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p-ADIC L-FUNCTIONS FOR UNITARY GROUPS

ELLEN EISCHEN, MICHAEL HARRIS, JIANSHU LI, AND CHRISTOPHER SKINNER

ABSTRACT. This paper completes the construction of p-adic L-functions for unitary
groups. More precisely, in 2006, the last three named authors proposed an approach to
constructing such p-adic L-functions (Part I). Building on more recent results, including
the first named author’s construction of Eisenstein measures and p-adic differential
operators, Part II of the present paper provides the calculations of local (-integrals
occurring in the Euler product (including at p). Part III of the present paper develops
the formalism needed to pair Eisenstein measures with Hida families in the setting of
the doubling method.
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1. INTRODUCTION

This paper completes the construction of p-adic L-functions for unitary groups. More
precisely, in 2006, the last three named authors proposed an approach to constructing
such p-adic L-functions (Part I). Building on more recent results, including the first
named author’s construction of Eisenstein measures and p-adic differential operators,
Part II of the present paper provides the calculations of local (-integrals occurring in
the Euler product (including at p). Part III of the present paper develops the formalism
needed to pair Eisenstein measures with Hida families in the setting of the doubling
method.

The construction of p-adic L-functions consists of several significant steps, including
studying certain (-integrals occurring in the Euler products of the corresponding C-
valued L-functions (one of the main parts of this paper, which involves certain careful
choices of local data and which is the specific step about which we are most frequently
asked by others in the field) and extending and adapting earlier constructions of p-adic L-
functions (e.g. Hida’s work in [Hid96a], which recovers Katz’s construction from [Kat78]
as a special case). We also note that the last three named authors had already computed
local zeta integrals for sufficiently regular data as far back as 2003, but the computations
were not included in [HLS06] for lack of space. Since then, a new approach to choosing
local data and computing local zeta integrals at primes dividing p has allowed us to treat
the general case. These are the computations presented here.

In Section [LLI] we put this paper in the context of the full project to construct p-
adic L-functions (which comprises the present paper and [HLS06]), and we describe the
key components and significance of the broader project. The exposition in the present
paper, especially the description of the geometry, was written especially carefully to
provide a solid foundation for future work both by the authors of this paper and by
other researchers in the field.

1.1. About the project. Very precise and orderly conjectures predict how certain in-
teger values of L-functions of motives over number fields, suitably modified, fit together
into p-adic analytic functions (e.g. [Coa89, [CPR&9, [Pan94, Hid96a]). These functions
directly generalize the p-adic zeta function of Kubota and Leopoldt that has played a
central role in algebraic number theory, through its association with Galois cohomology,
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in the form of Iwasawa’s Main Conjecture. Such p-adic L-functions have been defined in
a number of settings. In nearly all cases they are attached to automorphic forms rather
than to motives; no systematic way is known to obtain information about special values
of motivic L-functions unless they can be identified with automorphic L-functions. How-
ever, the procedures for attaching L-functions to automorphic forms other than Hecke
characters are by no means orderly; any given L-function can generally be obtained by
a number of methods that have no relation to one another, and in general no obvious
relation to the geometry of motives. And while these procedures are certainly precise,
they also depend on arbitrary choices: the L-function is attached abstractly to an au-
tomorphic representation, but as an analytic function it can only be written down after
choosing a specific automorphic form, and in general there is no optimal choice.

When Hida developed the theory of analytic families of ordinary modular forms he also
expanded the concept of p-adic L-functions. Hida’s constructions naturally gave rise to
analytic functions in which the modular forms are variables, alongside the character of
GL(1) that plays the role of the s variable in the complex L-function. This theory has
also been generalized, notably to overconvergent modular forms, for example in the work
of Stevens (unpublished, but see [Ste00]) and Panchishkin [Pan03, [Pan06]. There seems
to be a consensus among experts on how this should go in general, but as far as we know
no general conjectures have been made public. This is in part because constructions of
p-adic families are no more orderly than the construction of automorphic L-functions,
except in the cases Hida originally studied: families are realized in the coherent or
topological cohomologyﬂ of a locally symmetric space; but the connection of the latter
to motives is tenuous and in many cases purely metaphoric.

The present project develops one possible approach to the construction of p-adic L-
functions. We study complex L-functions of automorphic representations of unitary
groups of n-dimensional hermitian spaces, by applying the doubling method of Garrett
and Piatetski-Shapiro-Rallis [Gar84l, (GPSR&T] to the automorphic representations that
contribute to the coherent cohomology of Shimura varieties in degree 0; in other words, to
holomorphic modular forms. When n = 1, we recover Katz’s theory of p-adic L-functions
of Hecke characters [Kat78], and much of the analytic theory is an adaptation of Katz’s
constructions to higher dimensions. For general n, the theory of ordinary families of
holomorphic modular forms on Shimura varieties of PEL type has been developed by
Hida, under hypotheses on the geometry of compactifications that have subsequently
been proved by Lan. It is thus no more difficult to construct p-adic L-functions of
Hida families than to study the p-adic versions of complex L-functions of individual
automorphic representations. Interpreting our results poses a special challenge, however.
The conjectures on motivic p-adic L-functions are formulated in a framework in which the
Betti realization plays a central role, in defining complex as well as p-adic periods used
to normalize the special values. Betti cohomology exists in the automorphic setting as
well, but it cannot be detected by automorphic methods. The doubling method provides

n principle, completed cohomology in Emerton’s sense could also be used for this purpose, and would
give rise to more general families. As far as we know p-adic L-functions have not yet been constructed
in this setting.
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a substitute: the cup product in coherent cohomology. Here one needs to exercise some
care. Shimura proved many years ago that the critical value at s = 1 of the adjoint
L-function attached to a holomorphic modular form f equals the Petersson square norm
(f, f), multiplied by an elementary factor. If one takes this quantity as the normalizing
period, the resulting p-adic adjoint L-function is identically equal to 1. Hida observed
that the correct normalizing period is not (f, f) but rather the product of (normalized)
real and imaginary periods; using this normalization, one obtains a p-adic adjoint L-
function whose special values measures congruences between f and other modular forms.
This is one of the fundamental ideas in the theory of deformations of modular forms and
Galois representations; but it seems to be impossible to apply in higher dimensions,
because the real and imaginary periods are defined by means of Betti cohomology. One
of the observations in the present project is that the integral information provided by
these Betti periods can naturally be recovered in the setting of the doubling method,
provided one works with Hida families that are free over their corresponding Hecke
algebras, and one assumes that the Hecke algebras are Gorenstein. These hypotheses
are not indispensable, but they make the statements much more natural, and we have
chosen to adopt them as a standard; some of the authors plan to indicate in a subsequent
paper what happens when they are dropped.

This approach to families is the first of the innovations of the present project, in
comparison with the previous work [HLS06] of the last three named authors. We stress
that the Gorenstein hypothesis, suitably interpreted, is particularly natural in the setting
of the doubling method. Our second, most important innovation, is the use of the general
Eisenstein measure constructed by the first named author in [EisI5l [Eis14].

In order to explain the contents of this project more precisely, we remind the reader
what is expected of a general theory of p-adic L-functions. We are given a p-adic analytic
space Y and a subset Y% of points such that, for each y € Y4 there is a motive M,,
and possibly an additional datum 7, (a refinement) such that 0 is a critical value of the
L-function L(s,M,). The p-adic L-function is then a meromorphic function L, on Y

whose values at y € Y%% can be expressed in terms of L(0, M,). More precisely, there

Lp(y)
p(Mvay)

is a p-adic period p(M,,r,) such that is an algebraic number, and then we have

the relation

Lp(y)
p(My,ry)

Here ¢"(M,) is the period that appears in Deligne’s conjecture on special values of L-

functions, so that I;E%J{Zy)) is an algebraic number, while Z,, and Z,, are correction factors

L(0, M)

(1.1.1) = 0L)

= Zoo(My) Zp(My,1y) -

that are built out of Euler factors and e-factors of the zeta function of M, at archimedean
primes and primes dividing p, respectively.

In our situation, we start with a CM field K over QQ, a quadratic extension of a totally
real field K*, and an n-dimensional hermitian vector space V/K. Then Y is the space
of pairs (A, x), where X\ runs through the set of ordinary p-adic modular forms on the
Shimura variety Sh(V') attached to U(V') and x runs through p-adic Hecke characters
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of IC; both A and x are assumed to be unramified outside a finite set .S of primes of K,
including those dividing p, and of bounded level at primes not dividing p. Because we
are working with nearly ordinary forms, the ring O(Y") of holomorphic functions on Y
is finite over some Iwasawa algebra, and the additional refinement is superfluous. In the
project, A denotes a character of Hida’s ordinary Hecke algebra. If (), x) € Y% then

e )\ = )\, for some automorphic representation w of U(V); it is the character of
the ordinary Hecke algebra acting on vectors that are spherical outside S and
(nearly) ordinary at primes dividing p;

e Y is a Hecke character of type Ap;

e the standard L-function L(s,m,x) has a critical value at s = 0.

(By replacing x by its multiples by powers of the norm character, this definition acco-
modates all critical values of L(s,m,x).) Under hypotheses to be discussed below, the
automorphic version of Equation (LI is particularly simple to understand:

(112) LyAe ) = o) Zoo (1,0 2y () Zs - Z )
X

The left-hand side is the specialization to the point (Ar,x) of an element L, € O(Y").
The right hand side is purely automorphic. The L-function is the standard Langlands
L-function of U(V') x GL(1)k. Its analytic and arithmetic properties have been studied
most thoroughly using the doubling method. If U(V') is the symmetry group of the
hermitian form (-,-);, on V, let =V be the space V with the hermitian form —(-,-),/,
and let U(-V) and Sh(-V') be the corresponding unitary group and Shimura variety.
The groups U(V') and U(-V) are canonically isomorphic, but the natural identification
of Sh(-V) with Sh(V') is anti-holomorphic; thus holomorphic automorphic forms on
Sh(V') are identified with anti-holomorphic automorphic forms, or coherent cohomology
classes of top degree, on Sh(-V), and vice versa. The space W =V & (-V'), endowed
with the hermitian form (-,-);, ® —(-,-)y,, is always maximally isotropic, so U(W) has a
maximal parabolic subgroup P with Levi factor isomorphic to GL(n)x. To any Hecke
character x of K one associates the family of degenerate principal series

UW)(A)
P(A)

s/n

I(x,s) =1Ind x o det-d,

and constructs the meromorphic family of Eisenstein series s — F(x, s, f,g) with f = f(s)
a section of I(x,s) and g € U(W)(A). On the other hand, U(V) x U(-V') naturally
embeds in U(W). Thus if ¢ and ¢’ are cuspidal automorphic forms on U(V)(A) and
U(-V)(A), respectively, the integral

I(¢, ¢, f,s) = vy ZX0S F (91,92))6(91)@' (92)x" (det(g2))dgrdgs,

defines a meromorphic function of s. Here [U(V) x U(-V)] = U(V)(F)\U(V)(A) x
UV ENU(-V)(A), g1 e UV)(A), g2 e U(-V)(A), and dg; and dg, are Tamagawa

measures.
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The doubling method asserts that, if 7 is a cuspidal automorphic representation of
U(V) and ¢ € 7, then I(¢p,¢’, f,s) vanishes identically unless ¢’ € 7V; and if (¢, ¢") # 0,
then the integrals I(¢,¢’, f,s) unwind and factor as an Euler product whose unramified
terms give the standard L-function L(s + %,ﬂ,x) and (as f, ¢, ¢’ vary) provide the
meromorphic continuation and functional equation of the standard L-function. Another
way to look at this construction is to say that the Garrett map

¢ G(f,0,5)(g2) = X" odet(ga) - N E(x,s, f(91,92))¢(91)dg:

is a linear transformation from the automorphic representation 7 of U(V') to 7 viewed
as an automorphic reprepresentation of U(-V"); and the matrix coefficients of this linear
transformation give the adelic theory of the standard L-function. We develop a theory
that allows us to interpret these matrix coefficients integrally in Hida families, under
special hypotheses on the localized Hecke algebra described below. Note that when 7 is
an anti-holomorphic representation of U(V'), its image under the Garrett map is 7, but
viewed as a holomorphic representation of U(-V).

The factor @, is a product of several terms, of which the most important is a normal-
ized Petersson inner product of holomorphic forms on U (V). Although it arises naturally
as a feature of the doubling method, its definition involves some choices that are reflected
in the other terms. The local term Zg, in our normalization, is a local volume multiplied
by a local inner product (depending on the choices). The correction factors Z., and Z,
are explicit local zeta integrals given by the doubling method. The archimedean factor
has not been evaluated explicitly, except when 7 is associated to a holomorphic modular
form of scalar weight (by Shimura) or, more generally, of weight that is “half scalar” at
every archimedean place (by Garrett) [Shi97, [Gar08|. In the present paper we leave it
unspecified; it depends only on the archimedean data (the weights) and not on the Hecke
eigenvalues.

The explicit calculation of the local term Z, is our third major innovation and one
of the key pieces of the current paper, and it occupies the longest single section of
this paper (SectionM]). It has the expected form: a quotient of a product of Euler factors
(evaluated at s) by another product of Euler factors (evaluated at 1 - s) multiplied by a
local € factor and a volume factor. The key observation is that the denominator arises
by applying the Godement-Jacquet local functional equation to the input data. This is
the step in the construction that owes the most to (adelic) representation theory. The
input data for the Eisenstein measure represent one possible generalization of Katz’s
construction in [Kat78]. The local integral has been designed to apply to overconvergent
families as well as to ordinary families; one of us plans to explore this in future work.
The precise form of the local factor at a prime w dividing p depends on the signatures
of the hermitian form at the archimedean places associated to p as part of the ordinary
data; this appears mysterious but in fact turns out to be a natural reflection of the PEL
structure at primes dividing p, or alternatively of the embedding of the ordinary locus
of the Shimura variety attached to (two copies of) U (V) in that attached to the doubled

group.
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A different calculation of the local term had been carried out at the time of [HLS06]. It
was not published at the time because of space limitations. It was more ad hoc than the
present version and applied only when the adelic local components at primes dividing p
of an ordinary form could be identified as an explicit function in a principal series. The
present calculation is more uniform and yields a result in the expected form, multiplied
by a volume factor that we have not evaluated explicitly in the present paper.

Before explaining the final factor ¢(7) it is preferable to explain the special hypotheses
underlying the formula [[.LT.2] which represent the fourth innovation in this project. The
point (A, x) belongs to a Hida family, which for the present purposes means a connected
component, which we denote Y7 ,, of the space Y’; in other contexts one works with an
irreducible component. The ring of functions on Yy , is of the form A®T,, where A is an
Iwasawa algebra attached to x and T, is the localization of the big Hecke algebra at the
maximal ideal attached to w. The principal hypotheses are that T, is Gorenstein, and
that the module of ordinary modular forms (or its Z,-dual, to be more precise) is free over
T,. There are also local hypotheses that correspond to the hypothesis of minimal level
in the Taylor-Wiles theory of deformations of modular Galois representations. These
hypotheses make it possible to define L, as an element of Oy, . The presence of the
factor ¢(m) is a sign that L, is not quite the p-adic L-function; ¢(7) is a generator of
the congruence ideal which measures congruences between A, and other characters A
of T, (of the same weight and level). The specific generator ¢(7) depends on the same
choices used to define Q) y, so that the product on the right-hand side is independent of
all choices.

In the absence of the special hypotheses, it is still possible to define L, in the fraction
field of A®T,, but the statement is not so clean. In any case, the p-adic valuations
of ¢(m) are in principle unbounded, and so the p-adic interpolation of the normalized
critical values of standard L-functions is generally given by a meromorphic function on
Y.

1.1.1. Clarifications. The above discussion has artificially simplified several points. The
Shimura variety is attached not to U(V') but rather to the subgroup, denoted GU (V'),
of the similitude group of V with rational similitude factor. All of the statements above
need to be modified to take this into account, and this is done in the paper. This detail
plagues the paper from beginning to end, as it seems at least to some degree also to
plague every paper on Shimura varieties attached to unitary groups. One can hope that
a far-sighted colleague will find an efficient way to do away with this.

What we called the moduli space of PEL type associated to V is in general a union of
several isomorphic Shimura varieties, indexed by the defect of the Hasse principle; p-adic
modular forms are most naturally defined on a single Shimura variety rather than on the
full moduli space. We need the moduli space in order to define p-adic modular forms,
but in the computations we work with a single fixed Shimura variety.

Although the p-adic L-functions are attached to automorphic forms on unitary (simil-
itude) groups, they are best understood as p-adic analogues of the standard L-functions
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of cuspidal automorphic representations of GL(n). The passage from unitary groups to
GL(n) is carried out by means of stable base change. A version of this adequate for
our applications was developed by Labesse in [Labll]. Complete results, including pre-
cise multiplicity formulas, were proved by Mok for quasi-split unitary groups [Mok13];
however, we need to work with unitary groups over totally real fields with arbitrary
signatures, and the quasi-split case does not suffice. The general case is presently being
completed by Kaletha, Minguez, Shin, and White, and we have assumed implicitly that
Arthur’s multiplicity conjectures are known for unitary groups. The book [KMSW14]
works out the multiplicities of tempered representations and is probably sufficient for
the purposes of the present project.

From the standpoint of automorphic representations of GL(n), the ordinary hypoth-
esis looks somewhat special; in fact, the critical values of L-functions of GL(n) can
be interpreted geometrically on unitary groups of different signatures, and the ordinary
hypotheses for these different unitary groups represent different branches of a p-adic
L-function that can only be related to one another in a general overconvergent family.
The advantage of restricting our attention to ordinary families is that the p-adic L-
functions naturally belong to integral Hecke algebras. To add to the confusion, however,
Hida’s theory of (nearly) ordinary modular forms applies to holomorphic automorphic
representations, but the doubling method requires us to work with antiholomorphic rep-
resentations. The eigenvalues of the U,-operators on representations do not coincide with
those on their holomorphic duals; for lack of a better terminology, we call these repre-
sentations anti-ordinary. Keeping track of the normalizations adds to the bookkeeping
but involves no essential difficulty.

1.1.2. What this project does not accomplish. Although we have made an effort to prove
rather general theorems, limitations of patience have induced us to impose restrictions
on our results. Here are some of the topics we have not covered.

First of all, we have not bothered to verify that the local and global terms in Equation
(LI2) correspond termwise with those predicted by the general conjectures on p-adic
L-functions for motives. The correspondence between automorphic representations and
(de Rham realizations of) motives is not straightforward; we expect to address this issue
in a subsequent paper. However, until we find a simple way to compute the archimedean
term Zo (, x) explicitly, we will not be able to compare it with anything motivic.

We have also not attempted to analyze the local factors at ramified finite primes for
and y. The geometry of the moduli space has no obvious connection to the local theory of
the doubling method. Moreover, a complete treatment of ramified local factors requires
a p-integral version of the doubling method. This may soon be available, thanks to work
of Minguez, Helm, Emerton-Helm, and Moss, but for the moment we have preferred to
simplify our presentation by choosing local data that give simple volume factors for the
local integrals at bad primes.

One of us plans to adapt the methods of the present project to general overconvergent
families, where Hida theory is no longer appropriate. On the other hand, the methods of
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Hida theory do apply to more general families than those we consider. In [Hid98], Hida
introduces the notion of P-ordinary modular forms on a reductive group G, where P
denotes a parabolic subgroup of G. One obtains the usual (nearly) ordinary forms when
P = B is a Borel subgroup; in general, for P of p-adic rank r, the P-ordinary forms vary
in an r-dimensional family, up to global adjustments (related to Leopoldt’s conjecture in
general). Most importantly, a form can be P-ordinary without being B-ordinary. Our
theory applies to P-ordinary forms as well; we hope to return to this point in the future.

Our p-adic L-function, when specialized at a classical point corresponding to the au-
tomorphic representation m, gives the corresponding value of the classical complex L-
function, divided by what appears to be the correctly normalized complex period in-
variant, and multiplied by a factor ¢(m) measuring congruences between 7 and other
automorphic representations. This is a formal consequence of the Gorenstein hypothesis
and is consistent with earlier work of Hida and others on p-adic L-functions of families.
It is expected that the factor ¢(7) is the specialization at 7 of the “genuine” p-adic L-
function that interpolates normalized values at s = 1 of the adjoint L-function (of 7, or
one of the Asai L-functions for its base change to GL(n)). As far as we know, no one has
constructed this p-adic adjoint L-function in general. We do not know how to construct
a p-adic analytic function on the ordinary family whose specialization at m equals c¢(7),
not least because ¢(7) is only well-defined up to multiplication by a p-adic unit. Most
likely the correct normalization will have to take account of p-adic as well as complex
periods.

Finally, we have always assumed that our base field K is unramified at p. This hy-
pothesis is unnecessary, thanks to Lan’s work in [Lanl4], but it simplifies a number of
statements.

1.2. History. Work on this paper began in 2001 as a collaboration between two of the
authors, around the time of a visit by one of us (M.H.) to the second one (J.-S. L.)
in Hong Kong. The initial objective was to study congruences between endoscopic and
stable holomorphic modular forms on unitary groups. The two authors were soon joined
by a third (C. S.), and a report on the results was published in [HLS05]. The subsequent
article [HLS06] carried out the first part of the construction of a p-adic analytic function
for a single automorphic representation. Because p-adic differential operators had not
yet been constructed for unitary group Shimura varities, this function only provided the
p-adic interpolation for the right-most critical value of the L-function, and only applied
to scalar-valued holomorphic modular forms. Moreover, although the local computation
of the zeta integrals at primes dividing p, which was not included in [HLS06], was based
on similar principles to the computation presented here, it had only been completed for
ramified principal series and only when the conductors of the local inducing characters
were aligned with the slopes of the Frobenius eigenvalues. After the fourth author
(E.E.) had defined p-adic differential operators in [Eis12l [Eis16] and constructed the
corresponding Eisenstein measure in [Eis15l [Eis14], it became possible to treat general
families of holomorphic modular forms and general ramification.
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The delay in completing the paper, for which the authors apologize, can be attributed
in large part to the difficulty of reconciling the different notational conventions that
had accumulated over the course of the project. In the meantime, Xin Wan had con-
structed certain p-adic L-functions in the same setting in [Wan15], by a method based on
computation of Fourier-Jacobi coefficients, as in [SU14]. More recently, Zheng Liu has
constructed p-adic L-functions for symplectic groups [Liul6]. Among other differences,
Zheng makes consistent use of the theory of nearly overconvergent p-adic modular forms,
thus directly interpreting nearly holomorphic Eisenstein series as p-adic modular forms;
and her approach to the local zeta integrals is quite different from ours.

1.3. Contents and structure of this paper. After establishing notation and con-
ventions in Section [L.4] below, we being in Section [2 by recalling the theory of modular
forms on unitary groups, as well as Hida’s theory of p-adic modular forms on unitary
groups. This section has carefully set up the framework needed for our project and will
likely also provide a solid foundation for others working in this area. In Section [3, we
discuss the geometry of restrictions of automorphic forms, since the restriction of an
Eisenstein series is a key part of the doubling method (Section M.I]) used to construct
L-functions. In Section M we discuss the doubling method. This section also contains
the local zeta calculations mentioned at the beginning of the introduction. The most
important of these is the calculation at primes dividing p (Section [A.3]), which is also
the longest single step of this paper. In the Appendix [Al we pay special attention to a
special case, definite unitary groups. In this special case, the doubling method can be
re-expressed as a finite sum over values of automorphic forms at CM points. Indeed, this
is a generalization of the approach taken by Katz to construct p-adic L-functions for CM
fields (which is closely related to the rank 1 case of our situation) in [Kat78]. Thus, it
can be helpful to view the statements in this special case. Section [0l provides statements
about measures, which depend on the local data chosen in Section [l A formalism for
relating duality pairings to complex conjugation and to the action of Hecke algebras is
developed in Section [6} this is extended to Hida families in Section [7l which also begins
the formalism for construction of p-adic L-functions in families. Section [§ establishes the
relation between p-adic and C*°-differential operators, and develops the local theory of
ordinary and anti-ordinary vectors in representations at p-adic places. Finally, Section
states and proves the main theorems about the existence of the p-adic L-function.

1.4. Notation and conventions.

1.4.1. General notation. Let Q c C be the algebraic closure of Q in C and let the com-
plex embeddings of a number field F ¢ Q be X = Hom(F,C); so X = Hom(F,Q).
Throughout, K c Q is a CM field with ring of integers O, and K* is the maximal totally
real subfield of L. The non-trivial automorphism in Gal(K/K*) is denoted by ¢. Given

a place v of K, the conjugate place ¢(v) is usually denoted .

Let p be a fixed prime that is unramified in K and such that every place above p in LC*
splits in K. Let Q, be an algebraic closure of Q, and fix an embedding incl, : Q > Q,.
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Let Z(p) c Q be the valuation ring for the valuation determined by incly. Let C, be the
completion of @p and let Oc, be the valuation ring of C, (so the completion of Z(p)).

Let ¢, : C — C, be an isomorphism extending incl,.

For any o € ¥k let p, be the prime of O determined by the embedding incl, o c. Note
that ¢(ps) = poe. For a place w of K over p we will write p,, for the corresponding prime
of O. Let ¥, be a set containing exactly one place of IC over each place of K" over p.

Let Z(1) c C be the kernel of the exponential map exp : C — C*. This is a free Z-

module of rank one with non-canonical basis 2rv/—1. For any commutative ring R let
R(1)=R®Z(1).

In what follows, when (G, X) is a Shimura datum, an automorphic representation of
G is defined to be a (g,K) x G(Ay)-module where K is the stabilizer of a point in
X; in particular, K contains the center of G(R) but does not generally contain a full
maximal compact subgroup. In this way, holomorphic and antiholomorphic representa-
tions are kept separate. This is of fundamental importance for applications to coherent
cohomology and thus to our construction of p-adic L-functions.

1.4.2. Measures and pairings. We will need to fix a Haar measure dg on the adeéle group
of a reductive group G over a number field F. For the sake of definiteness we take dg
to be Tamagawa measure. In this paper we will not be so concerned with the precise
choice of measure, because we will not be calculating local zeta integrals at archimedean
primes explicitly, but we do want to be consistent. When we write dg = [], dg,, where v
runs over places of F' and dg, is a Haar measure on the F,-points G(F),), we will want
to make the following additional hypotheses:

Hypotheses 1.4.3. (1) At all finite places v at which the group G is unramified, dg,
is the measure that gives volume 1 to a hyperspecial mazximal compact subgroup.
(2) At all finite places v at which the group G is isomorphic to T1; GL(n;, F;,),
where Fj ,,, is a finite extension of F,, with integer ring O;, (whether or not Fj ,,,
is ramified over the corresponding completion of Q), dg, is the measure that gives
volume 1 to the group [1; GL(n;, O;).
(3) At all finite places v, the values of dg, on open compact subgroups are rational
numbers.
(4) At archimedean places v, we choose measures such that [],dg, is Tamagawa
measure.

Let Z¢ c G denote the center of G, and let Z ¢ Zg(A) be any closed subgroup such
that Zg(A)/Z is compact; for example, one can take Z to be the group of real points of
the maximal F-split subgroup of Zg. We choose a Haar measure on Z that satisfies the
conditions of [L43if Z is the group of adeles of an F-subgroup of Zg. The measure dg
defines a bilinear pairing (,) on L?(Z-G(F)\G(A)); if f1(29) f2(z9) = f1(g) f2(g) for all
z € Z, we write

(1.4.1) (fi,f2)y = / J1(9) f2(g)dg,

Z.G(F)\G(A)
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and if not, we set (f1, f2), =0.

Suppose m and 7" are irreducible cuspidal automorphic representations of G. Then
(,);:m®m" - Cis a canonically defined pairing. Now suppose we have factorizations
(1.4.2) facy:m — & my, facyv:m — & T
where 7, is an irreducible representation of G(F;). Assume moreover that we are given
non-degenerate pairings of G(F},)-spaces
(1.4.3) (g, @M, = C
for all v. Then there is a constant C' = C(dg, facs, faczv,[1,(;),,) such that, for all
vectors ¢ € m, " € w¥ that are factorizable in the sense that

face(p) = ®upu; faco (¢”) = ®uipy

we have

(1'4'4) (4,0, (PV)Z = C(dg7 facm fac7TV7 H<7 )m,) H(‘Pva (Pz\j)m,

v v

When G is quasi-split and unramified over F}, and 7, is a principal series representation,
induced from a Borel subgroup B c G(F},), we choose a hyperspecial maximal compact
subgroup K, c G(F,) and define the standard local pairing to be:

(1:45) (£ 80 = [ (905 (9)dgs.

In situation (2) of Hypotheses [[43] we take K, = [1; GL(n;, O;).

Part II: zeta integral calculations
2. MODULAR FORMS AND p-ADIC MODULAR FORMS ON UNITARY GROUPS

This section introduces details about modular forms and p-adic modular forms on uni-
tary groups that we will need for our applications. For alternate discussions of modular
forms and p-adic modular forms on unitary groups, see [Hid04l, (CEF"16].

2.1. PEL moduli problems: generalities. By a PEL datum we will mean a tuple
P=(B,*,0p,L,(--),h) where

e B is a semisimple Q-algebra with positive involution *, the action of which we
write as b b;

e Op is a *-stable Z-order in B;

e [ is a Z-lattice with a left Opg-action and a non-degenerate alternating pairing
(,-) : L x L - Z(1) such that (bx,y) = (z,b*y) for x,y € L and b € Op;

e h:C — Endp,er(L®R) is a homomorphism such that (h(2)z,y) = (x, h(Z)y) for
z,ye LOR and z € C and —/~1(-,h(v/~1)-) is positive definite and symmetric.
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For the purposes of subsequently defining p-adic modular forms for unitary groups we
assume that the PEL data considered also satisfy:

e B has no type D factor;

o ():L®Zyx L®Z,— Zy(1) is a perfect pairing;

e p + Disc(Op), where Disc(Op) is the discriminant of Op over Z defined in
[Lan13, Def. 1.1.1.6]; this condition implies that Op ® Z(;) is a maximal Z,)-
order in B and that Op ® Z, is a product of matrix algebras.

We associate a group scheme G = Gp over Z with such a PEL datum P: for any Z-algebra
R

G(R) ={(g9,v) e GLoger(L ® R) x R* :(gx,gy) = v{z,y) Y,y € L® R}.

Then G/q is a reductive group, and by our hypotheses with respect to p, Gz is smooth
and G(Z,) is a hyperspecial maximal compact of G(Q)).

Let F' c C be the reflex field of (L, (-,-),h) (or of P) as defined in [Lanl13l, 1.2.5.4] and
let O be its ring of integers. Let 0 = {p} or &, and let Z(g) be the localization of Z at
the primes in 0. Let Sg = O ® Z(y. Let K° c G(A?) be an open compact subgroup
and let K ¢ G(Af) be K7 if 0= @ and G(Z,)K" otherwise. Suppose that K is neat, as
defined in [Lani3l, Def. 1.4.1.8]. Then, as explained in [Lanl3| Cor. 7.2.3.10], there is a
smooth, quasi-projective Sg-scheme Mg = Mg (P) that represents the functor on local
noetherian Sg-schemes that assigns to such a scheme T the set of equivalence classes of
quadruples (A, A\, ¢, ) where

A is an abelian scheme over T

A: A — AY is a prime-to-O polarization;

t:Op ®Z) —» Endr A ® Z gy such that (b)Y o A =Xo(b*);

a is a K"-level structure: this assigns to a geometric point ¢ on each connected
component of T" a 71 (T, t)-stable K"-orbit of O ® A?—isomorphisms

Qy L®A? > Hl(At,A?)

that identify (-,-) with a A?’X—multiple of the symplectic pairing on Hl(At,A?)
defined by A and the Weil-pairing;

e Liep A satisfies the Kottwitz determinant condition defined by (L ® R, (-,-),h)
(see [Lanl3l Def. 1.3.4.1]);

and two quadruples (A, \,¢,a) and (A’, N/, o) are equivalent if there exists a prime-
to-0 isogeny f : A - A’ such that X equals fY o X o f up to some positive element in

ZE(D), (b)of=foud)forallbe Op, and o' = foa.

2.2. PEL moduli problems related to unitary groups. Suppose
P= (By*yoBaL7<'7'>7h)
is a PEL datum as in Section 2.1] with
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e B =K"™, the product of m copies of K (that is, B; = K);
e x is the involution acting as ¢ on each factor of IC;

L] OBI’\KZZO.

We say such a P is of unitary type. By maximality, Op ®Z ;) = O1 x =+ x Opy = Oy x -+ %
O(p) (each O; is a maximal Z,)-order in ), s0 Op®Z, = [Ty [1:21 Ow. Let e; € Op®Z
be the idempotent projecting B to the ith copy of K. Let n; = dimg e;(L ® Q).

The homomorphism h determines a pure Hodge structure of weight -1 on V = L @ C.
Let V9 c V be the degree 0 piece of the Hodge filtration; this is an @5 ® C-submodule.
For each o € ¥, let a,; = dim¢ ei(V0®@®¢;,U(C). Let by; = nj—as;. We call the collection
of pairs {(as,bsi)oes }, the signature of h. Note that (aec,i;boci) = (boji,00i). The
following fundamental hypothesis will be assumed throughout:

Hypothesis 2.2.1 (Ordinary hypothesis).

Po =Por == Qg = Qo' 5-

For wp a place of K, we can then define (ay ;, by i) = (@0, bs) for any o € i such that
Pw = Po. Let Oy = Op®0 Oy and Ly, = L ®0 O,. We fix an Op ® Z,-decomposition
L®Z,=L"® L™ such that

o [T = Hw‘pL; is an Op ® Zp = [ly|p Ow-module with rankop, ;L3 = ay; (s0
Ly, = [T Ly, with ranke,,e; Ly, = by ; and Ly, = L, ® Ly,);
e L7 is the annihilator of L for the perfect pairing (-,-) : Ly, x Lg = Zp(1).

w

Over Z,, there is a canonical isomorphism

(2'2'1) GLOB®ZP(L ® Zp) — H H GLOw(eiLw)a g (gw,i),

wlp =1

induced by the Op ® Z,, = Hw‘p Op,w-decomposition L ® Z, = Hw‘p L,. This in turn
induces

(2.2.2) Gz, — Gmx [] ]Ln[GLow(eiLw), (9,v) = (v, (9u,))-

weXy 1=1

We fix a decomposition of e; L} as a direct sum of copies of O,,. Taking Z,-duals via (-, -)
yields a decomposition of e; Ly as a direct sum of copies of Oy = Homg, (O, Zy) (the Op-
action on Homg, (F; ), Zy) factors through e;0p ® Z(;,) and is given by bp(x) = ¢(b*x)).
The choice of these decompositions determines isomorphisms

GLo, ,(eiL,,) = GLq, ,(Ow), GLo,,(eLy,) 2 GLy, ,(Oy),
and GLo, , (€iLw) 2 GLy, (Oy).
With respect to these isomorphisms, the embedding
GLo, ,(eiLy,) x GLo, , (eiL,,) = GLo, , (eiLw) = GLo, ,, (€; Ly, ® €; L)
is just the block diagonal map (A4, B) ~ (4 ).

(2.2.3)
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2.3. Connections with unitary groups and their Shimura varieties. We re-
call how PEL data of unitary type naturally arise from unitary groups. Let V =
(Vis (s )y )1<ism be a collection of hermitian pairs over K: V; is a finite-dimensional
K-space and (-,-)y. : V; x V; - K is a hermitian form relative to I/K*. Let § € O be
totally imaginary and prime to p, and put (.,-); = tracexgd(-,)y,. Let L; c V; be an
O-lattice such that (L;,L;), ¢ Z and (-,-), is a perfect pairing on L; ® Z,. Such an L;
exists because of our hypotheses on p and its prime divisors in K and on . For each
0 €Yk, Vi = Vi ®x, C has a C-basis with respect to which (-,-); , = (-,)y, _ is given by
a matrix of the form diag(1,,,,-1s,,). Fixing such a basis, let h;, : C N Endr (V)
be h;(2) = diag(z1,,,,21s,,). Let ¥ = {0 € ¥ : py € Xp}. Then ¥ is a CM type of
K, and we let h; = [Tyex hio : C > Endirgr(Vi ® R) = [Tyes; Endr(V; ). Let B = K™, *
the involution that acts by ¢ on each K-factor of B, Op = O™, L =[], L; with the ith
factor of Op = O™ acting by scalar multiplication on the ith factor of L, (-,-) = ¥, (-,-);,
and h =T]; h;. Then P = (B,*,0p,L,(-,-),h) is a PEL datum of unitary type as defined
above. Note that (as,b5:) equals (7;4,5i,) if 0 € ¥ and otherwise equals (s; 4,7 0)-
Over Q, the group G associated with P is just the unitary similitude group denoted
GU(Vy x -+ x V) in [Har93]. The reflex field of this PEL datum P is just the field

F=Q[{ Y asio(a) : ack,i=1,..,m}]cC.

oedc

This follows, for example, from [Lanl3l Cor. 1.2.5.6]. Note that F is contained in the
Galois closure K’ of K in C.

As explained in [Kot92), §8] (see also Equations (2.7.I]) below), over the reflex field F, a
moduli space M associated with P is the union of | ker! (Q, Q)| copies of the canonical
model of the Shimura variety Sk (G, Xp) associated to (G, hp, K); here (G, Xp) is the
Shimura datum for which hp = h € Xp and ker' (Q, G) := ker (HY(Q,G) - 1, H(Q,, @)).
More precisely, the elements of kerl(@, G) classify isomorphism classes of hermitian tu-
ples V' = (V/, <',')Vil)1gigm that are locally isomorphic to V at every place of Q. Let
V=YW V&) be representatives for these isomorphism classes. Then Mg /F 1s natu-
rally a disjoint union of F-schemes indexed by the VO Mg JF = UMg 6. The scheme
Mg,y = Mgy is the canonical model of Sk (G,Xp), and for each i there is an F-
automorphism of Mg mapping Mk y isomorphically onto M KV - In [Kot92], Kot-
twitz only treats the case where m = 1, but the reasoning is the same in the general
case.

If m =1 and dimg V; is even, then the group G satisfies the Hasse principle (that is,
ker! (Q, @) = 0). In this case Mg is an integral model of the Shimura variety Si (G, Xp).
If dimg V7 is odd or m > 1, this is no longer the case. However, for applications to
automorphic forms, we only need one copy of Sk (G,Xp). We let Mg 1, be the scheme
theoretic closure of the F-scheme Mgy in Mf; this is a smooth, quasi-projective Sg-
scheme. We let

(231) SL:MK,L“)MK
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be the inclusion. We will refer to Mg as the moduli space and Mg 1, as the Shimura
variety.

Remark 2.3.1. For any PEL datum P, Lan has explained how the canonical model
of the Shimura variety Sk (G,Xp) is realized as an open and closed subscheme of
M, p [Lanl2, §2] [LS13, §1.2], with a smooth, quasi-projective Sp-model provided by
its scheme-theoretic closure in M. This is just the model described above.

2.3.2. Base points. Suppose m = 1. Let (V,(-,-)y) = (V1,{:,")y;), and let n = dimg V.
Suppose K1, ..., K, are finite CM extensions of I with Y7 [K;: K] =n. Fori=1,...,r, let
Jo.i be the Serre subtorus (defined in, e.g., [CCO14, Definition A.4.3.1]) of Resk, /qGm
and let v; : Jo; - Gy, be its similitude map. Let J(’) c [Tj-1 Jo,; be the subtorus defined
by equality of all the v;. Let V' = K;, viewed as a K-space of dimension [K; : K].
Each Vi' can be given a K;-hermitian structure such that EB,-Vi' is isomorphic to V' as
an hermitian space over K. Such an isomorphism determines an embedding of Jj in G.
Moreover, with respect to such an embedding, there exists a point hg € Xp that factors
through the image of J{(R) in G(R). The corresponding embedding of Shimura data
(J5,ho) = (G, X) defines a CM Shimura subvariety of Mg r.

For the case KC; = K for all i (so r = n), we write Jén) for Jj; this corresponds to a
PEL datum as in Section 2.l with B = K™. The base point h € Xp is called standard if
it factors through an inclusion of Jo(n). We henceforward assume that the base point h
in the PEL datum P is standard. This will guarantee that later constructions involving
Harish-Chandra modules are rational over the Galois closure of K.

Concretely, the assumption that h is standard just means that V has a K-basis with
respect to which (-, ), is diagonalized and that each h, has image in the diagonal matrices
with respect to the induced basis of V ®x , C.

2.4. Toroidal compactifications. One of the main results of [Lan13] is the existence of
smooth toroidal compactifications of Mg over Sy associated to certain smooth projective
polyhedral cone decompositions (which we do not make precise here); when 0O = & this
was already known. We denote such a compactification by M}?rz There is a notion of
one polyhedral cone decomposition refining another that partially orders the X’s. If X'
refines X, then there is a canonical proper surjective map 7y x : M}‘gfz, - M}?rz that is
the identity on My. We write M'%" for the tower of compactications {M}?rz}g In certain
situations (e.g., changing the group K, defining Hecke operators) it is more natural work
to work with this tower, avoiding making specific compatible choices of ¥ or having to
vary the ‘fixed’ choices.

If K7 ¢ K5 then the natural map Mg, — Mg, extends canonically to a map (of
towers) M}?i - M}g Similarly, if g € G(A?), then the map [g] : Mg, 1 — Mg,
(AN 1, ) = (A, N\ 1,ag), extends canonically to a map M;‘}Eg_l — M. This defines a
right action of G(A}) on the tower (of towers!) {M}?r}KuCg(A?).
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In the setting of Section 2.3 we let M}?’YL’E be the scheme-theoretic closure of Mgy

in M. This is a smooth toroidal compactification of the Shimura variety Mg 1; the

base change to F' is just the usual toroidal compactification of the canonical model. We

continue to denote by s; the induced inclusion MtfgfLZ c M}‘{’rz Varying ¥ and K as

above induces maps between the M}?TLZ. We let M}‘{’rL be the tower {Mtf?,erZ}E' The
action of G(AY) on {M}?r}Kgcg(A?) induces an action on {M}?fL}KDCg(A?).

Our convention will be to describe constructions over M%" as though M'" were a single

scheme. The reader should bear in mind that this means a tower of such constructions

over each M}?rz In particular, when we define a sheaf F over M}‘(’r (or some similar
tower of schemes), this will be a sheaf Fx, on each M}‘(’rz such that there is a natural
map 73y 5, ¢ Fy = Fyy for any X' that refines X. By H (M, F) we will mean the direct
limit li_lr)nE H i(M}?’rE, Fy). In practice, the maps of cohomology groups appearing in such

a limit will all be isomorphisms.

2.5. Level structures at p. Let H = GLo,e7,(L"). The identification (2.2.3)) deter-
mines an isomorphism

(2.5.1) H— ] ﬁ GLq, ,(Ow).

wlp =1

Let By ¢ H be the Z,-Borel that corresponds via this isomorphism with the product of
the upper-triangular Borels and let B}, be its unipotent radical. Let Ty = By /B};; this
is identified by isomorphism (2.5.1)) with the diagonal matrices.

Suppose O = {p}. Let A be the semiabelian scheme over M'%" and let A" be its dual.
We define Mg, to be the scheme over M‘;O}( whose S-points classify the By, (Z,,)-orbits of
Op ® Z,-injections ¢ : L* ® p,r —> AV[p"] /s of group schemes with image an isotropic
subgroup scheme. We write M, for its restriction over Mg. The group By (Z,) acts
on Mg, on the right through its quotient Ty (Z,/p"Z,). We let Mk, 1, be the pullback
of MKT over Mt[‘grL and let Mg, 1 be the pullback over Mg 1. Generally, the scheme
Mg, (resp. Mk, 1) is étale and quasi-finite but not finite over MY (resp. Mt[?: ). We
continue to denote by sy, the inclusions M, 1 = Mf, and MKT, L < MKT, determined by
these restrictions.

Let Bt c G jz, be the Borel that stabilizes L* and such that
(2.5.2) B* » G,,x By cG,, x H,

where the map to the first factor is the similitude character v and the map to the
second is projection to H. Let B* c B* be the unipotent radical. Let I c G(Z,)
consist of those g such that gmodp” € B*(Z,/p"Z,), and let I, c IV consist of those
g projecting under the surjection ([2.5.2]) to an element in (Z,/p"Zy,)* x BY,(Zy[p"Zy).
Then I°/1, — Ty (Zy/p"Z,). The choice of a basis of Z(1) naturally identifies Mk, /r

(resp. Mk,,r) with My, g o (vesp. My, kv, = S1,kr(G,Xp)), and MKT-/F (resp. MKT,L/F)
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is the normalization of M}?r/F (resp. M}?TL/F) in Mg, /p (resp. Mg,/ F). Since it should

therefore cause no ambiguity, we also put K, = I, K?. We similarly put K? = ISKP.

Note that under the isomorphisms ([2.22]) and ([2.2.3)), B* is identified with the group

Lo~ m AB . Ae GLaw’i((’)w) is upper-triangular
(253) B" — Gy x H H ( 0 D) € Gan(Ow) " DeGLy, ,(Ouw) is lower-triangular | -

weX, i=1

2.6. Modular forms. We define spaces of modular forms for the groups G and various
Hecke operators acting them.

2.6.1. The groups Gy and Hy. Let V = L&C. The homomorphism h defines a pure Hodge
structure V = V10 @ V01 of weight —1. Let W = V/V%~!. This is defined over the
reflex field F'. Let Ag c W be an Op-stable Sg-submodule such that Ag ®s, C=W. Let
Ag =Homg, , (Ao, Z;,)(1)) with Op® Sp-action: (b®s)f(z) = f(b*sz). Put A = Ag@ Ay,
and let () ., : A x A = Z,)(1) be the alternating pairing

(@1, 1), (@2, f2)) can = f2(21) = f1(22)-

Note that Ag and Ay are isotropic submodules of A. Note also that the Op-action on A
is such that (bz,y) .., = (2,07Y) 4, Let Go be the group scheme over Sy such that for
any Sp-algebra R

can

Goll) = {(97 v) € GLoger(A ®s, R) x R* - W’?ﬁ??&“ﬁ A;ﬁ,gjgmn’}'
Let Hy c Go be the stabilizer of the polarization A = Ag @ Aj. The projection Hy —
Gm x GLoges,(Ay) is an isomorphism (the projection to G, is the similitude factor
v). There is a canonical isomorphism V = A ®g, C of Op ® C-modules that identifies
VL0 with Ag ®s, C and VO~ with A§ ®s, C and the pairing (-,-) with (-,-),,., and so
identifies G/c with Go,c. Let C c G be the centralizer of the homomorphism % and
set Uso = Uy := C(R). The identification of Gc with Goc identifies C'(C) with Ho(C).

2.6.2. The canonical bundles. Let A be the semiabelian scheme over M‘}?r and AV its
dual. Let w be the (’)M?r—dual of LieM?r.AV. The Kottwitz determinant condition is

equivalent to w being locally isomorphic to Ay ®s, OM?{» as an Op ® OM?r—module. Let
5 = ISOH]OB@)OM%?r ((OJ, OM?r (1)), (AE)/ ®SD OME?r, OM?{)r(l)))

This is an Hy-torsor over Mt[‘gr. Let m: & — M}‘{’r be the structure map. Then 7,0¢ is
an Ho-bundle on M. Let R be an Sg-algebra. A global section f of this bundle over
M /g can be viewed as a functorial rule assigning to a pair (A,¢) over an R-algebra S
an element f(A,e) € S. Here A is a tuple classified by Mg (S) and ¢ is a corresponding
element of £(S5). We let &, =& Xptor Mg, and let 7, : £ — Mg, be its structure map.
Sections of the bundle 7, .Og, have interpretations as functorial rules of pairs (X,¢),

where X = (A, ¢) is a tuple classified by Mg, (S) and ¢ is a corresponding element in
E-(9).
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2.6.3. Representations of Hy over Sy. Let F' c Q be the compositum of F and the Galois
closure K" of K, and p c Opr be the prime determined by incl,. Let

S(] = SD ®OF,(p) OF’,(]J’)'

(SoSp=F'ifo=@and Sy = Opr py if 0= {p}.) The isomorphism O® Sp > [Toes, So,
a® s+ (0(a)s)e.s,, induces a decomposition

OB ®S(’) SN OB ®o (O@S@) = H OB ®0,0 So = H OB,o-
o€ oed
This in turn induces Op ® So = [15ex, OB,o-decompositions Ag ®s, So = [1ex, Ao,o and
Ag ®sy S0 = [oes Ago- The pairing ()., identifies Ay ;. = Homgz, (Aoo, Z(py (1))

can

Since Sy is a PID, e;Ag, and eiAaJ are free Sp-modules, of respective ranks a,; and
bs,i. We fix an Sp-basis of e;Ag ,. By duality, this determines an Sy-basis of 62‘/\5/,00- This
yields an isomorphism

(2.6.1) HO/SO SN Gm X H H GL(’%@@,US()(QA\O/,U) = Gm X H H Gmei(SO)-

oeXk i=1 ek i=1

Let Bu, © Hopsg, be the Sp-Borel that corresponds via the isomorphism (Z.6.1]) to
the product of the lower-triangular Borels. Let Ty, ¢ By, be the diagonal torus and
let Bjj, © Bp, be the unipotent radical. We say that a character x of Ty, that is
defined over an Sp-algebra R is a dominant character of Ty, if it is dominant with
respect to the opposite (so upper-triangular) Borel B})}z. Via the isomorphism (Z.6.1),
the characters of Ty, can be identified with the tuples = (Ko, (Ko.,i)oes,1<i<m)s Ko € Z
and Kqj = (Kgyij) € Zb‘”', and the dominant characters are those that satisfy

(2.6.2) Koil 2 2 Kayib VoeXi, 1=1,...,m.

o,
The identification is just

bo,i

i
) - T T

Fek i=1 j=1
t = (to, (diag(teyi,1;s -+ toyiby.: ) )oesk, 1<i<m) € THy-

Given a dominant character s of Ty, over an Sp-algebra R, let
Wi(R)={¢:Hojp > Gq : ¢(bh) =r(b)¢p(h), be By},

where £ Is extended trivally to By . If R is a flat Sp-algebra then this is an R-model
of the irreducible algebraic representation of Hy of highest weight x with respect to
(THO,B})}?)). Let w e W(Th,, Hog,) be the longest element in the Weyl group and let "

be the dominant character of Ty, defined by x"(t) = k(w ™'t *w). The dual
W, (R) = Homp(Ws(R), R)
is, for a flat Sp-algebra R, an R-model of the representation with highest weight V.
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The submodule WK(R)B%O is a free R-module of rank one spanned by ¢, the function
with support containing the big cell By, wBp, (and equal to the big cell if x is regular)
and such that qﬁ,{(wBI“{O) = 1; wey is a highest-weight vector. The module W,/ is gen-
erated over R as an Hy-representation by the functional ¢, = (evaluation at 1); wl, is a
highest-weight vector. Also,

Homp, (W, (R),We(R)) = R
with basis the homomorphism that sends £, to ¢,v.
For future reference, we also note that via the isomorphism (2.6.1]) the identification of
C(C) with Hy(C) identifies
(2.6.3) Uso = C(R) — {(ho, (ho)oesy) € Ho(C) = hg e R*, ho'h " =y},

where the <7 denotes complex conjugation on C. That is, Uy is identified with the
subgroup of the product [,ex, GU(by) of unitary similitude groups in which all the
similitude factors agree.

2.6.4. The modular sheaves. Let R be a Sp-algebra and k a dominant R-character of
THO' Let
wi,m =T O0g[k] and wy v = 772 Og, [ K]

be the subsheaves on M}‘{’r /R and Mg, IR> respectively, on which By, acts via k. We let
(2.6.4) Wi = SL1STWe M and Wy = SL1STWr g M-

These are the respective restrictions to the Shimura varieties Mg 1, of the sheaves w. nr
and wy. . v, extended by zero to the full moduli space. We will use the same notation to
denote the restriction of these sheaves over Mg 1, and Mg, .

2.6.5. Modular forms over Sy of level K. Let R be a Sp-algebra. The R-module of
modular forms (on G) over R of weight x and level K is

M (K;R) = HY(ME p, wy).
The Kocher principle [Lanl6] and the definition (2.6.4]) implies that
(2.6.5) M, (K;R) = H° (MK,L/R,(UH)

except when Fy = Q and G9°T/Q = SU(1,1). However, in this exceptional case the
toroidal compactifications are the same as the minimal compactification and therefore
canonical; we leave it to the reader to make the necessary adjustments to our arguments
in this case (or to find them in the literature). By (2.6.5]) a modular form f € M, (K;R)
can be viewed as a functorial rule assigning to a pair (A,e) over an R-algebra S (and
which is an S-valued point of the Shimura varietyl) Mg 1) an elementf] f(A,e)eS and
satisfying f(A,be) = k(b) f(A,¢e) for be By, (5).

2The ‘rule’ is just zero when the point is not on the Shimura variety; see the next footnote.
3This element will be zero if A is not an S-valued point of the Shimura variety Mg, p,.
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Let Do, = M%" — M. The R-module of cuspforms (on G) over R of weight x and level
K is the submodule

Se(K:R) = HY (M) .0, (~Doo))
of M,(K;R).

2.6.6. Modular forms over Sy[1] with Nebentypus 1. Let ¢ : Ty (Z,) - @X be a character
factoring through Ty (Z,/p"Z,). Suppose R is an Sy[v]-algebra. We define the R-module
of modular forms (on G) over R of weight &, level K,, and character 1 to be

My (K, 5 R) = {f € H® (M, o) = t-f = 0(D)f Ve Tu(2,y)}.

If p is not a zero-divisor in R, then the Kocher principle implieﬂ

1
266) M (K|S ]) = {F € HO (Mic s o) o 027 =00 Ve Th(Z,) .
P
A section f € M,(K,,v¥;R) can be interpreted as a functorial rule assigning to a pair
(X, ) (which is an S-valued point of the Shimura varietyf] Mk, 1) an elementl] f(X,¢) €
S, where X = (A, ¢), satisfying f(A,¢ot,be) = (t)k(b)f(X,e) for all t € Ty(Z,) and
be BHO(S)

When p is not a zero-divisor in R we define the submodule of cuspforms of character
1) to be

S (Jy 101 R) = My (K, 5 R) 0 S, (KR[%])

2.6.7. The actions of G(A}) and G(A?). The action of G(A}) on {M%"} o gives an
action of G(AY) on

lim My (K;R) and lim S, (K : R).
KB KB

Similarly, the action of G(A?) extends to an action on {Mg, }k», giving an action of
G(AI}) on

lim M, (K,,v; R) and limS,(K,,v¥;R).

Kr K

The submodules fixed by K (resp. KP) are just the modular forms and cuspforms of
weight k and level K (resp. prime-to-p level KP).

4Again, there is an exception when Fy = Q and G4°"/Q = SU(1,1).
SAGAIN: see next footnote
6This element is just 0 if X is not an S-point of Mk, r.
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2.6.8. Hecke operators away from p. Let K; = G(Z, )Kp c G(Ay), j=1,2, be neat open
compact supgroups. For g € G(A ) we define Hecke operators

[K29K1]: M, (K1;R) - M, (K2; R),
[K2,r.gK1,r] s My, (Kl,ry ); R) - M, (K2,ra ¢? R)

through the action of G(A‘?) on the modules of modular forms:
(2.6.7) [K2,9K1,]f = ;[gj]*fv K3gKY =g, g, K7
j
In particular,
(2'6'8) ([K2,r9K1,r]f)(Av/\’L’O‘ng¢75) = Zf(Av/\’L’O‘ngf’qb’g)-
9j
These actions map cuspforms to cuspforms.

When K, = K is understood we write T'(g) instead of [ K1¢gK; | and T}.(g) = [K1,9K1,];
we drop the subscript » when that is also understood.

2.6.9. Hecke operators at p. If p is invertible in R (so R is a Q,-algebra) we define Hecke
operators T(g) = [KgK] and T,(g) = [K,¢gK,] on the spaces of modular forms and
cuspforms over R just as we did in 2.6.81 We single out some particular operators: for
weXy 1<i<m, 1<j<n;, welett) . eB"(Qp) be the element identified via (2.5.3)
with (1, (tw,;)) where

diag(pl;, 1n-j) w=w',i=1,j < ay
twrirj = ydiag(play, In-js Plj-a,) w=w',i=1",j> ay
1, otherwise.
Note that t; | i has the property that
0p+=L 0
’Ll) Z,]IT Z]z J c I
Let t,,; ;= (thi;)" 1 We put
(2.6.9) Uw,ij=K tw”K Up,ij = Krty,i i K

Remark 2.6.10. To define the actions of these Hecke operators on higher coherent co-
homology of automorphic vector bundles it is necessary to use the class of smooth
projective polyhedral cone decompositions used to define toroidal compactifications in
[Lan13, Lanl4]. For holomorphic forms this is generally superfluous because of the
Koecher principle [Lan16].

2.6.11. Comparing spaces of modular forms of different weight. Given an integer a, let
Kq be the weight k4, = (a,(0)). We define a modular form f, € M, (K;R) by the rule
fa(A,e) =A% where (A,¢) is a pair over an R-algebra S and ¢ acts as multiplication by
AeS* on S(1).
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Let & = (Ko, (Ko,i) be a weight, and put &’ = (kg+a, (ks;)). The there are isomorphisms

M (K R) 7T My (K R) andM(K,,v; R) 75 M (K, 0 R).

These maps induce isomorphisms on spaces of cuspforms, and the Hecke operators T'(g)
satisfy

Ja-T(9)f = v DI*T(g)(fa- f)-

2.7. Complex uniformization. We relate the objects defined so far to the usual com-
plex analytic description of modular forms on Shimura varieties.

2.7.1. The spaces. Let X be the G(R)-orbit under conjugation of the homomorphism h.
Recall that the stabilizer of h is the group Us, = C'(R), so there is a natural identification

G(R)/C(R) — X, g = ghg™!, which gives X the structure of a real manifold. Let
Py c Go be the stabilizer of Ag. Via the identification of G)c with Goc, which identifies
C(C) with Hy(C), X is identified with an open subspace of Go(C)/Py(C), which gives
X a complex structure. There are natural complex analytic identifications

Mg (C) =G(Q\X x G(Af)/K

(27.1) Mg, (C) =G(@\X x G(Af)/ Ky,

where the class of (h',g) € X x G(Ay) corresponds to the equivalence class of the tuple
Apr g = (Aps Ay tymg) (or Xy = (A 40 @) consisting of

e the abelian variety Ay = L®R/L with the complex structure on L®R being that
determined by h'; its dual abelian variety is Ay, := LR/ L%, where again L&R has
the complex structure defined by A’ and where L# = {z e L®R : (x,L) c Z(1)};

o \p: Apr = AJ, is the isogeny induced by the identity map on L ® R;

e ¢ is induced from the canonical action of Op on L;

e 7, is the K (or K,-orbit) of the translation by g map g: L® Ay — L® Ay =
Hi(Ap,Ay).

This paramaterization is for 0= @. For 0= {p} we require g, € G(Z,) and

e 1), is the KP-orbit of the translation by g map g? : L®A’} — L®AI} = Hi (A, A’});
e in the case of Mg,, ¢4 is the B};(Z,)-orbit of the map L™ ® p,r — A),[p"] =
#L#/L# = L* @7,/ (pTL# ® Zp), v @2V P s gpvmod (pTL# ® Zp).

Here we are using that the simple factors of G%f{ are all of type A (see [Kot92] for how
this enters into the identifications (2.7.1])).

2.7.2. Classical modular forms. The dual of the Lie algebra of A}, is w Ay, = Home (L ®
R,C) with the complex structure on L ® R being that determined by h’. Recalling

that L& R — W = Aq ®g, C is a C-linear isomorphism for the complex structure on
L ® R determined by h, we find that there is a canonical Op ® C-identification ¢g :
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w4y — Ay ®s, C. If B’ = ghg™, then e,/(\) = e9(g'\) is an Op ® C-identification of
way, with Ay ®s, C. The complex points of the Hop-torsors £/Mg and &,/Mg, are then
given by

£(C) =G(Q\G(R) x Ho(C) x G(Af) [Un K

(2.7.2) ET(C) :G(Q)\G(R) X HO((C) X G(Af)/UooKm

with the class of (g, z,g¢) € G(R)xHy(C)xG(Ay) corresponding to the class of (Aghgfl,gf’ (zeo(g7t),v(2)))
and (Xghgq’gf, (zeo(g7t),v(x))), respectively.

As C is a Z,-algebra via ), a weight k£ modular form over C is therefore identified
with a smooth function ¢ : G(A) x Hy(C) - C such that ¢(yguk,bxu) = (b)y(g,z) for
v7eG(Q), ge G(A), x € Hy(C), ue Us, be By, (C), and k € K or K,. The space

W,.(C) ={¢: Hy(C) - C : ¢ holomorphic, ¢(bx) = k(b)¢(x) Vbe By, (C)}

is the irreducible C-representation of Hy of highest weight x with respect to (7 HO,B?}Z),
so a weight x modular form is also identified with a smooth function f: G(A) - W, (C)
such that f(yguk) = u'f(g) for v € G(Q), u € Us, and k € K or K,. Here U, acts
on W, (C) as up(x) = ¢(xu). The connection between f and ¢ is f(g)(x) = ¢(g,z).
The condition that the modular form is holomorphic can be interepreted as follows. Let
g =Lie(G(R))c, and let g=p~ & @ p* be the Cartan decomposition for the involution
h(~/=1): adh(v/-1) acts as +\/-1 on p*. The identification of G(C) with Gy(C) iden-
tifies Lie(FPy(C)) with €@ p*, and so f corresponds to a holomorphic form if and only if
pmx f=0.

Let ¢ : Ty (Z,) » Q be a finite character that factors through Ty (Z,/p"Z,). The
condition that a modular form have character ¢ becomes f(gt) = ¢(t)f(g) for all ¢ €
Ty (Zyp), where the action of ¢ comes via (2.5.2)).

2.7.3. Hecke operators. The actions of the Hecke operators in [2.6.8] and [2.6.9] correspond
to the following actions on the functions f: G(A) — W, (C): the action of [KygK] is
just

(2.7.3) f(9) = > fl9g9;), KagKi=ugjK,
95

and similarly with K; replaced by K; .

2.8. Igusa towers. Let O = {p}. Let A be the semiabelian scheme over M'%"/S; and
let w be the Oypor-dual of the Lie algebra of A”. Recall that the hypothesis Z2.T)
implies that the completion of incl,(Sn) is Zp; in this way we consider Z, an Sy-algebra.

Let k > 0 be so large that the kth-power of the Hasse invariant has a lift to a section
EeM,.«(K;Zy). Put

1
Sm = ME?TL[E]/Z,,/mep-
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Let SO, = MK7L[%]/Zp/mep; this is an open subscheme of S,,,. For n >m let Ty, ;,,/S,, be
the finite étale scheme over S,,, such that for any S,,-scheme S

Tpm(S) =Isomg(L" ® ppn, A'[p"]°),

where the isomorphisms are of finite flat group schemes over S with Op®Z,-actions. The
scheme T, ,,, is Galois over S, with Galois group canonically isomorphic to H(Z,/p"Z,).
The collection {T), p, }» is called the Igusa tower over S,.

2.9. p-adic modular forms. Let D, ,, be the preimage of D,, =S, - SOm in T, ;. For
a p-adic ring R (that is, R = l&nm R/p™R), let

Vn,m(R) = HO(Tn,m/Ra OTn,m) and Vrf};zip(R) = HO(Tn,m/Ry OTn,m (_Dn,m))'

The group H(Z,) acts on each through its quotient H(Z,/p"Z,), the Galois group of
Tr.m/Sm- The R-module of p-adic modular forms (for G) over R of level K? is

V(K?, R) = limlim V,, ,n (R) 1 %),
and the R-module of p-adic cuspforms (for G) over R of level KP? is
V(KP, R)*™P = @h_n}v;ﬁp(R)B;(zp)'

m n

The group Ty(Zy) = Bu(Zy)/B};(Zy) acts on these modules.

A p-adic modular form over R can be viewed as a functorial rule that assigns an element
of a p-adic R-algebra S to each tuple (4,¢) over S, where A = (4,,) € limS,,,(5) and
& = (Pnm) € @m @n Ty,m(S) with each ¢y, over A4,,.

2.9.1. p-adic modular forms of weight k and character 1. Let K’ c @p be the extension
of Q, generated by the images of all the embeddings of K into Q,, and let O’ be its ring
of integers. Let

K= (”o,i)UEEK,ISiSmy Koy € L,
We denote also by x the O'-valued character of T (Z,) defined by

m Qo,i

k() =T IT TTI1eo(twij) ",

wlp 7<=k =1 j=1

Po=pw

t= (dia‘g(tw,i,la ) tw,i,aw,i ))w\p,lSiSm € TH(ZP)

If:Ty(Zy) - @px is a finite-order character, then we define an O'[+]-valued character
ky of T (Zy) by ky(t) = ¥(t)k(t). For R a p-adic ring that is also an O'[¢]-algebra,
the spaces of p-adic modular forms and cuspforms of weight « and character 1 are

Vi(KP ,R) ={f e V(KP,R) : t-f=ry(t)f VteTu(Zy)}

and
VEUSP(KP 4, R) = {f e V"P(KP.R) = t-f=ry(t)f Vt e Tu(Zy)}.
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As a functorial rule, a p-adic modular form of weight x and character 1) satisfies f(A,¢po
t) = ky(t) f(A,¢) for all t € Ty (Zy).

2.9.2. The action of G(A?). The action of G(A?) on {M{¥}k» induces an action on
{Sm} k» and on {T, 1, }n ke, and these actions give an action of G(A‘?) on
@V(KP,R) and Lir_nVH(Kp,i/),R)
KP KP
and on their submodules of cuspforms. The submodules fixed by K? are just the p-adic
modular forms and cuspforms of weight x and prime-to-p level KP.

2.9.3. Hecke operators away from p. Let Kf c G(A‘?), 7 =1,2, be neat open compact
supgroups. For g ¢ G(AIJZ) we define a Hecke operator [Kg gKf ] on the spaces of p-adic
modular forms and cuspforms just as in Section [Z.6.8l

2.9.4. Modular forms as p-adic modular forms. Let O = {p}. Under Hypothesis 2.2T]
the completion of incl,(S(p)) is Zy, so incl, identifies Z;, as an S(,)-algebra and O’ as
an Sp-algebra. As Op ® Zy,) = O@), we have

080 = (0,0 =[[[10.o0 =[] [T T10- I [1°.

wlp i=1 wlp o<k i=1 el i=1

Po=pw

The choices in Sections [2.6.3] and induce O ® O’-decompositions

A0 ®sy Ol = H HeiAO,o ®3, (’)/ = H H(O/)ag,i

UEZ)C 1=1 O'EE;C i=1
and

L* ®7, O = H H €; Ly, ®7, o' = H H((’)w ®2z, O/)aw,i — H H H(O/)a”’

wlp i=1 wlp i=1 wlp 7<=k i=1

Po=pw

Equating these identifications yields an Op ® O’-identification Ag ®g, O’ = L* @, O'.

P

Recalling that Hy c Gy is the stabilizer of the polarization A = Ag & Ay and hence that
Ho o — Gy, x GLo 07 (Mg ®5, O'), this then determines an isomorphism
HO/O’ — Gm X H/O’
which is given explicitly in terms of (2.5.1]) and (2.6.1]) by
(2.9.1) HO/O’ > (v, (ga,i)UEZn) = (v, ( H v tg;éz’)w\p) €Gm x H/O’7

oeXyc

po=pw
where we have used the identification GL,(Ow ®z, ') — Tlses pompe GLr(O”). This
identifies BHo/o' = Gm x By jor, B};O/O, = BI“{/O,, and THo/o' =G xThjor-

To each weight k = (Ko, (Ks;)) as in (Z6.3]), we associate a k, as in 29T

Kp = (Koe,i)-
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Note that kg € Zboci = 7% If te TH(Zyp), t = (diag(tw,i1;s - twi,a,,; ), then

m Qw,i

(1) =TT TT 1111 0Ctus)ee.

w\p oeXyc =1 j=1
Po=pPw

Note that if = (to,t) € Zy x T (Zp) c Tg,(O'), then

k(x) = tgonp(tfl), co = Ko + Z Ko j-

0727.]

As we explain in the following, for ¢ : Ty (Z,) - Q, a finite order character and R a
p-adic O'[¢]-algebra, if k satisfies the inequalities (Z.6.2]), then the modular forms over
R of weight x and character ¢ are p-adic modular forms of weight « and character .

Fixing G, = SpecZ[z, %] yields an identification py» = SpecZ|z, %]/(xpn - 1) for each
n > 1, and hence an identification Liez(pn) = Z:p%. For any scheme S, this identifies
Lieg(ppn) with Og, compatibly as n varies. If n > m, S is a Z,/p"Z,-scheme, and
¢ € Ty (S), then this identification gives an isomorphism

Lie(¢) : L* ® Og = L* ® Lieg(pupn) —> Lies(Ajs[p"]°) = LiesAJs.

The identification Ag ® Z, = L™ gives (Lie(¢)",id) € £,(S). If f e M,(K,,¢;R) for R a
p-adic O'[¢]-algebra, then the value of the p-adic modular form f,_,qic determined by f
on a (p-adic) test object (A, ¢) over a p-adic R-algebra S is

fp—adic(éy gb) = lﬂlf(éma ¢m,m,m (Lie(¢m,m,r)vaid)) € l&nS/pmS = S,
where for n > max{r,m}, ¢nm, is the isomorphism L* ® p,r — A/Vs[pr]" determined

by ¢nm- If t € Ty(Z,) then Lie(¢pot)Y =1 Lie(¢)Y, so
(t : fp—adic)(Ay gb) = l&nf(éma ¢m,m,t ot, (Lie(¢m,m ° t)\/’ Zd)) = ¢(t)”p(t)fp—adic(éy @b)y

hence f,_aqgic is a p-adic modular form of weight x, and character ¢. Clearly, if f
is a cuspform, then f),_qic is a p-adic cuspformlj. Also, the corresponding R-module
homomorphisms

(2.9.2) Mo (K, R) = Vi (KP4, R) and Si(K;,¢; R) = VPP (KP4, R)
are compatible with Hecke operators in the sense that
(2.9.3) (T(g) 'f)pfadic = ||V(g)||7ROT(g) 'fpfadic

for g € G(A?).

Note that if &’ = (ko + a,(Ks,i)), then x}, = rp. Furthermore, for f € M, (K;R) and
"= fof € M (K; R) (see ZG.11),

fp—adic = f;/)—adic‘

7A modular form can be a p-adic cuspform but not be cuspidal. A simple example is the the critical
p-stabilization F3,(z) = Eoi(z) — E2k(pz) of the level 1 weight 2k > 4 Eisenstein series Fa.
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2.9.5. Hecke operators at p. Hida ([Hid04, 8.3.1]) has defined an action of the double
cosets Uy i j = B (Zp)tw,i jB};(Zy) on the modules of p-adic modular forms and cusp-
forms; this action is defined via correspondences on the Igusa tower (see also [SU02)).
Moreover, as Hida shows, if R is a p-adic domain in which p is not zero, x as in Section

2.9, and f € M,.(K,,¢; R), then uy; ;- f € My (K,,v;R) and

(294) Uap,i,j f = |K/norm(tw,i,j)|;)1Uw,i,j : fa Rnorm = (K/o,i’ - bcr,i’)-
We put
m n;
up= [T TTITwwis
weSy i=1 j=1

and define a projector

. !
(2.9.5) e =limuy".
n

2.9.6. Ordinary forms. Let R be a p-adic ring. The submodules of ordinary p-adic forms
over R are

VOd(KP R) = eV (KP,R), and VoICUSP(KP R) = eV P (KP R),
and those of weight x and character ¢ are

M (K, 05 R) = eM,, (K, i3 R), ST (K, 05 R) = €S, (K, 13 R),

VO (KP 4, R) = eV (KP 9, R), VISP (KP 4p R) = eV (KT, 4, R).

Hida’s classicality theorem for ordinary forms establishes that if R is a finite O'[¢]-
domain (resp. a finite O’-domain) then

Ve (KP4, R) = SP (K, 5 R)
(2.9.6) (resp. VOrdewp (KP RY = 594 (K,; R))

if Koiag; + Kocip,; >0 Vo e, 1<i<m.

This theorem is proved in [Hid04] assuming conditions denoted (G1)-(G3), which were
subsquently proved by Lan in [Lanl3]. Let R be as in Equation (2.9.6]) and let O* denote
the integral closure of Z, in R. The fraction field Frac(O") of O" is a number field over
which S, (K,,%; R) ® Q has a rational model, given by the space of Frac(O")-rational
cusp forms of type « and level K,.. The intersection of this space with ngd (K, v¥;R)
is an O*-lattice SO (K,,4;0%). Given any embedding ¢ : O* < C, the image of
5o (K,.,1p;O*%) in the space Sy (K,,1;C) will be called the space of ordinary complex
cusp forms (relative to ¢) of type k and level K,.

2.10. Measures and A-adic families. We recall p-adic measures and their connections
with Hida’s theory of A-adic modular forms.
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2.10.1. p-adic measures. Let R and R’ be p-adic rings with R an R’-algebra. The space
of R-valued measures on Ty (Zy) is

Meas(Tp (Zy); R) = Homp (C(Tu (Zp), R'), R),
where C(Ty(Zy),R') is the R'-module of continuous R'-valued functions on Ty (Zy).
This is independent of the intermediate algebra R’ since C(Ty(Zy),R") = C(Tu(Zy), Zy)®z,R'.
The R-module of R-valued measures is naturally identified with R[[TH(Z,)]]; the iden-
tification of a measure p with an element f of the completed group ring is such that for

any continuous homomorphism x : Tx(Zy,) - R, u(x) = x(f), where x(f) is the image
of f under the homomorphism R[[Tx(Z,)]] = R induced by x.

2.10.2. A-adic forms. Let
Ap =O'[Tu(Zy)])-

Both V (K, R) and V**P(K,, R), R a p-adic O'-algebra, are A -modules via the actions
of Ty(Z,) on them. A Ag-adic modular form over R is a € Meas(Tx(Zy); V (Kp; R))
such that p(t-f) = t-u(f) for all t € Ag. In particular, it follows that if R is an
O'[¢]-algebra, then p(ky) € Vii(Kp, ¥, R). A Ag-adic cuspform is defined in the same
way, replacing the p-adic modular forms with cuspforms. Similarly, an ordinary Ag-adic
modular forms or cuspform is also defined in the same way, replacing the modular forms
and cuspforms with the ordinary forms. Clearly, if p is a A-adic modular form, then eu
(the composition of ;1 with the R-linear projector V (K, R) —» eV (K,, R) = Vo'4(K,, R))
is an ordinary Apg-adic form. Let

S4(K,, R) = {ordinary Apg-adic cuspforms u € Meas(Ty (Zy); Vod“P(K,, R))}.

The Hecke operators in 0.3 and 2.5 act on S”4(K),, R) through their actions on
Vord,cusp(Kp’ R)

Let A c Ty (Z,) be the torsion subgroup. Since p is unramified in IC by hypothesis,
(251) induces an identification

e s (AR
wlp =1
where k,, is the residue field of O,,. In particular, A has order prime-to-p, so Sord(Kp, R)
decomposes as a direct sum of isotypical pieces for the O'-characters w € A of A:
Sord(va R) = @ngSf)rd(va R)
Let W c Ty (Zyp) be a free Z,-complement to A: Ty (Z,) = A x W. Then Ay = O'[[A x
W1l = A[A], where
A=0O'[[W].
Each S¥Y(K,, R) is a A-module.
Let Rc @p be a finite O’-algebra and let

Agp=A®o R=R[W].
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Hida [Hid04] has proven that
(2.10.1) S>4(K,, R) is a free Ag-module of finite rank,

and for any finite character ¢ : W — @; trivial on WP and & as in Z0.] satisfying the
restriction in (Z29.6]),
pp(KY)

(210.2) STU(Ky, R) @r R[Y)/pey ST (K, R) @5 RIYT" 5 509 (K, wuwp, R[¥))

is an isomorphism, where p,, is the kernel of the homomorphism Ag ®g R[¢] - R[v]
induced by the character ki and wy € A is KlA.

Clearly, one can include types in the definition of A-adic cuspforms, and we write the
module of A-adic cuspforms of type Wy as Sord(Kp,WS,R). That the analogs of the
maps (ZI0.2) in this context are also isomorphisms follows from the fact that p,, is
generated by a regular sequence.

2.11. Similitude components. For the purposes of comparing geometric constructions
with analytic computations later, we need to decompose some of the objects previously
defined with respect to the similitude map

viG -Gy, g=(¢ V)1

2.11.1. Connected components. The set of connected components mo(Mg /R) = mo(M¥%/R)
is represented by the R-points of a finite étale scheme mo(Mg) over Sg. Let Ty = G/G9°T,
and let Ry c Q be a finite integral normal extension of Sy over which mo(Mg ) is constant
(in general, this will depend on K). Then

m0(Mk ) (Ro) = mo(Mk /C) = To(@Q\To(A )/ K7,

where K7 is the image of K c¢ G(Ay) in To(Af) and the last identification, using the
complex uniformization ([2.7.1]), sends the connected component containing (h',g) € X x
G(Ay) to the class of the image of g in To(Ay).

2.11.2. Similitude components. The similitude map factors through Tp, so putting
Ck =v(G(Q)\W(G(Ay))/v(K),

there is a surjection mo(Mg )(Rg) - Ck that sends the component containing (h,g) to
the class of v(g). Given o € O, for any Rg-scheme R we let M% /R and M"*/R be
the base change to R of the union of the connected components of Mg /R and M}‘{’r /R,
respectively, over a. For R = C this is just the set of points (h',g) with v(g) = a.
Similarly, we let M% and M?{T be the pullbacks of Mg, and Mg, , respectively, over
M% and M2"*. Since v(I,KP) = v(K), these definitions for M¢ y»/R coincide when p
is invertible in R. We also put §;, = M‘}?r’a [1/E] and let T7 /85, be the corresonding
component of the Igusa tower; the latter is a Galois cover with Galois group H (Z,/p"Z,).
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2.11.3. Simalitude components of modular forms. Let R be an Rp-algebra. By restrict-
ing to each M?gr’a/R or M(;(T /R (that is, pulling the canonical bundles back to these
components) we obtain a decomposition of the R-modules of modular forms

(2.11.1) My(K:R)= @ Mu(K;R)®
aeCi

and

(2.11.2) M, (K,,¥;R) = @ M, (K,,v; R)®,
aeCk

where f belongs to the a-summand if it is zero on any (X,¢) with X not in Mg (R')

(R" an R-algebra). For R = C, in terms of the complex uniformization, this means that
as a function of (h',g) € X x G(Af) or ¢' = goog € G(A) = G(R)G(Ay), f vanishes unless
the image of v(g) in Ck is a. The modules of cuspforms decompose similarly.

If R is also a p-adic ring, then there is a similar decomposition of the modules of p-adic
modular forms obtained by restricting to T7, ,:

(2.11.3) V(KP,R)= €@ V(K" R)"
aecCi

and

(2.11.4) Vi (KP,¢,R) = @ Vi (KP,¢y,R)*.
aeCk

There are similar decompositions of the spaces of p-adic cuspforms. The p-adic modular
form defined by a modular form in belongs to Vi, (K?,¢, R)® if and only if the form
belongs to My, (K,,v; R)*.

The a-components of the modular or p-adic modular forms are not in general stable
under the Hecke operators [KPgKP] but are if v(g) belongs to the class of 1 in Cx (so
if v(g) = 1). In particular, they are stable under the operators U, ;; and u,;; (when
these operators are defined), and the isomorphism (2.9.6]) can be refined as
VR (K, v, R)® = SP (K, 5 R)®

Kx

(2.11.5) . )
if Koia,; t Kociby: 2MiTi Vo €N, 1 <i<m.

2.11.4. The definite case. Suppose P is in the definite case as in Section [Al below. In
term of the spaces of functions in that section, the condition of being in the a-component
always unwinds to meaning that the functions are zero on g such that v(g) does not
belong to a. All the modules of functions introduced in Section [A] can be decomposed
in this way over Cx and we again use the superscript ‘@’ to denote the corresponding
components.
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3. THE PEL PROBLEM AND RESTRICTION OF FORMS

In this section, we discuss restrictions of modular forms from a larger unitary group to
a product of unitary groups, which is important for interpreting the doubling method
(first introduced in Section 1)) geometrically.

3.1. The PEL problems. Let P = (K,c¢,0,L,(-,-),h) be a PEL problem of unitary
type associated with a Hermitain pair (V,(-,-);/) as in Sections 1] and together
with all the associated objects, choices, and conventions from Section 2l In particular,
the index m equals 1. In what follows we will consider four unitary PEL data P; =
(Bi,*i,0B,, Li, (-,-);, hi) together with Op, ® Z,, decompositions L; ® Z, = L7 & L :

Pi=P=(K,c,0,L,(--),h), L* = L*;

Py =(KC,,0,L,~(- ), h()), L& = L
P3=(’CX/C,CXC,OXO,LlEBLQ,(',')l@(',')2,]11@]12), L§=LT@L§;
P4 = (’C,C,O,Lg, ('7'>3yh3)7 Ly = L§

Given the hypotheses, there should be no confusion with the subscript ‘2’ being used in
this section for the objects associated to the PEL problem P;.

The reflex fields for P, P, and P3 are all equal to the reflex field ' of P. The reflex
field of Py is Q. We put G; =Gp, fori=1,...,4 and H; = GLoBi@,Zp(L;’). Then Gy = Gy
and there are obvious, canonical inclusions G3 < G4 and G3 = GG1 x G3 which induce the
obvious, canonical inclusions H3 < Hy and Hs = Hy x Hy. For K c G;(A f) a neat open
compact with K = G;(Z,)K" if 0 = {p}, let M; x = Mg (P;) be the moduli scheme over
So.

The choice of the O,-decomposition of L3 determines Op, ,,-decompositions of the
modules Lii’w = L; ®0ez, O, and so determines isomorphisms

GL,(Oy) 1
(3.1.1) Gijz, — Gmx [] {GLa(Ow) x GLyy (0y) i
Y | GLgp (Oy) i

2

1
3
4

and

.
Il

GLqg,, (Ow)

Gwa (Ow)

GLq,, (Oy) x GLy,, (Oy)
GL,(Oy)

. .
Il

(3.1.2) Hijz, — [1

wlp

-~
I
AW N e

.
I

The canonical inclusions in the preceding paragraph just correspond to the identity map
on the similitude factors and the obvious inclusions of the GL-parts (being the diagonal
map in the case of the inclusions G3 - G4 and Hs — Hy.)
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Let K7 c Gi(A?) be neat open compact subgroups. Let K; = K7 if 0 = @ and
Ki = Gi(Zy) K} otherwise. If K3 c K nG3(A}), then there is a natural Sp-morphism
(3.1.3) Ms gy > My, A=(A\,a)~> A4, = (AN odiag aKy),
where diag : K & K & K is the diagonal embedding. Let e; € O & O, i = 1,2, be the
idempotent corresponding to the projection to the ith factor. If KJ c (KT x K§)n
G3(AY), then there is a natural Sg-morphism

f
M3 Ky = M1 K, x5 M2 k,,
A: (A,)\,L,O[) H(A17A2) = (Aly)\laLlyal) X (A27A27L27a2)7
where A; = 1(e;)A (so A=A1xA3), \j =1"(e;)oNow(e;), t; is the restriction of ¢ to the ith
factor, and o s : L; ®A? = Hl(ALS,A?) is the restriction of ay to L; ®A? c L3 ®A? =
(L1® A7) @ (L2 ® A7) composed with the projection H1(As, A7) - Hi(4; s, AT).

(3.1.4)

For suitably compatible choices of polyhedral cone decompositions, the morphisms
BI3) and [BI4) extend to maps of toroidal compactifications [Har89].

3.1.1. Level structures at p. The definitions of level structures at p in Section for
the PEL problems P; are compatible, and the morphisms (3.1.3)) and (3.I4]) extend to
Sg-morphisms with each M; g, replaced by M; K, =M K”(P,)

3.1.2. The canonical bundles. To define the groups Go; and Hy; as in Section [2.6.1]in a
compatible manner, we need to specify the choice of the Ag; c W; = V;/ Vio’fl, where V; =
L; ® C with the Hodge structure defined by the complex structure on L; ® R determined
by hi. As Vi =V with the same Hodge structure we take Ag; = Ag, but since V5 = V;
with the Hodge indices reversed (so V20’71 = Vfl’o) we take Ap2 to be the image of Ay
in Wy = ‘/'2/‘/'20’_1 = Vl/Vl_l’0 using the canonical identification Vlo’_1 =V0 12 Ay ®g, C.
Then A; = A with its canonical pairing, and Ay = Ay @ (Ay)Y = A with its canonical
pairing. We then set A073 = A074 = A071 @ A072 and A3 =Ay = A1 ® As.

The fixed decompositions of Ag and Ay as Op ® Z,-modules then determine compatible
isomorphisms

GLs,, (Ow) i=1
N GLqa, (Oy) i=2

3.1.5 Hyi, — Gy Y
(3.1.5) e 5[ GLy, (Ou) % GLq, (Oy) i=3
GLn(Oy) i=4

There are canonical inclusions Hg 3 < Ho4 and Hg3 = Ho 1 x Hpo which correspond to
the obvious inclusions under the isomorphisms (B.L5)): the indentity map on the G,,-
factor and the diagonal mapping and identity map, respectively, on the GL-factors. This
gives similar inclusions among the (lower-triangular) Borels By, ; and the (diagonal) tori
TH, ;- In particular, a dominant character x of Ty, , or a pair k = (K1, ko) consisting
of dominant characters k1 of Th,, and k2 of Ty, , restricts to a dominant character of
T, 5, which we also denote by k.
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Let m; : & — Mg, be the canonical bundle. The maps (B.1.3) and (B.1.4]) extend to
maps of bundles
(3.1.6) E =&y (AN 1,a,e) = (AN Lodiag, aKY,¢e),
and
&3 =& x5, &g,

(3.1.7) (AN 1, a,e) = (Ar, Ay, aq,61) % (Ag, Ao, Lo, g, €2),

where ¢; = e;0oc0(e;). There are similar maps of the bundles &; , = &; XMter. Mi, K, With
i, K; ’

level structure at p.

3.1.3. The Igusa towers. Let Ty /8, i = 1,..,4, be the Igusa tower for M; x, as in
2.8 The maps (B.13]) and (BI14]) extend to maps of Igusa towers in the obvious ways:

(3.1.8) Tn,m,3 - Tn,m,éla (Aa ¢) = (A47 ¢)
and
(319) Tn,m,3 - Tn,m,l *Zp Tn,m,Qa (Aa (b) = ((AD ¢1)7 (A27 ¢2))7

where ¢; is the restriction of ¢ to L ® uyn composed with the projection to A} [p"]°.

Remark 3.1.4. As explained in [HLS06, Section 2.1.11], the inclusion (BI.8]) does not
restrict on complex points to the map i3 of Shimura varieties determined by the inclusion
of G35 in G4. For each prime w of F* dividing p, let

l, 0 0 0
o o o 1,
Me=lo 0 1, 0
0 1,, 0 0

€ G4(Fy);

W, = (Wi Julp € Ga(F, ). Then the inclusion (B.1.8) is given by i3 composed with right
translation by vy,. (See map (.3.10).)

When working with p-adic modular forms in subsequent sections, we will consider
all the T), ,,; simultaneously, ¢ = 1,2,3,4. The collection {7, ,,;}, or equivalently
lim lim T}, .,; will be denoted Ig;, 1 <4 < 4. Thus, if K'i = 1,2,3,4, are prime-
<—m <—n
to-p level subgroups of G;(Ay), with K% ¢ K}, K} ¢ KV x K?, we similarly define Igusa
varieties prlg; and inclusions

(3.1.10) W, 03t grlgs = grlga; ia: grlgs = grlgy x grlgo

3.1.5. Similitude components. Let Sg € Ry ¢ Q be a finite normal extension of Sy such
that mo (Mg, ) /R is constant. (The same is then true of mo(Mg,)/R, i = 1,2). The maps

BI3) and (B14) and the maps (B.L8) and (B.I9) can be refined as maps of similitude
components over an Rg-algebra R. In particular, (3.1.4) and (3.I4) induce

(3.1.11) % M, xp M%,
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and

(3.1.12) T5 3 > Thma ¥k Th

n,m,2»

where a € Ck, defines elements in Ck, and Ck, by projection (since v(K3) c v(K;1)n
I/(Kg)) If I/(Kl) = I/(Kg) and Kg = (Kl XK2)0G3(AJI), then bOth (b_..]...].l.') and (Li.l.lZD
are isomorphisms; in particular Mg, and T, ,, 3 are identified with unions of connected
components of Mg, xg Mg, and Ty, 1 xr Thm 2.

3.2. Restrictions of forms. The maps between the various moduli spaces and bundles
induce maps between spaces of modular forms.

3.2.1. Restricting modular forms. Let R be a Z,-algebra and & either a dominant char-
acter of T, , Or a pair K = (K1, ko) consisting of dominant characters k1 of Ty, and ko
of T, ,. Then the maps (B.16) and B.17) yield maps of modular forms

resy: MR(K4;R) - ME(K3§R)7
and
resy: My, (K1; R) ® g My, (K2; R) - M, (Ks; R).

Let 1 be either a @;—Valued character of Ty, (Zy/p"Z,) or a pair ¢ = (11,12) consisting

of a @;—Valued character ¢y of T, (Zy/p"Zy) and 1o of Th, (Zy[p"Zy). Then 1) defines
a character of T, (Z,/p"Z,) that we continue to denote 1. Let R be a Z,[t]-algebra.
The analogs of the maps ([B.1.6]) and (BI7) for level structures at p yield maps

res3: My (Kyr, Y5 R) - My (K3,,¢; R),

and
resy Mnl (Kl,r7¢1§R) ®Rr Mlig (K2,ry7/)2§ R) - M, (K3,7‘y7/)§ R) .

Let Rg be as in[3.1.5] If R is also an Rg-algebra, then the maps res; restricted to maps
of similitude components. In particular, if v(K;) = v(K2) and K3 = (K1 x K2)nG3(Ay)
and R is an Rg-algebra, then resy and resy induce isomorphisms

M, (K1; R)® ® g M,y (Ko; R)® — M, (K3; R)*
and
M, (K1p,%1;R)® ® My, (Ko, 02 R)® — M, (K3,,; R)”
and hence isomorphisms

D M, (K13 R)* ®R My, (K23 R)* — My(K3; R)

aeCiqy

and
B M, (K101, R)* ®p My, (Kao,,92; R)Y — M, (K3,,%; R).

aeCi,
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Remark 3.2.2. We write
Mfil (Kl,Tle; R) |:®]RMH2 (K27T71/}2; R)

for the image of resy in M, (K3,,1;R), and use the notation [®] more generally for
restrictions of this kind from (classical or p-adic) modular forms on G x G to forms on
Gs.

3.2.3. Restrictions of classical forms. In terms of the complex uniformizations (2.7.2]),
the restrictions ([B.I1.6]) and ([B.I7) correspond to the maps induced by the canonical
inclusions of G'3 and Hy 3 into G4 and Hy 4 and into G'1 x G and Ho 1 x Hy 2, respectively.
In particular, if ¢ : G4(A) x Hp4(C) - C corresponds to a weight x modular form on
Gy of level Ky, then the image of ¢ under res; or ress corresponds to the restriction
of ¢ to G3(A) x Hp3(C). Moreover, if ¢ corresponds to f : G4(A) - W, 4(C) (we
include the subscript ‘¢’ to indicate that W, ; is the irreducible representation of Hy; of
highest weight ), then its image under res; or ress is just the restriction of f to G3(A)
composed with the projection Wy 4(C) — W 3(C), ¢ = |, ,(c)- The same holds for
the maps ress and resy.

3.2.4. Restrictions of p-adic forms. The maps (3.1.8) and (3.1.9) induce the obvious
restriction maps on modules of p-adic modular forms - which we also denote by res;
- compatible with weights x and characters 1 in the obvious way, as well as with the
inclusion of spaces of modular forms and with restriction to similitude components. In
particular, the isomorphisms described above extend to isomorphism of spaces of p-adic
modular forms (with the tensor product ® g replaced by the completed tensor product

®R).

3.2.5. Base point restrictions. Let V =V, for i € {1,2,3,4}, G = Gp, the correspond-
ing unitary similitude group, so that (G, X) is the Shimura datum associated to the
moduli problem P;. Let J| be a torus as in section 2.3.2 and let (Jj,ho) - (G,X) be
the morphism of Shimura data defined there. Say (J),ho) is ordinary if the points in
the image of the map S(Jj,ho) - S(G,X) of Shimura varieties reduce to points corre-
sponding to ordinary abelian varieties. If (Jj,ho) is ordinary, then it has an associated
Igusa tower, denoted T, 1, (Jj), ho) for all n,m. We have Tp ., (Jj), ho) = Sm(J5, ko), in the
obvious notation, which is the reduction modulo p™ of an integral model of S(Jj, ho);
each T), ,(J5, ho) is finite over the corresponding Sy, .

Moreover, letting T}, (G, X ) = T, () in the obvious notation, there is a morphism
of Igusa towers

Thus for any r there are restriction maps resy; o * Mx(Kr R) - Mi((J5,ho), ),
in the obvious notation; the image is contained in forms of level r on S(Jj, o), in an
appropriate sense, but we don’t specify the level. The restriction maps behave compatibly
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with respect to classical, complex, and p-adic modular forms; the restriction map for p-
adic modular forms is denoted res,, T ho- In order to formulate a precise statement, we
write Vi, ((G,X); KP, R) for p-adic modular forms of weight r, and level K? on the
Igusa tower for S(G, X), and Vi, ((J5, ho), R) for the corresponding object for S(.Jy, ho)
(the level away from p is not specified).

Proposition 3.2.6. Let (J),ho) - (G,X) be a morphism of Shimura data, with J) a
torus, and suppose (J,ho) is ordinary. Let G = Gp, for i = 1,2,3,4, and let  be
dominant weight; let K, be the corresponding p-adic weight, as in[Z91. Let R be a
p-adic Ting.

s

(i) The following diagram is commutative:

RK,G,X

Mn(Ki,raR) V’ip(Kf’R)

T@S(](I)’ho l respyJ(/)’hO l

RN,J(’),}’LO

My ((Jg; ho), R) Viep (Jo: ho), R)
Here the horizontal maps are the ones defined in (2:9.2))

(ii) Let f € M(K;,,R). Suppose for every ordinary CM pair (Jj, ho) mapping to
(G, X), the restriction res; p,(f)=0. Then f=0.

Proof. Point (i) is an immediate consequence of the definitions; point (ii) follows from
the Zariski density of the ordinary locus in the integral model of S(G,X) [Wed99]. O

4. EISENSTEIN SERIES AND ZETA INTEGRALS

4.1. Eisenstein series and the doubling method. We begin this section by intro-
ducing certain Eisenstein series and (global) zeta functions. Then we choose specific local
data and compute local zeta integrals (whose product gives the global zeta function).

We assume throughout this section that we are in the setting of Section Bl In par-
ticular, there is a hermitian pair (V,(:,-);,/) over K such that V = L; ® Q and (,-); =
tracex/gd(-,-)y- Then G1/Q is the unitary similitude group of the pair (V,(,-)y/). Let
(W,{(-,-)w) be the hermitian pair with W =V @V and (-,-);y = (,-)y ® —(-,)y,- Then
G4/Q is the unitary similitude group of the pair (W,(:,-);;). Most of the constructions
to follow take place on the group G4/Q, which we denote throughout by G for ease of
notation. We write Z; to denote the center of G;.

An important observation is that G2(A) = G1(A), so a function or representation of
one of these groups can be viewed as a function or representation of the other; we use
this repeatedly.

In part to aid with the comparison with calculations in the literature, we introduce the
unitary groups U; = ker (v : G; = Gy,).
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Let n = dimg V. Let Sy be the set of primes dividing either the discriminant of the
pairing (-,-); or the discriminant of K.

Plan of this section. We begin by recalling the general setup for Siegel-Eisenstein series
on G and the zeta integrals in the context of the doubling method, explaining how the
global integral factors as a product over primes of K. The local factors fall into three
classes, which are treated in turn. The factors at non-archimedean places prime to p
are the easiest to address: in Section we recall the unramified factors, which have
been known for more than 20 years, and explain how to choose data at ramified places
to trivialize the local integrals.

Factors at primes dividing p are computed in Section B3l This is the most elaborate
computation in the paper. The local data defining the Eisenstein series have to be chosen
carefully to be compatible with the p-adic Eisenstein measure which is recalled in Section
B3l The local data for the test forms on G5 are chosen to be anti-ordinary vectors, a
notion that will be defined explicitly in 2.5 and that provide the local expression of
the fact, built in to Hida theory, that the test forms are naturally dual to ordinary forms.
The result of the computation is given in Theorem 31Tt we obtain p-stabilized Euler
factors, as predicted by conjectures.

Sections 4] and are devoted to the local integrals at archimedean places. Much of
the material here is a review of the theory of holomorphic differential operators developed
elsewhere, and of classical invariant theory. We prove in particular (Proposition [4.5.5])
that the archimedean zeta integrals do not vanish; as explained in the introduction, in
most cases we do not know explicit formulas for these integrals.

4.1.1. The Siegel parabolic. Let V¢ = {(z,2) e W :zeV}and Vy={(z,-z) e W : eV},
so W = V;® V% is a polarization of (,)y- Projection to the first summand fixes
identifications of V¢ and V; with V. Let P c G be the stabilizer of V% this is
a maximal Q-parabolic, the Siegel parabolic. Let M c P be the stabilizer of the
polarization W = V; @ V¢ and N c P the group fixing both V¢ and W/Vd, so M
is a Levi subgroup and N the unipotent radical. Denote by A the canonical map
A: P - GLg(VY) = GLi(V). Then M — GLx(V) x Gy, m = (A(m),v(m)); the
inverse map is (A4,\) = m(A,\) = diag(AA*, A), where A* = YA is the transpose
of the conjugate under the action of c¢. Also, fixing a basis for V' gives an identifi-
cation A’ : N — Her, (K), where Her,, denotes the space of n x n hermitian matri-
ces; with respect to this basis and the polarization above, we obtain an identification

N (10" All(iv)) C GLy,, (K).

The modulus character of P is dp(-) =|det o A(-)[".

4.1.2. Induced representations. Let x = ®x. be a character of K*\Ag. For seC let

1068) = g3 (x (derod()) 67" () - (O %),
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with the induction smooth and unitarily normalized. This factors as a restricted tensor
product

I(x,s) = ®uLy(Xv: ),

with v running over the places of Q, I,,(xv, s) the analogous local induction from P(Q,)
to G(Qv)7 and Xv = Ow|vXw-

4.1.3. FEisenstein series. For f € I(x,s) we form the standard (non-normalized) Eisen-
stein series,

E(f,9)= >,  f(v)
YeP(O\G(Q)

If Re(s) is sufficiently large, this converges absolutely and uniformily on compact subsets
and defines an automorphic form on G(A). Given a unitary character x and a Siegel-Weil
section f € Ind(x, s), we put

fs= fx,s = f
Ey(s,9) = Ey,(9).

The Eisenstein series Ef(s,g) have a meromorphic continuation in s.

4.1.4. Zeta integrals. Denote by O+ the ring of integers of K*. For i = 1,2,3,4, we
write U;(A) = [T, Ui ,, with the (restricted) products over all the places of £* and U,
the points of groups defined over Ox:. Similarly, we write G(A) = Goo x 1'[('1 G4 and
P(A) = Py x Hf] P,, where the (restricted) products are over rational primes q. We can
nevertheless write

Gp:Q;X H GwQPp:Q;X H Py,.

weXy weXy

Let 7 be an irreducible cuspidal automorphic representation of G1(A), and let 7" be
its contragredient. Let S, be the set of finite primes v in O+ for which 7, is ramified.
Before introducing the zeta integral for 7, we would like to explain what it means for
a function in 7 to be factorizable over places in K*. However, G is a Q-group that
is not the restriction of scalars of a group over K*. We therefore choose an irreducible
U1 (A)-constituent 7 ¢ 7 that occurs in the space of automorphic forms on Uy, the dual
7’ note that 7V and 7° coincide upon restriction to U;(A). We assume 7 contains the
spherical vectors for K97. Tt is well-known (and follows from the unfolding computation
recalled below) that the standard L-function does not depend on this choice. We fix
non-zero unramified vectors ¢, o and ‘Pimo in 7, and ,,, respectively, for all finite places
w outside Sy, and choose factorizations as in (L.4.2]) compatible with the unramified
choices:

(411) 7> m,8mp 1, — 1P Om, @My (T, —> OuipTy; Tg, — Ouesy Ty

. We also think of 7" as an anti-holomorphic auto-

KS b,KS

and analogous factorizations for 7w

morphic representation of Gy. Let p e ", ¢’ € 7" "; we think of ¢ and ¢’ as forms
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on (G1 and G4, respectively. We suppose they decompose as tensor products with respect
to the above factorizations:

(4.1.2) P = ByPu; Spb = ®v905)
with ¢, and ¢!, equal to the chosen ¢, o and 90;70 when v ¢ S;. we write equalities but

the formulas we write below depend on the factorizations in (AI.J]) and its counterpart
for mb.

In Sections [4.3] (resp. HAHAT]), we will choose specific local components at primes
dividing p (resp. at archimedean places). These will turn out to be anti-ordinary (resp.
anti-holomorphic) vectors:

d ~ord d
(4.1.3) p = Bulp P = Oy iim,i Py = Bulp Oy = P
and
(4.1.4) Poo = Bgloo Po = Pri,—; Poo = Boloo Py = Pt -

The meaning of the notation in (LL3) and (£I1.4]) will be explained in sections B.2.3]
and [£.4.74) respectively.

Having made the choice of irreducible constituent w, we will henceforth forget about
the choice. In order not to make the notation too difficult to read, we will use 7 to denote
an irreducible Uy (A) representation, but we will mean an irreducible constitutent of the
restriction of a representation of Gj.

We also fix local U; (K} )-invariant pairings (-,-). : m, x m, — C for all v such that

(‘101)707(105)70)7% = 1 for all v ¢ Sﬂ,

Ty

Let f = fs(e) € I(x,s). Let ¢ € m and " € 7 be factorizable vectors as above. The

zeta integral for f,p, and ¢” is
b _ -1 b
I(p,¢", f,5) e GO\ G () Er(s,(91,92))x" (det g2)o(g1)¢" (g2)d(g1, g2)-

By the cuspidality of ¢ and ¢’ this converges absolutely for those values of s at which
E¢(s,g) is defined and defines a meromorphic function in s (holomorphic wherever
Ey(s,g) is). Moreover, it follows from the unfolding in [GPSR&7] that (¢, ") = I(¢,¢", f,s)
defines a G (A)-invariant pairing between 7w and #’. By the multiplicity one hypothesis
[T, this implies that

Fact 4.1.5. If (p,¢") =0 then I(p,¢", f,s) =0 for all s.

So we suppose (@, ") # 0. Then (p, ® @} )r, # 0 for all v. For Re(s) sufficiently large,
‘unfolding’ the Eisenstein series then yields
b _ b
I(C,D, ¥ 7f7 S) - U1(A) fs(uv 1)<7T(u)(107 ¥ >7qu
Denote by fy the restriction of f to Uy(A). Henceforward we assume fi7(g) = ®,.fu(gv)
with
fv = fv,s € IU(XU7S)7XU = QulvXw-
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Then the last expression for I(p,¢",s) factors as

I(%‘Pb,f,s) = HIU(SDU7QDE}7fvvs) ’ (907(10[))7 where

(4.1.5) b oy, Fos(u 1) (70 (0)u, b ), du
Iv(cpva(pmfv"s): , b ’
(v, b ),

By hypothesis, the denominator of the above fraction equals 1 whenever v ¢ S.

As in Section 23] let ¥ = {0 € ¥x : p, € ¥,}. This is a CM type for K. Throughout
the remainder of this section, we take x : K*\AE — C* to be a unitary character such
that X = ®pexXo 18 given by

ke 1y, x
(4.1.6) Xoo ((20)) = [T 2252 (2575) T, (20) € [] C,
o€ o€

where k = (k,) € Z3,, and (v,) € Z*.

For the remainder of this section, we choose specific local Siegel-Weil sections f, «
I,(xv, s) and compute the corresponding local zeta integrals (whose product is the Euler
product of the global zeta function discussed at the beginning of this section).

4.2. Local zeta integral calculations at nonarchimedean places v + p. Let Syam =
Sr U Sy U Sk, where S, denotes the set of finite primes v in O+ for which x, = ®y v Xw
is ramified and Sx denotes the set of finite primes in Ox+ that ramify in . Let S be
a finite set of finite primes in Q such that p ¢ S and such that for all rational primes £,
if a prime in K* above £ is in S;am, then £ € S. Let S’ be the set of primes of K* lying
above the primes of S.

4.2.1. Unramified case. For the moment, assume that £ # p is a finite place of Q such
that £¢ S. Then K, := G4 (Z,) is a hyperspecial maximal compact of G (Qy) = G4 (Qy) =
[Ty1¢ G40, and we choose fr = ®,¢fy € It(xe,5) to be the unique Kj-invariant function
such that f;(K;) = 1. These sections are used to construct the Eisenstein measure in
[Eis15]. For each prime v ¢ S’ let ¢, and ¢! be the normalized spherical vectors such
that (py, @l )z, = 1. The primes v ¢ S fall into two categories: split and inert. For split
places v ¢ S, U, = GL,, (K); the zeta integral computations in this case reduce to
those in [JacT79] and [GPSR&7, Section 6]. For inert places v ¢ S, the computations were
completed in [Li92, Section 3]. In either case, we have

1
dn,v (S7Xv) IU (‘Pva@;,fms) = LU (S + 577TU7XU) ’
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wherdg
n-1

dn,v (stv) = dn,v (3) = H L, (23 +Nn -7 Xv |IC’r 7717;) 5
r=0
7y is the character on K} attached by local class field theory to the extension K, /IC;
(where w is a prime of K lying over v), and L, (s, 7y, x») denotes the value at s of the
standard local Langlands Euler factor attached to the unramified representation m, of
U1y, the unramified character x, of Xy, and the standard representation of the L-group
of Uy . As noted on [HLS06, p. 45]@, for each v ¢ S’,

LU (877TU7XU) = Lv (SvBC (7Tv) ® Xv © det) ’

where BC denotes the local base change from U, , to GL,, (K;) and the right hand side
is the standard Godement-Jacquet Euler factor.

4.2.2. Ramified case. Now, assume that ¢ € S, and let v € S’ be a prime lying over £. By
[HLS06| p. 45], P,- (U1, x 1,) € P,-Us 1 is open in Uy ,. Since the big cell P,wP, is also
open in Uy, we see that (P, - (U x 1)) n PywP, is open in Uy ,. As noted in [HLS0G,
Equation (3.2.1.5)], Pyw = P, - (-1,,1,) € P, - U3, and P, n (U1, x 1) = (1,15) € Uz,
Therefore (P, - (U(V) x 1,))n P,wP, is an open neighborhood of w in P,wP, and hence
is of the form P,wil for some open subset il of the unipotent radical N, of P,. Let
oy € Ty and @), € 7, be such that (p,, ¢! ), =1. Let K, be an open compact subgroup
of G, that fixes (.

For each place v € S, let L, be a small enough lattice so that {l, contains the open
subgroup N(L,) of N, defined by

v -{(5 1)1

(where we identify N with A’(N) as in Section [LT.1)) and so that
PywN(Ly) € Py~ (-1, - Ky x 1,) € Py - Us.p.
Then
P,wN(Ly) =P, - (U, x 15,)

for some open neighborhood neighborhood U, of —1,, contained in the open subset —1,,- K,
of Uy . Let dr, denote the characteristic function of N(L,). As explained on [HLS0G,
p. 55|, for each finite place v of K*, there is a Siegel section fr, supported on P,wP,
such that

fr, (wx) =46, ()

8From the formula for dn,»(s) given in [Li92] Section 6], it appears that there is a typographical error
in the exponent in the formula for d, ., given in [HLS06, Equation (3.1.2.5)]. More precisely, according
to the final formula in [Li92] Theorem 3.1], the n — 1 should not appear in the exponent in [HLS06
Equation (3.1.2.5)].

9There is a typographical error on [HLS06], p. 45]. Although [HLSO06l p. 45] gives a base change to
GLm, the base change should actually be to GLs,.
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for all z € N,.

For each of the primes v € S’, we define a local Siegel section f, € I(xy,s) by
fv = fivv
where
fr,(9) = fr, (9-(-1,1)).

for all g € Uy,. (Note that fr, is just a translation by (-1,1) € U3y = Uy x Ugy =
Ui p x Uy, of local Siegel sections discussed in [HLS06, Sections (3.3.1)-(3.3.2)] and that,
where nonzero, the Fourier coefficients associated to fy —are the same as the Fourier
coefficients associated to similar Siegel sections discussed in [Eisl5, Section 2.2.9] and
[Shi97]. Therefore, this minor modification of the choice of Siegel sections in [HLS0G,
Eis15] [Shi97] will not affect the p-adic interpolation of the g-expansion coefficients of the
Eisenstein series that is necessary to construct an Eisenstein measure.)

Lemma 4.2.3. Letve S, and let f, = f; . Then

I, ((Pva 902)7 fva) = volume (uv) :

Proof. The support of fr in Uy, x 1y, is =1y, - Uy x 15, and for g € Uy p x 1y,

fiu (9) = 01, ux1,(9)

where d_1, 44,x1,, denotes the characteristic function of —1,, - U, x 1,,. Since 7,(g)py = Yy
for all g € K,, 2 -1, -U,, we therefore see that

.[—1 L-uu<90vv ‘pb )z, dg
I (QOIM(JDENJCIMX) = - ((’D (pb>v
Uy v/l Ty

= volume (U,) .

4.3. Local zeta integral calculations at places dividing p.

Plan of this section. We begin by choosing local Siegel-Weil sections at the primes w
dividing p that are compatible with the Eisenstein measure, and then turn to choosing
test vectors (anti-ordinary vectors) in the local representations m,, and !,. The last six
pages or so contain explicit matrix calculations that reduce the zeta integral to a product
of integrals of Godement-Jacquet type, which can then be computed explicitly.

The reader may observe that the representations ,, and 7!, like the automorphic repre-
sentations of which they are local components, are logically prior to the local Siegel-Weil
sections, inasmuch as our goal is to define p-adic L-functions of (ordinary) families and
the Eisenstein measure is a means to this end. One of the subtleties of this construction
is that a global automorphic representation 7w automatically picks out the function whose
integral is the desired value of the Eisenstein measure. This is unfortunately concealed
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in the technical details of the construction, but the reader should be able to spot the
principle at work in the section [.3l

The calculations presented here are more general than those needed for our construction
of the p-adic L-functions of ordinary families. The p-adic place w is assigned to an
archimedean place o and thus to a signature (a.,b,) of the unitary group at o; but
we also introduce partitions of a,, and b,,. These partitions can be used to study the
variation of p-adic L-functions in P-ordinary families, where P is a parabolic subgroup
of G1(Q,). However, this application has been postponed in order not to make the paper
any longer than it already is, and we restrict our attention to the usual ordinary families,
corresponding to P = B a Borel subgroup.

4.3.1. Definition of the Siegel-Weil sections. With a few minor changes, the description
of the Siegel-Weil section at p given below is the same as in [Eis15l, [Eisl4]. For w|p a
place of K and U a K-space we let Uy, = U ®x Ky

To describe the section f, we make use of the isomorphisms The isomorphism for
Gy identifies G(Qp) with Qp x [Tyen, GLi,, (W) and P(Qp) with Q) x [Tyes, Prn(Kw)
with P, ¢ GLx(W) the parabolic stabilizing V9. So M(Q,) is identified with Q, x
[Twes, GLk, (Vauw) x GLx, (V4) (the factors embedded diagonally in GLk, (W,,)), and
N(Qp) is identified with [Tyex, Nn(Ky) with N, ¢ P, the unipotent radical.

+

For w € ¥, let xuw,1 = Xw and X2 = X{DI, where we identify K\, = K+ = Ky and where

w* = wlg+ = W|+. The pair (xuw,1,Xw,2) determines a character

Yy Py(Kyw) - C*, ¢w((6‘ B)) = Xw,1 (det D) Xw,2 (det A).

Here we have written an element of P,, with respect to the direct sum decomposition
W =V,® Ve We put

Yus = ((#8)) = xw1 (det D) xu2 (det A) AT D

Given ®yes, fuw,s € ®wggp1ndgf('<,é”w()ww) (Yw,s), we set
(4.3.1) Fous(9) = W17 ®ues, fus(gw), 9=, (gu)) € G(Qp).

Then, as explained in [Eis15], fp € I,(xp, $)-

The choice of a level structure at p for the PEL problem P; amounts to choosing an
Oy-basis of Ly 4, and hence a K,-basis of V,,, for each w € ¥,. This then determines
a IC-basis of Vg and Vg, via their identifications with V,,, and hence a ICw—basis{E of
Wy =Viw® V4. This basis identifies Isomg,, (V.%, V4,), Isomg,, (Viw, Vi), and an ordered
choice of this basis identifies GLg,, (Vi) with GL,, (KC,y). This ordered basis also identifies
GLk,, (Wy,) with GLa,(Ky), P, (K, ) with the subgroup of upper-triangular n x n-block
matrices and M, (/C,,) with the subgroup of diagonal n x n-block matrices.

10This is not in general the basis corresponding to the the level structure for Py determined by that
for P;.
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Let w € 3,. To each Schwartz function ®,, : Homg, (V,, Wy,) = C (so ®,, has compact
GLQn(Kw

support), we attach a Siegel-Weil section f ®w ¢ Ind Po(Ka)

)ww,s as follows. Consider the
decomposition

Homy,, (Vay, W) = Homye,, (Vi Vi) @ Home, (Vi V), X = (X1, Xo).
Let

X = {X € Homg, (Var, W)X (Vi) = Vid} = {(0, X)X 5 Vi, = V).

For X € X, the composition V, X, Vg — V,,, where the last arrow comes from the
fixed identification of V' with V/, is an isomorphism of V, with itself. This identifies X
with GLx,, (Va)-

We define the section f®v e Indgf(z;égw)ww,s b

(432)  f*(g) = x2.w(det g) Idetgll%”fX<I>(X9)xI,1w><2,w(detX)IdetX|Z+28dxX-

Linear operations are viewed here as acting on the vector space W,, on the right. We
recall that X is identified with GL,,(Ky); d*X is the measure identified with the right
Haar measure on the latter. To define the Siegel sections f,, s, we make specific choices
of the Schwartz functions ®,,.

Let (aw,by,) be the signature associated to w|p and Li,(:,-);. For each w € ¥, fix
partitions

Ay =N+ + Ny(w),w and by = Ny(w)+1,w T T Mo (w) w-

Let fi1;-- -, fy(w),w De characters of Oy, and let py = (H1w;-- - Mp(w)w) and @ =
[Twes, pw- We view each character pi., as a character of GLy, . (Oy) via composition
with the determinant. Let

N, w

Viw = Xilwxg,w,ui@, i=1,...,r(w),
and let Uy = (VLUM ce 7Vr(w),w)'

Let X, ¢ M, (O, ) comprise the matrices (é B ), with A € M, (Oy) and D € M, (O,),
such that the determinant of the leading principal nj 4, + - + 14 4,-th minor of A is in O
for i = 1,...,t(w) and the determinant of the leading principal Ni(w)+1w 7+ Niw-th
minor of D is in O} for i =t(w) +1,...,7(w). Let A; be the determinant of the leading
principal i-th minor of A and D; the determinant of the leading principal i-th minor
of D. Define ¢, : M,(K,) - C to be the function supported on X and defined for

U The minor difference between the definitions of the Siegel section at p in Equation #32) in this
paper and in [Eis15, Equation (21)] is due to the fact that we use normalized induction in the present
paper, while we did not use normalized induction in [Eis15].
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X:(élB))e%by

t(w)-1

(buv (X) = Vt(w),w(A) ’ H (VLw ’ Vijrll,u))(Anl,w‘*'""*'ni,w)
i=1
r(w)-1

Vr(w),w(D) - X H (VLw : Vi7+11,w)(Dnt(w)+1,w+"'+ni,w)'
i=t(w)+1

Let
(4.3.3) t> max  (1,ordy(cond (i )),ordy, (cond(xw)))),

weXp,1<i<r (w)

and let Ty, = T (t) ¢ GL,(Oy) be the subgroup of GL,(O,,) consisting of matrices
whose terms below the n; ., x n; ,,-blocks along the diagonal are in pr and such that the
upper right a,, x b,, block is also in p,,. For each matrix m € I'y, with n; ., x n; ,-blocks
m; running down the diagonal, we define

Nw(m) = H Ni,w(det(mi))'

Let ®;,, be the function on M., (K, ) supported on I',(t) and such that &, (z) =
p(z) for all x € I'y, (). Let @24, be the function on M, (K,,) defined by

(4.3.4) Po(@) = b () = [ b ()ew(raceya)dy.

Note that qub,,w is the Fourier transform of ¢,,,, as discussed in [Eis15, Lemma 10].
For X = (X1,X») € Homg,, (Viy, Wyy) = Homge,, (Viy, Vi) ® Hompe,, (Viw, V7)), let
Dy (X) = Py (X1, X2) = vol(Ty) D10 (- X1) - P20 (2X72).

Recall that we have identified X; and X5 with matrices through a choice of basis for
Vi (coming from the level structure at p for P;). Note that ®, ,. is a partial Fourier
transform in the second variable in the sense of [Eis15, Lemma 10]. We then define

(4.3.5) Fus 1= fit = f00 = fPome,
We then define f, s € I,(xp, s) by @31]).
The following lemma describes the support of ®1,, and ®g .

Lemma 4.3.2.

(1) For 71,72 € Fw;
bu, (‘11 X72) = (1172) X1 X 2,0 (det 7172) B, (X).

(i) For X = (4 B) with A€ Mo, xa,(Kw), B € Mayxpyy (Ku), C € My, xq, (Kw), and
DEMwabw(Kw):

By,,(X) = 0D (A)22 (B)2) ()M (D),
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with
@(2) =chary, . (0,) @(3) =chary, . (0,)
supp(®L)) € Py Mayxa, (Ow), supp(®L)) € pyf My, i, (Ou).-
Here t is as in Inequality (£3.3)).

Proof. Part (i) follows immediately from the definition of ¢,,. It remains to prove part
(ii). We have

By (X)) = Mn(lcw bu (V)ew (~traceY (34 .9))dY
f qb,,w )ew (~trace (o' A+ B'B +~+'C + 6' D)) dadBdyds
= ) (A)<1>§U2) (B)®Y (C) o) (D),
where
¢§U2) (B) B »/]Wawxbw (Ow) ew(_trace ﬁtB)dﬁ - CharMawxbw (Ow) (B)’
o(C) = be o ew(~tracey'C)dry = chary, . (0,)(C),
@8)(14) = Z bu,, () ey (~trace atA)char%tMawmw(@w)(A),
x:(g ?)E%modpfu
and

(D) = > bu,, (1) ey (—trace 5tD)char%thwxbw(@w)(D).
x:( (1) g)fs%modpfu
O

4.3.3. Local induced representations. Now that we have chosen a Siegel section at each
prime w € ¥,,, we proceed to the zeta integral calculations at w.

First, we introduce additional notation. Let B,, ¢ GL,, be the standard parabolic
subgroup associated to ay = 11w+ + Nywy,w- Let By, S GLy, be the standard par-
abolic subgroup associated t0 by = Ny(w)r10w + * + Np(w),w- L€t Ra, b, S GLy, be the
standard parabolic subgroup associated to n = ay, + by. For a = (aw),, and b= (by),,, let
B, = HweEp Baw (le)v By = HweEp Bbw (le)v and Ra,b = Hwezp Raw,bw (le) Let Law,bw
denote the Levi subgroup of Ry, p,,- Let R = [Tyex, Ruw (Kw), where

Ry :{g: (61 g) € Ra b, |AeBaw,DeB§5}.

We define N.* , (p,Ou) € R." , to be the subgroup consisting of unipotent matrices
in Rg, b, such that the lower left b, x a,-block lies in Mp, «q,, (PuwOuw)-
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In terms of the characters 11; ,, used to define the Siegel section at w, we define characters
!/
Ni,w by

s Xoboihy i 1< <t(w)
1,Ww Xilw,ui,w, if t(u}) +1<i< T(w),
for all w e X,. Let

r(w) 71

A
Moy = @21 " i 4
1 = ®uwes, Hyy-

For all w € X, let

Tw = Ind%L" o Tay ® Ty,

aw 0w

where m,, and 7, are representations of GL,, () and GLy,, (KCy), respectively. Let
t(w) r(w)

Py, = @iy iy and gy = @10 i, We let
Tp = Quex, Tw
Ta = OwesyTay,
Tp = OweS, Thy,
Ho = ®w€2pﬂ¢,zw
[1h = Ouwes, M, -
Let fi’ = ®yex, fly, denote the contragredient representation of p’, and define 7, 7q, 7y, fig,

and fi; by replacing p' by fi'. Note that in this paragraph, by Ind, we mean normalized
induction.

4.3.4. Local congruence subgroups and anti-ordinary test vectors. Let t be as in Inequality

#33), and let
(4.3.6) d>2t.

Consider the following groups:

Fruw= {fy € GL, (Oy) | ’ymodpi € Ry, ((’)/pi(’))}

F'r=]] Trw
weXy
Lo = {7 € GL,, (Oy) | ymodpi € By, (O/pi@)}
Iy = H Paw,w
weXy

wam, = {’y € Gwa (Ow) | ’ymodpi € Bbw ((’)/prO)}

= H I‘bw,w

weXy

=
o>
|
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We define ¢ € 7 as follows. Let ¢4 = ®yex,¥a,, € Ta be a section that satisfies
4
Taw (V) Paw = Pay, (V) Pau
for all v €'y, and w € 3. Similarly, let ¢ = ®wes, ¥p,, € T be a section that satisfies
(4.3.7) Ty (V) by = iy, (V) b
for all y €Ty, ., and w e X,
Definition 4.3.5. (a) Viewed as an element 0f®wegpIndgi’j’bw Ty ®Tb,,, let ¢ = Oues, Puw €

7 be a section such that

ey is supported on Ry, p,I'Ruw;
o v, is normalized by the property

(lD'LU (1) = (lpaw ® (pbuﬂ
for all w e ¥, and satisfies the invariance condition

A Y) e

(b) Similarly, we define ¢’ € T as follows. Let ¢y = ®uex,Pa, € Ta be a section that
satisfies

[ ]
10
for all (m 1) elg.

Taw (V) Paw = P, (V) Pau
for all v €Ty, w and w € X,. Similarly, let @, = ®ues, Pb, € Ty be a section that satisfies
(4.3.8) by (V) Pbu = b, (V) P,
for all v € I'y, o and w € X),. Viewed as an element of ®wegp1ndg:"b Taw ® T, , let

@' = Quex, ¥y, € T be a section such that
o !, is supported on Ry p'Tg
e !, is normalized by the property

(10’:1} (1) = @aw ® ()Z)buﬂ
for all w € ¥, and satisfies the invariance condition
[ ]

(4.3.9) d«;?»=%®%

for all (; (1)) €'Tg.

We shall use the invariance conditions in Definition [4.3.5] in our computations of the
local zeta integrals later in this section.
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Remark 4.3.6. The functions denoted ¢, and ), above depend on the integer d in-
troduced in ([43.6) (which determines the level of the subgroups I'r) as well as the
representations 7, and 7, (in subsequent sections the latter will be denoted 7’)). They
are uniquely determined by the support, normalizaion, and invariance conditions of Defi-
nition For reasons that will be explained in detail in Section 8.2 and specifically in
Lemma B2.7] in the global applications the vectors will be denoted Z;fg"jrw and ¢2 iir,(jrb ,
respectively.

4.3.7. The main calculation. The ordered K,-basis for V,, chosen above (that comes
from the choice of a level structure for P;) determines a /C-basis for W, = V,, @ V.
This ordered basis for W, = V,, ® V,, identifies GLx,, (W) with GLg, () and identi-
fies GLx,, (Vi) xGLk,, (Vi) € GLx,, (Vi ® Vi) with GL,, (Vi) x GLy, (Ky) € GLay, (Ky).
Note that this is a different identification of GLx,, (W,,) with GLg, (K,,) from the iden-
tification coming from the decomposition W, = V., ® Vg. Recall the Siegel section f5*
defined in Equation ([£3.5]). In the computation of the zeta integrals, we replace fu™*'
with the following translation of fi'*:

l, 0 0 0
1 -1
=1, =-1 0 0 0 1
Ly FXH 37 In 3 ln w
(4.3.10) g fX g( 1, 1, ) 0 0 1, 0
0 1, O

The matrices in Equation (£3.10]) are given with respect to the identification of GLx,, (Vi @ Vi)
with GLa, (I ) introduced at the beginning of this paragraph.

To avoid cumbersome notation, we will denote ®, , ., by ® for the remainder of this
section. The identification IC,, = KC} , identifies the representation 7, with a representa-
tion 7+, sections ¢py,+ and ¢! . with ¢, and ¢/, respectively, and a pairing (, ), with
the pairing (, ),+. Plugging in the translation of the section f* given in (£3.10) yields

(4.3.11)

L (wr, @rpes fwrt s 8) = Lo (0,07, X0 1)

lo, 0 0 0

2 0 0 0 1,

4.3.12 ::f det s*?f ol (xg,x g
( ) L () 2 (g)[det gl GLn (Kuw) (Xg. X0 o lo, O

0 1 0 0

w

X X7 hoX2,w (det X) |det X2 (714, (9) u, 0l ) d* X d* g.

We put

L(e, ¢ xon) = ] Lw(e,@' xo 1) = T1 Lw (0w Prpe fuor X) -

weXy weXy
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Given g, X € GL,, (Ky), we denote by Zy = (Z1,Z{') and Zy = (Z}, Z4) the matrices in
Mpsn (Kw) = Myxa, (Kw) x Mpxp, (Kyw) given by

Z1=Xg-= [Z{,Z{’]
Zy=X =[23,23],
with Z!, Z} € Myxa, (Kw) and Z, Z5 € My, (Kw). So
® ((Xg,9)) = volume (I') ™ @14 (21, 25 ) P20 (25, 27) ,

and
(7w (9) ur l) . = (T (X9) s o (X) @)
= (ﬂ-w (Zl) Pw, Ty (22) (’D:U)ww .
Therefore,
(4.3.13)

I, (0.¢' - vol rw‘lf f o (det Z)x7L (det Zy) [det(Z, Z0) | 2
(@7@7)(7“) VOUII]G( ) GLn () GLn(le)XZ ( € 1)X17w( e 2)| e( 1 2)|

x 1 (21,25 ) P20 (23, 21 ) (7w (1) s T (Z2) 3, A Z1d* Zo.

Now we take the integral over the following open subsets of full measure. We take the
integral in Z; over

1 0\[A 0 1 B
{(01 1)(01 Dl)(O 11)|ClatBleMwaaw(/Cw),A1eGLaw(le),DleGwa(ICw)},

with the measure
|det Ay det Dy | dCyd” Ayd*DydB;.
We take the integral in Z5 over

1 By)[A2 O 10
{(0 12)(02 Dz)(c2 1)|C’2,tB2eMwaaw(le),AgeGLaw(/Cw),DgeGwa(le)},

with the measure

|det A3" det D§*| dChd™ Ayd™ DydBs.

So
A1 B2D2
(4.3.14) P1 (21, 25) = P ((c1 Dy ))
, m o A2 + B2D2C2 AlBl
(4.3.15) Do (23, 27') = Pow (( D5C5 Ci1A1B; + Dl)) '

Let Iy, w(t) be defined similarly to the group Iy, . but with d replaced by ¢. Let
I'y, w(t) be defined similarly to the group I', ., but with d replaced by t. So since
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d>2t>t,

Laww(t) 20y w
Fbw,w(t) 2 wa@.

Note that since the nontrivial G, = G+-equivariant pairing (, )., is unique up to a
constant, there exists a constant R, such that for all &, € m, and &, € T,

Nw<£w7£{u>ﬁw:£ <£w (x)7gtlu (:E)>7Taw®7fbwd$7

where
<7 )ﬂaw OTpy * Taw ® Thy X May, @ Tpy,, = C

is the unique nontrivial L, p, (ICy)-equivariant pairing on (7, ® m, ) X (7e, ® Tp,, )
such that

(0 (1)1 0 (D)o amy, = 1.

Now, let
(s )mw F Ty X Tay = C
<7 )ﬂ-bw : 7wa x ﬁ—bw = (CX

denote the unique GL,, (Ky)- and GL;, (K\)-equivariant pairings, respectively, such
that

(4.3.16) (Pau s Paw ra, =
<(70bw7(75bw >7wa =

So by the uniqueness (up to a constant) of the equivariant pairing (, )r, ®m,, s We have
the factorization

<7 )ﬂaw®7rbw = <7 )ﬂaw ’ (7 )wa'

Proposition 4.3.8. The product ®1 4, ((éi 3123132)) Dy 4 ((A2 +DB;2CI2)2C2 ClAillelJr Dl))

is zero unless all of the following conditions are met:
Ay elg, w(t)
C1 €9y My, xa,, (Ow)
Dy €Ty, (1)
By € pl, My, xp, (Ow)
Cy € My, xa,, (O)
A €yt Ma,xa,, (Ow)
By € My, xb, (Ow)
Dy € pyf My, xb, (Ow) -
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When all of the above conditions are met, we have the following factorization at each
prime w € Xy

(4.3.17) Q1w (Z{, Zé,) Q2w (Zév Z{,) (mw (Z21) P, 7w (Z2) 90;;>7rw =Jy - Jo,
where
_ anl/2 N 1y -~
(4.3.18) J1 = X2,w (det Al) L (I)gl) (Dl) |det Dlw ‘w/ <<,wa,ﬂ'bw (Dl 1) ©b,, )wa
1/2 ~ ~
(4.3.19) Jo = X1, (det D2) @) (Ay) |det Agw‘w/ (Pars Faw (A2) Gay ), -

Proof. By Lemma [4.3.2] and the definition of ®1 ,,, the product

P A1 B2D2 P A2 + BQDQCQ AlBl
Lw 01 D2 2w DQCQ ClAlBl + D1
is zero unless all of the above conditions are met. For the remainder of the proof, we

will work only with matrices meeting the above conditions. We now prove the second
statement of the proposition. Note that when the above conditions are met,

7Tw(Zl)SDw:7"'111((61«1 lgl))ui"((f(l)l (1)))90111
wasn (5 ) (¢ )
So
D1 (21,25 ) P20 (22, 21) (7w (Z1) P T (Z2) @1 )

_ 1 0 - Ay B P
=X2,1w(detA1)X1,w(detD2)(Ww((cl Dl))gpw,ﬂw(( 02 f))gpw)ﬂ.

Let Ae M,, (Ky), De My, (Ky), C e My, xa, (Ku),and D € M, «, () be matrices

such that
(1 _32)(1 0):(1 O)(A 0)(1 B)
0 1 Ci Dy ¢ 1J\0 DJ\0 1)
Then
A=1-ByCyel+p*M,, (O,)
CA = C1 € ply My, xa, (Ow)
AB =-ByDy € My, b, (On).
So

Cepz}Mwaaw (Ow)
B EMawxbw (Ow)
D=D;-CAB=(1+CBy) Dy € (1+p*M,, (Oy)) Ds.
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Therefore, applying the invariance conditions of Definition [4.3.5] we obtain
1 0 - Ay Bs ' _ 1 -Bs\[1 O - Ay O /
T\\er py))Pe ™\ o 1 ))Pel F\™ o 1 J\er py))Pe T\ o 1))l
. 1 0)({1 O = Ay 0)
\\er 1f{o pyf)7 ™ o 1)Pe]
1 0 - Ay 0 1 0 p
0 Dy))7 ™\ o 1){-ciay 1))Fe)
B 1 0 - Ay 0 /
- 7Tw 0 D1 QOUHT‘—’U) 0 1 (pu) -

Since (@, @l ), = 1, it follows that
Ry = w ) :U by Y dx.
oo oy (@) @@ om,
Now, the support of ¢,, in GL, (O,) is
V(d) =
1 BY(fA 0\({1 O

{(0 . ) (0 D) (C 1) | C €pl My, va,, A € GLq,, (O) , D € GLy,, (Oy) . B € My, (ow)}.
Applying the definitions of ¢,, and ¢, we obtain

[C}Ln(ow)<(pw(w)7 goiu(w)>ﬂaw®ﬂbw dz = volume (V(d),dg) (¢w(1), ‘Piu(l»mzw OTpy, *

Since we defined (, )x,, em,, S0 that (©w (1), ¢4, (1))r,, om, = 1, We therefore obtain
(4.3.20) Ry, = volume (V(d),dg) .

_d _d
Note that since d > 2t, Ay € py* My, (Oy) and Dy € p,,2 My, (Oy). Then once again
using the definitions of ¢,, and ¢!, and the fact that the support of ¢,, in GL, (Oy) is
V(d), we see that

el (3 o)) ).

= volume (V (d), dg) 8! - <<,pw(1), |det A5 det D]\ 7, (A2) ® 7, (D7) %(1)}

Tayw BTy,

So by Equation (£3.20]),

<sow,frw((f(1f Do_l))go;> =\detAgwdetDﬁw\;/z(gow(l),ﬁaw(A2)®frbw(D1‘1)soiu(1))M o,
1 T v
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Consequently,

((pw(l),ﬁ'aw (A2) ® Ty, (Dl_l) (’0;1(1)>7raw®7rbw

= (Vo Fa (42) Pa )y, (Pbus Tou (D11) o)y, -
So

qDl,w (Z{7 Zé/) c1)2,11} (Zé7 Z{/) <7Tw (Zl) Pw, T (Z2) (ﬁw)ﬂw = J1J,

where
_ an11/2 N “1\ -
(4.3.21) 1 = Xo, (det A) L@ (Dy) |det DI [ (o4, 7o, (D) @),
1/2 - -
(4.3.22) Jo = X1, (det Dz) & (As) |det A5 [ (a7 (A2) a ), -

Corollary 4.3.9. The integral I, := L, (¢,¢', x, 1) in Equation (£3.11)) factors as

Iw = Il : 127
by
n- . X2, (det D) ®LD (D) [det Dy * (b, (D)2t » P I, 4D
GLyp,, (Kw) v

I:/ 1 (det A) DD (A) |det ALY 2 (0o 7a (A) By Ve d*A.
2 GLaw(Kw)wa(e ) @y (A)|det Al * (Pay > Taw (A) Pay Yray,

Proof. By Equation (4.3.13]) and Proposition [£.3.8],

(4.3.23)

I, = vol I w (det (A1D1)) x7L (det (A9 D
volume (T'y,) Al’A27Bl7B2’CI7C27D17D2Xz, (det (A1D1)) X1, (det (A2D2))

X |det (AlDlAng)lij—% J1Js
x|det A det D7 | |det Ay det D§*| d* Ayd* AydBydBadCdCod* Dyd* Dy,
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where J; and J; are defined as in Equations (£3.21]) and (£3.22)), respectively, and

Al € Faw(t)
Cl € pfﬂ HMwaaw (Ow)
vlp
Dg € Fbw(t)
32 € pzu HManbw (Ow)
vlp
C2 € HMwaaw (Ow)
vlp
Ay epy H Ma,xa, (Ow)
vlp
Bl € HManbw (Ow)
vlp
Dl € p;Uc HMwabw (Ow) .
vlp

Note that for such Ay and Dy, |det A1],, = |det Ds|,, = 1. Applying Equations (£3.2T]) and
([#3.22), we therefore see that the integrand in Equation ([£3.23)) equals

s+l
X2, (det D) @D (D1) (my,, (D1) @b s o )y, [ Dl 2
x X1 (det Ao) B (A9) (@an s Tay (A2) Pay )ray, |2l 2 -

Therefore,

2
I, =volume (T',) " volume (T',) (Volume (H Mg, xby, ((’)w)))

vlp

b
w d tD @(4) D D s x D i}+§ dXD
L ey Xe (A D) B (D1) (i (D)t b, 1Dl 0D
-1 (1) - ~ s+% o
det Ay) ® A an s Tan (A a Ve Aol 2dXA
foLaw(Kw)XLw( et Ag) @37 (A2) (Paw > Taw (A2) ay Yra,, [A2] )
b
- w (det D) 8L (D) {mh,, (D) b, Pbu )m,, [ Dl * d*D
/Gwa(Kw)Xz, (det D) @, (D) (b, (D) by s Pbyy )y, [Pl

-1 (1) . ~ S+% o
det A) @4 (A) (@au s Taw (A) By ray, [Alw 2 d*A.
XLLGM(Kw)Xl,w( et A) DL (A) (Pan s Faw (A) Bay )re,, 14|

4.3.10. The main local theorem. In Theorem 3.11] we calculate the integrals I; and Iy
from Corollary 391
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Theorem 4.3.11. The integrals Iy and I are related to familiar L-functions as follows.

L (s + %,ﬂbw ® x;w)

L= e(s+3.m, ®x2,0) L(-5+ 3,7, ®X§,1w)
I~ e(-s+3,Taw ® X1,0) L (3 + 5,70, ® XI,lw)'
L(-s+%,Ta, ® X1,0)
Consequently,
4.3.24
(Iw:) L(ss Lo, @x00) (-4 3w @ X10) L (3 5,70, @371
e(s+ 3T, ® X2w) L(=5+ 3,7, ® X3L,) L(=s+3,Ta, ® X1,0)

1
= L(S + E,OT‘d, 7Tuan)

Here as above we are writing m,, = Indgf"b Ty ® Th,, -

wHPw

Proof. The integrals I and I are of the same form as the “Godement-Jacquet” inte-
gral defined in [Jac79, Equation (1.1.3)]. Applying the “Godement-Jacquet functional
equation” in [Jac79, Equation (1.3.7)], we obtain

L(s+ %,m,w ®X2,w)

e(5+ 5T, ® Xow) L(=5+ 5, 7o, ®X3,)

% —sH . . x
(325) o [ (@60) (D) et DLTE g, (D) (o T (D)o, 0D,

I =

where (<I>§;1 ) )A denotes the Fourier transform of <I>§;1 ) The support of (<I>§j‘ ) )A is GLy,, (Ow),
and

(1.3.26) (o) @ -6 ([ 1))

for all D € GLy,, (Oy).
Applying Equations (3.7 and (£3.8)), we obtain

~ ~ -1 ~
(b5 T, (D) b, )y, = (b, (D)) (b G ),
-1
= (1, (D))
for all D € 'Ty, Ty, = [Tyes GLop, (Oy). Plugging this into Equation ({@3.25)) and applying
Equation (£.3.26]), we obtain
L (S + %77wa ® X2,w)

I .
! e(s+%,m, ®x2w) L(-5+3, 7, ®X5}w)
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The computation of I, is similar. Applying the Godement Jacquet functional equation
[JacT9, Equation (1.3.7)] again and applying Equation (43.16]), we obtain

e(=s+ 3 a, ® X1) L (3 +5,7a, ®X7},)
L(—S"‘%,ﬂ'aw@Xl,w) '

Ip=

Remark 4.3.12. Let w,, denote the central quasi-character of m,,. Then

1 Wa,, (-1)
El =8+ 5, Mayw ® X1l,w | = 1 -~ 1)
2 e(s+ §,ﬂaw®x1,w)

So we may rewrite I and I, as

Wa (~1)L (& + 5, Fa,, ® X714,

I =
’ E(S+%7ﬁ-aw®XI,1w)L(_S+%77Taw ®Xl,w)
I =w (_1) L(%+S7ﬁaw®XI,1w) L(S+%,7wa®x27w)

w aw 5(s+%,7~raw®Xilw)L(—s+%,7raw®X17w)6(s+%,7rbw®X2’w)L(_S+%’7~wa®X§71w).

Therefore, the Euler factor at p, which we denoted in Equation (£3.24])

1
HL(S + E,OT‘d, 7Tuan)

wlp
can also be written
(4.3.27)
L(%+s,7~raw®xilw) L(s+%,7rbw®xg7w)
[[wa, (-1) T — —7 T .1~ 1y
vip E(S+ 7 Taw ®X1,w)L( S+ 5, Tay, ®x1,w) E(S+ 75 Tbu ®X2,w)L( S+ 5, b, ®x27w)

Remark 4.3.13. Note the similarity of the form of the zeta integral at p in Equation
E327) with the form of the modified Euler factor at p for the p-adic L-functions pre-
dicted by Coates in [Coa89, Section 2, Equation 18b].

4.4. Holomorphic representations of enveloping algebras and anti-holomorphic
vectors.

4.4.1. Holomorphic and anti-holomorphic modules. Throughout this section, we identify
Y with Xjc+, and we identify each element o € 3 with the restriction o|ic+. To simplify
notation, we let G* = GUy = RxjoGU (V') where GU (V') denotes the full unitary simili-
tude group of V. Thus G*(R) = [Iyex,., Go, With G5 = GU(V)cs = GU(a,, b, ). For any
h: RC/R(GWC) — Gy as in Section 2.1}, the image of h is contained in the subgroup G
of (gy,0 € Xjc+) for which the similitude factor v(g,) is independent of o, and it is to
this latter subgroup that the Shimura variety is attached.

Let U = C(R) € G(R) = G4(R) and X be as in Section 2.7.1] We assume U is the
centralizer of a standard h as in Section 2.3.2} let U, c GG, denote its intersection with
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G, and let K2 c U, denote its maximal compact subgroup; K is isomorphic to the
product of compact unitary groups U(ay) x U(b,). We have

t, = Lie(Us) = 3, ® Lie(KJ)
where 3, is the R-split center of g, := Lie(GU(ay,by)). We let U(gy,) denote the en-
veloping algebra of g,.

For o € Y+, we write the Harish-Chandra decomposition

9o :Eaeap;@p;'
Because h was chosen to be standard, this decomposition is naturally defined over o(K) c
C. For any irreducible representation (7,, W, ) of U, of G, := G(K), we let

(4.4.1) D*(75) = U(go) ®u(t,apz) W,

We have assumed that our chosen h takes values in a rational torus T'(= Jy ) ¢ G (so
that (7,h) is a CM Shimura datum), and let T,, ¢ G, be the o-component of T'(R), t,
its Lie algebra. We choose a positive root system R} for T, so that the roots on p; are
positive, and let b, be the corresponding Borel subalgebra.

Let Ry c R} be the set of positive compact roots. The highest weight of 7, relative
to Ry can be denoted ky = (cq; Klo 2" 2 Kayoi K] g 20 2 /igmo) € Z x 7% x 7%, where
¢, is the character of 3,. We call (7,, W) strongly positive if there exists an irreducible
representation W, of G, with highest weight p = (-cs;a1 >+ > a,) € Z x Z" relative to
R}, such that, setting a = a, and b = b,,

(4.4.2) (a1,..50n) = (=Kp g = 5.y =K] o = G =Kag + by ..o, —K1 5 +b);
in other words, if and only if —K}i »— > —Kq s+b. The contragredient of D*(7,) is denoted
(443) DC(TU) = ]D)b(’fg)v = U(go—) BU(t,@pt) W;L

It is the complex conjugate representation of D’(7,) with respect to the R-structure on
go; we call this the anti-holomorphic representation of type 7.

In what follows, we usually write D(k, ) instead of D(7). It is well known that if 7, is
strongly positive then D(k, ) (resp. D.(ks)) is the (U(g,), U, )-module of a holomorphic
(resp. anti-holomorphic) discrete series representation of G, and moreover that

dim H®(gy, Uy D(ky) @ WY) = dim H® (g, Uy; De(ke) ® Wo) = 1

with WY the representation with highest weight given by £.4.2] and W, its dual, with
highest weight

(4.4.4) (Cos=any---,=01) = (Co; K10 = b5y Koo = b, K] 5 + @y Ky 5 + ).

The minimal Uy -type of D°(ky) (resp. of D.(k,)) is the subspace
1®W,, cU(8s) ®u(e,epz) W, (resp. 1@ WY c U(go) ®u e, apt) Wa,)-

The minimal U,-type of D!(k,) (resp. of D.(k) is also called the space of holomorphic
vectors (resp. anti-holomorphic vectors).
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4.4.2. Canonical automorphy factors and representations. The (U(gy),U,) module D*(x, )
can be realized as a subrepresentation of the right regular representation on C*°(G,)
generated by a canonical automorphy factor. We recall this construction below when
Gy =Gy~ GU(n,n) and 7, is a scalar representation.

Let M, be the affine group scheme of n x n-matrices over Spec(Z), M,, = Spec(P(n)).
For 0 € X, let P(n), denote the base change of P(n) to O, = 0(Ox). Corresponding to
the factorization G*(R) = [1, Gy, we write X =[], X,. The maximal parabolic P,,
together with U,, defines an unbounded realization of a connected component X c X,
as a tube domain in pj , ([Har86] (5.3.2)). A choice of basis for Ly, together with the
identification of V with V; and V¢ introduced in Section AT.1] identifies pi, with M, (C)
and therefore identifies X with a tube domain in M, (C). Let 1, € X be the fixed point
of U,. Without loss of generality, we may assume 1, to be a diagonal matrix with values
in 0(K) whose entries have trace zero down to K*. Then X is identified with the
standard tube domain

X = {z e M, (C) |1, (tZ—z) > 0}.

IS8

(ol (e

. .. ) ) b _
With respect to this identification, any g, = (i" ") € Gy acts by g,(2) = (agz + by ) (coz +dy) L
(Here ay,b,, ¢y, and d, are n x n matrices.)

For z = (25 )pen € X = [Igex; Xo and g = (9o )oex € [Tgex G(E5), let
J,(QU,ZU) :a'tzo +E

J'(9,2) = [1 7' (90:25)
oeX

J(Goy26) = Cozo +dy
J(9,2) = [T 7(90, %)

oes
Let
Jgo (20) = § (9o 20) = det J(go, 25)
(= v(90) " det(go) det(J' (9o+ ) = v(90)" det(Ge) " det (T (9o, 25))
Jg(2) = 3(9.2) = [ 1 g (20)-

ey

Fix o € . For g € G,, let
J(9) = J(9:30): 7' () = J'(9.35)-

These are C'*°-functions on G, with values in GL(n,C), and any polynomial function of J

and J' is annihilated by p, and is contained in a finite-dimensional €, subrepresentation
of C*(Gy). Similarly, let

j(g) = det(J(9)); j'(g) = det(J'(g)),

viewed as C*°-functions on G, with values in C*.
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Let x = || ®||™ - xo be an algebraic Hecke character of K, where m € Z and
Xo0.0(2) = 5ma(xe) 570(xo)

for any archimedean place o. Define D?(x,) = D*(m,x0.) to be the holomorphic
(Lie(G4,6 ), Uy )-module with highest U,-type
A(xo) = A(m, X0,0) = (M=b(Xo), m=b(Xo), - m=b(Xo )i —m+a(Xo),- .., ~m+a(xs);®)
in the notation of [Har97, (3.3.2)]. Here e is the character of the R-split center of U,
(denoted ¢ in [Har97]), which we omit to specify because it has no bearing on the integral
representation of the L-function. We define a map of (U(g,), Uy )-modules
(4.4.5) Uxo) :D*(xo) = C=(Go)

as follows. Let v(x,) be the tautological generator of the A(m, X, )-isotypic subspace
(highest U,-type subspace) of D?(m, x,). Let

LX) (V(Xo)) = Tyo (9) 1= §(g) 0 - j ()T (g)mralxe) b))
and extend this to a map of U(g,)-modules. Let C(Gy, xo) denote the image of ¢(xo).
Remark 4.4.3. Note that J,, depends only on the archimedean character x, = |||/ x0,o-

We will only take m in the closed right half-plane bounded by the center of symmetry of
the functional equation of the Eisenstein series, as in [Har08]. For such m, the restriction
of ]DQ(m,Xo,U) to Us s = U(ay,by) x U(by,ar) decomposes as an infinite direct sum of
irreducible holomorphic discrete series representations of the kind introduced in 4.1k

(146) DX(mx00) = @  D(re) 8D ®x00) = @ Dlss) 8D(s, ©x0)
ko €C3(M,X0,0) ko€C3(xo)

where C3(x,) = C3(m, x0,,) is a countable set of highest weights:

(4.4.7)

C3(xo) = {(-m+b(Xo) =Ty, —m +b(Xo) —T15m = a(Xo) + 51, .- ;M = a(Xo) + Sa, ) }

where

(4.4.8) ry2rg 221y, 205812822025, >0.

(Compare [Har97, Lemma 3.3.7] when a(ys) =0.)

For each o € X, we define

(a(X0)76(XU)) = (_m+ b(XU)a e (s b(XU);m_ a(XU), cee 7ma(Xcr)) € Zao+bo
and let
(449) (a(X)yﬁ(X)) = (a(Xo)yﬁ(Xcr))er]
For k = (kg )gex, With k, € C3(x,), we define
(4410) Po = Ko — (a(XU)aﬁ(Xo)) = (_Tbgw <oy T 81,0 780,0);

Po=(T1,  Tby 3815180, )i P = (Po)oex: P = (5 )oex

The involution v on the parameters (7;,5;) corresponds to an algebraic involution, also
denoted v, of the torus T.
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The algebraic characters p, p¥, and « all determine one another and will be used in the
characterization of the Eisenstein measure in subsequent sections.

Note that the twist by xo. coincides with the twist by x, because the norm of the
determinant is trivial on U(by,a,). We prefer to write the twist by x,, which is more
appropriate for parametrizing automorphic representations of unitary similitude groups.

Lemma 4.4.4. For such x, the map t(xo) of [4-4.9 is injective for all o. In particular,
the image C(Gy,Xo) of t(Xo) is a free U(p}) — S(pt)-module of rank 1.

Proof. Indeed, D?(x, ) is always a free rank one U (p;)-module, and for m in the indicated
range is irreducible as U(gy)-module. Since ¢(x,) is not the zero homomorphism, it is
therefore injective. O

Definition 4.4.5. Let k = (ky,0 € X), where for each o, k, is the highest weight of an
irreducible representation 1, of U,. Let (xo,0 € X2) be the archimedean parameter of an
algebraic Hecke character x of K. The pair (k,x) (or the triple (k,m,xo)) is critical if
ko € C3(Xo) for all o € 3.

If  is an anti-holomorphic automorphic representation of G1 of type k, we say (m,x)
is critical if (k,x) is critical.

Remark 4.4.6. When K is imaginary quadratic, the discussion in [Har97, Section 3| shows
that, for fixed = and ¥, the set of m such that (7, m, o) is critical is exactly the set of
critical values of L(s + %,71, X) greater than or equal to the center of symmetry of the
functional equation. The same considerations show that this is true for an arbitrary CM
field. The verification is simple but superfluous unless one wants to compare the results
of the present paper to conjectures on critical values of L-functions.

Let vy, ® v, o, denote a highest weight vector in the minimal Ks-type of D(ky) ®
D(k’ ® Xxo), relative to a choice of compact maximal tori in Us, as in LAl The
holomorphic module D?(y, ) is a free rank one module over U(p}), generated by v(x,) €
A(Xo). There is therefore a unique element o, . € U(p}) such that

(4.4.11) Oxa o " V(Xo) = Vky ® Uy gy, -

The differential operator d,, ., depends on the choice of basis vectors but is otherwise
well-defined up to scalar multiples. The module D(k,)®D(k’. ®x, ) has a natural rational
structure over the field of definition E(7,,%,) of 7, 872 ® x,. Let span(v., ® Vs ®Xa)
denote the F(7,, X, )-line in D(k,) ® D(k! ® ) spanned by the indicated vector. We

always choose v, ® v, o, to be rational over E (Tos Xo)-

4.4.7. Holomorphic projection. We let pry , : D*(x,) — D(ky) ® D(k ® X, ) denote the
natural projection and

hol hol;ag,bs . )2
pT}-@,o :prﬁ,o 777D (XO’) - Span(vﬁa ®UHET®XJ)
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denote pry , followed by orthogonal projection on the highest weight component of the
holomorphic subspace. Let

D*(xo)" b = @ im(pris
Kko€C3(m,Xo)
and let
p,,,,hol — @prg’aé . Dz(XU) N D2(X0)h01§ao',bo'.

Because we have chosen h standard, the enveloping algebra U(g,) and its subalgebra
U(pi,) = S(pi,) have models over O,. and we define an isomorphism of O, algebras

(4.4.12) S(p1,) — P(n)s
using the identification of section

Let n = a, + b, be a signature at . We write X € M, in the form X = (A(X) B(X))

C(X) D(X)
with A(X) € M,, (an a, x a,) block, D(X) € M, and B(X) and C(X) rectangular
matrices. With respect to this decomposition and the isomorphism (£4.12]) we obtain a
natural map

j(am ba) : P(aa)a ® P(ba)a i P(n)a e U(pzlr,cr)’
Fori=1,...,a, (resp. j=1,...,b,) let A;(X) (resp. A’(X)) be the element of P(a, ),
(resp. P(bs)s) given by the ith minor of A (resp. the jth minor of D) starting from
the upper left corner. Let ri 5 >--->74 5 >7q,41,6 =0, 81,0 2+ 2 8p 5 > Sp,+1,0 = 0 be
descending sequences of integers as in Inequalities (L4.8]). Let
fi,o = ri,o — Ti+1,o’7i = 1, vy Qg; §j,o = T']"U — T‘j+17g,j = 1, N ,bo.

and define p(7,,5,) € P(n), by

U - bo -
(4.4.13) DT 3,)(X) = § (a5, b )(JTA(X) ™ - [TA(X))
i=1 j=1
Let 6(7,,5,) € U(ps) be the differential operator corresponding to p(f,,$,) under the

isomorphism (L4.12]).

The group GL(a,) x GL(ay) (resp. GL(by) x GL(b,)) acts on P(ay)s (resp. P(by)s)
by the map (g1,92)(X) = g;* X g, and the action preserves the grading by degree. With
respect to the standard upper-triangular Borel subgroups, we can index representations
of GL(ay) (resp. GL(b,)) by their highest weights, which are a,-tuples of integers
Ty 2Ty 2 21y, (resp. by-tuples s1 > s > --- > sp ). The following is a statement of
classical Schur-Weyl duality:

Lemma 4.4.8. Let u = a, or b,. As a representation of GL(u) x GL(u), the degree
d-subspace P(u)? c P(u)y decomposes as the direct sum

P(u)e — DIF"Y © F/]
I
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where | runs over r-tuples ¢y > cg > -+ 2 ¢y > 0 such that ¥, ¢; = d. Moreover, if
L=0C1 203> 2y > Cysr =0, the highest weight space F** c [FHMY ® F*] is spanned by
the polynomial A* = TTj_y A7,

Proof. This is the case n =k =r of Theorem 5.6.7 of [GW09]. O

Define the (one-dimensional) highest weight space F** as in the statement of the
lemma, and write

P(u); =@ F
o
Recall the notation of (£.4.10).
Corollary 4.4.9. Let (k,x) be critical. For each o € X, there is a unique a, + by -tuple

U
pl = (Tl,o' > 2T o 20;3170 228y 4 ZO)
as above such that
hol
((5(Zcr7 Ss) U(XU)) Png,x,a Uk, ® U“'Zr@’XG
with Py, v, a non-zero scalar in E(Ty,Xo)-

We write
D(py) = D(KosXo) = 0(T:3,), D(p") = D(k,x) = [ [ D(Ko, Xo)

and
D"l (p?) = D" kg, X0) = prioé(F,y. 8,), D" (p") = D" (k,x) = HD’“’%J,XU)

for these choices of (1i,5;5j,5). Then for all k! < Kk there exist unique elements §(k, k1) €
U(ps), defined over algebraic number fields, such that

D(r,x) = Y, 8(k,k") o D" (', x);
K<k

d(k, k) is the scalar 1y P, y,o-

Proof. Consider j(aq,b,)(P(ay)i ® P(by)%) c P(n),. This is the space spanned by the
p(7,,S,) defined in (£4I3). Let d(ay,b,)" c U(p}) be the subspace identified with

j(as,b5)(P(ag)t ® P(by)S) by the isomorphism (£412]). The decomposition (LZ.0) is
based on the fact that the composition

hol
5((10, bo)+ ® U(Xo) - D2(Xcr) pr_) ]D2(Xcr)hol;ag,b(7

is an isomorphism. See the disscussion in section 7.11 of [Har86].

This does not say that (7, 5,) ®v(xe) lies in the highest weight space of the holomor-
phic subspace of the direct factor D(k,) ® D(k! ® X, ) corresponding to the a, + by-tuple
(T,,5,); but it does say that its projection on that highest weight space is non-trivial.
This is equivalent to the first statement of the corollary. The remaining statements are
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formal consequences of the decomposition ({.4.6]) and the fact that the decomposition is
rational over an appropriate reflex field, cf. Lemma 7.3.2 of [Har86]. O

4.4.10. Differential operators on C*-modular forms. Let x = || ®|™xo be an algebraic
Hecke character of K, as before. We view G4 as the rational similitude group of a maxi-
mally isotropic hermitian space Vj; this allows us to write Sh(V}) for the corresponding
Shimura variety. Let A(x) = (A(xs),0 € X) be the character of U, whose restriction to
Uy is A(xo). Let L(x) be the 1-dimensional space on which Us, acts by A(x); it can be
realized over a number field E(x ) which depends only on ye. The dual of the highest
Us-type A(x), restricted to the intersection of Uy with G4(R), defines an automorphic
line bundle £(x) on Sh(Vy) with fiber at the fixed point h of Us, isomorphic to L(x). If
T = Moo ® Ty is an automorphic representation of G4, with me a (Lie(G4),Us) module
isomorphic to D?(x) = ®yex:(D?(X,) and 7y an irreducible smooth representation of the
finite adeles of G4, then there a canonical embedding

(4.4.14) mp = 1y ® HO(Pn, Usos D? (x) ® L(x)) = H(Sh(Va)"", L(x)*").

Write 2 = Qgj,(vy) for the cotangent bundle. For any integer d > 0, and for any ring

O, let P(n)4(O) denote the O-module of O-valued polynomials on the matrix space
M, and let P(n)**(0) = Home(P(n)%,O) denote the dual O-module. There is a
canonical action of U, on P(n)d, for every d, defined over the field of definition E(h)
of the standard CM point h stabilized by U,, and even over its integer ring. The Maass
operator of degree d, as defined in section 7.9 of [Har86] is a C'*°-differential operator

d . d
(4.4.15) 0y L(x) = L(x) ® Sym“Q

We can view the target of 5% as the automorphic vector bundle attached to the repre-

sentation L(x) ® P(n)®* of U, using the identification of section B.4.2 as in ([@4.12).
We use the same notation to denote the action on the space A(G4) of (not necessarily
cuspidal) automorphic forms on Gy:

(4.4.16) 6% A(Ga, L(X)) = A(Ga, L(x) ® P(n)**)

where the notation denotes automorphic forms with values in the indicated vector space.
For any polynomial ¢ € P(n)? we thus obtain a differential operator

(44.17)  85(0) : A(Ga, L(X)) > A(G1, L(X) @ ()" );:63(8)(f) = [63(f) © 6]
where the bracket denotes contraction P(n)%* @ P(n)? - E(h).

Finally, for each o define sequences 7, and 3, as in section ATt let 7 = (7,), § = (5,)-
Suppose Y.,[¥; Tio+ 2 8j,0] = d. Then we define p(7, 5) = [1, p(7,,5,) where the factors
are as in (4.4.13)), and let
(4.4.18)

83(7,8) = 63 (p(£,8)) - HO(Sh(Va)'™", L(x)“") » H*(Sh(V4), L(x) ® Sym’ Q).

Here H** denotes the space of C'*°-sections. Under the isomorphisms ([£4.14)), 5;‘2 (7,3) is
identified with the operator on the left hand side deduced from multiplying by the element
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p(7,8), viewed as an element of Symdpj{, which maps H°(Pp, Uso; D?(x) ® L(x)) =
®,Cvy, ® L(X) to p(F,7) ® ®;Cuy, ® L(x) € D*(x) ® L(x))-

The holomorphic differential operators of Corollary define operators on automor-
phic forms, as follows. Let S:"’V(K 1,C) denote the space of C*® modular forms of type k
on Sh(V1), of level Ky, and define S77 (K2, C) analogously. The following Proposition
restates Proposition 7.11.11 of [Har86]:

Proposition 4.4.11. Let (k,x) be critical as in Corollary [{-1.9 Fiz a level subgroup
K4cGy(Ay) and a subgroup Ky x Ko c G3(Ay) n Ky. There are differential operators

D(r,x) = H (5, Sh(Va)"", L(x)“™) = Sy (K1,C) @ Sy (K2,C) ® x o det;

D"k, x) « H (5, SR(V1)", L(x)“™) = Syv(K1,C) ® Sp_y(K2,C) ® x o det

which give the operators 5§(ﬁ, $) and prh010(5i(ﬁ, 8) upon pullback to functions on G4(A)
and restriction to Gs(A).

4.4.12. The Hodge polygon. If w is a cuspidal automorphic representation of G' whose
component at o is an anti-holomorphic discrete series representation of the form D.(7,),
then its base change IT to an automorphic representation of GL(n)x (ignoring the split
center) is cuspidal, cohomological, and satisfies IT" — TI¢, and therefore the associated
¢-adic Galois representations have associated motives (in most cases), realized in the
cohomology of Shimura varieties attached to unitary groups, with specified Hodge struc-
tures. In what follows, we fix o and attach a Hodge structure to the anti-holomorphic
representation D.(7), according to the rule used to assign a motive to II. The Hodge
structure is pure of weight n—1 and has the following Hodge types, each with multiplicity
one:

(4.4.19)
(k1i=b+n-1,b-K1),...,(ke;n—1—Kqa),(n =1 =K}, Ky +a),..., (=K, K] +n—1),
(ki +n—-1,-kr)),..., (kg +a,n—-1-kp),(n -1 -Kg,Ka),-..,(b—K1,k1 —b+n—-1).

Label the pairs in (£Z4.19) (p;,qi), i = 1,...,2n, in order of appearance; thus (p;,q;) is in
the top row if and only if ¢ < n.

Hypothesis 4.4.13 (Critical interval hypothesis). We assume that the weights (k, k)
are adapted to the signature (a,b) in the sense that, for every pair (p;,q;) in the collection

HEZ19), p; # ¢; and p; > q; if and only if i <n.

One checks that Hypothesis .4.13] holds if and only if 2k, >n—1 and -2k >n—-1. We
define the Hodge polygon Hodge(k, k) = Hodge(D (7)), to be the polygon in the right
half-plane connecting the vertices (i,p;) with (p;,¢;) the pairs in ([Z4.19).

4.4.14. Specific anti-holomorphic vectors. When 7, is strongly positive with highest
weight k = ks, we write D(k) = D(7,), Dc(k) = D.(7,) when it’s clear that x is a
weight and 7, is an irreducible representation. Let 7 be a cuspidal automorphic repre-
sentation of G with 7, = D.(k) as above. In the computation of the zeta integral, we use
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a factorizable automorphic form ¢ = ®,p, € 7, with ¢, a vector in the minimal U,-type
1@ W, of D.(x). In practice, we choose ¢, to be either the highest weight vector ¢, . or
the lowest weight vector ¢, _ in 1® W,/ . If wy is the longest element of the Weyl group
of T, relative to Ry, then ¢, . (resp. ¢, ) is an eigenvector for T, of weight —wq (k)
(resp. of weight —k).

4.5. Local zeta integrals at archimedean places.

4.5.1. Choices of local data. This material has been covered at length in [Har97] and
[HarOg|, so we can afford to be brief. Notation for induced representations is as in
Section above. The notation for holomorphic representations is as in Section
An easy computation, similar to that in [Har97], yields

Lemma 4.5.2. As subspaces of C*°(Gy), t(m,Xs)(D?*(m, xs)) € Iy(m - 55X)-

Remark 4.5.3. Note that we have omitted similitude factors here. Strictly speaking,
these should be included; but they do not change the theory in any significant way.

4.5.4. Non-vanishing of I.,. Let o be an archimedean place, f, = f5(Xo,¢) € I(Xuo,m)
the local section at 0. We assume f, is of the form

(4'5'1) fU(chag) = B(Xm H/U)D(H/mmy)(u,a)t]m,)(u,a (g),g € G4,O’

where Jp, y,, € C*°(G4) is the canonical automorphy factor introduced in section F.4.2]
and B(Xs, ko) 18 a non-zero scalar. Let ¢, ® ¢! be an anti-holomorphic vector in the
highest weight subspace of the minimal K,-type of 7, ® m’.

Proposition 4.5.5. The local factor 1,(¢q, ., fo,m) is not equal to 0.

Proof. If D(ke,Xs) is replaced by D"!(ks,x) in @5.D), this follows from Remark
(4.4)(iv) of [Har08]. Since p, ® ¢! is an anti-holomorphic vector, the pairing of (the
Eisenstein section) D(ke, X )Jm,yo,c With (the highest weight vector) ¢, ® ¢”, factors
through the projection of D(ks, X )JIm,yy.c ONtO DhOl(/{U,XU)Jm,XJ,U. The Proposition
is thus a consequence of Corollary d

When the extreme K-type 7, = 74, 5 ® T, » in 7T, is one-dimensional, the archimedean
zeta integrals have been computed in [Shi97, [Shi00]. Garrett has shown in [GarO8| that
the archimedean zeta integrals are algebraic up to a predictable power of the transcen-
dental number 7. When at least one of the two factors (74, s, T, ) of the extreme
K-type is one-dimensional, the archimedean zeta integrals are given precisely on [Gar08|
p. 12]; and furthermore, Garrett showed in [Gar08| that when both factors are scalars,
the archimedean zeta integrals are non-zero algebraic numbers. The computations of the
zeta integrals have not been carried out in the more general case (i.e. when neither 7,_ ,
nor 7y, » is one-dimensional), but in any case, the zeta integrals at o depend only upon
the local data at o.

The following result is due to Garrett [Gar08].
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Proposition 4.5.6. Let I,(xy, ko) be the local zeta integral

Icr(XcryK/o) = Io(@oy@fyafaam)a

where ©o = Pry 5 9o =@ and fo is given by @SI). Then Iy(Xo, ko) s a non-zero
algebraic number.

Remark 4.5.7. When &, is a scalar representation, Shimura obtains an explicit formula
for the local zeta integral. In general, as explained at the end of [HarO8 Section 5],
Garrett’s calculation actually determines the value of the integral up to an element of a
specific complex embedding of the CM field F'. In that paper F' is imaginary quadratic,
but the same reasoning applies in general. Undoubtedly the calculation actually gives
a rational number, but the method is based on the choice of rational structures on U,
and the aforementioned differential operators. We do not need to use this more precise
information here.

4.6. The global formula. We have now computed all the local factors of the Euler
product (£1.5). The Proposition below summarizes the result of our computation. Bear
in mind that, although we write ¢ € m, we actually mean that ¢ € 7w, where the latter is
the irreducible U;(A) constituent of 7 chosen as in (L.1.1)).

First, write x = || o [|™ - x» with x, a unitary Hecke character of K. Denote by x* the
restriction of y, to the ideles of K*; it is a character of finite order. Let n =i /x+ denote
the quadratic idele class character of K* attached to the quadratic extension K/K*. For
any finite place v of K*, define the Euler factor

n—1
Dy(x) = [T Lo@m+n—r,x"-n").
r=0

For any finite set S of finite places, let
(4.6.1) D%(x) = [T Du(x); D(x) = D?(x),
V¢S

where the product is taken over finite places.

Proposition 4.6.1. Let the test vectors ¢ € m and " € ©° be chosen to be factorizable
vectors as in (AI2)), with the local components at p and oo given as in ([AI3]) and
(EI4), respectively. Assume the local components at finite places outside S = Sy are
unramified vectors, and the local choices at ramified places are as in [{.2.2 Moreover,
assume the Siegel-Weil section fs € I(x,s) is chosen as in the preceding sections. Write
X =|®|"xu- Then we have the equality

D(X) ' I(QO,(,Db,f,S) = (90790b) ’ IP(X7H)I<>0 (X?pU)ISLS(S + %77T7Xu)

where

Ig= H Dy(x) - volume(U,),
veS

L><>(X7 /f) = H IO'(XO'7 "ia)
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is the product of factors described in Proposition [{.5.6,
I, = L,(s,ord,m, x) = H L(s,ord, Ty, Xw),

wlp

and (e, e) is the L* inner product on cusp forms.

69
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A. APPENDIX: THE DEFINITE CASE, REVISITED

We take another look at the definite case. This is the case where a4 ;b,; = 0 for all o € X
and all ¢ = 1,...,m. In this case the schemes M, the modular forms, and the p-adic
modular forms have simple descriptions. For eachi=1,...,m, let ¥; = {o € ¥k : ar,; > 0};
this is a CM type for IC. Let ¥,,; = {w|p : w is determined by incl, o o for some o € 3;}.
Note that w € ¥, ; if and only if w ¢ ¥,,;, as w € ¥, ; if and only if a,,; > 0 which holds
if and only if ay; = by,; = 0. In particular, ¥; is ordinary at incl, in the sense of [Kat78,
Section (5.1)]. Furthermore, it follows from the isomorphism (2:2.2]) that

m
(A02) G/Zp - Gm X H H GL(’)i,w (eiLw)v (g,y) g (V7 (ngi)) :

i=1 wEEPVi
Since e;L,, = e; L}, if w € ¥,; and otherwise e;L,, = e¢;L,,, L* = [\ HweEW- €; Ly, it
follows that

m

(A.0.3) H =GLoez,(LY) — [] TI GLo.(&iLw),
i=1 weSy ;
and hence
(A.0.4) Gz, — Gm x H.
Combining isomorphism (A.0.4)) with isomorphism (29.0)) yields an identification
(A.0.5) Gz, — Hoyz, -

A.1. Some CM abelian varieties. The CM type X; defines a complex structure on
Vi = O ® R; the complex structure is that defined by transport of structure via the
identification V; = [Tyex;, C,  ® r = (o(x)r). Then the canonical projection V; — W; =
0O®C/(0O®C) is a C-linear isomorphism, where the superscript 0 denotes the degree 0
part of the Hodge filtration on O ® C = V; @ C for the given complex structure on V;.

Let A; be the abelian variety A; = V;/O with the complex structure on V; being that
defined by ¥;. Then A; has complex multiplication by O, which acts through its canonical
action on Vj; let ¢; : O < End(A4;) be this action. A natural p"-level structure on A; is
given by

~ 1 1 1
¢i,r : ( H Ow) ® fpr —> H _Tow/ow ing H ?Ow/ow = 170/0 =A; [pTL

weXp weXip wlp

(V) ® e2mV=1p" (U_“’ mod Ow) )
pr weZ]p’i

By the theory of complex multiplication, each triple (A;,¢;,¢;,) has a model over
Q, unique up to isomorphism. Since ¥; is ordinary for incly, these triples have good
reduction at the place determined by incl, (and at all places not dividing p) and so
extend to triples over Z(p) that are compatible with varying r; we continue to denote the



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 71

triples as (A;, ¢, ¢ir). Note that over a p-adic Z(p)—algebra (e.g., Oc, or Z(p)/pmz(p))
the image of ¢;, is 4; [p"]".
Let A; ¢ W; be the image of O ® Sp; this is an O-stable free Sy-submodule such that

A; ®g, C = W;. Let Qa, = Lie(4;)". Over C, there is a canonical isomorphism of
O ® C = [Iyexn, C-modules

Qyu,c = Home(V;,C) = [ Cepis ei(z®7)=0(2)r,

O’EZ@

which determines an isomorphism of rank one O ® C-modules
&t QAZ-/(C SN Hom¢ (AZ,C(l)) = HOII]SO (AZ,Z(p)(l)) ®%(p) C,

(A.1.1)
(@55 ) yex, (a: ® s~ 2m/—1 > aga(x)s) .

0’€2i

Similarly, over Z(p) there is an isomorphism of O ® Z(p) = [lpexy Z(p)—modules
.z, = 11 Zepywoi
0’€2i
with the wg;’s determined up to elements of Z(Xp), and this determines an isomorphism

eait R, — Homs, (A, Zg) (1)),

(A.1.2)
(AoWo,i) yex, (x ® s~ 2m/-1 > aaa(az)s) ,

O'EEZ'

Comparing (A.LI) and (A.12]) yields periods Q; = (£5;) € (O ® C)* such that
(A13) & ZQZ"EAi.

Note that €; is only determined up to an element of (O ® Z(p))x; it depends on the
choice of the wg;’s.

A.2. The moduli spaces. In the definite case, the space X = {h} consists of a single
element. Let L; = Lne;(L ®Zy)). Then L' = [[j2Z; L; ¢ L is an Op-stable lattice and

the inclusion L' ¢ L has finite, prime-to-p index. Let L;# c e;(L ® Zy)) be the lattice
dual to L;, that is L;# ={ree,(L®Zy)) : (v,L;) cZ(1)}. Then L; c L;# with finite,
prime-to-p index, and L" = [T/, Lf c L®Z(;) is an Op-stable lattice containing L7 with
finite, prime-to-p index. For g € G(Ay) with g, € G(Z)), the tuple Ap g = (Ap, Anst,ng),
g € G(Ay), is equivalent to the tuple A, = (A, A, my) with

e A=L®R/L" = TII"y L; ®p A;; the dual abelian variety is AY = L" @ R/L" =
o LY @0 Ai
e )\ the isogeny induced by the inclusion L’ ¢ L and the identity map on L' ® R =
L" @ R; in particular, A = [T incl; ® id, where incl; is the inclusion L; c Lf&;
e // induced from the action of Op on Lj; in particular, " = [T7"; can; ® ¢;, where
can; is the canonical action of Opg on L;;
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o 7, the KP-orbit of the translation by g map ¢*: L ® A? S L AI} =L'® AI} =
HI(A7 A?)

The equivalence of 4 ; and A, is given by the prime-to-p isogeny A — Aj induced by
the inclusion L' ¢ L and the identity map on L R = L' ® R.

Since each (A;, ;) is defined over Z(p), sois A . It follows that

(A.2.1) SpecZ).,

K, =
P GanGian/x

with the Z(p)—point corresponding to the class of g € G(Ay) representing the equivalence

class of the tuple A . In fact, this disjoint union holds with Z(p) replaced by the integral

closure of Sp in some finite extension of the reflex field F' (which will depend on the
compact open subgroup K in general).

A similar description holds with K replaced by K,. Note that L™ = [T"; Myes, ; Lw =
1321 Twes,, Li ®0 Oy, from which it follows that for g € G(Ay) with g, € G(Z,) the
tuple X, = (Ah,g’ ¢g) is equivalent to X, = (Ag, gb;,,g) with ¢]. , the g,-translate of

gb;:L*@upr:HLi@o( [ Ow )@upr»A =[1L7 ®0 Ai[p'],
i=1

i=1 weEW-

(b;« = H id; ® (bi,r-
i=1

The action of g, on L* is via the projection to H in isomorphism (A.0.4]). The equivalence
again comes from the prime-to-p isogeny A - Aj, determined by the inclusion L’ c L and
the identity map on L'® R=L®R. So

(A.2.2) MK = |_| SpeCZ(p)

r

G(Q\G(Ap)/ K-

with the Z(p)—point corresponding to the class of g € G(Ay) being the class of X g

A.3. Modular forms. We assume that

AO—HL ®0 A; = HL#@)OAZ,
i=1
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so W =Ag®s, C =11 Lfﬁ ®o A; ®s, C = TTi%, LZ# ®o V;i. The canonical isomorphism
€0 QA/VC = Homg,(Ap,C(1)) = Ay ® C from Section [2Z.7.2]is just

QAV/(C = lj{ Homz(p) (Lz‘7E ® Z(p), Z(p)) ®5S, QAZ-/(C

—:

(A.3.1) Homz(p) (Lz‘7E ® Z(p), Z(p)) ®5S, HOII]SO (Az, (C(l))

~
1]
—_

Homg, ((L¥ ® A;,C(1)) = Homg, (A9, C(1)) = Ay ®s, C,

—:

i=1
where the second identification is induced by the isomorphisms (A1J]). Similarly, the
isomorphisms (A.1.2]) determine an isomorphism

(A.3.2) €A QAV/%(p) = A\O/ ®53, Z(p),

and putting
Q= (%) e[[(0O®C) e [[GLoec(eily ®s, C) = GLoec(Ag ®s5, C),
i=1 i=1
with ©; as in (A1.3), we have
(A.3.3) e0=0-€4.

As ¢gg trivializes the GLoge. (Ag ®s, C)-torsor Isompec(24v/c; Ag ® C), the modular
forms over C of level K and weight k are identified with

0 - foo : GAQ\G(A) > W, (C)
(A.3.4) My (K5 C) = {foo(guk) =u  foolg) Vuxke G(}R)K} ’
and those of character 1 are identified with

L Joo : G(Q\G(A) - W, (C)
(4.3.5) MK p:€) = {foo(guk‘) = u'(ky) foo(9) Vux ke G(R)K?}’

where 1 defines a character of K via the isomorphism 1°/I, — Ty (Z,/pZ,). Explic-
itly, a modular form f in the left-hand side of (A.3.4)) or (A.3.5)) is identified with a
function fe on the right-hand side such that the value of f on (4, 5 (zeo(gd), v(x)))
or (ng, (e0(god-),v(x))), respectively, equals go) - foo (g)(x). This is just the complex
uniformization given in specialized to the definite case.

Similarly, €4 trivializes IsomOB®Z(p)(Q AV /Z(p),Ag ®3, Z(p)), and the modular forms
over R, Z(p) c R c C, of weight s are identified with those that take values in R
on (Agf,(xaA,y(m))) or (ng,(azsA,V(a:))) for x € Ho(R) and gy € G (Ay) such that
gp € G(Zy). The relation (A.3.3) identifies the modular forms over R with those fo in
the right-hand sides of (A.3.4) and (A.3.5)) such that

() foo(g7) € Wi(R)
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for g5 € G(Ay) with g, € G(Z,). Restricting to G(Ay) we find that the spaces of modular
forms of weight x over Q can be identified with the spaces

g j.T) = fa: G(Af) > We(Q)
(A.3.6) ARG = {fa(’mk) S5 Jula) 1 €6, ke K }

and
al T - fa: G(Ag) > W (Q)
Asn)  ASEQ)= {fa(’vgk) = (k) fulg) Y7 € GIQ), ke KS}‘
An f in M, (K;Q) or M,.(K,,v;Q) is then identified with functions f, and f., such that

(A.3.8) fa(9) = K(Q) ™ foo (9)

for g € G(Ay). Clearly, the right-hand sides of (A.3.0]) (resp. (A.3.7)) makes sense with
Q replaced with any Q-algebra R (resp. Q[¢]-algebra R); the corresponding module is
denoted AX8(K; R) (resp. Ailg(Kr,w;R)).

If R is also a Qp-algebra, then Ailg(K ; R) and Ailg(Kr, 1; R) can be identified, respec-
tively, with

p-a oy fo  GQQNG(Ay) » Wi(R)
(A.3.9) APE(KR) = {fp(vgk) g k;lff,(g) Vhe K}

and

- :G(QN\G(Ay) - Wi(R)
A.3.10 APAB (R e R) = I 4 .
(A:3:10) s e R) {fpwgk) ~ ) fo(9) Vi € K
An f, in AY8(K;R) or AY8(K,,:R) is identified with fr(9) = g;lfa(g), where the
action of g, on W, is through the identification (A.0.5]). The right-hand side of (A.3.9)
(resp. (A.3.10])) makes sense with R any Z,-algebra (resp. Z,[1]-algebra).

In the right-hand sides of (A.3.9) and (A.3.10), W, (R) can be replaced with any R[K]-
module. We write Mﬂ;alg(K ; R) and Mi;alg(Kr,w;R) for the modules of forms with

W, (R) replaced by W,Y(R). For a Q,-algebra R, the isomorphism W,/(R) = W,v(R),
L, — ¢.v, identifies these spaces with Aﬁ;alg(K ; R) and Aﬁ;alg(K ,1; R), respectively.
Let [-,-],. : We(R) x W,)(R) - R be the canonical perfect R-pairing (so [¢,£] = (¢)).
Using this we define a perfect R-pairing
<'7 '>;§ : Aﬂ_alg(Kva; R) X Mﬂgalg(KM ¢_17R) - R7
(A.3.11) Fodpde= ¥ [F@)f @)

zeG(Q\G(Ap)/K?

Suppose R c C (which is a Zj,-algebra via incly,). Let f € M,(K,,¥;R) and f' €
M, (K.t R). Chasing through the correspondences and the identification of W (C)
with Wiv(C) yields

(A.3.12) (s fyb = voI(K)™ fc(@)\c(&)/c(m) [fo@): feo(@) o
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A.4. Hecke operators. The Hecke operators away from p and S are given by the usual
double coset on all the spaces of forms in Section [A.3] and satisfy

(A.4.1) ([KrgK:1fp fp)nis = (For [Krg ™ Ko 1y )is-

The same is true of the action of U, ;; on the spaces of forms defined in Equations

(A.3.4)), (A.3.5), (A.3.6), and (A.3.7).

A.5. p-adic modular forms. The abelian varieties A; and A are ordinary, so §,, is
just Mg /Og, [p"Oc,. As ¢}, is a trivialization of A¥[p"]°, the quotient Ty /B (Zy)
is Mg, /Oc,/p"Oc,. If R is a p-adic Oc,-algebra, then the R-module of p-adic modular
forms for G is identified with the limit

imlim 4! P G@QNG(Ay) ~ R/p™R
V(K?,R) —L%nh_;,n{ f(gk) = f(g) Yk e K, }
= lim lim A} (K.,; R/p™ R),

where 1 denotes the trivial character. Explicitly, the value of f € V(KP, R) on the test
object (4, (¢1.4)), 9€ G(Af), is f(g)-

As the isomorphism Lie((¢;n))" : Qa,0c, - Homg, (A;,Oc,(1)) is an O ® Oc,-
linear isomorphism of rank one O ® Oc,-modules, there is Q,; € (O ® Oc,)* such that
Lie((¢in))" = Qpica,. It follows that Q, = (Q,;) € [Ti21(O ® Oc, )™, which belongs to
the center of GLogso., (Ag ®s, Oc,) © Ho(Oc, ), satisfies
(A.5.2) gp = Lie((¢y,))" = Q- ca.

The realization of f € M, (K,,1;R) as a p-adic modular form f,_,qic of weight & is such
that for g e G(Ay)

(A5.1)

Foacic(9) = f(4g, 01 0 gp, (9" €, i)
= 12 () f (Ag: 1 0 9p: (9, €4, 0d))
(A.5.3) = K () f(Ay, 81 0 Gpr gy (24,dD))
= re(Q) fa(9)(9,")
= £+ () fp(9)(1).
The right-hand side of (A.5.1]) is defined for any p-adic algebra R and we denote the

limit by A(KP, R) and the submodule of weight x and character ¢ forms (for x and
both R-valued) by A, (KP,1, R). There is a natural map

ev: ALTE (K, R) > Ax (K70, R) . fy (g £o(9)(1)):
If p is not a zero-divisor in R then this is an injection, but in general it is not.
Let
(A54) M(Kp, R) = @@Aﬁﬁﬂg (Kn7 R/me) :

m n
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where the transition maps in n are the trace maps
Trpp : AL ( K —) > AV (K, )
Trn’,nf(g) = Z f(gk)
k€K7l/Knl
The perfect pairings (-,-)mm := (-,-); are compatible with Tr,,, in the sense that for

fp€ A’l’falg (Kn; R[p™R) and f € A’l’falg (K RIp™R), n' >n,
(f;m f;)n’,m = <fp7Trn’,nf1;>n,m7

and so, upon taking limits, they yield a perfect pairing
(A.5.5) (,-): A(K?,R) x M (K? R) - R.
Note that A’falg (Kp;-) = M’l’falg (Kn;-).

The values (ev(fp),:) can be expressed in terms of (ev(f),-)s, as follows. Given an
R-valued character v of Ty (Z,) that factors throught Tx(Z,/p"Z,) and a dominant
weight k. we put

evyy: M(K?, R) » MU (K, 47 R),
ev,:,d,(f) = liﬁlevz,@z;(f)m, ev:,w(f)m(g) = Z ft,m(gl’)l/J(ﬂf)x L
m SCEK,(r)/Kt
where f = l&nm lgln fr,m and t > 7; ev:;w( f)m is easily seen to be independent of t. Then
for f, € A" (K, R) and "€ M (K, R),

(A.5.6) (ev(fp): f') = (fprevic y (F ).

A.6. Hecke operators again. The Hecke operators away from p act via the usual
double coset actions on all the spaces of forms defined in [A3] and Similarly, the
action of u,;; on V(KP, R) is just the usual action of the double coset U, ; ;. For the
Hecke operators away from p these actions are compatible with the various identifications
and the maps ev and ev;;w, while the operators at p satisfy the relation (2.9.4]): for

fa € A% (K, 05 R)
(A.6.1) |H(tw,i,j)|;;lev((Uw,i,j “fa)p) = Ui ev(fp)-

Furthemore, the action of u,; ; on any f, € Aﬁ;alg (K,,v; R) when p is not a zero-divisor
in R is given as follows. Write U, ;; = UbK, with b € B*(Q,). Given x € G(Zp), let
zb=b'z" e B(Q,)G(Zy,) = G(Qp). Then

(A.6.2) Un,iyi fp(9)(@) = Y0 ke (V' [t 5) fo(gb) (2).

b
For any p-adic R, the formula (A.6.2)) defines an action of u,,; j on f, that is compatible
with ev. So the ordinary projector e acts compatibly on these spaces.

Under the perfect pairings (,-), and (-,-), the ordinary idempotent e aquires an adjoint
e’ acting compatibly on MZ;alg (Kr,w’l;R) and M(K?,Wg, R) (that is, ev) ,(e'- f) =
e - evz’d}( f)). The idempotent e’ can also be described in terms of Hecke operators.
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Let U, . .= K. (t& , ) 'K, and U, = Mwes, [T H;“? U’ Then the action of €’ on

w,,J w,t,J = w,,7 "

M(KP, W, R) is just e = li_n)ln(Up)"!; the action of U, is readily seen to be compatible
with the trace maps Tr,/ ;.

A.7. Ordinary forms. Suppose R is a p-adic ring in which p is not a zero-divisor and
1 is an R-valued character factoring through Ty (Z,/p"Zy,). Then the map ev induces
an identification

(A.7.1) ev: e AL 8 (K, 1 R) — eA.(KP, 1, R).

This is deduced from the contraction property of w, and the formula (A.6.2). For R
a p-adic Oc,-algebra this is just a restatement of (2.9.6]). From this and the perfect

pairings (A.3.17]) and (A.5.5) it then follows that
(A.7.2) ev,\;w e/ M(KP,R) — e'./\/l,ii (Kr,w_l;R).
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Part III: Ordinary families and p-adic L-functions
5. MEASURES AND RESTRICTIONS

This section focuses on measures and restrictions. In particular, Section 5.3 gives a
measure whose values at certain specified characters are the Eisenstein series associated
to the local data chosen when we calculated the zeta-integrals above.

5.1. Measures: generalities. Let X be a compact and totally disconnected topo-
logical space. For a p-adic ring R we let C'(X,R) be the R-module of continuous
maps from X to R (continuous with respect of the p-adic topology on R). Note that

C(X,Zy)®7,R — C(X,R). Let M be a p-adically complete R-module. Then by an
M-valued measure on X we mean an element of the R-module

Meas(X, M) = Homg, (C(X,Zy), M) = Homg(C(X, R),M).

Suppose X is a profinite abelian group. Then Meas(X, R) is identified with the com-
pleted group ring R[[X]] so that if a measure yu is identified with f € R[[X]], then for
any continuous character y : X - R} with R; a p-adic R-algebra, p(x) = x(f)-

In particular Meas(X, R) is itself a ring. The following lemma is immediate:

Lemma 5.1.1. Suppose X = X1 x X5 is a product of profinite abelian groups. Then there
s a natural isomorphism

Meas(X; x X3, R) — Meas(X1, Meas(Xa,R))

If we write X = Lgll X/X;, where X = Xp o X; o Xy 2... is a neighborhood basis of
the identity consisting of open subgroups of X of finite index, then
Axr= LiilR[X/Xi].

This is a compact topological ring. The following dictionary is well-known and due to
Mazur:

Fact 5.1.2. The identification of a measure p on X with an element f of the Ax r has
the property that, for any continuous homomorphism x : X - R*,

fX xdp = p(x) = x(f)
where x(f) is the image of f under the homomorphism Ax r — R induced by x.
We let x denote the homomorphism Ax r — R of Fact [5.1.2} in this way x defines an
R-valued point of Ax g.

In what follows, characters of X7 will be Hecke characters, Xo will be the group of
integral points of a p-adic torus, whose characters parametrize weights of p-adic modular
forms, and M will be the ring of p-adic modular forms. When X5 is a point, the measure
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on X = X7 will be an Eisenstein measure that pairs with modular forms of fixed weight,
and in particular can be used to construct what we will call, loosely and somewhat
abusively, a p-adic L-function of one variable, the variable Hecke character, attached to
a fixed holomorphic automorphic representation. When X5 is the group of points of a
non-trivial torus, we will be constructing p-adic L-function of two variables, the second
variable running through the points of a Hida family.

The following lemma is well-known.
Lemma 5.1.3. Suppose X is a ﬁm’te—dz’mensz’onal compact p-adic Lie group. Let R c
Oc, be a Zy-subalgebra. Let o : X := Hom(X, (’)Ep) - Oc, be a map from Oc,-valued
characters of X to Oc, with the property that, whenever x1,x2 € X

x1=x2 (modp®) = a(x1)=a(x2) (modp?).

Then o estends to an Oc,-valued measure pio on X. Moreover, if u.(¢) € R for all
¢ € C(X,R) then uy is obtained by extension of scalars from an R-valued measure on
X.

5.2. The space X,. For each integer r >0, let
U, =(00ZP)Y x(1+p 0eZ,) c (KoL)

and
Xp = lim K\(K ® Z)*/U,.

This is the projective limit of the ray class groups of K of conductor (p"). In particular,
it is a profinite abelian group.

5.2.1. Admissible measures on X,. We suppose now that we are in the situation of
Section [3] and we freely use the notation and conventions introduced therein. Using the
isomorphism ([B.1.2]) we identify Hi(Z,) with Ha(Zy) via h1 = (h1,w)wp = b2 = (h2,w)wlp
with hg .y = hi . This then identifies Ty, (Zy) with T, (Z,) and T, (Zy) = T, (Zy) =
Tu,(Zy) x Th,(Zy) with Ty, (Zy) x Ty, (Zy,). In particular, the characters v of T, (Zp)
are identified with pairs of characters (¢1,12) of T = T, (Z,).

Let

k = (ko) be an O'-character of T' as in Section 2.9.T]and let s’ be the O’-character
of Ty, (Zy) identified with the pair (k,x");

1 be a finite-order @;-valued character of T'(Zy);

K'c@G; (A}p}), i =1,2, be open compact subgroups such that v (K7) = v (K3);
e R be a p-adic O'[¢]-algebra.

For any finite-order @;—Valued character x of X, let w;(l =9~y o det, where by det
we mean the map det : H1(Zp) » (O ® Zy)™ = [1y)p O,, that is the composition of the
isomorphism ([B.1.2]) with the products of the determinants of each of the GL-factors, and
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let ¢} be the character of T, (Z,) identified with the pair (w,w;l), . By an admissible
R-measure on X), of weight «, character v, and level K? = K} = (K¥ x K})n Gg(A?), we
mean a measure ju(-) = u(k,1,-) € Meas(X,; VFY(KP, R)) such that for any finite-order
@;—Valued character x of X,

p(x) = (k0. x) € VI (KP 90, R[X]) -

Let R’ be any p-adic R-algebra and ¢ an R-linear functional £ : V;,rd’cuSp (KP,R) > R'.
Then

Nf() = ,Ltg(li, ¢7 ) =lo N(/@ w7 )
is an R'-valued measure on X,. One useful way of defining such ¢ is as follows. As

explained in Section [3.2.4], the space V,:,rd’cuSp (KP, R) is identified with the direct sum-
mand

Given £ = ({%)qec, with each ¢4 = (L{,45) a pair of R-linear functionals ¢{ and ¢§ of
Vordense (P Ry and std’cuSp(Kp ,R)®, respectively, ¢ determines an R-linear func-
tional of VS ¥“™P(KP? R) by

@ach V:rd,cusp (Kf, R)Ol ®R Vo\}“d,cusp (Kg’ R)Oé )

(T e f3) = ()6 ()
From the definition of an admissible measure, it is clear that u(-) takes values in

®acy VIV (K 100, R)® @ VTP (KD R)™

K

(for r sufficiently large), so it suffices to take ¢ to be a functional of V,frd’cuSp(KLr, Y, R).

In the definite case (i.e., G; - and hence Gy and Gj - definite), we take p(k,,-) to
be a eA,s(KP, R)-valued measure, making the corresponding modifications to the above
definitions.

We will need a slight generalization of the above definition. Let

e p=(py,) be an O'-character of T as in Section Z.0.Iland let p* be the O’-character
of T, (Zy) identified with the pair (p, p");

e 1) be a finite-order @;—Valued character of T'(Z,);
e KI'cG, (A}p}), i =1,2, be open compact subgroups such that v (K1) = v (K3);
e R be a p-adic O'[¢]-algebra.

Note that p” and (p, p") coincide as characters of Ty, (Z,).

For any finite-order @;-valued character x of X, let ¢;(1 =71 .y o det, where by det
we mean the map det : H1(Zp) = (O ® Zy)* = [1y)p O,, that is the composition of the
isomorphism ([B.1.2)) with the products of the determinants of each of the GL-factors,
and let ¢§ be the character of Tx,(Z,) identified with the pair (1/),1/);(1). Let (o, ) be
a character of Ty,(Z,), written as a pair of characters of T, (Zy,) = Th,(Zy). By an
admissible R-measure on X, of weight p, character v, shift (o, 3), and level K? = Kg =
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(K? x K¥)n Gg(A?), we mean a measure () = u(p,1,-) € Meas(Xp;VpoA“_i(a 5)(KEP,R))

such that for any finite-order @;—Valued character x of X,

(5.2.1) fX Xdp = () = (10, x) € VIkia.m (K7 0%, RIX]) -

5.2.2. Pairings and measures on X,: the definite case. Suppose now that G is definite.
The same is then true of Go and G3. Suppose R c Oc,. Let u(-) be an admissible
R-measure of weight x, character ¢, and level KP. Let (-,-)., ¢ = 1,2,3, be the perfect

pairing (A5.5) for G; and K.

Let ¢ € M(KV,R) and = € G2(Ay). Let 6, € M(KY, R) be such that (f,d;)s =
f(z) (so 0, is the inverse limit of the characteristic function of the image of x in
G2(Q)\G2(Af)/Kay). We define an R-measure p(¢,x,-) = pu(k,9,¢,x,-) on X, by
setting pu(o,x,-) = pe(-) with £ defined by

T(f9) = (% e and () =(fdz)2 = f*(2).

7

Then
M(¢7$7 _) = <M(/§,7,Z), _)7 ¢ ® 5%)3

For a given x, x = u(¢,x,x) belongs to eA,v (Kg,w;l,R[X]) and so (o, x) =
ev(fy,2) for some f, o € eAiCalg (K277~,’l/1;<1;R[X]) (with r sufficiently large). For ¢’ €
M(K3, R),

(5.2.2) <M(¢7 X)) (15’)2 = <fx,27 (bn,w ® ¢;v7¢>—<1)n’7

where gy = evy ,(¢) and ¢, ;1 = ev)s ;1 (¢). Let fy e e AP, M8 (K, ! R[x]) be
such that Vs, (fy) = p(x). The right-hand side can be rewritten as an integral:
vol (KTO,

-1 ,
) ) y PR, 00 ® kY =1 0o d )
) ng(Q)\Gg(A)/Ga(R) [fx, (91592) s i 00 (91) @ Prov it (92)]H, (91,92)

where fy.00(9) = Goa 0p - fx (gf) is the corresponding automorphic form on G3(A) (we
have used the identification of C, with C).

Remark. In practice the function f, . will be known, and the preceding integral will be
used to relate the value of the measure to an integral representation of an L-function.

5.2.3. Pairings and measures on X,: the indefinite case. Suppose now that G is not
definite. The same is then true of G5 and G3. In this case there is no obvious pairing on
the spaces of forms that preserves R-structures, so we define only C,-valued measures
(using the fixed identification of C, with C). Later we discuss how this can in some
situations be refined to an R-valued measure.

Let R c Oc, be a p-adic ring. Let u(-) = pu(k,1),-) be an admissible R-measure of weight
k, character v, and level KP. Recall that yord.cusp (K{’,w,R) = eSgZd (KT,T,Z);(;R[X]).
Let ¢ : G1(A) - W,(C)" = W,v(C) be any smooth function such that ¢(yguk) =
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w7 (ky)9(g) for all v € G1(Q), g € G1(A), u € Uy o, and k € K?J,, and let x =
(A, 0) € l(i£1m l(gln Tnm(Cp). We define a Cp-valued measure pu(¢,x,-) = p(k, ¢, ¢, x,-)
on X, by setting pu(¢,x,-) = p(-) with ¢ defined by

T(fY) = “(q), dg and (5(f%) = f%x).

U= [ o H@0@]dg and 57 = £°(a)
In the definition of ¢; we have identifed f® with its corresponding automorphic form on

G1(A) (see Section [27.2).

For a given x, = — u(¢,x,x) belongs to eA,v (Kg,i/);(l,(cp) = eSpv (Kot Cp). Let
fx.,2 be the corresponding automorphic form on Go(A). Similarly, let f, be the automor-
phic form on G3(A) corresponding to u(x) € Vlﬁrd’CUSp(Kp, Y, RIX]) = eSw (K, 95, R[x])-
Given any smooth function ¢’ : Go(A) - W (C)Y = W,(C) such that ¢'(yguk) =
w1y (ky) @' (g) for all v € G2(Q), g € G2(A), u € Uz oo, and k € K3,

!
: d
‘/C;Q(Q)\GQ(A)/GQ(R) [fx,2(g) ¢ (g)] g

) [c:g,(@)\GS(A)/Gs(R) (£ ((91:92)) ¥ (91) © ¥ (92)],,, A (91, 92) -

Remark. As in the definite case, in practice the function f, will be known, and the
preceding integral will be used to relate the value of the measure to an integral repre-
sentation of an L-function.

5.2.4. Admissible measures on X, x Tg: two variables. In this section we consider ad-
missible measures of weight p and shift (a, ) where p and («,3) are allowed to vary.
This requires a slight adjustment to the notation of the previous section. More precisely,
suppose we are given a homomorphism sh : Ty (Z,) - X,,. By duality this gives a map
sh*:C(Xp,R) - C(Tu(Zy), R) for any ring R; sh* takes characters to characters.

We also suppose we are given an algebraic automorphism v : Ty — Tg. If p is a function
on Ty, we let p¥(t) = p(v(t)).

We fix a tame level Ny as in Section and define X, = X, y, as before. By an
admissible R-measure on X, x T of character ¢, shift sh, twist v, and level K? = K} =
(KPxKD)n Gg(A?), we mean a measure

wu(-) = (e, sh,-) € Meas(Xp,Meas(TH,Vord(Kp,R)))
such that for any finite-order @;-valued character x of X, and any character p of Ty,

p () () = (W, 5h,x) (07) € Vi ey (K705 RIX]) -

5.3. Eisenstein measures on X, x T. Above, we discussed measures on X,. Now,
we recall certain measures on X, x T', namely the Eisenstein measures of [Eis15| [Eis14,
EFMV16]. Note that if we fix a character on 7', then we recover the measures above
on X,. We briefly summarize the basic properties of the Eisenstein measures in [Eis15,
Eis14l [EFMV16], which - in fact - p-adically interpolate values of the Eisenstein series
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associated to the local data chosen above for the zeta integral calculations. As in Section
23 let ¥ = {0 e Xk : p, €3y} Thisis a CM type for K. Throughout this section, we
take x : K*\Ag - C* to be a unitary Hecke character.

Let Sram = S U Sy U Sk, where S, denotes the set of finite primes v in O+ for which
Xv = ®uw|vXw 18 ramified and Si denotes the set of finite primes in Ok+ that ramify in K.
Let S be a finite set of finite primes in QQ such that p ¢ S and such that for all rational
primes /, if a prime in K* above £ is in S;ay, then £ € S. Let S’ be the set of primes of
K* lying above the primes of S.

5.3.1. Axiomatics of the Eisenstein measure. The Eisenstein measures of [Eis15l [Eis14],
Eis16], as well as the local components of ordinary vectors in Hida families, have been
reverse-engineered in order to meet the requirements of the construction of the p-adic L-
functions. In this section we first present the axioms the Eisenstein measure is required to
satisfy, and then explain how they are satisfied by the ones constructed in the references
just cited.

The Eisenstein measure is, in the first place, a p-adic measure on the space X, x Ty (Zy)
with values in the space of p-adic modular forms on G4. It is characterized by its
specializations at classical points. Let Yy be the formal scheme over Z, whose points
with values in a complete Z,-algebra R are given by Hom(X, x Ty (Z,), R*). Let YI_aIlg c
Yr(C,) be the set of pairs (x,c), where x : X, > R*, for some R c C,, is the p-adic
character associated to an algebraic Hecke character, denoted x“®**, and ¢ = ¢p" is a
locally algebraic character of T (Zy): p is an algebraic character, v is an involution of
Ty, as in (44.10) and v is a character of finite order. In other words, ¢ € C,.(TH(Z,), R)
for some r > 0, in the notation of Lemma

Note that we are not requiring x“*** to be unitary here; rather, the variable “s” is
included in the infinity type of x; we fix an integer u such that, for each o € ¥ we have

Xo = || ® |l5x0,0, Where xo,» = (z;a(x")zc_,b(x")). This factorization is not unique; however,
recall the set C3(u,xo,) of EZB). We assume we are given a subset Y% c Y;}lg,
determined by the following positivity condition:

(5.3.1) (X, €) € Y7 = ki € Ca(p, 2, X 2,50 Vg e &

(o

This condition is independent of the choice of m as above, in other words is independent
of the choice of factorization.

Now write x = || @ || - xu, and define the finite order idele character x* of K£*, as in
Section We omit the expression of  and xg in terms of m and x,, and vice versa.
Define the normalizing factor D°(x) and D(x) as in E6.1]

Definition 5.3.2. Let Kf be an open compact subgroup of Gi(A?), 1 =3,4, with Kg c
KT. Let S be the set of bad primes defined above. An aziomatic Eisenstein measure on

X, xTH(Zyp) of level S, relative to the set Yfll“ss, of level KY and with coefficients in R,
is a measure dEis with values in V3(K%, R) such that, for every pair (x = ||| Xu,c =
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Pp) € Yfll“ss, there is a factorizable Siegel section
) =@ fulxwe) € @ Ln(Xuw,m)
v
and such that

e If v is a finite place outside S, then x, is unramified for all x € Yﬁl“ss and
fo(xw, ) is the unramified vector in I,(Xyv,m) with fu(xv,c)(1) =1.

o IfveS then f,(xv,c) is independent of the pair (x,c).

o For any prime w dividing p and for any real prime o € X, the local section
fo(Xo»€) depends only on X% and Ky, (and on the choice of signature), and is

of the form

fU(chag) = B(XmKU)D(KWmyXu,U)Jm,Xu,a(g)ag € G4,O’

where Jp v, , € C(Gy) is the canonical automorphy factor introduced in section
442 and B(Xo, ko) i a non-zero scalar. In particular, fo(xs,c,g9) does not
depend on the factorization of x,. (This follows from Remark [{-].3.

e For any prime w dividing p, the local section fiu,(xw,c) depends only on x., and
Uy (and on the choice of signature).

. [prTH(Zp)(X,c)dEis = D%(x) ‘res3Ep(y ) for all (x,c) € Y§ass where D (x) is
the normalizing factor defined in (4.6.1).

The measure dFis is said to be normalized at S if instead of the last relation one has
prxTH(Zp)(X7C)dEiS = D(x) -res3Ey ey for all (x,c) € yglass,

One obtains a measure normalized at S from an unnormalized measure by multiplying
by the appropriate product of local Euler factors at S. We write D?(x) for ? = S or
empty if we haven’t specified whether or not dFis is taken to be normalized.

Definition [5.3.2l makes no mention of whether or not the measure dFEis contains a shift.
The Eisenstein measure whose construction is recalled in section [5.4] comes with a shift

that will be specified in Corollary [5.4.3]

We choose f(x,c) meeting the conditions of Definition in Sections [£.2.1] (local
choices for v ¢ S), (local choices for v € 5), (local choices for archimedean
places) and 3] (local choices for v | p). Note that the choices at p and co depend on
the signature of the unitary group GG;. The existence of the Eisenstein measure itself is
proved in [Eis15| [Eis12]; see Theorem [5.4.1] below.

In the applications, the integrals of elements of Yfflass against dFE'is suffice to determine
dFEis completely. We write

thlO(ch) = Qgexy Jm,xu,a ® ®v+<><>fv(Xv7C)§

(5.3.2) EL%(m) = Epnoto(y, o) (m).

Xu,C
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Then the last condition of Definition can be rewritten
(5.3.3)

X TH(Z )(X7 C)dEZS = D?(X) . TCSSD(K/ama Xu)EQZ{Z(m), V(X = || Y ||m “Xus C) € Ygass7
pX D

where D(k, m, x,) is as defined in Corollary [£.4.9]

5.4. Existence of the axiomatic Eisenstein measure. Let Xunitary be a unitary
Hecke character. Let x = Xunitary| - |;C];g . So x is a Hecke character of type Ag. Write

X = [Ty Xw- We obtain a p-adically continuous Oc,-valued character x on X, as follows.
Since x is of type Ag, there are integers k, v, € Z such that for each element a € K*,

Xeo (@) = [T X0 (@) = [ (0(1a))k (jEZ;)

oex oeX

with 7 := oc. Let Yoo : (K®Zp)™ — @; be the p-adically continuous character such that
Xoo(@) = incly o Xoo(a)
for all a € K. So the restriction of X to (O ®Z,)" is a O¢,-valued character. We define
X:Xp > O,
by X ((aw)) = Xoo ((@w) 1) Muwgoo Xuw(aw). Define v = (v5) yes:-

For each o € X, let n = a, + b, with a,,b, > 0 be a partition of n, and let a, =
Nio + -+ Ny and by = Ny()41 + -+ + Nyp(o) be partitions of a, and b, respectively. Let
a = () e, and b = (by) 5. Let ¢ be a finite order character on T (Z,). Let k be a
dominant character as in Section 2.6.3] and define p and p¥ as in (£4.8), (£.4.10).

Let ¢ = ¢ - p¥. We choose f(x,c) to be a factorizable Siegel section meeting the
conditions of Definition [5.3.2} the specific local sections will be as in Sections 4.2.1] (local
choices for v ¢ 5), (local choices for v € S), and 3] (local choices for v | p), and
(local choices for archimedean places). Note that the choices at p and oo depend on
the signature of the unitary group G;. When p is trivial, the Eisenstein series associated
to f(x,c) = f(x, ) is holomorphic; in the notation of [Eis15], it is (a normalization of)
the algebraic automorphic form denoted ka,xumtary’w (which arises over O but can be

viewed over C by extending scalars) in [Eisl4, Equation (32)]4

We denote by D here the C* differential operator obtained by applying the Gauss-
Manin connection composed with the Kodaira-Spencer isomorphism and then using the
Hodge-de Rham splitting to project onto the submodule of holomorphic differentials;
these differential operators were studied in [Eis12]. For each X-tuple of nonnegative

12The section f(x,v) is the Siegel section associated to Xunitary, k, ¥, and 9 in [Eis14], and the
associated Eisenstein series E (f(x,1),e) is the one denoted Ej_ . (07)(71/)7 g) in [Eis15]. The Eisenstein
series E (f(x, ), ) is normalized by a factor D(n, K, b, p, k) defined in [Eis15l Proposition 13] in order to
cancel transcendental factors. Note that although we do not include (a,b) in the (already long) subscript
for the Eisenstein series, the choice of f(x,c) (and hence, the associated Eisenstein series) depends on
the choice of (a,b).
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integers d = (d(0)) yex, We write D? = ®,c, DU where DU?) denotes D applied iter-
atively d(o) times to the o-component of the module of automorphic forms. Applying
D? to Gv xunitary.t0» W€ Obtain C% (not necessarily holomorphic) Eisenstein series on
U(n,n). Similarly, by applying the p—adic differential operators # in [Eis12] (where the
differential operator is defined by applying the Gauss-Manin connection composed with
the Kodaira-Spencer isomorphism and then using the unit root splitting to project mod-
ulo the unit root module) to Gk v,y nirary.v» We Obtain p-adic (not necessarily algebraic)

automorphic forms on U(n,n). We define 8¢ analogously to how we defined D

Like in Section 4T, let 115 > - 274, 6 2 Tao41,0 =0, S1,0 2 - 2 Sp, 5 2 Spy41,0 = 0
be descending sequences of integers. Let pY be the corresponding character on the torus
Ty, and let

fi,a :742',0_742'+107i =1 ---aa;gja :TjO'_Tj+1O'7j = 17---b0'
Define p¥ := [Tyex po and ¢y = ®pexp(Fy.5,), with p(7,,5,) defined as in Equation
(#Z13) (and identified with a polynomial function on the tangent space of the moduli

space). So p(f,,5,) is a homogeneous polynomial of degree d(c) for some nonnegative
integer d(o). We define (%% and D) by

0O () = 04 ) ()

DN (f) = DU(f) ().
It follows from [EisI2l Section 10] (which extends [Kat78, Lemma 5.1.27] to unitary
groups) that 050 () and D) (f) agree at CM points, up to periods.

From the p-adic g-expansion principle and the description of the g-expansion coefficients
given in [Eis15l Section 2], we obtain the following theorem.

Theorem 5.4.1 (The Eisenstein Measure). Recall the notation of Equation (L4.I0).
There is a measure Eis,, (dependent on a and b) on X, x Ty (Z,) that takes values in
the space of p-adic modular forms on G4 and that satzsﬁes

v - oV Eis ze(ﬁ,a,b) G . ‘
‘/)\(pXTH(Zp) qu P a,b ( kv'/?Xunltaryyw)

Remark 5.4.2. When a,b, = 0 for all o € ¥ (i.e. in the definite case), the measure in
Theorem [5.4.] is the Eisenstein measure from [Eis15l Theorem 20] and [Eis14 Section
5].

Corollary 5.4.3. The measure dEis®™®, defined by
v . 3 - ( ) 7b)
‘/AX—pXTH(Zp) Xw pvdElsavb - Tes?’e e (Gkvl’,Xunitarva) :
is an aviomatic Eisenstein measure on values in V3(K% R), with shift (1,x).

6. SERRE DUALITY, COMPLEX CONJUGATION, AND ANTI-HOLOMORPHIC FORMS

6.1. The Shimura variety Sh(V). Let P = (K,¢,0,L,(-,-),h) be a PEL problem of
unitary type associated with a Hermitain pair (V,(-,-)y,) as in 21l and together with
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all the associated objects, choices, and conventions from Section Bl However, since the
number of factors m equals 1, the indexing subscript ‘4’ will disappear from our notation.
Let G = Gp be the group scheme over Z associated with P and let X = Xp be the G(R)
conjugacy class of h. Let Zg be the center of G. In this section we take O = &, so the
moduli problems are all considered over the reflex field F.

Given K c G(Ay) = GU(V)(Ay), we now write xSh(V') for the Shimura variety
associated with the Shimura datum™ (G, X). So gSh(V) is just the F-scheme Mk, .-
We set

Sh(V') =lim g Sh(V) =lim Mg 1.
K K
The dimension of each xSh(V) is just the C-dimension of X, which is

d:% Z Agby.

0’62]{

At times we will be comparing constructions for both Sh(V') and the Shimura variety
Sh(=V) for the pair (V,—(-,-)},) (and the PEL problem P¢ = (KC,¢, O, L,—(:,-), h®), where
h¢(z) = h(z)). When it is important to distinguish which hermitian space an object is
associated with, we will generally add a subscript ‘V’ (for the pair (V,(-,-)y,)) or ‘=V’
(for the pair (V,=(:,-);/), if the notation does not already distinguish the space (such
as is done by Sh(V) and Sh(-V')). We will also be using the notation G; = GU(V),
Go=GU(-V) as in 311

6.1.1. Automorphic vector bundles. Recall that automorphic vector bundles on Sh(V') =
Sh(G, X) are defined by a ®-functor

G -Bun(X) — Bun(Sh(V)),

where X is the compact dual of X, so a flag variety for G, and G- Bun is the ®-category
of G-equivariant vector bundles. The base point h € X determines a point P}, € X ; this
is just the stabilizer of the Hodge filtration on L ® R determined by hA. There is then
a fibre functor G — Bun(X) — Repg(Py) = Repe(Pp), where the last equivalence comes
from the fixed identifications in 2.6.1l Given an irreducible representation W of Py that
factors through the Levi quotient Hy of Py, we let wyy be the corresponding automorphic
vector bundle. Each such bundle has a canonical model over a number field F(W)/F
contained in F'. For W = W, as in [Z6.3] (here and in the following we write W, for
W, (C)), the vector bundle wy defined in 2:6.4] is the base change to K’ of the canonical
model of wy,.. In fact, the wy, which are defined over the toroidal compactifications,
are the canonical extensions of the automorphic vector bundles, and their twists by the
ideal sheaves of the boundaries are the subcanonical bundles.

131 4ub, = 0 for all o € Yk, then, properly speaking, the datum (G, X) does not satisfy the axioms
of a Shimura variety as set out in [Del79]. Nevertheless, in this case, as the datum arises from a PEL
problem P, the notion of the associated ‘Shimura variety’ still makes sense, following the conventions in
[Lan12].
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6.1.2. Coherent cohomology and (B, Kp,)-cohomology. We will write H*(Sh(V),w,) in-
stead of HY(Sh(V)*" w,), which is imperfect shorthand for

lin HY (1 Sh(V )5, 05)

K%
where the limit is taken over toroidal compactifications (indexed by X.) at finite level
(indexed by K). For i = 0, this is superfluous, by Koecher’s principle, except possibly
when n =2 and F' = Q, and the reader can be trusted to supply the missing indices in
this case. Likewise we write H'(Sh(V),w") for

lim H' (5 Sh(V )z, wx(-Dx))
K%
where Dy, = g Sh(V)y — g Sh(V'). We let
H(Sh(V),wg) = im{H (Sh(V),w™) > H'(Sh(V),w,)}.

Note that the ground field here can be taken to be any extension of K'. Moreover, these
definitions make sense over the ring Ok (,/), provided we restrict to those K of the form
K =G(Zy)K? or K = I, KP.

Over C the coherent cohomology can be computed in terms of Lie algebra cohomology.
Let g = Lie(G(R))c, and let g = p, @ €, ® p; be the Harish-Chandra decomposition
associated with h (the eigenvalue decomposition for the involution adh(v/-1)). Let
B, = p, @ Ep; this is just Lie(P,(R))c (so the Lie algebra of P,(C)). We put

K = Us = C(R).

Let Ag(G) be the space of cuspforms on G(A). Then over C there is a natural identifi-
cation of G(Af)-modules:

(6.1.1) H{(Sh(V),wy) = H (P, Kn; Ao(G) ® Wy).

Here we use the identifications of P, (C) with Py(C) and C(C) with Hy(C) to realize
W, as a (*Bp, Kp)-module. For i = 0 this just restates the identification, recalled in 2.7.2]
of S, (K,C) with the space of Uy x K-invariant smooth functions f : G(A) - W, that
are annihilated by p; .

6.1.3. The * involution. There is an anti-holomorphic involution * of G - Bun(X ) that
takes a G-equivariant bundle to the complex conjugate bundle; on representations of
Py factoring through the Levi quotient Hy (which has been identified over C with the
stabilizer C' in G g of h) it takes the irreducible representation W, to a representation
W+ whose restriction to the maximal compact subgroup of U = C(R) c Hy(C) is dual
to the restriction of W, but whose restriction to R* ¢ G(R) coincides with that of .
Concretely, if « is identified with the tuple x = (ko, (ks)), k¢ = (Ko15- -+, Kob, ), then £*
is the weight

(612) K= (Haa (H;))a ’%6 =-Kot CL(H), H;' = (_’%0,607 ce 7_'%0,1)
and
W 2 WY @ 49
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where

bo
(6.1.3) a(k) =2k0+ Y, Y. Ko
1

oeX J=

There is a unique, up to scalar multiple, c-semilinear, Kj-equivariant isomorphism

W,. — Wi. Such an isomorphism is given explicitly by the map that sends ¢ € W,
to ¢* € Wi+, where if h € Ho(C) is identified with (hg, (ko)) € C* x [Tyexn, GLs, (C) via
261), then

" (h) = ha" - 6((hg?, (woth;1)).

Here w, € GL;, (C) is the longest element of the Weyl group of the standard pair and the
overline ~ denotes complex conjugation. The Kp-invariance follows easily from (2.6.3]).

The identification of G(C) with Go(C) in [Z6.]] identifies Lie(Py(C)) with B; and
Lie(H°(C)) with €,. It then follows that the map ¢ ~ ¢* is Pp-equivariant, up to
c-semilinearity.

The action of h = (hg,(h,)) € Ho(C) on Homc(A%%,C) is just multiplication by
hi? [Toesy det(hy)*2%; this is just the character

Ky = (Fd, (K o))y Kio = (200, ..., £2a,).
Then the Hy(C)-representation
HOIH((:(/\dp;;, WH*) = Homc(/\dp;;, (C) ®c Wi

is naturally identified with W,p (the identification depends on a choice of basis of the
one-dimensional space /\dpﬁ), where

kP = Kk + K]
The Killing form on g defines an Hy(C)-equivariant contraction map
Ap; ®c A - C,

and so defines an Hy(C)-equivariant inclusion

i : Wi = Home (A%, ®c A%}, W) = Home (A%p;,, W,on).

6.2. Complex conjugation and automorphic forms. In this section we describe
three actions of complex conjugation on spaces of modular forms. Each has an interpre-
tation in Deligne’s formalism for motives of absolute Hodge cycles, though we do not
emphasize this here. We describe these actions in terms of (3, K} )-cohomology as well
in terms of coherent cohomology.
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6.2.1. Complex conjugation on automorphic forms. Let w be a (g, K;)xG(A f)-representation
occurring in the space Ag(G) of cuspforms on G(A). We define 7 to be the complex
conjugate representation; that is, 7 consists of the functions ¢(g) = ¢(g) for ¢ € w. The
map T — T, ¢ = @, is c-semilinear and Kj, x G(Ay)-equivariant, and even g-equivariant

up to c-semilinearity. We then obtain a c-semilinear G'(Af)-equivariant map

@i, x

QP—>pRP*
PO (2 oo Wi ) K "2 Home (A9}, @7 ®c W,p)Eh

(6.2.1)  (w&c W,)Er
that is also Pp-equivariant, up to c-semilinearity. This induces a c-semilinear G(Af)-
equivariant isomorphism

(6.2.2) cp : HY (B, Kn;m ©c W) > HY (P, Kp; 7 ®©c W,ep).

Taking 7 to be the space of cuspforms Ay(G) of G(A) (so, in particular, 7 = 7), we
obtain a c-semilinear G(A ¢)-equivariant isomorphism

(6.2.3) cp: HY(Sh(V),we) — HYSh(V),w,p).

6.2.2. Complex conjugation on Sh(V'). Recall that
P =(K,c,O0,L,~(-,-),h%), h(z)=h(2),

is just the PEL datum of unitary type associated with the Hermitian pair (V,—(-,-),).
The corresponding reflex field is FLy = cFy = ¢F', the complex conjugate of F. There
is a canonical identification Gpe = Gp = G. The respective stabilizers in G(R) of h and
h¢ (action by conjugation) are the same: they both equal Uy, (that is, K = U = Kpe).
Let X = G(R)/Us. We then have identifications X — Xj, = Xp, g = ghg~!, and
X 5 Xpe = Xpe, g~ gh®g™ . Each of X}, and Xpe have a complex structure, and the
pullbacks of these complex structures to X are complex conjugates. In particular, the
composition Xj, — X — Xj is an antiholomorphic map. So a holomorphic function
on X defines an antiholomorphic function on X}, and wvice versa. This explains the

map Fo in (G27) below.

The automorphic sheaves on Sh(-V') are associated to representations of the group
Hy _y, which is canonically identified with Hy 1 = Hy by switching the roles of Ag and
Ay). The analog of ([2.6.1) for Hy _y is the isomorphism

(6.2.4) Ho-v/g, — G x [] GLogo., (Aow) 2 Gm x [] GLa, (So).

oedc o€
The identification Hoy = Ho -y is given in terms of (26.1) and (€.2.4]) by (ho,(hs)) =
(ho, (ho'h,L)). We have associated to each dominant character x of the diagonal torus
Ty of Hy_y a representation Wy _y of Hy_y and hence a vector bundle wy _y on
Sh(-V). Given a dominant character x = (ro,(k5)) of TH,, , we define a dominant

character £’ = (Ko, (koc)) of Th, . With respect to the canonical identification Hy _y =
Hyy described above, there is an explicit identification of Hy-representations

W v — Werv, ¢ ((h(he)) = ¢(ho, (weho'hyp))).
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The Harish-Chandra decompositions g = p, @ &, ® p}, = p,. @ €4 ® p}. satisfy py = p;.
and €, = &c. Let m be a (g,K}) x G(Af)-representation occurring in the automorphic
forms on G(A). Then the natural map

_ 'd®',i>e _
(6.25) (% @ W )51 = (1% @c Wi )X 5 Home (Adpy, m @ Wiep ) 5

induces a C-linear G (A ¢)-equivariant isomorphism

(6.2.6) Foo : HY(Pe, Kpesm & Wes _y) = HH (B, Kpim &8¢ Wien y).
Taking 7 to be Ag(G) we then obtain a C-linear G(A f)-equivariant isomorphism
(6.2.7) Foo : H(Sh(-V),w _y) — HH(Sh(V),wep y).

Note that no complex conjugation is involved in this isomorphism: F,, identifies
a cohomology class on GG9 represented by a holomorphic modular form with a cohomol-
ogy class represented by an anti-holomorphic modular form, simply because the groups
G1 and Gy are canonically equal but the hermitian symmetric domains have opposite
complex structure. In it is explained how this isomorphism identifies Serre duality
with the canonical pairing on Ag(G).

6.2.3. The involution ‘t’ and the isomorphisms gSh(V') 2 i+Sh(-V'). Recall that we
have assumed that h is standard (see 2:3.2)). This means that there is a K-basis of
V' with respect to which the Hermitian pairing (-,-),, is given by a diagonal matrix
D =diag(dy,...,d,), d1, ...,d, € K, and such that the image of h is diagonal with respect
to the induced basis on each of the spaces V, = V ®x , C. Under the hypothesis that
each prime above p in KF splits in K, it is always possible to choose such a K-basis and
the lattice L so that D is a diagonalization of the perfect Hermitian pairing on L ® Z )
induced by (-,-);,; we fix such a choice of K-basis and a lattice L. Let I :V - V be
the K*-involution of V that is just the action of ¢ on the coordinates with respect to
this fixed K-basis. Note that L ® Z,) is I-stable, and the map induced by I on L ® Z,
interchanges L* and L.

With respect to the fixed K-basis, G/q is identified with a subgroup of Resy/qGLy (K),
and the action of ¢ on K induces an automorphism g ~ g of G/ (note that g = IgI).
This automorphism takes h to h¢ and so maps U, to itself. In particular, it induces an
automorphism of X. The composition X;, — X ™ x = X, (which is just ghg™! —
gh°g™!) is holomorphic. In particular, the induced map Sh(V)(C) - Sh(-V)(C) is
holomorphic and so a morphism of Shimura varieties over C.

We modify this map at p, to more easily compare level structures. Recall that for each
prime w|p we fixed decompositions L,, = L} & L, (see [Z2]). We also fixed an O,-basis
of each L, which gives an O,-basis of each L,,. We define level structures at p for
P¢ by taking Ly® = LE. Then IS;,—V = t[gy = t([ff}y)’1 with respect to this O,-basis
of L,,. This chosen O,-basis of L,, may not be the IC,-basis of V ®x I, induced by
the fixed K-basis of V; let 8, € GLk, (V ®x Ky) = GL,(Ky) be an element taking the
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latter to former. Let 0, = (1, D'8, By wes,) € Qp x [Mwes, GLn(Ky) 2 G(Qp), where
the isomorphism is determined by the fixed IC-basis of V. Then

(6.2.8) 6p=0,", 6,'G(Zy)op=G(Zp), and 6,'I)y6,=1) .

We then define an automorphism g ~ g of G(A) - G(A) by ¢' = V(g)_15;1§5p. Given
K c G(Ay) we let KT be the image of K under . As a consequence of ([G.2.8), if
K = G(Z,)KP, then K'=G(Z,)KP and

(6.2.9) (Kv) =K.

Consequently, the map Sh(V')(C) - Sh(-V')(C) induced by g + gd, identifies g, ,, Sh(V')
with .+ Sh(-V'). The following Proposition is then obvious.
r,—-V

Proposition 6.2.4. The isomorphism g, ,, Sh(V) — xt  Sh(=V) is defined over Ok ().
’ 7V ’

On moduli problems it is given by the map that sends ariuple (AN 1,0, 0) classified by
Mp i, L(R) to the tuple (A, \,toc,aol,¢pol) classified by My, .+ ; (R) for any O (yy-
algebra R.

The automorphism g — ¢! takes p; to py. and P, to Pue. The action of g — g on K,
is identified via (Z6.3) as (ho, (he)) = (hgt, (*h;1)). Let

= w0,
SO
Wt veWeyveWy.
The map

Wl w ew =a(®) ot ((ho. (ha)) = d((ho. (hoe))ho")
K,V T kT,-V n",f\/@ll’/” ) ¢ (( 07( U)) ¢(( 07( Uc)) 0 )

satisfies (kf- @) = k- o' for all k € Kje = K. It follows that under the isomorphism
Sh(V) — Sh(=V) defined by g ~ g, wyi _y pulls back to wy v, and so there are C-
linear isomorphisms

(6.2.10) F': HY(Sh(V),wev) — H{(SM(-V),wi _y)

that are G(Ajf)-equivariant up to the action of the automorphism ‘t.” In particular,
these induces isomorphisms

(6.2.11) FT Hi (g, Sh(V),wsv) — H,@'(KiSh(—V),wWV),
even over Ok (py-algebras R c C. In particular, F' T restricts to an isomorphism
(6.2.12) FU: Sy Ky, R) = Sy _y (K], 01 R)

for R c C any Ok (p)[v]-algebra, where YT =71 if both are viewed as characters of the
diagonal torus of the right side of (2.2.2]) via the isomorphisms (2.2.3)).

The action of FT is described in terms of automorphic forms as follows. Let 7 be a
(g, K1) xG(Ay) representation occurring in the space of automorphic forms on G(A). We
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define 7' to be the space of functions ¢ (g) = ¢(g") for ¢ € 7. The map 7 — 7', p = ¢,
is C-linear and is both g- and Kj-equivariant up to the action of the automorphism ‘}’.
The map

¢®¢H¢T®¢T c
(7 ®¢ Wn,v)Kh — (7TT ®c W,;r,_v)Kh

is then a C-linear isomorphism that intertwines the actions of g and g' for all g € G(A 7)-
This induces a corresponding isomorphism

(6.2.13) FU H By, Kpym ®c Weey) —> H (Be, Knes 7' ¢ Wit _y).
Taking 7 = Ag(G) (and so 7 = 7), we get FT from before.

6.3. Serre duality and pairing of automorphic forms. Since
W, o = Home (A%}, Wi+ ) 2= Home (A%7,C) @c WY @ v,
the natural contraction W, ®c W,/ — C gives a homomorphism of Hy(C)-representations
W, ®c W,.0 - Home (A%;},C) ® s,
This induces a natural map
Wy ®W.p — Q‘éh(v) ® L(k),

where L(x) is the automorphic line bundle attached to the character »*(*). Since the
character is trivial on G, L(k) is topologically the Ogsn(v)-bundle attached to the
constant (trivial) sheaf, but the action of G(Af) on L(x) is non-trivial. Fixing a level
subgroup K and a toroidal compactification xSh(V) <>x Sh(V)s, we can extend this
to a natural pairing

sub

Wk ®OJHD - Q[}i{sh(V)E ® L(:‘i)

and the analogous pairing on Wi @ w,.p. As in [Har90, Cor. 2.3], Serre duality therefore
defines a perfect pairing

(6.3.1)  HY(Sh(V),wx) ® HY(SA(V),wep) — lim H (xSh(V)s, Q%1 ® L(K))
K%

The function g ~ ||v(g)||"**) defines a global section of L(x)¥ and therefore an isomor-
phism

lim HY( Sh(V )5, Q017 ® L(5)) > lim H (5 SB(V)53, 2, 11y..)-

KX K,X
The right-hand side is isomorphic under the trace map to the space of functions C'(7o(V'))
on the compact space mp(V') of similitude components of Sh(V'). Composing with the
projection of C'(mo(V)) onto the invariant line C(mo(V))“™) — in other words, integra-

tion over mo(V') with respect to an invariant measure with rational total mass — we thus
obtain a canonical perfect pairing:

(6.3.2) (3 HY(Sh(V),wy) ® HE(Sh(V),wp) - C
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Remark 6.3.1. In what follows, we will be using the Tamagawa number to normalize the
Serre duality pairings. This is likely to introduce a factor of a power of 2 in a comparison
of our results with those predicted by motivic conjectures.

Ser
K

p=p; ®p,. Then (-,-)icr is just the pairing

The pairing (-,-)7" can be described in terms of automorphic forms as follows. Let

HO (P, K Ao (G) © W) ® H (B, Kp; Ao (G) @ Wyn) — C

defined by multiplication of cuspforms, contraction of the coefficients, and integration.
More precisely, if we denote the contraction

W, ®c Home (A%),, Home (A%, WY © v*%))) » Home (A*p, C(v*%))),
by

p® ¢ [0, ¢'],
then for

v e (Ag(G)*r ®c WH)K}L and ¢’ ¢ Hom(c(/\dp;L,Ao(G) ®cC WRD)Kh,

we normalize (-, -)ier so that

(6.3.3) ()i = [0(9).¢" ()] - [l (g)lI"* " dy,

fG(Q)ZG(R)\G(A)

Ser

. we obtain the hermitian Petersson

where dg is the Tamagawa measure. From (-,-)
pairing:

(6.3.4) () s HY(S(V),wi) x HY(SA(V)ywi) = €, () = (e ()R

K

6.3.2. Integral structures on top cohomology. Let O = Ok () as in the previous section.
Fix V and write wy, = wy,v. The spaces H{(x, Sh(V),w,) have natural integral structures
over O with respect to O-integral structures on the underlying schemes, for any 7. How-
ever, because the special fibers become progressively more singular as r increases, we do
not choose integral structures on the schemes. For cohomology in degree i = 0, we define
the O-structure on H(, Sh(V),wxv) by Sk(K,,O) as in §2, specifically in sections
2.5 2.6.5] and especially We then define the O-structure on H{(k, Sh(V),w,p) to
be dual to the integral structure on H,(k, Sh(V),w,) with respect to the pairing (6.3.2).
In other words, for any O-algebra R, we let

(6.3.5) H(x, Sh(V),w,p,R) = Hom(Sk(K,,O), R)

We will see in Lemma [7.2.12] that these integral structures are compatible with respect
to the trace maps from level K, to K.



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 95

6.4. (anti-)holomorphic automorphic representations. By an automorphic rep-
resentation of G we will always mean an drreducible (g,K) x G(Aj)-representation
ocurring in the space of automorphic forms on G(A). This convention allows us to
distinguish holomorphic representations from anti-holomorphic representations. (Note
that K}, which is the stabilizer of h in G(R), need not project to the maximal compact
in G(R)/Zc(R).)

6.4.1. Holomorphic and anti-holomorphic cuspidal representations of type (k, K). Let
7 be a cuspidal automorphic representation of G (always assumed irreducible). Write
T = o ® Ty, Where 7y is an irreducible admissible representation of G(Af) and T
is an irreducible (g, Kp)-module. Let K c G(Af) be an open compact. We say m
is holomorphic (resp. anti-holomorphic) of type (k, K) if HO(Pp, Kp;Too ®c W) % 0
(resp. HY(PBn, Kp; Moo ®c W,p) # 0) and if WJIC{ # 0. In this paper, we will only be
concerned with 7 that are either holomorphic or anti-holomorphic. If 7 is holomorphic
(resp. anti-holomorphic) of type (x, K ), then by our conventions 7 is anti-holomorphic
(resp. holomorphic) of type (x, K).

Note that, with G fixed, @ can be either holomorphic or anti-holomorphic, but not
both; however, the isomorphism Fi, of (6.2.0)) identifies anti-holomorphic representations
of GGo with holomorphic representations of GGi, and vice versa. Although Hida theory
is generally understood to be a theory of p-adic variation of (ordinary) holomorphic
modular forms, the nature of the doubling method makes it more natural for us to take
our basic object 7 to be an anti-holomorphic (and anti-ordinary, see[6.5.6]below) cuspidal
automorphic representation of Gy. Thus 7 is a holomorphic automorphic representation
of G but the natural object there is 7, or 7, which is again anti-holomorphic. Because
this is inevitably a source of confusion, reminders of these conventions have been inserted
at strategic locations in the text.

Remark 6.4.2. If 7 is holomorphic or anti-holomorphic, then, by the considerations in
[BHRY4], 7 is always defined over a number field, say E(7r). We will always take F(7)
to contain K'.

6.4.3. The b involution and the MWV involution f. Let m be a cuspidal automorphic
representation of G. Let &; be the central character . If (7o ®c Wi)5* # 0 (for
example, if 7 is holomorphic of type (k, K)), then & o (%) = (%) for t e R*. Let

(6.4.1) =71 @ ov] = 7Y ®|w||4).
Because 7 ® & o l/|_% is unitary,

(6.4.2) T,

112

and when 7 occurs with multiplicity one, as we will generally assume, 7° and 7 are the
same spaces of automorphic forms. In particular, the operation 7+ 7’ is an involution
of the set of cuspidal automorphic representations of G. If 7 is holomorphic, then 7 is
anti-holomorphic, and vice versa.
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The involution g + g' of G that was fixed in[6.2.2]is an involution of the type considered
by Moeglin, Vigneras, and Waldspurger in [MVWZ&7, Chapitre 4]. In particular, there
is an element hg € GLj+ (V') such that hg is c-semilinear for the KC-action on V and
(hov, how)y = (w,v)y and such that g = hoghg'; with respect to the fixed K-basis of V,
hg is just ‘act-by-c on the coordinates’. Let m = ® <.y be an automorphic representation
of G. If the hermitian pair (V,(-,-)y,) is unramified at ¢, then it is a deep result proved
in [MVWS&T, Chapitre 4] (cf. [HKS96]) that

(6.4.3) W;f = (g0 Ad(hg)) ® (& o) 2 7.

In particular, if 7 satisfies strong multiplicity one — which we expect if all the places at
which (V,(-,-);,) is ramified all split in IC/K" and its base change to GL,, /x is cuspidal —
then 7 = 7V and so 7' ®||v||*") = 7* = 7. In any event, (6.4.3)) permits the Hecke actions
on 7’ to be expressed in terms of the Hecke actions on «f, at least at the unramified
primes ¢. As will be explained later, the doubling method will pair 7 and (a twist) of 7’

but we will use the involution ‘}’ to compare level structures and Hecke algebras. This
partly motivates our putting

(6.4.4) K'=K!, ¢'=¢f, and k'=xl. 02

6.4.4. Relating (-,-),. to (-, -)ior. Let 7 be a holomorphic cuspidal automorphic represen-

tation of G of type (k,K). Recall that the canonical pairing (-,-), : 7 ® 7" - C can be
expressed as

6.4.5 ,’ﬂ:f "(9)dg, em, ¢ en.
(6.4.5) (@, ¢") G(Q)ZG(R)\G(A)w(g)w(g)g © ©

The pairing (-, -)ier can be expressed in terms of (-,-), as follows.

Let wy, ..., wy, be a basis of W, and let wy, ..., w,, be the dual basis of W,). As Wb is
the twist of W, by a character, the w) also defined a basis of W,.n. Let ¢ € (7P ®@c W, )K"
and ¢’ € Hom(A%p;, 7w @c W,p ) K. Write p = 3, p; ® w; and ¢’ = Y ¥ ®wy. Then it
follows from (6.3.3)) that
(6.4.6) e Y (C TN [ e

(2

6.5. Hecke algebras. We continue to let G = G; = GU(V') and we return to the nota-
tion of Section 2.9.4k thus classical modular forms are of weight . Fix a positive integer
r as in and a level subgroup K = K¥ = K?- K, c G(Ay). Henceforth we will write
T(g) = T(g) for the Hecke operators [KFgKZ~] for g € G(AI}); we have also introduced
U-operators Uy, ; (the index 7 of 2:6.9]is superfluous because G is the unitary similitude
group of a single hermitian space).

For any Sp-algebra R c C, we let Tk, . r be the R-subalgebra of Endc (S, (XK,;C)) =
Endc(H(k,Sh(V),w,)) generated by the Uy jx = [/ (tw,;)l; Uw,j, Where £ is related
to k as in (2.9.4]), and by the T'(g) = T,.(g) for g € G(A?), where S = S(KP) is the set
of places at which KP does not contain a hyperspecial maximal subgroup. We similarly
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define Ty, p and T%T&R by replacing Uy, j, with Uy, ; . = |/£’(tw7j)|pU1;7j and, in the
second case, also replacing Sy (K,;C) with H(x, Sh(V),w.) = HY(Sh(V),w.) 5. We
will follow the convention of adding a subscript ‘V’ (reps. ‘=V’) to notation if it is needed
to indicate that it relates to the hermitian pair (V,(-,-);,) (resp. (V,—=(-,")}/))-

Lemma 6.5.1. Let Rc C be a subring.

(i) There ezists a unique R-algebra isomorphism Tk, . r — T[Ii(r,nD,R’ T~ T7,
such that Ug},j,n =U, .o and T(g) = |[v(9)||**) - T(g7h).
(ii) There ezists a unique R-algebra isomorphism Tk, . v.r —> Tyo v virs T T,
such that Ufw-ﬂi = Uz;,ln,n" won—jrb and T(9)" =T(g") =T(g).
(iii) There exists a unique isomorphism Tk wr N T?(T <D o that maps v € R to
e(r), Uy jwp to U, o, and T(g) to T(g).

Proof. Part (i) follows from Serre duality, part (ii) from the isomorphism F;fo, and part
(iii) from the isomorphism cp. O

For a nebentypus ¢ of level r (a character of Ty (Z,,) that factors through Ty (Zy/p"Zy)),
we let Tk, .4 r and T‘}%,W%R be the quotients of T, , r and T}QT’&R upon restriction
to the (invariant) subspaces Sx(K,,v,C) c Sx(K,,C) and H(x, Sh(V),w.)¥, the sub-
space of H (g, Sh(V'),w,.) on which K° acts via 1.

Lemma 6.5.2. The isomorphisms in Lemma [65.1)(i)-(ii) induce R-algebra isomor-
phisms

. .
Trwwr — Ti y16 pr 4 T s ViR — Tigpw b v k-

This is clear from the definitions.

The R-modules S, (K,;R) and S, (K,,1; R) are stable under the action of the Hecke
operators Uy ;. and T(g), g € G(A]‘?). In particular, the cuspforms over C can be
replaced by those over R in the definition of T . g and Tg . 4 R.

For any of these Hecke algebras T, we write TP for the subalgebra generated over the
ring R by the T'(g), g € G(A]Sc) (so omitting the Uy j, and U, ;). The isomorphisms
of Lemmas [6.5.1] and restrict to corresponding isomorphisms of these (p-depleted)
Hecke rings.

If R=.5p, then we omit the subscript ‘R’ from our notation.

6.5.3. The homomorphism AL, isotypical subspaces, and the multiplicity one hypothesis.
Let 7 be a holomorphic cuspidal representation of G of type (k, K, ). Then the natural
action of Tir ., On 75" is given by a character that we denote A2; these homomorphisms

are compatible under the natural projections T’[’( . TI;( P r’, so we do not include
() rls
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the 7 in our notation. Via the isomorphism T, v — Ty .y of Lemma B5.1(i),
P _\P . . ) P : .
A? = Xz determines a homomorphism X'}, of T Kb VR which, by (6.4.3]), satisfies

(6.5.1) A=A,

For an Sp-algebra R c C, the homomorphism \; extends R-linearly to a homomorphism
of the Hecke algebras over R; we use the same notation for this homomorphism.

We say that 7 satisfies the multiplicity one hypothesis for m if:

Hypothesis 6.5.4 (Multiplicity one hypothesis). For any holomorphic cuspidal 7' +
of type (k,K;), AL, = X7

This multiplicity one hypothesis for 7 is expected to hold if S = S(KP) consists only
of places that are split in /K* (so no local L-packets) and if the base change of 7 to
GLy,x is cuspidal (so 7 is not obtained by endoscopic transfer from a non-trivial elliptic
endoscopic group of G). When G is quasi-split this has been established by Mok [Mok13],
and the general case has been proved under certain restrictive hypotheses and is being
treated by Kaletha, Minguez, Shin, and White. We will generally assume that 7 satisfies
this multiplicity one hypothesis; this is not indispensable, but it simplifies some of the
statements.

Let E(AL) be the extension of the number field F () generated by the values of \b;
this is a finite extension of E(7).

We fix a basis of the one-dimensional space H°(By,, Kj; Too ®c Wy). Let S, (K,,C)(7)
be the \b-isotypic subspace of S.(K,,C) for the action of TJ}’(T .- There is then an
embedding

G+ HO (B, K ™7 @ W) 2 w7 o S (K, C) ()
of T’[’(T -modules.

Lemma 6.5.5. Let m be a holomorphic cuspidal automorphic representation of type
(k, K), and suppose T satisfies Hypothesis [6.5.4}

(i) The injection j, defines an isomorphism
jrimsS @l —> Su(K,,C)(n).

(i) Let X be any extension of Ao to a character of Tk, k. Let R c C be a finite
extension of E(XY) containing the values of X, and let S, (K., R)[\] be the lo-
calization of the Tk, . r-module S..(K,,R) at the prime ideal p) c Tk, . r that
is the kernel of the character X\; in other words, Si(K,, R)[A] is the A-isotypic
component of Sx(K,,R). Then j. defines an isomorphism

jrims S @[N] — Su(K,, R)[A] @5 C = S,(K,,C).

Here i

o7 [A] is the subspace of WII,T on which each Uy, .. acts as N(Uy jx)-
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6.5.6. The (anti-)ordinary projector and (anti-)ordinary Hecke algebra. Suppose R c C
is the localization of a finite Sp-algebra at the maximal prime determined by incl, or a
p-adic algebra in the sense that ¢,(R) is p-adically complete.

Let Up = Tuwes, 1_[?:1 Uw,jr and let e, = li_II)lN Ué\ﬂi (as an operator). We call this
the ordinary projector, and put T%imR = e, Tk, x,r and T%i,w,R = ex Tk, xo,r- Then
T9xd and T4 are just the rings obtained by restricting the Hecke operators to

K’I‘7K/7R K.,k 'l/) R
the (stable) subspaces S'Y(K,; R) and S%4(K,,v¥;R). For R not p-adic we define the

K K

latter modules to be the respective intersections of S, (K;;R) and Sy (K,,;) with the

ordinary spaces over the p-adic completion of R (that is, the completion of incl,(R)).
Similarly, let U, . = TTwes, [Tj-1 U, . and let e, = li_n)lN(UI;,i)N! (as an operator, when
Ta—ord —

it exists). We call this the anti-ordinary projector, and put KR = e;T‘}{mm r and

a-ord _ _—-md
T war = Tx . re

Lemma 6.5.7. Suppose R is as above. The isomorphisms of Lemmas[6.5.1(i)-(ii) and
restrict to R-algebra isomorphisms:

~ a-ord
ok TR ey ro

ord
Kb kb -V,R"

: ord ~ a~ord
(1) TKT,.%,R - TKT,/@D,R

ss ord ~ ord
(11) T VR T TK.,'i,Iib

ord
and TG
ord ~
_v.g @nd TR ViR T

This is immediate from the definitions.

6.5.8. Spaces of ordinary forms and the character \;. Let m be a holomorphic cuspidal
automorphic representation of G of type (k, K,.). Let

ord - e,.ﬂrl’" ]

7T P

P
This space has dimension at most one and it does not depend on 7, in the sense that

I . .
e,.ﬂr;* = e,mp” for all 7/ > r. This is a consequence of the following:

Theorem 6.5.9 (Hida). For any representation m, of G(Qy), the ordinary eigenspace
6,{7'('1‘?" c Wé" is of dimension <1, for any r.

This theorem is a variant of [Hid98| Corollary 8.3] (we thank Hida for this reference).
The proof, an adaptation of Hida’s, is given in Section below.

Will will say that 7 is ordinary if Wgrd # 0. Note that ﬂgrd is stable under the action of

12, and so I? will act on ﬂ'grd (when it is non-zero) through a well-defined character 1;

we call its identification with a character of T (Z,) the ordinary nebentypus of 7.

The space
p,a-ord _ _— b, I b
Tpr = CgDpTy ~ C Ty
is at most one-dimensional, and is non-zero (and so has dimension one) if and only if

W;,’rd is non-zero. This follows from Lemma [B.2.6] below. While it is not generally true
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that 75> is independent of r, if 7 > 7 then Lemma B.2.7 asserts that

b,a~ord _ ﬂ_[y,a—ord

traceg, /i, o

p,r’

Suppose that 7 is ordinary. We let A\, be the (unique) extension of AL to the Hecke

character giving the action of Tk, , on w;,’rd ® m»E”. For R as in [6.5.6] this character

factors through T%i Kb.R for 1 the ordinary nebentypus of w. Let E(\;) be the finite
extension of E(7) generated by the values of A\;, and let R(\;) be the localization of the
ring of integers of E(\;) at the maximal ideal determined by incly; then A; is R(A;)-
valued. Let A\, be the reduction of \; modulo the maximal ideal of R(\); this can be
viewed as taking values in the residue field of Z(p). We let

S(K,,r, ) = {ordinary holomorphic 7’ of type (x, K,.) such that Ay = A }.

Lemma 6.5.10. Let m be a holomorphic cuspidal automorphic representation of type
(k,K}). Suppose 7 is ordinary. Suppose also that m satisfies Hypothesis [6.5.4. Let
R c C be the localization of a finite extension of R(\x) at the prime determined by incl,
or the p-adic completion of such a ring. Let E = R[%].
(i) SO K,; E)[Ar] = xSk (Ky; B)[A] and jr restricts to an isomorphism

Jn ﬂ'zrd ® F?S ; F?S = §$9YK,;FE)®gpC.

(ii) Let m; be the mazimal ideal of Tk, . r that is the kernel of the reduction of
Ar modulo the mazimal ideal of R. Let S (K,;R), be the localization of
Sod(K,;R) at my. Then

SIYK,; R)[r] = S (K R)r 0 STUK, E)[Ar]

is identified by j. with an R-lattice in ﬂgrd ®7T§S = F?S, and SOYK,,R), is
identified with an R-lattice in

@ W;,’Ord‘g(W:g)KS-
w'eS(Ks,k,m)

This last identification is via ®prAyr.

We also need a dual picture. Let
Sw(Kri R) = Homp(Sx (K R), R) and SP"(K,; R) = Homp(S2™ (Kr; R), R).

These are Tk, , r-modules through the Hecke action on Sy (K,; R), so Sgrd(Kr, R) is a
T%im p-module. Serre duality identifies S.(K, : R) with

Hy (K, R) = {pe H (g, SK(V),w.) : (Su(K,;R),p)2" ¢ R}.

Let ST (K, R) c H?,(K,,R) denote the annihilator of S'®(K,;R) with respect to
this pairing. Then Serre duality identifies S24(K,; R) with

HY (K, R) = {¢ € H(k, Sh(V),w,0) [ST (K5 R) = (STU(K,5 R), @) ¢ R}.
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Each of these is a Tk, . g-module through its action on S, (K;; R) or, equivalently, the
isomorphism of Lemma [6.5.1i), so H:}:‘,)rd(Kr; R)is a T%f{ . g-module.

Lemma 6.5.11. The natural map HgD(KT; R) - Hsgrd(Kr; R), which is just restriction
to SOY(K,; R), induces an isomorphism

(6.5.2) e Hep (K R) — HYS" (K, R).
Proof. This is an immediate consequence of Lemma [B.2.4] (iii). O

Let 7 be a holomorphic cuspidal automorphic representation of G of type (k, K, ). Then
7* is antiholomorphic of type (k, K, ). The choice of a basis of the one-dimensional space

HY(By,, Kp; ., ®c W,.p) determines an injection
j;b : Hd(mthh; ﬂ-b’KT ®C WHD) = ﬂ-b’KT i H,[jD(KT’v (C) = Hd(Kr-Sh(V)aw/iD)'

Lemma 6.5.12. Let w7, R, and E be as in Lemma [6.5.10. Let H:g)rd(Kr,R)7r be the

localization of HZ}:‘,)T‘C}(KT,R) at my, and let

H:g)rd(Kry R) [77] = H:g)rd(Kr§ R)7r n Hsgrd(Kﬁ E) [)\ﬂ]
where the notation {A\:]’ again denotes the N -isotypic component.

(i) The inclusion j', restricts to an isomorphism

gl bt @ alfs « nlis S HE(K,, E)[r] ep C.
(ii) The map j', identifies H®Y(K,: R)[x] with an R-lattice in wﬁ,ﬁ’ord ®7TEZKS, and

H3'Y(K,: R is identified with an R-lattice in

/7 b d ,7b7K
®W’ES(KT,K,W)Wp7I77“0r ®7TS S.

This last identification is by @5/ .
iii) Serre duality induces perfec -equivariant pairings (with respect to the
iii) Serre duality ind t TRY, p-equivariant pairi ith t to th

isomorphisms of Lemma[6.5.7)

Sy R)[r] @ HY (K R)[n] > R and STY(Ky; R)x ®p HYS(Ky; R)x — R

We say 7 is ordinary of type (k, K) if 7 is anti-holomorphic of type (x, K) and if the
image of j, has non-trivial intersection with in S®"4(K, R). In that case, \,, defined as
above, takes values in a p-adic integer ring, say O, with residue field k(7), and we let

At Tk = k(m) denote the reduction of A; modulo the maximal ideal of O.
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6.5.13. Change of level. For future reference, we let K = KPI,, K' = KPK,» with r’ > r.
For fixed x we consider the inclusion

(6.5.3) SPV (K, R) > SV(K'R)
and the dual map
(6.5.4) STV, R) - SV(K, R)

Lemma 6.5.14. Let R be either a local Z,)[Ar]-algebra or a finite flat Zy[Ax]-algebra.
Then the image of the map (6.5.3) is an R-direct factor ongf{fv(K', R), identified with the
submodule of I.|Is-invariants of the latter. Moreover, the morphism (6.5.4)) is surjective.

Proof. The first assertion is obvious; the second is an immediate consequence of the
first. O

6.6. Normalized periods. Fix the group G as above; we will be taking G = Gy or G =
G later in this section. We are still assuming 7 to be an anti-holomorphic representation
of G of type (x,K). We let R be a local Z,)[\r]-algebra and define Sod(K, R)[r] and

Sod(K,R), just as in Lemma [E5.10. The Petersson pairing is positive definite and
hence defines perfect hermitian pairings (¢, ¢")p, and (¢,¢")p[7] on Sod(K, R), and

SO (K, R)[r], respectively.

Lemma 6.6.1. The images

L[x] = (S(X, R)[w], ST (K, R)[x]) p 7]
Ly = {2 (K, R)[n], ST (K, R)z) p e

are rank one R-submodules of C, generated by positive real numbers Q[w] and Q, re-
spectively.

Proof. This is a version of Schur’s Lemma. The analogous statement is proved in [Har13a]
when R is a finite extension of Q. This implies that L[7]® Q and L, ® Q are finite rank
one Frac(R)-subspaces of C. Since R is a discrete valuation ring, the result follows
immediately from this. O

The numbers Q7] and @, are well-defined up to multiples by R*; they are respectively
unnormalized and normalized periods for 7. We can also write Q[7,G] and Qr ¢ to
emphasize the dependence on G (either G or Ga). Let

SP(K R) (7]t € SPU(K, R)x
be the orthogonal complement to S@4(K, R)[x] with respect to (¢, (b')PJr. This is the
intersection of SUY(K, R), with @/, S (K, R[%])[T{'/].
Definition 6.6.2. Define the congruence ideal C(m) c R to be the annihilator of
STUK, R)x /ST (K, R) ] + ST4(K, R)[]*.
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Lemma 6.6.3. Let ¢(w) € R be a generator of C(w). Then c(m)Qr = Q[w]. More
precisely, let f be any primitive element of S@Y(K, R)[r]; in other words, if u€ R and
and ug = f for some g € S°Y(K, R)[n] then u e R*. Let

QUf) = (f, f)plr].

Then we can take Q(f) = Q[n], Q(f) is divisible in the R-module L[7] by c¢(m), and
c(m)1Q(f) generates L.

Proof. This is an elementary consequence of the definitions. O

More generally, the congruence ideal C'(7, M) can be defined for any Tg . r-module M
as the annihilator of M, /(M[xn]+ M[x]*), where the notation has the same meaning as
above. In particular, we can define C'(w, T) to be the congruence ideal for Tk , r consid-

ered as a free module over itself. We can also define C' (7, H ggrg(Kr, R)) or (equivalently)
C(m,59Y(K,; R)) by the same formula.

Remark 6.6.4. The congruence ideal C'(7) has a local component, due to possible con-
gruences between the representation 75" ® WEJKS and the 7" ® (m5)" s for 7' such
that Ar = M. Here if S has the property that, for every rational prime g, either all the
primes of K* dividing ¢ split in K or none of them does, we can view the latter as repre-
sentations of the (integral) Hecke algebra of Kg-biinvariant functions on GU(V)(Ayg).
The separation of global and local components of C'(7) will need to be understood for

applications, but it is not addressed here.

All of the above statements have variants in which ngd(K , R) is replaced by Sgrd(K Y, R),
for some nebentypus character ¢. We leave the statements to the reader.

In what follows, R is a sufficiently large finite flat p-adic integer ring.

Definition 6.6.5. Write T = Tk .. px. The T-module SOd(K R)y is said to satisfy the
Gorenstein hypothesis if the following conditions hold.

e T 5 Hompg(T,R) as R-algebras.
o SOYK, R), is free over T.

The Tk ., r-module SO K| R) is said to satisfy the Gorenstein hypothesis if all its lo-
calizations at mazimal ideals of T .. r satisfy the two conditions above.

The following is then obvious.
Lemma 6.6.6. Assume Sgrd(K, R) satisfies the Gorenstein hypothesis. Then we have

C(n,T) =C(w) = O(n, ngfg(Kr,R)).

The congruence ideal for m can be calculated as follows. We assume the multiplicity
one hypothesis, so that the localization of T at the kernel of A\, is of rank 1 over R. Let
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e1,...,en be an R-basis for T, and let e], ..., e, be the dual basis of Hompg(T, R). Write
E = Frac(R), and write

Tg=T®rFE=aF;,
indexed by the maximal ideals A;, of T, with m = m1. We assume R is sufficiently large
that Fy = E. Choose a basis dy,...,d, € T be a basis of Tg, with d; an R-generator of
TnE; and dy,...,d, an R-basis of TN &1 F;. Write e; = ) ¢;;d;, with ¢;; € E. Then
(6.6.1) C(m,T)=sup —-v(ci)

c;1#0

where v is the valuation on R.
The following lemma is then clear:

Lemma 6.6.7. The second isomorphism of Lemma[6.5.2 takes C(m) isomorphically to
C(r").

It then follows from Lemmas and [6.6.7] and (iii) of Lemma that

Proposition 6.6.8. Assume S,‘;rd(K,R)7r satisfies the Gorenstein hypothesis. Then un-
der the isomorphisms of [6.5.7 all the ideals C(m,G1), C(n",G1), C(7,Gs), C(7", G2),
C(m,T), C(W,HZERC}(KT,R)), etc. are identified. In particular, the congruence ideals
attached to m and to w° are canonically identified whether ™ and w° are considered holo-
morphic and ordinary or anti-holomorphic and anti-ordinary.

In particular, we can reformulate Lemmas [6.6.1] and [6.6.3] in terms of periods of anti-
holomorphic anti-ordinary forms. Define the Petersson pairings (e, ), on H Z’grd(Kr, R)[7]

and H:g’rd(Kr,R)7T by the usual L? integrals of anti-holomorphic forms. Then

Corollary 6.6.9. Assume ngd(K, R) satisfies the Gorenstein hypothesis.

(a) The images

L[x] = (H" (K, R)[w], Heg™ (K, R)[7]) p[ ]
i/ﬁ = <H:£rd(KT’ R)[r], H:g)rd(KT’ R)”)P,w

are rank one R-submodules of C, generated by positive real numbers Q[ﬂ'] and Qﬂ, re-
spectively. We can write

Ql:ﬂ—] = <f7f)P|:7T]
for appropriate integral generators f € Hgg)rd(Kr,R) [7].

(b) Moreover,

. c(7T)CA27T = Q[TF], and
i Qﬂ = ;rl:

where the equalities are understood as in the statement of Lemma [6.6.3.
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The second claim in (b) is an elementary consequence of the duality between H Zﬁrd(KT, R),
and SOY(K,R).

Remark 6.6.10. The normalized period @, and the generator c¢(m) of the congruence
ideal are well defined up to units in R. However, this ambiguity is unsatisfactory; one
expects there is a natural choice of global function ¢ in T which is not a zero divisor and
whose value at the classical point 7 generates C'(7). This would allow a uniform choice
of periods Q.

Let G,, be the algebraic group introduced in [CHTO0S8] as the target of the compatible
family of ¢-adic representations attached to m; it is the semidirect product of GL(n) x
GL(1) with the Galois group of K/K*. It is natural to expect that ¢ can be taken to
be a p-adic L-function attached to the adjoint representation on the Lie algebra of G,.
The corresponding complex L-function has a single pair of critical values, interchanged
by the functional equation, so the hypothetical p-adic L-function would be an element
of T, without any additional variation for twists by characters.

7. FAMILIES OF ORDINARY p-ADIC MODULAR FORMS AND DUALITY

7.1. Big Hecke algebras and the control theorem. In this section, we write T =
Ty = Tu,(Zp) = Th,(Zy), i.e. the torus introduced in Section For the moment
we look at families of p-adic modular forms on a group G, which in the applications
will be G1 or GG3. Fix an algebraic character x of Ty and a tame level subgroup K? c
G(A?) as above, and let K = K?, K' = K%, with v/ > r. Let R be a p-adic ring.
The inclusion S(K, R) c S@"Y(K’, R) defines by restriction a map of ordinary Hecke
algebras Tg' o r = Tk xr Let Tkr g = liﬁlr TK,?,/-:,R with respect to the restriction
maps. The following theorem is due to Hida:

Theorem 7.1.1. For any pair of characters k, k', there is a canonical isomorphism
TKP,H,R ;’ TKT’,Hl,R‘
Thus we can write Tx» g to designate any Tx» g Without fear of ambiguity. We will
even write T = Tg» g when there is no danger of ambiguity.

Remark 7.1.2. In the application to unitary groups this theorem and the next one are
special cases of [Hid02, Theorem 7.1] and the results of [Hid04, Chapter 8]. Hida’s
Theorems [T.1.1] and [[.1.3] are proved assuming the conditions (G1)-(G3) mentioned in
connection with (2.9.0]).

Fix a cuspidal antiholomorphic automorphic representation 7 of G which is ordinary
of type (k,K) as in Section We let R = O,. Let A = Ay, with coefficients in R.
The homomorphisms A\; : T . 0, = Or and Ar:T Kk,0, = k() lift to homomorphisms
Ly :Tkr o, > Op and Ly : Tgr 0, — k(). Let m; = ker L, and let

Tr = Tkr,0,ma
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denote the localization. The intersection m,; N Ap_ is the maximal ideal defined by some
tame character of T'. We let A; denote Ay with coefficients in O,.

Theorem 7.1.3. (i) The Hecke algebra Ty is a free Ar-algebra of finite type.

(11) (Control theorem) Let I,, c Ay be the kernel of the map Ar — C, defined by the
character k. Suppose k is sufficiently reqular. Then the natural map
Tr ®A AW/[H - TKf,n,(’)-,r,ﬂ

is an isomorphism of algebras.

The main involution of A is the involution induced by the map ¢ ~ ¢! of Ty. The
involution b of Tk» r restricts to the main involution on A and induces a (p-linear)

isomorphism b : T —> T, of A -algebras. Here and in what follows, for any r and KP
we will let T, act on HomoW(S,‘;rd(Kf ,O7),O0x)m, by the natural action twisted by b.
We consider the following hypotheses:

Hypothesis 7.1.4. (Gorenstein Hypothesis) Let Ty = Homp (Tys,Ay). Then

eT,isa free rank-one Tr-module via the isomorphism b: Ty —> Tps.
o Let T, act on Homp_(SOYK?P,0), Or)m,. by the natural action twisted by b.
Then Home_ (h_H)lr SOUYKP O, O ). is a free Tr-module.

This is of course a variant of the hypothesis [6.6.5] of the previous section.

Hypothesis 7.1.5. (Global Multiplicity One) Let ' € S(K,,k,7). Then the represen-
tation w' occurs with multiplicity one in the cuspidal spectrum of G.

7.1.6. Local representation theory. Henceforth, we abuse notation and write O for O,.
(The ring of integers of K does not appear in the context in which we do this; so we will
only be using O for O, here.) We let I; denote the image of the specialization map

d JKP
Sgr (Kf, O) ®TK713’H70 ’]I‘Kf,n,(’),w/ ker(/\ﬂ) > ng .

This is a free O-lattice in ng ’ (and not in mgr!). Fix a non-zero element fgi‘i of the
1-dimensional Frac(Q)-space ﬂll’,’ord. Then tensoring ﬂgf " with f;ﬁ identifies I; with a

. . b,ord b, KP
O-lattice in " " ®@ g, .

The anti-ordinary subspace ﬂg"’”d c 7r11f is the tensor product over w | p of the lo-

cal anti-ordinary subspaces 7% % which will be defined in Lemma R2.6l Let I, =

w

Hom(I;,®). The natural duality between 771’9 and g identifies I, with an O-lattice in

W;_Ord ® stg;,p, and thus defines a natural isomorphism
(7.1.1) I = L.

The following hypothesis comes down to the assumption that 7 is minimal (in the
sense of the Taylor-Wiles method) of level K with respect to deformations of its Galois
representation.
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Hypothesis 7.1.7. (Minimality Hypothesis) For every pair (kh,7Y), there is an isomor-
phism of Txr x10x-modules
Tier, w107 ® I — Hom(SU(KT:, O, O).

1

such that the following diagrams commute when r* > r:

Tyr 1,07 ® Lx —— Hom(SHY(K?,, O)m,,0)

) Kl r
s

| |

Tir r.0x® [ —— Hom(SAYKE, O),,0)

w1l

and such that the specialization at the O-valued point Ay :

Txr o/ ker(Ar) ® Ir — Hom(SAY (KR, O)m,, O) @1,  Trr . o/ ker(Ar)

w1l

is just the tautological isomorphism I, — Hom(I,O).

These hypotheses will be assumed in the statements of most of the results about p-adic
L-functions in families; they will be verified when possible.

7.2. Equivariant measures. In this section we consider measures with values in p-
adic modular forms on G3. We fix a prime-to-p level subgroup K? c G3(Ay) and let
K, = I, - K? as before, where I, = I, 1 x I, o ¢ G3(Q,) with I, ; c G;(Qp), i =1,2. For O
as above, we write V = V;rd’cuSp(Kp ,O) for the corresponding space of ordinary p-adic
cusp forms on G3 with values in O.

Remark 7.2.1. Although the Eisenstein measure does not generally take values in the
space of cusp forms, even after ordinary projection, we will be localizing at a non-
Eisenstein maximal ideal of the Hecke algebra. Much of the discussion below applies
without change to measures with values in the space of ordinary p-adic forms.

We choose a sequence of congruence subgroups 1" > -+ 2 T}, 5 Ty, 1+ such that n, T, =
{1}. Let Z, c A be the augmentation ideal of T}, and let A, = A/Z,.. For O as above,
let C.(T,0) =C(T]T,,0O) be the (free) O-module of T,-invariant functions on 7. Then
there is a natural identification A, = Homp(C,(T,0),0); alternatively, viewing A,
as the algebra of distributions on 7" with coefficients in O, and C(T,0) the module of
continuous O-valued functions on T', the canonical pairing A, ® C(T,0) — O restricts to
a pairing A, ®C,.(T,0) — O which factors through a perfect pairing A, @ C,.(T,0) — O.

Let r, : Co.(T,0) < Cp1(T,0) be the canonical inclusion. The next lemma follows

from the definitions. Note that V = Vgﬂd’wSp(Kf” ,0) is a Ap-module by the action on
the first factor. We fix an involution v : T - T and define p* = p o v for any function

peC(T,0).

Lemma 7.2.2. Fiz a character p : T - O* and let C.(T,O) - p¥ c C(T,0) denote
multiples of p¥ by elements of C.(T,O). There is an equivalence between
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(i) V-valued measures ¢ on T satisfying

o(t-f)=v(t)-o(f),f € C(T,0);

(ii) Collections ¢, = (¢pr,p) with
ér.p € Homp (Cr(T,0) - p", V),
satisfying vy (¢rs1,p) = Or,p, where ) is dual to 7.
We let Z, , ¢ Ay be the annihilator of C,.(T,0)-p", and let A, , = Ar/Z, ,. Thus Lemma

[[.2.2] identifies equivariant measures on 1" with twist v with collections of linear forms
on A, , that are compatible with the natural projection maps as r varies.

Let V = Homp(V,0) and let ¢ be a measure as above, which we assume to be the
specialization at a character x of X, of an admissible measure in two variables with shift
sh*(x) = (a(x),B(x)) and twist v as in Section [5.2.41

We write ¢y, to indicate dependence on x. For s = p-a(x) sufficiently regular,

(7.2.1) Im($yrp) © SOt v (K O)[®1ST 5y (K7, O)

where we continue to identify open compact subgroups of GU(V)(Af) = GU(-V)(Ay),
and where the notation [®] is as in Remark

More generally, we let X, be a compact p-adic Lie group, and let ®x = (@, Pp) €
C(Xp,0)% Say ¢(e) (the e is a place-keeper) is a measure of type ®x if

(7.2.2) Im(¢(e)r,) c (SO (K, 0) ® D4 0 det) [8] (S5 (K, 0) ® Dy 0 det) .

We also have
V = lim Homo (S9 (K, 0)[8]53 L (K, 0), 0).

T

In the situation of (7.2.1]), assuming x = p- a(x) is sufficiently regular, we thus have
Im(¢x,r,p) c Homo(g?;i(x))y(f(}, 0)7 S?;(»i.g(x));v(Kr’ O))

The following hypothesis expresses a basic property of the Garrett map that is the
basis of the doubling method for studying standard L-functions of classical groups.

Hypothesis 7.2.3.

Im((éx,r,p) c Hom’]l‘ (SF;i(X)),V(KT7 O), S?;.(L(X))b7,v(Kr, O) ® X © det)'

rpa(x)

Bear in mind that ¢, , , designates integration of functions locally equal to p” — not p
— against the specialization at x of a two-variable measure.
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Remark 7.2.4. We sometimes write x = p- a(x) when we want to emphasize the weight
of the specialized Hecke algebra rather than the weight of the character of T. Here and
below the algebra Ty =T, ,..(y) ignores the twist by x odet at the end. One checks that

incorporating the y odet into the subscript of the second S replaces «(x)" by the 5(x)

of (TZT).

Now let 7 be an anti-holomorphic representation of Gy of type (k = p-a(x), K, ). Let
®x,r,p,x denote the composition of ¢, , , with projection on the localization at the ideal
m, in the first variable. Bearing in mind our conventions for the subscripts ; and s, it
then follows from Hypothesis [[.2.3] that

7.2.3 Im(¢y.rpr) € Homo (S90S (K, 0),5%4 (K., O)® x odet).
X570, ,V, KY, V,T('

Now both §°rd (K,,O) and ngivmb(Krv O) are T;-modules, and indeed the Goren-

K,V
stein hypothesis guarantees that they are free T, , -modules (in the obvious notation)

of the same rank. In the next few paragraphs they are denoted ST‘?,‘R/‘{W and Sff_dvm,, to
save space, the character (k = p-a(x)) being understood.

We rewrite Hypothesis [[.T.7] in this notation.

Hypothesis 7.2.5. Let R be a O-algebra, and let ']T'T,R = Hom(T, ,,R). In the above
notation, there are isomorphisms of T, . r-modules

7 ~ . Gord
TT’,H,W ® [7r - ST,V,W;

ord

’]I‘T,K,W ® Lr - ST,V,W‘

The first is T, linear, the second T, b-linear.

These isomorphisms are not unique, but they can be coordinated as follows. The second
isomorphism of Hypothesis [[.2.5] for =V provides a T -linear isomorphism:

j: SOI‘dVer — Trﬂb’ﬂb QL.

r,—
Composing with an isomorphism
(7.2.4) G: ’ﬁ‘r,(n)b,wb — T e

of (T-linear) T,-modules given by the Gorenstein hypothesis (Hypothesis [[.1.4]), this
becomes a T -linear isomorphism

. d ~ ~ S
], : 51?71‘—‘/77'("7 - ’]I‘T,K,W ® I — Tr,/-@,ﬂ ® I

where the second arrow is isomorphism (Z.I.I). Now compose j’ with the first isomor-
phism of Hypothesis [7.2.5] to obtain

. . qord ~ _ Gord
JG : Sr,—V,n" Ve

Thus
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Lemma 7.2.6. Given a choice of isomorphism G as in (T24), there is a unique iso-
morphism

SOI” V,mb — S;“)r\(}l,ﬂ
of free Tr-modules compatible with G as above.

Remark 7.2.7. These maps can be compared to the p-isomorphism F" : S?f“}l’ﬂ — f’rjivﬂrb.

Thus Hypothesis [[.22.3] yields (with x = p- a(x) as above)
Hypothesis 7.2.8.
Im(éy,r,p) c Homr, |, (S’T‘?ﬂ‘}, SOr v ® y odet) — Homr_ o (Tre ® I, 'IAFN.C ® L)

— Homr, , (Trs, Ty) ® Endg(Ip).
Here we have tensored with x ™' o det in the first line.

In the remainder of this subsection we no longer need to localize at m,. We write
C, = Cp(T,0) and drop the O’s from the notation for modules of ordinary cusp forms,
and ignore the twists by yodet where relevant. The natural inclusion C,. < C,.,1, together
with the map ¢ : Sﬁﬂ v~ Sord (dual to the tautological inclusion ¢, : Sord Sﬁfiv)
defines a diagram

N *Qid* N
ord ord Tr @iy ord ord
HomTT'-fl,m (CT+1 ® Sr+1,V7 S +1, V) HomTr-f—l,n(CT’ ® Sr+1,V7 S +1, V)

.
TLT

Homr, , (C; ® S?f{}, S 4)

Here id; g,‘?ﬁ v = g,?ﬁ v is the identity map and ¢ is the dual to ¢ (applied in

the contravariant Variable) It follows from the equivariance hypothesis that the tensor
products (Cy.4; ® 5S4 v and the other two) can be taken over Ar, and then Homr, ,  is

relative to the action of the Hecke algebra on Sord 1,y and ST "1,-v- Hypothesis [7.2.3] now
implies that

Fact 7.2.9. For all r, the image of ¢ri1,, under v} ® id* lies in Im(v)).

We make a more precise hypothesis:
Hypothesis 7.2.10. More precisely,
(ry ®idy1)(Pri1,k) = tr © Gr i o (ide, ® 1)

as maps from Cp ® Sfﬂv to Sﬁﬂ,—v’ where idc, s the identity map on C,.
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7.2.11. Serre duality and change of level. We can interpret the map ¢, with respect to the
Serre duality pairing[6.3.2] as follows. In this section we let R be a finite Z-algebra with p-
adic completion R = O. Identify S, v (K, R) with an R-lattice in H(, Sh(V),w,). Let
HIO’OTd(KT,Sh(V),wH) be the C-linear span of ng{}(Kr,R) and let H!d’ord(KTSh(V),w,?)
be the corresponding quotient of H(x, Sh(V'),w?); then the action of the Hecke algebra
identifies H!d’ord(KrSh(V),w,?) as a direct summand of H{(, Sh(V),w?) that is in a
perfect pairing with H!O’md(KrSh(V),w,{). We can thus identify ngg(Kr,R) with an

R-lattice in H!d’ord(KrSh(V),w,?) in such a way that

S8 (K, R) = H (1, Sh(V),w? ) (R)

7.2.5
(725 = {h e H" (5, Sh(V),wD) | (£, h)5" € R Vf e STH(K,, R)}

The following statements (Lemma 6.2.12, Proposition 6.2.13, and Definition 6.2.14) are
written in terms of x rather than p-«a(y), for simplicity.

Lemma 7.2.12. With respect to the identification ([T.2.3)), the map
L SET\C}(KHLR) - S'gf&(Kr,R)

s given by the trace map:

tr(h)=" 3 ~(h).

“/EKT/KT'-H

In particular, the trace map t, defines a surjective homomorphism

H!d,ord(KrHSh(V)’wnD)(R) - H!d,ord(KTSh(V),w,?)(R)

Proof. 1t suffices to prove that the map
H (k. SMV),wp) > H{' (5, Sh(V),w?)

dual under pairing ([6:3.2)) to the inclusion of forms of level K, in forms of level K, is
given by the trace. But since the duality pairing is just integration, this comes down to
the following observation: the adelic integral of a K., invariant function f against a K,
invariant function g is the same as the adelic integral of g against the sum of K, /K-
translates of f (and there is no need to correct the normalization of the measure).

The final assertion then follows from Lemma O

Now we localize again at m,. As in Hypothesis [[.2.8 we can identify
Homr, , (C, ® S,?f‘c/l, Sﬁr_dv) ~ Homr,, (C; ® T\, ® LTy ® 1)
= Homr,, (Cy ® Ty, Tre) ® Endp(Ly)
~ T, ® Endg(Iy)

with appropriate modifications to accomodate a function ®x as above. We are using
Hypotheses [[.1.7] and [7.2.5] systematically.



112 ELLEN EISCHEN, MICHAEL HARRIS, JIANSHU LI, AND CHRISTOPHER SKINNER

Proposition 7.2.13. With respect to the identifications
HOIIl’]I‘T’mb(Cr ® S;ir‘c/l’ S?f_dv) ~ Trﬁ ® EndR([ﬂb),

Hypothesis [7.2.10, and the isomorphism G : ']ATW — T, of the Gorenstein hypothesis,
the measure {¢, .} defines an element

L(¢s) €im T, ® Iy ® Iy — T ® Endg(Ir)
T
Moreover, if k' is a second sufficiently regular character, then L(¢.) and L(¢.1) are
identified with respect to the identifications T — Tkr k0. = Tk 1.0, of Theorem
[71.1. Thus the measures {¢rx} and {¢, 1} define the same element L(¢) € T ®
Endgr(Ip). Conversely, any such L(¢) defines a measure {¢, .} for any sufficiently
reqular k.

Moreover, the element L(¢y) does not depend on the choice of identifications in Hy-
potheses[7.1.7 and[7.2.3), provided they are compatible with the choice of G, in the sense

of Lemma [7.2.6

Proof. This is a consequence of Lemma [[.2.12] and follows by unwinding the definitions.
O

Note that G, is independent of choices, provided that they are compatible in the sense
of Lemma [7.2.6]

The above construction adapts easily to accommodate the compact p-adic Lie group
Xp,. We have seen that a V-valued measure on X, x T" is the same thing as a measure
on X, with values in V-valued measures on 7. In particular, one obtains a V-valued
measure on X, xT" from a collection, for all characters a of X, of V-valued measures ¢,
of type a on T satisfying the congruence properties of Lemma [5.1.3]

Definition 7.2.14. Fix a level v, a character k, and an O-algebra R. Let A: T - R
be a continuous homomorphism. Say A is classical of level p" and weight x if it factors
through a homomorphism (still denoted) X : T, . — R, which is of the form Ay for some
antiholomorphic automorphic representation m of type (rk, K;) with K, = KPI,. for some
open compact KP c G(A?), as before

Let X (k,r, R) denote the set of classical homomorphisms of level p" and weight k with
values in R; let X1%%(R) = U, X (k,7, R). Any A € X195(R) is called classical (with
values in R).

When R =T, ., we let Migut : Trx = Tr . be the identity homomorphism. When 7 is a
cuspidal anti-holomorphic representation of weight k as above, let Aigutx * Tr e = Ty
be Aiqur followed by localization at m.

When « is sufficiently regular, the character Ay, deserves to be called classical because
its composition with any map from T, , to a p-adic field is attached to a classical modular
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form of weight . The relationship between L(¢) and the elements ¢, ., is given by the
following proposition.

Proposition 7.2.15. Let x be a character of X,,. Let ¢ = do(x,t) be a measure on

X, xT as in Section with shift sh: sh*(x) = (a(x),B8(x)) Let p be an algebraic
character of T, k= p-a(x). Fizx a cuspidal anti-holomorphic representation m of weight
K satisfying the hypotheses above. We consider L(¢y) = pr x(z)do(z,t), localized at

m, as an element of T ® Endr(I). Let L(¢y,k,7) denote the image of L(py) in
T, ® Endr(Iy). Equivalently,

L(¢y, k,1) = prXTX X Maut,xdo(z,t),
where integration against Aiqut,x amounts to the projection
T - TenrA k=T
followed by localization at m,.
Then L(¢y,k,1) corresponds to the element
by,rx € Homr, , (Cr ® ﬁff‘(}, S,?fv ® x o det)

under the identifications in Hypotheses[7.1.7 and [7.2.5, compatible with the Gorenstein
isomorphism G, (from Proposition [7.2.13).

Proof. This is just a restatement of the definition of the element L(¢) € T® Endgr(I)
introduced in Proposition [7.2.13] O

The following is now an elementary consequence of Proposition [7.2.13]

Proposition 7.2.16. (Abstract p-adic L-functions of families) Let ¢ = d¢(x,t)
be a measure on X, x T' such that, for each character x of X, [Xp x(x)do(x,t) is a V-
valued measure ¢y of type x satisfying Hypothesis[7.2.3. Fix a cuspidal anti-holomorphic
representation w satisfying the hypotheses of the previous sections. Then there is an
element L($) € Ax,®T® Endg(I) such that, for every R-valued character x of X, the
image of L(¢) under the map

x® Id: AXpé’T ® EndR(LTb) ->Te® EndR(Lrb)

given by contraction in the first factor, or equivalently integration against x with respect
to the first variable, is the element L(¢py) of Proposition [7.2.15

The following standard fact (see, for example, [Hid88, Lemma 3.3]) shows that the
specializations of Proposition [.2.15] determine the abstract L-function L(¢):

Lemma 7.2.17. The V-valued measure ¢ = ¢, of type x and the abstract L-function
L(¢) are completely determined by their integrals against elements of the sets X (k,r,Oc,,)
for any fized sufficiently regular k.
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We write

(7.2.6) Endp(Ip) = I ® Iy ~ Hom(I; ® I+, R).

Then for any ¢ ® ¢ € I ® I, we have a tautological pairing

(7.2.7) L(x; 0,735, 0 ® 9") = [L(dy, 5, 7), 0 ® ¢ i € Ty s
where [eo,e];,. is the tautological pairing

Hom(I, ® I»,R)® I, ® I - R.

We reformulate Proposition [[.2.15]in terms of Equation (T.2.7).

Proposition 7.2.18. Let R be a p-adic ring. Let ¢ be an admissible R-measure on X,xT'
as in Section[5.2.7). Assume Hypotheses[T.1.4), [7.1.5, and[T1.7. Let ¢ ® ©" € I,®1I as
above. Then there is a unique element L(¢, p®¢") € AXP7R®T such that, for any classical
X:Xp » R* and any X € X (k,r, R) (with r sufficiently regular), the image of L(¢, p®p")
under the map AXP,Ré)']I' — R induced by the character x ® X equals L(x,$,7, K, ® ©").

7.3. Classical pairings in families. The following is essentially obvious. The notation
()3 is as in (6.32).
Lemma 7.3.1. Let h € ngg-(Kr,(’)), Q€ Hj;;”“d(Kr,O)[w], in the notation of Section
[6.0 Then the map

T - O; A = (A(h),p)3"

K

takes A to Az (A)(h, )5,

Proof. We have

(A(R), @) = (h, AP (@))3 = A (AN (B, )3 = An(A) ()
O

Note that h is not assumed to be an eigenform in Lemma [[.31] However, the pair-
ing with an eigenform for A\ factors through the projection of A on the (dual) A\.-
eigenspace. In general, this projection can only be defined over O[%]. We write h =
rleS(K k) At R where azr € (’)[%] and h,s is in the A\;-eigenspace for T. Then under
the hypotheses of the lemma,

(7.3.1) (h, @)s = an (b, @)

where of course h, € 7’.

The denominator of a, is bounded by the congruence ideal C(7) = C(n"). In what
follows we are making use of Proposition [6.6.8 and Corollary [6.6.9]
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Lemma 7.3.2. Let g€ Hs}grd(Kr,(’))[ﬂ]. Then the linear functional
hoes Lo(h) = (h, o)

belongs to ng‘d/(Kr,O)[w]. Moreover, the restriction of Ly(h) to S:f‘(}(Kr,O)[ﬂ'] takes
values in the congruence ideal C(m) = C(n*) c O.

Proof. The claims follow from Lemmas [7.3.1] and [6.6.7], respectively. O

The functional in the last lemma can be rewritten as an integral. Recall that I (resp.

T . . . . . - P
I+) was identified with an O-lattice in ﬂ;'ord ® &, (resp. mp* ord g ﬂgf . Recall also

that we have dropped the subscript « for the moment, and so we are writing O in place
of O . In order to facilitate comparison of the p-adic and complex pairings, we let R be
a finite local Z,)[Ar]-subalgebra of C that admits an embedding as a dense subring of

O, and let IA,Th r and IAm r be free R-modules given with isomorphisms
jﬂbﬂ ®r O > jﬂ—b; [AmR ®r O — jﬂ.
The following lemma is then just a restatement of (G.3.3]).

Lemma 7.3.3. In the notation of the previous lemma, let ¢ € I. If we identify h
as above with an element of HO(Pp(V), Kp: Ao(G) ® W) and ¢ with an element of
HYPBL(-V),Kp; Ao(G) ® W.wyp), as in Equation [©IT)), we can rewrite

Ly(h) = h —-a(k) da.
= [ o @@ () dg

Proof. Abbreviate [G3] = G3(Q)Z(R)\G3(A), dgY = x(det(g2)) 'dgo. By doubling the
formula in Lemma [7.3.3] - in other words, by applying it to the group G3 — we obtain

L,gy (7‘683D(/€, m, XO)E?&?W“) (m))
= [ DO OB 4y (a1.2).m) () (92) )" g

Comparing this with Equation (@.1.3) and the definition of the zeta integral, we obtain
the equality. ([l

8. LOCAL THEORY OF ORDINARY FORMS

8.1. p-adic and C*-differential operators. The notation (x,x) and (7,3) is as in
Corollary [4.4.9] and Proposition E.411l1 Parts (a) and (b) of the following proposition
are in [Eisl6], to which we refer for explanation of undefined terms.

Proposition 8.1.1. (a) For (7,5) and x as in [[.].18, and for any prime-to-p level
subgroup KP, there is a differential operator

0% (7, 8) = 0 (p(7,8)) : Vi (Ga, KP,0) - V(Gy, KP,0)
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compatible with change of level subgroup, and with the following property: For any level
KP, for any form f e M,(G4,K?,O), and any ordinary CM pair (J§, ho) as in Section
[3.2.8, we have the identity
Ruc, gt © T€S 11 1y © 0% (7, 8)(f) = T8y, 11 1y © 05 (7, 5) © R x (f)
in the notation of Proposition [3.2.06.
(b) Let (k,x) be critical as in Corollary [{.7.9. Fiz a level subgroup Ky c G4(Ajy)

and a subgroup Ky x Ko c G3(Ay)n Ky. The composition of Gi(i, $) with the pullback
ress = (v, 013)" defines an operator

0(k,x): Vi (Ga, KP,0) = S v (K1) ® Sip v (K2) ® x o det;

which coincides with the operator 6;%(&,5) upon pullback to functions on G4(A) and
restriction to G3(A) (with respect to the maps [2.9.2)) for G3 and Gy4).

(c) Under the hypotheses of (a) and (b), there is a differential operator
ehOl(K’)X) : VX(G47KP7O) e V(G4,Kp,0)

whose composition with the pullback ress coincides with the operator D™'(k,x) upon
pullback to functions on G4(A) and restriction to Gs(A).

Proof. As mentioned above, parts (a) and (b) are in [Eis16]. The third part follows from
Eischen’s construction as well: it follows (by induction on the size of ) from the last part
of Corollary EEZ.9] that the operator D"*!(k, x) is obtained by pullback of the differential
operator attached to a polynomial P"!(k,x) € ®,P(n),. One lets 8" (k,x) be the
differential operator on p-adic modular forms attached to the same polynomial. O

The following Corollary is the p-adic version of the last part of Corollary [4.4.9

Corollary 8.1.2. Under the hypotheses of the previous proposition, for all k! < k there
are differential operators 0(k,\) : Vi (Ga, KP,0) - V (G4, K?,0) such that

0(r.x) = 3 ressf(r, k") 0 0" (k7 X).

k<K
Proposition 8.1.3. Let F'e H(Sh(Gy4),L(x)).

Assume Kk, (T,,5,),m, Xs are all associated, and let e, be the ordinary projector of[2.9.5
attached to the weight x, as in[6.5.6. Then

(8.1.1) (ex00(r, X)) (F) = exopr® o 8(7,,5,)(F).

Proof. By Corollary BT.2]l the left hand side equals
Z ex o ressf(k, /{T) o HhOl(/{T, X)-

Kki<k

It suffices to show that, for every ordinary CM point a € I g3
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(1) For &' < &, e, o reszf(k, k") o 0" (kT,x)(F) = 0 upon restriction to a;
(2) e.oressf(k, k)00 (rk,x)(F)-e.opri®od(7,,5.)(F) =0 upon restriction to a.

O'7§0'

Part (2) is a consequence of (b) of 8111 We show that the expression in (1) is arbitrarily
divisible by p. More precisely,

Lemma 8.1.4. For any k! < k, the ordinary projector e,, = li_II)lN UN! converges absolutely

p7H
to 0 on S.+(K,;R).

Proof. The point is that, for each w,j, Uy, jx = |/£'(tw,j)|;,1Uw7j, with ' defined as in
2.6.111 Thus
Upﬁ = H |/{/,—1 '“T’,(tw,j)lp . Uw,j,nT'

w?]

The condition k' < & is equivalent to the condition that the p-adic valuation of [Tw,; kL

K1 (ty ;) is positive. Thus U, , has p-adic norm strictly less than 1 on S,+(K,;R), and
it follows that e =lim Ué\fé acts as 0 on S, (K,; R). O

Part (1) above now follows from the fact that the ordinary projector commutes with
the differential operators. O

8.2. Ordinary representations and ordinary vectors. For this section, let G = G;.
For each prime w | p, let Gy, = GL, (K ). Recall that by ([2.2.2]) and ([2.2.3) there is an
identification
(8.2.1) G(Qy) — Qy x ] Gu.

wedy
Let By, ¢ GL,(K,) be the (non-standard) Borel consisting of elements g = (‘3 [B)) with
A e GL,, (K,) upper-triangular and D € GLy, (K,,) lower-triangular. Let T, c By,
be its diagonal subgroup and B,, c B, its unipotent radical. Let Igm c GL,(Oy)
be the subgroup of elements g such that gmodp” = (61 g) with A € GLg4, (O /p"Ou)
upper-triangular and D € GLy,, (O,/p"O,,) lower-triangular (this is the mod p" Iwahori
subgroup relative to the Borel B,,). Let I, c IBM, be the subgroup consisting of those g
such that A and D are unipotent. Under the identification (82.1)) the subgroups I,. c I’
of G(Z,) defined in Section 2.5] are identified as

(8.2.2) )5z [] 1, and I, — Z5 T] Lu,-
wedly wedy
Let 6, : By — C be the modulus character: if ¢ = diag(ty,....,t,) € Ty, then §,(t) =
|tn71'“tbw7awtlfn __.tbwflfaw|
1 Ay Ay +1 n P

8.2.1. Ordinary holomorphic representations: local theory. Let w be a cuspidal holomor-
phic representation of G(A) of weight type (x, K) as in Section BAT with & = (ks ) ey,
Ko € 2%, assumed to satisfy:

(8.2.3) Ko + Kge 2N, Yo €Xg.
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Let Rnorm = (ﬁnorm,a) with Rnorm,o = Ko — ba-

Via the identification (8.2.1)), the p-constituent 7, of 7 is identified with a tensor product
Tp 2 fp ®uex, T With p, a character of Q) and each m, an irreducible admissible
representation of Gy,.

Recall that the Hecke operators uw] |Knorm (tw 7])|p wj, WeX,and 1 <j<n, act

on the spaces ﬂfr = WZI)T ® (®g¢pﬂ'g) through an action on the spaces WZI)T
on the latter spaces as the usual double coset operator Irth-Ir, and, furthermore, the
generalized eigenvalues of the u, ; are p-adically integral (cf. Section 2.6.9} since m =1
the subscript ¢ has been dropped from our notation, following our conventions). In

particular, the ordinary projector e = limmnm(nwegp [Ti U ]) " acts on each 7T . From

Uy,; acts

the identification ), = 1), ®yex, T and (Imb we find that w,, ; acts on 77{1 = ®weg7r{,}” o
via the action of the Hecke operator u = |Knorm (tw 7])|p1UfU}I; on 77{1} where U GI; acts

as the double coset operator I, ,t, ]Iw . here tw,;j € Ty is the element deﬁned in Section
2.6.91 It follows that the generahzed eigenvalues of the action of the Hecke operators

uSIj are p-adically integral, and e, = limm_,oo(Hg‘:l Slj ™ defines a projector on each
Tw.r
T

Suppose that 7 is ordinary at p. Recall that this means 7TI7" # 0 if » > 0 and that, for
any such r, there is at least one vector 0 £ ¢ € 7TI7" such that e-¢ =¢. We call such a
¢ an ordinary vectoE for m,. The existence of an ordinary vector is equivalent to the
existence of a ¢p e p , > 0, that is a simultaneous eigenvector for the Hecke operators
Uy,; and having the property that w, ;- ¢ = ¢y j¢ with |y i, = 1. It follows from the
identification 7, = pp ®yes, Ty that m, being ordinary at p is equivalent to u, being
unramified and each 7, being ordinary, in the sense that there exists ¢,, € 77,{,’“””', r >0,
such that ey, - ¢ = Py; we call such a ¢, an ordinary vector for m,. The existence of an
ordinary vector for m,, is equivalent to

(a) o £ 0 for all 7> 0;

(b) for each r as in (a) there exists 0 # ¢, € Wiw such that ¢,, is a simultaneous
eigenvector for the ug%, 1 < 7 < n, and having the property that ugg “Qw = Cw,jPuw

T

with |Cw7j|p =1

Note that if ¢, € m,, w € X, are ordinary vectors and p, is unramified, then ¢ =
®uwex, w € Tp is an ordinary vector for .

Lemma 8.2.2. Let w € ¥,,. Suppose m,, is an irreducible admissible representation of
Gy such that (a) and (b) above hold for a weight k satisfying inequality (823]).

1484t note that this notion depends a priori on the character Knorm, which in turn depends on k and
the signatures (as, bg)agg,c. It turns out that there is at most one Knorm with respect to which a given
mp can be ordinary, but in general the signatures are not uniquely determined.
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Iw,r

(i) Up to multiplication by a scalar, there is a unique ordinary vector Qﬁrd €My
gbgfd 18 necessarily independent of > 0.

(ii) There exists a unique character cu, : Ty — C* such that my, — Indg;‘jaw is the
unique irreducible subrepresentation and gbﬁfd 18 identified with the unique simul-
taneous US’Ij—ez’genvector, 1 < j <n, with support containing Byly ., for v > 0.

. _1¢-1/2
(In particular, ¢y j = |nnorm(tw7j)|p15w / ay(tw.)-)

Proof. Our proof is inspired in part by the arguments in [Hid98, §5]. Let V' be the space
underlying the irreducible admissible representation 7, of Gy, = GL,(K,), and let Vg,
be the Jacquet module of V' with respect to the unipotent radical B}, of the Borel B,,.
Let N = n, Iy ,; this is just By, n GL,(Oy). For each j=1,...,n, let

_ Jdiag(ply, 1n-5) j<ay
J diag(pla,,1n-j,plj—a,) J> Guw.

We let the double coset U; = Nt;N act on VN = u, VIer in the usual way: if Nt;N =
W;zi ;N then U;-v = ¥; 7, ;-v. Then U; acts on the subspace V' as USI; By the same
arguments explaining [[id98, (5.3)], VV decomposes as VV = Vn]yl @ VN | where the U;
act nilpotently on Vgl and are invertible on VZ]T\[U Then, just as in [Hid98], the natural
B,-invariant projection V s Vp,, induces an isomorphism

(8.2.4) VN Vg, ve o,

inv
that is equivariant for the action of the Uj.

Let ¢ € V" be an ordinary vector for some 7: ¢ is an eigenvector for each uj =
|/£norm(tj)|;1Uj with eigenvalue ¢; such that |¢;|, = 1. In particular, ¢ € VN . As U; acts

on Vg, via 8,(t;)"'t;, it then follows from (824]) that there must be a B,-quotient
L: VBw - (C()\)
with A : T, — B,,/BY — C is a character such that A(t;) = |[knorm (t;),0(t;)c; for all

j=1,..,n. Let o= \0~'/2 and let I(«) = Indg;‘j () be the unitary induction of « to a
representation of G,,. By [Cas95, Thm. 3.2.4],

Homg,, (V,I(a)) — Homp(Vi,C()), ¢~ (v~ p(v)(1)),

is an isomorphism, from which we conclude that there exists a non-zero G,,-homomorphism
V < I(a), v f, (which is necessarily an injection since 7, is irreducible) such that

(8.2.5) L(v) = fu(1).

By the characterization of A\, 8 = |/{mrm|;,15;,1)\ = |/€n0rm|;)15;,1/ 2 is a continuous char-
acter T,, > C* such that each 3(t;) is a p-adic unit. From the definition of the ¢; it then

follows easily that (t) is a p-adic unit for all ¢ € T,,. Let W be the Weil group of T}, in
Gy. For x e W, let B, = |/~inorm|;,15[ul/2ax, where o®(t) = a(xtz™!). We claim that the
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values of 3, are all p-adic units if and only if x = 1. If the values of 3, are all p-adic
units, then

Bal BE(t) = |Knorm (wta™ 1)) 0 (ata )72

is a p-adic unit for all ¢ € T),,. As ¢, is the composition of |-|, with an algebraic character of

Ty, it follows that the above values must all be 1. That is, the character 6 = |kporm |p(5;}1/ 2

satisfies 8% = 6. Recall that if « is identified with a dominant tuple (Ko, (ko )gex,) as in

(26.2) then

aw b
Fonorm (diag(t1, .., tn)) = T[] [[o(t:) ™ [T o (fayss) oei ™.
o =1 j=1

Po=pw
In particular, letting
m, = {Zo,pa—pw(“mi —by) z < Gy
- Za,pozpw("fac,i - aw) 1> Qo

we have
n

|"in07’m(diag(tla '-'7tn))|p = H |t2|;)nl

i=1
It follows that
. M+l ma, + P mg, -2 my, e twsltbe
O(diag(t1, ..., tn)) = |t g R oL
From the dominance of x and the inequality (823)) it follows that
M1 2Mg 2 2Mg, 2Mp 2 Mp_1 22 Mg, +1,
and so
n-1 by — ayw by —1 - ay 1-n
my + > > Mg, + > My + —————— > > Mg, 41+

2 2
That is, 6 is a regular character of T},, and therefore 6* = 6 if and only if z = 1. This
completes that proof that the values of 3, are all p-adic units if and only x = 1.

As 8, # 8 for all x # 1, the characters o, x € W, are all distinct, and hence the Jacquet
module I(a)p, of I(«) is a semi simple B,-module and isomorphic to the direct sum
®2ew C(a®6Y?) (cf. [Hid98, Prop. 5.4]). The inclusion V < I(a), v = f,, induces a
B,,-inclusion

(8.2.6) Vs, = 1(a)p, = @pawC(a”5)/%).

It then follows from (8.2.4)) that V; is a sum of one-dimensional simultaneous eigenspaces
for the U; that are in one-to-one correspondence with those characters a®5 Y 2 xeW,

that appear in Vp via (82.6)); the eigenvalue of u; = |[Kporm (%), lu ; on the eigenspace cor-

w

responding to a8'/2 is B(tj). As the values of 3, are not all p-adic units if  # 1, it fol-
lows that the space of ordinary vectors in V' is one-dimensional; this proves part (i). It fur-
ther follows that the ordinary eigenspace must project non-trivially to C(\) = C(ad'/?)
via the composition of (824 with ¢, and that all other eigenspaces map to 0 under this
composition. As this composition is just v — f,(1) by (8235, part (ii) follows easily. [
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Corollary 8.2.3. Suppose k satisfies 823) and mp is ordinary. Up to multiplication by

a scalar, there is a unique ordinary vector ¢°*4 e WII,T for > 0; ¢°*4 is necessarily inde-

pendent of r. Furthermore, under the identification mp = i), ®yes, Tw, <;5°rd = Quey, Zfd,

with ¢ as in Lemma [82.2.

The following lemma will aid in the computation of certain local zeta integrals involving
ordinary vectors.

Lemma 8.2.4. Let w, my, and k be as in Lemma [822Z2. Let 7, be the contragredient
of my and (-,-),, : Ty x M, = C the non-degenerate Gy, -invariant pairing (unique up to
scalar multiple).

(i) Let ay, be as in Lemmal8Z2(ii). Then m,, is isomorphic to the unique irreducible
quotient of Indg;’j al: Indgz gt Y.
(ii) Forr >0, let ¢, , €, be the image of the vector in Ind%ga;} that is supported
on BylI,. Then c(my,r) = ((bﬁfd,qﬁfv’r)w is non-zero and depends only on r.
(iil) Let 0 # ¢ € wlr with e ¢ = c(¢)p%. Then

<¢7 qbz\i;,r)w = C(¢)<¢gd7 ¢1\1},7’>w‘

Proof. Part (i) follows from the identification of Indg’;u”a;} as the contragredient of

Indg;‘jaw (cf. [Cas95l Prop. 3.1.2]). The pairing (-,-) : Indg;”aw x Indg’;u”a;} — C corre-
sponding to this identification is just integration over GL,(O,) c Gy:

(08 = [ o, RIS )k, g e IndGran, o' e IndGra),

(cf. [Cas95, Prop. 3.1.3]). For part (ii), let ¢°d e IndCB'Y;’jaw correspond to ¢4 as in
Lemma 8.2.2(ii) and let ¢ € Indgz ! be the function supported on By I,. Then

G I N OO

As B,I, nGL,(0,) = I?, and since for k = tk’ € I = T,,(Oy,) I, we have (k)" (k) =
aw(t)ag ! (t) = 1, it then follows that

Ty, 1) = (qSZfd, fw)w = /10 dk = vol(I°) # 0.
This proves part (ii).
L
J

For part (iii), write ¢ as a sum of simultaneous generalized Ug -eigenvectors:

d=c(d)dnt+> ¢i, e ¢;=0.
i=1
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Let ¢ (resp. ¢°*4, ;) be the function in Indgz v, that corresponds to ¢ (resp. ¢4, &;)
as in Lemma RB.2.2(ii). Then, for r >0, ¢;i|0 =0, and so

(6.600= [ o RIS EE= [ o)) (k)b

=c(0) [, " (R () = (D) (9", 6 b
O

8.2.5. Anti-ordinary anti-holomorphic representations: local theory. Let m be an anti-
holomorphic representation of G(A) of type (k,K) as in with x satisfying the
inequality (823]). This the case if and only if 7" is a cuspidal holomorphic representation
of type (k, K) as considered in the preceding section.

For each r > 0 the Hecke operators uy, ; = |Knorm (tw,j)|pUs wjr WEXpand 1 <j<m,

P
acts on WII,T as the usual double coset operator It ;I,. Furthermore, the generalized

elgenvalues of the w,, . are p-adically 1ntegral In partlcular the anti-ordinary projector

act on the space ﬂ)ff = 7rIIf ® (®g¢p71’g) through an action on the space ml": Up.j

w,j

= limy— o0 (Twes, [Tit1 Uy ;)
(Vla the isomorphism (8.2.I)) we find that u,, ; acts on 7rIIf = ®w€2p7rfu ’
the Hecke operator uGL |/~£nmm(tw,j)| lUﬁ Ij"*, where Uw7 j’7 acts as the double coset
operator Iw7rtw’j w,rs here tw,j € Ty is the element defined in Section [2.6.91 It follows
that the generalized eigenvalues Of the action of the Hecke operators ug
I

™! acts on 7r . From the identification 7, = pip ®wes, T

T

via the action of

IJ‘T are p-adically

integral and ey, = limm%m(ﬂyzl )m defines a projector on 7

We say that « is anti-ordinary at p of level r if 7T # 0 and there exists 0 # ¢ € 7TIT such
that e” - ¢ = ¢. We say that such a ¢ is an anti- ordznary vector for m, of level r. Under
the identification ), = 1), ®yex, Ty, the existence of an anti-ordinary vector of level rinmT

is equivalent to p, being unramified and, for each w € ¥,,, there existing 0 # ¢,, € 7rw "0
such that ey, - ¢y, = ¢dy; we call such a ¢, an anti-ordinary vector for m, of level r.

Lemma 8.2.6. Let w € X, and m, be a constituent of m, as above.

(i) The representation my, is anti-ordinary of some level v if and only if m,), is ordi-
nary, in which case mw, is anti-ordinary of all levels r > 0.

(ii) If my is anti-ordinary of level v, then there exists a unique (up to nonzero scalar

multiple) anti-ordinary vector Do ord ¢ m]u“” of level r; it is characterized by

(pord gv.ordy i and (¢xord )w =0 for all ¢ € T belonging to a gener-

w,r w,r

. . GL,- . L.
alized eigenspace of some u,, ; with non-unit eigenvalue.
i

Proof. Suppose m,, is anti- ordlnary of some level r. Then 771 # 0 and there exists a
simultaneous eigenvector ¢3, Ord € ﬂw“’ " for the uGI; with p-adic unit eigenvalues a(j,7).
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Let (-,-),, : mw x m,, = C be the G\,-equivariant pairing. Then we have

(8.2.7) a(jﬂ,x(ﬁa—ord b = (USP’_ . ¢a—ord b = ( a-ord uGL Vo

w,r w,r w,r  Yw,j

for all ¢ € m, wr 1t follows that the action of each ug% on 712/0’ “" has an eigenspace

with eigenvalue a(j,r) (which is a p-adic unit). To see that there exists a simultaneous

GL

w,j

subspace that is a simultaneous eigenspace for ung, .. ,ugljfl with respective eigenvalues

a(1l,7),...,a(j—1,7). Then by the commutativity of the ugbs, the identity (82.7]) holds
for all ¢ € Vj_1. In particular there is a non-zero (maximal) subspace of V; c V;_; which
is an eigenspace for u w1th eigenvalue a(j,r). It follows from induction on j that there

g%—elgenvector o € 7rw , 7 =1,....,n, with p-adic unit

eigenvalues a(j,7). That is, 7, is ordinary.

such eigenspace we use the commutativity of the w,, %s: Let V;_1 c m,/ v-Iwr 16 a maximal

exists a non-zero snnultaneous U

Conversely, suppose that 7, is ordinary, and let (bzvu’ord € 7, be an ordinary vector with

GL-— eigenvalue ¢(j) (which is a p-adic unlt) Then for r > 0 we have

(8.2.8) ()¢, D% ord) <¢7 vord>w _ (Ug};_(ﬁy @/U’Ord)w
GL,-

for all ¢ € 7TIw ". It follows from the non-degeneracy of (-,-),, that there exists a u,, w "

eigenvector ¢; , € qSI“” with eigenvalue ¢(j). Using (82.8)) and the commutativity of the
GL,-

w, - we find, as in the preceding proof of the ordlnarlly of m,, that there exists a non-

GL,—- .
zero simultaneous wu,, j -eigenvector ¢ € 7r , j =1,...,n, with p-adic unit eigenvalues

¢(7). That is, m,, is anti-ordinary of level r for all r > 0.
(o3 ord ¢ m,}“ " be an anti-ordinary

vector of level 7. As shown above, 7, is ordinary and gbtvuord e " We note that

Suppose now that 7, is anti-ordinary of level r, and let

ﬂ_VIw'r (C¢Vord®v® @‘/;f

with each V; a simultaneous generalized uw ]—elgenspace with at least one of the (general-

ized) eigenvalues not a p-adic unit; this follows from the uniqueness of the ordinary Vector
(see Lemma B2.2((i)). Since (8Z7) holds for all ¢ € V; it follows that (¢4 V;),,

w,r
This proves that ¢z ord ¢ m{}“ " is characterized (up to non-zero scalar multiple) as stated

in part (ii). The un1queness also follows.

0

Using this we can deduce an analog of Lemma R2.2)(ii):

Lemma 8.2.7. Let we X, and 7, be a constituent of m, as above. Suppose m,, is anti-
ordinary. Then there exists a unique character B3 : Ty, - C* such that IndG;‘j Buw = Ty

w,r

is the unique irreducible quotient and the anti-ordinary vector ¢ ord ¢ 7rlIU of level r is

(up to mon-zero scalar multiple) the image of the vector in IndB;‘j with support By .
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In particular, the (ﬁi}ﬁfd, r >0, can be chosen to satisfy
a-ord _ ja-ord !
Trlw’r/lw’r,(ﬁw’r, = Quyr > ro2r.

Proof. Since m,, is anti-ordinary, it follows from Lemma B2.6{(i) that =, is ordinary.
Let a,, be the unique character of B,, associated with 7, as in Lemma B2.2)(ii). Let
Bw = a;ul. As m, is the unique irreducible subrepresentation of Indgz“jaw, T 18 the
unique irreducible quotient of Indgz Bw. Furthermore, it follows from Lemmas [B.2.2](ii)

satisfies the conditions that characterize qﬂ',‘fd in Lemma R2.0(ii). The uniqueness of

By easily follows from the uniqueness of o, and Lemma [R.2.41 O
Corollary 8.2.8. Suppose k satisfies Inequality (823)). Then m, is anti-ordinary if and
only if 7r1", s ordinary, and up to multiplication by a scalar, there is a unique anti-ordinary

vector qS‘;"Ord € 7r;?““ of level v for each r > 0. Furthermore, under the identification
Tp = Hp®uwes, , p>ord = ®w€2p¢$°rd, with qbijord as i Lemma [8.2.0.

8.2.9. The Newton polygon. Let m be a holomorphic or anti-holomorphic cuspidal auto-
morphic representation of G(A), and let m, = p1, ®yex, T be the identification corre-
sponding to (82.1]). We assume that

(8.2.9) each m, is an irreducible subquotient of Indgz Buw

for some character 3, : T' - C*. We view 3, as n-tuple By = (Buw 1, ---., Bw,n) of characters
of K7, defined by B, (diag(t1,....tn)) = [Tiv; Buw,i(ti); the characters 3, ; are uniquely
determined up to order. We define the total Hecke polynomial of w at w to be

(8.2.10) Hy(T) =11 - (@) T)(1 - o (w,)T)
i=1

The Newton polygon Newt(w,w) of 7 at w is the Newton polygon of H,,(T). Note that
Newt(m,w) = Newt (7", w).

Let ¥y = {0 € Xk | ps = puw}. Let

TS = ®oeny, Mo = ®J€Ew]D)c(TU)
in the notation of (£4.3)). Define the Hodge polygon Hodge(w,w) to be the polygon in

the right half-plane with vertices (i, ¥ yex,, Pi,o), Where (pi o+, ¢i,») are the pairs introduced
in section @412 for D.(7,).

Proposition 8.2.10. Suppose 7 is (anti-)holomorphic and (anti- )ordinary. Then Newt(m,)
and Hodge(my,) meet at the midpoint (n, Y sex., Diyo)-

In motivic terms, this says that the motive obtained by restriction of scalars to Q of
the motive attached to II satisfies the Panchishkin condition, see [Pan94]. The proof is
an elementary calculation and is omitted; it will not be used in what follows. Details will
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be provided in a future article, when the results obtained here are related to standard
conjectures on p-adic L-functions.

8.3. Global consequences of the local theory. We assume the ordinary cuspidal
anti-holomorphic representation 7 of Gy is of type (k, K;), K, = KPI,., and satisfies the
Gorenstein, Minimality, and Global Multiplicity One Hypotheses of section [[Il Let S
be the set of finite primes, not dividing p, at which K? is not hyperspecial maximal.
We summarize the implications of the local theory for the identification of automorphic
forms in 7. We let 7* denote the dual representation of 7, viewed as a holomorphic
automorphic representation of Gy. Let I, and I be as in Section We say that
the anti-holomorphic cuspidal representation of Gy is in the family determined by 7 if
there is a non-trivial character A\ of the Hecke algebra T = T, defining the action
of the unramified Hecke operators on n’. Any such 7’ is assumed to be given with
a factorization (L42). The factors 7, for w | p, are all (tempered) subquotients of
principal series representations.

In what follows, the Borel subalgebras b, are chosen at archimedean places o as in
Section 4.3l The Minimality Hypothesis allows us to choose vg uniformly for 7’ in the
following proposition.

Proposition 8.3.1. Fiz an element vg € I.. Let 7 be any anti-holomorphic repre-
sentation, of type (k',K,r), in the family determined by w. Let - denote a lowest
weight vector in the anti-holomorphic subspace of w.,, as in (EI14). For a finite prime
vESUY,, let ) be a fized generator of the spherical subspace of w,, and let ou be the
dual generator of the spherical subspace of my'. Assume k satisfies ®23). Then

(1) Forr" >>0, there is, up to scalar multiples, a unique anti-ordinary anti-holomorphic
vector ¢ (vg, ') € (' )5 with factorization (LLZ) given by

a—ord

facas (@ (v5,7)) = Pu - ® Bugsus, Pl ® Byl n ® vs.
(2) As 1’ varies, the ¢" (vg,m') €' can be chosen so that, if v’ >> 0, then
tpre” M (vg, ') = ¢ (vg,7),
where the trace map t,» is defined as in Lemma[7.2.12

Proof. This follows directly from the results in the previous sections, in particular Lem-

mas [R.2.7 and O

9. CONSTRUCTION OF p-ADIC L-FUNCTIONS

Review of notation. We recall the notation from the previous sections, because some
of it is admittedly counterintuitive. Our basic Shimura varieties are denoted Sh(V') (at-
tached to G1) and Sh(-V") (attached to G2, which is isomorphic to G1). Classical points
of our Hida families correspond to cuspidal automorphic representations denoted m and
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n?, for Sh(V') and Sh(-V'), respectively. With our conventions, 7 is an antiholomor-
phic automorphic representation of GGy, and therefore with respect to the isomorphism
Gy — Gy is a holomorphic automorphic representation of Go. Correspondingly, 7,
which can be identified with the complex conjugate of 7, is a holomorphic representation
of G1, and therefore gives rise to a holomorphic modular form — of weight &, in practice
— on Sh(V); but 7’ is antiholomorphic on Gs. The input of the doubling integral is
an antiholomorphic vector on G3 which comes from a vector w € 7 ® 7°, that will be
identified shortly; this is paired with the Eisenstein measure, which takes values in the
ring of p-adic modular forms on G4 and which specializes to classical forms of weight
k®k" on G3. We always assume that 7 and 7* are anti-ordinary at all primes dividing p;
in particular, the vector w has local components at p that are chosen to be anti-ordinary.

Since one is in the habit of thinking of Hida theory as a theory of families of holomorphic
and ordinary forms, the following lemma may be welcome; in any case, it is implicit in
the assumption that both 7 and 7 are anti-ordinary.

Lemma 9.0.2. Suppose w is an anti-ordinary and anti-holomorphic representation of
G1. Then the p-adic component 7, of m is also ordinary.

Proof. The property of being ordinary is preserved under complex conjugation, and by
twist by a power of the similitude character. On the other hand, duality exchanges
ordinary with anti-ordinary representations, by Lemma Since 7 is essentially
unitary, it follows that it is both ordinary and anti-ordinary. O

More precisely still, the anti-ordinary subspace (or submodule) of 7 ® 7" is denoted
I; ® I.,. However, it is best to view I, ® I, as a trace compatible system

(9.0.1) wy € S,‘Z{f—(Kr, R)[r]® S*fol_v(Kr, R)[7"]; tX(wys1) = wy,

with notation as in Lemma [7.2.12] Thus, in what follows, ¢ ® ¢’ € 7 ® 7°, viewed as an
anti-holomorphic form of level K, on Sh(V) x Sh(-V'), is taken to belong in I, ® I,
which we now take (with respect to the factorization I.1]) to be the space

(9.0.2) R, © 7% 18 @ g, - © ¢y, o @74 crom.

w7r77rw
wlp oloo

In other words, these test vectors have local components as in (4.1.2]), (4.1.3]), and (4.1.4]).
Moreover, we take our vector ¢ ® ©" to be integral over O. By our choice in (2.0.2), this
is then the antiordinary vector w = w, € ¥ ® 7 to which we referred above.

Note that the choice of ¢ ® ¢t and therefore of w,, depends on the level K, of the vec-
tor w however, the corresponding system {w, } satisfies the trace compatibility relation
©0.1) by Lemma B.2.7] and Proposition 3.1l In particular, the value of the pairing
with the Eisenstein measure is independent of this choice, and we can specifically take
r=d>2t as in[£.3.6], and as required for the local calculation at primes dividing p.
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9.1. Pairings of axiomatic Eisenstein measures with Hida families. We now
apply the considerations of Section [7.3] to the integral over G3. Given a fixed Hecke
character y, we let the parameters &, p, p” determine one another as in (£4.8), ([L.4.10]).
Let ¢, be as in (ii) of Lemma [.2.2] a measure on Ty (Z,) of type x for some p-adic
Hecke character x of X,. Choose = € C.(Ty(Zp),R)p" ¢ Cr.(Tu(Zy),O)p" so that (cf.

(C2.1)
(9.1.1) brp(Z) € SOV (K, R) ® SA% 1 (K, R) ® X 0 det,

For ¢ ® o' € [I; ® I;+] c 7 ® * we define (in the obvious notation)

Lgo@@(‘ﬁhﬁ)(g)
by the natural pairing of ng‘d/(Kr, R)® ngdfv(Kr, R) ® x o det with
HY (K, R)[7] @ HY Y (K, R)[n'] @ x ' odet = [I; ® In]® x ' odet
(the characters y and y~! cancel in the obvious way).
We apply this to the measure Eis, , , attached to
S ,=)dEis
XPXTH(ZP)(X )

by Lemma [7.2.2] with dFis an axiomatic Eisenstein measure as above. First, we need
to show that the discussion in Section [Z.3] applies to this situation.

9.1.1. Equivariance of the Garrett map. If A : Tk, r - C is a character, let \*(T) =
A(T"), where ® is the involution defined in It follows from (6.5.0]) that

Lemma 9.1.2. Let © be a cuspidal automorphic representation of G of type (k,K).
Then
)\ﬁ = )\Er

Let 7 be cuspidal of type (x,K), and let ¢ € 7% be an antiholomorphic vector. We
pick a Hecke character x as in Section In Section [4.1.4] we defined the zeta integral
/ -1 !/

I(p,¢", f,5) ZS(A)GS(Q)\GS(A)Ef(Sv(91792))X (det g2)¢(g1)¢" (92)d(g1, 92)-
where ¢’ € T and Ef(s,g1,92) is an Eisenstein series depending on a section f € I(x,s).
We specialize s to a point m where E(s,e) is nearly holomorphic, in other words where
the archimedean component f., of f satisfies the hypotheses of Definition We

consider the Garrett map
(9.1.2)

G(f,9)(92) = I(¢, f.m)(g2) = x "' (det g2)

When f is clear from context, we set G(p) := G(f,¢). One of the main observations of
[Gar84, (GPSR8T] is that if ¢ € m then I(p,¢’, f,s) = 0 unless ¢’ € 7", in other words
that G(¢) € Hom(7Y,C) ~ 7:

Theorem 9.1.3. If o e ™ then G(p) €.

E s s d )
Z1(A)G1(Q)\G1(A) £(m, (g1,92))¢(g1)dg1
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The forms ¢ and G(¢) are on the same group GU(V) = GU(-V') but on different
Shimura varieties. The restriction of Ef(m,e) is a holomorphic form on Sh(V,-V),
which means it pairs with an anti-holomorphic form on Sh(V') to yield a holomorphic
form on Sh(-V). In terms of parameters, this becomes

Corollary 9.1.4. The Garrett map defines a homomorphism
I(Xf7m) - HomTK,n(H!O(KSh(V)vwl@)v7H!(](KSh(_V)7w*(nF)))v
- HomTK,n(H!d(ShK(V)vwf? ® L(_’%))?H!O(KSh(_V)vw*(nF)))v

Equivalently, letting Homr, , , denote the space of b-antilinear homorphisms, Cé}z o
G(e,e) defines a homomorphism

I(xg,m) - Homr,, ,(H (g Sh(V),wx)", H (k Sh(V),w,))

The factor L(—k) was reinserted in the second line in order to respect the Hecke algebra
action. The action of Tk , on L(-x) factors through the similitude map.

Lemma 9.1.5. Let dEis be an axiomatic FEisenstein measure as in Definition [ 3.2
Then dEis satisfies the equivariance property of Hypothesis [7.2.3

Proof. This corresponds to the equivariance property of the Garrett map stated in Corol-
lary 0.1.4] O

9.1.6. Pairings, continued. Thanks to Lemma [0.T.5] we now proceed as in Section [7.3
In order to guarantee that our global pairings are compatible with the local calculations
in Section [4], especially the local calculations at primes dividing p, we choose test vectors
cp € ™ and ¢’ € w° that are anti-holomorphic, anti-ordinary, and integral over O, as
above. Substituting ¢p" for Z in the above discussion, with ¢ € C,.(Tx(Zy), R) for some
R c O and p as above, we find

. hol
(9.1.3) Lygy (/XPXTH(ZP)(X,¢pU)dEZS) = D(X) * Lygyr (ressD(k,m, x0) Eyo 0 (M)).
Proposition 9.1.7. Assume w satisfies Hypotheses[7.1.53, [7.1.2, [7.1.5, and[7.1.7. Let ¢

and ¢ be respectively elements of R-bases of I, and I,. Suppose (x,¥p?) € Yﬁl“ss, with
e Co(Tu(Zy), R) with x =|| ®||™xu, m >n. Then we have the equality

L,gy (f (x,wp”)dEiS) = D(x) - I(, %", D(k,m,X0) " (xXu, "), m)
XPXTH(ZP)

Proof. Abbreviate [G3] = G3(Q)Z(R)\G3(A), dgX = x(det(g2)) 'dg. By doubling the
formula in Lemma [.3.3] — in other words, by applying it to the group G3 — we obtain

L, (7‘683D(/€, m, XO)E?(O)?WU) (m))

= [ ) PRI X B ) (. g2).m) 2(01) (a2) (1) .
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Comparing this with Equation (@.1.3) and the definition of the zeta integral, we obtain
the equality. O

In view of our choices of local vectors in ([@.0.2]), Corollary 0.1.8] below is then a conse-
quence of the local computations summarized in Proposition L6.1] and of the axiomatic
properties of the Eisenstein measure summarized in Definition [5.3.2] and Corollary [5.4.3]

Corollary 9.1.8. Under the hypotheses of Proposition [9.1.7, suppose ¢ and ¢’ admit
the factorizations (Q.0.2)),. Let the parameters K, p, p* determine one another as in
Inequalities ([L48) and Equations ([{410). Then we have the equality

L / ) V)dEi =D I, v b) v
o0 ( ) 6 0 )ES) = DOOTL L o)

; 1
= (0, ¢") - Ip(x, £) oo (X, p¥ ) Is L (m + 5T Xu)

where the factors are defined as in Proposition [{.6.1]

9.2. Statement of the main theorem. We reinterpret the identity in Corollary [0.1.§]
in the language of Proposition [.2.18]

Corollary 9.2.1. Under the hypotheses of Corollary [91.8, there is a unique element
L(FEis,p ® ¢*) € Ax, r®T such that, for any classical x : X, — R*, the image of
L(FEis, ¢ ® ¢") under the map AXP,R@@']I' — R induced by the character x ® A, equals

; 1
(0, 0") - I (x, £) oo (x, p”) IsL® (m + 57T Xu)-

Here A\ is the character of T defined in section [6.5.8, and the local factors are defined
as in Proposition [{.6.1]

In the language of Corollary this admits the following reformulation. The state-
ment is in terms of the highest weight x of the (holomorphic) representation dual to 7
and a Hecke character x. Let the algebraic characters k, p, p¥ determine one another,
relative to a given x, as in Inequalities (£.4.8)) and Equation (£4.10]).

Main Theorem 9.2.2. Let 7 be a cuspidal antiholomorphic automorphic representation
of Gy which is ordinary of type (k,K), and let T = T, be the corresponding connected
component of the ordinary Hecke algebra. Let ¢ and ¢" be respectively elements of R-
bases of I and 1. Assume  satisfies the following Hypotheses:

(1) Hypothesis[7.1.4) (the Gorenstein Hypothesis)
(2) Hypothesis[7.1.3 (the Global Multiplicity One Hypothesis)
(3) Hypothesis[7.1.7 (the Minimality Hypothesis)

There is a unique element
L(Eis, o ® ¢") € Ax, r®T
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with the following property. For any classical x = || o |["xy : X, = R, the image of
L(FEis, ¢ ® ¢") under the map AXP,R@@']I' — R induced by the character x ® \; equals
L¥(m+ 5,7, xu)

b
e(m) - <g’[i]>lw(x,R)ISLp(m,ord,ﬂ,Xu) 0. )

Here M\ is the character of T defined in Section [6.5.8.

Proof. This follows from Corollary 0211 after we write Q[7] = ¢(7)Qx = ¢(7)Q;" as in

(b) of Corollary It follows from Corollary that the factor (5’[—? is necessarily

p-integral. O

9.3. Comments on the main theorem. Even in the setting of ordinary families of
p-adic modular forms on unitary Shimura varieties, this should not be considered the de-
finitive construction of p-adic L-functions. We list some aspects that call for refinement.

Remark 9.3.1 (The Gorenstein Hypothesis). It is often possible to verify the Gorenstein
hypothesis when the residual Galois representation attached to 7 has sufficiently general
image, using the Taylor-Wiles method. See [Pilll] and [Harl3b] for examples. On the
other hand, it is certainly not valid in complete generality. Since the Gorenstein condition
is an open one, one can obtain a more general statement by replacing Ax,, r®T by the
fraction fields of its irreducible components. The method of this paper then provides
p-adic meromorphic functions on each such components, which specialize at classical
points as indicated in the Main Theorem.

Remark 9.3.2 (The Global Multiplicity One Hypothesis). This is already known for an
automorphic representation of a unitary group such as G; whose base change to GL(n)
is cuspidal, thanks to [KMSW14].

Remark 9.3.3 (The Minimality Hypothesis). This was included for convenience, in order
to work with a module [I; ® I,+] that is locally constant on the Hida family. One can
easily eliminate this hypothesis, but the statement is no longer so clean.

Remark 9.3.4 (Unspecified local factors). The volume factor Ig is a placekeeper. It might
be more illuminating to replace Ig by

~ 1 _
Is = H Lv(m+ _yﬂ'vau,v) 1IS
veS 2

and write the specialized value of the L-function

b
e(m) - “f’(p )
Q[r]
Here L(s,m, xy) denotes the standard L-function without the archimedean factors. Writ-
ten this way, one sees that the inverted local Euler factors L, (m + %, Ty, Xu’v)_l can give
rise to exceptional zeroes.

~ 1
’ IOO (X7 I{)ISLp(mvordvTBXu)L(m + 5771-7 Xu)

Ideally one would like to choose an optimal vector in [IA7T ® fﬂ»] and to adapt the
local Eisenstein sections at primes in S to this choice. This would settle the issues of
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minimality and local factors simultaneously. At present we do not see how to carry this
out.

Remark 9.3.5 (The congruence factors). It is expected at least under the Gorenstein
hypothesis that a congruence factor ¢(7) can be chosen to be the specialization at m of
a canonical p-adic analytic function c that interpolates the normalized and p-stabilized
value at s = 1 of the adjoint L-function L(s, 7, Ad). The factor ¢(7) that appears in Main
Theorem depends on the choice of period ), which in turn depends on the choice
of f in Lemma As m varies, the vector f can be chosen uniformly in the Hida
family, but there is no obvious preferred choice. For this reason, one can only define the
hypothetical analytic function ¢ up to a unit in the Hecke algebra. This is a persistent
problem in the theory, and it has been noted by Hida in [Hid96b].
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