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ABSTRACT

We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group

and prove its analytic continuation to the whole complex plane when the group is a unitary group over a

CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series

on another unitary group, containing the group just mentioned defined with such an eigenform. As an

application of our methods, we prove an explicit class number formula for a totally definite hermitian

form over a CM field.

SECTION 1.

Given a reductive algebraic group G over an algebraic number field, we denote by G , G , and G  its

adelization, the archimedean factor of G , and the nonarchimedean factor of G . We take an open

subgroup D of G  of the form D = D G  with a compact subgroup D  such that D  ∩ G  is maximal

compact in G . Choosing a specific type of representation of D  ∩ G , we can define automorphic

forms on G  as usual. For simplicity we consider here the forms invariant under D  ∩ G . Each Hecke

operator is given by DτD, with τ in a subset  of G , which is a semigroup containing D and the

localizations of G for almost all nonarchimedean primes. Taking an automorphic form f such that f|DτD

= λ(τ)f with a complex number λ(τ) for every τ   and a Hecke ideal character χ of F, we put

where ν (τ) is the denominator ideal of τ and N(ν (τ)) is its norm. Now our first main result is that if G

is symplectic, orthogonal, or unitary, then

where Λ(s, χ) is an explicitly determined product of L-functions depending on χ, W  is a polynomial

determined for each v  h whose constant term is 1, and p runs over all the prime ideals of the basic

number field. This is a purely algebraic result concerning only nonarchimedean primes.

Let Z(s, f, χ) denote the right-hand side of Eq. 1.2. As our second main result, we obtain a product (s)

of gamma factors such that Z can be continued to the whole s-plane as a meromorphic function with

finitely many poles, when G is a unitary group of an arbitrary signature distribution over a CM field,

and f corresponds to holomorphic forms.
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Now these problems are closely connected with the theory of Eisenstein series E on a group G′ in which

G is embedded. To describe the series, let ℨ′ denote the symmetric space on which G′ acts. Then the

series as a function of (z, s)  ℨ′ × C can be given (in the classical style) in the form

where Γ is a congruence subgroup of G′, and P is a parabolic subgroup of G′ which is a semidirect

product of a unipotent group and G × GL  with some m. The adelized version of δ will be explicitly

described in Section 5. Now our third main result is that there exists an explicit product ′ of gamma

factors and an explicit product Λ′ of L-functions such that ′(s)Λ′(s)Z(s, f, χ)E(z, s; f, χ) can be

continued to the whole s-plane as a meromorphic function with finitely many poles.

Though the above results concern holomorphic forms, our method is applicable to the unitary group of a

totally definite hermitian form over a CM field. In this case, we can give an explicit class number

formula for such a hermitian form, which is the fourth main result of this paper.

SECTION 2.

For an associative ring R with identity element, we denote by R  the group of all its invertible elements

and by R  the R-module of all m × n matrices with entries in R. To indicate that a union X = Y  is

disjoint, we write X = Y .

Let K be an associative ring with identity element and an involution ρ. For a matrix x with entries in K,

we put x* = x , and  = (x*)  if x is square and invertible. Given a finitely generated left K-module V,

we denote by GL(V) the group of all K-linear automorphisms of V. We let GL(V) act on V on the right;

namely we denote by wα the image of w  V under α  GL(V). Given ɛ = ±1, by an ɛ-hermitian form on

V, we understand a biadditive map ϕ:V × V → K such that ϕ(x, y)  = ɛϕ(y, x) and ϕ(ax, by) = aϕ(x, y)b

for every a, b  K. Assuming that ϕ is nondegenerate, we put

Given (V, ϕ) and (W, ψ), we can define an ɛ-hermitian form ϕ  ψ on V  W by

We then write (V  W, ϕ  ψ) = (V, ϕ)  (W, ψ). If both ϕ and ψ are nondegenerate, we can view G  ×

G  as a subgroup of G . The element (α, β) of G  × G  viewed as an element of G  will be

denoted by α × β or by (α, β). Given a positive integer r, we put H  = I′   I , I  = I′  = K  and

We shall always use H , I′ , I , and η  in this sense. We understand that H  = {0} and η  = 0.

Hereafter we fix V and a nondegenerate ϕ on V, assuming that K is a division ring whose characteristic

is different from 2. Let J be a K-submodule of V which is totally ϕ-isotropic, by which we mean that

ϕ(J, J) = 0. Then we can find a decomposition (V, ϕ) = (Z, ζ)  (H, η) and an isomorphism f of (H, η)

onto (H , η ) such that f(J) = I . In this setting, we define the parabolic subgroup  of G  relative to J

by
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and define homomorphisms  → G  and  → GL(J) such that zα − zπ  (α)  J and wα

= wλ (α) if z  Z, w  J, and α  

Taking a fixed nonnegative integer m, we put

We can naturally view G  × G  as a subgroup of G . Since W = V  H , we can put X = V  H   V

with the first summand V in W, and write every element of X in the form (u, h, v) with (u, h)  V  H

= W and v  V. Put

Observing that U is totally ω-isotropic, we can define 

����������� 1. Let λ(ϕ) be the maximum dimension of totally ϕ-isotropic K-submodules of V. Then

has exactly λ(ϕ) orbits. Moreover,

with ξ running over G and β over G , where H = H and I = I .

In fact, we can give an explicit set of representatives {τ }  for Eq. 2.6 and also an explicit set of

representatives for P /P τ [G  × G ] in the same manner as in Eq. 2.7. This proposition plays an

essential role in the analysis of our Eisenstein series E(z, s; f, χ).

SECTION 3.

In this section, K is a locally compact field of characteristic 0 with respect to a discrete valuation. Our

aim is to establish the Euler factor W  of Eq. 1.2. We denote by r and q the valuation ring and its

maximal ideal; we put q = [r:q] and |x| = q  if x  K and x  π  r  with ν  Z. We assume that K has an

automorphism ρ such that ρ  = 1, and put F = {x  K | x  = x}, g = F ∩ r, and d  = {x  K | Tr  (xr)

 g} if K ≠ F. We consider (V, ϕ) as in Section 2 with V = K  and ϕ defined by ϕ(x, y) = xϕy* for x, y 

V with a matrix ϕ of the form

where t = n − 2r. We assume that θ is anisotropic and also that
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Thus our group G  is orthogonal, symplectic, or unitary. The element δ of Eq. 3.2b can be obtained by

putting δ = u − u  with u such that r = g[u]. We include the case rt = 0 in our discussion. If t = 0, we

simply ignore θ; this is always so if K = F and ɛ = −1. We have ϕ = θ if r = 0.

Denoting by {e } the standard basis of K , we put

Then G  = P C. We choose {e }  so that N = ∑ re . Then we can find an element λ of r  such

that

Put

We can write every element of P  in the form

If t = 0, we simply ignore b, e, and f, so that ξ = [   ]; we have ξ = e if r = 0.

We consider the Hecke algebra ℜ(E, GL (K)) consisting of all formal finite sums ∑c ExE with c   Q

and x  GL (K), with the law of multiplication defined as in ref. 1. Taking r indeterminates t , … , t ,

we define a Q-linear map

as follows; given ExE with x  GL (K), we can put ExE = Ey with upper triangular y whose diagonal

entries are π , … , π  with e   Z. Then we put

Next we consider the Hecke algebra ℜ(C, G ) consisting of all formal finite sums ∑c CτC with c   Q

and τ  G . We then define a Q-linear map

ϕ
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as follows; given CτC with τ  G , we can put CτC = Cξ with ξ  P of form Eq. 3.5. We then put

where ω  is given by Eq. 3.6 and d  is the d-block in Eq. 3.5. We can prove that this is well defined and

gives a ring-injection.

Given x  K , we denote by ν (x) the ideal of r which is the inverse of the product of all the

elementary divisor ideals of x not contained in r; we put then ν(x) = [r:ν (x)]. We call x primitive if

rank(x) = Min(m, n) and all the elementary divisor ideals of x are r.

����������� 2. Given ξ as in Eq. 3.5, suppose that both e and (δθ)  (e − 1) have coefficients in r if t >

0. Let a = g h with primitive [g h]  r and gb = j k with primitive [j k]  r . Then

where we take j = 1 if t = 0.

We now define a formal Dirichlet series  by

This is a formal version of the Euler factor of Eq. 1.2 at a fixed nonarchimedean prime.

�$%��%& 1. Suppose that δϕ  GL (r); put p = [g:g ∩ q]. (Thus p = q if K = F.) Then

Here θ  = 1 if i is even; when i is odd, θ  is −1 or 0 according as d = r or d ≠ r.

This can be proved in the same manner as in ref. 2 by means of Proposition 2.

Since we are going to take localizations of a global unitary group, we have to consider G  = G(V, ϕ) of

Eq. 2.1 with V = K , K = F × F, and ρ defined by (x, y)  = (y, x), where F is a locally compact field of

characteristic 0 with respect to a discrete valuation. Let g and p be the valution ring of F and its

maximal ideal; put r = g × g and p = [g:p]. We consider ℜ(C, G ) with C = G  ∩ GL (r). Then the

projection map pr of GL (K) onto GL (F) gives an isomorphism η:ℜ(C, G ) → ℜ(E , GL (F)), where

E  = GL (g). To be explicit, we have η(C(x, x )C) = E xE . Let ω  denote the map of Eq. 3.6 defined

with n, E , and F in place of r, E, and K. Putting ω = ω  ○ η, we obtain a ring-injection
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For z = (x, y)  K  with x, y  F  put ν (z) = ν(x) and ν (z) = ν(y), where ν is defined with respect to g

instead of r. We then put

Then we obtain

SECTION 4.

We now take a totally imaginary quadratic extension K of a totally real algebraic number field F of

finite degree. We denote by a (resp. h) the set of archimedean (resp. nonarchimedean) primes of F;

further we denote by g (resp. r) the maximal order of F (resp. K). Let V be a vector space over K of

dimension n. We take a K-valued nondegenerate ɛ-hermitian form ϕ on V with ɛ = 1 with respect to the

Galois involution of K over F, and define G  as in Section 2. For every v  a  h and an object X, we

denote by X  its localization at v. For v  h not splitting in K and for v  a, we take a decomposition

with anisotropic θ′  and a nonnegative integer r . Put t  = dim(T ). Then n = 2r  + t . If n is odd, then t

= 1 for every v  h. If n is even, then t  = 0 for almost all v  h and t  = 2 for the remaining v  h. If n

is odd, by replacing ϕ by cϕ with a suitable c  F, we may assume that ϕ is represented by a matrix

whose determinant times (−1)  belongs to N (K).

We take and fix an element κ of K such that κ  = −κ and iκ ϕ  has signature (r  + t , r ) for every v  a.

Then G(iκ ϕ ) modulo a maximal compact subgroup is a hermitian symmetric space which we denote

by ℨ . We take a suitable point i  of ℨ  which plays the role of “origin” of the space. If r  = 0, we

understand that ℨ  consists of a single point i . We put ℨ  = ∏  ℨ . To simplify our notation, for x

 K  or x  (C ) , a  Z , and c  (C ) , we put

For ξ  G  and w  ℨ , we define ξw  ℨ  in a natural way and define also a scalar factor of

automorphy j (w) so that det(ξ) j (w)  is the jacobian of ξ. Given k, ν  Z , z  ℨ , and α  G , we

put

Then, for a function f:ℨ  → C, we define f α:ℨ  → C by

Now, given a congruence subgroup Γ of G , we denote by (Γ) the vector space of all holomorphic

functions f on ℨ  which satisfy f γ = f for every γ  Γ and also the cusp condition if G  is of the

elliptic modular type. We then denote by (Γ) the set of all cusp forms belonging to (Γ).
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Further, we denote by  resp.  the union of (Γ) resp. (Γ) for all congruence

subgroups Γ of G. If ϕ is anisotropic, we understand that  = C.

Let D be an open subgroup of G  such that D ∩ G  is compact. We then denote by (D) the set

of all functions f: G  → C satisfying the following conditions:

for every  p   G  there exists an element f      such that

We now take D in a special form. We take a maximal r-lattice M in V whose norm is g in the sense of

ref. 3 (p. 375) and put

where d is the different of K relative to F and c is a fixed integral g-ideal. Clearly  is an r-lattice in V

containing M, and we easily see that D  is an open subgroup of G . We assume that

Define a subgroup  of G  by

We then consider the algebra ℜ(D, ) consisting of all the finite linear combinations of DτD with τ  

and define its action on  (D) as follows. Given τ   and f  (D), take a finite subset Y of

G  so that DτD = Dη and define f|DτD:G  → C by

These operators form a commutative ring of normal operators on (D).

For x  G , we define an ideal ν (x) of r by

where ν (x ) is defined as in Section 3 with respect to an r -basis of M . Clearly ν (x) depends only on

CxC.

Let f be an element of (D) that is a common eigenfunction of all the DτD with τ  , and let

f|DτD = λ(τ)f with λ(τ)  C. Given a Hecke ideal character χ of K such that |χ| = 1, define a Dirichlet

series (s, f, χ) by
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ϕ
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ϕ

k,ν
ϕ
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where χ* is the ideal character associated with χ and N(a) is the norm of an ideal a. Denote by χ  the

restriction of χ to F , and by θ the Hecke character of F corresponding to the quadratic extension K/F.

For any Hecke character ξ of F, put

From Theorem 1 and Eq. 3.13, we see that

with a polynomial W  of degree n whose constant term is 1, where q runs over all the prime ideals of K

prime to c. Let Z(s, f, χ) denote the function of Eq. 4.16. Put

�$%��%& 2. Suppose that χ (b) = b |b| with μ  Z and κ  R such that ∑  κ  = 0. Put m = k + 2ν

− μ and

with γ  defined by

1

A
×

q

a
μ iκ−μ a a

v a v

v
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Then ℜ(s, f, χ) can be continued to the whole s-plane as a meromorphic function with finitely many

poles, which are all simple. It is entire if χ  ≠ θ for ν = 0, 1.

We can give an explicitly defined finite set of points in which the possible poles of ℜ belong. Notice

that p  and q  are polynomials; in particular, p  = 1 if 0 ≤ m  ≤ k  and q  = 1 if |μ  − 2ν | ≥ n − 1.

The results of the above type and also of the type of Theorem 3 below were obtained in refs. 2, 4, and 5

for the forms on the symplectic and metaplectic groups over a totally real number field. The Euler

product of type Z, its analytic continuation, and its relationship with the Fourier coefficients of f have

been obtained by Oh (6) for the group G  as above when ϕ = η .

SECTION 5.

We now put (W, ψ) = (V, ϕ)  (H , η ) as in Eq. 2.5 with (V, ϕ) of Section 4 and m ≥ 0. Writing simply

I = I , we can consider the parabolic subgroup P  of G . We put P  = P  for simplicity, λ (α) =

det(λ (p)) for p  P , and

with M of Section 4 and the standard basis {ɛ , ɛ }  of H . We can define the space ℨ  and its

origin i  in the same manner as for G . We then put

Here e  is the element of End(V ) defined for x  by wx  − we   (H )  for w  V . We define an

R-valued function h on G  by

Taking f  (D ) and χ as in Section 4, we define μ:G  → C as follows: μ(x) = 0 if x  P D ; if

x = pw with p  P  and w  D  ∩ C , then we put

where χ  = ∏  χv. Then we define E(x, s) for x  G  and s  C by

This is meaningful if χ (b) = b |b|  with κ  R , ∑  κ  = 0, and the conductor of χ divides c.

We take such a χ in the following theorem. The series of Eq. 5.6 is the adelized version of a collection

of several series of the type in Eq. 1.3.

�$%��%& 3. Define γ  as in Theorem 2 with m = 0. Put

1
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Then the product

can be continued to the whole s-plane as a meromorphic function with finitely many poles, which are all

simple.

We can give an explicitly defined finite set of points in which the possible poles of the above product

belong.

SECTION 6.

Let G be an arbitrary reductive algebraic group over Q. Given an open subgroup U of G  containing G

and such that U ∩ G  is compact, we put U  = aUa  and Γ  = G ∩ U  for every a  G . We assume

that G  acts on a symmetric space , and we let G act on  via its projection to G . We also assume

that Γ /  has finite measure, written vol(Γ / ), with respect to a fixed G -invariant measure on .

Taking a complete set of representatives  for G/G /U, we put

where T is the set of elements of G which act trivially on , and we assume that [Γ  ∩ T:1] is finite.

Clearly σ(U) does not depend on the choice of . We call σ(G, U) the mass of G with respect to U. If

G  is compact, we take  to be a single point of measure 1 on which G  acts trivially. Then we have

We can show that σ(U′) = [U:U′]σ(U′) if U′ is a subgroup of U. If strong approximation holds for the

semisimple factor of G, then it often happens that both [Γ  ∩ T:1] and vol(Γ / ) depend only on U, so

that

If G  is compact and U is sufficiently small, then Γ  = {1} for every a, in which case we have σ(U) =

#(G/G /U). If U is the stabilizer of a lattice L in a vector space on which G acts, then #(G/G /U) is the

number of classes in the genus of L. Therefore, σ(U) may be viewed as a refined version of the class

number in this sense.

Coming back to the unitary group G  of Section 4, we can prove the following theorem.

�$%��%& 4. Suppose that G is compact. Let M be a g-maximal lattice in V of norm g and let d be the

different of K relative to F. Define an open subgroup D of G by Eq. 4.9 with an integral ideal c. If n is

odd, assume that ϕ is represented by a matrix whose determinant times (−1) belongs to N (K);

if n is even, assume that c is divisible by the product e of all prime ideals for which t  = 2. Then

A a

h
a −1 a a
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a a
a a
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where d = [F:Q], D  is the discriminant of F, and A = 1 or A = N(e) N(d) according as n is odd or

even.

If n is odd, we can also consider σ(D′) for

with an arbitrary integral ideal c. Then σ(D′) = 2 σ(D), where τ is the number of primes in F ramified

in K.

SECTION 7.

Let us now sketch the proof of the above theorems. The full details will be given in ref. 7. We first take

   so that  = G bD . Given E(x, s) as in Eq. 5.6, for each q  G  we can define a

function E (z, s) of (z, s)  ℨ  × C by

The principle is the same as in Eq. 4.6, and so it is sufficient to prove the assertion of Theorem 3 with

E (z, s) in place of E(x, s). In particular, we can take q to be q = b × 1  with b  . Define (X, ω) as in

Eq. 2.5. Then there is an isomorphism of (X, ω) to (H , η ) which maps P  of Proposition 1 to

the standard parabolic subgroup P of G(η ). Therefore, we can identify ℨ  with the space h  with

We can also define an Eisenstein series E′(x, s; χ) for x  G  and s  C, which is defined by Eq. 5.6

with (G(η ) , P, 1) in place of (G , P , f). Taking E′ and (q, a)  G  (with a  ) in place of E(x,

s) and q, we can define a function E′ (z, s) of (z, s)  h  × C in the same manner as in Eq. 7.1. There

is also an injection ι of ℨ  × ℨ  into h  compatible with the embedding G  × G  → G(η ). We put

then

for every function g on h , where δ(w, z) is a natural factor of automorphy associated with the

embedding ι. Take a Hecke eigenform f as in Section 4 and define f  by the principle of Eq. 4.6. Then,

employing Proposition 1, we can prove

F
n −n/2
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b
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h
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where q = b × 1 , A is a certain gamma factor, and Φ  = Γ /ℨ . The computation is similar to, but

more involved than, that of ref. 4 (Section 4). Since the analytic nature of E′  can be seen from the

results of ref. 8, we can derive Theorem 3 from Eq. 7.4.

Take m = 0. Then ψ = ϕ and E (z, s) = f (z). Then the analytic nature of  (s, f, χ), and consequently

that of Z(s, f, χ), can be derived from Eq. 7.4. However, here we have to assume that χ (b) =

b |b|  with κ  R , ∑  κ  = 0, and the conductor of χ divides c. The latter condition on c is a

minor matter, but the condition on χ  is essential. To obtain Z(s, f, χ) with an arbitrary χ, we have to

replace E′  by E" , where E" is a series of type E′ with 2ν − μ in place of k and  is a certain

differential operator on h .

As for Theorem 4, we take again ψ = ϕ and observe that a constant function can be taken as f if G  is

compact. The space ℨ  consists of a single point. The integral on the right-hand side of Eq. 7.4 is

merely the value (E′ )°(z, w; s). We can compute its residue at s = n explicitly. Comparing it with the

residue on the left-hand side, we obtain Theorem 4 when c satisfies Eq. 4.10. If n is odd, we can remove

this condition by computing a group index of type [U:U′].
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