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p-ADIC L-FUNCTIONS FOR UNITARY GROUPS

ELLEN EISCHEN, MICHAEL HARRIS, JIANSHU LI, AND CHRISTOPHER SKINNER

Abstract. This paper completes the construction of p-adic L-functions for unitary
groups. More precisely, in 2006, the last three named authors proposed an approach to
constructing such p-adic L-functions (Part I). Building on more recent results, including
the first named author’s construction of Eisenstein measures and p-adic differential
operators, Part II of the present paper provides the calculations of local ζ-integrals
occurring in the Euler product (including at p). Part III of the present paper develops
the formalism needed to pair Eisenstein measures with Hida families in the setting of
the doubling method.
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1. Introduction

This paper completes the construction of p-adic L-functions for unitary groups. More
precisely, in 2006, the last three named authors proposed an approach to constructing
such p-adic L-functions (Part I). Building on more recent results, including the first
named author’s construction of Eisenstein measures and p-adic differential operators,
Part II of the present paper provides the calculations of local ζ-integrals occurring in
the Euler product (including at p). Part III of the present paper develops the formalism
needed to pair Eisenstein measures with Hida families in the setting of the doubling
method.

The construction of p-adic L-functions consists of several significant steps, including
studying certain ζ-integrals occurring in the Euler products of the corresponding C-
valued L-functions (one of the main parts of this paper, which involves certain careful
choices of local data and which is the specific step about which we are most frequently
asked by others in the field) and extending and adapting earlier constructions of p-adic L-
functions (e.g. Hida’s work in [Hid96a], which recovers Katz’s construction from [Kat78]
as a special case). We also note that the last three named authors had already computed
local zeta integrals for sufficiently regular data as far back as 2003, but the computations
were not included in [HLS06] for lack of space. Since then, a new approach to choosing
local data and computing local zeta integrals at primes dividing p has allowed us to treat
the general case. These are the computations presented here.

In Section 1.1, we put this paper in the context of the full project to construct p-
adic L-functions (which comprises the present paper and [HLS06]), and we describe the
key components and significance of the broader project. The exposition in the present
paper, especially the description of the geometry, was written especially carefully to
provide a solid foundation for future work both by the authors of this paper and by
other researchers in the field.

1.1. About the project. Very precise and orderly conjectures predict how certain in-
teger values of L-functions of motives over number fields, suitably modified, fit together
into p-adic analytic functions (e.g. [Coa89, CPR89, Pan94, Hid96a]). These functions
directly generalize the p-adic zeta function of Kubota and Leopoldt that has played a
central role in algebraic number theory, through its association with Galois cohomology,
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in the form of Iwasawa’s Main Conjecture. Such p-adic L-functions have been defined in
a number of settings. In nearly all cases they are attached to automorphic forms rather
than to motives; no systematic way is known to obtain information about special values
of motivic L-functions unless they can be identified with automorphic L-functions. How-
ever, the procedures for attaching L-functions to automorphic forms other than Hecke
characters are by no means orderly; any given L-function can generally be obtained by
a number of methods that have no relation to one another, and in general no obvious
relation to the geometry of motives. And while these procedures are certainly precise,
they also depend on arbitrary choices: the L-function is attached abstractly to an au-
tomorphic representation, but as an analytic function it can only be written down after
choosing a specific automorphic form, and in general there is no optimal choice.

When Hida developed the theory of analytic families of ordinary modular forms he also
expanded the concept of p-adic L-functions. Hida’s constructions naturally gave rise to
analytic functions in which the modular forms are variables, alongside the character of
GL(1) that plays the role of the s variable in the complex L-function. This theory has
also been generalized, notably to overconvergent modular forms, for example in the work
of Stevens (unpublished, but see [Ste00]) and Panchishkin [Pan03, Pan06]. There seems
to be a consensus among experts on how this should go in general, but as far as we know
no general conjectures have been made public. This is in part because constructions of
p-adic families are no more orderly than the construction of automorphic L-functions,
except in the cases Hida originally studied: families are realized in the coherent or
topological cohomology1 of a locally symmetric space; but the connection of the latter
to motives is tenuous and in many cases purely metaphoric.

The present project develops one possible approach to the construction of p-adic L-
functions. We study complex L-functions of automorphic representations of unitary
groups of n-dimensional hermitian spaces, by applying the doubling method of Garrett
and Piatetski-Shapiro-Rallis [Gar84, GPSR87] to the automorphic representations that
contribute to the coherent cohomology of Shimura varieties in degree 0; in other words, to
holomorphic modular forms. When n = 1, we recover Katz’s theory of p-adic L-functions
of Hecke characters [Kat78], and much of the analytic theory is an adaptation of Katz’s
constructions to higher dimensions. For general n, the theory of ordinary families of
holomorphic modular forms on Shimura varieties of PEL type has been developed by
Hida, under hypotheses on the geometry of compactifications that have subsequently
been proved by Lan. It is thus no more difficult to construct p-adic L-functions of
Hida families than to study the p-adic versions of complex L-functions of individual
automorphic representations. Interpreting our results poses a special challenge, however.
The conjectures on motivic p-adic L-functions are formulated in a framework in which the
Betti realization plays a central role, in defining complex as well as p-adic periods used
to normalize the special values. Betti cohomology exists in the automorphic setting as
well, but it cannot be detected by automorphic methods. The doubling method provides

1In principle, completed cohomology in Emerton’s sense could also be used for this purpose, and would
give rise to more general families. As far as we know p-adic L-functions have not yet been constructed
in this setting.
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a substitute: the cup product in coherent cohomology. Here one needs to exercise some
care. Shimura proved many years ago that the critical value at s = 1 of the adjoint
L-function attached to a holomorphic modular form f equals the Petersson square norm
⟨f, f⟩, multiplied by an elementary factor. If one takes this quantity as the normalizing
period, the resulting p-adic adjoint L-function is identically equal to 1. Hida observed
that the correct normalizing period is not ⟨f, f⟩ but rather the product of (normalized)
real and imaginary periods; using this normalization, one obtains a p-adic adjoint L-
function whose special values measures congruences between f and other modular forms.
This is one of the fundamental ideas in the theory of deformations of modular forms and
Galois representations; but it seems to be impossible to apply in higher dimensions,
because the real and imaginary periods are defined by means of Betti cohomology. One
of the observations in the present project is that the integral information provided by
these Betti periods can naturally be recovered in the setting of the doubling method,
provided one works with Hida families that are free over their corresponding Hecke
algebras, and one assumes that the Hecke algebras are Gorenstein. These hypotheses
are not indispensable, but they make the statements much more natural, and we have
chosen to adopt them as a standard; some of the authors plan to indicate in a subsequent
paper what happens when they are dropped.

This approach to families is the first of the innovations of the present project, in
comparison with the previous work [HLS06] of the last three named authors. We stress
that the Gorenstein hypothesis, suitably interpreted, is particularly natural in the setting
of the doubling method. Our second, most important innovation, is the use of the general
Eisenstein measure constructed by the first named author in [Eis15, Eis14].

In order to explain the contents of this project more precisely, we remind the reader
what is expected of a general theory of p-adic L-functions. We are given a p-adic analytic
space Y and a subset Y class of points such that, for each y ∈ Y class there is a motive My,
and possibly an additional datum ry (a refinement) such that 0 is a critical value of the
L-function L(s,My). The p-adic L-function is then a meromorphic function Lp on Y

whose values at y ∈ Y class can be expressed in terms of L(0,My). More precisely, there

is a p-adic period p(My, ry) such that
Lp(y)

p(My,ry)
is an algebraic number, and then we have

the relation

(1.1.1)
Lp(y)

p(My, ry) = Z∞(My)Zp(My, ry) ⋅ L(0,My)
c+(My) .

Here c+(My) is the period that appears in Deligne’s conjecture on special values of L-

functions, so that
L(0,My)
c+(My)

is an algebraic number, while Z∞ and Zp are correction factors

that are built out of Euler factors and ε-factors of the zeta function ofMy at archimedean
primes and primes dividing p, respectively.

In our situation, we start with a CM field K over Q, a quadratic extension of a totally
real field K+, and an n-dimensional hermitian vector space V /K. Then Y is the space
of pairs (λ,χ), where λ runs through the set of ordinary p-adic modular forms on the
Shimura variety Sh(V ) attached to U(V ) and χ runs through p-adic Hecke characters
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of K; both λ and χ are assumed to be unramified outside a finite set S of primes of K,
including those dividing p, and of bounded level at primes not dividing p. Because we
are working with nearly ordinary forms, the ring O(Y ) of holomorphic functions on Y
is finite over some Iwasawa algebra, and the additional refinement is superfluous. In the
project, λ denotes a character of Hida’s ordinary Hecke algebra. If (λ,χ) ∈ Y class then

● λ = λπ for some automorphic representation π of U(V ); it is the character of
the ordinary Hecke algebra acting on vectors that are spherical outside S and
(nearly) ordinary at primes dividing p;
● χ is a Hecke character of type A0;
● the standard L-function L(s,π,χ) has a critical value at s = 0.

(By replacing χ by its multiples by powers of the norm character, this definition acco-
modates all critical values of L(s,π,χ).) Under hypotheses to be discussed below, the
automorphic version of Equation (1.1.1) is particularly simple to understand:

(1.1.2) Lp(λπ, χ) = c(π) ⋅Z∞(π,χ)Zp(π,χ)ZS ⋅ L(0, π,χ)
Qπ,χ

The left-hand side is the specialization to the point (λπ, χ) of an element Lp ∈ O(Y ).
The right hand side is purely automorphic. The L-function is the standard Langlands
L-function of U(V ) ×GL(1)K. Its analytic and arithmetic properties have been studied
most thoroughly using the doubling method. If U(V ) is the symmetry group of the
hermitian form ⟨⋅, ⋅⟩V on V , let −V be the space V with the hermitian form −⟨⋅, ⋅⟩V ,
and let U(−V ) and Sh(−V ) be the corresponding unitary group and Shimura variety.
The groups U(V ) and U(−V ) are canonically isomorphic, but the natural identification
of Sh(−V ) with Sh(V ) is anti-holomorphic; thus holomorphic automorphic forms on
Sh(V ) are identified with anti-holomorphic automorphic forms, or coherent cohomology
classes of top degree, on Sh(−V ), and vice versa. The space W = V ⊕ (−V ), endowed
with the hermitian form ⟨⋅, ⋅⟩V ⊕ −⟨⋅, ⋅⟩V , is always maximally isotropic, so U(W ) has a
maximal parabolic subgroup P with Levi factor isomorphic to GL(n)K. To any Hecke
character χ of K one associates the family of degenerate principal series

I(χ, s) = IndU(W )(A)
P (A)

χ ○ det ⋅δ
−s/n
P

and constructs the meromorphic family of Eisenstein series s↦ E(χ, s, f, g) with f = f(s)
a section of I(χ, s) and g ∈ U(W )(A). On the other hand, U(V ) × U(−V ) naturally
embeds in U(W ). Thus if φ and φ′ are cuspidal automorphic forms on U(V )(A) and
U(−V )(A), respectively, the integral

I(φ,φ′, f, s) = ∫
[U(V )×U(−V )]

E(χ, s, f, (g1, g2))φ(g1)φ′(g2)χ−1(det(g2))dg1dg2,
defines a meromorphic function of s. Here [U(V ) × U(−V )] = U(V )(F )/U(V )(A) ×
U(−V )(F )/U(−V )(A), g1 ∈ U(V )(A), g2 ∈ U(−V )(A), and dg1 and dg2 are Tamagawa
measures.
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The doubling method asserts that, if π is a cuspidal automorphic representation of
U(V ) and φ ∈ π, then I(φ,φ′, f, s) vanishes identically unless φ′ ∈ π∨; and if ⟨φ,φ′⟩ ≠ 0,
then the integrals I(φ,φ′, f, s) unwind and factor as an Euler product whose unramified
terms give the standard L-function L(s + 1

2
, π,χ) and (as f , φ, φ′ vary) provide the

meromorphic continuation and functional equation of the standard L-function. Another
way to look at this construction is to say that the Garrett map

φ ↦ G(f,φ, s)(g2) = χ−1 ○ det(g2) ⋅ ∫
U(V )(F )/U(V )(A)]

E(χ, s, f, (g1, g2))φ(g1)dg1
is a linear transformation from the automorphic representation π of U(V ) to π viewed
as an automorphic reprepresentation of U(−V ); and the matrix coefficients of this linear
transformation give the adelic theory of the standard L-function. We develop a theory
that allows us to interpret these matrix coefficients integrally in Hida families, under
special hypotheses on the localized Hecke algebra described below. Note that when π is
an anti-holomorphic representation of U(V ), its image under the Garrett map is π, but
viewed as a holomorphic representation of U(−V ).
The factor Qπ,χ is a product of several terms, of which the most important is a normal-

ized Petersson inner product of holomorphic forms on U(V ). Although it arises naturally
as a feature of the doubling method, its definition involves some choices that are reflected
in the other terms. The local term ZS , in our normalization, is a local volume multiplied
by a local inner product (depending on the choices). The correction factors Z∞ and Zp
are explicit local zeta integrals given by the doubling method. The archimedean factor
has not been evaluated explicitly, except when π is associated to a holomorphic modular
form of scalar weight (by Shimura) or, more generally, of weight that is “half scalar” at
every archimedean place (by Garrett) [Shi97, Gar08]. In the present paper we leave it
unspecified; it depends only on the archimedean data (the weights) and not on the Hecke
eigenvalues.

The explicit calculation of the local term Zp is our third major innovation and one
of the key pieces of the current paper, and it occupies the longest single section of
this paper (Section 4). It has the expected form: a quotient of a product of Euler factors
(evaluated at s) by another product of Euler factors (evaluated at 1− s) multiplied by a
local ε factor and a volume factor. The key observation is that the denominator arises
by applying the Godement-Jacquet local functional equation to the input data. This is
the step in the construction that owes the most to (adelic) representation theory. The
input data for the Eisenstein measure represent one possible generalization of Katz’s
construction in [Kat78]. The local integral has been designed to apply to overconvergent
families as well as to ordinary families; one of us plans to explore this in future work.
The precise form of the local factor at a prime w dividing p depends on the signatures
of the hermitian form at the archimedean places associated to p as part of the ordinary
data; this appears mysterious but in fact turns out to be a natural reflection of the PEL
structure at primes dividing p, or alternatively of the embedding of the ordinary locus
of the Shimura variety attached to (two copies of) U(V ) in that attached to the doubled
group.
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A different calculation of the local term had been carried out at the time of [HLS06]. It
was not published at the time because of space limitations. It was more ad hoc than the
present version and applied only when the adelic local components at primes dividing p
of an ordinary form could be identified as an explicit function in a principal series. The
present calculation is more uniform and yields a result in the expected form, multiplied
by a volume factor that we have not evaluated explicitly in the present paper.

Before explaining the final factor c(π) it is preferable to explain the special hypotheses
underlying the formula 1.1.2, which represent the fourth innovation in this project. The
point (λπ, χ) belongs to a Hida family, which for the present purposes means a connected
component, which we denote Yπ,χ, of the space Y ; in other contexts one works with an
irreducible component. The ring of functions on Yπ,χ is of the form Λ⊗̂Tπ, where Λ is an
Iwasawa algebra attached to χ and Tπ is the localization of the big Hecke algebra at the
maximal ideal attached to π. The principal hypotheses are that Tπ is Gorenstein, and
that the module of ordinary modular forms (or its Zp-dual, to be more precise) is free over
Tπ. There are also local hypotheses that correspond to the hypothesis of minimal level
in the Taylor-Wiles theory of deformations of modular Galois representations. These
hypotheses make it possible to define Lp as an element of OYπ,χ . The presence of the
factor c(π) is a sign that Lp is not quite the p-adic L-function; c(π) is a generator of
the congruence ideal which measures congruences between λπ and other characters λπ′

of Tπ (of the same weight and level). The specific generator c(π) depends on the same
choices used to define Qπ,χ, so that the product on the right-hand side is independent of
all choices.

In the absence of the special hypotheses, it is still possible to define Lp in the fraction
field of Λ⊗̂Tπ, but the statement is not so clean. In any case, the p-adic valuations
of c(π) are in principle unbounded, and so the p-adic interpolation of the normalized
critical values of standard L-functions is generally given by a meromorphic function on
Y .

1.1.1. Clarifications. The above discussion has artificially simplified several points. The
Shimura variety is attached not to U(V ) but rather to the subgroup, denoted GU(V ),
of the similitude group of V with rational similitude factor. All of the statements above
need to be modified to take this into account, and this is done in the paper. This detail
plagues the paper from beginning to end, as it seems at least to some degree also to
plague every paper on Shimura varieties attached to unitary groups. One can hope that
a far-sighted colleague will find an efficient way to do away with this.

What we called the moduli space of PEL type associated to V is in general a union of
several isomorphic Shimura varieties, indexed by the defect of the Hasse principle; p-adic
modular forms are most naturally defined on a single Shimura variety rather than on the
full moduli space. We need the moduli space in order to define p-adic modular forms,
but in the computations we work with a single fixed Shimura variety.

Although the p-adic L-functions are attached to automorphic forms on unitary (simil-
itude) groups, they are best understood as p-adic analogues of the standard L-functions
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of cuspidal automorphic representations of GL(n). The passage from unitary groups to
GL(n) is carried out by means of stable base change. A version of this adequate for
our applications was developed by Labesse in [Lab11]. Complete results, including pre-
cise multiplicity formulas, were proved by Mok for quasi-split unitary groups [Mok13];
however, we need to work with unitary groups over totally real fields with arbitrary
signatures, and the quasi-split case does not suffice. The general case is presently being
completed by Kaletha, Minguez, Shin, and White, and we have assumed implicitly that
Arthur’s multiplicity conjectures are known for unitary groups. The book [KMSW14]
works out the multiplicities of tempered representations and is probably sufficient for
the purposes of the present project.

From the standpoint of automorphic representations of GL(n), the ordinary hypoth-
esis looks somewhat special; in fact, the critical values of L-functions of GL(n) can
be interpreted geometrically on unitary groups of different signatures, and the ordinary
hypotheses for these different unitary groups represent different branches of a p-adic
L-function that can only be related to one another in a general overconvergent family.
The advantage of restricting our attention to ordinary families is that the p-adic L-
functions naturally belong to integral Hecke algebras. To add to the confusion, however,
Hida’s theory of (nearly) ordinary modular forms applies to holomorphic automorphic
representations, but the doubling method requires us to work with antiholomorphic rep-
resentations. The eigenvalues of the Up-operators on representations do not coincide with
those on their holomorphic duals; for lack of a better terminology, we call these repre-
sentations anti-ordinary. Keeping track of the normalizations adds to the bookkeeping
but involves no essential difficulty.

1.1.2. What this project does not accomplish. Although we have made an effort to prove
rather general theorems, limitations of patience have induced us to impose restrictions
on our results. Here are some of the topics we have not covered.

First of all, we have not bothered to verify that the local and global terms in Equation
(1.1.2) correspond termwise with those predicted by the general conjectures on p-adic
L-functions for motives. The correspondence between automorphic representations and
(de Rham realizations of) motives is not straightforward; we expect to address this issue
in a subsequent paper. However, until we find a simple way to compute the archimedean
term Z∞(π,χ) explicitly, we will not be able to compare it with anything motivic.

We have also not attempted to analyze the local factors at ramified finite primes for π
and χ. The geometry of the moduli space has no obvious connection to the local theory of
the doubling method. Moreover, a complete treatment of ramified local factors requires
a p-integral version of the doubling method. This may soon be available, thanks to work
of Minguez, Helm, Emerton-Helm, and Moss, but for the moment we have preferred to
simplify our presentation by choosing local data that give simple volume factors for the
local integrals at bad primes.

One of us plans to adapt the methods of the present project to general overconvergent
families, where Hida theory is no longer appropriate. On the other hand, the methods of
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Hida theory do apply to more general families than those we consider. In [Hid98], Hida
introduces the notion of P -ordinary modular forms on a reductive group G, where P
denotes a parabolic subgroup of G. One obtains the usual (nearly) ordinary forms when
P = B is a Borel subgroup; in general, for P of p-adic rank r, the P -ordinary forms vary
in an r-dimensional family, up to global adjustments (related to Leopoldt’s conjecture in
general). Most importantly, a form can be P -ordinary without being B-ordinary. Our
theory applies to P -ordinary forms as well; we hope to return to this point in the future.

Our p-adic L-function, when specialized at a classical point corresponding to the au-
tomorphic representation π, gives the corresponding value of the classical complex L-
function, divided by what appears to be the correctly normalized complex period in-
variant, and multiplied by a factor c(π) measuring congruences between π and other
automorphic representations. This is a formal consequence of the Gorenstein hypothesis
and is consistent with earlier work of Hida and others on p-adic L-functions of families.
It is expected that the factor c(π) is the specialization at π of the “genuine” p-adic L-
function that interpolates normalized values at s = 1 of the adjoint L-function (of π, or
one of the Asai L-functions for its base change to GL(n)). As far as we know, no one has
constructed this p-adic adjoint L-function in general. We do not know how to construct
a p-adic analytic function on the ordinary family whose specialization at π equals c(π),
not least because c(π) is only well-defined up to multiplication by a p-adic unit. Most
likely the correct normalization will have to take account of p-adic as well as complex
periods.

Finally, we have always assumed that our base field K is unramified at p. This hy-
pothesis is unnecessary, thanks to Lan’s work in [Lan14], but it simplifies a number of
statements.

1.2. History. Work on this paper began in 2001 as a collaboration between two of the
authors, around the time of a visit by one of us (M.H.) to the second one (J.-S. L.)
in Hong Kong. The initial objective was to study congruences between endoscopic and
stable holomorphic modular forms on unitary groups. The two authors were soon joined
by a third (C. S.), and a report on the results was published in [HLS05]. The subsequent
article [HLS06] carried out the first part of the construction of a p-adic analytic function
for a single automorphic representation. Because p-adic differential operators had not
yet been constructed for unitary group Shimura varities, this function only provided the
p-adic interpolation for the right-most critical value of the L-function, and only applied
to scalar-valued holomorphic modular forms. Moreover, although the local computation
of the zeta integrals at primes dividing p, which was not included in [HLS06], was based
on similar principles to the computation presented here, it had only been completed for
ramified principal series and only when the conductors of the local inducing characters
were aligned with the slopes of the Frobenius eigenvalues. After the fourth author
(E.E.) had defined p-adic differential operators in [Eis12, Eis16] and constructed the
corresponding Eisenstein measure in [Eis15, Eis14], it became possible to treat general
families of holomorphic modular forms and general ramification.
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The delay in completing the paper, for which the authors apologize, can be attributed
in large part to the difficulty of reconciling the different notational conventions that
had accumulated over the course of the project. In the meantime, Xin Wan had con-
structed certain p-adic L-functions in the same setting in [Wan15], by a method based on
computation of Fourier-Jacobi coefficients, as in [SU14]. More recently, Zheng Liu has
constructed p-adic L-functions for symplectic groups [Liu16]. Among other differences,
Zheng makes consistent use of the theory of nearly overconvergent p-adic modular forms,
thus directly interpreting nearly holomorphic Eisenstein series as p-adic modular forms;
and her approach to the local zeta integrals is quite different from ours.

1.3. Contents and structure of this paper. After establishing notation and con-
ventions in Section 1.4 below, we being in Section 2 by recalling the theory of modular
forms on unitary groups, as well as Hida’s theory of p-adic modular forms on unitary
groups. This section has carefully set up the framework needed for our project and will
likely also provide a solid foundation for others working in this area. In Section 3, we
discuss the geometry of restrictions of automorphic forms, since the restriction of an
Eisenstein series is a key part of the doubling method (Section 4.1) used to construct
L-functions. In Section 4, we discuss the doubling method. This section also contains
the local zeta calculations mentioned at the beginning of the introduction. The most
important of these is the calculation at primes dividing p (Section 4.3), which is also
the longest single step of this paper. In the Appendix A, we pay special attention to a
special case, definite unitary groups. In this special case, the doubling method can be
re-expressed as a finite sum over values of automorphic forms at CM points. Indeed, this
is a generalization of the approach taken by Katz to construct p-adic L-functions for CM
fields (which is closely related to the rank 1 case of our situation) in [Kat78]. Thus, it
can be helpful to view the statements in this special case. Section 5 provides statements
about measures, which depend on the local data chosen in Section 4. A formalism for
relating duality pairings to complex conjugation and to the action of Hecke algebras is
developed in Section 6; this is extended to Hida families in Section 7, which also begins
the formalism for construction of p-adic L-functions in families. Section 8 establishes the
relation between p-adic and C∞-differential operators, and develops the local theory of
ordinary and anti-ordinary vectors in representations at p-adic places. Finally, Section
9 states and proves the main theorems about the existence of the p-adic L-function.

1.4. Notation and conventions.

1.4.1. General notation. Let Q ⊂ C be the algebraic closure of Q in C and let the com-
plex embeddings of a number field F ⊂ Q be ΣF = Hom(F,C); so ΣF = Hom(F,Q).
Throughout, K ⊂ Q is a CM field with ring of integers O, and K+ is the maximal totally
real subfield of K. The non-trivial automorphism in Gal(K/K+) is denoted by c. Given
a place v of K, the conjugate place c(v) is usually denoted v̄.

Let p be a fixed prime that is unramified in K and such that every place above p in K+
splits in K. Let Qp be an algebraic closure of Qp and fix an embedding inclp ∶ Q ↪ Qp.
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Let Z(p) ⊂ Q be the valuation ring for the valuation determined by inclp. Let Cp be the

completion of Qp and let OCp
be the valuation ring of Cp (so the completion of Z(p)).

Let ιp ∶ C
∼Ð→ Cp be an isomorphism extending inclp.

For any σ ∈ ΣK let pσ be the prime of O determined by the embedding inclp ○ σ. Note
that c(pσ) = pσc. For a place w of K over p we will write pw for the corresponding prime
of O. Let Σp be a set containing exactly one place of K over each place of K+ over p.

Let Z(1) ⊂ C be the kernel of the exponential map exp ∶ C → C×. This is a free Z-

module of rank one with non-canonical basis 2π
√
−1. For any commutative ring R let

R(1) = R⊗ Z(1).
In what follows, when (G,X) is a Shimura datum, an automorphic representation of

G is defined to be a (g,K) × G(Af )-module where K is the stabilizer of a point in
X; in particular, K contains the center of G(R) but does not generally contain a full
maximal compact subgroup. In this way, holomorphic and antiholomorphic representa-
tions are kept separate. This is of fundamental importance for applications to coherent
cohomology and thus to our construction of p-adic L-functions.

1.4.2. Measures and pairings. We will need to fix a Haar measure dg on the adèle group
of a reductive group G over a number field F . For the sake of definiteness we take dg
to be Tamagawa measure. In this paper we will not be so concerned with the precise
choice of measure, because we will not be calculating local zeta integrals at archimedean
primes explicitly, but we do want to be consistent. When we write dg =∏v dgv , where v
runs over places of F and dgv is a Haar measure on the Fv-points G(Fv), we will want
to make the following additional hypotheses:

Hypotheses 1.4.3. (1) At all finite places v at which the group G is unramified, dgv
is the measure that gives volume 1 to a hyperspecial maximal compact subgroup.

(2) At all finite places v at which the group G is isomorphic to ∏iGL(ni, Fi,wi
),

where Fi,wi
is a finite extension of Fv with integer ring Oi, (whether or not Fi,wi

is ramified over the corresponding completion of Q), dgv is the measure that gives
volume 1 to the group ∏iGL(ni,Oi).

(3) At all finite places v, the values of dgv on open compact subgroups are rational
numbers.

(4) At archimedean places v, we choose measures such that ∏v dgv is Tamagawa
measure.

Let ZG ⊂ G denote the center of G, and let Z ⊂ ZG(A) be any closed subgroup such
that ZG(A)/Z is compact; for example, one can take Z to be the group of real points of
the maximal F -split subgroup of ZG. We choose a Haar measure on Z that satisfies the
conditions of 1.4.3 if Z is the group of adèles of an F -subgroup of ZG. The measure dg
defines a bilinear pairing ⟨, ⟩ on L2(Z ⋅G(F )/G(A)); if f1(zg)f2(zg) = f1(g)f2(g) for all
z ∈ Z, we write

(1.4.1) ⟨f1, f2⟩Z = ∫
Z ⋅G(F )/G(A) f1(g)f2(g)dg,
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and if not, we set ⟨f1, f2⟩Z = 0.
Suppose π and π∨ are irreducible cuspidal automorphic representations of G. Then⟨, ⟩Z ∶ π ⊗ π∨ → C is a canonically defined pairing. Now suppose we have factorizations

(1.4.2) facπ ∶ π
∼Ð→ ⊗′v πv, facπ∨ ∶ π∨ ∼Ð→ ⊗′v π∨v

where πv is an irreducible representation of G(Fv). Assume moreover that we are given
non-degenerate pairings of G(Fv)-spaces
(1.4.3) ⟨, ⟩πv ∶ πv ⊗ π∨v → C

for all v. Then there is a constant C = C(dg, facπ, facπ∨ ,∏v⟨, ⟩πv) such that, for all
vectors ϕ ∈ π, ϕ∨ ∈ π∨ that are factorizable in the sense that

facπ(ϕ) = ⊗vϕv; facπ∨(ϕ∨) = ⊗vϕ∨v
we have

(1.4.4) ⟨ϕ,ϕ∨⟩Z = C(dg, facπ, facπ∨ ,∏
v

⟨, ⟩πv)∏
v

⟨ϕv, ϕ∨v ⟩πv
When G is quasi-split and unramified over Fv and πv is a principal series representation,

induced from a Borel subgroup B ⊂ G(Fv), we choose a hyperspecial maximal compact
subgroup Kv ⊂ G(Fv) and define the standard local pairing to be:

(1.4.5) ⟨f, f∨⟩πv = ∫Kv

f(gv)f∨(gv)dgv .
In situation (2) of Hypotheses 1.4.3, we take Kv =∏iGL(ni,Oi).

Part II: zeta integral calculations

2. Modular forms and p-adic modular forms on unitary groups

This section introduces details about modular forms and p-adic modular forms on uni-
tary groups that we will need for our applications. For alternate discussions of modular
forms and p-adic modular forms on unitary groups, see [Hid04, CEF+16].

2.1. PEL moduli problems: generalities. By a PEL datum we will mean a tuple
P = (B,∗,OB ,L, ⟨⋅, ⋅⟩, h) where

● B is a semisimple Q-algebra with positive involution ∗, the action of which we
write as b↦ b∗;
● OB is a ∗-stable Z-order in B;
● L is a Z-lattice with a left OB-action and a non-degenerate alternating pairing⟨⋅, ⋅⟩ ∶ L ×L→ Z(1) such that ⟨bx, y⟩ = ⟨x, b∗y⟩ for x, y ∈ L and b ∈ OB ;
● h ∶ C→ EndOB⊗R(L⊗R) is a homomorphism such that ⟨h(z)x, y⟩ = ⟨x,h(z̄)y⟩ for
x, y ∈ L⊗R and z ∈ C and −

√
−1⟨⋅, h(√−1) ⋅ ⟩ is positive definite and symmetric.
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For the purposes of subsequently defining p-adic modular forms for unitary groups we
assume that the PEL data considered also satisfy:

● B has no type D factor;
● ⟨⋅, ⋅⟩ ∶ L⊗ Zp ×L⊗ Zp → Zp(1) is a perfect pairing;
● p ∤ Disc(OB), where Disc(OB) is the discriminant of OB over Z defined in
[Lan13, Def. 1.1.1.6]; this condition implies that OB ⊗ Z(p) is a maximal Z(p)-
order in B and that OB ⊗ Zp is a product of matrix algebras.

We associate a group scheme G = GP over Z with such a PEL datum P : for any Z-algebra
R

G(R) = {(g, ν) ∈ GLOB⊗R(L⊗R) ×R× ∶ ⟨gx, gy⟩ = ν⟨x, y⟩ ∀x, y ∈ L⊗R}.
Then G/Q is a reductive group, and by our hypotheses with respect to p, G/Zp

is smooth

and G(Zp) is a hyperspecial maximal compact of G(Qp).
Let F ⊂ C be the reflex field of (L, ⟨⋅, ⋅⟩, h) (or of P ) as defined in [Lan13, 1.2.5.4] and

let OF be its ring of integers. Let ◻ = {p} or ∅, and let Z(◻) be the localization of Z at

the primes in ◻. Let S◻ = OF ⊗ Z(◻). Let K◻ ⊂ G(A◻f ) be an open compact subgroup

and let K ⊂ G(Af) be K◻ if ◻ = ∅ and G(Zp)K◻ otherwise. Suppose that K is neat, as
defined in [Lan13, Def. 1.4.1.8]. Then, as explained in [Lan13, Cor. 7.2.3.10], there is a
smooth, quasi-projective S◻-scheme MK = MK(P ) that represents the functor on local
noetherian S◻-schemes that assigns to such a scheme T the set of equivalence classes of
quadruples (A,λ, ι,α) where

● A is an abelian scheme over T ;
● λ ∶ A→ A∨ is a prime-to-◻ polarization;
● ι ∶ OB ⊗Z(p) → EndTA⊗ Z(◻) such that ι(b)∨ ○ λ = λ ○ ι(b∗);
● α is a K◻-level structure: this assigns to a geometric point t on each connected
component of T a π1(T, t)-stable K◻-orbit of OB ⊗A◻f -isomorphisms

αt ∶ L⊗A◻f
∼Ð→ H1(At,A◻f )

that identify ⟨⋅, ⋅⟩ with a A
◻,×
f

-multiple of the symplectic pairing on H1(At,A◻f )
defined by λ and the Weil-pairing;
● LieTA satisfies the Kottwitz determinant condition defined by (L ⊗ R, ⟨⋅, ⋅⟩, h)
(see [Lan13, Def. 1.3.4.1]);

and two quadruples (A,λ, ι,α) and (A′, λ′, ι′, α′) are equivalent if there exists a prime-
to-◻ isogeny f ∶ A → A′ such that λ equals f∨ ○ λ′ ○ f up to some positive element in
Z×(◻), ι′(b) ○ f = f ○ ι(b) for all b ∈OB , and α′ = f ○ α.
2.2. PEL moduli problems related to unitary groups. Suppose

P = (B,∗,OB ,L, ⟨⋅, ⋅⟩, h)
is a PEL datum as in Section 2.1 with
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● B = Km, the product of m copies of K (that is, Bi = K);
● ∗ is the involution acting as c on each factor of K;
● OB ∩K = O.

We say such a P is of unitary type. By maximality, OB⊗Z(p) = O1 ×⋯×Om = O(p)×⋯×
O(p) (each Oi is a maximal Z(p)-order in K), soOB⊗Zp ≅∏w∣p∏mi=1Ow. Let ei ∈ OB⊗Z(p)
be the idempotent projecting B to the ith copy of K. Let ni = dimK ei(L⊗Q).
The homomorphism h determines a pure Hodge structure of weight −1 on V = L ⊗C.

Let V 0 ⊂ V be the degree 0 piece of the Hodge filtration; this is an OB ⊗C-submodule.
For each σ ∈ ΣK, let aσ,i = dimC ei(V 0

⊗O⊗C,σC). Let bσ,i = ni−aσ,i. We call the collection
of pairs {(aσ,i, bσ,i)σ∈ΣK}, the signature of h. Note that (aσc,i, bσc,i) = (bσ,i, aσ,i). The
following fundamental hypothesis will be assumed throughout:

Hypothesis 2.2.1 (Ordinary hypothesis).

pσ = pσ′ Ô⇒ aσ,i = aσ′,i.

For w∣p a place of K, we can then define (aw,i, bw,i) = (aσ,i, bσ,i) for any σ ∈ ΣK such that
pw = pσ. Let OB,w = OB ⊗O Ow and Lw = L ⊗O Ow. We fix an OB ⊗ Zp-decomposition
L⊗Zp = L

+
⊕L− such that

● L+ = ∏w∣pL+w is an OB ⊗ Zp = ∏w∣pOB,w-module with rankOweiL
+
w = aw,i (so

L−p =∏w∣pL−w with rankOweiL
−
w = bw,i and Lw = L

+
w ⊕L

−
w);

● L±w is the annihilator of L±̄w for the perfect pairing ⟨⋅, ⋅⟩ ∶ Lw ×Lw̄ → Zp(1).
Over Zp there is a canonical isomorphism

(2.2.1) GLOB⊗Zp
(L⊗ Zp) ∼Ð→ ∏

w∣p

m

∏
i=1

GLOw(eiLw), g ↦ (gw,i),
induced by the OB ⊗ Zp = ∏w∣pOB,w-decomposition L ⊗ Zp = ∏w∣pLw. This in turn
induces

(2.2.2) G/Zp

∼Ð→ Gm × ∏
w∈Σp

m

∏
i=1

GLOw(eiLw), (g, ν) ↦ (ν, (gw,i)).

We fix a decomposition of eiL
+
w as a direct sum of copies of Ow. Taking Zp-duals via ⟨⋅, ⋅⟩

yields a decomposition of eiL
−̄
w as a direct sum of copies of Ow̄ ≅ HomZp

(Ow,Zp) (the OB-
action on HomZp

(Ei,w,Zp) factors through eiOB ⊗Z(p) and is given by bφ(x) = φ(b∗x)).
The choice of these decompositions determines isomorphisms

GLOi,w
(eiL+w) ≅ GLaw,i

(Ow), GLOi,w
(eiL−w) ≅ GLbw,i

(Ow),
and GLOi,w

(eiLw) ≅ GLni
(Ow).(2.2.3)

With respect to these isomorphisms, the embedding

GLOi,w
(eiL+w) ×GLOi,w

(eiL−w)↪ GLOi,w
(eiLw) = GLOi,w

(eiL+w ⊕ eiL−w)
is just the block diagonal map (A,B) ↦ (A 0

0 B ).
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2.3. Connections with unitary groups and their Shimura varieties. We re-
call how PEL data of unitary type naturally arise from unitary groups. Let V =(Vi, ⟨⋅, ⋅⟩Vi)1≤i≤m be a collection of hermitian pairs over K: Vi is a finite-dimensional

K-space and ⟨⋅, ⋅⟩Vi ∶ Vi × Vi → K is a hermitian form relative to K/K+. Let δ ∈ O be
totally imaginary and prime to p, and put ⟨⋅, ⋅⟩i = traceK/Qδ⟨⋅, ⋅⟩Vi . Let Li ⊂ Vi be an

O-lattice such that ⟨Li,Li⟩i ⊂ Z and ⟨⋅, ⋅⟩i is a perfect pairing on Li ⊗ Zp. Such an Li
exists because of our hypotheses on p and its prime divisors in K and on δ. For each
σ ∈ ΣK, Vi,σ = Vi ⊗K,σ C has a C-basis with respect to which ⟨⋅, ⋅⟩i,σ = ⟨⋅, ⋅⟩Vi,σ is given by

a matrix of the form diag(1ri,σ ,−1si,σ). Fixing such a basis, let hi,σ ∶ C → EndR(Vi,σ)
be hi,σ(z) = diag(z1ri,σ , z̄1si,σ). Let Σ = {σ ∈ ΣK ∶ pσ ∈ Σp}. Then Σ is a CM type of
K, and we let hi = ∏σ∈Σ hi,σ ∶ C → EndK+⊗R(Vi ⊗R) = ∏σ∈ΣEndR(Vi,σ). Let B = Km, ∗
the involution that acts by c on each K-factor of B, OB = Om, L = ∏iLi with the ith
factor of OB = Om acting by scalar multiplication on the ith factor of L, ⟨⋅, ⋅⟩ = ∑i ⟨⋅, ⋅⟩i,
and h =∏i hi. Then P = (B,∗,OB ,L, ⟨⋅, ⋅⟩, h) is a PEL datum of unitary type as defined
above. Note that (aσ,i, bσ,i) equals (ri,σ, si,σ) if σ ∈ Σ and otherwise equals (si,σ, ri,σ).
Over Q, the group G associated with P is just the unitary similitude group denoted
GU(V1 ×⋯× Vm) in [Har93]. The reflex field of this PEL datum P is just the field

F = Q[{ ∑
σ∈ΣK

aσ,iσ(a) ∶ a ∈ K, i = 1, ..,m}] ⊂ C.
This follows, for example, from [Lan13, Cor. 1.2.5.6]. Note that F is contained in the
Galois closure K′ of K in C.

As explained in [Kot92, §8] (see also Equations (2.7.1) below), over the reflex field F , a
moduli space MK /F associated with P is the union of ∣ker1(Q,G)∣ copies of the canonical
model of the Shimura variety SK(G,XP ) associated to (G,hP ,K); here (G,XP ) is the
Shimura datum for which hP = h ∈ XP and ker1(Q,G) ∶= ker (H1(Q,G) →∏vH1(Qv,G)).
More precisely, the elements of ker1(Q,G) classify isomorphism classes of hermitian tu-
ples V ′ = (V ′i , ⟨⋅, ⋅⟩V ′

i
)1≤i≤m that are locally isomorphic to V at every place of Q. Let

V = V(1), ....,V(k) be representatives for these isomorphism classes. Then MK /F is natu-

rally a disjoint union of F -schemes indexed by the V(i): MK /F = ⊔MK,V(i). The scheme

MK,V = MK,V(1) is the canonical model of SK(G,XP ), and for each i there is an F -

automorphism of MK /F mapping MK,V isomorphically onto MK,V(i). In [Kot92], Kot-
twitz only treats the case where m = 1, but the reasoning is the same in the general
case.

If m = 1 and dimK V1 is even, then the group G satisfies the Hasse principle (that is,
ker1(Q,G) = 0). In this case MK is an integral model of the Shimura variety SK(G,XP ).
If dimK V1 is odd or m ≥ 1, this is no longer the case. However, for applications to
automorphic forms, we only need one copy of SK(G,XP ). We let MK,L be the scheme
theoretic closure of the F -scheme MK,V in MK ; this is a smooth, quasi-projective S◻-
scheme. We let

(2.3.1) sL ∶MK,L ↪MK
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be the inclusion. We will refer to MK as the moduli space and MK,L as the Shimura
variety.

Remark 2.3.1. For any PEL datum P , Lan has explained how the canonical model
of the Shimura variety SK(G,XP ) is realized as an open and closed subscheme of
MK /F [Lan12, §2] [LS13, §1.2], with a smooth, quasi-projective S0-model provided by
its scheme-theoretic closure in MK . This is just the model described above.

2.3.2. Base points. Suppose m = 1. Let (V, ⟨⋅, ⋅⟩V ) = (V1, ⟨⋅, ⋅⟩V1), and let n = dimK V .
Suppose K1, ...,Kr are finite CM extensions of K with ∑ri=1[Ki ∶ K] = n. For i = 1, ..., r, let
J0,i be the Serre subtorus (defined in, e.g., [CCO14, Definition A.4.3.1]) of ResKi/QGm

and let νi ∶ J0,i → Gm be its similitude map. Let J ′0 ⊂ ∏ri=1 J0,i be the subtorus defined
by equality of all the νi. Let V ′i = Ki, viewed as a K-space of dimension [Ki ∶ K].
Each V ′i can be given a Ki-hermitian structure such that ⊕iV

′
i is isomorphic to V as

an hermitian space over K. Such an isomorphism determines an embedding of J ′0 in G.
Moreover, with respect to such an embedding, there exists a point h0 ∈ XP that factors
through the image of J ′0(R) in G(R). The corresponding embedding of Shimura data(J ′0, h0) → (G,X) defines a CM Shimura subvariety of MK,L.

For the case Ki = K for all i (so r = n), we write J
(n)
0 for J ′0; this corresponds to a

PEL datum as in Section 2.1 with B = Kn. The base point h ∈ XP is called standard if

it factors through an inclusion of J
(n)
0 . We henceforward assume that the base point h

in the PEL datum P is standard. This will guarantee that later constructions involving
Harish-Chandra modules are rational over the Galois closure of K.
Concretely, the assumption that h is standard just means that V has a K-basis with

respect to which ⟨⋅, ⋅⟩V is diagonalized and that each hσ has image in the diagonal matrices
with respect to the induced basis of V ⊗K,σ C.

2.4. Toroidal compactifications. One of the main results of [Lan13] is the existence of
smooth toroidal compactifications of MK over S◻ associated to certain smooth projective
polyhedral cone decompositions (which we do not make precise here); when ◻ = ∅ this
was already known. We denote such a compactification by Mtor

K,Σ. There is a notion of

one polyhedral cone decomposition refining another that partially orders the Σ’s. If Σ′
refines Σ, then there is a canonical proper surjective map πΣ′,Σ ∶M

tor
K,Σ′ → Mtor

K,Σ that is

the identity on MK . We write Mtor
K for the tower of compactications {Mtor

K,Σ}Σ. In certain

situations (e.g., changing the group K, defining Hecke operators) it is more natural work
to work with this tower, avoiding making specific compatible choices of Σ or having to
vary the ‘fixed’ choices.

If K◻1 ⊂ K◻2 then the natural map MK1
→ MK2

extends canonically to a map (of
towers) Mtor

K1
→ Mtor

K2
. Similarly, if g ∈ G(A◻f ), then the map [g] ∶ MgKg−1 → MK ,

(A,λ, ι,α) ↦ (A,λ, ι,αg), extends canonically to a map Mtor
gKg−1

→ Mtor
K . This defines a

right action of G(A◻f ) on the tower (of towers!) {Mtor
K }K◻⊂G(A◻f ).
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In the setting of Section 2.3, we let Mtor
K,L,Σ be the scheme-theoretic closure of MK,V

in Mtor
K,Σ. This is a smooth toroidal compactification of the Shimura variety MK,L; the

base change to F is just the usual toroidal compactification of the canonical model. We
continue to denote by sL the induced inclusion Mtor

K,L,Σ ⊂ Mtor
K,Σ. Varying Σ and K as

above induces maps between the Mtor
K,L,Σ. We let Mtor

K,L be the tower {Mtor
K,L,Σ}Σ. The

action of G(A◻f ) on {Mtor
K }K◻⊂G(A◻f ) induces an action on {Mtor

K,L}K◻⊂G(A◻f ).
Our convention will be to describe constructions over Mtor

K as though Mtor
K were a single

scheme. The reader should bear in mind that this means a tower of such constructions
over each Mtor

K,Σ. In particular, when we define a sheaf F over Mtor
K (or some similar

tower of schemes), this will be a sheaf FΣ on each Mtor
K,Σ such that there is a natural

map π∗Σ′,Σ ∶ FΣ → FΣ′ for any Σ′ that refines Σ. By H i(Mtor
K ,F) we will mean the direct

limit limÐ→Σ
H i(Mtor

K,Σ,FΣ). In practice, the maps of cohomology groups appearing in such

a limit will all be isomorphisms.

2.5. Level structures at p. Let H = GLOB⊗Zp
(L+). The identification (2.2.3) deter-

mines an isomorphism

(2.5.1) H
∼Ð→ ∏

w∣p

m

∏
i=1

GLaw,i
(Ow).

Let BH ⊂H be the Zp-Borel that corresponds via this isomorphism with the product of
the upper-triangular Borels and let Bu

H be its unipotent radical. Let TH = BH/Bu
H ; this

is identified by isomorphism (2.5.1) with the diagonal matrices.

Suppose ◻ = {p}. Let A be the semiabelian scheme over Mtor
K and let A∨ be its dual.

We define MKr to be the scheme over Mtor
i,K whose S-points classify the Bu

H(Zp)-orbits of
OB ⊗ Zp-injections φ ∶ L

+
⊗ µpr

∼Ð→ A∨[pr]/S of group schemes with image an isotropic
subgroup scheme. We write MKr for its restriction over MK . The group BH(Zp) acts
on MKr on the right through its quotient TH(Zp/prZp). We let MKr,L be the pullback

of MKr over Mtor
K,L and let MKr ,L be the pullback over MK,L. Generally, the scheme

MKr (resp. MKr,L) is étale and quasi-finite but not finite over Mtor
K (resp. M

tor

Kr,L). We

continue to denote by sL the inclusions MKr,L ↪MKr and MKr,L ↪MKr determined by
these restrictions.

Let B+ ⊂ G/Zp
be the Borel that stabilizes L+ and such that

(2.5.2) B+↠ Gm ×BH ⊂ Gm ×H,

where the map to the first factor is the similitude character ν and the map to the
second is projection to H. Let Bu ⊂ B+ be the unipotent radical. Let I0r ⊂ G(Zp)
consist of those g such that gmodpr ∈ B+(Zp/prZp), and let Ir ⊂ I

0
r consist of those

g projecting under the surjection (2.5.2) to an element in (Zp/prZp)× × Bu
H(Zp/prZp).

Then I0r /Ir ∼Ð→ TH(Zp/prZp). The choice of a basis of Z(1) naturally identifies MKr /F

(resp. MKr ,L) with MIrKp/F (resp. MIrKp,L/F = SIrKp(G,XP )), and MKr /F (resp. MKr,L/F )
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is the normalization of Mtor
K /F (resp. Mtor

K,L/F
) in MKr /F (resp. MKr,L/F ). Since it should

therefore cause no ambiguity, we also put Kr = IrK
p. We similarly put K0

r = I
0
rKp.

Note that under the isomorphisms (2.2.2) and (2.2.3), B+ is identified with the group

(2.5.3) B+ ∼Ð→ Gm × ∏
w∈Σp

m

∏
i=1

{(A B
0 D ) ∈ GLni

(Ow) ∶ A ∈ GLaw,i
(Ow) is upper-triangular

D ∈ GLbw,i
(Ow) is lower-triangular

} .

2.6. Modular forms. We define spaces of modular forms for the groups G and various
Hecke operators acting them.

2.6.1. The groups G0 and H0. Let V = L⊗C. The homomorphism h defines a pure Hodge
structure V = V −1,0 ⊕ V 0,−1 of weight −1. Let W = V /V 0,−1. This is defined over the
reflex field F . Let Λ0 ⊂W be an OB-stable S◻-submodule such that Λ0 ⊗S◻ C =W . Let
Λ∨0 = HomZ(p)

(Λ0,Z(p)(1)) with OB⊗S◻-action: (b⊗s)f(x) = f(b∗sx). Put Λ = Λ0⊕Λ
∨
0 ,

and let ⟨⋅, ⋅⟩can ∶ Λ ×Λ → Z(p)(1) be the alternating pairing

⟨(x1, f1), (x2, f2)⟩can = f2(x1) − f1(x2).
Note that Λ0 and Λ∨0 are isotropic submodules of Λ. Note also that the OB-action on Λ
is such that ⟨bx, y⟩can = ⟨x, b∗y⟩can. Let G0 be the group scheme over S◻ such that for
any S◻-algebra R

G0(R) = {(g, ν) ∈ GLOB⊗R(Λ⊗S◻ R) ×R× ∶ ⟨gx, gy⟩can = ν⟨x, y⟩can,∀x, y ∈ Λ⊗S◻ R
} .

Let H0 ⊂ G0 be the stabilizer of the polarization Λ = Λ0 ⊕ Λ∨0 . The projection H0 →
Gm × GLOB⊗S◻(Λ∨0) is an isomorphism (the projection to Gm is the similitude factor
ν). There is a canonical isomorphism V ≅ Λ ⊗S◻ C of OB ⊗ C-modules that identifies
V −1,0 with Λ0 ⊗S◻ C and V 0,−1 with Λ∨0 ⊗S◻ C and the pairing ⟨⋅, ⋅⟩ with ⟨⋅, ⋅⟩can, and so
identifies G/C with G0/C. Let C ⊂ G/R be the centralizer of the homomorphism h and
set U∞ = Uh ∶= C(R). The identification of G/C with G0/C identifies C(C) with H0(C).
2.6.2. The canonical bundles. Let A be the semiabelian scheme over Mtor

K and A∨ its
dual. Let ω be the OMtor

K
-dual of LieMtor

K
A∨. The Kottwitz determinant condition is

equivalent to ω being locally isomorphic to Λ∨0 ⊗S◻ OMtor
K

as an OB ⊗OMtor
K
-module. Let

E = IsomOB⊗OMtor
K

((ω,OMtor
K
(1)), (Λ∨0 ⊗S◻ OMtor

K
,OMtor

K
(1))).

This is an H0-torsor over Mtor
K . Let π ∶ E → Mtor

K be the structure map. Then π∗OE is
an H0-bundle on Mtor

K . Let R be an S◻-algebra. A global section f of this bundle over
MK /R can be viewed as a functorial rule assigning to a pair (A,ε) over an R-algebra S
an element f(A,ε) ∈ S. Here A is a tuple classified by MK(S) and ε is a corresponding
element of E(S). We let Er = E ×Mtor

K
MKr and let πr ∶ Er → MKr be its structure map.

Sections of the bundle πr,∗OEr have interpretations as functorial rules of pairs (X,ε),
where X = (A,φ) is a tuple classified by MKr(S) and ε is a corresponding element in
Er(S).
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2.6.3. Representations of H0 over S0. Let F ′ ⊂ Q be the compositum of F and the Galois
closure K′ of K, and p ⊂ OF ′ be the prime determined by inclp. Let

S0 = S◻ ⊗OF,(p)
OF ′,(p′).

(So S0 = F
′ if ◻ = ∅ and S0 = OF ′,(p′) if ◻ = {p}.) The isomorphism O⊗S0 ∼Ð→ ∏σ∈ΣK S0,

a⊗ s↦ (σ(a)s)σ∈ΣK , induces a decomposition

OB ⊗ S′0 ∼Ð→ OB ⊗O (O ⊗ S0) ∼Ð→ ∏
σ∈ΣK

OB ⊗O,σ S0 = ∏
σ∈ΣK

OB,σ.

This in turn induces OB ⊗ S0 =∏σ∈ΣK OB,σ-decompositions Λ0 ⊗S0
S0 =∏σ∈ΣK Λ0,σ and

Λ∨0 ⊗S0
S0 =∏σ∈ΣK Λ∨0,σ. The pairing ⟨⋅, ⋅⟩can identifies Λ∨0,σc = HomZ(p)

(Λ0,σ,Z(p)(1)).
Since S0 is a PID, eiΛ0,σ and eiΛ

∨
0,σ are free S0-modules, of respective ranks aσ,i and

bσ,i. We fix an S0-basis of eiΛ0,σ. By duality, this determines an S0-basis of eiΛ
∨
0,σc. This

yields an isomorphism

(2.6.1) H0/S0

∼Ð→ Gm × ∏
σ∈ΣK

m

∏
i=1

GLOi⊗O,σS
′
0
(eiΛ∨0,σ) ≅ Gm × ∏

σ∈ΣK

m

∏
i=1

GLbσ,i(S0).

Let BH0
⊂ H0/S0

be the S0-Borel that corresponds via the isomorphism (2.6.1) to
the product of the lower-triangular Borels. Let TH0

⊂ BH0
be the diagonal torus and

let Bu
H0
⊂ BH0

be the unipotent radical. We say that a character κ of TH0
that is

defined over an S0-algebra R is a dominant character of TH0
if it is dominant with

respect to the opposite (so upper-triangular) Borel Bop
H0

. Via the isomorphism (2.6.1),

the characters of TH0
can be identified with the tuples κ = (κ0, (κσ,i)σ∈ΣK,1≤i≤m), κ0 ∈ Z

and κσ,i = (κσ,i,j) ∈ Zbσ,i, and the dominant characters are those that satisfy

(2.6.2) κσ,i,1 ≥ ⋯ ≥ κσ,i,bσ,i , ∀σ ∈ ΣK, i = 1, ...,m.

The identification is just

κ(t) = tκ00 ⋅∏
σ∈K

m

∏
i=1

bσ,i

∏
j=1

t
κσ,i,j
σ,i,j ,

t = (t0, (diag(tσ,i,1, ..., tσ,i,bσ,i))σ∈ΣK,1≤i≤m) ∈ TH0
.

Given a dominant character κ of TH0
over an S0-algebra R, let

Wκ(R) = {φ ∶H0/R → Ga ∶ φ(bh) = κ(b)φ(h), b ∈ BH0
},

where κ is extended trivally to Bu
H0

. If R is a flat S0-algebra then this is an R-model
of the irreducible algebraic representation of H0 of highest weight κ with respect to(TH0

,B
op
H0
). Let w ∈W (TH0

,H0/S0
) be the longest element in the Weyl group and let κ∨

be the dominant character of TH0
defined by κ∨(t) = κ(w−1t−1w). The dual

W ∨
κ (R) = HomR(Wκ(R),R)

is, for a flat S0-algebra R, an R-model of the representation with highest weight κ∨.
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The submoduleWκ(R)Bu
H0 is a free R-module of rank one spanned by φκ, the function

with support containing the big cell BH0
wBH0

(and equal to the big cell if κ is regular)
and such that φκ(wBu

H0
) = 1; wφκ is a highest-weight vector. The module W ∨

κ is gen-

erated over R as an H0-representation by the functional ℓκ = (evaluation at 1); wℓκ is a
highest-weight vector. Also,

HomH0
(W ∨

κ (R),Wκ∨(R)) = R
with basis the homomorphism that sends ℓκ to φκ∨.

For future reference, we also note that via the isomorphism (2.6.1) the identification of
C(C) with H0(C) identifies
(2.6.3) U∞ = C(R) ∼Ð→ {(h0, (hσ)σ∈ΣK) ∈H0(C) ∶ h0 ∈ R×, h0th̄−1σ = hσ},
where the ‘̄ ’ denotes complex conjugation on C. That is, U∞ is identified with the
subgroup of the product ∏σ∈ΣKGU(bσ) of unitary similitude groups in which all the
similitude factors agree.

2.6.4. The modular sheaves. Let R be a S0-algebra and κ a dominant R-character of
TH0

. Let

ωκ,M = π∗OE[κ] and ωr,κ,M = πr,∗OEr [κ]
be the subsheaves on Mtor

K /R and MKr /R, respectively, on which BH0
acts via κ. We let

(2.6.4) ωκ = sL,!s
∗
Lωκ,M and ωr,κ = sL,!s

∗
Lωr,κ,M .

These are the respective restrictions to the Shimura varieties MK,L of the sheaves ωκ,M
and ωr,κ,M , extended by zero to the full moduli space. We will use the same notation to
denote the restriction of these sheaves over MK,L and MKr ,L.

2.6.5. Modular forms over S0 of level K. Let R be a S0-algebra. The R-module of
modular forms (on G) over R of weight κ and level K is

Mκ(K;R) =H0(Mtor
K /R, ωκ).

The Köcher principle [Lan16] and the definition (2.6.4) implies that

(2.6.5) Mκ(K;R) =H0 (MK,L/R, ωκ)
except when F0 = Q and Gder/Q ≅ SU(1,1). However, in this exceptional case the
toroidal compactifications are the same as the minimal compactification and therefore
canonical; we leave it to the reader to make the necessary adjustments to our arguments
in this case (or to find them in the literature). By (2.6.5) a modular form f ∈Mκ(K;R)
can be viewed as a functorial rule assigning to a pair (A,ε) over an R-algebra S (and
which is an S-valued point of the Shimura variety2) MK,L) an element3 f(A,ε) ∈ S and
satisfying f(A,bε) = κ(b)f(A,ε) for b ∈ BH0

(S).
2The ‘rule’ is just zero when the point is not on the Shimura variety; see the next footnote.
3This element will be zero if A is not an S-valued point of the Shimura variety MK,L.
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Let D∞ =Mtor
K −MK . The R-module of cuspforms (on G) over R of weight κ and level

K is the submodule

Sκ(K;R) =H0 (Mtor
K /R, ωκ (−D∞))

of Mκ(K;R).

2.6.6. Modular forms over S0[ψ] with Nebentypus ψ. Let ψ ∶ TH(Zp)→ Q
×
be a character

factoring through TH(Zp/prZp). SupposeR is an S0[ψ]-algebra. We define the R-module
of modular forms (on G) over R of weight κ, level Kr, and character ψ to be

Mκ (Kr, ψ;R) = {f ∈H0 (MKr /R, ωr,κ) ∶ t ⋅ f = ψ(t)f ∀t ∈ TH(Zp)} .
If p is not a zero-divisor in R, then the Köcher principle implies4

(2.6.6) Mκ (Kr, ψ;R [1
p
]) = {f ∈H0 (MKr /R[ 1

p
], ωr,κ) ∶ t ⋅ f = ψ(t)f ∀t ∈ TH(Zp)} .

A section f ∈ Mκ(Kr, ψ;R) can be interpreted as a functorial rule assigning to a pair(X,ε) (which is an S-valued point of the Shimura variety5 MKr ,L) an element6 f(X,ε) ∈
S, where X = (A,φ), satisfying f(A,φ ○ t, bε) = ψ(t)κ(b)f(X,ε) for all t ∈ TH(Zp) and
b ∈ BH0

(S).
When p is not a zero-divisor in R we define the submodule of cuspforms of character

ψ to be

Sκ (Kr, ψ;R) =Mκ(Kr, ψ;R) ∩ Sκ (Kr;R [1
p
]) .

2.6.7. The actions of G(A◻f ) and G(Ap
f
). The action of G(A◻f ) on {Mtor

K }K◻ gives an

action of G(A◻f ) on
limÐ→
K◻

Mκ(K;R) and limÐ→
K◻

Sκ(K ∶ R).
Similarly, the action of G(Ap

f
) extends to an action on {MKr}Kp , giving an action of

G(Ap
f
) on

limÐ→
Kp

Mκ(Kr, ψ;R) and limÐ→
Kp

Sκ(Kr, ψ;R).
The submodules fixed by K◻ (resp. Kp) are just the modular forms and cuspforms of
weight κ and level K (resp. prime-to-p level Kp).

4Again, there is an exception when F0 = Q and Gder/Q ≅ SU(1,1).
5AGAIN: see next footnote
6This element is just 0 if X is not an S-point of MKr ,L.
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2.6.8. Hecke operators away from p. Let Kj = G(Zp)Kp
j ⊂ G(Af), j = 1,2, be neat open

compact supgroups. For g ∈ G(Ap
f
) we define Hecke operators

[K2gK1] ∶Mκ (K1;R)→Mκ (K2;R) ,
[K2,rgK1,r] ∶Mκ (K1,r, ψ;R) →Mκ (K2,r, ψ;R)

through the action of G(Ap
f
) on the modules of modular forms:

(2.6.7) [K2,rgK1,r]f =∑
gj

[gj]∗f, K
p
2gK

p
1 = ⊔gjgjK

p
1 .

In particular,

(2.6.8) ([K2,rgK1,r]f)(A,λ, ι,αKp
2 , φ, ε) =∑

gj

f(A,λ, ι,αgjKp
1 , φ, ε).

These actions map cuspforms to cuspforms.

WhenK2 =K1 is understood we write T (g) instead of [K1gK1] and Tr(g) = [K1,rgK1,r];
we drop the subscript r when that is also understood.

2.6.9. Hecke operators at p. If p is invertible in R (so R is a Qp-algebra) we define Hecke
operators T (g) = [KgK] and Tr(g) = [KrgKr] on the spaces of modular forms and
cuspforms over R just as we did in 2.6.8. We single out some particular operators: for
w ∈ Σp, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, we let t+w,i,j ∈ B+(Qp) be the element identified via (2.5.3)

with (1, (tw′,i′,j)) where

tw′,i′,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
diag(p1j ,1n−j) w = w′, i = i′, j ≤ aw
diag(p1aw ,1n−j , p1j−aw) w = w′, i = i′, j > aw
1n otherwise.

Note that t+w,i,j has the property that

t+w,i,jI0r t+,−1w,i,j ⊂ I
0
r .

Let t−w,i,j = (t+w,i,j)−1. We put

(2.6.9) Uw,i,j =Krt
+
w,i,jKr, U−w,i,j =Krt

−
w,i,jKr;

Remark 2.6.10. To define the actions of these Hecke operators on higher coherent co-
homology of automorphic vector bundles it is necessary to use the class of smooth
projective polyhedral cone decompositions used to define toroidal compactifications in
[Lan13, Lan14]. For holomorphic forms this is generally superfluous because of the
Koecher principle [Lan16].

2.6.11. Comparing spaces of modular forms of different weight. Given an integer a, let
κa be the weight κa = (a, (0)). We define a modular form fa ∈ Mκa(K;R) by the rule
fa(A,ε) = λa, where (A,ε) is a pair over an R-algebra S and ε acts as multiplication by
λ ∈ S× on S(1).
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Let κ = (κ0, (κσ,i) be a weight, and put κ′ = (κ0+a, (κσ,i)). The there are isomorphisms

Mκ(K;R) f↦fa⋅f→ Mκ′(K;R) andMκ(Kr, ψ;R) f↦fa⋅f→ Mκ′(Kr, ψ;R).
These maps induce isomorphisms on spaces of cuspforms, and the Hecke operators T (g)
satisfy

fa ⋅ T (g)f = ∣∣ν(g)∣∣aT (g)(fa ⋅ f).
2.7. Complex uniformization. We relate the objects defined so far to the usual com-
plex analytic description of modular forms on Shimura varieties.

2.7.1. The spaces. Let X be the G(R)-orbit under conjugation of the homomorphism h.
Recall that the stabilizer of h is the group U∞ = C(R), so there is a natural identification

G(R)/C(R) ∼Ð→ X, g ↦ ghg−1, which gives X the structure of a real manifold. Let
P0 ⊂ G0 be the stabilizer of Λ0. Via the identification of G/C with G0/C, which identifies
C(C) with H0(C), X is identified with an open subspace of G0(C)/P0(C), which gives
X a complex structure. There are natural complex analytic identifications

MK(C) =G(Q)/X ×G(Af)/K
MKr(C) =G(Q)/X ×G(Af)/Kr,

(2.7.1)

where the class of (h′, g) ∈ X ×G(Af) corresponds to the equivalence class of the tuple
Ah′,g = (Ah′ , λh′ , ι, ηg) (or Xh′,g = (Ah′,g, φg)) consisting of

● the abelian variety Ah′ = L⊗R/L with the complex structure on L⊗R being that
determined by h′; its dual abelian variety is A∨h′ ∶= L⊗R/L#, where again L⊗R has

the complex structure defined by h′ and where L# = {x ∈ L⊗R ∶ ⟨x,L⟩ ⊆ Z(1)};
● λh′ ∶ Ah′ → A∨h′ is the isogeny induced by the identity map on L⊗R;
● ι is induced from the canonical action of OB on L;

● ηg is the K (or Kr-orbit) of the translation by g map g ∶ L ⊗ Af
∼Ð→ L ⊗ Af =

H1(Ah′ ,Af).
This paramaterization is for ◻ = ∅. For ◻ = {p} we require gp ∈ G(Zp) and

● ηg is theK
p-orbit of the translation by g map gp ∶ L⊗Ap

f

∼Ð→ L⊗A
p
f
=H1(Ah′ ,Apf);

● in the case of MKr , φg is the Bu
H(Zp)-orbit of the map L+ ⊗ µpr ↪ A∨h′[pr] =

1
pr
L#/L# = L#

⊗Zp/ (prL#
⊗ Zp), v ⊗ e2π√−1/pr ↦ gpvmod (prL#

⊗Zp).
Here we are using that the simple factors of Gder/R are all of type A (see [Kot92] for how

this enters into the identifications (2.7.1)).

2.7.2. Classical modular forms. The dual of the Lie algebra of A∨h′ is ωA∨h′ = HomC(L ⊗
R,C) with the complex structure on L ⊗ R being that determined by h′. Recalling

that L ⊗ R
∼Ð→ W = Λ0 ⊗S0

C is a C-linear isomorphism for the complex structure on
L ⊗ R determined by h, we find that there is a canonical OB ⊗ C-identification ε0 ∶
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ωA∨
h

∼Ð→ Λ∨0 ⊗S0
C. If h′ = ghg−1, then εh′(λ) = ε0(g−1λ) is an OB ⊗ C-identification of

ωA∨
h′

with Λ∨0 ⊗S0
C. The complex points of the H0-torsors E/MK and Er/MKr are then

given by

E(C) =G(Q)/G(R) ×H0(C) ×G(Af)/U∞K
Er(C) =G(Q)/G(R) ×H0(C) ×G(Af)/U∞Kr,

(2.7.2)

with the class of (g,x, gf ) ∈ G(R)×H0(C)×G(Af) corresponding to the class of (Aghg−1,gf , (xε0(g−1⋅), ν(x)))
and (Xghg−1,gf

, (xε0(g−1⋅), ν(x))), respectively.
As C is a Zp-algebra via ιp, a weight κ modular form over C is therefore identified

with a smooth function ϕ ∶ G(A) ×H0(C)→ C such that ϕ(γguk, bxu) = κ(b)ϕ(g,x) for
γ ∈ G(Q), g ∈ G(A), x ∈H0(C), u ∈ U∞, b ∈ BH0

(C), and k ∈K or Kr. The space

Wκ(C) = {φ ∶ H0(C)→ C ∶ φ holomorphic, φ(bx) = κ(b)φ(x) ∀b ∈ BH0
(C)}

is the irreducible C-representation of H0 of highest weight κ with respect to (TH0
,B

op
H0
),

so a weight κ modular form is also identified with a smooth function f ∶ G(A) →Wκ(C)
such that f(γguk) = u−1f(g) for γ ∈ G(Q), u ∈ U∞, and k ∈ K or Kr. Here U∞ acts
on Wκ(C) as uφ(x) = φ(xu). The connection between f and ϕ is f(g)(x) = ϕ(g,x).
The condition that the modular form is holomorphic can be interepreted as follows. Let
g = Lie(G(R))C, and let g = p− ⊕ k⊕ p+ be the Cartan decomposition for the involution

h(√−1): adh(√−1) acts as ±
√
−1 on p±. The identification of G(C) with G0(C) iden-

tifies Lie(P0(C)) with k⊕ p+, and so f corresponds to a holomorphic form if and only if
p− ∗ f = 0.

Let ψ ∶ TH(Zp) → Q
×
be a finite character that factors through TH(Zp/prZp). The

condition that a modular form have character ψ becomes f(gt) = ψ(t)f(g) for all t ∈
TH(Zp), where the action of t comes via (2.5.2).

2.7.3. Hecke operators. The actions of the Hecke operators in 2.6.8 and 2.6.9 correspond
to the following actions on the functions f ∶ G(A) → Wκ(C): the action of [K2gK1] is
just

(2.7.3) f(g)↦∑
gj

f(ggj), K2gK1 = ⊔gjK1,

and similarly with Ki replaced by Ki,r.

2.8. Igusa towers. Let ◻ = {p}. Let A be the semiabelian scheme over Mtor
K /S◻ and

let ω be the OMtor
K
-dual of the Lie algebra of A∨. Recall that the hypothesis (2.2.1)

implies that the completion of inclp(S◻) is Zp; in this way we consider Zp an S◻-algebra.
Let k > 0 be so large that the kth-power of the Hasse invariant has a lift to a section
E ∈Mdetk(K;Zp). Put

Sm =M
tor
K,L[ 1E ]/Zp/pmZp

.



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 25

Let S0m =MK,L[ 1E ]/Zp/pmZp
; this is an open subscheme of Sm. For n ≥m let Tn,m/Sm be

the finite étale scheme over Sm such that for any Sm-scheme S

Tn,m(S) = IsomS(L+ ⊗ µpn ,A∨[pn]○),
where the isomorphisms are of finite flat group schemes over S with OB⊗Zp-actions. The
scheme Tn,m is Galois over Sm with Galois group canonically isomorphic to H(Zp/prZp).
The collection {Tn,m}n is called the Igusa tower over Sm.

2.9. p-adic modular forms. Let Dn,m be the preimage of Dm = Sm − S
0
m in Tn,m. For

a p-adic ring R (that is, R = lim←ÐmR/pmR), let
Vn,m(R) =H0(Tn,m/R,OTn,m) and V cusp

n,m (R) =H0(Tn,m/R,OTn,m(−Dn,m)).
The group H(Zp) acts on each through its quotient H(Zp/pnZp), the Galois group of
Tn,m/Sm. The R-module of p-adic modular forms (for G) over R of level Kp is

V (Kp,R) = lim←Ð
m

limÐ→
n

Vn,m(R)Bu
H(Zp),

and the R-module of p-adic cuspforms (for G) over R of level Kp is

V (Kp,R)cusp = lim←Ð
m

limÐ→
n

V cusp
n,m (R)Bu

H(Zp).

The group TH(Zp) = BH(Zp)/Bu
H(Zp) acts on these modules.

A p-adic modular form over R can be viewed as a functorial rule that assigns an element
of a p-adic R-algebra S to each tuple (A,φ) over S, where A = (Am) ∈ lim←ÐSm(S) and
φ = (φn,m) ∈ lim←Ðm lim←ÐnTn,m(S) with each φn,m over Am.

2.9.1. p-adic modular forms of weight κ and character ψ. Let K′ ⊂ Qp be the extension

of Qp generated by the images of all the embeddings of K into Qp, and let O′ be its ring
of integers. Let

κ = (κσ,i)σ∈ΣK,1≤i≤m, κσ,i ∈ Zaσ,i.
We denote also by κ the O′-valued character of TH(Zp) defined by

κ(t) =∏
w∣p
∏

σ∈ΣK
pσ=pw

m

∏
i=1

aσ,i

∏
j=1

σ(tw,i,j)κσ,i,j ,
t = (diag(tw,i,1, ..., tw,i,aw,i

))w∣p,1≤i≤m ∈ TH(Zp).
If ψ ∶ TH(Zp)→ Qp

×
is a finite-order character, then we define an O′[ψ]-valued character

κψ of TH(Zp) by κψ(t) = ψ(t)κ(t). For R a p-adic ring that is also an O′[ψ]-algebra,
the spaces of p-adic modular forms and cuspforms of weight κ and character ψ are

Vκ(Kp, ψ,R) = {f ∈ V (Kp,R) ∶ t ⋅ f = κψ(t)f ∀t ∈ TH(Zp)}
and

V cusp
κ (Kp, ψ,R) = {f ∈ V cusp(Kp,R) ∶ t ⋅ f = κψ(t)f ∀t ∈ TH(Zp)}.
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As a functorial rule, a p-adic modular form of weight κ and character ψ satisfies f(A,φ○
t) = κψ(t)f(A,φ) for all t ∈ TH(Zp).
2.9.2. The action of G(Ap

f
). The action of G(Ap

f
) on {Mtor

K }Kp induces an action on

{Sm}Kp and on {Tn,m}n,Kp, and these actions give an action of G(Ap
f
) on

lim←Ð
Kp

V (Kp,R) and lim←Ð
Kp

Vκ(Kp, ψ,R)
and on their submodules of cuspforms. The submodules fixed by Kp are just the p-adic
modular forms and cuspforms of weight κ and prime-to-p level Kp.

2.9.3. Hecke operators away from p. Let Kp
j ⊂ G(Apf), j = 1,2, be neat open compact

supgroups. For g ∈ G(Ap
f
) we define a Hecke operator [Kp

2gK
p
1 ] on the spaces of p-adic

modular forms and cuspforms just as in Section 2.6.8.

2.9.4. Modular forms as p-adic modular forms. Let ◻ = {p}. Under Hypothesis 2.2.1,
the completion of inclp(S(p)) is Zp, so inclp identifies Zp as an S(p)-algebra and O′ as
an S0-algebra. As OB ⊗Z(p) = Om(p), we have

OB ⊗O′ = (O(p) ⊗O′)m =∏
w∣p

m

∏
i=1

Ow ⊗O′ ∼Ð→ ∏
w∣p
∏

σ∈ΣK
pσ=pw

m

∏
i=1

O = ∏
σ∈ΣK

m

∏
i=1

O′.

The choices in Sections 2.6.3 and 2.2 induce OB ⊗O′-decompositions

Λ0 ⊗S◻ O′ = ∏
σ∈ΣK

m

∏
i=1

eiΛ0,σ ⊗S0
O′ = ∏

σ∈ΣK

m

∏
i=1

(O′)aσ,i
and

L+ ⊗Zp
O′ =∏

w∣p

m

∏
i=1

eiLw ⊗Zp
O′ =∏

w∣p

m

∏
i=1

(Ow ⊗Zp
O′)aw,i =∏

w∣p
∏

σ∈ΣK
pσ=pw

m

∏
i=1

(O′)aσ,i .
Equating these identifications yields an OB ⊗O′-identification Λ0 ⊗S◻ O′ = L+ ⊗Zp

O′.
Recalling that H0 ⊂ G0 is the stabilizer of the polarization Λ = Λ0 ⊕ Λ∨0 and hence that

H0/O′
∼Ð→ Gm ×GLOB⊗O′(Λ0 ⊗S◻ O′), this then determines an isomorphism

H0/O′
∼Ð→ Gm ×H/O′

which is given explicitly in terms of (2.5.1) and (2.6.1) by

(2.9.1) H0/O′ ∋ (ν, (gσ,i)σ∈ΣK)↦ (ν, ( ∏
σ∈ΣK
pσ=pw

ν ⋅ tg−1σc,i)w∣p) ∈ Gm ×H/O′ ,

where we have used the identification GLr(Ow ⊗Zp
O′) ∼Ð→ ∏σ∈ΣK,pσ=pw GLr(O′). This

identifies BH0/O′ = Gm ×BH /O′ , Bu
H0/O′ = B

u
H /O′ , and TH0/O′ = Gm × TH /O′ .

To each weight κ = (κ0, (κσ,i)) as in (2.6.3), we associate a κp as in 2.9.1:

κp = (κσc,i).
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Note that κσc,i ∈ Z
bσc,i = Zaσ,i . If t ∈ TH(Zp), t = (diag(tw,i,1, ..., tw,i,aw,i

), then
κp(t) =∏

w∣p
∏

σ∈ΣK
pσ=pw

m

∏
i=1

aw,i

∏
j=1

σ(tw,i,j)κσc,i,j .

Note that if x = (t0, t) ∈ Z×p × TH(Zp) ⊂ TH0
(O′), then

κ(x) = tc00 κp(t−1), c0 = κ0 + ∑
σ,i,j

κσ,i,j .

As we explain in the following, for ψ ∶ TH(Zp) → Qp a finite order character and R a
p-adic O′[ψ]-algebra, if κ satisfies the inequalities (2.6.2), then the modular forms over
R of weight κ and character ψ are p-adic modular forms of weight κ and character ψ.

Fixing Gm = SpecZ[x, 1x] yields an identification µpn = SpecZ[x, 1x]/(xpn − 1) for each

n ≥ 1, and hence an identification LieZ(µpn) = Zx d
dx
. For any scheme S, this identifies

LieS(µpn) with OS , compatibly as n varies. If n ≥ m, S is a Zp/pmZp-scheme, and
φ ∈ Tn,m(S), then this identification gives an isomorphism

Lie(φ) ∶ L+ ⊗OS = L+ ⊗ LieS(µpn) ∼Ð→ LieS(A∨/S[pn]○) = LieSA∨/S .
The identification Λ0 ⊗ Zp = L

+ gives (Lie(φ)∨, id) ∈ En(S). If f ∈Mκ(Kr, ψ;R) for R a
p-adic O′[ψ]-algebra, then the value of the p-adic modular form fp−adic determined by f
on a (p-adic) test object (A,φ) over a p-adic R-algebra S is

fp−adic(A,φ) = lim←Ð
m

f(Am, φm,m,r, (Lie(φm,m,r)∨, id)) ∈ lim←Ð
m

S/pmS = S,
where for n ≥ max{r,m}, φn,m,r is the isomorphism L+ ⊗ µpr

∼Ð→ A∨/S[pr]○ determined

by φn,m. If t ∈ TH(Zp) then Lie(φ ○ t)∨ = t−1 ⋅ Lie(φ)∨, so
(t ⋅ fp−adic)(A,φ) = lim←Ðf(Am, φm,m,t ○ t, (Lie(φm,m ○ t)∨, id)) = ψ(t)κp(t)fp−adic(A,φ),

hence fp−adic is a p-adic modular form of weight κp and character ψ. Clearly, if f

is a cuspform, then fp−adic is a p-adic cuspform7. Also, the corresponding R-module
homomorphisms

(2.9.2) Mκ(Kr, ψ;R) ↪ Vκp(Kp, ψ,R) and Sκ(Kr, ψ;R) ↪ V cusp
κp
(Kp, ψ,R)

are compatible with Hecke operators in the sense that

(2.9.3) (T (g) ⋅ f)p−adic = ∣∣ν(g)∣∣−κ0T (g) ⋅ fp−adic
for g ∈ G(Ap

f
).

Note that if κ′ = (κ0 + a, (κσ,i)), then κ′p = κp. Furthermore, for f ∈ Mκ(K;R) and
f ′ = faf ∈Mκ′(K;R) (see 2.6.11),

fp−adic = f ′p−adic.

7A modular form can be a p-adic cuspform but not be cuspidal. A simple example is the the critical
p-stabilization E∗2k(z) = E2k(z) −E2k(pz) of the level 1 weight 2k ≥ 4 Eisenstein series E2k.
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2.9.5. Hecke operators at p. Hida ([Hid04, 8.3.1]) has defined an action of the double
cosets uw,i,j = B

u
H(Zp)tw,i,jBu

H(Zp) on the modules of p-adic modular forms and cusp-
forms; this action is defined via correspondences on the Igusa tower (see also [SU02]).
Moreover, as Hida shows, if R is a p-adic domain in which p is not zero, κ as in Section
2.9.1, and f ∈Mκ(Kr, ψ;R), then uw,i,j ⋅ f ∈Mκ(Kr, ψ;R) and
(2.9.4) uw,i,j ⋅ f = ∣κnorm(tw,i,j)∣−1p Uw,i,j ⋅ f, κnorm = (κσ,i′ − bσ,i′).
We put

up = ∏
w∈Σp

m

∏
i=1

ni

∏
j=1

uw,i,j

and define a projector

(2.9.5) e = limÐ→
n

un!p .

2.9.6. Ordinary forms. Let R be a p-adic ring. The submodules of ordinary p-adic forms
over R are

V ord (Kp,R) = eV (Kp,R) , and V ord,cusp (Kp,R) = eV cusp (Kp,R) ,
and those of weight κ and character ψ are

Mord
κ (Kr, ψ;R) = eMκ (Kr, ψ;R) , Sord

κ (Kr, ψ;R) = eSκ(Kr, ψ;R),
V ord
κ (Kp, ψ,R) = eVκ (Kp, ψ,R) , V ord,cusp

κ (Kp, ψ,R) = eV cusp
κ (Kp, ψ,R) .

Hida’s classicality theorem for ordinary forms establishes that if R is a finite O′[ψ]-
domain (resp. a finite O′-domain) then

V ord,cusp
κ (Kp, ψ,R) = Sord

κ (Kr, ψ;R)
(resp. V ord,cusp

κ (Kp,R) = Sord
κ (Kr;R))

if κσ,i,aσ,i + κσc,i,bσ,i ≫ 0 ∀σ ∈ ΣK,1 ≤ i ≤m.

(2.9.6)

This theorem is proved in [Hid04] assuming conditions denoted (G1)-(G3), which were
subsquently proved by Lan in [Lan13]. Let R be as in Equation (2.9.6) and let O+ denote
the integral closure of Z(p) in R. The fraction field Frac(O+) of O+ is a number field over
which Sκ (Kr, ψ;R) ⊗Q has a rational model, given by the space of Frac(O+)-rational
cusp forms of type κ and level Kr. The intersection of this space with Sord

κ (Kr, ψ;R)
is an O+-lattice Sord

κ (Kr, ψ;O
+). Given any embedding ι ∶ O+ ↪ C, the image of

Sord
κ (Kr, ψ;O

+) in the space Sκ (Kr, ψ;C) will be called the space of ordinary complex
cusp forms (relative to ι) of type κ and level Kr.

2.10. Measures and Λ-adic families. We recall p-adic measures and their connections
with Hida’s theory of Λ-adic modular forms.
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2.10.1. p-adic measures. Let R and R′ be p-adic rings with R an R′-algebra. The space
of R-valued measures on TH(Zp) is

Meas(TH(Zp);R) = HomR′(C(TH(Zp),R′),R),
where C(TH(Zp),R′) is the R′-module of continuous R′-valued functions on TH(Zp).
This is independent of the intermediate algebraR′ since C(TH(Zp),R′) = C(TH(Zp),Zp)⊗̂Zp

R′.
The R-module of R-valued measures is naturally identified with R[[TH(Zp)]]; the iden-
tification of a measure µ with an element f of the completed group ring is such that for
any continuous homomorphism χ ∶ TH(Zp)→ R×, µ(χ) = χ(f), where χ(f) is the image
of f under the homomorphism R[[TH(Zp)]]→ R induced by χ.

2.10.2. Λ-adic forms. Let

ΛH = O′[[TH(Zp)]].
Both V (Kp,R) and V cusp(Kp,R), R a p-adic O′-algebra, are ΛH -modules via the actions
of TH(Zp) on them. A ΛH -adic modular form over R is a µ ∈Meas(TH(Zp);V (Kp;R))
such that µ(t ⋅ f) = t ⋅ µ(f) for all t ∈ ΛH . In particular, it follows that if R is an
O′[ψ]-algebra, then µ(κψ) ∈ Vκ(Kp, ψ,R). A ΛH -adic cuspform is defined in the same
way, replacing the p-adic modular forms with cuspforms. Similarly, an ordinary ΛH -adic
modular forms or cuspform is also defined in the same way, replacing the modular forms
and cuspforms with the ordinary forms. Clearly, if µ is a Λ-adic modular form, then eµ
(the composition of µ with the R-linear projector V (Kp,R)→ eV (Kp,R) = V ord(Kp,R))
is an ordinary ΛH -adic form. Let

S
ord(Kp,R) = {ordinary ΛH -adic cuspforms µ ∈Meas(TH(Zp);V ord,cusp(Kp,R))}.

The Hecke operators in 2.9.3 and 2.9.5 act on Sord(Kp,R) through their actions on

V ord,cusp(Kp,R).
Let ∆ ⊂ TH(Zp) be the torsion subgroup. Since p is unramified in K by hypothesis,

(2.5.1) induces an identification

∆
∼Ð→ ∏

w∣p

m

∏
i=1

(k×w)aw,i

where kw is the residue field of Ow. In particular, ∆ has order prime-to-p, so Sord(Kp,R)
decomposes as a direct sum of isotypical pieces for the O′-characters ω ∈ ∆̂ of ∆:

S
ord(Kp,R) = ⊕ω∈∆̂Sordω (Kp,R).

Let W ⊂ TH (Zp) be a free Zp-complement to ∆: TH(Zp) = ∆ ×W . Then ΛH = O
′[[∆ ×

W ]] = Λ[∆], where
Λ = O′[[W ]].

Each Sordω (Kp,R) is a Λ-module.

Let R ⊂ Qp be a finite O′-algebra and let

ΛR = Λ⊗O′ R = R[[W ]].
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Hida [Hid04] has proven that

(2.10.1) S
ord
ω (Kp,R) is a free ΛR-module of finite rank,

and for any finite character ψ ∶W → Q
×
p trivial on W pr−1 and κ as in 2.9.1 satisfying the

restriction in (2.9.6),

(2.10.2) Sordω (Kp,R)⊗R R[ψ]/pκψSordω (Kp,R)⊗R R[ψ]µ↦µ(κψ)Ð→ Sord
κ∗
(Kr, ωωκψ,R[ψ])

is an isomorphism, where pκψ is the kernel of the homomorphism ΛR ⊗R R[ψ] → R[ψ]
induced by the character κψ and ωκ ∈ ∆̂ is κ∣∆.
Clearly, one can include types in the definition of Λ-adic cuspforms, and we write the

module of Λ-adic cuspforms of type WS as Sord(Kp,WS ,R). That the analogs of the
maps (2.10.2) in this context are also isomorphisms follows from the fact that pκψ is
generated by a regular sequence.

2.11. Similitude components. For the purposes of comparing geometric constructions
with analytic computations later, we need to decompose some of the objects previously
defined with respect to the similitude map

ν ∶ G→ Gm, g = (g′, ν′)↦ ν′.

2.11.1. Connected components. The set of connected components π0(MK/R) = π0(Mtor
K /R)

is represented by the R-points of a finite étale scheme π0(MK) over S◻. Let T0 = G/Gder,
and let R◻ ⊂ Q be a finite integral normal extension of S◻ over which π0(MK) is constant
(in general, this will depend on K). Then

π0(MK)(R◻) = π0(MK/C) = T0(Q)/T0(Af)/KT ,

where KT is the image of K ⊂ G(Af) in T0(Af) and the last identification, using the
complex uniformization (2.7.1), sends the connected component containing (h′, g) ∈X ×
G(Af) to the class of the image of g in T0(Af).
2.11.2. Similitude components. The similitude map factors through T0, so putting

CK = ν(G(Q))/ν(G(Af ))/ν(K),
there is a surjection π0(MK)(R◻)↠ CK that sends the component containing (h, g) to
the class of ν(g). Given α ∈ CK , for any R◻-scheme R we let Mα

K/R and Mtor,α
K
/R be

the base change to R of the union of the connected components of MK/R and Mtor
K /R,

respectively, over α. For R = C this is just the set of points (h′, g) with ν(g) = α.
Similarly, we let Mα

Kr
and M

α

Kr
be the pullbacks of MKr and MKr , respectively, over

Mα
K and Mtor,α

K
. Since ν(IrKp) = ν(K), these definitions for Mα

IrKp/R coincide when p

is invertible in R. We also put §αm = M
tor,α
K [1/E] and let Tαn,m/§αm be the corresonding

component of the Igusa tower; the latter is a Galois cover with Galois groupH(Zp/pnZp).
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2.11.3. Similitude components of modular forms. Let R be an R◻-algebra. By restrict-
ing to each Mtor,α

K
/R or M

α

Kr
/R (that is, pulling the canonical bundles back to these

components) we obtain a decomposition of the R-modules of modular forms

(2.11.1) Mκ(K;R) = ⊕
α∈CK

Mκ(K;R)α

and

(2.11.2) Mκ (Kr, ψ;R) = ⊕
α∈CK

Mκ (Kr, ψ;R)α ,
where f belongs to the α-summand if it is zero on any (X,ε) with X not in Mα

Kr
(R′)

(R′ an R-algebra). For R = C, in terms of the complex uniformization, this means that
as a function of (h′, g) ∈ X ×G(Af) or g′ = g∞g ∈ G(A) = G(R)G(Af ), f vanishes unless
the image of ν(g) in CK is α. The modules of cuspforms decompose similarly.

If R is also a p-adic ring, then there is a similar decomposition of the modules of p-adic
modular forms obtained by restricting to Tαn,m:

(2.11.3) V (Kp,R) = ⊕
α∈CK

V (Kp,R)α

and

(2.11.4) Vκ (Kp, ψ,R) = ⊕
α∈CK

Vκ (Kp, ψ,R)α .
There are similar decompositions of the spaces of p-adic cuspforms. The p-adic modular
form defined by a modular form in belongs to Vκ(Kp, ψ,R)α if and only if the form
belongs to Mκ∗(Kr, ψ;R)α.
The α-components of the modular or p-adic modular forms are not in general stable

under the Hecke operators [KpgKp] but are if ν(g) belongs to the class of 1 in CK (so
if ν(g) = 1). In particular, they are stable under the operators Uw,i,j and uw,i,j (when
these operators are defined), and the isomorphism (2.9.6) can be refined as

V ord,cusp
κ (Kp, ψ,R)α = Sord

κ∗
(Kr, ψ;R)α

if κσ,i,aσ,i + κσc,i,bσ,i ≥ niri ∀σ ∈ ΣK,1 ≤ i ≤m.
(2.11.5)

2.11.4. The definite case. Suppose P is in the definite case as in Section A below. In
term of the spaces of functions in that section, the condition of being in the α-component
always unwinds to meaning that the functions are zero on g such that ν(g) does not
belong to α. All the modules of functions introduced in Section A can be decomposed
in this way over CK and we again use the superscript ‘α’ to denote the corresponding
components.
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3. The PEL problem and restriction of forms

In this section, we discuss restrictions of modular forms from a larger unitary group to
a product of unitary groups, which is important for interpreting the doubling method
(first introduced in Section 4.1) geometrically.

3.1. The PEL problems. Let P = (K, c,O,L, ⟨⋅, ⋅⟩, h) be a PEL problem of unitary
type associated with a Hermitain pair (V, ⟨⋅, ⋅⟩V ) as in Sections 2.1 and 2.2 together
with all the associated objects, choices, and conventions from Section 2. In particular,
the index m equals 1. In what follows we will consider four unitary PEL data Pi =(Bi,∗i,OBi

,Li, ⟨⋅, ⋅⟩i, hi) together with OBi
⊗Zp decompositions Li ⊗Zp = L

+
i ⊕L

−
i :

● P1 = P = (K, c,O,L, ⟨⋅, ⋅⟩, h), L±1 = L±;
● P2 = (K, c,O,L,−⟨⋅, ⋅⟩, h(̄⋅)), L±2 = L∓;
● P3 = (K ×K, c × c,O ×O,L1 ⊕L2, ⟨⋅, ⋅⟩1 ⊕ ⟨⋅, ⋅⟩2, h1 ⊕ h2), L±3 = L±1 ⊕L±2 ;
● P4 = (K, c,O,L3 , ⟨⋅, ⋅⟩3, h3), L±4 = L±3 .

Given the hypotheses, there should be no confusion with the subscript ‘i’ being used in
this section for the objects associated to the PEL problem Pi.

The reflex fields for P1, P2 and P3 are all equal to the reflex field F of P . The reflex
field of P4 is Q. We put Gi = GPi

for i = 1, ...,4 and Hi = GLOBi
⊗Zp
(L+i ). Then G1 = G2

and there are obvious, canonical inclusions G3 ↪ G4 and G3 ↪ G1 ×G2 which induce the
obvious, canonical inclusions H3 ↪H4 and H3 ↪ H1 ×H2. For K ⊂ Gi(Af) a neat open
compact with K = Gi(Zp)K◻ if ◻ = {p}, let Mi,K =MK(Pi) be the moduli scheme over
S◻.
The choice of the Ow-decomposition of L±w determines OBi,w-decompositions of the

modules L±i,w = Li ⊗O⊗Zp
Ow and so determines isomorphisms

(3.1.1) Gi/Zp

∼Ð→ Gm × ∏
w∈Σp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GLn(Ow) i = 1,2

GLn(Ow) ×GLnr(Ow) i = 3

GL2n(Ow) i = 4

and

(3.1.2) Hi/Zp

∼Ð→ ∏
w∣p

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GLaw(Ow) i = 1

GLbw(Ow) i = 2

GLaw(Ow) ×GLbw(Ow) i = 3

GLn(Ow) i = 4.

The canonical inclusions in the preceding paragraph just correspond to the identity map
on the similitude factors and the obvious inclusions of the GL-parts (being the diagonal
map in the case of the inclusions G3 ↪ G4 and H3 ↪H4.)
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Let K◻i ⊂ Gi(A◻f ) be neat open compact subgroups. Let Ki = K
◻
i if ◻ = ∅ and

Ki = Gi(Zp)K◻i otherwise. If K◻3 ⊂K◻4 ∩G3(A◻f ), then there is a natural S◻-morphism

(3.1.3) M3,K3
→M4,K4

, A = (A,λ, ι,α) ↦ A4 = (A,λ, ι ○ diag, αK◻4 ),
where diag ∶ K ↪ K ⊕K is the diagonal embedding. Let ei ∈ O ⊕ O, i = 1,2, be the
idempotent corresponding to the projection to the ith factor. If K◻3 ⊂ (K◻1 × K◻2 ) ∩
G3(A◻f ), then there is a natural S◻-morphism

M3,K3
→M1,K1

×S◻ M2,K2
,

A = (A,λ, ι,α) ↦(A1,A2) = (A1, λ1, ι1, α1) × (A2, λ2, ι2, α2),(3.1.4)

where Ai = ι(ei)A (so A = A1×A2), λi = ι
∨(ei)○λ○ι(ei), ιi is the restriction of ι to the ith

factor, and αi,s ∶ Li ⊗A
◻
f

∼Ð→ H1(Ai,s,A◻f ) is the restriction of αs to Li ⊗A
◻
f ⊂ L3 ⊗A

◻
f =(L1 ⊗A◻f )⊕ (L2 ⊗A◻f ) composed with the projection H1(As,A◻f )→ H1(Ai,s,A◻f ).

For suitably compatible choices of polyhedral cone decompositions, the morphisms
(3.1.3) and (3.1.4) extend to maps of toroidal compactifications [Har89].

3.1.1. Level structures at p. The definitions of level structures at p in Section 2.5 for
the PEL problems Pi are compatible, and the morphisms (3.1.3) and (3.1.4) extend to
S◻-morphisms with each Mi,Ki

replaced by Mi,Ki,r
=MKi,r

(Pi).
3.1.2. The canonical bundles. To define the groups G0,i and H0,i as in Section 2.6.1 in a

compatible manner, we need to specify the choice of the Λ0,i ⊂Wi = Vi/V 0,−1
i , where Vi =

Li⊗C with the Hodge structure defined by the complex structure on Li⊗R determined
by hi. As V1 = V with the same Hodge structure we take Λ0,1 = Λ0, but since V2 = V1
with the Hodge indices reversed (so V 0,−1

2 = V
−1,0
1 ) we take Λ0,2 to be the image of Λ∨0

in W2 = V2/V 0,−1
2 = V1/V −1,01 using the canonical identification V 0,−1

1 = V 0,−1 ≅ Λ∨0 ⊗S0
C.

Then Λ1 = Λ with its canonical pairing, and Λ2 = Λ∨0 ⊕ (Λ∨0)∨ = Λ with its canonical
pairing. We then set Λ0,3 = Λ0,4 = Λ0,1 ⊕Λ0,2 and Λ3 = Λ4 = Λ1 ⊕Λ2.

The fixed decompositions of Λ0 and Λ∨0 as OB⊗Zp-modules then determine compatible
isomorphisms

(3.1.5) H0,i/Zp

∼Ð→ Gm ×∏
w∣p

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

GLbw(Ow) i = 1

GLaw(Ow) i = 2

GLbw(Ow) ×GLaw(Ow) i = 3

GLn(Ow) i = 4.

There are canonical inclusions H0,3 ↪ H0,4 and H0,3 ↪ H0,1 ×H0,2 which correspond to
the obvious inclusions under the isomorphisms (3.1.5): the indentity map on the Gm-
factor and the diagonal mapping and identity map, respectively, on the GL-factors. This
gives similar inclusions among the (lower-triangular) Borels BH0,i

and the (diagonal) tori
TH0,i

. In particular, a dominant character κ of TH0,4
or a pair κ = (κ1, κ2) consisting

of dominant characters κ1 of TH0,1
and κ2 of TH0,2

restricts to a dominant character of
TH0,3

, which we also denote by κ.
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Let πi ∶ Ei → MKi
be the canonical bundle. The maps (3.1.3) and (3.1.4) extend to

maps of bundles

(3.1.6) E3 → E4, (A,λ, ι,α, ε) ↦ (A,λ, ι ○ diag, αK◻4 , ε),
and

E3 →E1 ×S◻ E2,
(A,λ, ι,α, ε) ↦ (A1, λ1,ι1, α1, ε1) × (A2, λ2, ι2, α2, ε2),(3.1.7)

where εi = ei ○ε○ ι(ei). There are similar maps of the bundles Ei,r = Ei×Mtor
i,Ki

Mi,Ki,r
with

level structure at p.

3.1.3. The Igusa towers. Let Tn,m,i/§m,i, i = 1, ..,4, be the Igusa tower for Mi,Ki
as in

2.8. The maps (3.1.3) and (3.1.4) extend to maps of Igusa towers in the obvious ways:

(3.1.8) Tn,m,3 → Tn,m,4, (A,φ) ↦ (A4, φ)
and

(3.1.9) Tn,m,3 → Tn,m,1 ×Zp
Tn,m,2, (A,φ) ↦ ((A1, φ1), (A2, φ2)),

where φi is the restriction of φ to L+i ⊗ µpn composed with the projection to A∨i [pn]○.
Remark 3.1.4. As explained in [HLS06, Section 2.1.11], the inclusion (3.1.8) does not
restrict on complex points to the map i3 of Shimura varieties determined by the inclusion
of G3 in G4. For each prime w of F+ dividing p, let

γVw =

⎛⎜⎜⎜⎝

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

⎞⎟⎟⎟⎠
∈ G4(F+w);

γVp = (γVw)w∣p ∈ G4(F+p ). Then the inclusion (3.1.8) is given by i3 composed with right
translation by γVp . (See map (4.3.10).)

When working with p-adic modular forms in subsequent sections, we will consider
all the Tn,m,i simultaneously, i = 1,2,3,4. The collection {Tn,m,i}, or equivalently
lim←Ðm lim←Ðn Tn,m,i will be denoted Igi, 1 ≤ i ≤ 4. Thus, if Kp

i , i = 1,2,3,4, are prime-

to-p level subgroups of Gi(Af), with Kp
3 ⊂K

p
4 , K

p
3 ⊂K

p
1 ×K

p
2 , we similarly define Igusa

varieties Kp
i
Igi and inclusions

(3.1.10) γVp ○ i3 ∶ Kp
3
Ig3 → K

p
4
Ig4; i4 ∶ Kp

3
Ig3 → K

p
1
Ig1 ×Kp

2
Ig2

3.1.5. Similitude components. Let S◻ ⊆ R◻ ⊂ Q be a finite normal extension of S◻ such
that π0 (MK3

) /R is constant. (The same is then true of π0(MKi
)/R, i = 1,2). The maps

(3.1.3) and (3.1.4) and the maps (3.1.8) and (3.1.9) can be refined as maps of similitude
components over an R◻-algebra R. In particular, (3.1.4) and (3.1.4) induce

(3.1.11) Mα
K3
→Mα

K1
×RMα

K2
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and

(3.1.12) Tαn,m,3 → Tαn,m,1 ×R Tαn,m,2,

where α ∈ CK3
defines elements in CK1

and CK2
by projection (since ν(K3) ⊂ ν(K1) ∩

ν(K2)). If ν(K1) = ν(K2) and K3 = (K1 ×K2)∩G3(Af), then both (3.1.11) and (3.1.12)
are isomorphisms; in particular MK3

and Tn,m,3 are identified with unions of connected
components of MK1

×RMK2
and Tn,m,1 ×R Tn,m,2.

3.2. Restrictions of forms. The maps between the various moduli spaces and bundles
induce maps between spaces of modular forms.

3.2.1. Restricting modular forms. Let R be a Zp-algebra and κ either a dominant char-
acter of TH0,4

or a pair κ = (κ1, κ2) consisting of dominant characters κ1 of TH0,1
and κ2

of TH0,2
. Then the maps (3.1.6) and (3.1.7) yield maps of modular forms

res1 ∶Mκ(K4;R)→Mκ(K3;R),
and

res2 ∶Mκ1(K1;R)⊗RMκ2(K2;R) →Mκ(K3;R).
Let ψ be either a Q

×
p -valued character of TH4

(Zp/prZp) or a pair ψ = (ψ1, ψ2) consisting
of a Q

×
p -valued character ψ1 of TH1

(Zp/prZp) and ψ2 of TH2
(Zp/prZp). Then ψ defines

a character of TH3
(Zp/prZp) that we continue to denote ψ. Let R be a Zp[ψ]-algebra.

The analogs of the maps (3.1.6) and (3.1.7) for level structures at p yield maps

res3 ∶Mκ (K4,r, ψ;R) →Mκ (K3,r, ψ;R) ,
and

res4 ∶Mκ1 (K1,r, ψ1;R)⊗RMκ2 (K2,r, ψ2;R)→Mκ (K3,r, ψ;R) .
Let R◻ be as in 3.1.5. If R is also an R◻-algebra, then the maps resi restricted to maps

of similitude components. In particular, if ν(K1) = ν(K2) and K3 = (K1 ×K2)∩G3(Af)
and R is an R◻-algebra, then res2 and res4 induce isomorphisms

Mκ1(K1;R)α ⊗RMκ2(K2;R)α ∼Ð→ Mκ(K3;R)α
and

Mκ1 (K1,r, ψ1;R)α ⊗RMκ2 (K2,r, ψ2;R)α ∼Ð→ Mκ (K3,r, ψ;R)α ,
and hence isomorphisms

⊕
α∈CK3

Mκ1(K1;R)α ⊗RMκ2(K2;R)α ∼Ð→ Mκ(K3;R)
and

⊕
α∈CK3

Mκ1 (K1,r, ψ1;R)α ⊗RMκ2 (K2,r, ψ2;R)α ∼Ð→ Mκ (K3,r, ψ;R) .
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Remark 3.2.2. We write

Mκ1 (K1,r, ψ1;R) [⊗]RMκ2 (K2,r, ψ2;R)
for the image of res4 in Mκ (K3,r, ψ;R), and use the notation [⊗] more generally for
restrictions of this kind from (classical or p-adic) modular forms on G1 ×G2 to forms on
G3.

3.2.3. Restrictions of classical forms. In terms of the complex uniformizations (2.7.2),
the restrictions (3.1.6) and (3.1.7) correspond to the maps induced by the canonical
inclusions of G3 and H0,3 into G4 and H0,4 and into G1×G2 and H0,1×H0,2, respectively.
In particular, if ϕ ∶ G4(A) ×H0,4(C) → C corresponds to a weight κ modular form on
G4 of level K4, then the image of ϕ under res1 or res3 corresponds to the restriction
of ϕ to G3(A) × H0,3(C). Moreover, if ϕ corresponds to f ∶ G4(A) → Wκ,4(C) (we
include the subscript ‘i’ to indicate that Wκ,i is the irreducible representation of H0,i of
highest weight κ), then its image under res1 or res3 is just the restriction of f to G3(A)
composed with the projection Wκ,4(C) → Wκ,3(C), φ ↦ φ∣H0,3(C). The same holds for
the maps res2 and res4.

3.2.4. Restrictions of p-adic forms. The maps (3.1.8) and (3.1.9) induce the obvious
restriction maps on modules of p-adic modular forms - which we also denote by resi
- compatible with weights κ and characters ψ in the obvious way, as well as with the
inclusion of spaces of modular forms and with restriction to similitude components. In
particular, the isomorphisms described above extend to isomorphism of spaces of p-adic
modular forms (with the tensor product ⊗R replaced by the completed tensor product
⊗̂R).

3.2.5. Base point restrictions. Let V = Vi for i ∈ {1,2,3,4}, G = GPi
the correspond-

ing unitary similitude group, so that (G,X) is the Shimura datum associated to the
moduli problem Pi. Let J ′0 be a torus as in section 2.3.2, and let (J ′0, h0) → (G,X) be
the morphism of Shimura data defined there. Say (J ′0, h0) is ordinary if the points in
the image of the map S(J ′0, h0) → S(G,X) of Shimura varieties reduce to points corre-
sponding to ordinary abelian varieties. If (J ′0, h0) is ordinary, then it has an associated
Igusa tower, denoted Tn,m(J ′0, h0) for all n,m. We have T0,m(J ′0, h0) = Sm(J ′0, h0), in the
obvious notation, which is the reduction modulo pm of an integral model of S(J ′0, h0);
each Tn,m(J ′0, h0) is finite over the corresponding Sm.

Moreover, letting Tn,m(G,X) = Tn,m(Pi) in the obvious notation, there is a morphism
of Igusa towers

(3.2.1) Tn,m(J ′0, h0) → Tn,m(G,X).
Thus for any r there are restriction maps resJ ′0,h0 ∶ Mκ(Ki,r,R) → Mκ((J ′0, h0),R),

in the obvious notation; the image is contained in forms of level r on S(J ′0, h0), in an
appropriate sense, but we don’t specify the level. The restriction maps behave compatibly
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with respect to classical, complex, and p-adic modular forms; the restriction map for p-
adic modular forms is denoted resp,J ′0,h0 . In order to formulate a precise statement, we

write Vκp((G,X);Kp,R) for p-adic modular forms of weight κp and level Kp on the
Igusa tower for S(G,X), and Vκp((J ′0, h0),R) for the corresponding object for S(J ′0, h0)
(the level away from p is not specified).

Proposition 3.2.6. Let (J ′0, h0) → (G,X) be a morphism of Shimura data, with J ′0 a
torus, and suppose (J ′0, h0) is ordinary. Let G = GPi

for i = 1,2,3,4, and let κ be a
dominant weight; let κp be the corresponding p-adic weight, as in 2.9.1. Let R be a
p-adic ring.

(i) The following diagram is commutative:

Mκ(Ki,r,R) Rκ,G,XÐÐÐÐ→ Vκp(Kp
i ,R)

resJ′
0
,h0

×××Ö resp,J′
0
,h0

×××Ö
Mκ((J ′0, h0),R)

Rκ,J′
0
,h0ÐÐÐÐÐ→ Vκp((J ′0, h0),R)

Here the horizontal maps are the ones defined in (2.9.2)

(ii) Let f ∈ Mκ(Ki,r,R). Suppose for every ordinary CM pair (J ′0, h0) mapping to(G,X), the restriction resJ ′0,h0(f) = 0. Then f = 0.

Proof. Point (i) is an immediate consequence of the definitions; point (ii) follows from
the Zariski density of the ordinary locus in the integral model of S(G,X) [Wed99]. �

4. Eisenstein series and zeta integrals

4.1. Eisenstein series and the doubling method. We begin this section by intro-
ducing certain Eisenstein series and (global) zeta functions. Then we choose specific local
data and compute local zeta integrals (whose product gives the global zeta function).

We assume throughout this section that we are in the setting of Section 3. In par-
ticular, there is a hermitian pair (V, ⟨⋅, ⋅⟩V ) over K such that V = L1 ⊗ Q and ⟨⋅, ⋅⟩1 =
traceK/Qδ⟨⋅, ⋅⟩V . Then G1/Q is the unitary similitude group of the pair (V, ⟨⋅, ⋅⟩V ). Let(W, ⟨⋅, ⋅⟩W ) be the hermitian pair with W = V ⊕ V and ⟨⋅, ⋅⟩W = ⟨⋅, ⋅⟩V ⊕ −⟨⋅, ⋅⟩V . Then
G4/Q is the unitary similitude group of the pair (W, ⟨⋅, ⋅⟩W ). Most of the constructions
to follow take place on the group G4/Q, which we denote throughout by G for ease of
notation. We write Zi to denote the center of Gi.

An important observation is that G2(A) = G1(A), so a function or representation of
one of these groups can be viewed as a function or representation of the other; we use
this repeatedly.

In part to aid with the comparison with calculations in the literature, we introduce the
unitary groups Ui = ker (ν ∶ Gi → Gm).
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Let n = dimK V . Let S0 be the set of primes dividing either the discriminant of the
pairing ⟨⋅, ⋅⟩1 or the discriminant of K.
Plan of this section. We begin by recalling the general setup for Siegel-Eisenstein series
on G and the zeta integrals in the context of the doubling method, explaining how the
global integral factors as a product over primes of K. The local factors fall into three
classes, which are treated in turn. The factors at non-archimedean places prime to p
are the easiest to address: in Section 4.2 we recall the unramified factors, which have
been known for more than 20 years, and explain how to choose data at ramified places
to trivialize the local integrals.

Factors at primes dividing p are computed in Section 4.3. This is the most elaborate
computation in the paper. The local data defining the Eisenstein series have to be chosen
carefully to be compatible with the p-adic Eisenstein measure which is recalled in Section
5.3. The local data for the test forms on G3 are chosen to be anti-ordinary vectors, a
notion that will be defined explicitly in 8.2.5, and that provide the local expression of
the fact, built in to Hida theory, that the test forms are naturally dual to ordinary forms.
The result of the computation is given in Theorem 4.3.11: we obtain p-stabilized Euler
factors, as predicted by conjectures.

Sections 4.4 and 4.5 are devoted to the local integrals at archimedean places. Much of
the material here is a review of the theory of holomorphic differential operators developed
elsewhere, and of classical invariant theory. We prove in particular (Proposition 4.5.5)
that the archimedean zeta integrals do not vanish; as explained in the introduction, in
most cases we do not know explicit formulas for these integrals.

4.1.1. The Siegel parabolic. Let V d = {(x,x) ∈W ∶ x ∈ V } and Vd = {(x,−x) ∈W ∶ x ∈ V },
so W = Vd ⊕ V

d is a polarization of ⟨⋅, ⋅⟩W . Projection to the first summand fixes

identifications of V d and Vd with V . Let P ⊂ G be the stabilizer of V d; this is
a maximal Q-parabolic, the Siegel parabolic. Let M ⊂ P be the stabilizer of the
polarization W = Vd ⊕ V

d and N ⊂ P the group fixing both V d and W /V d, so M

is a Levi subgroup and N the unipotent radical. Denote by ∆ the canonical map

∆ ∶ P → GLK(V d) = GLK(V ). Then M
∼Ð→ GLK(V ) × Gm, m ↦ (∆(m), ν(m)); the

inverse map is (A,λ) ↦ m(A,λ) = diag(λA∗,A), where A∗ = tAc is the transpose
of the conjugate under the action of c. Also, fixing a basis for V gives an identifi-

cation ∆′ ∶ N ∼Ð→ Hern (K), where Hern denotes the space of n × n hermitian matri-
ces; with respect to this basis and the polarization above, we obtain an identification

N
∼Ð→ (1n ∆′(N)

0 1n
) ⊆ GL2n (K).

The modulus character of P is δP (⋅) = ∣det ○∆(⋅)∣n.
4.1.2. Induced representations. Let χ = ⊗χw be a character of K×/A×K. For s ∈ C let

I (χ, s) = IndG(A)
P (A) (χ (det○∆(⋅)) ⋅ δ−s/nP

(⋅) ⋅ ∣ν(⋅)∣−sn/2) ,
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with the induction smooth and unitarily normalized. This factors as a restricted tensor
product

I(χ, s) = ⊗vIv(χv , s),
with v running over the places of Q, Iv(χv, s) the analogous local induction from P (Qv)
to G(Qv), and χv = ⊗w∣vχw.
4.1.3. Eisenstein series. For f ∈ I(χ, s) we form the standard (non-normalized) Eisen-
stein series,

E(f, g) = ∑
γ∈P (Q)/G(Q)

f(γg).
If Re(s) is sufficiently large, this converges absolutely and uniformily on compact subsets
and defines an automorphic form on G(A). Given a unitary character χ and a Siegel-Weil
section f ∈ Ind(χ, s), we put

fs ∶= fχ,s ∶= f

Ef(s, g) ∶= Efs(g).
The Eisenstein series Ef(s, g) have a meromorphic continuation in s.

4.1.4. Zeta integrals. Denote by OK+ the ring of integers of K+. For i = 1,2,3,4, we
write Ui(A) = ∏′v Ui,v, with the (restricted) products over all the places of K+ and Ui,v
the points of groups defined over OK+v . Similarly, we write G(A) = G∞ × ∏′qGq and

P (A) = P∞ ×∏′q Pq, where the (restricted) products are over rational primes q. We can
nevertheless write

Gp = Q
×
p × ∏

w∈Σp

Gw;Pp = Q
×
p × ∏

w∈Σp

Pw.

Let π be an irreducible cuspidal automorphic representation of G1(A), and let π∨ be
its contragredient. Let Sπ be the set of finite primes v in OK+ for which πv is ramified.
Before introducing the zeta integral for π, we would like to explain what it means for
a function in π to be factorizable over places in K+. However, G1 is a Q-group that
is not the restriction of scalars of a group over K+. We therefore choose an irreducible
U1(A)-constituent π ⊂ π that occurs in the space of automorphic forms on U1, the dual
π♭; note that π∨ and π♭ coincide upon restriction to U1(A). We assume π contains the
spherical vectors for KSπ . It is well-known (and follows from the unfolding computation
recalled below) that the standard L-function does not depend on this choice. We fix
non-zero unramified vectors ϕw,0 and ϕ

′
w,0 in πw and π∨w, respectively, for all finite places

w outside Sπ, and choose factorizations as in (1.4.2) compatible with the unramified
choices:

(4.1.1) π
∼Ð→ π∞ ⊗ πf ; πf

∼Ð→ πSπ,p ⊗ πp ⊗ πSπ
;πp

∼Ð→ ⊗w∣p πw; πSπ

∼Ð→ ⊗w∈Sπ πw;

and analogous factorizations for π♭. We also think of π♭ as an anti-holomorphic auto-

morphic representation of G2. Let ϕ ∈ πK
Sπ
, ϕ♭ ∈ π♭,KS

; we think of ϕ and ϕ♭ as forms
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on G1 and G2, respectively. We suppose they decompose as tensor products with respect
to the above factorizations:

(4.1.2) ϕ = ⊗vϕv ; ϕ
♭ = ⊗vϕ♭v

with ϕv and ϕ♭v equal to the chosen ϕv,0 and ϕ′v,0 when v ∉ Sπ. we write equalities but

the formulas we write below depend on the factorizations in (4.1.1) and its counterpart
for π♭.
In Sections 4.3 (resp. 4.4-4.5), we will choose specific local components at primes

dividing p (resp. at archimedean places). These will turn out to be anti-ordinary (resp.
anti-holomorphic) vectors:

(4.1.3) ϕp ∶= ⊗w∣p ϕw = φa-ordw,d,πw
;ϕ♭p ∶= ⊗w∣p φa-ordw,d,π♭w

= ϕ♭,ordπp

and

(4.1.4) ϕ∞ ∶= ⊗σ∣∞ ϕσ = ϕκσ ,−;ϕ♭∞ ∶= ⊗σ∣∞ ϕ♭σ = ϕκ♭σ ,−.

The meaning of the notation in (4.1.3) and (4.1.4) will be explained in sections 8.2.5
and 4.4.14, respectively.

Having made the choice of irreducible constituent π, we will henceforth forget about
the choice. In order not to make the notation too difficult to read, we will use π to denote
an irreducible U1(A) representation, but we will mean an irreducible constitutent of the
restriction of a representation of G1.

We also fix local U1 (K+v )-invariant pairings ⟨⋅, ⋅⟩πv ∶ πv × π∨v → C for all v such that

⟨ϕv,0, ϕ♭v,0⟩πv = 1 for all v ∉ Sπ.

Let f = fs(●) ∈ I(χ, s). Let ϕ ∈ π and ϕ♭ ∈ π♭ be factorizable vectors as above. The
zeta integral for f ,ϕ, and ϕ♭ is

I(ϕ,ϕ♭, f, s) = ∫
Z3(A)G3(Q)/G3(A)

Ef(s, (g1, g2))χ−1(det g2)ϕ(g1)ϕ♭(g2)d(g1, g2).
By the cuspidality of ϕ and ϕ′ this converges absolutely for those values of s at which
Ef(s, g) is defined and defines a meromorphic function in s (holomorphic wherever
Ef(s, g) is). Moreover, it follows from the unfolding in [GPSR87] that (ϕ,ϕ♭)↦ I(ϕ,ϕ♭, f, s)
defines a G1(A)-invariant pairing between π and π′. By the multiplicity one hypothesis
7.1.5, this implies that

Fact 4.1.5. If ⟨ϕ,ϕ♭⟩ = 0 then I(ϕ,ϕ♭, f, s) = 0 for all s.

So we suppose ⟨ϕ,ϕ♭⟩ ≠ 0. Then ⟨ϕv ⊗ ϕ♭v⟩πv ≠ 0 for all v. For Re(s) sufficiently large,
‘unfolding’ the Eisenstein series then yields

I(ϕ,ϕ♭, f, s) = ∫
U1(A)

fs(u,1)⟨π(u)ϕ,ϕ♭⟩πdu.
Denote by fU the restriction of f to U4(A). Henceforward we assume fU(g) = ⊗vfv(gv)
with

fv = fv,s ∈ Iv(χv, s), χv = ⊗w∣vχw.
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Then the last expression for I(ϕ,ϕ♭, s) factors as
I(ϕ,ϕ♭, f, s) =∏

v

Iv(ϕv , ϕ♭v , fv, s) ⋅ ⟨ϕ,ϕ♭⟩, where
Iv(ϕv , ϕ♭v , fv, s) = ∫U1,v

fv,s(u,1)⟨πv(u)ϕv , ϕ♭v⟩πvdu
⟨ϕv , ϕ♭v⟩πv .

(4.1.5)

By hypothesis, the denominator of the above fraction equals 1 whenever v ∉ S.

As in Section 2.3, let Σ = {σ ∈ ΣK ∶ pσ ∈ Σp}. This is a CM type for K. Throughout
the remainder of this section, we take χ ∶ K×/A×K → C× to be a unitary character such
that χ∞ = ⊗σ∈Σχσ is given by

(4.1.6) χ∞ ((zσ)) =∏
σ∈Σ

z−(kσ+2νσ)σ (zσzσ)kσ2 +νσ , (zσ) ∈ ∏
σ∈Σ

C×,

where k = (kσ) ∈ ZΣ
≥0, and (νσ) ∈ ZΣ.

For the remainder of this section, we choose specific local Siegel-Weil sections fv ∈
Iv(χv, s) and compute the corresponding local zeta integrals (whose product is the Euler
product of the global zeta function discussed at the beginning of this section).

4.2. Local zeta integral calculations at nonarchimedean places v ∤ p. Let Sram =
Sπ ∪ Sχ ∪ SK, where Sχ denotes the set of finite primes v in OK+ for which χv = ⊗w∣vχw
is ramified and SK denotes the set of finite primes in OK+ that ramify in K. Let S be
a finite set of finite primes in Q such that p ∉ S and such that for all rational primes ℓ,
if a prime in K+ above ℓ is in Sram, then ℓ ∈ S. Let S′ be the set of primes of K+ lying
above the primes of S.

4.2.1. Unramified case. For the moment, assume that ℓ ≠ p is a finite place of Q such
that ℓ /∈ S. Then Kℓ ∶= G4 (Zℓ) is a hyperspecial maximal compact of G (Qℓ) = G4 (Qℓ) =
∏v∣ℓG4,v, and we choose fℓ = ⊗v∣ℓfv ∈ Iℓ(χℓ, s) to be the unique Kℓ-invariant function
such that fℓ(Kℓ) = 1. These sections are used to construct the Eisenstein measure in
[Eis15]. For each prime v ∉ S′, let ϕv and ϕ′v be the normalized spherical vectors such
that ⟨ϕv , ϕ′v⟩πv = 1. The primes v ∉ S′ fall into two categories: split and inert. For split
places v ∉ S′, U1,v ≅ GLn (K+v ); the zeta integral computations in this case reduce to
those in [Jac79] and [GPSR87, Section 6]. For inert places v ∉ S′, the computations were
completed in [Li92, Section 3]. In either case, we have

dn,v (s,χv) Iv (ϕv, ϕ′v , fv, s) = Lv (s + 1

2
, πv, χv) ,
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where8

dn,v (s,χv) = dn,v (s) = n−1∏
r=0

Lv (2s + n − r,χv ∣K+ ηrv) ,
ηv is the character on K+v attached by local class field theory to the extension Kw/K+v
(where w is a prime of K lying over v), and Lv (s,πv, χv) denotes the value at s of the
standard local Langlands Euler factor attached to the unramified representation πv of
U1,v, the unramified character χv of Kv, and the standard representation of the L-group
of U1,v. As noted on [HLS06, p. 45]9, for each v ∉ S′,

Lv (s,πv, χv) = Lv (s,BC (πv)⊗ χv ○ det) ,
where BC denotes the local base change from U1,v to GLn (Kv) and the right hand side
is the standard Godement-Jacquet Euler factor.

4.2.2. Ramified case. Now, assume that ℓ ∈ S, and let v ∈ S′ be a prime lying over ℓ. By
[HLS06, p. 45], Pv ⋅ (U1,v × 1n) ⊆ Pv ⋅U3,1 is open in U4,v. Since the big cell PvwPv is also
open in U4,v, we see that (Pv ⋅ (U1,v × 1n))∩PvwPv is open in U4,v. As noted in [HLS06,
Equation (3.2.1.5)], Pvw = Pv ⋅ (−1n,1n) ⊆ Pv ⋅ U3,v and Pv ∩ (U1,v × 1n) = (1n,1n) ∈ U3,v.
Therefore (Pv ⋅ (U(V ) × 1n))∩PvwPv is an open neighborhood of w in PvwPv and hence
is of the form PvwU for some open subset U of the unipotent radical Nv of Pv. Let
ϕv ∈ πv and ϕ′w ∈ π′v be such that ⟨ϕv , ϕ′v⟩πv = 1. Let Kv be an open compact subgroup
of G1,v that fixes ϕv.

For each place v ∈ S′, let Lv be a small enough lattice so that Uv contains the open
subgroup N(Lv) of Nv defined by

N(Lv) = {(1n x

0 1n
) ∣ x ∈ Lv}

(where we identify N with ∆′(N) as in Section 4.1.1) and so that

PvwN(Lv) ⊆ Pv ⋅ (−1n ⋅Kv × 1n) ⊆ Pv ⋅U3,v.

Then

PvwN(Lv) = Pv ⋅ (Uv × 1n)
for some open neighborhood neighborhood Uv of −1n contained in the open subset −1n ⋅Kv

of U1,v. Let δLv denote the characteristic function of N(Lv). As explained on [HLS06,
p. 55], for each finite place v of K+, there is a Siegel section fLv supported on PvwPv
such that

fLv (wx) = δLv(x)
8From the formula for dn,v(s) given in [Li92, Section 6], it appears that there is a typographical error

in the exponent in the formula for dn,v given in [HLS06, Equation (3.1.2.5)]. More precisely, according
to the final formula in [Li92, Theorem 3.1], the n − 1 should not appear in the exponent in [HLS06,
Equation (3.1.2.5)].

9There is a typographical error on [HLS06, p. 45]. Although [HLS06, p. 45] gives a base change to
GLm, the base change should actually be to GLn.
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for all x ∈Nv.

For each of the primes v ∈ S′, we define a local Siegel section fv ∈ I(χv, s) by
fv = f

−
Lv
,

where

f−Lv
(g) = fLv (g ⋅ (−1,1)) .

for all g ∈ U4,v. (Note that f−Lv
is just a translation by (−1,1) ∈ U3,v = U1,v × U2,v =

U1,v ×U1,v of local Siegel sections discussed in [HLS06, Sections (3.3.1)-(3.3.2)] and that,
where nonzero, the Fourier coefficients associated to f−Lv

are the same as the Fourier
coefficients associated to similar Siegel sections discussed in [Eis15, Section 2.2.9] and
[Shi97]. Therefore, this minor modification of the choice of Siegel sections in [HLS06,
Eis15, Shi97] will not affect the p-adic interpolation of the q-expansion coefficients of the
Eisenstein series that is necessary to construct an Eisenstein measure.)

Lemma 4.2.3. Let v ∈ S′, and let fv = f
−
Lv
. Then

Iv (ϕv, ϕ♭v , fv, χ) = volume (Uv) .
Proof. The support of f−Lv

in U1,v × 1n is −1n ⋅ Uv × 1n, and for g ∈ U1,v × 1n,

f−Lv
(g) = δ−1n ⋅Uv×1n(g)

where δ−1n ⋅Uv×1n denotes the characteristic function of −1n ⋅ Uv × 1n. Since πv(g)ϕv = ϕv
for all g ∈Kv ⊇ −1n ⋅ Uv, we therefore see that

Iv (ϕv , ϕ♭v , fv, χ) = ∫−1n⋅Uv⟨ϕv , ϕ
♭
v⟩πvdg

⟨ϕv , ϕ♭v⟩πv
= volume (Uv) .

�

4.3. Local zeta integral calculations at places dividing p.

Plan of this section. We begin by choosing local Siegel-Weil sections at the primes w
dividing p that are compatible with the Eisenstein measure, and then turn to choosing
test vectors (anti-ordinary vectors) in the local representations πw and π♭w. The last six
pages or so contain explicit matrix calculations that reduce the zeta integral to a product
of integrals of Godement-Jacquet type, which can then be computed explicitly.

The reader may observe that the representations πw and π♭w, like the automorphic repre-
sentations of which they are local components, are logically prior to the local Siegel-Weil
sections, inasmuch as our goal is to define p-adic L-functions of (ordinary) families and
the Eisenstein measure is a means to this end. One of the subtleties of this construction
is that a global automorphic representation π automatically picks out the function whose
integral is the desired value of the Eisenstein measure. This is unfortunately concealed
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in the technical details of the construction, but the reader should be able to spot the
principle at work in the section 7.3.

The calculations presented here are more general than those needed for our construction
of the p-adic L-functions of ordinary families. The p-adic place w is assigned to an
archimedean place σ and thus to a signature (aw, bw) of the unitary group at σ; but
we also introduce partitions of aw and bw. These partitions can be used to study the
variation of p-adic L-functions in P -ordinary families, where P is a parabolic subgroup
of G1(Qp). However, this application has been postponed in order not to make the paper
any longer than it already is, and we restrict our attention to the usual ordinary families,
corresponding to P = B a Borel subgroup.

4.3.1. Definition of the Siegel-Weil sections. With a few minor changes, the description
of the Siegel-Weil section at p given below is the same as in [Eis15, Eis14]. For w∣p a
place of K and U a K-space we let Uw = U ⊗K Kw.
To describe the section fp we make use of the isomorphisms 2.2.2. The isomorphism for

G4 identifies G(Qp) with Q×p ×∏w∈Σp
GLKw(Ww) and P (Qp) with Q×p ×∏w∈Σp

Pn(Kw)
with Pn ⊂ GLK(W ) the parabolic stabilizing V d. So M(Qp) is identified with Q×p ×
∏w∈Σp

GLKw(Vd,w) ×GLKw(V d
w) (the factors embedded diagonally in GLKw(Ww)), and

N(Qp) is identified with ∏v∈Σp
Nn(Kw) with Nn ⊂ Pn the unipotent radical.

For w ∈ Σp let χw,1 = χw and χw,2 = χ
−1
w̄ , where we identify Kw = K+w+ = Kw̄ and where

w+ = w∣K+ = w̄∣K+ . The pair (χw,1, χw,2) determines a character

ψw ∶ Pn(Kw)→ C×, ψw((A B
0 D )) = χw,1 (detD)χw,2 (detA) .

Here we have written an element of Pn with respect to the direct sum decomposition
W = Vd ⊕ V

d. We put

ψw,s = ((A B
0 D )) = χw,1 (detD)χw,2 (detA) ∣A−1D∣−sw

Given ⊗w∈Σpfw,s ∈ ⊗w∈ΣpInd
GLKw (Ww)
Pn(Kw) (ψw,s), we set

fp,s(g) = ∣ν ∣−sn/2p ⊗w∈Σp fw,s(gw), g = (ν, (gw)) ∈ G(Qp).(4.3.1)

Then, as explained in [Eis15], fp ∈ Ip(χp, s).
The choice of a level structure at p for the PEL problem P1 amounts to choosing anOw-basis of L1,w, and hence a Kw-basis of Vw, for each w ∈ Σp. This then determines

a Kw-basis of V d
w and Vd,w, via their identifications with Vw, and hence a Kw-basis10 of

Ww = Vd,w⊕V
d
w . This basis identifies IsomKw(V d

w , Vw), IsomKw(Vd,w, Vw), and an ordered
choice of this basis identifies GLKw(Vw) with GLn(Kw). This ordered basis also identifies
GLKw(Ww) with GL2n(Kw), Pn(Kw) with the subgroup of upper-triangular n×n-block
matrices and Mn(Kw) with the subgroup of diagonal n × n-block matrices.

10This is not in general the basis corresponding to the the level structure for P4 determined by that
for P1.
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Let w ∈ Σp. To each Schwartz function Φw ∶ HomKw(Vw,Ww)→ C (so Φw has compact

support), we attach a Siegel-Weil section fΦw ∈ Ind
GL2n(Kw)
Pn(Kw) ψw,s as follows. Consider the

decomposition

HomKw(Vw,Ww) = HomKw(Vw, Vd,w)⊕HomKw(Vw, V d
w), X = (X1,X2).

Let

X = {X ∈ HomKw(Vw,Ww)∣X(Vw) = V d
w} = {(0,X)∣X ∶ Vw ∼Ð→ V d

w} .
For X ∈ X, the composition Vw

XÐ→ V d
w

∼Ð→ Vw, where the last arrow comes from the
fixed identification of V d with V , is an isomorphism of Vw with itself. This identifies X
with GLKw(Vw).
We define the section fΦw ∈ Ind

GL2n(Kw)
Pn(Kw) ψw,s by

11

fΦw(g) ∶= χ2,w(det g) ∣det g∣n2 +sw ∫
X

Φ(Xg)χ−11,wχ2,w(detX) ∣detX ∣n+2sw d×X.(4.3.2)

Linear operations are viewed here as acting on the vector space Ww on the right. We
recall that X is identified with GLn(Kw); d×X is the measure identified with the right
Haar measure on the latter. To define the Siegel sections fw,s, we make specific choices
of the Schwartz functions Φw.

Let (aw, bw) be the signature associated to w∣p and L1, ⟨⋅, ⋅⟩1. For each w ∈ Σp, fix
partitions

aw = n1,w +⋯ + nt(w),w and bw = nt(w)+1,w +⋯ + nr(w),w.

Let µ1,w, . . . , µr(w),w be characters of O×w, and let µw = (µ1,w, . . . , µr(w),w) and µ =

∏w∈Σp
µw. We view each character µi,w as a character of GLni,w

(Ow) via composition
with the determinant. Let

νi,w = χ
−1
1,wχ2,wµi,w, i = 1, ..., r(w),

and let νw = (ν1,w, . . . , νr(w),w).
Let Xw ⊂Mn(Ow) comprise the matrices (A B

C D ), with A ∈Maw(Ow) and D ∈Mbw(Ow),
such that the determinant of the leading principal n1,w +⋯+ni,w-th minor of A is in O×w
for i = 1, . . . , t(w) and the determinant of the leading principal nt(w)+1,w + ⋯ + ni,w-th
minor of D is in O×w for i = t(w) + 1, . . . , r(w). Let Ai be the determinant of the leading
principal i-th minor of A and Di the determinant of the leading principal i-th minor
of D. Define φνw ∶ Mn(Kw) → C to be the function supported on X and defined for

11The minor difference between the definitions of the Siegel section at p in Equation (4.3.2) in this
paper and in [Eis15, Equation (21)] is due to the fact that we use normalized induction in the present
paper, while we did not use normalized induction in [Eis15].
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X = (A B
C D ) ∈ X by

φνv(X) = νt(w),w(A) ⋅
t(w)−1
∏
i=1

(νi,w ⋅ ν−1i+1,w)(An1,w+⋯+ni,w
)

νr(w),w(D) ⋅ ×
r(w)−1
∏

i=t(w)+1
(νi,w ⋅ ν−1i+1,w)(Dnt(w)+1,w+⋯+ni,w

).

Let

t ≥ max
w∈Σp,1≤i≤r(w)

(1,ordw(cond(µi,w)),ordw(cond(χw)))),(4.3.3)

and let Γw = Γw(t) ⊂ GLn(Ow) be the subgroup of GLn(Ow) consisting of matrices
whose terms below the ni,w ×ni,w-blocks along the diagonal are in ptw and such that the
upper right aw × bw block is also in pw. For each matrix m ∈ Γw with ni,w × ni,w-blocks
mi running down the diagonal, we define

µw(m) =∏
i

µi,w(det(mi)).
Let Φ1,w be the function on Mn×n(Kw) supported on Γw(t) and such that Φ1,w(x) =
µw(x) for all x ∈ Γw(t). Let Φ2,w be the function on Mn×n(Kw) defined by

Φ2,w(x) = φ̂νw(x) = ∫
Mn×n(Kw)

φνw(y)ew(−trace ytx)dy.(4.3.4)

Note that φ̂νw is the Fourier transform of φνw , as discussed in [Eis15, Lemma 10].

For X = (X1,X2) ∈ HomKw (Vw,Ww) = HomKw(Vw, Vd,w)⊕HomKw
(Vw, V d

w), let
Φw(X) = Φχ,µ,w(X1,X2) = vol(Γw)−1Φ1,w(−X1) ⋅Φ2,w(2X2).

Recall that we have identified X1 and X2 with matrices through a choice of basis for
Vw (coming from the level structure at p for P1). Note that Φχ,µ,w is a partial Fourier
transform in the second variable in the sense of [Eis15, Lemma 10]. We then define

fw,s ∶= f
χ,µ
w ∶= fΦw = fΦχ,µ,w .(4.3.5)

We then define fp,s ∈ Ip(χp, s) by (4.3.1).

The following lemma describes the support of Φ1,w and Φ2,w.

Lemma 4.3.2.

(i) For γ1, γ2 ∈ Γw,

φνw(tγ1Xγ2) = µw(γ1γ2)χ−11,wχ2,w(detγ1γ2)φνw(X).
(ii) For X = (A B

C D ) with A ∈Maw×aw(Kw), B ∈Maw×bW (Kw), C ∈Mbw×aw(Kw), and
D ∈Mbw×bw(Kw),

Φ2,w(X) = Φ(1)w (A)Φ(2)w (B)Φ(3)w (C)Φ(4)w (D),
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with

Φ(2)w = charMaw×bw (Ow), Φ(3)w = charMbw×aw (Ow)
supp(Φ(1)w ) ⊆ p−twMaw×aw(Ow), supp(Φ(4)w ) ⊆ p−twMbw×bw(Ow).

Here t is as in Inequality (4.3.3).

Proof. Part (i) follows immediately from the definition of φνw . It remains to prove part
(ii). We have

Φ2,w(X) = ∫
Mn(Kw)

φνw(Y )ew (−traceY ( tA tC
tB tD

))dY
= ∫

X
φνw(( α β

γ δ ))ew (−trace (αtA + βtB + γtC + δtD))dαdβdγdδ
= Φ(1)w (A)Φ(2)w (B)Φ(3)w (C)Φ(4)w (D) ,

where

Φ(2)w (B) = ∫
Maw×bw (Ow)

ew(−traceβtB)dβ = charMaw×bw (Ow)(B),

Φ(3)w (C) = ∫
Mbw×aw (Ow)

ew(−trace γtC)dγ = charMaw×bw (Ow)(C),
Φ(1)w (A) = ∑

x=(α 0
0 1
)∈Xmodptw

φνw(x)ew(−traceαtA)charp−twMaw×aw (Ow)(A),
and

Φ(4)w (D) = ∑
x=(1 0

0 δ
)∈Xmodptw

φνw(x)ew(−trace δtD)charp−tw Mbw×bw (Ow)(D).
�

4.3.3. Local induced representations. Now that we have chosen a Siegel section at each
prime w ∈ Σp, we proceed to the zeta integral calculations at w.

First, we introduce additional notation. Let Baw ⊆ GLaw be the standard parabolic
subgroup associated to aw = n1,w + ⋯ + nt(w),w. Let Bbw ⊆ GLbw be the standard par-
abolic subgroup associated to bw = nt(w)+1,w + ⋯ + nr(w),w. Let Raw,bw ⊆ GLn be the
standard parabolic subgroup associated to n = aw + bw. For a = (aw)w and b = (bw)w, let
Ba =∏w∈Σp

Baw (Kw), Bb =∏w∈Σp
Bbw (Kw), and Ra,b =∏w∈Σp

Raw,bw (Kw). Let Law,bw
denote the Levi subgroup of Raw ,bw . Let R =∏w∈Σp

Rw (Kw), where
Rw = {g = (A B

0 D
) ∈ Raw ,bw ∣ A ∈ Baw ,D ∈ Bop

bw
} .

We define Nop
aw ,bw

(pwOw) ⊆ Rop
aw,bw

to be the subgroup consisting of unipotent matrices

in Raw ,bw such that the lower left bw × aw-block lies in Mbw×aw (pwOw).
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In terms of the characters µi,w used to define the Siegel section at w, we define characters
µ′i,w by

µ′i,w =
⎧⎪⎪⎨⎪⎪⎩
χ−12,wµ−1i,w, if 1 ≤ i ≤ t(w)
χ−11,wµi,w, if t(w) + 1 ≤ i ≤ r(w),

for all w ∈ Σp. Let

µ′w = ⊗
r(w)
i=1 µ′i,w

µ′ = ⊗w∈Σpµ
′
w.

For all w ∈ Σp, let

πw = Ind
GLn

Raw,bw
πaw ⊗ πbw ,

where πaw and πbw are representations of GLaw (Kw) and GLbw (Kw), respectively. Let

µ′aw = ⊗
t(w)
i=1 µ

′
i,w and µ′bw = ⊗

r(w)
i=t(w)+1µ

′
i,w. We let

πp = ⊗w∈Σpπw

πa = ⊗w∈Σpπaw

πb = ⊗w∈Σpπbw

µ′a = ⊗w∈Σpµ
′
aw

µ′b = ⊗w∈Σpµ
′
bw
.

Let µ̃′ = ⊗w∈Σpµ̃
′
v denote the contragredient representation of µ′, and define π̃, π̃a, π̃b, µ̃

′
a,

and µ̃′b by replacing µ′ by µ̃′. Note that in this paragraph, by Ind, we mean normalized
induction.

4.3.4. Local congruence subgroups and anti-ordinary test vectors. Let t be as in Inequality
(4.3.3), and let

(4.3.6) d ≥ 2t.

Consider the following groups:

ΓR,w = {γ ∈ GLn (Ow) ∣ γmodpdw ∈ Rw (O/pdwO)}
ΓR = ∏

w∈Σp

ΓR,w

Γaw,w = {γ ∈ GLaw (Ow) ∣ γmodpdw ∈ Baw (O/pdwO)}
Γa = ∏

w∈Σp

Γaw,w

Γbw,w = {γ ∈ GLbw (Ow) ∣ γmodpdw ∈ Bbw (O/pdwO)}
Γb = ∏

w∈Σp

Γbw,w
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We define ϕ ∈ π as follows. Let ϕa = ⊗w∈Σpϕaw ∈ πa be a section that satisfies

πaw (γ)ϕaw = µ′aw (γ)ϕaw
for all γ ∈ Γaw,w and w ∈ Σp. Similarly, let ϕb = ⊗w∈Σpϕbw ∈ πb be a section that satisfies

πbw (γ)ϕbw = µ′bw (γ)ϕbw(4.3.7)

for all γ ∈ tΓbw,w and w ∈ Σp.

Definition 4.3.5. (a) Viewed as an element of ⊗w∈ΣpInd
GLn

Raw,bw
πaw⊗πbw , let ϕ = ⊗w∈Σpϕw ∈

π be a section such that

● ϕw is supported on Raw ,bwΓR,w;
● ϕw is normalized by the property

ϕw (1) = ϕaw ⊗ ϕbw ,
for all w ∈ Σp and satisfies the invariance condition
●

ϕ((1 0
x 1
)) = ϕa ⊗ ϕb

for all (1 0
x 1
) ∈ ΓR.

(b) Similarly, we define ϕ′ ∈ π̃ as follows. Let ϕ̃a = ⊗w∈Σpϕ̃aw ∈ π̃a be a section that
satisfies

π̃aw (γ) ϕ̃aw = µ̃′aw (γ) ϕ̃aw
for all γ ∈ tΓaw,w and w ∈ Σp. Similarly, let ϕ̃b = ⊗w∈Σpϕ̃bw ∈ π̃b be a section that satisfies

π̃bw (γ) ϕ̃bw = µ̃′bw (γ) ϕ̃bw(4.3.8)

for all γ ∈ Γbw,w and w ∈ Σp. Viewed as an element of ⊗w∈ΣpInd
GLn

Raw,bw
π̃aw ⊗ π̃bw , let

ϕ′ = ⊗w∈Σpϕ
′
w ∈ π be a section such that

● ϕ′w is supported on Ra,b
tΓR

● ϕ′w is normalized by the property

ϕ′w (1) = ϕ̃aw ⊗ ϕ̃bw ,
for all w ∈ Σp and satisfies the invariance condition
●

ϕ′ ((1 0
x 1
)) = ϕ̃a ⊗ ϕ̃b(4.3.9)

for all (1 0
x 1
) ∈ tΓR.

We shall use the invariance conditions in Definition 4.3.5 in our computations of the
local zeta integrals later in this section.
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Remark 4.3.6. The functions denoted ϕw and ϕ′w above depend on the integer d in-
troduced in (4.3.6) (which determines the level of the subgroups ΓR) as well as the
representations πw and π̃w (in subsequent sections the latter will be denoted π♭w). They
are uniquely determined by the support, normalizaion, and invariance conditions of Defi-
nition 4.3.5. For reasons that will be explained in detail in Section 8.2, and specifically in
Lemma 8.2.7, in the global applications the vectors will be denoted φa-ordw,d,πw

and φa-ord
w,d,π♭w

,

respectively.

4.3.7. The main calculation. The ordered Kw-basis for Vw chosen above (that comes
from the choice of a level structure for P1) determines a Kw-basis for Ww = Vw ⊕ Vw.
This ordered basis for Ww = Vw ⊕ Vw identifies GLKw (Ww) with GL2n (Kw) and identi-
fies GLKw (Vw)×GLKw (Vw) ⊆ GLKw (Vw ⊕ Vw) with GLn (Vw)×GLn (Kw) ⊆ GL2n (Kw).
Note that this is a different identification of GLKw (Ww) with GL2n (Kw) from the iden-
tification coming from the decomposition Ww = Vd,w ⊕V

d
w . Recall the Siegel section f

χ,µ
w

defined in Equation (4.3.5). In the computation of the zeta integrals, we replace fχ,µw

with the following translation of fχ,µw :

g ↦ fχ,µw

⎛⎜⎜⎜⎝
g (12 ⋅ 1n −1

2
⋅ 1n

1n 1n
)
⎛⎜⎜⎜⎝

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
.(4.3.10)

The matrices in Equation (4.3.10) are given with respect to the identification of GLKw (Vw ⊕ Vw)
with GL2n (Kw) introduced at the beginning of this paragraph.

To avoid cumbersome notation, we will denote Φχ,µ,w by Φ for the remainder of this
section. The identification Kw = K+w+ identifies the representation πw with a representa-
tion πw+, sections ϕw+ and ϕ′w+ with ϕw and ϕ′w, respectively, and a pairing ⟨, ⟩πw with
the pairing ⟨, ⟩w+ . Plugging in the translation of the section fχ,µw given in (4.3.10) yields

Iw+ (ϕw+ , ϕ′w+ , fw+, s) = Iw (ϕ,ϕ′, χ,µ)
(4.3.11)

∶= ∫
GLn(Kw)

χ2,w (g) ∣detg∣s+n
2

w ∫
GLn(Kw)

Φ

⎛⎜⎜⎜⎝
(Xg,X)

⎛⎜⎜⎜⎝

1aw 0 0 0
0 0 0 1bw
0 0 1aw 0
0 1bw 0 0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(4.3.12)

× χ−11,wχ2,w (detX) ∣detX ∣2s+nw ⟨πw(g)ϕw, ϕ′w⟩πwd×Xd×g.
We put

Ip (ϕ,ϕ′, χ,µ) ∶= ∏
w∈Σp

Iw (ϕ,ϕ′, χ,µ) = ∏
w∈Σp

Iw+ (ϕw+ , ϕ′w+ , fw+ , χ) .
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Given g,X ∈ GLn (Kw), we denote by Z1 = (Z ′1,Z ′′1 ) and Z2 = (Z ′2,Z ′′2 ) the matrices in
Mn×n (Kw) =Mn×aw (Kw) ×Mn×bw (Kw) given by

Z1 =Xg = [Z ′1,Z ′′1 ]
Z2 =X = [Z ′2,Z ′′2 ] ,

with Z ′1,Z ′2 ∈Mn×aw (Kw) and Z ′′1 ,Z ′′2 ∈Mn×bw (Kw). So
Φ ((Xg,g)) = volume (Γw)−1Φ1,w (Z ′1,Z ′′2 )Φ2,w (Z ′2,Z ′′1 ) ,

and

⟨πw (g)ϕw, ϕ′w⟩πw = ⟨πw (Xg)ϕw, π̃v (X)ϕ′w⟩πw
= ⟨πw (Z1)ϕw, π̃v (Z2)ϕ′w⟩πw .

Therefore,

Iw (ϕ,ϕ′, χ,µ) = volume (Γw)−1∫
GLn(Kw)∫GLn(Kw)

χ2,w (detZ1)χ−11,w (detZ2) ∣det(Z1Z2)∣s+n
2

w

(4.3.13)

×Φ1,w (Z ′1,Z ′′2 )Φ2,w (Z ′2,Z ′′1 ) ⟨πw (Z1)ϕw, π̃w (Z2)ϕ′w⟩πw d×Z1d
×Z2.

Now we take the integral over the following open subsets of full measure. We take the
integral in Z1 over

{( 1 0
C1 1

)(A1 0
0 D1

)(1 B1

0 1
) ∣ C1,

tB1 ∈Mbw×aw (Kw) ,A1 ∈ GLaw(Kw),D1 ∈ GLbw(Kw)} ,
with the measure

∣detAbw1 detD−aw1 ∣
w
dC1d

×A1d
×D1dB1.

We take the integral in Z2 over

{(1 B2

0 1
)(A2 0

0 D2
)( 1 0
C2 1

) ∣ C2,
tB2 ∈Mbw×aw (Kw) ,A2 ∈ GLaw(Kw),D2 ∈ GLbw(Kw)} ,

with the measure

∣detA−bw2 detDaw
2 ∣w dC2d

×A2d
×D2dB2.

So

Φ1,w (Z ′1,Z ′′2 ) = Φ1,w ((A1 B2D2

C1 D2
))(4.3.14)

Φ2,w (Z ′2,Z ′′1 ) = Φ2,w ((A2 +B2D2C2 A1B1

D2C2 C1A1B1 +D1
)) .(4.3.15)

Let Γaw,w(t) be defined similarly to the group Γaw,w but with d replaced by t. Let
Γbw,w(t) be defined similarly to the group Γbw,w but with d replaced by t. So since
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d ≥ 2t ≥ t,

Γaw,w(t) ⊇ Γaw,w
Γbw,w(t) ⊇ Γbw,w.

Note that since the nontrivial Gw ∶= Gw+-equivariant pairing ⟨, ⟩πw is unique up to a
constant, there exists a constant ℵw such that for all ξw ∈ πw and ξ′w ∈ π̃w,

ℵw⟨ξw, ξ′w⟩πw = ∫
Gw

⟨ξw (x) , ξ′w (x)⟩πaw⊗πbwdx,
where

⟨, ⟩πaw⊗πbw ∶ πaw ⊗ πbw × π̃aw ⊗ π̃bw → C

is the unique nontrivial Law ,bw (Kw)-equivariant pairing on (πaw ⊗ πbw) × (π̃aw ⊗ π̃bw)
such that

⟨ϕw (1) , ϕ′w (1)⟩πaw⊗πbw = 1.
Now, let

⟨, ⟩πaw ∶ πaw × π̃aw → C×

⟨, ⟩πbw ∶ πbw × π̃bw ∶→ C×

denote the unique GLaw (Kw)- and GLbw (Kw)-equivariant pairings, respectively, such
that

⟨ϕaw , ϕ̃aw ⟩πaw = 1(4.3.16)

⟨ϕbw , ϕ̃bw ⟩πbw = 1.
So by the uniqueness (up to a constant) of the equivariant pairing ⟨, ⟩πaw⊗πbw , we have
the factorization

⟨, ⟩πaw⊗πbw = ⟨, ⟩πaw ⋅ ⟨, ⟩πbw .
Proposition 4.3.8. The product Φ1,w ((A1 B2D2

C1 D2
))Φ2,w ((A2 +B2D2C2 A1B1

D2C2 C1A1B1 +D1
))

is zero unless all of the following conditions are met:

A1 ∈ Γaw ,w(t)
C1 ∈ p

t
wMbw×aw (Ow)

D2 ∈ Γbw,w(t)
B2 ∈ p

t
wMaw×bw (Ow)

C2 ∈Mbw×aw (Ow)
A2 ∈ p

−t
wMaw×aw (Ow)

B1 ∈Maw×bw (Ow)
D1 ∈ p

−t
wMbw×bw (Ow) .
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When all of the above conditions are met, we have the following factorization at each
prime w ∈ Σp:

Φ1,w (Z ′1,Z ′′2 )Φ2,w (Z ′2,Z ′′1 ) ⟨πw (Z1)ϕw, π̃v (Z2)ϕ′w⟩πw = J1 ⋅ J2,(4.3.17)

where

J1 = χ2,w (detA1)−1Φ(4)w (D1) ∣detDaw
1 ∣1/2w ⟨ϕbw , π̃bw (D−11 ) ϕ̃bw⟩πbw(4.3.18)

J2 = χ1,w (detD2)Φ(1)w (A2) ∣detAbw2 ∣1/2w ⟨ϕaw , π̃aw (A2) ϕ̃aw ⟩πaw .(4.3.19)

Proof. By Lemma 4.3.2 and the definition of Φ1,w, the product

Φ1,w ((A1 B2D2

C1 D2
))Φ2,w ((A2 +B2D2C2 A1B1

D2C2 C1A1B1 +D1
))

is zero unless all of the above conditions are met. For the remainder of the proof, we
will work only with matrices meeting the above conditions. We now prove the second
statement of the proposition. Note that when the above conditions are met,

πw (Z1)ϕw = πw (( 1 0
C1 D1

))µ′w ((A1 0
0 1

))ϕw
π̃w (Z1)ϕ′w = π̃w ((A2 B2

0 1
))(µ′w)−1 ((1 0

0 D2
))ϕ′w.

So

Φ1,w (Z ′1,Z ′′2 )Φ2,w (Z ′2,Z ′′1 ) ⟨πw (Z1)ϕw, π̃ (Z2)ϕ′w⟩πw
= χ−12,w (detA1)χ1,w (detD2) ⟨πw (( 1 0

C1 D1
))ϕw, π̃w ((A2 B2

0 1
))ϕ′w⟩

πw

.

Let A ∈Maw (Kw), D ∈Mbw (Kw), C ∈Mbw×aw (Kw), and D ∈Maw×bw (Kw) be matrices
such that

(1 −B2

0 1
)( 1 0
C1 D1

) = (1 0
C 1

)(A 0
0 D

)(1 B

0 1
) .

Then

A = 1 −B2C1 ∈ 1 + p
2t
wMaw (Ow)

CA = C1 ∈ p
t
wMbw×aw (Ow)

AB = −B2D1 ∈Maw×bw (Ow) .
So

C ∈ ptwMbw×aw (Ow)
B ∈Maw×bw (Ow)
D =D1 −CAB = (1 +CB2)D1 ∈ (1 + p2tMbw (Ow))D1.
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Therefore, applying the invariance conditions of Definition 4.3.5 we obtain

⟨πw (( 1 0
C1 D1

))ϕw, π̃w ((A2 B2

0 1
))ϕ′w⟩

πw

= ⟨πw ((1 −B2

0 1
)( 1 0
C1 D1

))ϕw, π̃w ((A2 0
0 1

))ϕ′w⟩
πw

= ⟨πw (( 1 0
C1 1

)(1 0
0 D1

))ϕw, π̃w (A2 0
0 1

)ϕ′w⟩
πw

= ⟨πw ((1 0
0 D1

))ϕw, π̃w ((A2 0
0 1

)( 1 0
−C1A2 1

))ϕ′w⟩
πw

= ⟨πw ((1 0
0 D1

))ϕw, π̃w ((A2 0
0 1

))ϕ′w⟩
πw

= ⟨ϕw, π̃w ((A2 0
0 D−11

))ϕ′w⟩
πw

.

Since ⟨ϕw, ϕ′w⟩πw = 1, it follows that
ℵw = ∫

GLn(Ow)
⟨ϕw(x), ϕ′w(x)⟩πaw⊗πbwdx.

Now, the support of ϕw in GLn (Ow) is
V (d) =
{(1 B

0 1
)(A 0

0 D
)(1 0
C 1

) ∣ C ∈ pdwMbw×aw ,A ∈ GLaw (Ow) ,D ∈ GLbw (Ow) ,B ∈Maw×bw (Ow)} .
Applying the definitions of ϕw and ϕ′w, we obtain

∫
GLn(Ow)

⟨ϕw(x), ϕ′w(x)⟩πaw⊗πbw dx = volume (V (d), dg) ⟨ϕw(1), ϕ′w(1)⟩πaw⊗πbw .
Since we defined ⟨, ⟩πaw⊗πbw so that ⟨ϕw(1), ϕ′w(1)⟩πaw⊗πbw = 1, we therefore obtain

ℵw = volume (V (d), dg) .(4.3.20)

Note that since d ≥ 2t, A2 ∈ p
− d

2
w Maw (Ow) and D1 ∈ p

− d
2

w Mbw (Ow). Then once again
using the definitions of ϕw and ϕ′w and the fact that the support of ϕw in GLn (Ow) is
V (d), we see that

⟨ϕw, π̃w ((A2 0
0 D−11

))ϕ′w⟩
πw

= volume (V (d), dg)ℵ−1w ⋅ ⟨ϕw(1), ∣detAbw2 detDaw
1 ∣1/2w π̃aw (A2)⊗ π̃bw (D−11 )ϕ′w(1)⟩

πaw⊗πbw
.

So by Equation (4.3.20),

⟨ϕw, π̃w ((A2 0
0 D−11

))ϕ′w⟩
πw

= ∣detAbw2 detDaw
1 ∣1/2w ⟨ϕw(1), π̃aw (A2)⊗ π̃bw (D−11 )ϕ′w(1)⟩πaw⊗πbw .
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Consequently,

⟨ϕw(1), π̃aw (A2)⊗ π̃bw (D−11 )ϕ′w(1)⟩πaw⊗πbw
= ⟨ϕaw , π̃aw (A2) ϕ̃aw⟩πaw ⋅ ⟨ϕbw , π̃bw (D−11 ) ϕ̃bw⟩πbw .

So

Φ1,w (Z ′1,Z ′′2 )Φ2,w (Z ′2,Z ′′1 ) ⟨πw (Z1)ϕw, π̃w (Z2) ϕ̃w⟩πw = J1J2,

where

J1 = χ2,w (detA1)−1Φ(4)w (D1) ∣detDaw
1 ∣1/2w ⟨ϕbw , π̃bw (D−11 ) ϕ̃bw⟩πbw(4.3.21)

J2 = χ1,w (detD2)Φ(1)w (A2) ∣detAbw2 ∣1/2w ⟨ϕaw , π̃aw (A2) ϕ̃aw ⟩πaw .(4.3.22)

�

Corollary 4.3.9. The integral Iw ∶= Iw (ϕ,ϕ′, χ,µ) in Equation (4.3.11) factors as

Iw = I1 ⋅ I2,

I1 = ∫
GLbw (Kw)

χ2,w (detD)Φ(4)w (D) ∣detD∣s+ bw
2

w ⟨πbw(D)ϕbw , ϕ̃bw⟩πbw d×D
I2 = ∫

GLaw(Kw)
χ−11,w (detA)Φ(1)w (A) ∣detA∣s+aw

2
w ⟨ϕaw , π̃aw (A) ϕ̃aw⟩πawd×A.

Proof. By Equation (4.3.13) and Proposition 4.3.8,

Iw = volume (Γw)−1∫
A1,A2,B1,B2,C1,C2,D1,D2

χ2,w (det (A1D1))χ−11,w (det (A2D2))
(4.3.23)

× ∣det (A1D1A2D2)∣s+n
2

w J1J2

× ∣detAbw1 detD−aw1 ∣
w
∣detA−bw2 detDaw

2 ∣w d×A1d
×A2dB1dB2dC1dC2d

×D1d
×D2,
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where J1 and J2 are defined as in Equations (4.3.21) and (4.3.22), respectively, and

A1 ∈ Γaw(t)
C1 ∈ p

t
w∏
v∣p

Mbw×aw (Ow)
D2 ∈ Γbw(t)
B2 ∈ p

t
w∏
v∣p

Maw×bw (Ow)
C2 ∈∏

v∣p

Mbw×aw (Ow)
A2 ∈ p

−c
w ∏
v∣p

Maw×aw (Ow)
B1 ∈∏

v∣p

Maw×bw (Ow)
D1 ∈ p

−c
w ∏
v∣p

Mbw×bw (Ow) .

Note that for such A1 and D2, ∣detA1∣w = ∣detD2∣w = 1. Applying Equations (4.3.21) and
(4.3.22), we therefore see that the integrand in Equation (4.3.23) equals

χ2,w (detD1)Φ(4)w (D1) ⟨πbw(D1)ϕbw , ϕ̃bw ⟩πbw ∣D1∣s+ b
2

w

× χ−11,w (detA2)Φ(1)w (A2) ⟨ϕaw , π̃aw (A2) ϕ̃aw⟩πaw ∣A2∣s+a
2

w .

Therefore,

Iw =volume (Γw)−1 volume (Γw)⎛⎝volume
⎛
⎝∏v∣pMaw×bw (Ow)⎞⎠

⎞
⎠
2

×∫
GLbw (Kw)

χ2,w (detD1)Φ(4)w (D1) ⟨πbw(D1)ϕbw , ϕ̃bw⟩πbw ∣D1∣s+ b
2

w d×D1

×∫
GLaw (Kw)

χ−11,w (detA2)Φ(1)w (A2) ⟨ϕaw , π̃aw (A2) ϕ̃aw⟩πaw ∣A2∣s+a
2

w d×A2

=∫
GLbw (Kw)

χ2,w (detD)Φ(4)w (D) ⟨πbw(D)ϕbw , ϕ̃bw ⟩πbw ∣D∣s+
b
2

w d×D

×∫
GLaw (Kw)

χ−11,w (detA)Φ(1)w (A) ⟨ϕaw , π̃aw (A) ϕ̃aw⟩πaw ∣A∣s+a
2

w d×A.

�

4.3.10. The main local theorem. In Theorem 4.3.11, we calculate the integrals I1 and I2
from Corollary 4.3.9.
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Theorem 4.3.11. The integrals I1 and I2 are related to familiar L-functions as follows.

I1 =
L (s + 1

2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w)

I2 =
ε(−s + 1

2
, πaw ⊗ χ1,w)L (12 + s, π̃aw ⊗ χ−11,w)
L (−s + 1

2
, πaw ⊗ χ1,w) .

Consequently,
(4.3.24)

Iw =
L (s + 1

2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w)

ε(−s + 1
2
, πaw ⊗ χ1,w)L (12 + s, π̃aw ⊗ χ−11,w)
L (−s + 1

2
, πaw ⊗ χ1,w)

∶= L(s + 1

2
, ord,πw, χw)

Here as above we are writing πw = Ind
GLn

Raw,bw
πaw ⊗ πbw .

Proof. The integrals I1 and I2 are of the same form as the “Godement-Jacquet” inte-
gral defined in [Jac79, Equation (1.1.3)]. Applying the “Godement-Jacquet functional
equation” in [Jac79, Equation (1.3.7)], we obtain

I1 =
L (s + 1

2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w)

×∫
GLbw (Kw)

(Φ(4)w )∧ (D) ∣detD∣−s+ bw
2

w χ−12,w (D) ⟨ϕbw , π̃bw(D)ϕ̃bw⟩πbw d×D,(4.3.25)

where (Φ(4)w )∧ denotes the Fourier transform of Φ
(4)
w . The support of (Φ(4)w )∧ is GLbw (Ow),

and

(Φ(4)w )∧ (D) = φνv ((1aw 0
0 D

))(4.3.26)

for all D ∈ GLbw (Ow).
Applying Equations (4.3.7) and (4.3.8), we obtain

⟨ϕbw , π̃bw(D)ϕ̃bw ⟩πbw = (µ′bw (D))−1 ⟨ϕbw , ϕ̃bw⟩πbw
= (µ′bw (D))−1

for allD ∈ tΓbwΓbw =∏w∈ΣGLbw (Ow). Plugging this into Equation (4.3.25) and applying
Equation (4.3.26), we obtain

I1 =
L (s + 1

2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w) .
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The computation of I2 is similar. Applying the Godement Jacquet functional equation
[Jac79, Equation (1.3.7)] again and applying Equation (4.3.16), we obtain

I2 =
ε(−s + 1

2
, πaw ⊗ χ1,w)L (12 + s, π̃aw ⊗ χ−11,w)
L (−s + 1

2
, πaw ⊗ χ1,w) .

�

Remark 4.3.12. Let ωaw denote the central quasi-character of πaw . Then

ε(−s + 1

2
, πaw ⊗ χ1,w) = ωaw(−1)

ε(s + 1
2
, π̃aw ⊗ χ

−1
1,w) .

So we may rewrite I2 and Iw as

I2 =
ωaw(−1)L ( 12 + s, π̃aw ⊗ χ−11,w)

ε(s + 1
2
, π̃aw ⊗ χ

−1
1,w)L (−s + 1

2
, πaw ⊗ χ1,w)

Iw = ωaw(−1) L ( 1
2
+ s, π̃aw ⊗ χ

−1
1,w)

ε(s + 1
2
, π̃aw ⊗ χ

−1
1,w)L (−s + 1

2
, πaw ⊗ χ1,w)

L (s + 1
2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w) .

Therefore, the Euler factor at p, which we denoted in Equation (4.3.24)

∏
w∣p
L(s + 1

2
, ord,πw, χw)

can also be written

∏
v∣p

ωaw(−1) L (1
2
+ s, π̃aw ⊗ χ

−1
1,w)

ε(s + 1
2
, π̃aw ⊗ χ

−1
1,w)L (−s + 1

2
, πaw ⊗ χ1,w)

L (s + 1
2
, πbw ⊗ χ2,w)

ε(s + 1
2
, πbw ⊗ χ2,w)L (−s + 1

2
, π̃bw ⊗ χ

−1
2,w) .

(4.3.27)

Remark 4.3.13. Note the similarity of the form of the zeta integral at p in Equation
(4.3.27) with the form of the modified Euler factor at p for the p-adic L-functions pre-
dicted by Coates in [Coa89, Section 2, Equation 18b].

4.4. Holomorphic representations of enveloping algebras and anti-holomorphic
vectors.

4.4.1. Holomorphic and anti-holomorphic modules. Throughout this section, we identify
Σ with ΣK+ , and we identify each element σ ∈ Σ with the restriction σ∣K+ . To simplify
notation, we let G∗ = GU1 = RK/QGU(V ) where GU(V ) denotes the full unitary simili-
tude group of V . Thus G∗(R) =∏σ∈ΣK+ Gσ, with Gσ = GU(V )K+σ ≃ GU(aσ , bσ). For any
h ∶ RC/R(Gm,C) → G∗R as in Section 2.1, the image of h is contained in the subgroup G
of (gσ , σ ∈ ΣK+) for which the similitude factor ν(gσ) is independent of σ, and it is to
this latter subgroup that the Shimura variety is attached.

Let U∞ = C(R) ⊆ G(R) = G4(R) and X be as in Section 2.7.1. We assume U∞ is the
centralizer of a standard h as in Section 2.3.2; let Uσ ⊂ Gσ denote its intersection with
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Gσ and let Ko
σ ⊂ Uσ denote its maximal compact subgroup; Ko

σ is isomorphic to the
product of compact unitary groups U(aσ) ×U(bσ). We have

kσ ∶= Lie(Uσ) = zσ ⊕Lie(Ko
σ)

where zσ is the R-split center of gσ ∶= Lie(GU(aσ , bσ)). We let U(gσ) denote the en-
veloping algebra of gσ.

For σ ∈ ΣK+ , we write the Harish-Chandra decomposition

gσ = kσ ⊕ p−σ ⊕ p+σ.
Because h was chosen to be standard, this decomposition is naturally defined over σ(K) ⊂
C. For any irreducible representation (τσ,Wτσ) of Uσ of Gσ ∶= G(K+σ), we let

(4.4.1) D♭(τσ) = U(gσ)⊗U(kσ⊕p−σ)Wτσ

We have assumed that our chosen h takes values in a rational torus T (= J0,n) ⊂ G (so
that (T,h) is a CM Shimura datum), and let Tσ ⊂ Gσ be the σ-component of T (R), tσ
its Lie algebra. We choose a positive root system R+σ for Tσ so that the roots on p+σ are
positive, and let b+σ be the corresponding Borel subalgebra.

Let R+,cσ ⊂ R+σ be the set of positive compact roots. The highest weight of τσ relative
to R+,cσ can be denoted κσ = (cσ;κ1,σ ≥ ⋅ ⋅ ⋅ ≥ κaσ ,σ;κc1,σ ≥ ⋅ ⋅ ⋅ ≥ κcbσ ,σ) ∈ Z×Zaσ ×Zbσ , where
cσ is the character of zσ. We call (τσ,Wτσ) strongly positive if there exists an irreducible
representation W∨σ of Gσ, with highest weight µ = (−cσ;a1 ≥ ⋅ ⋅ ⋅ ≥ an) ∈ Z×Zn relative to
R+σ, such that, setting a = aσ and b = bσ,

(4.4.2) (a1, . . . , an) = (−κcb,σ − a, . . . ,−κc1,σ − a;−κa,σ + b, . . . ,−κ1,σ + b);
in other words, if and only if −κc1,σ−a ≥ −κa,σ+b. The contragredient of D

♭(τσ) is denoted
(4.4.3) Dc(τσ) = D♭(τσ)∨ ≅ U(gσ)⊗U(kσ⊕p+σ)W ∨

τσ
.

It is the complex conjugate representation of D♭(τσ) with respect to the R-structure on
gσ; we call this the anti-holomorphic representation of type τσ.

In what follows, we usually write D(κσ) instead of D(τσ). It is well known that if τσ is
strongly positive then D(κσ) (resp. Dc(κσ)) is the (U(gσ),Uσ)-module of a holomorphic
(resp. anti-holomorphic) discrete series representation of Gσ , and moreover that

dimHab(gσ,Uσ ;D(κσ)⊗W∨σ ) = dimHab(gσ,Uσ ;Dc(κσ)⊗Wσ) = 1
with W∨σ the representation with highest weight given by 4.4.2, and Wσ its dual, with
highest weight

(4.4.4) (cσ;−an, . . . ,−a1) = (cσ ;κ1,σ − b; . . . , κa,σ − b, κc1,σ + a, . . . , κcb,σ + a).
The minimal Uσ-type of D♭(κσ) (resp. of Dc(κσ)) is the subspace

1⊗Wτσ ⊂ U(gσ)⊗U(kσ⊕p−σ)Wτσ (resp. 1⊗W ∨
τσ ⊂ U(gσ)⊗U(kσ⊕p+σ)W ∨

τσ).

The minimal Uσ-type of D♭(κσ) (resp. of Dc(κσ) is also called the space of holomorphic
vectors (resp. anti-holomorphic vectors).
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4.4.2. Canonical automorphy factors and representations. The (U(gσ),Uσ)moduleD♭(κσ)
can be realized as a subrepresentation of the right regular representation on C∞(Gσ)
generated by a canonical automorphy factor. We recall this construction below when
Gσ = G4,σ ≃ GU(n,n) and τσ is a scalar representation.

Let Mn be the affine group scheme of n ×n-matrices over Spec(Z), Mn = Spec(P(n)).
For σ ∈ Σ, let P(n)σ denote the base change of P(n) to Oσ = σ(OK). Corresponding to
the factorization G∗(R) = ∏σGσ , we write X = ∏σ∈ΣXσ. The maximal parabolic Pn,
together with Uσ, defines an unbounded realization of a connected component X+σ ⊂Xσ

as a tube domain in p+4,σ ([Har86] (5.3.2)). A choice of basis for L1, together with the

identification of V with Vd and V
d introduced in Section 4.1.1, identifies p+4,σ withMn(C)

and therefore identifies X+σ with a tube domain inMn(C). Let ℷσ ∈X+σ be the fixed point
of Uσ. Without loss of generality, we may assume ℷσ to be a diagonal matrix with values
in σ(K) whose entries have trace zero down to K+. Then X+σ is identified with the
standard tube domain

Xn,n ∶= {z ∈Mn (C) ∣ ℷσ (tz̄ − z) > 0} .
With respect to this identification, any gσ = (aσ bσ

cσ dσ
) ∈ Gσ acts by gσ(z) = (aσz + bσ) (cσz + dσ)−1.

(Here aσ, bσ , cσ , and dσ are n × n matrices.)

For z = (zσ)σ∈Σ ∈X =∏σ∈ΣXσ and g = (gσ)σ∈Σ ∈∏σ∈ΣG(Eσ), let
J ′(gσ , zσ) = cσ ⋅ tzσ + dσ
J ′(g, z) = ∏

σ∈Σ

J ′(gσ , zσ)
J(gσ , zσ) = cσzσ + dσ

J(g, z) = ∏
σ∈Σ

J(gσ , zσ)
Let

jgσ(zσ) = j(gσ , zσ) = detJ(gσ, zσ)
(= ν(gσ)−n det(gσ)det(J ′(gσ , zσ)) = ν(gσ)n det(gσ)−1 det(J ′(gσ , zσ))

jg(z) = j(g, z) = ∏
σ∈Σ

jgσ(zσ).
Fix σ ∈ Σ. For g ∈ Gσ , let

J(g) = J(g, ℷσ);J ′(g) = J ′(g, ℷσ).
These are C∞-functions on Gσ with values in GL(n,C), and any polynomial function of J
and J ′ is annihilated by p−σ and is contained in a finite-dimensional kσ subrepresentation
of C∞(Gσ). Similarly, let

j(g) = det(J(g)); j′(g) = det(J ′(g)),
viewed as C∞-functions on Gσ with values in C×.



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 61

Let χ = ∣∣ ● ∣∣m ⋅ χ0 be an algebraic Hecke character of K, where m ∈ Z and

χ0,σ(z) = z−a(χσ)z̄−b(χσ).
for any archimedean place σ. Define D2(χσ) = D2(m,χ0,σ) to be the holomorphic(Lie(G4,σ),Uσ)-module with highest Uσ-type

Λ(χσ) = Λ(m,χ0,σ) = (m−b(χσ),m−b(χσ), . . . ,m−b(χσ);−m+a(χσ), . . . ,−m+a(χσ);●)
in the notation of [Har97, (3.3.2)]. Here ● is the character of the R-split center of Uσ
(denoted c in [Har97]), which we omit to specify because it has no bearing on the integral
representation of the L-function. We define a map of (U(gσ),Uσ)-modules

(4.4.5) ι(χσ) ∶ D2(χσ) → C∞(Gσ)
as follows. Let v(χσ) be the tautological generator of the Λ(m,χ0,σ)-isotypic subspace
(highest Uσ-type subspace) of D2(m,χσ). Let

ι(χσ)(v(χσ)) = Jχσ(g) ∶= j(g)−m+a(χσ) ⋅ j′(g)−m+b(χσ)ν(g)n(m+a(χσ)+b(χσ))

and extend this to a map of U(gσ)-modules. Let C(Gσ , χσ) denote the image of ι(χσ).
Remark 4.4.3. Note that Jχσ depends only on the archimedean character χσ = ∣∣● ∣∣mσ χ0,σ.

We will only take m in the closed right half-plane bounded by the center of symmetry of
the functional equation of the Eisenstein series, as in [Har08]. For such m, the restriction
of D2(m,χ0,σ) to U3,σ = U(aσ , bσ) × U(bσ, aσ) decomposes as an infinite direct sum of
irreducible holomorphic discrete series representations of the kind introduced in 4.4.1:

(4.4.6) D2(m,χ0,σ) = ⊕
κσ∈C3(m,χ0,σ)

D(κσ)⊗D(κ♭σ ⊗ χ0,σ) = ⊕
κσ∈C3(χσ)

D(κσ)⊗D(κ♭σ ⊗ χσ)
where C3(χσ) = C3(m,χ0,σ) is a countable set of highest weights:
(4.4.7)
C3(χσ) = {(−m + b(χσ) − rbσ , . . . ,−m + b(χσ) − r1;m − a(χσ) + s1, . . . ,m − a(χσ) + saσ)}
where

(4.4.8) r1 ≥ r2 ≥ ⋅ ⋅ ⋅ ≥ rbσ ≥ 0; s1 ≥ s2 ≥ ⋅ ⋅ ⋅ ≥ saσ ≥ 0.

(Compare [Har97, Lemma 3.3.7] when a(χs) = 0.)
For each σ ∈ Σ, we define

(α(χσ), β(χσ)) = (−m + b(χσ), . . . ,−m + b(χσ);m − a(χσ), . . . ,ma(χσ)) ∈ Zaσ+bσ
and let

(4.4.9) (α(χ), β(χ)) = (α(χσ), β(χσ))σ∈Σ
For κ = (κσ)σ∈Σ, with κσ ∈ C3(χσ), we define

ρσ = κσ − (α(χσ), β(χσ)) = (−rbσ , . . . ,−r1; s1, . . . , saσ);
ρυσ = (r1, . . . , rbσ ; s1, . . . , saσ);ρ = (ρσ)σ∈Σ;ρυ = (ρυσ)σ∈Σ(4.4.10)

The involution υ on the parameters (ri, sj) corresponds to an algebraic involution, also
denoted υ, of the torus T .
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The algebraic characters ρ, ρυ, and κ all determine one another and will be used in the
characterization of the Eisenstein measure in subsequent sections.

Note that the twist by χ0,σ coincides with the twist by χσ because the norm of the
determinant is trivial on U(bσ, aσ). We prefer to write the twist by χσ, which is more
appropriate for parametrizing automorphic representations of unitary similitude groups.

Lemma 4.4.4. For such χ, the map ι(χσ) of 4.4.5 is injective for all σ. In particular,

the image C(Gσ, χσ) of ι(χσ) is a free U(p+σ) ∼Ð→ S(p+σ)-module of rank 1.

Proof. Indeed, D2(χσ) is always a free rank one U(p+σ)-module, and form in the indicated
range is irreducible as U(gσ)-module. Since ι(χσ) is not the zero homomorphism, it is
therefore injective. �

Definition 4.4.5. Let κ = (κσ , σ ∈ Σ), where for each σ, κσ is the highest weight of an
irreducible representation τσ of Uσ. Let (χσ, σ ∈ Σ) be the archimedean parameter of an
algebraic Hecke character χ of K. The pair (κ,χ) (or the triple (κ,m,χ0)) is critical if
κσ ∈ C3(χσ) for all σ ∈ Σ.

If π is an anti-holomorphic automorphic representation of G1 of type κ, we say (π,χ)
is critical if (κ,χ) is critical.

Remark 4.4.6. When K is imaginary quadratic, the discussion in [Har97, Section 3] shows
that, for fixed π and χ, the set of m such that (π,m,χ0) is critical is exactly the set of
critical values of L(s + 1

2
, π,χ) greater than or equal to the center of symmetry of the

functional equation. The same considerations show that this is true for an arbitrary CM
field. The verification is simple but superfluous unless one wants to compare the results
of the present paper to conjectures on critical values of L-functions.

Let vκσ ⊗ vκ♭σ⊗χσ
denote a highest weight vector in the minimal K3-type of D(κσ) ⊗

D(κ♭σ ⊗ χσ), relative to a choice of compact maximal tori in U3,σ as in 4.4.1. The
holomorphic module D2(χσ) is a free rank one module over U(p+4 ), generated by v(χσ) ∈
Λ(χσ). There is therefore a unique element δχσ,κσ ∈ U(p+4) such that

(4.4.11) δχσ,κσ ⋅ v(χσ) = vκσ ⊗ vκ♭σ⊗χσ
.

The differential operator δχσ ,κσ depends on the choice of basis vectors but is otherwise
well-defined up to scalar multiples. The module D(κσ)⊗D(κ♭σ⊗χσ) has a natural rational
structure over the field of definition E(τσ, χσ) of τσ ⊠ τ ♭σ ⊗ χσ. Let span(vκσ ⊗ vκ♭σ⊗χσ

)
denote the E(τσ, χσ)-line in D(κσ) ⊗D(κ♭σ ⊗ χσ) spanned by the indicated vector. We
always choose vκσ ⊗ vκ♭σ⊗χσ

to be rational over E(τσ , χσ).

4.4.7. Holomorphic projection. We let prκ,σ ∶ D
2(χσ) → D(κσ)⊗D(κ♭σ ⊗ χσ) denote the

natural projection and

prholκ,σ = pr
hol;aσ,bσ
κ,σ ∶ D2(χσ) → span(vκσ ⊗ vκ♭σ⊗χσ

)
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denote prκ,σ followed by orthogonal projection on the highest weight component of the
holomorphic subspace. Let

D2(χσ)hol;aσ ,bσ = ⊕
κσ∈C3(m,χσ)

im(prholκ,σ)
and let

prhol =⊕prholκ,σ ∶ D
2(χσ) → D2(χσ)hol;aσ ,bσ .

Because we have chosen h standard, the enveloping algebra U(gσ) and its subalgebra
U(p+4,σ) ≃ S(p+4,σ) have models over Oσ. and we define an isomorphism of Oσ algebras

(4.4.12) S(p+4,σ) ∼Ð→ P(n)σ
using the identification of section 4.4.2.

Let n = aσ + bσ be a signature at σ. We write X ∈Mn in the form X = (A(X) B(X)
C(X) D(X))

with A(X) ∈ Maσ (an aσ × aσ) block, D(X) ∈ Mbσ , and B(X) and C(X) rectangular
matrices. With respect to this decomposition and the isomorphism (4.4.12) we obtain a
natural map

j(aσ , bσ) ∶ P(aσ)σ ⊗P(bσ)σ ↪ P(n)σ ∼Ð→ U(p+4,σ).
For i = 1, . . . , aσ (resp. j = 1, . . . , bσ) let ∆i(X) (resp. ∆′j(X)) be the element of P(aσ)σ
(resp. P(bσ)σ) given by the ith minor of A (resp. the jth minor of D) starting from
the upper left corner. Let r1,σ ≥ ⋅ ⋅ ⋅ ≥ raσ ,σ ≥ raσ+1,σ = 0, s1,σ ≥ ⋅ ⋅ ⋅ ≥ sbσ ,σ ≥ sbσ+1,σ = 0 be
descending sequences of integers as in Inequalities (4.4.8). Let

r̃i,σ = ri,σ − ri+1,σ, i = 1, . . . , aσ; s̃j,σ = rj,σ − rj+1,σ, j = 1, . . . , bσ .
and define p(r̃σ, s̃σ) ∈ P(n)σ by

(4.4.13) p(r̃σ, s̃σ)(X) = j(aσ, bσ)(
aσ

∏
i=1

∆i(X)r̃i,σ ⋅ bσ∏
j=1

∆′j(X)s̃j,σ)
Let δ(r̃σ, s̃σ) ∈ U(p+σ) be the differential operator corresponding to p(r̃σ, s̃σ) under the
isomorphism (4.4.12).

The group GL(aσ) ×GL(aσ) (resp. GL(bσ) ×GL(bσ)) acts on P(aσ)σ (resp. P(bσ)σ)
by the map (g1, g2)(X) = tg−11 Xg2, and the action preserves the grading by degree. With
respect to the standard upper-triangular Borel subgroups, we can index representations
of GL(aσ) (resp. GL(bσ)) by their highest weights, which are aσ-tuples of integers
r1 ≥ r2 ≥ ⋅ ⋅ ⋅ ≥ raσ (resp. bσ-tuples s1 ≥ s2 ≥ ⋅ ⋅ ⋅ ≥ sbσ). The following is a statement of
classical Schur-Weyl duality:

Lemma 4.4.8. Let u = aσ or bσ. As a representation of GL(u) × GL(u), the degree
d-subspace P(u)dσ ⊂ P(u)σ decomposes as the direct sum

P(u)σ ∼Ð→ ⊕
µ

[Fµ,∨ ⊗ Fµ]
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where µ runs over r-tuples c1 ≥ c2 ≥ ⋅ ⋅ ⋅ ≥ cu ≥ 0 such that ∑i ci = d. Moreover, if
µ = c1 ≥ c2 ≥ ⋅ ⋅ ⋅ ≥ cu ≥ cu+1 = 0, the highest weight space Fµ,+ ⊂ [Fµ,∨ ⊗Fµ] is spanned by
the polynomial ∆µ =∏ri=1∆ci−ci+1

i .

Proof. This is the case n = k = r of Theorem 5.6.7 of [GW09]. �

Define the (one-dimensional) highest weight space Fµ,+ as in the statement of the
lemma, and write

P(u)+σ =⊕
µ

Fµ,+.
Recall the notation of (4.4.10).

Corollary 4.4.9. Let (κ,χ) be critical. For each σ ∈ Σ, there is a unique aσ + bσ-tuple

ρυσ = (r1,σ ≥ ⋅ ⋅ ⋅ ≥ raσ ,σ ≥ 0; s1,σ ≥ ⋅ ⋅ ⋅ ≥ sbσ,σ ≥ 0)
as above such that

prholκ,σ(δ(r̃σ, s̃s) ⋅ v(χσ)) = Pκσ ,χ,σ ⋅ vκσ ⊗ vκ♭σ⊗χσ

with Pκσ ,χ,σ a non-zero scalar in E(τσ , χσ)×.
We write

D(ρυσ) =D(κσ, χσ) = δ(r̃σ, s̃σ),D(ρυ) =D(κ,χ) =∏
σ

D(κσ, χσ)
and

Dhol(ρυσ) =Dhol(κσ , χσ) = prholκ,σδ(r̃σ, s̃σ),Dhol(ρυ) =Dhol(κ,χ) =∏
σ

Dhol(κσ , χσ)
for these choices of (ri,σ; sj,σ). Then for all κ† ≤ κ there exist unique elements δ(κ,κ†) ∈
U(p+3), defined over algebraic number fields, such that

D(κ,χ) = ∑
κ†≤κ

δ(κ,κ†) ○Dhol(κ′, χ);
δ(κ,κ) is the scalar ∏σ Pκσ ,χ,σ.

Proof. Consider j(aσ, bσ)(P(aσ)+σ ⊗P(bσ)+σ) ⊂ P(n)σ . This is the space spanned by the
p(r̃σ, s̃σ) defined in (4.4.13). Let δ(aσ , bσ)+ ⊂ U(p+σ) be the subspace identified with
j(aσ , bσ)(P(aσ)+σ ⊗ P(bσ)+σ) by the isomorphism (4.4.12). The decomposition (4.4.6) is
based on the fact that the composition

δ(aσ , bσ)+ ⊗ v(χσ)↪ D2(χσ) prhol→ D2(χσ)hol;aσ ,bσ
is an isomorphism. See the disscussion in section 7.11 of [Har86].

This does not say that δ(r̃σ, s̃σ)⊗v(χσ) lies in the highest weight space of the holomor-
phic subspace of the direct factor D(κσ)⊗D(κ♭σ ⊗χσ) corresponding to the aσ + bσ-tuple(r̃σ, s̃σ); but it does say that its projection on that highest weight space is non-trivial.
This is equivalent to the first statement of the corollary. The remaining statements are
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formal consequences of the decomposition (4.4.6) and the fact that the decomposition is
rational over an appropriate reflex field, cf. Lemma 7.3.2 of [Har86]. �

4.4.10. Differential operators on C∞-modular forms. Let χ = ∣∣ ● ∣∣mχ0 be an algebraic
Hecke character of K, as before. We view G4 as the rational similitude group of a maxi-
mally isotropic hermitian space V4; this allows us to write Sh(V4) for the corresponding
Shimura variety. Let Λ(χ) = (Λ(χσ), σ ∈ Σ) be the character of U∞ whose restriction to
Uσ is Λ(χσ). Let L(χ) be the 1-dimensional space on which U∞ acts by Λ(χ); it can be
realized over a number field E(χ∞) which depends only on χ∞. The dual of the highest
U∞-type Λ(χ), restricted to the intersection of U∞ with G4(R), defines an automorphic
line bundle L(χ) on Sh(V4) with fiber at the fixed point h of U∞ isomorphic to L(χ). If
π = π∞ ⊗ πf is an automorphic representation of G4, with π∞ a (Lie(G4),U∞) module

isomorphic to D2(χ) = ⊗σ∈Σ(D2(χσ) and πf an irreducible smooth representation of the
finite adeles of G4, then there a canonical embedding

(4.4.14) πf
∼Ð→ πf ⊗H

0(Ph,U∞;D2(χ)⊗L(χ))↪H0(Sh(V4)tor,L(χ)can).
Write Ω = ΩSh(V4) for the cotangent bundle. For any integer d ≥ 0, and for any ring

O, let P(n)d(O) denote the O-module of O-valued polynomials on the matrix space
Mn, and let P(n)d,∗(O) = HomO(P(n)d,O) denote the dual O-module. There is a
canonical action of U∞ on P(n)d, for every d, defined over the field of definition E(h)
of the standard CM point h stabilized by Uσ, and even over its integer ring. The Maass
operator of degree d, as defined in section 7.9 of [Har86] is a C∞-differential operator
(4.4.15) δdχ ∶ L(χ)→ L(χ)⊗ SymdΩ

We can view the target of δdχ as the automorphic vector bundle attached to the repre-

sentation L(χ) ⊗ P(n)d,∗ of U∞, using the identification of section 4.4.2 as in (4.4.12).
We use the same notation to denote the action on the space A(G4) of (not necessarily
cuspidal) automorphic forms on G4:

(4.4.16) δdχ ∶ A(G4,L(χ)) → A(G4,L(χ) ⊗P(n)d,∗)
where the notation denotes automorphic forms with values in the indicated vector space.
For any polynomial φ ∈ P(n)d we thus obtain a differential operator

(4.4.17) δdχ(φ) ∶ A(G4,L(χ)) → A(G4,L(χ)⊗P(n)d,∗); δdχ(φ)(f) = [δdχ(f)⊗ φ]
where the bracket denotes contraction P(n)d,∗ ⊗P(n)d → E(h).
Finally, for each σ define sequences r̃σ and s̃σ as in section 4.4.7; let r̃ = (r̃σ), s̃ = (s̃σ).

Suppose ∑σ[∑i r̃i,σ+∑j s̃j,σ] = d. Then we define p(r̃, s̃) =∏σ p(r̃σ, s̃σ) where the factors
are as in (4.4.13), and let
(4.4.18)

δdχ(r̃, s̃) = δdχ(p(r̃, s̃)) ∶ H0(Sh(V4)tor,L(χ)can)→H0,∞(Sh(V4),L(χ)⊗ SymdΩ).
HereH0,∞ denotes the space of C∞-sections. Under the isomorphisms (4.4.14), δdχ(r̃, s̃) is
identified with the operator on the left hand side deduced from multiplying by the element
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p(r̃, s̃), viewed as an element of Symdp+4 , which maps H0(Ph,U∞;D2(χ) ⊗ L(χ)) =
⊗σCvχσ ⊗L(χ) to p(r̃, r̃)⊗⊗σCvχσ ⊗L(χ) ∈ D2(χ)⊗L(χ)).
The holomorphic differential operators of Corollary 4.4.9 define operators on automor-

phic forms, as follows. Let S∞κ,V (K1,C) denote the space of C∞ modular forms of type κ

on Sh(V1), of level K1, and define S∞κ♭,−V (K2,C) analogously. The following Proposition

restates Proposition 7.11.11 of [Har86]:

Proposition 4.4.11. Let (κ,χ) be critical as in Corollary 4.4.9. Fix a level subgroup
K4 ⊂ G4(Af) and a subgroup K1 ×K2 ⊂ G3(Af) ∩K4. There are differential operators

D(κ,χ) ∶ H0(K4
Sh(V4)tor,L(χ)can) → S∞κ,V (K1,C)⊗ S∞κ♭,−V (K2,C)⊗ χ ○ det;

Dhol(κ,χ) ∶ H0(K4
Sh(V4)tor,L(χ)can) → Sκ,V (K1,C)⊗ Sκ♭,−V (K2,C)⊗ χ ○ det

which give the operators δdχ(r̃, s̃) and prhol○δdχ(r̃, s̃) upon pullback to functions on G4(A)
and restriction to G3(A).
4.4.12. The Hodge polygon. If π is a cuspidal automorphic representation of G whose
component at σ is an anti-holomorphic discrete series representation of the form Dc(τσ),
then its base change Π to an automorphic representation of GL(n)K (ignoring the split

center) is cuspidal, cohomological, and satisfies Π∨ ∼Ð→ Πc, and therefore the associated
ℓ-adic Galois representations have associated motives (in most cases), realized in the
cohomology of Shimura varieties attached to unitary groups, with specified Hodge struc-
tures. In what follows, we fix σ and attach a Hodge structure to the anti-holomorphic
representation Dc(τ), according to the rule used to assign a motive to Π. The Hodge
structure is pure of weight n−1 and has the following Hodge types, each with multiplicity
one:

(κ1 − b + n − 1, b − κ1), . . . , (κa, n − 1 − κa), (n − 1 − κcb, κcb + a), . . . , (−κc1, κc1 + n − 1),
(κc1 + n − 1,−κc1), . . . , (κcb + a,n − 1 − κcb), (n − 1 − κa, κa), . . . , (b − κ1, κ1 − b + n − 1).

(4.4.19)

Label the pairs in (4.4.19) (pi, qi), i = 1, . . . ,2n, in order of appearance; thus (pi, qi) is in
the top row if and only if i ≤ n.

Hypothesis 4.4.13 (Critical interval hypothesis). We assume that the weights (κ,κc)
are adapted to the signature (a, b) in the sense that, for every pair (pi, qi) in the collection
(4.4.19), pi ≠ qi and pi > qi if and only if i ≤ n.

One checks that Hypothesis 4.4.13 holds if and only if 2κa > n−1 and −2κc1 > n−1. We
define the Hodge polygon Hodge(κ,κc) = Hodge(Dc(τ)), to be the polygon in the right
half-plane connecting the vertices (i, pi) with (pi, qi) the pairs in (4.4.19).

4.4.14. Specific anti-holomorphic vectors. When τσ is strongly positive with highest
weight κ = κσ, we write D(κ) = D(τσ), Dc(κ) = Dc(τσ) when it’s clear that κ is a
weight and τσ is an irreducible representation. Let π be a cuspidal automorphic repre-
sentation of G with πσ = Dc(κ) as above. In the computation of the zeta integral, we use
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a factorizable automorphic form ϕ = ⊗vϕv ∈ π, with ϕv a vector in the minimal Uσ-type
1⊗W ∨

τσ of Dc(κ). In practice, we choose ϕv to be either the highest weight vector ϕκ,+ or
the lowest weight vector ϕκ,− in 1⊗W ∨

τσ . If w0 is the longest element of the Weyl group
of Tσ relative to R+σ, then ϕκ,+ (resp. ϕκ,−) is an eigenvector for Tσ of weight −w0(κ)
(resp. of weight −κ).

4.5. Local zeta integrals at archimedean places.

4.5.1. Choices of local data. This material has been covered at length in [Har97] and
[Har08], so we can afford to be brief. Notation for induced representations is as in
Section 4.1.2 above. The notation for holomorphic representations is as in Section 4.4.2.
An easy computation, similar to that in [Har97], yields

Lemma 4.5.2. As subspaces of C∞(Gσ), ι(m,χσ)(D2(m,χσ)) ⊂ Iσ(m − n
2
, χ).

Remark 4.5.3. Note that we have omitted similitude factors here. Strictly speaking,
these should be included; but they do not change the theory in any significant way.

4.5.4. Non-vanishing of I∞. Let σ be an archimedean place, fσ = fσ(χσ, c) ∈ I(χu,σ,m)
the local section at σ. We assume fσ is of the form

(4.5.1) fσ(χσ, c, g) = B(χσ, κσ)D(κσ ,m,χu,σ)Jm,χu,σ(g), g ∈ G4,σ

where Jm,χ0,σ
∈ C∞(G4) is the canonical automorphy factor introduced in section 4.4.2

and B(χσ, κσ) is a non-zero scalar. Let ϕσ ⊗ ϕ♭σ be an anti-holomorphic vector in the
highest weight subspace of the minimal Kσ-type of πσ ⊗ π♭σ.
Proposition 4.5.5. The local factor Iσ(ϕσ , ϕ♭σ , fσ,m) is not equal to 0.

Proof. If D(κσ, χσ) is replaced by Dhol(κσ , χσ) in (4.5.1), this follows from Remark
(4.4)(iv) of [Har08]. Since ϕσ ⊗ ϕ♭σ is an anti-holomorphic vector, the pairing of (the
Eisenstein section) D(κσ, χσ)Jm,χσ ,σ with (the highest weight vector) ϕσ ⊗ ϕ♭σ factors

through the projection of D(κσ, χσ)Jm,χσ ,σ onto Dhol(κσ , χσ)Jm,χσ ,σ. The Proposition
is thus a consequence of Corollary 4.4.9. �

When the extreme K-type τσ = τaσ ,σ ⊗ τbσ,σ in πσ is one-dimensional, the archimedean
zeta integrals have been computed in [Shi97, Shi00]. Garrett has shown in [Gar08] that
the archimedean zeta integrals are algebraic up to a predictable power of the transcen-
dental number π. When at least one of the two factors (τaσ ,σ, τbσ ,σ) of the extreme
K-type is one-dimensional, the archimedean zeta integrals are given precisely on [Gar08,
p. 12]; and furthermore, Garrett showed in [Gar08] that when both factors are scalars,
the archimedean zeta integrals are non-zero algebraic numbers. The computations of the
zeta integrals have not been carried out in the more general case (i.e. when neither τaσ ,σ
nor τbσ ,σ is one-dimensional), but in any case, the zeta integrals at σ depend only upon
the local data at σ.

The following result is due to Garrett [Gar08].
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Proposition 4.5.6. Let Iσ(χσ , κσ) be the local zeta integral

Iσ(χσ, κσ) = Iσ(ϕσ , ϕ♭σ , fσ,m),
where ϕσ = ϕκσ ,−, ϕ♭σ = ϕκ♭σ ,− and fσ is given by (4.5.1). Then Iσ(χσ, κσ) is a non-zero
algebraic number.

Remark 4.5.7. When κσ is a scalar representation, Shimura obtains an explicit formula
for the local zeta integral. In general, as explained at the end of [Har08, Section 5],
Garrett’s calculation actually determines the value of the integral up to an element of a
specific complex embedding of the CM field F . In that paper F is imaginary quadratic,
but the same reasoning applies in general. Undoubtedly the calculation actually gives
a rational number, but the method is based on the choice of rational structures on Uσ
and the aforementioned differential operators. We do not need to use this more precise
information here.

4.6. The global formula. We have now computed all the local factors of the Euler
product (4.1.5). The Proposition below summarizes the result of our computation. Bear
in mind that, although we write ϕ ∈ π, we actually mean that ϕ ∈ π, where the latter is
the irreducible U1(A) constituent of π chosen as in (4.1.1).

First, write χ = ∣∣ ● ∣∣m ⋅ χu with χu a unitary Hecke character of K. Denote by χ+ the
restriction of χu to the idèles of K+; it is a character of finite order. Let η = ηK/K+ denote
the quadratic idèle class character of K+ attached to the quadratic extension K/K+. For
any finite place v of K+, define the Euler factor

Dv(χ) = n−1∏
r=0

Lv(2m + n − r,χ+ ⋅ ηr).
For any finite set S of finite places, let

(4.6.1) DS(χ) =∏
v∉S

Dv(χ); D(χ) =D∅(χ),
where the product is taken over finite places.

Proposition 4.6.1. Let the test vectors ϕ ∈ π and ϕ♭ ∈ π♭ be chosen to be factorizable
vectors as in (4.1.2), with the local components at p and ∞ given as in (4.1.3) and
(4.1.4), respectively. Assume the local components at finite places outside S = Sπ are
unramified vectors, and the local choices at ramified places are as in 4.2.2. Moreover,
assume the Siegel-Weil section fs ∈ I(χ, s) is chosen as in the preceding sections. Write
χ = ∣∣ ● ∣∣mχu. Then we have the equality

D(χ) ⋅ I(ϕ,ϕ♭, f, s) = ⟨ϕ,ϕ♭⟩ ⋅ Ip(χ,κ)I∞(χ,ρυ)ISLS(s + 1

2
, π,χu)

where

IS =∏
v∈S

Dv(χ) ⋅ volume(Uv),
I∞(χ,κ) =∏

σ

Iσ(χσ, κσ)
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is the product of factors described in Proposition 4.5.6,

Ip = Lp(s,ord, π,χ) ∶=∏
w∣p
L(s,ord, πw, χw),

and ⟨●,●⟩ is the L2 inner product on cusp forms.
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A. Appendix: The definite case, revisited

We take another look at the definite case. This is the case where aσ,ibσ,i = 0 for all σ ∈ ΣK
and all i = 1, ...,m. In this case the schemes MK , the modular forms, and the p-adic
modular forms have simple descriptions. For each i = 1, ...,m, let Σi = {σ ∈ ΣK ∶ aσ,i > 0};
this is a CM type for K. Let Σp,i = {w∣p ∶ w is determined by inclp ○ σ for some σ ∈ Σi}.
Note that w ∈ Σp,i if and only if w̄ /∈ Σp,i, as w ∈ Σp,i if and only if aw,i > 0 which holds
if and only if aw̄,i = bw,i = 0. In particular, Σi is ordinary at inclp in the sense of [Kat78,
Section (5.1)]. Furthermore, it follows from the isomorphism (2.2.2) that

(A.0.2) G/Zp

∼Ð→ Gm ×

m

∏
i=1

∏
w∈Σp,i

GLOi,w
(eiLw) , (g, ν) ↦ (ν, (gw,i)) .

Since eiLw = eiL
+
w if w ∈ Σp,i and otherwise eiLw = eiL

−
w, L

+ = ∏mi=1∏w∈Σp,i
eiLw, it

follows that

(A.0.3) H = GLOB⊗Zp
(L+) ∼Ð→

m

∏
i=1

∏
w∈Σp,i

GLOi,w
(eiLw),

and hence

(A.0.4) G/Zp

∼Ð→ Gm ×H.

Combining isomorphism (A.0.4) with isomorphism (2.9.1) yields an identification

(A.0.5) G/Zp

∼Ð→ H0/Zp
.

A.1. Some CM abelian varieties. The CM type Σi defines a complex structure on
Vi = O ⊗ R; the complex structure is that defined by transport of structure via the

identification Vi =∏σ∈Σi
C, x⊗ r ↦ (σ(x)r). Then the canonical projection Vi

∼Ð→ Wi =O⊗C/(O⊗C)0 is a C-linear isomorphism, where the superscript 0 denotes the degree 0
part of the Hodge filtration on O ⊗C = Vi ⊗R C for the given complex structure on Vi.

Let Ai be the abelian variety Ai = Vi/O with the complex structure on Vi being that
defined by Σi. Then Ai has complex multiplication byO, which acts through its canonical
action on Vi; let ιi ∶ O ↪ End(Ai) be this action. A natural pr-level structure on Ai is
given by

φi,r ∶
⎛
⎝ ∏w∈Σp,i

Ow⎞⎠⊗ µpr
∼Ð→ ∏

w∈Σp,i

1

pr
Ow/Ow ↪∏

w∣p
1

pr
Ow/Ow = 1

pr
O/O = Ai [pr] ,

(vw)⊗ e2π√−1/pr ↦ (vw
pr

modOw)
w∈Σp,i

.

By the theory of complex multiplication, each triple (Ai, ιi, φi,r) has a model over

Q, unique up to isomorphism. Since Σi is ordinary for inclp these triples have good
reduction at the place determined by inclp (and at all places not dividing p) and so

extend to triples over Z(p) that are compatible with varying r; we continue to denote the
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triples as (Ai, ιi, φi,r). Note that over a p-adic Z(p)-algebra (e.g., OCp
or Z(p)/pmZ(p))

the image of φi,r is Ai [pr]○.
Let Λi ⊂ Wi be the image of O ⊗ S0; this is an O-stable free S0-submodule such that

Λi ⊗S0
C = Wi. Let ΩAi

= Lie(Ai)∨. Over C, there is a canonical isomorphism ofO ⊗C =∏σ∈Σi
C-modules

ΩAi/C = HomC(Vi,C) = ∏
σ∈Σi

Ceσ,i, eσ,i(x⊗ r) = σ(x)r,
which determines an isomorphism of rank one O ⊗C-modules

εi ∶ ΩAi/C
∼Ð→ HomC (Λi,C(1)) = HomS0

(Λi,Z(p)(1)) ⊗Z(p) C,
(aσeσ)σ∈Σi

↦ ⎛⎝x⊗ s↦ 2π
√
−1 ∑

σ∈Σi

aσσ(x)s⎞⎠ .
(A.1.1)

Similarly, over Z(p) there is an isomorphism of O ⊗ Z(p) =∏σ∈ΣK Z(p)-modules

Ω
Ai/Z(p) = ∏

σ∈Σi

Z(p)ωσ,i

with the ωσ,i’s determined up to elements of Z
×
(p), and this determines an isomorphism

εAi
∶ Ω

Ai/Z(p)
∼Ð→ HomS0

(Λi,Z(p)(1)) ,
(aσωσ,i)σ∈Σi

↦ ⎛⎝x⊗ s↦ 2π
√
−1 ∑

σ∈Σi

aσσ(x)s⎞⎠ ,
(A.1.2)

Comparing (A.1.1) and (A.1.2) yields periods Ωi = (Ωσ,i) ∈ (O ⊗C)× such that

(A.1.3) εi = Ωi ⋅ εAi
.

Note that Ωi is only determined up to an element of (O ⊗ Z(p))×; it depends on the
choice of the ωσ,i’s.

A.2. The moduli spaces. In the definite case, the space X = {h} consists of a single
element. Let Li = L ∩ ei(L ⊗ Z(p)). Then L′ = ∏mi=1Li ⊂ L is an OB-stable lattice and

the inclusion L′ ⊂ L has finite, prime-to-p index. Let L#
i ⊂ ei(L ⊗ Z(p)) be the lattice

dual to Li, that is L#
i = {x ∈ ei(L ⊗ Z(p)) ∶ ⟨x,Li⟩ ⊆ Z(1)}. Then Li ⊂ L

#
i with finite,

prime-to-p index, and L′′ =∏mi=1L#
i ⊂ L⊗Z(p) is an OB-stable lattice containing L# with

finite, prime-to-p index. For g ∈ G(Af) with gp ∈ G(Zp), the tuple Ah,g = (Ah, λh, ι, ηg),
g ∈ G(Af), is equivalent to the tuple Ag = (A,λ, ι′, η′g) with

● A = L′ ⊗ R/L′ = ∏mi=1Li ⊗O Ai; the dual abelian variety is A∨ = L′′ ⊗ R/L′′ =
∏mi=1L#

i ⊗O Ai;
● λ the isogeny induced by the inclusion L′ ⊆ L′′ and the identity map on L′ ⊗R =
L′′ ⊗R; in particular, λ =∏mi=1 incl i ⊗ id, where incl i is the inclusion Li ⊂ L

#
i ;

● ι′ induced from the action of OB on L; in particular, ι′ = ∏mi=1 cani ⊗ ιi, where
cani is the canonical action of OB on Li;
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● η′g the Kp-orbit of the translation by gp map gp ∶ L⊗A
p
f

∼Ð→ L⊗A
p
f
= L′ ⊗A

p
f
=

H1(A,Apf).
The equivalence of Ah,g and Ag is given by the prime-to-p isogeny A → Ah induced by

the inclusion L′ ⊂ L and the identity map on L⊗R = L′ ⊗R.

Since each (Ai, ιi) is defined over Z(p), so is Ag. It follows that

(A.2.1) MK /Z(p) = ⊔
G(Q)/G(Af )/K

SpecZ(p),

with the Z(p)-point corresponding to the class of g ∈ G(Af) representing the equivalence

class of the tuple Ag. In fact, this disjoint union holds with Z(p) replaced by the integral

closure of S0 in some finite extension of the reflex field F (which will depend on the
compact open subgroup K in general).

A similar description holds with K replaced by Kr. Note that L+ = ∏mi=1∏w∈Σp,i
Lw =

∏mi=1∏w∈Σp,i
Li ⊗O Ow, from which it follows that for g ∈ G(Af) with gp ∈ G(Zp) the

tuple Xh,g = (Ah,g, φg) is equivalent to Xg = (Ag, φ′r,g) with φ′r,g the gp-translate of

φ′r ∶ L+ ⊗ µpr =
m

∏
i=1

Li ⊗O
⎛
⎝ ∏w∈Σp,i

Ow⎞⎠⊗ µpr ↪ A∨ [pr] = m

∏
i=1

L
#
i ⊗O Ai [pr] ,

φ′r =
m

∏
i=1

idi ⊗ φi,r.

The action of gp on L
+ is via the projection toH in isomorphism (A.0.4). The equivalence

again comes from the prime-to-p isogeny A → Ah determined by the inclusion L′ ⊂ L and
the identity map on L′ ⊗R = L⊗R. So

(A.2.2) MKr = ⊔
G(Q)/G(Af )/Kr

SpecZ(p)

with the Z(p)-point corresponding to the class of g ∈ G(Af) being the class of Xg.

A.3. Modular forms. We assume that

Λ0 =
m

∏
i=1

Li ⊗O Λi =
m

∏
i=1

L
#
i ⊗O Λi,
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so W = Λ0 ⊗S0
C = ∏mi=1L#

i ⊗O Λi ⊗S0
C = ∏mi=1L#

i ⊗O Vi. The canonical isomorphism
ε0 ∶ ΩA∨

/C
= HomS0

(Λ0,C(1)) = Λ∨0 ⊗C from Section 2.7.2 is just

ΩA∨/C =
m

∏
i=1

HomZ(p)
(L#

i ⊗Z(p),Z(p))⊗S0
ΩAi/C

=
m

∏
i=1

HomZ(p)
(L#

i ⊗Z(p),Z(p))⊗S0
HomS0

(Λi,C(1))
=

m

∏
i=1

HomS0
((L#

i ⊗Λi,C(1)) = HomS0
(Λ0,C(1)) = Λ∨0 ⊗S0

C,

(A.3.1)

where the second identification is induced by the isomorphisms (A.1.1). Similarly, the
isomorphisms (A.1.2) determine an isomorphism

(A.3.2) εA ∶ ΩA∨/Z(p) ≅ Λ
∨
0 ⊗S0

Z(p),

and putting

Ω = (Ωi) ∈ m

∏
i=1

(O ⊗C)× ∈ m

∏
i=1

GLOi⊗C(eiΛ∨0 ⊗S0
C) = GLOB⊗C(Λ∨0 ⊗S0

C),
with Ωi as in (A.1.3), we have

(A.3.3) ε0 = Ω ⋅ εA.

As ε0 trivializes the GLOB⊗C
(Λ∨0 ⊗S0

C)-torsor IsomOB⊗C(ΩA∨/C,Λ∨0 ⊗C), the modular
forms over C of level K and weight κ are identified with

(A.3.4) Mκ(K;C) = { f∞ ∶ G(Q)/G(A) →Wκ(C)
f∞(guk) = u−1f∞(g) ∀u × k ∈ G(R)K} ,

and those of character ψ are identified with

(A.3.5) Mκ(Kr, ψ;C) = { f∞ ∶ G(Q)/G(A) →Wκ(C)
f∞(guk) = u−1ψ(kp)f∞(g) ∀u × k ∈ G(R)K0

r
} ,

where ψ defines a character of K0
r via the isomorphism I0r /Ir ∼Ð→ TH (Zp/pZp). Explic-

itly, a modular form f in the left-hand side of (A.3.4) or (A.3.5) is identified with a
function f∞ on the right-hand side such that the value of f on (Agf , (xε0(g−1∞ ⋅), ν(x)))
or (Xgf

, (xε0(g−1∞ ⋅), ν(x))), respectively, equals g−1∞ ⋅f∞(gf)(x). This is just the complex

uniformization given in 2.7.2 specialized to the definite case.

Similarly, εA trivializes IsomOB⊗Z(p)(ΩA∨/Z(p) ,Λ∨0 ⊗S0
Z(p)), and the modular forms

over R, Z(p) ⊆ R ⊆ C, of weight κ are identified with those that take values in R

on (Agf , (xεA, ν(x))) or (Xgf
, (xεA, ν(x))) for x ∈ H0(R) and gf ∈ G(Af) such that

gp ∈ G (Zp). The relation (A.3.3) identifies the modular forms over R with those f∞ in
the right-hand sides of (A.3.4) and (A.3.5) such that

κ(Ω)−1f∞(gf ) ∈Wκ(R)
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for gf ∈ G(Af) with gp ∈ G(Zp). Restricting to G(Af) we find that the spaces of modular

forms of weight κ over Q can be identified with the spaces

(A.3.6) Aalg
κ (K;Q) = { fa ∶ G(Af)→Wκ(Q)

fa(γgk) = γ−1 ⋅ fa(g) ∀γ ∈ G(Q), k ∈K}
and

(A.3.7) Aalg
κ (Kr, ψ;Q) = { fa ∶ G(Af)→Wκ(Q)

fa(γgk) = γ−1 ⋅ ψ(kp)fa(g) ∀γ ∈ G(Q), k ∈K0
r

} .
An f inMκ(K;Q) orMκ(Kr, ψ;Q) is then identified with functions fa and f∞ such that

(A.3.8) fa(g) = κ(Ω)−1f∞(g)
for g ∈ G(Af). Clearly, the right-hand sides of (A.3.6) (resp. (A.3.7)) makes sense with

Q replaced with any Q-algebra R (resp. Q[ψ]-algebra R); the corresponding module is

denoted Aalg
κ (K;R) (resp. Aalg

κ (Kr, ψ;R)).
If R is also a Qp-algebra, then Aalg

κ (K;R) and Aalg
κ (Kr, ψ;R) can be identified, respec-

tively, with

(A.3.9) Ap−algκ (K;R) = {fp ∶ G(Q)/G(Af )→Wκ(R)
fp(γgk) = k−1p fp(g) ∀k ∈K}

and

(A.3.10) Ap−algκ (Kr, ψ;R) = { fp ∶ G(Q)/G(Af )→Wκ(R)
fp(γgk) = k−1p ψ(kp)fp(g) ∀k ∈K0

r
} .

An fa in Aalg
κ (K;R) or Aalg

κ (Kr, ψ;R) is identified with fp(g) = g−1p fa(g), where the
action of gp on Wκ is through the identification (A.0.5). The right-hand side of (A.3.9)
(resp. (A.3.10)) makes sense with R any Zp-algebra (resp. Zp[ψ]-algebra).
In the right-hand sides of (A.3.9) and (A.3.10), Wκ(R) can be replaced with any R[K]-

module. We write Mp−alg
κ∨ (K;R) and Mp−alg

κ∨ (Kr, ψ;R) for the modules of forms with
Wκ(R) replaced by W ∨

κ (R). For a Qp-algebra R, the isomorphism W ∨
κ (R) ≅ Wκ∨(R),

ℓκ ↦ φκ∨ , identifies these spaces with Ap−algκ∨ (K;R) and Ap−algκ∨ (K,ψ;R), respectively.
Let [⋅, ⋅]κ ∶ Wκ(R) ×W ∨

κ (R) → R be the canonical perfect R-pairing (so [φ, ℓ] = ℓ(φ)).
Using this we define a perfect R-pairing

⟨⋅, ⋅⟩κ ∶ Ap−algκ (Kr,ψ;R) ×Mp−alg
κ∨
(Kr, ψ

−1;R)→ R,

⟨fp, f ′p⟩κ = ∑
x∈G(Q)/G(Af )/K0

r

[f(x), f ′(x)]κ.(A.3.11)

Suppose R ⊂ C (which is a Zp-algebra via inclp). Let f ∈ Mκ(Kr, ψ;R) and f ′ ∈
Mκ∨(Kr, ψ

−1;R). Chasing through the correspondences and the identification of W ∨
κ (C)

with Wκ∨(C) yields
(A.3.12) ⟨fp, f ′p⟩κ = vol(K0

r )−1∫
G(Q)/G(A)/G(R)[f∞(x), f ′∞(x)]κdx.
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A.4. Hecke operators. The Hecke operators away from p and S are given by the usual
double coset on all the spaces of forms in Section A.3 and satisfy

(A.4.1) ⟨[KrgKr]fp, f ′p⟩κ,S = ⟨fp, [Krg
−1Kr]f ′p⟩κ,S .

The same is true of the action of Uw,i,j on the spaces of forms defined in Equations
(A.3.4), (A.3.5), (A.3.6), and (A.3.7).

A.5. p-adic modular forms. The abelian varieties Ai and A are ordinary, so §m is
just MK/OCp

/pmOCp
. As φ′n is a trivialization of A∨[pn]0, the quotient Tn,m/Bu

H(Zp)
is MKn/OCp

/pmOCp
. If R is a p-adic OCp

-algebra, then the R-module of p-adic modular
forms for G is identified with the limit

V (Kp,R) = lim←Ð
m

limÐ→
n

{f ∶ G(Q)/G(Af )→ R/pmR
f(gk) = f(g) ∀k ∈Kn

}
= lim←Ð

m

limÐ→
n

Ap−alg
1
(Kn;R/pmR),

(A.5.1)

where 1 denotes the trivial character. Explicitly, the value of f ∈ V (Kp,R) on the test
object (Ag, (φ′n,g)), g ∈ G(Af), is f(g).
As the isomorphism Lie((φi,n))∨ ∶ ΩAi/OCp

∼Ð→ HomS0
(Λi,OCp

(1)) is an O ⊗ OCp
-

linear isomorphism of rank one O ⊗OCp
-modules, there is Ωp,i ∈ (O ⊗OCp

)× such that
Lie((φi,n))∨ = Ωp,iεAi

. It follows that Ωp = (Ωp,i) ∈ ∏mi=1(O ⊗OCp
)×, which belongs to

the center of GLOB⊗OCp
(Λ∨0 ⊗S0

OCp
) ⊂H0(OCp

), satisfies
(A.5.2) εp ∶= Lie((φ′n))∨ = Ωp ⋅ εA.
The realization of f ∈Mκ∗(Kr, ψ;R) as a p-adic modular form fp−adic of weight κ is such
that for g ∈ G(Af)

fp−adic(g) = f(Ag, φ′r ○ gp, (g−1p εp, id))
= κ∗(Ωp)f(Ag, φ′r ○ gp, (g−1p εA, id))
= κ∗(Ωp)f(Ag, φ′r ○ gp, g−1p (εA, id))
= κ∗(Ωp)fa(g)(g−1p )
= κ∗(Ωp)fp(g)(1).

(A.5.3)

The right-hand side of (A.5.1) is defined for any p-adic algebra R and we denote the
limit by A(Kp,R) and the submodule of weight κ and character ψ forms (for κ and ψ
both R-valued) by Aκ(Kp, ψ,R). There is a natural map

ev ∶ Ap−algκ∗ (Kr, ψ;R) → Aκ (Kp, ψ,R) , fp ↦ (g ↦ fp(g)(1)).
If p is not a zero-divisor in R then this is an injection, but in general it is not.

Let

M(Kp,R) = lim←Ð
m

lim←Ð
n

Ap−alg
1

(Kn;R/pmR) ,(A.5.4)
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where the transition maps in n are the trace maps

Trn′,n ∶ Ap−alg1
(Kn′ ;−)→ Ap−alg1

(Kn;−) ,
Trn′,nf(g) = ∑

k∈Kn/Kn′

f(gk).
The perfect pairings ⟨⋅, ⋅⟩n,m ∶= ⟨⋅, ⋅⟩1 are compatible with Trn′,n in the sense that for

fp ∈Ap−alg1
(Kn;R/pmR) and f ′p ∈ Ap−alg1

(Kn′ ;R/pmR), n′ ≥ n,
⟨fp, f ′p⟩n′,m = ⟨fp,Trn′,nf ′p⟩n,m,

and so, upon taking limits, they yield a perfect pairing

(A.5.5) ⟨⋅, ⋅⟩ ∶ A(Kp,R) ×M(Kp,R)→ R.

Note that Ap−alg
1

(Kn;−) =Mp−alg
1

(Kn;−).
The values ⟨ev(fp), ⋅⟩ can be expressed in terms of ⟨ev(f), ⋅⟩κ∗ as follows. Given an

R-valued character ψ of TH(Zp) that factors throught TH(Zp/prZp) and a dominant
weight κ∗ we put

ev∨κ,ψ ∶M(Kp,R) →Mp−alg
κ∨∗

(Kr, ψ
−1;R) ,

ev∨κ,ψ(f) = lim←Ð
m

ev∨κ,ψ(f)m, ev∨κ,ψ(f)m(g) = ∑
x∈K0

r /Kt

ft,m(gx)ψ(x)x ⋅ ℓκ,
where f = lim←Ðm lim←Ðn fn,m and t ≥ r; ev∨κ,ψ(f)m is easily seen to be independent of t. Then

for fp ∈Ap−algκ∗ (Kr, ψ;R) and f ′ ∈M(Kp,R),
(A.5.6) ⟨ev(fp), f ′⟩ = ⟨fp, ev∨κ,ψ(f ′)⟩κ∗ .
A.6. Hecke operators again. The Hecke operators away from p act via the usual
double coset actions on all the spaces of forms defined in A.3 and A.5. Similarly, the
action of uw,i,j on V (Kp,R) is just the usual action of the double coset Uw,i,j. For the
Hecke operators away from p these actions are compatible with the various identifications
and the maps ev and ev∨κ,ψ, while the operators at p satisfy the relation (2.9.4): for

fa ∈Aalg
κ∗ (Kr, ψ;R)

(A.6.1) ∣κ(tw,i,j)∣−1p ev((Uw,i,j ⋅ fa)p) = uw,i,j ⋅ ev(fp).
Furthemore, the action of uw,i,j on any fp ∈ Ap−algκ∗ (Kr, ψ;R) when p is not a zero-divisor
in R is given as follows. Write Uw,i,j = ⊔bKr with b ∈ B+(Qp). Given x ∈ G(Zp), let
xb = b′x′ ∈ B(Qp)G(Zp) = G(Qp). Then
(A.6.2) uw,i,j ⋅ fp(g)(x) =∑

b

κ∗(b′/t+w,i,j)fp(gb)(x′).
For any p-adic R, the formula (A.6.2) defines an action of uw,i,j on fp that is compatible
with ev. So the ordinary projector e acts compatibly on these spaces.

Under the perfect pairings ⟨⋅, ⋅⟩κ and ⟨⋅, ⋅⟩, the ordinary idempotent e aquires an adjoint

e′ acting compatibly onMp−alg
κ∨

(Kr, ψ
−1;R) andM(Kp,W ∨

S ,R) (that is, ev∨κ,ψ(e′ ⋅ f) =
e′ ⋅ ev∨κ,ψ(f)). The idempotent e′ can also be described in terms of Hecke operators.
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Let U ′w,i,j = Kr(t+w,i,j)−1Kr and Up = ∏w∈Σp∏mi=1∏niri
j=1 U

′
w,i,j. Then the action of e′ on

M(Kp,W ∨
S ,R) is just e′ = limÐ→n(Up)n!; the action of Up is readily seen to be compatible

with the trace maps Trr′,r.

A.7. Ordinary forms. Suppose R is a p-adic ring in which p is not a zero-divisor and
ψ is an R-valued character factoring through TH(Zp/prZp). Then the map ev induces
an identification

(A.7.1) ev ∶ eAp−algκ∗ (Kr, ψ;R) ∼Ð→ eAκ(Kp, ψ,R).
This is deduced from the contraction property of up and the formula (A.6.2). For R
a p-adic OCp

-algebra this is just a restatement of (2.9.6). From this and the perfect
pairings (A.3.11) and (A.5.5) it then follows that

(A.7.2) ev∨κ,ψ ∶ e′M(Kp,R) ∼Ð→ e′Mκ∨∗
(Kr, ψ

−1;R) .
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Part III: Ordinary families and p-adic L-functions

5. Measures and restrictions

This section focuses on measures and restrictions. In particular, Section 5.3 gives a
measure whose values at certain specified characters are the Eisenstein series associated
to the local data chosen when we calculated the zeta-integrals above.

5.1. Measures: generalities. Let X be a compact and totally disconnected topo-
logical space. For a p-adic ring R we let C(X,R) be the R-module of continuous
maps from X to R (continuous with respect of the p-adic topology on R). Note that

C(X,Zp)⊗̂Zp
R

∼Ð→ C(X,R). Let M be a p-adically complete R-module. Then by an
M -valued measure on X we mean an element of the R-module

Meas(X,M) = HomZp
(C(X,Zp),M) = HomR(C(X,R),M).

Suppose X is a profinite abelian group. Then Meas(X,R) is identified with the com-
pleted group ring R[[X]] so that if a measure µ is identified with f ∈ R[[X]], then for
any continuous character χ ∶ X → R×1 with R1 a p-adic R-algebra, µ(χ) = χ(f).
In particular Meas(X,R) is itself a ring. The following lemma is immediate:

Lemma 5.1.1. Suppose X =X1×X2 is a product of profinite abelian groups. Then there
is a natural isomorphism

Meas(X1 ×X2,R) ∼Ð→ Meas(X1,Meas(X2,R))
If we write X = lim←ÐiX/Xi, where X = X0 ⊃ X1 ⊃ X2 ⊃ . . . is a neighborhood basis of

the identity consisting of open subgroups of X of finite index, then

ΛX,R = lim←Ð
i

R[X/Xi].
This is a compact topological ring. The following dictionary is well-known and due to
Mazur:

Fact 5.1.2. The identification of a measure µ on X with an element f of the ΛX,R has
the property that, for any continuous homomorphism χ ∶ X → R×,

∫
X
χdµ ∶= µ(χ) = χ(f)

where χ(f) is the image of f under the homomorphism ΛX,R → R induced by χ.

We let χ denote the homomorphism ΛX,R → R of Fact 5.1.2; in this way χ defines an
R-valued point of ΛX,R.

In what follows, characters of X1 will be Hecke characters, X2 will be the group of
integral points of a p-adic torus, whose characters parametrize weights of p-adic modular
forms, andM will be the ring of p-adic modular forms. When X2 is a point, the measure
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on X =X1 will be an Eisenstein measure that pairs with modular forms of fixed weight,
and in particular can be used to construct what we will call, loosely and somewhat
abusively, a p-adic L-function of one variable, the variable Hecke character, attached to
a fixed holomorphic automorphic representation. When X2 is the group of points of a
non-trivial torus, we will be constructing p-adic L-function of two variables, the second
variable running through the points of a Hida family.

The following lemma is well-known.

Lemma 5.1.3. Suppose X is a finite-dimensional compact p-adic Lie group. Let R ⊂OCp
be a Zp-subalgebra. Let α ∶ X̂ ∶= Hom(X,O×Cp

) → OCp
be a map from OCp

-valued

characters of X to OCp
with the property that, whenever χ1, χ2 ∈ X̂

χ1 ≡ χ2 (mod pa)⇒ α(χ1) ≡ α(χ2) (mod pa).
Then α extends to an OCp

-valued measure µα on X. Moreover, if µα(φ) ∈ R for all
φ ∈ C(X,R) then µα is obtained by extension of scalars from an R-valued measure on
X.

5.2. The space Xp. For each integer r > 0, let

Ur = (O ⊗ Ẑ{p})× × (1 + prO ⊗Zp) ⊂ (K⊗ Ẑ)×
and

Xp = lim←Ð
r

K×/(K⊗ Ẑ)×/Ur.
This is the projective limit of the ray class groups of K of conductor (pr). In particular,
it is a profinite abelian group.

5.2.1. Admissible measures on Xp. We suppose now that we are in the situation of
Section 3, and we freely use the notation and conventions introduced therein. Using the
isomorphism (3.1.2) we identify H1(Zp) with H2(Zp) via h1 = (h1,w)w∣p ↦ h2 = (h2,w)w∣p
with h2,w = h1,w̄. This then identifies TH2

(Zp) with TH1
(Zp) and TH4

(Zp) = TH3
(Zp) =

TH1
(Zp) × TH2

(Zp) with TH1
(Zp) × TH1

(Zp). In particular, the characters ψ of TH3
(Zp)

are identified with pairs of characters (ψ1, ψ2) of T = TH1
(Zp).

Let

● κ = (κσ) be an O′-character of T as in Section 2.9.1 and let κ′ be the O′-character
of TH3

(Zp) identified with the pair (κ,κ∨);
● ψ be a finite-order Q

×
p -valued character of T (Zp);

● K
p
i ⊂ Gi (A{p}f ), i = 1,2, be open compact subgroups such that ν (K1) = ν (K2);

● R be a p-adic O′[ψ]-algebra.
For any finite-order Q

×
p -valued character χ of Xp, let ψ

−1
χ = ψ

−1
⋅ χ ○ det, where by det

we mean the map det ∶ H1(Zp) → (O ⊗ Zp)× = ∏w∣pO×w that is the composition of the
isomorphism (3.1.2) with the products of the determinants of each of the GL-factors, and
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let ψ′χ be the character of TH3
(Zp) identified with the pair (ψ,ψ−1χ ), . By an admissible

R-measure on Xp of weight κ, character ψ, and level Kp =K
p
3 = (Kp

1 ×K
p
2)∩G3(Apf), we

mean a measure µ(⋅) = µ(κ,ψ, ⋅) ∈Meas(Xp;V
ord
κ′ (Kp,R)) such that for any finite-order

Q
×
p -valued character χ of Xp,

µ (χ) = µ (κ,ψ,χ) ∈ V ord
κ′ (Kp, ψ′χ,R [χ]) .

Let R′ be any p-adic R-algebra and ℓ an R-linear functional ℓ ∶ V ord,cusp
κ′ (Kp,R)→ R′.

Then
µℓ(⋅) = µℓ(κ,ψ, ⋅) = ℓ ○ µ(κ,ψ, ⋅)

is an R′-valued measure on Xp. One useful way of defining such ℓ is as follows. As

explained in Section 3.2.4, the space V ord,cusp
κ′ (Kp,R) is identified with the direct sum-

mand
⊕α∈CK

V ord,cusp
κ (Kp

1 ,R)α ⊗R V ord,cusp
κ∨

(Kp
2 ,R)α .

Given ℓ = (ℓα)α∈CK
with each ℓα = (ℓα1 , ℓα2 ) a pair of R-linear functionals ℓα1 and ℓα2 of

V
ord,cusp
κ (Kp

1 ,R)α and V
ord,cusp
κ∨ (Kp

2 ,R)α, respectively, ℓ determines an R-linear func-

tional of V ord,cusp
κ′ (Kp,R) by

ℓ(fα1 ⊗ fα2 ) = ℓα1 (fα1 )ℓα2 (fα2 ).
From the definition of an admissible measure, it is clear that µ(⋅) takes values in

⊕α∈CK
V ord,cusp
κ (K1,r, ψ,R)α ⊗R V ord,cusp

κ∨ (Kp
2 ,R)α

(for r sufficiently large), so it suffices to take ℓα1 to be a functional of V ord,cusp
κ (K1,r, ψ,R).

In the definite case (i.e., G1 - and hence G2 and G3 - definite), we take µ(κ,ψ, ⋅) to
be a eAκ′(Kp,R)-valued measure, making the corresponding modifications to the above
definitions.

We will need a slight generalization of the above definition. Let

● ρ = (ρσ) be an O′-character of T as in Section 2.9.1 and let ρ△ be theO′-character
of TH3

(Zp) identified with the pair (ρ, ρ∨);
● ψ be a finite-order Q

×
p -valued character of T (Zp);

● K
p
i ⊂ Gi (A{p}f ), i = 1,2, be open compact subgroups such that ν (K1) = ν (K2);

● R be a p-adic O′[ψ]-algebra.
Note that ρ△ and (ρ, ρ♭) coincide as characters of TH3

(Zp).
For any finite-order Q

×
p -valued character χ of Xp, let ψ

−1
χ = ψ

−1
⋅ χ ○ det, where by det

we mean the map det ∶ H1(Zp) → (O ⊗ Zp)× = ∏w∣pO×w that is the composition of the
isomorphism (3.1.2) with the products of the determinants of each of the GL-factors,
and let ψ△χ be the character of TH3

(Zp) identified with the pair (ψ,ψ−1χ ). Let (α,β) be
a character of TH3

(Zp), written as a pair of characters of TH1
(Zp) ≡ TH2

(Zp). By an
admissible R-measure on Xp of weight ρ, character ψ, shift (α,β), and level Kp = K

p
3 =
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(Kp
1 ×K

p
2) ∩G3(Apf), we mean a measure µ(⋅) = µ(ρ,ψ, ⋅) ∈ Meas(Xp;V

ord
ρ△ ⋅(α,β)(Kp,R))

such that for any finite-order Q
×
p -valued character χ of Xp,

(5.2.1) ∫
Xp

χdµ ∶= µ (χ) = µ (ρ,ψ,χ) ∈ V ord
ρ△⋅(α,β) (Kp, ψ′χ,R [χ]) .

5.2.2. Pairings and measures on Xp: the definite case. Suppose now that G1 is definite.
The same is then true of G2 and G3. Suppose R ⊂ OCp

. Let µ(⋅) be an admissible
R-measure of weight κ, character ψ, and level Kp. Let ⟨⋅, ⋅⟩i, i = 1,2,3, be the perfect
pairing (A.5.5) for Gi and K

p
i .

Let φ ∈ M(Kp
1 ,R) and x ∈ G2(Af). Let δx ∈ M(Kp

2 ,R) be such that ⟨f, δx⟩2 =
f(x) (so δx is the inverse limit of the characteristic function of the image of x in
G2(Q)/G2(Af)/K2,n). We define an R-measure µ(φ,x, ⋅) = µ(κ,ψ,φ,x, ⋅) on Xp by
setting µ(φ,x, ⋅) = µℓ(⋅) with ℓ defined by

ℓα1 (fα) = ⟨fα, φ⟩1 and ℓα2 (fα) = ⟨fα, δx⟩2 = fα(x).
Then

µ(φ,x,−) = ⟨µ(κ,ψ,−), φ ⊗ δx⟩3.
For a given χ, x ↦ µ(φ,x,χ) belongs to eAκ∨ (Kp

2 , ψ
−1
χ ,R [χ]) and so µ(φ, ⋅, χ) =

ev(fχ,2) for some fχ,2 ∈ eAp−algκ∨
(K2,r, ψ

−1
χ ;R[χ]) (with r sufficiently large). For φ′ ∈

M(Kp
2 ,R),

(5.2.2) ⟨µ(φ, ⋅, χ), φ′⟩2 = ⟨fχ,2, φκ,ψ ⊗ φ′κ∨,ψ−1χ ⟩κ′ ,
where φκ,ψ = ev

∨
κ,ψ(φ) and φ′κ∨.ψ−1χ = ev∨κ∨,ψ−1χ (φ′). Let fχ ∈ eAp−alg,cuspκ′

(Kr, ψ
′
χ;R [χ]) be

such that evκ′,ψ′χ (fχ) = µ(χ). The right-hand side can be rewritten as an integral:

vol (K0
r )−1∫

G3(Q)/G3(A)/G3(R)
[fχ,∞ (g1, g2) , φκ,ψ,∞ (g1)⊗ φ′κ∨,ψ−1χ ,∞(g2)]

κ′
d (g1, g2)

where fχ,∞(g) = g−1∞ gp ⋅ fχ (gf) is the corresponding automorphic form on G3(A) (we
have used the identification of Cp with C).

Remark. In practice the function fχ,∞ will be known, and the preceding integral will be
used to relate the value of the measure to an integral representation of an L-function.

5.2.3. Pairings and measures on Xp: the indefinite case. Suppose now that G1 is not
definite. The same is then true of G2 and G3. In this case there is no obvious pairing on
the spaces of forms that preserves R-structures, so we define only Cp-valued measures
(using the fixed identification of Cp with C). Later we discuss how this can in some
situations be refined to an R-valued measure.

Let R ⊂ OCp
be a p-adic ring. Let µ(⋅) = µ(κ,ψ, ⋅) be an admissible R-measure of weight

κ, character ψ, and level Kp. Recall that V ord,cusp
κ (Kp

1 , ψ,R) = eSord
κ′∗
(Kr, ψ

′
χ;R [χ]).

Let φ ∶ G1(A) → Wκ(C)∨ = Wκ∨(C) be any smooth function such that φ(γguk) =
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u−1 ⋅ ψ−1(kp)φ(g) for all γ ∈ G1(Q), g ∈ G1(A), u ∈ U1,∞, and k ∈ K0
1,r, and let x =(A,φ) ∈ lim←Ðm lim←Ðn Tn,m(Cp). We define a Cp-valued measure µ(φ,x, ⋅) = µ(κ,ψ,φ,x, ⋅)

on Xp by setting µ(φ,x, ⋅) = µℓ(⋅) with ℓ defined by

ℓα1 (fα) = ∫
G1(Q)/G1(A)

[fα(g), φ(g)]κ dg and ℓα2 (fα) = fα(x).
In the definition of ℓ1 we have identifed fα with its corresponding automorphic form on
G1(A) (see Section 2.7.2).

For a given χ, x ↦ µ(φ,x,χ) belongs to eAκ∨(Kp
2 , ψ

−1
χ ,Cp) = eSκ∨(K2,r, ψ

−1,Cp). Let
fχ,2 be the corresponding automorphic form on G2(A). Similarly, let fχ be the automor-

phic form onG3(A) corresponding to µ(χ) ∈ V ord,cusp
κ′ (Kp, ψ′χ,R[χ]) = eSκ′(Kr, ψ

′
χ,R[χ]).

Given any smooth function φ′ ∶ G2(A) → Wκ∨(C)∨ = Wκ(C) such that φ′(γguk) =
u−1 ⋅ ψχ(kp)φ′(g) for all γ ∈ G2(Q), g ∈ G2(A), u ∈ U2,∞, and k ∈K0

2,r,

∫
G2(Q)/G2(A)/G2(R)

[fχ,2(g), φ′(g)]κ∨dg
= ∫

G3(Q)/G3(A)/G3(R)
[fχ ((g1, g2)) , ψ (g1)⊗ ψ′ (g2)]κ′ d (g1, g2) .

Remark. As in the definite case, in practice the function fχ will be known, and the
preceding integral will be used to relate the value of the measure to an integral repre-
sentation of an L-function.

5.2.4. Admissible measures on Xp × TH : two variables. In this section we consider ad-
missible measures of weight ρ and shift (α,β) where ρ and (α,β) are allowed to vary.
This requires a slight adjustment to the notation of the previous section. More precisely,
suppose we are given a homomorphism sh ∶ TH(Zp) → Xp. By duality this gives a map
sh∗ ∶ C(Xp,R) → C(TH(Zp),R) for any ring R; sh∗ takes characters to characters.

We also suppose we are given an algebraic automorphism υ ∶ TH → TH . If ρ is a function
on TH , we let ρυ(t) = ρ(υ(t)).
We fix a tame level N0 as in Section 5.2 and define Xp = Xp,N0

as before. By an
admissible R-measure on Xp × TH of character ψ, shift sh, twist υ, and level Kp =K

p
3 =(Kp

1 ×K
p
2) ∩G3(Apf), we mean a measure

µ(⋅) = µ(ψ, sh, ⋅) ∈Meas(Xp,Meas(TH , V ord(Kp,R)))
such that for any finite-order Q

×
p -valued character χ of Xp and any character ρ of TH ,

µ (χ) (ρυ) = µ (ψ, sh,χ) (ρυ) ∈ V ord
ρ△⋅sh∗(χ) (Kp, ψ△χ ,R [χ]) .

5.3. Eisenstein measures on Xp × T . Above, we discussed measures on Xp. Now,
we recall certain measures on Xp × T , namely the Eisenstein measures of [Eis15, Eis14,
EFMV16]. Note that if we fix a character on T , then we recover the measures above
on Xp. We briefly summarize the basic properties of the Eisenstein measures in [Eis15,
Eis14, EFMV16], which - in fact - p-adically interpolate values of the Eisenstein series
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associated to the local data chosen above for the zeta integral calculations. As in Section
2.3, let Σ = {σ ∈ ΣK ∶ pσ ∈ Σp}. This is a CM type for K. Throughout this section, we
take χ ∶ K×/A×K → C× to be a unitary Hecke character.

Let Sram = Sπ ∪ Sχ ∪ SK, where Sχ denotes the set of finite primes v in OK+ for which
χv = ⊗w∣vχw is ramified and SK denotes the set of finite primes in OK+ that ramify in K.
Let S be a finite set of finite primes in Q such that p ∉ S and such that for all rational
primes ℓ, if a prime in K+ above ℓ is in Sram, then ℓ ∈ S. Let S′ be the set of primes ofK+ lying above the primes of S.

5.3.1. Axiomatics of the Eisenstein measure. The Eisenstein measures of [Eis15, Eis14,
Eis16], as well as the local components of ordinary vectors in Hida families, have been
reverse-engineered in order to meet the requirements of the construction of the p-adic L-
functions. In this section we first present the axioms the Eisenstein measure is required to
satisfy, and then explain how they are satisfied by the ones constructed in the references
just cited.

The Eisenstein measure is, in the first place, a p-adic measure on the space Xp×TH(Zp)
with values in the space of p-adic modular forms on G4. It is characterized by its
specializations at classical points. Let YH be the formal scheme over Zp whose points

with values in a complete Zp-algebra R are given by Hom(Xp ×TH(Zp),R×). Let Y alg
H
⊂

YH(Cp) be the set of pairs (χ, c), where χ ∶ Xp → R×, for some R ⊂ Cp, is the p-adic

character associated to an algebraic Hecke character, denoted χclass, and c = ψρυ is a
locally algebraic character of TH(Zp): ρ is an algebraic character, υ is an involution of
TH , as in (4.4.10) and ψ is a character of finite order. In other words, c ∈ Cr(TH(Zp),R)
for some r ≥ 0, in the notation of Lemma 7.2.2.

Note that we are not requiring χclass to be unitary here; rather, the variable “s” is
included in the infinity type of χ; we fix an integer µ such that, for each σ ∈ Σ we have

χσ = ∣∣ ● ∣∣µσχ0,σ, where χ0,σ = (z−a(χσ)
σ z̄

−b(χσ)
σ ). This factorization is not unique; however,

recall the set C3(µ,χσ) of (4.4.6). We assume we are given a subset Y class
H ⊂ Y

alg
H

,
determined by the following positivity condition:

(5.3.1) (χ, c) ∈ Y class
H ⇔ κσ ∈ C3(µ, z−a(χσ)

σ z̄−b(χσ)
σ )∀σ ∈ Σ

This condition is independent of the choice of m as above, in other words is independent
of the choice of factorization.

Now write χ = ∣∣ ● ∣∣m ⋅ χu, and define the finite order idèle character χ+ of K+, as in
Section 4.6. We omit the expression of µ and χ0 in terms of m and χu, and vice versa.
Define the normalizing factor DS(χ) and D(χ) as in 4.6.1

Definition 5.3.2. Let Kp
i be an open compact subgroup of Gi(Apf), i = 3,4, with Kp

3 ⊂

K
p
4 . Let S be the set of bad primes defined above. An axiomatic Eisenstein measure on

Xp × TH(Zp) of level S, relative to the set Y class
H , of level Kp

4 and with coefficients in R,
is a measure dEis with values in V3(Kp

3 ,R) such that, for every pair (χ = ∣∣ ● ∣∣m ⋅χu, c =
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ψρυ) ∈ Y class
H , there is a factorizable Siegel section

f(χ, c) = ⊗′vfv(χv , c) ∈ ⊗
v

′ Iv(χu,v,m)
and such that

● If v is a finite place outside S, then χv is unramified for all χ ∈ Y class
H and

fv(χv, c) is the unramified vector in Iv(χu,v,m) with fv(χv, c)(1) = 1.
● If v ∈ S then fv(χv, c) is independent of the pair (χ, c).
● For any prime w dividing p and for any real prime σ ∈ Σw, the local section
fσ(χσ, c) depends only on χclassσ and κw (and on the choice of signature), and is
of the form

fσ(χσ, c, g) = B(χσ, κσ)D(κσ ,m,χu,σ)Jm,χu,σ(g), g ∈ G4,σ

where Jm,χ0,σ
∈ C∞(G4) is the canonical automorphy factor introduced in section

4.4.2 and B(χσ, κσ) is a non-zero scalar. In particular, fσ(χσ, c, g) does not
depend on the factorization of χσ. (This follows from Remark 4.4.3.
● For any prime w dividing p, the local section fw(χw, c) depends only on χw and
ψw (and on the choice of signature).
● ∫Xp×TH(Zp)(χ, c)dEis =DS(χ) ⋅res3Ef(χ,c) for all (χ, c) ∈ Y class

H , where DS(χ) is
the normalizing factor defined in (4.6.1).

The measure dEis is said to be normalized at S if instead of the last relation one has

∫Xp×TH(Zp)(χ, c)dEis =D(χ) ⋅ res3Ef(χ,c) for all (χ, c) ∈ Y class
H .

One obtains a measure normalized at S from an unnormalized measure by multiplying
by the appropriate product of local Euler factors at S. We write D?(χ) for ? = S or
empty if we haven’t specified whether or not dEis is taken to be normalized.

Definition 5.3.2 makes no mention of whether or not the measure dEis contains a shift.
The Eisenstein measure whose construction is recalled in section 5.4 comes with a shift
that will be specified in Corollary 5.4.3.

We choose f(χ, c) meeting the conditions of Definition 5.3.2 in Sections 4.2.1 (local
choices for v ∉ S), 4.2.2 (local choices for v ∈ S), 4.5 (local choices for archimedean
places) and 4.3 (local choices for v ∣ p). Note that the choices at p and ∞ depend on
the signature of the unitary group G1. The existence of the Eisenstein measure itself is
proved in [Eis15, Eis12]; see Theorem 5.4.1 below.

In the applications, the integrals of elements of Y class
H against dEis suffice to determine

dEis completely. We write

fholo(χ, c) = ⊗σ∈ΣF
Jm,χu,σ ⊗⊗v∤∞fv(χv, c);

(5.3.2) Eholoχu,c
(m) = Efholo(χu,c)(m).
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Then the last condition of Definition 5.3.2 can be rewritten
(5.3.3)

∫
Xp×TH(Zp)

(χ, c)dEis =D?(χ) ⋅ res3D(κ,m,χu)Eholoχu,c
(m),∀(χ = ∣∣ ● ∣∣m ⋅ χu, c) ∈ Y class

H ,

where D(κ,m,χu) is as defined in Corollary 4.4.9.

5.4. Existence of the axiomatic Eisenstein measure. Let χunitary be a unitary

Hecke character. Let χ = χunitary∣ ⋅ ∣−k/2K/Q . So χ is a Hecke character of type A0. Write

χ =∏w χw. We obtain a p-adically continuous OCp
-valued character χ̃ on Xp as follows.

Since χ is of type A0, there are integers k, νσ ∈ Z such that for each element a ∈ K×,
χ∞(a) = ∏

σ∈Σ

χσ(a) = ∏
σ∈Σ

( 1

σ(a))
k (σ(a)
σ(a))

νσ

with σ ∶= σc. Let χ̃∞ ∶ (K⊗ Zp)× → Q
×
p be the p-adically continuous character such that

χ̃∞(a) = inclp ○ χ∞(a)
for all a ∈ K. So the restriction of χ̃∞ to (O ⊗Zp)× is a O×Cp

-valued character. We define

χ̃ ∶ Xp → O×Cp

by χ̃ ((aw)) = χ̃∞ ((aw)w∣p)∏w∤∞ χw(aw). Define ν = (νσ)σ∈Σ.
For each σ ∈ Σ, let n = aσ + bσ with aσ, bσ ≥ 0 be a partition of n, and let aσ =

n1,σ +⋯+ nt(σ) and bσ = nt(σ)+1 +⋯ + nr(σ) be partitions of aσ and bσ, respectively. Let
a = (aσ)σ∈Σ and b = (bσ)σ∈Σ. Let ψ be a finite order character on TH (Zp). Let κ be a
dominant character as in Section 2.6.3, and define ρ and ρυ as in (4.4.8), (4.4.10).

Let c = ψ ⋅ ρυ. We choose f(χ, c) to be a factorizable Siegel section meeting the
conditions of Definition 5.3.2; the specific local sections will be as in Sections 4.2.1 (local
choices for v ∉ S), 4.2.2 (local choices for v ∈ S), and 4.3 (local choices for v ∣ p), and
4.5 (local choices for archimedean places). Note that the choices at p and ∞ depend on
the signature of the unitary group G1. When ρ is trivial, the Eisenstein series associated
to f(χ, c) = f(χ,ψ) is holomorphic; in the notation of [Eis15], it is (a normalization of)
the algebraic automorphic form denoted Gk,ν,χunitary,ψ (which arises over O but can be

viewed over C by extending scalars) in [Eis14, Equation (32)].12

We denote by D here the C∞ differential operator obtained by applying the Gauss-
Manin connection composed with the Kodaira-Spencer isomorphism and then using the
Hodge-de Rham splitting to project onto the submodule of holomorphic differentials;
these differential operators were studied in [Eis12]. For each Σ-tuple of nonnegative

12The section f(χ,ψ) is the Siegel section associated to χunitary, k, ν, and ψ in [Eis14], and the

associated Eisenstein series E (f(χ,ψ),●) is the one denoted Ek,ν (●, χ,ψ, k2 ) in [Eis15]. The Eisenstein
series E (f(χ,ψ),●) is normalized by a factor D(n,K,b, p, k) defined in [Eis15, Proposition 13] in order to
cancel transcendental factors. Note that although we do not include (a, b) in the (already long) subscript
for the Eisenstein series, the choice of f(χ, c) (and hence, the associated Eisenstein series) depends on
the choice of (a, b).
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integers d = (d(σ))σ∈Σ, we write Dd = ⊗σ∈σD
d(σ), where Dd(σ) denotes D applied iter-

atively d(σ) times to the σ-component of the module of automorphic forms. Applying
Dd to Gk,ν,χunitary,ψ, we obtain C∞ (not necessarily holomorphic) Eisenstein series on
U(n,n). Similarly, by applying the p−adic differential operators θ in [Eis12] (where the
differential operator is defined by applying the Gauss-Manin connection composed with
the Kodaira-Spencer isomorphism and then using the unit root splitting to project mod-
ulo the unit root module) to Gk,ν,χunitary,ψ, we obtain p-adic (not necessarily algebraic)

automorphic forms on U(n,n). We define θd analogously to how we defined Dd.

Like in Section 4.4.7, let r1,σ ≥ ⋅ ⋅ ⋅ ≥ raσ ,σ ≥ raσ+1,σ = 0, s1,σ ≥ ⋅ ⋅ ⋅ ≥ sbσ,σ ≥ sbσ+1,σ = 0
be descending sequences of integers. Let ρυσ be the corresponding character on the torus
TH , and let

r̃i,σ = ri,σ − ri+1,σ, i = 1, . . . aσ; s̃j,σ = rj,σ − rj+1,σ, j = 1, . . . bσ.
Define ρυ ∶= ∏σ∈Σ ρυσ and φκ ∶= ⊗σ∈Σp(r̃σ, s̃σ), with p(r̃σ, s̃σ) defined as in Equation
(4.4.13) (and identified with a polynomial function on the tangent space of the moduli
space). So p(r̃σ, s̃σ) is a homogeneous polynomial of degree d(σ) for some nonnegative

integer d(σ). We define θ(κ,a,b) and D(κ,a,b) by
θ(κ,a,b)(f) ∶= θd(f)(φκ)

D(κ,a,b)(f) ∶=Dd(f)(φκ).
It follows from [Eis12, Section 10] (which extends [Kat78, Lemma 5.1.27] to unitary

groups) that θ(κ,a,b)(f) and D(κ,a,b)(f) agree at CM points, up to periods.

From the p-adic q-expansion principle and the description of the q-expansion coefficients
given in [Eis15, Section 2], we obtain the following theorem.

Theorem 5.4.1 (The Eisenstein Measure). Recall the notation of Equation (4.4.10).
There is a measure Eisa,b (dependent on a and b) on Xp × TH (Zp) that takes values in
the space of p-adic modular forms on G4 and that satisfies

∫
Xp×TH(Zp)

χ̃ψ ⋅ ρυEisa,b = θ
(κ,a,b) (Gk,ν,χunitary,ψ) .

Remark 5.4.2. When aσbσ = 0 for all σ ∈ Σ (i.e. in the definite case), the measure in
Theorem 5.4.1 is the Eisenstein measure from [Eis15, Theorem 20] and [Eis14, Section
5].

Corollary 5.4.3. The measure dEisa,b, defined by

∫
Xp×TH(Zp)

χ̃ψ ⋅ ρυdEisa,b = res3θ
(κ,a,b) (Gk,ν,χunitary,ψ) .

is an axiomatic Eisenstein measure on values in V3(Kp
3 ,R), with shift (1, χ).

6. Serre duality, complex conjugation, and anti-holomorphic forms

6.1. The Shimura variety Sh(V ). Let P = (K, c,O,L, ⟨⋅, ⋅⟩, h) be a PEL problem of
unitary type associated with a Hermitain pair (V, ⟨⋅, ⋅⟩V ) as in 2.1 and 2.2 together with
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all the associated objects, choices, and conventions from Section 2. However, since the
number of factors m equals 1, the indexing subscript ‘i’ will disappear from our notation.
Let G = GP be the group scheme over Z associated with P and let X =XP be the G(R)
conjugacy class of h. Let ZG be the center of G. In this section we take ◻ = ∅, so the
moduli problems are all considered over the reflex field F .

Given K ⊂ G(Af) = GU(V )(Af), we now write KSh(V ) for the Shimura variety

associated with the Shimura datum13 (G,X). So KSh(V ) is just the F -scheme MK,L.
We set

Sh(V ) = lim←Ð
K

KSh(V ) = lim←Ð
K

MK,L.

The dimension of each KSh(V ) is just the C-dimension of X, which is

d =
1

2
∑
σ∈ΣK

aσbσ.

At times we will be comparing constructions for both Sh(V ) and the Shimura variety
Sh(−V ) for the pair (V,−⟨⋅, ⋅⟩V ) (and the PEL problem P c = (K, c,O,L,−⟨⋅, ⋅⟩, hc), where
hc(z) = h(z̄)). When it is important to distinguish which hermitian space an object is
associated with, we will generally add a subscript ‘V ’ (for the pair (V, ⟨⋅, ⋅⟩V )) or ‘−V ’
(for the pair (V,−⟨⋅, ⋅⟩V ), if the notation does not already distinguish the space (such
as is done by Sh(V ) and Sh(−V )). We will also be using the notation G1 = GU(V ),
G2 = GU(−V ) as in 3.1.

6.1.1. Automorphic vector bundles. Recall that automorphic vector bundles on Sh(V ) =
Sh(G,X) are defined by a ⊗-functor

G −Bun(X̂) Ð→ Bun(Sh(V )),
where X̂ is the compact dual of X, so a flag variety for G, and G−Bun is the ⊗-category
of G-equivariant vector bundles. The base point h ∈ X determines a point Ph ∈ X̂ ; this
is just the stabilizer of the Hodge filtration on L ⊗ R determined by h. There is then
a fibre functor G −Bun(X̂) → RepC(Ph) ≅ RepC(P0), where the last equivalence comes
from the fixed identifications in 2.6.1. Given an irreducible representation W of P0 that
factors through the Levi quotient H0 of P0, we let ωW be the corresponding automorphic
vector bundle. Each such bundle has a canonical model over a number field F (W )/F
contained in F ′. For W = Wκ as in 2.6.3 (here and in the following we write Wκ for
Wκ(C)), the vector bundle ωκ defined in 2.6.4 is the base change to K′ of the canonical
model of ωWκ . In fact, the ωκ, which are defined over the toroidal compactifications,
are the canonical extensions of the automorphic vector bundles, and their twists by the
ideal sheaves of the boundaries are the subcanonical bundles.

13If aσbσ = 0 for all σ ∈ ΣK, then, properly speaking, the datum (G,X) does not satisfy the axioms
of a Shimura variety as set out in [Del79]. Nevertheless, in this case, as the datum arises from a PEL
problem P , the notion of the associated ‘Shimura variety’ still makes sense, following the conventions in
[Lan12].
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6.1.2. Coherent cohomology and (Ph,Kh)-cohomology. We will write H i(Sh(V ), ωκ) in-
stead of H0(Sh(V )tor, ωκ), which is imperfect shorthand for

limÐ→
K,Σ

H i(KSh(V )Σ, ωκ)
where the limit is taken over toroidal compactifications (indexed by Σ) at finite level
(indexed by K). For i = 0, this is superfluous, by Koecher’s principle, except possibly
when n = 2 and F = Q, and the reader can be trusted to supply the missing indices in
this case. Likewise we write H i(Sh(V ), ωsub

κ ) for
limÐ→
K,Σ

H i(KSh(V )Σ, ωκ(−DΣ))
where DΣ = KSh(V )Σ − KSh(V ). We let

H i
! (Sh(V ), ωκ) = im{H i(Sh(V ), ωsub

κ )→ H i(Sh(V ), ωκ)}.
Note that the ground field here can be taken to be any extension of K′. Moreover, these
definitions make sense over the ring OK′,(p′), provided we restrict to those K of the form
K = G(Zp)Kp or K = IrK

p.

Over C the coherent cohomology can be computed in terms of Lie algebra cohomology.
Let g = Lie(G(R))C, and let g = p−h ⊕ kh ⊕ p+h be the Harish-Chandra decomposition

associated with h (the eigenvalue decomposition for the involution adh(√−1)). Let
Ph = p

−
h ⊕ kh; this is just Lie(Ph(R))C (so the Lie algebra of Ph(C)). We put

Kh = U∞ = C(R).
Let A0(G) be the space of cuspforms on G(A). Then over C there is a natural identifi-
cation of G(Af)-modules:

(6.1.1) H i
! (Sh(V ), ωκ) =H i(Ph,Kh;A0(G) ⊗Wκ).

Here we use the identifications of Ph(C) with P0(C) and C(C) with H0(C) to realize
Wκ as a (Ph,Kh)-module. For i = 0 this just restates the identification, recalled in 2.7.2,
of Sκ(K,C) with the space of U∞ ×K-invariant smooth functions f ∶ G(A) → Wκ that
are annihilated by p−h.

6.1.3. The ⋆ involution. There is an anti-holomorphic involution ⋆ of G −Bun(X̂) that
takes a G-equivariant bundle to the complex conjugate bundle; on representations of
P0 factoring through the Levi quotient H0 (which has been identified over C with the
stabilizer C in G/R of h) it takes the irreducible representation Wκ to a representation
Wκ⋆ whose restriction to the maximal compact subgroup of U∞ = C(R) ⊂H0(C) is dual
to the restriction of Wκ but whose restriction to R× ⊂ G(R) coincides with that of κ.
Concretely, if κ is identified with the tuple κ = (κ0, (κσ)), κσ = (κσ,1, . . . , κσ,bσ ), then κ⋆
is the weight

(6.1.2) κ⋆ = (κ⋆0 , (κ⋆σ)), κ⋆0 = −κ0 + a(κ), κ⋆σ = (−κσ,bσ , . . . ,−κσ,1)
and

Wκ⋆ ≅W
∨
κ ⊗ ν

a(κ),
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where

(6.1.3) a(κ) = 2κ0 + ∑
σ∈ΣK

bσ

∑
j=1

κσ,j .

There is a unique, up to scalar multiple, c-semilinear, Kh-equivariant isomorphism

Wκ
∼Ð→ Wκ⋆ . Such an isomorphism is given explicitly by the map that sends φ ∈ Wκ

to φ⋆ ∈Wκ⋆ , where if h ∈ H0(C) is identified with (h0, (hσ)) ∈ C× ×∏σ∈ΣK GLbσ(C) via
(2.6.1), then

φ⋆(h) = ha(κ)0 ⋅ φ((h̄−10 , (wσth̄−1σ )).
Here wσ ∈ GLbσ(C) is the longest element of the Weyl group of the standard pair and the
overline¯denotes complex conjugation. The Kh-invariance follows easily from (2.6.3).

The identification of G(C) with G0(C) in 2.6.1 identifies Lie(P0(C)) with Ph and
Lie(H0(C)) with kh. It then follows that the map φ ↦ φ⋆ is Ph-equivariant, up to
c-semilinearity.

The action of h = (h0, (hσ)) ∈ H0(C) on HomC(∧dp±h,C) is just multiplication by

h∓d0 ∏σ∈ΣK det(hσ)±2aσ ; this is just the character

κ±h = (∓d, (κ±h,σ)), κ±h,σ = (±2aσ , . . . ,±2aσ).
Then the H0(C)-representation

HomC(∧dp+h,Wκ⋆) = HomC(∧dp+h,C)⊗CWκ⋆

is naturally identified with WκD (the identification depends on a choice of basis of the
one-dimensional space ∧dp−h), where

κD = κ⋆ + κ+h.

The Killing form on g defines an H0(C)-equivariant contraction map

∧
dp−h ⊗C ∧dp+h → C,

and so defines an H0(C)-equivariant inclusion
iκ⋆ ∶Wκ⋆ ↪ HomC(∧dp−h ⊗C ∧dp+h,Wκ⋆) = HomC(∧dp−h,WκD).

6.2. Complex conjugation and automorphic forms. In this section we describe
three actions of complex conjugation on spaces of modular forms. Each has an interpre-
tation in Deligne’s formalism for motives of absolute Hodge cycles, though we do not
emphasize this here. We describe these actions in terms of (Ph,Kh)-cohomology as well
in terms of coherent cohomology.
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6.2.1. Complex conjugation on automorphic forms. Let π be a (g,Kh)×G(Af)-representation
occurring in the space A0(G) of cuspforms on G(A). We define π̄ to be the complex

conjugate representation; that is, π̄ consists of the functions ϕ̄(g) = ϕ(g) for ϕ ∈ π. The
map π → π̄, ϕ ↦ ϕ̄, is c-semilinear and Kh ×G(Af)-equivariant, and even g-equivariant
up to c-semilinearity. We then obtain a c-semilinear G(Af)-equivariant map

(6.2.1) (π ⊗CWκ)Kh
ϕ⊗φ↦ϕ̄⊗φ⋆Ð→ (π̄ ⊗CWκ⋆)Kh

id⊗iκ⋆Ð→ HomC(∧dp+h,⊗π̄ ⊗CWκD)Kh

that is also Ph-equivariant, up to c-semilinearity. This induces a c-semilinear G(Af)-
equivariant isomorphism

(6.2.2) cB ∶H
0(Ph,Kh;π ⊗CWκ)→Hd(Ph,Kh; π̄ ⊗CWκD).

Taking π to be the space of cuspforms A0(G) of G(A) (so, in particular, π̄ = π), we
obtain a c-semilinear G(Af)-equivariant isomorphism

(6.2.3) cB ∶ H
0
! (Sh(V ), ωκ) ∼Ð→ Hd

! (Sh(V ), ωκD).
6.2.2. Complex conjugation on Sh(V ). Recall that

P c = (K, c,O,L,−⟨⋅, ⋅⟩, hc), hc(z) = h(z̄),
is just the PEL datum of unitary type associated with the Hermitian pair (V,−⟨⋅, ⋅⟩V ).
The corresponding reflex field is F−V = cFV = cF , the complex conjugate of F . There
is a canonical identification GP c = GP = G. The respective stabilizers in G(R) of h and
hc (action by conjugation) are the same: they both equal U∞ (that is, Kh = U∞ =Khc).

Let X = G(R)/U∞. We then have identifications X
∼Ð→ Xh = XP , g ↦ ghg−1, and

X
∼Ð→ Xhc = XP c , g ↦ ghcg−1. Each of Xh and Xhc have a complex structure, and the

pullbacks of these complex structures to X are complex conjugates. In particular, the

composition Xh
∼Ð→ X

∼Ð→ Xhc is an antiholomorphic map. So a holomorphic function
on Xhc defines an antiholomorphic function on Xh, and vice versa. This explains the
map F∞ in (6.2.7) below.

The automorphic sheaves on Sh(−V ) are associated to representations of the group
H0,−V , which is canonically identified with H0,V = H0 by switching the roles of Λ0 and
Λ∨0 ). The analog of (2.6.1) for H0,−V is the isomorphism

(6.2.4) H0,−V /S0

∼Ð→ Gm × ∏
σ∈ΣK

GLO⊗O,σ
(Λ0,σ) ≅ Gm × ∏

σ∈ΣK

GLaσ(S0).
The identification H0,V = H0,−V is given in terms of (2.6.1) and (6.2.4) by (h0, (hσ)) ↦(h0, (h0th−1σc)). We have associated to each dominant character κ of the diagonal torus
TH0,−V

of H0,−V a representation Wκ,−V of H0,−V and hence a vector bundle ωκ,−V on
Sh(−V ). Given a dominant character κ = (κ0, (κσ)) of TH0,V

, we define a dominant

character κ♭ = (κ0, (κσc)) of TH0,−V
. With respect to the canonical identification H0,−V =

H0,V described above, there is an explicit identification of H0-representations

Wκ♭,−V
∼Ð→ Wκ⋆,V , φ ↦ ((h, (hσ)) ↦ φ(h0, (wσh0th−1σc))).
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The Harish-Chandra decompositions g = p−h ⊕ kh ⊕ p+h = p−hc ⊕ khc ⊕ p+hc satisfy p±h = p∓hc
and kh = khc . Let π be a (g,Kh) ×G(Af)-representation occurring in the automorphic
forms on G(A). Then the natural map

(6.2.5) (πp−hc ⊗CWκ♭,−V )Khc = (πp+h ⊗CWκ⋆,V )Kh
id⊗iκ∗→ HomC(∧dp−h, π ⊗WκD,V )Kh

induces a C-linear G(Af)-equivariant isomorphism

(6.2.6) F∞ ∶H0
! (Phc ,Khc ;π ⊗CWκ♭,−V )→Hd

! (Ph,Kh;π ⊗CWκD,V ).
Taking π to be A0(G) we then obtain a C-linear G(Af)-equivariant isomorphism

(6.2.7) F∞ ∶H0
! (Sh(−V ), ωκ♭,−V ) ∼Ð→ Hd

! (Sh(V ), ωκD ,V ).
Note that no complex conjugation is involved in this isomorphism: F∞ identifies
a cohomology class on G2 represented by a holomorphic modular form with a cohomol-
ogy class represented by an anti-holomorphic modular form, simply because the groups
G1 and G2 are canonically equal but the hermitian symmetric domains have opposite
complex structure. In 6.3 it is explained how this isomorphism identifies Serre duality
with the canonical pairing on A0(G).
6.2.3. The involution ‘†’ and the isomorphisms KSh(V ) ≅ K†Sh(−V ). Recall that we
have assumed that h is standard (see 2.3.2). This means that there is a K-basis of
V with respect to which the Hermitian pairing ⟨⋅, ⋅⟩V is given by a diagonal matrix
D = diag(d1, ..., dn), d1, ..., dn ∈ K+, and such that the image of h is diagonal with respect
to the induced basis on each of the spaces Vσ = V ⊗K,σ C. Under the hypothesis that
each prime above p in K+ splits in K, it is always possible to choose such a K-basis and
the lattice L so that D is a diagonalization of the perfect Hermitian pairing on L⊗Z(p)
induced by ⟨⋅, ⋅⟩V ; we fix such a choice of K-basis and a lattice L. Let I ∶ V → V be
the K+-involution of V that is just the action of c on the coordinates with respect to
this fixed K-basis. Note that L⊗ Z(p) is I-stable, and the map induced by I on L⊗ Zp
interchanges L+ and L−.
With respect to the fixed K-basis, G/Q is identified with a subgroup of ResK/QGLn(K),

and the action of c on K induces an automorphism g ↦ ḡ of G/Q (note that gc = IgI).
This automorphism takes h to hc and so maps U∞ to itself. In particular, it induces an

automorphism of X. The composition Xh
∼Ð→ X

g↦ḡÐ→X
∼Ð→ Xhc (which is just ghg−1 ↦

ḡhcḡ−1) is holomorphic. In particular, the induced map Sh(V )(C) → Sh(−V )(C) is
holomorphic and so a morphism of Shimura varieties over C.

We modify this map at p, to more easily compare level structures. Recall that for each
prime w∣p we fixed decompositions Lw = L

+
w ⊕ L

−
w (see 2.2). We also fixed an Ow-basis

of each L±w, which gives an Ow-basis of each Lw. We define level structures at p for
P c by taking Lc,±w = L±w. Then I0w,−V = tI0w,V = t(I0w,V )−1 with respect to this Ow-basis
of Lw. This chosen Ow-basis of Lw may not be the Kw-basis of V ⊗K Kw induced by
the fixed K-basis of V ; let βw ∈ GLKw(V ⊗K Kw) ≅ GLn(Kw) be an element taking the
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latter to former. Let δp = (1,Dtβ−1w β−1w )w∈Σp) ∈ Q×p ×∏w∈Σp
GLn(Kw) ≅ G(Qp), where

the isomorphism is determined by the fixed K-basis of V . Then

(6.2.8) δ̄p = δ
−1
p , δ−1p G(Zp)δp = G(Zp), and δ−1p Ī0r,V δp = I

0
r,−V .

We then define an automorphism g ↦ g† of G(A) → G(A) by g† = ν(g)−1δ−1p ḡδp. Given

K ⊂ G(Af) we let K† be the image of K under †. As a consequence of (6.2.8), if

K = G(Zp)Kp, then K† = G(Zp)K̄p and

(6.2.9) (Kr,V )† =K†
r,−V .

Consequently, the map Sh(V )(C)→ Sh(−V )(C) induced by g ↦ ḡδp identifies Kr,V
Sh(V )

with
K

†
r,−V

Sh(−V ). The following Proposition is then obvious.

Proposition 6.2.4. The isomorphism Kr,V
Sh(V ) ∼Ð→

K
†
r,−V

Sh(−V ) is defined over OK′,(p′).
On moduli problems it is given by the map that sends a tuple (A,λ, ι,α,φ) classified by
MP,Kr,L(R) to the tuple (A,λ, ι○c,α○I,φ○I) classified by M

P c,K
†
r ,L
(R) for any OK′,(p′)-

algebra R.

The automorphism g ↦ g† takes p±h to p±hc and Ph to Phc . The action of g ↦ g† on Kh

is identified via (2.6.3) as (h0, (hσ))↦ (h−10 , (th−1σ )). Let
κ†
= κ♭ ⋅ ∣∣ν ∣∣−a(κ),

so
Wκ†,−V ≅Wκ∨,V ≅W

∨
κ,V .

The map

Wκ,V
φ↦φ†

Ð→ Wκ†,−V =Wκ♭,−V ⊗ ∣∣ν ∣∣−a(κ), φ†((h0, (hσ)) = φ((h0, (hσc))h−a(κ)0 ,

satisfies (k†
⋅ φ)† = k ⋅ φ† for all k ∈ Khc = Kh. It follows that under the isomorphism

Sh(V ) ∼Ð→ Sh(−V ) defined by g ↦ g†, ωκ†,−V pulls back to ωκ,V , and so there are C-
linear isomorphisms

(6.2.10) F †
∶ H i

! (Sh(V ), ωκ,V ) ∼Ð→ H i
! (Sh(−V ), ωκ†,−V )

that are G(Af)-equivariant up to the action of the automorphism ‘†.’ In particular,
these induces isomorphisms

(6.2.11) F †
∶H i

! (KrSh(V ), ωκ,V ) ∼Ð→ H i
! (K†

r
Sh(−V ), ωκ†,−V ),

even over OK′,(p′)-algebras R ⊂ C. In particular, F † restricts to an isomorphism

(6.2.12) F †
∶ Sκ,V (Kr,V , ψ;R) ∼Ð→ Sκ†,−V (K†

r,−V , ψ
†;R)

for R ⊂ C any OK′,(p′)[ψ]-algebra, where ψ† = ψ−1 if both are viewed as characters of the
diagonal torus of the right side of (2.2.2) via the isomorphisms (2.2.3).

The action of F † is described in terms of automorphic forms as follows. Let π be a(g,Kh)×G(Af) representation occurring in the space of automorphic forms on G(A). We
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define π† to be the space of functions ϕ†(g) = ϕ(g†) for ϕ ∈ π. The map π → π†, ϕ↦ ϕ†,
is C-linear and is both g- and Kh-equivariant up to the action of the automorphism ‘†’.
The map

(π ⊗CWκ,V )Kh
ϕ⊗φ↦ϕ†⊗φ†

Ð→ (π†
⊗CWκ†,−V )Khc

is then a C-linear isomorphism that intertwines the actions of g and g† for all g ∈ G(Af).
This induces a corresponding isomorphism

(6.2.13) F †
∶ H i(Ph,Kh;π ⊗CWκ,V ) ∼Ð→ H i(Phc ,Khc ;π

†
⊗CWκ†,−V ).

Taking π = A0(G) (and so π† = π), we get F † from before.

6.3. Serre duality and pairing of automorphic forms. Since

WκD = HomC(∧dp+h,Wκ⋆) ≅ HomC(∧dp+h,C)⊗CW ∨
κ ⊗ ν

a(κ),
the natural contraction Wκ⊗CW

∨
κ → C gives a homomorphism of H0(C)-representations

Wκ ⊗CWκD → HomC(∧dp+h,C)⊗ νa(κ).
This induces a natural map

ωκ ⊗ ωκD → ΩdSh(V ) ⊗L(κ),
where L(κ) is the automorphic line bundle attached to the character νa(κ). Since the
character is trivial on Gder, L(κ) is topologically the OSh(V )-bundle attached to the
constant (trivial) sheaf, but the action of G(Af) on L(κ) is non-trivial. Fixing a level
subgroup K and a toroidal compactification KSh(V ) ↪K Sh(V )Σ, we can extend this
to a natural pairing

ωκ ⊗ ω
sub
κD → Ωd

KSh(V )Σ ⊗L(κ)
and the analogous pairing on ωcan

κ ⊗ωκD . As in [Har90, Cor. 2.3], Serre duality therefore
defines a perfect pairing

(6.3.1) H0
! (Sh(V ), ωκ)⊗Hd

! (Sh(V ), ωκD) → limÐ→
K,Σ

Hd(KSh(V )Σ,ΩdSh(V )Σ ⊗L(κ))
The function g ↦ ∣∣ν(g)∣∣−a(κ) defines a global section of L(κ)∨ and therefore an isomor-
phism

limÐ→
K,Σ

Hd(KSh(V )Σ,ΩdSh(V )Σ ⊗L(κ)) ∼→ limÐ→
K,Σ

Hd(KSh(V )Σ,ΩdSh(V )Σ).
The right-hand side is isomorphic under the trace map to the space of functions C(π0(V ))
on the compact space π0(V ) of similitude components of Sh(V ). Composing with the

projection of C(π0(V )) onto the invariant line C(π0(V ))G(A) – in other words, integra-
tion over π0(V ) with respect to an invariant measure with rational total mass – we thus
obtain a canonical perfect pairing:

(6.3.2) ⟨⋅, ⋅⟩Serκ ∶H
0
! (Sh(V ), ωκ)⊗Hd

! (Sh(V ), ωκD) → C
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Remark 6.3.1. In what follows, we will be using the Tamagawa number to normalize the
Serre duality pairings. This is likely to introduce a factor of a power of 2 in a comparison
of our results with those predicted by motivic conjectures.

The pairing ⟨⋅, ⋅⟩Serκ can be described in terms of automorphic forms as follows. Let

p = p+h ⊕ p−h. Then ⟨⋅, ⋅⟩Serκ is just the pairing

H0(Ph,Kh;A0(G)⊗Wκ)⊗Hd(Ph,Kh;A0(G)⊗WκD) → C

defined by multiplication of cuspforms, contraction of the coefficients, and integration.
More precisely, if we denote the contraction

Wκ ⊗C HomC(∧dp−h,HomC(∧dp+h,W ∨
κ ⊗ ν

a(κ)))→ HomC(∧2dp,C(νa(κ))),
by

φ⊗ φ′ ↦ [φ,φ′],
then for

ϕ ∈ (A0(G)p−h ⊗CWκ)Kh and ϕ′ ∈ HomC(∧dp−h,A0(G)⊗CWκD)Kh ,

we normalize ⟨⋅, ⋅⟩Serκ so that

(6.3.3) ⟨ϕ,ϕ′⟩Serκ = ∫
G(Q)ZG(R)/G(A)

[ϕ(g), ϕ′(g)] ⋅ ∣∣ν(g)∣∣−a(κ)dg,
where dg is the Tamagawa measure. From ⟨⋅, ⋅⟩Serκ we obtain the hermitian Petersson
pairing:

(6.3.4) ⟨⋅, ⋅⟩Petκ ∶H0
! (Sh(V ), ωκ) ×H0

! (Sh(V ), ωκ)→ C, ⟨⋅, ⋅⟩Petκ = ⟨⋅, cB(⋅)⟩Serκ .

6.3.2. Integral structures on top cohomology. Let O = OK′,(p′) as in the previous section.

Fix V and write ωκ = ωκ,V . The spaces H
i
! (KrSh(V ), ωκ) have natural integral structures

over O with respect to O-integral structures on the underlying schemes, for any i. How-
ever, because the special fibers become progressively more singular as r increases, we do
not choose integral structures on the schemes. For cohomology in degree i = 0, we define
the O-structure on H0

! (KrSh(V ), ωκ,V ) by Sκ(Kr,O) as in §2, specifically in sections

2.5, 2.6.5, and especially 2.9. We then define the O-structure on Hd
! (KrSh(V ), ωκD) to

be dual to the integral structure on H0
! (KrSh(V ), ωκ) with respect to the pairing (6.3.2).

In other words, for any O-algebra R, we let

(6.3.5) Hd
! (KrSh(V ), ωκD ,R) =Hom(Sκ(Kr,O),R)

We will see in Lemma 7.2.12 that these integral structures are compatible with respect
to the trace maps from level Kr+1 to Kr.
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6.4. (anti-)holomorphic automorphic representations. By an automorphic rep-
resentation of G we will always mean an irreducible (g,Kh) × G(Af)-representation
ocurring in the space of automorphic forms on G(A). This convention allows us to
distinguish holomorphic representations from anti-holomorphic representations. (Note
that Kh, which is the stabilizer of h in G(R), need not project to the maximal compact
in G(R)/ZG(R).)
6.4.1. Holomorphic and anti-holomorphic cuspidal representations of type (κ,K). Let
π be a cuspidal automorphic representation of G (always assumed irreducible). Write
π = π∞ ⊗ πf , where πf is an irreducible admissible representation of G(Af) and π∞
is an irreducible (g,Kh)-module. Let K ⊂ G(Af) be an open compact. We say π

is holomorphic (resp. anti-holomorphic) of type (κ,K) if H0(Ph,Kh;π∞ ⊗C Wκ) ≠ 0
(resp. Hd(Ph,Kh;π∞ ⊗C WκD) ≠ 0) and if πKf ≠ 0. In this paper, we will only be
concerned with π that are either holomorphic or anti-holomorphic. If π is holomorphic
(resp. anti-holomorphic) of type (κ,K), then by our conventions π̄ is anti-holomorphic
(resp. holomorphic) of type (κ,K).
Note that, with G fixed, π can be either holomorphic or anti-holomorphic, but not

both; however, the isomorphism F∞ of (6.2.6) identifies anti-holomorphic representations
of G2 with holomorphic representations of G1, and vice versa. Although Hida theory
is generally understood to be a theory of p-adic variation of (ordinary) holomorphic
modular forms, the nature of the doubling method makes it more natural for us to take
our basic object π to be an anti-holomorphic (and anti-ordinary, see 6.5.6 below) cuspidal
automorphic representation of G1. Thus π is a holomorphic automorphic representation
of G2 but the natural object there is π♭, or π̄, which is again anti-holomorphic. Because
this is inevitably a source of confusion, reminders of these conventions have been inserted
at strategic locations in the text.

Remark 6.4.2. If π is holomorphic or anti-holomorphic, then, by the considerations in
[BHR94], πf is always defined over a number field, say E(π). We will always take E(π)
to contain K′.
6.4.3. The ♭ involution and the MWV involution †. Let π be a cuspidal automorphic
representation of G. Let ξπ be the central character π. If (π∞ ⊗C Wκ)Kh ≠ 0 (for

example, if π is holomorphic of type (κ,K)), then ξπ,∞(t) = ta(κ) for t ∈ R×. Let
(6.4.1) π♭ = π∨ ⊗ ∣ξπ ○ ν ∣ = π∨ ⊗ ∣∣ν ∣∣a(κ).
Because π ⊗ ∣ξπ ○ ν ∣− 1

2 is unitary,

(6.4.2) π♭ ≅ π̄,

and when π occurs with multiplicity one, as we will generally assume, π♭ and π̄ are the
same spaces of automorphic forms. In particular, the operation π ↦ π♭ is an involution
of the set of cuspidal automorphic representations of G. If π is holomorphic, then π♭ is
anti-holomorphic, and vice versa.
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The involution g ↦ g† of G that was fixed in 6.2.2 is an involution of the type considered
by Moeglin, Vigneras, and Waldspurger in [MVW87, Chapitre 4]. In particular, there
is an element h0 ∈ GLK+(V ) such that h0 is c-semilinear for the K-action on V and⟨h0v,h0w⟩V = ⟨w,v⟩V and such that ḡ = h0gh

−1
0 ; with respect to the fixed K-basis of V ,

h0 is just ‘act-by-c on the coordinates’. Let π = ⊗ℓ≤∞πℓ be an automorphic representation
of G. If the hermitian pair (V, ⟨⋅, ⋅⟩V ) is unramified at ℓ, then it is a deep result proved
in [MVW87, Chapitre 4] (cf. [HKS96]) that

(6.4.3) π
†
ℓ
≅ (πℓ ○Ad(h0))⊗ (ξ−1π ○ ν) ≅ π∨.

In particular, if π satisfies strong multiplicity one – which we expect if all the places at
which (V, ⟨⋅, ⋅⟩V ) is ramified all split in K/K+ and its base change to GLn/K is cuspidal –

then π† ≅ π∨ and so π†
⊗ ∣∣ν ∣∣a(κ) = π♭ = π̄. In any event, (6.4.3) permits the Hecke actions

on π♭ to be expressed in terms of the Hecke actions on π†, at least at the unramified
primes ℓ. As will be explained later, the doubling method will pair π and (a twist) of π♭,
but we will use the involution ‘†’ to compare level structures and Hecke algebras. This
partly motivates our putting

(6.4.4) K♭ =K†, ψ♭ = ψ†, and κ♭ = κ†
⋅ νa(κ).

6.4.4. Relating ⟨⋅, ⋅⟩π to ⟨⋅, ⋅⟩Serκ . Let π be a holomorphic cuspidal automorphic represen-
tation of G of type (κ,K). Recall that the canonical pairing ⟨⋅, ⋅⟩π ∶ π ⊗ π∨ → C can be
expressed as

(6.4.5) ⟨ϕ,ϕ′⟩π = ∫
G(Q)ZG(R)/G(A)

ϕ(g)ϕ′(g)dg, ϕ ∈ π, ϕ′ ∈ π∨.

The pairing ⟨⋅, ⋅⟩Serκ can be expressed in terms of ⟨⋅, ⋅⟩π as follows.

Let w1, ...,wm be a basis of Wκ and let w∨i , ...,w∨m be the dual basis of W ∨
κ . As WκD is

the twist ofW ∨
κ by a character, the ω∨i also defined a basis ofWκD . Let ϕ ∈ (πp−h⊗CWκ)Kh

and ϕ′ ∈ Hom(∧dp−h, π♭ ⊗C WκD)Kh . Write ϕ = ∑i ϕi ⊗wi and ϕ′ = ∑j ϕ′j ⊗ w∨j . Then it

follows from (6.3.3) that

(6.4.6) ⟨ϕ,ϕ′⟩Serκ =∑
i

⟨ϕi, ϕ′i ⋅ ∣∣ν ∣∣−a(κ)⟩π.

6.5. Hecke algebras. We continue to let G = G1 = GU(V ) and we return to the nota-
tion of Section 2.9.4; thus classical modular forms are of weight κ. Fix a positive integer
r as in 2.5 and a level subgroup K = Kp

r = K
p
⋅Kr ⊂ G(Af). Henceforth we will write

T (g) = Tr(g) for the Hecke operators [Kp
r gK

p
r ] for g ∈ G(Apf); we have also introduced

U -operators Uw,j (the index i of 2.6.9 is superfluous because G is the unitary similitude
group of a single hermitian space).

For any S0-algebra R ⊂ C, we let TKr,κ,R be the R-subalgebra of EndC(Sκ(Kr;C)) =
EndC(H0(KrSh(V ), ωκ)) generated by the Uw,j,κ = ∣κ′(tw,j)∣−1p Uw,j, where κ′ is related

to κ as in (2.9.4), and by the T (g) = Tr(g) for g ∈ G(ASf ), where S = S(Kp) is the set
of places at which Kp does not contain a hyperspecial maximal subgroup. We similarly
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define T−Kr,κ,R
and Td

Kr,κ,R
by replacing Uw,j,κ with U−w,j,κ = ∣κ′(tw,j)∣pU−w,j and, in the

second case, also replacing Sκ(Kr;C) with Hd(KrSh(V ), ωκ) = Hd(Sh(V ), ωκ)Kr . We
will follow the convention of adding a subscript ‘V ’ (reps. ‘−V ’) to notation if it is needed
to indicate that it relates to the hermitian pair (V, ⟨⋅, ⋅⟩V ) (resp. (V,−⟨⋅, ⋅⟩V )).
Lemma 6.5.1. Let R ⊂ C be a subring.

(i) There exists a unique R-algebra isomorphism TKr,κ,R
∼Ð→ Td

Kr,κD,R
, T ↦ T d,

such that Udw,j,κ = U
−
w,j,κD

and T (g)d = ∣∣ν(g)∣∣a(κ) ⋅ T (g−1).
(ii) There exists a unique R-algebra isomorphism TKr,κ,V,R

∼Ð→ TK♭r,κ
♭,−V,R, T ↦ T ♭,

such that U ♭w,j,κ = U−1w,n,κ♭Uw,n−j,κ♭ and T (g)♭ = T (g†) = T (ḡ).
(iii) There exists a unique isomorphism T−Kr,κ,R

∼Ð→ Td
Kr,κD,cR

that maps r ∈ R to

c(r), U−
w,j,κD

to U−
w,j,κD

, and T (g) to T (g).
Proof. Part (i) follows from Serre duality, part (ii) from the isomorphism F

†∞, and part
(iii) from the isomorphism cB . �

For a nebentypus ψ of level r (a character of TH(Zp) that factors through TH(Zp/prZp)),
we let TKr,κ,ψ,R and Td

Kr,κ,ψ,R
be the quotients of TKr,κ,R and Td

Kr,κ,R
upon restriction

to the (invariant) subspaces Sκ(Kr, ψ,C) ⊂ Sκ(Kr,C) and Hd(KrSh(V ), ωκ)ψ, the sub-
space of Hd(KrSh(V ), ωκ) on which K0

r acts via ψ.

Lemma 6.5.2. The isomorphisms in Lemma 6.5.1(i)-(ii) induce R-algebra isomor-
phisms

TKr,κ,ψ,R
∼Ð→ Td

Kr,ψ−1,ωκD
,R and TKr,κ,ψ,V,R

∼Ð→ TK♭r,κ
♭,ψ♭,−V,R.

This is clear from the definitions.

The R-modules Sκ(Kr;R) and Sκ(Kr, ψ;R) are stable under the action of the Hecke
operators Uw,j,κ and T (g), g ∈ G(ASf ). In particular, the cuspforms over C can be
replaced by those over R in the definition of TK,κ,R and TK,κ,ψ,R.

For any of these Hecke algebras T?●, we write T?,p● for the subalgebra generated over the
ring R by the T (g), g ∈ G(ASf ) (so omitting the Uw,j,κ and U−w,j,κ). The isomorphisms

of Lemmas 6.5.1 and 6.5.2 restrict to corresponding isomorphisms of these (p-depleted)
Hecke rings.

If R = S0, then we omit the subscript ‘R’ from our notation.

6.5.3. The homomorphism λ
p
π, isotypical subspaces, and the multiplicity one hypothesis.

Let π be a holomorphic cuspidal representation of G of type (κ,Kr). Then the natural
action of Tp

Kr,κ
on πKr is given by a character that we denote λpπ; these homomorphisms

are compatible under the natural projections Tp
Kr,κ
↠ Tp

Kr′ ,κ
, r ≥ r′, so we do not include
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the r in our notation. Via the isomorphism TKr,κ,V
∼Ð→ TK♭r,κ

♭,−V of Lemma 6.5.1(ii),

λ
p
π,V
= λ

p
π determines a homomorphism λ

p,♭
π,V

of Tp

K♭r,κ
♭,−V,R, which, by (6.4.3), satisfies

(6.5.1) λ
p,♭
π,V
= λ

p

π♭,−V .

For an S0-algebra R ⊂ C, the homomorphism λ
p
π extends R-linearly to a homomorphism

of the Hecke algebras over R; we use the same notation for this homomorphism.

We say that π satisfies the multiplicity one hypothesis for π if:

Hypothesis 6.5.4 (Multiplicity one hypothesis). For any holomorphic cuspidal π′ ≠ π
of type (κ,Kr), λpπ′ ≠ λpπ.
This multiplicity one hypothesis for π is expected to hold if S = S(Kp) consists only

of places that are split in K/K+ (so no local L-packets) and if the base change of π to
GLn/K is cuspidal (so π is not obtained by endoscopic transfer from a non-trivial elliptic
endoscopic group of G). When G is quasi-split this has been established by Mok [Mok13],
and the general case has been proved under certain restrictive hypotheses and is being
treated by Kaletha, Mı́nguez, Shin, and White. We will generally assume that π satisfies
this multiplicity one hypothesis; this is not indispensable, but it simplifies some of the
statements.

Let E(λpπ) be the extension of the number field E(π) generated by the values of λpπ;
this is a finite extension of E(π).
We fix a basis of the one-dimensional space H0(Ph,Kh;π∞⊗CWκ). Let Sκ(Kr,C)(π)

be the λpπ-isotypic subspace of Sκ(Kr,C) for the action of Tp
Kr,κ

. There is then an

embedding

jπ ∶ H
0(Ph,Kh;π

Kr ⊗CWκ) ≅ πKr

f
↪ Sκ(Kr,C)(π)

of Tp
Kr,κ

-modules.

Lemma 6.5.5. Let π be a holomorphic cuspidal automorphic representation of type(κ,Kr), and suppose π satisfies Hypothesis 6.5.4.

(i) The injection jπ defines an isomorphism

jπ ∶ π
KS

S ⊗ πIrp
∼Ð→ Sκ(Kr,C)(π).

(ii) Let λ be any extension of λpπ to a character of TKr,κ,R. Let R ⊂ C be a finite
extension of E(λpπ) containing the values of λ, and let Sκ(Kr,R)[λ] be the lo-
calization of the TKr,κ,R-module Sκ(Kr,R) at the prime ideal pλ ⊂ TKr,κ,R that
is the kernel of the character λ; in other words, Sκ(Kr,R)[λ] is the λ-isotypic
component of Sκ(Kr,R). Then jπ defines an isomorphism

jπ ∶ π
KS

S
⊗ πIrp [λ] ∼Ð→ Sκ(Kr,R)[λ]⊗R C = Sκ(Kr,C).

Here πIrp [λ] is the subspace of πIrp on which each Uw,j,κ acts as λ(Uw,j,κ).
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6.5.6. The (anti-)ordinary projector and (anti-)ordinary Hecke algebra. Suppose R ⊂ C
is the localization of a finite S0-algebra at the maximal prime determined by inclp or a
p-adic algebra in the sense that ιp(R) is p-adically complete.

Let Up,κ = ∏w∈Σp∏nj=1Uw,j,κ and let eκ = limÐ→N U
N !
p,κ (as an operator). We call this

the ordinary projector, and put Tord
Kr,κ,R

= eκTKr,κ,R and Tord
K,κ,ψ,R = eκTKr,κ,ψ,R. Then

Tord
Kr,κ,R

and Tord
K,κ,ψ,R are just the rings obtained by restricting the Hecke operators to

the (stable) subspaces Sord
κ (Kr;R) and Sord

κ (Kr, ψ;R). For R not p-adic we define the
latter modules to be the respective intersections of Sκ(Kr;R) and Sκ(Kr, ψ; ) with the
ordinary spaces over the p-adic completion of R (that is, the completion of inclp(R)).
Similarly, let U−p,κ =∏w∈Σp∏nj=1U−w,j,κ and let e−κ = limÐ→N(U−p,κ)N ! (as an operator, when

it exists). We call this the anti-ordinary projector, and put Ta-ord
Kr,κ,R

= e−κTd
Kr,κ,R

and

Ta-ord
K,κ,ψ,R = e

−
κT

d
K,κ,ψ,R.

Lemma 6.5.7. Suppose R is as above. The isomorphisms of Lemmas 6.5.1(i)-(ii) and
6.5.2 restrict to R-algebra isomorphisms:

(i) Tord
Kr,κ,R

∼Ð→ Ta-ord
Kr,κD,R

and Tord
Kr,κ,ψ,R

∼Ð→ Ta-ord
Kr,κ,ψ−1,R

,

(ii) Tord
Kr,κ,V,R

∼Ð→ Tord
K♭r,κ

♭−V,R and Tord
Kr,κ,ψ,V,R

∼Ð→ Tord
K♭r,κ

♭,−V,R.

This is immediate from the definitions.

6.5.8. Spaces of ordinary forms and the character λπ. Let π be a holomorphic cuspidal
automorphic representation of G of type (κ,Kr). Let

πordp = eκπ
Ir
p .

This space has dimension at most one and it does not depend on r, in the sense that

eκπ
Ir
p = eκπ

Ir′
p for all r′ ≥ r. This is a consequence of the following:

Theorem 6.5.9 (Hida). For any representation πp of G(Qp), the ordinary eigenspace

eκπ
Ir
p ⊂ π

Ir
p is of dimension ≤ 1, for any r.

This theorem is a variant of [Hid98, Corollary 8.3] (we thank Hida for this reference).
The proof, an adaptation of Hida’s, is given in Section 8.2 below.

Will will say that π is ordinary if πordp ≠ 0. Note that πordp is stable under the action of

I0r , and so I0r will act on πordp (when it is non-zero) through a well-defined character ψ;
we call its identification with a character of TH(Zp) the ordinary nebentypus of π.

The space

π♭,a-ordp,r = e−κDπ♭
,Ir
p ⊂ π♭p

is at most one-dimensional, and is non-zero (and so has dimension one) if and only if
πordp is non-zero. This follows from Lemma 8.2.6 below. While it is not generally true
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that π♭,a-ordp,r is independent of r, if r′ ≥ r then Lemma 8.2.7 asserts that

traceKr/Kr′
π♭,a-ordp,r′ = π♭,a-ordp,r .

Suppose that π is ordinary. We let λπ be the (unique) extension of λpπ to the Hecke
character giving the action of TKr,κ on πordp ⊗ πp,K

p

. For R as in 6.5.6, this character

factors through Tord
Kr,κ,ψ,R

for ψ the ordinary nebentypus of π. Let E(λπ) be the finite

extension of E(π) generated by the values of λπ, and let R(λπ) be the localization of the
ring of integers of E(λπ) at the maximal ideal determined by inclp; then λπ is R(λπ)-
valued. Let λ̄π be the reduction of λπ modulo the maximal ideal of R(λπ); this can be

viewed as taking values in the residue field of Z(p). We let

S(Kr, κ, π) = {ordinary holomorphic π′ of type (κ,Kr) such that λ̄π′ = λ̄π}.
Lemma 6.5.10. Let π be a holomorphic cuspidal automorphic representation of type(κ,Kr). Suppose π is ordinary. Suppose also that π satisfies Hypothesis 6.5.4. Let
R ⊂ C be the localization of a finite extension of R(λπ) at the prime determined by inclp
or the p-adic completion of such a ring. Let E = R[1

p
].

(i) Sord
κ (Kr;E)[λπ] = eκSκ(Kr;E)[λ] and jπ restricts to an isomorphism

jπ ∶ π
ord
p ⊗ πKS

S
≅ πKS

S

∼Ð→ Sord
κ (Kr;E) ⊗E C.

(ii) Let mπ be the maximal ideal of TKr,κ,R that is the kernel of the reduction of

λπ modulo the maximal ideal of R. Let Sord
κ (Kr;R)π be the localization of

Sord
κ (Kr;R) at mπ. Then

Sord
κ (Kr;R)[π] = Sord

κ (Kr;R)π ∩ Sord
κ (Kr;E)[λπ]

is identified by jπ with an R-lattice in πordp ⊗ πKS

S
≅ πKS

S
, and Sord

κ (Kr,R)π is
identified with an R-lattice in

⊕
π′∈S(Ks,κ,π)

π
′,ord
p ⊗ (π′S)KS .

This last identification is via ⊕π′λπ′.

We also need a dual picture. Let

Ŝκ(Kr;R) = HomR(Sκ(Kr;R),R) and Ŝord
κ (Kr;R) = HomR(Sord

κ (Kr;R),R).
These are TKr,κ,R-modules through the Hecke action on Sκ(Kr;R), so Ŝord

κ (Kr,R) is a
Tord
Kr,κ,R

-module. Serre duality identifies Ŝκ(Kr ∶ R) with
Hd
κD(Kr,R) = {ϕ ∈Hd(KrSh(V ), ωκD) ∶ ⟨Sκ(Kr;R), ϕ⟩Serκ ⊆ R}.

Let Sord,⊥
κ (Kr;R) ⊂ Hd

κD
(Kr,R) denote the annihilator of Sord

κ (Kr;R) with respect to

this pairing. Then Serre duality identifies Ŝord
κ (Kr;R) with

H
d,ord

κD
(Kr,R) = {ϕ ∈Hd(KrSh(V ), ωκD)/Sord,⊥

κ (Kr;R) ∶ ⟨Sord
κ (Kr;R), ϕ⟩Serκ ⊆ R}.
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Each of these is a TKr,κ,R-module through its action on Sκ(Kr;R) or, equivalently, the
isomorphism of Lemma 6.5.1(i), so Hd,ord

κD
(Kr;R) is a Tord

Kr,κ,R-module.

Lemma 6.5.11. The natural map Hd
κD
(Kr;R)→H

d,ord

κD
(Kr;R), which is just restriction

to Sord
κ (Kr;R), induces an isomorphism

(6.5.2) e−κDH
d
κD(Kr;R) ∼Ð→ H

d,ord

κD
(Kr;R).

Proof. This is an immediate consequence of Lemma 8.2.4, (iii). �

Let π be a holomorphic cuspidal automorphic representation of G of type (κ,Kr). Then
π♭ is antiholomorphic of type (κ,Kr). The choice of a basis of the one-dimensional space
Hd(Ph,Kh;π

♭∞ ⊗CWκD) determines an injection

j∨π♭ ∶ H
d(Ph,Kh;π

♭,Kr ⊗CWκD) ≅ π♭,Kr ↪Hd
κD(Kr;C) =Hd(KrSh(V ), ωκD).

Lemma 6.5.12. Let π, R, and E be as in Lemma 6.5.10. Let Hd,ord

κD
(Kr,R)π be the

localization of Hd,ord

κD,V
(Kr,R) at mπ♭, and let

H
d,ord

κD
(Kr,R)[π] =Hd,ord

κD
(Kr;R)π ∩Hd,ord

κD
(Kr;E)[λπ]

where the notation ‘[λπ]’ again denotes the λ♭π-isotypic component.

(i) The inclusion j∨
π♭

restricts to an isomorphism

j∨π♭ ∶ π♭
,a-ord
p,r ⊗ π♭,KS

S ≅ π
KS

S

∼Ð→ H
d,ord

κD
(Kr,E)[π] ⊗E C.

(ii) The map j∨
π♭

identifies Hd,ord(Kr;R)[π] with an R-lattice in π♭,a-ordp,r ⊗π♭,KS

S
, and

Hd,ord(Kr;R)π is identified with an R-lattice in

⊕π′∈S(Kr,κ,π)π
′,♭,ord
p,r ⊗ π

′,♭,KS

S .

This last identification is by ⊕j∨
π
′,♭
.

(iii) Serre duality induces perfect Tord
Kr,κ,R

-equivariant pairings (with respect to the

isomorphisms of Lemma 6.5.7)

Sord
κ (Kr;R)[π] ⊗RHd,ord

κD
(Kr;R)[π] → R and Sord

κ (Kr;R)π ⊗R Hd,ord

κD
(Kr;R)π → R

We say π is ordinary of type (κ,K) if π is anti-holomorphic of type (κ,K) and if the
image of jπ has non-trivial intersection with in Sord

κ (K,R). In that case, λπ, defined as
above, takes values in a p-adic integer ring, say Oπ, with residue field k(π), and we let
λ̄π ∶ TK,κ → k(π) denote the reduction of λπ modulo the maximal ideal of Oπ.
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6.5.13. Change of level. For future reference, we let K = KpIr, K
′ = KpKr′ with r

′ ≥ r.
For fixed κ we consider the inclusion

(6.5.3) Sord
κ,V (K,R) → Sord

κ,V (K ′,R)
and the dual map

(6.5.4) Ŝord
κ,V (K ′,R) → Ŝord

κ,V (K,R)
Lemma 6.5.14. Let R be either a local Z(p)[λπ]-algebra or a finite flat Zp[λπ]-algebra.
Then the image of the map (6.5.3) is an R-direct factor of Sord

κ,V (K ′,R), identified with the

submodule of Ir/Ir′-invariants of the latter. Moreover, the morphism (6.5.4) is surjective.

Proof. The first assertion is obvious; the second is an immediate consequence of the
first. �

6.6. Normalized periods. Fix the group G as above; we will be taking G = G1 or G =
G2 later in this section. We are still assuming π to be an anti-holomorphic representation
of G of type (κ,K). We let R be a local Z(p)[λπ]-algebra and define Sord

κ (K,R)[π] and
Sord
κ (K,R)π just as in Lemma 6.5.10. The Petersson pairing is positive definite and

hence defines perfect hermitian pairings ⟨φ,φ′⟩P,π and ⟨φ,φ′⟩P [π] on Sord
κ (K,R)π and

Sord
κ (K,R)[π], respectively.

Lemma 6.6.1. The images

L[π] = ⟨Sord
κ (K,R)[π], Sord

κ (K,R)[π]⟩P [π]
Lπ = ⟨Sord

κ (K,R)[π], Sord
κ (K,R)π⟩P,π

are rank one R-submodules of C, generated by positive real numbers Q[π] and Qπ, re-
spectively.

Proof. This is a version of Schur’s Lemma. The analogous statement is proved in [Har13a]
when R is a finite extension of Q. This implies that L[π]⊗Q and Lπ ⊗Q are finite rank
one Frac(R)-subspaces of C. Since R is a discrete valuation ring, the result follows
immediately from this. �

The numbers Q[π] and Qπ are well-defined up to multiples by R×; they are respectively
unnormalized and normalized periods for π. We can also write Q[π,G] and Qπ,G to
emphasize the dependence on G (either G1 or G2). Let

Sord
κ (K,R)[π]⊥ ⊂ Sord

κ (K,R)π
be the orthogonal complement to Sord

κ (K,R)[π] with respect to ⟨φ,φ′⟩P,π. This is the

intersection of Sord
κ (K,R)π with ⊕π′≠πS

ord
κ (K,R[1p ])[π′].

Definition 6.6.2. Define the congruence ideal C(π) ⊂ R to be the annihilator of

Sord
κ (K,R)π/Sord

κ (K,R)[π] + Sord
κ (K,R)[π]⊥.
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Lemma 6.6.3. Let c(π) ∈ R be a generator of C(π). Then c(π)Qπ = Q[π]. More
precisely, let f be any primitive element of Sord

κ (K,R)[π]; in other words, if u ∈ R and
and ug = f for some g ∈ Sord

κ (K,R)[π] then u ∈ R×. Let

Q(f) = ⟨f, f⟩P [π].
Then we can take Q(f) = Q[π], Q(f) is divisible in the R-module L[π] by c(π), and
c(π)−1Q(f) generates Lπ.
Proof. This is an elementary consequence of the definitions. �

More generally, the congruence ideal C(π,M) can be defined for any TK,κ,R-moduleM
as the annihilator of Mπ/(M[π]+M[π]⊥), where the notation has the same meaning as
above. In particular, we can define C(π,T) to be the congruence ideal for TK,κ,R consid-

ered as a free module over itself. We can also define C(π,Hd,ord

κD,V
(Kr,R)) or (equivalently)

C(π, Ŝord
κ (Kr;R)) by the same formula.

Remark 6.6.4. The congruence ideal C(π) has a local component, due to possible con-

gruences between the representation π♭,ordp ⊗ π♭,KS

S
and the π♭,ordp ⊗ (π′S)♭,KS for π′ such

that λ̄π = λ̄π′ . Here if S has the property that, for every rational prime q, either all the
primes of K+ dividing q split in K or none of them does, we can view the latter as repre-
sentations of the (integral) Hecke algebra of KS-biinvariant functions on GU(V )(Af,S).
The separation of global and local components of C(π) will need to be understood for
applications, but it is not addressed here.

All of the above statements have variants in which Sord
κ (K,R) is replaced by Sord

κ (K,ψ,R),
for some nebentypus character ψ. We leave the statements to the reader.

In what follows, R is a sufficiently large finite flat p-adic integer ring.

Definition 6.6.5. Write T = TK,κ,R,π. The T-module Sord
κ (K,R)π is said to satisfy the

Gorenstein hypothesis if the following conditions hold.

● T
∼→ HomR(T,R) as R-algebras.

● Sord
κ (K,R)π is free over T.

The TK,κ,R-module Sord
κ (K,R) is said to satisfy the Gorenstein hypothesis if all its lo-

calizations at maximal ideals of TK,κ,R satisfy the two conditions above.

The following is then obvious.

Lemma 6.6.6. Assume Sord
κ (K,R)π satisfies the Gorenstein hypothesis. Then we have

C(π,T) = C(π) = C(π,Hd,ord

κD ,V
(Kr,R)).

The congruence ideal for π can be calculated as follows. We assume the multiplicity
one hypothesis, so that the localization of T at the kernel of λπ is of rank 1 over R. Let
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e1, . . . , en be an R-basis for T, and let e∗1 , . . . , e∗n be the dual basis of HomR(T,R). Write
E = Frac(R), and write

TE = T⊗R E = ⊕Ei,

indexed by the maximal ideals λπi of T, with π = π1. We assume R is sufficiently large
that E1 = E. Choose a basis d1, . . . , dn ∈ T be a basis of TE, with d1 an R-generator of
T ∩E1 and d2, . . . , dn an R-basis of T ∩ ⊕i>1Ei. Write ei = ∑ cijdj , with cij ∈ E. Then

(6.6.1) C(π,T) = sup
ci1≠0

−v(ci1)
where v is the valuation on R.

The following lemma is then clear:

Lemma 6.6.7. The second isomorphism of Lemma 6.5.2 takes C(π) isomorphically to
C(π♭).
It then follows from Lemmas 6.6.6 and 6.6.7, and (iii) of Lemma 6.5.12 that

Proposition 6.6.8. Assume Sord
κ (K,R)π satisfies the Gorenstein hypothesis. Then un-

der the isomorphisms of 6.5.7 all the ideals C(π,G1), C(π♭,G1), C(π,G2), C(π♭,G2),
C(π,T), C(π,Hd,ord

κD,V
(Kr,R)), etc. are identified. In particular, the congruence ideals

attached to π and to π♭ are canonically identified whether π and π♭ are considered holo-
morphic and ordinary or anti-holomorphic and anti-ordinary.

In particular, we can reformulate Lemmas 6.6.1 and 6.6.3 in terms of periods of anti-

holomorphic anti-ordinary forms. Define the Petersson pairings ⟨●,●⟩P onHd,ord

κD
(Kr,R)[π]

and Hd,ord

κD
(Kr,R)π by the usual L2 integrals of anti-holomorphic forms. Then

Corollary 6.6.9. Assume Sord
κ (K,R)π satisfies the Gorenstein hypothesis.

(a) The images

L̂[π] = ⟨Hd,ord

κD
(Kr,R)[π],Hd,ord

κD
(Kr,R)[π]⟩P [π]

L̂π = ⟨Hd,ord

κD
(Kr,R)[π],Hd,ord

κD
(Kr,R)π⟩P,π

are rank one R-submodules of C, generated by positive real numbers Q̂[π] and Q̂π, re-
spectively. We can write

Q̂[π] = ⟨f, f⟩P [π]
for appropriate integral generators f ∈Hd,ord

κD
(Kr,R)[π].

(b) Moreover,

● c(π)Q̂π = Q̂[π], and
● Q̂π = Q

−1
π ,

where the equalities are understood as in the statement of Lemma 6.6.3.
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The second claim in (b) is an elementary consequence of the duality betweenHd,ord

κD
(Kr,R)π

and Sord
κ (K,R)π .

Remark 6.6.10. The normalized period Qπ and the generator c(π) of the congruence
ideal are well defined up to units in R. However, this ambiguity is unsatisfactory; one
expects there is a natural choice of global function c in T which is not a zero divisor and
whose value at the classical point π generates C(π). This would allow a uniform choice
of periods Qπ.

Let Gn be the algebraic group introduced in [CHT08] as the target of the compatible
family of ℓ-adic representations attached to π; it is the semidirect product of GL(n) ×
GL(1) with the Galois group of K/K+. It is natural to expect that c can be taken to
be a p-adic L-function attached to the adjoint representation on the Lie algebra of Gn.
The corresponding complex L-function has a single pair of critical values, interchanged
by the functional equation, so the hypothetical p-adic L-function would be an element
of T, without any additional variation for twists by characters.

7. Families of ordinary p-adic modular forms and duality

7.1. Big Hecke algebras and the control theorem. In this section, we write T =
TH = TH1

(Zp) ≡ TH2
(Zp), i.e. the torus introduced in Section 2.5. For the moment

we look at families of p-adic modular forms on a group G, which in the applications
will be G1 or G2. Fix an algebraic character κ of TH and a tame level subgroup Kp ⊂

G(Ap
f
) as above, and let K = Kp

r , K
′ = Kp

r′ with r′ > r. Let R be a p-adic ring.

The inclusion Sord
κ (K,R) ⊂ Sord

κ (K ′,R) defines by restriction a map of ordinary Hecke
algebras TK ′,κ,R → TK,κ,R. Let TKp,κ,R = lim←Ðr TKp

r ,κ,R
with respect to the restriction

maps. The following theorem is due to Hida:

Theorem 7.1.1. For any pair of characters κ, κ1, there is a canonical isomorphism

TKp,κ,R
∼Ð→ TKp,κ1,R.

Thus we can write TKp,R to designate any TKp,κ,R without fear of ambiguity. We will
even write T = TKp,R when there is no danger of ambiguity.

Remark 7.1.2. In the application to unitary groups this theorem and the next one are
special cases of [Hid02, Theorem 7.1] and the results of [Hid04, Chapter 8]. Hida’s
Theorems 7.1.1 and 7.1.3 are proved assuming the conditions (G1)-(G3) mentioned in
connection with (2.9.6).

Fix a cuspidal antiholomorphic automorphic representation π of G which is ordinary
of type (κ,K) as in Section 6.5. We let R = Oπ. Let Λ = ΛH , with coefficients in R.
The homomorphisms λπ ∶ TK,κ,Oπ → Oπ and λ̄π ∶ TK,κ,Oπ → k(π) lift to homomorphisms
Lπ ∶ TKp,Oπ → Oπ and L̄π ∶ TKp,Oπ → k(π). Let mπ = ker L̄π, and let

Tπ = TKp,Oπ,mπ



106 ELLEN EISCHEN, MICHAEL HARRIS, JIANSHU LI, AND CHRISTOPHER SKINNER

denote the localization. The intersection mπ ∩ΛOπ is the maximal ideal defined by some
tame character of T . We let Λπ denote ΛH with coefficients in Oπ.

Theorem 7.1.3. (i) The Hecke algebra Tπ is a free Λπ-algebra of finite type.

(ii) (Control theorem) Let Iκ ⊂ Λπ be the kernel of the map Λπ → Cp defined by the
character κ. Suppose κ is sufficiently regular. Then the natural map

Tπ ⊗Λ Λπ/Iκ → TKp
r ,κ,Oπ,π

is an isomorphism of algebras.

The main involution of Λ is the involution induced by the map t ↦ t−1 of TH . The
involution ♭ of TKp,R restricts to the main involution on Λ and induces a (♭-linear)

isomorphism ♭ ∶ Tπ
∼Ð→ Tπ♭ of Λπ-algebras. Here and in what follows, for any r and Kp

we will let Tπ act on HomOπ(Sord
κ (Kp

r ,Oπ),Oπ)mπ by the natural action twisted by ♭.
We consider the following hypotheses:

Hypothesis 7.1.4. (Gorenstein Hypothesis) Let T̂π = HomΛπ(Tπ♭ ,Λπ). Then

● T̂π is a free rank-one Tπ-module via the isomorphism ♭ ∶ Tπ
∼Ð→ Tπ♭.

● Let Tπ act on HomOπ(Sord
κ (Kp

r ,Oπ),Oπ)mπ by the natural action twisted by ♭.
Then HomOπ(limÐ→r Sord

κ (Kp
r ,Oπ),Oπ)mπ is a free Tπ-module.

This is of course a variant of the hypothesis 6.6.5 of the previous section.

Hypothesis 7.1.5. (Global Multiplicity One) Let π′ ∈ S(Kr, κ, π). Then the represen-
tation π′ occurs with multiplicity one in the cuspidal spectrum of G.

7.1.6. Local representation theory. Henceforth, we abuse notation and write O for Oπ.
(The ring of integers of K does not appear in the context in which we do this; so we will
only be using O for Oπ here.) We let Iπ denote the image of the specialization map

Sord
κ (Kp

r ,O)⊗TK
p
r ,κ,O

TKp
r ,κ,O,π

/ker(λπ)↪ π♭,K
p

Sp .

This is a free O-lattice in π♭,K
p

Sp (and not in πSp !). Fix a non-zero element fordp,π♭ of the

1-dimensional Frac(O)-space π♭,ordp . Then tensoring π♭,K
p

Sp with fordp,π♭ identifies Iπ with a

O-lattice in π♭,ordp ⊗ π♭,K
p

Sp .

The anti-ordinary subspace πa−ordp ⊂ πIrp is the tensor product over w ∣ p of the lo-

cal anti-ordinary subspaces πa−ordw , which will be defined in Lemma 8.2.6. Let Îπ =

Hom(Iπ,O). The natural duality between π♭
S
and πS identifies Îπ with an O-lattice in

πa-ordp ⊗ πK
p

Sp , and thus defines a natural isomorphism

(7.1.1) Îπ
∼Ð→ Iπ♭ .

The following hypothesis comes down to the assumption that π is minimal (in the
sense of the Taylor-Wiles method) of level Kp with respect to deformations of its Galois
representation.
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Hypothesis 7.1.7. (Minimality Hypothesis) For every pair (κ1, r1), there is an isomor-
phism of TKp

r1
,κ1,O,π-modules

TKp

r1
,κ1,O,π ⊗ Îπ

∼Ð→ Hom(Sord
κ1 (Kp

r1
,O)mπ ,O).

such that the following diagrams commute when r1 > r:

TKp

r1
,κ1,O,π ⊗ Îπ

∼ÐÐÐ→ Hom(Sord
κ1
(Kp

r1
,O)mπ ,O)×××Ö

×××Ö
TKp

r ,κ
1,O,π ⊗ Îπ

∼ÐÐÐ→ Hom(Sord
κ1
(Kp

r ,O)mπ ,O)
and such that the specialization at the O-valued point λπ:

TKp
r ,κ,O,π

/ker(λπ)⊗ Îπ ∼Ð→ Hom(Sord
κ1 (Kp

r1
,O)mπ ,O)⊗TK

p
r ,κ,O,π

TKp
r ,κ,O,π

/ker(λπ)
is just the tautological isomorphism Îπ

∼Ð→ Hom(Iπ,O).
These hypotheses will be assumed in the statements of most of the results about p-adic

L-functions in families; they will be verified when possible.

7.2. Equivariant measures. In this section we consider measures with values in p-
adic modular forms on G3. We fix a prime-to-p level subgroup Kp ⊂ G3(Af) and let
Kr = Ir ⋅K

p as before, where Ir = Ir,1 × Ir,2 ⊂ G3(Qp) with Ir,i ⊂ Gi(Qp), i = 1,2. For O

as above, we write V = V ord,cusp
3 (Kp,O) for the corresponding space of ordinary p-adic

cusp forms on G3 with values in O.

Remark 7.2.1. Although the Eisenstein measure does not generally take values in the
space of cusp forms, even after ordinary projection, we will be localizing at a non-
Eisenstein maximal ideal of the Hecke algebra. Much of the discussion below applies
without change to measures with values in the space of ordinary p-adic forms.

We choose a sequence of congruence subgroups T ⊃ ⋯ ⊃ Tr ⊃ Tr+1⋯ such that ∩rTr ={1}. Let Ir ⊂ Λ be the augmentation ideal of Tr, and let Λr = Λ/Ir. For O as above,
let Cr(T,O) = C(T /Tr,O) be the (free) O-module of Tr-invariant functions on T . Then
there is a natural identification Λr = HomO(Cr(T,O),O); alternatively, viewing Λπ
as the algebra of distributions on T with coefficients in O, and C(T,O) the module of
continuous O-valued functions on T , the canonical pairing Λπ⊗C(T,O) → O restricts to
a pairing Λπ⊗Cr(T,O) → O which factors through a perfect pairing Λr⊗Cr(T,O) → O.
Let rr ∶ Cr(T,O) ↪ Cr+1(T,O) be the canonical inclusion. The next lemma follows

from the definitions. Note that V = V ord,cusp
3 (Kp,O) is a ΛO-module by the action on

the first factor. We fix an involution υ ∶ T → T and define ρυ = ρ ○ υ for any function
ρ ∈ C(T,O).
Lemma 7.2.2. Fix a character ρ ∶ T → O× and let Cr(T,O) ⋅ ρυ ⊂ C(T,O) denote
multiples of ρυ by elements of Cr(T,O). There is an equivalence between
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(i) V-valued measures φ on T satisfying

φ(t ⋅ f) = υ(t) ⋅ φ(f), f ∈ C(T,O);
(ii) Collections φρ = (φr,ρ) with

φr,ρ ∈ HomΛπ(Cr(T,O) ⋅ ρυ,V),
satisfying r∗r (φr+1,ρ) = φr,ρ, where r∗r is dual to rr.

We let Ir,ρ ⊂ Λπ be the annihilator of Cr(T,O) ⋅ρυ, and let Λr,ρ = Λπ/Ir,ρ. Thus Lemma
7.2.2 identifies equivariant measures on T with twist υ with collections of linear forms
on Λr,ρ that are compatible with the natural projection maps as r varies.

Let V̂ = HomO(V,O) and let φ be a measure as above, which we assume to be the
specialization at a character χ of Xp of an admissible measure in two variables with shift
sh∗(χ) = (α(χ), β(χ)) and twist υ as in Section 5.2.4.

We write φχ,r,ρ to indicate dependence on χ. For κ = ρ ⋅ α(χ) sufficiently regular,

(7.2.1) Im(φχ,r,ρ) ⊂ Sord(ρ⋅α(χ)),V (Kr,O)[⊗]Sord(ρ♭ ⋅β(χ)),−V (Kr,O)
where we continue to identify open compact subgroups of GU(V )(Af) = GU(−V )(Af),
and where the notation [⊗] is as in Remark 3.2.2.

More generally, we let Xp be a compact p-adic Lie group, and let ΦX = (Φa,Φb) ∈
C(Xp,O)2. Say φ(●) (the ● is a place-keeper) is a measure of type ΦX if

(7.2.2) Im(φ(●)r,ρ) ⊂ (Sord
ρ,V (Kr,O)⊗Φa ○ det) [⊗] (Sord

ρ♭,−V (Kr,O)⊗Φb ○ det) .
We also have

V̂ = lim←Ð
r

HomO(Sord
ρ,V (Kr,O)[⊗]Sord

ρ♭,−V (Kr,O),O).
In the situation of (7.2.1), assuming κ = ρ ⋅ α(χ) is sufficiently regular, we thus have

Im(φχ,r,ρ) ⊂ HomO(Ŝord(ρ⋅α(χ)),V (Kr,O), Sord(ρ♭ ⋅β(χ)),−V (Kr,O)).
The following hypothesis expresses a basic property of the Garrett map that is the

basis of the doubling method for studying standard L-functions of classical groups.

Hypothesis 7.2.3.

Im(φχ,r,ρ) ⊂ HomTr,ρ⋅α(χ)
(Ŝord(ρ⋅α(χ)),V (Kr,O), Sord(ρ⋅α(χ))♭ ,−V (Kr,O)⊗ χ ○ det).

Bear in mind that φχ,r,ρ designates integration of functions locally equal to ρυ – not ρ
– against the specialization at χ of a two-variable measure.
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Remark 7.2.4. We sometimes write κ = ρ ⋅ α(χ) when we want to emphasize the weight
of the specialized Hecke algebra rather than the weight of the character of T . Here and
below the algebra Tκ = Tr,ρ⋅α(χ) ignores the twist by χ ○ det at the end. One checks that

incorporating the χ○det into the subscript of the second Sord replaces α(χ)♭ by the β(χ)
of (7.2.1).

Now let π be an anti-holomorphic representation of G1 of type (κ = ρ ⋅ α(χ),Kr). Let
φχ,r,ρ,π denote the composition of φχ,r,ρ with projection on the localization at the ideal
mπ in the first variable. Bearing in mind our conventions for the subscripts π and π♭ , it
then follows from Hypothesis 7.2.3 that

(7.2.3) Im(φχ,r,ρ,π) ⊂ HomO(Ŝord
κ,V,π(Kr,O), Sord

κ♭,−V,π♭(Kr,O)⊗ χ ○ det).
Now both Ŝord

κ,V,π(Kr,O) and Sord
κ♭,−V,π♭(Kr,O) are Tπ-modules, and indeed the Goren-

stein hypothesis guarantees that they are free Tr,κ,π-modules (in the obvious notation)

of the same rank. In the next few paragraphs they are denoted Sord
r,V,π and Sord

r,−V,π♭ to
save space, the character (κ = ρ ⋅ α(χ)) being understood.

We rewrite Hypothesis 7.1.7 in this notation.

Hypothesis 7.2.5. Let R be a O-algebra, and let T̂r,κ = Hom(Tr,κ,R). In the above
notation, there are isomorphisms of Tr,κ,π-modules

Tr,κ,π ⊗ Îπ
∼Ð→ Ŝord

r,V,π;

T̂r,κ,π ⊗ Iπ
∼Ð→ Sord

r,V,π.

The first is Tπ linear, the second Tπ ♭-linear.

These isomorphisms are not unique, but they can be coordinated as follows. The second
isomorphism of Hypothesis 7.2.5 for −V provides a Tπ-linear isomorphism:

j ∶ Sord
r,−V,π♭

∼Ð→ T̂r,κ♭,π♭ ⊗ Iπ♭ .

Composing with an isomorphism

(7.2.4) G ∶ T̂r,(κ)♭,π♭
∼Ð→ Tr,κ,π

of (Tπ-linear) Tπ-modules given by the Gorenstein hypothesis (Hypothesis 7.1.4), this
becomes a Tπ-linear isomorphism

j′ ∶ Sord
r,−V,π♭

∼Ð→ Tr,κ,π ⊗ Iπ♭
∼Ð→ Tr,κ,π ⊗ Îπ

where the second arrow is isomorphism (7.1.1). Now compose j′ with the first isomor-
phism of Hypothesis 7.2.5 to obtain

jG ∶ S
ord
r,−V,π♭

∼Ð→ Ŝord
r,V,π.

Thus
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Lemma 7.2.6. Given a choice of isomorphism G as in (7.2.4), there is a unique iso-
morphism

jG ∶ S
ord
r,−V,π♭

∼Ð→ Ŝord
r,V,π

of free Tπ-modules compatible with G as above.

Remark 7.2.7. These maps can be compared to the ♭-isomorphism F ♭ ∶ Sord
r,V,π

∼Ð→ Sord
r,−V,π♭.

Thus Hypothesis 7.2.3 yields (with κ = ρ ⋅ α(χ) as above)
Hypothesis 7.2.8.

Im(φχ,r,ρ) ⊂ HomTr,κ
(Ŝord

r,V , S
ord
r,−V ⊗ χ ○ det) ∼Ð→ HomTr,κ⋅a(χ)

(Tr,κ ⊗ Îπ, T̂r,κ ⊗ Iπ♭)
∼Ð→ HomTr,κ

(Tr,κ, T̂r,κ)⊗EndR(Iπ♭).
Here we have tensored with χ−1 ○ det in the first line.

In the remainder of this subsection we no longer need to localize at mπ. We write
Cr = Cr(T,O) and drop the O’s from the notation for modules of ordinary cusp forms,
and ignore the twists by χ○det where relevant. The natural inclusion Cr ↪ Cr+1, together
with the map ι∗r ∶ Ŝord

r+1,V → Ŝord
r,V (dual to the tautological inclusion ιr ∶ S

ord
r,V ↪ Sord

r+1,V )
defines a diagram

HomTr+1,κ
(Cr+1 ⊗ Ŝord

r+1,V , Sord
r+1,−V ) r∗r⊗id∗r+1ÐÐÐÐÐ→ HomTr+1,κ

(Cr ⊗ Ŝord
r+1,V , Sord

r+1,−V )Õ×××ι∗r
HomTr,κ

(Cr ⊗ Ŝord
r,V , S

ord
r,−V )

Here id∗r+1 ∶ Ŝord
r+1,V → Ŝord

r+1,V is the identity map and ι∗r is the dual to ιr (applied in

the contravariant variable). It follows from the equivariance hypothesis that the tensor

products (Cr+1⊗ Ŝord
r+1,V and the other two) can be taken over Λπ, and then HomTr+1,κ

is

relative to the action of the Hecke algebra on Ŝord
r+1,V and Sord

r+1,−V . Hypothesis 7.2.3 now
implies that

Fact 7.2.9. For all r, the image of φr+1,κ under r∗r ⊗ id∗ lies in Im(ι∗r ).
We make a more precise hypothesis:

Hypothesis 7.2.10. More precisely,

(r∗r ⊗ id∗r+1)(φr+1,κ) = ιr ○ φr,κ ○ (idCr ⊗ ι
∗
r)

as maps from Cr ⊗ Ŝ
ord
r+1,V to Sord

r+1,−V , where idCr is the identity map on Cr.
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7.2.11. Serre duality and change of level. We can interpret the map ι∗r with respect to the
Serre duality pairing 6.3.2 as follows. In this section we let R be a finite Z-algebra with p-
adic completion R ↪ O. Identify Sκ,V (Kr,R) with an R-lattice inH0

! (KrSh(V ), ωκ). Let
H

0,ord
!
(KrSh(V ), ωκ) be the C-linear span of Sord

κ,V (Kr,R) and let Hd,ord
!
(KrSh(V ), ωDκ )

be the corresponding quotient of Hd
! (KrSh(V ), ωDκ ); then the action of the Hecke algebra

identifies Hd,ord
!
(KrSh(V ), ωDκ ) as a direct summand of Hd

! (KrSh(V ), ωDκ ) that is in a

perfect pairing with H
0,ord
!
(KrSh(V ), ωκ). We can thus identify Ŝord

κ,V (Kr,R) with an

R-lattice in Hd,ord
!
(KrSh(V ), ωDκ ) in such a way that

Ŝord
κ,V (Kr,R) =Hd,ord

!
(KrSh(V ), ωDκ )(R)

∶= {h ∈Hd,ord
!
(KrSh(V ), ωDκ ) ∣ ⟨f,h⟩Serκ ∈ R ∀f ∈ Sord

κ,V (Kr,R)}(7.2.5)

The following statements (Lemma 6.2.12, Proposition 6.2.13, and Definition 6.2.14) are
written in terms of κ rather than ρ ⋅ α(χ), for simplicity.

Lemma 7.2.12. With respect to the identification (7.2.5), the map

ι∗r ∶ Ŝord
κ,V (Kr+1,R) → Ŝord

κ,V (Kr,R)
is given by the trace map:

tr(h) = ∑
γ∈Kr/Kr+1

γ(h).
In particular, the trace map tr defines a surjective homomorphism

H
d,ord
!
(Kr+1

Sh(V ), ωDκ )(R) → H
d,ord
!
(KrSh(V ), ωDκ )(R)

Proof. It suffices to prove that the map

Hd
! (Kr+1

Sh(V ), ωDκ ) → Hd
! (KrSh(V ), ωDκ )

dual under pairing (6.3.2) to the inclusion of forms of level Kr in forms of level Kr+1 is
given by the trace. But since the duality pairing is just integration, this comes down to
the following observation: the adelic integral of a Kr+1 invariant function f against a Kr

invariant function g is the same as the adelic integral of g against the sum of Kr/Kr+1-
translates of f (and there is no need to correct the normalization of the measure).

The final assertion then follows from Lemma 6.5.14. �

Now we localize again at mπ. As in Hypothesis 7.2.8 we can identify

HomTr,κ
(Cr ⊗ Ŝord

r,V , S
ord
r,−V ) ≃ HomTr,κ

(Cr ⊗ Tr,κ ⊗ Îπ, T̂r,κ ⊗ Iπ♭)
= HomTr,κ

(Cr ⊗ Tr,κ, T̂r,κ)⊗EndR(Iπ♭)
≃ T̂r,κ ⊗EndR(Iπ♭)

with appropriate modifications to accomodate a function ΦX as above. We are using
Hypotheses 7.1.7 and 7.2.5 systematically.
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Proposition 7.2.13. With respect to the identifications

HomTr,κ,♭(Cr ⊗ Ŝord
r,V , S

ord
r,−V ) ≃ T̂r,κ ⊗EndR(Iπ♭),

Hypothesis 7.2.10, and the isomorphism Gr ∶ T̂r,κ
∼Ð→ Tr,κ of the Gorenstein hypothesis,

the measure {φr,κ} defines an element

L(φκ) ∈ lim←Ð
r

Tr,κ ⊗ Iπ♭ ⊗ Iπ
∼Ð→ T⊗EndR(Iπ♭)

Moreover, if κ1 is a second sufficiently regular character, then L(φκ) and L(φκ1) are

identified with respect to the identifications T
∼Ð→ TKp,κ,Oπ

∼Ð→ TKp,κ1,Oπ
of Theorem

7.1.1. Thus the measures {φr,κ} and {φr,κ1} define the same element L(φ) ∈ T ⊗

EndR(Iπ♭). Conversely, any such L(φ) defines a measure {φr,κ} for any sufficiently
regular κ.

Moreover, the element L(φκ) does not depend on the choice of identifications in Hy-
potheses 7.1.7 and 7.2.5, provided they are compatible with the choice of Gr in the sense
of Lemma 7.2.6.

Proof. This is a consequence of Lemma 7.2.12 and follows by unwinding the definitions.

�

Note that Gr is independent of choices, provided that they are compatible in the sense
of Lemma 7.2.6.

The above construction adapts easily to accommodate the compact p-adic Lie group
Xp. We have seen that a V-valued measure on Xp × T is the same thing as a measure
on Xp with values in V-valued measures on T . In particular, one obtains a V-valued
measure on Xp ×T from a collection, for all characters α of Xp, of V-valued measures φα
of type α on T satisfying the congruence properties of Lemma 5.1.3.

Definition 7.2.14. Fix a level r, a character κ, and an O-algebra R. Let λ ∶ T → R

be a continuous homomorphism. Say λ is classical of level pr and weight κ if it factors
through a homomorphism (still denoted) λ ∶ Tr,κ → R, which is of the form λπ for some
antiholomorphic automorphic representation π of type (κ,Kr) with Kr =K

pIr for some
open compact Kp ⊂ G(Ap

f
), as before

Let X(κ, r,R) denote the set of classical homomorphisms of level pr and weight κ with
values in R; let Xclass(R) = ∪κ,rX(κ, r,R). Any λ ∈ Xclass(R) is called classical (with
values in R).

When R = Tr,κ, we let λtaut ∶ Tr,κ → Tr,κ be the identity homomorphism. When π is a
cuspidal anti-holomorphic representation of weight κ as above, let λtaut,π ∶ Tr,κ → Tr,κ,π
be λtaut followed by localization at mπ.

When κ is sufficiently regular, the character λtaut deserves to be called classical because
its composition with any map from Tr,κ to a p-adic field is attached to a classical modular
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form of weight κ. The relationship between L(φ) and the elements φχ,r,κ is given by the
following proposition.

Proposition 7.2.15. Let χ be a character of Xp. Let φ = dφ(x, t) be a measure on
Xp × T as in Section 5.2.4, with shift sh: sh∗(χ) = (α(χ), β(χ)) Let ρ be an algebraic
character of T , κ = ρ ⋅ α(χ). Fix a cuspidal anti-holomorphic representation π of weight
κ satisfying the hypotheses above. We consider L(φχ) = ∫Xp

χ(x)dφ(x, t), localized at

mπ, as an element of T ⊗ EndR(Iπ♭). Let L(φχ, κ, r) denote the image of L(φχ) in
Tr,κ ⊗EndR(Iπ♭). Equivalently,

L(φχ, κ, r) = ∫
Xp×T

χ × λtaut,πdφ(x, t),
where integration against λtaut,π amounts to the projection

T↠ T⊗Λ Λr,κ = Tr,κ

followed by localization at mπ.

Then L(φχ, κ, r) corresponds to the element

φχ,r,κ ∈ HomTr,κ
(Cr ⊗ Ŝord

r,V , S
ord
r,−V ⊗ χ ○ det)

under the identifications in Hypotheses 7.1.7 and 7.2.5, compatible with the Gorenstein
isomorphism Gr (from Proposition 7.2.13).

Proof. This is just a restatement of the definition of the element L(φ) ∈ T⊗EndR(Iπ♭)
introduced in Proposition 7.2.13. �

The following is now an elementary consequence of Proposition 7.2.13.

Proposition 7.2.16. (Abstract p-adic L-functions of families) Let φ = dφ(x, t)
be a measure on Xp × T such that, for each character χ of Xp, ∫Xp

χ(x)dφ(x, t) is a V-

valued measure φχ of type χ satisfying Hypothesis 7.2.3. Fix a cuspidal anti-holomorphic
representation π satisfying the hypotheses of the previous sections. Then there is an
element L(φ) ∈ ΛXp⊗̂T⊗EndR(Iπ♭) such that, for every R-valued character χ of Xp, the
image of L(φ) under the map

χ⊗ Id ∶ ΛXp⊗̂T⊗EndR(Iπ♭) → T⊗EndR(Iπ♭)
given by contraction in the first factor, or equivalently integration against χ with respect
to the first variable, is the element L(φχ) of Proposition 7.2.15.

The following standard fact (see, for example, [Hid88, Lemma 3.3]) shows that the
specializations of Proposition 7.2.15 determine the abstract L-function L(φ):
Lemma 7.2.17. The V-valued measure φ = φχ of type χ and the abstract L-function
L(φ) are completely determined by their integrals against elements of the sets X(κ, r,OCp

)
for any fixed sufficiently regular κ.
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We write

(7.2.6) EndR(Iπ♭) = Îπ♭ ⊗ Iπ♭ ≃ Hom(Îπ ⊗ Îπ♭ ,R).
Then for any ϕ⊗ϕ♭ ∈ Îπ ⊗ Îπ♭ we have a tautological pairing

(7.2.7) L(χ,φ, r, κ,ϕ ⊗ ϕ♭) = [L(φχ, κ, r), ϕ ⊗ ϕ♭]loc ∈ Tr,κ.
where [●,●]loc is the tautological pairing

Hom(Îπ ⊗ Îπ♭ ,R)⊗ Îπ ⊗ Îπ♭ → R.

We reformulate Proposition 7.2.15 in terms of Equation (7.2.7).

Proposition 7.2.18. Let R be a p-adic ring. Let φ be an admissible R-measure on Xp×T

as in Section 5.2.4. Assume Hypotheses 7.1.4, 7.1.5, and 7.1.7. Let ϕ⊗ ϕ♭ ∈ Îπ ⊗ Îπ♭ as
above. Then there is a unique element L(φ,ϕ⊗ϕ♭) ∈ ΛXp,R⊗̂T such that, for any classical

χ ∶ Xp → R× and any λ ∈ X(κ, r,R) (with κ sufficiently regular), the image of L(φ,ϕ⊗ϕ♭)
under the map ΛXp,R⊗̂T → R induced by the character χ⊗ λ equals L(χ,φ, r, κ,ϕ ⊗ϕ♭).
7.3. Classical pairings in families. The following is essentially obvious. The notation⟨⋅, ⋅⟩Serκ is as in (6.3.2).

Lemma 7.3.1. Let h ∈ Sord
κ,V (Kr,O), ϕ ∈ Hd,ord

κD
(Kr,O)[π], in the notation of Section

6.5. Then the map

T → O; A ↦ ⟨A(h), ϕ⟩Serκ

takes A to λπ(A)⟨h,ϕ⟩Serκ .

Proof. We have

⟨A(h), ϕ⟩Serκ = ⟨h,A♭(ϕ)⟩Serκ = λπ♭(A♭)⟨h,ϕ⟩Serκ = λπ(A)⟨h,ϕ⟩Serκ .

�

Note that h is not assumed to be an eigenform in Lemma 7.3.1. However, the pair-
ing with an eigenform for λπ♭ factors through the projection of h on the (dual) λπ-
eigenspace. In general, this projection can only be defined over O[1

p
]. We write h =

∑π′∈S(Kr,κ,π♭) aπ′hπ′ where aπ′ ∈ O[1p] and hπ′ is in the λπ′-eigenspace for T. Then under

the hypotheses of the lemma,

(7.3.1) ⟨h,ϕ⟩Serκ = aπ⟨hπ, ϕ⟩Serκ .

where of course hπ ∈ π♭.
The denominator of aπ is bounded by the congruence ideal C(π) = C(π♭). In what

follows we are making use of Proposition 6.6.8 and Corollary 6.6.9.



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 115

Lemma 7.3.2. Let ϕ ∈Hd,ord

κD
(Kr,O)[π]. Then the linear functional

h↦ Lϕ(h) ∶= ⟨h,ϕ⟩Serκ

belongs to Ŝord
κ,V (Kr,O)[π]. Moreover, the restriction of Lϕ(h) to Sord

κ,V (Kr,O)[π] takes
values in the congruence ideal C(π) = C(π♭) ⊂ O.
Proof. The claims follow from Lemmas 7.3.1 and 6.6.7, respectively. �

The functional in the last lemma can be rewritten as an integral. Recall that Îπ (resp.

Îπ♭) was identified with an O-lattice in πa-ordp ⊗ πK
p

Sp , (resp. π
♭,a-ord
p ⊗ π♭,K

p

Sp . Recall also
that we have dropped the subscript π for the moment, and so we are writing O in place
of Oπ. In order to facilitate comparison of the p-adic and complex pairings, we let R be
a finite local Z(p)[λπ]-subalgebra of C that admits an embedding as a dense subring of

O, and let Îπ♭,R and Îπ,R be free R-modules given with isomorphisms

Îπ♭,R ⊗R O
∼Ð→ Îπ♭ ; Îπ,R ⊗R O

∼Ð→ Îπ.

The following lemma is then just a restatement of (6.3.3).

Lemma 7.3.3. In the notation of the previous lemma, let ϕ ∈ Îπ. If we identify h

as above with an element of H0(Ph(V ),Kh;A0(G) ⊗Wκ) and ϕ with an element of
Hd(Ph(−V ),Kh;A0(G)⊗W⋆(κF )D), as in Equation (6.1.1), we can rewrite

Lϕ(h) = ∫
G(Q)ZG(R)/G(A)

[h(g), ϕ(g)]∣∣ν(g)−a(κ) ∣∣dg.

Proof. Abbreviate [G3] = G3(Q)Z(R)/G3(A), dgχ2 = χ(det(g2))−1dg2. By doubling the
formula in Lemma 7.3.3 – in other words, by applying it to the group G3 – we obtain

Lϕ⊗ϕ♭ (res3D(κ,m,χ0)Eholof(χ,ψρυ)(m))
=∫
[G3]

D(κ,m,χ0)Eholof(χ0,ψρυ)
((g1, g2),m)ϕ(g1)ϕ♭(g2)∣∣ν(g1)a(κ)∣∣dg1dgχ2 .

Comparing this with Equation (9.1.3) and the definition of the zeta integral, we obtain
the equality. �

8. Local theory of ordinary forms

8.1. p-adic and C∞-differential operators. The notation (κ,χ) and (r̃, s̃) is as in
Corollary 4.4.9 and Proposition 4.4.11. Parts (a) and (b) of the following proposition
are in [Eis16], to which we refer for explanation of undefined terms.

Proposition 8.1.1. (a) For (r̃, s̃) and χ as in 4.4.18, and for any prime-to-p level
subgroup Kp, there is a differential operator

θdχ(r̃, s̃) = θdχ(p(r̃, s̃)) ∶ Vχ(G4,K
p,O) → V (G4,K

p,O)



116 ELLEN EISCHEN, MICHAEL HARRIS, JIANSHU LI, AND CHRISTOPHER SKINNER

compatible with change of level subgroup, and with the following property: For any level
Kp, for any form f ∈Mχ(G4,K

p,O), and any ordinary CM pair (J ′0, h0) as in Section
3.2.5, we have the identity

Rκ,J ′0,h0 ○ resJ
′

0,h0
○ δdχ(r̃, s̃)(f) = resp,J ′0,h0 ○ θdχ(r̃, s̃) ○Rκ,G,X(f)

in the notation of Proposition 3.2.6.

(b) Let (κ,χ) be critical as in Corollary 4.4.9. Fix a level subgroup K4 ⊂ G4(Af)
and a subgroup K1 ×K2 ⊂ G3(Af) ∩K4. The composition of θdχ(r̃, s̃) with the pullback
res3 ∶= (γVp ○ ι3)∗ defines an operator

θ(κ,χ) ∶ Vχ(G4,K
p,O) → Sκ,V (K1)⊗ Sκ♭,−V (K2)⊗ χ ○ det;

which coincides with the operator δdχ(r̃, s̃) upon pullback to functions on G4(A) and
restriction to G3(A) (with respect to the maps (2.9.2) for G3 and G4).

(c) Under the hypotheses of (a) and (b), there is a differential operator

θhol(κ,χ) ∶ Vχ(G4,K
p,O) → V (G4,K

p,O)
whose composition with the pullback res3 coincides with the operator Dhol(κ,χ) upon
pullback to functions on G4(A) and restriction to G3(A).
Proof. As mentioned above, parts (a) and (b) are in [Eis16]. The third part follows from
Eischen’s construction as well: it follows (by induction on the size of κ) from the last part
of Corollary 4.4.9 that the operator Dhol(κ,χ) is obtained by pullback of the differential
operator attached to a polynomial P hol(κ,χ) ∈ ⊗σP(n)σ. One lets θhol(κ,χ) be the
differential operator on p-adic modular forms attached to the same polynomial. �

The following Corollary is the p-adic version of the last part of Corollary 4.4.9.

Corollary 8.1.2. Under the hypotheses of the previous proposition, for all κ† ≤ κ there
are differential operators θ(κ,λ) ∶ Vχ(G4,K

p,O) → V (G4,K
p,O) such that

θ(κ,χ) = ∑
κ†≤κ

res3θ(κ,κ†) ○ θhol(κ†, χ).
Proposition 8.1.3. Let F ∈H0(Sh(G4),L(χ)).
Assume κ, (r̃σ, s̃σ),m,χσ are all associated, and let eκ be the ordinary projector of 2.9.5

attached to the weight κ, as in 6.5.6. Then

(8.1.1) (eκ ○ θ(κ,χ))(F ) = eκ ○ prholκ ○ δ(r̃σ, s̃σ)(F ).
Proof. By Corollary 8.1.2, the left hand side equals

∑
κ†≤κ

eκ ○ res3θ(κ,κ†) ○ θhol(κ†, χ).
It suffices to show that, for every ordinary CM point a ∈ Ig3



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 117

(1) For κ† < κ, eκ ○ res3θ(κ,κ′) ○ θhol(κ†, χ)(F ) = 0 upon restriction to a;
(2) eκ ○res3θ(κ,κ)○θhol(κ,χ)(F )−eκ ○prholκ ○δ(r̃σ, s̃σ)(F ) = 0 upon restriction to a.

Part (2) is a consequence of (b) of 8.1.1. We show that the expression in (1) is arbitrarily
divisible by p. More precisely,

Lemma 8.1.4. For any κ† < κ, the ordinary projector eκ = limÐ→N U
N !
p,κ converges absolutely

to 0 on Sκ†(Kr;R).
Proof. The point is that, for each w, j, Uw,j,κ = ∣κ′(tw,j)∣−1p Uw,j, with κ′ defined as in
2.6.11. Thus

Up,κ =∏
w,j

∣κ′,−1 ⋅ κ†,′(tw,j)∣p ⋅Uw,j,κ†.

The condition κ† < κ is equivalent to the condition that the p-adic valuation of ∏w,j κ′,−1 ⋅
κ†,′(tw,j) is positive. Thus Up,κ has p-adic norm strictly less than 1 on Sκ†(Kr;R), and
it follows that eκ = limÐ→N U

N !
p,κ acts as 0 on Sκ†(Kr;R). �

Part (1) above now follows from the fact that the ordinary projector commutes with
the differential operators. �

8.2. Ordinary representations and ordinary vectors. For this section, let G = G1.
For each prime w ∣ p, let Gw = GLn(Kw). Recall that by (2.2.2) and (2.2.3) there is an
identification

(8.2.1) G(Qp) ∼Ð→ Q×p × ∏
w∈Σp

Gw.

Let Bw ⊂ GLn(Kw) be the (non-standard) Borel consisting of elements g = (A B
0 D ) with

A ∈ GLaw(Kw) upper-triangular and D ∈ GLbw(Kw) lower-triangular. Let Tw ⊂ Bw
be its diagonal subgroup and Bu

w ⊂ Bw its unipotent radical. Let I0w,r ⊂ GLn(Ow)
be the subgroup of elements g such that gmodpr = (A B

0 D ) with A ∈ GLaw(Ow/prOw)
upper-triangular and D ∈ GLbw(Ow/prOw) lower-triangular (this is the mod pr Iwahori
subgroup relative to the Borel Bw). Let Iw,r ⊂ I

0
w,r be the subgroup consisting of those g

such that A and D are unipotent. Under the identification (8.2.1) the subgroups Ir ⊂ I
0
r

of G(Zp) defined in Section 2.5 are identified as

(8.2.2) I0r
∼Ð→ Z×p ∏

w∈Σp

I0w,r and Ir
∼Ð→ Z×p ∏

w∈Σp

Iw,r.

Let δw ∶ Bw → C be the modulus character: if t = diag(t1, ...., tn) ∈ Tw, then δw(t) =∣tn−11 ⋯tbw−awaw t1−naw+1⋯tbw−1−awn ∣p.
8.2.1. Ordinary holomorphic representations: local theory. Let π be a cuspidal holomor-
phic representation of G(A) of weight type (κ,K) as in Section 6.4.1 with κ = (κσ)σ∈ΣK ,
κσ ∈ Z

aσ , assumed to satisfy:

(8.2.3) κσ + κσc ≥ n, ∀σ ∈ ΣK.
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Let κnorm = (κnorm,σ) with κnorm,σ = κσ − bσ.
Via the identification (8.2.1), the p-constituent πp of π is identified with a tensor product

πp ≅ µp ⊗w∈Σp πw with µp a character of Q×p and each πw an irreducible admissible
representation of Gw.

Recall that the Hecke operators uw,j = ∣κnorm(tw,j)∣−1p Uw,j, w ∈ Σp and 1 ≤ j ≤ n, act

on the spaces πKr

f
= πIrp ⊗ (⊗ℓ≠pπℓ)Kp

through an action on the spaces πIrp : Uw,j acts

on the latter spaces as the usual double coset operator Irt
+
w,jIr, and, furthermore, the

generalized eigenvalues of the uw,j are p-adically integral (cf. Section 2.6.9; since m = 1
the subscript i has been dropped from our notation, following our conventions). In
particular, the ordinary projector e = limm→∞(∏w∈Σp∏ni=1 uw,j)m! acts on each πIrp . From

the identification πp = µp ⊗w∈Σp πw and (8.2.2) we find that uw,j acts on π
Ir
p = ⊗w∈Σπ

Iw,r
w

via the action of the Hecke operator uGL
w,j = ∣κnorm(tw,j)∣−1p UGL

w,j on π
Iw,r
w , where UGL

w,j acts
as the double coset operator Iw,rtw,jIw,r; here, tw,j ∈ Tw is the element defined in Section
2.6.9. It follows that the generalized eigenvalues of the action of the Hecke operators
uGL
w,j are p-adically integral, and ew = limm→∞(∏nj=1 uGL

w,j)m! defines a projector on each

π
Iw,r
w .

Suppose that π is ordinary at p. Recall that this means πIrp ≠ 0 if r ≫ 0 and that, for

any such r, there is at least one vector 0 ≠ φ ∈ πIrp such that e ⋅ φ = φ. We call such a

φ an ordinary vector14 for πp. The existence of an ordinary vector is equivalent to the

existence of a φ ∈ πIrp , r ≫ 0, that is a simultaneous eigenvector for the Hecke operators
uw,j and having the property that uw,j ⋅ φ = cw,jφ with ∣cw,j ∣p = 1. It follows from the
identification πp = µp ⊗w∈Σp πw that πp being ordinary at p is equivalent to µp being

unramified and each πw being ordinary, in the sense that there exists φw ∈ π
Iw,r
w , r ≫ 0,

such that ew ⋅φw = φw; we call such a φw an ordinary vector for πw. The existence of an
ordinary vector for πw is equivalent to

(a) π
Iw,r
w ≠ 0 for all r ≫ 0;

(b) for each r as in (a) there exists 0 ≠ φw ∈ π
Iw,r
w such that φw is a simultaneous

eigenvector for the uGL
w,j, 1 ≤ j ≤ n, and having the property that uGL

w,j ⋅φw = cw,jφw
with ∣cw,j ∣p = 1.

Note that if φw ∈ πw, w ∈ Σp, are ordinary vectors and µp is unramified, then φ =

⊗w∈Σpφw ∈ πp is an ordinary vector for πp.

Lemma 8.2.2. Let w ∈ Σp. Suppose πw is an irreducible admissible representation of
Gw such that (a) and (b) above hold for a weight κ satisfying inequality (8.2.3).

14But note that this notion depends a priori on the character κnorm, which in turn depends on κ and
the signatures (aσ, bσ)σ∈ΣK . It turns out that there is at most one κnorm with respect to which a given
πp can be ordinary, but in general the signatures are not uniquely determined.
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(i) Up to multiplication by a scalar, there is a unique ordinary vector φordw ∈ π
Iw,r
w ;

φordw is necessarily independent of r ≫ 0.

(ii) There exists a unique character αw ∶ Tw → C× such that πw ↪ IndGw

Bw
αw is the

unique irreducible subrepresentation and φordw is identified with the unique simul-
taneous UGL

w,j -eigenvector, 1 ≤ j ≤ n, with support containing BwIw,r, for r ≫ 0.

(In particular, cw,j = ∣κnorm(tw,j)∣−1p δ−1/2w αw(tw,j).)
Proof. Our proof is inspired in part by the arguments in [Hid98, §5]. Let V be the space
underlying the irreducible admissible representation πw of Gw = GLn(Kw), and let VBw

be the Jacquet module of V with respect to the unipotent radical Bu
w of the Borel Bw.

Let N = ∩rIw,r; this is just B
u
w ∩GLn(Ow). For each j = 1, ..., n, let

tj =

⎧⎪⎪⎨⎪⎪⎩
diag(p1j ,1n−j) j ≤ aw

diag(p1aw ,1n−j , p1j−aw) j > aw.

We let the double coset Uj = NtjN act on V N = ∪rV
Iw,r in the usual way: if NtjN =

⊔ixi,jN then Uj ⋅ v = ∑i xi,j ⋅ v. Then Uj acts on the subspace V Ir as UGL
w,j . By the same

arguments explaining [Hid98, (5.3)], V N decomposes as V N = V N
nil ⊕ V

N
inv, where the Uj

act nilpotently on V N
nil and are invertible on V N

inv. Then, just as in [Hid98], the natural

Bw-invariant projection V
v↦v̄↠ VBw induces an isomorphism

(8.2.4) V N
inv

∼Ð→ VBv , v ↦ v̄,

that is equivariant for the action of the Uj .

Let φ ∈ V Ir be an ordinary vector for some r: φ is an eigenvector for each uj =∣κnorm(tj)∣−1p Uj with eigenvalue cj such that ∣cj ∣p = 1. In particular, φ ∈ V N
inv. As Uj acts

on VBw via δw(tj)−1tj, it then follows from (8.2.4) that there must be a Bw-quotient

ι ∶ VBw ↠ C(λ)
with λ ∶ Tw

∼Ð→ Bw/Bu
w → C is a character such that λ(tj) = ∣κnorm(tj)∣pδ(tj)cj for all

j = 1, .., n. Let α = λδ−1/2 and let I(α) = IndGw

Bw
(α) be the unitary induction of α to a

representation of Gw. By [Cas95, Thm. 3.2.4],

HomGw(V, I(α)) ∼Ð→ HomB(VB ,C(λ)), ϕ↦ (v̄ ↦ ϕ(v)(1)),
is an isomorphism, from which we conclude that there exists a non-zeroGw-homomorphism
V ↪ I(α), v ↦ fv (which is necessarily an injection since πw is irreducible) such that

(8.2.5) ι(v̄) = fv(1).
By the characterization of λ, β = ∣κnorm∣−1p δ−1w λ = ∣κnorm∣−1p δ−1/2w α is a continuous char-

acter Tw → C× such that each β(tj) is a p-adic unit. From the definition of the tj it then
follows easily that β(t) is a p-adic unit for all t ∈ Tw. Let W be the Weil group of Tw in

Gw. For x ∈ W , let βx = ∣κnorm∣−1p δ−1/2w αx, where αx(t) = α(xtx−1). We claim that the
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values of βx are all p-adic units if and only if x = 1. If the values of βx are all p-adic
units, then

βx/βx(t) = ∣κnorm(xtx−1t−1)∣−1p δw(xtx−1t−1)−1/2
is a p-adic unit for all t ∈ Tw. As δw is the composition of ∣⋅∣p with an algebraic character of

Tw, it follows that the above values must all be 1. That is, the character θ = ∣κnorm∣pδ−1/2w

satisfies θx = θ. Recall that if κ is identified with a dominant tuple (κ0, (κσ)σ∈ΣK) as in
(2.6.2) then

κnorm(diag(t1, ..., tn)) = ∏
σ

pσ=pw

aw

∏
i=1

σ(ti)κσ,i−bw bw

∏
j=1

σ(taw+j)−κσc,j+aw .

In particular, letting

mi =

⎧⎪⎪⎨⎪⎪⎩
∑σ,pσ=pw(κσ,i − bw) i ≤ aw

−∑σ,pσ=pw(κσc,i − aw) i > aw,

we have

∣κnorm(diag(t1, ..., tn))∣p = n

∏
i=1

∣ti∣mi
p .

It follows that

θ(diag(t1, ..., tn)) = ∣tm1+n−1
2

1 ⋯t
maw+n−aw

2
aw t

maw+1− bw
2

aw+1 ⋯t
mn+aw−1−bw

2
n ∣−1p .

From the dominance of κ and the inequality (8.2.3) it follows that

m1 ≥m2 ≥ ⋯ ≥maw ≥mn ≥mn−1 ≥ ⋯ ≥maw+1,
and so

m1 +
n − 1

2
> ⋯ >maw +

bw − aw

2
>mn +

bw − 1 − aw
2

> ⋯ >maw+1 +
1 − n

2
.

That is, θ is a regular character of Tw, and therefore θx = θ if and only if x = 1. This
completes that proof that the values of βx are all p-adic units if and only x = 1.

As βx ≠ β for all x ≠ 1, the characters αx, x ∈W , are all distinct, and hence the Jacquet
module I(α)Bw of I(α) is a semi simple Bw-module and isomorphic to the direct sum

⊕x∈WC(αxδ1/2) (cf. [Hid98, Prop. 5.4]). The inclusion V ↪ I(α), v ↦ fv, induces a
Bw-inclusion

(8.2.6) VBw ↪ I(α)Bw ≅ ⊕x∈WC(αxδ1/2w ).
It then follows from (8.2.4) that V N

inv is a sum of one-dimensional simultaneous eigenspaces

for the Uj that are in one-to-one correspondence with those characters αxδ−1/2, x ∈W ,
that appear in VB via (8.2.6); the eigenvalue of uj = ∣κnorm(tj)∣−1p Uj on the eigenspace cor-

responding to αxδ1/2 is βx(tj). As the values of βx are not all p-adic units if x ≠ 1, it fol-
lows that the space of ordinary vectors in V is one-dimensional; this proves part (i). It fur-

ther follows that the ordinary eigenspace must project non-trivially to C(λ) = C(αδ1/2)
via the composition of (8.2.4) with ι, and that all other eigenspaces map to 0 under this
composition. As this composition is just v ↦ fv(1) by (8.2.5), part (ii) follows easily. �
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Corollary 8.2.3. Suppose κ satisfies (8.2.3) and πp is ordinary. Up to multiplication by

a scalar, there is a unique ordinary vector φord ∈ πIrp for r ≫ 0; φord is necessarily inde-

pendent of r. Furthermore, under the identification πp = µp ⊗w∈Σp πw, φ
ord = ⊗w∈Σpφ

ord
w ,

with φordw as in Lemma 8.2.2.

The following lemma will aid in the computation of certain local zeta integrals involving
ordinary vectors.

Lemma 8.2.4. Let w, πw, and κ be as in Lemma 8.2.2. Let π∨w be the contragredient
of πw and ⟨⋅, ⋅⟩w ∶ πw × π∨w → C the non-degenerate Gw-invariant pairing (unique up to
scalar multiple).

(i) Let αw be as in Lemma 8.2.2(ii). Then π∨w is isomorphic to the unique irreducible

quotient of IndGw

Bw
α−1w : IndGw

Bw
α−1w ↠ π∨w.

(ii) For r ≫ 0, let φ∨w,r ∈ π∨w be the image of the vector in IndGw

Bw
α−1w that is supported

on BwIr. Then c(πw, r) ∶= ⟨φordw , φ∨w,r⟩w is non-zero and depends only on r.

(iii) Let 0 ≠ φ ∈ πIrw with e ⋅ φ = c(φ)φordw . Then

⟨φ,φ∨w,r⟩w = c(φ)⟨φordw , φ∨w,r⟩w.

Proof. Part (i) follows from the identification of IndGw

Bw
α−1w as the contragredient of

IndGw

Bw
αw (cf. [Cas95, Prop. 3.1.2]). The pairing ⟨⋅, ⋅⟩ ∶ IndGw

Bw
αw × Ind

Gw

Bw
α−1w → C corre-

sponding to this identification is just integration over GLn(Ow) ⊂ Gw:
⟨ϕ,ϕ′⟩ = ∫

GLn(Ow)
ϕ(k)ϕ′(k)dk, ϕ ∈ IndGw

Bw
αw, ϕ

′
∈ IndGw

Bw
α−1w ,

(cf. [Cas95, Prop. 3.1.3]). For part (ii), let ϕord ∈ IndGw

Bw
αw correspond to φordw as in

Lemma 8.2.2(ii) and let ϕ∨r ∈ IndGw

Bw
α−1w be the function supported on BwIr. Then

⟨φordw , φ∨w,r⟩w = ∫
GLn(Ow)

ϕord(k)ϕ∨r (k)dk.
As BwIr ∩GLn(Ow) = I0r , and since for k = tk′ ∈ I0r = Tw(Ow)Ir we have ϕord(k)ϕ∨(k) =
αw(t)α−1w (t) = 1, it then follows that

c(πw, r) ∶= ⟨φordw , φ∨w,r⟩w = ∫
I0w

dk = vol(I0r ) ≠ 0.
This proves part (ii).

For part (iii), write φ as a sum of simultaneous generalized UGL
w,j -eigenvectors:

φ = c(φ)φordw +

m

∑
i=1

φi, e ⋅ φi = 0.
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Let ϕ (resp. ϕord, ϕi) be the function in IndGw

Bw
αw that corresponds to φ (resp. φordw , φi)

as in Lemma 8.2.2(ii). Then, for r ≫ 0, ϕi∣I0r = 0, and so

⟨φ,φ∨w,r⟩w = ∫
GLn(Ow)

ϕ(k)ϕ∨r (k)dk = ∫
I0r

ϕ(k)ϕ∨r (k)dk
= c(φ)∫

I0r

ϕord(k)ϕ∨r (k) = c(φ)⟨φordw , φ∨w,r⟩w.
�

8.2.5. Anti-ordinary anti-holomorphic representations: local theory. Let π be an anti-
holomorphic representation of G(A) of type (κ,K) as in 6.4.1 with κ satisfying the
inequality (8.2.3). This the case if and only if π♭ is a cuspidal holomorphic representation
of type (κ,K) as considered in the preceding section.

For each r > 0 the Hecke operators u−w,j = ∣κnorm(tw,j)∣pU−w,j, w ∈ Σp and 1 ≤ j ≤ n,

act on the space πKr

f
= πIrp ⊗ (⊗ℓ≠pπℓ)Kp

through an action on the space πIrp : U−w,j
acts on πIrp as the usual double coset operator Irt

−
w,jIr. Furthermore, the generalized

eigenvalues of the u−w,j are p-adically integral. In particular, the anti-ordinary projector

e− = limm→∞(∏w∈Σp∏ni=1 u−w,j)m! acts on πIrp . From the identification πp = µp ⊗w∈Σp πw

(via the isomorphism (8.2.1)) we find that u−w,j acts on πIrp = ⊗w∈Σpπ
Iw,r
w via the action of

the Hecke operator uGL,−
w,j = ∣κnorm(tw,j)∣−1p UGL,−

w,j , where UGL,−
w,j acts as the double coset

operator Iw,rt
−1
w,jIw,r; here tw,j ∈ Tw is the element defined in Section 2.6.9. It follows

that the generalized eigenvalues of the action of the Hecke operators uGL,−
w,j are p-adically

integral and e−w = limm→∞(∏nj=1 uGL,−
w,j )m! defines a projector on πIrw .

We say that π is anti-ordinary at p of level r if πIrp ≠ 0 and there exists 0 ≠ φ ∈ πIrp such
that e− ⋅ φ = φ. We say that such a φ is an anti-ordinary vector for πp of level r. Under
the identification πp = µp⊗w∈Σp πw, the existence of an anti-ordinary vector of level r in π

is equivalent to µp being unramified and, for each w ∈ Σp, there existing 0 ≠ φw ∈ π
Iw,r
w ≠ 0

such that ew ⋅ φw = φw; we call such a φw an anti-ordinary vector for πw of level r.

Lemma 8.2.6. Let w ∈ Σp and πw be a constituent of πp as above.

(i) The representation πw is anti-ordinary of some level r if and only if π∨w is ordi-
nary, in which case πw is anti-ordinary of all levels r ≫ 0.

(ii) If πw is anti-ordinary of level r, then there exists a unique (up to nonzero scalar

multiple) anti-ordinary vector φa-ordw,r ∈ π
Iw,r
w of level r; it is characterized by

⟨φa-ordw,r , φ
∨,ord
w ⟩w ≠ 0 and ⟨φa-ordw,r , φ⟩w = 0 for all φ ∈ π

Iw,r
w belonging to a gener-

alized eigenspace of some uGL,−
w,j with non-unit eigenvalue.

Proof. Suppose πw is anti-ordinary of some level r. Then π
Iw,r
w ≠ 0 and there exists a

simultaneous eigenvector φa-ordw,r ∈ π
Iw,r
w for the uGL,−

w,j with p-adic unit eigenvalues a(j, r).



p-ADIC L-FUNCTIONS FOR UNITARY GROUPS 123

Let ⟨⋅, ⋅⟩w ∶ πw × π∨w → C be the Gw-equivariant pairing. Then we have

(8.2.7) a(j, r)⟨φa-ordw,r , φ⟩w = ⟨uGL,−
w,j ⋅ φ

a-ord
w,r , φ⟩w = ⟨φa-ordw,r , uGL

w,j ⋅ φ⟩w
for all φ ∈ π

∨,Iw,r
w . It follows that the action of each uGL

w,j on π
∨,Iw,r
w has an eigenspace

with eigenvalue a(j, r) (which is a p-adic unit). To see that there exists a simultaneous

such eigenspace we use the commutativity of the uGL
w,js: Let Vj−1 ⊂ π

∨,Iw,r
w be a maximal

subspace that is a simultaneous eigenspace for uGL
w,1, . . . , u

GL
w,j−1 with respective eigenvalues

a(1, r), . . . , a(j −1, r). Then by the commutativity of the uGL
w,js, the identity (8.2.7) holds

for all φ ∈ Vj−1. In particular, there is a non-zero (maximal) subspace of Vj ⊂ Vj−1 which

is an eigenspace for uGL
w,j with eigenvalue a(j, r). It follows from induction on j that there

exists a non-zero simultaneous uGL
w,j-eigenvector φ ∈ π

∨,Iw,r
w , j = 1, ..., n, with p-adic unit

eigenvalues a(j, r). That is, π∨w is ordinary.

Conversely, suppose that π∨w is ordinary, and let φ∨,ordw ∈ π∨w be an ordinary vector with
uGL
w,j- eigenvalue c(j) (which is a p-adic unit). Then for r ≫ 0 we have

(8.2.8) c(j)⟨φ,φ∨,ordw ⟩w = ⟨φ,uGL
w,j ⋅ φ

∨,ord
w ⟩w = ⟨uGL,−

w,j φ,φ∨,ordw ⟩w
for all φ ∈ π

Iw,r
w . It follows from the non-degeneracy of ⟨⋅, ⋅⟩w that there exists a uGL,−

w,j -

eigenvector φj,r ∈ φ
Iw,r
w with eigenvalue c(j). Using (8.2.8) and the commutativity of the

u
GL,−
w,j we find, as in the preceding proof of the ordinarily of π∨w, that there exists a non-

zero simultaneous uGL,−
w,j -eigenvector φ ∈ π

Iw,r
w , j = 1, ..., n, with p-adic unit eigenvalues

c(j). That is, πw is anti-ordinary of level r for all r ≫ 0.

Suppose now that πw is anti-ordinary of level r, and let φa-ordw,r ∈ π
Iw,r
w be an anti-ordinary

vector of level r. As shown above, π∨w is ordinary and φ∨,ordw ∈ π
∨,Iw,r
w . We note that

π
∨,Iw,r
w = Cφ∨,ordw ⊕ V1 ⊕⋯⊕ Vt

with each Vi a simultaneous generalized uGL
w,j-eigenspace with at least one of the (general-

ized) eigenvalues not a p-adic unit; this follows from the uniqueness of the ordinary vector
(see Lemma 8.2.2(i)). Since (8.2.7) holds for all φ ∈ Vi it follows that ⟨φa-ordw,r , Vi⟩w = 0.
This proves that φa-ordw,r ∈ π

Iw,r
w is characterized (up to non-zero scalar multiple) as stated

in part (ii). The uniqueness also follows.

�

Using this we can deduce an analog of Lemma 8.2.2(ii):

Lemma 8.2.7. Let w ∈ Σp and πw be a constituent of πp as above. Suppose πw is anti-

ordinary. Then there exists a unique character βw ∶ Tw → C× such that IndGw

Bw
βw ↠ πw

is the unique irreducible quotient and the anti-ordinary vector φa-ordw,r ∈ π
Iw,r
w of level r is

(up to non-zero scalar multiple) the image of the vector in IndGw

Bw
with support BwIw,r.
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In particular, the φa-ordw,r , r ≫ 0, can be chosen to satisfy

TrIw,r/Iw,r′
φa-ordw,r′ = φ

a-ord
w,r , r′ ≥ r.

Proof. Since πw is anti-ordinary, it follows from Lemma 8.2.6(i) that π∨w is ordinary.
Let αw be the unique character of Bw associated with π∨w as in Lemma 8.2.2(ii). Let

βw = α
−1
w . As π∨w is the unique irreducible subrepresentation of IndGw

Bw
αw, πw is the

unique irreducible quotient of IndGw

Bw
βw. Furthermore, it follows from Lemmas 8.2.2(ii)

and 8.2.4(ii-iii) that the image of the vector in IndGw

Bw
βw that is supported on BwIw,r

satisfies the conditions that characterize φa-ordw,r in Lemma 8.2.6(ii). The uniqueness of
βw easily follows from the uniqueness of αw and Lemma 8.2.4. �

Corollary 8.2.8. Suppose κ satisfies Inequality (8.2.3). Then πp is anti-ordinary if and

only if π♭p is ordinary, and up to multiplication by a scalar, there is a unique anti-ordinary

vector φa-ordr ∈ π
Iw,r
p of level r for each r ≫ 0. Furthermore, under the identification

πp = µp⊗w∈Σp, φ
a-ord = ⊗w∈Σpφ

a-ord
w , with φa-ordw as in Lemma 8.2.6.

8.2.9. The Newton polygon. Let π be a holomorphic or anti-holomorphic cuspidal auto-
morphic representation of G(A), and let πp = µp ⊗w∈Σp πw be the identification corre-
sponding to (8.2.1). We assume that

(8.2.9) each πw is an irreducible subquotient of IndGw

Bw
βw

for some character βw ∶ T → C×. We view βw as n-tuple βw = (βw,1, ...., βw,n) of characters
of K×w, defined by βw(diag(t1, ..., tn)) = ∏ni=1 βw,i(ti); the characters βw,i are uniquely
determined up to order. We define the total Hecke polynomial of π at w to be

(8.2.10) Hw(T ) = n

∏
i=1

(1 − αw,i(̟w)T )(1 −α−1w,i(̟w)T )
The Newton polygon Newt(π,w) of π at w is the Newton polygon of Hw(T ). Note that

Newt(π,w) = Newt(π♭,w).
Let Σw = {σ ∈ ΣK ∣ pσ = pw}. Let

πΣw = ⊗σ∈Σwπσ = ⊗σ∈ΣwDc(τσ)
in the notation of (4.4.3). Define the Hodge polygon Hodge(π,w) to be the polygon in
the right half-plane with vertices (i,∑σ∈Σw

pi,σ), where (pi,σ, qi,σ) are the pairs introduced
in section 4.4.12 for Dc(τσ).
Proposition 8.2.10. Suppose π is (anti-)holomorphic and (anti-)ordinary. Then Newt(πw)
and Hodge(πw) meet at the midpoint (n,∑σ∈Σw

pi,σ).
In motivic terms, this says that the motive obtained by restriction of scalars to Q of

the motive attached to Π satisfies the Panchishkin condition, see [Pan94]. The proof is
an elementary calculation and is omitted; it will not be used in what follows. Details will
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be provided in a future article, when the results obtained here are related to standard
conjectures on p-adic L-functions.

8.3. Global consequences of the local theory. We assume the ordinary cuspidal
anti-holomorphic representation π of G1 is of type (κ,Kr), Kr =K

pIr, and satisfies the
Gorenstein, Minimality, and Global Multiplicity One Hypotheses of section 7.1. Let S
be the set of finite primes, not dividing p, at which Kp is not hyperspecial maximal.
We summarize the implications of the local theory for the identification of automorphic
forms in π. We let π♭ denote the dual representation of π, viewed as a holomorphic
automorphic representation of G1. Let Iπ and Îπ be as in Section 7.1.6. We say that
the anti-holomorphic cuspidal representation of G1 is in the family determined by π if
there is a non-trivial character λπ′ of the Hecke algebra T = Tπ defining the action
of the unramified Hecke operators on π′. Any such π′ is assumed to be given with
a factorization (1.4.2). The factors π′w, for w ∣ p, are all (tempered) subquotients of
principal series representations.

In what follows, the Borel subalgebras b+σ are chosen at archimedean places σ as in
Section 4.4.1. The Minimality Hypothesis allows us to choose vS uniformly for π′ in the
following proposition.

Proposition 8.3.1. Fix an element vS ∈ Îπ. Let π′ be any anti-holomorphic repre-
sentation, of type (κ′,Kr′), in the family determined by π. Let ϕκ′,− denote a lowest
weight vector in the anti-holomorphic subspace of π′∞, as in (4.1.4). For a finite prime

v ∉ S ∪Σp, let ϕ
′
v be a fixed generator of the spherical subspace of π′v and let ϕ′,♭v be the

dual generator of the spherical subspace of π′,♭v . Assume κ satisfies (8.2.3). Then

(1) For r′′ >> 0, there is, up to scalar multiples, a unique anti-ordinary anti-holomorphic

vector ϕr
′′(vS , π′) ∈ (π′)Kr′′ with factorization (1.4.2) given by

facπ′,♭(ϕr′′(vS , π′)) = ϕκ′,− ⊗⊗v∉S∪Σpϕ
′
v ⊗⊗w∣pφ

a−ord
w,r′′ ⊗ vS .

(2) As r′ varies, the ϕr′(vS , π′) ∈ π′ can be chosen so that, if r′′ >> 0, then

tr′′ϕ
r′′+1(vS , π′) = ϕr′′(vS , π′),

where the trace map tr′′ is defined as in Lemma 7.2.12.

Proof. This follows directly from the results in the previous sections, in particular Lem-
mas 8.2.7 and 8.2.2. �

9. Construction of p-adic L-functions

Review of notation. We recall the notation from the previous sections, because some
of it is admittedly counterintuitive. Our basic Shimura varieties are denoted Sh(V ) (at-
tached to G1) and Sh(−V ) (attached to G2, which is isomorphic to G1). Classical points
of our Hida families correspond to cuspidal automorphic representations denoted π and
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π♭, for Sh(V ) and Sh(−V ), respectively. With our conventions, π is an antiholomor-
phic automorphic representation of G1, and therefore with respect to the isomorphism

G2
∼Ð→ G1 is a holomorphic automorphic representation of G2. Correspondingly, π♭,

which can be identified with the complex conjugate of π, is a holomorphic representation
of G1, and therefore gives rise to a holomorphic modular form – of weight κ, in practice
– on Sh(V ); but π♭ is antiholomorphic on G2. The input of the doubling integral is
an antiholomorphic vector on G3 which comes from a vector w ∈ π ⊗ π♭, that will be
identified shortly; this is paired with the Eisenstein measure, which takes values in the
ring of p-adic modular forms on G4 and which specializes to classical forms of weight
κ⊗κ♭ on G3. We always assume that π and π♭ are anti-ordinary at all primes dividing p;
in particular, the vector w has local components at p that are chosen to be anti-ordinary.

Since one is in the habit of thinking of Hida theory as a theory of families of holomorphic
and ordinary forms, the following lemma may be welcome; in any case, it is implicit in
the assumption that both π and π♭ are anti-ordinary.

Lemma 9.0.2. Suppose π is an anti-ordinary and anti-holomorphic representation of
G1. Then the p-adic component πp of π is also ordinary.

Proof. The property of being ordinary is preserved under complex conjugation, and by
twist by a power of the similitude character. On the other hand, duality exchanges
ordinary with anti-ordinary representations, by Lemma 8.2.6. Since π is essentially
unitary, it follows that it is both ordinary and anti-ordinary. �

More precisely still, the anti-ordinary subspace (or submodule) of π ⊗ π♭ is denoted

Îπ ⊗ Îπ♭. However, it is best to view Îπ ⊗ Îπ♭ as a trace compatible system

(9.0.1) wr ∈ Ŝ
ord
κ,V (Kr,R)[π] ⊗ Ŝordκ♭,−V (Kr,R)[π♭]; t∗r(wr+1) = wr,

with notation as in Lemma 7.2.12. Thus, in what follows, ϕ⊗ ϕ♭ ∈ π ⊗ π♭, viewed as an
anti-holomorphic form of level Kr on Sh(V ) × Sh(−V ), is taken to belong in Îπ ⊗ Îπ♭ ,
which we now take (with respect to the factorization 4.1.1) to be the space

(9.0.2) ⊗
w∣p

[φa-ordw,r,πw ⊗ φ
a-ord
w,r,π♭w

]⊗⊗
σ∣∞
[ϕκσ ,− ⊗ ϕκ♭σ,−]⊗ πKp

Sp ⊗ π♭,K
p

Sp ⊂ π ⊗ π♭.

In other words, these test vectors have local components as in (4.1.2), (4.1.3), and (4.1.4).
Moreover, we take our vector ϕ⊗ϕ♭ to be integral over O. By our choice in (9.0.2), this
is then the antiordinary vector w = wr ∈ π ⊗ π♭ to which we referred above.

Note that the choice of ϕ⊗ϕ♭, and therefore of wr, depends on the level Kr of the vec-
tor w however, the corresponding system {wr} satisfies the trace compatibility relation
(9.0.1) by Lemma 8.2.7 and Proposition 8.3.1. In particular, the value of the pairing
with the Eisenstein measure is independent of this choice, and we can specifically take
r = d ≥ 2t as in 4.3.6, and as required for the local calculation at primes dividing p.
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9.1. Pairings of axiomatic Eisenstein measures with Hida families. We now
apply the considerations of Section 7.3 to the integral over G3. Given a fixed Hecke
character χ, we let the parameters κ, ρ, ρυ determine one another as in (4.4.8), (4.4.10).
Let φr,ρ be as in (ii) of Lemma 7.2.2, a measure on TH(Zp) of type χ for some p-adic
Hecke character χ of Xp. Choose Ξ ∈ Cr(TH(Zp),R)ρυ ⊂ Cr(TH(Zp),O)ρυ so that (cf.
(7.2.1))

(9.1.1) φr,ρ(Ξ) ∈ Sord
κ,V (Kr,R)⊗ Sord

κ♭,−V (Kr,R)⊗ χ ○ det,
For ϕ⊗ϕ♭ ∈ [Îπ ⊗ Îπ♭] ⊂ π ⊗ π♭ we define (in the obvious notation)

Lϕ⊗ϕ♭(φr,ρ)(Ξ)
by the natural pairing of Sord

κ,V (Kr,R)⊗ Sord
κ♭,−V (Kr,R)⊗ χ ○ det with

H
d,ord

κD
(Kr,R)[π]⊗Hd,ord

κ♭,D
(Kr,R)[π♭]⊗ χ−1 ○ det ≃ [Îπ ⊗ Îπ♭]⊗ χ−1 ○ det

(the characters χ and χ−1 cancel in the obvious way).

We apply this to the measure Eisr,ρ,χ attached to

Ξ↦ ∫
Xp×TH(Zp)

(χ,Ξ)dEis
by Lemma 7.2.2, with dEis an axiomatic Eisenstein measure as above. First, we need
to show that the discussion in Section 7.3 applies to this situation.

9.1.1. Equivariance of the Garrett map. If λ ∶ TK,κ,R → C is a character, let λ♭(T ) =
λ(T ♭), where ♭ is the involution defined in 6.5.1. It follows from (6.5.1) that

Lemma 9.1.2. Let π be a cuspidal automorphic representation of G of type (κ,K).
Then

λπ̄ = λ
♭
π.

Let π be cuspidal of type (κ,K), and let ϕ ∈ πK be an antiholomorphic vector. We
pick a Hecke character χ as in Section 4.1.2. In Section 4.1.4 we defined the zeta integral

I(ϕ,ϕ′, f, s) = ∫
Z3(A)G3(Q)/G3(A)

Ef(s, (g1, g2))χ−1(det g2)ϕ(g1)ϕ′(g2)d(g1, g2).
where ϕ′ ∈ π̄ and Ef(s, g1, g2) is an Eisenstein series depending on a section f ∈ I(χ, s).
We specialize s to a point m where Ef(s,●) is nearly holomorphic, in other words where
the archimedean component f∞ of f satisfies the hypotheses of Definition 5.3.2. We
consider the Garrett map
(9.1.2)

G(f,ϕ)(g2) = I(ϕ,f,m)(g2) ∶= χ−1(det g2)∫
Z1(A)G1(Q)/G1(A)

Ef(m, (g1, g2))ϕ(g1)dg1.
When f is clear from context, we set G(ϕ) ∶= G(f,ϕ). One of the main observations of
[Gar84, GPSR87] is that if ϕ ∈ π then I(ϕ,ϕ′, f, s) ≡ 0 unless ϕ′ ∈ π∨, in other words
that G(ϕ) ∈ Hom(π∨,C) ≃ π:
Theorem 9.1.3. If ϕ ∈ π then G(ϕ) ∈ π.
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The forms ϕ and G(ϕ) are on the same group GU(V ) = GU(−V ) but on different
Shimura varieties. The restriction of Ef(m,●) is a holomorphic form on Sh(V,−V ),
which means it pairs with an anti-holomorphic form on Sh(V ) to yield a holomorphic
form on Sh(−V ). In terms of parameters, this becomes

Corollary 9.1.4. The Garrett map defines a homomorphism

I(χf ,m) → HomTK,κ
(H0

! (KSh(V ), ωκ)∨,H0
! (KSh(−V ), ω⋆(κF ))),

→ HomTK,κ
(Hd

! (ShK(V ), ωDκ ⊗L(−κ)),H0
! (KSh(−V ), ω⋆(κF ))),

Equivalently, letting HomTK,κ,♭ denote the space of ♭-antilinear homorphisms, c−1dR ○
G(●,●) defines a homomorphism

I(χf ,m) → HomTK,κ,♭(H0
! (KSh(V ), ωκ)∨,H0

! (KSh(V ), ωκ))
The factor L(−κ) was reinserted in the second line in order to respect the Hecke algebra

action. The action of TK,κ on L(−κ) factors through the similitude map.

Lemma 9.1.5. Let dEis be an axiomatic Eisenstein measure as in Definition 5.3.2.
Then dEis satisfies the equivariance property of Hypothesis 7.2.3.

Proof. This corresponds to the equivariance property of the Garrett map stated in Corol-
lary 9.1.4. �

9.1.6. Pairings, continued. Thanks to Lemma 9.1.5, we now proceed as in Section 7.3.
In order to guarantee that our global pairings are compatible with the local calculations
in Section 4, especially the local calculations at primes dividing p, we choose test vectors
cϕ ∈ π and ϕ♭ ∈ π♭ that are anti-holomorphic, anti-ordinary, and integral over O, as
above. Substituting ψρυ for Ξ in the above discussion, with ψ ∈ Cr(TH(Zp),R) for some
R ⊂ O and ρ as above, we find

(9.1.3) Lϕ⊗ϕ♭ (∫
Xp×TH(Zp)

(χ,ψρυ)dEis) =D(χ) ⋅Lϕ⊗ϕ♭(res3D(κ,m,χ0)Eholoχ0,ψρυ
(m)).

Proposition 9.1.7. Assume π satisfies Hypotheses 7.1.3, 7.1.4, 7.1.5, and 7.1.7. Let ϕ
and ϕ♭ be respectively elements of R-bases of Îπ and Îπ♭. Suppose (χ,ψρυ) ∈ Y class

H , with
ψ ∈ Cr(TH(Zp),R) with χ = ∣∣ ● ∣∣mχu, m ≥ n. Then we have the equality

Lϕ⊗ϕ♭ (∫
Xp×TH(Zp)

(χ,ψρυ)dEis) =D(χ) ⋅ I(ϕ,ϕ♭,D(κ,m,χ0)fholo(χu, ψρυ),m)

Proof. Abbreviate [G3] = G3(Q)Z(R)/G3(A), dgχ2 = χ(det(g2))−1dg2. By doubling the
formula in Lemma 7.3.3 – in other words, by applying it to the group G3 – we obtain

Lϕ⊗ϕ♭ (res3D(κ,m,χ0)Eholof(χ,ψρυ)(m))
=∫
[G3]

D(κ,m,χ0)Eholof(χ0,ψρυ)
((g1, g2),m)ϕ(g1)ϕ♭(g2)∣∣ν(g1)a(κ)∣∣dg1dgχ2 .
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Comparing this with Equation (9.1.3) and the definition of the zeta integral, we obtain
the equality. �

In view of our choices of local vectors in (9.0.2), Corollary 9.1.8 below is then a conse-
quence of the local computations summarized in Proposition 4.6.1, and of the axiomatic
properties of the Eisenstein measure summarized in Definition 5.3.2 and Corollary 5.4.3.

Corollary 9.1.8. Under the hypotheses of Proposition 9.1.7, suppose ϕ and ϕ♭ admit
the factorizations (9.0.2),. Let the parameters κ, ρ, ρυ determine one another as in
Inequalities (4.4.8) and Equations (4.4.10). Then we have the equality

Lϕ⊗ϕ♭ (∫
Xp×TH(Zp)

(χ,ψρυ)dEis) =D(χ)∏
v

Iv(ϕv , ϕ♭v , fv,m)
= ⟨ϕ,ϕ♭⟩ ⋅ Ip(χ,κ)I∞(χ,ρυ)ISLS(m + 1

2
, π,χu)

where the factors are defined as in Proposition 4.6.1.

9.2. Statement of the main theorem. We reinterpret the identity in Corollary 9.1.8
in the language of Proposition 7.2.18.

Corollary 9.2.1. Under the hypotheses of Corollary 9.1.8, there is a unique element
L(Eis,ϕ ⊗ ϕ♭) ∈ ΛXp,R⊗̂T such that, for any classical χ ∶ Xp → R×, the image of

L(Eis,ϕ ⊗ϕ♭) under the map ΛXp,R⊗̂T → R induced by the character χ⊗ λπ equals

⟨ϕ,ϕ♭⟩ ⋅ Ip(χ,κ)I∞(χ,ρυ)ISLS(m + 1

2
, π,χu).

Here λπ is the character of T defined in section 6.5.8, and the local factors are defined
as in Proposition 4.6.1.

In the language of Corollary 9.2.1 this admits the following reformulation. The state-
ment is in terms of the highest weight κ of the (holomorphic) representation dual to π
and a Hecke character χ. Let the algebraic characters κ, ρ, ρυ determine one another,
relative to a given χ, as in Inequalities (4.4.8) and Equation (4.4.10).

Main Theorem 9.2.2. Let π be a cuspidal antiholomorphic automorphic representation
of G1 which is ordinary of type (κ,K), and let T = Tπ be the corresponding connected
component of the ordinary Hecke algebra. Let ϕ and ϕ♭ be respectively elements of R-
bases of Îπ and Îπ♭. Assume π satisfies the following Hypotheses:

(1) Hypothesis 7.1.4 (the Gorenstein Hypothesis)
(2) Hypothesis 7.1.5 (the Global Multiplicity One Hypothesis)
(3) Hypothesis 7.1.7 (the Minimality Hypothesis)

There is a unique element

L(Eis,ϕ⊗ ϕ♭) ∈ ΛXp,R⊗̂T
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with the following property. For any classical χ = ∣∣ ● ∣∣mχu ∶ Xp → R×, the image of
L(Eis,ϕ ⊗ϕ♭) under the map ΛXp,R⊗̂T → R induced by the character χ⊗ λπ equals

c(π) ⋅ ⟨ϕ,ϕ♭⟩
Q̂[π] I∞(χ,κ)ISLp(m,ord, π,χu)

LS(m + 1
2
, π,χu)

Qπ
.

Here λπ is the character of T defined in Section 6.5.8.

Proof. This follows from Corollary 9.2.1, after we write Q̂[π] = c(π)Q̂π = c(π)Q−1π as in

(b) of Corollary 6.6.9. It follows from Corollary 6.6.9 that the factor
⟨ϕ,ϕ♭⟩

Q̂[π]
is necessarily

p-integral. �

9.3. Comments on the main theorem. Even in the setting of ordinary families of
p-adic modular forms on unitary Shimura varieties, this should not be considered the de-
finitive construction of p-adic L-functions. We list some aspects that call for refinement.

Remark 9.3.1 (The Gorenstein Hypothesis). It is often possible to verify the Gorenstein
hypothesis when the residual Galois representation attached to π has sufficiently general
image, using the Taylor-Wiles method. See [Pil11] and [Har13b] for examples. On the
other hand, it is certainly not valid in complete generality. Since the Gorenstein condition
is an open one, one can obtain a more general statement by replacing ΛXp,R⊗̂T by the
fraction fields of its irreducible components. The method of this paper then provides
p-adic meromorphic functions on each such components, which specialize at classical
points as indicated in the Main Theorem.

Remark 9.3.2 (The Global Multiplicity One Hypothesis). This is already known for an
automorphic representation of a unitary group such as G1 whose base change to GL(n)
is cuspidal, thanks to [KMSW14].

Remark 9.3.3 (The Minimality Hypothesis). This was included for convenience, in order

to work with a module [Îπ ⊗ Îπ♭] that is locally constant on the Hida family. One can
easily eliminate this hypothesis, but the statement is no longer so clean.

Remark 9.3.4 (Unspecified local factors). The volume factor IS is a placekeeper. It might
be more illuminating to replace IS by

ĨS =∏
v∈S

Lv(m + 1

2
, πv , χu,v)−1IS

and write the specialized value of the L-function

c(π) ⋅ ⟨ϕ,ϕ♭⟩
Q̂[π] ⋅ I∞(χ,κ)ĨSLp(m,ord, π,χu)L(m +

1

2
, π,χu).

Here L(s,π,χu) denotes the standard L-function without the archimedean factors. Writ-
ten this way, one sees that the inverted local Euler factors Lv(m+ 1

2
, πv, χu,v)−1 can give

rise to exceptional zeroes.

Ideally one would like to choose an optimal vector in [Îπ ⊗ Îπ♭] and to adapt the
local Eisenstein sections at primes in S to this choice. This would settle the issues of
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minimality and local factors simultaneously. At present we do not see how to carry this
out.

Remark 9.3.5 (The congruence factors). It is expected at least under the Gorenstein
hypothesis that a congruence factor c(π) can be chosen to be the specialization at π of
a canonical p-adic analytic function c that interpolates the normalized and p-stabilized
value at s = 1 of the adjoint L-function L(s,π,Ad). The factor c(π) that appears in Main
Theorem 9.2.2 depends on the choice of period Qπ, which in turn depends on the choice
of f in Lemma 6.6.3. As π varies, the vector f can be chosen uniformly in the Hida
family, but there is no obvious preferred choice. For this reason, one can only define the
hypothetical analytic function c up to a unit in the Hecke algebra. This is a persistent
problem in the theory, and it has been noted by Hida in [Hid96b].
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