tic 
polynomials on IP 1

• 

Exercise 11.19*. By the above, the action of SL2C on the space of quadric 
surfaces containing the twisted cubic curve C is the same as its action on 
rD(Sym2V*) ~ IP2. Make this explicit by associating to every quadric con
taining Ca polynomial of degree 2 on 1P1, up to scalars. 

Exercise 11.20*. The direct sum decomposition (11.18) says that there is a 
linear space of quadric surfaces in IP3 preserved under the action of SL2 C and 
complementary to the space of quadrics containing C. Describe this space. 

faercise 11.21. The projection map from Sym2(Sym3 V) to Sym2V given by 
the decomposition (11.18) above may be viewed as a quadratic map from the 
vector space Sym3 V to the vector space Sym2V. Show that it may be given in 
these terms as the Hessian, that is, by associating to a homogeneous cubic 
polynomial in two variables the determinant of the 2 x 2 matrix of its second 
partials. 

faercise 11.22. The map in the preceding exercise may be viewed as associating 
to an unordered triple of points {p, q, r} in IP 1 an unordered pair of points 
[ s, t} c IP 1• Show that this pair of points is the pair of fixed points of the 
automorphism of IP 1 permuting the three points p, q, and r cyclically. 

faercise 11.23*. Show that 

Sym3 (Sym 3 V) = Sym9 V EB Symsv EB Sym3 V, 

and interpret this in terms of the geometry of the twisted cubic curve. In 
particular, show that the space of cubic surfaces containing the curve is the 
direct sum of the last two factors, and identify the subspace of cubics corre
sponding to the last factor. 

•. ) 
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Exercise 11.24. Analyze the representation Sym4(Sym 3 V) similarly. In par
ticular, show that it contains a trivial one-dimensional subrepresentation. 

The trivial subrepresentation of Sym4(Sym3 V) found in the last exercise 
has an interesting interpretation. To say that Sym4(Sym3 V) has such an 
invariant one-dimensional subspace is to say that there exists a quartic surface 
in ? 3 preserved under all motions of ? 3 carrying the rational normal curve 
C = C3 into itself What is this surface? The answer is simple: it is the tangent 
developable to the twisted cubic, that is, the surface given as the union of the 
tangent lines to C. 

Exercise 11.25*. Show that the representation Sym 3(Sym4V) contains a trivial 
subrepresentation, and interpret this geometrically. 

Problem 11.26. Another way of interpreting the direct sum decomposition of 
Sym2(Sym2V) geometrically is to say that given a conic curve C c ? 2 and 
given four points on C, we can find a conic C' = C'(C; Pi. ... , p4) c IP> 2 

intersecting C in exactly these points, in a way that is preserved by the action 
of the group PGL3C of all motions of ? 2 (i.e., for any motion A: ? 2 -+ ? 2 of 
the plane, we have A(C'(C; p1, ••• , p4)) = C'(AC; Ap1, ••• , Ap4)). What is a 
description of this process? In particular, show that the cross-ratio of the four 
points p1 on the curve C' must be a function of the cross-ratio of the p1 on C, 
and find this function. Observe also that this process gives an endomorphism 
of the pencil 

' 
{Cc p2: Pt• ... , p4 EC}~ pi 

of conics passing through any four points p1 e ? 2. What is the degree of this 
endomorphism? 

The above questions have all dealt with the symmetric powers of Sym"V. 
There are also interesting questions about the exterior powers of Sym"V. 
To start with, consider the exterior square N(Sym3 V). The eigenvalues of this 
representation are just the pairwise sums of distinct elements of {3, 1, -1, - 3 }, 
that is, 4, 2, 0 (twice), -2, and -4; we deduce that 

J\2(Sym3 V) ~ Sym4V E9 Sym0 V. (11.27) 

Observe in particular that according to this there is a skew-symmetric bilinear 
form on the space U = Sym3 V preserved (up to scalars) by the action ofSL2 IC. 
What is this form? One way of describing it would be in terms of the twisted 
cubic: the map from C to the dual projective space (?3 )* sending each point 
p e C to the osculating plane to C at p extends to a skew-symmetric linear 
isomorphism of ? 3 with (?3 )*. 

Exercise 11.28. Show that a line in ? 3 is isotropic for this form if and only if, 
viewed as an element of P(J\2 U), it lies in the linear span of the locus of tangent 
lines to the twisted cubic. 
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Exercise 11.29. Show that the projection on the first factor in the decomposi
tion ( 11.27) is given explicitly by the map 

FA Gi-+F·dG - G·dF 

and say precisely what this means. 

Exercise 11.30. Show that, in general, the representation N(Sym"V) has as a 
direct sum factor the representation Sym2•-2v, and that the projection on this 
facto~ is given as in the preceding exercise. Find the remaining factors of 
N(Sym"V), and interpret them. 

More on Rational Normal Curves 

Exercise 11.31. Analyze in general the representations Sym2(Sym"V); show, 
using eigenvalues, that we have 

Sym2(Sym"V) = EB Sym2•-4av. 
a<:O 

Exercise 11.32*. Interpret the space Sym2(Sym"V) of the preceding exercise 
as the space of quadrics in the projective space ?",and use the geometry of 
the rational normal curve C = c. c ?" to interpret the decomposition of this 
representation into irreducible factors. In particular, show that direct sum 

EB Sym2•-4ay 
a<: 1 

is the space of quadratic polynomials vanishing on the rational normal curve; 
and that the direct sum 

EB Sym2n-4ay 
a<:2 

is the space of quadrics containing the tangential developable of the rational 
normal curve, that is, the union of the tangent lines to C. Can you interpret 
the sums for a ~ k for k > 2? 

Exercise 11.33. Note that by Exercise 11.11, the tensor power 

Sym"V ® Sym"V 

always contains a copy of the trivial representation; and that by Exercises 
11.30 and 11.31, this trivial subrepresentation will lie in Sym2(Sym"V) if n is 
even and in N(Sym"V) if n is odd. Show that in either case, the bilinear form 
on Sym"V preserved by SL2 C may be described as the isomorphism of?" with 
(ITD" )* carrying each point p of the rational normal curve C c IP>" into the 
osculating hyperplane to C at p. 

Comparing Exercises 11.14 and 11.31, we see that Sym2(Sym"V) ~ 
Sym"(Sytp2V); apparently coincidentally. This is in fact a special case of a 
more general theorem (cf. Exercise 6.18): 

,• 
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Exercise 11.34. (Hermite Reciprocity). Use the eigenvalues of H to prove the 
isomorphism 

Symk(Sym"V) ~ Sym"(SymkV). 

Can you exhibit explicitly a map between these two? 

Note that in the examples of Hermite reciprocity we have seen, it 
seems completely coincidental: for example, the fact that the representations 
Sym3 (Sym4 V) and Sym4 (Sym3 V) both contain a trivial representation cor-/ 
responds to the facts that the tangential developable of the twisted cubic in 
IP> 3 has degree 4, while the chordal variety of the rational normal quartic in 
IP>4 has degree 3. 

Exercise 11.35*. Show that Am(Sym"V) ~ Symm(Symn+i-mv). 

We will see in Lecture 23 that there is a unique closed orbit in IP>(W) for any 
irreducible representation W. For now, we can do the following special case. 

Exercise 11.36. Show that the unique closed orbit of the action of SL2 C on 
the projectivization of any irreducible representation is isomorphic to IP> 1 

(these are the rational normal curves introduced above). 

LECTURE 12 

Representations of sl3 C, Part I 

This lecture develops results for sl3 C analogous to those of§l 1.1 (though not in exactly 
the same order). This involves generalizing some of the basic terms of §11 (e.g., the 
notions of eigenvalue and eigenvector have to be redefined), but the basic ideas are in 
some sense already in §11. Certainly no techniques are involved beyond those of §11.1. 

We come now to a second important stage in the development of the theory: 
in the following, we will take our analysis of the representations of sl2 C and 
sec how it goes over in the next case, the algebra sl3 C. As we will see, a number 
of the basic constructions need to be modified, or at least rethought. There 
are, however, two pieces of good news that should be borne in mind. First, 
we will arrive, by the end of the following lecture, at a classification of the 
representations of sl3 C that is every bit as detailed and explicit as the classifi
cation we arrived at previously for sl2 C. Second, once we have redone our 
analysis in this context, we will need to introduce no further concepts to carry 
out the classification of the finite-dimensional representations of all remaining 
semisimple Lie algebras. 

We will proceed by analogy with the previous lecture. To begin with, we 
started out our analysis of sl2 C with the basis {H, X, Y} for the Lie algebra; 
we then proceeded to decompose an arbitrary representation V of sl2 C into 
a direct sum of eigenspaces for the action of H. What element of sl3 C in 
particular will play the role of H? The answer-and this is the first and 
perhaps most wrenching change from the previous case-is that no one 
clement really allows us to see what is going on. 1 Instead, we have to replace 

1 
This is not literally true: as we will see from the following analysis, if His any diagonal matrix 

whose entries are independent over Q, then the action of Hon any representation V of &1 3 C 
determines the representation (i.e., if we know the eigenvalues of H we know V). But (as we will 
also see) trying to carry this out in practice would be sheer perversity. 
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the single element HE sl2 C with a subspace () c sl3 C, namely, the two
dimensional subspace of all diagonal matrices. The idea is a basic one; it 
comes down to the observation that commuting diagonalizable matrices are 
simultaneously diagonalizable. This translates in the present circumstances to 
the statement that any finite-dimensional representation V of sl3 C admits a 
decomposition V = EB fl;,, where every vector v E fl;, is an eigenvector for every 

element HE(). 
At this point some terminology is clearly in order, since we will be dealing 

with the action not of a single matrix H but rather a vector space () of them. 
To begin with, by an eigenvector for () we will mean, reasonably enough, a 
vector v E V that is an eigenvector for every HE(). For such a vector v we can 

write 

H(v) = cx(H) · v, ( 12.1) 

where cx(H) is a scalar depending linearly on H, i.e., ex E {)*. This leads to our 
second notion: by an eigenvalue for the action of l) we will mean an element 
ex E {)*such that there exists a nonzero element v E V satisfying (12.1); and by 
the eigenspace associated to the eigenvalue ex we will mean the subspace of all 
vectors v E V satisfying (12.1). Thus we may phrase the statement above as 

(12.2) Any finite-dimensional representation V of sl3 C has a decomposition 

V= $fl;,, 

where fl;, is an eigenspace for l) and ex ranges over a finite subset of l)*. 

This is, in fact, a special case of a more general statement: for any semisimple 
Lie algebra g, we will be able to find an abelian subalgebra l) c g, such that 
the action of l) on any g-module V will be diagonalizable, i.e., we will have a 
direct sum decomposition of V into eigenspaces fl;, for {). 

Having decided what the analogue for sl3 C of HE sl2 C is, let us now 
consider what will play the role of X and Y. The key here is to look at the 

commutation relations 

[H, X] = 2X and [H, Y] = -2Y 

in sI
2
C. The correct way to interpret these is as saying that X and Y are 

eigenvectors for the adjoint action of H on sl2 C. In our present cir~u?1stan~es, 
then we want to look for eigenvectors (in the new sense) for the adJomt act10n 
of l) ~n sI

3 
C. In other words, we apply (12.2) to the adjoint representation of 

sl3 C to obtain a decomposition 

sl3 C = l) $ (Ef>ga), (12.3) 

where ex ranges over a finite subset of{)* and l) acts on each space 9a by scalar 
multiplication, i.e., for any H E l) and Y E 9a• 

[H, Y] = ad(H)(Y) = cx(H)· Y. 

This is probably easier to carry out in practice than it is to say; we are being 

12. Representations of sl3 C, Part I 163 

fongwinded here because once this process is understood it will be straight
forward to apply it to the other Lie algebras. In any case, to do it in the present 
circumstances, we just observe that multiplication of a matrix Mon the left 
by a diagonal matrix D with entries a1 multiplies the ith row of M by a1, while 
multiplication on the right multiplies the ith column by a1; if the entries of M 
arc m1,1, the entries of the commutator [D, M] are thus (a1 - a1)m1,1. We see 
then that the commutator [D, M] will be a multiple of M for all D if and only 
if all but one entry of Mare zero. Thus, if we let E1,1 be the 3 x 3 matrix whose 
(i, j)th entry is 1 and all of whose other entries are 0, we see that the E1,1 exactly 
generate the eigenspaces for the adjoint action of l) on g. 

Explicitly, we have 

q ~ { ( ~ ; ! ) : a, + a, + a, ~ 0} 
and so we can write 

where 

(

a 1 0 0) 
L1 0 a2 0 = a1• 

0 0 a3 

The linear functionals ex E {)*appearing in the direct sum decomposition (12.3) 
arc thus the six functionals L 1 - L1; the space gL,-Lj will be generated by the 
element E1,1. To draw a picture 

(12.4) 

The virtue of this decomposition and the corresponding picture is that we 
can read off from it pretty much the entire structure of the Lie algebra. Of 

-·· 1 



164 12. Representations of sl3 C, Part I 

course, the action of 1) on 9 is clear from the picture: 1) carries each of the 
subspaces 9,. into itself, acting on each 9,. by scalar multiplication by the linear 
functional represented by the corresponding dot. Beyond that, though, we can 
also see, much as in the case of representations of sl2 IC, how the rest of the Lie 
algebra acts. Basically, we let X be any element of 9 .. and ask wh~re ad(X) 
sends a given vector Y E 911 ; the answer as before comes from knowmg how 1) 
acts on ad(X)(Y). Explicitly, we let H be an arbitrary element of 1) and as on 
page 148 we make the 

Fundamental Calculation (second time): 

[H, [X, Y]] = [X, [H, Y]] + [[H, X], Y] 

= [X, /3(H) · Y] + [oc(H) · X, Y] 

= (oc(H) + /3(H)) · [X, Y]. 

In other words, [X, Y] = ad(X)(Y) is again an eigenvector for l), with eigen
value oc + {3. Thus, 

ad(9,.): 911 --+ 9 .. +p; 

in particular, the action of ad(9,.) preserves the decompositi?n (12.3) in_ t~e 
sense that it carries each eigenspace 911 into another. We can mterpret this m 
terms of the diagram (12.4) of eigenspaces by saying that each g~ acts, so to 
speak, by "translation"; that is, it carries each spa~e 911 correspondmg to a dot 
in the diagram into the subspace 9 .. +/I correspondmg to that dot translated by 
oc. For example, the action of 9L, -L, may be pictured as 

0 

L2-L3/ 
0 

(12.5) 
0 
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i.e., it carries 9L,-L, into 9L,-L,; 9L,-L, into l); 1) into 9L,-L,• 9L,-L, into 9L, -L» 
and kills 9L,-L,• 9L,-L,• and 9L, -L,· Of course, not all the data can be read off 
of the diagram, at least on the basis on what we have said so far. For example, 
we do not at present see from the diagram the kernel of ad(9L, -L) on 1), though 
we will see later how to read this off as well. We do, however, have at least a 
pretty good idea of who is doing what to whom. 

Pretty much the same picture applies to any representation V of sl3 IC: we 
start from the eigenspace decomposition V = E9 V.. for the action of 1) that we 
saw in (12.2). Next, the commutation relations for sl3 IC tell us exactly how the 
remaining summands of the decomposition (12.3) of sl3 IC act on the space V, 
and again we will see that each of the spaces g,. acts by carrying one eigenspace 
r-f1 into another. As usual, for any X E 9,. and v E V11 we can tell where X will 
send v if we know how an arbitrary element HE 1) will act on X(v). This we 
can determine by making the 

Fundamental Calculation (third time): 

H(X(v)) = X(H(v)) + [H, X] (v) 

= X({J(H) · v) + (oc(H) · X)(v) 

= (oc(H) + {J(H)) · X(v). 

We see from this that X(v) is again an eigenvector for the action of l), with 
eigenvalue oc + {J; in other words, the action of 9,. carries V11 to V..+p· We can 
thus represent the eigenspaces V.. of V by dots in a plane diagram so that each 
!1. acts again "by translation," as we did for representations of sl2 IC in the 
preceding lecture and the adjoint representation of sl3 IC above. Just as in the 
case ofsl2 1C (page 148), we have 

Observation 12.6. The eigenvalues oc occurring in an irreducible representation 
of sl 3 IC differ from one other by integral linear combinations of the vectors 
L; - L1 el)*. 

Note that these vectors L 1 - L1 generate a lattice in l)*, which we will denote 
by AR, and that all the oc lie in some translate of this lattice. 

At this point, we should begin to introduce some of the terminology that 
appears in this subject. The basic object here, the eigenvalue oc El)* of the 
action of 1) on a representation V of g, is called a weight of the representation; 
the corresponding eigenvectors in V,. are called, naturally enough, weight 
vectors and the spaces V.. themselves weight spaces. Clearly, the weights that 
occur in the adjoint representation are special; these are called the roots of 
the Lie algebra and the corresponding subspaces 9,. c: 9 root spaces; by 

.. ,, 
11 

~ 
I 
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convention, zero is not a root. The lattice AR c l)* generated by the roots ex 
is called the root lattice. 

To see what the next step should be, we go back to the analysis of represen
tations of sl2 C. There, at this stage we continued our analysis by going to an 
extremal eigenspace ~and taking a vector v e ~· The point was that since Va 
was extremal, the operator X, which would carry ~to ~+2 , would have to 
kill v; so that v would be then both an eigenvector for H and in the kernel of 
X. We then saw that these two facts allowed us to completely describe the 
representation V in terms of images of v. 

What would be the appropriately analogous setup in the case of sl3 C? To 
start at the beginning, there is the question of what we mean by extremal: in 
the case of sl2 C, since we knew that all the eigenvalues were scalars differing 
by integral multiples of2, there was not much ambiguity about what we meant 
by this. In the present circumstance this does involve a priori a choice (though 
as we shall see the choice does not affect the outcome): we have to choose a 
direction, and look for the farthest ex in that direction appearing in the 
decomposition (12.3). What this means is that we should choose a linear 
functional 

extend it by linearity to a linear functional l: l)* -+ C, and then for any 
representation V we should go to the eigenspace ~ for which the real part of 
l(ex) is maximal.2 Of course, to avoid ambiguity we should choose I to be 
irrational with respect to the lattice AR, that is, to have no kernel. 

What is the point of this? The answer is that, just as in the case of a 
representation V of sl2 C we found in this way a vector v e V that was 
simultaneously in the kernel of the operator X and an eigenvector for H, in 
the present case what we will find is a vector v e ~ that is an eigenvector for 
l), and at the same time in the kernel of the action of 911 for every f3 such that 
1(/3) > 0-that is, that is killed by half the root spaces 911 (specifically, the root 
spaces corresponding to dots in the diagram (12.4) lying in a half plane). This 
will likewise give us a nearly complete description of the representation V. 

To carry this out explicitly, choose our functional I to be given by 

l(a1 L 1 + a2 L 2 + a 3 L3 ) = aa 1 + ba2 + ca3 , 

where a + b + c = 0 and a > b > c, so that the spaces 9a c 9 for which we 
have l(ex) > 0 are then exactly 9L,-L,• 9L,-L,, and 9L,-L,; they correspond to 
matrices with one nonzero entry above the diagonal. 

2 The real-versus-complex business is a red herring since (it will turn out very shortly) all the 
eigenvalues IX actually occurring in any representation will in fact be in the real (in fact, the 
rational) linear span of AR. 
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(12.7) 

Thus, for i < j, the matrices E;,i generate the positive root spaces, and the Ei; 
generate the negative root spaces. We set ' 

(12.8) 

Now let V be any irreducible, finite-dimensional representation of sl
3 
C. 

The upshot of all the above is the 

Lemma 12.9. There is a vector v e V with the properties that 

(~) vis an eigenvector for l), i.e. v e ~for some ex; and 
(11) vis killed by E 1, 2 , E 1, 3 , and E 2 , 3 • 

For any representation V of sl3 C, a vector v e V with these properties is 
called a highest weight vector. 

In the case of sl2 C, having found an eigenvector v for H killed by X, we 
argued that the images of v under successive applications of Y generated the 
representation. The situation here is the same: analogous to Claim 11.4 we 
have 

Claim 12.10. Let V be an irreducible representation of sl3 C, and v e Va highest 
weiyht vector. Then Vis generated by the images of v under successive applica-
tions of the three operators E E and E . 2,1• 3,1• 3,2· 

. Before we check ~he claim, we note three immediate consequences. First, 
1l .says that all the eigenvalues /3 el)* occurring in V lie in a sort oft-plane 
Wllh corner at ex: 

', 
':.i 
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Second we see that the dimension of Yr, itself is 1, so that v is the unique 
eigenv:ctor with this eigenvalue (up to scalars, of course). (We will see below 
that in fact v is the unique highest weight vector of V up to scalars; see 
Proposition 12.11.) Lastly, it says that the spaces Yr.+n<L 2-L,J and Yr.+n(L,-L2) 

are all at most one dimensional, since they must be spanned by (E2. i)"(v) and 

(E 3, 2 )"(v), respectively. 

PROOF oF CLAIM 12.10. This is formally the same as the proof of the corre
sponding statement for sl2 C: we argue that the subspace W of V spanned ~y 
images of v under the subalgebra of sl3 C generated by E2, 1• E3, 1 • an_d E3,~ is, 
in fact, preserved by all of sl3 C and hence must be all of V. To do this we JUSt 
have to check that E1,2, E2,3, and E 1,3 carry W into itself(in fact it is eno_ug~ 
to do this for the first two, the third being their commutator), and this is 
straightforward. To begin with, v itself is in the kernel of E1,2• E2,3• and E1,3• 
so there is no problem there. Next we check that E2 , 1 (v) is kept in W: we have 

E1,2(E2,1(v)) = (E2,1(E1,2(v)) + [E1,2• E2,1J(v) 

= oc([E 1, 2 , E2 , 1])·v 

since E1,2(v) = 0 and [E1,2, E2,1J E q; and 

E2, 3(E2.1 (v)) = (E2.1 (E2,3(v)) + [E2,3, E2, 1] (v) 

=0 

since E2.3(v) = O and [E2,3, E2,iJ = 0. A similar computation shows that 

E3,2(v) is also carried into V by Eu and E2,3· . . w 
More generally, we may argue the claim by a sort of induction: we let n 

denote any word oflength nor less in the letters E2, 1 and E3,2 and take W,, 
to be the vector space spanned by the vectors w"(v) for all such words; note 
that Wis the union of the spaces W,,, since E 3 , 1 is the commutator of £3,2 and 
E2,1. We claim that E 1,2 and E2,3 carry W,, into W..-1· To see this, we can 
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write wn as either E2,1 o wn-l or E3,2 o w"_1; in either case w"_1(v) will be an 
eigenvector for q with eigenvalue P for some {3. In the former case we have 

E1.2(w"(v)) = E1,2(E2,1(Wn-1(v))) 

= E2.1(E1,2(Wn-1 (v))) + [E 1,2• E2.1] (wn-1 (v)) 

E E2,1(W..-2) + /3([E1,2• E2.1])·wn-1(v) 

c W..-1 

since [E1,2, E2, 1] E q; and 

E2.3(w"(v)) = E2, 3(E2, 1 (wn-l (v))) 

= E2,1(E2,3(Wn-1(v))) + [E2,3• E2,1J(wn-1(v)) 

E E2.1 (W,,_ 2) 

c W..-1 

since [£2 , 3 , E2 , 1 ] = 0. Essentially the same calculation covers the latter case 
Wn = £3.2 O Wn-1• establishing the claim. 0 

This argument shows a little more; in fact, it proves 

Proposition 12.11. If Vis any representation of sl3 C and v EV is a highest 
weight vector, then the subrepresentation W of V generated by the images 
'.1( v hy successive applications of the three operators E2 , 1 , E 3 , 1 , and E3 , 2 is 
irreducible. 

PROOF. Let oc be the weight of v. The above shows that Wis a subrepresenta
t1on, and it is clear that W,. is one dimensional. If W were not irreducible, we 
would have W = W' E9 W" for some representations W' and W". But since 
projection to W' and W" commute with the action of q, we have W = 
W' a " E8 w;'. This shows that one of these spaces is zero, which implies that v 
belongs to W' or W", and hence that Wis W' or W". O 

As a corollary of this proposition we see that any irreducible representation 
of sl .i C has a unique highest weight vector, up to scalars; more generally, the 
set of highest weight vectors in V forms a union of linear subspaces 'Pw 
corresponding to the irreducible subrepresentations W of V, with the dimen
sion of 'I' w equal to the number of times W appears in the direct sum 
decomposition of V into irreducibles. 

, W~at do we do next? Well, let us continue to look at the border vectors 
(f,~.1) (v). We call these border vectors because they live in (and, as we saw, 
:;an) _a collection ofeigenspaces 9a• 9a+L

2
-L,• 9a+l(L

2
-L,l' •.• that correspond 

0
; points on the boundary of the diagram above of possible eigenvalues 

. V. We also know that they span an uninterrupted string of nonzero eigen-
spaccs ' ..., k 0 1 . , ~ a+k(l. 2 -1,,l ~IL-, = , , ... , unttl we get to the first m such that 
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(E2. i r(v) = O; after that we have 9«+k(L2-Ld = (0) for all k :?: m. The picture 
is thus: 

(12.12) I 

where we have no dots above/to the right of the bold line, and no dots on that 
line other than the ones marked. 

The obvious question now is how long the string of dots along this line is. 
One way to answer this would be to make a calculation analogous to the one 
in the preceding lecture: use the computation made above to say explicitly for 
any k what multiple of (E2 , d-i(v) the image of (E2 , d(v) under the map Eu 
is, and use the fact that (E 2 , i)'"(v) = 0 to determine m. It will be simpler
and more useful in general-if instead we just use what we have already 
learned about representations of sl2 1C. The point is, the elements E 1, 2 and E2, 1, 

together with their commutator [E1, 2 , E2 , i] = H1, 2 , span a subalgebra of sl3 C 
isomorphic to sl2 1C via an isomorphism carrying E1, 2 , E2 , 1 and H1, 2 to the• 
elements X, Y and H. We will denote this subalgebra by sL,-L, (the notation 
may appear awkward, but this is a special case of a general construction). By 
the description we have already given of the action of sl3 IC on the representa
tion V in terms of the decomposition V = EB V«, we see that the subalgebra 
sL,-L, will shift eigenspaces v« only in the direction of L1 - Li; in particular, 
the direct sum of the eigenspaces in question, namely the subspace 

(12.13) 

of V will be preserved by the action of sL, -L,- In other words, W is a 
representation of sL,-L, ~ s12 1C and we may deduce from this that the eigen· 
values of H 1, 2 on Ware integral, and symmetric with respect to zero. Leaving 
aside the integrality for the moment, this says that the string of dots in diagram 
(12.12) must be symmetric with respect to the line (Hi 2 , L) = 0 in the plane 
l)*. Happily (though by no means coincidentally, as w~ shall see), this line is 
perpendicular to the line spanned by Li - L 2 in the picture we have drawn; 
so we can say simply that the string of dots occurring in diagram (12.12) is 
preserved under reflection in the line <Hi 2 , L) = 0. 

In general, for any i-# j the elements E1,1 and E1,1, together with their 
commutator [E1,1, E1,,J = H1,1, span a subalgebra s1.,-LJ of sl3 IC isomorphic 

r 
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to sl2 1C via an isomorphism carrying E1,1, E1,1, and H1,1 
to the elements x, Y, 

and H: (Not~ that H,,1 = - HJ.I.) Analyzing the action of the subalgebra 
£>!. 2-t3 m particular then sh~w~ th~t the string of dots corresponding to the 
e1genspaces 9«;k(L3 - Lz) _is likewise preserved under reflection in the line 
(H2.3• L) = 0 ml)*. The picture is thus 

Let us .now take a look at the last eigenspace in the first string that is v. 
;here mis as before the s~alles.t integer such that (E

2
,
1
)'"(v) = o and p :! 

E + (~ -_ l)~L2 - ~i). If v e Vp ts a~y vector, then, by definition, we have 
'2. 1 (v ) -: 0, ~nd _smce there are no eigenspaces Vy corresponding to y above 

the bold hne m diagram (12.12), we have as well that E (v') = E (v') = o 
Th I l"k . lf. . 2, 3 i 3 • 

,u~, v, 1 e v ~tse. , satisfies the statement of Lemma 12.9, except for the 
cxeh~nge of the md1c~s 2 and 1; or in other words, if we had chosen the linear 
funct10nal l above ?•fferen~l~-precisely, with coefficients b > a > c-then 
the vector whose existence 1s implied by Lemma 12.9 would have turned out 
to be v' rather than v. If, indeed, we had carried out the above analysis with 
~cs~ect to the vector v~ instead of v, we would find tht all eigenvalues of v 
. ccur below or to the nght of the lines through pin the directions of L - L 
and L3 - Li, ~nd that the strings of eigenvalues occurring on these tw~ line~ 
~ere symme.tnc about .the lines (H1, 2 , L) = O and (Hi.

3
, L) = o, respec

tively. The picture now 1s 
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Needless to say, we can continue to play the same game all the way around: 
at the end of the string of eigenvalues {/3 + k(L3 - L 1)} we will arrive at a 
vector v" that is an eigenvector for~ and killed by E 3 , 1 and E 2, 1, and to which 
therefore the same analysis applies. In sum, then, we see that the set of 
eigenvalues in V will be bounded by a hexagon symmetric with respect to the 
lines (Hi,J• L) = 0 and with one vertex at ix; indeed, this characterizes the 
hexagon as the convex hull of the union of the images of ix under the group 
of isometries of the plane generated by reflections in these three lines. 

(ff 2,3.L) = 0 (12.14) 

We will see in a moment that the set of eigenvalues will include all the points 
congruent to ix modulo the lattice AR generated by the L1 - L1 lying on the 
boundary of this hexagon, and that each of these eigenvalues will occur with 
multiplicity one. 

The use of the subalgebras sL,-LJ does not stop here. For one thing, observe 
that as an immediate consequence of our analysis of s12 IC, all the eigenvalues 
of the elements H1,1 must be integers; it is not hard to see that this means that 
all the eigenvalues occurring in (12.2) must be integral linear combinations of 
the L;, i.e., in terms of the diagrams above, all dots must lie in the lattice Aw 
of interstices (as indeed we have been drawing them). Thus, we have 

Proposition 12.15. All the eigenvalues of any irreducible finite-dimensional 
representation of sl3 IC must lie in the lattice Aw c g* generated by the L; and 
be congruent modulo the lattice AR c ~· generated by the L 1 - L1• 

This is exactly analogous to he situation of the previous lecture: there we 
saw that the eigenvalues of Hin any irreducible, finite-dimensional representa· 
tion of sl2 IC lay in the lattice Aw ~ Z of linear forms on CH integral on H. 
and were congruent to one another modulo the sublattice AR = 2 · Z generated 
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~{.;t1h~e~:~:~!u~s o1~H ~nder the ~d~oint representation. Note that in the case 
- 2. w R = Z/2,whllemthepresentcasewehaveA /A ,..., z . 

we will see later how this reflects a general pattern Th 1 tt' wA 1! = / 3• 
the weight lattice. · e a ice w IS called 

Exercise 12.16. Show that the two conditions that h . 
congruent to one another modulo A t e eigenvalues of V are 
the three lines (H. L) _ 0 · 

1 
hR and are pr~served under reflection in 

•.J• - imp Y t at they all he in A d h · 
this characterizes Aw. w. an t at, m fact, 

To continue, we can go into the interior of the dia ram (12 14 . 
values of V by observing that the direct sums (12 13) a; h. ) of e_i~en
subspaces of V preserved under the action of the sub:l no~ t e only visible 

glenerally, for any p E g* appearing in the decomposition (f~ {)~n~La,-nLy,;1· ml. othre 
' 1rect sum · , e 

W = ~ 9p+k(L1-LJ) 

will be a representation of s ( t .1 . 
particular it ~ollows that the L~~J~e~~f ~e~~;s:~i~h1r~educible, of course); in 
unbroken stnng of integers. Observing that if /3 i P+k(L,-LJ> ¥- (~) form a~ 
eigenvalues pictured in dia 

02 
. ~ any of the extremal 

so that all eigenval gram .14), then t?is stnng will include another; 

1 
. • h . ues congruent to the dots pictured in diagram 02 14) and 

ymg tn t etr convex hull must also occur Th h . . 
eigenvalues will look like . us, t e complete diagram of 

(12.17) 

We cans · · ummanze this description in 

Proposition 12.18. Let V be an ·r d . . . 
<!( ~'1 i IC. Then fior so A y z re ucible, /mite-dimensional representation 

. me IX e w c: "* the t if . 
'1 ' se o eigenvalues occurring in v is 
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exactly the set of linear functionals congruent to ex modulo the lattice /\Rand 
lying in the hexagon with vertices the images of ex under the group generated by 
reflections in the lines (H1,1, L) = 0. 

Remark. We did, in the analysis thus far, make one apparently arbitrary choice 
when we defined the notion of "extremal" eigenvalue by choosing a linear 
functional l on l)*. We remark here that, in fact, the choice was not as broad 
as might at first have appeared. Indeed, given the fact that the configuration 
of eigenvalues occurring in any irreducible finite-dimensional representation 
of sl3 C is always either a triangle or a hexagon, the "extremal" eigenvalue 
picked out by l will always turn out to be one of the three or six vertices of 
this figure; in other words, if we define the linear functional l to take a 1 L 1 + 
a2 L 2 + a3L3 to aa 1 + ba2 + ca3, then only the ordering of the three real 
numbers a, b, and c matters. Indeed, in hindsight this choice was completely 
analogous to the choice we made (implicitly) in the case of sl2 C in choosing 
one of the two directions along the real line. 

We said at the outset of this lecture that our goal was to arrive at a 
description of representations of sl3 C as complete as that for sl2 C. We have 
now, certainly, as complete a description of the possible configurations of 
eigenvalues; but clearly much more is needed. Specifically, we should have 

an existence and uniqueness theorem; 
an explicit construction of each representations, analogous to the statement 

that every representation of sl2 C is a symmetric power of the standard; and 
for the purpose of analyzing tensor products of representations of sl3 C, we 

need a description not just of the set of eigenvalues, but of the multiplicities 
with which they occur. 

(Note that the last question is one that has no analogue in the case of sl2 1C: 
in both cases, any irreducible representation is generated by taking a single 
eigenvector v E V,. and pushing it around by elements of g«; but whereas in the 
previous case there was only one way to get from V,. to V11-that is, by applying 
Y over and over again-in the present circumstance there will be more than 
one way of getting, for example, from V,. to V«+L,-L,; and these may yield 
independent eigenvectors.) This has been, however, already too long a lecture, 
and so we will defer these questions, along with all examples, to the next. 

LECTURE 13 

Representations of sf 3 C, Part II: 
Mainly Lots of Examples 

~I J. 1: Examples 
~ 11 2· De · t" f · '. · · · ~cnp ion o the irreducible representations 
~IJ.3: A httle more plethysm 
~ 1 H: A little more geometric plethysm 

~ 13.1. Examples 

~::~: I:c~~re will b~ largely concerned with studying examples, giving construc
how~ver ban~lrzmg ten_sor products of representations of sl3C. We start 
provides'·t:e ~onetaesxtt ~otartltnh~ the blas~c existence and uniqueness theorem tha; 

T 1• ts ana ys1s. 
dimeonss.tate lthis, recall f~om the previous lecture than any irreducible finite-

1ona representation of I c h . ' 
simultaneously an eig t s~3 has a vector, umque up to scalars, that is 
subspaces 9L - envec or or t e subalgebra l) and killed by the three 
l'ector of th ' L2• 9L,-L,• ~nd 9L2-L,· We called such a vector a highest weight 

e representation V· 't · d . 
called the hz'gh st . h f , t s associate eigenvalue will, of course be 

e wezg t o V. More ll . . . , 
representation w of sl IC · gene~a y, 10 any fimte-d1mensional 
a highest weight vect3o : any vectorhv E _w w_1th these properties will be called 

r, we saw t at it wdl generate an irreducible sub-

I i 
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representation V of W. Finally, from the description given in the last lecture 
of the possible configurations of eigenvalues for a representation of sl3 IC, we 
see that any highest weight vector must lie in the (-!)-plane described by the 
inequalities (H

1
,
2

, L) ~ 0 and (H2 , 3 , L) ~ 0, i.e., it must be of the form 
(a + b)L

1 
+ bL

2 
= aL

1 
- bL3 for some pair of non-negative integers a and 

b. We can now state 

Theorem 13.1. For any pair of natural numbers a, b there exists a unique 
irreducible, finite-dimensional representation ra,b of sl31C with highest weight 

aL 1 - bL3 • 

We will defer the proof of this theorem until the second section of this 
lecture, not so much because it is in any way difficult but simply because it is 
time to get to some examples. We will remark, however, that whereas in the 
case of sl

2
1C the analysis that led to the concept of highest weight vector 

immediately gave the uniqueness part of the analogous theorem, here to 
establish uniqueness we will be forced to resort to a more indirect trick. The 
proof of existence, by contrast, will be very much like that of the corresponding 
statement for sl21C: we will construct the representations ra,b out of the 
standard representation by multilinear algebra. 

For the time being, though, we would like to apply the analysis of the 
previous lecture to some of the obvious representations of sl3 IC, partly to gain 
some familiarity with what goes on and partly in the hopes of seeing a general 

multilinear-algebraic construction. 
We begin with the standard representation of sl 3 1C on V ~ IC

3
. Of course, 

the eigenvectors for the action of~ are just the standard basis vectors e1, e2 , 

and e
3

; they have eigenvalues L 1 , L2 , and L3 , respectively. The weight diagram 

for Vis thus 

Next, consider the dual representation V*. The eigenvalues of the dual of 
a representation of a Lie algebra are just the negatives of the eigenvalues of 
the original, so the diagram of V* is 
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Alternatively, of course, we can just observe that the dual basis vectors e* are 
eigenvectors with eigenvalues - L1• 

1 

Note that while in the case of sl2 1C the weights of any representation were 
~ymmetri: ab~ut the origin, and correspondingly each representation was 
1somorph1c to its dual, the same is not true here (that the diagrams for V and 
V* look the same is a reflection of the fact that the two representations are 
carried into one another by an automorphism of sl3 IC, namely, the auto
morphism X r+ - 'X). Observe also that V* is also isomorphic to the repre
sentation NV, whose weights are the pairwise sums of the distinct weights of 
V; and that likewise Vis isomorphic as representation to NV*. 

Next, consi~er the degree 2 tensor products of Vand V*. Since the weights 
of the sy~!11etnc squa.re ofa representation are the pairwise sums of he weights 
of he ongmal, the weight diagram of Sym2 V will look like 

and l"k 
1 

1 ewise the symmetric square Sym2 V* has weights {-2L -L. - L} = 
I ·- 2L. - 2L L }· I• ' J 

I j• k • 

l I 
I 
I 
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We see immediately from these diagrams that Sym2 V and Sym2 V* are 
irreducible, since neither collection of weights is the union of two collections 
arising from representations of sl3 C. 

As for the tensor product V ® V*, its weights are just the sums of the 
weights {L1} of Vwith those { -L1} of V*, that is, the linear functionals L1 - L1 
(each occurring once, with weight vector ei ®en and 0 (occurring with multi
plicity three, with weight vectors e1 ®et). We can represent these weights by 
the diagram 

where the triple circle is intended to convey the fact that the weight space Vo 
is three dimensional. By contrast with the last two examples, this representa
tion is not irreducible: there is a linear map 

V® V*-+ C 

given simply by the contraction 

v ® u* 1-+ (v, u*) = u*(v) 
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(or. in terms of the identification V ® V* ~ Hom(V, V), by the trace) that is 
a map of sl3 C-modules (with C the trivial representation, of course). The 
kernel of this map is then the subspace of V ® V* of traceless matrices, which 
is just the adjoint representation of the Lie algebra s(3 C and is irreducible (we 
can see this either from our explicit description of the adjoint representation
for example, El.3 is the unique weight vector for~ killed by 9L,-L

2
, gL,-L,• 

and ni,-L, -or, if we take as known the fact that SL3 C is simple, from the 
fact that a subrepresentation of the adjoint representation is an ideal in a Lie 
algebra, and exponentiates to a normal subgroup, cf. Exercise 8.43.) 

(Physicists call this adjoint representation of sl3 C (or SU(3)) the "eightfold 
way." and relate its decomposition to mesons and baryons. The standard 
representation Vis related to "quarks" and V* to "antiquarks." See [S-W], 
[Mack].) 

(We note that, in general, if Vis any faithful representation of a Lie algebra, 
the adjoint representation will appear as a subrepresentation of the tensor 
V ® V*.) 

Let us continue now with some of the triple tensor products of Vand V*, 
which will be the last specific cases we look at. To begin with, we have the 
symmetric cubes Sym3 V and Sym3 V*, with weight diagrams 

and 

I 

' I 
I. 
I 

I 
) 
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respectively. In general it is clear that, in terms of the description given in 
the preceding lecture of the possible weight diagrams of irreducible repre
sentations of sl3 C, the symmetric powers of V and V* will be exactly the 
representations with triangular, as opposed to hexagonal, diagrams. 

It also follows from the above description and the fact that the weights of 
the symmetric powers Symnv occur with multiplicity 1 that Symnv and 
Symnv• are all irreducible, i.e., we have, in the notation of Theorem 13.1, 

Symnv = rn,o and Symnv• = ro,n· 

By way of notation, we will often write Symnv in place of rn,O· 
Consider now the mixed tensor Sym 2 V ® V*. Its weights are the sums of 

the weights of Sym2 V-that is, the pairwise sums of the L;-with the weights 
of V*; explicitly, these are L; + Li - Lk and 2L; - L1 (each occurring once) 
and the L; themselves (each occurring three times, as L1 + L1 - L). Dia
grammatically, the representation looks like 

Now, we know right off the bat that this is not irreducible: we have a natural 
map 

given again by contraction, that is, by the map 

vw ® u* i--. (v, u*) · w + (w, u*) · v, 

which is a map of sl3 C-modules. 1 What does the kernel of this map look like? 
Of course, its weight diagram is 

1 Another way to see that Sym2 V ® v• is not irreducible is to observe that if a representatio~ 
Wis generated by a highest weight vector v of weight 2L1 - L3 , as Sym2 V ® v• must be if it ts 
irreducible, the eigenvalue L 1 can be taken with multiplicity at most 2, the corresponding 
eigenspace being generated by E1, 2 o E2 , 3 (v) and E2 , 3 ° E1, 2 (v). 
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and we know one other thing: certainly any vector in the weight space of 
2L 1 - L3-that is to say, of course, any multiple of the vector ei ® e!-is 
killed by 9L,-L,. 9L,-L,• and 9L,-L,• so that the kernel of 1 will contain an 
irreducible representation r = r2, 1 with 2L1 - L3 as its highest weight. Since 
I must then assume every weight of Ker(z), there are exactly two possibilities: 
either Ker(z) = r, which assumes the weights L; with multiplicity 2; or all the 
weights of r occur with multiplicity one and Ker(z) ~ r Et) V. 

How do we settle this issue? There are at least three ways. To begin with, 
we can try to analyze directly the structure of the kernel of 1. An alternative 
approach would be to determine a priori with what multiplicities the weights 
of r:.h are taken. Certainly it is clear that a formula giving us the latter 
information will be tremendously valuable-it would for one thing clear up 
the present confusion instantly-and indeed there exist several such, one of 
which, the Wey/ character formula, we will prove later in the book. (We will 
a~so prove the Kostant multiplicity formula, which can be applied to deduce 
directly the independence statement we arrive at below.) As a third possibility, 
WC can identify the representations ra,b as Weyl modules and appeal to Lecture 
6. Rather than invoke such general formulas at present, however, we will take 
the first approach here. This is straightforward: in terms of the notation 
we have been using, the highest weight vector for the representation 
I c Sym2V ® V* is the vector ei ® e!, and so the eigenspace rL c r with 
eigenvalue L1 will be spanned by the images of this vector und~r the two 
compositions E2,1 o E3,2 and E3,2 o E2,1. These are, respectively, 

and 

E2,1 ° E3,2(ei ® e!) = E2,1(E3,2(ei) ® e! + ei ® E3,2(em 

= E2,1(-ei ® e!) 

= -2(e1 ·e2 )®e! + ei®ef 

E3,2 ° E2,1(ei ® e!) = E3,2(E2,1(ei} ® e! + ei ® E2 , 1(em 

= E3,2((2e1 • e2) ® e!) 

= 2(e1 · e3 ) ® e! - 2(e1 • e2 ) ® e!. 
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Since these are independent, we conclude that the weight L 1 does occur in r 
with multiplicity 2, and hence that the kernel of i is irreducible, i.e., 

Sym2 V ® V* ~ r2.1 EB V. 

§13.2. Description of the Irreducible Representations 
At this point, rather than go on with more examples we should state some of 
the general principles that have emerged so far. The first and most important 

/ (though pretty obvious) is the basic 

Observation 13.2. If the representations V and W have highest weight vectors 
v and w with weights IX and {3, respectively, then the vector v ® w E V ® W is 
a highest weight vector of weight IX + {3. 

Of course, there are numerous generalizations of this: the vector v" e Sym" V 
is a highest weight vector of weight nlX, etc. 2 Just the basic statement above, 
however, enables us to give the 

PROOF OF THEOREM 13.1. First, the existence statement follows immediately 
from the observation: the representation Syma V ® Symb V* will contain an 
irreducible subrepresentation ra,b with highest weight aL 1 - bL3 • 

The uniqueness part is only slightly harder (if less explicit): Given 
irreducible representations V and W with highest weight IX, let v e V and w e W 
be highest weight vectors with weight IX. Then (v, w) is again a highest weight 
vector in the representation V EJ3 W with highest weight IX; let U c V EB W 
be the irreducible subrepresentation generated by (v, w). The projection 
maps n 1 : U-+ V and n2 : U-+ W, being nonzero maps between irreducible • 
representations of sl3 C, must be isomorphisms, and we deduce that V ~ W. 

D 

Exercise 13.3*. Let §A be the Schur functor introduced in Lecture 6. What 
can you say about the highest weight vectors in the representation §A(V) 
obtained by applying it to a given representation V? 

To continue our discussion of tensor products like Syma V ® Symb V* in 
general, as we indicated we would like to make more explicit the construction 
of the representation ra,b• which we know to be lying in Syma V ® Symb V"'. 
To begin with, we have in general a contraction map 

la,b: Symav ® SymbV*-+ Syma-l V ® Symb-l V* 

analogous to the map i introduced above; we can describe this map either 
(in fancy language) as the dual of the map from Syma-i V ® Symb-l V"' 
to Syma V ® Symb V* given by multiplication by the identity element in 

2 One slightly less obvious statement is this: if the'lveights of Vare ix 1, ix2, ix3 ••• with /(ix,) > l(ix2) > 
... , then/\" V possesses a highest weight vector weight ix 1 + · · · · + ix •. Note that since the ordering 
oftheix1mayin fact depend on the choice of /(even with the restriction a> b >con the coefficients 
of I as above), this may in some cases imply the existence of several subrepresentations of/\" V. 

r 

~ t 3.2. Description of the Irreducible Representations 

v@ V* = Hom(V, V); or, concretely, by sending 

(v 1 · ... ·Va)® (vf · .. " vt) 

f-+ L (v;, vt >(vi ..... (Ji ••••• Va)® (vt ..... vt ..... vt). 
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Clearly this map is surjective, and, since the target does not have eigenvalue 
aLi - hL3 , the subrepresentation ra,b c SymaV ® SymbV"' must lie in the 
kernel. In fact, we have, just as in the case of Sym2 V ® V* above, 

Claim 13.4. The kernel of the map la,b is the irreducible representation ra,b· 

we will defer the proof of this for a moment and consider some of its 
consequences. To begin with, we can deduce from this assertion the complete 
decomposition of Syma V ® Symb V*: we must have (if, say, b :=;;; a) 

b 

Syma v ® Symb V"' = EB ra-1,b-i· (13.5) 
i=O 

Since we know, a priori, all the multiplicities of the eigenvalues of the tensor 
product Syma V ® Symb V"', this will, in turn, determine (inductively at least) 
all the multiplicities of the representations ra,b· In fact, the answer turns 
out to be very nice. To express it, observe first that if a ~ b, the weight dia
gram of either r a,b or Syma V ® Symb V"' looks like a sequence of b shrinking 
concentric (not in general regular) hexagons H1 with vertices at the points 
(a - i)L 1 - (b - i)L3 for i = 0, 1, ... , b - 1, followed (after the shorter three 
sides of the hexagon have shrunk to points) by a sequence of [(a - b)/3] + 1 
triangles ~ with vertices at the points (a - b - 3j)L1 for j = 0, 1, ... , 
[(a - h)/3] (it will be convenient notationally to refer to T0 as Hb occasionally). 
Diagram (13.6) shows the picture of the weights of Sym6 V ® Sym2 V*: 

(13.6) 
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(Note that by the decomposition (13.5), the weights of the highest weight 
vectors in SymaV® Symbv• will be aL1 - bL3 , (a - l)L 1 -(b - l)L3, ... , 
(a - b)L1, as shown in the diagram.) 

An examination of the representation Syma V ® Symb v• shows that it has 
multiplicity (i + l)(i + 2)/2 on the hexagon H1, and then a constant multi
plicity (b + l)(b + 2)/2 on all the triangles 'lj; and it follows from the decom
position (13.5), in general, that the representation ra,b has multiplicity (i + 1) 
on H1 and b on 1). In English, the multiplicities of ra,b increase by one on each 
of the concentric hexagons of the eigenvalue diagram and are constant on the 
triangles. Note in particular that the description of r 2• 1 in the preceding 
section is a special case of this. 

PROOF OF CLAIM 13.4. We remark first that the claim will be implied by the 
Weyl character formula or by the description via Weyl's construction in 
Lecture 15; so the reader who wishes to can skip the following without dire 
consequences to the logical structure of the book. Otherwise, observe 
first that the claim is equivalent to asserting the decomposition (13.5); 
this, in turn, is equivalent to the statement that the representation 
W = Syma V ® Symb v• has exactly b + 1 irreducible components (still 
assuming a~ b). The irreducible factors in a representation correspond 
to the highest weight vectors in the representation up to scalars; so in 
sum the claim is equivalent to the assertion that the eigenspace ~ of 
Syma V ® Symb v• contains a unique highest weight vector (up to scalars) if ix 

is of the form (a - i)L 1 - (b - i)L3 for i ~ b, and none otherwise; this is what 
we shall prove. 

To begin with; the "none otherwise" part of the statement follows (given 
the other) just from looking at the diagram: if, for example, any of the 
eigenspaces Jv,. corresponding to a point IX on a hexagon H1 (other than the 
vertex (a - i)L1 - (b - i)L3 of H1) possessed a highest· weight vector, the 
multiplicity of IX in W would be strictly greater than of (a - i)L1 - (b - i)L3, 
which we know is not the case; similarly, the fact that the multiplicities of W 
in the triangular part of the eigenvalue diagram are constant implies that there 
can be no highest weight vectors with eigenvalue on a 1j for j ~ 1. Thus, we 
just have to check th.at the weight spaces "¥.. for IX = (a - i)L1 - (b - i)~J 
contain only the one highest weight vector we know is there; and we do this 
by explicit calculation. 

To start, for any monomial index I = (i 1 , i2 , i3 ) of degree ~)r = i, we denote 
by e1 e Sym1 V the corresponding monomial n (e~') and define (e*)1 

E Sym' V"' 
similarly. We can then write any element of the weight space Jt<a-i)L,-<b-OL, 
of Syma V ® Symb v• as 

v = L c1 • (ei+b-1 · e1
) ® ((e!)H · (e*)1). 

In these terms, it is easy to write down the action of the two operators E1,z 

~13.3. A Little More Plethysm 

and E2 , 3 • First, Ei. 2 kills both e1 e V and e! e v•, so that we have 

E 1,2((ei+b-I · e1) ® ((e!)b-1 · (e*)1)) 

= i2(ei+b-1. e1') ® ((e!)b-I · (e*)1) 

- ii (ei+b-1. e1) ® ((e!)b-1. (e*)1"), 
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where I' = (i 1 + 1, i 2 - 1, i3 ) and I" = (i1 - 1, i 2 + 1, i 3 ) (and we adopt the 
convelltion that e1 = 0 if iy < 0 for any y). It follows that the vector v above is 
in the kernel of E 1, 2 if and only if the coefficients c1 satisfy i2 c1 = (i 1 + l)cr; 
and by the analogous calculation that vis in the kernel of E2 , 3 if and only if 
;3 c1 = (i 2 + l)c1 whenever the indices I and J are related by j 1 = i 1 , j 2 = 
; 2 + 1, and j 3 = i 3 - 1. These conditions are equivalent to saying that the 
numbers i 1 !i2 !i3 !c1 are independent of I. We see, in other words, that vis a 
highest weight vectorifand only if all the coefficients c1 are equal to c/i1!i2 !i3 ! 
for some constant c. O 

§13.3. A Little More Plethysm 

We would like to consider here, as we did in the case ohl2 C in Lecture 11, 
how the tensor products and powers of the representations we have described 
decompose. We start with one general remark: given our knowledge of the 
eigenvalue diagrams of the irreducible representations of sl3 C (with multi
plicities), there can be no possible ambiguity about the decomposition of any 
representation U given as the tensor product of representations whose eigen
value diagrams are known. Indeed, we have an algorithm for determining the 
components of that decomposition, as follows: 

I. Write down the eigenvalue decomposition of U. 
2. Find the eigenvalue IX= aL1 - bL3 appearing in this diagram for which 

the value of l(IX) is maximal. 
3. W c now know that U will contain a copy of the irreducible representation 

r. = ra,b• i.e., U ~roe E9 U' for some U'. Since we also know the eigenvalue 
diagram of roe, we can thus write down the eigenval4~ diagram of U' as well. 

4. Repeat this process for U'. 

To see how this goes in practice, consider some examples of tensor products 
of the basic irreducible representations described so far. We have already seen 
how the tensor products of the symmetric powers of the standard represen
tation V of sl3 C and symmetric powers of its dual decompose; let us look now 
at an example of a more general tensor product of irreducible representations: 
say V itself and the representation r 2 , 1. We start by writing down the weights 
of the tensor product: since r 2 , 1 has weights 2L1 - L1, L 1 + L1 - Lt, and L, 
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(taken twice) and V has weights L;, the tensor product will have weights 
3L; - Li, 2L1 + L1 - Lk (taken twice), 2L; (taken four times), and L; + L. 
(taken five times). The diagram is thus 

1 

(One thing we may deduce from this diagram is that we are soon going to 
need a better system for presenting the data of the weights of a representation. 
In the future, we may simply draw one sector of the plane, and label weights 
with numbers to indicate multiplicities.) 

We know right off the bat that the tensor product V ® r 2 , 1 contains a copy 
of the irreducible representation r 3 , 1 with highest weight 3L1 - L 3 • By what 
we have said, the weight diagram of r 3 , 1 is 

so the complement of r3, 1 in the tensor product v ® r2, 1 will look like 
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One obvious highest weight in this representation is 2L1 + L1 - L3 = 
L

1 
- 2L

3
, so that the tensor product will contain a copy of the irreducible 

representation rl,2 as well; since this has weight diagram 

the remaining part of the tensor product will have weight diagram 
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which we recognize as the weight diagram of the symmetric square Sym2 
V = 

r 2 , 0 of the standard representation. We have, thus, 

(13.7) 

Exercise 13.8*. Find the decomposition into irreducible representations of the 
tensor products V ® r1. 1 , V ® rl.2 and V ® r3.1. Can you find a general 
pattern to the outcomes? 

As in the case of sl2 C, the next thing to look at are the tensor powers
symmetric and exterior-of representations other than the standard; we 
look first at tensors of the symmetric square W = Sym2 V. First, consider 
the symmetric square Sym2 W = Sym2(Sym2 V)). We know the diagram for 
Sym2 W; it is 

Now, there is only one possible decomposition of a representation whose 
eigenvalue diagram looks like this: we must have 
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Sym2(Sym2 V)) ~ Sym4 V $ Sym2 V*. 

1 ndeed, the presence of the Sym4 V factor is clear: there is an obvious map 

<P: Sym2 (Sym2 V))-+ Sym4 V 

obtained simply by multiplying out. The identification of the kernel of this 
map with the representation Sym2 V* is certainly less obvious, but can still be 
made explicit. We can identify V* with /\2 Vas we saw, and then define a map 

r: Sym2 (/\2 V)-+ Sym2 (Sym2 V)) 

hy sending the generator (u A v) · (w A z) e Sym2(/\2 V) to the element 
(u · w) · (v · z) - (u · z) · (v · w) e Sym2(Sym2 V), which is clearly in the kernel of <P· 

Exercise 13.9. Verify that this map is well defined and that it extends linearly 
to an isomorphism of Sym2 (/\2 V) with Ker(cp). 

Exercise 13.10. Apply the techniques above to show that the representation 
/\2(Sym2 V) is isomorphic to r 2 , 1. 

Exercise 13.11. Apply the same techniques to determine the irreducible factors 
of the representation /\3(Sym2 V). Note: we will return to this example in 
Exercise 13.22. 

Exercise 13.12. Find the decomposition into irreducibles of the representa
tions Sym2 (Sym3 V) and Sym3(Sym2 V) (observe in particular that Hermite 
reciprocity has bitten the dust). Describe the projection maps to the various 
factors. Note: we will describe these examples further in the following section. 

§ 13.4. A Little More Geometric Plethysm 

Just as in the case of sl2 C, some of these identifications can also be seen in 
geometric terms. To do this, recall from §11.3 the definition of the Veronese 
emhedding: if ? 2 = ?V* is the projective space of one-dimensional subspaces 
of V*, there is then a natural embedding of ? 2 in the projective space ? 5 

= 
IP(Sym2 V*), obtained simply by sending the point [v*] e ? 2 corresponding 
t~ the vector v* e V* to the point [v*2 ] e ?(Sym2 V*) associated to the vector 
1' 

2 = v* · v* e Sym2 V*. The image S c: ? 5 is called the Veronese surface. As 
in the case of the rational normal curves discussed in Lecture 11, it is not hard 
to see that the group of automorphisms of ? 5 carrying S into itself is exactly 
the group PGL3 C of automorphisms of S = ? 2

• 

Now, a quadratic polynomial in the homogeneous coordinates of the space 
rD(Sym2 V*) ,.., .,.s ·11 . . . , · = u- w1 restrict to a quartic polynomial on the Veronese surface 
S =.IP V *, which corresponds to the natural evaluation map cp of the preceding 
section; the kernel of this map is thus the vector space of quadratic poly-

~"" 
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nomials in IP 5 vanishing on the Veronese surface S, on which the group of 
automorphisms of IP 5 carrying S to itself obviously acts. Now, for any pair of 
points P = [u*], Q = [v*] e S, it is not~rd to see that the cone over the 
Veronese surface with vertex the line PQ c: IP 5 (that is, the union of the 
2-planes PQR as R varies over the surface S) will be a quadric hypersurface 
in IP 5 containing the Veronese surface; sending the generator u* · v* e Sym2 v• 
to this quadric hypersurface will then define an isomorphism of the space of 
such quadrics with the projective space associated to Sym2 V*. 

Exercise 13.13. Verify the statements made in the last paragraph: that the 
union of the PQR is a quadric hypersurface and that this extends to a linear 
isomorphism IP(Sym2 V*) ~ IP(Ker(<p)). Verify also that this isomorphism 
coincides with the one given in Exercise 13.9. 

There is another way of representing the Veronese surface that will shed 
some light on this kernel. If, in terms of some coordinates e1 on V*, we think 
ofSym 2 V* as the vector space of symmetric 3 x 3 matrices, then the Veronese 
surface is just the locus, in the associated projective space, of rank 1 matrices 
up to scalars, i.e., in terms of homogeneous coordinates Z1,1 = e1 • e1 on IP 5, 

S = {[Z]: rank(~::: ~::: ~:::) = 1}. 
Zi,3 Z2,3 Z3,3 

The vector space of quadratic polynomials vanishing on S is then generated 
by the 2 x 2 minors of the matrix (Z1,1); in particular, for any pair of linear 
combinations of the rows and pair of linear combinations of the columns we 
get a 2 x 2 matrix whose determinant vanishes on S. 

Exercise 13.14. Show that this is exactly the isomorphism Sym2(/\2 V) 2f 

Ker(<p) described above. 

We note in passing that if indeed the space of quadrics containing the 
Veronese surface, with the action of the group PGL3 C of motions of 1?5 

preserving S, is the projectivization of the representation Sym2 V*, then it must 
contain its own Veronese surface, i.e., there must be a surface T = IP(V*) c 
IP(Ker(<p)) invariant under this action. This turns out to be just the set of 
quadrics of rank 3 containing the Veronese, that is, the quadrics whose singular 
locus is a 2-plane. In fact, the 2-plane will be the tangent plane to S at a point, 
giving the identification T = S. 

Let us consider one more example of this type, namely, the symmetric cube 
Sym3 (Sym2 V)). (We promise we will stop after this one.) As before, it is easy 
to write down the eigenvalues of this representation; they are just the triple 
sums of the eigenvalues {2L1, L1 + L1} of Sym2 V. The diagram (we will draw 
here only one-sixth of the plane and indicate multiplicities with numbers 
rather than rings) thus looks like 
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from which we see what the decomposition must be: as representations we 
have 

Sym3(Sym2 V)) ~ Sym6 V Ef> r2.2 Ef> C. (13.15) 

As before, the map to the first factor is just the obvious one; it is the identifica
tion of the kernel that is intriguing, and especially the identification of the last 
factor. 

To see what is going on here, we should look again at the geometry of the 
Veronese surface S c: IP 5 = IP(Sym2 V*). The space Sym3(Sym 2 V)) is just the 
space of homogeneous cubic polynomials on the ambient space IP 5, and as 
befo~e ~he map to the first factor of the right-hand side of (13.15) is just the 
restnchon, so that the last two factors of (13.15) represent the vector space 
l(Sh of c.ubic polynomials vanishing on S. Note that we could in fact prove 
( 13.15) without recourse to eigenvalue diagrams from this: since the ideal of 
the Vero~ese su~fa~e is g~nerated by the vector space J(Sh of quadratic 
polynom1als vamshmg on it, we have a surjective map 

/(Sh® W = Sym2 V* ® Sym2 V-+ J(S)J. 

But we already know how the left hand side decomposes: we have 

Sym
2 v• ® Sym2 v = r 2 , 2 Et>r1, 1 Et> c, (13.16) 

so ~hat /(Sh must be a partial direct sum of these three irreducible represen
tations; by dimension considerations it can only be r Ef> C. 
. This, in turn, tells us how to make the isomorphisO:(h 15) explicit (assum
ing we want to): we can define a map 

Sym2 (/\2 V) ® Sym2 V-+ Sym3(Sym2 V) 
by sending 

(u A v)-(w A z)®(s·t)r-+((u·w)-(v·z)-(u·z)-(v·w))-(s·t) 
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and then just check that this gives an isomorphism of r2,2 Ef> c c 
Sym2 V* ® Sym2 V with the kernel of projection on the first factor of the 
right-hand side of (13.15). 

What is really most interesting in this whole situation, though, is the trivial 
summand in the expression (13.15). To say that there is such a summand is to 
say that there exists a cubic hypersurface X in 1?5 preserved under all auto
morphisms of 1?5 carrying S to itself. Of course, we have already run into this 
one: it is the determinant of the 3 x 3 matrix (Z1,1) introduced above. To 
express this more intrinsically, if we think of the Veronese as the set of rank 
1 tensors in Sym2 V*, it is just the set of tensors of rank 2 or less. This, in turn, 
yields another description of X: since a rank 2 tensor is just one that can be 
expressed as a linear combination of two rank 1 tensors, we see that X is the 
famous chordal variety of the Veronese surface: it is the union of the chords 
to S, and at the same time the union of all the tangent planes to S. 

Exercise 13.17. Show that the only symmetric powers of Sym2 V that possess 
trivial summands are the powers Sym3k(Sym2 V)) divisible by 3, and that the 
unique trivial summand in this is just the kth power of the trivial summand 
of Sym3(Sym2 V)). 

Exercise 13.18. Giv~n the isomorphism of the projectivization of the vector 
space /(S)i-that is, the projective space of quadric hypersurfaces containing 
the Veronese surface-with l?(Sym2 V*), find the unique cubic hypersurface 
in /(Sh invariant under the action of PGL3C. 

Exercise 13.19. Analyze the representation Sym2(Sym3 V)) of sl3C. Interpret 
the direct sum factors in terms of the geometry of the Veronese embedding o( 
l?V* = 1?2 in l?(Sym3 V*) = 1?9

• 

Exercise 13.20*. Show that the representations Sym4 (Sym3 V)) and 
Sym6 (Sym 3 V)) contain trivial summands, and that the representation 
Sym12(Sym3 V)) contains two. Interpret these. 

Exercise 13.21. Apply the techniques above to show that the representation 
/\2(Sym2 V) is isomorphic to r2.1. 

Exercise 13.22*. Apply the techniques above to analyze the representation 
N(Sym 2 V), and in particular to interpret its decomposition into irreducible 
representations. 

Exercise 13.23. If 1? 5 = l?(Sym2 V*) is the ambient space of the Veronese 
surface, the Grassmannian G(2, 5) of 2-planes in 1?5 naturally embeds in the 
projective space l?{N(Sym2 V)). Describe, in terms of the decomposition 
in the preceding exercise, the span of the locus of tangent 2-planes to the 
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Veronese, and .the span of the locus of 2-planes in IP 5 spanned by the images 
in S oflines in l?V*. 

Exercise 13.24*. Show that the unique closed orbit of the action of SL3C on 
the representation ra.b is either isomorphic to IP2 (embedded as the Veronese 
surface) if either a orb is zero, or to the incidence correspondence 

I: = { (p, l): p E l} c. 1? 2 x IP 2• 

if neither a or b is zero. 



PART III 

THE CLASSICAL LIE ALGEBRAS 
AND THEIR REPRESENTATIONS 

As we indicated at the outset, the analysis we have just carried out of the 
structure of sl2C and sl3C and their representations carries over to other 
semisimple complex Lie algebras. In Lecture 14 we codify this structure, using 
the pattern of the examples we have worked out so far to give a model for 
the analysis ofarbitrary semisimple Lie algebras and stating some of the most 
important facts that are true in general. As usual, we postpone proofs of many 
of these facts until Part IV and the Appendices, the main point here being to 
introduce a unifying approach and language. The facts themselves will all be 
seen explicitly on a case-by-case basis for the classical Lie algebras sl"C, sp 2"C, 
and so.C, which are studied in some detail in Lectures 15-20. 

Most of the development follows the outline we developed in Lectures 
11 13, the main goal being to describe the irreducible representations as 
explicitly as we can, and to see the decomposition of naturally occurring 
representations, both algebraically and geometrically. While most of the 
representations are found inside tensor powers of the standard representations, 
for the orthogonal Lie algebras this only gives half of them, and one needs 
new methods to construct the other "spin" representations. This is carried out 
using Clifford algebras in Lecture 20. 

We also make the tie with Weyl's construction of representations of GL"C 
from Lecture 6, which arose from the representation theory of the symmetric 
groups. We show in Lecture 15 that these are the irreducible representations 
of sl,,C; in Lecture 17 we show how to use them to construct the irreducible 
representations of the symplectic Lie algebras, and in Lecture 19 to give the 
nonspin representation of the orthogonal Lie algebras. These give useful 
descriptions of the irreducible representations, and powerful methods for 
decomposing other representations, but they are not necessary for the logical 
Progression of the book, and many of these decompositions can also be 
deduced from the Weyl character formula which we will discuss in Part IV. 
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LECTURE 14 

The General Setup: Analyzing the 
Structure and Representations of an 
Arbitrary Semisimple Lie Algebra 

This is the last of the four central lectures; in the body of it, §14.1, we extract from the 
examples of§ 11-13 the basic algorithm for analyzing a general semisimple Lie algebra 
and its representations. It is this algorithm that we will spend the remainder of Part 
111 carrying out for the classical algebras, and the reader who finds the general setup 
confusing may wish to read this lecture in parallel with, for example, Lectures 15 and 
16. In particular, §14.2 is Jess clearly motivated by what we have worked out so far; 
the reader may wish to skim it for now and defer a more thorough reading until after 
going through some more of the examples of Lectures 15-20. 

~ 14.1: Analyzing simple Lie algebras in general 
~ 14.2: About the Killing form 

* 14.1. Analyzing Simple Lie Algebras in General 

We said at the outset of Lecture 12 that once the analysis of the representations 
of sl JC was understood, the analysis of the representations of any semisimple 
Lie algebra would be clear, at least in broad outline. Here we would like to 
indicate how that analysis will go in general, by providing an essentially 
algorithmic procedure for describing the representations of an arbitrary com
plex semisimple Lie algebra g. The process we give here is directly analogous, 
step for step, to that carried out in Lecture 12 for sI3 IC; the only difference is 
one change in the order of steps: having seen in the case of s[3 IC the importance 
of the "distinguished" subalgebras s .. ~ sI2 C cg and the corresponding dis
tinguished elements H .. es .. c l), we will introduce them earlier here. 

Step 0. Verify that your Lie algebra is semisimple; if not, none of the 
following will work (but see Remark 14.3). If your Lie algebra is not semi
sirn pie, pass as indicated in Lecture 9 to its semisimple part; a knowledge of 
lhc rcprc,:~~!!!!!!lQ!!§ gf !hi§ mmti!mt !!!g~grn ffi!!Y ngt t~!! yQ!! everythin~ about 
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the representations of the original, but it will at least tell you about the 

irreducible representations. 
Step 1. Find an abelian subalgebra 1) c 9 acting diagonally. This is of course 

the analogue of looking at the specific element H in sl2 C and the subalgebra 
1) of diagonal matrices in the case of sl3 C; in general, to serve an analogous 
function it should be an abelian subalgebra that acts diagonally on one faithful 
(and hence, by Theorem 9.20, on any) representation of 9. Moreover, in order 
that the restriction of a representation V of 9 to 1) carry the greatest possible 
information about V, 1) should clearly be maximal among abelian, diagonali-

- zable subalgebras; such a subalgebra is called a Cartan subalgebra. 
Note that while this step would seem to be somewhat less than algorithmic 

(in particular, while it is certainly possible to tell when a subalgebra of a given 
Lie algebra is abelian, and when it is diagonalizable, it is not clear how to tell 
whether it is maximal with respect to these properties). This defect will, 
however, be largely cleared up in the next step (see Remark 14.3). 

Step 2. Let 1) act on 9 by the adjoint representation, an~ decomp~se g 
accordingly. By the choice of 1), its action on any representation of 9 will be 
diagonalizable; applying this to the adjoint representation we arrive at a direct 
sum decomposition, called a Cartan decomposition, 

(14.1) 

where the action of 1) preserves each 911 and acts on it by scalar multip~ication 
by the linear functional IX e l)*; that is, for any H e 1) and X e 911 we will have 

ad(H)(X) = 1X(H)· X. 

The second direct sum in the expression (14.1) is over a finite set of eigenvalue~ 
IX el)*; these eigenvalues-in the language of Lecture 12, the weights of the 
adjoint representation-are called the roots of the Lie algebra _and ~h~ corre
sponding subspaces 9

11 
are called the root spaces. Of course, 1) itself 1s JUSt the 

eigenspace for the action of 1) corresponding to the eigenv~lue 0 (see Remark 
14.3 below); so that in some contexts-such as the following paragraph, for 
example-it will be convenient to adopt the convention that 9o = l); but we 
do not usually .count O e l)* as a root. The set of all roots is usually denoted 

R cl)*. . . 
As in the previous cases, we can picture the structure of the Lie algebra 1n 

terms of the diagram of its roots: by the fundamental calculation of§ 11. l and 
Lecture 12 (which we will not reproduce here for the fourth time) we see that 
the adjoint action of 911 carries the eigenspace 9 11 into another eigenspace 911.+11· 

There are a couple of things we can anticipate about how th~ co~figuratto~ 
of roots (and the corresponding root spaces) will look. We will simply stat 

them here as 

Facts 14.2 

(i) each root space g11 will be one dimensional. 
(ii) R will generate a lattice AR c l)* of rank equal to the dimension of 1). 
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(iii) R is symmetric about the origin, i.e., if IX e R is a root, then -IX e R is 
a root as well. 

These facts will all be proved in general in due course; for the time being, 
they are just things we will observe as we do the analysis of each simple Lie 
algebra in turn. We mention them here simply because some of what follows 
will make sense only given these facts. Note in particular that by (ii), the roots 
all lie in (and span) a real subspace of l)*; all our pictures clearly will be of this 
real subspace. 

Remark 14.3. If indeed 0 does appear as an eigenvalue of the action of 1) on 
n/lJ, then we may conclude from this that 1) was not maximal to begin with: 
by the above, anything in the 0-eigenspace of the action of 1) commutes with 
!1 and (given the fact that the 911 are one dimensional) acts diagonally on 9, so 
that if it not already in 1), then 1) could be enlarged while still retaining the 
properties of being abelian and diagonalizable. Similarly, the assertion in (ii) 
that the roots span l)* follows from the fact that an element of 1) in the 
annihilator of all of them would be in the center of 9. 

From what we have done so far, we get our first picture of the structure of 
an arbitrary irreducible finite-dimensional representation V of 9. Specifically, 
V will admit a direct sum decomposition 

V= EBi-:. (14.4) 

where the direct sum runs over a finite set of IX e l)* and 1) acts diagonally on 
each V11 by multiplication by the eigenvalue IX, i.e., for any H e 1) and v e V. we 
will have " 

H(v) = 1X(H) · v. 

The eigenvalues IX e l)* that appear in this direct sum decomposition are called 
the weights of V; the l';. themselves are called weight spaces; and the dimension 
of a weight space V., will be called the multiplicity of the weight IX in V. We will 
often represent V by drawing a picture of the set of its weights and thinking 
of each dot as representing a subspace; this picture (often with some annota
tion to denote the multiplicity of each weight) is called the weight diagram of V. 

The action of the rest of the Lie algebra on V can be described in these 
terms: for any root p, we have 

911: l';.-+ i-:+/I• 
sowc can think of the action of 911 on Vas a translation in the weight diagram 
sh f · h ' · 1 tmg eac of the dots over by p and mapping the weight spaces 
correspondingly. 

Observe next that all the weights of an irreducible representation are 
eor~gruent to one another modulo the root lattice AR: otherwise, for any 
Weight IX of V the subspace 
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V' = EB V,,+/I 
/le/\a 

would be a proper subrepresentation of V. In particular, in view ofFact 14.2(ii), 
this means that the weights all lie in a translate of the real subspace spanned 
by the roots, so that it is not so unreasonable to draw a picture of them. 

Step 3. Find the distinguished subalgebras s11 ~ sl2C c g. As we saw in the 
example of sl3 C, a crucial ingredient in the analysis of an arbitrary irreducible 
finite-dimensional representation is the restriction of the representation to 
certain special copies of the algebra sl2 C contained in g, and the application 
of what we know from Lecture 11 about such representations. To generalize 
this to our arbitrary Lie algebra g, let g11 c g be a root space, one dimensional 
by (i) of Fact 14.2. Then by (iii) of Fact 14.2, there is another root space g_11 cg; 
and their commutator [g11, g_11] must be a subspace of g0 = ~. of dimension 
at most one. The adjoint action of the commutator [g11, g_11) thus carries each 
of g11 and g_11 into itself; so that the direct sum 

511 = gll Ea g_ll Et> [gll, g_llJ (14.5) 

is a subalgebra of g. The structure of s11 is not hard to describe, given two 
further facts that we will state here, verify in cases, and prove in general in 
Appendix D. 

Facts 14.6. 

(i) [g11, g_11] # O; and 
(ii) [[~. g_llJ, gll] # 0. 

Given these, it follows that the subalgebra s11 is isomorphic to sl2 C. In 
particular, we can pick a basis X 11 e g11, Y11 e g_11, and H11 e [g11, g_11] satisfying 
the standard commutation relations (9.1) for sl2 C; X11 and ¥,.are not deter
mined by this, but H11 is, being the unique element of [g11, g_11] having eigen
values 2 and - 2 on g11 and g_11, respectively [i.e., H. is uniquely characterized 
by the requirements that H11 e [g11 , g_11] and a.(H11) = 2.] 

Step 4. Use the integrality of the eigenvalues of the H11 . The distinguished 
elements H11 e ~found above are important first of all because, by the analysis 
of the representations of sl2 C carried out in Lecture 9, in any representation 
of s11-and hence in any reP.resentatipp of g-all eigenvalues of the action of 
H11 must be integers. Thus, every eigenvalue p e ~· of every representation of 
g must assume integer values on all the H11 . We correspondingly let Aw be 
the set of linear functionals p e ~· that are integer valued on all the H11; Aw 
will be a lattice, called the weight lattice of g, with the property that 

all weights of all representations of g will lie in Aw. 

Note, in particular, that R c Aw and hence AR c Aw; in fact, the root 
lattice will in general be' a sublattice of finite index in the weight lattice. 

Step 5. Use the symmetry of the eigenvalues of the H11. The integrality of the 
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eigenvalues of the H11 under any representation is only half the story; it is also 
true that they are symmetric about the origin in Z. To express this, for any a. 
we introduce the involution W.. on the vector space ~· with + 1-eigenspace 
the hyperplane 

all= {Pe~·: <Hll, P> = o} (14.7) 

and minus 1 eigenspace the line spanned by a. itself. 1 In English, W.: is the 
reflection in the plane all with axis the line spanned by a.: II 

W..(/1) = p _ 2P(H11) a. = p _ P(H )a. 
a.(H11) II • 

(14.8) 

Let W be the group generated by these involutions; Wis called the Weyl group 
of the Lie algebra g. 

Now suppose that Vis any representation of g, with eigenspace decomposi
tion V = EB V,. The weights P appearing in this decomposition can then be 
broken up into equivalence classes mod a., and the direct sum 

Vc111 = EB V/l+n11 
ne Z 

(14.9) 

of the eigenspaces in a given equivalence class will be a subrepresentation of 
V for s11. It follows then that the set of weights of V congruent to any given 
fJ mod a. will be invariant under the involution W..; in particular, 

The set of weights of dny representation of g is invariant under the Weyl 
group. 

To make this more explici~, the string of weights that correspond to nonzero 
summands in (14.9) are, possibly after replacing p by a translate by a multiple 
of oc: 

P. P + a., P + 2a., ... , P + ma., with m = - P(H11 ). (14.10) 

(Note that by o~r analysis of sl2 C this must be an uninterrupted string.) Indeed 
if we choose P and m ~ 0 so that (14.10) is the string corresponding to nonzero 
summands in (14.9), then the string of integers 

{J(H«), (p + a.)(H11) = P(H11) + 2, ... , (p + ma.)(H11 ) = /1(H11) + 2m 

must be symmetric about zero, so P(H11 ) = -m. In particular, 

W..(P + ka.) = P + ( - P(H11) - k)a. = p + (m - k)a.. 

~otc. also that by the same analysis the multiplicities of the weights are 
nvanant under the Weyl group. 

.. We should mention one other fact about the Weyl group, whose proof we 
also postpone: 

~Note that by the riondegeneracy assertion (ii) of Fact 14.6, the line C ·ex does not lie in the 
YPcrplane n •. Recall that < • ) is the pairing between l) and I)*, so <H •• P> = P(H.). 
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Fact 14.11. Every element of the Weyl group is induced by an automorphism 

of the Lie algebra 9 carrying q to itself. 

We can even say what automorphism of 9 does the trick: to get the involution 
Wa, take the adjoint action of the exponential exp(niUa) E G, .where G is any 
group with Lie algebra 9 and Va is a suitable element of the dtrect ~um of .the 
root spaces 9a and 9-a· To prove that Ad(exp(niUa)) a~tually does this requtres 
more knowledge of 9 than we currently possess; but it would be a~ excellent 
exercise to verify this assertion directly in each of the cases studied below. 
(For the general case see (23.20) and (26.1?).) . . 

Step 6. Draw the picture (optio.nal). W~tle there is no lo.gical. need t~ do*s? 
at this point, it will be much easier to thmk about what is ~~mg on m q if 
we introduce the appropriate inner product, called the Killing form, on 9 
(hence by restriction on q, and he.nee on q~). Since th~ intro~ucti~n of the 
Killing form is, logically, a digression, we will de~er until.later m this lecture 
a discussion of its various definitions and properties. It will suffice for now to 
mention the characteristic property of the induced inner product on q*: u~ to 
scalars it is the unique inner product on q* preserved by the Weyl group, i.e., 
in terms of which the Weyl group acts as a group of orthogonal transforma
tions. Equivalently, it is the unique inner product (u~ to scalars) such that the 
line spanned by each root r:t. E q* is actually perpendicular to the plane na (~o 
that the involution Wa is just a reflection in that hyperplane) .. I~deed, m 
practice this is most often how we will compute it. In terms of the Killing form, 
then, we can say that the Weyl group is just the group gen~rated by the 
reflections in the hyperplanes perpendicular to the roots of th~ Lie algeb:a. 

Step 7. Choose a direction in q*. By this we me~n a r~al hne~r fu?cttonal l 
on the lattice AR irrational with respect to this lattice. This gives us a 

decomposition of the set 
R = R+ u R-, (14.12) 

where R+ = {a: l(r:t.) > O} (the r:t. ER+ are called the positive roots, those in R
negative)· this decomposition is called an ordering of the roots. For most 
purpose;, the only aspect of l that matters is the associated ordering of the 

roots. . h ots 
The point of choosing a direction-and thereby an ordenng oft t: ro 

R = R+ u R- -is, of course, to mimic the notion of highest weight vector that 
was so crucial in the cases of sl2 C and sl3 C. Specifically, we make the 

Definition. Let V be any representation of g. A nonzero vector v E V tha~i! 
both an eigenvector for the action of q and in the kernel of 9a for all r:t. E 

is called a highest weight vector of V. 

Just as in the previous cases, we then have 

Proposition 14.13. For any semisimple complex Lie algebra 9, 

(i) every finite-dimensional representation V of 9 possesses a highest weight 

vector; 

r 
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(ii) the subspace W of V generated by the images of a highest weight vector v 
under successive applications of root spaces 911 for P E R- is an irreducible 
subrepresentation; 

(iii) an irreducible representation possesses a unique highest weight vector up to 
scalars. 

PROOF. Part (i) is immediate: we just take r:t. to be the weight appearing in V 
for which the value 1(r:t.) is maximal and choose v any nonzero vector in the 
weight space V,.. Since V..+ 11 = (0) for all PER+, such a vector v will necessarily 
be in the kernel of all root spaces 911 corresponding to positive roots p. 

Part (ii) may be proved by the same argument as in the two cases we have 
already discussed: we let W,. be the subspace spanned by all w" · v where w" is a 
word of length at most n in elements of 911 for negative p. We then claim that 
for any X in any positive root space, X · W,. c W,.. To see this, write a generator 
of Wn in the form Y · W, W E W..-1 •and use the commutation relation X · Y · W = 
Y · X · w + [X, Y] · w; the claim follows by induction, since [X, Y] is always 
in I). The subspace W c V which is a union of all the W,.'s is thus a sub
represcntation; to see that it is irreducible; note that if we write W = W' EB W", 
then either W' or W" will have to contain the one-dimensional weight space 
W

0
, and so will have to equal W. 
The uniqueness of the highest weight vector of an irreducible representation 

follows immediately: if v E V.. and w E V11 were two such, not scalar multiples 
of each other, we would have 1(r:t.) > l(p) and vice versa. D 

Exercise 14.14. Show that in (ii) one need only apply those g11 for which 
n11 • v # 0. (Note: with W,. defined using only these 911 , and X in any root space, 
the same inductive argument shows that X · W,. c W..+1. On the other hand, 
if one uses all 911 with p negative and primitive, as in Observation 14.16, then 
X · W" c w,._1 • One cannot combine these, however: V may not be generated 
hy successively applying those 911 with p negative, primitive, and 911 • v =I= 0, e.g., 
the standard representation ofsl3 C.) 

. The weight r:t. of the highest weight vector of an irreducible representation 
will he called, not unreasonably, the highest weight of that representation; the 
term dominant weight is also common. 

We can refine part (ii) of this proposition slightly in another direction; this 
is not crucial but will be useful later on in estimating multiplicities of various 
representations. This refinement is based on 

Exercise 14.15*. (a) Let r:t. 1, •.• , r:t.k be roots of a semisimple Lie algebra 9 and 
n.,, c n the corresponding root spaces. Show that the subalgebra of 9 gene
rated by the Cartan subalgebra q together with the 9a, is exactly the direct 
sum Ii EB ( E8 9a), where the direct sum is over the intersection of the set R of 
roots of n with the semigroup N { r:t. 1 , ••• , r:t.k} c ~generated by the r:t.1• 

. (h) Similarly, let r:t.i. .. ., r:t.k be negative roots of a semisimple Lie algebra g 
and n., c n the corresponding root spaces. Show that the subalgebra of g gene-
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rated by the g« is exactly the direct sum EB g«, where the direct sum is over the 
intersection of the set R of roots of g with the semigroup N { °'1 • ... , ocd c I) 

generated by the oc1• 

(Note that by the description of the adjoint action of a Lie algebra on itself 
we have an obvious inclusion; the problem here is to show-given the facts 
above-that if oc + fJ e R, then [g«, gp] i= 0.) 

From this exercise, it is clear that generating a subrepresentation W of a 
given representation V by successive applications of root spaces gp for fJ e R
to a highest weight vector v is inefficient; we need only apply the root spaces 
gp corresponding to a set of ro~ts fJ gener~ting R- as a semigroup .. V:e 
accordingly introduce another piece of termmology: we say that a postttve 
(resp., negative) root oc e R is primitive or simple if it cann~t be epxressed as a 
sum of two positive (resp. negative) roots. (Note that, smce there are only 
finitely many roots, every positive root can be written as a sum of primitive 

positive roots.) We then have 

Observation 14.16. Any irreducible representation Vis generated by the images 
of its highest weight vector v under successive applications of root spaces g11 

where fJ ranges over the primitive negative roots. 

We have already seen one example of this in the case of sl3 C, where we 
observed (in the proof of Claim 12.10 and in the analysis of Sym

2 
V ® V* in 

Lecture 13) that any irreducible representation was generated by applying the 
two elements £

2
, 1 e gL,-L, and £ 3, 2 e 9L,-L, to a highest weight vector .. 

To return to our description of the weights of an irreducible representation 
V. we observe next that in fact every vertex of the convex hull of the weights 
oj V must be conjugate to oc under the Weyl group. To see this, note tha~ ~y the 
above the set of weights is contained in the cone oc + c;, where C« ts t~e 
positive real cone spanned by the roots fJ e R- such that g11 (~) i= 0-t~at ts, 
such that oc(Hp) i= 0. Conversely, the weights of V will contam the stnng of 

weights 
oc, oc + fJ, oc + 2/J, .. ., oc + ( -oc(H11 ))/J (14.17) 

for any fJ e R-. Thus, any vertex of the convex hull of the set of weights of V 
adjacent to oc must be of the form 

oc - oc(Hp)/J = W11 (oc) 

for some fJ; applying the same analysis to each successive vertex gives the 

statement. . . . el( 
From the above we deduce that the set of weights of V will hem the conv , s· k ow that 

hull of the images of oc under the Weyl group. mce, moreover, we n . 
the intersection of this set with any set of weights of the form { fJ + ny} will ~ 
a connected string it follows that the set of weights of V will be exactly t e 

' d h l' · the 
weights that are congruent to oc modulo the root lattice AR an t at 1e in 

convex hull of the images of oc under the Weyl group. 
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One more bit of terminology, and then we are done. By what we have seen 
(cf. (14.17)), the highest weight of any representation of V will be a weight oc 
satisfying oc(H

1
) ~ 0 for every ye R+. The locus "fl/, in the real span of the 

roots, of points satisfying these inequalities-in terms of the Killing form, 
making an acute or right angle with each of the positive roots-is called the 
(closed) Weyl chamber associated to the ordering of the roots. A Weyl chamber 
could also be described as the closure of a connected component of the 
complement of the union of the hyperplanes n«. The Weyl group acts simply 
transitively on the set of Weyl chambers and likewise on the set of orderings 
of the roots. As usual, these statements will be easy to see in the cases we study, 
while the abstract proofs are postponed (to Appendix D). 

Step 8. Classify the irreducible, finite-dimensional representations of g. 
Where all the above is leading should be pretty clear; it is expressed in the 
fundamental existence and uniqueness theorem: 

Theorem 14.18. For any oc in the intersection of the Weyl chamber "fl/ associated 
to the ordering of the roots with the weight lattice Aw, there exists a unique 
irreducible, finite-dimensional representation r« of g with highest weight oc; this 
ui11es a bijection between "fl/ n Aw and the set of irreducible representations of 
n. The weights of r« will consist of those elements of the weight lattice congruent 
to a modulo the root lattice AR and lying in the convex hull of the set of points 
in 11* conjugate to oc under the Weyl group. 

HALF-PROOF. We will give here just the proof of uniqueness, which is easy. 
The existence part we will demonstrate explicitly in each example in turn; and 
later on we will sketch some of the constructions that can be made in general. 
. The uniqueness part is exactly the same as for sl3 C. If V and W are two 
irreducible, finite-dimensional representations of g with highest weight vectors 
''and w, respectively, both having weight oc, then the vector (v, w) e V E9 W 
will again be a highest weight vector of weight oc in that representation. Let 
U := V E9 W be the subrepresentation generated by (v, w); since U will again 
h~ irreducible the projection maps n 1 : U-+ V and n 2 : U-+ W, being nonzero, 
will have to be isomorphisms. D 

Another fact which we will see as we go along-and eventually prove in 
general-is that there are always fundamental weights w1, ... , wn with the 
prope.rty that any dominant weight can be expressed uniquely as a non
negative integral linear combination of them. They can be characterized 
geometrically as the first weights met along the edges of the Wey] cham
~er, or algebraically as those elements w1 in I)* such that w1(H«) = ~1 • 1 , where 

1. · · ·, °'n are the simple roots (in some order). When we have found them, 
We often Write ra,,. .. ,a" for the irreducible representation With highest weight 
11

1 (/)I + ' '• + anWn; i.e., 

r -r a 1 , ••• ,a,, - a 1ro 1+···+a,,ro,,· 

(s with most of the material in this section, general proofs will be found in 
~ccturc 21 and Appendix D. 
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One basic point we want to repeat here (and that we hope to demonstrate 
in succeeding lectures) is this: that actually carrying out this process in practice 
is completely elementary and straightforward. Any mathematician, stranded 
on a desert island with only these ideas and the definition of a particular Lie 
algebra 9 such as sl"C, so"C, or sp 2"C, would in short order have a complete 
description of all the objects defined above in the case of 9. We should say as 
well, however, that at the conclusion of this procedure we are left without one 
vital piece of information about the representations of 9, without which we 
will be unable to analyze completely, for example, tensor products of known 
representations; this is, of course, a description of the multiplicities of the basic 
representations rll. As we said, we will, in fact, describe and prove such a 
formula (the Weyl character formula); but it is of a much less straight
forward character (our hypothetical shipwrecked mathematician would have 
to have what could only be described as a pretty good day to come up with 
the idea) and will be left until later. For now, we will conclude this lecture with 
the promised introduction to the Killing form. 

§14.2. About the Killing Form 

As we said, the Killing form is an inner product (symmetric bilinear form) on 
the Lie algebra 9; abusing our notation, we will denote by B both the Killing 
form and the induced inner products on l) and l)*. B can be defined in several 
ways; the most common is by associating to a pair of elements X, YE 9 the 
trace of the composition of their adjoint actions on 9, i.e., 

B(X, Y) = Tr(ad(X) o ad(Y): 9-+ 9). (14.19) 

As we will see, the Killing form may be computed in practice either from this 
definition, or (up to scalars) by using its invariance under the group of 
automorphisms of 9. We remark that this definition is not as opaque as it may 
seem at first. For one thing, the description of the adjoint action of the root 
space 91l as a "translation" of the root diagram-that is, carrying each root 
space 9p into 91l+/l-tells us immediately that 91l is perpendicular to 9p for all 
f3 other than - a; in other words, the decomposition 

(14.20) 

is orthogonal. As for the restriction of B to 1), this is more subtle, but it is not 
hard to write down: if X, Y are in 1), and Zll generates 91l, then ad(X) o ad( Y)(Z11) 
= a(X)a(Y)Zll, so B(X, Y) = L a(X)a(Y), the sum over the roots; viewing Blh 
as an element of the symmetric square Sym2 (1)*), we have 

1 "" 2 Bil)= -
2 

L... a . 
llER 

(14.21) 
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A _key fa~t following from. this-one that, if nothing else, makes picturing 
h* with the mner product B mvolve less eyestrain-is 

( J 4.22) B is positive definite on the real subspace of l) spanned by the vectors 

:H,: a ER}. 

Indeed, a~l ro?ts take on real values on this space (since all a(Hp) E z c IR), 
so for H m this real s~bs~ace ?f 1), B(H, H) is non-negative, and is zero only 
when all ~(H) = 0, which 1mphes H = 0, since the roots span l)*. 

T ~ see that the Killing form is nondegenerate on all of 9, we need the useful 
identity: 

B([X, Y], Z) = B(X, [Y, Z]) 

for all X, Y, Z in 9. This follows from the identity 

Trace((XY - YX)Z) = Trace(X(YZ - ZY)) 

(14.23) 

for any endomorphisms X, Y, Z of a vector space. And this, in turn, follows 
from 

Trace(YXZ - XZY) = Trace([Y, XZJ) = o. 
An im~ediate consequence of (14.23) is that if a is any ideal in a Lie algebra 
n, th_en its ?rth~g~nal complement a.L with respect to B is also an ideal. In 
partic_ular,_ if 9 1s simple, the kernel of B is zero (note that the kernel cannot 
be ~1 smce it does not contain 1)). Since the Killing form of a direct sum is the 
sum of the Killing forms of the factors, it follows that the Killing form is 
nondegenerate on a semisimple Lie algebra 9. 

One of the reasons the Killing form helps to picture l)* is the fact mentioned 
above: 

p .. 142 . rnpos1t1on • 4. With respect to B, the line spanned by each root a is perpen-
dicular to the hyperplane nil. 

A~ we observed, this is equivalent to saying that the involutions W above 
arc simply reflections in hyperplanes, and in turn to saying that th; whole 
Wey! g_roup is orthogonal. Note also that Proposition 14.24 thereby follows 
unmc_diately from the Fact 14.11: from the definition of B above, it is clearly 
invanant ~nder any automorphism of 9. Nevertheless, we would prefer not to 
~~ly o~ this fact; and anyway giving a direct proof of the proposition is not 
ard, m terms of the picture we have of the adjoint action of 9 on itself. To 

f
rrovc the assertion a ..L nil, it suffices to prove the dual assertion that H ..L H 
or all H . th "h"l ll [ X m e anm 1 a tor of a. But now by construction Ha: is the commutator 
f ".' Yll] o~ an element Xa: E 9a: and an element Y.. E 9-a:· Using (14.23) we have 
or ,my H m 1), 

B(Ha:, H) = B([Xll, Y.z], H) = B(Xa:, [Y.z, HJ) 

= B(Xa:, a(H) Y.z) = a(H)B(Xll, Y.z), 

Which vanishes since a(H) = o. 
(14.25) 

., 
I 

, ..... l 
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Note that as a consequence of this, we can characterize the Weyl chamber 
associated to an ordering of the roots as exactly those vectors in the real span 
of the roots forming an acute angle with all the positive roots (or, equivalently, 
with all the primitive ones); the Weyl chamber is thus the cone whose faces lie 
in the hyperplanes perpendicular to the primitive positive roots. 

Equation (14.25) leads to a formula for the isomorphism of g with g• 
determined by the Killing form. First note that for H = H« it gives 

B(H«, H«) = 2B(X«, Y,,) ::/: 0, 

for if B(X«, Y,,) were zero we would have B(H«, H) = 0 for all H, contradicting 
the nondegeneracy of B on g. The element ~ of g which corresponds to ix E g• 
by the Killing form is by definition the element ofg that satisfies the condition 

B(~, H) = ix(H) for all He g. (14.26) 

Looking at (14.25), we see that ~ = H«/B(X«, Y,,) = 2H«/B(H«, H«). This 

proves 

Corollary 14.27. The isomorphism of g* and g determined by the Killing form 

B carries ix to ~ = (2/ B(H«, H«)) · H«. 

The Killing form on g* is defined by B(ix, {J) = B(~. Tp). 

Exercise 14.28. Show that the inverse isomorphism from g to g* takes H« to 

(2/B(ix, ix))· ix. 

The orthogonality of W,, can be expressed by the formula 

2B({J, ix) 
W,,({J) = {J - B(ix,ix) ix. 

Comparing with (14.8) this says: 

Corollary 14.29. If ix and {J are roots, then 

2B({J, ix)/B(ix, ix)= {J(H«) 

is an integer. 

By the above identification of g with g*, (14.22) translates to 

Corollary 14.30. The Killing form Bis positive definite on the real vector space 

spanned by the root lattice AR. 

Note that it follows immediately from (14.22) that the Weyl group llB is 
finite, being simultaneously discrete (l!D preserves the set R of roots of g and 
hence the lattice AR; it follows that llD can be realized as a subgroup of GL.1) 

~ 14.2. About the Killing Form 209 

and compact (l!D preserves the Killing form, and hence is a subgroup of the 
orthogonal group O.IR.) Alternatively, llD is a subgroup of the permutation 
group of the set of roots. 

A~ we obser~ed_, the Killing ~o~ on g* is preserved by the Weyl group. In 
fact, m case g is simple, the K1llmg form is, up to scalars, the unique inner 
product preserved by the Weyl group. This will follow from 

Proposition 14.31. The space g* is an irreducible representation of the Weyl 
group 'ID. 

PROOF. Suppose that 3 c g* were preserved by the action of m. This means 
th~t ~very root ix e g• of g will either lie in the subspace 3 or be perpendicular 
to 1t, 1.e., for every IX E 3 and {J ¢ 3 we will have {J(H«) = O. We claim then that 
the subs~ac~ g' of g spanned by the subalgebras {5«}«ea will be an ideal in g. 
Clearly it will be a su~algebra; the space spanned by the distinguished sub
algebras 5« corr~s~o.ndmg to the set of roots lying in any subspace of g* will 
be. To see that it ism fact an ideal, let YE 9p be an element of a root space. 
Then for any IX E 3, we have 

[Y, ZJ E 9«+/l = 0 

since ix + Pis neither in 3 nor perpendicular to it, and so cannot be a root; and 

[Y, H«] = -[H«, Y] = {J(H«)· Y = 0. 

Thus, ,~d(Y) _kills g'; since, of course, all of H itself will preserve g', it follows 
that g is an _ideal. Thus, either all the roots lie in 3 and so 3 = g*, or all roots 
are perpendicular to 3 and correspondingly 3 = (0). o 

t . N~te that gi~en_Fact 14.11, w_e _can also express the last statement by saying 
hat (m case g is simple) the Killmg form on g is the unique form preserved 
~Y c_very au~omo~p~ism of the Lie algebra g carrying g to itself. As we will 
ce, m practice this is most often how we will first describe the Killing form. 

Exe~c~se 14.32. Find the Killing form on the Lie algebras 5{ C and 5{ C by 
cxpltc1t computation, and verify the statements made above hi these c:ses. 

~:xercise 14.33*. If a semisimple Lie algebra is a direct sum of simple sub
'~gcbras, then its Killing form is the orthogonal sum of the Killing forms of 
:n c. factors. ~how that, conversely, if the roots of a semisimple Lie algebra lie 
d a collection of ~utually perpendicular subspaces, then the Lie algebra 
ccomposes accordmgly. 

Exercise 14 34* S · L" 
1 

, • • uppose 9 is a ie algebra that has an abelian subalgebra 
l4s~~h that 9 has a decom~ositi~n (14.1), satisfying the conditions of Facts 

· and 14.6. Show that g is semisimple, and g is a Cartan subalgebra. 
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The preceding exercise can be used instead of Weyl's unitary trick or any 
abstract theory to verify that the algebras we meet in the next few lectures are 
all semisimple. It is tempting to call such a Lie algebra "visibly semisimple." 

The discussion of the geometry of the roots of a semisimple Lie algebra will 
be continued in Lecture 21 and completed in Appendix D. The Killing form 
becomes particularly useful in the general theory; fo~ example, ~o~vability and 
semisimplicity can both be characterized by properties of the Ktlhng form (see 
Appendix C). 

Exercise 14.35*. Show that b = l) Efl Ef100 g<X is a maximal solvable subalgebra 
of g; bis called a Borel subalgebra. Show that ffi<X>o g<X is a maximal nilpotent 
subalgebra of g. These will be discussed in Lecture 25. 

Exercise 14.36*. Show that the Killing form on the Lie algebra glm is given by 

the formula 

B(X, Y) = 2m Tr(X o Y) - 2 Tr(X) Tr(Y). 

Find similar formulas for slm, som, and spm, showing in each case that B(X, Y) 
is a constant multiple of Tr(X o Y). 

Exercise 14.37. If G is a real Lie group, the Killing form on its Lie algebra 
g = T.,G may not be positive definite. When it is, it <let.er.mines, by.left tr~~s
lation, a Riemannian metric on G. Show that the Ktlhng form 1s positive 
definite for G = SO"IR, but not for SL"IR. 

LECTURE 15 

sl4 C and sin C 

In this lecture, we will illustrate the general paradigm of the previous lecture by 
applying it to the Lie algebras sl"C; this is typical of the analyses of specific Lie algebras 
carried out in this Part. We start in §15.1 by describing the Cartan subalgebra, 
roots, root spaces, etc., for sl.C in general. We then give in §15.2 a detailed account of 
the representations of sl4 C, which generalizes directly to sl.C; in particular, we deduce 
the existence part of Theorem 14.18 for sl.C. 

In §15.3 we give an explicit construction of the irreducible representations ofsl.C 
using the Wey) construction introduced in Lecture 6; analogous constructions of the 
irreducible representations of the remaining classical Lie algebras will be given in §17.3 
and §19.5. This section presupposes familiarity with Lecture 6 and Appendix A, but 
can he skipped by those willing to forego §17.3 and 19.5 as well. Section 15.4 requires 
essentially the same degree of knowledge of classical algebraic geometry as §§11.3 and 
13.4 (it does not presuppose §15.3), but can also be skipped. Finally, §15.5 describes 
representations ofGL.C; this appears to involve the Wey) construction but in fact the 
main statement, Proposition 15.47 (and even its proof) can be understood without the 
preceding two sections. 

§15.1: Analyzing sl.C 
§15.2: Representations ohl4 C and sl"C 
§15.3: Weyl's construction and tensor products 
§ 15.4: Some more geometry 
§ 15.5: Representations of GL.C 

§15.1. Analyzing slnC 

To begin with, we have to locate a Cartan subalgebra, and this is not hard; 
as in the case of sl2 C and sl3 C the subalgebra of diagonal matrices will work 
fine. Writing H1 for the diagonal matrix E1,1 that takes e1 to itself and kills e1 
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for j '# i, we have 

q = {a1 H1 + a2 H 2 + · · · + a.H.: a1 + a2 + .. ·+a.= O}; 

note that H; is not in q. We can correspondingly write 

q* = IC{L 1 , L2 , •• ., L.}/(L 1 + L 2 + · · · + L. = 0), 

where L;(Hi) = b;,J· We often write Li for the image of L 1 in q*. 
We have already seen how the diagonal matrices act on the space of all 

traceless matrices: if E;,J is the endomorphism of IC" carrying e1 toe; and killing 
ek for all k '# j, then we have 

ad(a 1 H 1 + a2 H2 + · · · + a.H.)(E;) = (a1 - a1)- E,,1; (15.1) 

or, in other words, E;,J is an eigenvector for the action of Q with eigenvalue 
L; - L1; in particular, the roots of sl. IC are just the pairwise differences of the L;. 

Before we try to visualize anything taking place in Q or q*, let us take a 
moment out and describe the Killing form. To this end, note that the auto
morphism cp of IC" sending e; to e1, e1 to - e1 and fixing ek for all k '# i, j induces 
an automorphism Ad(cp) of the Lie algebra sl.IC (or even gl.(IC}) that carries 
q to itself, exchanges H1 and H1, and fixes all the other Hk. Since the Killing 
form on q must be invariant under all these automorphisms, it must satisfy 
B(Li, L;} = B(L1, Lj) for all i and j and B(L;, Lk) = B(L1, Lk) for all i, j and 
k '# i, j; it follows that on q it must be a linear combination of the forms 

B'(L a;H;, L b1H;) = L a;b; 

and 

B"(L a;H1, L b1H;) = L 1,.1 a;b1. 

On the space {L a1H;: La;= O}, however, we have 0 = (La;)(Lb) = 
L a;b1 + L a1b1, so in fact these two for~s are d~pe.nd.ent; and he~c~ we can 
write the Killing form simply as a multiple of B. Similarly, the Ktllmg form 
on q* must be a linear combination of the forms B'(La1L,, Lb;L;) = L,a,b; 
and B"(La;L;, Lb;L;} = Ly;a;b1; the condition that B(La1L;, Lb;L;) = 0 
whenever a 1 = a2 = · · · =a. or b1 = b2 = · · · = b. implies that it must be a 
multiple of 

(15.2) 
1 

= L a1b; - - L a;b1. 
; n i,J 

We may, of course, also calculate the Killing form directly from the defini
tion. By (14.21), since the roots of sl.IC are {L; - L1};,.1, we have 

B(L a1Hi. L b1H;) = Li.-1 (ai - a1)(b; - b1) 

= L; Lu; (a;b; + a1b1 - a1b1 - a1b;). 

Noting that Ly;a1 = -a; and, similarly, LN;b1 = -b1, this simplifies to 
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B(L a1Hi, L b1H;) = 2n L a1b1• (15.3) 

It follows with a little calculation that the dual form on q* is 

B(L a1L;, L b;L;} = (1/2n)(Li a;bi - (1/n) Li,J a;b1). (15.4) 

It is probably simpler just to think of this as the form, unique up to scalars, 
invariant under the symmetric group 6. of permutations of {1, 2, ... , n}. The 
L;, therefore, all have the same length, and the angles between all pairs are 
the same. To picture the roots in q*, then, we should think of the points L; as 
situated at the vertices ofa regular (n - 1)-simplex A, with the origin located 
at the barycenter of that simplex. This picture is easiest to visualize in the 
srecial case n = 4, where the Li will be located at every other vertex of a unit 
cube centered at the origin: 

(15.5) 

Now, as we said, the roots of sl.IC are now just the pairwise differences of 
the L1• The root lattice AR they generate can thus be described as 

AR = {L a1L 1: a; e Z, L a1 = O}/(L L1 = 0). 

Both the roots and the root lattice can be drawn in the case of sl4 IC: if we think 
of the vectors L; e q* as four of the vertices of a cube centered at the origin, 
the roots will comprise all the midpoints of the edges of a second cube whose 
linear dimensions are twice the dimensions of the first: 

( 15.6) 
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The next step, finding the distinguished subalgebras s,., is also very easy. 
The root space 9L,-L, corresponding to the root L 1 - L1 is generated by E1,

1
, 

so the subalgebra sL,-L, is generated by 

E1,1, E1,1, and [E1,1, E1,iJ = H1 - H1. 

The eigenvalue of H1 - H1 acting on E1,1 is (L1 - L1)(H1 - H1) = 2, so that the 
corresponding distinguished element HL,-L, in f) must be just H1 - H1. The 
annihilator, of course, is the hyperplane nL,-L, = {}:a1L1: a1 = a1}; note that 
this is indeed perpendicular to the root L1 - L1 with respect to the Killing 
form B as described above. 

Knowing the H,. we know the weight lattice: in order for a linear functional 
L a1L 1 e f)* to have integral values on all the distinguished elements, it is 
clearly necessary and sufficient that all the a1 be congruent to one another 
modulo Z. Since }:L1 = 0 inf)*, this means that the weight lattice is given as 

Aw= Z{L1, ... , Ln}l(L L1 = 0). 

In sum, then, the weight lattice of slnC may be realized as the lattice generated 
by the vertices of a regular (n - !)-simplex A centered at the origin; and the 
roots as the pairwise differences of these vertices. 

While we are at it, having determined AR and Aw we might as well compute 
the quotient Aw/AR. This is pretty easy: since the lattice Aw can be generated 
by AR together with any of the vertices L1 of our simplex, the quotient Aw/AR 
will be cyclic, generated by any L 1; since, modulo AR, 

0 = }:1(L1 - L1) = nL1 - }:1L1 = nL1• 

we see that L1 has order dividing n in Aw/AR. 

Exercise 15.7. Show that L1 has order exactly n in Aw/AR, so that Aw/AR~ 
Z/n"ll.. 

From the above we can also say what the Weyl group is: the reflection in 
the hyperplane perpendicular to the root L1 - L1 will exchange L1 and L1 e f)* 
and leave the other Lk alone, so that the Weyl group W is just the group 6n, 
acting as the symmetric group on the generators L1 of l)*. Note that we have 
already verified that these automorphisms off)* do come from automorphisms 
of the whole Lie algebra slnC preserving f). 

To continue, let us choose a direction, and describe the corresponding Weyl 
chamber. We can write our linear functional / as 

l(}: a1L 1) = L c1a, 

with }:c1 = O; let us suppose that c1 > c2 > .. ·>en. The corresponding 
ordering of the roots will then be 

R+ = {L1 - L1: i < j} 

and 
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The primitive negative roots for this ordering are simply the roots L1+ 1 - L 1• 

(Note that the ordering of the roots depends only on the relative sizes of the 
c;. so that the Weyl group acts simply transitively on the set of orderings.) The 
(dosed) Weyl chamber associated to this ordering will then be the set 

"If"' = {}:: a1L 1: a 1 ~ a2 ~ • • • ~ an}· 

One way to describe this geometrically is to say that if we take the barycentric 
subdivision of the faces of the simplex A, the Weyl chamber will be the cone 
over one (n - 2)-simplex of the barycentric subdivision: e.g., in the case n = 4 

It may be easier to visualize the case n = 4 if we introduce the associated cubes: 
in terms of the cube with vertices at the points ± L 1, we can draw the Weyl 
chamber as 

(15.8) 
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Alternatively, in terms of the slightly larger cube with vertices at the points 
±2L;, we can draw "if" as 

(15.9) 

From the first of these pictures we see that the edges of the Weyl chamber are 
the rays generated by the vectors Li, Li + L 2 , and Li + L 2 + L3; and that 
the faces of the Weyl chamber are the planes orthogonal to the primitive 
negative roots L 2 - Li, L3 - L 2 , and L4 - L3. The picture in general is 
analogous: for sl"C, the Weyl chamber will be the cone over an (n - 2)
simplex, with edges generated by the vectors 

Li, Li+L2 , Li+L2 +L3, ... ,Li+···+Ln-i=-Ln. 

The faces of "if" will thus be the hyperplanes 

QL,-L1+i = {L a1L1: a, = ai+i} 

perpendicular to the primitive negative roots Li+i - L1• 

Note the important phenomenon: the intersection of the closed Weyl 
chamber with the lattice Aw will be a free semigroup N"-i generated by the 
fundamentalweightsw1 =Li+···+ L1occurringalongtheedgesoftheWeyl 
chamber. One aspect of its significance that is immediate is that it allows us 
to index the irreducible representations sl"C nicely: for an arbitrary (n - 1)
tuple of natural numbers (ai' ... ' an-d E N"-i we will denote by ra,, ... ,an-1 the 
irreducible representation ohl"C with highest weight aiLi + a2(Li + Lz) + 
· · · + an-i (Li + · · · + Ln-d = (ai + · · · + an_i)Li + (a2 + · · · + an_i)L2 + 
· · · + an-i Ln-i: 

ra,, ... ,an-1 = ra,L, +a2(L1 +Li)+··· +an-1!L1 + ··· +Ln-1l" 

This also has the nice consequence that once we have located the irreducible 
representations v<n with highest weight Li + · · · + L 1, the general irreducible 
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representation ra,, ... ,an-1 with highest weight L a,(Li + .. ' + L,) will occur 
inside the tensor product of symmetric powers 

Syma' v<iJ ® Syma2y(2) ® ... ®Syman-I v<n-i) 

of these representations. Thus, the existence part of the basic Theorem 14.18 
is reduced to finding the basic representations v<1>; we will do this in due 
course, though at this point it is probably not too hard an exercise to guess 
what they are. 

* 15.2. Representations of sl4 C and sln C 

We begin as usual with the standard representation ofsl4 C on V = C4 • The 
standard basis vectors e1 of C4 are eigenvectors for the action of ~. with 
eigenvalues L1, so that the weight diagram looks like 

or. with the reference cube drawn as well, 



218 

The dual representation V* of course has weights - L; corresponding to the 
vectors of the dual basis er for V*, so that the weight diagram, with. its 
reference cube, looks like 

Note that the highest weight for this representation is - L4 , which lies along 
the bottom edge of the Weyl chamber, as depicted in Diagram (15.8). Note also 
that the weights of the representation NV-the triple sums Li + L2 + L3, 

Li + L2 + L4 , Li + L3 + L4 , and L2 + L3 + L4 of distinct weights of V-are 
the same as those of V*, reflecting the isomorphism of these two representations. 

This suggests that we look next at the second exterior power NV. This is 
a six-dimensional representation, with weights L; + L1 the pairwise sums of 
distinct weights of V; its weight diagram, in its reference cube, looks like 

The diagram shows clearly that NV is irreducible since it is not the nontrivial 
union of two configurations invariant under the Weyl group 6 4 (and all 
weights occur with multiplicity 1). Note also that the weights are symmetric 
about the origin, reflecting the isomorphism of NV with (NV)* = N(V*). 

Note that the highest weight Li + L2 of the representation NV is the 
primitive vector along the front edge of the Weyl chamber "If" as pictured in 
Diagram (15.8). Now, we have already seen that the intersection of the closed 
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Weyl chamber with the weight lattice is a free semigroup generated by the 
primitive vectors along the three edges of "If" -that is, every vector in "If" n Aw 
is a non-negative integral linear combination of the three vectors Li, Li + L2 , 

and Li + L2 + L3 • As we remarked at the end of the first section of this 
lecture, it follows that we have proved the existence half of the general existence 
and uniqueness theorem (14.18) in the case of the Lie algebra sl4 C. Explicitly, 
since V, NV, and /\3 V = V* have highest weight vectors with weights Li, 
L1 +· L2 , and Li + L2 + L3 , respectively, it follows that the representation 

Sym0 V ® Symb(NV) ® Sym"(/\3V) 

contains a highest weight vector with weight aLi + b(Li + L2 ) + 
c(L1 + L 2 + L 3 ), and hence a copy of the irreducible representation ra,b,c with 
this highest weight. 

Let us continue our examination of representations of sl4 C with a pair of 
tensor products of the three basic representations: V ®NV and V ®NV. 
As for the first of these, its weights are easy to find: they consist of the sums 
2Li + L1 (which occur once, as the sum of L1 and L1 + L1) and L1 + L1 + Lk 
(which occur three times). The diagram of these weights looks like 

(We have drawn only the vertices of the convex hull of this diagram, thus 
omitting the weights L1 + L1 + Lk; they are located at the centers of the 
hexagonal faces of this polyhedron.) 

Now, the representation V ® NV cannot be irreducible, for at least a 
couple of reasons. First off, just by looking at weights, we see that the 
irreducible representation W = ri. i,o with highest weight 2Li + L 2 can have 
multiplicity at most 2 on the weight Li + L 2 + L3 : by Observation 14.16, the 
weight space WL, +L

2
+L

3 
is generated by the images of the highest weight vector 

v E W2L,+L 2 by successive applications of the primitive negative root spaces 
H1.,-L,• gL3 -L2 • and 9LrL3 • But Li + L2 + L3 is uniquely expressible as a sum 
of 2Li + L2 and the primitive negative roots: 

Li + Lz + L3 = 2Li + L2 + (L2 - Li)+ (L3 - L2 ); 
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so that VL, +L,+L, is ge~erated by the subspaces 9L,-L, (gL,-L,(v)) and 
9L,-L2 (9L,-~ 1 (v)). We can m fact ~heck that the representation r1.1.o takes 
on the weight L 1 + L 2 + L 3 with multiplicity 2 by writing out these 
generators explicitly and checking that they are independent: for example, we 
have 

9L,-L,(9L,-L2 (v)) = C- E2.1(E3, 2 (e1 ® (e1 /\ e2 ))) 

= IC· E2 , i(e1 ® (e1 /\ e3 )) 

= IC· (e2 ® (e1 /\ e3 ) + e1 ® (e2 /\ e3 )). 

This is in fact what is called for in Exercise 15.10. 
Alternatively, forgetting weights entirely, we can see from standard multi

linear algebra that the representation V ®NV cannot be irreducible: we have 
a natural map of representations 

cp: V®NV--.NV 

which is obviously surjective. The kernel of this map is a representation with 
the same set of weights as V ®NV (but taking on the weights L1 + L. + L 
with multiplicity 2 rather than 3), and so must contain the irreducible rep~resen~ 
tation r 1• 1•0 with highest weight 2L 1 + L 2 • 

Exercise 15.10. Prove that the kernel of <pis indeed the irreducible represen
tation rl,1,0· 

Finally, consider the tensor product V ®NV. This has weights 
2L, + Lk + L, = L 1 - Li, each occurring once, and 0, occurring four times. Its 
weight diagrams thus look like 

This we may recognize as simply a direct sum of the adjoint representation 
with a copy of the trivial; this corresponds to the kernel and image of the 
obvious contraction (or trace) map 
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V ® NV = V ® V* = Hom( V, V) --+ IC. 

(Note that the adjoint representation is the irreducible representation with 
highest weight 2L 1 + L2 + L 3 , or in other words the representation r 1•0 , 1 .) 

Exercise 15.11. Describe the weights of the representations Sym"V, and deduce 
that they are all irreducible. 

Exercise 15.12. Describe the weights of the representations Sym"(N V), and 
deduce that they are not irreducible. Describe maps 

cp.: Sym"(NV)--+ Sym"- 2(NV) 

and show that the kernel of <f>n is the irreducible representation with highest 
weight n(L 1 + L 2 ). 

Exercise 15.13. The irreducible representation r 1, 1, 1 with highest weight 
3L1 + 2L2 + L 3 occurs as a subrepresentation of the tensor product 
V ® /\ 2 V ® /\ 3 V lying in the kernel of each of the three maps 

V ®NV® NV--+ NV® NV 

V® NV® NV-. NV® NV~ NV 

v ®NV® NV~ V® Nv• ® v•--+ V® Nv• ~ V® v 

obtained by wedging two of the three factors. Is it equal to the intersection of 
these kernels? To test your graphic abilities, draw a diagram of the weights 
(ignoring multiplicities) of this representation. 

Representations of sl"C 

Once the case of sl4 IC is digested, the case of the special linear group in general 
offers no surprises; the main difference in the general case is just the absence 
of pictures. Of course, the standard representation Vof sl.IC has highest weight 
L 1, and similarly the exterior power NV is irreducible with highest weight 
Li + ... + Lk. It follows that the irreducible representation ra,,. . .,On-1 with 
highest weight (a 1 + .. · + a._i)L 1 + .. · + a._1L._1 will appear inside the 
tensor product 

demonstrating the existence theorem ( t 4. t 8) for representations of sl. IC. 

Exercise 15.14. Verify that the exterior powers of the standard representations 
of sl.IC are indeed irreducible (though this is not necessary for the truth of the 
last sentence). 

,., I 

! 

i1 ,, 

. .\ 
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§15.3. Weyl's Construction and Tensor Products 

At the end of the preceding section, we saw that the irreducible representation 
r0 ,, .. ., 0 "_

1 
ofsl"IC with highest weight(a1 + .. · + a"_i)L1 + .. · + an_1Ln_1 will 

appear as a subspace of the tensor product 

Sym01 V ® Sym02(N V) ® · · · ® Sym0
"-' (/\"-

1 V), 

or equivalently as a subspace of the dth tensor power V®4 of the standard 
representation V. The natural question is, how can we describe this subspace? 
We have seen the answer in one case already (two cases, if you count the trivial 
answer r 0 = Sym0 V in the case n = 2): the representation ra,b of sl3 IC can be 
realized as the kernel of the contraction map 

Sym0 V ® Symb(NV)-+ Sym0
-

1 V ® Symb-1(NV). 

This raises the question of whether the representation r. can in general be 
described as a subspace of the tensor power @(Sym0 •(NV)) by intersecting 
kernels of such contraction/wedge product maps. Specifically, for i and j with 
i + j ~ n we can define maps 

Sym01 V ® Sym02(N V) ® · · · ® Sym0 n-•(!\"-1 V) 

-+NV® NV® Sym01 V ® · · · ® Sym0
•-

1(NV) ® · · · 

® Sym0r 1(NV) ® · · · ® Sym0 n- 1(!\"-1 V) 

and we have similar maps for i < j with i + j;;:: n and i even with 2i;;:: n; there 
are likewise analogously defined maps in which we split off three or more 
factors. The representation r01 , ... ,a"_

1 
is in the kernel ofall such maps; and we 

may ask whether the intersection of all such kernels is equal to r •. 
The answer, it turns out, is no. (It is a worthwhile exercise to find an example 

of a representation r. that cannot be realized in this way.) There is, however, 
another way of describing r. as a subspace of V®4

: in fact, we have already 
met these representations in Lecture 6, under the guise of Schur functors or 
Weyl modules. In fact, at the end of this lecture we will see how to describe 
them explicitly as subspaces of the above spaces @(Sym0 •(NV)). Recall that 
for V = IC" an n-dimensional vector space, and any partition 

A.: A.1 ;;:: A.2 ;;:: · · · ;;:: A." ;;:: 0, 

we can apply the Schur functor §;. to V to obtain a representation 
S;. V =§;.(IC") ofGL(V) = GL"(IC). If d = LA.1, this was realized as 

S;.V= V®4 ·c;.= V®4 ®ced V;,, 

where c;. is the Young symmetrizer corresponding to A., and V;. is the irreducible 
representation of 6 4 corresponding to A.. 

We saw in Lecture 6 that§;. Vis an irreducible representation ofGL"IC. It 
follows immediately that§;. V remains irreducible as a representation of SL" C, 
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. l t of GL IC is a scalar multiple of an element of SL"IC. In 
smce any e emen n • h L' l b I IC 
.particular, it determines an irreducible representation oft e ie a ge ra s n • 

.•. 1515 The representation §;.(IC") is the irreducible representation 
proposhton . · · 
o( slnC with highest weight A.1L1 + A2L2 + · · · + AnLn. 

· l § (ir") and § (IC") are isomorphic representations of sl"IC if 
In part1cu ar, ;. -v ,.. 1 h" t rlier 

. d 1 if;.._µ. is constant, independent of i. To re ate t is o our ea . 
,in on y I I l t t" r of sl IC wt th 

t· ti6n we may say that the irreducib e represen a ton a,, .. .,an-i . n • 
no a • ) (L + ... + L )1sobtamed 
hi hest weight a 1 L 1 + a2(L1 + L2 + · · · + an-1 t ~- 1 h: applying the Schur functor §;, to the standard representation V, where 

). = (a
1 

+ · · · + an-l• a2 + · · · + an-1• · ·., an-1• 0). 

(If we want a unique Schur functor for each representation, we can restri~t to 
those;_ with ;_" = O.) In terms of the Young diagram for 2, the ~oe~ctents 

_ , _ ;.. are the differences of lengths of rows. For example, if n - 6, 
a; - .11.1 1+1 

I I I I I 
I I'- a __.,1 

\.. ..) 1 
a2 

~ 

'-a J 
4 

is the Young diagram corresponding to r3,2,o.3, t · 

PROOF OF THE PROPOSITION. In Theorem 6.3 we calculated that the trace o~ al 
· · · § (IC") is the Schur polynom1a diagonal matrix with entries x 1, ••• , Xn on ;, . . . 

S ( ) By Equation (A.19), when the Schur polynomial ts written out 
'!.Xi, •• ., Xn. 

it takes the form 
" K M (15.16) S;,(X 1 , ••• ,Xn)=M;.+ L.,, ).1.1 ,.., 

1.1<). 

where M is the sum of the monomial X,.. = xi 1x~2 
• • • •• x:" and all distinct 

monomi:ls obtained from it by permuting the variables, and the K;.,.. a~e 
certain non-negative integers called Kostka numbers .. wh~n §;,(IC") ~s 
d·. l' d ith respect to the group of diagonal matrices m GL"(~),. t 

1agona 1ze w . h · onomtal m 
is also diagonalized with respect to.~ c sl~(q. T. ere ts one m . 
the displayed equation for each one-dimensional ~tgenspace. The weights of 
~ii ).(C") as a representation of sl"(IC) therefore consist of all 

µ1L1 + µ2L2 + ''. + µnLn, 
' . h ' l x1.1 in the polynomial each occurring as often as 1t does m t e monomta 
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S;.(x 1 , ••• , xn)- Since the sum is over those partitionsµ for which the first 
nonzero A.1 - µ1 is positive, the highest weight that appears is A.1 L 1 + A.2 L

2 
+ 

· · · + A.nLn, which concludes the proof. [In fact one can describe an explicit 
basis of eigenvectors for § ;.(Cn) which correspond to the monomials that 
appear in (15.16), cf. Problem 6.15 or Proposition 15.55.] D 

In particular, we have (by Theorem 6.3) formulas for the dimension of the 
representation with given highest weight. Explicitly, one formula says that 

dim(ra,, ... ,Un-1) = n 
lsl<Jsn 

(a1 + · · · + ai-l) + j - i 
j-i 

(15.17) 

As we saw in the proof, this proposition also gives the multiplicities of all 
weight spaces as the integers K;.,.. that appear in (15.16), which have a simple 
combinatorial description (p. 456): the dimension of the weight space with 
weight µ in the representation §;.(Cn) is the number of ways one can fill the 
Young diagram of A. with µi l's, µ2 2's, ... , µn n's, in such a way that the entries 
in each row are nondecreasing and those in each column are strictly increasing. 

Exercise 15.18. Use the formula in case n = 4 to calculate the dimensions of 
the irreducible representations ri, 1, 0 and r 1, 1 , 1 ofsl4 C. In the former case, 
use this to redo Exercise 15.10; in the latter case, to do Exercise 15.13. 

Exercise 15.19*. Use this formula to show that the dimension of the irreducible 
representation ra,b of sl3 with highest weight aLi + b(L1 + L2 ) is 
(a+ b + l)(a + l)(b + 1)/2. This is the same as the dimension of the kernel 
of the contraction map 

10 ,b: Sym"V ® SymbV* - Sym"-1 V ® Symb-i V*. 

Use this to give another proof of the assertion made in Claim 13.4 that r 0 • b is 
this kernel. 

Exercise 15.20*. As an application of the above formula, show that if Vis the 
standard representation of slnC, then the kernel of the wedge product map 

V®Nv-N+lv 

is the irreducible representation r 1, o, .... o, 1, o, ... with highest weight 
2Li + L 2 + ·· · + Lk; and that the irreducible representation rk-l,l,o, ... with 
highest weight k ·Li + Li is the kernel of the product map 

V ® SymkV - Symk+i V. 

Exercise 15.21 *. Show that the only nontrivial irreducible representations of 
slnC of dimension less than or equal ton are V and V*. 

One important consequence of the fact that the irreducible representations 
of sln C are obtained by applying Schur functors to the standard representation 
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is that identities among the Schur-Weyl functors give rise t~ identities a6m~ng . if GL (and hence SL and sl ) as we saw m Lecture . or representations 0 n . n n ' 
example, the representation 

Sym.i.'(V) ® Sym.i.2(V) ® ... ® Sym.i."(V) (15.22) 

is a direct sum of representations §.i.(V) $EB,.. !'1-1.i._§,_.(V), "'.here_ K!'.i. is the 
~oefficient described above. The particular apphcatt~n of this pnnctple that 
we will use most frequently in the sequel, however, ts th~ cons~quence that 

knows the decomposition of a tensor product of any two irreducible repre~en
~;t~ons of slnC: specifically, the tensor ~ower §.i.(V) ® §,_.(V) decomposes mto 

a direct sum ofirreducible representations 

§.i.(V) ® §,_.(V) = EB N.i.,_..§.(V), (15.23) 
• 

where the coefficients N.i.,... are given by the Littlewood-Richar~son rule •. which 
is a formula in terms of the number of ways to fill the Young ~tagram _betwe~n 
· · h 1' 2's µ n's satisfying a certam combmatonal A. and v wit µ 1 s, µ2 , .. ., n • 

condition described in (A.8). 

E · 15 24 Use the Littlewood-Richardson rule to show that the 
xerc1se · • · th t or product 

t . r occurs exactly once m e ens fCpresenta JOn a1+b,, .. .,Un-1+bn-I 
ra, , .. .,Un-I ® rb,, ... ,bn-t' 

A s ecial case of this is the analogue of Pieri's _formul~, which allows_ us 
to dec~mpose the tensor product of an arbitrary irreducible rep~esen1~tio~ 

· h 'th S kV - r or the fundamental representation r' V -wit et er ym - k,o,. .. ,o 
r (where the 1 occurs in the kth place): 

0,. .. , 1,0, ... ,0• 

Proposition 15.25. (i) The tensor product of ra,, ... ,an-i with SymkV = rk,o, ... ,o 

decomposes into a direct sum: 

r a ® rk ... 0 = EBrb,, ... ,bn-1' 
01, •.• , n-1 ' ' 

h ll (b b ) fior which there are non-negative integers c i • • · · , en 
t esumovera i• ••• , n-i · h b + 

h · k wi'th c .r a fior 1 ;5; i ;5; n - 1, and wit 1 =a, c, - C1+i w ose sum is , 1+i ;::::. 1 

f(ir 1 ;5; i ;5; n - 1. . k - r decomposes 
(ii) The tensor product of ra,, .. .,Un-1 with(\\ v - o, ... ,0,1,0,. .. ,o 

into a direct sum: 

the sum over all (bi, ... , bn-i) for which there is a subset _sh of { 1, · · · • n} of 
cardinality k, such that if i ¢ S and i + 1 e S, then a, > 0, wit 

{

a1 - 1 if i ¢ S and i + 1 e S 

b
1 

= a1 + 1 if i e S and i + 1 ¢ S 
a1 otherwise. 

'• .I 
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PROOF. This is simply a matter of translating the prescriptions of (6.8) and 
( 6.9), which describe the decompositions in terms of adding boxes to the Young 
diagrams. In (i), the c; are the number of boxes added to the ith row, and in 
(ii), S is the set of rows to which a box is added. o 

Exercise 15.26. Verify the descriptions in Section 2 of this lecture of V ® N v 
and V ® /\3 V, where V is the standard representation of sl4 C. 

Exercise 15.27. Use Pieri's formula (with n = 4) twice to find the decomposition 
into irreducibles of V ®NV® NV, where Vis the standard representation 
of sl4 C. Use this to redo Exercise 15.13. 

Exercise 15.28. Use Pieri's formula to prove (13.5). You may also want to look 
around in Lecture 13 to see which other of the decompositions found there 
by hand may be deduced from these formulas. 

Exercise 15.29. Verify that the statement of Exercise 15.20 follows directly 
from Pieri's formula. 

In the following exercises, V = C" is the standard representation of sl.C. 

Exercise 15.30. Consider now tensor products of the form NV® NV, with, 
say, k ~ I. Show that there is a natural map 

NV® NV-+ N+i V ® /\1-1 V 

given by contraction with the element "trace" (or "identity") in V ® V* = 
End(V). Explicitly, this map may be given by 

(v1 " .. · " vk) ® (w1 " .. · " w,) 

What is the image of this map? Show that the kernel is the irreducible 
representation r 0 ..... o, 1.o, ... ,o, 1,0, ... with highest weight 2L1 + .. · + 2L, + 
L1+1 + ··· + Lk. 

Exercise 15.31 *.Carry out an analysis similar to that of the preceding exercise 
for the maps 

SymkV ® Sym1V-+ Symk+l V ® Sym1- 1 V 

defined analogously. 

Exercise 15.32*. As a special case of Pieri's formula, we see that if Vis the 
standard representation of sl.C, the tensor product 
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NV® NV= EB §(2, ... ,2,1, ... ,1,0,.,iV) 

=EB ro, ... ,O,l,0, ... ,0,1,0, .... 

where in the ith factor the l's occur in the (k - i)th and (k + i)th places. At 
the same time, of course, we know that 

NV® NV= Sym2(NV) EB N(NV). 

If we.denote the ith term on the right-hand side of the first displayed equation 
for NV® NV by 0 1, show that 

Sym2(NV) =EB 0 21 and N(NV) =EB 0 21+1· 

Exercise 15.33*. As another special case of Pieri's formula, we see that the 
tensor product 

Symkv ® Symkv = EB §<H1,t-o(V) 

=EB r21.k-1,o ... o· 

At the same time, of course, we know that 

Symtv ® Symtv = Sym2(SymtV) EB N(SymtV). 

Which of the factors appearing in the first decomposition lie in Sym2(SymkV), 
and which in N(SymkV)? 

It follows from the Littlewood-Richardson rule that if .A.,µ, and v all have 
at most two rows, then the coefficient N;.,,. is zero or one (and it is easy to 
say which occurs). In particular, for the Lie algebras sl2C and sl3 C, the 
decomposition of the tensor product of two irreducible representations is 
always multiplicity free. Groups whose representations have this property, 
such as SU(2), SU(3), and S0(3) which are so important in physics, are called 
"simply reducible," cf. [Mack]. 

§15.4. Some More Geometry 

Let V be an n-dimensional vector space, and G(k, n) = G(k, V) = Grassk V the 
Grassmannian of k-planes in V. Grassk V is embedded as a subvariety of the 
projective space JP>(NV) by the PIUcker embedding: 

p: Grassk Ve+ JP>(NV) 

sending the plane W spanned by vectors v1, ... , vk to the alternating tensor 
1'1 /\ • • • " Vt· Equivalently, noting that if W c Vis a k-dimensional subspace, 
then NW is a line in NV, we may write this simply as 

p: W1-+NW 

' 
I 
'i 

. J 
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This embedding is compatib!e with the action of the general linear group: 

PSL"C = Aut(IP(V)) = {rr E Aut(IP(NV)): u(G(k, V)) = G(k, V)}
0

• 

This follows from a fact in algebraic geometry ([Ha]): all automorphisms 
of the Grassmannian are induced by automorphisms of V, unless n = 2k, 
in which case we can choose an arbitrary isomorphism of V with V* 
and compose these with the automorphism that takes W to ~IC"/~)*. He~e 
the superscript o denotes the connected component of the identity. As m 
previous lectures, if we want symmetric powers to cor~espond to h~mo
geneous polynomials on projective space, we s~ould ~ons1der t~e dual situa
tion: G = GrasskV is the Grassmannian of k-d1mens1onal quotient spaces of 
V and the Plucker embedding embeds G in the projective space IP(NV*) of 
o~e-dimensional quotients of NV. · 

The space of all homogeneous polynomials of degree m on IP(NV*) is 
naturally the symmetric power Symm(NV). Let J(G)m denote the subspac: of 
those polynomials of degree m on !P(NV*) that vanish on G. Each I(G)m is a 

representation of sl"IC: 
0-+ J(G)m-+ Symm(NV)-+ Wm-+ 0, 

where w denotes the restrictions to G of the polynomials of degree m on 
the amb~nt space !P(NV*). We shall see later that Wm is the irreducible 
representation fo ..... o.m,o,. .. with highest wei~ht ~(L 1 ~ · · · + Lk) (t~e case 
m = 2 will be dealt with below). In the followmg d1scuss1on, we consider the 
problem of describing the quadratic part I ( G)i of the ideal as a representation 

of slnlC. 

Exercise 15.34. Consider the first case of a Grassmannian that is not a 
projective space, that is, k = 2. The ideal of the Grass~an.nian G(2, V) of 
2-planes in a vector space is easy to descr!be: a te~sor <p E /\ V ~s decomposabl~ 
if and only if <p " <p = O (equivalently, if we thmk of <p as g1~en by a s~ew 
symmetric n x n matrix, if and only if the Pfaffians of ~ymn:ietnc 4 x 4 mmors 
all vanish); and indeed the quadratic relations we get m ~his way generate the 
ideal of the Grassmannian. We, thus, have an isomorphism 

J(G)2 ~ NV 

and correspondingly a decomposition into irreducibles 

Sym2(/\2V) ~NV EB fo.2.0 ..... 0• 

where r is, as above, the irreducible representation with highest 0.2.0 ..... 0 
weight 2(L 1 + L2), cf. Exercise 15.32. 

f . \p> 5 SO 
Exercise 15.35. When k = 2 and n = 4, G is a qu~d.ri~ hypersur ace 1~ • 

1 
• 

polynomials vanishing on G are simply those d1V1s1ble the quadratic po Y 
nomial that defines G. Deduce an isomorphism. 

/(G)m = Symm-2(/\2V). 
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The first case of a Grassmannian that is not a projective space or of the 
form G(2, V) is, of course, G(3, ~. and this yields an interesting example. 

Exercise 15.36. Let V be six dimensional. By examining weights, show that 
the space J(G)i of quadratic polynomials vanishing on the Grassmannian 
(1(3, V) c: !P(/\3V) is isomorphic to the adjoint representation of sl6 C, i.e., 
that we have a map 

cp: Sym2(/\3V)-+ V ® V* 

with image the space of traceless matrices. 

Exercise 15.37. Find explicitly the map <p of the preceding exercise. 

Exercise 15.38. Again, let V be six dimensional. Show that the representation 
Sym4 (/\3V) has a trivial direct summand, corresponding to the hypersurface 
in !P(/\3V*) dual to the Grassmannian G = G(3, V) c: !P(/\3V). 

In general, the ideal J(G) = ffiI(G)m is generated by the famous P/Ucker 
equations. These are homogeneous polynomials of degree two, and may be 
written down explicitly, cf. (15.53), [H-P], or [Ha]. In the following exercises, 
we will give a more intrinsic description of these relations, which will allow 
us to identify the space J(Gh they span as a representation on sl"C (and to 
sec the general pattern of which the above are special cases). 

Exercise 15.39. For a given tensor A E NV, we introduce two associated 
subspaces: 

W = { v E V: v /\ A = 0} c: V 

and 

W* = {v* EV*: v* /\A*= O} c: V*, 

where, abusing notation slightly, A* is the tensor A viewed as an element of 
NV = N-kv•. Show that the dimensions of Wand W* are at most k and 
n - k, respectively, and that A is decomposable if and only if W has dimension 
k or W* has dimension n - k; and deduce that A is decomposable if and only 
if the annihilator W' of W* is equal to W. 

Exercise 15.40. Now let EE N+1 V* = N-k-l V. Wedge product gives a map 

i 8 : NV-+ N-1 V = V*. 

Using the preceding exercise, show that A is decomposable if and only if 

zs(A)" A= o e N- 1 v 
for all 3 E (\k+1 V*. 
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Exercise 15.41. Observe that in the preceding exercise we construct a map 

N+i V* ® Sym2 (NV1-+ N-1 V, 

or, by duality, a map 

N+1 V* ® N-1 V* -+ Sym2(NV*) ( 15.42) 

whose image is a vector space of quadrics on IP(NV) whose common zeros 
are exactly the locus of decomposable vectors, that is, the Grassmannian 
G(k, V). Show that this image is exactly the span of the Plucker relations 
above. 

Exercise 15.43. Show that the map (15.42) of the preceding exercise is just the 
dual of the map constructed in Exercise 15.30, with k = land restricted to the 
symmetric product. Combining this with the result of Exercise 15.32 (and 
assuming the statement that the Pliicker relations do indeed span J(G)i), 
deduce that in terms of the description 

Sym2(NV) = EB 0 21 

of the symmetric square of NV, we have 

W2 = 0o = ro,. . .,0,2,0, ... 

(the irreducible representation with highest weight 2(L 1 + · · · + Lk))• and 

J(Gh = EB 021· 
I<!: 1 

Hard Exercise 15.44. Show that in the last equation the sub-direct sum 

10) =EB 021 
i<!:I 

is just the quadratic part of the ideal of the restricted chordal variety of the 
Grassmannian: that is, the union of the chords LM joining pairs of points 
in G corresponding to pairs of planes L and M meeting in a subspace of 
dimension at least k - 21 + 1. (Question: What is the actual zero locus of these 
quadrics?) 

Exercise 15.45. Carry out an analysis similar to the above to relate the 
ideal of a Veronese variety IPV* c IP(SymkV*) to the decomposition given in 
Exercise 15.33 of Sym2(SymkV). For which k do the quadratic polynomials 
vanishing the Veronese give an irreducible representation? 

Exercise 15.46. (For algebraic geometers and/or commutative algebraists.) 
Just as the group PGLnC acts on the ring S of polynomials on projective space 
IPN, preserving the ideal of the Veronese variety, so it acts on that space of 
relations on the ideal (that is, inasmuch as the ideal is generated by quadrics, 
the kernel of the multiplication map Ix(2) ® S-+ S), and likewise on the entire 
minimal resolution of the ideal of X. Show that this resolution has the form 
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· · ·-+ R2 ® S-+ R 1 ® S-+ Ix(2) ® S, 

where all the Ri are finite-dimensional representations of PGLnC• and identify 
the representations R1 in the specific cases of 

(i) the rational normal curve in IP 3, 

(ii) the rational normal curve in IP4
, and 

(iii) the Veronese surface in IP 5. 

~15.5. Representations of GLnC 

We have said that there is little difference between representations of GL.C 
and those of the subgroup SLnC of matrices of determinant 1. Our object here 
is to record the difference, which, naturally enough, comes from the deter
minant: if V =en is the standard representation, NV is trivial for SL.C but 
not for GLnC. Similarly, V and N-1 V* are isomorphic for SLnC but not 
for GL.C. 

To relate representations of SLnC and GLnC, we first need to define some 
representations of GLnC. To begin with, let Dk denote the one-dimensional 
representation of GLnC given by the kth power of the determinant. When k 
is non-negative, Dk =(NV)®\ D_k is the dual (Dd* of Dk. Next, note that the 
irreducible rep~esentations of SLnC may be lifted to representations of GL.C 
m two ways. First, for any index a = (a1, .. ., a.) of length n we may take <1>

1 

lo he the subrepresentation of the tensor product 

Sym0
' V ® · · · ® Sym0

•- 1(N-1 V) ® Sym0 •(NV) 

spanned by the highest weight vector with weight a1L1 + a2(L1 + L2) + 
.. · + a.-1 (L1 + · · · + Ln_i)-that is, the vector 

v = (e1)a'. (e1 /\ e2)a2. .... (e1 /\ ... /\ en)a". 

Thi.s rest~icts to SL.C to give the representation r
0
., where a'= (a1, ... , an-d; 

laking different values of a. amounts to tensoring the representation with 
different factors Sym0 •(NV) = (/\"V)® 0

• = D
0 
•• In particular, we have 

<l>a,, ... ,a.+k = <l>a,,. .. ,a. ®Dk, 

which allows us to extend the definition of <1> 1 to indices a with a. < 0: we 
simply set 

for large k. 

Alternatively, we may consider the Schur functor§;. applied to the standard 
representation V of GLnC, where 

A. = (a1 + · .. + an, a2 + .. · + a., .. ., a._1 + a., an). 

We will denote this representation §;. V of GLnC by 'I';.; note that 

'1';.,+k, ... ,;..+k = 'l';. 1 ..... .i.. ®Dk 



, I 

232 

which likewise allows us to define 'I';. for any index A. with A. 1 ::::: A.2 ::::: · · • ~ A.., 
even if some of the A.1 are negative: we simply take 

'l';. 1 , •••• .i." = '1'.i.,+k •...• .i."+k ® D-k 

for any sufficiently large k. . . . 
As is not hard to see, the two representations <I>. and'¥;. are isomorphic as 

representations of GL.C: by §15.3 their restrictions to SL.C agree, so it suffices 
to check their restrictions to the center c• c GL.C, where each acts by 
multiplication by zLA• = zLia,). It is even cl~arer that ~here are no ~oincide?ce.s 
among the <I>. (i.e., <I>. will be isomorphic to <I> •• tf and only if a = a): tf 
<1>. ~ <1> • ., we must have a1 = a; for i = 1, ... , n - 1, so the state~e~t follows 
from the nontriviality of Dk fork -::/: 0. Thus, to complete our descnptton of the 
irreducible finite-dimensional representations ofGL.C, we just have to check 
that we have found them all. We may then express the completed result as 

Proposition 15.47. Every irreducible complex re~resentation of GL.C is is.o-
morphic to'¥;. for a unique index A. = A. 1, ... , A.. with A1 ~ A2 ~ · · · ~ A.. (equiv-
alently, to <I>. for a unique index a = a1, ... , a. with ai, . ·., a.-1 :2:: 0). 

PROOF. We start by going back to the corresponding Lie algebras. The scalar 
matrices form a one-dimensional ideal C in gl.C, and in fact gl.C is a product 
of Lie algebras: 

(15.48) 

In particular, C is the radical of gl.C, and sl.C is the semi~imple part.. It follows 
from Proposition 9.17 that every irreducible representation ?f gl.~ ts a ten~or 
product of an irreducible representation of sl. C and a one-dt~ensional repre
sentation. More precisely, let W;. = §;.(C") be the representation of sl.C deter
mined by the partition A. (extended to sl.C x C by making the second .factor 
act trivially). For we C, let L(w) be the one-dimensional representation of 
sl C x C which is zero on the first factor and multiplication by w on the 
se~ond; the proof of Proposition 9.17 shows that any irreducible represent~
tion of sl C x C is isomorphic to a tensor product W;. ® L(w). The same ~s 
therefore" true for the simply connected 1 group SL. C x C with this Lie 
algebra. f 

We write GL.C as a quotient modulo a discrete subgroup of the center 0 

SL.C x C: 

1--+ Ker(p)--+ SL.C x C !. GL.C--+ 1, (15.49) 

where p(g x z) = e• · g, so the kernel of p is generated by e• ·I x ( - s), where 

s = 2ni/n. . ( ) of 
Our task is simply to see which of the representations W;. ® L w . 

SL.C x Care trivial on the kernel of p. Now e•·J acts on §;.C" by multi-

1 For a proof that SL.C is simply connected, see §23.l. 
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plication bye"", where d = L A.1; indeed, this is true on the entire representation 
(C")c"ld which contains§;. c•. And -s acts on L(w) by multiplication by e-•w, so 
e' · I x ( - s) acts on the tensor product by multiplication by e""-•w. The tensor 
product is, therefore, trivial on the kernel of p precisely when sd - sw e 2niZ, 
i.e .. when 

for some integer k. 

We claim finally that any representation JV;.® L(w) satisfying this condi
tion is the pullback via p of a representation 'I' on GL.C. In fact, it is not hard 
to see that it is the pullback of the representation 'I';., +k,. ... ;."+k: the two clearly 
restrict to the same representation on SL.C, and their restrictions to C are 
just multiplication by ewz = e<L.i.,+nk>•. D 

Exercise 15.50. Show that the dual of the representation 'I';. which is iso
morphic to §;.(V*)is the representation 'l'<-.i. ...... -.i.,i· 

Exercise 15.51 *.Show that if p: GL.C--+ GL(W) is a representation (assumed 
to he holomorphic), then W decomposes into a direct sum of irreducible 
representations. 

Exercise 15.52*. Show that the Hermite reciprocity isomorphism of Exercise 
11.34 is an isomorphism over GL2 C, not just over SL

2
C. 

More Remarks on Weyl's Construction 

We close out this lecture by looking once more at the Weyl construction of 
these representations of GL(V). This will include a realization "by generators 
and relations," as well as giving a natural basis for each representation. First, 
1
t may be illuminating-and it will be useful later-to look more closely at 

how ~~AV sits in V 1814
• We want to realize§;. Vas a subspace of the subspace 

Symak(NV) ® Syma•- 1(!\k-1 V) ® · · · ® Syma'(V) c V®4, 

where a; is the number of columns of the Young diagram of A. of length i (and 
~is the num?er of rows). This space is embedded in V®4 in the natural way: 
rom left to nght, a factor Syma(NV) is embedded in the corresponding V®ab 

by mapping a symmetric product of exterior products 

(v1,1 /\ V2.1 /\ ... /\ vb,i)·(v1,2 /\ V2.2 /\ ... /\ vb,2)" .. 

to 
. (vi.a /\ V2,a /\ ... /\ Vb, a) 



234 

first symmetrizes by permuting columns of the same length, and then performs 
an alternating symmetrizer on each column. 

Letting a = (a 1 , .•• , ak), let A•( V) denote this tensor product of symmetric 
powers of exterior powers, i.e., set 

A•v = Symak(NV) ® Symak-•(N-1 V) ® · · · ® Syma•qt). 

We want to realize§;, Vas a subspace of A•v. To do this we use the construc
tion of§;, Vas V®4 • c ;_, where c;, is a Young symmetrizer; to get compatibility 
with the embedding of A•v we have just made, we use the tableau which 
numbers the columns from top to bottom, then left to right. 

I 4 6 

2 5 7 

3 a2 = 2 
~ 

8 

a1 = I 

"-1 = 4 

"-2 = 3 

;l.. 3 = I 

We takeµ = A' = (µ 1 2 · · · 2 µ1 > 0) to be the conjugate of A.. The symmetrizer 
c;, is a product a;,· b;,, where a;,= ~>p• the sum over all pin the subgroup 
p = 6;, x · · · x 6;, of 6 4 preserving the rows, b;, = L sgn(q)q, the sum over 
the subgroup Q = Sµ, x · · · x 6µ, preserving the columns, as described in 
Lecture 4. The symmetrizing by rows can be done in two steps as follows. 
There is a subgroup 

R = 6ak X • · · X 6a, 

of P, which consists of permutations that move all entries of each column 
to the same position in some column of the same length; in other words, 
permutations in Rare determined by permuting columns which have the same 
·length. (In the illustration, R = { 1, (46)(57) }.) Set 

a~ = L e, in C64 • 
re R 

. . s 
Now if we define a~ to be L eP, where the sum is over any set of representative,, 
in P for the left cosets P/R, then the row symmetrizer a;, is the product of a, 
and a~. So 

§;,(V) = (V1814 ·aD·a~ ·b ... 

The point is that, by what we have just seen, 

V 1814 ·a~·b;, = A•V. 

T 
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Since V®' ·a~ is a subspace of V 1814
, its image §;,(V) by a~· b;, is a subspace of 

A'( V), as we claimed. 
There is a simple way to construct all the representations §;, V of GL(V) 

at once. In fact, the direct sum of all the representations §;, V, over all (non
negative) partitions A., can be made into a commutative, graded ring, which 
we denote by§' or §'(V), with simple generators and relations. This is similar 
to the fact that the symmetric algebra Sym'V = Ef>SymkV and the exterior 
algebra !\'V = Ef>NVare easier to describe than the individual graded pieces, 
and it has some of the similar advantages for studying all the represen
tations at once. This algebra has appeared and reappeared frequently, cf. 
[H-P]; the construction we give is essentially that of Towber [Towl]. 

To construct §'(V), start with the symmetric algebra on the sum of all the 
positive exterior products of V: set 

A'(V) = Sym'(VEB NV$ NV$··· EB NV) 

= EB Syma"(/\"V) ® · · · ® Syma2(NV) ® Syma1(V), 
ai. ... ,a" 

the sum over all n-tuples a 1 , ••• , a. of non-negative integers. So A'(V) is the 
direct sum of the A•(V) just considered. The ring§'= §'(V) is defined to be 
the quotient of this ring A'(V) modulo the graded, two-sided ideal/' generated 
by all clements ("Plucker relations") of the form 

(1!1 /\ • • • /\ vp) · (w1 /\ • • • /\ wq) 

- f (v1 /\ ... /\ V1-1 /\ W1 /\ V1+1 /\ ... /\ v ) . (v1 /\ W2 /\ ... /\ w ) 
1=1 p q 

(15.53) 

for all P 2 q ~ 1 and all v1 , •• ., vP, wi. ... , wqe V. (If p = q, this is an ele
ment of Sym2(NV); if p > q, it is in NV® NV= Sym1(NV) ® Sym1(NV). 
Note that the multiplication in §'(V)comes entirely from its being a symmetric 
algebra and does not involve the wedge products in /\'V) 

Exercise 15.54*. Show that J' contains all elements of the form 

(vi /\ · · · /\ vp) · (w1 /\ · • • /\ wq) 

- L (vi /\ · · · /\ W1 /\ · · • /\ w, /\ · · · /\ vp) 

. (v1, /\ V1, /\ ... /\ v,, /\ Wr+l /\ ... /\ Wq) 

for all p > > > 1 d 11 . . 
11 

- q - r - an a V1, •.• , vP, w1, •.. , wq e V, where the sum is over 
''. 

1 ~ i 1 < i2 < "· < i, :'.5: p, and the elements w1, ... , w, are inserted at the 
corresponding places in v

1 
/\ · • • /\ vP' 

Remark. You can avoid this exercise by simply taking the elements in the 
exercise as defining generators for the ideal /'. When p = q = r, the calcula-
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tion of Exercise 15.54 shows that the relation (v1 /\ · · · /\ vp) · (w1 " · · · /\ wp) 
= (w1 /\ ... " wp). (v1 " · · · /\ vp) follows from the generating eq~ations for/'. 
In particular, this commutativity shows that one could de~ne § (V) to be the 
full tensor algebra on V EB NV EB··· EB /\"V modulo the ideal generated by 

the same generators. 

The algebra § 0 (V) is the direcL sum of the images §•(V) ~f the s~mma~ds 
A•( V). Let e 1, ... , en be a basis for V. We will construct a basts fo~ _§ ( V), w~th 
a basis element eT for every semistandard tableau Ton_ the part1tto? A. which 
corresponds to a. Recall that a semistandard tableau ~s a numbermg of the 
boxes of the Young diagram with the integers 1, ... , n: m _such a way that the 
entries in each row are nondecreasing, and the entries m each column are 
strictly increasing. Let T(i,j) be the entry of T in the ith row and the jth 
column. Define eT to be the image in §•(V) of the element 

n eT(l,j) /\ eT(2,j) /\ ... /\ eT<P.1•J) E Syman(/\"V) ® ... ® Syma'(V), 
j=l 

i.e., wedge together the basis elements corresponding to the entries in the 
columns, and multiply the results in §

0

(V). 

Proposition 15.55. (1) The projection from A•(V) to §•(V) maps the subspace 

§;.(V) isomorphically onto §•(V). . • 
(2) The eT for Ta semistandard tableau on A. form a basis for§ (V). 

PROOF. We show first that the elements eT span §•(V). It is clear_tha_t the er 
span if we allow all tableaux T that number the boxes of A. with mtegers 
between 1 and n with strictly increasing columns, for such elements s~an before 
dividing by the ideal f. We order such tableaux by listing their_ entries colum~ 
by column from left to right and top to bottom, and usmg the revers 
lexicographic order: T' > T if the last entry wher~ they differ has a ~arger entr~ 
for T' than for T. If Tis not semistandard, there will be two successive column 
of T. say thejth and (j + l)st, in which we have T(r,j) > T(r,j + 1) for ~omc 

' l . . r t "t as a hnear r. It suffices to show how to use re at1ons m . o wri e eT . in 
combination of elements eT' with T' > T. For this we use the relation~ 
Exercise 15.54, with vi= eT(l,J) for 1::;; i::;; P = µJ, a_nd W; = eni,J+~ft~~ 
1 < i < q = µ. to interchange the first r of the { wi} with subsets of r 

- - J+l • . ·n ll spond to 
{ V·}. The terms on the right-hand side of the relation Wt a corre d 
tableaux T' in which the r first entries in the (j + 1 )st column of Tare replaced 
by r of the enties in the jth column, and are not otherwise changed beyo~e 
the jth column. All of these are larger than Tin the ordering, which proves t 

assertion. d" t semi-
It is possible to give a direct proof that the er correspon mg 0 by 

standard tableaux Tare linearly independent (see [Towl]), but we can get Tc 
with less. Among the semistandard tableaux on A. there is a small~st 0~~er;; 
whose ith row is filled with the integer i. We need to know that eTo ts no 
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in §'. This is easy to see directly. In fact, the relations among the eT in 
( n A"( V) are spanned by those obtained by substituting r elements from 
some column of some T to an earlier column, as in the preceding paragraph. 
Such will never involve the generator eT

0 
unless the T that is used is T0 , and 

in this case, the resulting element off is zero. Since eT
0 

occurs in no nontrivial 
relation, its image in §

0 

cannot vanish. 
Since eT

0 
comes from §;.(V), it follows that the projection from §;.(V) to 

~>"( V) is not zero. Since this projection is a mapping of representations of 
SL( V), it follows that §•(V) must contain a copy of the irreducible representa
tion §;.(V). We know from Theorem 6.3 and Exercise A.31 that the dimension 
of:);( V) is the number of semistandard tableaux on A.. Since we have proved 
that the dimension of §"(V) is at most this number, the projection from §;.(V) 
to '.ii"( V) must be surjective, and since§ ;.(V) is irreducible, it must be injective 
as well, and the eT for T a semistandard tableau on ).. must form a basis, as 
asserted. D 

Note that this proposition gives another description of the representations 
~~ ;( V), as the quotient of the space A •(V) by the subspace generated by the 
""Plucker" relations (15.53). 

Exercise 15.56. Show that, if the factor /\"Vis omitted from the construction 
the resulting algebra is the direct sum of all irreducible representations of 
SL( V) = SL"C. 

It is remarkable that all the representations §;.(C") of GL"C were written 
down by Deruyts (following Clebsch) a century ago, before representation 
theory was born, as in the following exercise. 

Exercise 15.57*. Let X = (x1) be an n x n matrix of indeterminants. The 
group G = GL"C acts on the polynomial ring C[x11-] by g · x . . = ~"k=l ak .xk . ~ , l,j L.., , I ,) 

or !I = (a1) E GL"C. For any tableau Ton the Young diagram of A. consisting 
of the integers from 1 to n, strictly increasing in the columns, let eT be the 
product of minors constructed from X, one for each column, as follows: if the 
column of T has length µ1, form the mi110r using the first µ1 columns, and use 
the rows that are numbered by the entries of the column of T. Let D;. be the 
suh~pace of C[x1,1] spanned by these eT, where dis the number partitioned 
hy "'· Show that: (i) D;. is preserved by GL"C; (ii) the er. where T is semi
standard, form a basis for D;.; (iii) D;. is isomorphic to §;.(C"). 



LECTURE 16 

Symplectic Lie Algebras 

In this lecture we do for the symplectic Lie algebras exactly what we did for the special 
linear ones in §15.1 and most of §15.2: we will first describe in general the structure of 
a symplectic Lie algebra (that is, give a Cartan subalgebra, find the roots, describe the 
Killing form, and so on). We will then work out in some detail the representations of 
the specific algebra sp4 C. As in the case of the corresponding analysis of the special 
linear Lie algebras, this is completely elementary. 

§16.1: The structure ofSp2.C and sp2.C 
§ 16.2 Representations of sp 4 C 

§16.1. The Structure of Sp2nC and sp2nC 

Let V be a 2n-dimensional complex vector space, and 

Q: V x V-+C, 

a nondegenerate, skew-symmetric bilinear form on V. The symplectic Lie 
group Sp2" C is then defined to be the group of automorphisms A of V 
preserving Q-that is, such that Q(Av, Aw)= Q(v, w) for all v, we V-and the 
symplectic Lie algebra sp 2"C correspondingly consists of endomorphisms 
A : V -+ V satisfying 

Q(Av, w) + Q(v, Aw)= 0 

for all v and w e V. Clearly, the isomorphism classes of the abstract group and 
Lie algebra do not depend on the particular choice of Q; but in order to be 
able to write down elements of both explicitly we will, for the remainder of 
our discussion, take Q to be the bilinear form given, in terms of a basis e 1, • • · · 

~ I 6.1. The Structure of Sp "" d 
2n'-' an sp2.C 

r 2,. for V, by 

and 

Q(e;, ei+n) = 1, 

Q(el+n• ei) = -1, 

Q(e,, e1) = 0 if j =f. i + n. 

The bilinear form Q may be expressed as -

. Q(x,y) = 1x·M·y, 

where Mis the 2n x 2n matrix given in block form as 

M = ( 0 !")· 
-Jn 0 ' 

the group Sp2.C is thus the group of 2n x 2 . 
n matrices A satisfying 

M= 1A·M·A 

239 

and the Lie algebra sp Cc . 
the relation Zn orrespondmgly the space of matrices X satisfying 

'X·M+M·X=O 
Writing a 2n x 2n matrix X in bl k r- • oc 1orm as 

(16.1) 

we have 

and 

'X·M = (-'C 'A) 
-

1D 'B 

M·X=(C D) 
-A -B 

so that th· 1 · 
C . is re ahon is equivalent to sa 'n 

of X are symmetric, and the d' Yll ~that the off-diagonal blocks Band 
trans~oses of each other. zagona locks A and D of X are negative 

With this said there · . 
~~gcbra I.) in sp2:C, na:el~er::~ni:u~~ obvious candi~ate for Cartan sub
th Presentation; in fact this work gebra of matrices diagonal in this 
V us spanned by the ~ 2n x 2n msa,ta~ weHshaH see shortly. The subalgebra I.) is 

is to fi rices 1 == E _ E 
we Will ix e" send en+1 to its negative, and kiH ali' h n+i, n;1 .whose action on 
basis L correspondingly take as basis for the d t le remammg basis vectors; 

i• where (L1, H,) = 15 . ua vector space I.)* the dual 
We have alread h l,J 

lllatr· y seen ow the diagonal . 
ices, so that it is easy to desc 'b th m~trices act on the algebra of all 

n e e action of r.. F ., on g. or example, for I 
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1 ~ i, j ~ n the matrix E1,1 e gl2" C is carried into itself under the adjoint action 
of H1, into minus itself by the action of H1, and to 0 by all the other Ht; and 
the same is true of the matrix En+ J,n+i· The element 

XI,}= Ei,j - En+},n+i E SP2nC 

is thus an eigenvector for the action of 1), with eigenvalue Li - L1• Similarly, 
for i =F j we see that the matrices E1,n+J and E1,n+i are carried into themselves 
by Hi and H1 and killed by all the other Ht; and likewise En+l,J and En+J,i are 
each carried into their negatives by Hi and HJ and killed by the others. Thus, 
the elements 

l'f.J = E1,n+J + E),n+i 

and 

zi,J = En+l,j + En+J,i 

are eigenvectors for the action of l), with eigenvalues L1 + L1 and - L; - L1, 

respectively. Finally, when i = j the same calculation shows that E1 •• +1 is 
doubled by H1 and killed by all other H1; and likewise En+1,1 is sent to minus 
twice itself by Hi and to 0 by the others. Thus, the elements 

Ui = E1,n+i 
and 

Vi= En+i,1 

are eigenvectors with eigenvalues 2Li and - 2Li. respectively. In sum, then, 
the roots of the Lie algebra sp2.C are the vectors ±Li± L1 el)*. 

In the first case n = 1, of course we just get the root diagram of sl2 C, which 
is the same algebra as sp2 C. In case n = 2, we have the diagram 

(16.2) 

As in the case of the special linear Lie algebras, probably the easiest w~Y 
to determine the Killing form on sv 2.C (at least up to scalars) is to use its 
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invariance under the automorphisms of sp2"C preserving 1). For example, we 
have the automorphisms of sp 2"C induced by permutations of the basis 
vectors ei of V: for any permutation CT of {l, 2,. . ., n} we can define an 
automorphism of V preserving Q by sending ei to e,,H> and en+i to en+a(I)• and 
this induces an automorphism of sp2"C preserving l) and carrying Hi to H,,<i>· 
Also, for any i we can define an involution of V-and thereby of sp

2
.C-by 

sending ei to en+h en+i to -e;, and all the other basis vectors to themselves; 
this will have the effect of sending Hi tp - Hi and preserving all the other H

1
. 

Now, the Killing form on l) must be invariant under these automorphisms; 
from the first batch it follows that for some pair of constants IX and p we must 
have 

and 

B(Hi. H) = p for i =F j; 

from the second batch it follows that, in fact, p = 0. Thus, Bis just a multiple 
oft he standard quadratic form B(H1, H1) = J,,1, and the dual form correspond
ingly a multiple of B(Li. L1) = J1,1; so that the angles in the diagram above are 
correct. 

Also as in the case of sl.C, one can also compute the Killing form directly 
from the definition: B(H, H') = L 1X(H)1X(H'), the sum over all roots IX. For 
H = L a;Hi and H' = L b1Hi, this gives B(H, H') as a sum 

L (a1 + a1)(bi + bi) + 2 L (2ai)(2bi) + L (a1 - a1)(bi - b1) 
i"') i l"'J 

which simplifies to 

(16.3) 

Our next job is to locate the distinguished copies s"' of s[
2 
C, and the 

c~rrcsponding elements H"' e 1). This is completely straightforward. We start 
WI!h the eigenvalues Li - L1 and L1 - L1 corresponding to the elements Xi 

1 and xj.i; we have ' 

[Xi,J• XJ,iJ = [E1,J - En+J,n+i• EJ,i - En+1,n+1] 

= [Ei,j• E1.iJ + [En+},n+h En+l,n+j] 

= Ei,i - Ej,j + En+},n+j - En+i,n+i 

=H1-HJ. 
Thus th d' t' · h d 1 · '.' e is mgu1s e e ement HL,-L

1 
is a multiple of Hi - H

1
. To see what 

~ultiplc, re~al~ th~t HL,-L1 should act on Xi,J by multiplication by 2 and on 
J,; by multtphcahon by -2; since we have 

ad(Hi - H1)(X1,1) =((Li - L1)(Hi - H1)) · Xi,J 

= 2X1,1, 
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we conclude that 

HL,-LJ =Hi - Hj. 

Next consider the pair of opposite eigenvalues L 1 + L, and - L. - L 
J I 1• 

corresponding to the eigenvectors Yi.1 and Zi,J· We have 

[fi.1, Zi,l] = [Ei,n+l + E1,n+I• En+1.1 + En+1.J 

= [E1,n+1• En+1.1J + [E1,n+1• En+1.1J 

= E1,1 ___:. En+l,n+l + E1.1 - En+i,n+I 

= H1 + H1• 

We calculate then 

so we have 

and similarly 

ad(Hi + H1)(Y;) = ((L1 + L1)(Hi + H1))· Yi.i 

=2·Yi.1· 

H-L,-Lj = -H, - H1. 

Finally, we look at the pair of eigenvalues ± 2L1 coming from the eigen
vectors U1 and Jlj. To complete the span of Ui and Vi to a copy of sl2 IC we add 

[U,, Jlj] = [Ei,n+I• En+1,J 

= E1,i - En+l,n+I 

Since 

=2·U1, 

we conclude that the distinguished element H2L is # 1, and likewise H-2L, == 
-Hi. Thus, the distinguished elements {Ha} c

1

g are {±H1 ± H1, ±HJ; in 
particular, the weight lattice Aw of linear forms on g integral on all the Ha is 
exactly the lattice of integral linear combinations of the L1• In Diagram (16.2), 
for example, this is just the lattice of intersections of the horizontal and vertical 
lines drawn; observe that for all n the index [Aw: AR] of the root lattice in the 
weight lattice is just 2. 

Next we consider the group of symmetries of the weights of an arbitrary 
representation of sp2"1C. For each root ix we let W.. be the involution in 
g* fixing the hyperplane !la given by (Ha, L) = 0 and acting as -/ on the 
line spanned by ix; we observe in this case that, as we claimed will be true in 
general, the line generated by ix is perpendicular to the hyperplane !la, so that 
the involution is just a reflection in this plane. In the case n = 2, for example, 

§16.1. The Structure ofSp2.C and 1p2.c 243 

we get the dihedral group generated by reflections around the four lines drawn 
through the origin: 

so that the weight diagram of a representation of sp4 1C will look like an 
octagon in general, or (in some cases) a square. 

In general, reflection in the plane n2L, given by (H1, L) = O will simply 
reverse the sign of L1 while leaving the other L1 fixed; reflection in the plane 
(H; - H1, L) = 0 will exchange L 1 and L1 and leave the remaining Lk alone. 
The Wey! group ID acts as the full automorphism group of the lines spanned 
by the L 1 and fits into a sequence 

1 -+ (7L./27L.)" -+ ID -+ Sn -+ 1. 

No~e _that th~ sequence splits: ID is a semidirect product of Sn and (7L./27L.)n. 
(This is a spectal case of a wreath product.) In particular the order of ID is 2nn!. 

We can choose a positive direction as before: 

l(L a,L,) = C1a1 + ... + cnan, Ci> C2 > ... >en> 0 .. 

The positive roots are then 

R+ = {L, + L1hs1U {L, - L1}1<l• (16.4) 

with primitive positive roots { L1 - L 1+1 } t=i .... ,n-i and 2Ln. The corresponding 
(closed) Wey! chamber is 

'if"= {a1L1 + a2L2 + "· + anLn: a1 ~ a2 ~"·~an~ O}; (16.5) 

note that the walls of this chamber-the cones 

{L a1L1: a1 > · · · > a1 = a1+1 > · · · > an > O} 
and 

{L a1L 1: a 1 > a2 > · · · > an = O} 

lie in the.hyperplanes QL,-L1+i and Q2Ln perpendicular to the primitive positive 
or negative roots, as expected. 
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§16.2. Representations of s:p4 C 

Let us consider now the representations of the algebra sp4 C specifically. Recall 
that, with the choice of Weyl chamber as above, there is a unique irreducible 
representation r .. of sp

4
C with highest weight oc for any oc in the intersection 

of the closed Weyl chamber "If" with the weight lattice: that is, for each lattice 

vector in the shaded region in the diagram 

Any such highest weight vector can be written as a non-negative integral 
linear combination of L

1 
and L 1 + L 2 ; for simplicity we will just write 

ra,b for the irreducible representation raL,+b(L,+L,) With highest weight 

aL
1 

+ b(L 1 + L 2 ) =(a+ b)L 1 + bL2 • 

To begin with, we have the standard representation as the algebra of 
endomorphisms of the four-dimensional vector space V; the four standard 
basis vectors e

1
, e

2
, e

3
, and e4 are eigenvectors with eigenvalues L 1, L 2 , -L1, 

and - L
2

, respectively, so that the weight diagram of Vis 
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Vis just the representation r 1 ,o in the notation above. Note that the dual of 
this representation is isomorphic to it, which we can see either from the 
symmetry of the weight diagram, or directly from the fact that the correspond
ing group representation preserves a bilinear form V x V-+ C giving an 

identification of v with v•. 
The next representation to consider is the exterior square NV. The weights 

of NV, the pairwise sums of distinct weights of V, are just the linear forms 
± L; ± L

1 
(each appearing once) and 0 (appearing twice, as L 1 - L 1 and 

L
2 

- L
2

), so that its weight diagram looks like 

C_lcarly this ~epresentation is not irreducible. We can see this from the weight 
dia_gram, usmg Observation 14.16: there is only one way of getting to the 
weight space 0 from the highest weight L 1 + L 2 by successive applications of 
the primitive negative root spaces 9-L +L (spanned by X 2 1 = E2 1 - E ) d I 2 , , 3,4 

an A-2L, (spanned by V2 = E4 , 2 )-that is, by applying first V2 , which takes 
you to the weight space of L 1 - L 2 , and then X 2 1-and so the dimension of 
the zero weight space in the irreducible represent~tion r 0 • 1 with highest weight 
L1 + L2 must be one. Of course, we know in any event that /\

2
V cannot be 

irreducible: the corresponding group action of Sp4 C on V by definition 
preserves the skew form Q E NV*~ NV. Either way, we conclude that we 
have a direct sum decomposition 

NV= WEBC, 

w_here W is the irreducible, five-dimensional representation of sp C with 
highest weight L 1 + L 2-in our notation, r 0 • 1-and weight diagra~ 
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Let us consider next some degree 2 tensors in V and W To begin with, we 
can write down the weight diagram for the representation Sym2 V; the weights 
being just the pairwise sums of the weights of V, the diagram is 

This looks like the weight diagram of the adjoint representation, and indeed 
that is what it is: in terms of the identification of V and V* given by the skew 
form Q, the relation (16.1) defining the symplectic Lie algebra says that the 
subspace 

sp4 C c Hom(V, V) = V® V* = V® V 

is just the subspace Sym2 V c V ® V. In particular, Sym2 V is the irreducible 
representation r 2,o with highest weight 2L1 • 

Next, consider the symmetric square Sym2 W, which has weight diagram 
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To see if this is irreducible we first look at the weight diagram: this time there 
arc three ways of getting from the weight space with highest weight 2L1 + 2L2 

to the space of weight 0 by successively applying X2.1 = E 2 , 1 - E 3, 4 and 
V2 = E4 , 2 , so if we want to proceed by this method we are forced to do a little 
calculation, which we leave as Exercise 16.7. 

Alternatively, we can see directly that Sym 2 W decomposes: the natural map 
given by wedge product 

NV® NV-+ NV= C 

is symmetric, and so factors to give a map 

Sym2 (/\2V))-+ C. 

Moreover, since this map is well defined up to scalars-in particular, it does 
not depend on the choice of skew form Q-it cannot contain the subspace 
Sym 2 W c Sym2 (/\2V)) in its kernel, so that it restricts to give a surjection 

<p: Sym2 W-+ C. 

This approach would appear to leave two possibilities open: either the 
kernel of this map is irreducible, or it is the direct sum of an irreducible 
representation and a further trivial summand. In fact, however, from the 
principle that an irreducible representation cannot have two independent 
invariant bilinear forms, we see that Sym2 W can contain at most one trivial 
summand, and so the former alternative must hold, i.e., we have 

(16.6) 

Exercise 16.7*. Prove (16.6) directly, by showing that if v is a highest 
Weight vector, then the three vectors X2 , 1 V2 X 2 , 1 V2 v, X2 , 1 X 2, 1 Vi V2 v, and 
V2 X 2. 1X2, 1 V2 v span a two-dimensional subspace of the kernel of <p. 

Ex_crcise 16.8. Verify that 1\2W ~ Sym2 V. The significance of this isomor
phism will be developed further in Lecture 18. 
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Lastly, consider the tensor product V ® W First, its weight diagram: 

This obviously must contain the irreducible representation r 1, 1 with highest 
weight 2L

1 
+ L2; but it cannot be irreducible, for either of two reasons. First, 

looking at the weight diagram, we see that ri. 1 can take on the eigenvalues 
± L

1 
with multiplicity at most 2, so that V ® W must contain at least one copy 

of the representation V. Alternatively, we have a natural map given by wedge 

product 

A: V®NV-+J\3V= V* = V; 

and since this map does not depend on the choice of skew form Q, it must 
restrict to give a nonzero (and hence surjective) map 

cp: V® W-+ V. 

Exercise 16.9. Show that the kernel of this map is irreducible, and hence that 

we have 

V ® W = ri.1 EB V. 

What about more general tensors? To begin with, note that we have 
established the existence half of the standard existence and uniqueness theorem 
(14.18) in the case of sp4 C: the irreducible representation ra,b may be found 
somewhere in the tensor product Symav ® SymbW The question that remains 
is, where? In other words, we would like to be able to say how these tensor 
products decompose. This will be, as it was in the case of sl3 C, nearly 
tantamount (modulo the combinatorics needed to count the multiplicity with 
which the tensor product Symav ® SymbW assumes each of its eigenvalues) 
to specifying the multiplicities of the irreducible representations ra,b· 

Let us start with the simplest case, namely, the representations Symav. 
These have weight diagram a sequence of nested diamonds D1 with vertices at 
aL 1 , (a - 2)L1 , etc.: 
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Moreover, it is not hard to calculate the multiplicities of Symav: the multi
plicity on the outer diamond D1_is o~e, of course; and then.th~ ~ultiplicities 
will increase by one on successive nngs, so that the mult1phc1ty along the 

diamond D1 will be i. 

Exercise 16.10. Using the techniques of Lecture 13, show that the representa

tions Symav are irreducible. 

The next simplest representations, naturally enough, are the symmetric 
powers SymbW of W These have eigenvalue diagrams in the shape of a 
sequence of squares S

1 
with vertices at b(L 1 + L2), (b - 1)(L1 + L2), and so 

on: 

D 
Here, however, the multiplicities increase in a rather strange way: they grow 
quadratically, but only on every other ring. Explicitly, the multiplicity will be 
one on the outer two rings, then 3 on the next two rings, 6 on the next two; 
in general, it will be i(i + 1)/2 on the (2i - l)st and (2i)th squares S21-1 and 

Szi· 
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Exercise 16.11. Show that contraction with the skew form <p e Sym2W* 
introduced in the discussion of Sym2 W above determines a surjection from 
SymbW onto Symb- 2w, and that the kernel of this map is the irreducible 
representation r 0 ,b with highest weight b(L 1 + L2). Show that the multi
plicities of r 0 ,b are ion the squares S2i-t and S21 described above. 

We will finish by analyzing, naively and in detail, one example of a represen
tation ra,b with a and b both nonzero, namely, r2, l; one thing we may observe 
on the basis of this example is that there is not a similarly simple pattern to 
the multiplicities of the representations ra,b with general a and b. To carry out 
our analysis, we start of course with the product Sym2V ® W We can readily 
draw the weight diagram for this representation; drawing only one-eighth of 
the plane and indicating multiplicities by numbers, it is 

We know that the representation Sym2 V ® W contains a copy of the irreducible 
representation r 2.1 with highest weight 2L1 + (L 1 + L 2); and we can see 
immediately from the diagram that it cannot equal this: for example, r 2, i can 
take the weight 2L1 with multiplicity at most 2 (if v E r 2. 1 is its highest weight 
vector, the corresponding weight space (r2. 1 hL, c r 2. 1 will be spanned by the 
two vectors X 2 1{V2(v)) and V2(X2 1(v))); since it cannot contain a copy of 
the representatlon r 0 •2 (the multipiicity of the weight 2(L1 + L2) being j_ust 
one) it follows that Sym2V ® W must contain a copy of the representation 
r2 o = Sym2v. 

'we can, in this way, narrow down the list of possibilities a good deal. For 
example, r 2, 1 cannot have multiplicity just one at each of the weights 2L1 and 
L 1 + L2: if it did, Sym2V ® W would have to contain two copies of Sym2V 
and a further two copies of W to make up the multiplicity at L 1 + L 2; but 
since 0 must appear as a weight of r 2, 1, this would give a total multiplicity ~f 
at least 7 for the weight 0 in Sym2V ® W Similarly, r 2, 1 cannot have mul;•· 
plicity 1 at 2L1 and 2 at L 1 + L2: we would then have two copies of Sy?1 _v 
and one of Win Sym2 V ® W; and since the multiplicity of 0 in r 2, 1 w1ll 1n 
this case be at least 2 (being greater than or equal to the multiplicity of 
L 1 + L2), this would again imply a multiplicity of at least 7 for the weight 0 
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in Sym2V ® W It follows that Sym2V ® W must contain exactly one copy of 
Sym2V; and since the multiplicity of L 1 + L2 in r 2,1 is at most 3, it follows 
that Sym2V ® W will contain at least one copy of r 0 , 1 = Was well. 

Exercise 16.12. Prove, independently of the above analysis, that Sym2 V ® W 
must contain a copy ofSym2V and a copy of W by looking at the map 

<p: Sym2V® W--. V® V 

obtained by sending 

u·v ®(w /\ z)1-+u ® Q(v /\ w /\ z) + v ® Q(u /\ w /\ z), 

where we are identifying NV with the dual space V* and denoting by 
Q: V*--. V the isomorphism induced by the skew form Q on V. Specifically, 
show that the image of this map is complementary to the line spanned by the 
element Q E N v• = N v c v ® v. 

The above leaves us with exactly two possibilities for the weights of r 2, 1: 
we know that the multiplicity of 2Li in r 2, 1 is exactly 2; so either the 
multiplicities of Li + L2 and 0 in r 2, 1 are both 3 and we have 

Sym2V ® W = r 2, 1 Ef> Sym2V E0 W; 

or the multiplicities of L 1 + L2 and 0 in r2, i are both 2 and we have 

Sym2V ® W = r 2, 1 Ef> Sym2V Ea we2. 

Exercise 16.13. Show that the former of these two possibilities actually occurs, 
by 

(a) Showing that if v is the highest weight vector in r 2, 1 c Sym2 V ® W, 
then the images (X2, 1 )

2
V2(v), X2, 1V2X 2,1 (v), and V2(X2, 1)2v are independent; 

and (redundantly) 

(b) Showing that the representation Sym2V ® W contains only one highest 
weight vector of weight Li + L2. 

The weight diagram of r 2, i is therefore 
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We see from all this that, in particular, the weights of the irreducible 
representations of sp4 IC are not constant on the rings of their weight diagrams. 

Exercise 16.14. Analyze the representation V ® Sym2 W of sp4 IC. Find in 
particular the multiplicities of the representation ru. 

Exercise 16.15. Analyze the representation Sym2 V ® Sym2 W of sp4 1C. Find 
in particular the multiplicities of the representation r2. 2 . 

LECTURE 17 

sp6 C and sp2nC 

In the first two sections of this lecture we complete our classification of the representa
tions of the symplectic Lie algebras: we describe in detail the example of sp6 C, then 
sketch the representation theory of symplectic Lie algebras in general, in particular 
proving the existence part of Theorem 14.18 for sp 2.C. In the final section we describe 
an analog for the symplectic algebras of the construction given in §15.3 of the irreduc
ihle representations of the special linear algebras via Weyl's construction, though we 
postpone giving analogous formulas for the decomposition of tensor products of 
irreducible representations. Sections 17.1 and 17.2 are completely elementary, given 
the by now standard multilinear algebra of Appendix B. Section 17.3, like §15.3, 
requires familiarity with the contents of Lecture 6 and Appendix A; but, like that 
section, it can be skipped without affecting most of the rest of the book. 

*17.1: Representations of sp6 C 
* 17 .2: Representations of the symplectic Lie algebras in general 
*17.3: Weyl's construction for symplectic groups 

§17.1. Representations of sp6 C 

As we have seen, the Cartan algebra I) of sp6 1C is three-dimensional, with the 
linear functionals Li. L2 , and L3 forming an orthonormal basis in terms of 
the Killing form; and the roots ofsp6 1C are then the 18 vectors ±L; ± L1. We 
can draw this in terms of a "reference cube" in I)* with faces centered at the 
points ± L1; the vectors ± L1 ± L1 with i :F j are then the midpoints of edges 
of this reference cube and the vectors ±2L1 the midpoints of the faces of a 
cube twice as large. Alternatively, we can draw a reference octahedron with 
vertices at the vectors ± 2L1; the roots ± L1 ± L1 with i :F j will then be the 
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midpoints of the edges of this octahedron: 

2L 1 

or, if we include the reference cube as well, as 

(17.1) 

This last diagram, however ineptly drawn, suggests a comparison with the 
root diagram of sl4 C; in fact the 12 roots of sp6 C of the form ± L1 ± L1 for 
i ""'j are congruent to the 12 roots of sl4 C. In particular, the Weyl group of 
sp6C will be generated by the Weyl group ofsl4 C, plus any of the additional 
three reflections in the planes perpendicular to the L1 (i.e., the planes parallel 
to the faces of the reference cube in the root diagram of either Lie algebra). 
We can indicate the planes perpendicular to the roots of sp6C by drawing 
where they cross the visible part of the reference cube: 
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We see from this that the effect of the additional reflections in the Weyl 
group of sp6C on the Weyl chamber of sl4 C is simply to cut it in half; whereas 
the Weyl chamber of sl4 C looked like 

the Weyl chamber of sp6 C will look like just the upper half of this region: 

/ 

_.,,..,.1----
/ 

L, 

~n terms of the reference octahedron, this is the cone over one part of the 
arycentric subdivision of a face: 
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I 
I 
I 
I 
I 
I 
I 
I . 

--l...:" 
---- 1.: ---.1 

or, if we rotate 90° around the vertical axis in an attempt to make the picture 
clearer, 

(17.2) 

We should remark before proceeding that the comparison between the root 
systems of the special linear algebra sl4 C and the symplectic algebra sp6 C is 
peculiar to this case; in general, the root systems of sln+i C and sp 2"C will bear 
no such similarity. 

As we saw in the preceding lecture, the weight lattice of sp6 C consists 
simply of the integral linear combinations of the weights L1• In particular, the 
intersection of the weight lattice with the closed Weyl chamber chosen above 
will consist exactly of integral linear combinations a 1 L 1 + a2L 2 + a3 L 3 with 
ai ;;:::: a2 ;;:::: a 3 ;;:::: 0. By our general existence and uniqueness theorem, then, 
for every triple (a, b, c) of non-negative integers there will exist a unique 
irreducible representation of sp6 C with highest weight aL 1 + b(L 1 + L2 ) + 
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c(L 1 + L 2 + L3) =(a+ b + c)L1 + (b + c)L2 + cL3;wewilldenotethisrep
rcscntation by ro,b,c and will demonstrate its existence in the following. 

We start by considering the standard representation of sp6 C on V = C6
• 

The eigenvectors of the action of 1) on V are just the standard basis vectors 
l';. and these have eigenvalues ± L., so that the weight diagram of V looks like 
the midpoints of the faces of the reference cube (or the vertices of an 
octahedron one-half the size of the reference octahedron): 

In particular, Vis the representation ri,o,o· 
Since we are going to want to find a representation with highest weight 

L1 + L2 , the natural thing to look at next is the second exterior power NV 
of the standard representation. This will have weights the pairwise sum of 
distinct we~ghts of V, or in other words the 12 weights ±L1 ± L1 with i oF: j, 
and the weight 0 taken three times. This is not irreducible: by definition the 
action of sp6 C on the standard representation preserves a skew form, so that 
the representation on NV will have a trivial summand. On the other hand, 
the skew form on V preserved by sp6 C, and hence that trivial summand of 
NV, is unique; and since all the nonzero weights of NV occur with multi
plicity 1 and are conjugate under the Weyl group, it follows that the comple
ment ~of th~ trivial representation in NV is irreducible. So W = r0 • 1, 0 • 

. As in previous examples, we can also see that NV is not irreducible by 
U~tng ~he fact (?bservation 14 .. 16) that the irreducible representation ro, l,0 

wit.h highest weight L 1 + L 2 will be generated by applying to a single highest 
w~1g~t. vector~ the root spaces gL,-L,• gL

3
-L,• and g_ 2L

3 
corresponding to 

~nm1t1ve negative roots. We can then verify that in the irreducible representa
tion W with highest weight L 1 + L 2 , there are only three ways of going from 
the highest weight space to the zero weight space by successive application of 
these roots spaces: we can go 

L1 + L2 -+ L 1 + L3 -+ L 1 - L3 -+ L 1 - L2 
~ ~ ~ 
L 2 + L3 -+ L 2 - L3 -+ 0 
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Exercise 17.3. Verify this, and also verify that the lower two routes to the 
zero-weight space in NV yield the same nonzero vector, and that the upper 
route yields an independent element of NV, so that 0 does indeed occur with 
multiplicity 2 as a weight of ro.1.o· 

To continue, we look next at the third exterior power /\3 V of the standard 
representation; we know that this will contain a copy of the irreducible 
representation ro,o,i with highest weight Li+ Li+ L 3 • The weights of Nv 
are of two kinds: we have the eight sums ±Li ± Li ± L 3 , corresponding to 
the vertices of the reference cube and each occurring once; and we have the 
weights ± L; each occurring twice (as ± L1 + L1 - L1 and ± L; + Lk - Lk). 
The weight diagram thus looks like the vertices of the reference cube together 
with the midpoints of its faces: 

Now, the weights ± L 1 must occur in the representation ro,o, i with highest 
weight L 1 +Li + L 3 , since they are congruent to Li +Li + L 3 modulo the 
root lattice and lie in the convex hull of the translates of L 1 +Li+ L 3 under 
the Weyl group (that is, they lie in the closed reference cube). But they cannot 
occur with multiplicity greater than 1: for example, the only way to get from 
the point Li +Li + L 3 to the point Li by translations by the basic vectors 
Li - Li, L 3 - Li, and -2L3 pictured in Diagram (17.1) above (while staying 
inside the reference cube) is by translation by -2L3 first, and then by L 3 - L1· 
it follows that the multiplicities of the weights ± L1 in r 0 • o, i are 1. On the. 
other hand, we have a natural map 

NV--+ V 

obtained by contracting with the element of NV* preserved by the action of 
sp6 IC, and the kernel of this map, which must contain the representation 
r 0 • o. i • will have exactly these weights. The kernel of cp is thus the irreducible 
representation with highest weight L 1 + Li + L 3 ; we will call this representa
tion U for now. 

At this point, we have established the existence theorem for repre
sentations of sp6 IC: the irreducible representation ra,b,c with highest weight 
(a + b + c)Li + (a + b)L2 + cL3 will occur inside the representation 

Sym"V ® SymbW ® Sym<U. 
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For example, suppose we want to find the irreducible representation ri.1.o 
with highest weight 2Li +Li. The weights of this representation will be the 
24 weights ±2L1 ± L1, each taken with multiplicity 1; the 8 weights ±L1 ± 
L 2 ± L 3 , taken with a multiplicity we do not a priori know (but that the reader 
can verify must be either 1 or 2), and the weights ± L1 taken with some 
other multiplicity. At the same time, the representation V ® W, which contains 
r 1. 1• 0 , will take on these weights, with multiplicities 1, 3, and 6, respectively. 
In particular, it follows that V ® W will contain a copy of the irreducible 
representation U with highest weight Li + Li + L 3 as well; alternatively, we 
can see this directly by observing that the wedge product map 

V®NV-+NV 

factors to give a map 

V® W-+ U 

and that ri, 1, 0 must lie in the kernel of this map. To say more about the 
location of r1, 1,o inside V ® W, and its exact weights, would require either 
explicit calculation or something like the Weyl character formula. We will see 
in Lecture 24 how the latter can be used to solve the problem; for the time 
being we leave this as 

Exercise 17.4. Verify by direct calculation that the multiplicities of the weights 
of f1 . 1, 0 are 1, 2, and 5, and hence that the kernel of the map cp above is exactly 
the representation r1.i,o· 

§17.2. Representations of sp2nC in General 

The general picture for representations of the symplectic Lie algebras offers 
~o further surprises. As we have seen, the weight lattice consists simply of 
integral linear combinations of the L 1• And our typical Weyl chamber is a cone 
over a simplex in n-space, with edges the rays defined by 

ai = ai = · · · = a1 > a1+i = · · · = a. = 0. 

The primitive lattice element on the ith ray is the weight ro1 =Li + · · · + L;, 
and we may observe that, similarly to the case of the special linear Lie algebras, 
these n fundamental weights generate as a semigroup the intersection of 
the closed Weyl chamber with the lattice. Thus, our basic existence and 
uniqueness theorem asserts that for an arbitrary n-tuple of natural numbers 
(a 1.· • · • , a.) e N" there will be a unique irreducible representation with highest 
Weight 

a1ro1 + a2w2 + ... + a.w. 

= (a1 + · · · + a.)L 1 + (ai + · · · + a.)L2 + · · · + a.L •. 
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As before, we denote this by ra,, ... ,a.: 

These exhaust all irreducible representations of SP2nC. 
We can find the irreducible representation v<k> = r 0 •...• i. ... ,o with highest 

weight Li + · · · + Lk easily enough. Clearly, it will be contained in the kth 
exterior power NV of the standard representation. Moreover, we have a 

natural contraction map 

defined by 
<f>k(Vi /\ ... /\ vk) = L Q(vi, vj)(- l)l+J-ivi /\ ... /\ e, /\ ... /\ t)j /\ ... /\ vk 

i<J 

(see §B.3 of Appendix B for an intrinsic definition and explanation). Since the 
representation N- 2 v does not have the weight Li + · · · + Lk, the irreducible 
representation with this highest weight will have to be contained in the kernel 
of this map. We claim now that conversely 

Theorem 17.5. For 1 :s; k :s; n, the kernel of the map <f>k is exactly the irreducible 
representation v<k> = r 0 ..... o, i,o, ... ,o with highest weight Li + .. · + Lk. 

PROOF. Clearly, it is enough to show that the kernel of <f>k is an irreducible 
representation of sp2nC. We will do this by restricting to a subalgebra of SP2nC 
isomorphic to slnC, and using what we have learned about representations of 

slnC. 
To describe this copy of slnC inside sp2nC, consider the subgroup G c SP2nC 

of transformations of the space v = c 2
n preserving the skew form Q introduced 

in Lecture 16 and preserving as well the decomposition V = C { e i • ... , en} E9 
C { en+i • .. ., e2n}· These can act arbitrarily on the first factor, as long as they 
do the opposite on the second; in coordinates, they are the matrices 

G = { (~ r:-i). XE GLnC }· 

We have, correspondingly, a subalgebra 

s = { ( ~ -~A). A E slnC} c SP2nC 

isomorphic to sin C. . . 
Now, denote by W the standard representation of slnC. The restriction of 

the representation V of sp2nC to the subalgebra s then splits 

V= W$W* 

into a direct sum of Wand its dual; and we have, correspondingly, 
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NV= EB (NW® NW*). 
a+b=k 

How does the tensor product NW® NW* decompose as a representation 
of slnC? We know the answer to this from the discussion in Lecture 15 (see 
Exercise 15.30): we have contraction maps 

'Pa,b: NW® NW*-+ N-tw® N-tw•; 

and the kernel of 'Pa,b is the irreducible representation w<a,b) = 

1
0 
..... o. t,o,. ... o. i.o .... with (if, say, a :s; n - b) highest weight 2Li + · · · + 2La + 

L
11
+

1 
+ · · · + Ln-b· The restriction of NV to sis thus given by 

and by the same token, 

NV= EB w<a,b) 
a+b,.;k 

a+b=k(2) 

Ker(q>k) = ffi w<a,bl_ 
a."j':j(.,k 

Note that the actual highest weight factor in the summand w<a.b) c Ker(q> ) c 

NV is the vector k 

w<a,b) =et /\ ... /\ ea /\ e2n-b+t /\ ... /\ e2n 

=et /\ ... /\ ea /\ ezn-k+a+t /\ ... /\ ezn· 

Exercise 17.6. Show that more generally the highest weight vector in any 
summand w<a.b> c NV is the vector 

w<a,b) = et /\ ... /\ e /\ ez k /\ ... /\ e /\ Q<k-a-b)/2 a n- +a+i 2n 

=et /\ · · · " ea /\ ezn-k+a+t /\ · · · /\ ezn /\ <I <ei /\ en+1))<k-a-b>12. 

. By the above, any subspace of Ker(q>k) invariant under sp2nC must be a 
direct sum, over a subset of pairs (a, b) with a + b = k, of subspaces w<a,b>_ 
But now (supposing for the moment that k < n) we observe that the element 

Za,n-b = E2n-b,a + En+a,n-b E SP2nC 

carries the vector w<a,b) into w<a-i,b+ii and, likewise, 

Y,.+l,n-b+t = Ea+t,2n-b+i + En-b+l,n+a+l E SP2nC 

carries w<a.bJ to w<a+t,b-1). In case a + b = k = n, we see similarly that 

V,. = En+a,a E SP2nC 

carries the vector w<a,b) into w<a-t,b+l), and 

Ua+l = Ea+l,n+a+l E SP2nC 

~1~;ies w<a,b) to w'.a~t,b-1). Thus, any representation of sp2nC contained in 
(<pd and contammg any one of the factors w<a.b) will contain them all and 

We are done. ' o 
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Exercise 17.7. Another way to conclude this proof would be to remark that 
inasmuch as all the w<a.bl above are eigenvectors of different weights, an; 
highest weight vector for the action of sp2nC on ker(cpk) c NV would have 
to be (up to scalars) one of the w<a.b>, It would thus be sufficient to find, for each 
(a, b) with a+ b = k other than (a, b) = (k, 0), a positive root ix such that 
g,.(w<a,b» # 0. Do this. 

Note that, having found the irreducible representations v<k> = r 0 ..... i ..... o 
with highest weight Li + · · · + Lk, any other representation of sp2nC will 
occur in a tensor product of these; specifically, the irreducible representation 
r0 ,,. • .,a" with highest weight aiLi + .. · + an(Li + · · · + Ln) will occur in the 
product Sym01 V ® Sym02 v<2> ® · · · ® Sym0

" v<n>_ 
One further remark is that there exist geometric interpretations of the 

action of sl2nC on the fundamental representations v<k>_ We have said before 
that the group PSp2nC may be characterized as the subgroup of PGL2nC 
carrying isotropic subspaces of V into isotropic subspaces. At the same time, 
PGL2nC acts on the projective space IJl>(NV) as the connected component of 
the identity in the group of motions of this space carrying the Grassmannian 
G = G(k, V) c IJl>(NV) into itself. Now, the subset GL c G of k-dimensional 
isotropic subspaces of V is exactly the intersection of the Grassmannian G 
with the subspace IJl>(V<k>) associated to the kernel of the map cp above; so that 
PSp2nC will act on IJl>(V<k>) carrying GL into itself and indeed when 1 < k ~ n 
may be characterized as the connected component of the identity in the group 
of motions of IJl>(V<k>) preserving the variety GL. 

Exercise 17.8. Show that if k > n the contraction 'Pk is injective. 

§17.3. Weyl's Construction for Symplectic Groups 

We have just seen how the basic representations for 5P2nC can be obtained 
by taking certain basic representations of the larger Lie algebra t112nC-in this 
case, NV for k ~ n-and intersecting with the kernel of a contraction con
structed from the symplectic form. In fact, all the representations of the 
symplectic Lie algebras can be given a similar conrete realization, by inter
secting certain of the irreducible representations of t112n C with the intersections 
of the kernels of all such contractions. 

Recall from Lectures 6 and 15 that the irreducible representations of sl2.C 
are given by Schur functors§;, V, where A.= (A.i ~ · · · ~ A.2n ~ 0) is a partition 
of some integer d = L A.1, and V = C2

". This representation is realized as the 
image of a corresponding Young symmetrizer c;, acting on the d-fold tensor 
product space V®4• For each pair I = {p < q} of integers between 1 and d, 
the symplectic form Q determines a contraction 

<1>1: V®d--+ v®<d-21, 
(17.9) 

Vi® ... ® V41--+ Q(vp, Vq)V1 ® ... ®op® ... ® Oq ® ... ® V4. 
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Let v<4> c V®4 denote the intersection of the kernels of all these contractions. 
These subspaces is mapped to itself by permutations, so v<4 > is a subrepresen
tation of V®4 as a representation of the symmetric group 6 4 . Now leti 

§ 0.> v = v<4 > n §;, v. (17. to) 

This space is a representation of the symplectic group Sp2nC of Q, since v<4 > 
and §;,(V) are subrepresentations of V®4 over Sp2nC. 

Theorem 17.11. The space §<;,>(V) is nonzero if and only if the Young diagram 
of}. has at most n rows, i.e., A.n+i = 0. In this case, §<;,>(V) is the irreducible 
representation of sp 2nC with highest weight Ai Li + · · · + A.nLn. 

In other words, for an n-tuple (ai • ... ,an) of non-negative integers 

ra,,. .. ,an = §(;,) v, 
where A. is the partition (ai + a2 + · · · + an, a2 + · · · + an, ... , an>· 

The proof follows the pattern for the general linear group given in §6.2, but 
we will have to call on a basic result from invariant theory in place of the 
simple Lemma 6.23. We first show how to find a complement to v<4 > in V®4• 

For example, if d = 2, then 

V®2 = v< 2 > Ef> C · t/J, 

where t/J is the element of V ® V corresponding to the quadratic form Q. In 
terms of our canonical basis, t/J = L (e1 ® en+i - en+i ® e1). In general, for any 
I= [p < q} define 

'I' i: v®<d-21--+ V®d 

by inserting t/J in the p, q factors. Note that Cl>1 o '1'1 is multiplication by 
2n = dim Von v®<4- 2>, We claim that 

(17.12) 

To prove this, put the standard Hermitian metric ( , ) on V = C2", using the 
given e; as a basis, so that (ae;, be1) = buiib. This extends to give a Hermitian 
metric on each V®4

• We claim that the displayed equation is a perpendicular 
direct sum. This follows from the following exercise. 

Exercise 17.13. (i) Verify that for v, we V, (t/J, v ® w) = Q(v, w). 
(ii) Use (i) to show that Ker(Cl>1) = lm('l'1 )J_ for each /. 

Now define F: c V®4 to be the intersection of the kernels of all r-fold 
contractions ct>1 o · · · o ct> and set t I,., 

v<d> ="''I' o ... o 'I' (V®<d-2r>) d-ir L., 1 1 I, · (17.14) 

1 

This follows a classical notation of using ( ) for the symplectic group and [ ] for the 
orthogonal group (although we have omitted the corresponding notation { } for the general 
linear group). 
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Lemma 17.15. The tensor power V®4 decomposes into a direct sum 

V®d = v<d> = v.<d> = v.<d> = ... = v.<d> w d-i w d-4 w w d-2p• 

with p = [d/2], and, for all r ~ 1, 

F: = v<4> EEl V.,~1 EEl · · · EEl V.,~1,+2· 

Exercise 17.16. (i) Show as in the preceding exercise that there is a perpendi
cular decomposition 

V®d =pd ln""' 'I' 0 ••• 0 'I' (V®<d-2r>) r W L... 11 Ir • 

(ii) Verify that '1'1(F:- 2
) c F:+i· 

(iii) Show by induction that V®4 is the sum of the spaces V.,~1,. 
(iv) Finish the proof of the lemma, using (i) and (ii) to deduce that both 

sums are orthogonal splittings. D 

All the subspaces in these splittings are invariant by the action of the 
symplectic group Sp2"C, as well as the action of the symmetric group 6d. In 
particular, we see that 

§ 0.> v = v<d>. c .. = Im(c;.: v<d>-+ v<d>). (17.17) 

Exercise 17.18*. (i) Show that ifs> n, then NV® v®<d-•> is contained in 
Lr 'P1(V®<4- 2>), and deduce that §<.<>(V) = 0 if A.n+l is not 0. 

(ii) Show that §<.<>(V) is not zero if A.n+l = 0. 

For any pair of integers I from {l, ... , d}, define 

81 = 'Pro <1>1: V®d-+ V®d. 

From what we have seen, v<d> is the intersection of the kernels of all these 
endomorphisms. Note that the endomorphism of V®d determined by any 
symplectic automorphism of V not only commutes with all permutations of 
the factors 6 4 but also commutes with the operators 81 • We need a fact which 
is proved in Appendix F.2: 

Invariant Theory Fact 17.19. Any endomorphism of V®4 that commutes with 
all permutations in 6 4 and all the operators 81 is a finite (>linear combination 
of operators of the form A®···® A, for A e Sp2"C. 

Now let B be the algebra of all endomorphisms of the space v<d> that 
are C-linear combinations of operators of the form A ® · · · ®A, for A e SP2nc. 

Proposition 17.20. The algebra Bis precisely the algebra of all endomorphisms 
of v<4 > commuting with all permutations in 6 4 . 

PROOF. If Fis an endomorphism of v<d> commuting with all permutations of 
factors, then the endomorphism F of V®d that is F on the factor v<4> and 
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zero on the complementary summand Lr '1'1(V®<d- 2>) is an endomorphism 
that commutes with all permutations and all operators 81• The fact that F 
is a linear combination of operators from the symplectic group (which we 
know from Fact 17.19) implies the same for F. D 

Corollary 17.21. The representations §<.<>(V) are irreducible representations of 

SpznC. 

PROOF. Since Bis the commutator algebra to A= C[6d] acting on the space 
v J>, Lemma 6.22 implies that (V<4 >) · c;. is an irreducible B-module. But we 
have seen that (V<d>) · C;. = §<.<> V, and the proposition shows that being 
irreducible over Bis the same as being irreducible over Sp2"C. D 

Exercise 17.22*. Show that the multiplicity with which §<.<>(V) occurs in v<d> 
is the dimension m;. of the corresponding representation V.. of 6d. 

As was the case for the Weyl construction over GL"C, there are general 
formulas for decomposing tensor products of these representations, as well as 
restrictions to subgroups Sp2n- 2 C, and for their dimensions and multiplicities 
of weight spaces. We postpone these questions to Lecture 25, when we will 
have the Weyl character formula at our disposal. 

As we saw in Lecture 15 for GL"C, it is possible to make a commutative 
algebra which we denote by§<-> = §<->(v) out of the sum of all the irreducible 
representations ofSp2"C, where V = C2

" is the standard representation. Prob
ably the simplest way to do this, given what we have proved so far, is to start 
with the ring 

A"(V, n) = Sym"(V E9 NV E9 NV E9 · · · E9 NV) 

= Efj Sym0 "(NV) ® · · · ® Sym02(/\2V) ® Sym01 (V), 
Dt•···•an 

the sum over all n-tuples a = (a1 , ••. , an) of non-negative integers. Define a 
nng ~~·(v; n) to be the quotient of A"(V, n) by the ideal generated by the same 
relations as in (15.53). By the argument in §15.5, the ring §"(V, n) is the direct 
sum of all the representations § ;.(V) of GL(V), as A. varies over all partitions 
with at most n parts. 

The decomposition V®4 = v<4 > E9 w<4> of (17.12) determines a decom
position V®d. C;. = v<d>. C;. EEl w<4>. C;., which is a decomposition 

§;.(V) = §<;.>(V) E9 J<.i.>(V) 

of rcp.resentations of Sp2"C. We claim that the sum J<-> = ffi;.J<;.>(V) is an 
ideal in §'(V, n) = E9.i. §;.(V). This is easy to see using weights, since J<;.>(V) 
1.s the sum of all the representations in §;.(V) whose highest weight is strictly 
~mailer than A.. This implies that the image of J<dV) ® §µ(V) in §.<+

1
,(V) is 

<l sum of representations whose highest weights are less than A. + µ, so they 
must be in J<.<+µ>(V). 

The quotient ring is, therefore, the ring §<->(V) we were looking for: 
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In fact the ideal J<-> is generated by elements of the form x " t/J, where x E NV, 
· ./ ~ 2 and ·'· is the element in NV corresponding to the skew form Q. An 
I,;:::, n ' 'I' h 1 1 . 
outline of the proof is sketched at the end of Lecture. 25. T e ca cu attons, as 
well as other constructions of the ring, can be found m [L-T], .where one can 
also find a discussion of functorial properties of the construction. For bases, 

see [DC-P], [L-M-S], and [M-S]. 

LECTURE 18 

Orthogonal Lie Algebras 

In this and the following two lectures we carry out for the orthogonal Lie algebras 
what we have already done in the special linear and symplectic cases. As in those cases, 
we start by working out in general the structure of the orthogonal Lie algebras, 
describing the roots, root spaces, Weyl group, etc., and then go to work on low
dimensional examples. There is one new phenomenon here: as it turns out, all three of 
the Lie algebras we deal with in §18.2 are isomorphic to symplectic or special linear 
Lie algebras we have already analyzed (this will be true of so6 Caswell, but of no other 
orthogonal Lie algebra). As in the previous cases, the analysis of the Lie algebras and 
their representation theory will be completely elementary. Algebraic geometry does 
intrude into the discussion, however: we have described the isomorphisms between the 
orthogonal Lie algebras discussed and special linear and symplectic ones in terms of 
projective geometry, since that is what seems to us most natural. This should not be 
a problem; there are many other ways of describing these isomorphisms, and readers 
who disagree with our choice can substitute their own. 

§18.1: SO'"C and so'"C 
§18.2: Representations ofso3 C, so4 C, and sosC 

§18.1. some and some 
We will take up now the analysis of the Lie algebras of orthogonal groups. 
Herc there is, as we will see very shortly, a very big difference in behavior 
between the so-called "even" orthogonal Lie algebras so 2"C and the "odd" 
orthogonal Lie algebras so2n+i C. Interestingly enough, the latter seem at first 
glance to be more complicated, especially in terms of notation; but when we 
analyze their representations we see that in fact they behave more regularly 
than the even ones. In any event, we will try to carry out the analysis in parallel 
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f h. '" long as is feasible· when it becomes necessary to split up into 
as 10n 1or as ' . b Ii d h 

·11 lly look at the even orthogonal Lie alge ras ust an t en cases, we wi usua 
consider the odd. 

Let V be a m-dimensional complex vector space, and 

Q: V x V-+ IC 

a nondegenerate symmetric bilinear form on V. The orthogona~ grou~ SOmC 
is then defined t~ be the group of automorphisms A of V of et;,:mmadnthl 

· h · h that Q(Av Aw)= Q(v, w) for all v, we .--an t e 
Preserving Q-t at is, sue ' . f d h' 

. l b IC correspondingly consists o en omorp isms orthogonal Lie a ge ra som 
A: V-+ V satisfying 

Q(Av, w) + Q(v, Aw)= 0 (18. l) 

11 d V As i·n the case of the symplectic Lie algebras, to carry out 
for a v an w e · b · '" v d h 

l . ant to write Q explicitly in terms of a asis ior ' an ere our ana ysis we w 2 · 
f d 0. dd m first separate. In case m = n is even, we · where the cases o even an . . b :ill choose a basis for Vin terms of which the quadratic form Q is given y 

Q(e1, ei+n) = Q(ei+n• e;) = 1 

and 
Q(e1, e1) = 0 if j f:. i ± n. 

The bilinear form Q may be expressed as 

Q(x, y) = 1x · M · y, 

where M is the 2n x 2n matrix given in block form as 

( 0 I") M = In 0 ; 

h So IC is thus the group of 2n x 2n matrices A satisfying t e group 2n 
M ='A·M·A 

and the Lie algebra so2nlC correspondingly the space of matrices X satisfying 

the relation 

'X·M + M·X =0. 

Writing a 2n x 2n matrix X in block form as 

x = (~ ~) 
we have 

(
'C 'A) 

'X·M= 'D 'B 

and 
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M·X=(~ ~) 
so that this relation is equivalent to saying that the off-diagonal blocks B and 
c of' X are skew-symmetric, and the diagonal blocks A and D of X are negative 
transposes of each other. 

Exercise 18.2. Show that with this choice of basis, 

and 50 2 IC = IC. 

The situation in case the dimension m of Vis odd is similar, if a little messier. 
To begin with, we will take Q to be expressible, in terms of a basis e1 , •• ., e2n+t 
for V, by 

and 

Q(e1, ei+n) = Q(el+n• e1) = 1 for 1 :$; i :$; n; 

Q(e2n+l • e2n+l) = 1; 

Q(e1, e1) = 0 for all other pairs i, j. 

The bilinear form Q may be expressed as 

Q(x, y) = 'x · M · y, 

where Mis the (2n + 1) x (2n + 1) matrix 

(~) M= if* 
(the diagonal blocks here having widths n, n, and 1). The Lie algebra so2n+i IC 
is correspondingly the space of matrices X satisfying the relation 'X · M + 
M · X = O; if we write X in block form as 

then this is equivalent to saying that, as in the previous case, B and C are 
.i·kl!w-symmetric and A and D negative transposes of each other; and in addition 
f= -'H,F= - 1G,andJ=O. 

With these choices, we may take as Cartan subalgebra-in both the even 
and odd cases-the subalgebra of matrices diagonal in this representation. 1 

1 

Note that if we had taken the simpler choice of Q, with M the identity matrix, the Lie algebra 
Would have consisted of skew-symmetric matrices, and there would have been no nonzero 
diagonal matrices in the Lie algebra. 
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The subalgebra I) is thus generated by the n 2n x 2n matrices H, := E1, 1 -

E . . whose action on Vis to fix e1, send en+i to its negative, and kill all the 
n+1,n+1 . . 2 2 1 

remaining basis vectors; note that tht~ ts the same whether m = n ~r n + . 
We will correspondingly take as basts for the dual vector space I) the dual 

basis Li, where (Li, H,) = '51.i· 
Given that the Cartan subalgebra of so2"e coincides, as a subspace .of ~1 2nC. 

with the Cartan subalgebra of sp2ne, we can use much of the descnptton of 
the roots of sp2ne to help locate the roots and r~ot spaces of so2nlC. For 
example, we saw in Lecture 16 that the endomorphism 

X;,j = E;,j - En+),n+i E SP2ne 

is an eigenvector for the action of I) with eigenvalue L1 - L1. Since X,,1 is also 
an element of so2ne, we see that L 1 - L1 is likewise a root of so~ne, with root 
space generated by x,,

1
. Less directly but using the same analysts, we find that 

the endomorphisms 

Yi,J = E;,n+} - Ej,n+i 

and 
Z;,J = En+i,j - En+J,i 

are eigenvectors for the action of I), with eigenvalues L, + L1 and -.L_1 - ~1· 
t
. l ( te that y; and Z do not coincide with their defimt1ons m 

respec 1ve y no 1.1 1.1 
Lecture 16). In sum, then, the roots of the Lie algebra so2ne are the vectors 

{ +L1 + Li}1n c I)*. · f 
-The-case of the algebra so2 +le is similar; indeed, all the eigenvectors or 

n h' f e2n+1 are 
the action of I) found above in so2n e, viewed as endomorp ~s.ms o ; the 
likewise eigenvectors for the action of I) on so2n+1 e. In addition, we hav 

endomorphisms 

U; = E;,2n+1 - E2n+l,n+i 

and 
Vi= En+i,2n+1 - E2n+l,i 

which are eigenvectors with eigenvalues + L 1 and - L,, respectively. Th~ ~oot~ 
of soin+i e are thus the roots ±L; ± L1 of so2ne, together with add1ttona 

roots ± L;. · h d mpos-
We note that we could have arrived at these statements wit out ~co b 

ing the Lie algebras some: the description (18.1) of ~he o~tho~onal Lte ~~~ ~! 
may be interpreted as saying that, in terms of the 1denttficatton of V ~1 

do
given by the form Q, some is just the Lie algebra of skew_-s~m.m~tnc ~~l to 
morphisms of V (an endomorphism being skew-s~mmetnc tf ~t .1s eq hie 
minus its transpose). That is, the adjoint representatt~n of somlC ~s ~om~~ are 
to the wedge product NV. In the even case m = ~n, ~mce the w.e1g ts o V must 
+ L (inasmuch as the subalgebras I) c End( V) comctde, the weights off C 
like~ise be the same for so2nlC as for SP2nq, it follows that the roots 

0 
so

2
" 

271 

arc just the pairwise distinct sums ± L 1 ± Li. In the odd case m = 2n + 1, we 
see that e2n;1 E Vis an eigenvector for the a~tion of I) with eigenvalue O, so 
that the weights of the standard representat10n V are { ±L1} u {O} and the 
weights of the adjoint representation correspondingly { ± L1 ±Li} u { ±L;}. 

Exercise 18.3. Use a similar analysis to find the roots of sp2n e without explicit 
calculation. 

To make a comparison with the Lie algebra sp2ne, we can say that the root 
diagram of so2ne looks like that of sp2nlC with the roots ±2L1 removed, 
whereas the root diagram of so2n+1 e looks like that of sp2ne with the roots 
± 2Li replaced b.y ± L1• Note that this immediately tells us what the Weyl 
groups are: first, m the case of so2n+l e, the Weyl group is the same as that of 
"'P2,,IC: 

1 --+ C1L/2)n--+ w.02n+l c --+ Sn--+ 1. 

In the case of so2ne, the Weyl group is the subgroup of the Weyl group of 
sp2,,IC generated by reflection in the hyperplanes perpendicular to the roots 
± L; ± L1, without the additional generator given by reflection in the roots 
± L;. This subgroup still acts as the full symmetric group on the set of 
coordinate axes in I)*; but the kernel of this action, instead of acting as ±I on 
each of the coordinate axes independently, will consist of transformations of 
determinant 1; i.e., will act as -1 on an even number of axes. (That every such 
transf~rm~tion is indeed in the Weyl group is easy to see: for example, 
rellect1on m the plane perpendicular to L 1 + L1 followed by reflection in the 
plane p~rpendicular to L 1 - L1 will send L 1 to - L 1, Li to - L1, and Lk to Lk 
for k # 1, j.) Another way to say this is that the Weyl group is the subgroup 
of the Weyl group of sp2ne consisting of transformations whose determinant 
agr_ees with the sign of the induced permutation of the coordinate axes; so that 
while the Weyl group of sp2ne fits into the exact sequence 

1 --+ ("7L/2)n--+ w.P2nC --+ Sn--+ 1, 

the Wey! group of so2ne has instead the sequence 

1 --+ ("7L/2)n-l --+ w.o,"C--+ Sn--+ 1. 

. We can likewise describe the Weyl chambers of so2 e and so e by 
direct . . h tr- n 2n+1 companson wit sp2n\l.,· To start, to choose an ordering of the roots 
We take as linear functional on I)* a form l = c H + · · · + c H where (' > . . . 1 1 n n• 

1 Cz > · · · > en> 0. The positive roots m the case of so2n+l e are then 

R+ = {L1 + L1} 1< 1 u {L1 - L1} 1< 1 u {L;} 1, 

Whereas in the case ofso2ne we have 

R+ = {L1 + L1} 1<1 u {L1 - L1}i<J· 

The primitive positive roots are 
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Li - L2, L2 - L3, ... , Ln-1 - Ln, Ln for 502n+1 C; 

L1 - L2, 2 - 3• • • • • n-1 n• n-1 n L L L - L L + L for 502nC. 

In the irst case, fi the Weyl chamber is exactly the same as for 5P2nC, namely, 
form= 2n + 1, 

{~ L . > a > ... > a > O} "fl/" = i.J al I• al - 2 - - n -

t for the factor of 2 on some. In the case of 
since ths~~~~~~::: :::~a:~::~~~g the line spanned by the ~1 , the equality 
so2nC, d 'b a face of the Weylchamber; however, smce Ln-1 + Ln a - o does not escn e . r + > o ·n 
i; stlll a root (and a positive one) we still have the mequa tty an-1 an - I 

"Ir. so that we can write, for m = 2n, 

' "#'" = {L a1L1: a1 ~ a2 ~ • • • ~ an-1 ~ Jani}. 

ld have chosen our linear functional (Note that in the case of.502nC we cou... - > O· the ordering of the 
1 H + + c H with c 1 > c 2 > > en ' 

= C1 1 . . . n n l chamber Would still be the same.) 
roots, and cons~~uently th\Wey id~rations as for the symplectic case 

As for the Ktlhng form, t e same cons ard uadratic form: B(H;. Hi) = 
show that it must?~· ~p to scalarsdthe ~t~?dn of tie Weyl group.) The explicit 
{J (This was imphc1t m the above escnp IO . 1

•
1
• . . di'fficult and we leave it as an exercise: calculation 1s no more • 

{
(4n _ 2) L a1b1 if m = 2n + 1 

B(L a1H1. L b1H1) = (4n _ 4) L a1b1 if m = 2n. 

Next, to describe the ~eprese~tat~ons.~f thet~~~~~~sn:~ ~:s~~g::~~~0;:, • 
have to determine the weight lattice m ~ ' and . + and the 

. f I C corresponding to the root pairs - ix, 
locate the cop1e~ ~"' o . 

5 
2 1 H of~ This is so similar to the case of 

corr~pt~~~~: !~~lt;~:~~s~~: :c~:~~~lcuiatio~s as an exercise; we will simply 5P2n1L- ~ 

state here the results that in some ior any m, . t d to the root L· - LJ 
. . . h d s of sl C assoc1a e ' . (i) the d1stmgu1s e copy L1-L1 2 . = C. x . and their 

is the Span of the root spaces 9L,-LJ = C XI,)• 9-L,-LJ 'th di~tinguished 
commutator [Xl,J• X1.iJ = E1,1 - EJ,J + En+J.,n+J - En+l,n+I> WI C)· 

H _ H _ H (this is exactly as m the case of 5P2n • L 
element L,-L1 

- 1 J f 1 C ssociated to the root L1 + ~ 
(ii) the distinguished copy sL,+L1 ° s 2 . a = C. z

1 

and their 
is the span of the root spaces 9L,+L1 = C Yi.J• 9-L,EJ =.J -H; - HJ• 

[ y; Z J - -E +E11-En+)n+j+ n+l,n+i commut~tor. 1.1• 1.1 - 1
•
1 

_ 8 · + H (so' that we have also H-L,-L
1 

== with distinguished element HL,+L1 - 1 J 

- H1 - H1); and in the case of so2n+1 C, . d t the root L is the span 
(iii) the distinguished copy sL, of ~IC~ ~sso~~~eir ~ommutato~ [V1. Jt;J == 

of the root spaces 9L, = C · U1, 9-~ - ] :'.:a~ 
81

, with distinguished element 
[E1 2n+1 - E2n+l,n+I• En+l,2n+l - 2n+11,ll) 
HL; = 2H1 (so that H-L, = -2H1 as we · 

Exercise 18.4. Verify the computations made here. 

r 
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Again, the configuration of distinguished elements resembles that of sp
2
nC 

closely; that of so2n+1 C differs from it by the substitution of ± 2H
1 

for ± H
1
, 

whereas that of 5o2nC differs by the removal of the ± H
1
• The effect on the 

weight lattice is the same in either case: for both even and odd orthogonal Lie 
a/ychras, the weight lattice Aw is the lattice generated by the L

1 
together with 

the clement (L 1 + · · · + Ln)/2. 

Exercise 18.5. Show that 

{ 

Z/2 if m = 2n + 1 

Aw/AR= Z/4 if m = 2n and n is odd 

Z/2 Ea Z/2 if m = 2n and n is even. 

§18.2. Representations ofso3 C, so
4

C, and so
5
C 

To give some examples, start with the case n = 1. Of course, 5o
2
C;;;: C is not 

scmisimple. The root system of so3 C, on the other hand, looks like that of sl
2 

IC: 

• • 
0 

This is because, in fact, the two Lie algebras are isomorphic. Indeed, like the 
symplcctic group, the quotient PSOmC of the orthogonal group by its center 
can he realized as the motions of the projective space UJ>V preserving isotropic 
subspaces for the quadratic form Q; in particular, this means we can real
ize PSOmlC as the group of motions of IP>V = pm-1 carrying the quadric 
hypersurface 

Q = {[v]: Q(v, v) = O} 

into itself. In the first case of this, we see that the group PS0
3 

IC is the group 
of motions of the projective plane UJ> 2 carrying a conic curve C c IP> 2 into itself. 
But we have seen before that this group is also PGL2C (the conic curve is 
itself isomorphic to UJ>

1
, and the group acts as its full group of automorphisms), 

giving us the isomorphism 5o31C;;;: sl2C. One thing to note here is that the 
''standard" representation of 503 C is not the standard representation of sl

2 
IC, 

hut rather its symmetric square. In fact, the irreducible representation with 
highest weight fL1 is not contained in tensor powers of the standard represen
tation of 503 IC. This will turn out to be significant: the standard representation 
of '-'l 2 IC, viewed as a representation of 5o3 IC, is the first example of a spin 
representation of an orthogonal Lie algebra. 

The next examples involve two-dimensional Cartan algebras. First we have 
"

0
4ir:, whose root diagram looks like 
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Note one thing about this diagram: the roots are located on the union of 
two complementary lines. This says, by Exercise 14.33, that the Lie algebra 
so4 C is decomposable, and in fact should be the sum of two algebras each of 
whose root diagrams looks like that of sI2 C; explicitly, so4 C is the direct sum 
of the two algebras s .. , for a= L 1 + L 2 and a= L 1 - L 2 . In fact, we can see 
this isomorphism 

(18.6) 

as in the previous example, geometrically. Precisely, we may realize the group 
PS04 C = S04 C/{±J} as the connected component of the identity in the 
group of motions of projective three-space OJ> 3 carrying a quadric hyper
surface Q into itself. But a quadric hypersurface in OJ> 3 has two rulings by 
lines, and these two rulings give an isomorphism of Q with a product OJ> 1 x IP 1 

• 

PS04 C thus acts on the product OJ> 1 x OJ> 1 ; and since the connected component 
of the identity in the automorphism group of this variety is just the product 
PGL2 C x PGL2 C, we get an inclusion 

PS04 C-+ PGL2 C x PGL2 C. 

Another way of saying this is to remark that PS04 C acts on the variety of 
isotropic 2-planes for the quadratic form Q on V; and this variety is just the 
disjoint union of two copies of OJ> 1• To see in this case that the map is an 
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isomorphism, consider the tensor product V = U ® W of the pullbacks to 
sl 2 C x sI2 C of the standard representations of the two factors. Clearly the 
action on OJ>(U ® W) will preserve the points corresponding to decomposable 
tensors (that is, points of the form [u ® w]); but the locus of such points is 
just a quadric hypersurface, giving us the inverse inclusion of PGL2 C x 
PGL2 C in PS04 C. 

In fact, all of this will fall out of the analysis of the representations oho4 C, 
if we just pursue it as usual. To begin with, the Weyl chamber we have selected 
looks like 

Now, the standard representation has, as noted above, weight diagram 

wit_h highest weight L 1 (note that the highest weight of the standard represen
tation lies in this case in the interior of the Weyl chamber, something of an 
anomaly). Its second exterior power will have weights ±L1 ± L 2 and 0 
(occurring with multiplicity 2), i.e., diagram 
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We see one thing about this representation right away, namely, that it cannot 
be irreducible. Indeed, the images of the highest weight Li + L2 under the 
Weyl group consist just of ±(Li + L2), so that the diagram of the irreducible 

representation with this highest weight is 

We see from this that the second exterior power NV of the standard 
representation of so

4 
IC must be the direct sum of the irreducible represen

tations Wi = rL,+L2 and W2 = rL,-L2 with highest weights Li+ L.2 and 
Li - L

2
• Since NV is at the same time the adjoint representation, this says 

that so
4 

IC itself must be a product of Lie algebras with adjoint representations 

rL +L2 and rL,-Ll" . 
10ne way to derive the picture of the ruling of the quadric in IP

3 
from this 

decomposition is to view so
4 

IC as a subalgebra of sl4 IC, and the action of 
PS0

4 
IC on IP(N V) as a subgroup of the group of motions of IP

2
(N V) = IP

5 

preserving the Grassmannian G = G(2, V) oflines in IP
3

• In fact, we see froill 
the above that the action of PS04 on IP 5 will preserve a pair of complementary 
2-planes IJJ>Wi and IPW

2
; it follows that this action must carry into themselves 
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the intersections of these 2-planes with the Grassmannian. These intersections 
arc conic c~rves, correspondin~ to one-parameter families of lines sweeping 

0
ut a quadric surface (necessarily the same quadric, since the action of SO IC 

on V preserves a unique quadratic form); thus, the two rulings of the quadric~ 

G = G(2, V) 

Note one more aspect of this example: as in the case of so3 1C ~ sl2 1C, the 
weights of the standard representation of so4 IC do not generate the weight 
lattice, but rather a sublattice Z{Li, L2} of index 2 in Aw. Thus, there is no 
way of constructing all the representations of so4 1C by applying linear- or 
multilinear-algebraic constructions to the standard representation; it is only 
after we are aware of the isomorphism so4 1C ~ sl2 1C x sl2 1C that we can 
construct, for example, the representation r<L,+L2)/l with highest weight 
(L, + L

2
)/2 (of course, this is just the pullback from the first factor of 

sl2 C x sl2 IC of the standard representation of sl2 IC) . 
. We come now to the case of so5 1C, which is more interesting. The root 

diagram in this case looks like 
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(as in the ~receding example, the ~eight lattice is t~e lattice of intersections 
of all the Imes drawn). The first thmg we should notice about this diagram · 
that it is isomorphic to the weight diagram of the Lie algebra sp C· t~s 
diagram just appears here rotated through an angle of n/4. Indeed, th~ i~ no~ 
accidental; the two Lie algebras sp4 C and so 5 C are isomorphic, and it is 
not hard to construct this isomorphism explicitly. To see the isomorphism 
geometrically, we simply have to recall the identification, made in Lecture 
14, of the group PSp4 C with a group of motions of IP4

• There, we saw 
that the larger group PGL4 C could be identified with the automorphisms 
of the projective space IP(NV) = IP 5 preserving the Grassmannian G = 
G(2, 4) c IP(NV). The subgroup PSp4 C c PGL4 C thus preserves both the 
Grassmannian G, which is a quadric hypersurface in IP5

, and the decomposi
tion of NV into the span C · Q of the skew form Q e N v• ~ NV and its 
complement W, and so acts on IPW carrying the intersection GL = G n IP>W 
into itself. We thus saw that PSp4 C was a subgroup of the group of motions 
of projective space IP4 preserving a quadric hypersurface, and asserted that in 

fact it was the whole group. 
(To see the reverse inclusion directly, we can invoke a little algebraic 

geometry, which tells us that the locus of isotropic lines for a quadric in IP>
4 

is 
isomorphic to IP3, so that PS05 C acts on IP3

• Moreover, this action preserves 
the subset of pairs of points in IP 3 whose corresponding lines in IP4 

intersect, 
which, for a suitably defined skew-symmetric bilinear form Q, is exactly the 
set of pairs ([v], [w]) such that Q(v, w) = 0, so that we have an inclusion of 

PS05 C in PSp4 C.) 
Let us proceed to analyze the representations of so5 C as we would 

ordinarily, bearing in mind the isomorphism with sp4 C. To begin with, we 
draw the Weyl chamber picked out above in~·: 

As for the representations of so5 C, we have to begin with the standard, which 

has weight diagram 

~!8.2. Representations ofso3 C, so4 C, and so 5C 
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This we see corresponds to the representation W = N V/C · Q ofsp4 C. Next, 
the second exterior power of the standard representation of so5 C has weights 

This is of course the adjoint representation of so5 C; it is the irreducible 
representation with highest weight Li + L2 • Note that it corresponds to the 
symmetric square Sym2 V of the standard representation of sp4 C (see Exercise 

16.8). 

Exercise 18.7. Show that contraction with the quadratic form Q e Sym
2

V* 
preserved by the action of so5 C induces maps 

cp: Sym0 V-+ Sym0
-

2 v. 

Show that the kernel of this contraction is exactly the irreducible representa
tion with highest weight a· Li. Compare this with the analysis in Exercise 

16.11. 
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Exercise 18.8. Examine the symmetric power Sym"(/\2 V) of the representation 
N v. This will contain a copy of the irreducible representation ra(L, +Li); what 
else will it contain? Interpret these other factors in light of the isomorphism 
S05C ~ Sp4C. 

Exercise 18.9. For an example of a "mixed" tensor, consider the irreducible 
representation r 2L, +L,· Show that this is contained in the kernels of the wedge 
product map 

and the composition 

cp': V ® NV -+ V* ® NV-+ V, 

where the first map is induced by the isomorphism Q: V-+ V* and the second 
is the contraction V* ® NV-+ V. Is it equal to the intersection of these 
kernels? Show that the weight diagram of this representation is 

After you are done with this analysis, compare with the analysis given of the 
corresponding representation in Lecture 16. 

Note that, as in the case of the other orthogonal Lie algebras studied so 
far (and as is the case for all some), the weights of the standard representation 
do not generate the weight lattice, but only the sublattice of index two generated 
by the Li. Thus, the tensor algebra of the standard representation will contain 
only one-half ofall the irreducible representations ofso5C. Now, we do know 
that there are others, and even something about them-for example, we see 
in the following exercise that the irreducible representation of so 5 C with 
highest weight (L 1 + L2 )/2 is a sort of"symmetric square root" of the adjoint 
representation: 

Exercise 18.10. Show, using only root and weight diagrams for so5 C, that the 
exterior square J\2V of the standard representation of so5 C is actually the 
symmetric square of an irreducible representation. 

T 

~I 8. 2. Representations of so 3 C, so 4 C, and so~ C 
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We can also describe this irreducible representation via the isom h" 
f . If" "th If". • • • orp tsm o "05"-' Wt sp411_... tt tSJUSt the standard representation ofsn If" If"' W 

t h. · h r4"-' on"-' . e 
do not a t ts potnt ave, however, a way of constructing this repr t t" 

· h t · k · h · . . esen a ton 
wit ou. mv~ mg t e ~somorphtsm. Thts representation, the representation of 
~o 3 C with highest we~ght L 1 /2, and the representation of so

4 
c with highest 

weight (L1 .+ L 2Jf2 discussed above are called spin representations of the 
correspondtng Lte algebras and will be the subject matter of Lecture 20. 



LECTURE 19 

so6C, S07C, and some 

This lecture is analogous in content (and prerequisites) to Lecture 17: we do some 
more low-dimensional examples and then describe the general picture of the represen
tations of the orthogonal Lie algebras. One difference is that only half the irreducible 
representations of some lie in the tensor algebra of the standard; to complete the picture 
of the representation theory we have to construct the spin representations, which is 
the subject matter of the following lecture. The first four sections are completely 
elementary (except possibly for the discussion of the isomorphism so6 C ~ sl4C in 
§19.1); the last section assumes a knowledge of Lecture 6 and §15.3, but can be skipped 
by those who did not read those sections. 

§19.1: Representations ofso6 C 
§19.2: Representations of the even orthogonal algebras 
§19.3: Representations of so7 C 
§19.4: Representations of the odd orthogonal algebras 
§19.5: Weyl's construction for orthogonal groups 

§19.1. Representations of so6 C 

We continue our discussion of orthogonal Lie algebras with the example of 
so6 C. First, its root diagram: 

* t 9.1. Representations of 1.106 C 

/ ,,,.. 
• I 
I 
I 
J-----
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Once more (and for the last time), we notice a coincidence between this and 
the root diagram of a Lie algebra already studied, namely, sl4 1C. In fact, the 
two Lie algebras are isomorphic. The isomorphism is one we have already 
observed, in a sense: in the preceding lecture we noted that if V is a four
dimensional vector space, then the group PGL4 IC may be realized as the 
connected component of the identity in the group of motions of IP>(NV) = OJ> 5 

carrying the Grassmannian G = G(2, 4) c IP>(NV) into itself, and PSp4 1C c 
PGL4 1C the subgroup fixing a hyperplane IP>W = 1?4 c 1?5• We used this to 
identify the subgroup PSp4 1C with the orthogonal group PS05 1C; at the same 
time it gives an identification of the larger group PGL4 1C with the orthogonal 
group PS06 1C. 

Even though so6 IC is isomorphic to a Lie algebra we have already examined, 
it is worth going through the analysis of its representations for what amounts 
to a second time, partly so as to understand the isomorphism better, but 
mainly because we will see clearly in the case of so6 IC a number of phenomena 
that will hold true of the even orthogonal groups in general. To start, we draw 
the Weyl chamber in l)*: 

As usual, we begin with the standard representation, which has weights 
±Li, corresponding to the centers of the faces of the cube: 
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Note that the highest weight Li once more lies on an edge of the Weyl chamber 
(the front edge, in the diagram on the preceding page). Observe that the 
standard representation of so6 IC corresponds, as we have already pointed out, 
to the exterior square of the standard representation of s14 IC. 

Next, we look at the exterior square NV of the standard representation 
of so6 IC. This will have weights ± L1 ± Li (of course, it is the adjoint represen
tation) and so will have weight diagram 

Note that the highest weight vector Li + L2 of this representation does not 
lie on an edge of the Weyl chamber, but rather in the interior of a face (the 
back face, in the diagram above). In order to generate all the representations, 
we still need to find the irreducible representations with highest weight along 
the remaining two edges of the Weyl chamber. 

We look next at the exterior cube NV of the standard representation. The 
weights here are the eight weights ±Li ± L2 ± L3 , each taken with multi
plicity one, and the six weights ±Li, each taken with m4ltiplicity 2, as in the 
diagram 

~ 19 .1. Representations oho6 C 285 

Now, we notice something very interesting: this cannot be an irreducible 
representation. We can see this in a number of ways: the images of the weight 
L 1 + L 2 + L 3 under the Weyl group, for example, consist of every other vertex 
of the reference cube; in particular, their convex hull does not contain the 
remaining four vertices including Li + L2 - L3 • Equivalently, there is no way 
to go from Li + L2 + L3 to Li + L2 - L3 by translation by negative root 
vectors. The representation NV will thus contain copies of the irreducible 
representations rL, +L,+L3 and rL, +L2-L3 with highest weights Li + L1 + L3 
and Li + L2 - L3 , with weight diagrams 

/ 

and 

I 
"I . 
;~·;--

// · ... 

Since the weight diagram of each of these is a tetrahedron containing the 
weights ±Li, we have accounted for all the weights of NV and so must have 
a direct sum decomposition 

/\3V = rL, +L2+L3 $ rL, +L2-L3' 

We can relate this direct sum decomposition to a geometric feature of a 
quadric hypersurface in ? 5

, analogous to the presence of two rulings on a 
quadric in ? 3

• We saw before that the locus of lines lying on a quadric 
surface in ? 3 turns out to be disconnected, consisting of two components 



286 

each isomorphic to IP 1 (and embedded, via the Pliicker embedding of th 
Grassmannian G = G(2, 4) of lines in IP 3 in IP(NIC) = IP 5, as a pair of conic 
curves lying i? complement~ry 2-planes in ~5 ). In a similar fashion, the varlet; 
of 2-planes lymg on a quadric hypersurface m IP 5 turns out to be disconnected 
consisting of two components that, under the Pliicker embedding of G(3 6) 
in IP(/\3C6

) = IP 19
, span two complementary 9-planes IPW1 and IPWi; th~se 

two planes give the direct sum decomposition of A3 V as an so6 C-module. 
In fact, if we think of a quadric hypersurface in IP 5 as the Grassmannian 

G = G(2, 4) of lines in IP3
, we can see explicitly what these two families of 

2-planes are: for every point p e IP3 the locus of lines passing through p forms 
a 2-plane on G, and for every plane H c IP 3 the locus of lines lying in H is a 
2-plane in G. These are the two families; indeed, in this case we can go two 
steps further. First, we see from this that each of these families is para
metrized by IP3

, so that the connected component PS06 C of the identity 
in the group of motions of IP5 preserving the Grassmannian acts on [p>3 

giving us the inverse inclusion PS06 C c PGL4 C. Second, under the Pliicke; 
embedding each of these families is carried into a copy of the quadratic 
Veronese embedding of IP3 into IP9

, giving us the identification of the direct 
sum factors of the third exterior power of the standard representation of so6 IC 
with the symmetric square of the standard representation of sl4 C. 

Exercise 19.1. Verify, without using the isomorphism with so6 C and the 
analysis above, that the standard representation V of sl4 C satisfies 

N(NV) ~ Symiv EB Symiv•. 

Note that we have now identified, in terms of tensor powers of the standard 
one, irreducible representations of so6 C with highest weight vectors L1, 

Li + Li + L 3 and L 1 + L 2 - L 3 lying along the edge of the Weyl chamber, 
as well as one with highest weight L 1 +Li lying in a face. We can thus find 
irreducible representations with highest weighty, if not for every yin Awn 'if", 
at least for every weight y in the intersection of 'if" with a sublattice of index 
2inAw. 

§19.2. Representations of the Even 
Orthogonal Algebras 

We will not examine any further representations of so6 C per se, leaving it as 
an exercise to do so (and to compare the results to the corresponding analysis 
for sl4 IC). Instead, we can now describe the general pattern for representations 
of the even orthogonal Lie algebras soinC. The complete story will have to 
wait until the following lecture, since at present we cannot construct all the 
representations of soinC (as we have pointed out, we have been able to do so 
in the cases n = 2 and 3 studied so far only by virtue of isomorphisms with 
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other Lie algebras; and there are no more such isomorphisms from this point 
on). We will nonetheless give as much of the picture as we can. 

To begin with, recall that the weight lattice of soinC is generated by 
L 

1
, ••• , Ln together with the further vector (L 1 + · · · + Ln)/2. The Weyl cham

ber, on the other hand, is the cone 

'if"={}: a1L1: a 1 ~ ai ~ ·· · ~ ±an}· 

Note that the Weyl chamber is a simplicial cone, with faces corresponding 
to the n planes al = ai • ... ' an-1 = an and an-1 = -an; the edges of the 
Wey I chamber are thus the rays generated by the vectors L 1 , L 1 + Li, ... , 
L 1 + · · · + Ln-i• L 1 + · · · + Ln and L 1 + · · · + Ln-i - Ln (note that L 1 + 
.. · + Ln-i is not on an edge of the Weyl chamber). We see from this that, as 
in every previous case, the intersection of the weight lattice with the closed 
Wey I cone is a free semigroup generated by fundamental weights, in this case 
the vectors L 1, L 1 +Li, ... , L 1 + ··· + Ln-i and the vectors 1 

As before, the obvious place to start to look for irreducible representations 
is among the exterior powers of the standard representation. This almost 
works: we have 

Theorem 19.2. (i) The exterior powers NV of the standard representation V of 
so 2 ,,IC are irreducible fork = 1, 2, ... , n - 1; and (ii) The exterior power NV 
has exactly two irreducible factors. 

PROOF. The proof will follow the same lines as that of the analogous theorem 
for the symplectic Lie algebras in Lecture 17; in particular, we will start by 
considering the restriction to the same subalgebra as in the case of SPinC. 

Recall that the group SPinC c SLinC of automorphisms preserving 
the skew form Q introduced in Lecture 16 contains the subgroup G of 
auto111orphisms of the space v = cin preserving the decomposition 
V = C{e1, ... , en} EB C{en+l• ... , ein}, acting as an arbitrary automorphism 
on the first factor and as the inverse transpose of that automorphism on the 
second factor; in matrices 

G={(~ ,;_1),xeGLnc}. 

In fact, the subgroup SOinC c SL2nC also contains the same subgroup; we 
have, correspondingly a subalgebra 

' To conform to standard conventions, with simple roots ci1 = L 1 - L1+1 for 1 ~ i ~ n - 1, and 
cc, ~ L._, + L 0, to have w1(H.,) = ~1• 1, the fundamental weights w1 should be put in the order: 
,,,, = I. 1 + .. · + L 1 for 1 ~ i ~ n - 2, and 

Wn-1 = p = (L1 + · · · + L 0 _ 1 - L 0 )/2, w. = et = (L1 + · · · + L.)/2. 
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isomorphic to sl" C. · h · 
Denote by w the standard representation of sl"IC. As 10 t e previous case, 

the restriction of the standard representation V of so2"1C to the subalgebra s 
then splits 

V= W$W* 

into a direct sum of W and its dual; and we have, correspondingly, 

NV = EB (NW® NW*). 
a+b=k 

h Ch l'.actor on the right-hand side of this expression We also can say ow ea 1; • 

decomposes as a representation of sl"IC: we have contraction maps 

'Pa,b: NW® NW* --+ N-1 W ® N-1 W*; 

and the kernel of 'Pa,b is the irreducible representatio~ ~<a.bl wi~h highe~t 
weight 2L1 + ... + 2La + La+1 + ... + Ln-b· The restriction of A V to s IS 

thus given by 

NV= EB w<a,b), 
a+b:s;k 

a+b=k(2) 

where the actual highest weight factor in the summand w<a,b) c: NV is the 
vector 

Q(k-a-b)/2 w<a.b) =el /\ ... /\ ea /\ e2n-b+l /\ ... /\ e2n /\ 

~ ))(k-a-b)/2 • = el /\ ... /\ ea /\ e2n-b+l /\ ... /\ e2n /\ (L.., (e, /\ en+i . 

N all the vectors w<a.b) have distinct weights; and it follows, as in E~ercise 
ow, h · if IC on NV will be a 17.7, that any highest weight vector for t e action o s?2n h t 

scalar multiple of one of the w<a.b). It will thus suffice, lD or~~r to sho: ~ :) 
NV is irreducible as representation of so2n IC fork < n, to exh1b1t for eac . ( ' 

"th a + b < k < n other than (k 0) a positive root oc such that the image 
wi - ' b k · ( there is no factor g,.(w<a.bl) #- O. This is simplest in the case a+ = < n so 
of Qin w<a.b>): just as in the case of sp2nlC we have 

( (a,b)) Ya+1,n-b+l W 

= (Ea+l, 2n-b+l - n-b+l.n+a+l 1 a E )(e /\ · · · /\ e /\ e2n-b+l /\ · · · /\ e2n) 
= w<a+l,b-1) 

#- o. 
and lj 1 is the generator of the positive root space 9L,+~,· . 

In ~ase a + b < k < n, we observe first that for any I and J 
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li.J(Q) = (E1,n+} - EJ,n+i>(L (ep /\ en+p)) 

= 2·e1 /\ e1 

#0 

so that whenever a < i, j :s; n - b, 
y; .(w<a. b)) 
I,) 

= li.Ae1 /\ · · · /\ ea /\ e2n-b+1 /\ · · · /\ e2" /\ Q<k-a-b)12 ) 
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= ei /\ · · · /\ ea /\ e2n-b+1 /\ · · · /\ e2" /\ Yi.1((l: <ep /\ en+p>r-a-b)'2> 

= (k - a - b). (e 1 /\ ... /\ ea /\ el /\ e, /\ e2n-b+l /\ ... /\ e2n /\ Q(k-a-b-2)/2) 
#0. 

It is always possible to find a pair (i, j) satisfying the conditions a < i, j :s; n - b 
since we are assuming a + b < k < n; this concludes the proof of part (i). 

The proof of part (ii) requires only one further step: we have to check the 
vectors w<a,bJ with a + b = k = n to see if any of them might be highest weight 
vectors for so2"1C. In fact (as the statement of the theorem implies), two of them 
are: It is not hard to check that, in fact, w<n.O) and w<n-l, l) are killed by every 
positive root space 9L,+L,· To see that no other vector w<a.n-a) is, look at the 
action of Ya+i,a+ 2 e 9La+i +La+

2
: we have 

Ya+i ,a+ 2 ( w<a.n-a» 

#- 0. 
D 

Remarks. (i) This theorem will be a consequence of the Weyl character 
formula, which will tell us a priori that the dimension of the irreducible 

representation of so2"1C with highest weight L 1 + · · · + Lk has dimension (~n) 
if k < n, and half that if k = n. 

(ii) Note also that by the above, /\"Vis the direct sum of the two irreducible 
representations r2,. and r 211 with highest weights 2oc = L

1 
+ · · · + Ln and 

2/1 = L 1 + · · · + Ln-i - Ln. Indeed, the inclusion r2,. $ r
211 

c: /\"V can be 
seen just from the weight diagram: /\"V possesses a highest weight vector with 
highest weight L1 + · · · + Ln, and so contains a copy of r 2,.; but this repre
sentation does not possess the weight 2p, and so /\"V must contain r

211 
as 

Well. (Alternatively, we observed in the preceding lecture that in choos
ing an ordering of the roots we could have chosen our linear functional 1 = 
('1H1 + ... + cnHnwithcl > C2 > ... >-en> Owithoutalteringthepositive 
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roots or the Weyl chamber; in this case the weight A. of NV with /(A.) maximal 
would be 2/3, showing that r 211 c /\"V.) 

(iii) If we want to avoid weight diagrams altogether, we can still see that 
NV must be reducible, because the action of so2nlC preserves two bilinear 
forms: first, we have the bilinear form induced on NV by the form Q on V; 
and second we have the wedge product 

<p: NV x NV-+ Nnv = IC, 

the last map taking e1 /\ · · · /\ e2n to 1. It follows that NV is reducible; indeed, 
if we want to see the direct sum decomposition asserted in the statement of 
the theorem we can look at the composition 

r: NV-+ NV*-+ /\"V, 

where the first map is the isomorphism given by Q and the second is 
the isomorphism given by <p. The square of this map is the identity, and 
decomposing NV into + 1 and -1 eigenspaces for this map gives two 
subrepresentations. 

Exercise 19.3*. Part (i) of Theorem 19.2 can also be proved by showing that 
for any nonzero vector we NV, the linear span of the vectors X(w), for 
x E some, is all of NV. For these purposes take, instead of the basis we have 
been using, an orthonormal basis V1, ... , Vm for V = Cm, m = 2n, SO Q(v;, Vj) = 
~1 • 1 . The vectors v1 = v1, /\ • • • /\ v1k, I= {i1 <···<id, form a basis for NV, 
and some has a basis consisting of endomorphisms Vp,q• p < q, which takes 
vq to vP, vP to -vq, and takes the other v1 to zero. Compute the images VP,q(v1), 
and prove the claim, first, when w = v1 for some I, and then by induction on 
the number of nonzero coefficients in the expression w = Ia1v1• For (ii) a 
similar argument shows that /\"Vis an irreducible representation of the group 
One, and the ideas of§5.l (cf. §19.5) can be used to see how it decomposes over 
the subgroup sonic of index two. 

We return now to our analysis of the representation~ of so2nlC. By the 
theorem, the exterior powers V, NV, ... , /\"- 2 V provide us with the irreduc
ible representations with highest weight the fundamental weight along the first 
n - 2 edges of the Weyl chamber (of course, the exterior power /\"-1 V is 
irreducible as well, but as we have observed, L1 + · · · + Ln-i is not on an edge 
of the Weyl chamber, and so N-1 Vis not as useful for our purposes). For the 
remaining two edges, we have found irreducible representations with highest 
weights located there, namely the two direct sum factors of NV; but the 
highest weights of these two representations are not primitive ones; they are 
divisible by 2. Thus, given the theorem above, we see that we have constructed 
exactly one-half the irreducible representations of so2nlC, namely, those whose 
highest weight lies in the sublattice Z { L1, ... , Ln} c Aw. Explicitly, any 
weighty in the closed Weyl chamber can be expressed (uniquely) in the form 
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y = aiL1 + ... + an-2(L1 + ... + Ln-2) 

+ an-t (L1 + · · · + Ln-t - Ln)/2 + an(L1 + · · · + Ln)/2 

with a, E N. If an-1 + an is even, with an-1 ~ an we see that the representation 

Syma' V ® ... ® Syman-2(/\"-2 V) ® Syman(f\"-1 V) ® Sym<an-1-anJ/2(r2p) 

will contain an irreducible representation rY with highest weight y; whereas if 
a. ~ an-1 • we will find ry inside 

Syma1 V ® ... ® Syman-2(f\"-2V) ® Syman-t(f\"-1 V) ® Sym<an-an-t>f2(r2 .. ). 

There remains the problem of constructing irreducible representations rY 
whose highest weighty involves an odd number of a's and /l's. To do this, we 
clearly have to exhibit irreducible representations r .. and r 11 with highest 
weights a and {3. These exist, and are called the spin representations of so2nlC; 
we will study them in detail in the following lecture. We see from the above 
that once we exhibit the two representations r .. and r 11, we will have con
structed all the representations of so2nlC. The representation rY with highest 
weight y written above will be found in the tensor product 

Sym01 V ® · · · ® Sym0 n-2(/\"- 2 V) ® Sym0 n-1(r11) ® Syma"(r .. ). 

For the time being, we will assume the existence of the spin representations 
of -.;o 2nlC; there is a good deal we can say about these representations just on 
the basis of their weight diagrams. 

Exercise 19.4*. Find the weights (with multiplicities) of the representations 
NV, and also of r 2 .. , r 211 , r .. , and r 11 . 

Exercise 19.5. Using the above, show that r .. and r 11 are dual to one another 
when n is odd, and that they are self-dual when n is even. 

Exercise 19.6. Give the complete decomposition into irreducible representa"' 
tions of Sym2r .. and Nr ... Show that 

r .. ® r .. = r 2 .. E9 /\"- 2 v E9 f\"- 4 v EB /\"- 6 v ® · · ·. 

Exercise 19.7. Show that 

r .. ® r 11 = /\"-1 V E9 f\"- 3 v E9 /'\n-sv E9 · · ·. 

Exercise 19.8. Verify directly the above statements in the case of so6 1C, using 
the isomorphism with sl4 IC. 

Exercise 19.9. Show that the automorphism of c2n that interchanges en and 
<'2,,, leaving the other e1 fixed, determines an automorphism of so2nlC that 
Preserves the n - 2 roots L1 - L 2 , ••• , Ln-z - Ln-i and interchanges 
L,, 1 - Ln and Ln-1 + Ln. This automorphism takes the representation V to 
Itself, but interchanges r .. and r 11 . 
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§19.3. Representations of so 7 C 

While we might reasonably be apprehensive about the prospect of a family of 
Lie algebras even more strangely behaved than the even orthogonal algebras, 
there is some good news: even though the roots systems of the odd Lie algebras 
appear more complicated than those of the even, the representation theory of 
the odd algebras is somewhat tamer. We will describe these representations, 
starting with the example of so 7 1C; we begin, as always, with a picture of the 
root diagram: 

.1· . .. . ..• : ...... .'·. • • I . , . . • • • • L 
•.. ··• • • ..... I 

···:: .11·•" ..... :·~... .· 
.. . . . 
1· .. : . 
L~-~~_,:._ ___ _ 

/ ..... .. / .•. 
/ 

As we said, this looks like the root diagram for sp6 1C, except that the roots 
±2Li have been shortened to ±Li. Unlike the case of so 5 1C, however, where 
the long and short roots could be confused and the root diagram was corre
spondingly congruent to that of sp4 1C, in the present circums~ance th~ root 
diagram is not similar to any other; the Lie algebra so7 1C, m fact, is not 
isomorphic to any of the others we have studied. Next, the Weyl chamber: 

/ 
/ 

/ 

.I-----

Again, the Weyl chamber itself looks just like that of sp6 1C; !~e difference 
in this picture is in the weight lattice, which contains the add1t10nal vector 

(L 1 + L 2 + L3)/2. 
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As usual, we start our study of the representations of so 7 1C with the 
standard representation, whose weights are ±Li and 0: 

Note that the highest weight Li of this representation lies along the front edge 
of the Weyl chamber. Next, the weights of the exterior square NV are 
± L; ± L1, ±Li, and 0 (taken three times); this, of course, is just the adjoint 
representation. Note that the highest weight Li + L 2 of this representation is 
the same as that of the exterior square of the standard representation for so6 1C, 
but because of the smaller Weyl chamber this weight does indeed lie on an 
edge of the chamber. 

Next, consider the third exterior power /\3 V of the standard. This has 
weights ±Li± L2 ± L 3 , ±L1 ± L1, ±L1 (with multiplicity 2) and 0 (with 
multiplicity 3), i.e., at the midpoints of all the vertices, edges, and faces of the 
cu he: 

It is not obvious, from the weight diagram alone, that this is an irreducible 
representation; it could be that /\3 V contains a copy of the standard represen
tation V and that the irreducible representation rL, +L,+L, th US has multiplicity 
I on the weights ± L1 and multiplicity 2 (or 1) at 0. We can rule out this 
Possibility by direct calculation: for example, if this were the case, then /\3 V 
Would contain a highest weight vector with weight Li. The weight space with 
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eigenvalue L
1 

in /\3 Vis spanned by the tensors e 1 A e 2 A es and ei A e 3 A e 6 , 

however, and if we apply to these the generators Xi.2 = E1,2 - E5 , 4 , 

X - E - E and U
3 

= E3 7 - E7 6 of the root spaces corresponding 
2,3 - 2,3 6,S• , • 

to the positive roots L1 - L 2 , L 2 - L 3 , and L 3 , we see that 

X2, 3(e1 /\ e 3 /\ e 6 ) = e 1 A e2 /\ e6 , 

U
3

(e1 /\ e 3 A e 6 ) = e 1 A e 3 A e 7 # O; 

X2, 3(e1 /\ e2 A e 5) = e 1 /\ e2 /\ e6 , 

U3(e 1 /\ e2 /\ es)= 0. 

There is thus no linear combination of e 1 A e2 A es and ei A e3 A e6 killed 
by both U

3 
and X

2
,
3

, showing that /\3 V has no highest weight vector of weight 

Li. 

Exercise 19.10. Verify that NV does not contain the trivial representation. 

We have thus found irreducible representations of so7 C with highest weight 
vectors along the three edges of the Weyl chamber, and_ as in the case o.f so6C 
we have thereby established the existence of the irreducible representations of 
so

7
C with highest weight in the sublattice Z{L1 , Lz, L3}._ To ~omplete.the 

description, we need to know that the representation r. w~th .highest w~ight 
tX = (L

1 
+ L

2 
+ L

3
)/2 exists, and what it looks l~ke, a~d this time .there is no 

isomorphism to provide this; we will have .to wait until the f~llowmg lecture. 
In the meantime we can still have fun playmg around both with the represen
tations we do know exist, and also with those whose existence is simply 

asserted. 

Exercise 19.11. Find the decomposition into irreducible representations of.the 
tensor product V ®NV; in particular find the multiplicities of the irreducible 
representation r2L,+L2 with highest weight 2L1 + Lz. 

Exercise 19.12. Show that the symmetric square of the representati~n r. 
decomposes into a copy of NV and a trivial one-dimensional representation. 

Exercise 1913. Find the decomposition into irreducible representations of 

Nr •. 

§19.4. Representations of the 
Odd Orthogonal Algebras 

We will now describe as much as we can of the general pattern for representa· 
tions of the odd orthogonal Lie algebras so2n+l C. As in the case ~f the even 
orthogonal Lie algebras, the proof of the existence part of the .basic .theo:ern 
(14.18) (that is, the construction of the irreducible representation with given 
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highest weight) will not be complete until the following lecture, but we can 
work around this pretty well. 

To begin with, recall that the weight lattice of so 2n+i C is, like that of so2nC, 
generated by L1, ... , Ln together with the further vector (L1 + · · · + Ln)/2. The 
Weyl chamber, on the other hand, is the cone 

"Ir = n: a1L 1: a 1 ~ a2 ~ .. • ~ an ~ 0}. 

The Weyl chamber is as we have pointed out the same as for sp 2nC, that is, 
it is a simplicial cone with faces corresponding to the n planes a 1 = a2 , ••• , 

a,,_ 1 =an and an= 0. The edges of the Weyl chamber are thus the rays 
generated by the vectors L1, L 1 + L 2 , ••• , L 1 + · · · + Ln-i and L1 + · · · + Ln 
(note that L 1 + · · · + Ln-l is on an edge of the Weyl chamber). Again, the 
intersection of the weight lattice with the closed Weyl cone is a free semigroup, 
in this case generated by the fundamental weights w1 = L1, w 2 = L 1 + L 2 , 

. .. ' Wn-1 = L1 + ... + Ln-1 and the weight Wn = (X = (L1 + ... + Ln)/2. 
Moreover, as we saw in the cases of sosC and so7 C, the exterior powers of 
the standard representation do serve to generate all the irreducible representa
tions whose highest weights are in the sublattice Z { L 1, ••• , Ln}: in general we 
have the following theorem. 

Theorem 19.14. For k = 1, ... , n, the exterior power NV of the standard 
representation V of so 2n+l C is the irreducible representation with highest weight 
L 1 + ... + Lk. 

PROOF. We will leave this as an exercise; the proof is essentially the same as in 
the case of so2nC, with enough of a difference to make it interesting. O 

We have thus constructed one-half of the irreducible representations of 
so 211+1 C: any weighty in the closed Weyl chamber can be written 

}' = a1L 1 + a2 (L 1 + L2 ) + .. · + an_i(L 1 + .. · + Ln_1 ) + an(L 1 + .. · + Ln)/2 

with a1 e ~; and if a11 is even, the representation 

Sym0
• V ® · · · ® Sym0 n-•(N-l V) ® Sym0 n12 (NV) 

will contain an irreducible representation rY with highest weighty. We are still 
missing, however, any representation whose weights involve odd multiples of 
rx; to construct these, we clearly have to exhibit an irreducible representation 
r, with highest weight tX. This exists and is called (as in the case of the even 
orthogonal Lie algebras) the spin representation of so2n+l C. We see from the 
above that once we exhibit the spin representation r •. we will have constructed 
all the representations of so2n+l C; for any y as above the tensor 

Sym01 V ® · · · ® Sym0 n-•(N-l V) ® Sym0 n(r.) 

will contain a copy of rY. 
As in the case of the spin representation r. of the even orthogonal Lie 

algebras, we can say some things about r. even in advance of its explicit 
construction; for example, we can do the following exercises. 
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Exercise 19.15. Find the weights (with multiplicities) of the representations 
NV, and also of ra. 

Exercise 19.16. Give the complete decomposition into irreducible representa
tions of Sym2ra and Nra. Show that 

ra ® ra = NVE9 N-1 VE9 !r 2 VE9 ··· E9 /\1VE9 /\°V. 

Exercise 19.17. Verify directly the above statements in the case ofso5 C, using 
the isomorphism with sp4 C. 

§19.5. Weyl's Construction for Orthogonal Groups 

The same procedure we saw in the symplectic case can be used to construct 
representations of the orthogonal groups, this time generalizing what we saw 
directly for NV in §§19.2 and 19.4. For the symmetric form Q on V =cm, 
the same formula (17.9) determines contractions from V®d to v®<d-2>. Denote 
the intersection of the kernels of all these contractions by Vldl. For any 
partition A = (A1 ~ • • • ~ Am ~ 0) of d, let 

§[),] v = v[d] ('\ §). v. (19.18) 

As before, this is a representation of the orthogonal group OmC of Q. 

Theorem 19.19. The space § 1).1 Vis an irreducible representation of OmC; §1).J V 
nonzero if and only if the sum of the lengths of the first two columns of the 
Young diagram of A is at most m. 

The tensor power V®d decomposes exactly as in Lemma 17.15, with every
thing the same but replacing the symbol <d) by [d]. In particular, 

§().JV= vtdl. c). = Im(c).: Vldl-+ Vldl). 

Exercise 19.20. Verify that § 1).1 Vis zero when the sum of the lengths of t~e 
first two columns is greater than m by showing that NV® NV® v<d-a-b> is 
contained in I,1 'P1(V®fd- 2>) when a+ b > m. Show that § 1).1 Vis not zero 
when the sum of the lengths of the first two columns is at most m. 

Exercise 19.21 *. (i) Show that the kernel of the contraction from Symd~ to 
Sym4- 2V is the irreducible representation § 141 V of some with highest weight 
dL 1 • 

(ii) Show that 

Sym4V = §ldl V E9 §ld-21 V E9 · · · E9 §ld-2pJ V, 

where p is the largest integer ~ d/2. 
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The proof of the theorem proceeds exactly as in §17.3. The fundamental 
fact from invariant theory is the same statement as (17.19), with, of course, the 
operators 81 = 'P 1 o Cl>1 defined using the given symmetric form, and the group 
Sp 2.IC replaced by OmC (and the same reference to Appendix F.2 for the 
proof). The theorem then follows from Lemma 6.22 in exactly the same way 
as for the symplectic group. 

To find the irreducible representations over SOmC one can proceed as in 
~5.1. Weyl calls two partitions (each with the sum of the first two column 
lengths at most m) associated if the sum of the lengths of their first columns is 
111 and the other columns of their Young diagrams have the same lengths. 
Representations of associated partitions restrict to isomorphic representa
tions of SOm C. Note that at least one of each pair of associated partitions will 
have a Young diagram with at most fm rows. If m = 2n + 1 is odd, no A is 
associated to itself, but if m = 2n is even, any A with a Young diagram with n 
nonzero rows will be associated to itself, and its restriction will be the sum of 
two conjugate representations ofSOmC of the same dimension. The final result 
1s: 

Theorem 19.22. (i) If m = 2n + 1, and A = (A 1 ~ • • · ~ An ~ 0), then § 1).1 Vis the 
irreducible representation of some with highest weight A1 L 1 + · · · + AnLn. 

(ii) If m = 2n, and A= (A1 ~ · • • ~ An-l ~ 0), then § 1).1 V is the irreducible 
representation of somC with highest weight A1 L 1 + · · · + AnLn. 

(iii) If m = 2n, and A = (A 1 ~ • • · ~ An-l ~ An > 0), then § 1).1 Vis the sum of 
two irreducible representations of some with highest weights A1 L 1 + · · · + AnLn 
and A1L1 + ... + An-ILn-1 - AnLn. 

Exercise 19.23. When mis odd, show that Om IC = SOmC x {±I}. Show that 
if,;, andµ are associated, thenµ = A® e, where e is the sign of the determinant. 

We postpone to Lecture 25 all discussion of multiplicities of weight spaces, 
or decomposing tensor products or restrictions to subgroups. 

As we saw in Lecture 15 for GLnC and in Lecture 17 for Sp2nC, it is possible 
to make a commutative algebra §l'l = §l'l(V) out of the sum of all the 
irreducible representations of some, where v = cm is the standard repre
sentation. First suppose m = 2n + 1 is odd. Define the ring §'(V, n) as in §15.5, 
which is a sum of all the representations §).(V) of GL(V) where A runs over 
all partitions with at most n parts. As in the symplectic case, there is a 
canonical decomposition 

§).(V) = § 1).1(V) E9 J1).1(V), 

and the direct sum Jl'l = EB). J1).1(V) is an ideal in §'(V, n). The quotient ring 

§l'l(V) = A'(V, n)/Jl'l = ffi §1).J(V) 
). 

is a commutative graded ring which contains each irreducible representation 
of so2n+l c once. 
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2 
· the above quotient will contain each representation 

If m = n is even, . f h 
(v) 

. "f , has n rows. To cut it down so there is only one o eac ' one 
§p.J twice 1 A NV. h ·NV-+ NV 
can add to Jl•J relations of the form x - r(x), for x E ' w ere t. 
. h . h" m described in the remark (iii) after the proof of Theorem 
is t e 1somorp ts " h "d [LT] 
19 2 F 

detailed discussion, with explicit generators ior t et eas, see - . 
. . ora 

LECTURE 20 

Spin Representations of som C 

In this lecture we complete the picture of the representations of the orthogonal Lie 
algebras by constructing the spin representations s± of so'"C; this also yields a 
description of the spin groups Spin'"C. Since the representation-theoretic analysis of 
the spaces s± was carried out in the preceding lecture, we are concerned here primarily 
with the algebra involved in their construction. Thus, §20.1 and §20.2, while elementary, 
involve some fairly serious algebra. Section 20.3, where we briefly sketch the notion of 
triality, may seem mysterious to the reader (this is at least in part because it is so to 
the authors); if so, it may be skipped. Finally, we should say that the subject of the spin 
representations of so'" C is a very rich one, and one that accommodates many different 
points of view; the reader who is interested is encouraged to try some of the other 
approaches that may be found in the literature. 

*20.1: Clifford algebras and spin representations oho'" C 
*20.2: The spin groups Spinm C and Spin'" IR 
*20.3: Spin8 C and triality 

§20.1. Clifford Algebras and Spin Representations 
of some 

W c begin this section by trying to motivate the definition of Clifford algebras. 
We may begin by asking, why were we able to find all the representations of 
SL"C or Sp2ne inside tensor powers of the standard representation, but only 
half the representations ofSOme arise this way? One difference that points in 
this direction lies in the topology of these groups: SLne and Sp2ne are simply 
connected, while some has fundamental group "1!../2 for m > 2 (for proofs 
sec *23.1). Therefore some has a double covering, the spin group Spinme. 
(Form ~ 6, these coverings could also be extracted from our identifications 
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of the adjoint group PSOm IC with the adjoint group of other simply conn_ec~ed 
groups; e.g. the double cover of S03~ is SL2 C.)_ We will see that the m1ssmg 
representations are those representations of SpmmlC that do not come from 

representations of some. . . . . . 
This double covering may be most readily v1S1ble, and ~ro~ably f~m1har, 

for the case of the real subgroup S03 IR of rotations: a rotat10n is specified_ by 
an axis to rotate about, given by a unit vector u, and an angle of r~tabon 

b t · the two choices + u of unit vector give a two-sheeted covermg. In a OU U, - . 
other words, if D3 is the unit ball in IR 3

, there is a double covermg 

S3 = D3 /oD 3 --+ S0 3 IR, 

which sends a vector v in D3 to rota~ion by the a~gle 2n llvll about ~he u~it 
vector v/llvll (the origin and the umt sphere oD are sent to the identity 

transformation). 

This covering is even easier to see for the entire orth?gonal group ?~IR, 
which is generated by reflections Rv in unit vectors v (with ± v determmm& 
the same reflection): we can describe the double cover of 03 IR as the group 
generated by unit vectors v, with relations 

V1 • ••• • Vn = W1 ••••• Wm 

whenever the compositions of the corresponding reflections are equal, i.e., 

whenever 
R o · · · o R = R o · · · o Rw ; · 

Vt Vn Wt m 

and also relations 
(-v)·(-w) = v· w 

for all pairs of unit vectors v and w. (Note that if we restricted ourselves to 
products of even numbers of the generators v e oD3 we would get back the 
double cover of the special orthogonal group S03 IC.) . 

How should we generalize this? The answer is not obvious. For one thing, 
for various reasons we will not try to construct directly a group that cover~ 
the orthogonal group in general. Instead, give_n a vector space V (realb~a 
complex) and a quadratic form Q on V, we will first construct an alge 
Cliff(V, Q), called the Clifford algebra. The algebra Cliff(V, Q) will then turn 
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out to contain in its multiplicative group a subgroup which is a double cover 
of the orthogonal group O(V, Q) of automorphisms of V preserving Q. 

By analogy with the construction of the double cover of S03 IR, the Clifford 
algebra Cliff(V, Q) associated to the pair (V, Q) is an associative algebra 
containing and generated by V. (When we want to describe the spin group 
inside Cliff(V, Q) we will restrict ourselves to products of even numbers of 
clements of V having a fixed norm Q(v, v); if odd products are allowed as well, 
we get a group called "Pin" which is a double covering of the whole orthogonal 
group.) To motivate the definition, we would like Cliff(V, Q) to be the algebra 
generated by V subject to relations analogous to those above for the double 
cover of the orthogonal group. In particular, for any vector v with Q(v, v) = 1, 
since the reflection Rv in the hyperplane perpendicular to vis an involution, 
we want 

v·v = 1 

in Cliff(V, Q). By polarization, this is the same as imposing the relation 

v·w + w·v = 2Q(v, w) 

for all v and w in V. In particular, w · v = - v · w if v and w are perpendicular. 
In fact, the Clifford algebra 1 will be defined below to be the associative algebra 
generated by V and subject to the equation v · v = Q(v, v). 

Looking ahead, we will see later in this section that each complex Clifford 
algebra contains an orthogonal Lie algebra as a subalgebra. The key theorem 
is then that Cliff(V, Q) is isomorphic either to a matrix algebra or to a sum of two 
matrix algebras. This in turn determines either one or two representations of 
the orthogonal Lie algebras, which turn out to be the representations which 
were needed to complete the story in the last lecture.Just as in the special linear 
and symplectic cases, the corresponding Lie groups are not really needed to 
construct the representations; they can be written down directly from the Lie 
algebra. In this section we do this, using the Clifford algebras to construct 
these representations of some directly, and verify that they give the missing 
sp10 representations. In the second section of this lecture we will show how 
the spin groups sit as subgroups in their multiplicative groups. 

C!iff ord Algebras 

Given a symmetric bilinear form Q on a vector space V, the Clifford algebra 
C = C(Q) = Cliff(V, Q) is an associative algebra with unit 1, which contains 
and is generated by V, with v · v = Q(v, v) · 1 for all v e V. Equivalently, we have 
the equation 

v·w + w·v = 2Q(v, w), (20.1) 

The mathematical world seems to be about evenly divided about the choice of signs here and 
one must translate from Q to -Q to go from one side to the other. ' 
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for all v and w in V. The Clifford algebra can be defined to be the universal 
algebra with this property: if E is any associative algebra with unit, and a 
linear mapping j: V-+ E is given such that j(v)2 = Q(v, v) · 1 for all v E v, or 

equivalently 
j(v)·j(w) + j(w)·j(v) = 2Q(v, w)· 1 (20.2) 

for all v, w E V, then there should be a unique homomorphism of algebras from 
C(Q) to E extending j. The Clifford algebra can be constructed quickly by 
taking the tensor algebra 

T"(V)= EB V®"=ICE9VEB(V®V)EB(V®V®V)EB···, 
n:2:0 

and setting C(Q) = T"(V)/I(Q), where I(Q} is the two-sided ideal generated by 
all elements of the form v ® v - Q(v, v) · 1. It is automatic that this C(Q) 

satisfies the required universal property. 
The facts that the dimension of C is 2m, where m = dim(V), and that the 

canonical mapping from V to C is an embedding, are part of the following 

lemma: 

Lemma 20.3. If e
1

, .•• , em form a basis for V, then the products e1 = 
e;, · e

12 
• ••• • e;k' for I= {i 1 < i2 <···<id, and withe;= 1, form a basis for 

C( Q) = Cliff ( V, Q). 

PROOF. From the equations e1 • e1 + e1 · e1 = 2Q(e1, e1) it follows immediately 
that the elements e

1 
generate C(Q). Their independence is not hard to verify 

directly; it also follows by seeing that the images in the matrix algebras under 
the mappings constructed below are independent. For another proof, note 
that when Q = 0, the Clifford algebra is just the exterior algebra /\'V. In 
general, the Clifford algebra can be filtered by subspaces Fk, consisting of those 
elements which can be written as sums of at most k products of elements in 
V; one checks that the associated graded space Fk/Fk+ 1 is NV. For a third 
proof, one can verify that the Clifford algebra of the direct sum of two 
orthogonal spaces is the skew commutative tensor product of the Clifford 
algebras of the two spaces (cf. Exercise B.9}, which reduces -;me to the trivial 

case where dim V = 1. 0 

Since the ideal I(Q} c T(V) is generated by elements of even degree, the 

Clifford algebra inherits a Z/2Z grading: 

C = c•v•n E9 codd = c+ EB c-, / 
with c+ . c+ c c+' c+ . c- c c-, c- . c+ c c-' c- . c- c c+; c+ is spanned 
by products of an even number of elements in V and c- is spanned by products 
of an odd number. In particular, c•v•n is a subalgebra of dimension 2m-t .. 

Since C(Q) is an associative algebra, it determines a Lie algebra, with 
bracket [a, b] = a· b - b ·a. From now on we assume Q is nondegenerate. the 
new representations of somlC will be found in two steps: 
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(i) embedding the Lie algebraso(Q) = somlC inside the Lie algebra of the even 
part of the Clifford algebra C( Q); 

(ii\ identifying the Clifford algebras with one or two copies of matrix algebras. 

To carry out the first step we make explicit the isomorphism of NV with 
~o(Q} that we have discussed before. Recall that 

,'·"' 
,Jo(Q) = {XE End(V): Q(Xv, w) + Q(v, Xw) = 0 for all v, win V}. 

The isomorphism is given by 

(JNv §i so(Q) c End(V), a /\ b H 'Pa Ab• 

for a and b in V, where <f'a"b is defined by 

<f'a"b(v) = 2(Q(b, v)a - Q(a, v)b). (20.4) 

It is a simple verification that <f'a"b is in so(Q). One sees that the natural bases 
correspond up to scalars, e.g., e; /\ en+J maps to 2(E1,1 - En+J,n+1}, so the map 
is an isomorphism. (The choice of scalar factor is unimportant here; it was 
chosen to simplify later formulas.>;qne calculates what the bracket on NV 
must be to make this an isomorph1S"m of Lie algebras: 

[ <fJaAb• 'Pc Ad] (v} = 'Pa Ab 0 <f'cAd(v} - <f'c"d 0 <f'aAb(v) 

= 2<pa"b(Q(d, v)c - Q(c, v)d) - 2<pc"AQ(b, v)a - Q(a, v)b} 

= 4Q(d, v)(Q(b, c)a - Q(a, c)b) 

- 4Q(c, v)(Q(b, d)a - Q(a, d)b) 

- 4Q(b, v)(Q(d, a)c - Q(c, a)d) 

+ 4Q(a, v)(Q(d, b)c - Q(c, b)d) 

= 2Q(b, c)<pa/\d(v} - 2Q(b, d)<pQ/\C(v} 

- 2Q(a, d)<pc/\b(v) + 2Q(a, c)<pd"b(v). 

This gives an explicit formula for the bracket on NV: 

, [a /\ b, c A d] = 2Q(b, c)a /\ d - 2Q(b, d)a /\ c 
( /\\ - 2Q(a, d)c /\ b + 2Q(a, c)d /\ b. (20.5) 

On the other hand, the bracket in the Clifford algebra satisfies 

[a·b, c·d] = a·b·c·d- c·d·a·b 

\ , = (2Q(b, c)a · d - a· c · b · d) - (2Q(a, d)c · b - c ·a· d · b) 

= 2Q(b, c)a · d - (2Q(b, d)a · c - a· c · d · b) 

- 2Q(a, d)c · b + (2Q(a, c) · d · b - a· c · d · b) 

= 2Q(b, c)a · d - 2Q(b, d)a · c - 2Q(a, d)c · b + 2Q(a, c) · d · b. 
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( Jlt follows that the map t/J: NV-+ Cliff(V, Q) defined by 

l ~ ljJ(a /\ b) = t(a · b - b ·a) = a· b - Q(a, b) (20.6) 

is a map2 of Lie algebras, and by looking at basis elements again one sees that 
it is an embedding. This proves: 

Lemma 20.7. The mapping I/Io cp-1: so(Q)-+ C(Q)•v•n embeds so(Q) as a Lie 
subalgebra of C(Q)•v•n. 

Exercise 20.8. Show that the image of I/I is 

F2 n C(Q)even n Ker( trace), 

where F2 is the subspace of C(Q) spanned by products of at most two elements 
of V, and the trace of an element of C(Q) is the trace of left multiplication by 
that element on C(Q). 

We consider first the even case: write V = W E9 W', where Wand W' are 
n-dimensional isotropic spaces for Q. (Recall that a space is isotropic when Q 
re~tricts to the zero form on it.) With our choice of standard Q on V = C2

", 

W can be taken to be the space spanned by the first n basis vectors, W' by the 
last n. 

Lemma 20.9. The decomposition V = W E9 W' determines an isomorphism of 
algebras 

C(Q) ~ End(/\'W), 

where !\'W = A°WE9 ··· E9 NW. 

PROOF. Mapping C(Q) to the algebra E = End(/\'W) is the same as defining 
a linear mapping from V to E, satisfying (20.2). We must construct maps 
l: W-+ E and l': W'-+ E such that 

l(w)2 = 0, l'(w')2 = 0, (20.10) 

and 

l(w) o l'(w') + l'(w') o l(w) = 2Q(w, w')J 

for any we W, w' e W'. For each we W, let Lw e Ebe left multiplication by 
won the exterior algebra !\'W: 

Lw(e) = W /\ e, e E /\'W. 

For 8 e W*, let D3 e Ebe the derivation of !\'W such that D3(1) = 0, Ds(w)"" 
8(w) e NW= C for we W = NW, and 

2 Note that the bilinear form l/J given by (20.6) is alternating since l/J(a " a) = 0, so it defines a 
linear map on /\2 v. 
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Ds(( A e) = D9(() " e + ( - l)d•1<C>( " Ds((). 

Explicitly, Ds(w1 /\ • • • " w) = ~ (- l)'-18(w )(w /\ . . . • 
• t... 1 1 /\ w1 " .. • /\ w ) Now set r • 

l(w) = Lw, l'(w') = D9, (20.11) 

where ,9 e W* is defined by the identity 8(w) = 2Q(w ') r 11 w. Th . d . ( . , w 1or a w e . e re-
quire equat~ons 20.10) are straightforward verifications: one checks directly 
on ~tement~ m W = N w, and then that, if they hold on ( and e. they hold 
on~." e. Fmally, one may see that the resulting map is an isomorphism by 
looking at what happens to a basis. D 

Exercise 20:12. !he left C(Q)-module !\'Wis isomorphic to a left ideal in C(Q). 
Show tha~ if f is .a generator for NW', then C(Q). f = ;\'W. f, and the ma 
( 1-> ( • f gives an isomorphism p 

!\'W-+ !\'W·J = C(Q)·f 

of left C(Q)·modules. 

Now we have ~ decomposition !\'W = Nv•nw E9 NddW into the sum of 
even and odd extenor powers, and qwr•0 respects this splitting. We deduce 
from Lemma 20.9 an isomorphism 

(20.13) 

Combining with Lemma 20.7, we now have an embedding of Lie algebras: 

so(Q) c C(Q)•ven ~ gl(Nv•nw) E9 gl(NddW), (20.14) 

and hence we have two representations of so(Q) = so
2
.C, which we denote by 

s+ = /\evenw and s- = J\Oddw. 

Pro "t' 201 
so ~si .•00 

. • S. Th~ representations s± are the irreducible representations of 
- 2n , with highest weights a = t(L1 + · · · + L.) and p = t(L + ... + L _ 
L"). More precisely, 1 •-1 

s+ = r.. and s- = rp if n is even; 

s+ = rp and s- = r.. if n is odd. 

.~~<>OF: We show that the natural basis vectors e1 = e, /\ ... /\ e '"or !\'W 
urc weight ve t T . h ' ik ,, 
sec th c ors. racmg t rough the isomorphisms established above we 

at H - E E · i.. • 
wh· h 1 - 1,1 - n+1,n+1 m ., c so2.C corresponds to t(e /\ e ) in /\2v. 

ic corresponds to i(e,. e.+1 - 1) in C(Q), which maps to ' n+i ' 

!\ . }(Le, 0 D2er - /)=Le, 0 Der - tJ e End(/\'W). 
simple calculation shows that 
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ifi EI 

ifi ¢I. 

Therefore, e1 spans a weight space with weight -HL:ieI L 1 - Lui L1). Ali such 
weights with given III mod 2 are congruent by the Weyl group, so each of 
s+ = /\evcnw+ ands- = NddW must be an irreducible representation. The 
highest weights are easy to read off. For example, the highest weight for 
Nv•n W is t L L1 = oc if n is even, while if n is odd, its highest weight is /3. O 

These two representations s+ and s- are usually called the half-spin 
representations of S02nC, while their sum s = s+ E9 s- = !\'W is called the 
spin representation. Frequently, especially when we speak of the even and odd 
cases together, we call them all simply "spin representations." Elements of S 
are called spinors. For other proofs of the proposition see Exercises 20.34 and 
20.35. 

For the odd case, write V =WEB W' E9 U, where Wand W' are n
dimensional isotropic subspaces, and U is a one-dimensional space perpendic
ular to them. For our standard Q on c2n+i, these are spanned by the first n, 
the second n, and the last basis vector. 

Lemma 20.16. The decomposition V = W E9 W' E9 U determines an isomor
phism of algebras 

C(Q) ~ End(/\'W) E9 End(/\'W'). 

PROOF. Proceeding as in the even case, to map V to E = End(/\'W), map w E .W 
to Lw, w' E W' to D9, where .9(w) = 2Q(w, w') as before. Let u0 be the element 
in U such that Q(u0 , u0 ) = 1, and send u0 to the endomorphism that is the 
identity on Nv•nw, and minus the identity on j\DddW. Since this involution 
skew commutes with all Lw and D8, the resulting map from V = W E9 W' $ U 
to E determines an algebra homomorphism from C(Q) to E. The map to 
End(/\'W') is defined similarly, reversing the roles of Wand W'. Again one 
checks that the map is an isomorphism by looking at· bases. 0 

Exercise 20.17*. Find a generator for a left ideal of C(Q) that is isomorphic 
to !\'W. 

The subalgebra C(Q)evcn of C(Q) is mapped isomorph~ally onto eit?er ?f 
the factors by the isomorphism of the lemma, so we have an isomorphism in 
the odd case: 

C(Q)evcn ~ End(/\'W). (20.18) 

As before, this gives a representation S = !\'W of Lie algebras: 

S02n+i c = so(Q) c C(Q)evcn ~ gl(/\'W) = gl(S). (20.19) 
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Proposition 20.20. The representation S = !\'Wis the irreducible representation 

of SOzn+i C with highest weight 

oc = !(Li + · · · + Ln). 

PROOF. Exactly as in the even case, each e1 is an eigenvector with with weight 
1(LiEI L

1 
- L:u1L1). This time all such weights ~re congruent. by the ~eyl 

group, so this must be an irreducible representation, and the highest weight 
is clearly -}(Li + · · · + Ln). D 

As we saw in Lecture 19, the construction of this spin representation S 
finishes the proof of the existence theorem for representations of some, and 
hence for all of the classical complex semisimple Lie algebras. 

Exercise 20.21 *. Use the above identification of the Clifford algebras with 
matrix algebras (or direct calculation) to compute their centers. In particular, 
show that the intersection of the center of C with the even subalgebra c•v•n is 
always the one-dimensional space of scalars. Show similarly that if xis in Codd 

and x · v = - v · x for all v in V, then x = 0. 

Exercise 20.22*. For XE so(Q) and v E V, we have X · v E V by the standard 
action of so(Q) on V. On the other hand, we have identified so(Q) and Vas 
subspaces of the Clifford algebra C, so we can compute the commutator 
[X, v]. Show that these agree: 

X · v = [X, v] E V c C. 

Problem 20.23*. Let C(p, q) be the real Clifford algebra corresponding to the 
quadratic form with p positive and q negative eigenvalues. Lemmas 20.9 and 
20.16 actually construct isomorphisms of C(n, n) with a real matrix algebra, 
and of C(n + 1, n) with a product of two real matrix algebras. Compute C(p, q) 
for other p and q. All are products of one or two matrix algebras over ~. C, 
or IH. 

§20.2. The Spin Groups Spinm C and Spinm ~ 

The Clifford algebra C = C(Q) is generated by the subspace V = cm, and C 
has an anti-involution x 1--+ x*, determined by 

(vi· ... · v,)* = ( - l)'v, · .. .-Vi 

forllany v1, ••• , v, in V. This operation*• sometimes called the conjugation, is 
the composite of: 

the main antiautomorphism or reversing map ·r: C -+ C determined by 

-·I 
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(20.24) 

for v1 , ••• , v, in V, and 

the main involution IX which is the identity On C°vcn and minus the identity 

on codd' i.e., 

ix(v 1 · ••. • v,) = ( - l)'v 1 • •.• • v,. (20.25) 

Note that (x · y)* = y* · x*, which comes from the identities t(x · y) = r(y) · r(x) 

and ix(x · y) = ix(x) · ix(y). 

Exercise 20.26. Use the universal property for C to verify that these are well 
defined: show that ix is a homomorphism from C to C and t is a well-defined 
homomorphism from C to the opposite algebra of_ c_ (th~ alge~ra with the 
same vector space structure, but with reversed multJphcatJon: x · Y = Y · x). 

Instead of defining the spin group as the set of products of certain elements 
of v, it will be convenient to start with a more abstract definition. Set 

Spin(Q) = {x e C(Q)cvcn: x · x* = 1 and x · V· x* c V}. (20.27) 

We see from this definition that Spin(Q) forms a closed subgroup of the group 
of units in the (even) Clifford algebra. Any x in Spin(Q) determines an endo-

morphism p(x) of V by 

p(x)(v)=x·v·x*, veV. 

Proposition 20.28. For x e Spin(Q), p(x) is in SO(Q). The mapping 

p: Spin(Q)-+ SO(Q) 

is a homomorphism, making Spin(Q) a connected two-sheeted covering of SO(Q). 

The kernel of pis {l, -1}. 

h. · of 
PROOF. We will prove something more. Define a larger subgr?up, t ts time 

the multiplicative group of C(Q), by 

Pin(Q) = {x e C(Q): x · x* = 1 and x · V· x* c V}, (20.29) 

and define a homomorphism 

p: Pin(Q)-+ O(Q), p(x)(v) = ix(x)" v · x*, (20.30) 
/ 

where ix: C(Q)-+ C(Q) is the main involution. 
To see that p(x) preserves the quadratic form Q, we use the fact that for w 

in v, Q(w, w) = w · w = -w · w*, and calculate: 

Q(p(x)(v), p(x)(v)) = -ix(x) · v · x* · (ix(x) · v · x*)* 

= - ix(x)" v · x* · x · v* · ix(x)* 
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= -ix(x)" v · v* · oc(x*) 

= Q(v, v)cx(x) · oc(x*) 

= Q(v, v)cx(x · x*) = Q(v, v). 

309 

We claim next that p is surjective. This follows from the standard fact (see 
Exercise 20.32) that the orthogonal group O(Q) is generated by reflections. 
Indeed, if Rw is the reflection in the hyperplane perpendicular to a vector w, 
normalized so that Q(w, w) = -1, it is easy to see that w is in Pin(Q) and 
p(w) = Rw; in fact, 

w·w* = w·(-w) = -Q(w, w) = 1, 

and so 

p(w)(w) = oc(w)"w·w* = -w· 1 = -w; 

and if Q(w, v) = 0, 

p(w)(v) = ix(w)·v·w* = -w·v·w* = v·w·w* = v. 

The next claim is that the kernel of p on the larger group Pin(Q) is ± 1. 
Suppose Xis in the kernel, and write X = Xo + x 1 with Xo E ccvcn and x 1 E Codd. 
Then x0 • v = v · x0 for all v e V, so x0 is in the center of C. And x 1 • v = -v · x 1 

for all v EV. By Exercise 20.21, x0 is in IC· 1, and x 1 = 0. Sox= x0 is in C and 
x2 = I; so x = ± 1. 

It follows that if Re O(Q) is written as a product ofreflections Rw, a ... o Rw,• 
then the two elements in p-1 (R) are ± w1 • ... • w,. In particular, we get another 
description of the spin groups: 

Spin(Q) = Pin(Q) 11 C(Q)cvcn = p-1(SO(Q)) 

(20.31) 

Sine~ -1 = v · v for any v with Q(v, v) = - 1, we see that the spin group 
consists of even products of such elements. 

To complete the proof, we must check that Spin(Q) is connected or, equiva
lently, that ~he two elements in the kernel of p can be connected by a path. 
We leave this now as an exercise, since much more will be seen shortly. O 

Exercise 20.32*. Let Q be a nondegenerate symmetric bilinear form on a real 
or complex vector space V. 

th~a~ ~h~w that if v a~d w are vectors in V with Q(v, v) = Q(w, w) # o, then 
~ is either a reflection or a product of two reflections that takes v into w. 

.. ( ) Deduce that every element of the orthogonal group of Q can be written 
ds the product of at most 2·dim(V) reflections. 

Exercise 20 33* s· s · (Q) · · C . . • • m~e pm 1s a subgroup of the multiplicative group of 
th\Ql: its Lie alg~bra ts a subalgebra of C(Q) with its usual bracket. Verify that 

s subalgebra ts the subalgebra so(Q) that was constructed in §20.1. 
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Exercise 20.34. The fact that /\'W (and /\'W' in the odd case) is an irreducible 
module over C(Q) is equivalent to the fact that it is an irreducible represen
tation of the group Pin(Q) since the linear span of Pin(Q) is dense in C(Q). 

(a) Apply the analysis of §5.1 to the subgroup 

Spin(Q) c Pin(Q) 

of index two. In the odd case, /\'W and /\'W' are conjugate representations 
so their restrictions to Spin(Q) are isomorphic and irreducible: this is the spi~ 
representation. In the even case, /\'Wis self-conjugate, and its restriction to 
Spin(Q) is a sum of two conjugate irreducible representations, which are the 
two half-spin representations. 

(b) Of the representations of Spin(Q) (i.e., the representations of somq, 
which induce irreducible representations of Pin(Q) and which are restrictions 
of irreducible representations of Pin(Q)? 

Exercise 20.35. Deduce the irreducibility of the spin and half-spin represen
tations from the fact that their restrictions to the 2-groups of Exercise 3.9 are 
irreducible representations of these finite groups. 

Exercise 20.36*. Show that the center of Spinm(IC) is p-1(1) = { ± 1} if mis odd. 
If m is even show that the center is 

p-1(±1) = {±1, ±w}, 

where, in terms of our standard basis, 

ien. e2n - ie2n. en 
2 

Exercise 20.37*. Show that the spin representation Spin(Q)...,. GL(S) maps 
into the special linear group SL(S). Show that for m = 2n and n even, the 
half-spin representations also map into the special linear groups SL(S+) and 
SL(S-). 

Exercise 20.38*. Construct a non degenerate bilinear pairing f3 on the spinor 
space S = /\'W by choosing an isomorphism of J\"W wifh IC and letting /J(s, t) 
be the image of i-(s) A t E /\'W by the projection to J\"W = IC, where i- is the 
main antiautomorphism). 

(a) When m = 2n, show that f3 can also be defined by the identity /J(s, t)f === 

i-(s · /) · t · f for an appropriate generator f of J\"W'. Deduce that the action 
of Spin(Q) on S respects the bilinear form /J. 

(b) Show that f3 is symmetric if n is congruent to 0 or r modulo 4, and 
skew-symmetric otherwise. So the spin representation is a homomorphism 

Spin2n+1 IC...,. S02"1C if n = 0, 3 (4), 

Spin2n+1 IC...,. Sp2nlC if n = 1, 2 (4). 

~20.2. The Spin Groups Spin'"C and Spin'"JR 
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(c) Ifm = 2n, the restrictions of p to s+ ands- are zero if . dd F 
even, deduce that the half-spin representations are homomorp~:::s · or n 

Spin2nlC __. S02n-1 IC if n = 0 (4), 

Spin2nlC...,. Sp2n-1 IC if n = 2 (4). 

Note in particular that Spin8 1C has two ma s t SO IC . . . 
original covering "Triality" wh' h d' P . 0 s m add1t1on to the 

. ' ic we iscuss m the next section d 'be 
the relation among these three homomorph1' ' escn s sms. 

Exercise 20.39. Show that the spin and half s · · 
isomorphisms we have seen before: - pm representations give the 

Spin21C ~ GL(S+) = GL1 IC= IC*, 

Spin3 1C ~ SL(S) = SL2 IC, 

Spin4IC ~ SL(s+) x SL(s-) = SL21C x SL21C, 

Spins IC ~ Sp(S) = Sp4 IC, 

Spin6 IC~ SL(S+) = SL4 C. 

Exercise 20.40. Let C d t th Cl'" 
. . d m. eno e e luord algebra of the vector space cm with 

our st,m ard quadratic form Qm. 

. (a) TheembeddingoflC2"= WEB W'inic2n+1 _ WE9 W'= U .. 
induces an embeddin f C . - '° as md1cated 
Spin IC' S . g o 2n m C2n+1• and corresponding embedding of 

2n m Plll2n+1 IC and of SO IC in SO /(' Sh h · tation S ofS . . 2n . 2n+1 \l_.,, ow t at the spm represen-
. . Pm2n+1 IC restncts to the spm representations+ EB s- ofS . IC 

(b) Similarly there is an embeddin of S . . . Plll2n · 
fromanembeddingofiC2"+1 - w= W~ ?m2;+11C m Spm2n+21C coming 

- l;J7 EB Um IC n+2 = WEB W' EB U = U . 
h ( ll;J;;I 2• 
ere U1 EB U2 =IC EB IC with the quadratic form ~ ~). and U =IC is 

cm bedded in U EB u b d' ( 1 1 ) 1 2 Y sen mg 1 to J2' - · Show that each of the 
half-spin representations of S i /(' ·

2 J2 · 
Spin /(' P n2n+2\l_., restncts to the spm representation of 2n+I \l_.,, 

Very little of the ab d' · 
spin grou s S . ove .1scuss1on needs to be changed to construct the real 
groups scf pmm(IR), which are double coverings of the real orthogonal 
the real quamd(IR).t·O~e uses the real Clifford algebra Cliff(!Rm, Q) associated to 

ra 1c 1orrn Q = _ Q wh Q · h .. 
4Uftdratic form !Rm If m• ere m IS t e standard pOSlbVe definite 
Clifford algebr on . . bv, are an orthonormal basis, the products in this 

a are given y 

and v1 • v1 = - 1. 
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The same definitions can be given as in the complex case, giving rise to 
coverings Pinm(IR) of Om(IR) and Spinm(IR) of SOm(IR). 

Exercise 20.41. Show that SpinmlR is connected by showing that if v and ware 
any two perpendicular elements in V with Q(v, v) = Q(w, w) = -1, the path 

tr-+ (cos(t)v + sin(t)w) · (cos(t)v - sin(t)w), 0 ~ t ~ n/2 

connects - 1 to 1. 

Exercise 20.42. Show that i r-+ v2 • v3 , j r-+ v3 • v1 , k r-+ v1 • v2 determines an iso
morphism of the quaternions IHI onto the even part of Cliff(IR3

, -Q3 ), such 
that conjugation - in IHI corresponds to the conjugation • in the Clifford 
algebra. Show that this maps Sp(2) = {q e IHllqq = 1} isomorphically onto 
Spin

3 
IR, and that this isomorphism is compatible with the map to S03 IR 

defined in Exercise 7.15. 

More generally, if Q is a quadratic form on !Rm with p positive and q negative 
eigenvalues, we get a group Spin+(p, q) in the Clifford algebra C(p, q) = 

Cliff(IRm, Q), with double coverings 

Spin+(p, q)--+ so+(p, q). 

Exercise 20.43*. Show that Spin+(p, q) is connected if p and q are posi~iv.e, 
except for the case p = q = 1, when it has two components. Show that 1f m 
the definition of spin groups one relaxes the condition x · x* = 1 to the 
condition x · x* = ± 1, one gets coverings Spin(p, q) of SO(p, q). 

§20.3. Spin8 C and Triality 

When m is even, there is always an outer automorphism of Spinm(~) that 
interchanges the two spin representations s+ and s-, while preserving the 
basic representation V = cm (cf. Exercise 19.9). In case m = 8, ~ll three o~these 
representations V, s+, and s- are eight dimensional. One ba'.s1c expression of 
triality is the fact that there are automorphisms of Spin8 C or sosC that 
permute these three representations arbitrarily. (In fact, the group of outer 
automorphisms modulo inner automorphisms is the symme~ric ~roup. on 
three elements.) We give a brief discussion of this phenomenon m this section, 
in the form of an extended exercise. 

To see where these automorphisms might come from, considf(f the four 

simple roots: 

IX1 = Li - L2, IX2 = L2 - L3, IX3 = L3 - L4, IX4 = L3 + L4. 

Note that ix
1

, ix
3

, and ix
4 

are mutually perpendicular, and that each makes an 
angle of 120° with ix2 : 
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Exercise 20.44*. For each of the six permutations of {ix 1 , ix 3 , ix4 } find the 
orthogonal automorphism of the root space which fixes ix 2 and realizes the 
permutation of ix1 , ix3 , and ix4 . · 

Each automorphism of this exercise corresponds to an automorphism of 
the Cartan subalgebra ~- In the next lecture we will see that such auto
morphisms can be extended (nonuniquely) to automorphisms of the Lie 
algebra so8 (C). (For explicit formulas see [Ca2].) 

There is also a purely geometric notion of triality. Recall that an even
dimensional quadric Q can contain linear spaces A of at most half the dimen
sion of Q, and that there are two families of linear spaces of this maximal 
dimension (cf. [G-H], [Ha]). In case Q is six-dimensional, each of these 
families can themselves be realized as six-dimensional quadrics, which we may 
denote by Q+ and Q- (see below). Moreover, there are correspondences that 
assign to a point of any one of these quadrics a 3-plane in each of the others: 

Point in Q ----+ 3-plane in Q+ 
/ "" 3-plane in Q-

~ 
Point in Q-

/ 
(20.45) 

Point in Q+ ----+ 3-plane in Q 

Given Pe Q, {A e Q+: A contains P} is a 3-plane in Q+, and {A e Q-: A 
contains P} is a 3-plane in Q-. 

Given A e Q+, A itself is a 3-plane in Q, and {re Q-: r n A is a 2-plane} 
is a 3-plane in Q-. 

Given A e Q-, A itself is a 3-plane in Q, and {re Q+: r n A is a 2-plane} 
is a 3-plane in Q+. 

. To relate these two notions of triality, take Q to be our standard quadric 
in IP'

7 = IP(V), with V = WEE> W' with our usual quadratic space, and let 
s+ = j\<ven W and s- = Ndd W be the two spin representations. In Exercise 
20.38 we constructed quadratic forms on s+ and s-, by choosing an iso
morphism of NW with C. This gives us two quadrics Q+ and Q- in IP(S+) 
and IP(S-). 

To identify Q+ and Q- with the families of 3-planes in Q, recall the action 
of. V on S = /\'W = s+ EE> s- which gave rise to the isomorphism of the 
Ch!Tord algebra with End(S) (cf. Lemma 20.9). This in fact maps s+ to s-
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ands- to s+; so we have bilinear maps 

v x s+ ...!+ s- and v x s- ...!+ s+. (20.46) 

Exercise 20.47. Show that for each point in Q+, represented by a vectors e s+ 
{ v e V: v · s = O} is an isotropic 4-plane in V, and hence determines a projectiv~ 
3-plane in Q. Similarly, each point in Q- determines a 3-plane in Q. Show that 
every 3-plane in Q arises uniquely in one of these ways. 

Let ( , )v denote the symmetric form corresponding to the quadratic 
form in V, and similarly for s+ and s-. Define a product 

s+ x s- -4 v, s x t I-+ s. t, (20.48) 

by requiring that (v, s · t)v = (v · s, t)s- for all v e V. 

Exercise 20.49. Use this product, together with those in (20.46), to show that 
the other four arrows in the hexagon (20.45) for geometric triality can be 
described as in the preceding exercise. 

This leads to an algebraic version of triality, which we sketch following 
[Ch2]. The above products determine a commutative but nonassociative 
product on the direct sum A = V EJ3 s+ EJ3 s-. The operation 

(v, s, t) 1-+ (v · s, t>s-
determines a cubic form on A, which by polarization determines a symmetric 
trilinear form <I> on A. 

Exercise 20.50*. One can construct an automorphism J of A of order three 
that sends v to s+' s+ to s-' and s- to v, preserving their quadratic forms, 
and compatible with the cubic form. The definition of J depends on the 
choice of an element v1 e V and s1 es+ with (v1 , v1 )v = (s 1 , s1 ) 8 + = 1; set 
t 1 = v1 ·s1 , so that (t1 , t 1 )s- = 1 as well. The map J is defined to be the 
composite µ o v of two involutions µ and v, which are determined by the 
following: 

(i) µinterchanges s+ ands-, and maps Vto itself, with µ(s) = v1 · s for s es+; 
µ(v) = 2(v, v1 )vv 1 - v for v e V. 

(ii) v interchanges V and s-, maps s+ to itself, with v(v) = v · s1 for v e V; 
v(s) = 2(s, S1 )s+S1 - S for SE s+. 

Show that this J satisfies the asserted properties. 

Exercise 20.51 *. In this algebraic form, triality can be expressed by the asser
tion that there is an automorphism j of Spin8 C of order 3 compatible with J, 
i.e., such that for all x e Spin8 C, the following diagrams commute: 
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v~s+~s-~v 

l•«I !•'"'" \nP«ll j~•I 
v --- s+ --- s- ---1 v J J 

If .,. so c-+ so C is the map induced by j, the fact that j is compatible 
I· 8 8 h"l l "rt" with the trilinear form <I> (cf. Exercise 20.49) translates to t e oca tna 1 Y 

equation 

<l>(X v, s, t) + <l>(v, Ys, t) + <l>(v, s, Zt) = 0 

for Xe so8 C, Y = j'(X), Z = j'(Y). 



PART IV 

LIE THEORY 

The purpose of this final part of the book is threefold. 
First of all, we want to complete the program stated in the introduction to 

Part II. We have completed the first two steps of this program, showing in 
Part II how the analysis of representations of Lie groups could be reduced to 
the study of representations of complex Lie algebras, of which the most 
important are the semisimple; and carrying out in Part III such an analysis 
for the classical Lie algebras sl"C, sp 2"C, and some. To finish the story, we 
want now to translate our answers back into the terms of the original problem. 
In particular, we want to deal with representations of Lie groups as well as 
Lie algebras, and real groups and algebras as well as complex. The passage 
back to groups is described in Lecture 21, and the analysis of the real case in 
Lecture 26. 

Another goal of this Part is to establish a framework for some of the results 
of the preceding lectures-to describe the general theory of semisimple Lie 
algebras and Lie groups. The key point here is the introduction of the Dynkin 
diagram and its use in classifying all semisimple Lie algebras over C. From 
one point of view, the impact of the classification theorem is not great: it just 
tells us that we have in fact already analyzed all but five of the simple Lie 
algebras in existence. Beyond that, however, it provides a picture and a 
language for the description of the general Lie algebra. This both yields a 
description of the five remaining simple Lie algebras and allows us to give 
uniform descriptions of associated objects: for example, the compact homo
geneous spaces associated to simple Lie groups, or the characters of their 
representations. The classification theory of semisimple Lie algebras is given 
in Lecture 21; the description in these terms of their representations and 
characters is given in Lecture 23. The five exceptional simple Lie algebras, 
whose existence is revealed from the Dynkin diagrams, are studied in Lecture 
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22; we give a fairly detailed account of one of them (g2), with only brief 
descriptions of the others. 

Third, all this general theory makes it possible to answer the main out
standing problem left over from Part III: a description of the multiplicities of 
the weights in the irreducible representations of the simple Lie algebras. We 
give in Lectures 24 and 25 a number of formulas for these multiplicities. 

This, it should be said, represents in some ways a shift in style. In the 
previous lectures we would typically analyze special cases first and deduce 
general patterns from these cases; here, for exampl~, ~he Weyl char~cter 
formula is stated and proved in general, then spec1ahzed to the vanous 
individual cases (this is the approach more often taken in the literature on the 
subject). In some ways, this is a fourth goal of Part IV: t~ provide a bridge 
between the naive exploration of Lie theory undertaken m Parts II and III, 
and the more general theory readers will find elsewhere when they pursue the 
subject further. 

Finally, we should repeat here the disclaimer made in the Preface. This 
part of the book, to the extent that it is successful, will introduce the reader 
to the rich and varied world of Lie theory; but it certainly undertakes no 
serious exploration of that world. We do not, for example, touch on su~h 
basic constructions as the universal enveloping algebra, Verma modules, Tits 
buildings; and we do not even hint at the fascinating subject of (infinite
dimensional) unitary representations. The reader is encouraged to sample 
these and other topics, as well as those included here, according to background 
and interest. 

LECTURE 21 

The Classification of Complex Simple 
Lie Alge bras 

In the first section of this lecture we introduce the Dynkin diagram associated to a 
semisimple Lie algebra 9. This is an amazingly efficient way of conveying the structure 
of n: it is a simple diagram that not only determines 9 up to isomorphism in theory, 
but in practice exhibits many of the properties of 9. The main use ofDynkin diagrams 
in this lecture, however, will be to provide a framework for the basic classification 
theorem, which says that with exactly five exceptions the Lie algebras discussed so far 
in these lectures are all the simple Lie algebras. To do this, in §21.2 we show how to 
list all diagrams that arise from semisimple Lie algebras. In §21.3 we show how to 
recover such a Lie algebra from the data of its diagram, completing the proof of the 
classification theorem. All three sections are completely elementary, though §21.3 gets 
a little complicated; it may be useful to read it in conjunction with §22.l, where the 
process described is carried out in detail for the exceptional algebra 92 • (Note that 
neither §21.3 or §22.l is a prerequisite for §22.3, where another description of 92 will 
be given.) 

~21. 1: Dynkin diagrams associated to semisimple Lie algebras 
~21.2: Classifying Dynkin diagrams 
~21.2: Recovering a Lie algebra from its Dynkin diagram 

~21.1. Dynkin Diagrams Associated to Semisimple 
Lie Algebras 

For the following, we will let g be a semisimple Lie algebra; as usual, a Cartan 
subalgebra ~of g will be fixed throughout. As we have seen, the roots R of g 
span a real subspace of~· on which the Killing form is positive definite. We 
denote this Euclidean space here by IE, and the Killing form on IE simply by 
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( , ) instead of B( , ). The geometry of how R sits in IE is very rigid, as indicated 
by the pictures we have seen for the classical Lie algebras. In this section we 
will classify the possible configurations, up to rotation and multiplication by 
a positive scalar in IE. In the next section we will see that this geometry 
completely determines the Lie algebra. 

The following four properties of the root system are all that are needed: 

( 1) R is a finite set spanning IE. 
(2) oc ER=> -oc ER, but k · oc is not in R if k is any real number other than ±I. 
(3) For oc ER, the reflection W.. in the hyperplane oc_j_ maps R to itself. 
(4) For oc, {3 ER, the real number 

n = 2 ({3, oc) 
P« (oc, oc) 

is an integer. 

Except perhaps for the second part of (2), these properties have been seen 
in Lecture 14. For example, (4) is Corollary 14.29. Note that nP« = {3(H«), and 

(21.1) 

For (2), consider the representation i = ffik gk« of the Lie algebra s« ~ sl2 IC. 
Note that all the nonzero factors but ~ = g0 are one dimensional. We may 
assume oc is the smallest nonzero root that appears in the string. Now, 
decompose i as an s«-module: 

i = s« EB i'. 

By the hypothesis that oc is the smallest nonzero root that appears in the string, 
i' is a representation of s« having no eigenspace with eigenvalue 1 or 2 for H«. 
It follows that i' must be trivial, i.e., gk« = (0) for k # 0 or ± 1. 

Any set R of elements in a Euclidean space IE satisfying conditions (1) to (4) 
may be called an (abstract) root system. 

Property (4) puts very strong restrictions on the geometry of the roots. If 
9 is the angle between oc and {3, we have 

(21.2) 

In particular, 

(21.3) 
I 

is an integer between 0 and 4. The case when this integer is 4 occurs when 
cos(9) = ± 1, i.e. {3 = ±oc. Omitting this trivial case, the only possibilities are 
therefore those given in the following table. Here we have ordered the two 
roots so that llf311 ~ llocll. or lnp«I ~ ln«pl· 

~21.1. Dynkin Diagrams Associated to Semisimple Lie Algebras 

Table 21.4 

cos(.9) .j3;2 J2;2 1/2 0 -1/2 -J2;2 -.j3/2 

.9 rt/6 7t/4 rt/3 rt/2 2rt/3 3rt/4 5rt/6 

n/l• 3 2 1 0 -1 -2 -3 

n./l 1 1 1 0 -1 -1 -1 

11/:111 .j3 J2 w • J2 .j3 

1 n other words, the relation of any two roots oc and {3 is one of 

/ / I_,. j 7t/2 ~3 '~14 '-..... J!:!...6 

Lilf 6 ~4 L:I.!.} ~ \....J- ~ ~ 
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The dimension n = dim R IE = dim c ~ is called the rank (of the Lie algebra, 
or the root system). It is easy to find all those of smallest ranks. As we write 
them down, we will label them by the labels (An), (B"), ... that have become 

standard. 

Rank 1. The only possibility is 

• ... 

which is the root system of sl2 C. 

Rank 2. Note first that by Property (3), the angle between two roots must be 
the same for any pair of adjacent roots in a two-dimensional root system. As 
we will see, any of the four angles n/2, n/3, n/4, and n/6 can occur; once this 
angle is specified the relative lengths of the roots are determined by Property 
(4), except in the case of right angles. Thus, up to scalars there are exactly four 
root systems of dimension two. First we have the case f9 = n/2, 

which is the root system ohl2 C x sl2 C ~ so4 C. 
(In generai the orthogonal direct sum of two root systems is a root system; 
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a root system that is not such a sum is called irreducible. Our task will be 
to classify all irreducible root systems.) 

The other root systems of rank 2 are 

(A,) * 
the root system ofsl3 C; 

(Bz) 

the root system of so5 C ~ sp4 C; and 

(G,) 

Although we have not yet seen a Lie algebra with this root system, we will see 
that there is one. 

Exercise 21.5. Show that these are· all the root systems of rank 2. 

Exercise 21.6. Show that a semisimple Lie algebra is simple if and only if its 
root system is irreducible. 

Rank 3. Besides the direct sums of (A1 ) with one of those of rank 2, we have 
the irreducible root systems we have seen; we draw only dots at the ends of 
the vectors, the origins being in the centers of the reference cubes: 

tj2 l. I. Dynkin Diagrams Associated to Semisimple Lie Algebras 

,. 

I • I 
I 
I _,.>----·---

which is the root system ofsl4 C ~ so6C; 

the root system ofso7 C; 

the root system of sp6C. 

E:x,crcise 21.7. Show that there are no other root systems of rank 3. 

323 

We can further reduce the data of a root system by introducing a subset of 
the roots, called the simple roots. First, choose as in Lecture 14 a direction 
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l: IE-+ IR, so that R = R+ u R- is a disjoint union of positive and negative 
roots. Call a positive root simple if it is not the sum of two other positive roots. 
For the classical Lie algebras, keeping the notations and conventions of 
Lectures 15-20, the simple roots are 

(A") sln+i IC Li - L 2 , L 2 - L3 , ••• , Ln-i - L", Ln - Ln+i • 

Li - L 2 , L 2 - L 3 , ••. , Ln-i - L", L", 

Li - L 2 , L 2 - L3, ... , Ln-i - L", 2L", 

Li - Lz, Lz - L3, ... ' Ln-i - L", Ln-i + L". 

Exercise 21.8. Verify this list, and find two simple roots for (G 2 ). 

We next deduce a few consequences of properties (1)-(4), which indicate 
how strong these axioms are. They will be used in the present classification of 
abstract systems, as well as in the following section. 

(5) If ex, f3 are roots with /3 ::/:- ±ex, then the ex-string through /3, i.e., the roots of 
the form 

/3 - pex, f3 - (p - 1 )ex, ... , f3 - ex, /3, /3 + ex, /3 + 2ex, ... , /3 + qex 

has at most four in a string, i.e. p + q ~ 3; in addition, p - q = npa· 

Indeed, since ~(/3 + qex) = f3 - pex, and 

~(/3 + qex) = (/3 - npaex) - qex, 

we must have p = npa + q, which is the second equality. For the first, we may 
take p = 0, and then q = -nfla• which we have seen is an integer no larger 
than three. As a consequence of (5) we have 

(6) Suppose ex, /3 are roots with /3 ::/:- ±ex. Then 

(/3, ex) > 0 ~ex - f3 is a root; 
(/3, ex) < 0 ~ex + f3 is a root. 

If (/3, ex) = 0, then ex - p and ex + p are simultaneously roots or nonroots. 

(7) If ex and /3 are distinct simple roots, then ex - p and p - ex are not roots. 

This follows from the definition of simple, since from the equation 
ex = /3 + (ex - /3), ex - /3 cannot be in R +, and similarly -(ex - /3) = /3 - rJ. 

cannot be in R+. From (6) and (7) we deduce that (a, /3) ~ 0, i.e., 

(8) The angle between two distinct simple roots cannot be acute. 

(9) The simple roots are linearly independent. 

This follows from (8) by 

Exercise 21.9*. If a set of vectors lies on one side of a hyperplane, with all 
mutual angles at least 90°, show that they must be linearly independent. 
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(I 0) There are precisely n simple roots. Each pos.itiv~ root ~an be written 
uniquely as a non-negative integral linear combination of simple roots. 

Since R spans IE, the first statement follows from (9), as does the u~iqueness 
of the second statement. The fact that any positive root ~~n be w~ttten as a 

-1·tive sum of simple roots follows readily from the defimtton, for tf oc were a 
pos · h · 
positive root with minimal l(oc) that ~o.uld not be. so written, t en oc ts not 
simple, so oc = p + y, with /3 and y pos1t1ve roots with 1(/3), l(y) < l(oc~. . 

Note that as an immediate corollary of (10) it follows that no root 1s a linear 
comhination of the simple roots ex1 with coefficients of mixed sign. For example, 
(7) is just a special case of this. 

The Dynkin diagram of the root system is drawn by drawi~g one node. 0 
for each simple root and joining two nodes by a number of Imes depending 
on the angle 9 between them: 

no lines 0 0 if ~ = 7rl2 

one line 0---0 if ~ = 27rl3 

two lines a7:o if ~ = 37ri4 

three lines CE:$ED if ~ = 57rl6 . 

When there is one line, the roots have the same length; if two or three lines, 
an arrow is drawn pointing from the longer to the shorter root. 

Exercise 21.10. Show that a root system is irreducible if and only if its Dynkin 
diagram is connected. 

We will see later that the Dynkin diagram of a root system i!\ independent 
of the choice of direction, i.e., of the decomposition of R into R+ and R-. 

*21.2. Classifying Dynkin Diagrams 

The wonderful thing about Dynkin diagrams is that from this very simple 
picture one can reconstruct the entire Lie algebra from which it came. We will 
sec this in the following section; for now, we ask the complementary question 
of"" hich diagrams arise from Lie algebras. Our goal is the following classifica
tion theorem, which is a result in pure Euclidean geometry. (The subscripts 
on the labels (A"), ... are the number of nodes.) 

Theorem 21.11. The Dynkin diagrams of irreducible root systems are precisely: 

- I 
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0-----0---- . . . . ----0--0 (n ~ 1) 

(Bn) (n<!:2) 

(Cn) 0-----0---- .... -a:¢:o 

(Dn) (}-{)- .... -< (n ~4) 

The first four are those belonging to the classical series we have been 
studying: 

(An) sln+i C 
(Bn) SOzn+l C 
(Cn) SP2nC 
(Dn) SOznC 

The restrictions on n in these series are to avoid repeats, as well as degenerate 
cases. Indeed, the diagrams can be used to recall all the coincidences we have 
seen: 

When n = 1, all four of the diagrams become one node. The case (0 1) is 
degenerate, since so2 C is not semisimple, while the coincidences (C 1 ) = (B 1 ) == 
(A 1 ) correspond to the isomorphisms 

o. 
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For n = 2, (02 ) = (A1 ) x (A1 ) consists of two disjoint nodes, correspond
ing to the isomorphism 

o. 
The coincidence (C2 ) = (B2) corresponds to the isomorphism 

sp4 C ~ so 5C a:::¢:n = o=7=D\. 
For n = 3, the fact that (03 ) = (A3 ) reflects the isomorphism 

PROOF OF THE THEOREM. Our desert-island reader would find this a pleasant 
pastime. For example, if there are two simple roots with angle Srr/6, the plane 
of these roots must contain the G 2 configuration of 12 roots. It is not hard to 
sec that one cannot add another root that is not perpendicular to this plane, 
without some of the 12 angles and lengths being wrong. This shows that (G 2) 

is the only connected diagram containing a triple line. At the risk of spoiling 
your fun, we give the general proof of a slightly stronger result. 

In fact, the angles alone determine the possible diagrams. Such diagrams, 
without the arrows to indicate relative lengths, are often called Coxeter 
diayrams (or Coxeter graphs). Define a diagram of n nodes, with each pair 
connected by 0, 1, 2, or 3 lines, to be admissible if there are n independent unit 
vectors e 1, ... , en in a Euclidean space IE with the angle between e1 and ei being 
n/2, 2rr/3, 3rr/4, or 5rr/6, according as the number oflines between correspond
ing nodes is 0, 1, 2, or 3. The claim is that the diagrams of the above Dynkin 
diagrams, ignoring the arrows, are the only connected admissible diagrams. 
Note that 

(ei, e1) = 0, - 1/2, -J2/2, or -}3/2, (21.12) 

according as the number of lines between them is 0, 1, 2, or 3; equivalently, 

4(e1, e1)2 = number of lines between e1 and e1• 

The steps of the proof are as follows: 

(21.13) 

(i) Any subdiagram of an admissible diagram, obtained by removing some 
nodes and all lines to them, will also be admissible. 

(ii) There are at most n - 1 pairs of nodes that are connected by lines. The 
diayram has no cycles (loops). 

Indeed, if e1 and e1 are connected, 2(ei. e1) ~ -1, and 

0 < (L ei, L e1) = n + 2 L (e1, e1), 
i<l 

which proves the first statement of(ii). The second follows from the first and (i). 
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(iii) No node has more than three lines to it. 

By (i), we may assume that e1 is connected to each of the other nodes; by 
(ii), no other nodes are connected to each other. We must show that 
L'i= 2 4(e1, e1)

2 < 4. Since e2, ... , en are perpendicular unit vectors, and e1 is 
not in their span, 

n 

1 = (e1, ei)2 > L (e1, e1)2, 
)=2 

as required. 

(iv) In an admissible diagram, any string of nodes connected to each other 
by one line, with none but the ends of the string connected to any other nodes, 
can be collapsed to one node, and resulting diagram remains admissible: 

ex D ex D 
::0--0--- . . . . --()---0 "V'> :a 

a D a D 

If e 1 , ••• , e, are the unit vectors corresponding to the string of nodes, then 
e' = e1 + · · · + e, is a unit vector, since 

(e', e') = r + 2((e1, e2) + (e2, e3) + · · · + (e,-1, e,)) 

= r - (r - 1). 

Moreover, e' satisfies the same conditions with respect to the other vectors 
since (e', e1) is either (e1, e1) or (e,, e1). 

Now we can rule out the other admissible connected diagrams not on our 
list. First, from (iii) we see that the diagram (G2 ) has the only triple edge. Next, 
there cannot be two double lines, or we could find a subdiagram of the form: 

and then collapse the middle to get c > 0 < ), contradicting (iii). Similarly 
there can be at most one triple node, i.e., a node with single lines to three other 
nodes, by 

>- .... -< x 
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~Y the same reasoning, there cannot be a triple node together with d bl 
ltne: a ou e 

To finish the case with double lines, we must simply verify that 

is not admissible. Consider general vectors v = a e + a e a d -
W 1 1 2 2• n w - a 3 e3 + 

a4e4 + a5 e5 • e have 

llvll
2 = af + ai - a1a2, JlwJ1 2 =a~+ a~+ a; - a3a4 - a

4
a

5
, 

a~d (v, w) = -a2a~/J2. ~e want to choose v and w to contradict the 
:auchy -Schwarz mequahty (v, w)2 < //v/1 2JlwJ12. For this we want /a

2
//JlvJI 

and /a3//l/wJI to be as large as possible. 

Ex~cise 21.14. Show that these maxima are achieved by taking a
2 

= 2a
1 

and 
aJ - 3a5 , a4 = 2a5 • 

In fact, v = e1 + 2e2, w = 3e3 + 2e4 + e5 do give the contradictory 

(v, w)2 
= 18, //v/1 2 = 3, and //w// 2 = 6. 

Finally, we must show that the strings coming out from a triple node cannot 
be longer that those specified in types (On), (E6 ), (E7 ), or (E

8
). First, we rule out 

Consider the three perpendicular unit vectors: 

u = (2e2 + e3)/.j3, v = (2e4 + e5)/.j3, w = (2e6 + e7)/.j3. 
l'hen · ("') · as m 111 , smce e 1 is not in the span of them, 
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1 = lle 1 ll 2 > (e 1, u)2 + (e 1, v)2 + (e 1, w)2 = 1/3 + 1/3 + 1/3 = 1, 

a contradiction. 

Exercise 21.15*. Similarly, rule out 

and 

(The last few arguments can be amalgamated, by showing that ifthe legs from 
a triple node have lengths p, q, and r, then 1/p + 1/q + 1/r must be greater 
than 1.) 

This finishes the proof of the theorem. D 

§21.3. Recovering a Lie Algebra from Its 
Dynkin Diagram 

In this section we will complete the classification theorem for simple Lie 
algebras by showing how one may recover a simple Lie algebra from the data 
of its Dynkin diagram. This will proceed in two stages: first, we will see how 
to reconstruct a root system from its Dynkin diagram (which a priori only 
tells us the configuration of the simple roots). Secondly, we will show how 
to describe the entire Lie algebra in terms of its root system. (In the next 
lecture we will do all this explicitly, by hand, and independently of the general 
discussion here, for the simplest exceptional case (G2); as we have noted, the 
reader may find it useful to work through §22.1 before or while reading the 
general story described here.) 

To begin with, to recover the root system from the Dynkin diagram, let 1X_1 • 

••• , IX" be the simple roots corresponding to the nodes of a connected Dy~kin 
diagram. We must show which non-negative integral linear combinations 
L m;IX

1 
are roots. Call L m1 the level ofL m 11X1• Those of level one are the simple 

roots. For level two, we see from Property (2) that no 21X1 is a root, and by 
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Property (6) that IX1 + IX1 is a root precisely when (oc1, oc1) < 0, i.e., when the 
corresponding nodes are joined by a line. 

Suppose we know all positive roots oflevel at most m, and let p = Lm1oc1 

be any positive root oflevel m. We next determine for each simple root IX = oc1, 

whether P +IX is also a root. Look at the oc-string through p: 
P - poc, ... , p, ... , P + qlX. 

We know p by induction (no root is a linear combination of the simple roots 
:1.; with coefficients of mixed sign, sop ~ m1 and P - poc is a positive root). By 
Property (5), q = p - np,.· So P + IX is a root exactly when 

(p, IX) n 

p > np,. = 2-( -) = L m1n,.,,.. 
OC, IX 1=1 

In effect, the additional roots we will find in this way are those obtained by 
reflecting a known positive root in the hyperplane perpendicular to a simple 
root IX; (and filling in the string if necessary). 

To finish the proof, we must show that we get all the positive roots in this 
way. This will follow once from the fact that any positive root of level m + 1 
can be written in at least one way as a sum of a positive root of level m and 
a simple root. If y = }2 r11X1 has level m + 1, from 

0 < (y, y) = }2 r1(y, oc1), 

some (y, oc1) must be positive, with r1 > 0. By property (6), y - IX; is a root, as 
required. 

By way of example, consider the rank 2 root systems. In the case of sl3 C, we 
start with a pair of simple roots oci, 1X2 with n,.

1
,,.

2 
= 1, i.e., at an angle of 2n/3; 

as always, we know that P = oci + 1X 2 is a root as well. 

On the other hand, since P - 21Xi = oc 2 - 1X 1 is not a root, p + oci cannot be 
either, and likewise P + oc 2 is not; so we have all the positive roots. 
. In the case ohp4 C, we have two simple roots oci and oc 2 at an angle of 3n/4; 
In terms of an orthonormal basis Li and L2 these may be taken to be Li and 
L2 - L,, respectively. 
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We then see that in addition to fJ = °'i + ix2, the sum {J + °'i = 2ixi + ix2 is a 
root-it is just the reflection of ix2 in the plane perpendicular to °'i -but 
{J + ix2 = °'i + 2ix2 and 3ixi + ix2 are not because °'i - ix2 and ix2 - °'i are not 
respectively (alternatively, we could note that they would form inadmissible 
angles with °'i and ix2 respectively). 

Finally, in the case of(G2), we have two simple roots °'i· ix2 at an angle of 
Sn/6, which in terms of an orthonormal basis for IE may be taken to be Li and 
(-3Li + j"JL2)/2 respectively. 

Reflecting ix2 in the plane perpendicular to °'i yields a string of roots cx2 + °'i, 
ix2 + 2ixi and ix2 + 3oc2. Moreover, reflecting the last of these in the plane 
perpendicular to ix2 yields one more root, 2ix2 + 3oc3. Finally, these are all the 
positive roots, giving us the root system for the diagram (G2). 

We state here the results of applying this process to the exceptional 
diagrams (F 4), (E6), (E 7 ), and (Es) (in addition to (G2)). In each case, Li, ... , 
Ln is an orthogonal basis for IE, the simple roots ix1 can be taken to be as follows, 
and the corresponding root systems are given: 

3 fi 
(G2) °'i =Li, °'2 = -2.Li + 2L2; 

R+ ={Li. j"3L2, ±Li+ f L2, ±~Li+ f L2 }· 

(G2) thus has 6 positive roots. 

In particular, (F 4) has 24 positive roots. 

Li - L 2 - L3 - L4 - L5 + j"3L6 
°'i = 2 ' 
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IX3 = L2 - Li, 

IX5 = L4 - L3, 

IX4 = L3 - L2, 

°'6 = L3 - L4; 

R+ = {L, + L1}1<Js5 u {L; - L1}J<is 5 

u {±Li ± L2 ± L3 ~ L4 ± L5 + j"JL6} . 

number of minus signs even 

(E1,) has 36 positive roots. 

- Li - L2 - ... - L6 + fiL1 
°'i - -------=---_____.!_ _ __:_ 

2 ' 

°'6 = L5 - L4, ix 7 = L 6 - Ls; 

R+ = {L, + L1}1<Js6 u {L1 - L1}1< 1s 6 u {..j2L
7

} 

u {±Li ± L2 ± · ~ ± L 6 + ..j2L7 } • 

number of minus si1ns odd 

Thus, (E7 ) has 63 positive roots. 

- Li - L2 - ... - L1 + Ls 
°'i - -------'.______.'.'. 

2 ' 

°'6 = Ls - L4, °'1 = L6 - Ls, °'s = L 7 - L6. 

R+ = {L; + L1L<1ss u {L; - L1}1<1ss 

u {±Li± L2 ± ~ ·· ± L 7 +Ls} . 

number of minus sians even 

(E8) has 120 positive roots. 

333 

. Fo_r (G2) and (F4) the simple roots are listed in order reading from left to 
nght in their Dynkin diagrams 

as in the classical series (A")-(D"). For (Es). the numbering is 
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. ) are obtained by removing the last one or two 
while those for (E1) and (E6 t f (E ) we can find the root system 

d N t that given the root sys em o s ' . . 
no es. o e • . b panned by the first seven or six simple 
of (E1) or (E6) by takmg the su space s 

roots. 

. 2116• ( ) Verify the above lists of roots. 
Exercise · · a h onding fundamental weights. 

(b) In each case, calculate t e corresp 

t no two of the root systems of (A")-(Es) are 
Exercise 21.17*. Show tha h 

0 
k. diagram of a root system is indepen

isomorphic, and deduce that t e yn m 
dent of choice of positive roots. 

. . he last fact is the observation that any two 
A more sattsfymg reaso~ fort 1 t of the Weyl group-the group 

choices of positive r.oots di~er ~e :~; ~:;~ots. This can be seen directly for 
generated by reflections W,. m '" p 1 proof that two choices differ by 
each of the diagrams (An)-(Es); ior a gene~~ 

0 29 f h w yl group see Propos1tton · · . 
an element o t e . e ' h of conveying the data of a Dynkm 

We should mention here anot er wa~ . ( - n ) where we 
. . . 1 the n x n matnx of integers n1.1 - "•"J ' 

diagram. This ts s1mp Y . f the Dynkin diagram (or of the 
k - 2· it is called the Cartan matrix o . . 

~ieea~~~bra)~ Thus, for example, the Cartan matnx of (An) ts 

2 -1 0 ° 
-1 2 -1 0 ° 

0 -1 2 -1 0 

-1 2 -1 

-1 2 
0 0 
0 0 

1 often in a variety of seemingly unrelated 
These matrices pop up remar~ab y 1 ' major role in the present text, but 
areas of mathematics. They will not p a~ a 1 dy in one form or another, 
the reader has probably enc.ountered t em a rea 
and will probably do so agam. 

· d "t determinant, for each 
. 2118* Compute the Cartan matnx, an t s 

Exercise · · 
Dynkin diagram. 

t m determines the Lie algebra. We 
The next task is to see how the root sys e ther ways to see the existence; 

concentrate on the uniqueness, si~ce there areeoalready seen the Lie algebras. 
indeed, for all but the five exceptions we ?av oblem starting with a straight· 
We will describe several approaches to t~t~ p~ h"ng ~ith a slick but abstract 
forward and computational method an tnts t 

approach. 
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Assume as before that g is a simple Lie algebra, with a chosen Cartan 
subalgebra 1) and decomposition of the roots R into positive and negative 
roots; let oc1, ... , oc" be the simple roots. The Dynkin diagram information is 
the knowledge of (oc1, oc1) for all i =I- j. Let H1 = H,., be the corresponding basis 
of 1), defined by the rule we have seen in Lecture 14: if {Ji} is the basis 
corresponding via the Killing form to {oc1}, set H1 = 27i/(oc1, oc1). 

Choose any nonzero element X 1 in the root space g"•' for 1 ::::;; i ::::;; n. This 
determines elements Yj in 9-«, such that [X1, Yj] = H1• We claim first that these 
3n elements {H1, X1, Yj} generate 9 as a Lie algebra. This follows from 

Claim 21.19. If oc, /3, and oc + /3 are roots, then [9", 911 ] = 9«+/J· 

PROOF. Again look at the oc-string through 911 , i.e., EBk e z 9p+k«· This is an 
irreducible representation of s" ~ sl2C, since all the terms are one dimensional 
(this follows from the fact that no /3 + koc can be zero, given that f3 =I- ± oc). But 
now if [9", 911 ] = 0, EBk~o 9p+k« would be a nontrivial subrepresentation. D 

For each positive root /3, we have seen that can write f3 as a sum of simple 
roots /3 = oc1, + · · · + oc1• such that each of the sums oc1, + · · · + oc1• is a root, 
I ~ s ::::;; r. If we choose such a presentation for each /3, and set 

X11 = [X1., [X1._,, ••• , [X1,, X1,] ••• ]] 

and 

Y11 =[Yi •• [Yi._,, ... , [Yi,, Yi,] ... ]], 
then the collection 

(21.20) 

forms a basis for 9. Note that if f3 is not simple, there is no reason to expect 
[X 11 , Y11 ] to be the distinguished element H11 in1). 

We want to show that the multiplication table for these basis elements is 
completely determined by the Dynkin diagram. The main difficulty is that the 
ordering of the simple roots in the above expression for f3 may not be unique. 
For example, suppose 

/3 = (oc1 + OC2) + OC3 = (oc2 + OC3) + OC1, 

with a 1 + oc2 and oc2 + oc3 roots. We must compare [X3, [X2 , X1]] with 
[X t • [X3, X 2 ]]. In fact, they must be negatives of each other. For, by Jacobi, 
we have 

[XI• [X3, X2]] = -[X3, [X2, X1JJ - [X2, [Xi, X3]] = -[X3, [X2, X1JJ, 

noting that [X1, X3] = 0 since oc 1 + oc3 cannot be a root, e.g., by step (ii) of 
the preceding section. 

For any sequence I = (i 1 , ••• , i,), 1 ::::;; i1 ::::;; n, set 
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<X.1 = <X.1, + ... + a.1,.. 

X 1 = [X1., [X1,_,, ••• , [X12 , X1,] ••• ]], 

lJ = [Y; •• [¥;,_,, ... , [Y;2, li,J ... ]]. 

Call I admissible if each partial sum .x1, + · · · + a.1• is a root, 1 ~ s ~ r; note 
that I is admissible exactly when X 1 is not zero. 

Lemma 21.21. If I and J are two admissible sequences for which a.1 = a.i. then 
there is a nonzero rational number q determined by I, J, and the Dynkin diagram, 
such that X1 = q · X1• 

PROOF. Let k = i, be the last entry in I. If j, = k as well, the result follows by 
induction on r. We reduce the general case to this case, by maneuvering to 
replace j, by k. We have first 

X1 = q1 • [Xk, [Y,., X1]], 

with q 1 a nonzero rational number depending only on J, k, and the Dynkin 
diagram, since a.1 - a.k = a.1 - a.k is a root; the point is that we know how 
s11k ~ sl2 acts on the a.k-string through a.1 as soon as we know the length of the 
string, and this is Dynkin diagram information. Next, let s be the largest 
integer such that j. = k. Then 

[Y,., X,J = [X1.• ... [X1 •• ,. [Y,., [Xk, XK]]] ... ], 

where K = (j1, •.• , j.), since [Y,., [Xi. Z]] = [X" [Y,., Z]] when i =F k. Finally, 

[Y,., [Xk, XKJJ = q2. XK, 

with q2 a nonzero rational number depending only on K, k, and the Dynkin 
diagram, since a.K + a.k is a root. Combining these three equations, we get 

x, = qlq2. [Xk, [X1.• ... [X1 •• ,. XK] ... ]], 

which suffices since the sequence for the term on the right ends in the same 
integer k as I. 0 

Proposition 21.22. The bracket of any two basis elements in (21.20) is a rational 
multiple of another basis element, that multiple determined from the Dynkin 
diagram. 

PROOF. This is clear for brackets of an H1 with any basis element. Lemma 21.21 
handles brackets of the form [X1, X1 ], and those involving only Y's are 
similar. For brackets [Y1, X1 ], it suffices inductively to compute [Yk, X,] as 
a rational multiple of some XK, with K shorter than J (or of Hk if J has one 
term); but this was worked out in the proof of the lemma. D 

Exercise 21.23•. (i) Show that in (G2 ) each positive root can be written in only 
one way as a sum of simple roots, up to the order of the first two roots. 
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(ii) Work out the multiplication table from the D n . . ... 
that the result is indeed a Lie algebra wh· h . ( Jbkm .diagram. (111) Verify 

' IC IS VISJ ly) simple. 

This exercise will be worked out in detail to start th 
there is nothing but lack of time to kee u f . e ?ext lecture. Of course, 
exceptional Dynkin diagrams do lead 6 t~er~:~enfym~ t~at the other four 
algebras, but doing it by hand gets pr;tt YI b . prescnption, to honest Lie 
of the other methods available. y a onous, and we will describe some 

. The fact that the multiplication table can be defined with f I 
c1ents becomes important when one wa t t d ra iona coeffi-

b h" n s o re uce them modul · 
num ers, w ich we will not discuss here. The fact th t th b o pnme 
be real, on the other hand, will come u later a _ey can e taken to 
complex Lie algebras and groups. p ' when we discuss real forms of 

There is a more general and el t 
Write nu in place of n . Form t;;~n wL~y tlo pbroceed, given by Serre [Se3]. 

11,11J ree 1e a ge ra on genera tors 

H1 •... , Hn, Xi. ... , Xn, Yi v 
'• • •' .In, 

i.e., form the free (tensor) algebra with this b . . . 
relations [A, B] + [B, A] = 0 and the . asis, _and d1v1de modulo by the 
algebra, and divide by the relations Jacobi relation. Then take this free Lie 

[H;, H1] = 0 (all i, j); 

[Hi. X1] = n1;X1 (all i, j); 

and, for all i =F j, 

[X1, Yi] = H; (all i); [X1, lj] = o (i =F j); 

[X" X1] = 0, 

[X1, [X1, X1]] = O, 

[X,, [X1, [Xi. X1]]] = o, 
[X,, [Xi. [X1, [X,, X1]]]] = 0, 

[H,, lJ] = -n11 lJ (all i, j); 

[Y;, }j] = 0 

[lj, [Y;, lj]] = 0 

[Y;, [Y;, [fl, }j]]] = 0 

[Y;, [Y;, [fl, [Y;, }j]]]] = 0 

if nu= O; 

if niJ = -1; 

ifn11 = -2; 

if nu= -3. 

Exercise 21.24. Verify that if 0 t · .. 
given Dynkin diagram th b ne s arts ~1th a sem1s1mple Lie algebra with a 

• e a ove equations must hold. 

Serre shows ([Se3 Cha VI A 
algebraisafinite-dim~nsio~·l .~P·\cf. [Hul §18]) that the resulting Lie 
generated by H H a s~m1S1mp e Lie algebra, with Cartan subalgebra 
Proof of the exi;;e~~~ of :.7dthg1v~n rlooLt ~ystem. In particular, this includes a 

H · e s1mp e 1e algebras 
ere ts a third approach to uni ue . 

subaJgebras g and g' and h . q ness. ~~ppose g and g', with given Cartan 
systems. There is an '1.som c oh~ce of positive roots, have isomorphic root 
Ch orp ism g--+ i.1 t k" . 

oose arbitrarily nonzero t ., ' a mg correspondmg H1 to H,' 
, vec ors X and X' · h · 
corresponding to the simple roots. ' i m t e root spaces of g and g' 
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Claim 21.25. There is a unique isomorphism from g to g' extending the iso
morphism of I) with I)', and mapping X 1 to x; for all i. 

PROOF. The uniqueness of the isomorphism is easy: the resulting map is 
determined on the Yi by sl2 considerations, and the H1, X 1, and Yi generate g. 
For the exister:_ce of the isom_.?rphism consider t~e subalgebra g of g © g' 
generated by H1 = H1 Et> H;, X1 = X 1 © x;, and Yi= Yi© Y;'. It suffices to 
prove that the two projections from g tog and g' are isomorphisms. The kernel 
of the second projection is f ED 0, where f is an ideal in g. Since g is simple, f 
is either 0, as required, or f = g. In the latter case, we must have g = g Et> g'. 

To see that this is impossible, consider a maximal positive root {3, 
take nonzero vectors Xp, Xfi in the corresponding root spaces, and set 
Xp = Xp Et> Xfi, a highest weight vect~r in g. Let W be the subspace of g 
obtained by successively applying all Y;'s. Then Wis a proper subspace of g, 
since its weight space Wp corresponding to /3 is one dimensional. By the 
argument we have seen several times, g preserves W Now if g = g © g', W 
would be an ideal in g ED g', and this would force Xp ED 0 to belong to W, 
making Wp two dimensional again. D 

To finish this story, we should show that the simple Lie algebras corre
sponding to two different Dynkin diagrams cannot be isomorphic, i.e., that 
the two choices made in going from a semisimple Lie algebra to Dynkin 
diagram do not change the answer. The general facts are: 

(1) Any two Cartan subalgebras of a semisimple Lie algebra are conjugate, 
i.e., there is an inner automorphism by an element in the corresponding 
adjoint group, which takes one into the other. 

(2) Any two decompositions of a root system into positive and negative roots • 
differ by an element of the Weyl group. 

These are standard facts which are proved in Appendix D. Both statements 
are subsumed in the fact that any two Borel subalgebras of a semisimple Lie 
algebra are conjugate, a Borel subalgebra being the subspace spanned by the 
Cartan subalgebra and the root spaces g,. for positive ix. For those readers 
who crave logical completeness but do not want to go through so much 
general theory, we observe that most possible coincidences can be ruled out 
by such simple considerations as computing dimensions, and others can be 
ruled out by simple ad hoc methods, cf. Exercise 21.17. 

Finally, we must also prove the "existence theorem": that there is a simple 
Lie algebra for each Dynkin diagram. Serre's theorem quoted above gives a 
unified proof of existence. But we have seen and studied the Lie algebras for 
the classical cases (A")-(D"), and it is more in keeping with the spirit of these 
lectures to at least try to see the five exceptions explicitly. This is the subject 
of the next lecture. 

LECTURE 22 

g2 and Other Exceptional Lie Algebras 

This lecture is mainly about 92 , with just enough discussion of the algebraic construc
tions of the other exceptional Lie algebras to give the reader a sense of their complexity. 
!12. being only 14-dimensional, is different: we can reasonably carry out in practice the 
proc~ss described.in ~21.3 to arrive at an explicit description of the algebra by specifying 
a basts and all patrw1se products; we do this in §22.1 and verify in §22.2 that the result 
real!~ is a Lie algebra. In §22.3 we analyze the representations of 9

2
, and arrive in 

particular at another description of 92 : it is the algebra of endomorphisms of a 
seven-dimensional vector space preserving a general trilinear form. (Note that §22.3 
may be read independently of either §22.1, §21.2, or §21.3.) Finally, in the fourth section 
we will sketch some of the more abstract (i.e., coordinate free) approaches to the 
construction of the five exceptional Lie algebras. While the first two sections are 
completely elementary, the constructions given in §22.4 involve some fairly serious 
algebra. 

*22.l: Construction of g2 from its Dynkin diagram 
*22.2: Verifying that 92 is a Lie algebra 
922.3: Representation theory of 92 

*22.4: Algebraic constructions of the exceptional Lie algebras 

§22.1. Construction of g2 from Its Dynkin Diagram 

In t~is section we will _carry out explicitly the process described in the preceding 
secti?n f~r the Dynkm diagram (G2 ), constructing in this way a Lie algebra 
~h with diagram (G2 ) (and in particular proving its existence). 

The first step is to find the root system from the Dynkin diagram. In the 
case of g2 this is immediate; we may draw the root system R c I)* associated 
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to the diagram G 2 as follows: 

a 2 = (-3/2, 13(2) 
<X3 = (-1/2, ./3/2) 

a 5 = (3/2, 13(2) 

Here the positive roots are denoted cx1, with cxi and cx 2 the simple roots. The 
coordinate system here has no particular significance (in particular, recall that 
the configuration of roots cx1 and Pi is determined only up to a real scalar), but 
is convenient for calculating inner products. Note that the Weyl group is the 
dihedral group generated by rotation through an angle of n/3 and reflection 
in the horizontal; the Weyl chamber associated to the choice of ordering of 
the roots given is the cone between the roots cx6 and cx4 • 

As indicated in the preceding section, we start by letting Xi be any eigen
vector for the action of~ with eigenvalue cxi, and X 2 any eigenvector for the 
action of~ with eigenvalue cx 2 • We similarly let Yi and Y2 be eigenvectors with 
eigenvalues Pi and /J2 and set 

Hi= [Xi, Yi] and H2 = [X2, Y2J. 

We can choose Yi and Y2 so that the elements H1 E ~satisfy cxi(Hi) = cx2(H2) == 
2, i.e., 

It follows that 

[Hi, Yi]= -2· Yi and [H2, Y2] = -2· Y2, 

i.e., Hi. Xi, and Yi span a subalgebra s«, ~ sl2 C, with Hi. Xi, and Yi a normalized 
basis for this copy of sl2 C. 

Now, it is clear from the diagram above that there is a unique way ofwriti~g 
each positive root cxi as a sum of simple roots cx1, + · · · + cx1k so that the partial 
sums cx1, + · · · + cx1, are roots for each I ::;; k (modulo exchanging the first two 
terms): we go through the root system by the path 

~22. l. Construction of g2 from Its Dynkin Diagram 

i.e., we write 

IX4 = IXi + IX3 = !Xi + IXi + CX2, 

IX5 = IXi + IX4 = !Xi + !Xi + IXi + CX2, 

CX6 = CX2 + IX5 = CX2 + !Xi + IXi + !Xi + CX2, 

According to the general recipe, this means we now set 

X3 =[Xi, X2J. X4 =[Xi, X
3
], 

Xs = [Xi, X4), X6 = [X2, X
5

], 

and define Y3, · ·., Y6 similarly. The elements H H x X 
then form a basis for the 14 d' . l . i· 2• i· ... , 6• Yi, ... , y6 
. - tmens1ona g2, with Hi and H2 a basis for~ X 
a g~nerator of the eigenspace g«,• and Yi a generator of g.B for i = 1 6, i 

tcrm~eo~~~~ a~ h~ndO~ow is to write down the multiplica'tion tabl: f~~· g. in 
for , ts as1s. course, some products are already known· we kn~w 
and cxam~le, that Hi. X~, and Yi form a normalized basis for sl

2 
C for i = 1 2' 

we ave the relations defining X x and v Y. b ' ' 
additio · k 3 • .•• , 6 si, ···• 6 a ove In 
for .. n.. stnce_we now that the product [Xi, X1] lies in the roots ace . 

each z and J, we see immediately that [X x] - o h p .s«,+«J 
a root. We deduce that i. J - w enever CX1 + cxJ ts not 

[Xi, Xs] =[Xi. X6] = [X2, X3] = [X2. X4] = [X2. X6] = [X3, Xs] 

. . = [X3, X6] = [X4, Xs] = [X4, X6] = [Xs, X6] = 0, 
and likewise 

[~.~]=[~.~]=[~.~]=[~.~]=[~.~]=[~.~] 
=[~.~]=[~.~]=[~.~]=[~.~]=Q 

341 
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Similarly, we know that [Xi. lj] = 0 whenever a.1 + P1 = a.1 - a.1 is not a root; 
this tells us as well that 

[X1 , Y2 ] = [X1 , Y6 ] = [X2 , Y1 ] = [X2 , Y4 ] = [X2 , Ys] = [X3 , Y5 ] 

= [X4 , Y2 ] = [X5 , Y2 ] = [X5 , Y3 ] = [X6 , Y1 ] = 0. 

The multiplication table thus far looks like 

H2 X1 Y1 X2 Y2 X3 Y3 X4 Y4 Xs Ys x6 y6 

H1 0 2X1 -2Y1 • • • • • • • • • "' 
H2 • • 2X2 -2Y2 • • • • • • • • 
X1 H1 X3 0 X4 • Xs • 0 • 0 0 

Y1 0 Y3 • Y4 • Ys • 0 0 0 

X2 H2 0 • 0 0 x6 0 0 • 
Y2 • 0 0 0 0 y6 "' 0 

X3 • • • 0 0 0 "' 
Y3 • • 0 0 • 0 

X4 • 0 • 0 * 
Y4 • 0 • 0 

Xs • 0 • 
Ys • 0 

x6 • 

The next thing to do is to describe the action of H 1 and H 2 on the various 
vectors X

1 
and lj. This can be done using the inner product on l), but it is 

perhaps simpler to go back to the basic idea of restriction to the subalgebras 
s and s For example, if we want to determine the action of H 1 on the 

«1 «2" 

various X
1
, consider how the algebra g = l) ffi(ga, E9 g11,) decomposes as a 

representation of sa,: 

.0 
I 

-3 -1 1 3 

• • • ... . 
\ I 

-2 
I ..- 2 ..... \ u .... 

• :• • ... I I \ ' , 

I I \ 

-3 ... ... -1' 'l ' 3 

• • • '• 
I .0 
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We get two trivial representations (the spans of X6 and Y6 , as already noted); 
one copy of the adjoint representation Sym2 V (the subalgebra sa, itself) 
spanned by X 1, Y1 , and H1 ; and two copies of the irreducible four-dimensional 
representation Sym3 V spanned by X 2 , X 3 , X4 , and X5 and Y5 , Y4 , Y3 , and Y2 • 

Jn particular, it follows that X2 , X3 , X4 , and X 5 are eigenvectors for the 
action of H1 with eigenvalues of -3, -1, 1, and 3, respectively; and likewise 
Y

5
, Y4 , Y3 , and Y2 are eigenvectors with eigenvalues -3, -1, 1, and 3. In 

similar fashion, we consider the decomposition of g under the action of 
,,,

1 
= C{H2 , X 2 , Y2 }: diagrammatically, this looks like 

2 -1 

-2 

Herc we have two trivial representations, spanned by X4 and Y4 , one adjoint 
(s,, itself), and four copies of the standard two-dimensional representation V, 
spanned by X6 and X 5 , X 3 and X 1 , Y1 and Y3 , and Y5 and Y6 . It follows that 
Xf,, X3 , Y1 , and Y5 are eigenvectors for the action of H 2 with eigenvalue 1, 
and likewise X 5 , X 1 , Y3 , and Y6 are eigenvectors with eigenvalue -1. 

Including this information, we can fill in the top two rows of the multipli
cation table: 

fl2 x, Y, x, Y, x, r, x. x, Y, 

II, 0 2X1 -2Y1 -3X2 3Y2 -X3 Y3 X4 -Y4 3X, -3Y, 0 0 
II, -X, Y1 2X2 -2Y2 X3 -Y3 0 0 -X, Y, X 6 -Y6 

Decomposing g2 according to the action of sa, and sa, gives us information 
about the action of X 1 , X2 , Y1 , and Y2 on the other basis vectors as well. 
For example, we saw a moment ago that X 5 and X6 together span a sub-
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representation of g2 under the action of sa,. with ad(X2) carrying X 5 to X6 . 

It follows from this that ad(Y2) must carry X6 back to X 5 : we have 

ad(Y2)(X6 ) = ad(Y2) ad(X2)(Xs) 

= ad(X2) ad(Y2)(X5 ) - ad([X2. Y2])(X5 ) 

= O - ad(H2)(X5) = Xs. 

Similarly, since ad(X2) carries X1 into -X3, which together with X1 spans a 
copy of the standard two-dimensional representation of sa2 ~ sl2 C, it follows 
that ad(Y

2
) will carry -X3 back to X1. Likewise from the fact that ad(Y2) 

carries Y
1 

to -Y3 we see that ad(Y2)(Y3) = -Y1, and since ad(Y2): Y5 1-+ ¥6 , 

ad(X2): Y6 1-+ Ys· 
We can in the same way use the action of sa, to determine the values of 

ad(X 
1
) and ad( Y

2
) on various basis vectors, though because the representation 

of sa, on g
2 

has larger-dimensional components this is slightly more com
plicated. To begin with, consider the representation of sa, on the subspace 
spanned by X

2
, X3, X4, and X5 • We know that ad(X1) carries X2 to X3, and 

since X
2 

is an eigenvector for the action of the commutator [X1, Y1] = H1 

with eigenvalue -3, it follows that ad(Yi) must carry X3 to 3X2: we have 

ad(Y1)(X3) = ad(Y1) ad(X1)(X2) 

= ad(Xi) ad(Yi)(X2) - ad([X1, Y1JHX2) 

= 0 - ad(Hi)(X2) = 3X2. 

Using this, we can next determine the action of Y1 on X4: 

ad(Y1)(X4) = ad(Y1) ad(X1)(X3) 

= ad(Xi) ad(Yi)(X3) - ad(H1)(X3) 

= ad(X1)(3X2) + X3 = 4X3, 

and we calculate likewise that ad(Yi)(X5) = 3X4. Analogously, knowing that 
ad(Y

1
) carries Y2 to Y3 to Y4 to Y5 yields the information that ad(Xi} must 

carry Y
3
, Y

4
, and Y

5 
to 3Y2, 4Y3 and, 3Y4, respectively. Including all this 

information in the chart, the next four rows of our multiplication table are 

H2 Xi Yi X2 Y2 X3 Y3 X4 Y4 Xs Ys x6 y6 

Xi Hi X3 0 X4 3Y2 Xs 4¥3 0 3Y4 0 0 

Yi 0 Y3 3X2 Y4 4X3 Ys 3X4 0 0 0 

X2 H2 0 -Yi 0 0 x6 0 0 Ys 

Y2 -Xi 0 0 0 0 y6 Xs 0 

We next have to find the commutators of the basis elements X1 and lj for 
i, j ~ 3. We cannot do this by looking at the action of the subalgebras 

§22.l. Construction of gi from Its Dynkin Diagram 345 

generated by X, and lj, since for i > 3 we do not know the 
[
X Y.] R th h . -:-- commutator 

1• 1 • a er, t e way to do this 1s outlined in the g 1 f · d · . . enera proo m the 
prece mg section: we Just use the expression of the X and Y. b k th t x x 1 1 as rac ets of 

e genera ors . l • 2• Y1' and Y2 to reduce the problem to brackets with these 
~enerators, which we now know. Thus, for example, the first unknown en 
m the table at present is the bracket [X3, y3]. We calculate this b "t" Xtry 
as [X1, X2], so that Y wn mg 3 

ad(X3)(Y3) = ad([X1, X2])(Y3) 

= ad(X1) ad(X2)(Y3) - ad(X2) ad(Xi)(Y3) 

= ad(Xi)(- Yi) - ad(X2)(3 y2) 

= -H1 - 3H2. 

Likewise, to evaluate [X3, x4] we have 

ad(X3)(X4) = ad([X1, X2])(X4) 

= ad(Xi) ad(X2)(X4) - ad(X2) ad(Xi)(X4) 

= -ad(X2HXs) = -X6 • 

In this way, we can evaluate all brackets with X . knowing th 
can reduce any bracket with X4 to one involving Jc' and X b ese'.t_we 
X = [X X] a d C . . . 1 3 Y wn mg 

4 . • l•. 3 ' n so on. ontmumg m this way we may com l t 
mult1phcatton table: • Pee our 

H, x, Y1 x, Y, x, Y, x. y• x, Y, x. Yo 

II, 0 2X1 2Y1 JX, JY, x, Y, x. -Y. JX, -JY, 0 0 
11, -x, Y, 2X2 -2Y2 x, -Y, 0 0 -x, Y, x. -Y. 
x, Hi x, 0 x. 3Y2 x, 4Y3 0 3Y4 0 0 
y 

I 0 Y, 3X2 y• 4X3 Y, 3X4 0 0 0 
x, H2 0 -Y, 0 0 x. 0 0 Y, 
Y, -X, 0 0 0 0 Yo x, 0 

X.1 -H, 
-3H2 

-x. 4Y1 0 0 0 3Y4 

Y, 4X1 -Y. 0 0 3X4 0 

x. 8H1 

+12H2 
0 -12Y1 0 12Y3 

Y, -12X1 0 12x, 0 

x, -36H1 0 36Y2 -36H2 
Y, 36X2 0 

X,, 36H1 

+72H2 

Ofc · the mo ourse, m r~trospect we see that the basis we have chosen is far from 
and X st;ym;etnc one possible: for example, if we divided X4 and y: by 2 
the tabie ;~uid :d Y6 by 6, and changed the signs of Xs and Y3, the f~rm of 
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Table 22.l 

H, 
H2 
x, 
Y, 
X2 
Y2 
X3 
Y3 
x. 
y• 
x, 
Y, 
x. 

H2 x, Y, X2 Y2 X3 Y3 x. y• x, Y, x. Yo 

0 2x1 -2Y1 -3X2 3Y2 -X3 Y3 x. -Y. 3X, -3Y, 0 0 
-X, Y, 2X2 -2Y2 X3 -Y3 0 0 -X, Y, x. -Y. 

H, X3 0 2x. -3Y2 -3X, -2Y3 0 y• 0 0 
0 -Y3 3X2 -2Y4 2X3 3Y, -x. 0 0 0 

H2 0 Y, 0 0 -x. 0 0 Y, 
-X, 0 0 0 0 Yo -x, 0 

H, +3H2 -3X6 2Y1 0 0 0 r. 
-2X1 3Y6 0 0 -x. 0 

2H1 +3H2 0 -Y, 0 -YJ x, 0 x, 0 
H 1 +H2 0 -Y, 

X2 0 
H1 +2H2 

There was another good reason for these changes: now each of the brackets 
[X1, li] will be the distinguished element of l) corresponding to the root rx.1• If 
we denote this element by H1, then we read off from the table that 

and 

H 3 = H 1 + 3H2, 

H5 =Hi+ H2, 

H1 = [X1, li], 

for i = 1, 2, 3, 4, 5, 6. 

H4 = 2Hi + 3H2, 

H6 =Hi+ 2H2, 

[H1, li] = -2li, 

§22.2. Verifying That g2 Is a Lie Algebra 

(22.2) 

(22.3) 

The calculation of the preceding section gives a complete description of what 
the Lie algebra 92 must look like, but there is still some work to be done: 
unless we know that there is a Lie algebra with diagram (G2 ), we do not know 
that the above multiplication table defines a Lie algebra, let alone a simple 
one. In fact, the simplicity is not much of a problem (cf. Exercise 14.34), but 
to know that it is a Lie algebra requires knowing that the Jacobi identity is 
valid. One could simply check this from the table for all ( 13

4
) triples of elements 

from the basis, a rather uninviting task. 
There is another way, which gives more structure to the preceding calcula· 

tions, and which will give a clue for possible constructions of other Lie 
algebras. The root diagram for (G2 ) is made up of two hexagons, one with 
long arrows, the other with short. This suggests that we should find a copy of 
the corresponding Lie algebra sl3 C inside 92 • The subspace spanned by 1> 
and the root spaces corresponding to the six longer roots is clearly closed 
under brackets, so is the obvious candidate. The long roots are rx. 5 , rx.2, and 
rx.6 = rx. 5 + rx. 2 , and their inverses. So we define 90 to be the subspace spanned 
by the corresponding vectors: 

lj22.2. Verifying That !his a Lie Algebra 
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90 = C{H5, Hi, X5, Ys, X 2 , Y2 , X6 , Y6 }. 

The multiplication table for 90 is read off from Table 22.1: 

H2 X5 Y5 X2 Y2 x6 y6 

Hs 0 2X5 -2Y5 -X2 Y2 x6 -Y6 
H2 -Xs Ys 2X2 -2Y2 x6 -16 
Xs Hs x6 0 0 -Y2 
l'5 0 -16 X2 0 
X2 H2 0 Ys 
Yi -Xs 0 
x6 Hs + H2 

This is exactly the multiplication table for sl3 C, with its standard basis (in the 
same order): 

sl3C = C{E1,1 - E2,2, E2,2 - E3,3, Ei,2• E2,i. E2,3, E3, 2, Ei, 3, E3,i}. 
So we have determined an isomorphism 

9o;;;;; sl3 C. 

(Note right away that this verifies the Jacobi identity for triples taken from g
0

.) 

The rest of the Lie algebra must be a representation of the subalgebra 
~o ~ sl3 C, and we know what this must be: the smaller hexagon is the union of 
t~c two triangles which are the weight diagrams for the standard representa
tion of sl3 and its dual, which we denote here by Wand W*; Wis the sum of 
the root spaces for rx.4 , P1, and P3 , while w• is the sum of those for p

4
, rx.i, 

and ix3 • 

cx6 

Sl3 1C 

CX2 

w• 

w 

~s 

A . 
gain, a look at the table shows that the vectors X y: and y: form a basis 

for w c3 h 4, 1 • 3 = t at corresponds to the standard basis e
1

, e
2

, and e
3

, and 
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similarly Y
4

, X 1 , and X 3 form a basis for W* = (C 3 )* that corresponds to 
the dual basis ef, e!, and ej: we have 

92 = 9oEB WEB W*. 

With these isomorphisms, the brackets 

9o x w --+ w and 9o x w• --+ w• 

correspond to the standard operations of sl3C on C
3 

and (C
3
)*. 

Next we look at brackets of elements in W Note that [W, W] is contained 
in w•, either by weights or by looking at the table. The table is 

or -2e~ 
0 

2e~ 
-2eT 

Identifying w = c•, w• = (C 3 )* as above, we see that the bracket W x W--+ 

w• becomes the map 

w x W--+ w• =NW. v x WI-+ -2·v /\ w. 

Similarly for w•, we have [W*, W*] c W, and the bracket is identified with 

the map 

w• x w•--+ w = Nw•, 'P x t/J1-+2·<p /\ t/J. 
Finally we must look at brackets of elements of W with those of W*, which 

land in 90 • Here the table is 

Y4 x. X3 

X4 2H5 + H2 3X5 3X6 
¥1 3¥5 H2-Hs 3X2 

Y3 3¥6 3¥2 -H5 - 2H2 

In terms of the standard bases, [ei, en = 3E1,1 - oiJI. Intrinsically, this 

mapping 

[ , ]: W x W*--+ sl3 C c 9I(W) 

can be described by the formula 

[v, <p] (w) = 3<p(w)v - <p(v)w 

for V, W E W and <p E W*. 

(22.4) 

Exercise 22.S*. Show that [ v, <p] is the element of sl3 C characterized by the 

formula 
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B([v, <p], Z) = 18<p(Z · v) for all Z e sl3 C, 

where B is the Killing form on 90 = sl3 C. In other words, if we write v • <p for 
the element in 90 = sl3 satisfying the identity 

B(v • <p, Z) = <p(Z · v) for all Z e 90 = sl3 C, (22.6) 

then the bracket [v, <p] can be written in the form 

(22.7) 

It is now a relatively painless task to verify the Jacobi identity, since, rather 
than having to check it for triples from a basis, it suffices to check it on triples 
of arbitrary elements of the three spaces 90 , W, and W* using the above linear 
algebra descriptions for the brackets. We will write out this exercise, since the 
same reasoning will be used later. For example, for three or two elements from 
~0 , this amounts to the fact that 90 = sl3 C is a Lie algebra and Wand W* are 
representations. 

For one element Zin 90 , and two elements v and win W, the Jacobi identity 
for these three elements is equivalent to the identity 

Z·(v /\ w) = (Z·v) Aw+ v A (Z·w), 

which we know for the action of a Lie algebra on an exterior product; and 
similarly for one element in 90 and two in W*. 

The Jacobi identity for Z e 90 , v e W, and <p e W* amounts to 

[Z, v • <p] = (Z · v) • <p + v • (Z · <p). 

Applying B(Y, -) to both sides, and using the identity B(Y, [Z, X]) = 
B( [ Y, Z], X), this becomes 

<p([Y, Z]-v) = <p(Y·(Z·v)) + (Z·<p)(Y·v). 

Since <p([Y, Z] · v) = <p(Y · (Z · v)) - <p(Z · (Y · v)), this reduces to 

(Z · <p)(w) = -<p(Z · w), 

for w = Y · v, which comes from the fact that W and W* are dual 
representations. 

For triples u, v, win W, the Jacobi identity is similarly reduced to the identity 

(u /\ v)(Z · w) + (v /\ w)(Z · u) + (w A u)(Z · v) = 0 

for all z e 90 , which amounts to 

u A v A (Z · w) + u A (Z · v) A w + (Z · u) A v A w 

= Z·(u Av Aw)= 0 in NW= C; 

and similarly for triples from W*. 
For v, w E w, and <p E w•, noting that 

[[v, w], <p] = -2·[v Aw, <p] = -4·(v Aw) A <p = -4·(<p(v)w - <p(w)v), 

the Jacobi identity for these elements reads 
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-4·(<p(v)w - <p(w)v) = -[w, <p](v) + [v, <p](w). (22.8) 

The right-hand side is 

-[w, <p](v) + [v, <p](w) = -(3<p(v)w - <p(w)v) + (3<p(w)v - cp(v)w), 

which proves this case. (This last line was the only place where we needed to 
use the definition (22.4) in place of the fancier (22.7).) 

The last case is for one element v in W and two elements <p and rjJ in W*. 
This time identity to be proved comes down to 

-4·(t/J(v)<p - <p(v)rjJ) = [v, cp]·r/1- [v, r/I] ·cp. 

Applying both sides to an element w in W, this becomes 

-4·(r/J(v)cp(w) - cp(v)rjJ(w)) = <p([v, r/J] · w) - t/l([v, <p]- w). 

If we apply rjJ to the previous case (22.8) we have 

-4 ·(<p(v)rjJ(w) - <p(w)t/J(v)) = -r/l([w, <p] ·v) + rjJ([v, <p] ·w). 

And these are the same, using the symmetry of the Killing form: 

18·<p([v, t/J]·w) = B([v, rjJ], [w, <p]) = B([w, <p], [v, r/J]) = 18t/J([w, cp]·v). 

This completes the proof that the algebra with multiplication table (22.1) 
is a Lie algebra. With the hindsight derived from working all this out, of 
course, we see that there is a quicker way to construct g2 , without any 
multiplication table: simply start with sl3 C EE> W E9 W*, and define products 
according to the above rules. 

§22.3. Representations of g2 

We would now like to use the standard procedure, outlined in Lecture 14 (and 
carried out for the classical Lie algebras in Lectures 15-20) to say something 
about the representations of 92 • One nice aspect of this is that, working simply 
from the root system of 92 and analyzing its representations, we will arrive at 
what is perhaps the simplest description of the algebra: we will see that 92 is 
the algebra of endomorphisms of a seven-dimensional vector space preserving 
a general trilinear form. 

The first step is to find the weight lattice for g2 • This is the lattice Aw c {)* 
dual to the lattice r w c {) generated by the six distinguished elements H,. By 
(22.2), r w is generated by H 1 and H 2• Since the values of the eigenvalues CX1 
and cx2 on H 1 and H 2 are given by 

CX1(H1) = 2, 

<X2(H1) = -3, 

CX1(H2) = -1, 

CX2(H2) = 2, 

it follows that the weight lattice is generated by the eigenvalues cx 1 and cx2 (and 
in particular the weight lattice Aw is equal to the root lattice AR). The picture 
is thus 

T 
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As in the case of the classical Lie algebras, the intersection of the (closed) 
Weyl chamber iY with the weight lattice is a free semigroup on the two 
fundamental weights 

W 1 = 2cx1 + cx2 and ro2 = 3cx1 + 2cx2 • 

Any irreducible representation of 92 will thus have a highest weight vector A. 
which is a non-negative linear combination of these two. As usual we write 
r;,, h for the irr~ducible representation with highest weight aro

1 
+ b:V

2 
• 

. Let us consider first the representation rl,O with highest weight W1. Trans
lating W1 around by the action of the Weyl group, we see that the weight 
diagram of rl,0 looks like 
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Since there is only one way of getting from the weight w1 to the weight 0 by 
subtraction of simple positive roots, the multiplicity of the weight 0 in r 1•0 
must be 1. f't.o is thus a seven-dimensional representation. It is the smallest 
of the representations of 92 , and moreover has the property (as we will verify 
below) that every irreducible representation of 92 appears in its tensor algebra; 
we will therefore call it the standard representation of 92 and denote it V. 

The next smallest representation of 92 is the representation 10 , 1 with 
highest weight w2 ; this is just the adjoint representation, with weight diagram 

Note that the multiplicity of 0 as a weight of r 0 , 1 is 2, and the dimension of 
ro, 1 is 14. 

Consider next the exterior square NV of the standard representation 
V = r 1•0 of 92 • Its weight diagram looks like 
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from which we may deduce that 

NV~ r 0 • 1 ~ V. 

In particular, since the adjoint representation r 0 • 1 of 92 is contained in NV, 
and the irreducible representation ra,b with highest weight aw1 + bw2 is 
contained in the tensor product Sym0 V ® Symbf'0 , 1, we see that every irreduc
ihle representation of 92 appears in some tensor power V®"' of the standard 
representation, as stated above. 

Next, look at the symmetric square Sym2 V of the standard representation. 
It has weight diagram 
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Clearly, this contains a copy of the irreducible representation r2,o of 92 
with highest weight 2wi. Depending on the multiplicities of this representa
tion, it may also contain a copy of V itself, of the trivial representation, or 
both; or it may be irreducible. To see which is in fact the case, we need to 
know more about the action of 92 on the standard representation V. We 
will do this in two ways, first by direct calculation, and second using the 
decomposition of 92 into sl3 EB WEB w•. Although the second approach is 
shorter, the first illustrates how one can calculate for the exceptional Lie 
algebras very much as we have been doing in the classical cases. 

To describe V explicitly, start with a highest weight vector for V, i.e., any 
nonzero element v4 of the eigenspace V4 c V for the action of~ with eigenvalue 
a4. The image of v4 under the root vector Yi will then be a nonzero element 
of the eigenspace V3 with eigenvalue a3 (this follows from the fact that the 
direct sum V3 EB V4, as a representation of the subalgebra s«, c 9, is a copy of 
the standard representation of s«, ~ sl2 IC). Similarly, the image of V3 under Y2 

is a generator vi of the eigenspace Vi with eigenvalue c.<i, the image of vi under 
Yi is a generator of the eigenspace V0 with eigenvalue 0, and so on. We may 
thus choose as a basis for V the vectors 

and 

u = Yi (vi), 

W4 = - Yi(W3), 

where vi (resp. wi) is an eigenvector with eigenvalue ai (resp. /J;). (The signs and 
coefficient tin the definition of Wi are there for reasons of symmetry-see 
Exercise 22.10.) Diagrammatically, the action of 92 may be represented by the 
arrows 

Exercise 22.9. (i) Verify that the vectors vi, W;. and u, as defined above, a~e 
indeed generators of the corresponding eigenspaces. (ii) Find, in terms of this 
basis for V, the images of v4 under the elements Y3, Y4, Y5 , and Y6. 

Exercise 22.10. Show that the elements Xi and Yi E 92 all carry basis vectors 
v1 and w1 into other basis vectors, up to sign (or to zero, of course), and carry 
u to twice basis vectors, that is, Xiu = 2v; and Yju = 2wi for i = 1, 3, 4. 
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Now, the representation Sym2V has, as basis, the pairwise products of 
the basis vectors for V; and the subrepresentation r 2 , 0 is just the subspace 
generated by the images of the highest weight vector vl under (repeated 
applications of) the generators Yi, Y2 of the negative root spaces of 92 • Thus, 
for example, the eigenspace in Sym2V with eigenvalue a4 is the span of the 
products u · v 4 and v3 · vi; the part of this lying in r 2. 0 will be the span of the 
two vectors Y2 Yi Yi(vi) and Yi Y2 Yi(vi). We calculate: 

and 

Y2 Y1 Yi(d) = Y2 Yi(2v3 'V4) = Y2(2vn 

Yi Y2 Yi (vi) = Yi Y2(2V3. V4) = - Yi (2vi. V4) 

= -2vi ·v3 - 2u·v4 • 

We see, in other words, that r 2,0 assumes the weight a4 with multiplicity 2, 
so that in particular Sym2V does not contain a copy of V. 

Similarly, to see whether or not Sym2 V contains a copy of the trivial 
representation, we have to calculate the multiplicity of the weight 0 in r 2,

0
. 

Since any path in the weight lattice from the eigenvalue 2a4 to 0 obtained by 
subtracting c.<i and c.< 2 must pass through a4, we can do this by evaluating the 
products of Yi and Y2 on the generators vi · v3 and u · v 4 of the eigenspace with 
eigenvalue a4: we have 

and 

Yi Yi Y2(viv3) =-Yi Yi(vf} = -Yi(2u·vi) 

= -4wi ·Vi - 2u2 ; 

Yi Yi Y2(u · v4 ) = 0; 

Yi Y2 Yi(viv3) =Yi Y2(u·v3) = -Yi(u·vi) 

= -2wi ·vi - u2
; 

Yi Y2 Yi(u · v4) = Yi Y2(u · v3 + 2wi · v4) 

= Yi(-u·vi + 2w3 ·v4 ) 

= -2Wi. Vi - u2 
- 2w4. V4 + 2W3V3; 

Y2 Yi Yi (vi V3) = Y2 Yi (u · v3) = Y2(2wi · v3) 

= -2Wi 'V1 + 2W3'V3; 

Y2 Yi Yi (u · v4) = Y2 Yi (u · v3 + 2wi · v4) = Y2(4wi · v3) 

= -4wi ·vi + 4w3 · v3. 

We see from this that the 0-eigenspace of r 2,0 is three dimensional; we thus 
have the decomposition 
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· l d duce that the action of 92 on the standard representation 
In pacrt~cu ar, we e quadratic form· and correspondingly that the subalgebra 
V = preservlesca· t ally cont~ined in the algebra so7C. We will see this 
9 c sl( V) = s 7 is ac u . d . f f 
a 2 ain in the following section, where we will give alternative e~cnp ions o 

g · I L. l bras and again in §23.3 where we descnbe compact 
the except1ona ie a ge • 
homogeneous spaces for Lie groups. 

Exercise 22.11. Analyze in general the symmetric powers Symk V of the stan

dard representation V of 92· 

. .d h t 0. or cube /\3 v of the standard representation. The 
Fmally, cons1 er t e ex e 

weight diagram is 

. r . th highest weight 
and after we remove one copy of the representation 2.0 w1 V we are 
2w1 (this is the sum of the three highest weights IX4, IX3, and IX1 of ), 

left with 
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This, by what we have seen, can only be the direct sum of the standard 
representation V with the trivial representation C. In sum, then, we conclude 
that 

NV~ r 2 , 0 $ V$C. 

Note in particular that, as a corollary, the action of 92 on the standard 
representation preserves a skew-symmetric trilinear form w on V. It is not 
hard to write down this form: it is a linear combination of the five vectors 
W3 /\ u /\ V3, V4 /\ u /\ W4, W1 /\ u /\ Vi, V1 /\ V3 /\ W4, and W1 /\ W3 /\ V4; and 
the fact that it is preserved by X 1 and X 2 is enough to deteripine the coefficients: 
we have 

W = W3 /\ U /\ V3 + V4 /\ U /\ W4 + W1 /\ U /\ V1 

+ 2v1 /\ V3 /\ W4 + 2w1 /\ W3 /\ V4. 

The fact that the action of 92 on V preserves the skew-symmetric cubic 
form w takes on additional significance when we make a naive dimension 
count. The space /\3 V of all such alternating forms has dimension 35, while 
the algebra 9l(V) of endomorphisms of V has dimension 49; the difference is 
exactly the dimension of the algebra 92 • In fact, we can check directly that the 
linear map 

<p: 9l(V)-.. NV 

sending A e End(V) to A(w) is surjective. We deduce that w is a general cubic 
aJternating form [i.e., an open dense subset of NV corresponds to forms 
equivalent tow under Aut(V)], and hence that 

Proposition 22.12. The algebra 92 is exactly the algebra of endomorphisms of 
u seven-dimensional vector space V preserving a general skew-symmetric cubic 
form w on V. 
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Exercise 22.13*. Verify that the map <P above is surjective by direct calculation 

of the action of 91( V) on w e /\3 V. 

Exercise 22.14. As an alternative to the preceding exercise, analyze skew
symmetric trilinear forms on C" to show that for ~ ~ 7 there are only finitel_y 
many such forms, up to the action of GLnC. Venfy that ~he form~ above is 
general in f\3C 7 • (In fact, there are only fi_nitely many cubic ~lternah~g for:ms 
on cs as well, though this is fairly complicated; for n ~ 9 a simple dimension 
count shows that there is a continuously varying family of such forms.) 

Note that the cubic form w preserved by the action of 92 gives us explicitly 

the inclusion 
vc...NV 

deduced earlier from their weight diagrams: this is just _the m~p v•-+ 02
V 

given by contraction/wedge product with ro, composed with the isomorphism 

of V with v•. 
Exercise 22.15*. Find the algebra of endomorphisms of a six-dimensional 
vector space preserving a general skew-symmetric trilinear form. 

We will see the form w again when we describe 92 in the follo"'.ing secti?n. 
These calculations using the table amount to using all the _ mformatton 

that can be extracted from the subalgebras s«;;;:;: sl2C of 92· Usmg t~e copy 
of s1

3
C that we found in the second section can make some of this more 

transparent. Make the identification 

92 = 9o E9 w E9 w• = sl3 c Ef) w Ef) w•. 
As a representation of sl3 C, the sev:n-dimensional_ representation V mu~t 
be the sum of W, w•, and the trivial representation C. If we make this 

identification, 
v = w EB w• EB c, 

it is not hard to work out how the rest of 92 acts. This is given in the following 

table: 

w W"' c 
w 

"' 
z 

go x X·w X·r/I 0 

w v -VA W r/J(v) 2z·v 

W"' <P <f'(W) <f'Ar/J 2z· <P 

With this identification, we have u = 1 in C, and 
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w3 = e3 in W = C 3
; 

V3 = e! in w• = (C 3 )*. 

Conversely, it is not hard to verify that the above table defines a representation 
of fl2· by checking the various cases of the identity [e, 11]. y = e. (11 • y) -
11 · (e · y) fore, 11 in g2 and yin V. Note that the cubic form w becomes 

3 

W = .L ei /\ U A er + 2(e1 A e2 A e3 + ef A e! A e!). 
1=1 

This description of V can be used to verify the calculations made earlier, 
and also to study its symmetric and exterior powers. For example, Sym2 V 
decomposes over s13 C into 

Sym2 WEf) Sym2 W* Ef) Sym2 C Ef> W® C Ef> W* ® C Ef> W® W* 

= Sym 2 W Ef> Sym2W* Ef> C Ef> W Ef) W* Ef> sl 3 C Ef> C. 

To get the weights around the outside ring, the irreducible representation r 
. 1 d s 2 2 2,0 

S
mus;Wm; u e .Y~11 w, Sym w•, and sl3 C. Checking that W c: 92 maps 

ym nontrma y to w• shows that it must also include Wand w•. To 
finish it suffices to compute the part killed by 92 , which must lie in the sum 
of the two components which are trivial for sl3 C; checking that this is one 
dimensional, one recovers the decomposition 

Sym2 V = r 2 .o Ef> C. 

Exercise 22.16. Use this method to decompose NV and Sym3V. 

*22.4. Algebraic Constructions of the 
Exceptional Lie Algebras 

I th. · n is section we will sketch a few of the abstract approaches to the construc-
tion of_ the fi~e exceptional Lie algebras. The constructions are not as easy as 
you might wish: although the exceptional Lie groups and their Lie algebras 
ha v~ a remarkable way of showing up unexpectedly in many areas of mathe
ma_ttcs and physics, they do not have such simple descriptions as the classical 
series. Indeed, they were not discovered until the classification theorem forced 
mathematicians to look for them. 

To begin with, the method we used to construct g2 in the second section 
of th· 1 · · is ecture can be generalized to construct other Lie algebras. This is the 
construction of Freudenthal, which we do first. It can be used to construct the 
Lie algebra es for the diagram (Es). From es it is possible to construct e and 
~,, and f4· Then we will present (or at least sketch) several other appro~ches 
to their con t t" s· . . h . s rue ion. mce it is a rat er techmcal subject, probably not really 
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suited for a first course, we will touch on several approaches rather than give 
a detailed discussion of one. 

The construction of g2 as a sum g0 $ W $ W* that we found in the second 
section works more generally, with very little change. Suppose g0 is a semi
simple Lie algebra, and W is a representation of g0 ; let W* be the dual 
representation, and set 

g = g0 $ W$ W*. 

We also need maps 

/\: ;\2W-+ w• and /\:NW*-+ w 
of representations of g0 • We assume these are given by trilinear maps T: 
NW-+ IC and T': NW*-+ IC, which means that 

(u A v)(w) = T(u, v, w) and 8(<p A t/I) = T'(<p, tjJ, 8). 

We assume these maps are related by the identity: 

(v A w) A <p = <p(v)w - <p(w)v (22.17) 

for all v, w e W and <p e W*. We can then define a bracket on g by the same 
rules as in the second section. To describe it, we let X, Y, Z, ... denote arbitrary 
elements of g0 , u, v, w, ... elements of W, and <p, tjJ, 8, ... elements of W*. The 
bracket in g is determined by setting: 

(i) [X, Y] = [X, Y] 
(ii) [X, v] = X·v 

(iii) [X, <p] = X · <p 
(iv) [v, w] = a·(v Aw) 
(v) [<p, t/I] = b · (<p A t/I) 

(vi) J:v, <p] = c · (v • <p) 

(the given bracket in g0 ), 

(the action of g0 on W), 
(the canonical action of g0 on W*), 
(for a scalar a to be determined), 
(for a scalar b to be determined) 
(for a scalar c to be determined). 

As before, v • <p is the element of g0 such that 

B(v • <p, Z) = <p(Z · v) for all Z e g0 , 

where B is the Killing form on g0 . The rules (i)-(vi) determine a bilinear 
product [ , ] on all of g, and the fact that it is skew follows from the facts 
that [X, X] = 0, [v, v] = 0, and [<p, <p] = 0. 

The argument that we gave showing that g2 satisfies the Jacobi identity 
works in this general case without essential change, except for the one case of 
a triple with two elements in Wand one in W*, where we had to do an explicit 
calculation. The identity we need in the general case, in place of (22.7), is the 
identity: 

ab· (<p(v)w - <p(w)v) = c · ((v • <p) · w - (w • <p) · v), (22.18) 

which is equivalent to the Jacobi identity for v, w, and <p. Again, the simplicity 
of the resulting Lie algebra is easy to see, provided all the weight spaces are 
one dimensional, using Exercise 14.34, so we have: 
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Proposition 22.19 (Freudenthal). Given a representation W of a semisimple 
Ue algebra g0 and trilinear forms T and T' inducing maps J\2W-+ W* and 
NW* -+ W, such that (22.17) and (22.18) are satisfied, the above products make 

g = 90$ W$ W* 

into a Lie algebra. If the weight spaces of Ware all one dimensional, and the 
weights of W, W*, and the roots of g0 are all distinct, and abc # 0, then g is 
semisimple, with the same Cartan subalgebra as g0 . 

Exercise 22.20*. (a) Show that the trilinear map T determines a map " : 
NW-+ W* of representations if and only if it satisfies the identity 

T(X·u, v, w) + T(u, X·v, w) + T(u, v, X·w) = 0 VX e g0 , 

and similarly for T'. 
(b) Show that (22.18) is equivalent to the identity 

ab ·(v A w)(<p A t/I) = c ·(B(w • tjJ, v • <p) - B(w • <p, v • tfl)). 

The Lie algebra es for (Es) can be constructed by this method. This time 
!10 is taken to be the Lie algebra sl9 1C; if V = IC 9 is the standard representation 
of sl9IC, let W =NV, so W* =NV*; the trilinear map is the usual wedge 
product 

and similarly for NV*. We leave the verifications to the reader: 

Exercise 22.21 *. (i) Verify (22.17), and check the conditions on the roots of sl
9 

and the weights of NV and Nv•. (ii) Use the fact that B(X, Y) = 18 · Tr(XY) 
for sl9 to show that (22.18) holds precisely if c = 18ab. (iii) Show that the 
Dynkin diagram of the resulting Lie algebra is (Es). 

Note that the dimension of sl9 1C is 80, and that of Wand W* is 84, so the 
sum has dimension 248, as predicted by the root system of(Es). 

Once the Lie algebra es is constructed, e7 and e6 can be found as sub
algebras, as follows. Note that removing one or two nodes from the long arm 
of the Dynkin diagram of (Es) leads to the Dynkin diagrams (E7 ) and (E

6
). 

In. general, if g is a simple Lie algebra, with Dynkin diagram D, consider a 
subd1agram D0 of D obtained by removing some subset of nodes, together 
with all the lines meeting these nodes. 1 Then we can construct a semisimple 
subaigebra g0 of g with D0 as its Dynkin diagram. In fact, g0 is the subalgebra 
generated by all the root spaces 9±«• where a is a root in D0

• 

1 

ff there are double or triple lines between two nodes, both nodes should be removed or kept 
together. 
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Exercise 22.22. (a} Prove this by verifying that the positive roots of g
0 

are the 
positive roots f3 of g that are sums of the roots in D

0
, and the Cartan 

subalgebra ()0 is spanned by the corresponding vectors Hp E (). 

(b} Carry this out for e7 and e6 ; in particular, show again that e7 has 63 
positive roots, so dimension 7 + 2(63} = 133, and e6 has 36 positive roots, so 

dimension 6 + 2(36} = 78. 

Exercise 22.23. For each of the simple Lie algebras, find the subalgebras 
obtained by removing one node from an end of its Dynkin diagram. 

The last exceptional Lie algebra f 4 can be constructed by taking an in
variant subalgebra of e

6 
by an involution. This involution corresponds to the 

evident symmetry in the Dynkin diagram: 

In general, an automorphism of a Dynkin diagram arises from an auto
morphism of the corresponding semisimple Lie algebra, as follows from the 
fact that the multiplication table is determined by the Dynkin diagram, cf. 
Proposition 21.22 and Claim 21.25. 

Exercise 22.24*. (a} Show that the invariant subalgebra for the indicated 
involution of e

6 
is a simple Lie algebra f4 with Dynkin diagram (F4}. 

(b} Find the invariant subalgebra for the involutions of (An} and (Dn}, and 
for an automorphism of order three of (D4}. 

Exercise 22.25*. For each automorphism of the Dynkin diagrams (An} and 
(Dn}, find an explicit automorphism of sln+i IC and so2nlC that induces it. 

The exceptional Lie algebras can also be realized as the Lie algebras of 
derivations of certain nonassociative algebras. This also gives realizations of 
corresponding Lie groups as groups of automorphism of these algebras (see 
Exercise 8.28}. Some examples of this for associative algebras shoul~ be 
familiar. The group of automorphisms of the algebra IHI of (real} qua~ern~ons 
is 0(3}, so the Lie algebra of derivations is so3 IR. The Lie algebra of denvat1ons 
of the complexification IHlc is so3 1C ~ sl21C. . 

The exceptional group G2 can be realized as the group of automorphisms 
of the complexification of the eight-dimensional Cayley algebra, or algebra of 
octonions. Recall that the quaternions IHI = IC EB ICj can be constructed as the 
set of pairs (a, b} of complex numbers. In a similar way the Cayley algebra, 
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which we denote by 0, can be constructed as the set of pairs (a, b}, with a and 
h quaternions. The addition is componentwise, with multiplication 

(a, b} o (c, d} = (ac - db, da + be}, 

where - denotes conjugation in IHI. This algebra 0 also has a conjugation, 
which takes (a, b) to (a, -b). It has a basis 1 = (1, 0), together with seven 
clements e1 , ••• , e7 : 

(i, 0), (j, 0), (k, 0), (0, 1), (0, i), (O,j), (0, k). 

These satisfy eP o eP = -1 and eP o eq = -eq o eP for p # q, and the conjugate 
<'p of eP is -eP" The multiplication table can be encoded in the diagram: 

(0, i) 

(i. 0) 

Here, if eP, eq, and e, appear on a line in the order shown by the arrow, then 

eP o eq = e,, eq o e, = eP, e9 o eP = e,. 

Note in particular that any two of these basic elements generate a subalgebra 
of l[D isomorphic to IHI. 

~~ercise 22.26. Show that the subalgebra of 0 generated by any two elements 
is isomorphic to IR, IC, or IHI. Deduce that, although O is noncommutative and 
nonassociative, it is "alternative," i.e., it satisfies the identities (x o x) o y = 
x 0 (x o y) and y o (x o x) = (y o x) o x. 

A trace and norm can be defined on 0 by 

Tr(x) = !(x + .X), N(x) = x o x; 

thcs~ satisfy the relation x 2 
- 2 Tr(x) + N(x) = 0. Let f3(x, y) = !(x o y + 

Y 0 x} be the bilinear form associated to N; note that the above basis is an 
orthonormal basis for this inner product. 

Let G be the group of algebra automorphisms of the real algebra 0. The 
next exercise sketches a proof that the complexification of G is a Lie group of 
type (G2 ). 
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Exercise 22.27*. The center of 0 is IR· 1, which is preserved by G. Let Y be 
orthogonal space to IR· 1 with respect to the quadratic form N. Then G is 
imbedded in the group SO(Y) of orthogonal transformations of Y. 

(a) Define a "cross product" x on Y by the formula v x w = v · w + fJ(v, w) · 1. 
Show that G can be identified with the group of orthogonal transforma-

tions of Y that preserve the cross product. 
(b) Show that G = Aut(O) acts transitively on the 6-sphere 

s6 ={I, r1e1: I. ri2 = 1}, 

and the subgroup K that fixes i = e1 is mapped onto the_ 5-sp~ere in et 
by the map gr-+g·j. Conclude from this that G is 14-d1mens1onal and 

simply connected. . . . 
(c) Show that {De Der(O): D(i) = O[ 1s ~somorph1c to su3. . . 
( d) Verify that the Lie algebra of denvattons of the complex octomans is the 

simple Lie algebra of type (G2). 

Exercise 22.28*. The octonions can also be constructed from the Cliffor_d 
algebra of an eight-dimensiona~ vector sp~ce with a nonde~ener~e q~adratt: 
form. With V, s+, and s- as m §20.3, with V1 e V, s1 ES , ti - ~i s1 E ~ 
chosen so the values of the quadratic forms are 1 on each of them as m Exercise 
20.50, define a product V x V--+ V, (v, w)r-+ vow by the formula 

v 0 w = ( v . ti). ( w . s 1 ). 

Note that v · t
1 

Es+, w· s 1 Es-, SO their product (v · t1). (w. S1) is back in _V. 
(a) Show that J(rwith this product is isomorphic to th_e complex_ octo_ma~s 

o, with unit v
1

, with the map v r-+ - p(vi}(v) corresponding to conjugation m 

O. Conversely, starting with the complex octonians 0, one can rec~nstruc~ 
the algebra of §20.3: define A = 0 E9 0 E9 0, define an automorphism J o 
order 3 of A by J(x, y, z) = (z, x, y), and define a product · ~o~ each su:_ce~ 
sion of two factors to the third by the formulas x · Y = x 0 y, Y · z = Y 

0 
z, 

z·x=zox. . . 
(b) Show that A is isomorphic to the algebra ~escnbed m §20.3.. 0 
(c) Identifying so

8
C with the space of skew hnear tr~nsformattons of • 

show that for each A in so
8
C there are unique Band Cm sosC such that 

A(x o y) = B(x) o y + x o C(y) 

for all complex octonions x and y. Equivalently, if one defines a trilinear forlll 
( , , ) on the octonions by (x, y, z) = Tr((x o y) oz) = Tr(x 0 (y 0 z)), 

(Ax, y, z) + (x, By, z) + (x, y, Cz) = 0 
. . e 

for all x, y, z. Show that this trilinear form agree_s ~ith that defin~d m_~xe:~'sc 
20.49, and the mapping Ar-+ B determines the tnahty automorphism] of s 

of order three described in Exercise 20.51. 

§22.4. Algebraic Constructions of the Exceptional Lie Algebras 365 

Exercise 22.29. Define three homomorphisms from the real Clifford algebra 
C7 = C(O, 7) to EndR(O) by sending v E IR 7 = L 1Re1 to the maps Lv, Rv, and 
1;, defined by Lv(x) = v ox, Rv(x) = x o v, and T,,(x) = v o (x o v) = (v ox) o v. 

(a) Show that these do determine maps of the Clifford algebra, and that the 
induced maps 

Spin8 IR C+ q••n = C7 --+ End R(O) 

are the tw~ spin representations and the standard representation, respectively. 
(b) Venfy that T,,(x o y) = Lv(x) · Lv(Y) for all v, x, y, and use this to verify 

the triality formula in (c) of the preceding exercise. 

The algebra f4 can be realized as the derivation algebra of the complexifica
tion of a 27-dimensional Jordan algebra JI. This can be constructed as the set 
of matrices of the form 

(

: Ct fJ) 
Ct b y ' 

p y c 

with a, b, c scalars, and a, fJ, yin 0. The product o in JI is given by 

x o y = t(xy + yx), 

where the products on the right-hand side are defined by usual matrix multi
plication. This algebra is commutative but not associative, and satisfies the 
identity ((x o x) o y) ox = (x ox) o (yo x). In fact, (F 4 ) is tl)e group of auto
morphisms of this 27-dimensional space that preserve tftt scalar product 
(x, y) = Tr(x o y) and the scalar triple product (x, y, z) = Tr((x o y) oz). The 
kernel of the trace map is an irreducible 26-dimensional representation off 4 • 

For details see [Ch-SJ, [To], [Pos]. 
In addition, there is a cubic form "det" on JI such that the linear auto

morphisms of JI that preserve this form is a group of type (E6 ). This again 
shows f 4 as a subalgebra of e6 • 

The other exceptional Lie algebras can also be constructed as derivations 
of appropriate algebras. We refer for this to [Ti2], [Dr], [Fr2], [Jac2], and 
the references found in these sources. Other constructions were given by Witt, 
cf. l Wa]. The simple Lie algebras are also constructed explicitly in [S-K, §1]. 
Sec also [Ch-SJ, [Frl], and [Sc]. 

What little we will have to say about the representations of the four 
exceptional Lie algebras besides g2 can wait until we have the Weyl character 
formula. . 



LECTURE 23 

Complex Lie Groups; Characters 

This lecture serves two functions. First and foremost, we make the transition back 
from Lie algebras to Lie groups: in §23.1 we classify the groups having a given 
semisimple Lie algebra, and say which representations of the Lie algebra, as described 
in the preceding lectures, lift to which groups. Secondly, we introduce in §23.~ ~he 
notion of character in the context of Lie theory; this gives us another way of descnbmg 
the representations of the classical groups, and also provides a necessary framew?rk 
for the results of the following two lectures. Then in §23.3 we sketch the beautiful 
interrelationships among Dynkin diagrams, compact homogeneous spaces and the 
irreducible representations of a Lie group. The first two sections are element~ry 
modulo a little topology needed to calculate the fundamental groups of the classical 
groups in §23.1. The third section, by contrast, may appear impossible: it involves, ~t 
various points, projective algebraic geometry, holomorphic line bundles, and ~hetr 
cohomology. In fact, a good deal of §23.3 can be understood without these notions; 
the reader is encouraged to read as much of the section as seems intelligible. A fi~al 
section §23.4 gives a very brief introduction to the related Bruhat decomposition, which 
is included because of its ubiquity in the literature. 

§23. l: Representations of complex simple groups 
§23.2: Representation rings and characters 
§23.3: Homogeneous spaces 
§23.4: Bruhat decompositions 

§23.1. Representations of Complex Simple Lie Groups 

In Lecture 21 we classified all simple Lie algebras over C. This in turn yields 
a classification of simple complex Lie groups: as we saw in Lecture 7, for any 
Lie algebra g there is a unique simply connected group G, and all other 
(connected) complex Lie groups with Lie algebra g are quotients of G by 
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discrete subgroups of the center Z(G). In this section, we will first describe the 
groups associated to the classical Lie algebras, and then proceed to describe 
which of the representations of the classical algebras we have described in 
Part III lift to which of the groups. We start with 

Proposition 23.1. For all n 2::: 1, the Lie groups SL"C and Sp2"C are connected 
and simply connected. For n 2::: 1, SO"C is connected, with n 1(S02C) = Z, and 
n 1 (SO"C) = Z/2 for n 2::: 3. 

PROOF. The main tool needed from topology is the long exact homotopy 
sequence of a fibration. If the Lie group G acts transitively on a manifold 
M, and His the isotropy group of a point P0 of M, then G/H = M, and the 
map G-+ M by g f-+ g · P0 is a fibration with fiber H. The resulting long exact 
sequence is, assuming the spaces are connected, 

···-+ 1t2(M)-+ n1(H)--+ n1(G)-+ n1(M)-+ {l}. (23.2) 

(The base points, which are omitted in this notation, can be taken to be the 
identity elements of Hand G, and the point P0 in M.) In practice we will know 
M and Hare connected, from which it follows that G is also connected. From 
this exact sequence, if Mand Hare also simply connected, the same follows 
for G. 

To apply the long exact homotopy sequence in our present circumstance 
we argue by induction, noting first that SL1 C = S01 C = {1 }. Now consider 
the action of G = SL"C on the manifold M = C"\ {O}. The subgroup H 
fixing the vector P0 = (1, 0, ... , 0) consists of matrices whose first column is 
(I, 0, ... , 0) and whose lower right (n - 1) by (n - 1) matrix is in SLn-t C; it 
follows that as topological spaces H ~ SLn-t C x C"-1. Since M is simply 
connected for n 2::: 2 (having the sphere S2"-1 as a deformation retract), and H 
has SLn-t Casa deformation retract, the claim for SL"C follows from (23.2) 
by induction on n. 

The group S02C is isomorphic to the multiplicative group C*, which has 
the circle as a deformation retract, so n1(S02C) = Z. The group G = SO"C 
acts transitively on M = { v e C": Q(v, v) = 1 }, where Q is the symmetric bi
linear form preserved by G. (The transitivity of the action is more or less 
equivalent to knowing that all nondegenerate symmetric bilinear forms are 
equivalent.) For explicit calculations take the standard Q for which the 
standard basis { ei} of C" is an orthonormal basis. This time the subgroup H 
fixing e1 is SOn-t C. From the following exercise, it follows that M has the 
sphere S"-1 as a deformation retract. By (23.2) the map 

n1(SOn-t C)-+ n1(SO"C) 

is an isomorphism for n 2::: 4. So it suffices to look at S03 C. This could be 
done by looking at the maps in the sme exact sequence, but we saw in Lecture 
I 0 that S03 Chas a two-sheeted covering by SL2 C, which is simply connected 
by the preceding paragraph, so n1(S03 C) = Z/2, as required. 
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The group G = Sp2nC acts transitively on 

M = {(v, w) e C2n x C 2n: Q(v, w) = l}, 

where Q is the skew form preserved by G, and the isotropy ~roup is ~P2n-:2C. 
St.nee Sp e = SL e the first case is known. By the followmg exercise, smce 

2 2 ' . h s4n-l 
M is defined in e 4n by a nondegenerate quadratic form, M as as a 
deformation retract, so we conclude again by induction. 0 

Exercise 23.3*. Show that { (z 1 , ... , zn) e en: L zt = 1} is homeomorphic to 
the tangent bundle to the (n - 1)-sphere, i.e., to 

• 
'fsn-1 = { (u, v) e sn-l x !Rn: u · v = 0}. 

Using the exact sequence {1}-+ SLne-+ GLnC-+ e•-+ {1} we deduce 
from the proposition and (23.2) that 

n 1(GLnC) = "ll... (23.4) 

Exercise 23.S. Show that for all the above groups G, the second homotopy 

groups n2(G) are trivial. 

We digress a moment here to mention a famous fact. Each of the above 
groups G has an associated compact subgroup: SU(n) c SLne, Sp(n) c SP2nlC, 
and SO(n) c sone. In fact, each of these subgroups is connected, and these 
inclusions induce isomorphisms of their fundamental groups. 

Exercise 23.6. Prove these assertions by finding compatible actions of the 
subgroups on appropriate manifolds. Alternatively, observe that in eac~ case 
the compact subgroup in question is just the subgroup ~f G preser~mg a 
Hermitian form on en or e 2n, and use Gram-Schmidt to give a retraction of 

G onto the subgroup. 

Now, by Proposition 23.1 the simply-connected complex Lie groups corre
sponding to the Lie algebras g = slnC, SP2ne, and some are 

G = SLne, Sp2ne, and Spinme. 

We also know the center Z(G) of each of these groups. From Lecture 7 we 
also know the other connected groups with these Lie algebras: 

• The complex Lie groups with Lie algebra sine are SLne and quoti~nts of 
SLne by subgroups of the form { e27fli/m · I}i for m dividing n (in particular, 
if n is prime the only such groups are SLne and PSLnC). 

• The complex Lie groups with Lie algebra sp2ne are SP2nC and PSP2ne. 
• The complex Lie groups with Lie algebra so2n+l e are Spin2n+i C and 

S02n+1e . 

• ~~~complex Lie groups with Lie algebra so2ne are Spin2ne, S02ne and 
PS0

2
ne; in addition, if n is even, there are two other ~roups covered doubly 

by Spin2ne and covering doubly PS02nC [cf. Exercise 20.36]. 
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These are called the classical groups. In the cases where we have observed 
coincidences of Lie algebras, we have the following isomorphisms of groups: 

and 

Spin3 C ~ SL2C and S03 C ~ PSL2C; 

Spin4 C ~ SL2C x SL2 C and PS04 C ~ PSL2 C x PSL2C; 

Spin5 e ~ Sp4 C and S05 C ~ PSp4 C; 

Spin6 e ~ SL4 e and PS06 C ~ PSL4 e. 

Note that in the first case n = 4 where there is an intermediate subgroup 
between SLne and PSL"e, the subgroup in question is interesting: it turns 
out to be S06 e. In general, however, these intermediate groups seldom arise. 

Consider now representations of these classical groups. According to the 
basic result of Lecture 7, representations of a complex Lie algebra g will 
correspond exactly to representations of the associated simply connected Lie 
group G: specifically, for any representation 

p: g-+ gl(V) 

of g, setting 

p(exp(X)) = exp(p(X)) 

determines a well-defined homomorphism 

p: G-+ GL(V). 

For any other group with algebra g, given as the quotient G/C of G by a 
subgroup Cc Z(G), the representations of Gare simply the representations 
of G trivial on C. It is therefore enough to see which of the representations 
of the classical Lie algebras described in Part III are trivial on which sub
groups C c Z(G). 

This turns out to be very straightforward. To begin with, we observe that 
the center of each group G with Lie algebra g lies in the image of the chosen 
Cartan subalgebra l) c g under the exponential map. It will therefore be 
enough to know when exp(p(X)) = I for Xe l); and since the representations 
P of g are particularly simple on l) this presents no difficulty. 

What we do have to do first is to describe the restriction of the exponential 
map to l), so that we can say which elements of l) exponentiate to elements of 
Z(G). For the groups that are given as matrix groups, this will all be perfectly 
obvious, but for the spin groups we will need to do a little calculation. We 
will also want to describe the Cartan subgroup Hof each of the classical groups 
G, which is the connected subgroup whose Lie algebra is the Cartan sub
algebra l) of g. For G = SLnC, His just the diagonal matrices in G, i.e., 

H = {diag(z1 , ... , zn): z1 · ... ·zn = l}. 

Similarly in Sp2nC or S02.C, H = {diag(z1 , ... , Zn, z11, ••• , z;1 )}, whereas in 
S02.+1 C, H = { diag(z 1 , ... , z., zj" 1

, ... , z;', 1) }. In each of these cases the 
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exponential mapping from l) to His just the usual exponentiation of diagonal 
matrices. 

To calculate the exponential mapping for Spinme, we need to describe the 
elements in Spinme that lie over the diagonal matrices in Some. This is not 
a difficult task. Calculating as in §20.2, we find that for any nonzero complex 
number z and any 1 :S; j :S; n, and with m = 2n + 1 or m = 2n, the elements 

(23.7) 

in the Clifford algebra .are in fact elements of Spinme. Moreover, if 
p: Spinme-+ some is the covering, the image p(w1(z)) is the diagonal matrix 
whose jth entry is z2, (n + j)th entry is z- 2, and other diagonal entries are 1. 
These elements w1(z) also commute with each other, so for any nonzero 
complex numbers z 1, ... , Zn we can define 

(23.8) 

Then p(w(z1, ... , zn)) = diag(zi, .. ., z;, z12, .. ., z;;- 2) if m = 2n, while if m = 
2n + 1, we get the same diagonal matrix but with a 1 at the end. 

Let Hi = E 1,1 - En+i,n+I• the usual basis for l) c some. 

Lemma 23.9. For any complex numbers a 1, ••. ,an, 

exp(a1H1 + ... + anHn) = w(e" 112 , ... , e""l2) 

PROOF. Since the map exp: l)-+ Spinme is determined by the facts that it is 
continuous, it takes 0 to 1, and its composite with p is the exponential for 
some, this follows from the preceding formulas. 0 

Exercise 23.10*. Show that exp(~:'.a1H1) = 1 if and only if each a1 is in 2nil. 
and L a1 e 4niZ. 

We see also that exp@ contains the center of Spinme. Indeed, 
-1 = w(-1, 1, ... , 1), and if mis even, the other central elements are ±w, 
with w = w(i, ... , i), as we calculated in Exercise 20.36. (This, of course, also 
contains the fact that there is a path between 1 and -1, proving again that 
Spinme is connected.) 

Exercise 23.11 "'. Verify for all the classical groups G that: (i) H = exp(l)) is 
a closed subgroup of G that contains the center of G; (ii) the map of fun~a
mental groups n1 (H, e)-+ n 1 (G, e) is surjective; (iii) for any connected covermg 
n: G'-+ G, n-1(H) is connected and is the Cartan subgroup of G'. 

Now let G = G/C be a semisimple Lie group with Lie algebra g and Car.tan 
subalgebra l). Choose an ordering of the roots, and let r;. be the irreducible 
representation of g with highest weight A. The basic fact that we need is 
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Lemma 23.12. The representation r;. is a representation of G = G/C if and 
only if 

A(X) e 2niZ whenever exp(X) e C. 

PROOF. The representation r;. is a representation of G when g · v = v for all 

11 E C, where v is a highest weight vector in r;.. Since exp@ contains C, this 
says exp(X) · v = v for all Xe l) such that exp(X) e C. Now by the naturality 
of the exponential map, and since X · v = A(X)v for X e l), we have exp(X) · v = 
e''x>v. Hence the condition is that e"<X>v = v, or that e"<x> = 1 if exp(X) e C, 
which is the displayed criterion. D 

Let us work this out explicitly for each of the classical groups. It may help 
to introduce a notation for the irreducible representations which, among other 
virtues, allows some common terminology in the various cases. Note that for 
each of sln+l • sp2n, so2n, and so2n+l the root space l)"' is spanned by weights 
we have called L 1, ... , Ln, so a weight can be written uniquely in form 
). 1 Lt + · · · + AnLn. We may sometimes write A in place of the weight 
l 1 L 1 + · · · + AnLn. In the rest of this lecture at least, we write r;. for the 
irreducible representation with highest weight A1L 1 + · .. + AnLn. Note that 
by our choice of Weyl chambers the highest weights A = (A1, ... , An) that arise 
satisfy 

A1 ~ A2 ~ ... ~ An ~ 0 for sln+l • SP2n• and S02n+l • 

where the A1 are all integers in the first two cases, and for so2n+i they are either 
all integers or all half-integers; and 

A1 ~ A2 ~ "· ~ An-1 ~ I An I ~ 0 for S02n• 

with the A.1 all integers or all half-integers. 

Proposition 23.13. For each subgroup C of the center of G, the representation 
r, is a representation of G/C precisely under the following conditions: 

(i) G = SLn+l e, Chas order m dividing n + 1: LA.1 = 0 mod(m). 
(ii) G = Sp2ne, C = { ± 1}: LAl is even. 

(iii) G = Spin2ne or Spin2n+l e, C = { ± 1 }: all A.1 are integers. 
(iv) ~ = Spin2ne, C = {± 1, ±w}: all A1 are integers, LA.1 is even. 
(v) G = Spin2nC. n even, C = {1, w}: LAl is an even integer; and for C = 

{ 1, - w}: L A1 - n/2 is an odd integer. 

In particular, representations of PSLn+i e are given by partitions A. with 
L A.i = 0 mod(n + 1), and those for PSp2ne have L A.1 even. Case (iii) verifies 
what we saw in Lecture 19 about representations of some. Representations 
of PSOme correspond to integral partitions A. with L A.1 even. 

PROOF. With the preceding lemma and the explicit description of everything 
in sight, the calculations are routine. In case (i), for example, a generator for 
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C is of the form exp(X), with 

X = (2ni/m)( t E1,1 - nEn+l,n+l)• 
1=1 

and so A.(X) = (2ni/m)(l: A.) will be a multiple of 2ni exactly when L A.1 is 
divisible by m. For Sp2nC, exp(X) = -1 when X = ni(L H1), so A.(X) = ni L A.1, 

and (ii) follows. The calculations are similar for SpinmC, noting that 
exp(2ni(Hi) = -1 and exp(ni(LH1)) = w. 0 

By way of an example, recall that any irreducible representation of sl2 C is 
of the form SymkV, where Vis the standard two-dimensional representation. 
Any such representation, of course, lifts to the group SL2 C; but it lifts 
to PSL2 C ~ S03 C if and only if k is even (in particular, the "standard" 
representation of S03 C on C3 is the symmetric square Sym2 V). For another 
example, we have seen that any irreducible representation of sp4 C may be 
found in a tensor product SymkV ® Sym1W, where Vis the standard four
dimensional representation of sp4 C and W c NV the complement of the 
trivial one-dimensional representation. All such representations lift to Sp4 C, 
but they lift to PSp4 C ~ S05 C if and only if k is even-equivalently, if they 
are contained in a representation of the form Sym1W ® Symk(/\2W), where 
Wis the "standard" representation of S05 C. 

Exercise 23.14. Show that each of these semisimple complex Lie groups G has 
a finite-dimensional faithful representation. 

The result of the proposition can be put in a more formal setting, which 
brings out a feature that our alert reader has surely noticed: the center of 
the simply-connected form of g is isomorphic to the quotient group Aw/AR 
of the weight lattice modulo the root lattice. We note first that this abelian 
group Aw/AR is finite. We have seen this for the classical Lie algebras. In 
general, we have 

Lemma 23.15. The group Aw/AR is finite, of order equal to the determinant of 
the Cartan matrix. 

PROOF. The simple roots a form a basis for the root lattice AR. The correspond
ing elements Ha. form a basis for 

rR = Z{Hy: y ER}, 

a lattice in l); this is proved in Appendix D.4. Since Aw is defined to be the 
lattice Of elements of g* that take integral values On rR, the determinant 

det(a(Hp)) = det(ncrp) 

is the index [Aw: AR]. 0 
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Jn particular, for the exceptional groups, Aw/AR is trivial for (G2 ), (F
4

), and 
(E 8 ), and cyclic of order two for (E7 ) and order three for (E

6
). 

In fact, the center of the simply-connected group is naturally isomorphic 
to the dual of Aw/AR. To express this, consider the natural dual of this last 
group. The lattice rR defined in the preceding proof is a sublattice of the lattice 

rw ={XE l): a(X) E Z for all a ER}. 

Note that Aw was defined to be the lattice of elements of l)* that take integral 
values on rR. It follows formally from the definitions and the fact that A /A 

· h W R is limte t at we have a perfect pairing 

(X, a)~ a(X). 

!he claim is that there is a natural isomorphism from r w/rR to the center 
of G, which is given by the exponential. More precisely, let e

6
: l)--+ H c G be 

the homomorphism defined by 

e6 (X) = exp(2niX). 

We cla~m that when G_ = G is the simply-connected group, Ker(ea) = rR and 
e,;( r w) ts the center of G, from which it follows that ea induces an isomorphism 

r w/rR ~ Z(G). 

More generally, for any G = G/C, define a lattice r(G) between rR and r w by 

r(G) = Ker(e6 ). 

Then e6 determines an isomorphism 

rw/r(G) ~ Z(G). 

We may thus state our result as 

Theorem 23.16. There is a one-to-one correspondence between connected Lie 
woups G with the Lie algebra g and lattices A c l)* such that 

AR c Ac Aw. 

The correspondence is given by associating to a group G the lattice dual to the 
kernel of the exponential map exp: g--+ G; in particular, the largest lattice Aw 
corresponds to the simply-connected group, the smallest AR to the adjoint group 
Wtth no center. In terms of this correspondence, the irreducible representation 
v, of g with highest weight A. E l)* will lift to a representation of the group G 
corresponding to A c l)* if and only if A.EA. 

Note.also that 

H = IJ/r(G) ~ c• x ... x c•, 
With n = dimclJ copies of C*. 
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Exercise 23.17*. Show that these claims follow formally from what we have 
seen: that the image of the exponential map contains the center, and that for 
any weight IX there is a representation V of 9 whose weight space V.. is not zero. 
Show also that eG determines an isomorphism r(G)/rR ~ n1 (G). In diagram 
form, 

Go 

i 
G 

i 
G 

Exercise 23.18. Find the kernels of each of the spin and half-spin representa
tions SpinmC-+ GL(S) and SpinmC-+ GL(S±). 

Exercise 23.19*. Classify the irreducible representations of the full orthogonal 
group omc. 

Note that by our analysis of the Lie algebra 92 there is a unique group G2 
with this Lie algebra, which is simultaneously the simply-connected and 
adjoint forms; the representations of this group are exactly those of the alge
bra 92 • The same is true for the Lie algebras of type (F4 ) and (E8 ), while (E 7 ) 

and (E6 ) each have two associated groups, an adjoint one with fundamental 
group Z/2 and Z/3, and a simply-connected form with center Z/2 and Z/3 
respectively. 

It may be worth pointing out that each complex simple Lie group G can 
be realized as a closed subgroup defined by polynomial equations in some 
general linear group, i.e., that G is an affine algebraic group. Every irreducible 
representation G-+ GL(V) is also defined by polynomials in appropriate 
coordinates. This explains why the whole subject can be developed from the 
point of view of algebraic groups, as in [BorlJ and [Hu2]. 

The Wey! group ID.\, which we defined as a subgroup of Aut(g*), can be 
interpreted in terms of any connected Lie group G with Lie algebra 9. Let H 
be the Cartan subgroup corresponding tog, and let N(H) be the normalizer: 

N(H) = {g e G: gHg-1 = H}. 

We have homomorphisms: 

N(H)-+ Aut(H)-+ Aut@-+ Aut(g*), 

the first defined by conjugation, the second by differentiation at the identity, 
and the third using the identification of g and g* via the Killing form. Fact 
14.11 can be sharpened to the claim that this map determines an isomorphism 

N(H)/N ~ID.\. (23.20) 

When G is the adjoint form of the Lie algebra, this isomorphism is proved 
in Appendix D. The general case follows, using: 
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Exercise 23.21. Show that if n: G' -+ G is a connected covering, with Cartan 
subgroups H' = 7t-

1(H), then the induced map N(H')/H'-+ N(H)/H is an 
isomorphism. 

Exercise 23:22. For each of the classical groups, and each simple root IX, find 
an element m N(H) that maps to the reflection ~in ID.\. 

§23.2. Representation Rings and Characters 

Just as with finite groups, we can form the representation ring R of a semi
simple Lie algebr~ or ~ie gr~up: take the free abelian group on the isomorphism 
classes [VJ offimte-d1mens1onal representations V, and divide by the relations 
[VJ= [V'~ + [~"J whenever V ~ V' Ee V". By the complete reducibility of 
representations, tt follows as before that Risa free abelian group on the classes 
[.VJ of irreduci~le repre~entations. Again, the tensor product of representa
tions makes R mto a nng: [VJ· [WJ = [V ® WJ. Many of our questions 
about d~composing representations and tensor products of representations 
can be mcely encoded by describing R more fully. We do this first for the Lie 
algebras. 

For a se~isimple Lie algebra 9, let A =Aw be the weight lattice, and let 
.Z[~J be the mtegral group ring on the abelian group A. We write e(A.) for the 
bast~ element of Z[A] corresponding to the weight A.; for now at least these 
arc Just formal symbols, having nothing to do with exponentials (but see 
~23:40) ). Elements of Z [~J are e~pressions of the form ~:>.i.e(A.), i.e., they assign 
'.tn mteger n;. to each weight A., with all but a finite number being zero. So Z[AJ 
is a natural carrier for the information about multiplicities of representations. 
Define a character homomorphism 

Char: R(9)-+ Z[AJ (23.23) 

by the fo~ula Char[VJ = L dim(V;.)e(A.), where V;. is the weight space of V 
for the weight A. and dim(V;.) its multiplicity. This is clearly an additive 
homomorphism. 

The first assertion about this character map is that it is injective. This comes 
down. to the fact that a representation is determined by the multiplicities of 
Its weight spaces, which is something we saw in Lecture 14. 

The_product in the group ring Z[AJ is determined by e(1X)· e(P) = e(IX + p). 
W c claim next that Char is a ring homomorphism. This comes from the familiar 
fact that 

(V® W);. = EB Vµ® w •. 
µ+v=). 

0 
The 'Yeyl gr~up ~acts o~ Z[A_J, an~ a third simple claim is that the image 

f Char ts con tamed m the nng of mvanants Z [AJ m. This comes down to the 
fact that, for an irreducible (and hence for any) representation V, the weight 
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spaces obtained by reflecting in walls of the Weyl chambers all have the same 

dimension. 
Let Wi, ... , wn be a set of fundamental weights; as we have seen, these are 

the first weights along edges of a Weyl chamber, and they are free generators 
for the lattice A. Let ri, ... , rn be the classes in R(g) of the irreducible 
representations with highest weights Wi, ... , Wn· 

Theorem 23.24. (a) The representation ring R(g) is a polynomial ring on the 

variables r1' ... ' rn. 
(b) The homomorphism R(g)-+ Z[A] 211 is an isomorphism. 

In particular, this says that Z[A]!lll is a polynomial ring on the variables 
Char(ri ), ... , Char(rn). In fact, the theorem is equivalent to this assertion, 
since if we take variables U i • .. ., Un and map the polynomial ring on the U; 
to R(g) by sending U1 to r 1, we have 

Z[Ui, ... , Un]-+ R(g)-+ Z[A]m. 

If the composite is an isomorphism, the second being injective, both must be 
isomorphisms, which is what the theorem. says. 

in spite of its fancy appearance, we will see that the theorem follows quite 
easily from what we know about the action of the Weyl group W on the 

weights. 
For any Pe Z[A] let us say that IX is a highest weight for P if the coefficient 

of e(IX) in Pis nonzero, and, with a chosen ordering of weights as before, IX is 
the largest such weight. We first observe that if Pis invariant under W, then 
the highest weight for Pis in "If/' n A, where "If/' is our chosen (closed) Weyl 
chamber. In general, weights in "If/' n A are often referred to as dominant 

weights. 
Now suppose {P;.} is any collection of elements in Z[A]

211
, one for each 

dominant weight A., such that P;. has highest weight A. and the coefficient of 
e(A.) is 1. We claim that the P;. form an additive basis for Z[A]!lll over Z. This 
is easy to see and is the same argument used in the theory of symmetric 
polynomials in any algebra text: given P with highest weight A., if the coefficient 
of e(A.) is m, then P - mP;. is invariant whose highest weight is lower, and one 
continues inductively until one reaches weight zero, i.e., the constants. 

Let P
1 
= Char(r

1
), which has highest weight w1, and suppose the coefficient 

of e(w
1
) is 1. Since any weight A. e "If/' n A can be uniquely expressed in the 

form A. = L m
1
w

1
, for some non-negative integers m1, and the highest weight 

of n (P;r' is L m;W;, it follows that the monomials n (P;)'"' in Pi' ... ' Pn form 
an additive basis for Z [A] m. This says precisely that Z [Pi, ... , Pn] = Z [A] 'Ill, 

and completes the proof. 0 

Let us work this out concretely for each of our cases sln+i C, spnC, so2n+i C, 
and so2nC. Each lattice A contains weights we have called Li, .. ., Ln; in the 
first case we also have Ln+i with Li + · · · + Ln+i = 0. We set 
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(23.25) 

Note that in case Li •... , Ln is a basis for A, then 

Z[A] = Z[xi, ... , Xn, x}i, .. ., x; 1
] = Z[x 1 , •. ., Xn, (xi · ... ·xn)-i] 

as a subring of the field Q(x i • ... , xn). 
(An) For sin+! C, fundamental weights are 

Li, Li+ L 2 , Li+ L 2 + L 3 , ..• , L 1 + ··· + Ln, 

corresponding to the irreducible representations V, NV, ... , /\" V, with 
V = cn+i the standard representation. The character of NV is L e(IX), the sum 
over all IX ~hat are sums of k different L1 for 1 ::;; i ::;; n + 1. So Char(NV) = Ak, 
where ~k is the kth el~mentary symmetric function of x1, .. ., xn+i· The Weyl 
group IS the symmetnc group 6n+1• acting by permutation on the indices SO 

the theorem in this case says that ' 

(23.26) 

Not.e.that ~[A]~~[Xi····•Xn,Xn+i]/(xi· ... ·xn+1 -l), so Z[A] has an 
add1t1ve basis c~ns1stmg of all monomials x~, with IX an n-tuple of non-negative 
integers, but with not all 1X1 positive. 

(Cn) For sp2nC, the lattice A and fundamental weights have the same 
dc~cription as in the preceding case. The corresponding irreducible represen
tat10ns are the kernels v<k> of the contraction maps NV-+ N-2v. with now 
V 11"'2n h . ' = 11._, t e standard representation, k = 1, ... , n. The character of NV is 
I e(ix), the sum over all IX that are sums of k different ± L1 for 1 ::;; i ::;; n. The 
character Char(NV) is thus the elementary symmetric polynomial C in the 
variables X1, x}i, x2 , xz-i, ... , Xn, x;i. The theorem then says that k 

R(sP2nC> = Z[A]m = Z[Ci, C2 - 1, C3 - Ci, .. ., Cn - Cn_ 2 ] 
(23.27) 

= Z[Ci, C2, C3 , .. ., Cn]. 

(B.) For so2n+i C, A is spanned by the L1 together with !(Li + · · · + Ln). 
The funda?1ental representations are V, NV, ... , /\"-i V, and the spin 
repre~entatton S. The character of NV is the kth elementary symmetric 
function of the 2n + 1 elements Xi, x}1, ... , xn, x;i, and 1; denote this by Bk. 
The character of s, which we denote by B, is the sum L x r 112 ..... x; i12' where 

xi112 = e(L;/2), xji12 = e( - L;/2). (23.28) 

So Bis the nth elementary symmetric polynomial in the variables xi112 + xji12
• 

Therefore, 

(23.29) 

., (D.) For so2nC, A and Z[A] are the same as in the preceding case. 
I he fundamental representations are V, NV, ... , /\"-2 V, and the half-spin 
representations s+ and s-. The character of NV, denoted D is the kth 
clc t · l". k• men ary symmetnc iunction of the 2n elements Xi, :>:}i, .. ., xn, x;i. The 
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character D± of s± is the sum "f.xri12 · ... · x;=i12, where the number of plus 
signs is even or odd according to the sign. We have 

R(so2"C) = Z[A]m =: .. =Di, ... , Dn-2, D+, D-]. (23.30) 

Exercise 23.31*. (a) Prove the following relation in R(so2n+i C): 

B2 = B" + · · · + Bi + 1, 

corresponding to the isomorphism 

S ® s ~ NV E9 · · · E9 NV E9 NV. 

This describes R(so2n+i IC) as a quadratic extension of the ring Z[B~, ... , B.]. 
(b) Let v.+ (respectively, D;;) be the character of the representation whose 

highest weight is twice that of v+ (resp., v-), so that, for example, the sum of 
the representations v: and D;; is NV. Prove the relations in R(so2.IC): 

v+ ·D+ = v: + D,-2 + Dn-4 + ···, 

v- · v- = D;; + Dn-2 + Dn-4 + · · ·, 

D+ · v- = D.-i + Dn-3 + Dn-s + ... · 

We can likewise describe the representation ring for g2. Here, we may take 
as generators for the weight lattice the weights Li and L2 as pictured in the 

diagram 

and correspondingly write Z[A] as Z[xi, x1i, x 2 , x;-i], where x~ = e(L1)· I~ 
will be a little more symmetric to introduce L3 = - Li - L2 as pictured an 
x3 = x1i · x;-i = e(L3), and write 

Z[A] = Z[xi, x 2 , x 3]/(xiX2X3 - 1). 
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In these terms the Weyl group is the group ID3 generated by the symmetric 
group 6 3 permuting the variables x1 and the involution sending each x 1 to xji. 
The standard representation has weights ± L1 and 0, and so has character 

A= A(xi, x 2 , x3 ) = 1 +Xi + x1i + x 2 + x;-i + x 3 + x3i. 

Similarly, the adjoint representation has weights ±Li, ±(Li - L1), and 0 
(taken twice); its character is 

B = A(xi, x 2 , x3 ) + A(xifx2 , x2/x3 , x3 /xi). 

The theorem thus implies in this case the equality 

R(g2) = Z[A]m = Z[A, B]. (23.32) 

Exercise 23.33. Verify directly the statement that any element of Z [xi· x 2 , x3]/ 

(x 1 X2X3 - 1) invariant under the group fil3 as described is in fact a polynomial 
in A and B. 

Similarly we can define the representation ring R( G) of a semisimple group 
G. When G is the simply-connected form of its Lie algebra g, R(G) = R(g), 
so R(SL"q' R(Sp2.IC), R(Spin2.+i IC), and R(Spin2"1C) are given by (23.26), 
(23.27), (23.29), and (23.30). In generai R(G) is a subring of R(g); we can read 
off which subring by looking at Proposition 23.13. We have, in fact, 

R(S02.+i IC) = Z [Bi, ... , B"]; 

R(S02nq = z [Di. ... ' Dn-1' v:' D;;], 

(23.34) 

(23.35) 

with v: and Dn- as in Exercise 23.31. But this time there is one relation: 

(D: + Dn-2 + Dn-4 + ... + l)(D.- + Dn-2 + Dn-4 + ... + 1) 

= (Dn-i + Dn-3 + · · · + )2
• 

Exercise 23.36*. 

(a) Prove (23.34). 
(b) Show that the relation in (23.35) comes from Exercise 23.31(b). Show that 

R(S02"C) is the polynomial ring in then+ 1 generators shown, modulo 
the ideal generated by the one polynomial indicated. 

(c) Describe the representation rings for the other groups with these simple 
Lie algebras. 

(d) Prove the isomorphism 

R(GL"IC) = Z[Ei. ... ,En, E;;i], 

where the Ek are the elementary symmetric functions of Xi, ... , x •. 

Exercise 23.37*. (a) Show that the image of R(Omq in R(SOmq is the poly
nomial ring Z[Bi, ... , Bn] ifm = 2n + 1, and Z[Di, ... , Dn] ifm = 2n. 
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(b) Show that 

R(02n+l IC) = R(S02n+l IC)® R("ll../2) 

= "1L[B1, ... , Bn, B2n+1]/((B2n+d2 - 1) 

and 

R(02nq = "1L[D1, ... , Dn, D2n]/I, 

where I is the ideal generated by (D2n)2 - 1 and DnD2n - Dn. 

Exercise 23.38*. The mapping that takes a representation V to its dual V* 
induces an involution of the representation ring: [V]* = [V*]. The ring "ll..[A] 
has an involution determined by (e(A.))* = e( -A.). Show that the character 
homomorphism commutes with these involutions. Show that for sl.+1, 
(Ad* = An+t-k; for so2n+1 IC, and sp2nlC, and so2nlC for n even, the involution is 
the identity; while for so2.IC with n odd, (Dk)* =Dk, (D+)* = D-, (D-)* = D+. 
Deduce that all representations of all sy.mplectic and orthogonal groups are 
self-dual. Note that when *is the identity, all representations are self-dual. In 
the other cases, compute the duals of irreducible representations with given 
highest weight. 

The following exercise deals with a special property of the representation 
rings of semisimple Lie groups and algebras. 

Exercise 23.39*. The representation rings R = R(9) and R(G) have another 
important structure: they are A.-rings. There are operators 

A_i: R(G)--+ R(G), i = 0, 1, 2, ... , 

determined by A. 1([V]) = [NV] for any representation V. 
(a) Show that this determines well-defined maps, satisfying A. 0 = 1, A. 1 = ld, 

and 

A. '(x + y) = L A. ;(x). A_l(y) 
l+j=k 

for any x and y in R. In fact, R is what is called a special A.-ring: there are 
formulas for A. 1(x · y) and A. 1(A.i(x)), valid as if x and y could be written as sums 
of one-dimensional representations (see, e.g., [A-T]). 

(b) Show that A. 1 extends to "ll..[A], and use this to verify that R(G) is a special 
A.-ring. . 

Define Adams operators r/Jk: R --+ R by r/Jk(x) = Pk(A. 1 x, ... , A. nx), where Pk is 
the expression for the kth power sum (cf. Exercise A.32) in terms of the 
elementary symmetric functions, n ~ k. Equivalently, 

r/lk(x) - l/lk-t(x)A.1(x) + ... + (- l)kkA_k(x) = 0. 

(c) Show that, regarding R as the ring of functions on the group G, 
(r/Jkx)(g) = x(gk). Equivalently, r/Jk(e(A.)) = e(H). 
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(d) Show that each r/Jk is a ring homomorphism, and r/Jk o 1/1 1 = r/Jk+1
• 

(e) Show that for a representation V, 

Char(Sym2 V) = ! Char(V)2 + !1/12 (Char(V)), 

Char(/\2V) = ! Char(V)2 
- !1/12(Char(V)). 
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Show that Char(SymdV) and Char(NV) can be written as polynomials in 
1V(Char(V)), 1 :::::;; k :::::;; d. 

Formal Characters and Actual Characters 

Let G be a Lie group with Lie algebra 9. For any representation V of 9, the 
image of [V] e R(9) in "ll..[A] is called the formal character of V. As it turns 
out, this formal character can be identified with the honest character of the 
corresponding representation of the group G, restricted to the Cartan sub
group H: 

(23.40) If Char(V) = L m,.e(a) is the formal character, and exp(X) is an element 
of' H, then the trace of exp(X) on V is L m,.e"<X>. 

This is simply because exp(X) acts on the weight space Yµ by multiplication 
by eµ<X>, as we have seen. In particular, a representation is determined by the 
character of its restriction to a Cartan subgroup. 

Another common notation for this is to set e(X) = exp(2niX), and 
e(z) = exp(2niz). Then the trace of e(X) is Im,.e(a(X)). 

Exercise 23.41. As a function on H, the character of a representation is 
invariant under the Weyl group lID = N(H)/H. Describe R(G) as a ring of 
'!13-invariant functions on H. 

This is also compatible with our descriptions of elements of "ll..[A] ni as 
Laurent polynomials in variables x; or xfl2• For SLn+i IC, for example, if the 
character Char(W) of a representation Wis P(x 1 , ... , Xn+d. the trace of the 
matrix diag(zi. ... , zn+i) on Vis P(z 1 , ... , Zn+1 ). Similarly for the other groups, 
using the diagonal matrices described in the first section of this lecture. For 
the spin groups, the element w(z1 , ... , zn) defined in (23.8) has trace given 
by substituting z1 for xfl2

, and z/1 for x;112 in the corresponding Laurent 
polynomial. 

Exercise 23.42*. If 91 and 92 are two semisimple Lie algebras, show that 

R(g1 x g2 ) = R(gi) ® R(92 ). 

F:xercise 23.43*. (a) For the natural inclusion slnlC c: sln+1 IC, restriction of 
representations gives a homomorphism R(sln+i IC)--+ R(slnq, which can be 

I 
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described by saying what happens to the polynomial generators. Since 
N(C" EE> q = N(C") EE> N-1 (C"), this is 

Ak r+ Ak + Ak-1 · 

Give the analogous descriptions for the following inclusions: 

If"' C "P If"' S02nC C S02n+l C, S02n-l C C S02nC; SP2n-21V "' 2n'V• 

sl"C c SP2nC, sl"C c S02n+l c, sl"C c S02nC; 

If"' I If"' "'0 If"' c sl c S02nC c sl2nC. SP2nlV C S 2n'V• "' 2n+1 IV 2n+1 ' 

(b) The inclusion sl"C x slmC c sln+mC determines a restricti~n homo-

h. R("l C) _. R(sl C x sl q = R(sl q ® R(slmC), which takes 
morp ism "' n+m " m " l A C t 
polynomial generators Ak to Ak ® 1 + Ak-1 ®Ai + · · · + ® k· ompu e 

analogously for 
ir ir C so"C x somC c SOn+mC. SP2nlV X SP2mlV C SP2n+2m • • 

Which of these inclusions correspond to removing nodes from the Dynkin 

diagrams? 

Exercise 23.44. Compute the isomorphisms of representation rings corr~
sponding to the isomorphisms sl2C ~ so3C, sosC ~ sp4C, and sl4C ~ so6 · 

§23.3. Homogeneous Spaces 

In this section we will introduce and describe the compact homogen~ous 
spaces associated to the classical groups. As w_e will see, these are classified 
neatly in terms of Dynkin diagrams, and are, m turn, closely related to the 
representation theory of the groups acting on them. Unfortunately,_ we are 
unable to give here more than the barest outline of this beautiful subject;_ but 
we will at least try to say what the principal objects are, and wh~t conn~ct1ons 
among them exist. In particular, we give at the end of the ~ect1on a diagr:: 
(23.58) depicting these objects and correspondences to which the reader 

refer while reading this section. 
We begin by introducing the notion of Borel subalge~ras and -~orel su~~ 

groups. Recall first that a choice of Cartan subalgebra l) m a semtslmple Lt 
algebra g determines as we have seen, a decomposition g = l) EE> EBa e R ~a· To 
each choice of orderlng of the root system R = R + u R-, we can associate a 

subalgebra 

b = 1> EE> EB 9a· 
a:eR+ 

called a Borel subalgebra. Note that b is solvable, since .@b c EB ~a• 
.@2b c EB ga+ll• etc. In fact, b is a maximal solvable subalgebra (Exeretse 

14.35). 
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If G is a Lie group with semisimple Lie algebra g, the connected subgroup 
B of G with Lie algebra b is called a Borel subgroup. 

Claim 23.45. Bis a closed subgroup of G, and the quotient G/B is compact. 

PROOF. Consider the adjoint representation of G on g. The action of the Borel 
subalgebra b obviously preserves the subspace b c g, and, in fact, b is just the 
inverse image of the subalgebra of gl(g) preserving this subspace: if X = L Xa 
is any element of g with Xa E 9a and Xa "#- 0 for some IX ER-, we could find an 
element H ofl) 'c b with ad(X)(H) ¢ b-any Hnot in the annihilator of IX El)* 
would do. Bis thus (the connected component of the identity in) the inverse 
image in G of the subgroup of GL(g) carrying b into itself. It follows that Bis 
closed; and the quotient G/B is contained in a Grassmannian and hence 
compact. (Alternatively, we could consider the action of G on the projective 
space lfl>(g), and observe that Bis just the connected component of the identity 
in the stabilizer of the point corresponding to the highest weight space 9a cg.) 

In fact, in the case of the classical groups, it is easy to describe the Borel 
subgroups and the corresponding quotients. 

For G = SLn+i C, Bis the group of all upper-triangular matrices in G, i.e., 
those automorphisms preserving the standard flag. It follows that G/B is the 
usual (complete) flag manifold, i.e., the variety of all flags 

G/B = {O c Vi c · .. c V,. c cn+i} 

of subspaces with dim(V,) = r. 
For G = S02"C or S02n+l C the orthogonal group of automorphisms of 

cm = C2" or c 2n+I preserving a quadratic form Q, B is the subgroup of 
automorphisms which preserve a fixed flag Vi c · · · c V,. of isotropic sub
spaces with dim(V,) = r. All such flags being conjugate, G/B is the variety of 
all such flags, i.e., 

G/B = {O c Vic··· c V,. c cm: Q(V,., V,.) = O}. 

Note that B automatically preserves the flag of orthogonal subspaces, so that 
we could also characterize G/B as the space of complete flags equal to their 
orthogonal complements, i.e., 

G/B = {O c V: c · · · c V. c V. =.rm. Q(" V. ) = O} 1 m-1 m IV • "i• m-i - • 

Finally, the same holds for Sp2" C: the Borel subgroups B c Sp2" C are just 
the subgroups preserving a half-flag of isotropic subspaces, or equivalently 
a full flag of pairwise complementary subspaces; and the quotient G/B is 
correspondingly the variety of all such flags. 

Exercise 23.46. With our choice of basis { eJ, let V, be the subspace spanned 
hy the first r basic vectors. If B is defined to be the subgroup that preserves 
V,. for 1 ::5: r ::5: n, verify that the Lie algebra of B is spanned by the Cartan 
subalgebra and the positive root spaces described in Lectures 17 and 19. 
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We now want to consider more general quotients of a semisimple complex 
group G. To begin with, we say that a (connected 1 ) subgroup P of G is 
parabolic if the quotient G/P is compact. Of course, a Borel subgroup B is 
parabolic, and so is any closed subgroup containing a Borel subgroup. The 
following claim is a converse to this: it asserts that the Borel subgroups are 
exactly the minimal parabolic subgroups. 

Claim 23.47. If B is a Borel subgroup and P a parabolic subgroup of G, then 
there is an x E G with 

B c xPx-1• 

We will not prove this here, but will remark that it is closely related to 

Claim 23.48. If Pc G is a parabolic subgroup, then the quotient G/P may be 
realized as an orbit of the action of G on IP V for some representation V of G 
(in particular, G/P is a projective algebraic variety). 

The first claim follows from the second by a version of Borel's fixed point 
theorem: if B is a connected solvable group, V a representation of B and 
X c IPV a projective variety carried into itself under the action of Bon IPV, 
then B must have a fixed point on X. This is straightforward: we observe (by 
Lie's theorem (9.11)) that the action of the solvable group B on V must 
preserve a flag of subspaces 

OcV1 c···cV,.=V 

with dim(J'i) = i. We can thus find a subspace J'i c V fixed by B such that X 
intersects IPJ'i in a finite collection of points, which must then be fixed points 
for the action of Bon X. In the other direction, we will soon see directly how 
G/P is a projective variety whenever Pis a subgroup containing B. 

We can now completely classify the parabolic subgroups of a simple group, 
up to conjugacy. By the above, we may assume that P contains a Borel 
subgroup B. Correspondingly, its Lie algebra p is a subspace of g containing 
b and invariant under the action of B on g; i.e., it is a direct sum 

p=~$EEJga 
ae T 

for some subset T of R that contains all positive roots. Now, in order for P to 
be a subalgebra of g, the subset T must be closed under addition (that is, _if 
two roots are in T, then either their sum is in T or is not a root). Since, ID 

addition, T contains all the positive roots, we may observe that if !X, {J, and Y 
are positive roots with iX = {J + y, then we must have 

- !X E T => - {J E T and -y E T. 

1 It is a general fact that P must be connected if G/P is compact. 
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Clearly, any such subset T must be generated by R+ together with the 
negatives of a subset I: of the set of simple roots. Thus, if for each subset I: 
of the set of simple roots we let T(I:) consist of all roots which can be written 
as sums of negatives of the roots in I:, together with all positive roots, and 
form the subalgebra 

(23.49) 

then p(I:) is a parabolic subalgebra, the corresponding Lie group P(I:) is a 
parabolic subgroup containing B, and we obtain in this way all the parabolic 
subgroups of G. We can express this as the observation that, up to conjugacy, 
parabolic subgroups of the simple group G are in one-to-one correspondence 
with subsets of the nodes of the Dynkin diagram, i.e., with subsets of the set of 
simple roots. 

Examples. In the case of sl3 IC, there is a symmetry in the Dynkin diagram, so 
that there is only one parabolic subgroup other than the Borel, corresponding 
to the diagram 

0 • 

This, in turn, gives the subset of the root system 

corresponding to the subgroup 

and the homogeneous space 

G/P = IP2
• 

In the case of sp4 IC, there are two subdiagrams of the Dynkin diagram: 

• < c > and<~!~-< .... ~--• 

these correspond to the subsets of the root system 
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and 

(Here we are using a black dot to indicate an omitted simple root, a white dot 
to indicate an included one.) The corresponding subgroups of Sp4 C are those 
preserving the vector e1 , and preserving the subspace spanned by e1 and e2 , 

respectively. The quotients G/B are thus the variety of one-dimensional iso
tropic subspaces (i.e., the variety IP 3 of all the one-dimensional spaces) and 
the variety of two-dimensional isotropic subspaces. 

Exercise 23.50. Interpret the diagrams ab"ove as giving rise to parabolic 
subgroups of the group SOs C of automorphisms of Cs preserving a symmetric 
bilinear form. Show that the corresponding homogeneous spaces are the 
variety of isotropic planes and lines in cs, respectively. In particular, deduce 
the classical algebraic geometry facts that: 

(i) The variety of isotropic 2-planes for a nondegenerate skew-symmetric 
bilinear form on C4 is isomorphic to a quadric hypersurface in IP4

. 

(ii) The variety of isotropic 2-planes for a nondegenerate symmetric bilinear 
form on cs (equivalently, lines on a smooth quadric hypersurface in IP4

) 

is isomorphic to IP 3
• 

In general, it is not hard to see that any parabolic subgroup P in a classical 
group G may be described as the subgroup that preserves a partial flag in 
the standard representation. In particular, a maximal parabolic subgroup, 
corresponding to omitting one node of the Dynkin diagram, may be described 
as the subgroup of G preserving a single subspace. Thus, for G = SLmC, the 
kth node of the Dynkin diagram 

corresponds to the Grassmannian G(k, m) of k-dimensional subspaces of cm. 
(Note that the symmetry of the diagram reflects the isomorphism of the 
Grassmannians G(k, m) and G(m - k, m).) 

For Sp2"C, the kth node of the Dynkin diagram 
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corresponds to the Lagrangian Grassmannian of isotropic k-planes, fork= 1, 
2, ... , n. Similarly, for G = S02n+i C, the kth node of the Dynkin diagram 
corresponds to the orthogonal Grassmannian of isotropic k-planes in c2n+1. 

Finally, for S02nC, fork = 1, 2, ... , n - 2 the kth node of the Dynkin diagram 

yields the orthogonal Grassmannian of isotropic k-planes in C2", but there is 
one anomaly: either of the last two nodes 

gives one of the two connected components of the Grassmannian of isotropic 
n-planes. 

Exercise 23.51 *. Compute p(~) directly for each of the classical groups, and 
verify the above statements. Why is the orthogonal Grassmannian of isotropic 
(n - l)-planes in C2" not included on the list? 

As we saw already in Exercise 23.50, the low-dimensional coincidences 
between Dynkin diagrams can be used to recover some facts we have seen 
before. For example, the coincidence (D 2 ) =(Ai) x (Ai) identifies the two 
family of lines on a quadratic surface in IP3 with two copies of IP 1. The 
coincidence (A 3 ) = (D3 ) 

< 
gives rise to two identifications of marked diagrams: we have 

< 
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corresponding to the isomorphism between the Grassmann varieties 
IP3 = G(l, 4), p3 = G(3, 4) and the two components of the family of 2-planes 
on a quadric hypersurface Qin IP 5

; and 

o--•>---O < 
corresponding to the isomorphism of the Grassm~nnian ~(2, 4) wit~ the 
quadric hypersurface Q itself. Finally, an obse~vatt~n that ts ~ot qmte so 
elementary, but which we saw in §20.3: the ident1ficat10n of the diagrams 

says that either connected component of the variety of 3-planes on a smooth 
quadric hypersurface Q in IP 7 is isomorphic to the quadric Q itself. . 

There is another way to realize the compact homogeneous spaces assocta~ed 
to a simple group G. Let V = r;. be an irreducible repr~se~tation of G with 
highest weight A., and consider the action of? on the pro~ect1~e space IP V. Let 
p E IPV be the point corresponding to the e1genspace with eigenvalue A.. We 

have then 

Claim 23.52. The orbit G · p is the unique closed orbit of the action of G on IP> V. 

PROOF. The point pis fixed under the Borel subgroup B, so that the stabilizer 
of pis a parabolic subgroup P;.; the orbit G/P;. is thus compact and. hence 
closed. Conversely, by the Borel fixed point theorem, any closed orbit of G 
contains a fixed point for the action of B; but pis the unique point in IP>V fixed 

0 by B. 

In fact, it is not hard to say which parabolic subgroup P;. is, in terms of the 
classification above: it is the parabolic subgroup corresponding to the subset of 

f · le simple roots that are perpendicular to the weight A.. Now, sets :!: o s~mphe 
roots correspond to faces of the Weyl chamber, namely, the face that ts t 
intersection of all hyperplanes perpendicular to all roots in :!:. d 

We thus have a correspondence between faces of the Weyl chamber ~n 
parabolic subgroups P, such that if V = r;. is the irreducible_ representatton 
with highest weight A., then the unique closed orbit of the actton of G on IP>V 
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is of the form G/P, where Pis the parabolic subgroup corresponding to the 
open face of "II/" containing A.. In particular, weights in the interior of the Weyl 
chamber correspond to P;. = B, and so determine the full flag manifold G/B, 
whereas weights on the edges give rise to the quotients of G by maximal 
parabolics. Note that we do obtain in this way all compact homogeneous 
spaces for G. 

For example, we have the representations of SL3 C: as we have seen, the 
representations SymkV and SymkV*, with highest weights on the boundaries 
of the Weyl chamber, have closed orbits { vk}ve v and Whe v•, isomorphic to 
~D v and IP>V*. By contrast, the adjoint representation-the complement of 
the trivial representation in Hom(V, V) = V ® V*-has as closed orbit the 
variety of traceless rank 1 homomorphisms, which is isomorphic to the flag 
manifold via the map sending a homomorphism <p to the pair (Im <p, Ker <p). 
The picture is 

representations Symtv • 
have closed orbit IP 2 

"'-

• 

adjoint representation has 
closed orbit the flag manifold 

/_ (=hyperplane section of 
/ IPV x IPV* c IP(V ®V*) = 1P 8

) 

-- I -representations Symtv 
have closed orbit IP 2 

In general, if Vis the standard representation of SL"C, in the representa
tions of SL"C of the form W = SymkV we saw that the vectors of the form 
[ vk }vev formed a closed orbit in IP>W, called the Veronese embedding of IP"-1

• 

Likewise, in representations of the form W =NV the decomposable vectors 
[ IJ1 /\ v2 /\ • • • /\ vk} formed a closed orbit in IP>W; this is the Plucker embedd
ing of the Grassmannian. 

Similarly, we may identify the closed orbits in representations of Sp4 C. 
Recall here that the basic representations of Sp4 C are the standard represen
tation V ~ C4 and the complement W of the trivial representation in the 
exterior square /\2 V; all other representations are contained in a tensor 
product of symmetric powers of these. Now, Sp4 C acts transitively on IP>V; 
the closed orbit is all of IP> 3 • In general, in IP>(SymkV) the closed orbit is just 
the set of vectors { vk}vev ~ IP> 3

. By contrast, the closed orbit in IPW is just the 
intersection of the hyperplane IPW c IP>(/\2V) with the locus of decomposable 
vectors {v /\ wL,wev; this is the variety 
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X = { v A w: Q(v, w) = O} 

of isotropic 2-planes A c V for the skew form Q. 

representation W has 
closed orbit a quadric 

hypersurface in IPW 

\ 
• 

-- I --representations Symtv 
have closed orbit IP 

3 

For the group Spin2n+l C, the closed orbit of the spin representation Sis 
the orthogonal Grassmannian of n-dimensional isotropic subspaces of c2n+ 1

. 

The corresponding subvariety 

G/P e+ ?(S) 

is a variety of dimension (n + l)n/2 in pN, N = 2" - 1, called the spinor variety, 
or the variety of pure spinors. Similarly for Spin2"C, the two spin representa
tions s+ and s- give embeddings of the two components of the orthogonal 
Grassmannian of n-dimensional isotropic subspaces of C2

", one in ?(S+), one 
in ?(S-). These spinor varieties have dimension n(n - 1)/2 in projective spaces 
of dimension 2"-1 

- 1. 

Exercise 23.53. Show that the spinor variety for Spin2"_1 C is isomorphic to 
each of the spinor varieties for Spin2"C. In fact they are projectively equivalent 
as subvarieties of projective space pN, N = 2n-1 

- 1. 

It follows that, form~ 8, the spinor varieties for SpinmC are isomorphic 
to homogeneous spaces we have described by other means. The first new one 
is the IO-dimensional variety in ? 15, which comes from Spin9 C or Spin10 C. 

It is worth going back to interpret some of the "geometric plethysm" of 
earlier lectures (e.g., Exercises 11.36 and 13.24) in this light. 

Finally, we can describe (at least one of) the compact homogeneous spaces 
for the group G2 in this way. To begin with, G2 has two maximal parabolic 
subgroups, corresponding to the diagrams 

0 < • and • < () 
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These are the groups whose Lie algebras are the parabolic subalgebras spanned 
by the Cartan subalgebra l) c 9 together with the root spaces corresponding 
to the roots in the diagrams 

and 

In particular, each of these parabolic subgroups will have dimension 9, so 
that both the corresponding homogeneous spaces will be five-dimensional 
varieties. We can use this to identify one of these spaces: if Vis the standard 
seven-dimensional representation of G2 , the closed orbit in ?V ~ ? 6 will be 
a hypersurface, which (since it is homogeneous) can only be a quadric hyper
surface. Thus, the homogeneous space for G2 corresponding to the diagram 

• < () 
i~ a quadric hypersurface in ? 6

• In particular, we see again that the action of 
Gz on V preserves a nondegenerate bilinear form, i.e., we have an inclusion 

G2 e+ S07 C. 

The other homogeneous space Y of 92 is less readily described. One way 
to describe it is to use the fact that the adjoint representation W of 92 is 
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contained in the exterior square A2 V of the standard. Since the Grassmannian 
G(l, 7) c !?(NV) oflines in l?V is closed and invariant in !?(NV), it follows 
that Y is contained in the intersection of G with the subspace I? W c I?(/\ 2 V). 
In other words, in terms of the skew-symmetric trilinear form won V preserved 
by the action of G2 , we can say that Y is contained in the locus 

~={Ac V: w(A, A,·)= O} c G(2, V). 

Problem 23.54. Is Y = ~? 

Exercise 23.55. Show that the representation of E6 whose highest weight is 
the first fundamental weight w1 determines a 16-dimensional homogeneous 
space in 1?26• 

These homogeneous spaces have an amazing way of showing up as extremal 
examples of subvarieties of projective spaces, starting with a discovery of 
Severi that the Veronese surface in 1?5 is the ottly surface in 1?5 (nonsingular 
and not contained in a hyperplane) whose chords do not fill up 1?5

• For recent 
work along these lines, see [L-VdV], with its appendix by Zak on interesting 
projective varieties that arise from representation theory. 

Although we have described homogeneous spaces only for semisimple Lie 
groups, this is no real loss of generality: any irreducible representation V of a 
Lie group G comes from a representation of its semisimple quotient, up to 
multiplying by a character (see Proposition 9.17), and this character does not 
change the orbits in IFD(V). 

It is possible to take this whole correspondence one step further and 
use it to give a construction of the irreducible representations of G; this is 
the modern approach to constructing the irreducible representations, due 
primarily to Borel, Weil, Bott, and, in a more general setting, Schmid. We do 
not have the means to do this in detail in the present circumstances, but we 
will sketch the construction. 

The idea is very straightforward. We have just seen that for every irreduc
ible representation V of G there is a unique closed orbit X = G/P of the action 
of G on IFDV. We obtain in this way from Va projective variety X together with 
a line bundle L on X invariant under the action of G (the restriction of the 
universal bundle from !FD V). In fact, we may recover V from this data simply 
as the vector space of holomorphic sections of the line bundle L on X. What 
ties this all together is the fact that this gives us a one-to-one correspondence 
between irreducible representations of G and ample (positive) line bundles on 
compact homogeneous spaces G/P. More generally, using the projection maps 
G/B-+ G/P, we may pull back all these line bundles to line bundles on G/B. 
This then extends to give an isomorphism between the weight lattice of g and 
the group of line bundles on G/B, with the wonderful property that for 
dominant weights A., the space of holomorphic sections of the associated line 
bundle L;. is the irreducible representation of G with highest weight A.. 
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The point of all this, apart from its intrinsic beauty, is that we can go 
backward: starting with just the group G, we can construct the homogeneous 
space G/B, and then realize all the irreducible representations of G as co
homology groups ofline bundles on G/ B. To carry this out, start with a-weight 
)c E [)*for g. We have seen that A. exponentiates to a homomorphism H-+ C*, 
i.e., it gives a one-dimensional representation C;. of H. We want to induce this 
representation from H to G. If H c B c G is a Borel subgroup, the representa
tion extends trivially to B, since B is a semidirect product of H and the 
nilpotent subgroup N whose Lie algebra is the direct sum of those g« for 
positive roots a.. Then we can form 

L;. = G x 8 C;. 

= (G x C;.)/{(g, v),..., (gx, x-1v), x EB}, 

which, with its natural projection to G/B, is a holomorphic line bundle on the 
projective variety G/ B. The cohomology groups of such a line bundle are finite 
dimensional, and since G acts on L;., these cohomology groups are representa
tions of G. 

We have Bott's theorem for the vanishing of the cohomology of this line 
bundle: 

Claim 23.56. Hi(G/B, L;.) = 0 for i #- i(A.), 

where i(A.) is an integer depending on which Weyl chamber A. belongs to. If A. is 
a dominant weight (i.e., belongs to the closure of the positive Wey! chamber 
for the choice of positive roots used in defining B), then i( -A.) = 0. In this case 
the sections H 0 (G/B, L_;.) are a finite-dimensional vector space, on which G 
acts. 

Claim 23.57. For A. a dominant weight, the space of sections H0 (G/B, L_;.) is the 
irrl'ducible representation with highest weight A.. 

Jn this context the Riemann-Roch theorem can be applied to give a for
mula for the dimension of the irreducible representation. In fact, the dimension 
part of Weyl's character formula can be proved this way. More refined analy
sis, using the Woods Hole fixed point theorem, can be used to get the full char
acter formula (cf. [A-BJ). For a very readable introduction to this, see [Bot]. 

We conclude this discussion by giving a diagram showing the relationships 
among the various objects associated to an irreducible representation of a semi
sirnple Lie algebra g. The objects and maps in diagram (23.58) are explained 
next. 

First of all, as we have indicated, the term "Grassmannians" means the 
ordinary Grassmannians in the case of the groups SLnC, and the Lagrangian 
<i rassmannians and the orthogonal Grassmannians of isotropic subspaces in 
the cases of Sp2nC and SOmC, respectively. Likewise, "flag manifolds" refers 
to the spaces parametrizing nested sequences of such subspaces. In the cases 
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of the exceptional Lie algebras, the term "Grassmannian" should just be 
ignored; except for the quotient of G2 by one of its two maximal parabolic sub
groups, the homogeneous spaces for the exceptional groups are not varieties 
with which we are likely to be a priori familiar. 

With this said, we may describe the maps A, B, etc., as follows: 

A. A': the map A associates to a subset of the nodes of the Dynkin diagram 
(equivalently, a subset S of the set of simple roots) the face of the Weyl 
chamber described by 

"II'. = {A.: (A., a) > 0, Va e S;}' 
s (A., tX) = 0, Va¢ S 

where ( , ) is the Killing form; the inverse is clear. 
B. B': the map B associates to a face ~ of the Weyl chamber the subalgebra 

fls spanned by the Cartan subalgebra l), the positive root spaces 9 .. , a e R +, 

and the root spaces 9-.. corresponding to those positive roots tX perpendic
ular to ~- Equivalently, in terms of the corresponding subset S of the 
simple roots, 9s will be generated by the Borel subalgebra, together with 
the root spaces 9-.. for a ¢ S. Again, since every parabolic subalgebra is 
conjugate to one of this form, the inverse map is clear. 

C, C': The map C simply associates to a parabolic subalgebra p c 9 the 
quotient G/P of G by the corresponding parabolic subgroup Pc G. In the 
other direction, given the homogeneous space X = G/P, with the action of 
G, the group Pis just the stabilizer of a point in X. Note that the connected 
component of the identity in the automorphism group of G/P may be 
strictly larger: for example, ? 2

"-1 is a compact homogeneous space for 
Sp2nC, and we have seen that a quadric hypersurface in ? 6 is a homoge
neous space for G2 • 

D, D': The map D associates to the irreducible representation V of 9 with 
highest weight A. the open face of the Weyl chamber containing A.. In 
the other direction, given an open face ~ of "Ir, choose a lattice point 
A. e 1fls n Aw and take V = r;.. 

r~: We send the representation V to the subalgebra or subgroup fixing the 
highest weight vector v e V. 

F. F': We associate to the representation V the (unique) closed orbit of the 
corresponding action of the group G on the projective space !FD V. Going in 
the other direction, we have to choose an ample line bundle L on the space 
GIP, and then take its vector space of holomorphic sections. 

~23.4. Bruhat Decompositions 

We end this lecture with a brief introduction to the Bruhat decomposition of 
a semisimple complex Lie group G, and the related Bruhat cells in the flag 
rnanifotd G/B. These ideas are not used in this course, but they appear so often 
elsewhere that it may be useful to describe them in the language we have 
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developed in this lecture. We will give the general statements, but verify them 
only for the classical groups. General proofs can be found in [Borl] or [Hu2]. 

As we have seen, a choice of positive roots determines a Borel subgroup B 
and Cartan subgroup H, with normalizer N(H), so N(H)/H is identified with 
the Weyl group fill For each We W fix a representative nw in N(H). The 
double coset B · nw · B is clearly independent of choice of nw, and will be 
denoted B · W · B. 

Theorem 23.59 (Bruhat Decomposition). The group G is a disjoint union of the 
JWJ double cosets B · W· B, as W varies over the Weyl group. 

Let us first see this explicitly for G = SLmC. Here N(H) consists of all 
monomial matrices in SLmC, i.e., matrices with exactly one nonzero entry in 
each row and each column, and W = Gm; a monomial matrix with nonzero 
entry in the u(j)th row of the jth column maps to the permutation u. To see 
that the double cosets cover G, given g e G, use elementary row operations by 
left multiplication by elements in B to get an element b · g-1

, with b e B chosen 
so that the total number of zeros appearing at the left in the rows in b · g- 1 is 
as large as possible. If two rows of b · g-1 had the same number of zeros at the 
left one could increase the total by an elementary row operation. Since all the 
ro~s of b · g-1 start with different numbers of zeros, this matrix can be 
put in upper-triangular form by left multiplication by a monomial matrix; 
therefore there is a permutation u so that b' = n" · b · g-1 is upper triangular, 
i.e., g = (b'f1 · n" · b is in B · u · B. To see that the double cosets are disjoint, 
suppose n". = b' · n" · b for some b and b' in B. From . the equation b = 
(n")-1 . wr1

• na' one sees that b must have nonzero entries m each place where 
(n"r1 

• n". does, from which it follows that u' = u. 
In fact, this can be strengthened as follows. Let U (resp. u-) be the subgroup 

of G whose Lie algebra is the sum of all root spaces 9a for all positive (resp. 
negative) roots ex. For G = SLmC, U (resp. u-) consists of upper- (resp. lower-) 
triangular matrices with 1 'son the diagonal. For Win the Weyl group, define 
subgroups 

U ( W)' = U n nw · U · njy1 

of U, which are again independent of the choice of representative nw for W 

Corollary 23.60. Every element in B · W · B can be written u · nw · b for unique 
elements u in U ( W) and b in B. 

To see the existence of such an expression, note first that the Lie algebr.a 
of U(W) is the sum of all root spaces 9a for which ex is positive and w-1 (ex) ts 
negative; and the Lie algebra of U(W)' is the sum of all root spaces 9a f~r 
which ex and w-1(ex) are positive. One sees from this that U(W) · U(W)' · H 1~ 
the entire Borel group B. Since H · nw = nw ·Hand U(W)' · nw = nw · U, an 
H and U are subgroups of B, 
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B·nw·B= U(W)·U(W)'·H·nw·B 

= U(W)·U(W)'·nw·B 

= U(W)·nw·B. 
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To see the uniqueness, suppose that nw = u · nw · b for some u in U(W) and b 
in B. Then njy1 

• u · nw is in u- n B = { 1 }, so u = 1, as required. 
Note in particular that the dimension of U(W) is the cardinality of R+ n 

W(R-), where R+ and R- are the positive and negative roots; this is also the 
minimum number l(W) of reflections in simple roots whose product is w, cf. 
Exercise D.30. It is a general fact, which we will see for the classical groups 
that U(W) is isomorphic to an affine space c1<w>. ' 

It follows from the Bruhat decomposition that G/B is a disjoint union of 
the cosetsXw = B· nw · B/B, again with Wvaryingover the Weylgroup. These 
X w are called Bruhat cells. From the corollary we see that X w is isomorphic 
lo the affine space U(W) ~ C1<W>_ 

For G = SLmC and u in W = Gm, the group U(u) consists of matrices with 
l's on the diagonal, and zero entry in the i, j place whenever either i > j or 
rr 

1
(i) < u-

1
(j), which is an affine space of dimension l(u) = # {(i,j): i > j and 

rr(i) < u(j)}. 

Exer.cise 23.61. Identifying SLmC/B with the space of all flags, show that x" 
consists of those flags 0 c Vi c Vi c · · · such that the dimensions of inter
sections with the standard flag are governed by u, in the following sense: for 
each l :s; k :s; m, the set of k numbers d such that V. n cd-1 c v. n Cd is 

'lb { k =/=k precise y t e set u(l), u(2), ... , u(k) }. 

We will verify the Bruhat decomposition for Sp2nC by regarding it as a 
subgroup of SL2nC and using what we have just seen for SL

2
nC, following 

[~te2]. Our de~cription of Sp2nC in Lecture 16 amounts to saying that it 
is the fixed pomt set of the automorphism <p of SL

2
nC given by <p(A) = 

M t . 'A-1 . M . h M ( 0 In) 
. · 'wit = _In 0 . The Borel subgroup of Sp2n C will be the 

intersection of the Borel subgroup B ofSL2nC with Sp
2
nC, provided we change 

the o.rder of the basis of c2n to e1 , ••• , en, e2n, ... , en+i • so that B consists of 
matrices whose upper left block is upper triangular, whose lower left block is 
:.:

0
•. an~ whose .lower right block is lower triangular. The automorphism <p 

'ps this B to Itself, and also preserves the diagonal subgroup H and its 
no 1 · ( 
he rma I~er N 1!), and the groups U and u-. The Weyl group of Sp

2
nC can 

identified with the permutations in G2 such that u(n + i) = u(i) + n for 
all 1 < · ,,.. d · · n . -

- 1 .:::. n, an It is exactly for these u for which one can choose a monomial rep · · 
... res~ntatlve n" m Sp2nC. Now if g is any element in Sp

2
nC, write g = u · n" · b 

<tccordmg to the above corollary. Then 

g = <p(g) = <p(u) · <p(na) · <p(b), 
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and by uniqueness of the decomposition we must have <p(u) = u, <p(n,,) = n,,. h, 
h EH, and <p(b) = h-1 

· b. It follows that u belongs to the Weyl group ofSp
2
"c. 

This gives the Bruhat decomposition, and, moreover, a unique decomposition 
of g E Sp2"C into u · n,, · b, with u in U(u) n Sp2"C. Since this latter is an affine 
space, this shows that the corresponding Bruhat cell in the symplectic flag 
manifold is an affine space. 

Exactly the same idea works for the orthogonal groups SOmC, by realizing 
them as fixed points of automorphisms ofSLmC of the form A 1-+ M-1 • 1A- 1 . M, 
with M the matrix giving the quadratic form. 

Note finally that if W' is the element in the Weyl group that takes each 
root to its negative, then B · W' ·Bis a dense open subset of G, a fact which is 
evident for the classical groups by the above discussion. The corresponding 
Bruhat cell Xw· is the image of u- in G/B, which is also a dense open set. It 
follows that a function or section of a line bundle on G/ B is determined by its 
values on u-. For treatises developing representation theory via functions on 
u-, see [N-S] or [Zel]. 

The following exercise uses these ideas to sketch a proof of Claim 23.57 
that the sections of the bundle L_;. on G/B form the irreducible representation 
with highest weight A.: 

Exercise 23.62*. (a) Show that sections s of L_;. are all of the form s(gB) = 
(g,f(g)), where f is a holomorphic function on G satisfying 

f(g · x) = A.(x)f(g) for all x EB. 

(b) Let n' E N(H) be a representative of the element W' in the Weyl group 
which takes each element to its negative. Show that f is determined by its 
value at n'. 

(c) Show that any highest weight for f must be A, and conclude that 
H 0 (G/B, L_;.) is the irreducible representation r;. with highest weight A.. 

The holomorphic functions f of this exercise are functions on the space 
G/U. In other words, all irreducible representations of G can be found in spaces 
offunctions on G/U. This is one common approach to the study of representa
tions, especially by the Soviet school, cf. [N-S], [Zel]. 

Functions on G/U form a commutative ring, which indicates how to make 
the sum of all the irreducible representations into a commutative ring. In fact, 
for the classical groups, these rings are the algebras §", §<">, and § 1"1 con
structed in Lectures 15, 17, and 19, cf. [L-T]. They are also coordinate rings 
for natural embeddings of flag manifolds in products of projective spaces. 

LECTURE 24 

Weyl Character Formula 

This lecture is pretty ~traightforward: we simply state the Weyl character formula in 
~24.1, t~en_show how tt may be worked out in specific examples in §24.2. In particular 
we dcnve m the case ?f the classical algebras formulas for the character of a give~ 
irreducible ~epresentatton as a polynomial in the characters ofcertain basic ones (either 
the. alternatmg or the symmetric powers of the standard representation for sl c and 
their analogues for SP2.C and somC). The proofs of the formula are deferred• to the 
follow1~g two lectures. The techniques involved here are elementary though the 
determmantal formulas are fairly complex, involving all the algebra of Appendix A. 

~24.1: The Weyl character formula 
~24.2: Applications to classical Lie algebras and groups 

§24.1. The Weyl Character Formula 

We have already seen the Weyl character formula in the case of sl c and it 
is one reas h bl " ' that ca on w y ~e were a e to calculate so many more representations in 

se. We saw m Lectures 6 and 15 that for the repre'!entation r - § C" 
of. S ~" C with highest weight A. = ~)1L1 , the trace of the action of a d~go~al 
m<1tnx A E SL C with t · · S h n. en nes x 1 • • · · , Xn is the symmetric function called the 
~~i ~~ ~olynomial S;.~X1, · ·., x"). This included a formula for the multiplicities, 

1 
c are the coeffic1e~ts of the monomials in these variables. 

this ~~rder to exten~ t~1s formula to the other Lie algebras, let us try to rewrite 
d [· hur polynomial ma way that may generalize. The Schur polynomial is 
c incd to be a quotient of two alternating polynomials: 

lxf•+n-il 
S;.(X1·····X)= . 

n 1xr·1 . 



24. Wey! Character Formula 
400 

. be d d as usual as a sum over the symmetric 
These determinants can expan ! W .t. _ e(L) in Z[A] as in the 

h . h · th Weyl group :.w. n mg x, - 1 

group 6", w tc ts e . . ( l)w for sgn(W) = det(W) for Win the Weyl 
preceding lecture, and wntmg - . h f 
group, the numerator may be expanded m t e orm 

w .i. 1 +n-1. . x.i." = ~ ( - l)w e(W(l:(A.1 + n - i)L,)) L (-1) Xw(l) .. • W(n) ~!ll 
We !1l 

= L ( - l)w e(W(A. + p)), 
We !1l 

d 
t _ l:(n _ i)L,. Our formula therefore 

where we write A. for l:A.,L, an we se p -

takes the form 
L( - l)w e(W(A. + p)). 

Char(r.i.) = l:( - l)w e(W(p)) 

The denominator is the discriminant 

A( x ) = Il (x, - x1) = Il (e(L,) - e(L1)). 
uX1,···• n i<} 

I<} 

This can be written in terms of the positive roots L, - L1, i < j, as 

~( x ) = Il (e(-HL1 - L1) - e( -!(L, - L1))). 
X1, ... , n i<J 

Note also that 
p = l:(n - i)L1 = Li + (L1 + L2) + ... + (L1 + ... + Ln-1) 

1 
= - L (L, - L1), 

2 i<J .. 

which is the sum of the fundamental weights, and half the sum of the posmve 

roo~hese are the formulas that generalize to the other semisimple Lie algebras: 

For any weightµ, define A" e Z[A] by 
A = } ( - l)w e(W(µ)). 

" w'e'm 

(24.l) 

. h W l up but is alternating: W(Aµ) == 
Note that A" i! not invanant by. t e f :yo g~~ter~ating polynomials will be 
(-l)wA" for Wem. The ratio o W 

invariant. 

L be half the sum of the positive 
Theorem 24.2 ~Weyl ~haract;rJo:uul~he ;~:racter of the irreducible repre-
roots. Then p is a weight, an P • • 

sentation r.i. with highest weight A. is 
A.i.+p 

Char(r.i.) = y· 
p 

(WCF) 
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The assertions about p are part of the following lemma and exercise, which 
will also be useful in the applications: 

Lemma 24.3. The denominator AP of Weyl's formula is 

AP= Il (e(ix/2) - e(-ix/2)) 
«eR+ 

= e(p) Il (1 - e( -ix)) 
i:zeR+ 

= e( - p) Il (e(ix) - 1). 
ixeR+ 

PROOF. Since e(p) = e(L ix/2) = Il e(ix/2), the equality of the three displayed 
expressions is evident; denote these expressions temporarily by A. The key 
point is to see that A is alternating. For this, it suffices to see that A changes 
sign when a reflection in a hyperplane perpendicular to one of the simple roots 
is applied to it, since these reflections generate the Weyl group. This follows 
immediately from the first expression for A and (a) in Exercise 24.4 below. 

Now, by the second displayed expression, the highest weight term that 
appears in A is e(p), which is the same as that appearing in AP. Calculating 
I/A formally as in (24.5) below, we see that AP/A is a formal sum Lm"e(µ) 
that is invariant by the Weyl group, and, using part (c) of the following exercise, 
it has weight 0. As in Theorem 23.24 it follows that AP/A is constant; and, since 
A and AP have the same leading term e(p), we must have AP= A. D 

Exercise 24.4*. (a) If W = Wa, is the reflection in the hyperplane perpendicular 
to a simple root ix1, show that W(ix1) = - ix1, and W permutes the other positive 
roots. 

(b) With Was in (a), show that W(p) = p - ix1• Deduce that p is the ele
ment in l)* such that p(H,..) = 2(p, ix1)/(ix1, ix1) = 1 for each simple root ix1. 
Equivalently, p is the sum of the fundamental weights. In particular, p is a 
weight. 

(c) For any W "# 1 in the Weyl group, show that p - W(p) is a sum of 
distinct positive roots. Deduce that W(p) is not in the closure of the positive 
Weyl chamber. 

Proofs of the character formula will be given in §25.2 and again in §26.2. 
For now we should at least verify that it is plausible, i.e., that A.i.+p/Ap is in 
.f [A] m and that the highest weight that occurs is A.. Note that since the 
numerator and denominator are alternating, the ratio is invariant. The fact 
that AP is not zero follows from the second expression in the preceding lemma. 
To see that the ratio is actually in Z[A], however, we must verify that it has 
only a finite number of nonzero coefficients. Write 
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00 

_!_=e(-p) n (l-e(-ex)f1 =e(-p)f1 ~ e(-nex). (24.5) 
AP aeR+ " n-0 

When this is multiplied by A..+p = L ( - l)w e(W(A. + p)): we get a_ forma! sum 
where the highest weight that occurs is the weight A.. This mean~ m parti~ular 
that there are only a finite number of nonzero terms ~orrespond~n~ t~ we1~hts 
in the fundamental (positive) Weyl chamber "Ill. But smce the ratio is mvar~a~t 
by the Weyl group, the same is true for all ~eyl c~ambers, so A;.+p/AP 1s m 
Z[A] 'lll, and has highest weight A.. It _follow~ m particul!r that the A Hp/AP, as 
A. varies over "Ill n A, form an additive basis for ~[A] · 

Before considering the proof or any other special cases, we apply (WCF) to 
give a formula for the dimension of r;.: 

Corollary 24.6. The dimension of the irreducible representation r;. is 

dim r - (A. + p, ex) = n (A. + p, ex), ;. - J]. (p, ex) aeR+ (p, ex) 

where (ex, /3) = ex(Hp) = 2(ex, /3)/(/3, /3) and ( , ) is the Killing form. 

PROOF. The dimension of r;. is obtained by adding the coefficients ~fall e(ex) 
in Char(r;.), i.e., computing the image ofChar(r;.) by the homomorphism from 
Z[A] to c which sends each e(ex) to 1. However, as in the_ cas~ of the Schur 
polynomial, the denominator vanishes if we try to do t?1s directly. To _ge~ 
around this, we factor this homomorphism through the nng of power senes. 

Z[A] .'.!'. C[[t]] ~ C, 

where the second homomorphism sets the variable t equal to zero, i.e., picks 
off the constant term of the power series, and the first homomorphis~ 'I' takes 
e(cx) to e<P·">'. More generally, for any weightµ define a homomorphism 

'1'11 : Z[A] ~c[[t]], e(ex)1--+e<11 ·">1. 

We claim that '1'
11
(A;.) = 'l';.(A11) for all A. andµ. This is a simple consequence 

of the invariance of the metric ( , ) under the Weyl group: 

Therefore, 

'l'µ(A;.) = L (- l)w e<"· w<;.n1 

= L (- l)w e<w-'<11>,;.>1 

= L (- l)w e<W(µJ,;.)r 

= 'I' ;.(Aµ). 

'l'(A;.) = 'l'P(A;.) = '11;.(Ap) 
= f1 (e().,a)l/2 - e-().,a)t/2) 

a.eR+ 
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= ( f1 (A., ex)) t"'<R+> + terms of higher degree in t. 
aeR+ 

Hence, 

'l'(AHp/ Ap) = 'l'(AHp)/'l'(Ap) 

n (A. + p, ex) f . . d . 
= n (p, ex) + terms 0 positive egree m t, 

which finishes the proof. D 

Exercise 24.7. In the case of sl"C, verify that the above corollary gives the 
dimension we found in Lecture 6. 

Exercise 24.8. Verify directly that the right-hand side of the formula for the 
dimension is positive. 

Since X;. = AHp/Ap is the character of a virtual representation which 
takes on a positive value at the identity, as in the case of finite groups, to 
prove that it is the character of an irreducible representation, it suffices to 
show that J6 X;.X;. = 1 for an appropriate compact group G. This was the 
original approach of Weyl, which we will describe in the last lecture. Since 
the highest weight appearing is A., we will know then that this irreducible 
representation must be r;.. 

Exercise 24.9. Use Corollary 24.6 to show that if A. is a dominant weight 
(i.e., in the closure of the positive Weyl chamber), and w is a fundamental 
Weight, then the dimension of rHw is greater than the dimension Of r;.. 
Conclude that the nontrivial representations of smallest dimension must be 
among the n representations r"' with w a fundamental weight. 

§24.2. Applications to Classical Lie Algebras 
and Groups 

In the case of the general linear group GL"C, the character1 of the represen
tation r;. is the Schur polynomial 

' We use the representation of GL.C instead of its restriction to SL.C, since the latter would 
rc4uirc the product of the variables x1 to be 1. 
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which has several expressions in terms of simpler symmetric functions. Note 
that the character of the dth symmetric power of the standard representa
tion is the dth complete symmetric polynomial H4 in n variables (Appendix 
A.1): 

H4 = Char(Sym4(Cn)). 

The first "Giambelli" or determinantal formula (A.5) of Appendix A gives 
the character of the representation with highest weight A = (Ai ~ · · · ~ A, > 0) 
as an r x r determinant: 

(24.10) 

Equivalently, this expresses a general element r .. e R(G) of the representation 
ring as a polynomial in the representations Sym4(Cn). A second determinantal 
formula, from (A.6), expresses r .. in terms of the basic representations N(Cn), 
whose characters are the elementary symmetric polynomials 

E4 = Char(N(Cn)). 

This formula is, with µ the conjugate partition to A, 

Char(r;.) = IE,,,+1-d = 

E,,, E,,, +i ... E,,, +1-i 

E,,,-iE,,2 ••• 

E,,,-1+i ... E,,, 

(24.11) 

In this section we work out the character formula for the other classical 
Lie algebras, including analogues of these determinantal formulas. The ana
logues of the first determinantal formula (24.10) were given by Weyl, but the 
analogues of(24.11) were found only recently ([Ko-Te]). We also pay, at least 
by way of exercises, the debts to (WCF) that we owe from earlier lectures. 

The Symplectic Case 

The weights for sp 2nC are integral linear combinations of Li, ... , Ln. We often 
writeµ= (µi, ... , µn) for the weight µiLi + · · · + µnLn. . 

The positive roots are {L1 - L1}1< 1 and {L1 + L1}1s; 1• from which we find 

p = L (n + 1 - i)L1 = Li + (Li + L2 ) + · · · + (Li + · · · + Ln), (24.12) 

i.e., p = (n, n - 1, ... , 1). 

1 
I 
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p 

0 

As we saw in Lecture 16, an element in the Weyl group can be written 
uniquely as a product u1, where u is a permutation of {Li, ... , Ln}, and 
i; = (ei, ... , en), with e1 = ± 1. Hence 

A,,= L (-lt L (- l)'e( f e1µ1La(I)); 
a e l:i 

(24.13) 

here the sign ( -1)' is the product of the e1• Now with x1 = e(L1), this can be 
written 

n 

A,,= L (- lt n (x:to - x;(t{) 
a i:i 

or 

(24.14) 

where Ja1,11 denotes the determinant of then x n matrix (a1,J). In particular, 

AP= JxJ"-l+i - XJ-(n-l+llJ. (24.15) 

From (24.14) or Exercise A.52 we have 

AP= Ll(x1 + X!i, ... , Xn + x;i)·(xi - x!i)· ... ·(xn - x;i), (24.16) 

where Li is the discriminant. 

Exercise 24.17. Show that 

AP = n (x, - x1HX1X1 - 1). n (xf - l)/(xi ..... Xn)". 
I<} I 

The character of the irreducible representation r .. with highest weight 
), = L A1L" Ai ~ · · · ~An~ 0, is therefore: 

-- I 
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lxf•+n-1+1 - X1-(A,+n-l+l)I 
Char(rA) = I n l+l (n 1+1)1 Xl - Xl 

(24.18) 

The dimension of rA is easily worked out from Corollary 24.6: 

. o, - 11) n o, + 11) 
d1m(rA) = n -( .-.) . (2 + 2 . ") i<l J - 1 isJ n - 1 - J 

- n (lf -1/) ·n i 
- 2 2 ' 1<1(m1 -m1) 1 m1 

(24.19) 

where l; = A.1 + n - i + 1 and m1 = n - i + 1. 

Exercise 24.20. Show that, setting l; = A.1 + n - i, 

no; - lj)(l; + lj + 2)· no;+ 1) 
d" i<j I 

im(rA) = (2n - 1)! · (2n - 3)! · ... · 1! 

These formulas give the dimension of the irreducible representation r 0 , .... ,a. 

with highest weight a 1 w 1 + · · · + anwn, where the w1 are the fundamental 
weights, using the relation A.1 = a1 + · · · + an. 

Exercise 24.21. Use Exercise 24.20 to verify that for A.= L 1 + · · · + Lk, the 

dimension of rA is 2n if k = 1, and (
2
kn)-(k ~ 2) if k ~ 2. Use this to 

give another proof that the kernel of the contraction from NV to N- 2 v is 
irreducible. 

The first determinantal formula for the symplectic group goes as follows. 
Let 

Jix1, · · ·, Xn) = Hix1, · · ·, Xn, X11
, • • ·, x;;- 1 

), 

where Hd is the dth complete symmetric polynomial in 2n variables. In other 
words, Jd is the character of the representation Symd(C2

") of sp2nC. From 
Proposition A.50 of Appendix A we have 

Proposition 24.22. If A. = (A.1 ~ ... ~ A.,> 0), the character of rA is the deter
minant of the r x r matrix whose i th row is 

(J;.,-1+1 J;.,-1+2 + J;.,-1 J;.,-1+3 + J;.,-1-1 • • • J;.,-l+r + J;.,-l-r+2). 

For example, for A. = (d), i.e., A. = dL1, we have Char(r<d>) = Jd, which is 
the character of Symd(C2"). In particular, this verifies that the kth symmetric 
powers Symk(C2") of the standard representation are all irreducible. (This, of 
course, is a special case of the general description given in §17.3, since all the 
contraction maps vanish on the symmetric powers.) 
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F,xercise 24.23. (i) Find the character of the representation of sp 4 C with highest 
weight w1 + w2 = 2L 1 + L 2 , verifying that the multiplicities are as we found 
in §16.2. (ii) Find the character of the representation of sp6 C with highest 
weight w 1 + w2 , thus verifying the assertion of Exercise 17.4. 

The second Giambelli formula in the symplectic case expresses rA in terms 
of the basic representations 

rwk = Ker(N(C 2")-+ N-2(C 2
")) 

which are the kernels of the contractions. The character of rwk is Ei, where 
f~ = 1, E'i = E1 = x1 + · · · + Xn + x11 + · · · + x;;-1

, and 

for k ~ 2, where Ek is the kth elementary symmetric polynomial. The formula 
is 

Corollary 24.24. Let µ = (µ 1 , ••. , µ1) be the conjugate partition to A.. The 
character of r;. is equal to the determinant of the l x l matrix whose ith row is 

(£~1 -1+1 E~,-1+2 + E~1 -1 E~,-1+3 + E~,-1-1 ·.. E~,-1+1 + E~,-1-1+2)-

PROOF. This follows from the proposition and Proposition A.44, which 
equates the two determinants before specializing the variables. D 

There is also a simple formula for the character in terms of the characters 
Ek of N(C2"), which also follows from Proposition A.44: 

(24.25) 

Note that En+k = En-k (corresponding to the isomorphism A_n+kC 2
" ~ 

!\"-kC2") and E~+k = -E~-k+l· In particular, Corollary 24.24 expresses 
Char(r;.) as a polynomial in the characters of the basic representations rw,, 
... , rw.· 

The Odd Orthogonal Case 

For so2n+t C the weights are L µ1L 1, µ = (µ 1, •.. , µn), with all µ1 integers or all 
~alf-integers. The positive roots are {L1 - L1}1<J• {L1 + L1}1<l• and {L1}, sop 
is }(L 1 + · · · + Ln) less than in the case for sp2n: 

p = L (n + ! - i)L1, (24.26) 

or 

p = (n - !. n - ~ •... , !). 
With xt1 = e(±L1) and x1±

112 = e(±Li/2), we have the same formula as 
before [(24.14)] for A,.. 
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Exercise 24.27*. Show that 

AP= 1xrl+1/2 - x;<n-1+1/2)1 

-1) ( 112 -112). . ( 112 x-112) =£\(x1 +x11, ... ,Xn+Xn 'X1 -Xi ··· Xn - n · 

If r;. is the irreducible representation with highes~ weight Ji. = L A1Li. 
Ji, 1 ~ ... ~An~ O, then the character formula can be wntten 

I 
;. +n-1+1/2 -(J.1+n-i+1/2)1 

X · 
1 

- Xj (24.28) 
Char(r;.) = 

1 
lxr1+1t2 _ x

1 
<n 1+11211 

Similarly, 
. (l, - 11). (l, + 11) 

d1m(r;.) = ij (j - i) 1Ji (2n + 1 - i - j) 

- n or-I/) ·nl 
- 2 2) , 

i< 1 (m1 - m1 1 m1 

(24.29) 

where 11 = Ji.1 + n - i + t. and m, = n - i + t. 

Exercise 24.30. Show that, with l; = Ji., + n - i, 

no: -1;)(1; + l; + 1>· n (21; + 1> 
. l<l I 

dtm(r;.) = (2n - 1)! · (2n - 3)! · ... · l! 

These formulas give the dimension of the irreducible representation ra,,. ... a. 
with highest weight ai W1 + ... + anwn, where the ro, are the fundamental 

weights, using the equations 

Ji., = a, + ... + an-1 + tan. 

Exercise 24.31. Use the dimension formula to verify that for A= Li + · · · + Lk, 

h d. · of r 1·s ( 2n + 1) Use this to give another proof that NV is 
t e 1mens1on ;. k · . 

irreducible for 1 ~ k ~ n. Verify that the dimension of the spin representation 

is 2", thus reproving that it is irreducible. 

E · 24 32 Use the dimension formula to verify that the kernel of the xerc1se . . 
contraction 

Symd(C2n+1)-+ Symd-2(C2n+1) 

is an irreducible representation with highest weight dL1 · 

In case the representation is a representation of S02n+i C, i.e., t~e Ji., are a~~ 
integral, there is a first determinantal formula that expresses r;. m terms 

the kernels of the contractions 
Ker(Symd(c2n+1)-+ Symd-2(c2n+1 )). 
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Let K4 denote the character of this kernel, so K 0 = 1, K 1 = x 1 + .. · + xn + 
\ I + .. · + Xn-l + 1, and . I 

where Hd is the dth complete symmetric polynomial. From Proposition A.60 
we have 

Proposition 24.33. If A. = (Ji. 1 ~ • • • ~ Ji., > 0), with the Ji.1 integral, then the 
character of r;. is the determinant of the r x r matrix whose ith row is 

In particular, for Ji.= (d), the character is Kd, which verifies that the kernel 
of Sym4(C2"+1)-+ Symd-2(C2n+t) is irreducible. 

Exercise 24.34. Use the character formula to verify that the multiplicities of 
the representation r 2L,+L

2 
oho5 C are as specified in Exercise 18.9. 

The second determinantal formula for S02n+t C writes r;. in terms of the 
representations N(C 2n+i ), whose characters are 

Applying Proposition 24.33 with Corollary A.46, we have 

Corollary 24.35. Let µ = (µ 1 , ••• , µ1) be the conjugate partition to Ji.. The 
character of r;. is equal to the determinant of the l x l matrix whose ith row is 

Since En+k = En+t-k (corresponding to the isomorphism N+kc2n+i ~ 
/\" 

1 1 -kc2n+i ), this expresses Char(r;.) as a polynomial in E 1, ... , En, with 
f;d = Char(Nc2n+i ). 

The Even Orthogonal Case 

For so2nC the weights are the same as in the preceding case. This time the {L1} 

are not positive roots, however, sop is t(L1 + · · · + Ln) less than in the case 
of so2n+1 C, or L1 + · · · + Ln less than in the case of sp2nC: 

p = L (n - i)L1, (24.36) 

or 

p = (n - 1, n - 2, .. ., 0). 

The calculation of Aµ is similar, but using only those e of positive sign. This 
time 
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This leads to 
A - 1 (1x'" + x-"'I +Ix"' - x-:-"•I) ,.-2 j j j J • (24.37) 

Note that the second determinant term vanishes when any µ; is zero. In 

particular, 
A - .llxn-i + x-<n-1)1 

p-2 j j • 

From (24.14) or Exercise A.66, 

(24.38) 

AP = A(x1 + x11 •... , Xn + x;1 ). (24.39) 

This gives, with r;. the irreducible representation with highest weight 

A= L);L1, Al ~ · · · ~ I An I ~ 0, 

Ix]• + x1-
1•1 + Ix]• - xj''I 

Char(r;.) = I n-i + <n 0 I • 
Xj Xi 

(24.40) 

where l; = A; + n - i. As before, 

. n o1 - '1) o1 + '1) 
d1m(r;.) = -( . ") · (2 . .) 

i<j } - I n - I - } 

_ n <It - m 
- 2 2 • 

i<1(m1 - m1) 
(24.41) 

where 1
1 

= Ai + n - i and m1 = n - i. Note that, as expected, the two represen
tations with weights (A1, ... , An-l • ±An) have the same dimensions. 

Exercise 24.42. Show that 
0 01 - l1Hl1 + l1) 

d
. (r ) 2n-1 __ 1_<=-J _____ _ 
Im ;. = (2n - 2)! · (2n - 4)! · ... · 2!° 

These formulas give the dimension of the irreducible representation ra, ..... a. 
with highest weight a 1 ro1 + · · · + anwn, where the ro1 are the fundamental 

weights, using the equations 

Ai= a1 + ··· + an_ 2 + t(an_1 +an), 1 :s; i :s; n - 2, 

An-1 = t(an-1 + an), An = t( - an-1 + an). 

Exercise 24.43. Use the dimension formula to verify that for w = L 1 + · · · + Lk• 

k < n, the dimension of r"' is (
2
;). so N(IC 2n) is irreducible. For 

1 - L + · · · + L + L the dimension is ! (2n), so /\"(IC
2

n) is the sum of 
A - 1 n-1 - n• 2 k 
the two corresponding irreducible representations. Verify that the dimension 
of the two spin representations are 2n-1, proving irreducibility again. 

~24.2. Applications to Classical Lie Algebras and Groups 411 

Note that the second term in the numerator in (24.40) changes sign when 
; .• is replaced by -An; in particular, it vanishes when An = 0. When An = 0, 
the representation r;. is a representation of the orthogonal group 0 2nlC. 
When An #- 0, the direct sum of the two representations with highest weights 
().

1
, ••• , ±An) is an irreducible representation of 0 2nlC. (See Exercises 23.19 

and 23.37.) 
Let L

4 
be the character of Ker(Sym4(1C 2n)-+ Sym4

-
2 (1C2n)), i.e., 

Ld = Hix 1, .. ., Xn, x11. ... , x;n) - H4- 2(x 1, ... , Xn• x11, ... , x;n). In either 
case, Proposition A.64 applies to give the first determinantal formula: 

Proposition 24.44. Given integers A1 ~ • • • ~ A, > 0, the character of the irreduc
ihle representation of 0 2nlC with highest weight A = (A 1, ... , A,) is the deter
minant of the r x r matrix whose ith row is 

(L;.,-1+1 L;.,-1+2 + L;.,-1 . . . L;.,-i+r + L;.,-1-r+2). 

Again, for A = (d), this verifies that the kernel of the contraction from 
Symd(IC2n) to Sym4- 2(1C2") is irreducible. 

The second determinantal formula is the same as in the odd case, but with 
Ek = Ek(x1, ... , Xn, x11, ... , x;n): 

Corollary 24.45. Let µ = (µ 1 , .•• , µ1) be the conjugate partition to A. The 
character of r;. is equal to the determinant of the l x l matrix whose ith row is 

(E,.,-1+1 E,.,-1+2 + E,.,-i . . . E,.,-1+t + E,.,-i-1+2 ). 

Using the fact that En+k = En-k• this expresses Char(r;.) as a polynomial in 
I:~ 1 • .•• , En, with E4 = Char(NIC2n). 

Exercise 24.46*. For each of the orthogonal groups OmlC, show that the 
character of the irreducible representation with highest weight A can be written 
in the form 

Char(r;.) = lh;.,-1+J - h;.,-;-11, 

where hk is the character of Symk(ICm). Another formula for the dimension of 

r, is obtained by substituting ( ~) for hk in this determinant. 

There are other formulas expressing the characters of general representa
tions in terms of simpler ones. Abramsky, Jahn, and King [A-J-K] give one 
that can be expressed by the same formula for the general linear, symplectic, 
and orthogonal groups. The general irreducible representations are given by 
partitions A or Young diagrams, and in their formula the simpler represen
tations are those corresponding to hooks. To express it, let (a• b) denote 
the hook with horizontal leg of length a + 1 and vertical leg of length 
h + I, i.e., the partition (a+ 1, 1, ... , 1), with b l's. More generally, given 
a= (a 1 >···>a,~ 0) and b = (b1 > · · · > b, ~ 0) with a, orb, nonzero, let 
(a* b) denote the partition whose Young diagram has legs of these lengths to 
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the right of and below the r diagonal boxes (cf. Frobenius's notation, Exercise 
4.17). Let Xe~·•> denote ~he character of the corresponding irreducible represen
tation. Their formula is 

X<•••> = 1Xca,•b1Jl 1 si,j9· (24.47) 

!aking. the degree of b?th sides gives new formulas for the dimensions of the 
1rreduc1ble representations. These formulas are particularly useful if the rank 
r of the partition is small. 

Exceptional Cases 

We will, as a last example, work out the Weyl character formula for the 
exceptional Lie algebra 92 , and thereby verify some of the analysis of its 
representations given in Lecture 22. The remaining four exceptional Lie 
algebras we will leave as exercises. 

~o begin with, the value of pis easily seen to be 2£ 1 + 3L2 , in terms of the 
basis L 1, L 2 for the weight lattice introduced in Lecture 22. 

Now, for any weightµ = pL1 + qL2 + rL3 , we have 

Aµ= L xP . Xq r L -p -~ -r a(l) a(2)' Xa(3) - Xa(l)' Xa( ) · Xa(3) 
ae63 ae63 

= A(x) · Sp,q,,(x) - A(x-1
) • Sp,q,,(x-1 ), 
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where we write x for (x1 , x 2 , x 3) and x-1 for (x11. x21
, x31 

), A is the discrim
inant, and Sp.q,r the Schur function. Using the relation fl x 1 = 1 we can also 
write this as 

= A(x) · (Sp,q,,(x) - Sm-p,m-q,m-r(x)) 

for any m ~ max(p, q, r). To make this notation agree with the standard 
notation for Schur polynomials from Appendix (A.4), note that Sp,q,r is the 
Schur polynomial s,s,I) for the partition (s, t), s ~ t, where s is two less than 
the difference between the largest and smallest of p, q, and r, while tis one less 
than the difference between the second largest and the smallest; if p, q, and r 
are not distinct, Sp,q,r = 0. Thus, for example, 

AP= A(x)·(S(l,l)(x) - s(l)(x)) 

= A(x)·(x1 x2 + x 1 x 3 + x 2 x 3 - x 1 - x 2 - x 3). 

Now, any irreducible representation r;. of 92 has highest weight A. = aw1 + 
hw2 , where w 1 = L 1 + L 2 and w2 = L 1 + 2L2 are the two fundamental 
weights, and a and bare non-negative integers. Then A. + p =(a + b + 2)£ 1 + 
(a+ 2b + 3)£2 • The Weyl character formula in this case becomes 

Proposition 24.48. The character of the representation of 92 with highest weight 
aw 1 + bw2 is 

Ch (r ) 
_ S(a+2b+l,a+b+l) - S(a+2b+l,b) 

ar a,b - . 
s(l. l> - s,1) 

Exercise 24.49. In the case of the standard representation r 1, 0 , the adjoint 
representation ro, l •and the representation r2,0• use this formula to verify the 
multiplicities found in Lecture 22. 

We can also work out the dimension formula explicitly in this case. The 
two fundamental weights w 1 and w2 have inner products 

and 

w1 and w2 are among the positive roots of 92 , and in terms of these the 
remaining positive roots are 2w1 - w2 , 3w1 - w2 , w2 - w1 , and 2w2 - 3w1 • 

The weight pis the sum of the fundamental weights w 1 and w2 , so that for an 
arbitrary weight A. = aw 1 + bw2 we have the following table of inner products: 

(.' p) (.' ).) (·,J.+p) 

2W1 -W2 1/2 a/2 (a + 1)/2 
3w1 - w2 3 3a/2 + 3b/2 3(a + b + 2)/2 

W1 5/2 a+ 3b/2 (2a + 3b + 5)/2 
W2 9/2 3a/2 + 3b 3(a + 2b + 3)/2 

-WI+ W2 2 a/2 + 3b/2 (a+ 3b + 4)/2 
-3w1 + 2w2 3/2 3b/2 3(b + 1)/2 
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We conclude that the dimension of the irreducible representation ra,b of g2 with 
highest weight A. = aw1 + bw2 is 

. (a+ l)(a + b + 2)(2a + 3b + 5)(a + 2b + 3)(a + 3b + 4)(b + 1) 
dtm(r0 ,b) = 120 

We can check this in the cases a= 1, b = 0 and a= 0, b = 1, getting the 
dimensions 7 and 14 of the standard and adjoint representations, respectively. 
In case a = 2, b = 0 we may verify the result of the explicit calculation in 
Lecture 22, finding that 

dim(r2.0 ) = 27 

and, therefore, deducing that NV= r 2,0 EB V EB C and Sym2V = r2.o EB C. 

Exercise 24.SO. Show that Sym0 V = EB~0~2J ra-2k,O· 

We leave the analogous computations for the remaining four Lie algebras 
as exercises, using the description of the root systems found in Exercise 21.16. 
Since we have not said much about the Weyl group in the exceptional cases 
the formula (WCF) cannot be used directly-not to mention the fact that the 
orders of these Weyl groups are: 27 

· 32 = 1152 for f4 ; 27 
• 34 

• 5 = 51,840 for 
e6 , 2 10 • 34 

• 5 · 7 = 2,903,040 for e7 , and 214 
• 35 

· 52 · 7 = 696,729,600 for e8 . 

However, the dimension formula is available. 

Exercise 24.Sl •. For each of the four remaining exceptional Lie algebras, 
compute p = half the sum of the positive roots. For each of the fundamental 
weights w, at least for f 4 , compute the dimension of the irreducible represen
tation with highest weight w. In particular, find the nontrivial representation 
of minimal dimension. Use this to verify that (E6) is not isomorphic to (B6) 
or (C6 ), i.e., that e6 is not isomorphic to so 13 C or SP12 C. 

Exercise 24.52*. List all irreducible representations V of simple Lie algebras 
g such that dim V :$;dim g. Note that these include all cases where the corre
sponding group representation has a Zariski dense orbit, or a finite number 
of orbits. 

LECTURE 25 

More Character Formulas 

In this lecture we give two more formulas for the multiplicities of an irreducible 
representation of a semisimple Lie algebra or group. First, Freudenthal's formula 
rn25. l) gives a straightforward way of calculating the multiplicity of a given weight 
once we know the multiplicity of all higher ones. This in turn allows us to prove in 
§25.2 the Weyl character formula, as well as another multiplicity formula due to 
Kostant. Finally, in §25.3 we give Steinberg's formula for the decomposition of the 
tensor product of two arbitrary irreducible representations of a semisimple Lie algebra, 
and also give formulas for some pairs l) c: g for the decomposition of the restriction 
lo l) of irreducible representations of g. 

§25. t: Freudenthal's multiplicity formula 
§25.2: Proof of (WSF); the Kostant multiplicity formula 
§25.3: Tensor products and restrictions to subgroups 

§25.1. Freudenthal's Multiplicity Formula 

Frcudenthal's formula gives a general way of computing the multiplicities 
of a representation, i.e., the dimensions of its weight spaces, by working 
down successively from the highest weight. The result is similar to (but more 
complicated than) what we did for sl3 C in Lecture 13, where we found the 
multiplicities along successive concentric hexagons in the weight diagram. 

Let r .. be the irreducible representation with highest weight A., which will 
be fixed throughout this discussion. Let n,, = n,,(r;.) be the dimension of the 
weight space 1 of weight µ in r .. , i.e., Char(r;.) = ~ n,,e(µ). Freudenthal gives 
a formula for n,, in terms of multiplicities of weights that are higher thanµ. 

' In the literature, these multiplicities nµ are often referred to as "inner multiplicities." 
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Proposition 25.1 (Freudenthal's Multiplicity Formula). With the above 
notation, 

c(µ) · nµ(r;,) = 2 L L (µ + ka, a)nµ+k"' 
GteR+ k;;,1 

where c(µ) = llA. + Pll 2 
- IIµ+ Pll 2

• 

Here llPll 2 = (p, p),(, )istheKillingform,andpishalfthesumofthepositive 
roots. 

Exercise 25.2*. Verify that c(µ) is positive ifµ i: A. and nµ > 0. 

The proof of Freudenthal's formula uses a Casimir operator, denoted C. 
This is an endomorphism of any representation V of the semisimple Lie 
algebra 9, and is constructed as follows. Take any basis V1, ••. , U, for 9, and 
let Vi, ... , v: be the dual basis with respect to the Killing form on 9. Set 

C = V1 Vi + .. · + V,u:, 
i.e., for any v e V, C(v) = L U;'(U[ · v). 

Exercise 25.3. Verify that C is independent of the choice of basis2
• 

The key fact is 

Exercise 25.4*. Show that C commutes with every operation in 9, i.e., 

C(X · v) = X · C(v) for all Xe 9, v e V. 

The idea is to use a special basis for the construction of C, so that each 
term U1 u; will act as multiplication by a constant on any weight space, and 
this constant can be calculated in terms of multiplicities. Then Schur's lemma 
can be applied to know that, in case Vis irreducible, C itself is multiplication 
by a scalar. Taking traces will lead to a relation among multiplicities, and a 
little algebraic manipulation will give Freudenthal's formula. 

The basis for 9 to use is a natural one: Choose the basis H 1, ... , H" for the 
Cartan subalgebra Q, where H1 = H .. , corresponds to the simple root r:x.1, and let 
H; be the dual basis for the restriction of the Killing form to Q. For each root 
a, choose a nonzero x .. e 9 ... The dual basis will then have X~ in 9-.. · In fact, 
if we let ¥,, e 9-.. be the usual element so that x .. , ¥,,, and H .. = [X .. , ¥,,] are 
the canonical basis for the subalgebra s .. ;;;;;; sl2 C that they span, then 

x~ = ((a, r:x.)/2) Y ... (25.5) 

Exercise 25.6*. Verify (25.5) by showing that (X .. , ¥,,) = 2/(a, a). 

2 In fancy language, C is an element of the universal enveloping algebra of g, but we do not need 
this. 
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Now we have the Casimir operator 

c = L H,H; + L x .. x~. 
GEER 

and we analyze the action of Con the weight space Yµ corresponding to weight 
fl for any representation V. Let nµ = dim(Vµ). First we have 

L H1H; acts on Vµ by multiplication by(µ,µ)= 11µ11 2
• (25.7) 

Indeed, H,H; acts by multiplication by µ(H1)µ(H;). If we write µ = L r1w1, 

where the w1 are the fundamental weights, then µ(H1) = r1, and ifµ= Lr!wl, 
with w; the dual basis to w1, then similarly µ(H;) = r;. Hence L µ(H1)µ(H;) = 
I r;r/ = (µ, µ), as asserted. 

Now consider the action of x .. x~ =((a, r:x.)/2)X,, ¥,,on Vw Restricting to the 
subalgebra s .. ;;;;;; sl2 and to the subrepresentation Ef)1 Yµ+ 1,, corresponding to 
the a-string throughµ, we are in a situation which we know very well. Suppose 
this string is 

Vp (!) J-P- .. $ ... (!) J-P-m«• 
so m = P(H .. ) [cf. (14.10)], and let k be the integer such thatµ= p - ka. We 
assume for now that k :s; m/2. 

On the first term Vp, x .. ¥,, acts by multiplication by m = p(H .. ) = 
2(/J, r:x.)/(r:x., a), so x .. x~ acts by multiplication by (p, a). In general, on the 
part of J-P-k« which is the image of Vp by multiplication by (Y,,)k, we know 
[cf. (11.5)] that x .. ¥,,acts by multiplication by (k + l)(m - k). This gives us 
a subspace of Vµ of dimension n,, on which x .. x~ acts by multiplication by 

(k + l)((p, a) - k(a, r:x.)/2) = (k + l)((µ, a)+ k(a, r:x.)/2). 

Now peel off the subrepresentation (overs,,) of V spanned by Vp, and apply 
the same reasoning to what is left. We have a subspace of J-P- .. of dimension 
n11-a - n,, to which the same analysis can be made. From this we get a subspace 
of J.-;, of dimension n,,_,, - n,, on which x,,x; acts by multiplication by 

(k)((µ,'r:x.) + (k - l)(r:x., r:x.)/2). 

Continuing to peel off subrepresentations, the space Yµ is decomposed into 
pieces on which x,,x; acts by multiplication by a scalar. The trace of x .. x~ 
on Vµ is therefore the sum 

n,, · (k + 1)((µ, a) + k(r:x., r:x.)/2) + (n,,_" - n,,) · (k)((µ, a) + (k - l)(r:x., r:x.)/2) 

+ · · · + ((np-k,, - np-ck-1) .. ) · (l)((µ, a) + (O)(r:x., r:x.)/2). 

Canceling in successive terms, this simplifies to 

k 

Trace(X,,X~lv ) = L (µ + ia, r:x.)nµ+ 1,,. (25.8) 
" l=O 

One pleasant fact about this sum is that it may be extended to all i ~ 0, since 
nµ+i« = 0 for i > k. 
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In case k ;;:::: m/2, the computation is similar, peeling off representations from 
the other end, starting with Vp-ma· The only difference is that the action of 

X Y on V.p is zero. The result is 
1Z cz -ma 

ro 

'Trace(X .. X~lv.) = -y L (µ - ia., a.)nµ-ia· 
i=l 

(25.9) 

Exercise 25.10. Show that X .. X~ = X _ .. X'_a + ((a., a.)/2)H .. , and deduce (25.9) 

directly from (25.8) by replacing a. by - a.. 

In fact, (25.8) is valid for all µ and a., as we see from the identity 

ro L (µ + ia., a.)nµ+ia = 0. (25.11) 
i=-oo 

Exercise 25.12*. Verify (25.11) by using the symmetry offhe a.-string through P. 

Now we add the assumption that V is irreducible, so C is multiplication 
by some scalar e. Taking the trace of C on Vµ and adding, we get 

enµ=(µ, µ)nµ + L L (µ + ia., a.)nµ+ia· (25.13) 
aeRi"O 

Note that when i = O the two terms for a. and - a. cancel each other, so_ ~he 
summation can begin at i = 1 instead. Rewriting this in terms of the pos1t1ve 

weights, and using (25.11) the sums become 
ro ro 

L L (µ + ia., a.)nµ+ia + L L (µ - ia., a.)nµ-ia 
aeR+ i=l aeR+ i=l 

ro 

= nµ L (µ, a.) + 2 L L (µ + ia., a.)nµ+ia· 
aeR+ a:eR+ i=1 

Summarizing, and observing that Lae R+ (µ,a.) = (µ, 2p), we have 
ro 

en = ((µ, µ) + (µ, 2p))nµ + 2 L L (µ + ia., a.)nµ+ia· 
µ aeR+ i=l 

Note that (µ, µ) + (µ, 2p) = (µ + p, µ + p) - (p, p) = IIµ+ Pll
2 

- llPll
2
· To 

evaluate the constant we evaluate on the highest weight space V;., where n;. = 1 

and n.i.+ia = 0 for i > 0. Hence, 

e =(Jc, A)+ (A, 2p) = II"'+ Pll
2 

- llPll
2
· 

(25.14) 

0 Combining the preceding two equations yields Freudenthal's formula. 

Exercise 25.15. Apply Freudenthal's formula to the representations ?f sl3 IC 
considered in §13.2, verifying again that the multiplicities are as prescnbed on 

the hexagons and triangles. 
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Exercise 25.16. Use Freudenthal's formula to calculate multiplicities for the 
representations rl,0• rO, l •and r2,0 Of (92). 

§25.2. Proof of (WCF); the Kostant 
Multiplicity Formula 

It is not unreasonable to anticipate that Weyl's character formula can be 
deduced from Freudenthal's inductive formula, but some algebraic manip
ulation is certainly required. Let 

X.i. = Char(r;.) = L nµe(µ) 

be the character of the irreducible representation with highest weight Jc. 
Frcudenthal's formula, in form (25.13), reads3 

ro 

e · X.i. = L (µ, µ)nµ e(µ) + L L L (µ + ia., a.)nµ+iae(µ), 
µ µ aeR i=O 

where e = llJc + Pll 2 - llPll 2. To get this to look anything like Weyl's formula, 
we must get rid of the inside sums over i. If a. is fixed, they will disappear if 
we multiply by e(a.) - 1, as successive terms cancel: 

ro 

(e(a.) - 1) · L L (µ + ia., a.)nµ+ 1 .. e(µ) = L (µ, a.)nµe(µ + a.). 
µ i=O µ 

Let P = Ilae R (e(a.) - 1) = (e(a.) - 1) · P .. , where Pa = flp,.a (e(p) - 1). The 
preceding two formulas give 

e · P · X.i. = P · L (µ, µ)nµe(µ) + L (µ, a.)P .. nµe(µ + a.). (25.17) 
µ µ,a 

Note also that 

p = ( - l)'Ap. AP, 

where r is the number of positive roots, so at least the formula now involves 
the ingredients that go into (WCF). 
. We want to prove (WCF): AP· X.i. = A.i.+p· We have seen in §24.1 that both 

s1~es of this equation are alternating, and that both have highest weight term 
c(11. + p), with coefficient 1. On the right-hand side the only terms that appear 
arc those of the form ± e(W(Jc + p)), for W in the Weyl group. To prove 
(WCF), it suffices to prove that the only terms appearing with nonzero 
coefficients in AP· X.i. are these same e(W(Jc + p)), for then the alternating 
Property and the knowledge of the coefficient of e(Jc + p) determine all the 
coefficients. This can be expressed as: 

·'In this section we work in the ring C[A] offinite sums :Em.e(µ) with complex coefficients m •. 



420 25. More Character Formulas 

Claim. The only terms e(v) occurring in AP· X;. with nonzero coefficient are 
those with llvll = llA. + Pll. 

To see that this is equivalent, note that by definition of AP and X;., the terms 
in AP· X;. are all of the form ± e(v), where v = µ + W(p), forµ a weight of r 
and Win the Weyl group. But if /Iµ+ W(p)ll = llA. + Pll, since the metric j~ 
invariant by the Weyl group, this gives II w-1(µ) + Pll = llA. + Pll. But we saw 
in Exercise 25.2 that this cannot happen unless µ = W(A.), as required. 

We are thus reduced to proving the claim. This suggests looking at the 
"Laplacian" operator that maps e(µ) to llµIJ 2e(µ), that is, the map 

A: C[A]-+ C[A] 

defined by 

A(L mµe(µ)) = L (µ, µ)mµe(µ). 

The claim is equivalent to the assertion that F = AP· X;. satisfies the "differential 
equation" 

A(F) = JIA. + Pll 2F. 

From the definition A(X;.) = L(µ, µ)nµe(µ). And A(Ap) = llPll 2AP. In general, 
since II W(a)ll = llall for all We W, 

A(A.J = L (- l)wll W(a)ll 2e(W(a)) = llall 2Aa. 

So we would be in good shape if we had a formula for A of a product of two 
functions. One expects such a formula to take the form 

A(fg) = A(f)g + 2(Vf, Vg) + fA(g), (25.18) 

where V is a "gradient," and ( , ) is an "inner product." Taking f = e(µ), 
g = e(v), we see that we need to have (Ve(µ), Ve(v)) = (µ, v)e(µ + v). There is 
indeed such a gradient and inner product. Define a homomorphism 

V: C[A]-+ 9* ® C[A] = Hom(9, C[A]) 

by the formula V(e(µ)) = µ · e(µ), and define the bilinear form ( . ) on 
9* ® C[A] by the formula (ae(µ), Pe(v)) =(a, p)e(µ + v), where (a, p) is the 
Killing form on 9*. 

Exercise 25.19. With these definitions, verify that (25.18) is satisfied, as well as 
the Leibnitz rule 

V(fg) = V(f)g + JV(g). 

For example, V(x;.) = Lµ nµµ · e(µ), and, by the Leibnitz rule, 

V(P) = L Paa· e(a). 
aeR 

But now look at formula (25.17). This reads 
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c. Px;. = PA(X;.) + (VP, Vx;.). 

Since, also by the exercise, V(P) = 2(- l)'AP V(Ap), we may cancel (- l)'AP 
from each term in the equation, getting 

c · Apx;. = APA(x;.) + 2(VAP, Vx;.). 

By the identity (25.18), the right-hand side of this equation is 

A(ApX;.) - A(Ap)X;. = A(ApX;.) - llPll 2ApX;.· 

Sincec =/IA.+ pll 2 - llP/1 2
, this gives llA. + Pll 2ApX;. = A(ApX;.), which finishes 

the proof. 0 

We conclude this section with a proof of another general multiplicity 
formula, discovered by Kostant. It gives an elegant closed formula for the 
multiplicities, but at the expense of summing over the entire Weyl group 
(although as we will indicate below, there are many interesting cases where all 
but a few terms of the sum vanish). It also involves a kind of partition counting 
function. For each weight µ, let P(µ) be the number of ways to write µ as a 
sum of positive roots; set P(O) = 1. Equivalently, 

1 JJ. 1 - e(a) = ~ P(µ)e(µ). (25.20) 

Proposition 25.21. (Kostant's Multiplicity Formula). The multiplicity nµ(r;.) of 
weightµ in the irreducible representation r;. is given by 

nµ(r;.) = L (- l)wP(W(A. + p) - (µ + p)), 
wem 

where p is half the sum of the positive roots. 

PROOF. Write(Apf1 = e(-p)/fl (1 - e(-a)) = L.P(v)e(-v - p). By(WCF), 

X;. = A;.+p(Apt1 = L ( - l)w e(W(A. + p)P(v)e( -v - p) 
w .• 

= L (- l)w P(v)e(W(A. + p) - (v + p)) 
w .• 

= L (- l)wP(W(X + p) - (µ + p))e(µ), 
W,µ 

as seen by writingµ = W(A. + p) - (v + p). 0 

In fact, the proof shows that Kostant's formula is equivalent to Weyl's 
formula, cf. [Cart]. 

. One way to interpret Kostant's formula, at least for weights µ close to the 
highest weight A. of r;., is as a sort of converse to Proposition 14.13(ii). Recall 
that this says that r;. will be generated by the images of its highest weight 
vector v under successive applications of the generators of the negative root 
spaces; in practice, we used this fact to bound from above the multiplicities of 
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various weights µ close to A. by counting the number of ways of getting from 
A. toµ by adding negative roots. The problem in making this precise was always 
that we did not know how many relations there were among these images, if 
any. Kostant's formula gives an answer: for example, if the difference A. - µ is 
small relative to A., we see that the only nonzero term in the sum is the principle 
term, corresponding to W = 1; in this case the answer is that there are no 
relations other than the trivial ones X(Y(v))- Y(X(v)) = [X, Y](v). Whenµ 
gets somewhat smaller, other terms appear corresponding to single reflections 
Win the walls of the Weyl chamber for which W(A. + p) is higher thanµ+ p; 
we can think of these terms, which all appear with sign -1, as correction terms 
indicating the presence of relations. As µ gets smaller still, of course, more 
terms appear of both signs, and this viewpoint breaks down. 

To see how this works in practice, the reader can for example carry out the 
analysis of the example at the end of§ 13.1. 

Exercise 25.22* (Kostant). Prove the following formula for the function P, 
which can be used to calculate it inductively: P(O) = 1, and, forµ -# 0, 

P(µ) = - L (- l)WP(µ + W(p) - p). 
w,.i 

Exercise 25.23* (Racah). Deduce from Kostant's formula and the preceding 
exercise the following inductive formula for the multiplicities nµ of µ in 
r;.: nµ = 1 ifµ = A., and ifµ is any other weight of r;., then 

nµ = - L (- l)wnµ+p-W(p)· 
w,.i 

Show, in fact, that for any weight µ 

~ w ~ w· £... ( -1) nµ+p-W(p) = £... (-1) , 
wem w· 

where the second sum is over those W' em such that W'(A. + p) = µ + p. 

Note that Kostant's formula, more than any of the others, shows us directly 
the pattern of multiplicities in the irreducible representations of s13 C For 
one thing, it is easy to represent the function P diagrammatically: in the 
weight lattice of sl3 C, the function P(µ) will be a constant 1 on the rays 
{aL2 - aLi}

0
.,, 0 and {aL3 - aL2 } 0 .,, 0 through the origin in the direction of 

the two simple positive roots L2 - Li and L3 - L2 • It will have value 2 on 
the translates {aL2 - (a+ 3)Li}0 .,,_i and {aL3 - (a - 3)L2 } 0 .,, 2 of these two 
rays by the third positive root L3 - Li: for example, the first of these can be 
written as 

aL2 - (a+ 3)Li =(a+ l)"(L2 - Li)+ L3 - Li 

=(a+ 2)-(L2 - Li)+ L3 - L2; 

and correspondingly its value will increase by 1 on each successive translate 
of these rays by L 3 - Li. The picture is thus 
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p .. 3 

Now, the prescription given in the Kostant formula fi h . . . . . 
take six copies of this function flipped abo t th ~r ~ e multtphc1ttes is to 
the vertex of the outer shell lies at th . ut e ongm, translated so that 
alternating sum. Superimposing th . e ~om s w(A. + ~) - P and take their 

e six pictures we arnve at 

which shows 1 1 h , us c ear y t e hexagonal pattern of the multiplicities. 
F • 
,xerc1se 25.24*. A nonzero domina t . h , f . . 

1ninuscule if A.(H ) _ 0 1 r n W~I~ t 11. 0 a simple Lie algebra is called 
"' - or ior each positive root IX. 

(a) Show that if A. · · 
dimensional. Is mmuscule, then every weight space of r;. is one 



424 25. More Character Formulas 

(b) Show that ..1. is minuscule if and only if all the weights of r .. are conjugate 
under the Weyl group. 

(c) Show that a minuscule weight must be one of the fundamental weights. 
Find the minuscule weights for each simple Lie algebra. 

§25.3. Tensor Products and Restrictions To Subgroups 

In the case of the general or special linear groups, we saw general formulas 
for describing how the tensor product r .. ® rl' of two irreducible representa
tions decomposes: 

r). ® rl' = EB N;.l'.r •. 
v 

In these cases the multiplicities N;. • can be described by a combinatorial I' .. 
formula: the Littlewood-Richardson rule. In general, such a decompos1tton 
is equivalent to writing 

(25.25) 

in Z[A], where X;. = Char(r;.) denotes the character.4 By Weyl's character 
formula, these multiplicities N;.I'• are determined by the identity 

(25.26) 

This formula gives an effective procedure for calculating the coefficients f!;.I'" 
if one that is tedious in practice: we can peel off highest weights, i.e., successively 
subtract from A;.+ ·A + multiples of AP· Av+p for the highest v that appears. 

p l'P . CK" 
There are some explicit formulas for the other classical groups. R. . mg 

[Ki2] has showed that for both the symplectic or orthogonal groups, the 
multiplicities N;.I'• are given by the formula 

N;.l'V = L M,a). · M,tl' ·Man• (2.'i.27) 
,,a,t 

where the M's denote the Littlewood-Richardson multiplicities, i.e., the corre
sponding numbers for the general linear group, and the sum is over all 
partitions (, a, r. For other formulas for the classical groups, see [Murl], 
[Wel, p. 230]. 

Exercise 25.28*. For so4 C, show that all the nonzero multiplicities N;.I'• are 1 's, 
and these occur for v in a rectangle with sides making 45° angles to the axes. 
Describe this rectangle. 

d .. 1 · l" 't' " d the problem 4 In the literature these multiplicities NAµ• are often calle outer mu tip tct tes, an 
of finding them, or decomposing the tensor product, the "Clebsch-Gordon" problem. 
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Steinberg has also given a general formula for the multiplicities N;.I'•" Since 
it involves a double summation over the Weyl group, using it in a concrete 
situation may be a challenge. 

Proposition 25.29 (Steinberg's Formula). The multiplicity of r. in r;. ® rl' is 

N;.l'V = L (- l)WW'P(W(..1. + p) + W'(µ + p) - v - 2p), 
W,W' 

where the sum is over pairs W, W' E 213, and P is the counting function appearing 
in Kostant's multiplicity formula. 

Exercise 25.30*. Prove Steinberg's formula by multiplying (25.25) by AP, using 
(WCF) to get X;.Al'+P = L N;.l'•Av+p· Write out both sides, using Kostant's 
formula for X;., and compute the coefficient of the term e(p + p) on each side, 
for any p. This gives 

I (-l)WW'P(W(..1. + p) + W'(µ + p)- p - 2p) = L (-l)WN).,1£,W(/J+p)-p• 
W,W' W 

Show that for p = v all the terms on the right are zero but N;.I'•" 

Exercise 25.31 (Racah). Use the Steinberg and Kostant formulas to show that 

N;.l'V = L (- l)w nv+p-W(1£+p)(r;.). 
w 

The following is the generalization of something we have seen several times: 

Exercise 25.32. If ..1. and µ are dominant weights, and °' is a simple root with 
A(Ha) and µ(H") not zero, show that ..1. + µ - °' is a dominant weight and 
r, ® rl' contains the irreducible representation rHI'-" with multiplicity one. 
So 

r). ® rl' = r).+I' EB rHI'-" EB others. 

In caseµ= ..1., with ..1.(H") ¥- 0, Sym2 (r;.) contains rHI'• while N(r;.) contains 
r,+,,-". 

Exercise 25.33. If ..1. + ( is a dominant weight for each weight ( of rl', show 
that the irreducible representations appearing in r;.@ rl' are exactly the rH,. 
In fact, with no assumptions, every component of r;. ® rl' always has this form. 
One can show that N;.I'• is the dimension of 

{v e (r;.).-1': Hf1+1(v) = 0, 1::;; i::;; n, 11 = µ(H1)}. 

For this, see [Zel. §131]. 

For other general formulas for the multiplicities N;.I'• see [Kem], [K-N], 
[Li], and [Kuml], [Kum2]. 

We have also seen a formula for decomposing the representation r;. of 
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. GL IC. In this case the multiplicities 
GLmC when r.estncted to the sub~~:ve ;~~ple combinatorial description. 
of the irreducible components ag h l sical groups In the literature, such 
There are similar formulas for oht. er ~ams ulas" or "modification rules." We 

ll d "branc mg 1or • 
formulas are often ca e h" f la for the symplectic and orthogonal 
will just state the analogues oft is ormu 

cases: d r the irreducible representation Of S02n+l C 
For S02nC c: S02n+l C, an ). . . . 

. b , _ (, > ... >A ;;?; 0), the restncuon 1s 
gtven YA - Al - - n (25 34) 

Res••2n•,c(r;.) = EBrx. . 
102nC 

ll ,- _ (, I ) with 
thesumovera A- Al•"''' n _ 

Al ;;?; I1 ;;?; A1 ;;?; I2 ;;?; ... ;;?; In-1 ;;?; An;;?; I An I• 
- . 1 ously all integers or all half integers. . 

with the Ai and A1 s1mu ;ane d r the irreducible representation of S02n c given 
For so2n-l C c: S02n>u, an ;. 

by A= (A1 ;;?; ... ;;?; I An I), Res:~;:~,c(r;.} = EB r;:, (25.35) 

ll ,- _ (, I ) with the sum over a /1. - 11.1, ···• n-1 
Al ;;?; I1 ;;?; A2;;?; I2;;?; ... ;;?; In-1 ;;?; I An I• 

_ . 
1 1 ll integers or all half integers. 

with the A; and A; s1mu taneodu; yt:e irreducible representation of sv2nC given 
For SV2n-2 C c: SV2nC, an ;. . . . 

by A = (A1 ;;?; ... ;;?; An ;;?; 0), the restncuon ts (25.36) 
Res•v2nc c(r;.) = EB N,.xr;:, 

•V2n-2 l ' 
- - I ) with I1 ;;?; ... ;;?; In-1 ;;?; 0, and the mu U-

the sum over all A = (A1' ... ' n-1 p of integers satisfying 

l
. "t N - is the number of sequences P1, ... ' n p lCl y ;.;. 

Al ;;?; P1 ;;?; A2 ;;?; P2 ;;?; ... ;;?; An ;;?; Pn ;;?; 0 

and P1 ;;?; I1 ;;?; P2,. • ;;?; Pn-1 ;;?; In-1 ;;?; Pn· 
las are e uivalent to identities among 

As in the case of GL"C, these formu . ~ ·ng to work them out from 
symmetric po~ynomials. T?e r2e3a~;r m;[y ;~~~~A ;~~s computational approach 
this point of ~1ew' cf. Exercise . an 

is given in [Zel]. h 1 r near group these branching rules can 
As we saw in the case oft e genera i. . 'f the weight spaces. for 

be used inductively to compute t~e dimensions o 
example, for so,,,C consider the chain 

tr C:::i···:::>S03C. 
so,,,C :::> so,,,-1 >u :::> so,,,-2 will 

. . l from one layer to the next . 
Decomposing a representation ~ucce~s1ve ly weight spaces, and the dim~ns1on 
finally write it as a sum of one-d1m~~~1~~~tions" in chains that start with. th~ 
can be read off from the number o p t d from these chains, as descnbe 
given A. The representations ~an be construe e 
by Gelfand and Zetlin, cf. [Zel, §10]. 
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Similarly, one can ask for formulas for decomposing restrictions for 
other inclusions, such as the natural embeddings: Sp2nC c: SL2nC, 
SO,,,C c SLmC, GL,,,C x GLnC c GL,,,+nC, GLmC x GLnC c GLmnC, 
SL"C c SP2nC, SLnC c S02n+l C, SLnC c S02nC, to mention just a few. 
Such formulas are determined in principle by computing what happens 
to generators of the representation rings, which is not hard: one need 
only decompose exterior or symmetric products of standard representations, 
cf. Exercise 23.31. A few closed formulas for decomposing more general 
representations can also be found in the literature. We state what happens 
when the irreducible representations ofGL,,,C are restricted to the orthogonal 
or symplectic subgroups, referring to [Lit3] for the proofs: 

For O"'C c GL,,,C, with m = 2n or 2n + 1, given A. = (A.1 ~ · · · ~ A."' ~ 0), 

Resg~cc(r;.) = EBN,_xrx. (25.37) 

the sum over all I= (I1 ~ · · · ~ In ~ 0), where 

N;.x=LNw. 
d 

with Nd.t;. the Littlewood-Richardson coefficient, and the sum over all 
c5 = ('5 1 ~ fJ2 ~ ···)with all fJ1 even. 

Exercise 23.38. Show that the representation 1(2 , 2> of GL,,,C restricts to the 
direct sum 

r(2,2) E91(2) E9 l(o) 

over O,,,C. (This decomposition is important in differential geometry: the 
Riemann-Christoffel tensor has type (2, 2), and the above three components 
of its decomposition are the conformal curvature tensor, the Ricci tensor, and 
the scalar curvature, respectively.) 

Similarly for Sp2nC c GL2nC, 

Res~~~·{(I';.) = Ef>N,_xrx. 

the sum over all I= (I1 ~ · · · ~ In ~ 0), where 

N;.x = L N~x;.. 
~ 

(25.39) 

N~u is the Littlewood-Richardson coefficient, and the sum is over all 
IJ = (17, = t72 ~ JT3 = t74 ~ · .. ) with each part occurring an even number of 
times. 
. It is perhaps worth pointing out the the decomposition of tensor products 
is a special case of the decomposition of restrictions: the exterior tensor 
Product I';. !BJ I'µ of two irreducible representations of G is an irreducible 
representation of G x G, and the restriction of this to the diagonal embedding 
of G in G x G is the usual tensor product r;. ®I'µ. 

There are also some general formulas, valid whenever g is a semisimple Lie 
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subalgebra of a semisimple Lie algebra g. Assume that the Cartan subalgebra 
ij is a subalgebra of~. so we have a restriction from~· to ij*, and we assume 
the half-spaces determining positive roots are compatible. We write µfor 
weights of g, an_! we write µ ! ji to mean that a weight µ of g restricts to µ. 
Similarly write W for a typical element of the Weyl group of g, and p for half 
the sum of its positive weights. If A. (resp. J:) is a dominant weight for 9 
(resp. g), let N;.x denote the multiplicity with which rx appears in the restriction 
of r .. to g, i.e., 

Exercise 25.40*. Show that, for any dominant weight A. of g and any weight µ 
ofg, 

Exercise 25.41 * (Klimyk). Show that 

N;.x = 2: ( - l)w 2: nµ(r;.). 
W µJ.J.+p-W(p) 

Exercise 25.42. Show that if the formula of the preceding exercise is applied 
to the diagonal embedding of gin g x g, then the Racah formula of Exercise 
25.31 results. 

For additional formulas of a similar vein, as well as discussions of how they 
can be implemented on a computer, there are several articles in SIAM J. Appl. 
Math. 25, 1973. 

Finally, we note that it is possible, for any semisimple Lie algebra g, to 
make the direct sum of all its irreducible representations into a commutative 
algebra, generalizing constructions we saw in Lectures 15, §17, and §19. Let 
rw , ... , rw be the irreducible representations corresponding to the funda-

1 n 

mental weights w 1, ••• , wn. Let 

A" = Sym'(rw, $ · · · $ rwJ 

This is a commutative graded algebra, the direct sum of pieces 

A•= EfJ Sym01 (rw,) ® · · · ® Sym0 "(rwJ• 
Dt•···•an 

where a= (a 1, ••. ,an) is an n-tuple of non-negative integers. Then A" is 
the direct sum of the irreducible representation r;. whose highest weight is 
A. = L a1w1, and a sum J• of representations whose highest weight is strict~y 
smaller. As before, weight considerations show that J' = EfJ. J8 is an ideal tn 
A', so the quotient 

A'/J' = EfJr;. 
;. 
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is the direct sum of all the irreducible representations. The product 

r;. ® r,, ..... rH,, 

in this ring i~ often called Cartan multiplication; note that the fact th t r 
occurs once m the tensor product determines such . . a Hµ 
to multiplication by a scalar. a proJectton, but only up 

th 
UCsin~ i~eas of §25.1, it is possible to give generators for the ideal J' If C i 

e as1mir operator, we know that c t 1 · . · s 
multiplication by the constant c - (A. A. ac s on a I re~resentat10ns and is 
tation with highest weight A.. Therefole+i}2t·:)~nthemeduciblerepre~en
c - c ;} of A• vanishes on the facto , £... a;w;, the endomorphism 

r;, of lower weightµ it is multiplicat~o~;.b;:d ~ncea;~ o[~~h(e25re2p)r]esletn~altlions 
that µ ;. • • • tO OWS 

J8 = lmage(C - c;.I: A•--+ A•). 

Exercise 25.43*. Write C = " U u: as i"n §25 1 Sh h 
· h f d L.. 1 • • • ow t at for v t m t e un amental weight spaces "th . r " t • ... ' vm vec ors 
C , w1 v E and £...ex - "a th 1 ( - c;.I)(v1. V2 ••.•• vm) is the sum overJ 11 a1. . J-:- £... ,w,, e e ement 

the terms a pairs J, k, with 1 S j < k S m, of 

( ~ (U,(v1). Uf (vk) + U/(v1). U,(vk)) - 2(ex1, exk)v1. vk). fl v,. 
l~J.k 

From this exercise follows a theorem f K .. 
clements 0 ostant: J is generated by the 

~ (U;(v). U[(w) + Uf(v). U;(w)) - 2(ex, P)v. w 

for v Era, w E rp. with ex and /3 fund 1 
algebras, this formula can be used to fi:;enta roots. ~or_ the classical Lie 
one wants as· ·1 . ~ . . concrete reahzat10ns of the ring. If 

im1 ar rmg ior a sem1s1mple Lie gr h 
of course when the . . oup, one as the same ring 
in Lcctur~s 15 and lg;~:f ~~ s~:~~ ~cmn~ted; this leads_ to the ring described 
When m is odd b t th . n P2n • For some, little change is needed 
[ L-T]. ' u ere is more work for m even. Details can be found in 



LECTURE 26 

Real Lie Algebras and Lie Groups 

1 h 1 t t in the process outlined at the 
Iben t?is ~ectu~ep:~ti~ii~~t~a~~:~~ ~:~l~~g~ ~f~~esc~~ssification and representati~n 

gmnmg o . and deduce the corresponding statements m 
theory of complex alg~b~as and group~ . . g a list of the simple classical real Lie 
the real case. We_ do th;,s m th;~r:~~~tttt~~· :~~~~sponding groups and their (comple~) 
algebras and saymg a ew wo hose Lie al ebra has as complex1-
representations. The ~~istence of a ~om[.act f ~~~~ :akes it po~sible to give another 
fication a giv~n. sem1S1mple comp t~x ~~y~ :haracter formula; we sketch this in §26.2. 
(indeed, the ongmal~ way to prove e . G a uestion analogous to one asked 
Finally, we can as~ m regard_ to real Lt~ gr§~uf,s whic~ of the complex representations 
for the representations of fimte groups m . . h" . th most commonly en
V of G actually come from real ones. We answer tf ts t~en :e attempt them, are 
countered cases in §26.3. In this fin~! lectur~h:~~~e s~s:al fortitude from the reader. 
generally only sketched and may require more 

§26.1: Classification of real simple Lie algebras and groups 
§26.2: Second proof of Weyl's character formula . 
§26.3: Real, complex, and quaternionic representations 

§26.1. Classification of Real Simple Lie Algebras 
and Groups 

L. l b we now address the Having described the semisimple complex te age ras, l "fi fon 9 ®RC 
analogous problem fo~ real Lie alge~ras. Si~c.e the ~~: ~:: ~: ialge;ra and 
of a semisimple real Lie algebra 9o ts a sem1s1mpl~l pf describing the real 
we have classified those, we are re~uced to the ~ro . e~ o a given complex Lie 
forms of the complex semisi~ple Lie algebr~s: t at is, or 
algebra 9, finding all real Lte algebras 9o with 
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9o ®R c F g. 

We saw many of the real forms of the classical complex Lie groups and 
algebras back in Lectures 7 and 8. In this section we will indicate one way to 
approach the question systematically, but we will only include sketches of 
proofs. 

To get the idea of what to expect, let us work out real forms of sl
2
C 

in detail. To do this, suppose 90 is any real Lie subalgebra of sl
2
C, with 

q0 ®~ C = sl2 C. The natural thing to do is to try to carry out our analysis of 
semisimple Lie algebras for the real Lie algebra 9

0
; that is, find an element 

II e g0 such that ad(H) acts semisimply on 90 , decompose 9
0 

into eigenspaces, 
and so on. The first part of this presents no problem: since the subset of sl

2 
C 

of non-semisimple matrices is a proper algebraic subvariety, it cannot contain 
the real subspace 90 c sl2 C, so that we can certainly find a semisimple He 9

0
• 

The next thing is to consider the eigenspaces of ad(H) acting on 9. Of 
course, ad(H) has one eigenvalue 0, corresponding to the eigenspace 1)

0 
= 

!R · H spanned by H. The remaining two eigenvalues must then sum to zero, 
which leaves just two possibilities: 

( i) ad(H) has eigenvalues A, and - A, for A, a nonzero real number; multi
plying H by a real scalar, we can take A, = 2. In this case we obtain a 
decomposition of the vector space 90 into one-dimensional eigenspaces 

9o = 1>o EF> 92 EF> 9-2· 

We can then choose Xe 92 and Ye 9_2 ; the standard argument then shows 
that the bracket [X, Y] is a nonzero multiple of H, which we may take to be 
1 by rechoosing X and Y. We thus have the real form sl

2 
IR, with the basis 

(ii) ad(H) has eigenvalues iA and - iA, for A, some nonzero real number; again, 
adjusting H by a real scalar we may take A, = 1. In this case, of course, there 
arc no real eigenvectors for the action of ad(H) on 9

0
; but we can decompose 

Ho into the direct sum of 1)0 and the two-dimensional subspace 9(1, -i} corre
sponding to the pair of eigenvalues i and -i. We may then choose a basis B 
and C for 9(i. -I} with 

[H, BJ= C and [H, CJ= -B. 

The commutator [B, CJ will then be a nonzero multiple of H, which we may 
take to be either H or - H (we can multiply B and C simultaneously by a 
scalarµ, which multiplies the commutator [B, CJ by µ 2). In the latter case, we 
sec l hat 90 is isomorphic to sl2 IR again: these are the relations we get if we 
take as basis for sl2 C the three vectors 

( 0 !) (0 1) (1 0) H = -! 0 , B = 1 0 
, and C = 

0 
_ 

1 
. 
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Finally, if the commutator [B, CJ = H, we do get a new example: 90 is in this 
case isomorphic to the algebra 

su2 ={A: 'A= -A and trace(A) = O} c sl2e, 

which has as basis 

H = c~ -~12)· B = ( _ ~/2 1~2). and c = C~2 i/2) 
0 . 

Exercise 26.1. Carry out this analysis for the real Lie algebras so3 IR and so2, 1 IR. 
In particular, give an isomorphism of each with either sl2 IR or su2. 

This completes our analysis of the real forms of sl2 e. In the general 
case, we can try to apply a similar analysis, and indeed at least one aspect 
generalizes: given a real form 90 c 9 of the complex semisimple Lie algebra 
9, we can find a real subalgebra g0 c 90 such that g0 ® e is a Cartan sub
algebra of 9 = 90 ® e; this is called a Cartan subalgebra of 90 • There is a 
further complication in the case of Lie algebras of rank 2 or more: the values 
on g0 of a root a e R of 9 need not be either all real or all purely imaginary. 
We, thus, need to consider the root spaces 9,., 9ii• 9_,., and 9-ii• and the 
subalgebra they generate, at the same time. Moreover, as we saw in the above 
example, whether the values of the roots a e R of 9 on the real subspace g0 

are real, purely imaginary, or neither will in general depend on the choice of 
Qo· 

Exercise 26.2*. In the case of 90 = sl3 IR c 9 = sl3 e, suppose we choose as 
Cartan subalgebra g0 the space spanned over IR by the elements 

(
2 0 0) 

H 1 = 0 -1 0 
0 0 -1 

' (0 0 0) 
and H 2 = 0 0 1 . 

0 -1 0 

Show that this is indeed a Cartan subalgebra, and find the decomposition of 
9 into eigenspaces for the action of g = g0 ® C. In particular, find the roots 
of 9 as linear functions on g, and describe the corresponding decomposition 
of 9o· 

Judging from these examples, it is probably prudent to resist the temptation 
to try to carry out an analysis of real semisimple Lie algebras via an analogue 
of the decomposition 9 = g $ (EB 9,.) in this case. Rather, in the present book, 
we will do two things. First, we will give the statement of the classification 
theorem for the real forms of the dassical algebras-that is, we will list all 
the simple real Lie algebras whose complexifications are classical algebras. 
Second, we will focus on two distinguished real forms possessed by any real 
semisimple Lie algebra, the split form and the compact form. These are the 
two forms that you see most often; and the existence of the latter in particular 
will be essential in the following section. 
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For the first, it turns out to be enough to work out the complexifications 
no ®n e = 9o EB i · 9o of the real Lie algebras 90 we know. The list is: 

Real Lie algebra Complexification 

sln!R 
sine 
slnD-fl = 9lnD-fl/IR 
sop,qlR 
sone 
SP2nlR 
SP2ne 
sup,q 
up,qD-fl 
u:D-fl 

sine 
sine x sine 
sl2ne 
sop+qe 
sone x sone 
SP2ne 
SJ.lzne X SP2ne 
slp+qe 
Sp2(p+q)e 
S02ne 

The last two in the left-hand column are the Lie algebras of the groups u D-fJ 

and U/ D-fl of aut~mo~phisms of a quaternionic vector space preservi~~ a 
Hermitian form with signature (p, q), and a skew-symmetric Hermitian form 
respectively. ' 

w_ e should first verify that the algebras on the right are indeed the complexi
ficat1ons of those on the left. Some are obvious, such as the complexification 

(sin IR)c = sin IR $ i ·sin IR = sine. 

The same goes for sop,qlR and sp2n1R. 
Next, consider the complexification of 

sun= {A E sine: 1A = -A}. 

To see that sine =sun EB i ·sun, let Me sine, and write 

M = !(M - 'M) + t(M + 'M) =!A + !B; 

then A E sun, iB E sun, and M = !A - i(i/2)B. 

1 
The general case ofs~.q c slp+qe is similar: ifthe form is given by (x, y) = 

xQy, then sup,q ={A: 'AQ = -QA}. Writing Me slp+qe in the form 

M = !(M - Q·'M·Q)- i·(!(iM + iQ·'M·Q)) 

and using Q = 'Q = Q-1 = Q, one sees that M e su EB i · su 
_Forthecomplexificationofslme,embedsl einst'

9
e x sl CqbyAH(A A) 

Given any pair (B, C), write m m m ' • 

(B, C) = !(B + C, ii+ C) + !(B - C, - ii + C) 

= f(B + C, jj + C) - i·(!(iB + iC, iB + iC). 

L 
For the quaternionic Lie algebra, from the description ofGL D-fl we saw in 

ccture 7, we have n 
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withJ=(~/ ~). As before, for M E gl2nC, we can write 

M = 1(M _ J·M·J)- i·(·HiM + iJ·iM·J)) 

to see that gl"IHI ®IR C = gl2nlC. 

Exercise 26.3. Verify the rest of the list. 

. oes back to Cartan, is that this includes the 
The th~orem'. which als? g1 ebras associated to the classical complex types 

complete list of simple real Lie a g dditional 17 simple real Lie algebras ass~
(A")-(Dn~· In fact, there ar: ant Lie algebras. The proof of this theorem is 
ciated with the five exceptional. t ( f [H-S] [Hel], [Ar]) for it. 
rather long, and we refer to the itera ure c . ' 

Split Forms and Compact Forms 
. . l the real forms go of a semisimple Lie 

Rather than try to classify m generah two particular forms that are 

algebra g, we would lik_e. to :~c~:e :.~:;~ and that are by far the most 
possessed by ever~ s~m1s1mp_ . he s lit form and the compact form. 
commonly dealt with m practice. t pf b havior of the decomposition g = 

These represent the two extreml esbo l ebra g c: g To begin with, the split 
(ffi ) with respect to the rea su a ge 0 • · r,. (that 

l) E9 wg~ h th t there exists a Cartan subalgebra •10.c: 9o 
form of g 1s a form go sue a . . _ C c: ® IC = 9 1s a Cartan 
is, a subalgebra whose com~lex1ficat10:a~ ~lll)~e~ eigen~~lues-i.e., such that 

subalgebra of 9) whose :ct~on ~;i~ respect to the Cartan subalgebra l) = 
all the roots IX E R c: l) 0 g th bspace l) In this case we have a 
l)o ® C c: g) assume a_n. real values on e su o· 

direct sum decompos1t1on 

go = l)o E9 (ffi ta) . 
. · · for the action of l)o (each J. 

of 9o into l)o and one-di_mens10nal eigenspaces la with 9 )· each pair ia and 
will just be the intersection of_ the roo~~p~ce {a ~c: ~s we will ~ee momentarily, 
. will generate a subalgebra isomorp ic o s 2 . 
~his uniquely characterizes the real form 9o of g. R r,.• of g (with respect 

. t fi rm all the roots IX E c: '' 
By contrast, m the compa~ o C c: ) assume all purely imaginary values 

to the Cartan subalgebra l) - l)d? ®
1 

ha;e a direct sum decomposition 
on the subspace l)o. We accor mg y 

9o = l)o EB (ffi la) 
h" h l) acts by rotation (each 

of 9o into l)o and two-dim~nsional spaces on w ic E9 o with go); each la will 

( ·11 ·ust be the intersection of the root space 9a 9-a 
a WI J . h" 
generate a subalgebra iso~orp ic tof su2. . ·mple complex Lie algebra was 

The existence of the spht form o a sem1s1 truct a real-even rational 
already established in Lecture 21: one way to cons 
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- form g0 of a semisimple Lie algebra g is by starting with any generator Xa, 
for the root space for each positive simple root IX1, completing it to standard 
basis Xa,• ¥,.,,and H1 = [Xa,• ¥..,]for the corresponding sa, = sl2 IC, and taking 

90 to be the real subalgebra generated by these elements. Choosing a way to 
write each positive root as a sum of simple roots even determined a basis 
(H1 El), Xa E ga, Y,. E 9-a} for 90 , as in (21.20). The Cartan subalgebra 1)0 of 90 

is the real span of these H1• Note that once l) is fixed for 9, the real subalgebra 
IJo is uniquely determined as the span of the Ha for all roots ix. The algebra g0 

is determined up to isomorphism; it is sometimes called the natural real form 
of g. Note that this also demonstrates the uniqueness of the split form: it is 
the only real form g0 of g that has a Cartan subalgebra 1)0 acting on 90 with 
all real eigenvalues. 

As for the compact form of a semisimple Lie algebra, it owes much of its 
significance (as well as its name) to the last condition in 

Proposition 26.4. Suppose 9 is any complex semisimple Lie algebra and 90 c: 9 
a real form of 9. Let 1)0 be a Cartan subalgebra of 90 , l) = 1)0 ® C the corre
sponding Cartan subalgebra of 9. The following are equivalent: 

(i) Each root IX ER c: l)* of 9 assumes purely imaginary values on 1)0, and 
for each root IX the subalgebra of 90 generated by the intersection la of 
(9a E9 9-a) with 90 is isomorphic to su2 ; 

(ii) The restriction to 90 of the Killing form of 9 is negative definite; 
(iii) The real Lie group G0 with Lie algebra 90 is compact. 

In (iii), G0 can be taken to be the adjoint form of 90 • However, a theorem 
of Weyl ensures that the fundamental group of any such G0 is finite, so the 
condition is independent of the choice of G0 . Note also that, by the equivalence 
with (ii) and (iii), the condition (i) must be independent of the choice of Cartan 
subalgebra 1)0 • This is in contrast with the split case, where we require only 
that there exist a Cartan subalgebra whose action on 9 has all real eigenvalues; 
as we saw in the case of sl2 ~.in the split case a different 1)0 may have imaginary 
eigenvalues. 

PROOF. We start by showing that the first condition implies the second; this 
will follow from direct observation. To begin with, the value of the Killing 
form on H E 1)0 is visibly 

B(H, H) = L (1X(H))2 < 0. 

Next, the subspaces Ia are orthogonal to one another with respect to B, so it 
remains only to verify B(Z, Z) < 0 for a general member Z E Ia. To do this, 
let X and Y be generators of 9a and 9-a c: g respectively, chosen so as to form, 
together with their commutator H = [X, Y] a standard basis for sl2 IC. By the 
analysis of real forms of sl2 C above, we may take as generators of the algebra 
generated by la the elements iH, U = X - Y and V = iX + iY. If we set 

Z = aU + bV= (a+ ib)·X +(-a+ ib)· Y, 
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then we have 

ad(Z) o ad(Z) = (a + ib)2 ad(X) o ad(X) 

- (a 2 + b2)(ad(X) o ad(Y) + ad(Y) o ad(X)) 

+(a - ib)2 ad(Y) o ad(Y). 

Now, ad(X) o ad(X) and ad(Y) o ad(Y) have no trace, so we can write 

trace(ad(Z) o ad(Z)) = - 2 · (a 2 + b2
) • trace(ad(X) o ad( Y)). (26.5) 

By direct examination, in the representation Sym"V of sl2 C, ad(X) o ad(Y) 
acts by multiplication by (n - A.)(n + A. - 2)/4 ~ 0 on the A.-eigenspace for H, 
from which we deduce that the right-hand side of (26.5) is negative. 

Next, we show that the second condition implies the third. This is imme
diate: the adjoint form G0 is the connected component of the identity of the 
group Aut(90). In particular, it is a closed subgroup of the adjoint group of g, 
and it acts faithfully on the real vector space 90, preserving the bilinear form 
B. If B is negative definite it follows that G0 is a closed subgroup of the 
orthogonal group SOm!R, which is compact. 

Finally, if we know that G0 is compact, by averaging we can construct a 
positive definite inner product on 90 invariant under the action of G0. For any 
X in 90, ad(X) is represented by a skew-symmetric matrix A = (a1) with 
respect to an orthonormal basis of 90 (cf. (14.23)), so B(X, X) = Tr(A o A)= 
'it.1a1,1a1.1 = - L a~1 ~ 0. In particular, the eigenvalues of ad(X) must be 
purely imaginary. Therefore 1X(q0) c ilR and a = - IX for any root IX, from 
which (i) follows. O 

We now claim that every semisimple complex Lie algebra has a unique 
compact form. To see this we need an algebraic notion which is, in fact, crucial 
to the classification theorem mentioned above: that of conjugate linear involu
tion. If 9 = 90 ®IR C is the complexification of a real Lie algebra 90, there is a 
map a: 9 ~ 9 which takes x ® z to x ® z for x e 90 and z e C; it is conjugate 
linear, preserves Lie brackets, and a2 is the identity. The real algebra 90 is the 
fixed subalgebra of a, and conversely, given such a conjugate linear involution 
a of a complex Lie algebra 9, its fixed algebra 9a is a real form of 9. To prove the 
claim, we start with the split, or natural form, as constructed in Lecture 21 
and referred to above. With a basis for 9 chosen as in this construction, it is 
not hard to show that there is a unique Lie algebra automorphism <p of g that 
takes each element of 9 to its negative and takes each Xa to Ya (this follows 
from Claim 21.25). This automorphism <pis a complex linear involution which 
preserves the real subalgebra 90. This automorphism commutes with the 
associated conjugate linear a. The composite a<p = <pa is a conjugate linear 
involution, from which it follows that its fixed part 9c = 9'"" is another real 
form of 9. This has Cartan subalgebra 9c = 9a"' = i · 90. We have seen that the 
restriction of the Killing form to 90 is positive definite. It follows that its 
restriction to 9c is negative definite, and hence that 9c is a compact form of 9· 
Finally, this construction of 9c from 90 is reversible, and from this one can 
deduce the uniqueness of the compact form. 
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9c = 9c $ EB la, 
aeR+ 
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where l = (9 EB 9 )""' · 1 1 . a a -a IS area p ane With l ® c - = 
a IR - 9a W 9-a and [Q0 la] c la. 

Exercise 26.6. Verify that {A.= i· H.· 1 ~ . < } . b . 
c, = i. (Xa + Y,.)} is a basis for l ~~d thle-acnt. IS~ ~SIS for 9c, {Ba= xa - Y,., 

a• IOn IS given by 

[A1, Ba]= p· Ca and [A1, Ca]= -p· B 

where Pis the integer 1X(ll.J). In particular, 9c acts by rotatio;~ on the planes la. 

Our classical Lie algebras 9 all came e . . 
and with a basis of the above t Th qm~ped with a natural real form 90, 

ype. ese split forms are: 

Complex simple Lie algebra Split form 

sln+t c 
S02n+t {; 

SP2nC 

S02"C 

sln+l IR 

SOn+l,n 

SP2n!R 

son,n 

Exercise 26.7. For each of th r 
form 9c· ese sp it forms, find the corresponding compact 

Exercise 26.8. Let 9o be a real semisim le Lie l b 
IJo of 9o is a Cartan subalgebra if and op l 'f. ~ ge ra. _Show that a subalgebra 
and the adjoint action on 9 i·s s .. n yl I It is a maximal abelian subalgebra 

o em1s1mp e. 

Exercise 26.9*. Starting with a real form f . . 
a, show that one can always find 9o o 9 with associated conjugation 
and such that a compact form 9c of 9 such that a(9c) = 9o 

9o = t EB p, 
where t = 9 -o - 9o n 9c• and p = 9 n (i. 9 ) S h d . 
Cartan decomposition of 9 It . o. c • ~c a ecompos1tion is called a 

o· Is umque up to inner automorphism. 

Exercise 26.10*. For any real form f . 
that there is a Cartan subalgebra 9 ~of o ~ g1~en by a conjugation a, show 
a Cartan subalgebra of 9o· 9 t at is preserved by a, so 9o n 9 is 

Naturally, the various spe . l . . 
(sl2 C ~ so3C ""sn If' etc ~Ia i_somorph1sms between complex Lie algebras 
~ - = ,..2 'l..o, .) give rise to special · h' 
orms. For example we have al d isomorp isms among their real 

' rea y seen that 

While 
sl2IR~su1.1 ~S02,1 ~SP2IR, 
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. . h f the remaining three special isomorphisms 
(cf. Exercise 26.1). Similar~y, eac b 

0 
. rise to isomorphisms between their 

of complex semisimple Lie alge ras gives 

real forms, as follows: 

(i) 504c ~ sl2C x sl2C 
compact forms: so4IR ~ su2 x su2 
split forms: so2.2 ~ sl2 IR x sl2 IR l IR 
others: so3,1 ~ sl2C, u~IHl ~ su2 x s 2 . 

(ii) sv4C ~ S05C 
compact forms: u21Hl ~ soslR 
split forms: SV4IR ~ S03,2 
other: Ui, 1 IHl ~ so4, 1 · 

(iii) sl4 C ~ so6 C 
compact forms: SU4 ~ so61R 

splitforms:sl41R~s~3,3 ,..., •IHl·sl IHl~sos,1· 
others: su2,2 ~ so4,2• su3,1 = U3 , 2 . f . rty gives 

h . f so C coming rom tna i 
In addition, the extra automorp ism o s 

rise to an isomorphism u%1Hl ~ so6,2· 

. f the isomorphisms above. (Of course, in ~he ~ase 
Exercise 26.11. Verify some 0 . r d by the corresponding iso-
of compact and split fo~s, these ~e ~~p :orthwhile to see them directly 
morphisms of complex Lie algebras, ut i is 

in any case.) 

Real Groups 
· wi'th these Lie ·b· the real Lie groups 

We turn now to proble~ ~f descn o~~~e semisimple complex Lie algebra 9· 
algebras. Let G be the adjoint form . ate linear involution u of 9 that 
If 9o is a real form.of 9, th~ as~ociate~;~i~J~:ilows from the functor~al nature 
fixes 9o lifts to an involut~on u of G. is re arded now as a real Lie grou~.) 
of the adjoint form, not~n~ that ? he! form a closed subgroup of G; its 
The fixed points Ga of this i~volu~ionGt . al Lie group whose Lie algebra 
connected component of the ~~ent~ty o is a re 

is 9o· G is called ~he complex~icati~n ;f ~~he lattice of those elements in I) ~n 
We have seen in §23. l that if r - : 2 Tis the kernel of the exponential 

which all roots take integral va_l~es, ~ en ~;I) is a Cartan subalgebra of 9o• 
mapping exp: l) -+ G to the adjoin~ orm. hen ~he intersection of l>o with the 
T = exp(l)o) will be compact ~recisel\ WI th' case Twill be a product of n 
kernel 2n:ir is a lattice of maximal ran : n this Killing form on l>o is negative 

. 1 51 - dim(l)) and, since e G ·ll 
copies of the circ e , n .- , G will also be compact. Such a o wi 
definite, the corresponding real grou~ o . 
be a maximal compact subgroup of . they have the same meduc-

When Go c G is a maximal compact subgr~:;;; lex group G', each complex 
ible complex representations. Indeed, for any p 
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homomorphism from G to G' is the extension of a unique real homomorphism 
from G0 to G'. This follows from the corresponding fact for Lie algebras and 
the fact that G0 and G have the same fundamental group. This is another 
general fact, which implies the finiteness of the fundamental group of G0 ; we 
omit the proof, noting only that it can be seen directly in the classical cases: 

Exercise 26.12*. Prove that n:1 (G0 )-+ n:1 (G) is an isomorphism for each of the 
classical adjoint groups. 

Exercise 26.13*. The special isomorphisms of real Lie algebras listed above 
give rise to special isomorphisms of real Lie groups. Can you find these? 

It is another general fact that any compact (connected) Lie group is a 
quotient 

(G1 x G2 x · · · x G, x T)/Z, 

where the G1 are simple compact Lie groups, T ~ (S1 )k is a torus, and Z is a 
discrete subgroup of the center. In particular, its Lie algebra is the direct sum 
of a semisimple compact Lie algebra and an abelian Lie algebra. This provides 
another reason why the classification of irreducible representations in the real 
compact case and the semisimple complex case are essentially the same. 

Representations of Real Lie Algebras 

Finally, we should say a word here about the irreducible representations 
(always here in complex vector spaces!) of simple real Lie algebras. In some 
cases these are easily described in terms of the complex case: for example, the 
irreducible representations of !OUm or slm!R are the same as those for !illmC, i.e., 
they are the restrictions of the irreducible representations r,, = §A. cm corre
sponding to partitions or Young diagrams A.. This is the situation in general 
whenever the complexification 9 = 90 ® C of the real Lie algebra 90 is still 
simple: the representations of 90 on complex vector spaces are exactly the 
representations of 9. The situation is slightly different when we have a simple 
real Lie algebra whose complexification is not simple: for example, the irreduc
ible representations of slmC, regarded as a real Lie algebra, are of the form 
r,, ® fµ, where fµ is the conjugate representation of rw The situation in 
general is expressed in the following 

Exercise 26.14. Show that if 90 is a simple real Lie algebra whose complexifica
tion g is simple, its irreducible representations are the restrictions of(uniquely 
determined) irreducible representations of g. If g0 is the underlying real algebra 
of a simple complex Lie algebra, show that the irreducible representations of 
no are of the form V ® W, where V and Ware (uniquely determined) irreduc
ible representations of the complex Lie algebra. 



·- -

440 26. Real Lie Algebras and Lie Groups 

§26.2. Second Proof of Weyl's Character Formula 

The title of this section is perhaps inaccurate: what we will give here is actually 
a sketch of the first proof of the Weyl character formula. Weyl, in his original 
proof, used what he called the "unitarian trick," which is to say he introduces 
the compact form of a given semisimple Lie algebra and uses integration on 
~he corresponding compact group G. (This trick was already described in §9.3, 
m the context of proving complete reducibility of representations of a semi
simple algebra.) 

Indeed, the main reason for including this section (which is, after all 
logically unnecessary) is to acquaint the reader with the "classical" treatmen; 
of Lie groups via their compact forms. This treatment follows very much the 
same lines as the representation theory of finite groups. To begin with, we 
replace the average (1/IGl)L9 .,Gf(g) by the integral JGf(g) dµ, the volume 
element dµ chosen to be translation invariant and such that JG dµ = 1. If 
p: G---+ Aut(V) is a finite-dimensional representation, with character 

Xv(g) = Trace(p(g)), 

then JGp(g) dµ E Hom(V, V) is idempotent, and it is the projection onto the 
invariant subspace VG. So JG Xv(g) dµ = dim(VG). Applied to Hom( V, W) as 
before, since XHom(V,Wl = XvXw. it follows that 

L Xv Xw dµ = dim(HomGCV. W)). 

So if V and W are irreducible, 

I {l ifV~ W 
G XvXw dµ = 0 otherwise. 

Up to now, everything is completely analogous to the case of finite groups, 
and is proved in exactly the same way. The last general fact, analogous to the 
basic Proposition 2.30, is harder in the compact case: 

Peter-Weyl Theorem. The characters of irreducible representations span a 
dense subspace of the space of continuous class functions. 

It is, moreover, the case that the coordinate functions of the irreducible matrix 
representations span a dense subspace of all continuous (or L2) functions on 
G. For the proof of these statements we refer to [Ad] or [B-tD]. Given the 
fundamental role that (2.30) played in the analysis of representations of finite 
groups, it is not surprising that the Peter-Weyl theorem is the cornerstone of 
most treatments of compact groups, even though it has played no role so far 
in this book. 

We now proceed to indicate how the original proof of the Weyl character 
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formula went in this setting. In this section, G will denote a fixed compact 
group, whose Lie algebra g is a real form of the semisimple complex Lie 
algebra 9c = g ® 11 C. We have seen that 

g = g © EB I.,, 
«eR+ 

compatible with the usual decomposition 9c = gc © EB(g., © g_,,) when com
plexified. The real Cartan algebra g acts by rotations on the planes I.,. 

Now let T =exp@ c G. As before we have chosen g so that it contains 
the lattice 2nir which is the kernel of the exponential map from gc to the 
simply-connected form of 9c. so T ~ (S1 )"is a compact torus. 

In this compact case we can realize the Weyl group on the group level again: 

Claim 26.15. N(T)/T ~ m. 

PROOF. For each pair of roots°'• -tx, we have a subalgebra s., ~ sl2C c 9c. 
with a corresponding su2 cg. Exponentiating gives a subgroup SU(2) c G. 

The element ( _ ~ ~)acts by Ad, taking H to -H, X to Y, and Y to X. It 

is in N(T), and, with Bas in the preceding section, ( _ ~ ~)=exp GniB). 
Then exp G niB) E g acts by reflection in the hyperplane °'.L c g. O 

Note that m acting on g takes the lattice 2nir to itself, so m acts on 
T = g/2nir by conjugation. 

Theorem 26.16. Every element of G is conjugate to an element of T. A general 
element is conjugate to JWI such elements of T. 

Sketch of a proof Note that G acts by left multiplication on the left coset space 
X = G/T. For any z E G, consider the map fz: X---+ X which takes yT to zyT. 
The claim is that fz must have a fixed point, i.e., there is a y such that 
y-1 zy E T. Since all f. are homotopic, and Xis compact, the Lefschetz number 
off. is the topological Euler characteristic of X. The first statement follows 
from the claim that this Euler characteristic is not zero. This is a good exercise 
for the classical groups; see [Bor2] for a general proof. For another proof see 
Remark 26.20 below. 

For the second assertion, check first that any element that commutes with 
every element of T is in T. Take an "irrational" element x in T so that its 
multiples are dense in T. Then for any ye G, yxy-1 e T <::> yTy-1 = T, and 
yxy- 1 = x<::> ye T. This gives precisely IWI conjugates of x that are in T. 

Corollary 26.17. The class functions on Gare the W-invariant functions on T. 
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Suppose G is a real form of the complex semisimple group Ge, i.e., G is a 
real analytic closed subgroup of Ge, and the Lie algebra of Ge is ge. The 
characters on Ge can be written L n,,e2

";", the sum overµ in the weight lattice 
A; they are invariant under the Weyl group. From what we have seen, they 
can be identified with W-invariant functions on the torus T. Let us work this 
out for the classical groups: 

Case (A,.): G = SU(n + 1). The Lie algebra sun+l consists of skew-Hermitian 
matrices, 

g = sun+l n sln+i IR= {imaginary diagonal matrices of trace O}, 

and T = { diag(e2
""\ ••• , e2"ill"+' ): L .91 = O}. In this c~se, the ~eyl gr?up W 

is the symmetric group 6n+l• represented by permutation matrices (with on7 
entry ± 1 on each row and column, other entries 0) modulo T. Let zi: T-+ ~ 
correspond to the ith diagonal entry e2

"
181

• So characters on Tare symmetric 
polynomials in z1, ... , zn+i modulo the relation z1 • ... ·zn+l = 1. Therefore, 
characters on SU (n + 1) are symmetric polynomials in z 1 • ... , zn+1 · 

Case (B,.): G = S0(2n + 1). g consists of matrices with n 2 x 2 blocks of the 
form 

along the diagonal, and one 1 in the lower right co~ner. Ag_ain we see that 
T = (S1 )". This time N(T) will have block permutations to mterchange the 

blocks, and also matrices with some blocks(~ ~)in the squares along the 

diagonal, with the other blocks 2 x 2 identity matrices, with a ± 1 _in the 
corner to make the determinant positive; these take .91 to - .9, for each 1 where 

a block is(~ ~).This again realizes the Weyl group as a semidirect product 

of 6 and ("11./2)". With z1 identified with e2" 181 again, we see that the characters 
are the symmetric polynomials in the variables z1 + zj1, i.e., in cos(2n:.91 ), · · · • 
cos(2n:.9"). 

Case (D,.): G = S0(2n). g is as in the preceding case, but with no lower cor~e~f 
Since we have no corner to put a -1 in, there can be only an even numbe 

(0 1) · ·d· t oduct blocks of the form 
1 0 

, reflecting the fact that W 1s a semi tree. pr. 

of ("11./2)"-1 and 6". This time the invariants are symmetric polynomials m the 
zi + zj1

, and one additional I11(z1 - zj1 
). 

Case (C,.): G = Sp(2n). g consists of i~aginary diagonal ma~rices, T consi:s 
of diagonal matrices with entries e2

"' 81• The Weyl group m generated Y 
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permutation matrices and diagonal matrices with entries which are 1 's and 
quaternionic j's: W is a semidirect product of ("11./2)" and 6". The invariants 
are symmetric polynomials in the z1 + zj1• 

The key to Weyl's analysis is to calculate the integral of a class function f 
on Gas a suitable integral over the torus T. For this, consider the map 

n:: G/T x T-+ G, n(xT, y) = xyx-1. 

By what we said earlier, n: is a generically finite-sheeted covering, with IWI 
sheets. It follows that 

r f dµ = _1 r n*(f)n*dµ. 
Jo IWI Jo/TxT 

Now n*(f)(xT, y) = f(y) since f is a class function. To calculate n*dµ, con
sider the induced map on tangent spaces 

n:• = dn: g/g x g -+ g. 
At the point (x0 T, y0 ) E G/T x T, 

(xoe'xT, Yoe'') I-+ Xoe'xyoe''e-txxi)1. 

We want to calculate 

d 
( tx ty -tx -1)1 ( -1)-1 dt Xoe Yoe e Xo r=o XoYoXo , 

which is 

Xo(XYo + YoY- YoX)Xo
1
(XoYo 1Xo1) = Xo(X + YoYYo1 - YoXYiJ 1)xi)1. 

Now YoYYo
1 

= y since Yo E T and y E g. To calculate the determinant of n: . h • 
we ~an ignore t e volume-preserving transformation x

0
( )x01• If we identify 

!l with g/g x g, the matrix becomes 

(
I - Ad(y0 ) 0) 

0 I . 

So the determinant of n. is det(/ - Ad(y0 )). Now (g/g)c = EB g,., and Ad(y
0

) 
acts as e2

"
1'"<10> on g,.. Hence 

det(n:.) = n (1 - e2" 1'"), 
«ER 

(26.18) 

as a function on Talone, independent of the factor G/T. This gives Weyl's 
integration formula: 

r j dµo = _1_ f j(y) n (1 - e2"i«(y)) dµT· 
Jo IWI T «ER 

(26.19) 

~emark 26.20. The same argument gives another proof of the theorem that G 
is covered by conjugates of T. This amounts to the assertion that the map 
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n: G/T x T-+ G of compact manifolds is surjective. By what we saw above, 
for a generic point y0 E T there are exactly IWI points in n-1(Yo), and at each 
of these the Jacobian determinant is the same (nonzero) number. It follows 
that the topological degree of the map n is IWI, so the map must be surjective. 

Now (1 - e2"ia)(1 - e-2,,ia) = (e"ia - e-"ia)(e"'a - e "ia), so if we set 

£\ = n (e"ia - e-"la), 
«ER+ 

then det(n ) =£\A. As we saw in Lemma 24.3, £\ = AP, where pis half the sum 
of the posi~ive roots and, for any weight µ, 

Aµ = L ( - l)w e2"1W<µ>_ 
We!ll 

Now we can complete the second proof of Weyl'~ character f?rmula: the 
character of the representation with highest weight A. is A Hp/AP. Smc~ we saw 
in §24.1 that A /A has highest weight A. and (see Corollary 24.6) its value 

;.+p P • l f J - 1 at the identity is positive, it suffices to show that the mtegra o G XX = , 
where x =A.Hp/AP. By Weyl's integration formula, 

t xx= l~I t xxl\A = l~I t A).+pA).+p 

= _1_ J L (- l)w e2"1W(HpJ. L (- l)w e-2,,1w(HpJ = 1, 
IWI T We® We® 

which concludes the proof. 

§26.3. Real, Complex, and Quaternionic 
Representations 

The final topic we want to take up is the classification of irreducible complex 
representations ofsemisimple Lie groups or algebras into tho~e.ofreal, ~uatern
ionic, or complex type. To define our terms, given a real semlSlmple Lie group 
G0 or its Lie algebra 90 and a representation of G0 or 90 on a com~l~x vector 
space V we say that the representation Vis real, or of real type, if it ~ome~ 
from a representation of G0 or 90 on a real vector space V0 by ~xtensi?n o 
scalars (V = V0 ®n C); this is equivalent to saying that it has a ~O?Jugate lmear 
endomorphism whose square is the identity. It is quaternionic_ if it com~s.from 
a quaternionic representation by restriction of sc.alar~, or equ~vale~tly i~ it has 
a conjugate linear endomorphism whose square is mmus the identity. Finally, 
we say that the representation is complex if it is neither of these. (Compare 
with Theorem 3.37 for finite groups.) . . 

1 Having completely classified the irreducible representations of the classic~ 
complex Lie algebras, and having described all the real forms of these Lte 
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algebras, we have a clear-cut problem: to detemine the type of the restriction 
of each representation to each real form. Rather than try to answer this in 
every case, however, we will instead mention some of the ideas that allow us 
to answer this question, and then focus on the cases of the split forms (where 
the answer is easy) and the compact forms (where the answer is more interest
ing, and where we have more tools to play with). We assume the complexifica
tion 9 of g0 is simple, so irreducible representations of 9

0 
are restrictions of 

unique irreducible representations of 9 (cf. (26.14)); in particular, we have the 
classification of irreducible representations by dominant weights. 

To begin with, the tensor products of two real, or two quaternionic, or of 
a pair of complex conjugate representations is always real; and exterior powers 
of real and quaternionic representations are equally easy to analyze, as for 
finite groups (see Exercise 3.43). Such tensor and exterior powers may not be 
irreducible, but the following criterion can often be used to describe an 
irreducible component of highest weight that occurs inside them: 

Exercise 26.21 *. Suppose Wis a representation of a semisimple group G that 
is real or quaternionic, and suppose W has a highest weight A. that occurs 
with multiplicity 1. Show that the irreducible representations r .. with highest 
weight A. has the same type as W. 

We may apply this in particular to the tensor product r;. ® rµ of the 
irreducible representations of 9 with highest weights A. andµ; since the irreduc
ible representation rHµ with highest weight A. +µappears once in this tensor 
product, we deduce 

Exercise 26.22*. (i) If r .. and rµ are both real or both quaternionic, then rH 
. µ 
1s real. (ii) If r;. is real and rµ is quaternionic, then rHµ is quaternionic. (iii) If 
r .. and rµ are complex and conjugate, then r).+µ is real. 

The last two exercises almost completely answer the question of the repre
sentations of the split forms of the classical groups: we have 

Proposition 26.23. Every irreducible representation of the split forms sln+
1 

IR, 
son+1,nlR, SP 2n1R, and son,nlR of the classical Lie algebras is real. 

PROOF. In each of these cases, the standard representation Vis real, from which 
it follows that the exterior powers NV are real, from which it follows that the 
symmetric powers Sym0 k(NV) are real. Now, in the cases of sln+i IR and sp

2
n1R, 

we have seen that the highest weights wk of the representations NV fork = 
1, ... , n form a set offundamental weights: that is, every irreducible representa
tion r has highest weight I ak ·wk for some non-negative integers a

1
, ••• , an. 

It follows that r appears once in the tensor product 

Sym01 V © Sym02(N V) ® · · · ® Sym0 n(N V) 
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and so is real. (Alternatively, Weyl's construction produces real representa
tions when applied to real vector spaces.) 

The only difference in the orthogonal case is that some of the exterior 
powers NV of the standard representation must be replaced in this descrip
tion by the spin representation(s). That the spin representations are real 
follows from the construction in Lecture 20, cf. Exercise 20.23; the result in 
this case then follows as before. O 

The Compact Case 

We turn now to the compact forms of the classical Lie algebras. In this case, 
the theory behaves very much like that of finite groups, discussed in Lecture 
5. Specifically, any action of a compact group G0 on a complex vector space 
V preserves a nondegenerate Hermitian inner product (obtained, for example, 
by choosing one arbitrarily and averaging its translates under the action of G0 ). 

It follows that the dual of Vis isomorphic to its conjugate, so that V will be 
either real or quaternionic exactly when it is isomorphic to its dual V*. (In 
terms of characters, this says that the character Char(V) is invariant under 
the automorphism of Z[A] which takes e(µ) to e( -µ);for groups, this says 
the character is real.) More precisely, an irreducible representation of a 
compact group/Lie algebra will be real (resp. quaternionic) if and only if it has 
an invariant nondegenerate symmetric (resp. skew-symmetric) bilinear form. 
In other words, the classification of an irreducible Vis determined by whether 

V® V= Sym2V$NV 

contains the trivial representation, and, if so, in which factor. So determining 
which type a representation belongs to is a very special case of the general 
plethysm problem of decomposing such representations. 

With this said, we consider in turn the algebras sun, unlHI, and som!R. 
Let r,, be the irreducible representation of sine with highest weight A. = 

L a1 • w1, where w1 = L 1 + · · · + L 1, i = 1, ... , n - 1 are the fundamental weights 
of sine. The dual of r will have highest weight ~:an-i · w1, so that r will be 
real or quaternionic if and only if a1 = an-I for all i. We now distinguish three 
cases: 

(i) If n is odd, then the sublattice of weights A. = L a1 · w1 with a1 = an-I for 
all i is freely generated by the sums w1 + wn-i for i = 1, ... , (n - 1)/2. Now, w, 
is the highest weight of the exterior power NV, so that the irreducible repre
sentation with highest weight w1 + wn-i will appear once in the tensor product 

NV® N-1v =(NV)® (NV)*, 

which by Exercise 26.21 above is real. It follows that for any weight 
A. = Lal. W1 with al = an-I for all i, the irreducible representation r,, is real. 

(iia) If n = 2k is even, then the sublattice of weights A. = L a1 • w1 with 
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a; = an-I for all i is freely generated by the sums w1 + wn-I for i = 1, ... , k - 1, 
together with the weight wk. As before, the irreducible representations with 
highest weight w1 + wn-i are all real. Moreover, in case n is divisible by 4 the 
representation NV is real as well, since NV admits a symmetric bilinear form 

NV®NV-+NkV= e 

given by wedge product. It follows then as before that for any weight A. = 
La,. w, with a, = an-I for all i, the irreducible representation r,, is real. 

(iib) In case n is congruent to 2 mod 4, the analysis is similar to the last case 
except that wedge product gives a skew-symmetric bilinear pairing on NV. 
The representation NV is thus quaternionic, and it follows that for any weight 
A. = L a1 · w1 with a1 = an-I for all i, the irreducible representation r,, is real if 
ak is even, quaternionic if ak is odd. In sum, then, we have 

Proposition 26.24. For any weight A. = L a1 • w1 of sun, the irreducible repre
sentation r,, with highest weight A. is: complex if a1 =I an-I for any i; real if 
a; =an-I for all i and n is odd, or n = 4k, or n = 4k + 2 and a2k+ 1 is even; and 
quaternionic if a1 = an-I for all i and n = 4k + 2 and a2k+t is odd. 

Next, we consider the case of the compact form unlHI of sp2ne. To begin 
with, we note that since the restriction to un IHI of the standard representation 
of sp2ne on V ~ e2n is quaternionic, the exterior power NV is real fork even 
and quaternionic fork odd. Since the highest weights wk of NV fork = 1, ... , n 
form a set of fundamental weights, this completely determines the type of the 
irreducible representations of unlHI: we have 

Proposition 26.25. For any weight A. = L a1 • w1 of un IHI, the irreducible repre
sentation r,, with highest weight A. is real if a1 is even for all odd i, and 
quaternionic if a1 is odd for any odd i. 

Next, we consider the odd orthogonal algebras. Part of this is easy: since 
the restriction to so2n+1 IR of the standard representation V of so2n+t e is real, 
so are all its exterior powers; and it follows that any representation of so2n+ 1 IR 
whose highest weight lies in the sublattice of index two generated by the 
highest weights of these exterior powers is real. It remains, then, to describe 
the type of the spin representation; the answer, whose verification we leave as 
Exercise 26.28 below, is that the spin representation r., of S02n+l e (that 
is, the irreducible representation whose highest weight is one-half the highest 
weight of NV) is real when n = 0 or 3 mod 4, and quaternionic if n = 1 or 
2 mod 4. This yields 

Proposition 26.26. Let w1 be the highest weight of the representation NV of 
S02n+1 c. For any weight A. =al W1 + ... + an-1 Wn-1 + anwn/2 of S02n+1 IR, the 
irreducible representation r,, with highest weight A. is real if an is even, or if n is 
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congruent to 0 or 3 mod 4; if an is odd and n = 1 or 2 mod 4, then r.i. is 
quaternionic. 

(Note that, in each of the last two cases, the fact that every representation 
is either real or quaternionic follows from the observation that the Weyl group 
action on the Cartan subalgebra ~ c g includes multiplication by -1.) 

Finally, we have the even orthogonal Lie algebras. As before, the exterior 
powers of the standard representation V are all real, but we now have two 
spin representations to deal with, with highest vectors (in the notation of 
Lecture 19) ex = (L 1 + · · · + Ln)/2 and /3 = (L1 + · · · + Ln-l - Ln)/2. The first 
question is whether these two are self-conjugate or conjugate to each other. In 
case n is even, as in the case of the symplectic and odd orthogonal algebras, 
the Weyl group action on the Cartan subalgebra contains multiplication by 
-1 (the Weyl group contains the automorphism of~· reversing the sign of 
any even number of the basis elements L 1), so that rm and r 11 will be isomorphic 
to their duals; if n is odd, on the other hand, we see that rm will have -/3 as a 
weight, so that rm and rll will be complex representations dual to each other. 
We consider these cases in turn. 

(i) Suppose first that n is odd, and say A. is any weight, written as 

A= alrol + ... + an-2Wn-2 + an-1/3 + anCX. 

If an-l i= an, the representation r.i. with highest weight A. will not be isomorphic 
to its dual, and so will be complex. On the other hand, rm+JI appears once in 
rm ® r 11 = End(rm), and so is real; thus, if an-l = an, the representation r.i. will 
be real. 

(ii) If, by contrast, n is even then all representations of so2n~ will be either 
real or quaternionic. The half-spin representations rm and r 11 are real if n = 0 
(mod 4), quaternionic if n = 2 (mod 4), a fact that we leave as Exercise 26.28. 
It follows that, with A. as above, r.i. will be real if either n is divisible by 4, or 
if an-1 + an is even; if n = 2 mod 4 and an-1 + an is odd, r). will be quaternionic. 
In sum, then, we have 

Proposition 26.27. The representation r.i. of so2n~ with highest weight A. == 
a 1w 1 + · · · + an_ 2wn-i + an-1/3 + ancx will be complex if n is odd and an-l # 
an; it will be quaternionic if n = 2 mod 4 and an-l + an is odd; and it will be 
real otherwise. 

Exercise 26.28*. Verify the statements made above about the types of the 
spin representation rm of the orthogonal Lie algebras, i.e., that the spin 
representation rm of so2n+l ~ is real when n = 0 or 3 (mod 4); and quater
nionic if n = 1 or 2 (mod 4), and that the half-spin representations of so2nlR 
are real if n = 0 (mod 4) and quaternionic if n = 2 (mod 4). Show, in fact, that 
the even Clifford algebras c:,v•n c Cm = C(O, m) are products of one or two 
copies of matrix algebras over ~. C, or 11-0, with ~ occurring for m = 0 or 
± 1mod8, C occurring form= ±2 mod 8, and 11-0 form= ±3 or 4 mod 8. 

1 
I 
I 

§26.3. Real, Complex, and Quaternionic Representations 449 

Exercise 26.29. Show that for a representation V of a compact group G, 

{ 

0 if Vis complex L Xv(g 2
) = 1 if Vis real 

- 1 if Vis quaternionic. 

Exercise 26 •. 30*. S~ow that for a representation V of a compact group, the 
number of 1rreduc1ble real components it contains, minus the number of 
quate~ioni~ re~resentations, is the number of times the trivial representation 
occurs mt/I V m the representation ring, where tf1 2 is the Adams operation 
(cf. Exercise 23.39). 



APPENDICES 

These appendices contain proofs of some of the general Lie algebra facts that 
were postponed during the course, as well as some results from algebra and 
invariant theory which were used particularly in the "Weyl construction
Schur functor" descriptions of representations. 

The first appendix is a fairly serious excursion in polynomial algebra. It 
proves some basic facts about symmetric functions, especially the Schur 
polynomials, which occur as characters of representations of GL" or SL", and 
gives determinantal formulas for them in terms of other basic symmetric 
polynomials. The last section of Appendix A includes some new identities 
among symmetric polynomials, which, when the variables are specialized, 
express characters of representations of Sp2" and SOm as determinants in the 
characters of basic representations. 

Appendix B gives a short summary of some basic multilinear facts about 
exterior and symmetric powers. The first two sections can be used as a 
reference for the conventions and notations we have followed; the third 
contains a general discussion of constructions such as contractions, many 
special cases of which were discussed in the main text. 

The next three appendices conclude our discussion of the theory of Lie 
algebras, which began in Lectures 9, 14, and 21. Proofs are given, by standard 
methods, of the promised general results on semisimplicity, the theorem on 
conjugacy of Cartan subalgebras, facts about the Weyl group, Ado's theorem 
that every Lie algebra has a faithful representation, and Levi's theorem that 
splits the map from a Lie algebra to its semisimple quotient. 

The last appendix develops just enough classical invariant theory to find 
the polynomial invariants for SL"C, Sp2"C, and SO"C. This was the key to 
our proof that Weyl's construction gives the irreducible representations of the 
symplectic and orthogonal groups. 



APPENDIX A 

On Symmetric Functions 

§A.l: Basic symmetric polynomials and relations among them 
§A.2: Proofs of the determinantal identities 
§A.3: Other determinantal identities 

§A.1. Basic Symmetric Polynomials and 
Relations among Them 

The vector space of homogeneous symmetric polynomials of degree d in k 
variables x 1, ••• , xk has several important bases, usually indexed by the 
partitions A. = ( A. 1 ~ A.2 ~ • • · ~ A.k ~ 0) of d into at most k parts, or by Young 
diagrams with at most k rows (see §4.1). We list four of these bases, which 
are all valid for polynomials with integer coefficients, or coefficients in any 
commutative ring. 

First we have the monomials in the complete symmetric polynomials: 

(A.l) 

where H1 is the jth complete symmetric polynomial, i.e., the sum of all distinct 
monomials of degree j; equivalently, 

k 1 00 n--= I H1ti. 
i=l 1 - X1t j=O 

For example, with three variables, 

H(l.1) = (x1 + X2 + X3)
2

, 

H,2,0> = x~ + x~ + x~ + x 1x2 + x 1 x 3 + x 2x 3. 
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Next are the monomial symmetric polynomials: 

M.1. = L,X«, (A.2) 

the sum over all distinct permutations oc = (oc1, ... , ocd of (A.1, ... , At); here 

x« = x~· · ... · x;k. For example, 
M(l,1) = X1X2 + X1X3 + X2X3, 

M 2 2 2 
(2,0) = X1 + X2 + X3. 

The third are the onomials in the elementary symmetric functions. Unlike 
the first two, these are rametrized by partitions µ of d in integers no larger 
than k, i.e., k ~ µ1 ~ · · · ~ ~ 0. These are exactly the partitions that are 
conjugate to a partition of d into t most k parts. (The conjugate to a partition 
A. is the partition whose Young diagram is obtained from that of A. by inter
changing rows and columns. We denote the conjugate of A. by A.', although the 
notation 1 is also common.) For suchµ set 

E,, = E,,, · E,,2 • ••• • E,,,, 

where E
1 

is the jth elementary symmetric polynomial, i.e., 

For example, 
E(l,1) = (X1 + X2 + X3)

2
, 

E(2,0) = X1X2 + X1X3 + X2X3. 

(A.3) 

The fourth are the Schur polynomials, which may be the most important, 
although they are less often met in modern algebra courses: 

lx.1.,H-il lx.1.,H-ll 
S 

- 1 - 1 (A4) 
.. - 1xr11 - A ' · 

where A= CT
1
<

1
(x

1 
- x

1
) is the discriminant, and la1,1l denotes the deter· 

minant of a k x k matrix. For example, 

S(l,1) = X1X2 + X1X3 + X2X3, 

S(2,0) =xi+ X~ + X~ + X1X2 + X1X3 + X2X3° 

The first task of this appendix is to describe some relations among these 
symmetric pol~omials. For example, one sees quickly that 

S< 1•1i = E<2.oi = H~ - H 2 , 

S<2.oi = H<2.oi = Ei - E2, 

So.oi' Su.oi = S<1.1i + S<2.oi· 

These are special cases of three important formulas involving Schur poly· 
nomials, which we state next. The first two are known as determinantal 
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formulas. The first is also known as the Jacobi- Trudy 1·dent 't F h fi . 1 Y· rom geometry 
t e irst two are somet~mes c~lled Giambelli's formulas, and the third is Pieri'; 
formula. The proofs will be given in the next section. 

H,_, 

s,_ = IH;.,+1-11 = H,_2-1 

H;.,+1 ···H;.,H-1 

H,_, ... 

H;.k-t+1 · · · H,_k 

(A.5) 

Note that if A. - .. · - A. - O th d t · . p+i - - t - , e e ermmant on the right is the same as 
the determmant of the upper left p x p corner. The second is 

E,,, +1 · · · E,,, +1-1 

E,,, ... 

E,,,-1+1 ••• E 
"' 

(A.6) 

whereµ = (µ1, ... , µ1) is the conjugate partition to A. 
. bT~e third "Pieri" fo~mula tells how to multiply a .Schur polynomial s by 
a as1c Schur polynomial S = H 1. '-<ml m • 

s,_s(m) =Ls.. (A.7) 

~~~~um over all v whose Young diagram can be obtained from that of;. by 
d mg a. total of m boxes to the rows, but with no two boxes in the same 
column, 1.e., those v = (v1, ... , vk) with 

V1 ~ A1 ~ V2 ~ A2 ~ ' .. > V > l > Q - k - "'k - ' 

and L vi = L A.1 + m = d + m. For example, the identity 

s<2.1>'s<2> = s<4.1> + s<J.2> + s<3.1,1i + s<2.2.1i 

can be seen from the pictures 

Sc~ne can use. the Pieri and ~eterminantal formulas to multiply any two 
Pie~r polynomial~, b.ut there is a more direct formula, which generalizes 
r hs formul~. This Littlewood-Richardson rule gives a combinatorial formula 
ior t e coefficients N in th · f of S h l . ,_,,, e expansion o a product as a linear combination 

c ur po ynom1als: 

1 When k is fixed, we often omit zero t h .. (m, o, ... , O). 8 a t e end of partitions, so (m) denotes the partition 
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(A.8) 

Here A. is a partition of d, µ a partition of m, and the sum is over all partitions 
v of d + m (each with at most k parts). The Littlewood-Richardson rule says 
that N,.,,. is the number of ways the Young diagram for A. can be expanded 
to the Young diagram for v by a strict µ-expansion. Ifµ= (µi, ... , µk), a 
µ-expansion of a Young diagram is obtained by first adding µ i boxes, accord
ing to the above description in Pieri's formula, and putting the integer 1 in 
each of these µi boxes; then adding similarly µ 2 boxes with a 2, continuing 
until finally µk boxes are added with the integer k. The expansion is called 
strict if, when the integers in the boxes are listed from right to left, starting 
with the top row and working down, and one looks at the first t entries in this 
list (for any t between 1 and µi + · · · + µk), each integer p between 1 and k - 1 
occurs at least as many times as the next integer p + 1. 

For example, the equation 

s<2.l)·S<2.i> = s(4,2) + s<4.i,i> + s(3,3) + 2s<3.2,i> 

+ s<3.i,i.i> + s<2.2.2> + s<2.2.i.i> 

can be seen by listing the strict (2, !)-expansions of the Young diagram BJ: 

ffiPill ~ 8Iffi ~ 

~ r §B f 
A proof of the Littlewood-Richardson rule can be found in [Mac, §1.9]; for 
the other results of this appendix we can get by without using it. 

Formula (A.7), applied inductively, yields 

(A.9) 

where K,,,, is the number of ways one can fill the boxes of the Young diagram 
of µ with A.i 1 's, .A.2 2's, up to A.k k's, in such a way that the entries in each row 
are nondecreasing, and those in each column are strictly increasing. Such a 
tableau iS) called a semistandard tableau on µ of type A.. These integers K,,._ are 
all non-negative, with 

Ku= 1 and K,,,_ = 0 if A.>µ, (A.10) 

i.e., if the first nonvanishing .A.1 - µ1 is positive; in addition, K,,,, = 0 if A. has 
more nonzero terms thanµ. For example, if k = 3, (K,,,,) is given by the matrix 
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0:::0 

tp 

§ 

OJ] EP § 
I I I 

0 I 2 

0 0 I 

The integers K,,._ are called Kostka numbers. 

Exercise A.11. Show that K,,._ is nonzero if and only if 

.A.i + .A.2 + · · · + A., :::;; µi + µ2 + · · · + µ, 

for all i ~ 1. 
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When A. = (1, 1, .. ., 1), K,,0 ,. .. , i> is the number of standard tableaux on the 
diagram of µ, where a standard tableau is a numbering of the d boxes of a 
Young diagram by the integers 1 through d, increasing in both rows and 
columns. 

We need one more formula involving Schur polynomials, which comes 
from an identity of Cauchy. Let Yi, ... , Yt be another set of indeterminates, 
and write P(x) and P(y) for the same polynomial P expressed in terms of 
variables Xi, .•. , xk and Yi, ... , Jt, respectively. The formula we need is 

det I 1 I = A(x)A(y) 
1 - X;YJ n (1 - X1Y1)' 

i,j 

(A.12) 

The proof is by induction on k. To compute the determinant, first subtract 
the first row from each of the other rows, noting that 

1 x, - Xi YJ 

1 - X1Y1 1- XiYJ 1- XiY1. l - X;YJ 

and factor out common factors. Then subtract the first column from each of 
the other columns, this time using the equation 

Yi _ Y1 - Yi . 
1 - x1yi - 1 - x

1
yi -1---x-,y-

1 

to factor out common factors. One is left with a matrix whose first row is 
(I 0 ... 0), and whose lower right square has the original entries. The formula 
follows by induction (cf. [Wel, p. 202]). O 

Another form of Cauchy's identity is 
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1 = L S;.(x)S;.(y), 
fl (1 - X;Yi) ;. 

(A.13) 

i,j 

. . . h t most k terms. To prove this, expand the 
the sum over all parttttons A.. wit a -1 - 1 + ·Y· + x2l + .... One sees 
determinant whose i, j entry is (lffi-: x1{i)f ,-;-y1,. ~'ik is the determinant Ix]'!. 
thatforany11> ... >1kthecoe .icien o Yi 2 ... k 

By symmetry of the x and y vanables we have 

det\ 
1 

\ = L \x]•\ · \y]•\. 
1 - X1YJ I 

Combining (A.12) with (A.4) gives (A.13). 

(A.14) 

D 

Expansion of the left-hand side of (A.13) gives 

1 =fl ( f Hm(x)yj) = ~ H;.(x)M;.(y). n (1 - X;Y) i m:O 

(A.15) 

i,j . 

11 the M form a basis for the symmetnc 
Since the polynomials H .i. as w~ . as f " ( ) on the space of homo-

. define a bihnear orm , . . h 
polynomials, one can . f d d in k variables, by requmng t at 
geneous symmetric polynomials o egree (A.16) 

(H;., M,,) = c;.i.,µ• 

. 1 ·r A. = µ and 0 otherwise. The basic fact here is that the Schur 

;~~~o~i~l~sfo:m an orthonormal basis for this pairing: (A.17) 

(S;., S,,) = c;.i.,w . 
. . · · ( ) is symmetric. Equatt~n 

In particular, this imphes that ~he pair;~g e~uations as follows. Wnte 

(A.17) is easily deduced from t e. prece i . a~d b . Then 
~ H - ~ b M for some mteger matnces a;.y y.< 

S;. = L...a;.y Y - £... y.< Y' (A.18) 
(S;., s,,> = L a;.yby,,· 

y 

In order that 
L S;.(x)S;.(Y) = L a;.yHy(x)bp;.Mp(y) 

). ).,y,p 

l t 
~ H (x)M (y) which it must by (A.13) and (A.15), we must have 

be equa o L..,,y y Y ' 

L. bp;.a;.y = c;p,y· 

I ~ - c; which by (A.18) implies 
This is equivalent to the equat10n LY a;.ybyµ - ;.,µ• 

(A.17). . . '" l (A 9) is equivalent to the equation 
Because of this duahty, iormu a . (A.19) 

S = L_K,,;.M;.. 
µ ). 
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This gives another formula for these Kostka numbers: K,,;. is the coefficient 
of x). ins,,, where x). = xt• ..... x:k. 

The identities (A.9) and (A.19) for the basic symmetric polynomials allow 
us to relate the coefficients of x.i. in any symmetric polynomial P with the 
coefficients expanding Pas a linear combination of the Schur polynomials. If 
p is any homogeneous symmetric polynomial of degree d in k variables, and 
.A. is any partition of d into at most k parts, define numbers I/! ,i.(P) and w ;.(P) by 

1/1;.(P) = [P];., 

where [P];. denotes the coefficient of X;. = xt• · ... · xfk in P, and 

W;.(P) = [L\. P],, 1 = (A.1 + k - 1, A.2 + k - 2, .. " A.k); 

(A.20) 

(A.21) 

herei\ = fl1<1(x1 - x1). We want tocomparethesetwocollections of numbers, 
as A. varies over the partitions. 

The first numbers 1/1;.(P) are the coefficients in the expression 

P= Ll/!;.(P)M;. (A.22) 

for Pas a linear combination of the monomial symmetric polynomials M;.. 
The integers w ;.(P) have a similar interpretation in terms of Schur polynomials: 

p = LW;.(P)S;.. (A.23) 

Note from the definition that the coefficient of X 1 in L\ · S;. is 1, and that no 
other monomial with strictly decreasing exponents appears in L\ · S;.; from this, 
formula (A.23) is evident. In this terminology we may rewrite (A.19) and 
(A.9) as 

K,,;. = 1/1;.(S,,) = [S,,];. =coefficient of X;. ins,, (A.24) 

and 

(A.25) 

Lemma A.26. For any symmetric polynomial P of degreed ink variables, 

1/1;.(P) = L K,,;. ·w,,(P). 
µ 

PROOF. We have 

L 1/1;.(P)M;. = P = L w,,(P)S,, = L w,,(P)K,,;.M;. 
). µ ).,µ 

= ~ ( ~ K,,;.w,,(P)) M;., 

and the result follows, since the M;. are independent. 0 

We want to apply the preceding discussion when the polynomial Pis a 
product of sums of powers of the variables. Let ~ = x{ + · · · + xi, and for 
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i = (i 1 , ••• , i4 ), ad-tuple of non-negative integers with L !Xi~ = d, set 

p<ll =Pf•. p42 ..... Pjd. 

These Newton or power sum polynomials form a basis for the symmetric 
functions with rational coefficients, but not with integer coefficients. Let 

W;.(i) = W;.(P11>). 

Equivalently, 

(A.27) 

For the proof of Frobenius's formula in Lecture 4 we need a formal lemma 
about these coefficients w;.(i): 

Lemma A.28. For partitions A. and µ of d, 

1 {1 ifA.=µ 
~ 11•i

1 
! · ... · d14i

4
! w;.(i)wµ(i) = 0 otherwise. 

PROOF. We will use Cauchy's formula (A.13). Note that 

log(n (1 - x,y1r 1
) = f ~lJ(x)lJ(y), 

i,j J=l J 

so 

n (1 1 ) = n exp(~ Jj(x)Jj(y)) 
- X1Y1 j J 

- "' 1 p(l>(x) p(I)( ) 
- i..J t'•. ' . . did· ' y I 11 • .. · 14. 

Comparing with (A.13), the conclusion follows. D 

Exercise A.29•. Using the pairing ( , ) of (A.16), the coefficients w;.(i) = 
w;.(P11>) can be written w;.(i) = (S.., p<ll). 

(a) Show that the Newton polynomials are orthogonal for this pairing, and 

Equivalently, 

"" 

<p<l>,p<il) = 11•i1!212i2!· ... ·d14i4!. 

S;. = L z;i) w;.(i).P'll, 

where the sum is over all partitions i = (i 1, •.. , i4) with L: IXi~ = d, and 
z(i) = i 1 !1 11 ·i2 !212 -. • .-i4!d14• 

(b) Show that W;.(i) = Lv (S;., M.) '(H., P(I». 
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We should remark that we have chosen to write our formulas for a fixed 
number k of variables, since that often simplifies computations when k is small. 
It is more usual to require the number of variables to be large, at least as large 
as the numbers being partitioned-or in the limiting ring with an infinite 
number of variables, cf. Exercise A.32; the formulas for smaller k are then 
recovered by setting the variables x 1 = 0 for i > k. For example, if k ;;;:::: 2 we 
have S11> = S12> + S11 ,1» which reduces to S11> = S12> when k = 1. 

The next two exercises give formulas for the value of the Schur polynomials 
when the variables x 1 are all set equal to 1; these numbers are the dimensions 
of the corresponding representations. For a formula for S;.(l, ... , 1) involving 
hook lengths of the Young diagram of A., see Exercise 6.4. 

Exercise A.JO•. When x1 = x 1
-

1
, the numerators in (A.4) are van der Monde 

determinants, leading to 

(i) 
x;.,-;.;+J-t - 1 

S,_(1, x, x2, ... 'xk-1) = xk n -~J-~,--1-. 
i<j x -

Taking the limit as x-+ 1, one finds 

(ii) S (1 1) = n A., - A.j + j - i 
A ' ••• ' • • • 

i<j } - I 

By (A.5) and (A.6) we have also the following two formulas: 

(iii) 

(iv) 

1 
S,_(1, ... , 1) = lh.i.,+J-tl, where L: h1t1 = (l _ t)k' 

s,,(1 •...• 1) =I( k_ .)j. where (µ1 • ...• µ,)=A.'. 
µ, + 1-1 

Exercise A.Jt •.(a) Show that 

Sµ = L KµaX", 

the sum over all monomials X" = x~· · ... · x:k, where, for any k-tuple a of 
non-negative integers, Kµa is the number of ways to number the boxes of the 
Young diagram ofµ with a1 1 's, a2 2's, ... , ak k's, with nondecreasing rows 
and strictly increasing columns. In particular, the right-hand side is a sym
metric polynomial, a fact which is not obvious from the definition. 

(b) Deduce that Sµ(l, ... , 1) is the number of ways to number the boxes of 
the Young diagram ofµ with integers from 1 to k, with nondecreasing rows 
and strictly increasing columns (i.e., the number of semistandard tableaux). 

Exercise A.32•. The idea of considering symmetric polynomials in an arbi
trarily large number of variables can be formalized by working in the ring 
A = lim A(k), where A(k) denotes the ring of symmetric polynomials in k 

+-
variables. Then 
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A= Z[H1, ... Hk, ... ] = Z[E1, ... Ek, ... ] 

is a graded polynomial ring, with H1 and E1 of degree i. A ring homomorphism 
8: A---+ A can be defined by requiring 

for all i. 

(i) Show that 8 is an involution: 82 = 8. Equivalently, 

.9(H1) = E1• 

(ii) If A.' is the conjugate partition to A., show that 

8(S .. ) = s .... 
(iii) If~ = x{ + · · · + xi is the jth power sum, show that 

8(~) = ( - t)J-l ~-

(iv) Deduce the formula 

(v) Deduce a dual form of (A. 7): 

s ... s(l .... , 1) = s ... Em = L s,., 
the sum over all partitions n whose Young diagram can be obtained from 
that of A. by adding m boxes, with no two in any row. 

(vi) Show that 

- ~ 1 (I) 
Hm - L.. z(i)p ' 

where the sums are over all i = (i 1, ... , id) with L aia = d, and 
z(i) = i1!111 · i 2 !212 · ... · id!d1

d. Note that 

L (-1)1H1t1 = (L E1t1r 1. 

§A.2. Proofs of the Determinantal Identities 

To prove the Jacobi-Trudi identity (A.5), note the identities 

xf- E1xr1 + E2 xr1 - ... + (- l)"Ekxrk = 0, (A.33) 

for any 1 :s; j :s; k, p ~ k. And for any 0 :s; m < k and p ~ k, 

Hp-m - ElHp-m-1 + E2Hp-m-2 + ... + (- l)kEkHp-m-k = 0. (A.34) 

Both of these follow immediately from the defining power series for the E1 and 
H1. Since these two recursion relations are the same, there are universal 
polynomials A(p, q) in the variables E1, ... , Ek such that 
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xf = A(p, l)xr1 + A(p, 2)xf-2 + · · · + A(p, k), 
(A.35) 

Hp-m = A(p, l)Hk-m-1 + A(p, 2)Hk-m-2 + ... + A(p, k)H_m· 

For any integers A. 1, ... , A.k this leads to matrix identities 

(xf'+k-i)iJ = (A(A.1 + k - i, r))1, • (xf-'),1, 

(H.<,+J-i)ii = (A(A.1 + k - i, r))1r' (H1_,),1, 
(A.36) 

where ( )pq denotes the k x k matrix whose p, q entry is specified between the 
parentheses. The relations (A.34) 1 .lso imply: 

Lemma (A.37). The matrices (Hq-p) and ((- l)q-pEq-p) are lower-triangular 
matrices with 1 's along the diagonal, and are inverses of each other. 

The identities (A.36) therefore combine to give 

(xf'+k-1)11 = (H.<,+p-1)1p. ((- l)q-pEq-p)pq. (x1k-q)qJ (A.38) 

Taking determinants gives (A.5), since the determinant of the matrix in the 
middle is 1. 

Exercise A.3 ~·. Prove the identity 
k 

lxJ'I · n (1 - x1r1 
= L lxt'I, 

J=l 

the sum over all k-tuples (m1, ... , mk) of non-negative integers with m1 ~ 11 > 
m2 ~ · · · > mk ~ lk, and deduce Pieri's formula (A.7). 

To complete the proofs of the assertions in §A.1, we show that the two 
determinants appearing in the Giambelli formulas (A.5) and (A.6) are equal, 
i.e., if A. = (A. 1 , ... , A.k) andµ = (µ 1 , ... , µ1) are conjugate partitions, then 

(A.40) 

Here the H1 and E1 can be any elements (in a commutative ring) satisfying the 
identity (LH1t

1)·(L(-1)1E/) = 1, with H0 = E0 = 1 and H1=E1=0 for 
i < 0. To prove it, we need a combinatorial characterization of the conjugacy 
of partitions: 

Exercise A.41 *.For A.= (A. 1 , •.. , A.k) andµ= (µ 1 , ••• , µ1) conjugate partitions, 
show that the sets 

{A.1+n+l-i:l:s;i:s;k} and {n+j-µ1:1:s;j:s;l} 

form a disjoint union of the set { 1, ... , k + l}. 

We also need a basic matrix identity which relates minors of a matrix to 
minors of its inverse (or matrix of cofactors). If A = (aiJ) is an r x r matrix, 
and S = (s 1 , ••• , sk) and T = (t 1, ••• , tk) are two sequences of k distinct integers 



-·-··-----.. ·-------------------·' , _____ ,,_,_,, _____________ _ 
464 A. On Symmetric Functions 

from { 1, ... , r}, let As, T denote the corresp_onding minor: As. T is the deter
minant of the k x k matrix whose i, j entry is a.,,,,. 

Lemma A.42. Let A and B be r x r matrices whose product is a scalar matrix 
c ·I,. Let (S, S') and (T, T') be permutations of the sequence (1, ... , r), where S 
and T consists of k integers, S' and T' of r - k. Then 

c'-k ·As, T = e · det(A) · BT',S'• 

where e is the product of the signs of the two permutations. 

PROOF. By permuting the rows and columns of A, _multiplying on the left _and 
right by permutation matrices P and Q correspondmg to the two permutations 
of (1, ... , r), we may take the (S, T) minor to the upper left corner: 

Then 

(
A1 A2) 

PAQ = A3 A4 ' 

Q-1 BP-1 = (Bi B2), 
B3 B4 

Now taking determinants in the identity 

As,T = det Ai. 

(~: ~:)- (~ ::) = (~: cl~_J 
gives the equation det(PAQ) · det(B4 ) = det(A1) · c'-k. Since e is the product of 
the determinants of P and Q, the lemma follows. D 

PROOFOF(A.40). Apply the lemma to A= (Hq-p) and B = ((- lrPEq-p), with 
r = k + l, and 

Then 

Similarly, 

s = (A.1 + k, A.2 + k - 1, ... ' A.k + 1), 

S' = (k + 1 - µ 1 , k + 2 - µ 2 , ••• , k + l - µ,), 

T = (k, k - 1, ... , 1), 

T' = (k + 1, k + 2, ... , k + l). 

As,T = det(Ho.,+Hi-11-<H1-11) = IH.a.,+1-il· 

BT',s' =I(- lt1+1-1E,.,+1-1I = (-1)I<,.rl>(- l)I'IE,.,+1-1I 

= (- l)dlE,.,+1-11, 

with d = Lµ1 = LA.1. Since e = (- l)d, (A.40) follows. 0 
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§A.3. Other Determinantal Identities 

In this final section we prove some variations of these formulas which are 
useful for calculating characters of symplectic and orthogonal groups. We 
want to compare minors, not of H = (H1_1) and E = ((-1)1-1£ 1_1

), but of 
matrices H+ and E- constructed from them by the following procedures: 

For an r x r matrix H = (H1), and a fixed integer k between 1 and r, H+ 
denotes the r x r matrix obtained from H by folding H along the kth column, 
and adding each column to the right of the kth column to the column the 
same distance to the left. That is, 

H+. = {H,,1 + H1,2k-J ifj < k 
I,; ff if;" > k 1,1 -

(with the convention that Hp,q = 0 if p or q is not between 1 and r). The matrix 
E- is obtained by folding E along its kth row, and subtracting rows above 
this row from those below: 

E- _ {E1,1 - E2k-l,J ifi > k 
1
'
1 - E1,1 ifi :s; k. 

Lemma A.43. If H and E are lower-triangular matrices with 1 's along the 
diagonal, that are inverse to each other, then the same is true for H+ and E-. 

PROOF. This is a straightforward calculation: the i, j entry of the matrix H+ · E
is 

k-1 r 

L (H,,p + Hl,2k-p)Ep,J + H,,kEk,j + L H,,p(Ep,J - E2k-p,j) 
p=l p=k+l 

r k-1 r 

= L H,,pEp,j + L Hl,2k-pEp,j - L H,,qE2k-q,l· 
p=l p=l q=k+l 

The first sum is b1,1, and the others cancel term by term. 0 

Proposition A.44. Let A. = (A. 1, .•. , A.k) and µ = (µ 1, •.. , µ1) be conjugate parti
tions. Set 

E; = E1 for i :s; 1, and 

Then the determinant of the k x k matrix whose ith row is 

(H.a.,-1+1 H.a.,-1+2 + H.a.,-1 H.a.,-1+3 + H.a.,-1-1 · · · H.a.,-1+k + H.a.,-1-H2) 

is equal to the determinant of the 1 x 1 matrix whose ith row is 

' (E~,-1+1 E~,-1+2 + E~,-1 E~,-1+3 + E~,-1-1 . . . E~,-1+1 + E~,-1-1+2). 
Each of these determinants is equal to the determinant 

IEµ,-l+j - E,.,-1-11 
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and to the determinant 

IH'.t,-i+J - H:t,-i-11. 

where H;' = H1 for i ~ 1, and for i ~ 2 

II H {Hi H1 = H1 + 1-2 + H1-4 + · · · + t 
if i is odd 

if i is even. 

PROOF. With H = (H1_1) and E = ((- l)q-pEq-p) we can apply the basic lemma 
(A.42) to the new matrices A = H+ and B = E-, and the same permutations 
(S, S') and (T, T') used in the proof of (A.40). This time 

and 

Similarly, 

with 

As,T = det(Hi,+k+1-i,k-J+1), 

H+ _ {H;.,-1+1 + H;.,-1-1+2 
;.,+Ht-i,k-J+t - H 

;.,-i+l 

if j = 2, ... , k 
if j = l. 

Ei:+1,k+ J-µJ = ( - l)µJ+i- 1(EµJ+1+ 1 - EµJ+1-J). 

As before, Lemma A.42 implies that the determinant of the first displayed 
matrix of the proposition is equal to that of the third. Noting that 

one can do elementary column operations on the third matrix, subtracting 
the first column from the third, then the second by the fourth, etc., to see that 
the second and third determinants are equal. Since Hi= H;' - H;'_ 2, the same 
argument shows the equality of the first and fourth determinants. 0 

Note that in these four formulas, as in the determinantal formulas for Schur 
polynomials, if a partition has p nonzero terms, only the upper left p x P 
subdeterminant needs to be calculated. We denote by S<;.> the determinant of 
the proposition: 

S(;.) = IH;.,-1+1 H;.,-1+2 + H;.,-i . . . H;.,-i+k + H;.,-i-k+2I· (A.45) 

Dually, set H; = H1 - H1_ 2 and Ei' = Ei + Ei-2 + Ei-4 + · · · . 

Corollary A.46. The following determinants are equal: 

(i) 

(ii) 

IHA,-1+1 HA,-1+2 + HA,-1 

IEµ,-1+1 Eµ,-i+2 + Eµ,-1 

HA,-i+k + HA,-i-k+21• 

Eµ,-1+1 + Eµ,-1-1+21, 
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(iii) 

(iv) 

IE:,-1+1 - E:,-1-11• 

IH;.,-l+J - H;.,-1-11· 

Define S1;.1 to be the determinant of this corollary: 

467 

S1;.1 = IHA,-1+1 HA,-1+2 + HA,-1 . . . HA,-l+k + HA,-1-k+2I· (A.47) 

Exercise A.48*. Let A be the ring of symmetric polynomials, 9: A-+ A the 
involution of Exercise A.32. Show that 

9(Sa) = S1µ1 

when A. and µ are conjugate partitions. 

For applications to symplectic and orthogonal characters we need to 
specialize the variables x1, ... , xk. First (for the symplectic group SP2n) take 
k = 2n, let z 1, ... , zn be independent variables, and specialize 

-1 -1 X1 f--+Z1, ... , Xnf--+Zn, Xn+l f--+Zt , ... , X2nf--+Zn 

Set 

~ = H1(z1, ... ,Zn, zj""t, ... , z;;-t) 

in the field O(z 1, ... , zn) of rational functions. 

Proposition A.50. Given integers A. 1 ~ · • • ~ An ~ 0, we have 

lz;.,+n-1+1 - z-().,+n-1+1)1 
j I n-1+1 j (n 1+1)1 = 11;.I, 

zj - zj 

where 1;. denotes the n x n matrix whose ith row is 

(1;.,-1+1 1;.,-1+2 + 1;.,-1 · · · 1;.,-l+n + 1;.,-1-n+2)· 

(A.49) 

From Proposition A.44 we obtain three other formulas for the right-hand side, 
e.g., 

(A.51) 

where e1 = Ej(z 1, ... , zn, zj""1, ... , z;;-1 ), andµ is the conjugate partition to A.. 

Exercise A.52. Calculate the denominator of the left-hand side: 

I n-1+1 z-(n-1+1)1 _ A(J: :t: ) • r . . r 
Zj - J - u <, 1, . • . ' <,n .. 1 • . . ..n, 

;here el = ZJ + ZJ-l and (1 = ZJ - ZJ-l • 

PROOF OF PROPOSITION A.50. Set 

( 1(p) = zf - zjP, (A.53) 
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By the same argument that proved the Jacobi-Trudy formula (A.5) via (A.38), 
the proposition follows from the following lemma: 

Lemma A.54. For 1 ~ j ~ n and any integer I~ 0, 'JC/) is the product of the 
1 x n, n x n, and n x 1 matrices 

PROOF. From (A.37) we can calculate zj and zi-1
, and subtracting gives 

2n 
'j(/) = L Jl-2n+pSp, (A.55) 

p=l 

where sP = L;'.!op(-1)q-peq-ii(2n - q). Multiplying (A.33) by zi-p and sub
tracting we find 

'i(p) - ei '1(P - 1) + · · · + (- l)P-1eP'JC1) 

= (- l)P+1ep+1,J{l) + (- l)P+ 2ep+2,j(2) + · · · + e2n'Pn - p). (A.56) 

Note also that 

(- l)Pe = (-1)2n-pe p 2n-p• 

since L(- l)PeptP = n (1 - Z1t)(1 - z/1t) = n (1 - e;t + t2
). 

and (A.57) follows 

(A.57) 

From (A.56) 

(A.58) 

where rP = L~=p(- l)q-peq-p'j(n + 1 - q). Combining (A.55) and (A.58) con
cludes the proof. D 

Next (for the odd orthogonal groups 0 2n+d let k = 2n + 1, and specialize 
the variables x1 , .•• , x2n as above, and x2n+i 1--+ 1. We introduce variables z]l2 

and z1-
112

, square roots of the variables just considered, and we work in the 
field IQ(zf12, ... , z!i2). Set 

(A.59) 

where Hi is the jth complete symmetric polynomial in 2n + 1 variables. 

Proposition A.60. Given integers A 1 ~ · • · ~ An ~ 0, we have 

lz/•+n-i+l/2 - ZJ-(.l.,+n-1+1/2)1 
lz;-1+1;2 _ zj-(n-i+1/2)I = IK,d, 
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where K;., is then x n matrix whose ith row is 

(K;.,,-1+1 K;.,,-1+2 + K;.,,-1 . . . K;.,,-1+n + K;.,,-1-n+2>· 

Corollary A.46 gives three alternative expressions for this determinant, e.g., 

IK;.,I = lh;.,,-1+j - h;.,,-1-11, 

where h1 = Hiz 1 , ..• , zn, z11
, ... , z;;- 1

, 1). 

Exercise A.62. Calculate the denominator of the left-hand side: 

lzn-i+l/2 _ z;-(n-i+l/2)1 = A(): ): ) . Y (1). . Y (.l) 
j 1 Ll':.t•···•':.n '>1 2 ••• '>n 2· 

(A.61) 

PROOF OF PROPOSITION A.60. We have 'j{l) = zj - zt and eil) = zj + ZJ-I in 
lfJ(z~12 , •.. , z!12

) for I an integer or a half integer. First note that 

eit> ·'ii)= 'P + t> +'ii - t). 
Multiplying the numerator and denominator of the left-hand side of 
the statement of the proposition by e 1 (t) ..... enw, the numerator 
becomes l'iA1 + n - i + 1) + '1(A1 + n - i)I, and the denominator becomes 
!(1(n - i + 1) + 'in - i)I = 1'1(n - i + 1)1. We can, therefore, apply Lemma 
A.54 to calculate the ratio, getting the determinant of a matrix whose entries 
are sums of certain J/s. Note that by direct calculation K1 = ~ + ~-t • so the 
terms can be combined, and the ratio is the determinant of the displayed 
matrix K;.,. O 

Finally (for the even orthogonal groups 0 2n), let k = 2n, and specialize the 
variables x 1, ••. , x 2n as above. Set 

with H1 the complete symmetric polynomial in 2n variables. 

Proposition A.64. Given integers A1 ~ • • · ~An~ 0, we have 

lzf•+n-i + ZJ-(J..,+n-i)I _ {tlL;.,I 

lz;-1 + Zj-(n-i)I - IL;.,I 

where L;., is then x n matrix whose ith row is 

if An> 0 
if An= 0, 

(L;.,,-1+1 L;.,,-i+2 + L;.,,-i . . . L;.,,-1+n + L;.,,-1-n+2>· 

As before, there are other expressions for these determinants, e.g., 

IL;.,I = lh;.,,-i+j - h;.,,-1-jl, 

where h1 = H1(z 1 , ••• , zn, z! 1
, ... , z;;-1

). 

(A.63) 

(A.65) 
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Exercise A.66. Calculate the denominator of the left-hand side: 

I n-1 + -(n-1)1_2· A(J: J:) zl zl - L1 '> 1 • ••• ' '>n . 

PROOF OF PROPOSITION A.64. Note that (1 · ej(l) = e1(1 + 1) - e1(l - 1). Multi
plying the numerator and denominator by ( 1 • ••• • '"' the numerator becomes 
l(J(),1 + n - i + 1) - (j(.A.1 + n - i - 1)1 and the denominator becomes 

l(j(n - i + 1) - (1(n - i - 1)1 = 21(j(n - i + 1)1; 

this is seen by noting that the bottom row of the matrix on the left is 
((1(1) - (1( -1)) = (2(1(1)), and performing row reductions starting from the 
bottom row. The rest of the proof is the same as in the preceding proposition. 
The only change is when A." = 0, in which case the bottom row in the numerator 
matrix is the same as that in the denominator. o 

Exercise A.67*. Find a similar formula for 

lzfi+n-1 - Zl-(.i.,+n-1)1 

lzj I + Z1 (n-1)1 

APPENDIX B 

On Multilinear Algebra 

In this appendix we state the basic facts about tensor products and exterior and 
symmetric powers that are used in the text. It is hoped that a reader with some linear 
algebra background can fill in details of the proofs. 

§8.l: Tensor product 
§B.2: Exterior and symmetric powers 
§B.3: Duals and contractions 

§B.1. Tensor Products 

The tensor product of two vector spaces V and W over a field is a vector space 
V ® W equipped with a bilinear map 

v x w -+ v ® w, v x w I-+ v ® w, 

which is universal: for any bilinear map P: V x W-+ U to a vector space U, 
there is a unique linear map from V ® W to U that talces v ® w to P(v, w). 
This universal property determines the tensor product up to canonical iso
morphism. If the ground field K needs to be mentioned, the tensor product is 
denoted V ®K W. 

If {e1} and {Jj} are bases for V and W, the elements {e1 ®Jj} form a 
basis for V ® W. This can be used to construct V ® W. The construction is 
functorial: linear maps V -+ V' and W -+ W' determine a linear map from 
Y® Wto V'® W'. 

Similarly one has the tensor product Vi ® · · · ® V,, of n vector spaces, with 
its universal multilinear map 

Vi x ... x v,, -+ Vi ® ... ® v,,, 



472 B. On Multilincar Algebra 

taking V1 x ... x Vn to V1 ® ... ® vn. (Recall that a map from the Cartesian 
product to a vector space U is multilinear if, when all but one of the factors Vi 
are fixed, the resulting map from Vi to U is linear.) The construction of tensor 
products is commutative: 

V®W~W®V. v® w1-+w®v; 

distributive: 

and associative: 

(U ® V) ® W ~ U ® (V ® W) ~ U ® V ® W, 

by (u ® v)® w1-+u ®(v® w)1-+u ® v ® w. 
In particular, there are tensor powers V®n = V ® · · · ® V of a fixed space 

V. By convention, V® 0 is the ground field. 
If A is an algebra over the ground field, and Vis a right A-module, and W 

a left A-module, there is a tensor product denoted V ®A W, which can be 
constructed as the quotient of V ® W by the subspace generated by all 
(v ·a)® w - v ®(a· w) for all v e V, we W, and a e A. The resulting map from 
V x W to V ®A W is universal for bilinear maps P from V x W to vector 
spaces U that satisfy the property that f3(v ·a, w) = P(v, a· w). This tensor 
product is also distributive. 

§B.2. Exterior and Symmetric Powers 

The exterior powers /\"V of a vector space V, sometimes denoted Alt"V, come 
equipped with an alternating multilinear map 

v x ... x v-+ /\"V, 

that is universal: for p: V x · · · x V-+ U an alternating multilinear map, there 
is a unique linear map from /\" V to U which takes v 1 /\ · · · /\ vn to P( v 1, ... , vn). 
Recall that a multilinear map pis alternating if p(v1, ... , vn) = 0 whenever two 
of the vectors v1 are equal. This implies that f3(v 1, ... , vn) changes sign when 
two of the vectors are interchanged. 1 It follows that 

p(va(l)' ... ' Va(n)) = sgn(a)P(v1' ... ' Vn) for all a E Sn. 

The exterior power can be constructed as the quotient space of V®n by the 
subspace generated by all v1 ® · · · ® vn with two of the vectors equal. We let 

n: V®n-+ /\"V, 

1 This follows from the standard polarization.: for two factors, {J(v + w, v + w) - {J(v, v) -
{J(w, w) = {J(v, w) + {J(w, v). 

§B.2. Exterior and Symmetric Powers 

denote the projection. If {e1} is a basis for V, then 

{e,, /\ e,2 /\ ... /\ e,n: ii< i2 < ... <in} 

is a basis for /\"V. Define /\°V to be the ground field. 
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If V and W are vector spaces, there is a canonical linear map from 
NV® NW to N+b(V Et> W), which takes (v1 /\ .. · /\ va) ® (w1 /\ .. · /\ wb) 
to v1 /\ · · · /\ Va /\ w1 /\ · · · /\ wb. This determines an isomorphism 

n 

/\"(V Ef> W) .~ EB /\"V ®/\"-aw. (B.l) 
a=O 

(From this isomorphism the assertion about bases of /\"V follows by induction 
on the dimension.) 

The symmetric powers Symnv, sometimes denoted S"V, comes with a 
universal symmetric multilinear map 

V x ··· x V-+Sym"V, 

Recall that a multilinear map {3: V x · · · x V-+ U is symmetric if it is 
unchanged when any two factors are interchanged, or 

/3(va(ll' ... , Va<n>) = P(v1, ... , v.) for all a e S •. 

The symmetric power can be constructed as the quotient space of V®n by the 
subspace generated by all v1 ® · · · ® v. - v11<1> ® · · · ® v11<n» or by those in 
which a permutes two successive factors. Again we let 

n: V®n-+ Symnv, n(v1 ® · · · ® v.) = v1 • ••. • v., 

denote the projection. If {e1} is a basis for V, then 

{ e,,. e,2 ..... e,n: ii :s; i2 :s; ... :s; in} 

is a basis for Sym"V. So Sym"V can be regarded as the space of homogeneous 
polynomials of degree n in the variables e1• Define Sym0 V to be the ground 
field. As before, there are canonical isomorphisms 

n 

Symn(V Et> W) ~ EB Symav ® Sym•-aw. (B.2) 
a=O 

The exterior powers/\" V and symmetric powers Sym" V can also be realized 
as subspaces of V®", assuming, as we have throughout, that the ground field 
has characteristic 0. We will denote the inclusions by z, so we have 

V®" ~ /\"V~ V®n 
' 

V®" ~ Sym"V ~ V®". 

The imbedding z: /\"V-+ v®n is defined by 

l(V1 /\ · · · /\ v.) = L sgn(a)va(l) ® · · · ® Va(n)· (B.3) 
tie e" 

(This is well defined since the right-hand side is alternating.) The image of z is 
the space of anti-invariants of the right action of s. on fl®": 



474 B. On Multilinear Algebra 

(v1 ® ... ® vn). (J = Va(l) ® ... ® Va(n)' V; E V, (J E 6n. (B.4) 

(The anti-invariants are the vectors z e V®" such that z · <J = sgn(<J)z for all 
<J e 6".) Moreover, if A = z o n, then (1/n!)A is the projection onto this anti
invariant subspace.2 (Often the coefficient 1/n! is put in front of the formula 
for z; this makes no essential difference, but leads to awkward formulas for 

con tractfons.) 
Similarly we have z: Sym"V-+ V®" by 

l(V1 ..... Vn) = L v.,(1) ® ... ® v.,(n)• 
ae en 

(B.5) 

The image of z is the space of invariants of the right action of 6" on V®". If 
A = z on, then (1/n!)A is the projection onto this invariant subspace. 

The wedge product /\ determines a product 

(B.6) 

(v1 /\ · · · /\ Vm) ® (Vm+l /\ 0
• 

0 

/\ Vm+n) f-+ V1 /\ . 0 0 

/\ Vm /\ Vm+l /\ . 
0 0 

/\ Vm+n• 

which is associative and skew-commutative. This product is compatible with 
the projection from the tensor powers onto the exterior powers, but care must 
be taken for the inclusion of exterior in tensor powers, since for example v /\ w 
is sent to v ® w - w ® v [not to !(v ® w - w ® v)] by z. In general, the 

diagram 

V®m ® V®" - v®<m+n> 

commutes when the bottom horizontal map is defined by the formula 

{V1 ® · · · ® Vm) ® (Vm+l ® · · · ® Vm+n) 

f-+ L sgn(<J)Va(l) ® ... ® Va(m) ® Va(m+l) ® ... ® Va(m+n)' 

(B.7) 

(B.8) 

the sum over all "shuffies," i.e., permutations <J of { 1, ... , m + n} that preserve 
the order of the subsets {1, ... , m} and {m + 1, ... , m + n}. 

Similarly the symmetric powers have a commutative product (v1 · ... · vm) ® 

(v · · v ) ~ v · · v · v +l · · v + with a similar compatibility. Note 
m+l • • • m+n ,......,.. 1 • • • m m • • • m "' • 

that v2 e Sym2 V is sent to 2v ® v in V ® V, v" e Sym"V to n!(v ® · · · ® v) m 
V®", and generally one has the analogue of (B.7), changing each "sgn(<T)" to 

"1" in formula (B.8). 
All these mappings are compatible with linear maps of vector s~aces 

V -+ W, and in particular commute with the left actions of the general hnear 
group GL(V) = Aut(V) of automorphisms, or the algebra End(V) = 
Hom(V, V) of endomorphisms, on V®", NV, and Sym"V. 

2 It is this factor which limits our present discussion to vector spaces over fields of characteristic 0. 
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It is sometimes convenient to make algebras out of the direct sum of all of 
the tensor, exterior, or symmetric powers. The tensor algebra T"V is the 
sum EBn~o V®", with product determined by the canonical isomorphism 
V®" ® v®m-+ V®(n+m>. The exterior algebra /\"Vis the sum EBn~O NV, which 
is the quotient of T"V by the two-sided ideal generated by all v ® v in 
V® 2• The symmetric algebra Sym·v is the sum EBn~o Sym"V, which is the 
quotient of T"Vby the two-sided ideal generated by all v ® w - w ® v in V® 2

• 

Exercise B.9. The algebra Sym"V is a commutative, graded algebra, which 
satisfies the universal property that any linear map from V to the first graded 
piece C1 of a commutative graded algebra C determines a homomorphism 
Sym·v-+ C of graded algebras. Use this to show that Sym"(V e;i W) ~ 
Sym·v ® Sym·w, and deduce the isomorphism (B.2). Prove the analogous 
assertions for /\"V, in the category of skew-commutative graded algebras. 
In particular, construct an isomorphism /\"(V Ef> W) ~ !\"V ® /\"W, where ® 
denotes the skew-commutative tensor product: it is the usual tensor product 
additively, but the product has (a® b)" (c ® d) = ( - l)d•11(b)de11(c>(a. b) ® (c. d) 
for homogeneous elements a and c in the first algebra, and b and d in the 
second. In particular, this proves (B.1). 

§B.3. Duals and Contractions 

Although only a few simple contractions are used in the lectures, and most of 
these are written out by hand where needed, it may be useful to see the general 
picture. 

If V* denotes the dual space to V, there are contraction maps 

cJ: V®P ® (V*)®q-+ V®(p-l) ® (V*)®(q-1), 

for any 1 ~ i ~ p and 1 ~ j ~ q, determined by evaluating the jth coordinate 
of (V*)®q on the ith coordinate of V®P: 

cj(v1 ® · · · ® vP ® cp1 ® · · · ® cpq) 
(B.10) 

= <PiV1)V1 ®.•.®(}I®• .. ® VP® <P1 ® .. ·® <Pj ® ... ® <Pq· 

More generally if I= (i1, ... ,in) and J = (j1, ... , jn) are two sequences of 
n distinct indices from {1, ... , p} and {1, ... , q}, respectively, there is a 
contraction 

cJ: V®P ® (V*)®q-+ V®(p-n) ® (V*)®(q-n) 

which takes v1 " · • · " vP ® cp1 ® · · · ® cpq to 
n 

(B.11) 

]] <P1.(V1)V1 ® 0 0 0 ® 01, ® · 0 0 ® 13;2 ® 0 0 0 ®VP® <P1 ® • · · ® <fJJi ® · 0 0 ® lpq• 

For example, if p = q = n and I= J = (1, ... , n), this contraction 
V®" ® (V*)®"-+ C identifies (V*)®" with the dual space of V®". 
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Now (V®n)* consists of n-multilinear forms on V, and (NV)* consists of 
alternating n multilinear forms on V; in particular, (NV)* is a subspace of 
(V®n)*; this is the inclusion via n*. The composite 

N(V*) __.. (V*)®n __.. (V®n)*, 

where the first map is the inclusion 1 and the second is the isomorphism of the 
preceding paragraph, maps N(V*) isomorphically onto the subspace (NV)*. 
Explicitly, 

N(V*):. (NV)*, 

cpl /\ ... /\ <pnf--+ [v1 /\ ... /\ Vnf--+ L sgn(a)cpa(l)(v1)· ... · cpa(n)(vn) 

= det(cpi(v1))]. 

This dual pairing NV® N(V*)--.. K is often denoted< , ). 
There is a similar isomorphism of Symn(V*) with Symn(V)*, but without 

the signs "sgn(a)." 

Exercise B.12. If e1, ... , em is a basis for V, with ef the dual basis for V*, 
then {e1, "· • • "e1.: 1::;; i1 <···<in::;; m} is a basis for NV, and 
{ ei• · ... · e~'": i« ~ 0, Li« = n} is a basis for Symn V. Show that, via the above 
isomorphisms, the dual bases for N(V*) and Symn(V*) are 

{ e~ " · · · " et} and {n ~i«!) (ef)
1
' • ••• • (e!)

1
'"}. 

« 

There are related contractions, sometimes called internal products, and 
denoted .J and L, on exterior and symmetric powers. For the exterior powers 
they are maps: 

NV® N+q(V*)--.. N(V*), 

N+qv ® N(V*)--.. N(V), 

x®ocr--+x.Joc; 

X@ IXHX L IX. 
(B. t 3) 

These can be defined most simply as transposes of wedge products, i.e., they 
are determined by the identities 

(z, x .Joe)= (z" x, ix) for z e NV 

and 

(x L ix, P> = (x, ix " P> for Pe N(V*). 

(The relation of this definition to the contraction maps d above is expressed 
in Exercise B.16.) Note that when q = 0, these contractions reduce to the 
previous duality pairing between NV and N(V*). 

For symmetric powers, the internal products are defined similarly: 

SymPV ® Symp+q(V*)--.. Symq(V*), 

Symp+qv ® SymP(V*) __.. Symq(V), 

X@ IXHX .JIX; 

X@ IXHX L IX. 
(B.14) 
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Exercise B.15. For v, we V, and cp, I/I e V*, show that 

v .J (cp " 1/1) = t/l(v)cp - cp(v)t/I and (v " w) L cp = cp(v)w - cp(w)v. 

More generally, for if x = v1 " • • • " vP and ix = cp1 " · · · " %+q• with v1 e V 
and cpi e V*, then 

(i) x .J IX = L sgn(a)cpa(q+l)(vi) ..... cpa(q+p)(vp). cpa(l) /\ ... /\ cpa(q)' 

the sum over all permutations a of { 1, ... , p + q} that preserve the order of 
{1, ... , q}. If x = v1 " • • • " vp+q and ix = cp1 " · · · " cpP, then 

(ii) x L IX = L sgn(a)cp1 (v,,(1)) ..... cpp(va(p)). Va(p+l) /\ ... /\ Va(p+q)• 

the sum over all permutations that preserve the order of {p + 1, ... , p + q}. 
Verify these formulas and use them to give formulas for these internal products 
in terms of standard bases. State and verify analogous formulas for symmetric 
powers. 

Exercise B.16. Using formula (ii) of the preceding exercise, show that the 
contraction map L may be given as 1/p!q! times the composition of the maps 

N+qv ® N(V*)--.. V®Cp+ql ® (V*)®P--.. V®q--.. NV, 

where the middle map is the contraction map d of (B.11 ), with I = J = 
{1, ... , p}, and the other maps come from 1 and n. Prove the same formulas 
(with the same scalar factor) for the other internal products. 

Exercise B.17. In the situation of formula (ii), suppose the v1 are independent, 
and let W be the (p + q)-dimensional subspace of V that they span; suppose 
the cp1 are independent, and let Z be the p-codimensional subspace of V of the 
common zeros of the cp1• Show that x L ix = 0 if dim(W n Z) > q, and other
wise x L ix = u 1 " · · · " uq for some vectors u1 that span W n Z. 

Exercise B.18. Prove the formulas 

(x /\ y) .J IX = x .J (y .J ix) and x L (ix /\ p) = (x L IX) L p. 

State and verify the analogous formulas for symmetric powers. In particular, 
for v, WE V, cp, I/IE V*, 

v .J (cp ·I/I) = l/l(v)cp + cp(v)l/I and (v · w) L cp = cp(v)w + cp(w)v. 

For example, v .J(cp2) = 2cp(v)cp and (v2 ) L cp = 2cp(v)v. 

For a detailed development of these ideas, see [Bour, Algebra, Chap. 3]. 



APPENDIX C 

On Semisimplicity 

§C.1: The Killing form and Cartan's criterion 
§C.2: Complete reducibility and the Jordan decomposition 
§C.3: On derivations 

§C.l. The Killing Form and Cartan's Criterion 

We recall first the Jordan decomposition of a linear transformation X of a 
finite-dimensional complex vector space V as a sum of its semisimple and 
nilpotent parts: X = x. + Xn, where X, is the semisimple part of X, and X" 
the nilpotent part. It is uniquely characterized by the fact that X, is semisimple 
(diagonalizable), X" is nilpotent, and x. and X" commute with each other: In 
fact, X, and X" can be written as polynomials in X, so any endomorphism 
that commutes with X automatically commutes with X, and X". One case 
of the invariance of Jordan decomposition is an easy calculation: 

Exercise C.1 *.For any X e gl(V), the endomorphism ad(X) of gl(V) satisfies 

ad(X), = ad(X,) and ad(X)" = ad(X"). 

There is a Killing form Bv defined on gl(V) by the formula 

Bv(X, Y) = Tr(X o Y), (C.2) 

where Tr is the trace and o denotes composition of transformations. As in 
(14.23), the identity 

Bv(X, [Y, Z]) = Bv([X, Y], Z) 

holds for all X, Y, Zin gl(V). 

(C.3) 
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The Killing form Bon a Lie algebra g is that of Exercise C.1 for the adjoint 
representation: B(X, Y) = B9(ad(X), ad(Y)). This was introduced in Lecture 
14, where a few of its properties were proved. Here we use the Killing form to 
characterize solvability and semisimplicity of the Lie algebra. 

If g is solvable, by Lie's theorem its adjoint representation can be put in 
upper-triangular form. It follows that ~g = [g, g] acts by strictly upper
triangular matrices. So if X is in ~g and Y in g, then ad(X) o ad( Y) is strictly 
upper triangular; in particular its trace B(X, Y) is zero. Cartan's criterion is 
that this characterizes solvability: 

Proposition C.4. The Lie algebra g is solvable if and only if B(g, ~g) = 0. 

We will prove something that looks a little weaker, but will turn out to be 
a little stronger. We prove: 

Theorem C.S ( Cartan's criterion). If g is a subalgebra of gl( V) and Bv(X, Y) = 0 
for all X and Y in g, then g is solvable. 

For this, it suffices to show that every element of ~g is nilpotent, for then 
by Engel's theorem ~g must be a nilpotent ideal, and therefore g is solvable. 

So take ·Xe ~g. and let A. 1, ••• , A., be its eigenvalues (counted with 
multiplicity) for X as an endomorphism of V. We must show the A.1 are all 
zero. These eigenvalues satisfy some obvious relations; for example, L A.1A.i = 
Tr(X o X)) = Bv(X, X) = 0. What we need to show is 

(C.6) 

To prove this, take a basis for V so that X is in Jordan canonical form, 
with A. 1, .•• , A., down the diagonal; the semisimple part D = X, of X is this 
diagonal transformation. Let i5 be the endomorphism of V given by the 
diagonal matrix with I 1, •.• , I, down the diagonal. Since Tr(D o X) = L I 1A.1, 

it suffices to prove 

Tr(D o X) = 0. (C.7) 

Since X is a sum of commutators [Y, Z], with Y and Z in g, Tr(D o X) is 
a sum of terms of the form Tr(D o [Y, Z]) = Tr([D, Y] o Z). So we will be 
done if we know that [D, Y] belongs tog, for our hypothesis is that Tr(g o g) = 
0. That is, we are reduced to showing 

ad(D)(g) c g. (C.8) 

For this it suffices to prove that ad(D) can be written as a polynomial in 
ad(X), for we know that ad(X)k( Y) is in g if X and Y are in g. Since ad(D) = 
ad(X,) = ad(X), is a polynomial in ad(X), it suffices to show that ad(D) can 
be written as a polynomial in ad(D). This is a simple computation: using the 
usual basis {EIJ} for gl(V), ad(D) and ad(D) are complex conjugate diagonal 
.matrices, and any such are polynomials in each other. D 
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We can prove now that if 9 is a Lie algebra for which B(!09, !09) = 0, then 
9 is solvable, which certainly implies Proposition C.4. By what we just proved, 
the image of !09 by the adjoint representation in 91(9) is solvable. Since the 
kernel of the adjoint map is abelian, this makes !09 solvable (cf. Exercise 9.8), 
and by definition this makes 9 solvable. 0 

Exercise C.9. Show that a Lie algebra 9 is solvable if and only if 
B(ad(X), ad(X)) = 0 for all X in 9. 

It is easy to deduce from Cartan's criterion a criterion for semisimplicity
part of which we saw in Lecture 14, but there assuming some facts we had not 
proved yet: 

Proposition C.10. A Lie algebra 9 is semisimple if and only if its Killing form 
B is nondegenerate. 

PROOF. By (C.3) the null-spaces= {Xe 9: B(X, Y) = 0 for all Ye 9} is an 
ideal. Suppose 9 is semisimple. By Cartan's criterion, the image ad(s) c gl(g) 
is solvable; as in the preceding proof, s is then solvable, so s = 0 by the 
definition of semisimple. Conversely, if B is nondegenerate, we must show 
that any abelian ideal a in g must be zero. If X e a and Ye g, then 
A = ad(X) o ad(Y) maps g into a and a to 0, so Tr(A) = 0. This implies that 
a c s = 0, as required. D 

Corollary C.11. A semisimple Lie algebra is a direct product of simple Lie 
algebras. 

PROOF. For any ideal g of g, the annihilator 

q.L = {Xe g: B(X, Y) = 0 for all Ye g} 

is an ideal, by (C.3) again. By Cartan's criterion, g n q.L is solvable, hence zero, 
so g = g E9 g.L. The decomposition follows by a simple induction. D 

It follows that g = !0g, and that all ideals and images of g are semisimple. 
In fact: 

Exercise C.12*. Show that if g is a direct product of simple Lie algebras, the 
only ideals in g are sums of some of the factors. In particular, the decomposition 
into simple factors is unique (not just up to isomorphism). 

Exercise C.13*. Show that if g is semisimple, the adjoint map ad: 9-+ gl(g) is 
an isomorphism of 9 onto the algebra Der(g) of derivations of g. 

Exercise C.14. Show that if 9 is nilpotent then its Killing form is identically 
zero, and find a counterexample to the converse. 

§C.2. Complete Reducibility and the Jordan Decomposition 

§C.2. Complete Reducibility and the 
Jordan Decomposition 
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We repeat that this section is optional, since the results can be deduced from 
the existence of a compact group such that the complexification of its Lie 
algebra is a given semisimple Lie algebra. We include here the standard 
algebraic approach. A finite-dimensional representation of a Lie algebra g will 
be called a g-module, and a g-invariant subspace a submodule. 

Proposition C.15. Let V be a representation of the semisimple Lie algebra g and 
W c V a submodule. Then there exists a submodule W' c V complementary 
to W. 

PROOF. Since the image of g by the representation is semisimple, we may 
assume g c gl(V). We will require a slight generalization of the Casimir 
operator Cy e End(V) which was used in §25.1 in the proof of Freudenthal's 
formula. We take a basis U1 , ••• , U, for g, and a dual basis U~ •... , u;, but this 
time with respect to the Killing form By defined in Exercise C.l: By(X, Y) = 
Tr(X o Y). (Note by Cartan's criterion that By is nondegenerate.) Then Cy is 
defined by the formula Cy(v) = L U1 • (U[ · v). 

As before, a simple calculation shows that Cy is an endomorphism of V 
that commutes with the action of g. Its trace is 

Tr( Cy)= L Tr(U1 o U!) = L By(U1, U[) = dim(g). (C.16) 

We note also that since Cy maps any submodule W to itself, and since it 
commutes with g, its kernel Ker(Cy) and image are submodules. 

Note first that all one-dimensional representations of a semisimple g are 
trivial, since !0g must act trivially on a one-dimensional representation, and 
g = ~g. 

We proceed to the proof itself. As should be familiar from Lecture 9, the 
basic case to prove is when W c V is an irreducible invariant subspace of 
codimension one. Then Cy maps W into itself, and Cy acts trivially on V/W. 
But now by Schur's lemma, since W is irreducible, Cy is multiplication by a 
scalar on W. This scalar is not zero, or (C.16) would be contradicted. Hence 
V = W E9 Ker( Cy), which finishes this special case. 

It follows easily by induction on the dimension that the same is true 
whenever W c V has codimension one. For if Wis not irreducible, let Z be a 
nonzero submodule, and find a complement to W/Z c V/Z (by induction), say 
Y/Z. Since Y/Z is one dimensional, find (by induction) U so that Y = Z E9 U. 
Then V = W$ U. 

By the same argument, it suffices to prove the statement of the theorem 
when Wis irreducible. Consider the restriction map 

p: Hom(V, W)-+ Hom(W, W), 
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a homomorphism of g-modules. The second contains the one-dimensional 
submodule Homg(W, W). By the preceding case, there is a one-dimensional 
submoduleofp-1(Hom 0(W, W)) c Hom(V, W)whichmapsontoHom (W, W) 
by p. Since one-dimensional modules are trivial, this means th:re is a 
g-invariant I/I in Hom(V, W) such that p(l/I) = 1. But this means that I/I is a 
g-invariant projection of V onto W, so V = WEB Ker(l/J), as required. D 

We will apply this to prove the invariance of Jordan decomposition 
(Theorem 9.20). The essential point is: 

Proposition C.17. Let g be a semisimple Lie subalgebra of gl(V). Then for any 
element X e g, the semisimple part x. and the nilpotent part Xn are also in g. 

PROOF. The idea is to write gas an intersection of Lie subalgebras of gl( V) for 
which the conclusion of the theorem is easy to prove. For example, we know 
g c sl(V) since g = ~g. and clearly x. and Xn are traceless if Xis. Similarly, 
if Vis not irreducible, for any submodule W of V, let 

Sw ={Ye gl(V): Y(W) c Wand Tr(Ylw) = O}. 

Then g is also a subalgebra of sw, and x. and Xn are also in sw. 
Since [X, g] c g, it follows that [p(X), g] c g for any polynomial p(T). 

Hence [X., g] c g and [Xn, g] c g. In other words, x. and Xn belong to the 
Lie subalgebra n of gl(V) consisting of those endomorphisms A such that 
[A, g] c g. Son gives us another subalgebra to work with. Now we claim that 
g is the intersection of n and all the algebras sw for all submodules W of V. 
This claim, as we saw, will finish the proof. Let g' be the intersection of all 
these Lie algebras. Then g is an ideal in g' since g' c n. 

By the complete reducibility theorem we can find a submodule U of g' so 
that g' = g EB U. Since [g, g'] cg, we must have [g, U] = 0. To show that U 
is 0, it suffices to show that for any Ye U its restriction to any irreducible 
submodule W of Vis zero (noting that Y preserves W since Ye sw. and that 
Vis a sum of irreducible submodules). But since Y commutes with g, Schur's 
lemma implies that the restriction of Y to Wis multiplication by a scalar, and 
the assumption that Ye sw means that Tr(Ylw) = 0, so Ylw = 0, as required. 

D 

Now if g is a semisimple algebra, the adjoint representation ad embeds g 
in gl(g). For any X in g the theorem implies that the semisimple and nilpotent 
parts of ad(X) are in g. We write these x. and Xn. The decomposition 
X = x. + Xn may be called the absolute Jordan decomposition. Note that 
[X., Xn] = 0. It follows easily from the definition that if p: g -+ g' is a homo
morphism from one semisimple Lie algebra onto another, then p(X.) = p(X). 
and p(Xn) = p(X)n. (This follows for example from the fact that g' is obtained 
from g by factoring out some of its simple ideals.) In fact, the absolute 
decomposition determines all others: 
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Corollary C.18. /f p: g -+ gl(V) is any representation of a _semisim_ple Lie algebra 
then p(X ) is the semisimple part of p(X) and p(Xn) 1s the nilpotent part of 

g, • 
p(X). 

PROOF. We just saw that p(X.) and p(Xn) are the semisimple and nilpotent 
parts of p(X) as regarded in the semisimple Lie algebra g' = p(g). Apply the 

theorem to g' c gl( V). D 

It follows that an element X in a semisimple Lie algebra that is semisimple 
in one faithful representation is semisimple in all representations. 

§C.3. On Derivations 

In this final section we collect a few facts relating the Killing form.' solvabilit~, 
and nilpotency with derivations of Lie algebras, mainly f?r use m Appendix 
E. We first prove a couple of lemmas related to the L1e-E~gel t~eory of 
Lecture 9. For these g is any Lie algebra, r = Rad(g) denotes its radical, and 

.@g = [g, g]. 

Lemma C.19. For any representation p: g-+ gl(V), every element of p(~g n r) 

is a nilpotent endomorphism. 

PROOF. It suffices to treat the case where the representation V is irreducible, 
for if w were a proper subrepresentation, we would know the result by 
induction on the dimension for Wand V/W, which implies it for V. We may 
replace g by its image, so we may assume p is injective. In this case we show 
that ~g 11 r = O. We may assume r =I= 0. Consider the largest integer k such 
that a = ~kr is not zero. This a is an abelian ideal of g. It suffices to show that 

.~g n a = 0, for if k > 0, then a c ~g. 
We need three facts: 

(i) If g c gl(V) is an irreducible representation and b is any ideal of g th~t 
consists of nilpotent transformations of V, then b = 0. (Indeed, by Engel s 

theorem, 

W = {v e V: X(v) = 0 for all Xe b} 

is nonzero, and by Lemma 9.13, Wis preserved by g. Since Vis irreducible, 

W = V, which says that b = 0.) .. 
(ii) A transformation Xis nilpotent exactly when Tr(Xn) ~ 0 for all positive 

integers n. (This is seen by writing X in Jordan canomcal form.) . . 
(iii) Tr([X, Y]. Z) = O whenever [Y, Z] = 0. (This follows from the identity 

(C.3): Tr([X, Y] · Z) = Tr(X · [ Y, Z]).) 

Next we can see that [g, a] = 0. For if Xe g and Ye a, then [X, Y] ea; 
since a is abelian, Y commutes with [X, Y] and hence with powers of [X, Y]. 
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Applying (iii) with Z = [X, Y]"-1 gives Tr([X, Y]") = 0 for n > 0, and (ii) and 
(i) imply that [g, a] = 0. 

Finally we show that ~g n a= 0. If X, YE g and [X, Y] Ea, then 
[Y, [X, Y]] =Oby the preceding step, so again Y commutes with powers of 
[X, Y], and the same argument shows that Tr([X, Y]") = 0, and (ii) and (i) 
again show that ~g n a = 0. 0 

Lemma C.20. For any Lie algebra g, [g, r] is nilpotent. 

PROOF. Look at the images g and f of g and r by the adjoint representation 
ad: g-+ gl(g). By Lemma C.19 and Engel's theorem, [g, f] is a nilpotent ideal 
of g. Since the kernel of the adjoint representation is the center of g, it follows 
that the quotient of [g, r] by a central ideal is nilpotent, which implies that 
[g, r] itself is nilpotent. 0 

An ideal a of a Lie algebra g is called characteristic if any derivation of g 
maps a into itself. Note that an ideal is just a subspace that is preserved by 
all inner derivations Dx = ad(X). It follows from the definitions that if a is any 
ideal in g, then any characteristic ideal in a is automatically an ideal in g. 

The following simple construction is useful for turning questions about 
general derivations into questions about inner derivations. Given any Lie 
algebra g and a derivation D of g, let g' = g EB C, and define a bracket on g' by 

[(X, 2), (Y, µ)] = ([X, Y] + 2D(Y) - µD(X), 0). 

It is easy to verify that g' is a Lie algebra containing g = g EB 0 as an ideal, 
and that, setting e = (0, 1), the restriction of D~ = ad(e) to g is the given 
derivation D. 

As a simple application of this construction, if B is the Killing form on g, 
we have the identity 

B(D(X), Y) + B(X, D(Y)) = 0 (C.21) 

for any derivation D of g, and any X and Y in g. Indeed, if B' is the Killing 
form on g', (C.3) gives B'([e, X], Y) + B'(X, [e, Y]) = O; since g is an ideal in 
g', Bis the restriction of B' tog, and (C.21) follows. 

From (C.21) it follows that if a is a characteristic ideal of g, then its 
orthogonal complement with respect to the Killing form is also a characteristic 
ideal of g. 

Proposition C.22. For any Lie algebra g, Rad(g) is the orthogonal complement 
to ~g with respect to the Killing form. 

PROOF. To see that r = Rad(g) is contained in ~g.L, i.e., that ~g is perpendic
ular tor, let X, YE g and Z Er. Recalling that B([X, Y], Z) = B(X, [Y, Z]), 
it suffices to show that B(X, [Y, Z]) = 0. Let~ be the subalgebra of g generated 
by r and X. Then [~, ~] c: r, so ~ is solvable, so by Lie's theorem, under the 
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adjoint action, ~ acts on g by upper-triangular matrices. By Lemma C.19, 
[Y, Z] acts on g by nilpotent transformations. It follows that X o [Y, Z] 
also acts nilpotently on g, from which it follows that B(X, [Y, Z]) = 
Tr(X o [Y, Z]) = 0, as required. 

Since ~g is a characteristic ideal, (~g).L is an ideal. It is solvable by Cartan's 
criterion (Proposition C.4), since 

B(~g.L, ~(~g.L)) c: B(~g.L, ~g) = 0. 

It follows that ~g.L c: r, which concludes the proof. 

Corollary C.23. If a is an ideal in a Lie algebra g, then 

Rad( a)= Rad(g) n a. 

D 

PROOF. Since Rad( a) is a characteristic ideal of an ideal, it is an ideal of g. Since 
it is solvable, it must be contained in the radical of g. This shows the inclusion 
c:; the opposition inclusion is clear since Rad(g) n a is a solvable ideal in a. 

D 

Proposition C.24. If D is a derivation of a Lie algebra g, then D(Rad(g)) is 
contained in a nilpotent ideal of g. 

PROOF. Construct g' = g EB c as before, with e = (0, 1). Since Rad(g) c: 
Rad(g'), we have 

D(Rad(g)) = [e, Rad(g)J c: [g', Rad(g')J n g. 

By Lemma C.20, [g', Rad(g')] is a nilpotent ideal in g', so its intersection with 
g is also nilpotent. D 

Just as with the notion of solvability, any Lie algebra g contains a largest 
nilpotent ideal, usually called the nil radical of g, and denoted Nil(g) or n. 
Proposition C.24 says that any derivation maps r into n, which includes the 
result of Lemma C.20 that [g, r] c: n. The existence of this ideal follows from: 

Lemma C.25. If a and bare nilpotent ideals in a Lie algebra g, then a + b is also 
a nilpotent ideal. 

PROOF. An ideal a is nilpotent iff there is a positive integer k so that all 
k-fold brackets [X1 , [X2 , [ ••• , [Xk-l • Xk] ... ]]] are zero when each X; is in 
a. Equivalently, all m-fold brackets of m elements of g are zero if at least k of 
them are in a. If k is chosen to work for a and for b, it is easy to verify that 2k 
works for the sum a + b, since any bracket of 2k elements, each from a or from 
b, contains at least k elements from a or from b. D 

Since Nil(g) c: Rad(g), it follows from Proposition C.24 that Nil(g) is a 
characteristic ideal of g. The same reasoning as in Corollary C.23 gives: 
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Corollary C.26. If a is an ideal in a Lie algebra 9, then 

Nil( a) = Nil(9) n a. 

C. On Semisimplicity 

If 9 is a Lie algebra, its universal enveloping algebra U = U(9) is the quotient 
of the tensor algebra of g modulo the two-sided ideal generated by all X ® Y -
Y ® X - [X, Y] for all X, Y in 9. It is an _associative algebra, with a map 
1: 9 -+ U such that 

1([X, Y]) = [1(X), 1(Y)] = z(X)1(Y) - 1(Y)1(X), 

and satisfying the universal property: for any linear map cp from 9 to an 
associative algebra A such that cp([X, Y]) = [cp(X), cp(Y)] for all X, Y, there 
is a unique homomorphism of algebras (iJ: U-+ A such that cp = iP o 1. For 
example, a representation p: 9-+ 9I(V) determines an algebra homomorphism 
p: U(9)-+ End(V). Conversely, any representation arises in this way. 

We will need the following easy lemma: 

Lemma C.27. For any derivation D of a Lie algebra 9, there is a unique 
derivation i5 of the associative algebra U(9) such that i5 o 1 = 1 o D. 

PROOF. Define an endomorphism of the tensor algebra of 9 which is zero on 
the zeroth tensor power, and on the nth tensor power is 

X1 ®···®XnHDX1 ®X2 ®···®Xn + X1 ®DX2®···®Xn + ... 
+ X 1 ®X2 ®···®DXn. 

This is well defined, since it is multilinear in each factor, and it is easily checked 
to be a derivation of the tensor algebra; denote it by D'. To see that D' passes 
to the quotient U(9) one checks routinely that it vanishes on generators for 
the ideal of relations. 0 

Exercise C.28. If D is an inner derivation by an element X in 9, verify that i> 
is the inner derivation by the element 1(X). 

It is a fact that the canonical map 1 embeds 9 in U(9). The Poincare
Birkhoff-Witt theorem asserts that, in fact, if U(9) is filtered with the nth piece 
generated by all products of at most n products of elements of 1(9), then the 
associated graded ring is the symmetric algebra on 9. Equivalently, if X 1 • ••. , 

X is a basis for 9, then the monomials X~' · ... · x~· form a basis for U(9). We 
d~ not need this theorem, but we will use the fact that these monomials 
generate U (9); this follows by a simple induction, using the equations X, · X1 -

X1 · X 1 = [X1, X1] to rearrange the order in products. 

APPENDIX D 

Cartan Subalgebras 

§D.1: The existence of Cartan subalgebras 
§D.2: On the structure of semisimple Lie algebras 
§D.3: The conjugacy of Cartan subalgebras 
§D.4: On the Weyl group 

Our task here is to prove the basic general facts that were stated in Lecture 
14 about the decomposition of a semisimple Lie algebra 9 into a Cartan 
algebra l) and a sum of root spaces 9 .. , including the existence of such l) and 
its uniqueness up to conjugation. 

§D.1. The Existence of Cartan Subalgebras 

Note that if we have a decomposition as in Lecture 14, and His any element 
of l) such that rx(H) # 0 for all roots rx, then l) is determined by H: l) = c(H), 
where 

c(H) ={XE 9: [H, X] = O}. (D.l) 

The elements of l) with this property are called regular. They form a Zariski 
open subset of l): the complement of the union of the hyperplanes defined by 
the equations rx = 0. In particular, regular elements are dense in l). If H E l) is 
not regular, then c(H) is larger than l), since it contains other root spaces. Note 
that all elements off) are also semisimple, i.e., they are equal to their semisimple 
parts. 

Of course, this discussion depends on knowing the decomposition which 
we are trying to prove. But it suggests one way to construct and characterize 
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Cartan subalgebras: they should be subalgebras of the form c(H) for some 
semisimple element H, that are minimal in some sense. We can measure this 
minimality simply by dimension. 

Definition D.2. The rank n of a semisimple Lie algebra g is the minimum of 
the dimension of c(H) as H varies over all semisimple elements of g. A 
semisimple element H is called regular if c(H) has dimension n. A Cartan 
subalgebra of 9 is an abelian subalgebra all of whose elements are semisimple, 
and that is not contained in any larger such subalgebra. Our first main goal 
is 

Proposition D.3. If H is regular, then c(H) is a Cartan subalgebra. 

For any semisimple element H, 9 decomposes into eigenspaces for the 
adjoint action of H: 

9 = EB 9;.(H) = c(H) E0 EB 9.i.(H), 
;. .l.;FO 

(D.4) 

where 9;.(H) = {XE 9: [H, X] = A.X}, and c(H) = 90(H). There is a similar 
decomposition even if H (or 9) is not semisimple, but replacing the eigenspace 
by 9;.(H) = {XE 9: (ad(H) - A.J)k(X) = 0 for large k}. 

Exercise D.5. Without assuming that H is semisimple, show that 
[9;.(H), 9µ(H)] c 9.i.+µ(H), by proving the identity 

(ad(H) - (A. + µ)J)k([X, Y]) 

= ± (~) [(ad(H) - A.l}'(X), (ad(H) - µJ)k-l(Y)] 
j=O } 

Let us (temporarily) call an arbitrary element HE 9 regular if dim(g0(H)) ::;; 
dim(90(X)) for all X E g. 

Lemma D.6. If H is regular, then 90 (H) is abelian. 

PROOF. Consider how the Killing form B respects the decomposition (D.4)
again knowing what to expect from Lecture 14. If Y is in 9.i.(H) with A. =I 0, 
then ad(Y) maps each eigenspace to a different eigenspace (by Exercise D.5), 
as does ad(Y) o ad(X) for XE 90(H). The trace of such an endomorphism is 
zero, i.e., B(X, Y) = 0 for such X and Y. 

Because g is semisimple, B is nondegenerate. Since we have shown that 
90(H) is perpendicular to the other weight spaces, it follows that the restriction 
of B to g0(H) is nondegenerate. 

Consider the Jordan decomposition X = X, + Xn ofan element X in 9o(H). 
Since ad(X ) = ad(X)n is nilpotent, Xn belongs to g0(H), so X, = X - Xn does 
also. Then ~d(X,) = ad(X), is nilpotent and semisimple on g0(H), so it vanishes 
there. But this already shows that ad(X) = ad(X,) + ad(Xn) is a nilpotent 
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endomorphism of g0 (H) for any X E g0(H). Hence, by Engel's theorem, g0(H) 
is nilpotent, so by Lie's theorem 9 has a basis in which the endomorphisms 
ad(X) are upper-triangular for all X E g0(H). It follows that for any elements 
in 9o(H), the trace of products of their adjoint actions on 9 is independent of 
the order of composition. In particular, for X, Y, Z E 90(H), the trace of 
ad([X, Y]) o ad(Z) on 9 is zero, i.e., B([X, Y], Z]) = 0. But since Bis non
degenerate on 90(H), [X, Y] = 0, so 90(H) is abelian. o 

It follows immediately that g0(H) is not contained in any larger abelian 
subalgebra, since any element that commutes with H is in 90(H) by defini
tio~. To finish the proof of the proposition we must prove the following lemma, 
which also shows that the temporary definition of regular agrees with the first 
one: 

Lemma D.7. If His regular, then any element of 90 (H) is semisimple. 

PROOF. We saw that if Xis in 90(H) then Xn is also. Using the same basis as 
in th~ preceding proof, we see that ad(Xn) has a strictly upper-triangular 
matnx. Hence, B(Xn, Y) = Tr(ad(Xn) o ad(Y)) = 0 for all Yin 90(H). By the 
nondegeneracy again, Xn = o, as required. o 

It follows from Lemma D.6 that if His regular, and Xis in g0(H), then 
9o(X) contains g0(H), and they are equal exactly when Xis also regular. 

Problem D.8*. Prove that if His regular in any Lie algebra, then 9 (H) is a 
nilpotent Lie algebra. 

0 

Exer.cise D.~. Show tha~ ~ subalgebra is a Cartan subalgebra if and only if it 
consists entirely of sem1S1mple elements and is contained in no larger sub
algebra with this property. 

§D.2. On the Structure of Semisimple Lie Algebras 

Let l) be a Cartan subalgebra of a semisimple Lie algebra g. Under the adjoint 
representation it consists of commuting semisimple endomorphisms. It is then 
a standard linear algebra fact that this action is simultaneously diagonalizable: 

(D.10) 

where the eigenspaces are parametrized by some set of linear forms IX E l)* 
including IX = 0, and where ' 

g« = {XE 9: [H, X] = 1X(H)' X for all HE l)}. 

In particular, 90 is the centralizer of l) in g. The nonzero IX are called roots. 
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Lemma D.11. g = 90· 

PROOF. Since g is abelian, g is contained in 90 • If g corresponds to a regular 
element H, i.e., g = 90 (H), anything that commutes with H must being, so 9o 
is contained in g. D 

If g is constructed from the regular element H, then by definition 9;.(!f_) is 
the direct sum of those 9« for which 1X(H) = A.. Note that the decompos1tton 
(D.10) may be finer than (D.4), but that if His chosen to be an elemen~ _of Q 
such that the 1X(H) are distinct for distinct roots IX, then the decompos1ttons 
coincide. 

Our next task is to study the other eigenspaces 9«. As before, we have 
[9 9 ] c 9 It follows that if IX + p =I- 0, and if X e 9« and Ye 9p. then «• p «+P· . . 
ad(X) o ad(Y) is nilpotent, so its trace is zero, 1.e., 

If 1X + p =I- 0, then B(9«, 9p) = 0. (D.12) 

Now for any root IX, if - IX were not a root, this implies 9« is perpendicular 
to all 9p (including p = 0), which would contradict the nondegeneracy of B. 
So we get one of the facts asserted in Lecture 14: 

If IX is a root, then - IX is also a root. (D.13) 

Moreover, the pairing B: 9« x 9-« -+ IC is nondegenerate. Another fact also 
follows easily: 

The roots IX span g*. (D.14) 

For if not there would be a nonzero Xe g with 1X(X) = 0 for all roots IX, which 
means that [X, Y] = O for all Yin all 9«. But then X is in the center of 9, 
which is zero by semisimplicity of 9. 

Now let IX be a root, let X e 9«, Ye 9-«• and take any H e g. Then 

B(H, [X, Y]) = B([H, X], Y) = 1X(H)B(X, Y). (D.15) 

This cannot be zero for all H, X, and Y without contradicting what we have 
just proved. In particular, 

For any root IX, [9«, 9-«J =I- 0. (D.16) 

Let T. e g be the element dual to IX via the pairing B on g, i.e., characterized 
by the identity B(T,,, H) = 1X(H) for all Hing. We claim next that 

[X, Y] = B(X, Y) T,, for all X e 9«• Ye 9-«· (D.17) 

To see it, pair both sides with an arbitrary element H of g. Using (D.15), we 
have 

B(H, B(X, Y)T,,) = B(H, T,,)B(X, Y) = 1X(H)B(X, Y) = B(H, [X, Y]), 

as required. Next we show that 
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IX(T,,) =I- 0. (D.18) 

Suppose this were false. Choose X e 9«, Ye 9-« such that B(X, Y) = c =I- 0. 
Then [X, Y] = cT,,, so X, Y, and T,, span a Lie subalgebra s of 9. If 1X(T,,) = 0, 
s is solvable. Since [X, Y] e ~s. it follows that ad([X, Y]) is a nilpotent 
endomorphism of 9. But then T,, is nilpotent; but all elements of g are semi
simple, so T,, = 0, a contradiction. This gives another claim from Lecture 14: 

For any root IX, [[9«, 9-«J, 9«] =I- 0. (D.19) 

For with X and Y as above, [[X, Y], X] = c · [T,,, X] = c · 1X(T,,)X =I- 0. 
The last remaining fact about root spaces left unproved from Lecture 14 is 

For any root IX, 9« is one-dimensional. (D.20) 

By what we have seen, we can find X e 9«, Ye 9-«• so that H = [X, Y] =I- 0, 
and 1X(H) =I- 0. Adjusting by scalars, they generate a subalgebra s isomorphic 
to sl2 IC, with standard basis H, X, Y, so in particular 1X(H) = 2. Consider 
the adjoint action of s on the sum V = g EB EB 9k«• the sum over all nonzero 
complex multiples klX of IX. From what we know about the weights of repre
sentations of s, the only k that can occur are integral multiples of}. 

Now s acts trivially on Ker(IX) c g c V, and it acts irreducibly on s c V. 
Together these cover the zero weight space g, since H is not in Ker(IX). So the 
only even weights occurring can be 0 and ± 2. In particular, 

21X cannot be a root. (D.21) 

But this implies that }IX cannot be a root, which says that 1 is not a weight 
occurring in V. But then there can be no other representations occurring in 
V, i.e., V = Ker( IX) EB s, which proves (D.20). D 

§D.3. The Conjugacy of Cartan Subalgebras 

We show that any two Cartan subalgebras are conjugate by an inner auto
morphism of the adjoint subgroup of Aut(9). Fix one Cartan subalgebra g, 
and consider the decomposition (D.10). For any element X in a root space 9«, 
ad(X) e 91(9) is nilpotent, as we have seen, so its exponential exp(ad(X)) e 
GL(9) is just a finite polynomial in ad(X). Set 

e(X) = exp(ad(X)). 

Let E(g) be the subgroup of Aut(9) generated by all such e(X). We want to 
prove now that this group is independent of the choice ofg, and that all Cartan 
subalgebras are conjugate by elements in this group. (We will see in the next 
section that E(g) is the connected component of Aut(9), i.e., that it is the adjoint 
group.) The proof will be a kind of complex algebraic analogue of the corre
sponding argument for compact tori that was sketched in Lecture 26. 
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Theorem D.22. Let g and g' be two Cartan subalgebras of g. Then (i) E@ = 
E(g'), and (ii) there is an element g E E = E(g) so that g(g) = g'. 

PROOF. Fix a Cartan subalgebra g. Let ix 1, ••• , ix, be its roots. Consider the 
mapping 

F: g,.
1 

x · · · x g,.r x g-+ g 

defined by F(X 1, ••. , X,, H) = e(Xi) o · · · o e(X,)(H). Note that F is a poly
nomial mapping from one complex vector space to another of the same 
dimension. We want to show that not only is the image of F dense, but that, 
if greg denotes the set of regular elements in g, then 

F(g,.
1 

x · · · x g,.r x grcg) contains a Zariski open set, (D.23) 

i.e., it contains the complement of a hypersurface defined by a polynomial 
equation. 

Suppose that this claim is proved. It follows that for any other Cartan 
subalgebra g', the corresponding image also contains a Zariski open set. But 
two nonempty Zariski open sets always meet. In this case this means E(g) · gr•g 
meets E(g') · g~cg· That is, there are g E E@, HE grcg• g' E E(g'), H' E g~•g such 
that g(H) = g'(H'). But then since H and H' are regular, 

g(g) = g(g0 (H)) = 90 (g(H)) = 9o(g'(H')) = g'(go(H')) = g'(g'). 

This proves the conjugacy of g and g'. And since 

E(g) = gE(g)g-1 = E(g(g)) = E(g'(g')) = g' E(g')(g'f1 = E(g'), 

both statements of the theorem are proved. 0 

To prove (D.23), we use a special case of a very general fact from basic 
algebraic geometry: if F: cN-+ CN is a polynomial mapping whose derivative 
dF* IP is invertible at some point P, then for any nonempty Zariski open set 
U c CN, F(U) contains a nonempty Zariski open set. For the proof we refer 
to any basic algebraic geometry text, e.g., [Ha], or to [Bour, VI, App. A]. So 
it suffices to show that dF*IP is surjective at a point P = (0, ... , 0, H), where 
H E gr•s· This is a simple calculation: 

Exercise D.24*. Show that dF*IP(O, ... , 0, Z) = Z for Z E g, and that 
dF*IP(O, .. . , 0, Y, 0, ... , 0, 0) = ad(Y)(H) = -ad(H)(Y) for YE g~,· Co~cl~de 
that the image of dF I contains g and each root space, so dF* IP is surJect1ve. 

*P 0 

We remark that although this section, like the preceding appendix, was 
written for complex Lie algebras, a simple "base change" argument shows 
that the results extend to Lie algebras over any algebraically closed field of 
characteristic zero. Some, such as Cartan's criterion, then follow over any field 
of characteristic zero, by extending to an algebraic closure. 
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§D.4. On the Weyl Group 

In this section we complete the proofs of some of the general facts about the 
Weyl group that were stated in Lectures 14 and 21. The notation will be as in 
those sections: IE is the r_eal spa~e generated by the roots R; m is the Weyl 
group, generated by the mvolut10ns W,. of IE determined by 

w (p) = p - P(H )IX = p - 2 (p, IX) 
" " ( ) IX, IX, IX 

where ( , ) denotes the Killing form (or any inner product invariant for the 
Weyl group). We consider a decomposition 

R = R+ uR-

into positive and negative roots, given by some 1: IE-+ IR as in Lecture 14 and 
we let S c R+ be the set of simple roots for this decomposition. Note th~t for 
any Win the Weyl group, 

R = W(R+) u W(R-) 

is the decomposition into positive and negative roots for the linear map 
l 0

• w-1
• We want to_ show th~t e~ery decomposition arises this way. To prove 

this we need some simple vanat10ns of the ideas in §21.1. 

Lemma D.25. If ix is a simple root, then W permutes all the other positive roots . w + {} .. , 1.e., .. maps R \ ix to itself 

PROOF. This follows from the expression of positive roots as sums p = "m IX· 
. h h . L.., I " 

wit t e ix, s1mpl~, and the m1 non-negative integers. If ix = ix;. W,.(p) differs 
from P only by an mtegral multiple of ix1• If p ¥- ix1, W,.(p) still has some positive 
coefficients, so it must be a positive root. D 

. Let mo be the subgroup of m generated by the W,., as ix varies over the 
simple roots. (We will soon see that m

0 
= m.) 

Lemma D.26. Any root P can be written in the form p = W(ix) for some ix E s 
and WE m 0 . In particular, R = m(S). 

PROOF. It suffices to do ~his f?~ positive roots, since m
0

(ix) = m
0 

W,.(ix) = 
- ~o(ix) for any ix ES. If P 1s positive but not simple, write p = L m

1
ix

1 
as above, 

and mduct on t~e level ~.m1 • As in the previous lemma, there is a simple root 
Y so that it;,(P) is a positive root of lower level. By induction, w (p) = W(ix) 
for ix ES and WE m 0 , sop= it;, W(ix), as required. Y D 

~mma D.27. The Wey/ group is generated by the reflections in the simple roots, 
I.e., m = m0 . 
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PROOF. Given a root p, we must show that Wp is in !!D0 • By the preceding 
lemma, write P = U(ex) for some U e !!D0 , ex e S. Then 

Wp = Wu<lll = U· W.,· u-1, 

since both sides act the same on P and Pl.. 
(D.28) 

D 

Proposition D.29. The Weyl group acts simply transitively on the set of decom
positions of R into positive and negative roots. 

PROOF. For the transitivity, suppose R = Q+ u Q- is another decomposition. 
We induct on the number of roots that are in R+ but not in Q+. If this 
number is zero, then R+ = Q+. Otherwise there must be some simple root ex 
that is not in Q+. It suffices to prove that W.,(Q+) has more roots in common 
with R+ than Q+ does, for then by induction we can write W.,(Q+) = W(R+) 
for some We !ID, so Q+ = W., W(R+), as required. In fact, we have by Lemma 
D.25, 

W.,(Q+) 11 R+ => W.,(Q+ 11 R+) u {ex} = W.,(Q+ 11 R+ u {-ex}), 

and this proves the assertion. 
For simple transitivity, we must show that if an element W in the Weyl 

group takes R+ to itself, then it must be the identity. If not, write Was a 
product of reflections in simple roots, 

W= W1 · ••• ·W,, 

with r minimal, with Wi the reflection in the simple root p1• Let ex = p,. It 
suffices to show that 

W1 · .. · · W, = W1 · · .. · W.-1 W.+1 · · · · · W.-1 

for some s, 1 ~ s ~ r - 2. Let U, = W.+1 · ... · w,_1. This equation is equivalent 
to the equation W. u. W, = u., or u. W, u.-1 = W., or U,(ex) = P. (since by 
(D.28), Wu<lll = U W., u-1 

). 

To finish the proof we must find ans so that U,(ex) = P •. Note that U,_ 2 (ex) = 
w,_1 (ex) is a positive root (by Lemma D.25, since p,_1 #ex). On the other hand, 
the hypothesis implies that 

U0 (ex) = W1 · ... · W.-1 (ex)= W1 · ... · W,( -ex)= - W(ex) 

is a negative root. So there must be some s with 1 ~ s ~ r - 2 such that U,(ex) 
is positive and U,_1 (ex) is negative. This means that W. takes the positive root 
U,(ex) to the negative root U,_1 (ex). But by Lemma D.25 again, this can happen 
only if W. is the reflection in the root U,(ex), i.e., P. = U,(ex). D 

The simple roots S for a decomposition R = R+ u R- are called a basis for 
the roots. Since Sand R+ determine each other, the proposition is equivalent 
to the assertion that the Wey/ group acts simply transitively on the set of bases. 

Exercise D.30. For We !ID, set l(W) = #(R+ 11 W(R-)). Show that W can be 
written as a product of l(W) reflections in simple roots, but no fewer. 
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If nil denotes the hyperplane in IE perpendicular to the root ex, the (closed) 
Wey/ chambers are the closures of the connected components of the comple
ment IE\ U nil of these hyperplanes. For a decomposition R = R+ u R- with 
simple roots S, the set 

"Ir= {Pe IE: (p, ex)~ 0, Vex e R+} = {p e IE: (p, ex)~ 0, Vex e S} 

is one of these Weyl chambers. The fact that every Wey! chamber arises this 
way follows from 

Lemma D.31. For any p in IE there is some We !ID such that (W(p), ex)~ 0 
for all ex e S. 

PROOF. Let p be half the sum of the positive roots. It follows from Lemma 
D.25 that W.,(p) = p - ex for any simple root ex. Take Win !ID to maximize the 
inner product (W(p), p). Then for all ex e S, 

(W., W(p), p) = (W(p), W.,p) = (W(p), p - ex)= (W(p), p) - (W(p), ex) 

cannot be larger than (W(p), p), so (W(p), ex) ~ 0. D 

Thus, the orbit of one Wey! chamber by the Wey! group covers IE, so all 
Wey! chambers are conjugate to each other by the action of the Wey! group. 
So all arise by partitioning R into positive and negative roots. This partition
ing is uniquely determined by the Wey! chamber. In fact, the walls of a Wey! 
chamber are the hyperplanes nil as ex varies over the n corresponding simple 
roots, n = dim(IE). From the proposition we have: 

Corollary D.32. The Weyl group acts simply transitively on Weyl chambers. 

Exercise D.33*. Let <f> be the group of automorphisms of IE that map R to 
itself. 

(i) Show that !ID is a normal subgroup of m. 
(ii) Let 9l be the automorphisms in <f> which map a given set of simple roots 

S to itself. Show that <f> is a semidirect product of !ID and 91. 
(iii) Show that 9l is isomorphic to the group of automorphisms of the Dynkin 

diagram. 
(iv) Compute 9l for each of the simple groups. 

Our next goal is to show that the lattice Z { Hll: ex e R} c () has a basis of 
elements H" where ex varies over the simple roots. This is analogous to the 
statement we have proved that the root lattice AR in()* is generated by simple 
roots. The first statement can be deduced from the second, using the Killing. 
form to map () to ()*, H 1--+ (H, - ), where ( , ) is the Killing form. We saw in 
Lecture 14 that this map takes H" to ex' = (2/(ex, ex))ex. Given a root system R 
in a Euclidean space IE, to each root ex one can define its coroot ex' in IE by the 
formula 
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' 2 Q( =--QC. 
(oc, oc) 

Let R' = {oc': ac ER} be the set of coroots. For any 0 ¥- ac E (), set oc' = 
(2/(oc, oc))oc, and for any oc, {J E ()*, set np" = 2(fJ, oc)/(oc, oc). Let R = R+ u R- be 
a decomposition of R into positive and negative roots, and let S be the 
corresponding set of simple positive roots. 

Lemma D.34. (i) The set R' of coroots forms a root system in IE. 
(ii) The set S' = {oc': ac ES} is a set of simple roots for R'. 

(iii) For ac, {JES, nfl'«' = n«fl' 

PROOF. It is a straightforward calculation that nfl'«' = n«fl' It follows by another 
short calculation that if~ denotes the reflection in the hyperplane perpendic
ular to ac, then ~.({J') = (~({J))'. The four defining properties of a root system 
specified in §21.l follow immediately from this. It is clear that if R+ is the 
set of roots in R that are positive for a functional l on IE, then (R+y = 
{oc': ac ER+} is the corresponding set of positive roots for R'. Roots in R+ are 
those that can be written as a nonnegative linear combinations of roots in 
S, and this property characterizes S. Since oc' is a positive multiple of ac for any 
ac, it follows that roots in (R+)' are those that can be written as non-negative 
linear combinations of roots in S', which proves (ii). 0 

The root system R' is called the dual of R. 

Exercise D.35. Find the dual of each type of simple root system. 

Proposition D.36. (i} The elements HJor ac ES generate the lattice Z { H": ac ER}. 
(ii) If w" E ()are defined by the property that w"(Hp) = fJ«,fl• then the elements 

w" generate the weight lattice Aw. 
(iii) The nonnegative integral linear combinations of the fundamental weights 

w" are precisely the weights in "fl/' n Aw, where "fl/' is the closed Weyl chamber 
corresponding to R +. 

PROOF. The isomorphism () -+ ()* given by the Killing form takes H" to the 
coroot oc'. By the lemma and the fact that all positive roots are sums of simple 
roots, the set {oc': ac ES} spans the same lattice as {oc': ac ER}. This proves (i), 
and it follows that the weights are precisely those elements in () that take 
integral values on the set {H": ac ES}. The rest of the proposition follows, 
noting that 

"fl/'= {PE IE: {J(H") ~ 0 for all ac ER+} 

= {{J E IE: {J(H") ~ 0 for all Q( ES}. 0 

If we identify () with ()* by means of the Killing form, we can regard ~ as 
a group of automorphisms of(). By means of this, the reflection ~ corre-
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sponding to a root ac becomes the automorphism of() which takes an element 
H to H - oc(H) · H". We have a last debt (Fact 14.11) to pay about the Weyl 
group: 

Proposition D.37. Every element of the Weyl group is induced by an auto
morphism of g which maps l) to itself. 

PROOF. It suffices to produce the generating involutions ~ in this way. The 
claim is that if X" and Y.. are generators of g" and g_" as usual, then 8" = 
e(X")e( - Y,.)e(X") is such an automorphism, where, as in the preceding 
section, we write e(X) for exp(ad(X)). We must show that 8..(H) = H -
ac(H) • H" for all H in l). It suffices to do this for H with oc(H) = 0, and for 
H = H", since such together span [). If oc(H) = 0, then [X"' H] = [ Y,., H] = 0, 
so 8"(H) = H, which takes care of this case. For H = H", it suffices to calculate 
on thesubalgebras" = C{H", X", Y,.} ~ sl2C,and this is a simple calculation: 

Exercise D.38. (a) For sl2 C with its standard basis, show that 8 = 
e(X)e(Y)e(X) maps H to -H, X to -Y, and Y to -X. 

(b) Show that if G is a Lie group with Lie algebra g, then 8" is induced by 
the element exp{in(X" - Y,.)) of G. 

We need a refinement of the preceding calculation. For a root ac and a 
nonzero complex number t, define two automorphisms of g: 

8"(t) = e(t · X") o e( -(t)-1 
• Y,.) o e(t · X") 

and 

Cl>"(t) = 8"(t) 0 8"( -1). 

Lemma D.39. The automorphism Cl>"(t) is the identity on l), and for any root p, 
it is multiplication by tfl<H.> on 9p· 

PROOF. Look first in sl2 , with X = X", Y = Y,.. It is simplest to calculate in 
the covering SL2 C of the adjoint group. Here 8..(t) lifts to 

- (1 t) ( 1 exp(tX)·exp(-t 1 Y)·exp(tX) = · _1 0 1 -t 

= ( _~-1 ~). 
so Cl>"(t) lifts to 

(_~-1 ~}(~ -~)=(~ t~1)· 
To see how Cl>"(t) acts on gp. for P ¥- ±ac, it suffices to consider the action of 
the SL2 C corresponding to s" = C { H", X", Y..} on the a-string through p, i.e., 
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on ffigp+k We know that this is an irreducible representation of SL2 C, and 

the weight of 9a is /3(Ha). It follows that ( ~ t~1) acts by multiplication by 

tP<H.>. Similarly on Q it acts by multiplication by t0 = 1. O 

Putting the preceding results together, we can give a description of the 
automorphism group Aut(g) of g. Let E = E@ be the subgroup generated by 
elements exp(ad(Z)), as Z varies over root spaces 9a• oc ¥- 0, as in §D.3. 
Let G be the adjoint form of g, so we have 

E c G c Aut0 (g) c Aut(g), 

where Aut0 (g) is the connected component of the identity. 

Proposition D.40. We have E = G = Aut0 (g), and Aut(g)/Aut0 (g) is isomorphic 
to the automorphism group of the Dynkin diagram. 

PROOF. Fix the Cartan algebra Q and positive roots R+. Let Aut(g)' be the 
group of automorphisms of g that map Q to itself, and similarly denote by 
primes the intersections of subgroups with Aut(g)'. We leave it to the reader 
to construct a finite subgroup K of Aut(g)' which maps isomorphically onto 
the automorphism group of the Dynkin diagram, and which meets G only in 
the identity element (see Exercise 22.25 for a direct case-by-case approach, 
or use (21.25)). It then suffices to prove that Aut(g) is a semidirect product of 
E and K, i.e., that Aut(g) = E · K. 

To see this, start with any element a in Aut(g). By Theorem D.22, there is 
a r 1 e E with a@= r 1@. Then a 1 = r11 ·a is in Aut(g)'. By Proposition D.29 
and the proof of Proposition D.37 there is a r 2 e E' so that a2 = t21 

• a1 maps 
R+ to R+. This element may permute the simple roots, but there is some k e K 
so that a3 = a2 • k-1 is the identity on the set of simple roots. Now a3 is the 
identity on Q and it is multiplication by some nonzero scalar cp on each 9p· 
By the nonsingularity of the Cartan matrix there is some nonzero complex 
number t and some A. e AR so that cp = tl<H,> for every simple root {3. From 
Lemma D.39 it follows that there is at in E' so that t and a3 agree on each 
9p for each simple root p, and both are the identity on Q. But it then follows 
from the uniqueness theorem (Claim 21.25) that a3 = r. Hence 

a= t 1 ·r2 ·a3 ·keE·K, 

as required. 0 

Exercise D.41. Show that any two Borel subalgebras of a semisimple Lie 
algebra are conjugate. 

APPENDIX E 

Ado's and Levi's Theorems 

§E.1: Levi's theorem 
§E.2: Ado's theorem 

§E.1. Levi's Theorem 

The object of this section is to prove Levi's theorem: 

r:;:r::;h~!~;:t; ;~al~ie algebra with radical r. Then there is a subalgebra 

PROOF. There are several simple redu f F' 
nonzero ideal of g that is r 1 c ions: irs~, we may assume there is no 
ideal by · d t. p ?per~ contamed m r. For if a were such an 

' m uc ion on the d1mens1on of I 1 ~ompl~mentary tor/a, and this subalgebra hg~s ~h~ ~: tah~:;h ~ asubalg~b~a 
i: ~a~~~:~a~~ :~ ~::a~si~~eb~is~:;~~~;;i~c~3ot~rwise ~r is a prso~~~~:ai 
[g r] - r for if [ ] 0 h · · e may also assume that 
add si~e 'g/r is s::n~si:pl:, ~e t~:b~~~~:er;p~ese~tation factors throug? g/~, 
the required I. g as a complement, which is 

<p e~w V = gl(g) is a g-module via the adjoint representation: for X e g and 

X. <p = [ad(X), <p] = ad(X) o <p - <po ad(X). 

In other words, for x, y e g and <p e v, 

(X. <p)(Y) = [X, <p(Y)] - <p([X, Y]). 
(E.2) 
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The trick is to consider the following subspaces of V: 

C ={<Pe V: q>(9) ct and <Plr is multiplication by a scalar} 

u 
B ={<Pe V: q>(9) ct and q>(t) = 0} 
u 
A= {ad(X): Xe r}. 

These are easily checked to be 9-submodules of V, included in each other as 
indicated. And C/B is a trivial 9-module of rank 1, i.e. C/B = IC, by taking <P 
in C to the scalar A. such that <Plr =A.· I. (Note that C/B i= 0 since one can find 
an endomorphism of the vector space 9 which is the identity on r and zero on 
a vector space complement to r.) We claim also that 

9 · C c B and t · C c A. (E.3) 

To prove these let <P e C, and assume the restriction of <P to r is multiplication 
by the scalar c. If X e 9 and Ye r, then by (E.2), 

(X·q>)(Y) = [X, cY] - c[X, Y] = 0, 

so X · <P e B; this proves the first inclusion. If X e t, and Ye 9, then 

[X, q>(Y)] e [r, r] = 0, so 

(X·q>)(Y) = -q>([X, Y]) = [-cX, Y], 

and X · <P = ad( - cX) is in A, which proves the second inclusion. 
This means that the map C/A-+ C/B =IC is a surjection of 9/r-modules, 

which must split since 9/r is semisimple. In other words, there is an element 
<P in C such that <Plr = id. and 9 ·<Pis contained in A. Now let 

I= {XE 9: x. <P = O}. 

It is easy to check that I is a subalgebra of 9. We must verify: (i) I flt = O; and 
(ii) 9 =I+ r. For the first, if Xis a nonzero element of the intersection, then, 
as we saw above, X · <P = ad( - X), so ad(X) = 0. Hence [9, X] = 0, so IC· X 
is a nonzero ideal in r, contradicting our assumptions. For (ii), let X e 9. Then 
X · <P is in A, so X · <P = ad(Y) for some Yin t. We saw that ad(Y) = - Y · q>, 
so (X + Y) · <P = 0, i.e., X + Y belongs to I. Hence X = (X + Y) - Y is in the 

sum of I and r. D 

This proves the existence of Levi subalgebras I of any Lie algebra. We have 
no need to prove the companion fact that any two Levi subalgebras are 

conjugate, cf. [Bour, I, §6.8]. 

§E.2. Ado's Theorem 
The goal is Ado's theorem that every Lie algebra is linear, i.e., is ~ su~algebra 
of 9I(V) for some vector space V, which is the same as saymg it has a 
finite-dimensional faithful representation. As in the previous section, there are 
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some easy steps, and then a clever argument is needed to create an appropriate 
representation. 

We start, of course, with the adjoint representation, which is about the only 
representation we have for an abstract Lie algebra 9. Since the kernel of the 
adjoint representation is the center c of 9, it suffices to find a representation 
of 9 which is faithful on c. For then the sum of this representation and the 
adjoint representation is a faithful representation of 9. 

The abelian Lie algebra c has a faithful representation by nilpotent matrices. 
For example, when c = IC is one dimensional, one can take the representation 
A.1-+ (8 ~); in general a direct sum of such representations will suffice. 

We can choose a sequence of subalgebras 

c = 90 c 91 c · · · c 9p = n c 9p+t c · · · c 99 = r c 99+1 = 9, 

each an ideal in the next, with n = Nil(9) the largest nilpotent ideal of 9, and 
t = Rad(9) the largest solvable ideal; as in §9.1 we may assume dim(9tf 91_i) = 1 
for i :s; q. The plan is to start with a faithful representation of 90 , and construct 
successively representations of each 91 which are faithful on c. The conditions 
we will need to make this step are that 91 = 91_ 1 $ 1)1 with 91_ 1 a solvable ideal 
in 91 and 1)1 a subalgebra of 91• We can achieve this by taking 1)1 to be any 
one-dimensional vector space complementary to 91_ 1 for i :s; q. Similarly to 
go from r to 9, use Levi's theorem to write 9 = r EB f) for a subalgebra f). 

Call a representation p of a Lie algebra 9 a nilrepresentation if p(X) is a 
nilpotent endomorphism for every X in Nil(9). A stronger version of Ado's 
theorem is: 

Theorem E.4. Every Lie algebra has a faithful finite-dimensional 
nilrepresentation. 

The crucial step is: 

Proposition E.5. Let 9 be a Lie algebra which is a direct sum of a solvable ideal 
a and a subalgebra l). Let a be a nilrepresentation of a. Then there is a 
representation p of 9 such that 

f) fl Ker(p) c Ker( a). 

If Nil(9) = Nil( a) or Nil(9) = 9, then p may be taken to be a nilrepresentation. 

Ado's theorem follows readily from this proposition. Starting with a faithful 
representation Po of c = 90 by nilpotent matrices, one uses the proposition to 
construct successively nilrepresentations p1 of 91• The displayed condition 
assures that they are all faithful on c. Note that if i :s; p, Nil(91) = 9i. while if 
i > p we have Nil(91) = Nil(g1_i) = n by Corollary C.26, so the hypotheses 
assure that all representations can be taken to be nilrepresentations. O 

Suppose g = a E9 l) is a Lie algebra which is a direct sum of an ideal a and 
. a subalgebra f:). Let U = U(a) be the universal enveloping algebra of a. Any 
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Y in a determines a linear endomorphism Ly of U, which is simply left 
multiplication by the image of Y in U. Any X in g determines an inner 
derivation Y1-+ [X, Y] of a; let Dx be the corresponding derivation of U, cf. 
Lemma C.27. For each X in g we define a linear mapping Tx: U-+ U by 
writing X = Y + Z with Yin a and Z in I), and setting 

Tx =Ly+ Dz. 

A straightforward calculation shows that 
(E.6) 

'I[x,,x,1 = Tx, o Tx, - Tx, o Tx,· 

If gl(U) denotes the infinite-dimensional Lie algebra of endomorphisms of U, 
with the usual bracket [A, B] =Ao B - Bo A, this means that the mapping 
a-+ gl(U), X 1-+ Tx, is a homomorphism of Lie algebras. 

Suppose a: a-+ gl(V) is a finite-dimensional representation of a. Let 
ii: U-+ End(V) be the corresponding homomorphism of algebras, as in §C.3, 

and let I be the kernel of ii. The basic step is: 

Lemma E.7. Assume that a is solvable. Suppose I is an ideal of U = U(a) 
satisfying the following two properties: (i) U /I is finite dimensional; (ii) the image 
of every element in Nil(a) in U/l is nilpotent. Then there is an ideal Jc I of U 
satisfying properties (i) and (ii), and also (iii) for every derivation D of a, the 
corresponding derivation of U maps J into itself. 

Granting this lemma, we prove Proposition E.5 as follows. From the 
representation a we constructed an ideal I in U = U(a), with U/l c End(V), 
so condition (i) is satisfied; the fact that a is a nilrepresentation implies that 
condition (ii) also holds. Let J be an ideal whose existence is asserted in the 
lemma. Because of (iii), each of the endomorphisms Tx of U maps J into itself, 
and so determines an endomorphism Tx of U / J. By (E.6), the mapping X 1-+ Tx 
is a homomorphism of Lie algebras from g to gl(U/J). This is the representa-

tion p required in the proposition. 
We first verify that Ker(p) n a c Ker( a). Note that if Xis in a, then Tx is 

just left multiplication by X on U /J, so if p(X) vanishes, the image of X in U 
must be in J; since Jc I, X maps to zero in U/l c End(V), so a(X) = 0, as 

required. 
It remains to show that, under either of the additional hypotheses, p is a 

nilrepresentation. Note first that each X in a acts on U /J by left multiplication, 
and if Xis in Nil( a), by (ii) its image in U /J is nilpotent. Thus p(X) is nilpotent 
for every X in Nil(a). In particular, this shows that p is a nilrepresentation 

when Nil(g) = Nil(a). 
In the other case, g is nilpotent, so a is also nilpotent, and the preceding 

shows that p(Y) is nilpotent for every Y in a. We need a slightly stronger 
assertion than this. Let A c End(U /J) be the associative algebra (with unit) 
generated by p(g), and let Pc A be the two-sided ideal generated by p(a). The 
claim is that P is a nilpotent ideal, i.e., that pk = P · ... · P = 0 for some k. To 
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see this, note that there is a k such that zero; this follows from Engel's th every.product of k elements of p(a) is 
triangular form. To show that ;kor:~· ~uttmg the action in strictly upper
elements in p(g) which contains at'l ; k e m~t show that ~ny product of 
is in p(g) and y is in p(a), we have eas mem ers from p(a) ts zero. But if x 

x·y=y·x+[x,y], 

and [x, y] is in p(a), so terms from ( ) be . 
until the product is a sum of product a ~a~ . s~cces~tvely moved to the left 

Now if g is nilpotent for an Zs. eac e~mmng with k terms from p( a). 
morphism of g, and hen~e of a ~ m I) ~or ~n g), ad(Z) is _a n~lpotent endo
that the corresponding deriv~ti~~h~ Le~~n~z.rul~ for denvattons, it follows 
although the power required to annihilate a ts mlpotent on any element, 
However, since U/J is finite dimen . 1 . n element ~ay be unbounded. 
derivation of u /J · ·1 siona' it follows readily that the induced 
I). Given X in g t:~i~~~e~t. in+otzher ~hords, p(Z) is nilpotent for every Z in 
th . .. - Wit y E a and z E I) Ch k . 

e precedmg paragraph, and choose l ' . oose as m 
p(X)k' = (p(Y) + p(Z))k' vanishes . so that p(Z) = ?· It follows that 
summand e~ther has p(Y) occur;i~;~; ~~:n kth~ latter ts expanded, each 
somewhere m the product. t times, or else p(Z)' occurs 

D 

To finish, we must prove Lemma E 7 L . 
algebra U/I generated by the image of l'n~\Qs?e the tw?-stded ideal in the 
image of a, the same argument as in th t a . mce U I I ts generated by the 
Qk = 0 for some k Writ Q - K/I" .e paragraph before last shows that 

1 1 
: e - 1or an ideal K of U, and set J - Kk Cl 1 

~ ' and we claim that J satisfies the conditions (i)-(iii) of thel . ear y 
o see that J has finite codimension 1 . emma. 

of a in U and choose mon. I '. et x 1 • ••• ' xn be a basts for the image 
possible since U I K is finite d~cmpenos~noml tTalhs P1 :uch that P1(x,) is in K; this is 

10na . ere1ore p (x )k i · J h · 
of the X1 satisfy monic equations in U/J s· U . ' ' ' s m 'sot e images 

1, 
1 

• • mce ts generated by them · l 
X1 • ••• • x;, 1t follows readily that U/J . . onom1a s elements. ts spanned by a fimte number of these 

Property (ii) is clear from the constru f t . . 
element of Nil( a), some power xP is in I b c ton, or. tf x e U t~ t~e image of an 

F (" ') 'f . . y assumpt10n, so xPk ts m Jk c Kk - J 
or 111 • 1 D ts a denvation of a si · . - · 

Proposition C.24 that D maps a int N'I( ~c~~ ts solvable,. tt follows from 
U therefore maps u into K from wh~ h \ ~-11 e corr~spondmg derivation of ' tc t o ows that 1t maps J = Kk to itself. 

D 

As before, the results of this section I . 
real, a faithful representation (com l a)so apply to r~al Lte algebras: if g is 
matically a faithf I I . p ex representation of g ® C is auto

u rea representation, and embeds g is some gln!R. 



APPENDIX F 

Invariant Theory for the 
Classical Groups 

The object is to derive just enough invariant theory for the classical groups to verify 
the claims made in the text. We follow a classical, constructive approach, using an 
identity of Capelli. 

§F.1: The polynomial invariants 
§F.2: Applications to symplectic and orthogonal groups 
§F.3: Proof of Capelli's identity 

§F.1. The Polynomial Invariants 

Let V =IC", regarded as the standard representation of GL"C, so of any of 
the subgroups G = SL" IC, On IC, SO" IC, or Sp" IC (for n even); e i • ... , en denotes 
a standard basis for V, compatible with one of the standard realizations of G. 
The goal is to find those polynomials F(x<ll, ... , x<ml) of m variables on V 
which are invariant by G. For example, if Q: V ® V-+ IC is the bilinear form 
determining the orthogonal or symplectic group, the polynomials Q(x<1>, xU1) 

are invariants. In addition, if G is a subgroup of SL(V), the bracket 
[x<i1 x<21 ... x<"l], given by the determinant, 

[x01 x121 . . . x1">] = det(xj'1), (F.1) 

is an invariant of G. The first fundamental theorem of invariant theory for 
these groups asserts that any invariant is a polynomial function of these basic 
invariants. This is the goal of this appendix. 

We denote by Sd the homogeneous polynomial functions of degreed on V, 
i.e., Sd = Symd(V•). For an m-tuple d =(di, ... , dm) of non-negative integers, 
let sd = S4 I ® ... ® Sdm be the polynomials on yem which are homogeneous of 
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degree d1 in the ith variable. Note that 

the sum over all d with di + d2 + · · · + dm = k, which identifies elements of 
Sd with functions of m-tuples in V. We write F(x<ll, ... , x<ml) for such a poly
nomial, with usual abbreviations to F(x) form = 1, F(x, y) form = 2, F(x, y, z) 
form= 3. 

When m = 1 we have already found the invariants: for SL"C and Sp"C all 
symmetric powers sd are irreducible, so there are no invariants unless d = o· 
for sonic the kernel of the map sd-+ sd-2 (contracting with the given quadrati~ 
form Q) is irreducible, so by induction one sees that there are no invariants if 
d is odd, whereas if d is even, the invariants are scalar multiples of the 
polynomial Q(x, x)dl2. (These results will be proved again below.) 

In theory one could follow procedures outlined in the text to decompose 
the tensor products of the known representations sd· to find out how the trivial 
representation occurs in Sd. Except in small degrees and dimensions, however, 
this is rather impractical. 

To describe the G-invariant polynomials in s•, we will carry out an 
induction, first with respect to the total degree }:; d1, then with respect to 
the individual multidegrees ordered antilexicographically: d' < d means that 
either L d; < }:; d1 or }:; d; = }:; d1 and the largest i for which d; and d1 differ 
has d; < d1• 

For integers i and j between 1 and m there is a canonical "polarization" 
map DIJ which takes a polynomial F of m variables to the polynomial 

D ( ) - f 10 oF 
IJ F - L.. xk ~ u1. 

k=i uxk 
(F.2) 

This operator lowers the jth degree by 1, while it increases the ith degree by 
1, i.e., it maps s• to Sd', where d' is the same sequence of multi-indices as d, 
but with dj = d1 - 1 and d; = d1 + 1; if d1 = 0 set Sd' = 0. When j = i, note 
that by Euler's formula, D11 is multiplication by d1• Note also that these DIJ are 
derivations: 

(F.3) 

These maps may be described intrinsically in terms of the multilinear 
algebra of Appendix B, as follows. Since only two factors are involved, it 
suffices to look at the map D12 when there are only two factors. In this case 
the map 

is defined by 

e 

Ui "·. ·u4 ® Wi · ... · w.,H}:; ui · .. " ud· w1 ® wi · ... · ~1 · ... · w.,. 
1-i 
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Equivalently, D12 is the composite 

sd ® se-+ sd ®(St® se-t) = (Sd ®st)® se-t-+ sd+t ® se-t, 

where the second is determined by the product sd ®st -+ sd+t of symmetric 
powers, and the first by the dual map se-+ st® se-t (which takes F(x) to 
Lkxk ® aF/axk). This shows, ifthe~e were any doubt, ~hat the D;1 ~re maps of 
GL(V)-modules, i.e., that they are mdependent of choice of coordmates. 

Note that D11 a DIJ maps s• to itself. Explicitly, for d = (d, e), 

D2t 0 DdF) = LYk_aa (L: x,aaF) 
k xk 1 Y1 

aF a2F 
= LYk-a + LYkX'ay ax k Yk k,l I k 

a2F 
= e·F + LYkX1-a a . 

k,1 Y1 xk 

A first idea is that, i(F is an invariant by a group G c GL(V), then DIJ(F) will 
also be an invariant, and these invariants will be known by induction if i < j, 
so one can describe the possible D11 a D1j(F) that arise. If one also knew the 
second term in the above expression for this, one could determine e · F, which 
suffices to determine F, provided e is not zero. 

In general, it is not evident how to proceed, but in case dim V = 2, and 
d = (d, e), this can idea can be carried through as follows. Some of the terms 
in the second term also occur in the expression 

( 
a2

F a2
F ) 

[xy]·Q(F) = (XtY2 - X 2Yt)· axtaY2 - ax2aY1 . 

The rest occur in ( aF) a2 F 
de·F = d· L;y,-a = L:xky,-a a · 

Y1 xk Y1 

Comparing the preceding three formulas gives the identity 

(d + l)e· F = D21 a D12(F) + [xy] ·!l(F). (F.4) 

From this identity it is easy to find all invariants for one of our subgroups 
of G L2 IC and for functions of two variables. We will do it for G = S02 IC, as 
it illustrates the ideas of the general case-even though G is not semisimple, 
and the results can be seen directly by identifying G with IC*. We assume the 
simple case of functions of one variable has been checked: only multiples_ of 
Q(x, x)df2 are invariant. Suppose F e Sd ® se is an invariant of G = S02 IC, with 
e > 0. We claim that Fis a polynomial in the bracket function [xy] and the 
polynomials Q(x, y), Q(x, x), and Q(y, y). Either directly or fr?m th: ab?~e 
identity one sees that Q(F) is also an S021C-invariant, and by mduct1on 1t is 
a polynomial in these basic polynomials. Similarly by the antilexicographic 
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induction we know that D12(F) is a polynomial in the the basic invariants. It 
therefore suffices to verify that D2t preserves polynomials in the four basic 
invariants. By the derivation property (F.3) it is enough to compute the effect 
of D21 on the basic invariants, and this is easy: 

D2 t [xy] = 0, D2 t Q(x, y) = Q(y, y), 

D2 t Q(x, x) = 2Q(x, y), D21 Q(y, y) = 0. 

By (F.4) we conclude that (d + l)e ·Fis a polynomial in the basic invariants, 
which concludes the proof. 

This plan of attack, in fact, extends to find all polynomial invariants of all 
the classical subgroups of GL(V). What is needed is an appropriate general
ization of the identity (F.4). About a century ago Capelli found such an 
identity. The clue is to write (F.4) in the more suggestive form 

'

Du+ 1 D12,(F) = [xy] ·Q(F), 
D2t D22 

where the determinant on the left is evaluated by expanding as usual, but being 
careful to read the composition of operators from left to right, since they do 
not commute. 

This is the formula which generalizes. If Fis a function of m variables from 
V, and dim V = m, define, following Cayley, 

amp 
Q(F) = L sgn(a) a (1) • • a (m) ; 

ae Sm Xa(l) • • • Xa(m) 

in symbols, n is given by the determinant 

a 
ax< 11 

m 

The Capelli identity is the formula: 

Du+ m - 1 D12 Dim 

(F.5) 

D2t D22 + m - 2 
D2m = [x<t> x<21 ... x<m>]. n. (F.6) 

This is an identity of operators acting on functions F = F(x< 11, ... , x<m>) of m 
variables, with m = n = dim V, and as always the determinant is expanded 
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with compositions of operators reading from left to right. Note the important 
corollary: if the number of variables is greater than the dimension, m > n, then 

D11 + m - 1 Du Dim I 
D21 D22 + m - 2 D~m ,(F) = 0. (F.7) 

Dm1 Dm2 Dmm 

This follows by regarding F as a function on icm which is independent of the 
last m - n coordinates. Since O(F) = 0 for such a function, (F.7) follows from 
(F.6). 

We will prove Capelli's identity in §F.3. Now we use it to compute invariants. 
Let K denote the operator on the left-hand side of these Capelli identities. The 
expansion of K has a main diagonal term, the product of the diagonal entries 
D11 + m - i, which are scalars on multihomogeneous functions. Note that in 
any other product of the expansion, the last nondiagonal term which occurs 
is one of the D11 with i < j. Since the diagonal terms commute with the others, 
we can group the products that precede a given Du into one operator, so we can 
write, for F E s•, 

K(F) = p · F - :L PuDu(F), 
I<} 

where p = (d1 + m - 1) · (d2 + m - 2) · ... · (dm), and each Pu is a linear com
bination of compositions of various Dab· Capelli's identities say that 

ifm > n; (F.8) 

p · F = L PuDu(F) + [x<1> ... x<m>] · O(F) if m = n. (F.9) 
I<} 

Just as in the above special case, if F is an invariant of a group G, each 
Du(F) is also an invariant in a s•· where we will know all such invariants by 
induction. If G is a subgroup of SL(V), and m = n, then O(F) is also an 
invariant, as follows from the definition or Capelli's identity. 

Invariants for SLn C. 

Let Fe s• be an invariant of the group SLnlC. We must show that F can be 
written as a polynomial in the basic bracket polynomials. In particular, if 
m < n, we must verify that there are no invariants except the constants in 
s0 = IC. This is a simple consequence of the fact that for a dense open set of 
m-tuples of vectors-namely, those which are linearly independent-there is 
an automorphism of SLnlC taking them to a fixed m-tuple of independent 
vectors, say e1, ... , em. So an invariant function must take the same value on 
all such m-tuples. By the density, it must be constant. 
Form~ n, we proceed by induction as indicated above. All DuF are known 

to be invariants (for i < j), as is O(F), so these are polynomials in the brackets. 
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To complete the proof, by Capelli's identities (F.8) and (F.9), it suffices to see 
that the operators Dab all take brackets to scalar multiples of brackets. This 
is an obvious calculation: Dab takes a bracket [x<1i> x<12> ... x(l"l] to zero if b 
does not appear as one of the superscripts, or to the bracket with the variable 
x<bJ replaced by x<aJ if x<bJ does occur; the latter is zero if x<a> also occurs and 
is a bracket otherwise. To avoid repeats, one needs only consider brackets 
where the superscripts are increasing. This completes the proof of 

Proposition F.10. Polynomial invariants F(x<1l, ... , x<m>) of SLnlC can be written 
as polynomials in the brackets 

[x(I,) x<12> ... x<1n>J, 1 ~ ii < ii < ... < in ~ m. 

Exercise F.11. Show that the only polynomial invariants of GLnlC are the 
constants. 

Invariants for SpnC 

Let r = n/2, and let Q be the skew form defining the symplectic group SpnlC, 
e.g. Q(x, y) = L~=i x1y,+1 - x,+1Yi in standard coordinates. Note first that the 
brackets are not needed: 

Exercise F.12*. Show that the bracket [x<1l x<2> ... x<n>] is equal to 

L sgn(u)Q(x«•OJJ, xa(2)). Q(x(a(3)), xa(4)) ..... Q(x(a(n-1)), xa<n>), 

where the sum is over all permutations u of {l, ... , n} such that u(2i - 1) < 
u(2i) for 1 ~ i ~ rand u(i - 1) < u(i) for 2 ~ i ~ r. 

Let r,,m be the assertion that any SpnlC-invariant polynomial in m variables 
from en can be written as a polynomial in the basic polynomials Q(x<0, xU>). 
The antilexicographic induction using the Capelli identities is the same as 
before, and gives the implications 

r,,n-l => r,,n => r,,m for all m > n. 

The only variation here is to verify that the operators Dab preserve polynomials 
in the basic invariants, and DabQ(x<IJ, xU>) is again zero or another basic 
invariant. 

The situation where m < n is a little more complicated than that for the 
special linear group, however-which is hardly surprising since there are 
nontrivial invariants for SpnlC in this range. Note that r,,m implies r,,m' for 

--;n, < m, so it suffices to prove r,,n-1. This is done by induction on r = n/2, i.e., 
by proving the implication r,,n_-f => r,,n-1. To prove this, consider the restric
tion F' of an invariant polynomial Fon V = en to the subspace V' = icn-2 

perpendicular to the plane spanned bye, and en. This restriction is an invariant 
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of the group Spn_21C. By induction, F' is a polynomial in the basic invariants. 
Since Q(x(l1, xUl) restricts to the corresponding invariant on V', there is a 
polynomial in these Q(x<1>, xUl) such that F and this polynomial have the same 
restriction to V'. Subtracting, it suffices to prove that if an invariant F restricts 
to zero on V', then F is zero. 

We show first that the restriction of F to the larger subspace W = V' EB Ce, 
must be zero. Fix y01, ... , y<ml in V', and consider the function of m complex 
variables. 

The fact that Fis invariant by automorphisms in Sp"IC which fix V' and send 
e, to tX. e, and en to tX-1 . en shows that 

Since his a polynomial, it must be constant, so h(t1, ... , tm) = h(O, ... , 0) = 0, 
as required. 

Since F is invariant, it follows that the restriction of F to any hyperplane 
of the form g · W, for any g e Sp"IC is zero. It is not hard to verify that every 
hyperplane in IC" has this form. So any n - 1 vectors lie in such an hyperplane, 
and so F is identically zero. This finishes the proof for the symplectic group: 

Proposition F.13. Polynomial invariants F(x01, •.. , x<ml) of SpnlC can be written 
as polynomials in functions 

Q(x<O, xUl), 1 ~ i < j ~ m. 

Invariants for SOnC 

This time brackets may be needed, as well as the functions given by the 
symmetric form Q, but products of brackets are not required: 

Exercise F.14. Prove the identity 

[x<11 x< 21 ... x<"1] · [y<1l y< 21 ... y<"1] = IQ(x<11, yUl)l1s1,Jsn 

for any variables x<1l, ... , x<nl, y< 11, ... , y<nl. 

Let r,,m be the assertion that any SO"IC-invariant polynomial in m variables 
can be written as a polynomial in the brackets and the invariants Q(x<11, xUI), 
where we take Q(x, y) = L'i=t x1y1 to be the form determining the orthogonal 
group. The proofs of the implications r,,n-t = T,," = r,,m for m > n are exactly 
as in the preceding cases, and require no further comment. As before, it 
remains to prove T,,"-1, and, by induction on n, it suffices to prove the 
implication r,,n_-/ = T,,"-1. 
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Let V' = icn-i be the orthogonal complement to en. The restriction F' to 
V' of an SO"IC-invariant polynomial Fis S0"_1 IC-invariant, and by induction 
we know it is a polynomial in the restrictions of the basic polynomials 
Q(x<11, xW) and in the bracket [x<11 ... x<"-11]. An apparent snag is met here, 
however, since this bracket is not the restriction of an invariant on V. By 
Exercise F.14, we can write 

F' = A + B. [x<1l ... x<n-t>J, 

where A and B are polynomials in the Q's alone. In particular, A and B are 
even, i.e., they are invariants of the full orthogonal group 0"_

1 
IC. But F' is also 

even, since any element of On_1 IC is the restriction of some element in SO IC 
(mapping en to ±en). Since the bracket is taken to minus itself by au;o
morphisms of determinant -1, we must have F' = A. This means that we can 
subtract a polynomial in the invariants Q(x<1>, xW) from F, so we can assume 
F' = 0. Therefore, the restriction of F to any hyperplane of the form g · V', 
g e SO"e, is zero. But it is easy to verify that (n - 1)-tuples in such hyperplanes 
form an open dense subset of all (n - 1)-tuples in IC" (the condition is that 
there be an orthogonal vector e with Q(e · e) =F 0). This proves: 

Proposition F.15. Polynomial invariants F(x<1l, ... , x<ml) of SOne can be written 
as polynomials in functions 

Q(x<il, xU1) and [x(li> x(lil ... xO">], 

with 1 ~ i ~ j ~ m, 1 ~ i 1 < i2 < · · · < in ~ m. 

Exercise F.16*. Show that the polynomial invariants of One can be written 
as polynomials in the functions Q(x<O, x<l>), 1 ~ i < j ~ m. Show that odd 
polynomial invariants of One, i.e., polynomials F which are taken to det(g) · F 
by gin one, can be written as linear combinations of even invariants times 
brackets. 

§F.2. Applications to Symplectic and 
Orthogonal Groups 

We consider the symplectic group Spne and the orthogonal group One 
together, letting Q denote the corresponding skew or symmetric form. The 
results in the first section, applied to the case d = (1, ... , 1), say that the 
invariants in (V*)®m are all polynomials in the polynomials Q(x<O, xU>), and 
by degree considerations m must be even, and they are all linear combinations 
of products 

(F.17) 

I 
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for permutations a of { 1, ... , m} such that a(2i - 1) < a(2i) for 1 :S: i :s; m/2. 
Regarding Q E v• ® v•' these are obtained from the invariant Q ® ... ® Q 
(m/2 times) by permuting the factors. In other words, one pairs off the m 
components, and inserts Qin the place indicated by each pair. 

The form Q gives an isomorphism of V with v•, which takes v to Q(v, -). 
Using this we can find all invariants of tensor products (V*)®k ® (V)®', via 

the isomorphism 

(V*)®<HIJ = (V*)®k ® (V*)®' ~ (V*)®k ® (V)®'. 

They are linear combinations of the images of the above invariants under this 
identification. To see what they are, we just need to see what happens to Q 
under the isomorphisms V* ® V* ~ V* ® Vand V* ® V* ~ V ® V: 

Exercise F.18. (i) Verify that under the canonical isomorphism 

V* ® V* ~ V* ® V = Hom(V, V) = End(V) 

Q maps to the identity endomorphism. (ii) Let t/I be the image of Q under the 
canonical isomorphism V* ® V* ~ V ® V. Verify that 

r 

t/I = L, e1 ® e,+1 - e,+1 ® e1 for G = SpnC, n = 2r; 
1=1 

n 
t/I = L e1 ® e1 for G = On IC. 

1=1 

For the applications in Lectures 17 and 19, we need only the case I= k, 
but we want to reinterpret these invariants by way of the canonical isomorphism 

(V*)®2d ~ (V*)®d ® (V)®d ~ Hom(V®d, V®d) = End(V®d). (F.19) 

In §§17.3 and 19.5 we defined endomorphisms 81 e End(V®d) for each pair I 
of integers from { 1, ... , d}; for I the first pair, 

81(V1 ® V2 ® V3 ® ... ® vd) = Q(v1, V2)·t/I ® V3 ® ... ® vd; 

the case for general I is a permutation of this. We claim that an invariant in 
(V*)® 2d of the form (F.17) is taken by the isomorphism (F.19) to a composition 
of operators 8

1 
and permutations a in 6d. This is simply a matter of unraveling 

the definitions, which may be simpler to follow pictorially than notationally. 
The invariant in (F.17) is described by pairing the integers from 1 to 2d. These 
pairs are either from the first d, the last d, or one of each. For example, if d = 5 
the pairings could be as indicated: 
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for the pairs {l, 3}, {8, 9}, {2, 6}, {4, 7}, {5, 10}. Composing before and after 
with permutations, this can be changed to 

0 0 

I I I 0 0 

The corresponding endomorphism of v®s becomes 81,I = {l, 2}. The general 
invariant one gets can be expressed in the form 

ao81 081 0· 00 081 or 
1 2 p ' 

where a and r permute the d factors, and the pairs JJ are the first p pairs: 
IJ = {4 - 1, 2j}. 

Now let A be the subalgebra of the ring End(V®d) generated by all 
g ® · · · ® g for gin the group G = SpnlC (or OnC). By the simplicity of the 
group, we know that A is a semisimple algebra of endomorphisms. We have 
just computed that the ring B of commutators of A is the ring generated by 
all permutations in 6d and the operators 81• By the general theory of semi
simple algebras, cf. §6.2, A must be the commutator algebra of B. In English, 
any endomorphism of V®d which commutes with permutations and with the 
operators 81 must be a finite linear combination of operators of the form 
g ® · · · ® g for g in G. This is precisely the fact from invariant theory that was 
used in the text. 

We remark that a similar procedure can be used for SLnlC, but since in this 
case V and V* are not isomorphic, to do this one must first do some more 
work to compute invariants in tensor products of covariant and contra
variant factors. The idea is simple enough: use the canonical isomorphism 
V ~ N-1(V*) to turn each V factor into several v• factors. Tracing through 
the invariants by this procedure is rather complicated, however, and we refer 
to [Wet, 11.8] for details. We did not need this analysis, because it was easy 
to work the commutator story the other way around, showing that the 
commutator oflC[6d] is the algebra generated by all g ® · · · ® g for gin SL"IC 
(or GL"C). This can, in turn, be run backwards: 

Exercise F.20*. Use the fact that the the GL"IC-invariants of End(V®d) are 
generated by permutations to show that the GLnlC-invariants of(V*)®d ® V®d 
are obtained by pairing off the factors and contracting. There are no GLnlC
invariants in (V*)®k ® V®' if k =FI. For SL"IC-invariants, one also has deter-
~ minant factors when k - I is a multiple of the dimension. 

We also omit any discussion of the second fundamental theorems, which 
describe the relations among the generators of the rings of invariants (but see 
the discussions at the ends of Lectures 17 and 19). These results can also be 
found in [Wel]. 
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§F.3. Proof of Capelli's Identity 

The proof is not essentially different from the case m = 2, once one has a good 
notational scheme to keep track of the algebraic manipulations which come 
about because the basic operators DiJ do not commute with each other. A 
convenient way to do this is as follows. For indices i1, j 1, ... , iP, jP between 1 
and m define an operator ll.1 1 ll.1 1 ... ll.1 1 which takes a function F of m 

' 1 1 2 2 p p 

variables x<1>, ... , x<m> to the function 

n oPF 
ll. ll. (F) - '\" x<1i> · · x<1p> · -~--~ iiJ1 • • • lpJp - t.., k, • • · kp ~xui>. . ~xUpl · 

k,,. . .,kp=l u k1 ... u kp 

For p = 1, ll.iJ is just the operator DiJ, but for p > 1, this is not the composition 
of the operators ll.1k1k. Note that the order of the terms in the expression 
ll.1 1 .•. ll.1 1 is unimportant. 

1

We can"f'orm determinants of p x p matrices with entries these ll.11 , which 
act on functions by expanding the determinant as usual, with each of the p! 
products operating as above. For example, for them x m matrix (ll.iJ), 

lll.ijl(F) = L sgn(u) · ll.1a(l)ll.2,,(2) .... ll.ma(m)(F). 
aeeim 

The matrix (ll.iJ) is a product of matrices (x~>) · (o/ox<tJ), and taking deter
minants gives the 

Lemma F.21. Form= n, lll.iJl(F) = [x<ll ... x<m>J · Q(F). 

To prove Capelli's identity (F.6), then, we must prove the following identity 
of operators on functions F(x<ll, ... , x<m>): 

D11 + m - 1 D12 Dim ll.11 ll.12 

D21 D22 + m- 2 D2m ll.21 ll.22 
= 

Dm1 Dm2 Dmm fl.ml /l.m2 

This is a formal identity, based on the simple identities: 

Dqp 0 Dab = Dqpll.ab = ll.qpll.ab if P '#- a; 

Dqp o Dab = ll.qpll.ab + Dqb if p = a. 

Similarly, if p '#- ak for all k, then 

while if there is just one k with p = ak, then 

/l.lm 

ll.2m (F.22) 

fl.mm 

(F.23) 

Dqp 0 ll.a,b 1 • • • /l.a,b, = /l.qp/l.a,b 1 • • • /l.a,b, + /l.a 1b1 • • · /l.qbk • • • /l.a,b, (F.24) 

where in the last term the L\qbk replaces L\akbk· 

We prove (F.22) by showing inductively that all r x r minors of the two 
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matrices of (F.22) which are taken from the last r columns are equal (as 
?perators on functions Fas always). This is obvious when r = l. We suppose 
it has been proved for r = m - p, and show it for r + l. By induction, we may 
replace the last r columns of the matrix on the left by the last r columns of the 
m~trix on the ~ght. T?e difference of a minor on the left and the corresponding 
mmor on the nght wdl then be a maximal minor of the matrix 

Dip - ll.1p ll.lp+l /l.lm 
D2p - ll.2p L\2p+l /l.2m 

DPP - fl.PP + r ll.pp+l fl.pm ' 

Dmp - fl.mp L\mp+l fl.mm 

so we must show that all maximal minors of this matrix are zero. Suppose the 
minor chosen is that using the q1th rows, for 1 :s;; q0 < q

1 
< · · · < q, :s;; m. 

Expanding along the left column, this determinant is 

(F.25) 

where Ek = DqkP - ll.qkp if qk '#- p, and Ek = DPP - fl.PP + r if qk = p, and Mk is 
the corresponding cofactor (r x r) determinant: 

(F.26) 

To show that (F.25) is zero, there are two cases. In the first case, the pth 
row is not included in the minor, i.e., q1 '#- p for all i. In this case each term 
E,M, is zero, since E, = Dq,p - ll.q,p• and all the products in the expansion of 
M, are of the form ll.a,b, ... ll.a,b, with all a1 '#- p, and the assertion follows from 
(F.23). 

In the second case, the pth row is included, i.e., qk = p for some k. As in the 
first case, (DPP - ll.pp)Mk = 0, and since Ek = DPP - fl.PP + r, we have 

EtMk = r·Mk. 

We clai~ th~t each of the other terms E1M1, for i ¥- k, is equal to ( - l)k-1+t Mk, 
from which it follows that the alternating sum in (F.25) is zero. When M, is 
written out as in (F.26), and it is multiplied by E 1 = D - ll. an application q,p q,p• 
of (F.24) shows that one gets the same determinant as (F.26), but expanded 
with the q1th row moved between the qk-t th and the qk+1 th rows. This 
transposition of rows accounts for the sign (- l)k-1+1, yielding E,M, = 
(- l)k-l+lMk, as required. D 

Exercise F.27. Find a GL(V)-linear surjection from sd• ® ... ® sd" onto 
Nv• ® Sd,-t ® ··· ® Sd"-1 that realizes the map F1-+[x<ll ... x<">] ·Q(F). 
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Note: Usually answers or references are given only for more theoretical exercises, or 

those which may be referred to elsewhere. 

Lecture 1 
h b·1· NV® /\"-kv-+ 

(1 3) The hypotheses ensure that /\"Vis trivial, and t e 1 mear map 
!\~V = c is a perfect pairing, i.e., it makes each space the dual of the other, cf. §B.3. 

(1.4) For (b), take the function oc to the function oc', where oc'(g) = oc(g-'). 

(1.13) Yes. See Exercise 6.18. 
· · · d V. 1 t H- · V V* be the conJ'ugate linear (1 14) If H is a Herm1t1an mner pro uct on ' e · -+ _ - . . d 

m.ap given by v1-+ H(v, . ). If H' is another, the composite (HT' 0 Hts hnear, an a 
G-homomorphism if H and H' are G-invariant. Apply Schur's lemma. 

Lecture 2 
(2.3) For a general formula expressing complete symmetric polyn~mials an~ elemen
tary symmetric polynomials in terms of sums of powers, see Exercise A.32(v1). 

(2.4) Look at the induced action on NV. 
1 

(2.7) v®• = uea E9 u•eb E9 vec, with a= b = w·-1 + (-1)"), and c = 3(2" + (- lr- ). 

(2.25) Answers: (i) U E9 V E9 U' E9 V'; (ii) U E9 ve
2 

E9 V' E9 W. 

(2.29) The regular representation will do. 

(2.33) For (c) use characters or the isomorphism 
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HomG(V ® W, U) ~ HomG(W, V* ® U). 

(2.34) Schur's lemma applies to L. 
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(2.35) Apply the preceding exercise, with L0 given by a matrix ofindeterminates. For 
details, see [Se2, §2.2]. 

(2.36) Show that (x, x) = 1, and compute the sum of the squares of these representa
tions. Reference: [Se2, §3.2]. 

(2.37) If <p is the character of an irreducible representation, and x is the character of 
V, let a.= (cp, x"), and consider the power series 

00 1 00 
_ 1 IClcp(C) 

.~o a.t" = IGI Jo~ IClcp(C)x(C)"t" = fGI ~ (1 - x(C)t) · 

Here C runs over conjugacy classes. Since x(C) = dim(V) only for C = [e], the right
hand side is a nontrivial rational function; in particular a. cannot be zero for all positive 
n. 

(2.38) This is another theorem of Burnside. If C is a conjugacy class in G, 
<p = Liecg: V-+ Vis a G-map, so multiplication by a scalar Ac, and Ac·dim V = 
Trace(cp) = ICI · Xv(C). The Ac are algebraic integers, since the elements I,.ce,, as C 
varies over the conjugacy classes, generate the center of the group ring Z[G], which 
is a finitely generated abelian group. Now 

L ICI · Xv(C)xv(C) = IGI, 
c 

so I GI/dim V =Le Ac' Xv(C) is an algebraic integer. In fact, the dimension of V divides 
the index of the center of G, cf. [Se2, p. 53]. 

(2.39) In case the character xis Z-valued, the equation L lx(g)l2 = IGI shows that IGI 
is the sum of !GI non-negative integers, one of which, lx(e)i2, is greater than 1, so at 
least one must be 0. In general, the values of x are algebraic integers, since they are 
sums of roots of unity. Let x1 , •.. x .. be the characters obtained from x by the action 
of the Galois group Gal(Q/Q) (or Gal(C/Q)) on x; these characters are also char
acters of irreducible representations of G. Now if x(g) ¥- 0, then Tii x1(g) is a nonzero 
integer, so ITI1x1(g)l 2

;;:::: 1. Since the arithmetic mean is at least the geometric mean, 
Li lx1(g)l 2 

;;:::: m. Therefore, 

.. 
mlGI = L I lx1(g)l2

;;:::: mlGI, 
1=1 geG 

and we must have equality for every g e G. In particular, if d is the degree of the 
representation, md2 =Li IX1(e)l2 = m, sod= 1. 

Lecture 3 

(3.25) See §5.1. 

(3.26) If H c G is the subgroup of order 7, there are three one-dimensional representa
tions from G/H, and two three-dimensional representations induced from H. For 
generalizations, see [Se2, §8.2]. 
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(3.30) W is embedded in the space of W-valued functions on G by sending w ~ W to 
the function which takes he H to h · w and all other cosets to zero. Note that 1f {g .. } 
is a set of coset representatives, the map fr-+ Lg .. ® f(g;; 1

) gives an isomorphism from 

Hom8 (CG, W) to CG ®cH W. 

(3.32) For (b), identify the right-hand side with the trace of an endomorphism of CG. 
For (c), take <p to be the characteristic function of an element g and apply (b). 

(3.33) F is the determinant of left multiplication by the elemen~ a.= ~ x,e, E CG on 
the regular representation, and FP is the determinant of le.ft ~ult1phcat10n by a on the 
irreducible CG-module V. corresponding to p. The factonzat1on of F follows from the 
decomposition of the reg~lar represen.tation. !he irre~ucibility ~f FP follow~ ~rom the 
irreducibility of a matrix whose entnes are mdetermmates, usmg Pr.opos1t1on. 3.29. 
Fixing gin G, set the variables x. = 1 and xh = 0 for.h "# g; the coefficient of x, m the 
determinant of left multiplication by 1 + x,e, on V,, is Xp(g). 

(3.34) See Exercises 3.8 and 3.9. 

(3.38) v can be replaced by v•; V ® V = S~m2 V EB 0~ V contains at. most one copy 
of the trivial representation. If Sym2 V contams the tr1V1al representation, then 

!GI= L Xsymzv(g) = !(LXv(g)
2 + LXv(g

2
)). 

g•G 

Otherwise, the right-hand side is zero; similarly for NV. Note that if Xv is real, then 

LXv(g)2 =!GI. 

(3.41) Reference: [Se2, §13.2]. 

(3.42) Reference: [Ja-Ke, p. 12]. 

(3.43) Consider the endomorphism J ® J of V ® W. 

(3.44) For G = l/3, the rank of RR(G) is 2, whereas that of R(G) is 3. 

(3.45) See [Se2, §12] for details. 

Lecture 4 

(4.4) Right multiplication by a gives a map Aab-+ Aba, and right multiplication by b 
gives a map back. The composites are multiplications by nonzero s~~lar~. Mo~ 
generally, if A= CG is a group algebra, call ~n element a°'." .La,e, Herm1t~n 1f c2 =a, 
i e a = a If a and b are idempotents which are Herm1t1an, then Aab = Aba. 
... g-1 ,. 

(4.6) A basis for V(4_ 1• o = C64 • cA is v2 , .. ., v4, where 

vJ = L e, - L eh. 
g(d)=J h(l)=J 

Note that v4 = cA, v
1 
+ · · · + v4 = O, and g · vJ = v1 if g(j) = i. A basis for V c C

4 
is V2, 

V where v = eJ - eJ-l ·For the cases> l, use (4.10) or see (4.43). 
.. ., 4• J 

(4.13) Note that the hook lengths of the boxes in the first column are the numbers 11, 
... , It. Induct from the diagram obtained by omitting the first column. 
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(4.14) Induct as in the preceding exercise by removing the first column, considering 
separately the cases when the remaining diagram is one of the exceptions. 

(4.15) Frobenius [Frol] gives these and analogous formulas for A.= (d - 3, 3), 
(d - 3, 1, 1, 1), (d - 4, 4), .... 

(4.16) Using Frobenius'sformula, thecoefficientofxt• " .. · xbn.1 ·(x1 + .. · + xf)can 
be nonzero only if 11 = d,so A. has the prescribed form; the coefficient ofx~- 1x~- 2 

• ••• • xt 
in .1(0, x2 , ... , xt) is (- l)t-t. 

(4.19) See Exercise 4.51 for a general procedure for decomposing tensor products. 

(4.20) Use Frobenius's formula as in Exercise 4.16 to show that XA(g) = ( - lf-1 x,,(h), 
whereµ = (A.2 - l, A.3 - 1, ... , At - 1) and h e 6 4 _ 91 is the product of cycles oflengths 
q2, ...• q,. 

(4.24) If A.<µ use the anti-involution • of A induced by the map gr-+g- 1
, g e 6 4, 

~~tingthateA = (aAbA)• = 6AaA = bAaA,SO(CA'X'Cµ)• = e,.·1.·eA = b,.'(a,.·1_·bA)·aA = 

(4.40) Note that the t/l/s are related to the x/s by the same equations as the symmetric 
polynomials HA's to the Schur polynomials S/s, cf. (A.9) in the appendix. The equation 
(A.5) for the S/s in terms of the HA's therefore implies the determinantal formula. 

(4.43) Use Frobenius reciprocity and (4.42) to prove the general formula. To prove 
that V(4- •• 1,. .. , 1, ~ NV, argue by induction on d. Note that the restriction of NV splits 
into a sum of two exterior powers of the standard representation, and from anything 
but a hook one can remove at least three boxes. 

(4.44) The induced representation of VA by the inclusion of 6 4 in 64+'" is VA o l1<m>· 
Use the transitivity of induction, Exercise 3.16(b). 

(4.45) For (a), see [Jam, pp. 79-83]. For (b), using (4.33), the coefficient of XG in 
(xj + · · · + x;') · p<J> is the sum of the coefficients of XGxj'" in p<J>, summing over those 
i for which a1 ~ m. Use the determinantal formula to write XA(g) as a sum I: ± x,,(h), 
and show that the µ which occur are those obtained by removing skew hooks. 
Reference: [Boe, pp. 192-196]. 

(4.46) See Exercise A.11. In fact, this condition is equivalent to the condition that 
KpA ~KP,. for all p, or to the condition that UA is isomorphic to U,. EB W, for some 
representation W, cf. [L-V]. 

(4.47) References: For the first construction see [Jam], [Ja-Ke]; for the second, see 
[Pe2]. 

(4.48) There are several ways to do this: (i) Use the methods of this lecture to show 
that the value of the character of u;, on the class C1 is [.9(P<ll)]A'• where .9 is the 
involution defined in Exercise A.32. Then apply Lemma A.26. (ii) Show that UJ. ® U' 
is isomorphic to UA' and use Corollary 4.39. (iii) Use Exercise 4.40 or 4.44. 

...._ (4.49) Use Exercise A.32(v). 

(4.51) (a) Note that XA = L1WA(i)e(I). and e(I) = (1/z(i))Lw.(i)x .. where e(I) is the 
characteristic function of the conjugacy class C(I). Therefore, 

XAXµ = ~ wA(i)w,.(i)e(I), 
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from which the required formula follows. For other procedures and tables for small d 
see [Ja-Ke], [Co], and [Ham]. 

(b) V,. ® J.(4> = V,., and V,. ® l-(1 •... , IJ = VA., which prove the corresponding results 
for CA(dJ,, and CA(!, ... , 1>,,. Use (a) to permute the subscripts. 

(4.52) For (a), the described map from A to R is surjective by the determinantal 
formula of Exercise 4.40; it is an isomorphism since R. and A. are free of the same 
rank. For (f), note that p(I) corresponds to the character LAXA(C(l>h'.A• which by 
Exercise 2.21 is the class function which is zero outside the conjugacy class C<1» and 
whose value on C(I) is z(i). 

For more on this correspondence, see [Bu], [Di2], [Mac]. In [Kn] a A.-ring 
structure on this ring is related to representation theory. In [Liu] this Hopf algebra is 
used to derive many of the facts about representations of 6 4 from scratch. In [Ze] a 
similar approach is also used for representations of GL.(IFq). 

More about representations of the symmetric groups can also be found in [Foa] 
and [J-L]. 

Lecture 5 
(5.2) Consider the class functions on H which are invariant by conjugation by an 
element not in H. 

(5.4) Step 1. (i) Inverses of elements of c' are conjugate to elements of c' if m is even, 
and to elements of c" if mis odd; x(g- 1

) = x(g). (ii) (.9, .9) is 

2 2 di 
-(#c'·iu - vl 2 + #c"·lv- ul 2

) = - · lu -vl2
• 

d! d! qi ..... q, 

(iii) If A. corresponded top "#- q, the values of x~ and XA on the corresponding conjugacy 
classes c'(p) and c"(p) would be the same number, say w, and Exercise 4.20 implies that 
2w = ± 1. Since w is an algebraic integer, this is impossible. Therefore, A. corresponds 
to q, and now from Exercise 4.20 we get the additional equation u + v = (- l)m. 

Step 2. (ii) Information about the characters x' and x" of X' and X" is easily 
determined from Exercise 3.19, and the fact that the characters of the factors are known 
by induction. In particular, since c'(q) and c"(q) each decomposes into two conjugacy 
classes in H, we have 

e1 + Je;q; e' + Jti' e1 - Je;q; e' - Jti' 
x'(c'(q)) = . + ·--,----

2 2 2 2 

e + Jeq 1 • ••• ·q, 
2 

where e1 = ( - t)<q, - 1>12 , e' = ( - t)<d-q,-r+1>12 , e = e1 • e', and q' = q2 • ••• • q,; and similarly 
for the other values. (iv) The character of Y takes equal values on each pair of conjugate 
classes. (Reference: [Fro2], [Boe]). 

(5.5) Reference: [Ja-Ke]. 

(5.9) If N is a normal subgroup properly between { ± 1} and SL2 (1Fq), one of the 
nontrivial characters x must take the value x(l) identically on N. 

(5.11) Reference: [Stet]. 
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Lecture 6 

(6.4) Compare (1) of the theorem with formulas (4.11) and (4.12). For a procedure to 
construct a basis of §A V, see Exercise 6.28. 

(6.10) By (4.41), there is an isomorphism of C64+m-modules: 

C6d+m ®qra.x ram) (VA !El J-;.) ~ EB. NAil• V,,. 

Te~soring on the left with the right C6d+m-module v®<Hm> = V®' ®c y®m, and 
notmg that C(64 x 6,,.) = C64 ® C6,,., 

(V®
4 

®c V®"') ®cra.@cram (V,. ® J-;.) ~EB.NA,,,§, V. 

(This also uses the general fact: if A -+ B is a ring homomorphism, N a left A-module, 
and M a right B-module, then M ®8 (B ®..c N) ~ M ®..c N.) The left-hand side of the 
displayed equation is 

(V®
4 

®era. V,.) ®c (V®"' ®cram lj.) ~ §A(V) ® §,,(V), 

which concludes the proof. 

(6.11) (a) The key observation is that 

(V E9 W)®' = EB(V®• ® W®b) ®qra •• ra.i C(6
4

), 

the sum over all a, b with a + b = d. Tensoring this on the right with the C(6
4
)-module 

V,, one gets 

(V E9 W)®
4 

= EB(V®• ® W®b) ®qra.x ra.i Res •. b V,,, 

where Res.,b denotes the restriction to 6. x 6b. Then use Exercise 4.43 to decompose 
this restriction. 

(b) ~y Froben.ius recipro~ity, the representation induced by V. via the diagonal 
embeddmg of 6 4 m 6 4 x 6 4 1s EBCA,,. VAIEI ¥µ.With A= C64 , this says 

(A® A) ®..c Ac,= EBCA,,.(AcA ®Ac,,). 

Tensor this with the right (A ® A)-module (V ® W)®4 = V®4 ® W®4• The special case 
follow from Exercise 4.51(b). 

(6.13) Use Exercise A.32(iv), or write the left side as V®4 ®A· bA and use Exercise 4.48. 

(6.14) These come from the realizations of the representation V,. =Ac A as the image 
of the maps AbA -+ AaA given by right multiplication by aA, and similarly Aa -+Ab 
by right multiplication by b1 • A A 

(6.15) It is clear that !f. one allows T to vary over all tableaux with strictly increasing 
columns but no cond1t1ons on the rows, then the corresponding vT span the first space 
®1 (A"• V); to s~ow that the vT for T semistandard span the image the key point is to 
show how to mterchange elements in successive rows. Once it is checked that the 
elements span, the independence can be deduced from the fact that the number of 
semistandard tableaux is the same as the dimension. For a direct proof of both 
spanning and independence, see [A-B-W]-but note that their partitions are all the 
conjugates of ours. See also Proposition 15.55. 
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(6.16) Use Exercise 6.14 to realize each §AV which occurs as the image in V®4 ® V®4 

of a symmetrizing map, and check whether this image is invariant or anti-invariant by 
the map which permutes the two factors. 

(6.17) (a) Identifying the dm elements on which 6 4m acts with the set of pairs 
{ (i, j)l 1 ~ i ~ d, 1 ~ j ~ m} determines embeddings of the groups 6 4 x · · · x 6 4 (m 
factors) and 6m in 6 4m. Let 

c' = CA@···@ CA E C64@. • •@ C64 = C(64 X • • · X 6,) C C6dm• 

c" = c,. E C6m C C6dm· 

Then c = c' · c" is the required element of C64m. For a combinatorial description of 
plethysm see [Mac, §1.8]. 

(b) The answers are 

Sym2
(§c2.2> V) = §C4,4J V Et> §C4,2,2> V Et> §<3.3, 1, 1> V Et> §c2.2,2,2> V; 

;\2(§c2.2> V) = §C4,3,2J V Et> §c3.2,2.1> V. 

Reference: [Lit2, p. 278]. 

(6.18) Their characters are the same. In fact, if x and y are eigenvalues of an endo
morphism of V, the trace on the left-hand side is L,J(k)xkyPrk, where f(k) is the number 
of partitions of k into at most p integers each at most q. This number is symmetric in 
p and q, by conjugating partitions. 

(6.19) The facts about skew Schur polynomials are straightforward generalizations of 
corresponding facts for regular Schur polynomials given in Appendix A; proofs of 
(i)-(iv) can be found in [Mac]. To see that the two descriptions of VA1,. agree see the 
hint for Exercise 4.4(a). Skew Schur functors are discussed in [A-B-W], where the 
construction of a basis is given; from this the character formula (viii) follows. Then (iv) 
implies (v) and (ix). 

(6.20) References, with proofs of similar statements in arbitrary characteristic (where 
the results, however, are weaker), are [Pel] and [Jam]. 

(6.21) References: [A-B-W] and [P-W]. 

(6.29) A reference for the general theory of semisimple algebras and its applications 
to group theory is [C-R, §26]. 

Lecture 7 

(7.1) One way to show that a symplectic transformation has determinant 1, cf. [Dil], 
is to show that the group Sp2.C is generated by those which fix a hyperplane, i.e., 
transformations of the form v H v + A.Q(v, u) for some vector u and scalar A.. Another, 
cf. Exercise F.12, is to write the determinant as a polynomial expression in terms of 
the form Q. 

(7.2) Consider the action on the quadric Q(v, v) = 1. 

(7.11) For any y, the image of the map x H xyx-1 y- 1 is discrete only if y is central. 

(7.13) PGL.C acts by conjugation on n x n matrices. 
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Lecture 8 

(8.10) (b) ad[X, Y](Z) = [[X, Y], Z], and [ad X, ad Y](Z) =(ad X o ad Y -
ad Yo ad X)(Z) = [X, [Y, Z]] - [Y, [X, Z]]. 

(8.16) The kernel of Ad is the center Z(G), cf. Exercise 7.11. 

(8.17) Use statement (ii), noting that W is G-invariant if it is G-invariant, G the 
universal covering of G. 

(8.24) With A, B, C, D n x n matrices, 

Sp2.(IR) = {(~ ~}'AC= 'CA, 'BD ='DB, 'AD - 'CB= 1}. 

SP2.~ = {(~ ~)l'B = B, 'C = C, 'A= -D}. 
(8.28) The automorphisms of G = G/C are the automorphisms of G which preserve C. 

(8.~9) The point is that the commutator of two vector fields is again a vector field, 
which can be checked in local coordinates. 

(8.35) Both signs are plus. 

(8.38) Reference: [Hot]. 

(8.42) For h E H, Ho· h gives a coordinate neighborhood of h. For another approach 
to Proposition 8.41, with more details, see [Hel, §11.2]. 

(8.43) For an example, take any simply connected group which contains a torus of 
dimension greater than one, say SU(3), and take an irrational line in the torus. 

Lecture 9 

(9.7) If His an abelian subgroup ofG, and the claim holds for G/H, show that it holds 
for G. Or, if G is realized as a group of nilpotent matrices, apply Campbell-Hausdorff. 

(9.10) If each ad(X) is nilpotent, the theorem gives a flag g = V0 :::> V: :::> • • • :::> V. = O 
· h I k , 

wit [g, Jt;] c '1i+1 • from which it follows that ~,g c Jt;. 

(9.21) If g had an abelian ideal a, semisimplicity of the adjoint representation would 
mean that there is a surjection g -+ a of Lie algebras. But an abelian Lie algebra has 
lots of representations that are not semisimple. 

(9.24) For the last statement, note that the adjoint representation is semisimple. Or 
see Corollary C.11. 

(9.25) Reference: [Bour, I] for this (as well as for details for many other statements in 
Lecture 9). 

(9.27) the adjoint representation is semisimple. 
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Lecture 10 

(10.1) Any holomorphic map from E to C must be constant. 

(10.2) An isomorphism G0 ~ Gm would lift to a map G -+ G; show that this map would 
have to be an isomorphism. 

(10.4) By hypothesis, the Lie algebra 9 of G has an ideal g with abelian quotient; 
use the corresponding exact sequence of groups, with the corresponding long exact 
homotopy sequence (cf. §23.1), and an induction on the dimension of G. 

Lecture 11 

(11.11) Verify the combinatorial formula 

( 

a ) ( b ) a (a+b-2k ) L x•-21 L xb-2) = L L x•+b-2k-21 . 

1=0 j=O k=O l=O 

Reference: [B-tD, p. 87] 

(11.19) Given two points on C there is a 2-dimensional vector space of quadrics 
containing C and the chord between the points. 

(11.20) Answer: it is the subspace of the space of quadrics spanned by the squares of 
the osculating planes to the twisted cubic curve. 

(11.23) Answer: the cones over the curve, with vertex a varying point in 1?3
• 

(11.25) Look at the chordal variety of the rational normal curve in 1?4
• 

(11.32) The sum for IX ~ k corresponds to the quadrics containing the osculating 
(k - 1)-planes to the curve. 

(11.34) See Exercise 6.18. 

(11.35) Reference: [Murl, §15]. 

Lecture 13 

(13.3) For V standard, §<•+b.bJ V ~ r •. b· See §15.3 for details. 

(13.8) If a, b > 0, V@ ra.b = ra+l,b $ ra-1,b+l $ ra,b-l• Cf. §15.3. 

(13.20) Warning: writing out the eigenvalue diagram and performing the algorithm 
above is probably not the way to do this. 

(13.22) The tangent planes to the Veronese surface should span a subrepresentation. 

( 13.24) See §23.3 for a general description of these closed orbits. 

More applications ofrepresentation theory to geometry can be found in [Don] and 
[Gre]. 
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Lecture 14 

.(14.15) The fact that [9., 911 ] = 9a+/I is proved in Claim 21.19. 

(14.33) See the proof of Proposition 14.31. 
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(14.34) If Rad(9) 11 9. # 0, then Rad(9) ::> s. ~ sl2, which is not solvable. If 
Rad(9) 11 g 3 H, and IX(H) # 0, then 9. = [H, 9.J c: Rad(9). Use the fact that 
[g, Rad(9)] c: Rad(9) to conclude that Rad(9) = Rad(9) 11 g + L Rad(9) 11 9. = O. For 
a stronger theorem, see [Va, §4.4]. 

(14.35) Ifb' => b, then b' => g, sob' is a direct sum ofg and some root spaces 9 for IX E T. 
T => R+ Th . • , ~ . en T contams some -IX together with IX, so b' ::> s. ~ s12 , which is not 
solvable. 

(14.36) For slmC, B(X, Y) = 2m Tr(X o Y). For some, the coefficient is (m - 2), and for 
spmC, the coefficient is (m + 2). 

Lecture 15 

(15.19) See also Exercise 6.20. 

(15.20) See Pieri's formulas (6.9), (6.8). 

(15.21) Use the dimension formula (15.17). 

(15.31) See Exercise 6.20. 

(15.32) This is Exercise 6.16 in another notation (and restricted to the special linear 
group). 

(15.33) See Exercise 6.16. 

(15.51) Use Weyl's unitary trick with the group U(n). 

(15.52) See Exercise 6.18. 

(15.54! S~ow by induction on r that r! times the difference is an integral linear 
combmat10n of generators for/". For details see [Tow2]. 

(15.57) The analogue of (15.53) is valid for these products of minors, and that can be 
used as in Proposition 15.55 to show that the eT for semistandard T generate D . 
The same eT as in Proposition 15.55 is a highest weight vector. For more on thls 
construction, see [vdW]; we learned it from J. Towber. 

For other realizations of the representations of GL
0
C, see [N-S]. 

Lecture 16 

(16.7) With v = (e1 " e2 )
2

, calculate as in §13.1; the two vectors X V: X v: v and 
X X V: V: . 2. 1 2 2. 1 2 

2.1 2,1 2 2V are proportional, and V2 X2•1X2 • 1 V2 v is independent of them. 
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Lecture 17 

(17.18) (i) Note that '11( 1, 21 : N- 2 v-+ NV is surjective ifs> n. See Exercise 6.14 for 
the second statement. (ii) This can be done by direct calculation, as in [Wel, p. 155] 
for the harder case of the orthogonal group. Or, show that §A(V) has a highest weight 
vector with weight A., and this cannot occur in any '111(V<4

-
2 >). 

(17.22) This follows from the theorem and the corresponding result for the general 
linear groups. Or see Exercise 6.30. 

Lecture 19 

(19.3) 

{

O if {p, q} 11 I = 0 or {p, q} c I 

vp,q(v1) = ± Vt\(q)u(p} if p ¢I and q EI 

± Vt\{p}u{q} if q ¢I and p e /. 

The first assertion follows readily. If w = ~:>1 v1' with the fewest number of nonzero 
coefficients, and a; and aK are nonzero, choose q e J\K, p ¢Ju K (possible since 
2k < m); then V,,.

4
(v;) '# 0, Vp,q(vK) = 0, and so Vp, 4(w) is a nonzero vector with fewer 

nonzero coefficients. 

(19.4) The multiplicity of L 1 + .. · + L. - L.-b - · .. - L. in NV is (2;) if k - a - b = 
2r. For r 2• or r

211 
the multiplicity is !(2;) if r is positive, by symmetry under replacing 

any rP by - rP. For r. the weights are !(e1 L1 + · .. + e.L.), with e1 = ± 1, and CT e, = l; 
the multiplicities are all one since these are conjugate under the Wey! group; similarly 
for rll but with n e, = - 1. 

(19.21) For generalizations, see §23.2. 

Lecture 20 

(20.17) If f spans /\"W', and u0 spans U with Q(u0 , u0 ) = 1, then f · (1 + (- l)"uo) is 
such a generator. See Exercise 20.12. 

(20.21) If xis in the center, take an orthogonal basis {v1}, write out x = La1v1 in 
terms of the basis, and look at the equations x · vJ = vJ · x for all j. Note that v1 · vJ = 
(- t)111vJ · v1 if j ¢I, whereas v1 · vJ = (- l)111-1vJ· v1 if j e /. Conclude that a1 = 0 if Ill 
is odd and there is some j ¢I c,r if Ill is even and there is some j e /.A similar argument 
works if xis odd. Reference [A-B-S, p. 7]. 

(20.22) If X =a Ab, [X, v] = !(a-b-v - b·a·v - v·a·b + v-b-a), which is 

!(2Q(b, v)a - a· v · b - 2Q(a, v)b + b · v ·a - 2Q(a, v)b + a· v · b + 2Q(b, v)a - b · v ·a) 

= 2Q(b, v)a - 2Q(a, v)b = 'PaAb(v). 

(20.23) Reference: [Por], but note that his C(p, q) is our C(q, p). See also [A-B-S]. 
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(20.32) If Q(v - w, v - w) "# 0, then Rv-w(v) = w. Otherwise, Rv+w(v) = - w, and 
Rw( - w) = w. For (b) compose a given element of O(Q) with an element constructed 
by (a) to get one fixed on a line, and write, by induction on the dimension, the restriction 
to the perpendicular hyperplane as a product of reflections. 

(20.33) By Exercise 20.22, X · v = [X, v]. See also Exercise 8.24. 

(20.36) If v, are a basis for V with Q(v1, vJ) = -01,J, then w = v1 • ••• • vm. If m = 2 (4), 
the center is cyclic of order four, while if m = 0 (4), it is the Klein four group. 

(20.37) Show that so(Q) acts by traceless endomorphisms. For example, the trace of 
H,ons+ is thenumberof I c {l, .. ., n} such that III is even and i e /,minus the number 
with i ¢I. 

(20.38) For the first statement of (a), choose f spanning /\"W' so that, for the chosen 
generator of /\"W, r(f) · e · f = f. For the second, when m is even, x(s)f = x · s · f by 
Exercise 20.12, so P(x(s), x(t))f = r(x · s · f) · (x · t · f) = r(s · f) · r(x) · x · (t · f) = r(s · f) · 
(t · f) = P(s, t). The odd case can be reduced to the even case by imbedding C(Q) into 
a larger Clifford algebra as in Exercise 20.40. 

(20.43) Reference: [Por]. 

(20.44) For example, the transposition of ix 1 and ix4 is achieved by the matrix 

(20.50) Reference: [Ch2, §4.3]. 

[

! ! 
J.. J.. 
2 2 

! -! 
! -! 

(20.51) Reference: [Ch2, §4.2-4.5], [Jacl]. 

! 
-t -!1 ! -! . 
-! ! 

Other references include [L-M], [Cal], [B-tD], [Hus], [P-S]. 

Lecture 21 
(21.9) If ix 1, ••• , ix, are the vectors, and we have a nontrivial relation 

v = L n1ix1 = L nJixJ• 
ISk J>k 

with non-negative coefficients, then (v, v) = Li.Jn1ni(ix1, ixJ) :s;; 0, so v = 0. But v lies on 
the same side of the hyperplane. 

(21.15) The first is ruled out by considering 

u = e2, v = (3e3 + 2e4 + e5)/.j6, w = (3e6 + 2e1 + e8 )!.j6, 
with 1 > (e1 , u)2 + (e1 , v)2 + (e1 , w)2 = 1/4 + 3/8 + 3/8 = 1. For the second, use 

u = e2, v = (2e3 + e4 )/j3, w = (5e5 + 4e6 + 3e1 + 2e8 + e9)/JI5, 

with (e1 , u)2 + (e1 , v)2 + (e 1 , w)2 = 1/4 + 1/3 + 5/12 = 1. 

(21.16) Using the characterization that c.o1(H.J) = o1,J, one can write the fundamental 
weights c.o, in terms of the basis L1• The tables in [Bour, Ch. 6] also express them in 
terms of the simple roots. 
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fi w2 =1(L1 + L 2 + L3 + L4 +Ls)+ TL 6 , 

fi w 3 =1(-L1 + L2 + L3 + L4 +Ls)+ 56 L6 , 

w4 = L3 + L4 + Ls + .}3L6 , 

fi Ws = L4 +Ls+ 23 L6 , 

w6 = Ls + f L6; 

W1 = j2L,, 

w2 = t(L1 + L2 + L3 + L4 + Ls + L6 ) + j2L7, 

j2 
w3 =1(-L1 + L2 + L3 + L4 +Ls+ L6 ) + 32 L,, 

w4 = L3 + L4 +Ls+ L6 + 2j2L7, 

j2 
Ws = L4 +Ls+ L6 + 32 L,, 

w6 = Ls + L6 + j2L,, 

W7 = L6 + f L,; 

w2 = 1(L1 + L2 + L3 + L4 + Ls + L6 + L7 + 5Le), 

w3 = !( - L1 + L2 + L3 + L4 + Ls + L6 + L7 + 7 Le), 

w4 = L3 + L4 + Ls + L6 + L7 + 5Le, 

Ws = L4 +Ls + L6 + L7 + 4Le, 

w6 =Ls+ L6 + L7 + 3Le, 

W7 = L6 + L, + 2Le, 

We = L7 +Le; 

W1 = L1 + L2, 

W2 = 2L1 + L2 + L3, 

W3 = t(3L1 + L2 + L3 + L4), 

W4 = L1; 

w 1 = !(L1 + .}3L2 ) = 2cx1 + cx2 , 

w 2 = .}3L2 = 3cx1 + 2cx2 • 
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(21.17) The only cases of the same rank that have the same number of roots are (B.) 
and (C.) for all n, . md (B6 ), (C6 ), and (E6 ); (B.) has n roots shorter than the others, (C.) 
n roots longer, and in (E6 ) all the roots are the same length. 

(21.18) For the matrices see [Bour, Ch. 6] or [Hul, p. 59]. The determinants are: 

n + 1for(A.);2 for(B.),(C.) and (E7); 4for(D.); 3 for(E6 ); and 1 for(G 2 ), (F4), and (Ee). 

(21.23) See Lecture 22. 

The proof of Lemma 21.20 is from [Jacl, p. 124], where details can be found. 

For more on Dynkin diagrams and classification, see [Ch3], [Dem], [Dy-0], 
[LIE], and [Til]. 

Lecture 22 

(22.5) Use the fact that B(Y, Z) = 6 Tr(Y o Z) on sl3C, and the formula [e1, etJ = 
3 · E1,1 - o1,1· 1, giving 

B([e1, e!J, Z) = 6 · Tr((3 · E1,1 - 01,1·1) o Z) = 18 · Tr(E1,1 o Z) = 18 · ej(Z · e1). 

(22.13) Hint: use the dihedral group symmetry. 

(22.15) Answer: sl3C x 1>13C. 

(22.20) For (b), note that (v /\ w)(q> /\ t/I) = T((v /\ w), q>, t/I) = t/l((v /\ w) /\ q>) = 
q>(v)tfl(w) - q>(w)tfl(v). 

(22.21) For a triple J = {p < q < r} c {l, ... , 9}, let e1 = eP /\ e9 /\ e, and similarly 
for q>1 • For triples J and K the essential calculation (see Exercise 22.5) is to verify that 
e1 • <l'K is (-c/18) times 

0 if #J nK 5; 1 

Em,• if K = {p, q, n}, J = {p, q, m}, m # n. 

Ep,p + E9, 9 + E,,, - 11 if K = J = {p, q, r}. 

For Freudenthal's construction, see [Fr2], [H-S]. 

(22.24) For sl.+1 C, such an involution takes E1,1 to (- l)J-1+! E.+ 2 -J,•+ 2 - 1; the fixed 
algebra is {X: 'XM = -MX}, where M =(mu), with mu= 0 if i + j # n + 2, and 
otherwise mu= (-1)1

• This Mis symmetric if n is even, skew if n is odd, so the fixed 
subalgebra for (A2m) is the Lie algebra &02m+1 C of(Bm), and that for (A2m-d is the Lie 
algebra sp2mC of (Cm). For (D.), the fixed algebra is &02._1 C, corresponding to (B._1 ), 
while for the rotation of (04), the fixed algebra is g2 • For a description of possible 
automorphisms of simple Lie algebras, see [Jacl, §IX]. 

(22.25) Answer: For sl.+1 C, X f-+ -X1• For so2.C, n ~ 5, X f-+ PX p-1
, where Pis the 

automorphism ofC 2
" that interchanges e. and e2• and preserves the other basic vectors. 

For the other automorphisms ohoeC, see Exercise 20.44. 

(22.27) References: [Her], [Jac3, p. 777], [Pos], [Hul, §19.3]. 

(22.38) Reference [Ch2, §4.5], [Jac4, p. 131], [Jacl], [Lo, p. 104]. 
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Lecture 23 

(23.3) The map takes z = x + iy to (u, v) with u = x/llxll. v = y. 

(23.10) Since p(exp (l'.a1H1)) = (e"•, ... , e•·, e-••, .. . ), to be in the kernel we must have 
a1 = 2ni · n1, and then exp(~>1H1) = ( -1)~:;.J. 

(23.11) Note that the surjectivity of the fundamental groups is equivalent to the 
connectedness of 11:-1 (H) when n: G -+ G is the universal covering, which is equivalent 
to the Cartan subgroup of G containing the center of G. 

(23.17) Note that f(G) = n1 (H) surjects onto n1 (G), and there is an exact sequence 

0-+ n1 (G)-+ Center(G)-+ Center(G)-+ 0. 

(23.19) When mis odd, the representations are the representations of Some, and the 
products of those by the one-dimensional alternating (determinant) representation. 
When m = 2n, the representations of Some with highest weights (A. 1, ••• , A..) and 
(A. 1, ••• , -A..) are conjugate, so that, if A.. ¥- 0, they correspond to one irreducible 
representation of Oi.e, whose underlying space can be identified with r 0.,, .... .t.> EB 
r 0., ..... -.t.>· If A.. = 0, then f.i is an irreducible representation of Ome. In either case, 
the representations correspond to partitions A. = (A. 1 :::?: • • • :::?: A.. :::?: 0). See §19.5 for an 
argument. 

(23.31) See Exercises 19.6, 19.7, and 19.16. 

(23.36) For (b), consider (D+)i · (D-)i = (D+ · D-)i. 

(23.37) Reference: [B-tD, VI §7]. 

(23.38) For sl.+1 e, f.i* = r<.t,,.t,-.i •..... .i,-.t.>; for so i.e. n odd, ft' = f<.i,,.i,, .... .i._,. -.t.>· 

(23.39) Reference: [Bour, VIII §7, Exer. 11]. 

(23.42) Compute highest weight vectors in the (external) tensor product of two 
irreducible representations, to verify that it is irreducible with highest weight the sum 
of the two weights. 

(23.43) See Exercise 20.40 and Theorems 17.5 and 19.2. 

(23.51) An isotropic (n - 1)-plane is automatically contained in an isotropic n-plane. 
These are two-step flag varieties, corresponding to omitting two nodes. 

(23.62) For (b), use the fact that B · n' · B is open in G. For (c), if µ is a weight, 
f(x- 1wy) = µ(x)A.(y)f(w) for x and yin B, so with x e Hand w = n', 

µ(x)f(w) = f(x- 1w) = f(wx) = A.(x)f(w). 

Other references on homogeneous spaces include [B-G-G], [Hel], and [Hi]. 

Lecture 24 

(24.4) (a) is proved in Lemma D.25, and (b) follows. For (c), note that by the definition 
of p as half the sum of the positive roots, p - W(p) is the sum of those positive P such 
that W(/3) is negative. 
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(24.27) This is Exercise A.62. 

(24.46) This follows from formulas (A.61) and (A.65). 

(24.51) In the following the fundamental weights are numbered as in the answer to 
Exercise 21.16: 

p = Soc, + 15cxi + 21oc3 + 1 loc4; 

dim(f.,,), (i = 1, 2, 3, 4): 52, 1274, 273, 26. 

p = Li + 2L3 + 3L4 + 4L5 + 4j3L6 

= 8a1 + lloci + 15a3 + 21oc4 + 15oc5 + 8oc6 ; 

dim(f.,,), (i = 1, ... , 6): 27, 78, 351, 2925, 351, 27. 

(E7 ): p = Li + 2L3 + 3L4 + 4L s + 5L6 + 17 -fi./2L7 

= f(34oc 1 + 49oci + 66oc3 + 96oc4 + 75oc5 + 52oc6 + 27oc7 ); 

dim(f.,,), (i = 1, ... , 7): 133, 912, 8645, 365750, 27664, 1539, 56. 

(E8 ): p = Li + 2L3 + 3L4 + 4Ls + 5L6 + 6L7 + 23L8 

= 46oc 1 + 68oci + 9loc3 + 135a4 + 110oc5 + 84oc6 + 57oc7 + 29oc8 ; 

dim(f.,,), (i = 1, ... , 8): 3875, 147250, 6696000, 6899079264, 146325270, 

2450240, 30380, 248. 

(24.52) Using the dimension formula as in Exercise 24.9, it suffices to check which 
fundamental weights correspond to small representations, and then which sums of 
these are still small. The results are: 

(A) n :::?: 1; dim G = ni + 2n; dim r"'• :::: ("k°t ); 

the dominant weights whose representations have dimension at most dim Gare: 

2w1, 2w., of dimension ("~i); 

w1 + w., of dimension ni + 2n; 

w3 for n = 5; w3, w4 for n = 6; w3, w5 for n = 7. 

(B.) n:::?: 2; dim G = 2ni + n; dim f"'• = (i"t1) fork< n, and dim r.,. = 2•, giving: 

w. for n = 3, 4, 5, 6; 

2wi, of dimension 10, for n = 2. 

(C.) n :::?: 3; dim G = 2ni + n; dim r.,. = (~") - (t:"i). giving: 

2w1 , of dimension 2n2 + n; 

w3 for n = 3. 
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(D.) n ;::= 4; dim G = 2n2 
- n; dim r.,. =(~")fork~ n - 2, and 

dim r.,._
1 

= dim r.,. = 2•-I, giving: 

w._ 1 , w. for n = 4, 5, 6, 7. 

(E6) dim G = 78; W1,W2, W6. 

(E1) dim G = 133; W1, W7. 

(Es) dim G = 248; W9. 

(F4) dim G = 52; W1,W4. 

(G2) dim G = 14; W1,W2. 

For irreducible representations of general Lie groups with this property, see [S-K]. 

Other references with character formulas include [ES-K], [Kil], [Ki2], [Kl], 
[Mur2], and [Ra]. 

Lecture 25 

(25.2) Changing µ by an element of the Wey! group, one can assume µ is also 
dominant and A. - µis a sum of positive roots. Then llA.11 > 11µ11. and c(µ) =(A., A.) -
(µ,µ)+(A. - µ, 2p) > 0. 

(25.4) A direct calculation gives 

C(X·v) - X·C(v) = L Ui"[U(, X] ·v + L [Ui. X] · U(·v. 

To see that this is zero, write [U1, X] = L rx 11 ~; then by (14.23), rx11 = ([U1, X], Uj) = 
-([Uj, X], U,), so [Uj, X] = - Lrx1p(. The terms in the above sums then cancel in 
pairs. 

(25.6) By (14.25), (H., H.) = rx(H.)(X., Y.) = 2(X., Y.,). Use Exercise 14.28. 

(25.12) The symmetry gives 

(fl - irx, rx)n 11 - 1• + (fl - (m - i)rx, rx)n/1-(m-l)• = (2fl - mrx, rx)n 11 _ 10 = 0 

since 2(fl, rx) = m(rx, rx), so the terms cancel in pairs. 

(25.22) We have 

L (- l)WP(µ + W(p) - p)e(-µ) = L (-l)w(e(W(p) - p))/ n (1 - e(-rx)), 
W.µ W 11eR• 

and the right-hand side is 1 by Lemma 24.3. 

(25.23) We have 

L (- l)w nµ+p-W(p) = L (- l)ww·P(W'(A. + p) - ((µ + p - W(p)) + p)) 
W W,W' 

= L (-l)W' L (- l)WP((W'(A. + p) - µ - p) + W(p) - p), 
W' W 
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and the inner sum is zero unless W'(J. + p) = µ + p. Note that ifµ is a root of rA, this 
happens only ifµ = J. by Exercise 25.2. 

(25.24) The minuscule weights are: 

(A.): W1' ... , Wn, 

(B.): W1, 

(C.): w., 

(D.): W1' Wn-1' Wn, 

(E6): W1,W6, 

(E1): W7. 

Reference: [Bour, VIII, §7.3]. 

(25.28) One easy way is to use the isomorphism so4 IC ~ sl2 IC x sl2 IC. 

(25.30) NAµy is zero by definition when y is not in the closed positive Weyl chamber 
'If", and W(v + p) - pis not in 1f" if W # 1. Reference: [Hul]. 

(25.40) The weight space of the restriction of f'A corresponding to µis the direct sum 
of the weight spaces of f'A corresponding to those µ which restrict to µ. 

(25.41) Use the preceding exercise and Exercise 25.23. 

(25.43) Using the action of a Lie algebra on a tensor product, the action of C on 
v1 • ••• • vm is a sum over terms where U1 and U( act on different elements or the same 
element. Grouping the terms accordingly leads to the displayed formula. See [L-T, I, 
pp. 19-20]. 

Lecture 26 

(26.2) In terms of the basis L 1, L 2 ofl)* dual to {H1, H2}, eigenvalues are ±iL2 and 
±3L1 ± iL2 • 

(26.9) Reference: [He!, §III. 7]. 

(26.10) Constructing I)= g0 (H) as in Appendix D, take H so that u(H) = H. 

(26.12) See Exercise 23.6. 

(26.13) Reference: [Hel, §X.6.4]. 

(26.21) If a conjugate linear endomorphism cp: W-+ W did not map f'A to itself, there 
would be another factor U of Wand an isomorphism of f'A with U*; the highest weight 
of (f'A)* cannot be lower than A.. 

(26.22) See Exercise 3.43 and Exercise 26.21. 

(26.28) References: [A-B-S], [Hus], [Por]. See also Exercise 20.38. 

(26.30) Use the identity 1/1 2 [V] = [V ® V] - 2[/\2 V]. 

Other references on real forms are [Gil], [B-tD], [Va]. 
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Appendix A 

(A.29) (b) Use p<1
> = L (H., p<l»M •. 

(A.30) Some of these formulas also follow from Weyl's character formula. 

(A.3t) For part (a), when a1 ~ a2 ~ .. ·~at, this is (A.19). The proof of (A.9) shows 
that for any a= (a 1, ••• ,at), 

Ha, · Ha2 • ••• ·Ha• = L K,,aS,,, 

which shows that the K,,a are unchanged when the a,'s are reordered. For a purely 
combinatorial proof see [Sta, §10]. 

(A.32) For (i) compare the generating functions E(t) = L E1t1 = n (1 + X1t) and 
H(t) = :LH1t

1 = t/E(-t); (ii) follows from (A.5) and (A.6). For (iii), note that 
P(t) = L ljt1 = L x1t/(t - x1t) = tH'(t)/ H(t). Exponentiate this to get (vi). For details 
and more on this involution, see [Mac] or [Sta], where it is used to derive basic 
identities among symmetric polynomials. 

(A.39) References: [Mac], [Sta], [Fu, §A.9.4]. 

(A.4t) See [Mac, p. 33] or [Fu, p. 420]. 

(A.48) Since .9(ED = H; and .9(£7) = H;', 

.9(So.>) = .9(1H1,-1+1 - H1,-1-1D = IE;,-1+1 - E;,-1-11 = Sc,,1· 

(A.67) Answer: !' 1 • ••• • '· times the determinant of the matrix whose ith row is 

(JA,-1 JJ.,-1+1 + JJ.,-1-1 "· JJ.,-l+n-1 + JJ.,-1-n+d· 

More on symmetric polynomials can be found in [Mac], [Sta], [L-S], and 
references listed in these sources. Some of the identities in §A.3 are new, although results 
along these lines can be found in [Wet], [Litt], [Lit2] and [Ko-Te]; other identities 
involving the determinants discussed in §A.3 can be found in [Mac, §1.5]. Discussions 
of Schur functions and representation theory can be found in [Di2] and [Lit2]. 

Appendix C 
(C.l) Take a basis in which X has Jordan canonical form, and compute using the 
corresponding basis EIJ for gl(V). 

(C.12) If g = EB g1, and I) is a simple ideal, I) = [g, I)] = EB [g1, I)], so I) is contained 
in some g1. 

(C.13) Since for {J E Der(g) and Xe g, ad(fJ(X)) = [fJ, ad(X)], ad(g) is an ideal in the 
Lie algebra Der(g). Therefore, [ad(g).L, ad(g)] = O; in particular, if {J e ad(g).L and Xe g, 
then ad(fJ(X)) = [fJ, ad(X)] = 0. So ad(g).L = 0 and ad(g) = Der(g). 

Appendix D 
(D.8) To show ad(X) is nilpotent on g0 (H) for X in g0 (H), consider the complex line 
from H to X: set H(z) = (1 - z)H + zX. Then ad(H(z)) preserves each eigenspace 
gJ.(H). By continuity, for z sufficiently near 0, ad(H(z)) is a nonsingular transformation 
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of gJ.(H) for A. # 0, which implies that 9o(H(z)) is contained in g0 (H), and by the 
regularity of H, g0 (H(z)) = g0 (H) for small z. 

This means that there is an integer k so that ad(H(z))t(Y) = 0 for all Ye g0 (H) and 
all small z. But ad(H(z))t(Y) is a polynomial function of z, so it must vanish identically. 
Hence, setting z = t, ad(X)" vanishes on g0 (H), as asserted. 

(D.24) See [Bour, VII, §3] for details. 

(D.33) References: [Se3, §V.l t], [Hut, §t2.2]. 

Appendix E 

Proofs of both of these theorems can be found, together with many other related results, 
in [Bour I]. See also [Se3], [Pos], [Va], [Jacl]. 

Appendix F 

(F. t2) Check that the right-hand side is multilinear, alternating, and takes the value 
t on a standard basis. Or see [Wet, §Vl.1]. 

(F.t6) SO.C-invariants can be written in the form A+ LA1B1 where A and the 
A1 are polynomials in the Q(x<ll, xU>) and the B1 are brackets. Such is taken to 
A + det(g) L A1B1 by g in o.c. For an odd (resp. even) invariant the first (resp. the 
second) term must vanish. 

(F.20) Reference: [Wel, 11.6], or [Br, p. 866]. 

There are many elementary references for invariant theory, such as [D-C], [Pr], 
[Sp t ], and [Ho2]; the last contains a proof of Capelli's formula. There are also many 
modern approaches to invariant theory, some which can be found in [DC-P], [Sch] 
and [Vu] and references described therein; some of these also contain some invariant 
theory for exceptional groups. For a more conceptual and representation-theoretic 
approach to Capelli's identity, see [Ho3]. Weyl's book [Wet] remains an excellent 
reference for invariant theory of the orthogonal and symplectic groups together with 
the related [Br], [We2]. 
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g · v = gv = p(g)(v) (group action, 
representation), 3 

VE9W,V®W,4 
!\"V, 4 
Sym"V, 4 
V*,4 

< ' ), 4 
p*,4 
Viea, E9 ... E9 Vi,!B•• = a, Vi E9 ... E9 

at Vi:= a1 Vi+···+ akVi,, 7 
U (trivial rep.), 9 
V (standard rep.), 9 
U' (alternating rep.), 9 
Xv (character of V), 13 
Tr (trace), 13 
[g] (conjugacy class of g), 14 
Ccia .. (G) (class functions on), 16 
( , ) (inner product), 16 
6d (symmetric group), 18 
~d (alternating group), 18 
R(G) (representation ring of G), 22 
!BJ (external tensor product), 24 
D2• (dihedral group), 30 
Cm (Clifford algebra), 30 
SL2(.l/3), 31 
ResZ V, Res(V) (restriction of 

representation), 32 
IndZ V, Ind(V) (induced representation), 

33 

CG (group algebra of G), 36 
RK(G) (representation ring over K), 42 
p(d) (number of partitions of d), 44 
).' (conjugate partition to ..l.), 45 
P;.,Q;.,46 
a;.,b;.,46 
c;. (Young symmetrizer), 46 
V;.,46 
~(x) (power sum), 48, 459 
.1(x) (discriminant), 48, 459 
[f(x)](l,, ... ,1.i, 48, 459 
S;. (Schur polynomial), 49, 454 
A = C6d (group ring of 6 4), 52 
6;.,54 
U;.,54 
I/I;., 54 
pCI>, 55, 459-460 
W;.(i), 55, 459-460 
X;. = xt• · ... · xf". 55, 459-460 
K,,, (Kostka number), 56, 456 
1/1 •• 58 
Vi o ..• o V. (outer product), 58 
N;.,,. (Littlewood-Richardson number), 

58, 79,82,424,427,455-456 
C;.,,., 61 
GL2 (1Fq), SL2 (1Fq), PGL2 (1Fq), 67 
§;. V(Schurfunctor, Weyl module), 76-77 
Xs,v(g), 76-77 
S;.1,,, c;.1,,, V;.1,,, S;.1,,, 82-3 
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GL.JR, GL(V), Aut(V) = SL.JR, 95 
B., 95 
N.,96 
so.JR= SO(n), sok,,JR = SO(k, I), 96 
Sp,,JR, 96 
a.JR = O(n), 97 
GL.e, SL.e, 97 
so.e, 97 
Sp2.e, 97 
U. = U(n), SU(n), Uk,I = U(k, I), 

svk,l = SV(k, I), 98 
GL.11-il, 98 
SL.II-ii, 98-100 
Sp(n) = U"(n), 98-100 
up.qll-il, 98-100 
U.*(11-il), 98-100 
Z(G) (center of G), 101 
PSL.JR, PSL.e, PGL.e, PSO.JR, 

Pso.e, PSp2.JR. PSp2.e. 102 
Spin.JR, Spin.e, 102 
T,,G (tangent space), 105 
m, (left multiplication by g), 105 
'I', (conjugation by g), 105 
Ad, ad (adjoint actions), 106-107 
[ , ] (bracket in Lie algebra), 107 
gl(V), gl.JR, 109 
sl.JR, 112 
so.JR= o.JR, 112 
SP2.JR, 112 
u., 113 
b.JR, 113 
n.JR, 113 
gl. e, sl. e, 113 
some, 113 
SP2.e. 113 
'Px (one-parameter subgroup), 115 
exp (exponential map), 115 
X • Y = log(exp(X)·exp(Y)), 117 
Z(g) (center of g), 121 
~kg, ~kg, ~g = [g, g] (commutator 

subalgebra), 122 
Rad(g) (radical of g), 123 
g,,.. = g/Rad(g), 127 
X = X, + x. (Jordan decomposition), 

128,482 
H, 147 
x, 147 
Y, 147 
v.. 147 

Index of Symbols 

I? W (projective space of lines in W), 153 
[w], 153 
[zo, '' '' zmJ, 153 
z.: pt ~I?" (rational normal curve), 154 
g, 162, 198 
ga, 162, 198 
E1,1, (weights), 163, 212, 239 
L 1 (weights), 163, 212, 239 
AR (root lattice), 165-166, 198, 213 
I: AR -+ JR, 166, 202, 243 
Aw (weight lattice), 172, 200 
ra,b (irred. rep. of sl3 e with highest weight 

aLt + b(Lt + L 2 )), 176, 244 
R (the set of roots), 198 
Sa (subalgebra ~ sl2e corresponding 

to root ix), 200 
Ha, (elts. of Sa corresponding to H, X, Y 

in sl2 C), 200 
Xa, (elts. of Sa corresponding to H, X, Y 

in sl2C), 200 
Y. (elts. of sa corresponding to H, X, Y 

in sl2C), 200 
W. (reflection on g* corresponding to 

root ix), 200 
na (hyperplane in g* corresponding to 

root ix), 200 
!ID (Weyl group), 201 
VIPJ (IX-String of p), 201 
R+ (positive roots), R- (negative roots), 

202 
"If' (closed Wey! chamber), 205 
Wt, ... , w. (fundamental weights), 

205,306 
ra,, ... ,a. (irred. rep. with highest wt. 

at Wt + · · · + a.w.), 205 
B (Killing form), 206 
T. (in g corresponding to Ha in g*), 208 
H1 = E1,1, 211, 239 
p: Grassk V-+ l?(NV) (Plucker 

embedding), 227 
Dk (k1

h power of determinant), 231 
«1>01 , ... ,a.• 231 
'f'A, ... .,A.• 231 
§"V = Ef}§0 V, 235-236, 398 
Q (skew-symmetric bilinear form), 238 
Sp2.e, (symplectic Lie groups), 239 
sp2.e (symplectic Lie algebras), 239 
X 1,1, Yi,1, Z1,1, U1, V, (elements in sp2.e), 

240 

Index of Symbols 

ra,, .... a. (irred. rep. of SP2.e with highest 
wt. :I;a1(Lt + · · · + L 1)), 260 

v<k> (irred. rep. with highest wt. 
Lt + .. · + Lk), 260 

v<">, 263 
§(A) V, 263 
§<·>, 265, 398 
Q (symmetric bilinear form), 268 
SO me, (orthogonal Lie groups), 268 
some (orthogonal Lie algebras), 268 
H1, X,,1, Yi.1• Z,,1, U1, V, (elements 

in so2.), 270 
Vl"1, 296 
§[A]V, 296 
§ 1"1, 297, 398 
O(V, Q) (orthogonal group), 301 
C = C(Q) = Cliff(V, Q)(Clifford algebra), 

301 
c = c•••n E9 codd = c+ E9 c-' 302 
so(Q), 303 
s+ = /\even w, s- = f\Odd w (half-spin 

representations), 305 
S = /\•W (spin representation), 307 
C(p, q), 307 
•(conjugation), 307-308 
-r (reversing map), 307-308 
ix (main involution), 307-308 
p: Spin(Q)-+ SO(Q), 308 
Pin(Q), 308 
Spin+(p, q)-+ so+(p, q), Spin(p, q)-+ 

SO(p, q), 312 
IE (Euclidean space of root system), 319 
( , ) (Killing form), 320 
n/Ja = P(Ha) = 2(p, ix)/(IX, ix), 320 
(A.), (B.), (C.), (D.), 321-326 
(E6), (E,), (Es), (F4 ), (G2), 321-326 
Wt, W2 (for g2), 351 
ra,b (for g2), 351 
" (trilinear maps), 360 
T, T' (trilinear maps), 360 
0 (Octonians, Cayley algebra), 362-365 
J (Jordan algebra), 362-365 
H (Cartan subgroup), 369 
rA (irred. rep. With highest Wt. 

). =At Lt + .. · + .l..L.), 370-371 
rR, r w. 372-373 
N(H)/H ~!ID, 374 
R(g) (representation ring), 375 
A= Aw, 375 

Z[A], 375 
e(.l.), 375 
Char: R(g)-+ Z[A]m, 375 

545 

rt' ' .. ' r. (irred. reps. with highest wts. 
Wt, ... , w.), 376 

A1, 81, B, C1, D1, D+, D-, 377-378 
.i.1 (exterior power operator), 380-381 
1/1 1 (Adams operator), 380-381 
b (Borel subalgebra), 382-383 
B (Borel subgroup), 382-383 
P (parabolic subgroup), 384 
p (parabolic subalgebra), 384 
p(:I;), 385 
LA (line bundle), 392 
nw. 396 
B· W·B,396 
U, u-, U(W), U(W)', 396 
( - l)w = sgn(W), 400 
p (half the sum of the positive roots), A11 , 

400 
(ix, P> = a(H/J) = 2(ix, P)/(p, p), 402 
n11 (dimension of weight space), 415 
C (Casimir operator), 416 
P, Pa, 419-420 
.i,419-420 
V, 419-420 
P(µ) (Kostant's counting function), 421 
NAJ.• 428 
A0

, A·, A"/J" = ffirA> 428 
g0 (real form), 430 
HA• H1 (complete symmetric polynomials), 

453 
MA (monomial symmetric polynomials), 

454 
E11 , E1 (elementary symmetric 

polynomials), 454 
SA (Schur polynomials), 454 
< , ) (bilinear form on symmetric 

polynomials), 458 
r/IA(P), WA(P), 459 
z(i) = it!l 11 ·i2!212 • ••• ·i4!d1•,460 
A, 3: A-+ A, 461-462 
Sw, s1A1, 466-467 
" (exterior multiplication), 474 
r·v (tensor algebras), 475 
/\"V (exterior algebras), 475 
Sym·v (symmetric algebras), 475 
< , ) (pairing between space and dual 

space), 476 
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Bv (Killing form on V), 478 
~J.,480 

Nil(g) = n (nilradical), 485 
U = U(g) (universal enveloping algebra), 

486 
c(H), 487 
e(X) = exp(ad(X)), 491 
E@,491 

Index of Symbols 

S (set of simple roots), 494 
2 

a.'= -( )a. (coroot), 496 
a., a. 

[x(l>x<2> ... x<•>] (bracket), 504 
S4 = Sym4(V*), 504 
d' < d (antilexicographic order), 505 
D,,1, 505 
n (Cayley operator), 507 

Index 

abelian groups (representations of), 8 
abelian Lie algebra, 121 
abelian Lie group, 94 
abelian variety, 135 
Abramsky-Jahn-King formula, 411-412 
Adams operators, 380, 449 
adjoint form (of a Lie group), 101 
adjoint representation, 106 
admissible Coxeter diagram, 327 
Ado's theorem, 124, 500-503 
algebraic group, 95, 374 
alternating group (representations of) 
~3.9 

~4• 20 
~5 ,29 
~d• 63-67 

alternating map, 472 
alternating representation, 9 
Artin's theorem, 36 
automorphism group of a Lie algebra, 

498 
averaging, 6, 15, 21 

bilinear form, 40, 97 
Borel-Weil-Bott-Schmid theorem, 392-

393 
Borel subalgebra, 210, 338, 382 
Borel subgroup, 67, 383, 4'8 

Borel's fixed point theorem, 384 
bracket, 107-108, 504 
branching formula, 59, 426 
Brauer's theorem, 36 
Bruhat cell and decomposition, 395-398 
Burnside, 24-25 

Campbell-Hausdorff formula, 117 
Capelli's identity, 507-508, 514-515 
Cartan, 434 
Cartan criterion for solvability, 479 
Cartan decomposition, 198, 437 
Cartan matrix, 334 
Cartan multiplication, 429 
Cartan subalgebra, 198, 338, 432, 

478-492 
Cartan subgroup, 369, 373, 381 
Casimir operator, 416, 429, 481 
Cauchy's identity, 457-458 
Cayley algebra, 362-365 
Cayley operator, 507 
center of Lie algebra, 121 
character (ofrepresentation), 13, 22, 375, 

440,442 
character homomorphism, 375 
character table, 14 

of 6 3 , 14 
of 6 4 , 19 
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character table (cont.) 
offil4 , 20 
of 6 5 , 28 
offil 5 , 29 
of 6 4, 49 
of fil4 , 66 
of GL2(fq), 70 
ofSL2(fq), 71-73 

characteristic ideal, 484 
characteristics (of Frobenius), 51 
Chevalley groups, 74 
chordal variety, 192, 230 
class function, 13, 22 
classical Lie algebras and groups, 132, 

367-375 
Clebsch, 237 
Clebsch-Gordon problem, 8, 424 
Clifford, 64 
Clifford algebras, 30, 299-307, 364-365 
commutator algebra, 84 
commutator subalgebra of Lie algebra, 

122 
compact form, 432-438 
complete reducibility, 6, 128, 481-483 
complete symmetric polynomial, 77, 453 
complex Lie algebra, 109 
complex Lie group, 95 
complex representation, 41, 444-449 
complex torus, 120 
complexification, 430, 438 
conjugate linear involution, 436 
conjugate partition, 45, 454 
conjugate representation, 64 
connected Lie group, 94 
contraction maps, 182, 224, 260-262, 

288,475-477 
convolution, 38 
coroot, 495-496 
Coxeter diagram, 327 
cube, rigid motions of, 20 

degree (of representation), 3 
derivation, 113, 480, 483-486 
derived series, 122 
Deruyts, 237 
determinantal formula, 58, 404, 406-411, 

454-470 
dihedral group, 30, 243 

Index 

dimension of Lie group, 93 
direct sum (of representations), 4 
discriminant, 48, 400, 454 
distinguished subalgebras, 200 
dodecahedron, rigid motions of, 29-30 
dominant weight, 203, 376 
dual (of representation), 4, 110, 233 
dual (of root system), 496 
Dynkin, 117 
Dynkin diagrams, 319-338 

eigenspace, 162 
eigenvector, 162 
eightfold way, 179 
elementary subgroup, 36 
elementary symmetric polynomial, 77, 

454 
elliptic curve, 133-135 
Engel's theorem, 125 
exceptional Lie algebras and groups, 132, 

339-365 
gi,339-359,362-364,391-392 
e6 - e8 , 361-362, 392 
f 4• 362, 365 

exponential map, 115-120, 369-370 
exterior algebra, 475 
exterior powers of representations, 4, 

31-32, 472-477 
external tensor product, 24, 427 
extra-special 2-groups, 31 

first fundamental theorem of invariant 
theory, 504-513 

fixed point formula, 14, 384, 393 
flag (complete and partial), 95-96, 

383-398 
flag manifold, 73, 383-398 
Fourier inversion formula, 17 
Fourier transform, 38 
Freudenthal, 359, 361 
Freudenthal multiplicity formula, 

415-419 
Frobenius character formula, 49, 54-62 
Frobenius reciprocity, 35, 37-38 
fundamental weights, 205, 287, 295, 

376-378,528 

Index 

Gelfand, 426 
general linear group, 95, 97, 231-237 
Giambelli's formula, 404-411, 455 
Grassmannian, 192, 227-231, 276-278, 

283,286,386-388 
(Lagrangian and orthogonal), 386-

387, 390 
group algebra, 36-39 

half-spin representations, 306 
Heisenberg group, 31 
Hermite reciprocity, 82, 160, 189, 233 
Hermitian inner product, form, 6, 11, 16, 

98,99 
Hessian, 157 
highest weight, 175, 203 
highest weight vector, 167, 175, 202 
homogeneous spaces, 382-398 
hook length (formula), 50, 78, 411-412 
Hopf algebra, 62 

icosahedron, rigid motions of, 29-30 
ideal in Lie algebra, 122 
immersed subgroup, 95 
incidence correspondence, 193 
induced representation, 32-36, 37-38, 

393 
indecomposable representation, 6 
inner multiplicities, 415 
inner product, 16, 23, 79 
internal products, 476 
invariant polynomials, 504-513 
invariant subspace, 6 
irreducible representation, 4 
isogenous, isogeny, 101 
isotropic, 262, 274, 278, 304, 378, 390 

Jacobi identity, 108, 114 
Jacobi-Trudy identity, 455 
Jordan algebra, 365 
Jordan decomposition, 128-129, 478, 

482-483 

Killing form, 202, 206-210, 240-241, 
272, 478-479 

King, 411, 424 
Klimyk,428 
Kostant, 429 
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Kostant multiplicity formula, 419-424 
Kostka numbers, 56-57, 80, 456-457, 

459 

l-ring, 380 
level (of a root), 330 
Levi decomposition, subalgebra, 124, 

499-500 
lexicographic ordering of partitions, 53 
Lie algebra, 108 
Lie group, 93 
Lie subalgebra, 109 
Lie subgroup, 94 
Lie's theorem, 126 
Littlewood-Richardson number, 58, 79, 

82-83,424,427,455-456 
Littlewood-Richardson rule, 58, 79, 

225-227,455-456 
lower central series, 122 

map between representations, 3 
map between Lie groups, 93 
minuscule weight, 423 
modification rules, 426 
modular representation, 7 
Molien, 24-25 
module (G-module, g-module), 3, 481 
monomial symmetric polynomial, 454 
morphism of Lie groups, 93 
multilinear map, 472 
multiplicities, 7, 17, 199, 375 
Murnaghan-Nakayama rule, 59 

natural real form, 435, 437 
Newton polynomials, 460 
nil radical, 485 
nilpotent Lie algebra, 122, 124-125 
nilrepresentation, 501 

octonians, 362-365 
one-parameter subgroup, 115 
ordering of roots, 202 
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orthogonal group, 96, 97, 268-269, 300, 
301, 367,374 

orthogonal Lie algebras, 268-269 
orthonormal, 16, 17, 22 
outer product, 58, 61 

pairing,4 
partition, 18, 44-45, 421, 453 
perfect Lie algebra, 123 
perfect pairing, 28 
permutation representation, 5 
Peter-Wey! theorem, 440 
Pfaffian, 228 
Pieri's formula, 58-59, 79-81, 225-227, 

455,462 
Plancherel formula, 38 
plane conic, 154-159 
plethysm, 8, 82, 151-160, 185-193, 

224-231 
Plucker embedding, 227-228, 389 
Plucker equations, relations, 229, 235 
Poincare-BirchotT-Witt theorem, 486 
positive definite, 98, 99, 207 
positive roots, 202, 214, 243, 271 
power sums, 48, 459-460 
primitive root, 204, 215, 243, 271-272 
projection (formulas), 15, 21, 23 
projective space, 153 

quadric, 189-190, 228, 274-278, 
285-286,313,388,391 

quaternions, 99, 312 
quaternionic representation, 41, 444-449 

Racah,422,425,428 
radical of a Lie algebra, 123, 483-481 
rank (of Lie algebra or root system), 321, 

488 
rank (of a partition), 51 
rational normal curve, 153-160 
real form, 430, 442 
real representation, 5, 17, 444-449 
real simple Lie algebras and groups, 

430-439 
reductive Lie algebra, 131 
regular element, 487-488 

regular representation, 5, 17 
representation, 3, 95, 100, 109 

defined over a field, 41 
of a Lie algebra, 109 

representations 
ofe6 , e7 , e8 , f4 ,414 
ofg2,350-359,412-414 
ofGL.C, 231-237 
ohl2 C, 146-160 
ofsl3 C, 161-193 
ofsl4 C and sl.C, 217-231 
of so3 C, 273 
oho4 C, 274-277 
ofso5 C, 277-281 
oho6 C, 282-286 
of so 7 C, 294-296 
oho8 C, 312-315 

Index 

of so2.c, 286-292, 305-306, 409-411 
ofso2.+1C,294-296,307,407-409 
of sp 4 C, 244-252 
ohp6 C, 256-259 
ofsp2.C,259-266,404-407 

representation ring 
of finite group, 22 
of Lie group or algebra, 375-382 

restricted representation, 32, 80, 381-382, 
425-428 

right action, 38-39 
root, 165, 198,240,270,332-334,489 
root lattice, 166, 213, 242, 273, 372-374 
root space, 165, 198 
root system, 320 

Schur functor, 76, 222-227 
Schur polynomial, 49, 77, 223, 399, 454-

462 
Schur's Lemma, 7 
semisimple Lie algebra, 123, 131, 209, 480 
semistandard tableau, 56, 236, 456, 461 
Serre, 337 
Severi, 392 
shuffie, 474 
simple Lie algebra, 122, 131-132 
simple root, 204, 324 
simply reducible group, 227 
skew hook, 59 
skew Schur functor, function, 82-83 
skew symmetric bilinear form, 238 

Index 

skew Young diagram, 82 
Snapper conjecture, 60 
solvable Lie algebra, 122, 125, 479-480 
Specht module, 60 
special linear group, 95-97 
spec!al linear Lie algebra, 211-212 
sp~c1al unitary group, 98 
spm groups, 102, 299-300, 307-312 

368-372 ' 
spin representations, 30, 281, 291, 295 

306, 446, 448 ' 
spinor, 306 
spinor variety, 390 
split conjugacy class, 64 
split form, 432-438, 445 
standard representation, 9, 151, 176 244 

257,273,352 ' ' 
standard tableau, 57, 81, 457 
Steinberg's formula, 425 
string (of roots), 201, 324 
subrepresentation, 4 
symmetric algebra, 475 
symmetric group (representations of) 

63, 9-11 
64, 18-20 
65, 27-28 
6d, 31, 44-62 

symmetric map, 473 
symmetric polynomials, 450-451 461-

462 ' 
symmetric powers (of representations) 4 

111, 473-477 ' ' 
symplectic group, 96, 97, 99, 238-239 
symplectic Lie algebra, 239-240 

tableau, 45 
tabloid, 60 
tangent developable, 159 
tensor algebra, 475 
tensor powers of representation, 4, 472 
tensor product ofrepresentations, 4, 110, 

424-425, 471-472 
Towber, 235 
triality, 311, 312-315, 364 
trivial representation 5 9 
twisted cubic curve, i5s 

unipotent matrices, 96 
unitary group, 98 
universal enveloping algebra 416 

486 ' ' 

upper triangular matrices, 95 

Vandermonde determinant, 49 
vector field, 114 
Veronese embedding, 153-155, 189, 

230-231, 286, 389 
~eronese surface, 189-193, 392 
virtual character, 23, 36 
virtual representation, 22 
von Neumann, 118 

weight, 165, 199 
weight diagram, 199 
weight lattice, 172-173, 200, 214, 242, 

273,350,372-374 
weight space, 165, 199 
Weil,392 
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Weyl chamber, 205, 208, 215, 243, 256, 
259,272,283,292,295,351,376,495 

Wey! character formula, 289, 399_414 
440-444 ' 

Weylgroup,201,214,243,271,340 375 
493-498 ' ' 

Wey! module, 76-84, 222-227 
Weyl's construction, 76-84, 222-227, 

262-266, 296-298 
Weyl's integration formula, 443 
Weyl's unitary trick, 128-131 
Witt, 365 
wreath product, 243 

Young diagram, 45, 453 
Young subgroup, 54 
Young symmetrizer, 46 
Young's rule, 57 

Zak, 392 
Zetlin, 426 




