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EULER PRODUCTS CORRESPONDING TO 
SIEGEL MODULAR FORMS OF GENUS 2 

A. N. Andrianov 

article we construct a theory of Dirichlet series with Euler product expansions corresponding 
automorphic forms for the integral symPlectic group in genus 2; in Chapter 2 we establish 

bet\veen the eigenvalues of the Hecke operators on the spaces of such forms with the 
--(;coefficients of the eigenfunctions (Theorem 2.4.1); in Chapter 3 we demonstrate the possibility 
Ytic ccintinuation to the entire complex plane and derive a functional equation for Euler products 
''iiilding to the eigenfunctions of the Hecke operators (Theorem 3.1.1). Chapter 1 contains a 
'cif'thc present state of the theory of Euler products for Siegel modular forms of arbitrary genus 

ing a sketch of the classical Hecke theory for the case n = 1. 
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Introduction 

In the numerous applications of zeta-functions to arithmetic it frequeii 
turns out that a decisive role is played by the properties (zeros, poles, 
values taken, ... ) of zeta-functions outside, or on the boundary of, the 
domain of convergence of the Dirichlet series which define them. On the• 
other hand, these applications themselves, especially in problems concern 
with primes, usually turn out to be possible only for those zeta-function" 
that have expansions as products of Euler type or can be expressed in ••·. 
terms of such products. The problems of analytic continuation and of I( 
product expansion of zeta-functions are different in character, but appa;,;' 
deeply connected. · 

At the moment, the only general approach to the problem of analyti 
continuation is based on the theory of automorphic forms for discrete 
transformation groups (the equivalent language of the theory of induced 
representations is often used): if one succeeds in associating in a natural 
way a zeta-function with a suitable automorphic form, say, by means of· 
integral transformation, then its analytic continuability to the whole co · 
plane usually follows easily, and at the same time a functional equatio11;\" 
describing a symmetry of the zeta-function with respect to some vertica 
line. This is how the general Hecke £-functions of algebraic number fief 
the zeta-functions of quadratic forms, the zeta-functions of simple algeh 
over global fields, and so on, have been considered. Naturally, by and b 
it was just the zeta-functions corresponding to various classes of auto
morphic forms that were discussed, often without any visible aim. 

The theory of Euler product expansions of zeta-functions begins with. 
the celebrated paper of Hecke in 1937 [I] . Up till then, apart from a .f 
isolated examples, 1 ) the possibility of expanding zeta-functions as Eule. 
products either followed from general theorems of arithmetic such as tl\ 
uniqueness of prime factorization, or was postulated as part of the 
definition (Artin £-functions); or else nothing could be said about the/;i 
possibility of such an expansion. Hecke considered zeta-functions corre§;~ 
ponding to classical modular forms, that is, automorphic forms for the · 
modular group Sp 1 (Z) = SL2 (Z) and its congruence subgroups. This cl 
includes, in particular, the zeta-functions of positive integral quadratic 
in an even number of variables. It turned out that although the Dirichl 
1 In 1917 Mardell proved that Ran1anujan's r-function and some similar functions are multiplicati 

from which the Euler product expansions for the corresponding Dirichlet series follow. In Mord_ 
proof the idea of Hecke operators was present, but was not developed at the time. 
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series corresponding to a specific modular form need not have an Euler 
product, the space of all such series, corresponding to forms of fixed inte
gral weight for a fixed group (which is finite-dimensional) has a basis con
sisting of series that have Euler products of a special type. The modular 
forms whose associated Dirichlet series have an Euler product can be 
characterized in an invariant way as the eigenfunctions of certain operators 
the Hecke operators. 

In the post-war years the algebraic aspects of Hecke's theory have been 
the subject of intensive generalization. Abstract Hecke rings were defined, 
Jhe structure of Hecke rings was studied for many classes of algebraic 
groups, and their representations were classified; explicit formulae were 
obtained for the spherical functions giving one-dimensional representations 
of the Hecke rings of p-adic groups. Finally, Hecke rings came to play an 
important part in the theory of finite groups and in the theory of 
representations of algebraic groups. 

Conversely, the analytical side of Hecke's theory turned out to be very 
difficult to generalize to higher dimensions. We have in mind the problem 
of analytic continuation and the functional equation for the Euler products 
that correspond naturally to representations of the Hecke rings of algebraic 
groups on spaces of automorphic forms (see Langlands' lectures [2] and 
[3], where the most general conjectures in this direction are stated). At the 
moment, comparatively general results have only been obtained for the 
groups GLn (see [ 41 and the references listed there). The present situation 
is that to one and the same automorphic form there correspond both a 
Dirichlet series, for which the possibility of analytic continuation can be 
proved, although there is no way of deducing an Euler product expansion, 
and an Euler product, for which it is not clear how to prove analytic con
tinuation. (In the case considered by Hecke, the Dirichlet series correspond

\ ing to the eigenfunctions of all the Hecke operators coincide with the Euler 
products, and the two parts of the theory merge.) 

What has been said is entirely applicable to the most natural and 
important (from the analytic and arithmetical points of view) higher
dimensional analogue of modular forms - the case of analytic automorphic 
forms for the Siegel modular group Sp

11 
(Z) and its congruence subgroups 

(Siegel modular forms). These were discovered by Siegel in 1935 in 
connection with his classical investigations on the problem of integral 
representations of quadratic forms, and they have numerous links with 
arithmetic. Since then, the theory of Siegel modular forms has reached 
about the same level as the theory of classical modular forms (see, for 
example, [5] ). Much has also been done towards the construction of the 

'\analogue of Hecke's theory. By means of integral transformations generali
. zing Mellin transforms, Maass has associated with Siegel modular forms 
Dirichlet series admitting analytic continuation to the whole complex 

Splane, and satisfying functional equations (see [ 6] , where Maass's investi-
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gations in this direction are summarized). He also began [7] the develop,;;' 
ment of the theory of Hecke operators on Siegel forms, he proved that · 
they are Hermitian, and obtained interesting induction formulae. Shimura<: 
[ 8] determined the structure of the Hecke rings for the groups Sp,, (Z) 
and found generators for them. Satake [ 9] classified the one-dimensional c 
representations of the p-adic symplectic group (spherical functions). Finalty 
the rationality of the local zeta-functions of the symplectic group (the · 
p-factor in the Euler products) has been proved, and their structure has 
been determined (Shimura [ 8] for n = 2, and Andrianov [ 1 OJ, [ 11] for !c 

any n). In no case of n > 1 has the possibility of analytic continuation ;; 
of the Euler products been proved, nor has their arithmetical meaning beer[. 
clarified. 

In the present article we construct a theory, to a certain extent complef 
of Euler products for the next case after that analysed by Hecke - the 
case of modular forms for the full Siegel modular group of genus 2. The/.: 
main part of the paper, Chapters 2 and 3, are devoted to this. The basic 
results of the theory are Theorem 2.4.l (the relation between the eigen
values of the Hecke operators and the Fourier coefficients of the 
eigenfunctions) and Theorem 3.l.l (analytic continuability and the 
functional equation for Euler products). Chapter 1 contains a survey of 
the present state of the theory in arbitrary genus n, including a sketch of;/ 
Hecke's theory. .. 

The conceptual plan for the study of Euler products for modular fonris 
in genus 2 was first realized by the author in [ 12], under some restriction 
which greatly simplify the technical side of the proofs. The interest that' . 
this article met among the specialists has prompted me to write this 
exposition of complete proofs of the general assertions. The results of the 
present article were announced in [ 13]. 

NOTATION. Z, Q, Rand C denote the rings of rational integers, the 
field of rational numbers, the field of real numbers, and the field of com~[ 
plex numbers, respectively. 

If A is a commutative ring with a unit element, then M,, (A) is the ring.!< 
of n X n matrices with entries in A; GL,, (A) and SL,, (A) denote the 
general linear group and the special linear group of order n over A. For 
square matrix X = (x;i), 1 X = (xi;) denotes the transpose, 

cr(X) = l:x;; the trace of X, and det X the determinant of X. E,, is the 

n X n identity matrix, and 

( 
0 En) 

In= -En 0 • 

For a commutative ring A with a unit element 

Spn(A) ={ME M,n(A); MJn'M =Jn} 
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is the symplectic group of genus n over A. 
The inequality A > B (respectively, A :> B) for real symmetric matrices 

A and B means that all the eigenvalues of the matrix A - B are positive 
(respectively, non-negative). 

Chapter 1 

MODULAR FORMS AND EULER PRODUCTS 

§ 1 .1. Siegel modular forms 

For further details on the facts and definitions set out below, see [5]

[7]. 
The Siegel upper half-plane of genus 11 :> 1 is the set of symmetric 

11 X 11 complex matrices having positive definite imaginary part: 

H,, ={Z = X + iY E ilfn(C); 'z = Z, Y > O}. 

H,, is a complex manifold of complex dimension 11(11+ I )/2. 
The real symplectic group of genus n Spn (R) acts on H,, : if 

ME Spn(R), kl= (~ ~) (M split up into /1 X /1 blocks), then the map 

(1.1.1) Z-+ JV! (Z) = (AZ + B)(CZ + D)-1 (Z E Hn) 

is an analytic automorphism of H,,. It is easy to see that this action is 
transitive (the subgroup of matrices with C ; 0 already acting transitively), 
and that the composition of transformations corresponds to matrix 
multiplication: 

(1.1.2) M 1 (kl2 (Z)) = M 1kf2 (Z). 

This allows us to identify Hn with a certain homogeneous space of the 
group Sp

11 
(R): we denote by Kn, say, the stabilizer of the point 

iE,, E H11 : 

Kn ={kl E Spn(R); M(iEn) = iEn}; 

then the map M -+ M ( iEn ) defines a bijection 

(1.1.3) Spn(R)!Kn-+ Hn, 

which is compatible with the action of Spn (R) if it acts by right multipli
cation on the left-hand side. Kn is a (maximal) compact subgroup of the 

Lie group Sp11 (R), and the map M; (~~)-+A + iB identifies K,, with 

the group of 11 X /1 unitary matrices U(n). 
The image under the map Spn (R) -+ H,, of the Haar measure on Spn (R) 

defines an element of volume on Hn, unique up to a constant factor, that 
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is invariant. under Spn (R), and can be written in the form 

(1.1.4) dZ = (det Yt<n+u IJ dxa~ fl dya~ (Z = X + iY). 
a~~ a~~ 

The most important discrete subgroups of Spn (R) for arithmetical 
applications are the subgroup of integral matrices 

r n = Spn(Z) = Spn(R) n NI,n(Z), 

which is called the Siegel modular group of genus n, and its subgroups 
finite index. Each such subgroup acts discretely on H11 • As Siegel has 
proved, there exists a fundamental .domain for the action of r n on Hn , 
that is, a closed subset Dn C Hn such that every orbit of rn on H

11 
mecf 

Dn, but that no two interior points of D11 are in the same orbit of rn. 
Hence, there also exists a fundamental domain for any subgroup of finite\ 
index in r n. The choice of fundamental domain is not unique. No < 
fundamental domain for a subgroup of finite index of the Siegel modu!a{ 
group is compact, but it has finite invariant volume. We only consider th 
case of the full modular group r 

11
• • 

A modular form of genus n and weight k, where n and k are natural 
numbers, is any function F(Z) that is holomorphic on H 11 and satisfies th., 
following two conditions: " 

(1.1.5) for every M = (~ ~) E rn we have the functional equation 

det(CZ + D)-"F(NI (Z)) = F(Z) (Z E Hn); 
O .1.6) the function F(Z) is bounded in every domain of the form 

{Z = X + iY E Hn; Y ~ cEn, c > O}. 
For n > I the condition (1.1.6) is a consequence of holomorphism 

(1.1.5) (the Koecher effect). 
Modular forms occur in the following simple manner in arithmetic: 

A be a symmetric positive definite integral matrix with even diagonal 
entries and det A = I. The order m of such a matrix is necessarily 
divisible by 8. Then for every n = I, ... , m, the theta-series of A, 

(1.1.7) e;~l (Z) = ~ exp (nia ('XAXZ)) = 2J r A (B1 exp (nia (BZ))/ 
XE)\Im,n(Z) B 

where z E H11 , B ranges over all the integral n X n matrices with even 
diagonal entries satisfying 'B = B, B ;;;,. 0, and r A (B) denotes the numbe~ 
of integral representation of the quadratic form with the matrix ~B by . 
the quadratic form with the matrix ~A, is a modular form of genus n at}. 
weight m/2 [ 15]. Similarly, if we do not impose the condition det A =.i 
we obtain modular forms with respect to subgroups of finite index of ti. 
Siegel modular group. This is the basis of the application of modular fo 
to the arithmetic of quadratic forms. For details see [ 14] -[ 17] . 

All modular forms of genus n and weight k form a vector space over·. 
which we denote by ~JC~. It is one of the basic facts of the theory tli. 
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for any n, k = 1, 2, ... , the space ~Jl~ is finite-dimensional. 
Every modular form FE ~Ji~ has a Fourier expansion 

(1.1.8) F (Z) = z.i a (N) exp (2riicr (NZ)), 
l\'f9Cn, iV;?-0 

where 
(1.1.9) 

. is the set of symmetric semi-integral n X n matrices. 

51 

We have seen above that important number-theoretical functions can turn 
up as the Fourier coefficients of modular forms. This, in part, explains why 
they are of constant interest to us. For the time being, we note just two 

From (1.1.5) we obtain, for matrices of the form (
'V 0) 
0 y-1 , where 

aeneral properties of the Fourier coefficients. 
~ 

VE GLn (Z), the relation (det Vl F(' VZV) = F(Z), and hence for the 
Fourier coefficients the relation 

(1.1.10) a(VN'V) = (det V)''a(N) (NE 91,,, VE GL,,(Z)). 

Let N E 91n, N ;> 0 and let r be the rank of N. Then there exist matrices 

(
JV' 0\ 

VE SLn (Z) and N' E 91,, N' > 0, such that 'VNV = O o}-
Now det N' only depends on N; we denote it o{N). Then for any modular 
form F E 9Jl~ we have the following bound on its Fourier coefficients 
[ 14]: 

(1.1.11) I a{JV) I = O( 8(N)h), 

where the 0 depends only on F. 
The spaces m~ for different n are connected by the Siegel operator <!>. 

(
Z' 0 ) 

If Z' E Hn-l and A> 0, then 0 i"A. EHn. It follows from (1.1.8) that 

for any F E 9JI/,' the following limit exists: 

(1.1.12) (<DF) (Z') = l~".:, F ( ( ~' ~/J) . 
It is easily checked that <l>F E 9Jl~-1 • The linear operator 
<P: ~Jl~ __,_ m~-1 (n > 1) so constructed is called the Siegel operator, and 

in a number of cases it allows us to reduce certain problems about forms 
of genus n to analogous problems about forms of smaller genus (see § 1.3). 

Let us consider the kernel of the operator <!>: 

(1.1. 13) 

Forms in 911. are called parabolic of genus /1 and weight k, and can be 
characterized by the condition that in their Fourier expansion ( 1.1.8) all 
the coefficients a(N) with det N = 0 vanish. For /1 = 1 parabolic forms are 
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determined by the condition that F(i"~) -> 0 as l\ -> + 00 , which is equivalent 
to a(O) = 0. For any parabolic form F E ln~ we have the following bound . 
[ 14]: 

-k/2 
(1.1.14) IF (Z) I= O((det Y} } (Z= X +iY EHn), 

and hence for the Fourier coefficients of such a form the bound 

(1.1.15) I a (N) I= 0 ((detN)'12), 

where in both cases the 0 depends only on F. 
We conclude this section with the construction of an invariant comple

ment to the subspace of parabolic forms. It is easy to see that for every 
pair F, F, E m~ of modular forms, the measure on Hn 

F (Z) FdZ) (det Y)' dZ, (Z = X + iY), 

where dZ is the invariant element of volume of (1.1.4), is r"-invariant, 
that the integral 

(1.1.16) (F, F,)= J F(Z)Fi(Z)(detY)'dZ, 
Dn 

where Dn is some fundamental domain for r", provided that it converges 
absolutely, does not depend on the choice of fundamental domain and 
defines a non-degenerate Hermitian pairing. The integral ( 1.1.16) converges 
absolutely provided that at least one of the forms F or F 1 is parabolic. In' 
this case (F, F 1 ) is called the scalar product of F and F 1 • .. 

We denote by {g~ the orthogonal complement in ~:n~ to the subspace 
ln~ of parabolic forms. Then we have the direct decomposition 

(1.1.17) mk=(gJ;E!lmJ;. 

Under <'l> the space {g~ is embedded into m t-1. The forms in (g~ are cane 
Eisenstein series of genus n and weight k. In many respects the study of: 
Eisenstein series often reduces to that of forms of smaller genus. 

§ 1.2. Hecke's theory 

In this section we give an account of the foundations of Hecke's theo~ 
[ l] of Euler products corresponding to modular forms of genus 1. A mo.,. 
detailed treatment of all the relevant matters can be found in Ogg's · 
lectures [ 1 7] . 

The spaces \ml. of modular forms of genus 1 and weight k is differe~ 
from {O} only for k = 4,6,8, .... For all such k the subspace riil. of 
Eisenstein series is one-dimensional and is spanned by the series 

Ek(z)= 2j (nz+mt• 
(n, m)EZxZ-(0, 0) 
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The series Ek (z) has the Fourier exPansion 
00 

(1.2.1) ?" k 2 (2ni)k "' ("' a•-1) . (2 . ) E.(z)=~.,( l+ (k-!)! LJ LJ exp mnz. 
n=i dl n 

The example of the Eisenstein series (1.2.1), as well as the numerous 
examples of theta-series of positive definite integral quadratic forms in an 
even number of variables, which were analysed by the number theorists of 
the classical period, demonstrate an interesting phenomenon: it often 
happens that the Fourier coefficients a(n) of modular forms of genus I are 
multiplicative number-theoretical functions or linear combinations of such 
functions. The reason for this is to be found in Hecke's theory. 

One could argue as follows: let 
00 

t (z) = 2J a (n) exp (2ninz) E Wll<. 
n=O 

In the widest sense, the "multiplicativity" of the function a(n) should mean 
that there is a regular connection between a(n) and a(nm) for any fixed 111. 
The numbers a(nm) (n = I, 2, ... ) are the Fourier coefficients of the 
function 

m-1 m-1 

fm(z)= ;,, ~ f ( z~;b) =m•-I ~ flh (0
1 b), 

b=O b=O ni 

(1.2.2) 

where for any function f defined on the upper half-plane H 1 and matrix 

M = (: :) E {iV/ E GL2 (R); det M > O} we set 

(1.2.3) f !fr M = (cz + ar• f ( ::~~~ ) . 

If the operator f-+ fm were to carry the space Wl~ into itself, then one 
could hope to find its eigenfunctions in 9Jl~; but for such functions 
!,,, = \nf, that is, a(nm) = '-ma(n) (n = 1, 2, ... ), and we would obtain the 
required multiplicativity. Now fm belongs to IDiJi if and only if fm lk M = fm 
for all M E r I = Sp! (Z). Since 

(1.2.4) 

and f!kM = f for M E r 1 , f E Wlli, the above condition holds, in parti
cular, if for each matrix M E r 1 the set of matrices 

{ (~~)JV/; b=O, 1, ... , m-1} coincides (up to order) with a set of the 

{ 
'1 b ) } form Mb(o m ; b=O, 1, ... , m-1, with Mb Er,. Taking, for 

example, M = J 1 , it is easy to check that this is false for any m > 1. To 
get out of this difficulty, it is natural to try to widen somewhat the class 

11 

'.1· I 

11 

11 
H 

II 
i 
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of matrices (~ ~) (b = 0, ... , m -1). All the matrices (~ ~) belong to 

the set Sm of all 2 X 2 integer matrices of determinant m. It is easy to 

see that for distinct b = 0, ... , m-1 the matrices (~ ~)belong to distinct 

left cosets of r 1 in Sm . Hence we can try to include the set 

{ (~ ~); b =0, ... , m-1} in a left transversal to r 1 in Sm. It is easy 

to see that we can take as such a transversal the set 

(1.2.5) {(~:);a, d>O, ad=m, b=O, 1, ... ,d-1}. 

In particular, there are only finitely many left cosets. Thus, in place of th~ 
operators f -+ f m we arrive at the operator 

(1.2.6) f-+ T, (m) != m•-1 ~ f I• cr (f E 'Jn)<). 
aerr,sm 

THEOREM 1.2.1. For every integer m :> 1 and k > 0 the operator 
Tk(m) does not depend on the left transversal to r 1 in Sm and maps 
'lnk into itself The subspace I.Ilk c 'Jn)< of parabolic forms is invariant 
under all the Tk(m). 

PROOF. lf{M 0 cr; M 0 Er1}is another transversal, then bearing in mind 
.(1.2.4) and the definition of modular forms, we obtain 

~ f l•Ma<J= ~ f l•Ma I• <J= ~j lh <J. 
0 0 0 

Using the transversal (1.2.5), we see that Tk(m)f together with f also 
satisfies the analytic conditions in the definition of a modular (respectively/, 
parabolic) forms. Finally, if {cr} is a left transversal to r, in Sm, then 
any M·E r 1 the set {crM} is another transversal. Hence, for any M E r, 
we have (Tk(m)D[kM = Tk(m)f, and the theorem is proved. 

The operators Tk (m) were defined by Hecke and are named after him. 
The further development of the theory is merely a technical matter. 

Multiplying together the transversals (1.2.5) for different m, it is not 
difficult to establish the multiplication table for the operators Tk(m) on 

(1.2.7) T 1,(m)T,(m1)= ~ T•(m;, )a•-1 (m, m1=1, 2, ... ). 
dlm,m1 

In particular, all the Tk(m) commute. 
By direct computation using the transversal (1.2.5) we find the Fourier\. 

expansion of the modular form Tk(m)f (for f E 'Jn)<): 

(1.2.8) T.(m)f=a(O) ~ a•-1+ ~ ( ~ a ( '~;) a•-1) exp(2ninz), 1 
d\m n=i dim, n · 



Euler prJJJ!uru IYm=pomling 1JJ .Sieg£111lQffuliu:forrm of genus 2 55 

where a(n) (n = 0, I, ... ) are the Fourier coefficients off. 
Suppose that f is an eigenfunction for all the Hecke operators 

Tk(m) (m = 1, 2, ... ): Tk(m)f= A./m)f. Equating the corresponding Fouriet 
coefficients on the left- and right-hand sides of this relation, and using 
(l.2.8), we obtain 

(1.2.9) a (0) ~ a•-1 =At (m) a (0) (m = 1, 2, ... ), 
dim 

and 

(1.2.10) ~ a(~:)a•-1=At(m)a(n) (m,n=1,2, ... ). 
d[m,n 

Setting n = 1 in ( 1.2. l 0), we obtain 

(1.2.11) a(m)= Ai(m)a(1) (m = 1, 2, ... ). 

Thus, the Fourier coefficients of an eigenfunction are multiples of a multi
plicative function A./m) with the multiplication table 

(1.2.12) At (m) At (m1) = ~ At ( ~;1 
) a•-1 (m, m1 =1, 2, ... ) 

d[m,m1 

(see (l.2.7)). 
This has a particularly pretty formulation in the language of Dirichlet 

series (see [ l] ). 
THEOREM 1.2.2. (1). Let f E im~ be an eigenfunction of all the Hecke 

operators Tk(m): 

Then the Dirichlet series 

(1.2.13) 

(m = 1, 2, ... ). 

00 

1"t (m) 
D1 (s) = LJ~ --mo 

m=1 

is absolutely convergent in the domain Re s > k + 1 (respectively, in 
Re s > ~ + 1, if f is a parabolic form), and has in this domain an Euler 
product expansion of the form 

(1.2.14) Dt (s) =IT {1-Ai (p) p-' + p•-1-2,i-i, 
p 

where p ranges over all the prime numbers. 
(II). With any form 

00 

f = ~ a (n) exp (2:n:inz) E imli 
n=O 

we associate the Dirichlet series 
00 

(1.2.15) Rt(s) = ~ a~~) . 

n=i 
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Then the series R/s) is absolutely convergent in the domain Res> k + 1 
(respectively, Res> k/2 + 1 if f E lllli ), and if f is an eigenfunction of all 
the Hecke operators Tk(m), then we have the identity 

(1.2.16) Ri(s) =a(1)Dj(s). 

PR 0 0 F. The identity (1.2.16) follows from ( 1.2.11 ). The convergence 
the relevant domains follows from the bounds (1.1.11) and (1.1.15). The 
Euler product expansion (l.2.14) follows from the multiplication table 
(1.2.12): since ll./m)ll.r(mi) = A./mm1 ) if (m,m 1 ) = 1, we have 

00 

Dt(s) =fl ( ~ P,J(p6) p-o'); 
P l>=O 

next, each of the power series ] A1{p0)t6 can be summed on the basis of 

the recurrence relation ll.r(p)A.1(p6 ) = ll.r(p0 +!) + pk-! ll./p6- 1 ), 0 ~ !. 
proves the theorem. 

In connection with these results there arises the question how many 
eigenfunctions of all the Hecke operators Tk(m) there are in Wt);. This 
question was answered by Petersson soon after Hecke's paper. Petersson 
defined the inner product ( 1.1.) 6) (for n = 1 and for congruence subgrou 
·Of r 1 ) and showed that for any two modular forms f, f 1 E \ml<, of which • 
at least one is parabolic 

(1.2.17) (T,(m)f, f1)=(f, T,(m)f1) (m = 1, 2, ... ). 

From this we obtain the following theorem. 
THEOREM 1.2.3. \ml< has a basis consisting of eigenfunctions for all 

Hecke operators Tk(m). All the eigenvalues of all the Tk(m) are real. 
PROOF. It follows from (l.2.17) and the fact that l~ik is one

.dimensional that the Eisenstein series ( 1.2.1) is an eigenfunction of all th 
Tk (m). It therefore suffices to prove the theorem for the subspace lllli of 
parabolic forms. The relations ( 1.2.17) show that each of the operators 
Tk(m) on llll< is Hermitian. Since they all commute (see (1.2.7)), the 
theorem follows from a standard result in linear algebra. 

It follows from Theorems 1.2.2 and 1.2.3 that the space of Dirichlet 
series R1(s) associated as in ( 1.2.15) with modular forms f E \mk has a 
basis consisting of Dirichlet series having expansions as Euler products 
the form (l.2.14). 

Finally, the space of Dirichlet series R/s) (with f E \mk) can be 
characterized by simple analytic properties. 

THEOREM 1.2.4. (I) Let f E \mt Then the Dirichlet series Rr(s) 
(see (1.2.15)) has the following properties: 

(1.2.18) Rr(s) can be continued as a meromorphic function to the 
s-plane. 

( 1.2.19) The function 
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k 

'" (s)+ a(O) +(-1)
2 

a(O) 
't'f S I k-s ' 

where 1jJ1(s) = (2ir)-s r(s)R/s), r(s) is the gamma-function, and a(O) the 
zeroth coefficient off, is entire. 

(1.2.20) The following functional equation holds: 

k 

11'1 (k-s) = (-1)2 1jJt(s). 
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(II). Conversely, every Dirichlet series with coefficients of no more than 
polynomial growth, satisfying the conditions (1.2.18), (1.2.19) and (1.2.20) 
is of the form R/s) for some f E WU,. 

PROOF. Using the Mellin transform we obtain the integral representation 

00 

(l.2.21) 1jlt(s)= J (f(it)-a(O))t'-1dt (Res>k+1). 
0 

Since f(-z- 1 ) = zk f(z) (for z E H 1 ), we obtain 

00 00 

1p1(s)= ,l (f(it)-a(O))t'-1 dt- a;O) + J f ( - ; ) i-1-'dt= 
I I 

00 

= J (f (it) - a (0)) (t'-1 + ikt•-s-1) dt- a ;o) 
I 

i•a (0) 
k-s 

The function f(it)-a(O) tends to zero exponentially as t -+ + oo. Thus, the 
last integral above is absolutely convergent for all s and is a holomorphic 
function of s. This proves (1.2.18) and (1.2.19). The last expression for 
1p1(s) is multiplied by ;k under the substitution s -+ Jc - s, and this proves 
the functional equation. 

The assertion (II) is easily obtained if we use the inverse Mellin transform 
the fact that the modular group r 1 = SL2 (Z) is generated by the 

matrices (~ ~) and (_~ ~) . This proves the theorem. 

Here we have the classical theory for the full modular group r I = Sp, (Z). 
basic features of this theory carry over, with natural technical compli

cattons, to modular forms of integral weight for congruence subgroups of 
(see [ 1], [ 17] ). We shall be concerned with the case n > 1 later. 

§ 1.3. Euler products corresponding to forms of genus n. 

For the definition of the Hecke operators, only the following three 
properties of the set Sm were essential: the transformations in Sm take the 
upper half-plane HI into itself; r I Sm r I = Sm ; and Sm consists of finitely 
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many left cosets of r, . This remark makes it straightforward to define 
analogous operators tor any genus n. 

THEOREM 1.3.1. For n > 1 we write 

(1.3.1) sen, ={g E M2n(Z); 'glng = r(g)Jn, r(g)=1, 2, ... } 

(see notation, p. 48). Then every double coset rngrn, with g E stn), 
splits into finitely many left cosets of rn: 

( 1.3.2) 
µ 

r ngf n= u r na,. 
i=i 

For each such double coset and each modular form F E ~:n~ we set 

(1.3.3) 
h. n(n+i) µ 

T, (fngf n) F =r (g)" --2- ~ f l•CJ;, 
i=i 

'AB) 
where for a= (c D E 8'"' 

(1.3.4) Fl,a = det(CZ + D)-'F((AZ + B)(CZ + D)-1). 

Then the operator Tk(rngrn) does not depend on the choice of the trans· 
versa/ and maps the space ~:n~ into itself; the subspace \Jl~ of parabolic 
forms is invariant under all the Tk. 

PR o OF. It is easy to see that the number of left cosets of r n in 
rngrn is equal to the index of g-1 rngnrn in rn. This index is finite, 
since the subgroup contains a subgroup of r n of finite index, namely the 
subgroup of matrices congruent to the identity matrix modulo r(g). It is 
easy to see that for g, g 1 E stn) 

(1.3.5) 

By the definition of modular forms, F ikM = F for M E r n. Thus, if 
{M,cr,}, with M; E r", is another left transversal, then for each i we 
FikM;a; = Fika;, and the operator Tk(r ngr n) is indeed independent of the 
choice of transversal. 

If M E rn, then the set {cr,i\!I} is another left transversal so that 
(Tk(rngrn)FlikM = Tk(rngrn)F. It is not hard to check that for 
g E stnl each left coset rng has a "triangular" representative, that is, 

of the form ( ~ :) . Taking a transversal consisting of upper-triangular 

matrices, we verify that the function Tk(rngrn)F also satisfies, together 
with F, the analytic conditions in the definition of modular forms 
(respectively, parabolic forms). This proves the theorem. 

The operators Tk(rngrn) (for g E ,s<nl) generate a ring of operators.? 
each space m~ (or \ll~). To study general properties of all these rings 
for a given n one introduces an abstract ring such that all the relevant , 
rings of operators are representations of it. The definition below is due. t' 
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Shimura [ 8] . 
Let L = L (n) be the free C-module generated by finite linear combinations 

of the double cosets (I'ngI'n) for all g E sf.nl. We define a multiplication 
Jaw in L starting from the requirement that the product of two double 
cosets should correspond to the product of the corresponding operators. 
Let g1 , g2 E sf.nl and let I'ng1I'n = U I'ng1;, I'ng2I'n = U I'ng2i be de
compositions into disjoint left cosets. It is easy to check that for every 
g E sCnl the number of pairs (i, j) of indices such that I'ng 1;g2i = I'ng 
depends only on the double cosets I'ng1 I'n, I'ng2I'n and I'ngI'w We denote 
this number by µI'ng 1 I'n- I'ng2I'n; I'ngI'n) and define the product of the 
double cosets r ng 1 r n and r ng2 r n by the formula 

(fng1fn)(fng2fn)= 2;µ(fng1fn ·fng2fn; fngfn)(fngfn), 

where the summation extends over all the double cosets r ngI' n contained 
in I'ng 1 I'ng2I'n (there are only finitely many of these). Extending this 
multiplication law linearly to the whole of L(n) we obtain an associative 
ring, which is called the (abstract) Hecke ring of r w As Shimura has shown, 
£C11l is a commutative integral domain. The map (I'ngI'n)..,. Tk(fngI'n) 
obviously defines a representation of the Hecke ring L(n) on the space fili~ 
of modular forms. 

Just as in the case n = I, for the discussion ·Of Euler products we need 
a certain amount of information about the multiplication rules for the 
operators Tk. We obtain this by considering the multiplication of the 
corresponding elements of L(n). As Shimura [ 18] has shown, each double 
coset I'

11
gI'n (with g E sCnl)) contains a unique diagonal representative 

having diagonal entries d 1 , ••• , dn, e 1 , ..• , en such that 

(1.3.6) 

Si We denote by T(d 1 , ... , dn ; e 1 , ••. , en) the corresponding double coset, 
··regarded as an element of [Cn). One sees easily that 

(1.3.7) T(d1 , ••• , dn; e1 , , •. , en)T(d;, ... , d~; e;, ... , e~)= 

= T(d1d;, ... , ene~), 

· provided that (e 1 , e;J =I. In particular, if for every m =I, 2, ... we let 
T(m) denote the sum of all the double cosets I'ngfn with r(g) = m (by 

'(1.3.6) these are finite in number): 

(1.3.8) T (m) = ~ (f ngf n) = 2; T (di. ... , dn; ei. •. ., en), 
r(g)=m di e1=m 

(1.3.9) 

formal Dirichlet series 
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00 

(1.3.10) D (s) = ~ T (m) m-. 
m=1 

By (1.3.9), D(s) has a (formal) expansion as an Euler product of the 
00 

(1.3.11) D (s) = [J Dp (s), where Dp (s) = L) T (p") p-o, 
p . 0=0 

(p ranges over all prime numbers). 
To compute the p-component DP (s) we need some information on the 

product of the double cosets rngrn for which r(g) is a power of a fixed ' 
prime p. All such double cosets generate a subring LP (n) of L(n). Shimura 
[8] has shown that LP(n) is a polynomial ring over C in n + 1 independent' 
variables, which we can take to be the double cosets 

T (1, .. ., 1, p, .. ., p); T(1, .. ., 1, p, .. ., p, p2 , ••• , p2 , 

~ ~ '--v--' '--v--' '--v--' 
n n n-i i n-i 

(1~i~n). 

p, ... , P) 
'-v--' 

i 

Thus, DP (s) can be regarded as a power series in t = p-s with polynomial 
coefficients, and the question arises, say, whether or not it is formally 
equal to some rational function in t with polynomial coefficients. For 
small n one can carry out direct computations. For instance, it follows 
Hecke's computations [ 1] that for n = 1 

Dp(s) =(1 - T(1, p)p-' + pT(p, p)p-")-1 . 

For n = 2 and 3 the series DP (s) were computed by Shimura 
Andrianov [ 19], respectively. For arbitrary n;;;, 1, Shimura [8] has 
jectured that for any prime p the series Dp(s) is formally equal to a 
rational function in p -s with coefficients in LP (n), whose numerator and 
denominator are of degrees 2"-2 and 211

, respectively. This conjecture 
proved by Andrianov [10], [ll] .1l We give a detailed description of 
corresponding result in the language of one-dimensional representations 
Hecke rings. 

The set of all C-linear homomorphisms of LP (n) into C that take the 
element into 1 has a simple parametrization. Each double coset r"grn, 
g E s<nJ and r(g) = p0 

, has a left transversal r n consisting of matrices 
the form 

(1.3.12) 
(AB\ . (~a, ;a,: 
\O D), with D= ... 

0 0 0 ... 

Let A = (ci 0 , ci 1 , ..• , "'n) be an arbitrary (n + 1 )-tuple of non-zero 
complex numbers. With (rngrn) and the (n + !)-tuple of parameters 
associate the number 
l) As I. G. Macdonald has pointed out to the author, Shimura had an unpublished proof of his 
at about the same time, but by a different method. He has subsequently obtained considerably 
results. 
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n 

(1.3.13) (r ngr nlA =a~~ IJ (a;p-i)di, 
. i=i 

where the summation extends over a left transversal of r ngr n in r n' written 
in the form ( 1.3.12). It follows easily from the definition of multiplication 
in LP (n) that the map (rngrn) _,. (r "gr,,) A defines a C-linear homomorphism 
of L/"l into C taking the unit element into l. Conversely, every such 
homomorphism <p: L/"l _,.Chas the form <p(rngr,,) = (r,,grn)A for some 
(n + I )-tuple A = (0<0 , ... , °'n) E C" +l, °'o ... °'n =F 0. The homo
morphisms corresponding to two (n + I )-tuples (0<0 , •.. , °'n) and 
(0<~, ... , 0<~) coincide if and only if °'o =a~, and°';= °'a(i) (i =I, ... , n), 
for some permutation a. In these terms we have the following result on 
the series Dp(s) (see [ 11] ). 

For any (n + I )-tuple of non-zero complex numbers A = (0< 0 , ..• , a,,) 
there is a formal identity 

where 

00 

~ TA (p') t0 =Pp, A (t) Qp, A (tt', 
o~o 

2n-2 

TA (p0) = ~ (r ngr n)A, Pp,A(t)= ~ <pi(a,, •.• , an)ait', 
i=O r(g)=p6 

all the <p; are symmetric polynomials, 'Po= 1, cp2n_ 2 (a,, ... , an)= 
(n-i)n 

--2- zn-1_1 = p (a, ... an) , and 
n 

Qp,A(t)=(i-aot) fl IT (1-a0ai, ... ai,t); 
T=11~i1< .. . <ir~n 

The power series on the left-hand side of the identity is convergent in some 
neighbourhood of zero, and is equal to the right-hand side in this 
neighbourhood. 

We now turn our attention to the representations of Hecke rings on 
spaces of modular forms. Let F E m~ be a modular form of genus n and 
weight k. Suppose that F is an eigenfunction of all the operators 
Tk(r,,gr,,), for g E S(n): 

T,.(rngrn)F = A.F(rngrn)F. 

It is not hard to show that the eigenvalues A.F(rngrn) are of no more 
than polynomial growth: 

(1.3.14) I A.F(rngrn)I = O(r(g)'), 

Where the constant c depends on n and k only (the idea of the proof: it 
is easy to give an estimate of the form O(r(g]C•) for the number of left 
coset in the double cosets rng:rn (with g E s<nl), where c1 depends on n 
only; now we take a left transversal consisting of matrices of the form 
(1.3.12) and find the Fourier coefficients of the form Tk(rngr,,)F; on the 
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oth_er hand. these c_oefficieuts are _equal to the coefficients of F, multiplied.: 
by />.F(rngrn ); by equating the corresponding expressions and using the 
estimate ( 1.1.11 ), we obtain the required result). In particular, for the 
eigenvalues of the operators Tk(m) (ni = 1, 2, ... ) corresponding to the ele
ments T(m) of the Hecke ring (see ( 1.3.8)), 

(1.3.15) 

where s:;;' = {g E· s,n, ; r(g) =m }, we have the estimate 

(1.3.16) I /.F(m}\ = O(m'), 

with c depending only on n and k. 
We consider the Dirichlet series 

(1.3.17) 
m=i 

From the theory of the formal series. D(s) treated above and the Rdimot.> 

(1.3.16) we deduce the following theorem on the series DF(s), which is 
analogous to the first part of Theorem 1.2.2. 

THEOREM 1.3.2. Let FE AA~ be an eigenfunction of all the Hecke 
operators Tk(rngrn) (for g E s<nl). In particular, 

T ,(m)F = 1.F(m)F (for m = 1, 2, ... } 

(see ( 1.3.15)). Then the Dirichlet series ( 1.3.17) is absolutely convergent 
a right half-plane Re s > a and has there an Euler product expansion 

(1.3.18) 

each of the p-components Dp,F(s) is a rational fraction of p-s: 

(1.3.19) 

where Pp,F(t) and Qp,F(t) are polynomials with real coefficients of degr/" 
2"-2 and 2", respectively; the polynomial Qp,F(t) has the form 

2n-i (nk ncn+i)) 
(1.3.20) Qp,F(t)=1-J.F(p}t+ ... +p --2- f2n= 

n 

=(1-a[(p)t) II . II . (1-a[(p)aF(p) ... af(p) 
r=i i~i1 < .. ,<tr:$:n 1

1 
1r -:,:';i 

where AF(p) = (~(p), ... , a;;-(p)) are the parameters that by (1.3.13) 
correspond to the one-dimensional representation T(r ngr n) ~ ;>..F(rngr11 i 
of the ring L/"l. -.: 

PR 0 0 F. All the assertions of the theorem, apart from the fact that 
coefficients of Pp,F and Qp,F are real, follow from what has been said 
It is shown in [ 11] that the coefficients of Pp,Fand Qp,F are linear 
combinations with rational coefficients of the eigenvalues A.F(r ngr n ). 



Euler produc1s corresponding ta Siegel madiiiar fonm of g£IlUS 2 63 

sball see later that all these eigenvalues are real, and the assertion follows.. 
DEF IN IT I 0 N . Let F E m~ be an eigenfunction of all the Hecke 

operators Tk(rngr n) (for g E s<nl). Vje define the zeta-function of the form 
F to be the Euler product 

(1.3.21) zF (s) = 11 Qp. F (p-'ri, 
p 

where Qp.F(t) are the polynomials defined in Theorem 1.3.2. 
It follows from the estimate (1.3.14) that the parameters of(p) satisfy 

l 

I af(p) I = O(p''), 

where c' depends only on n and k. Hence the product (1.3.21) is absolutely 
convergent in a half-plane Re s > a' and is an analytic function of s in this 
half-plane. 

For n = 1, ZF(s) = DF(s). For n )' 2 these functions do not coincide. 
That ZF(s), rather than DF(s), can reasonably be regarded as the "right" 
zeta-function of F is shown by the analysis of the case n = 2 (see § § 2.4 
and 3.1), as well as by the relation due to Zharkovskaya, which is intro
duced below. General conjectures about the analytic properties of ZF(s) 
are given in conclusion at the end of this article. 

Recently Zharkovskaya [20] has proved a theorem that reduces the study 
of the zeta-functions ZF(s) of arbitrary modular forms to that of parabolic 
forms. For n = 2 this theorem, as shown in [ 12], follows from results of 
Maass [7]. 

THEOREM 1.3.3. Let FE m~ (n > 1, k > 0) be an eigenfunction of 
all operators of the Hecke ring L(n)_ Then the form iPF E ~)<~-', where 
iP is the Siegel operator ( 1.1.12), is an eigenfunction of all the operators of 

Hecke ring L(n-1), and if Fis not parabolic (that is, iPF =I= 0), then in 
the domain of absolute convergence the following relation holds between the 
ieta-functions of F and iPF: 

(1.3.22) ZF(s)=Z.,,p(s)Z.,,F(s - k + n). 

Finally, we consider the question of the existence of eigenfunctions of 
the Hecke operators. 

THEOREM 1.3.4. For all n and k;;;,, 1 the space 'ID~, has a basis con
"L>s1sti1ig of eigenfunction of all the Hecke operators Tk(rngrn) (for g E s<nl). 

the eigenvalues of all the Hecke operators on mi;; are real. 
PR 0 0 F . First of all, one checks that for any two modular forms F, 
E ~)l~, of which at least one is parabolic, and for any g E s<nl 

(1.3.23) (T1<(I',,gI',,)F, F1)=(F, T,(I'ngrn)F1), 

(, ) is the scalar product (1.1.16). This relation was proved by 
[7] for the operators Tk(m); for an arbitrary double coset the proof 

analogous. By (1.2.23), the Hecke operators on the space of parabolic 
forms are all Hermitian. Since they commute, the theorem is true for ITT~. 
By definition (see 1.1.17) and (1.3.23)), the subspace !;\'~cm~ of 
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Eisenste.in series is imariant under all the Tk. As was shown by 
Zharkovskaya [20], there exists an epimorphism T-+ T* of Llnlonto L(n-l) sue 
that for any FE m~ we have the relation iPTkF = Tk *<PF. Hence the ; 
·subspace <P~~ c m~-i is invariant under all the operators of L<n-l l. Using 
induction on n and Theorem 1.2.3, we arrive at the required result. 

With this we come to an end of the general facts known about the Eu!~ 
products corresponding to Siegel modular forms of arbitrary genus. The 
principal gap in the theory as compared with Hecke's theory for n = J is ' 
the Jack of any analytical connection between the Euler product and the 
corresponding modular form. In the following chapters we shall see the 
form this connection takes in the case n = 2. 

Chapter 2 

EIGENVALUES OF THE HECKE OPERATORS AND THE FOURIER 
COEFFICIENTS OF EIGENFUNCTIONS IN GENUS 2. 

§2.1. Action of the Hecke operators on the Fourier coefficients 

Let F E m~ be a modular form of genus 2 and weight k. In this 
section we begin the study of the Fourier coefficients of the form . 
Tk(m)F, where Tk(m) is the mth Hecke operator (see (1.3.15)). Accordi)l' 
to (l.3.9), it suffices to restrict ourselves to the case when m = p6 is a 
power of a fixed prime number. With this in mind, we begin by 
ing a special left transversal V(p 6 ) to S~'6 in r 2 , where 

(2.1.1) S~'6={gEM.(Z); 1gJ2g= p 0J 2}. 

As was pointed out in § 1.3, each left coset of s~J in r 1 has a represent 

of the form (~ :). with A, B, DE M2 (Z). A matrix of the shape 

indicated belong to s~'6 if and only if 

(2.1.2) 1AD = p 0E., 1BD ='DB. 

I . ·1 I . I . (A B) (Ai Bi) r f>:i t 1s eas1 y seen t lat two mtegra matnces 
0 

D and 
0 

D, sa _1s Y, 

(2.1.2) belong to the same left coset of r 2 if and only if there are ma 
V E G L 2 (Z) and T E M2 (Z), with 'TV = 'VT, such that 

Di = VD, Ai = 'V-iA, Bi= 1V-1B + TD. 

For a given D the matrix A is uniquely determined by the first relatio 
(2.1.2). Clearly, for an integral D the corresponding A is again inttignt\ 
and only if 

(2.1.3) (
p" 0 ) 

DE GI,, (Z) O pa+~ GL2 (Z), 

where ex, ~ :> 0, ex + ~ < Ii. The double coset (2. 1.3) splits into 
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many left cosets of GL2 (Z). It is easy to see that a transversal can be 
taken to be the set 

where 

(2.1.4) R (pB) = { (~: ~:) E SL2 (Z); (u., u2) mod pB} 

is any set of 2 X 2 integral matrices (u' u,) , whose first rows range 
V1 V2 

over a complete system of representatives of the equivalence classes of 
pairs of coprime integers under the equivalence relation 

(2.1.5) (u1, u2) ~(u;, u;)(mod pB) <:=;> au1 == u;, au2 = u; (mod pB) 
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(that is, the "projective line mod p~"), and whose second rows are chosen 
SO that U1V2 - U2V1 = J. 

Summing up what we have said, we obtain the following proposition. 
PROPOSITION 2.1.1. For every prime p and every integer Ii > 0 we can 

take as a left transversal to s<21 in r, (see (2.1.1)) the set 

(2.1.6) V (p0
) = { (~ ~) rDE (~" p~+B) R (pB), a;;,O, ~;;,O, 

a+~~o, A= p 6 1n-1, 'BD= 'DB, BmodD}' 

where the sets R(p~) are defined above (see (2.1.4), and B mod D means 
that B ranges over a complete system of representatives of the equivalence 
classes of 2 X 2 integral matrices (satisfying the previous condition) under 
the equivalence relation 

B = B, (mod D) <:=:> (B - B1)D-1 E M 2 (Z). 

Let 
F ( Z) = ]:: a (N) exp (2nicr (NZ)) E fill~ 

NE9l2, 1V~O 

be the Fourier expansion of some modular form of genus 2 and weight k 
(see (1.1.8), (1.1.9)). By definition (see ( 1.3.3) and (1.3.8)) and by 
Proposition 2.1.1. we have 

T,, (p•) F = p<2k- 3)o 2:: F j,, g = 
gEl'(po) 

= p<2"-3
>
6 ~ (A B)l:: a (N) (det Dt' exp (2nicr (N (AZ+ B) D-1)) = 

O D E V(p6) 

= p<2k-3)o 2:: 2:: a (N) (det Dt' exp (2:n:icr (p6D-1N'D-'Z)) lv (N), 
ND 
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!D(N) = z; exp (2nia (NBD-1)). 

tBD=tDB, BmodD 

Collecting together the terms with the same power in the exponent, we 
obtain 

T,(p 0)F= z; a(p0 ; N)exp(2rticr(NZ)), 
NEffiz, N~O 

where 
(2. 1. 7) a (po; N) = .·· 

= p<2k-3Jo S a (p-oDN1D) (det Dt1
' lD (p- 0DN1D). 

DE (Pa 0-1-t:t) R(pt3), 
0 Pa' tJ 

a, (3;?0, a+f3~0 

lt is easy to see that for U E SL2 (Z) and half-integral N we have the 
relation 

(2.1.8) lnu (N) = lD (N), 

I pa. 0 ) ( a b/2) 
and that for D = \ 0 pa.+B , N = b/2 c we have 

{
Paa.+B, if a=ob=O(mod pa.), c=oO(modpa.H), 

(2.1. 9) lD (N) = 0 otherwise. 

We set Ii - (a+ J3); ')' > 0. Using (2.1.8) and the fact that 
R(p~) C SL, (Z), the relation (2.1.7) can be rewritten in the form 

(2.1.10) a (p"; N) = L; p<•-2lB+(2k-3Jv x 
a.+B+v~o, 
a, [3, i'~O 

X l; a (p- 6Da.BU N'U DaB) p-<3a.+BJ!DaB (p-o DaBUN'U DaB) 
UER(pB) •( 

where DaB =(~a. ~+B). We set N = (ba/
2 

b/
2
), and UN'U = ( au bu/

2
) 

p c bJ2 ~ 
(for U E SL2 (Z)). Then 

(

aupa-B-v 
. p-0DaBUN'UDaB= 

1 2bupa.-v 

and hence, bearing (2.1.9) in mind, we obtain 

(2.1.11) a (p"; N) = 

p(k-2)B+(2k- 3)V 

UER(pBJ, 

au. :::= O(pf3+i'), 

bu::= cu:= O(pi') 
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We now introduce some notation. to put this formula in a more convenient 
form. 

Denote \![ the set of all complex-valued functions on the set 
{JV E 91 2 , N;:;:, O} that are constant on the classes of equivalent matrices in 
the narrow sense: 

(2.1.12) \![ ={rp: {NE ~2 , N ;;,O}-+ CI <p(UN'U)=rp(N)(UESL 2(Z))}. 

According to (1.1.10), the Fourier coefficients a(N) of any modular form 
F E ~,n~ can be regarded as the values taken by some function in ~l. 

We define a representation of the Hecke ring L<ll of the group 
f

1 
= SL2 (Z) on 2[. Let g E s<ll (see ( 1.3.1)), and let 

r,gr, =Ur,a, 
; 

be a decomposition of the double coset r 1gf1 into a disjoint union of 
left co sets of r 1 . For eacli <p E \!! we set 

(2.1.13) 

It is easily seen that all the operators Ta are independent of the system of 
representatives {a,} and map \!! into itself. We extend this action linearly 
to the whole of L <n It follows easily from the definition of multiplication 
in L(l) and the fact that L(l) is commutative that the map T-+ Ta is a 
representation of L(l) on \![. 

We also define operators !J. +(m) and !J. -(m) on \![ for every natural 
number 1n: 

(2.1.14) 
{ 

(Ii• (m) <p (JV)= <p (mN), 
rp (m-1N) if m-1N E 912 

(Li- (m) <p) (JV)= { 0 if m-1N 191
2

• 

As an immediate consequence of the definition we have the formulae 

{

Li•(m)Li•(m1)=Li•(mm1) (m, m 1 =1, 2, ... ), 
(2.1.15) Li-(m)Li-(m1)=Li-(mm1) (m, m1 =1, 2, ... ), 

ii•(m)Ta(f1gf1)Li-(m)=Ta(f1gf,) (m=i, 2, ... , gES"'). 

Finally, for each m = 1, 2, ... we set 

(2.1.16) 

where R(p~) is the set (2.1.4)), is a left transversal to 

for any prime power m = p~ we have 

(2.1.17) 
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= ~ 
UERCPB), 

au:=:= 0 (mod pl3) 

(
' au bu/2) where 

2 
= UN'U. 

bu/ Cu . 

We now write out (2.1.11) in terms of the notation just introduced. 
PROPOSITION 2.1.2. Let 

F (Z) = L a (N) exp (2nicr (NZ)) E mi, 
NE?Jl:?. N~O 

and let p be a prime number, and o ,;;. 0. Then 

where 

(T, (p0) F) (Z) = L a (p6; N) exp (2nicr (NZ)), 
NEl!C21 N~O 

a (p'; N) = L p<k-2lH(2k-3)v (fl- (pv) II (pB) fl+ (p") a) (N) 
a+t3+·v=O, 
o:, [3, y;?;O 

(and a( ) is regarded as a function in IJI). 
REM ARK. In the corresponding formula in [ 12] the operators are 

written down in the reverse order, a common error in such cases. However,.; 
the formula is used correctly. : 

PROOF. Since U E SL2 (Z), the conditions au =bu =cu = 0 (mod p7 ) are·::' 
equivalent to a= b = c = 0 (mod p7 ). Then keeping (2.1.14) and (2.1.17) 
in mind we find that the term in (2.1.11) corresponding to the partition 
o = ci + ~ +'7 is equal to 

p<k-2lHC2k-S)v :;3 (fl+ (p") a) (p-v (a"p-B bu/2)) = 
UER (pB). bu/2 CupB 

au. =o::: O (modpl3) 

= p<k-2lB+C2k-3lv (II (pB) fl+ (p") a) r ~-•"' 

when p-vN E g12 , and is zero otherwise. The proposition is now proved. 
00 

§ 2.2. Summation of the series :;8 a (p 6 N) t' 
6=0 

In this section we establish that for every prime p and positive definite 

N = (~1:
1~) E ITT 2 , with (a, b, c, p) = 1, the series of the section heading,· 

where a( ... ) are the Fourier coefficients of some eigenfunction FE mi\ 
all the Hecke operators Tk(p' )) is closely connected with the generating 
series for the corresponding eigenvalues, and is, in particular, a rational 
fraction with the same denominator. 

First of all we introduce, in a form that will be convenient in what 
follows, a result of Shimura [ 8] on the summation of generating series 
eigenvalues. 
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THEOREM 2.2.1. Let p.be a prime number, and .let FE 'Jn)'. be an 
eigenfunction of all the Hecke operators Tk(p6 ) (with IJ ?> 0): 

Tk(p6)F = AF(p6)F (6 = 0, 1, ... ). 

Then we have the identity 

(2.2.1) 

where 

(2.2.2) Qp, F (t) = 

00 

2; AF (p6) t6 = (1- p2k-4t') Qp, F (tt', 
6~0 

= 1- AF (p) t +(AF (p)'- AF (p') - p2k-4) t'-AF (p) p2k-3t3 + p••-at•. 

co Ro L LARY. If F E ~:m is an eigenfunction of all the Hecke operators 
Tk(r2 gr2 ) (for g E SC2l), then in the domain of absolute convergence the 
following relation holds between the Dirichlet series Dp(s) and Zp(s) (see 
(I.3.17) and (l.3.21)) 

DF(s)=~(2s - 2k + 4)-1ZF(s), 

where \; is the Riemann zeta-function. 
The main result of this section is the following proposition. 
PROPOSITION 2.2.1. Suppose that the modular form 

F (Z) = 2; a (N) exp (2nia (NZ)) E\lnli 
NE91:2, N;30 

is an eigenfucntion of all the Hecke operators Tk(p6 ) for some fixed 
prime p and IJ ?> 0: 

Tk(p6)F = AF(p6)F 

Then for any positive definite matrix 
(a, b, c, p) = I we have the identity 

00 

(6 = 0, 1, ' .. ). 

(
a b/2) 

N = b/2 c E ITT, such that 

(2.2.3) { L; a (p6N) t6 ) Q,,, F (t) =a (N)- p"-2 (IT (p) a) (N) t + 
6=0 

+ [p"-4 ((IT (p)2-IT (p2
) -1) a) (N) + p••-s (IT (p) fl- (p) a) (N)] t2 , 

where Qp,F(t) is the polynomial (2.2.2), and Li- and IT are the operators 
(2.1.14) and (2.1.16). 

PROOF. Let us set 

Multiplying out the expression on the left-hand side, and using (2.2.2), we 
obtain 

(2.2.4) bv=a (p"N)-Ap (p) a(p"-'N) +(AF (p) 2 -Ap (p2)- p 2"-4) a(pv-2N)-

- p2k-3Ap (p) a (p"-'N) + p•'-'a (p''-'N), 

where a(p'-iN) = 0 if v - i < 0. By Proposition 2.1.2 we have 
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(2.2.5) Ap (p6) a (p 0 N) = 
= l; p(k-2lB+(2k-3)v (ii+ (p") ii-(pV) II(pB) ii+ (p"-) a) (N). 

a.+B+v=6 

Carrying out a purely formal computation using (2.1.15), we come to the 
relation 

(2.2.6) (Ap (p) 2
- Ap (p 2

) - p 2
"-") a (p0 N) = 

=(ii+ (p") (p'"-• (II (p)' -II (p') + p -1) + p"-2A + (p) II (p) + 
+ p 3"-5II (p) ii- (p)) a) (N). 

If v ;;;. 4, the formulae obtained then give us 
bv ={[A+ (pv)-ii+ (pv-1) (ii+ (p) + p"-2II (p) + p2"-3ii- (p)) + 
+ii+ (pv-2) (p2•-4 (II (p) 2-II (p2) + p- 1) + p•-2ii + (p) II (p) + p'''-•II (p) A- (p))

- p'"-'ii+ (p•-') (A+ (p) + p•-2TI (p) + p'"-sii- (p)) + p•"-oii+ (pv-')l a} 

hence, using (2.1.15), we obtain 

bv = p2"-4 (ii+ (pv-2) (TI (p)2 - TI (p2) - (p+ 1)) a) (N). 

Similarly, since (tl-(p)a)(N) = 0 we find 

b,= p2
•-4 (ii+ (p) (TI (p) 2 -II (p')-(p+ 1)) a) (N), 

b, = ((p'"-• (II (p) 2 -n (p')-1) + p'''-511 (p) ii- (p)) a) (N), 

bi= - p•-2 (II (p) a) (N), 

bo= 1. 

Thus, to complete the proof of Proposition 2.2.1 it suffices to prove the 
following lemma. 

LEMM A 2.2.1. For every prime p the following operator identity /zot,1s:: 

A+(p)(II(p)2 - II(p 2 ) - (p + 1)) = 0. 

PROOF. By (2.1.16) and (2.1.15) we have 

ii•(p)II(p)'=ii•(p)Ta (r, (~ ;) r,) ii-(p)Ta (r1 (~ ;) r 1) A-(p)= 

=Ta (r, (~ ;) r,)'ii-( 

The following identity in the Hecke ring L(l) is well known and readily 
verified: 

r(r,(~ ;)r,)'=r(r,(~ ;,)r.)+(P+1ir(r1 (~ ;)r1). 

Since the mapping T --> T
0 

is a representation of £C1l, we have 

t.'(p)II(p)'=Ta (r1 (~ ;,) r,) ii-(Pl+(P+1JT (r1 (~ ~) r 1) ii-(p)= 

=ii+ (p) 11 (p2)-t (P+ 1) ii+ 
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This prove.s the lemma and the propo.sition. 

§2.3. The operators II(p~) and the composition of quadratic modules 

In this section we show that the operators II(p~) on Ill have a simple 
interpretation in terms of the composition of modules in imaginary quad
ratic fields. 

We start by recalling the basic definitions and facts of the theory of 
modules in quadratic fields. More detail can be found in [21], Ch. 2. 

Let K be an algebraic number field of finite degree over the field Q of 
rational numbers. A module' in K is any Z-module M C K. Every module 
M C K has a Z-basis, that is, a finite collection w1, ••• , Wm of elements 
of M such that every element of M has a unique expression as an linear 
combination of them with coefficients in Z. 

Two modules M 1 and M2 in K are said to be similar if M 1 = Oi.M2 for 
some a =F 0 in K. 

A module M of K is said to be full if QM = K. Every full module has 
a Z-basis of [K : Q] elements. A full module K that contains 1 and is 
itself a ring is called an order of K. 

If M is a module of K, the ring DM ={a EK; aM c M} is called the 
coefficient ring of the module M. The coefficient rings of similar modules 
coincide. For every full module there exists a similar module that is con
tained in its coefficient ring. 

The coefficient ring of any full module of K is an order of K. Every 
order of K is contained in the maximal order D of all the integers of K. 

Let M be a full module with basis w1 , ••• , °'n, where n = [K: Q]. The 
number D (M) = det(SPK/Q (w,wi)) is independent of the choice of basis 
and is called the discriminant of M. The discriminant of the maximal order 
D, 

d = d[( = d(D) 

is called the discriminant of K. 
Let M be a full module of a field K of degree n over Q, and let DM be 

its coefficient ring. In D"' we choose a basis e<1 , ••• , an, and 
w,, .. . , °'n in M. Then the absolute value of the determinant of the 

transition matrix from the first basis to the second, 

(2.3.1) N (Jlil) = J det (aii) ), where w, = ~ a;pi> 

is independent of the choices of bases, and is called the norm of M. If a 
full module M is contained in its coefficient ring £) M• then 
N(M) = [Du : M] (the index of M in Du). 

I 
\Ve only consider modules of finite type. 
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Now let K be a quadratic extension of Q. Every such field K is of the 
form K = Q Cy' d0 ), where d0 of= 0, 1 is a square-free rational integer. As 
basis of the maximal order D of Q(y' d 0 ) we can take the numbers 1 and 
w, where w = 1 + .j d, if d 0 = 1 (mod 4 ), and w = y' d0 if d 0 = 2 or 

2 

(mod 4 ). The discriminant d of O (in other words, the discriminant of th 
field Q(y'd0 )) is equal to d 0 in the first case, and to 4d0 in the second. 
Any order O' of Q(y' d 0 ) has the form 

(2.3.2) 01 = Z + Zfco, 

where fin the index [8 : 0 1J. The discriminant of 8 1 is equal to d/2. 
Let M 1 and M 2 be two full modules of K = Q(y' d). Then the set 

M 1M 2 is again a full module in K and is called the product of M 1 and 
M,. If Ou,= 81, and D,r, = 81o, then 

(2.3.3) 

where f is the greatest common divisor of f 1 and f 2 • For any two full 
modules M 1 and M 2 of K the following relation for the norms holds: 

(2.3. 4) N(lVI1lvI2 )=N(JVI1 )N(JVl2 ). 

For every full module M we denote by M the module that consists of the' 
conjugates ii. over Q of the elements a of M.M is a full module with the san) 
coefficient ring as M, and we have the formula 

(2.3.5) 

Mis said to be conjugate to M. 
Let D' be a fixed order of K. It follows from (2.3.3) and (2.3.5) thaf 

all the full modules of K having D' as coefficient ring form a commutat\y 
group under multiplication of modules. The quotient group of this group 
the subgroup of modules similar to O' is called the class group of module 
of the ring D', and is denoted by 

H(O')=H(D), 

where D is the discriminant of 8'. The group H(8') is finite for 
order D'. For the order h(D) of the group H(D) we have the formula 

(2.3.6) h (df') = h (d) (jJ (/) 

'l'i'Ul ' 
where if> and <p are the Euler functions of K and Q, respectively, and 
is the index of the group of units of 0 1 in the group of units of the 
maximal order 8. 

Suppose that !' divides f. Then the map 

(2.3.7) JV!-+ D1' M 

induces an epimorphism of the class group of modules of 0 1 onto 
class group of modules of 0 1·, which we denote by v(f, f): 



Euler products correspondlhg to Siegel modular fo~ of genus 2 

(2.3.8) v(f, /') :l!(d/2)-+ll(d/' 2) U' I/). 

Let us consider the relation between quadratic modules and prime 
numbers. 

73 

PROPOSITION 2.3.1. Let K = Q(y'd) be a quadratic field with discrimi-. 
nant d, and 0 1 an order of K with discriminant dj2. Suppose that p is a 
prime number not dividing f Then the existence of a full module M in K 
satisfying the conditions 

(2.3.9) 

is equivalent to the solubility of the congruence x 2 = d (mod 4p). If this 
congruence is soluble, then there are precisely two modules M 1 and M 2 

having the properties (2.3.9) if p does not divide d, and then M2 = M 1 , 

or precisely one such module M if p divides d. 
PROOF. We denote by {a,~) the full module M with the basis e<, ~. 

We use the following lemma, which is proved in [21], Ch. 2, §7, Lemma 
l. 

LEMMA 2.3.1. Let 'YE K, y ii Q; let a72 + b7 + c = 0, where a, b, 
c relatively prime rational integers with a > 0 (such a, b and c obviously 
exist, and are uniquely determined by 7). We set M = { 1, y }. Then 

(2.3.10) N(M)=1/a, OM={1, ay), D(OM)=b2 -4ac. 

Let M satisfy the conditions (2.3.9). Since the index of M in 0 1 is p, 
the smallest natural number contained in M is p. Hence M has a basis of 
the form p, P'Y : M = {p, py), with 'YE K. Let a72 + b7 + c = 0, where 
a, b and c are integers with (a, b, c) = I and a > 0. Then by Lemma 
2.3.1, p = N(M) = N(p)N {1, y)=p2/a, hence a= p. On the other hand, 
b2 

- 4ac = D = df2 . Thus, b2 = dj2 (mod 4p). Since d = 1 or 0 (mod 4) 
and (f, p) = 1, it follows that the congruence x 2 = d (mod 4p) is soluble. 
Conversely, if this congruence is soluble, then b 2 -4pc = d has a solution 
in integers (b, c). Since d is the discriminant, (p, b, c) = I. Consequently, 
(p, bf, cj2) = I. Let 'Y be a root of the equation p72 + bf'Y + cf2 = 0. 
Then it follows from Lemma 2.3.1 that the module M = {p, PY} satisfies 
the conditions (2.3.9). 

Let M, = {p, py,} (i = 1, 2) be two modules satisfying (2.3.9). As we 
have seen, the 'Y; satisfy equations of the form P'Yf + b;'Y; + C; = 0 (i = 1, 2), 
with (p, b;, c;) = 1 and b[ - 4pc; = dj2. Since bJ = df2 (mod 4p), we 
see that b 1 = ± b 2 (mod 2p). In the first case b 2 = b 1 + 2lp and 

M = { -b,±f Vd}-{ -b,±f Vd 
2 p, 2 - p, 2 l } -{ -b1±1Va} p - p, 2 • 

last module is equal to either M 1 or M 1 • Similarly, in the second case 
=-bi + 2/p and 

I 
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This completes the proof of the proposition, because if p divides d, then 
M 1 = M 1 . 

We conclude the survey part of this section with a description of the 
correspondence between modules in quadratic fields and binary quadratic 
forms. For definiteness, we restrict ourselves to imaginary quadratic fields, 
;since we do not need any others. 

First we recall some definitions. Let 

F (x, y) =ax2 + bxy + cy2 

be a binary quadratic form. The discriminant of F is the number 

D = d(F)=b2 
- 4ac. 

The form is called integral if a, b and c are integers. In this case the 
greatest common divisor 

e(F)=(a, b, c) 

is called the divisor of F; F is said to be primitive if e(j) = 1. With each 
binary form we associate the matrix 

( 
a b/2) 

N = N (F) = b/2 c • 

If F is positive definite then N > 0, and if F is integral, N E \Ji,. Two 
forms F and F 1 are said to be equivalent (in the narrow sense) if 

(2.3.11) N(F1)=
1UN(F)U, U E SL,(Z). 

This means that F 1 can be obtained from F by means of an integral line. 
change of variables with determinant 1. If F and F 1 are two equivalent" · 
forms, then d(F) = d(Fi) and e(F) = e(F1 ). The set of all integral forms'! 
with a fixed discriminant D of= 0 splits into finitely many classes of equi;< 
lent forms. 

Let K = Q(y'd) be an imaginary quadratic field with discriminant d. 
Let M be a full module in K. With every ordered basis IX, ~ of M, 
from the condition 

(2.3.12) ~ det ('.". ~) > 0 
' a ~ ' 

we associate the binary quadratic form 

(2.3.13) F=FM(x, y)=ax2 +bxy+cy2 = 
1 1 -

= N (M)N (ax+~y)= N (M) (ax+~y)(ax 

Clearly, F is positive definite. It follows easily from Lemma 2.3.1 
integral, primitive, and that d(F) = b 2 - 4ac = df2

, where df2 is the 
discriminant of the coefficient ring £),, = £)1 of M. Conversely, if 
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F(x, y) = ax 2 + bxy + cy 2 is a positive definite integral primitive form of 
discriminant df2 = b2 

- 4ac > 0, then 

(2.3.14) 

is a full module with coefficient ring 0 1. 

It is easy to check (see [21], Ch. 2, §7, Theorem 4), that the indicated 
correspondence defines a bijection between the set of all classes of similar 
modules of Q(y d) with the coefficient ring 0 1 and the set of all· classes of 
equivalent (in the narrow sense) positive definite integral primitive binary 
quadratic forms of discriminant d/2. As the first of these sets is a group, 
the second one can also be given a group structure. The group law on the 
classes of binary forms was first introduced and studied by Gauss and is 
called the composition of forms. We again denote by H(D) the group of 
all classes of equivalent (in the narrow sense) positive definite integral 
primitive binary quadratic forms of discriminant D. 

We now turn to the operators II(pP) (see §2.1). First of all, using the 
correspondence just described between binary quadratic forms and modules, 
we give another realization of the space fil (see (2.1.12)), or to be more 
precise, of one of its subspaces. 

(
a b/2) Each matrix N = b/

2 
c E 91 2 , with N > 0 can be regarded as the 

matrix of the positive definite integral binary quadratic form 

(2.3.15) F = F :N = ax2 + bxy + cy2
, 

and vice versa. For matrices N E 9c 2 we use the same definitions and 
notation as for the corresponding forms FN. In particular, 
e(N) = e(FN ), d(N) = d(FN ), and M(N) = M(FN) (see (2.3.14)). 

We denote by €f the space of all complex-valued functions ij5 on the 
product {1, 2, ... } x mi, where ~n is the set of all full modules of all 
imaginary quadratic extensions of Q satisfying the condition 
cp(m; M) = cp(m; M1 ) if Mand M1 lie in one and the same quadratic field 
and are similar. On the other hand, we denote by \11* the subset of \11 
consisting of functions that vanish on {NE ITT 2 ; det N = O}. 

If NE ITT,, N > 0, then N = e(N)N', where N' is primitive. We 
.associate with cp E \if a function (ii E \11 *, setting 

(2.3.16) 'l'(N)=qJ(e(N)N')=cp(e(N); M(N')). 

map (ii-+ 'l' is an isomorphism of the spaces §! and fil*. 
we can regard any operator on \11* as an operator on \1[, and 

conversely. In particular, carrying over to €f the operators (2.1.14 ), we 
at the operators 
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{

(ii+(m)cp)(m1; M)=<ilimm1; M), 

(2.3.17) (ti-( )-)( . M)-{cp(mi/m; M) ifm I m 1 , 
m cp m,, - 0 if m X m,, 

for qi E §1 , and m = 1, 2, .... We now turn to the operators Il(p~). 
THEOREM 2.3.1. Let (j) E §1. and let m be a natural number. Let 

K = Q(yd) be an imaginary quadratic field of discriminant d, and M a 
full module in K with coefficient ring 8 1. Suppose that p is a prime 
number with (p, m) = l. Then 

(I) if (p, f) = 1, if the congruence x2 = d (mod 4p) is soluble and p 
does not divide, d, then 

(Il(p~)cp)(m; M)=cp(m; $BMJ+cp(m;\j3~M) (~=1, 2, ... ), 

where$ and m are the modules of index p in 8 1 with coefficient ring 
8 1 (see Proposition 2.3.1 ); 

(II) if (p, f) = 1, if the congruence x 2 = d (mod 4p) is soluble, and p 
divides d, then 

(TI (pB) (jl) (m; M) = {cp (m; $M), if ~ = 1 
0 ' if~ > 1, 

where $ is the submodule of 8 1 of index p with coefficient ring 8 1 
(see Proposition 2.3.1 ); 

(Ill) if (p, f) = 1 and the congruence x 2 = d (mod 4p) is soluble, 

(Il(pB)(jl)(m; M)=O (~ = 1, 2, ... ); 

(IV) if p divides f. then 

(Il(p)<Pj(m; M) ={j)(pm; 8 11pM), 

where 81/P is the order of K with discriminant d(f/p) 2 (compare 
PROOF. Let 

F(x, y)=F.11(x, y)=ax2 + bxy + cy2 , (a, b, c)=1, b' - 4ac = d/2
, 

be the binary quadratic form corresponding to the module M under 
(2.3.13). We consider the congruence 

(2.3.18) F(x, y)=ax2 + bxy + cy2 == 0 (mod pB). 

Let us call a solution (u 1 , u 2 ) of (2.3.18) primitive if (u 1 , u 2 ) = J. We ; ' 
introduce the equivalence relation (2.1.5) in the set of all primitive solutff\,' 
of the congruence (2.3.18). It is easy to verify that in case (I) (2.3.18) I\ 
precisely two inequivalent primitive solutions, in case (II) there are no . 
primitive solutions if ~ > 1, and if ~ = 1, then all primitive solutions ar~ 
equivalent; in case (Ill) there are no primitive solutions, and in case (IV) 
all primitive solutions are equivalent if ~ = 1. Hence and from (2. J.17} i 
follows that the theorem holds in case (II) for ~ > 1 and in case (Ill) 
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(for U = (~: ~:),au= au;+ bu1u2 +cu;). 

CASE (!). Let (u 1 , u2 ) and (u;, u~) be two inequivalent primitive solu
tions of (2.3.18). Since b 2 - 4ac ¢Cl (mod p), we may assume that 
F(u 1 , u2 ) = p~a 1 , F(u;, u;) = p~a2 , where (a 1 , p) = (a 2 , p) = 1. We choose 
integers v1 , v2 , v;, v~ such that 

(u1 u2 ) (u; u;) U, = ESL2(Z), U 2 = , , ESL.(Z). 
v, ~ ~ ~ 

( 
a b/2 1 

We denote by N = b/2 c } the matrix of F and set 

bi/2) * _ ( a, 
c

1 
' N, - b

1
/2 

b2/2) • 
C2 

b,/2 ) 
pBc

2 
• 

'a pB 
t ( 2 N 2 =U2NU2 = b,/Z 

Then, by definition (see (2.1.17)), 

(II (pB) ';p) (m, M) =qi (mNn +qi (mN; ), 

where qi is the function in 0:* corresponding to (j) E 12!' (see (2.3.16)). We 
consider the modules 

n = {pB b1-fl/d} "' _ {pB b2-fVd} 
"'-"i , 2 , u2- ' 2 

of the field Q(,./d). It follows from Lemma 2.3.1 that the coefficient ring 
of each of these modules is ()1, that they are both contained in D1 , 

and that N(u1) =NfDd= pB. We claim that D1 +02 =Dt· To see this 

it is obviously sufficient to check that ( b,-;:b' , p) = 1. We set 

U2Uj1 = T = (t' 12
) E SLz(Z). 

13 t, 
Since the solutions (u 1 , u 2 ) and (u;, u;J are inequivalent, 
12 = u 1 u; - u2 u; ¢0 (mod p). From the fact that TN1 

1T = N 2 it 
followsthata 1 p~t'f +b 1 1112 +c1 1~ =a2 p~ and 
2a,p~l 1 1 3 + b 1 (1 1 14 + 12 14 ) + 2c 1 12 t 4 = b 2 . The congruence 
b,1, + c1 12 = 0 (mod p) follows from the first equality; from the second 
it follows that b, -b, = 12 (b 1 13 + c 1 14 ) (mod p~). If b, -b, were divisible 

2 2 

by p, we would have the system of congruences 
b1t1 + c 1 t4 = b 1 t 3 + c1 t 4 = 0 (mod p), which would imply that 
b1 = c 1 = 0 (mod p), which is impossible, because bi - p~a 1 c1 = df2 is 

divisible by p. From what we have proved it follows that 
O, = ~B, £:;2 = ~B, where ~ and ~ are the unique pair of submodules of 

of index p with coefficient ring f)1 . Let M 1 , M !", M,, Mi be the 
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modules of Q(yd) correi;p.onding to ihe matrices Ni, Ni, N 2 , NJ', 
·:espectively. Then since (a1 , p) = 1, we have 

M*"'B _ { b1 - I Yd} { B bi - I Yd} _ { B bi - I Yd} _ M 
1 ..P - ai, 2 p , 2 - aip , 2 - 1, 

from which, using (2.3.5) we deduce that the module Mi is similar to 
M1~B. Similarly one checks that M{ is similar to M 2$B. Thus, since M 1 

and M 2 are similar to M, we have 

(II (pB) <Pl (m; M) =er (m; MrJ + q; (m; Mi)= q; (m; M~B) + q; (m; M$B). 

This proves {I). 
CASE {II). As was pointed out above, we need only consider the case 

~ = 1. Let {u 1 , u2 ) be a primitive solution of (2.3.18). Since this con
gruence does not have any primitive $Olutions modulo p2 , we have 
F(u 1 , u 2 ) = a 1p, with (a 1 , p) = I. We choose integers u1 , v2 such that 

U = ('u, u2
) E SL2 (Z). 

V1 Vz 

Let 

b/2) _ , _ ( a1p b1/2) . ., ( a1 b1/2) , N1-UNU- , I'v,= , 
c , b1/2 C1 b1/2 pc1 

and let M, M 1 and M ( be the modules corresponding to the matrices N, 
N1 and Ni, respectively. According to the definition, in this case 
(Il{p)cp){m; M) = cp (m; Mt), so that we need only check that Mi is 

similar to M$. It follows from Lemma 2.3.1 that $ = { p, bi-~ V d } 

hence 

Mf$= {a,,~ (b1-fVd)} {p, ~ (b1-fVd) }= { a,p, ~ (b1-fVd)} = 
Since M 1 is similar to M and $ 2 =\\Sill is similar to 8 1 , we see that M 
is similar to M$ , and (II) is proved. 

CASE {IV). Let {u 1 , u2 ) be the unique primitive solution (up to 
equivalence) of the congruence (2.3.18) modulo p; let u1 , v2 be integer 
such that 

U = ('ui u2
) ESL, (Z). 

V1 Vz 

We set 

N (a b/2), N1=UN'U= (pa, b,/2)' N",·'= (a, b,/2)'. 
= b/2 c bi/2 c1 bi/2 pc1 

Since bi - 4pa 1 c1 = df2 = 0 (mod p 2 ), we have b 1 = 0 (mod p). Si!l.c 
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the matrix N 1 is primitive together with N, we have (c 1 , p) = I. It follows 
that a1 == 0 (mod p) (this is trivial for p of= 2; for p = 2 we have to take 
into account that d == 1 or 0 (mod 4)). We set Ni* = pN2 • From what we 
have just said it follows that N2 is semi-integral; it is easy to see that N2 

is primitive. According to (2.1.17) we have (II(p)cp(m; M) = rp(mpN2 ), 

where rp is the function in 121"* corresponding to <P. Let M 1 and M 2 be the 
modules corresponding to the matrices N 1 and N 2 , respectively. Since M 1 

[s similar to M, we need only check that M2 is similar to f)t!PM1 • By 
Lemma 2.3.1, 

-{ b1-t-Vd b1-f-Vd} { b1-f-Vd} - pa1, a 1c1, 2 , ai 2 = ai, 
2 

= pll12 

twe have used the fact that (c 1 , p) = 1). This proves (IV). 
Below we need the following lemma, which is not a formal consequence 

of Theorem 2.3.1. 
LEM MA 2.3.2. In the notation and under the hypotheses of case (IV) of 

Theorem 2.3.1, the following identity holds for every cp E j : 

((JI(p)2-II(p2)-1)cp)(m, M)=O. 

PROOF. In the notation introduced in the proof of case (IV) of Theorem 

2.3.1, we have (II(p)cp(mM) = cp(mpN2 ). Since the matrices (p 0) and 

(
1 l) 0 1 
0 p (for l = 0' l ' ... ' p - 1) form a left transversal to r I in 

r, (~ ~) r,, by definition of the operators II(p) (see (2.1.13) and (2.1.16)) 

(II(p) 2 <p)(mN)=~:'f!(m(~ :)N:(~ :))+rp(m(~ ~)N21 (~ ~))= 
P;' ( (a~ +. l~1 + l'c, b~ + plc,)') r 

= ~ <p m b +cp(mi\ 1). 

z~o T + plc, p 2c1 

•on the other hand, since a1 == 0 (mod p), any primitive solution of the 
pongruence (2.3.18) modulo p is also a solution mod p 2 . It then follows 
that the set (u 1 +Iv,, u2 + lv2 ) (for l = 0, l, ... , p - l) is a complete 
~\'t of mod p 2 inequivalent primitive solutions of the congruence (2.3.18) 
.mod p 2

, and hence (see 2.1.17)) 
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(Il (p2) cp) (mN) = 

u.+ lv2 ) N' (u1 +lv1 u2 + lv2 ) (1 0)) = 
V2 V1 V2 0 p2 

• 

p-! 

= ~ (.!'.':.. ( 1 0) (u1 + lv1 

1~0 <p p2 0 p' v, 

_ p-1 ( ( 'i + z;1 + l2c1 b~ + plc, ))· · 
-Li<pm b 

1~0 :[-+ plc, p 2c1 

Comparing the expressions obtained and noting that <p(mN1 ) = <p(mN), we 
came to the assertion of the lemma. 

The following theorem, or more precisely a corollary of it, is needed in 
the proof of the functional equation for Euler products. This is an analogue 
to Theorem 2.3.1 for the case when m is divisible by p and ~ = I. .. 

THEOREM 2.3.2. Let Cjl E \ii, let K = Q(yld) be an imaginary quadratic' 
field with discriminant d. and let M be a full module in K with coefficient 
ring 0 1• Then for any prime number p and any natural number m the · 
following formula holds for the action of the operator Il(p); 

(Il(p)cp)(pm; M)=(A)+ ePI "1 cp(m; M;), 
, CJ LI 

where 
(2.3.19) 

{M;)EH(d(pl)2), 
v(pf, IHM;J~{MJ 

(A)= cp (pm; ~M) + cp (pm; \j'iM) 

if (p, f) = 1, if the congruence x2 = d (mod 4p) is soluble and p does 
divide d; here ~ and ~ are the submodules of 0 1 of index p with 
coefficient ring 0 1; 

(2.3.20) (A)=cp(pm; ~M) 

if (p, f) = 1, x2 = d (mod 4p) is soluble and p divides d; here~ is the 
submodule of index p in 0 1 with coefficient ring 0 1; 

(2.3.21) 

if (p, f) = 1, x 2 

(2.3.22) 

(A)=O 

= d (mod 4p) is insoluble, and 

(A) '(ji(p 2m; 011pM) 

if p divides f (see Theorem 2.3.1 and Proposition 2.3. l ); in the sum on 
right-hand side e

8 
denotes the index of the group of units of 0 6 in 

group of units of 0, {M'} the similarity class of the module M ', and 
the epimorphism (2.3.8). 

PROOF. In the computations to follow we go over wherever cor1Ve11ier 
from the language of modules to the language of matrices or quadratic 
and vice versa. In particular, let 

( 
a b/2) 

N = b/2 c , b2 -4ac =df', 
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be the semi-integral primitive positive definite matrix corresponding to the 
module M, and let cp E 'll* be the function corresponding to cp (see (2.3.13) 
and (2.3.16)). According to (2.1.17) we have 

(II (p) cp) (pm; M) = ~ cp (m (~ 0
) U N'U (~ OJ J =(A)+ (B), 

UER(p) p Pl I 

where 

(B) = 2} 
U~(u1u2)ER(p) 

v1v2 ' 

auf+bit1u2+cu~$O (mod'p) 

As far as the sum (A) is concerned, it follows from the proof of Theorem 
2.3.l that one of the formulae (2.3.19)-(2.3.22) holds for it, according as 
to which of the clauses are satisfied. Thus, to prove the theorem it remains 
to check that (B) is equal to 

(2.3.23) (B) = 'Pf 
'f 

] cp (m; M;). 
{1\Ji}EH (d(p/)2), 

v(pf, /){l\Ii}={lli} 

Obviously the summation in (B) is precisely over those U E R(p) for which 

the matrix Nu=(~ ~) UN'U (~ ~) is primitive. 

(
a b/2) 

LEM MA 2.3.3. Let N = b/
2 

c, be a semi-integral primitive positive 

definite matrix of discriminant D = b2 - 4ac = df2 , and p a prime number. 
Then for every U E R(p) for which the matrix Nu is primitive, we have 
v(p/, f){Nu}={N}, and conversely, every primitive matrix N' of discrimi
nant d(pf)2 such that v(pf, !){ N' }= {N}, is equivalent to some matrix Nu 
(with U E R(p)) (we denote by {N'} the equivalence class in the narrow 
sense of the matrix N', and by v(,) the map on groups of equivalence 
classes of matrices that corresponds to the map (2.3.8) on module class 
groups). 

PR 0 0 F 0 F THE LEMM A. Replacing N by UN 1U, we see that the first 
assertion need only be checked in the particular case when U = £ 2 and 

a¢ 0 (mod p). We set tu=~ (b -y!D). Then in the case under discussion to 

the matrix N there corresponds the module {a, tu}, and to Nu = NE the 
' '>"1uuu1e {a,ptu}. It is required to prove that 0 1{a,pw} is similar to 
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{a, w}. Since D1 ={1, w} and (a, p) = 1, we have 

D1{a, pw}={a, wp, wa, pbw - pac}={a, w}. 

( 
a' b'/2) 

Conversely, let N' = b' 
12 

c' . At the expense of passing to an 

equivalent matrix we may suppose that c' == 0 (mod p). Since 
(b') 2 -4a'c' =d(pf) 2 ==O(modp 2

) andN' is primitive, we then have 
b' == 0 (mod p) and c' == 0 (mod p 2 ) (the latter is obvious if p 4= 2, 
and if p = 2, we must take into account that d == 0 or 1 (mod 4)). Thus 

( 
a, pbi/2) 

N' = pbi/2 p'ci , and (a" p) = 1. We have to check that the matrix 

( 
b /2\ 

N, = b~~ 1 I is equivalent to N. We set w1 = l (b 1 - ..jD) and 
11""" Ct I 2 

w = ~ (b - ..jD). Then M(N') = {ai, pw1}, M(Ni) = {a1, w1}, and 
M(N) ={a, w}. By assumption, D1{ai, pw1} ~{a, w), but 

, 

Di{ai, pw1}={1, w1}{a1, pw,}={a,, w1}· Thus, the modules M(Ni) and 
M(N) are similar, and hence N 1 is equivalent to N, which proves the lennma; 

Since 
(2.3.24) (B) = Li 

UER(p), 
Nu !)rimitive 

by Lemma 2.3.3, to prove (2.3.33) it suffices to check that in this sum 
each class {Nu} occurs precisely eptfet times. 

Bearing in mind the fact that there are precisely two units in the ordeL.< 
of an imaginary quadratic field, apart from the maximal orders of the 
fields Q(..j-4) and Q(..j-3), where there are, respectively, 4 and 6 units, 
we find that 

(2.3.25) 
{ 

2 if d = -4, t = 1 
'pf= 3 if d= -3, /=1 
e. 
1 1 otherwise 

We consider the following four cases: 
(I) (p, fl = (p ,d) = 1, and the congruence x2 == d (mod 4p) is soltible 
(II) (p, fl= 1, (p, d) = p, and the congruence x2 == d (mod 4p) is 

soluble; 
(Ill) (p, fl = 1, and the congruence x 2 == d (mod 4p) is insoluble; 
(IV) (p, fl = p. 

Since the number of elements of the set R(p) is p + 1, and the number_;: 
of mod p inequivalent primitive solutions of the congruence ·· 
ax2 + bxy + cy 2 == 0 (mod p) (see (2.1.5)) is equal in the cases (!), (ll)i 
(Ill), and (IV) to 2, 1, 0, and 1, respectively (see the proof of Theorem 
2.3.1), the number of terms in the sum (2.3.24) is p - 1, p, p + 1, and 
in the cases (!), (II), (III) and (IV), respectively. 
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On the other hand, by (2.3.6) the number of distinct classes 
{N'} E H(d(pf) 2

) such that v(pf,. !){ N' )= {N) that is, the order of the kernel 
of the epimorphism v(pf, f) is equal to 

h (d (pf)Z) 
h (df') 

-"-L. <!J (pf) <jl(f) 
'pf qi (I) • <p (pl) . 

It is easy to verify that this number in the four cases (I) - (IV), 
respectively, is equal to 

(2.3.26) 

Comparing these numbers with the number of terms in the sum (2.3.24) 
and taking Lemma 2.3.3 into account, we see that (2.3.23) holds if 

er = epf· 
According to (2.3.25) it remains to consider two cases: d = -4, f = 

and d = -3, f = I. Let d = -4, f = I; in this case we can take for N the 
identity matrix £ 2 • By definition (see §2.1), the elements of R(p) can be 
enumerated by the points (u 1 , u2 ) of the projective line mod p. We 
consider the automorphism a of this line defined by a(u 1 , u2 ) = (-u 1 , u2 ). 

This automorphism is of order 2, and it is easy to see that its fixed points 
are precisely the equivalence classes mod p (see (2.1.5)) of primitive 
solutions of the congruence ui + u~ "' 0 (mod p). Thus, on the set of 

classes (u 1 , u2 ) for which the matrix Nu is primitive ( U = (~1 u,)), a 
acts without fixed points. Since 1"1 v, 

( -u
2 

"') (1 0)' (--u 2 u1
) = ("' u

2
) (1 0)' ('.'' "'), 

-Vz Vi. 0 1 - Vz V1 V1 Vz 0 1 V1 Vz 

in this case every class {Nu) occurs at least twice in the sum (2.3.24), and 
(2.3.23) follows from Lemma 2.3.3 if we compare the number of terms in 
(2.3.24) with the numbers (2.3.26). 

The discussion of the case d = -3, f = 1 is similar. Here we can take N 
11 112) 

to be \-112 1 
, and consider the automorphism T of order 3 of the pra-

line mod p given by T(u 1 , u2) = (u 1 + u,, -u 1 ). The theorem is 
now proved. 

§2.4. Euler products 

In this section, using the formulae obtained above, we establish explicit 
between the eigenvalues of the Hecke operators on the space ~Jn 

modular forms of genus 2 and weight k and the Fourier coefficients of 
eigenfunctions. As we have seen in § 1.2, in the case of modular forms 

1, these connections look equally simple in the language of the 
themselves and in the language of the corresponding Dirichlet 
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series (see (1.2.11) and (1.2.16)). For genus 2 the language of Dirichlet 
series turns out to be more natural. Here, instead of the single identity 
(1.2.16) there arises a infinite series of identities, numbered by the equiva- · 
Jenee classes in the narrow sense of positive definite integral primitive binary 
quadratic forms. 

Let 

F (Z) = 2:; a (N) exp (2nia (NZ)) E m;t 
NEfil2, N~O 

be a modular form of genus 2 and weight k. Suppose that F is an eigen
function of all the Hecke operators Tk(m) (for m = 1, 2, ... ): 

T1Jm)F = A.F(m)F (m = 1, 2, ... ). 

As in §2.2, we define for every prime p the polynomial 

Qp. F(t)=1 - A.F(p)t +(A.F(P)2 
- A.F(p2)-p'"-')t2 - AF(p)p'"-•t•+p'"-'t'. 

As we have seen in §2.2 (see the Corollary of Theorem 2.2.1), in some 
right half-plane Re s > a we have the identity 

p m=i 

where l(s) is the Riemann zeta-function. 
On the other hand, let us fix some integer D < 0. We denote by d the 

discriminant of the imaginary quadratic field K = Q(yD), so that D = 
For every character X of the class gr(jlup H(D1)=H(D) of similar modules 
of K with coefficient ring Di, we denote by 

II ( x (\13) ) -1 
LD (s, X) = 1 - (N'll)' 

;ii 

(Res>1), 

the £-series of fJ1 with character x, where in the product :(5 ranges over a 
the prime ideals of D1 whose coefficient ring is f)1 and whose norms are' 
coprime to f (every ideal is also a full module). In §2.3 we have defined;. 
a bijection between the set of equivalence classes in the narrow sense of 

( a b/2) 
positive definite matrices N = \ b/Z c E m2 with discriminant 

b 2 
- 4ac = D and the set of similarity classes of modules of K = Q(y D)' 

with coefficient ring fJ1. This bijection allows us to introduce on the se 
of equivalence classes of matrices, the structure of an Abelian group whi.c 
we continue to denote H(D). 

In this notation, the main result of the present chapter can be 
summarized as follows: 

THEOREM 2.4. l. For every integer D = df2 < 0 and every character• 
of the group H(D), the following identity holds in some right half-plane· 
Res> a: 
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h 00 

L ( -k+ 2 ) "1 ("·) "1 a(mN;) 
D S ' X LJ X iv i LJ ms 

i=i Til=i p 

where N; (for i = 1, 2, ... , h = h(D)) is a complete system of representatives 
of the equivalence classes in the narrow sense of positive definite primitive 
matrices N E ITT, with discriminant D and 

h 

<PF(s, x)= ~ x(N,) {II ( 1-P~~~;) ( 1- P~=2~}3 ) a} (N;); 
i=i Pl! 

here p ranges over the prime factors off. the Fourier coefficients a(N) of 
Fare regarded as the values of some function a E W (see (2.1.12)), and 
Il(p) and t.-(p) are the operators on W defined in §2.1 (see (2.1.14) and 
(2.1.16)). 

REMARK. The function cf>F(s, x) can be computed explicitly on the basis 
of the formulae in § 2.3 (see (2.3.17) and the formula in case (IV) of 
Theorem 2.3.1). Let M; be modules corresponding to the binary forms 
with matrices N; (see (2.3.14)), let a(m; M) be the function in W corres
ponding to a(N) (see (2.3.16)). Then 

h 

(2 4 1) I ( ) "' µ (61) µ (6)1 "1 M - ( 6 . ) 
. . OF s, X = L! 6,-1>+26;-2•+3 LJ X ( ;) a T, , 01f6M; , 

61!6!/ i=1 

where µ is the Mobius function. 
PR 0 0 F 0 F TH E TH E 0 R EM . The absolute convergence of the left- and 

right-hand sides of the identity in some right half-plane follows from 
(1.1.11) and the results of § 1.3. 

Let M; = M(FN.) (see (2.3.15) and (2.3.14)), and let a(m; M) be the 
- l 

function in W corresponding to a(n) (see (2.3.16)). For every prime p and 
every natural number m such that (m, p) = I we now compute the series 

00 h h 

~ a (mp6
; X) p- 6', where a (n, X) = ;E a (nN;) X (N;) = LJ a (n; M;) X (M;). 

6-0 1=1 i=l 

For brevity we call an ideal of 0 1 regular if its coefficient ring coincides 
11ith 0 1. Accm:ding to Proposition 2.3.1 and Theorem 2.3.1, the following 
cases are possible. 

(!) p does not divide f and 0 1. has precisely two regular prime ideals ~ 
and 1ji of norm p. In this case we have, by the first part of Theorem 
2.3.1, 

(II (p) a) (m; M;) = a(m; \jSM;) + a(m; ~M;), 

((IT(p)'-IT(p')-1)a) (m; M;)=a(m; \:152111,)+Za(m; .~ij'lM,)+ 

+a (m; ;j:$ 2Jl.f;)- a (m; )\52M;)-a (m; ~2Jl!l;)-a (m; M,) =a (m; M;), 

the module )jli(lM; = pM; is similar to M; and 



86 A. N. Andrianov 

(II (p) L'>- (p) (;) (m; M 1) = (L'>- (p)(;) (m; \jlM 1) + (L'>- (p) a) (m; )ilM 1) = 0. 

Thus, by Proposition 2.2.1 we obtain: 

00 

(2.4.2) { ~ a (mp6, x) p- 6'} Qp. F (p-') = 
0=0 

h -
'1 {- 1 - . - - a (m· M ·) } 

= L.J x (iv!,) a (m; 111;)- p•-•+z (a (m; ~M;) +a (m; ~M;)) + P2,~2h+~ = 
i=1 

= a (rw, v) X ($) + % (i.jl) a (m v) + 1 a (m v) 
/I, pS Jt+2 7 A p2S 2k+4 ' A = 

(II) p does not divide f and D1 has just one regular prime ideal jj5 =")fl 
norm p. In this case we have, by the second part of Theorem 2.3.1, 

(II (p) aj (m; M,) =a (m; jjSM,), 

((II \p)2 -II (p2)-1) a) (m; M1) =a (m; \)52M 1)-a (m; M 1) =0, 

since the module 

is similar to M;, and 

(II (p) L'>- (p) a) (m; M 1) = (L'>- (p) a) (m; \)SM;)= 0. 

Thus, by Proposition 2.2. I we obtain: 
00 

(2.4.3) { 2,; a (mp0 , X) p-6•} Qp. F (p-') = 
0=0 

h 

= ~ x(M,) {a(m; M,) 
i=1 

( x ($) ) 
= 1 - (N$)•-•+2 a (m, 

(Ill) p does not divide f and D1 has no prime ideal of norm p. In 
case jj5 = p[)1 is a regular prime ideal of norm p2 • 

By the third part of Theorem 2.3. I, we obtain: 

(II (p) a) (m; iVl1) = 0, 

((II(p) 2-II(p2)-1)';;) (m; iVI,)= -:i'(m; iV11), 

(II (p) L'>-(p) :i') (m; 111;) =0, 

and hence, by Proposition 2.2.1, 
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00 

(2.4.4) { ~ a (mp6, x) p-6'} Q,,. F (p-') = 
6=0 

h {- 1 - } = ~ x (M,) a (m; il!f;)-- P2,_2•+• a (m; M;) = 
i~! x (!ll) ) 

= ( 1 - (N!1l)' •+2 a (m, X) 

(x (~) = x (pD1) = 1). 
(IV) p divides f. In this case, using Proposition 2.2.1 and Lemma 2.3.2, 

we obtain: 

(2.4.5) { ~ a(mp6, J;'.) p-6•} Qp. F (p-;) = 

6=0 

h 

= ~ x(M;) {a(m; M,) ~p,,....•'""+2,-(II (p) a) (m; M,)+ 
i=i 

+ -P~2,-;=,-.,-(II (p) 11- (p) llj (m; Mi)} = 

h 

'V (M ) { ( 1 II (p) ) ( 1 !!.- (p) 
= L.J X i - ps-h+2 - ps-2k+3 

i=i 

) a} (m; 1vl,). 

The assertion of the theorem is a formal consequence of the identities 
(2.4.2)-(2.4.5): applying for each p the corresponding identity (it is con
venient to consider first the primes p that are coprime to f, and then the 
p dividing f), we obtain 

00 

{ ~ a<:; X) } II Qp, F (p-') = 
m=i p .. 

h 

= ~ x(M,) {II( 1- p~-~}2 )(1- !!.-(p) )-}(1 l!f) IT(·! X(!1l) ) 
ps 2k+3 a ' j i - (N~)S h+Z ,. 

i=t p]f !1l 

where jj5 ranges over all the regular prime ideals of D1 of norm coprime 
to f. 

The theorem is now proved. 

Chapter 3 

ANALYTIC CONTINUABILITY AND THE FUNCTIONAL EQUATION 
FOR GENUS 2 

§3.1. The main theorem 

This chapter is devoted to a proof of the main theorem, which we now 
state. 

THEOREM 3.1.1. Let FE Wn ·be a modular form of genus 2 and 
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weight k (for integral k > 0). Suppose that F is an eigenfunction of all the 
Hecke operators Tk(m) (see (1.3.15)): Tk (m)F = f-F(m)F (form= l, 2, ... ). 
For every prime number p, let 

Qp.F(t)=i - AF(p)t + (AF(p)2-AF(p')-p 2
k-4)t2 - AF(p)p2k-3 t3 + p"-'t', 

and for Res> a, let 

( =~(2s-2k+4) '1 1.F(m)) 
LJ 1n 8 

p m=i 

be the zeta-function of F (see § § 1.3 and 2.2). We set 

1¥p(s)=(2n)-"f(s)f(s - k + 2)ZF(s), 

where r(s) is the gamm.a-function. Then the following assertions hold: 
(I) the function >JI F(s) can be continued analytically to the whole S

plane as a meromorphic function having at most finitely many poles; 
(II) >JI F(s) satisfies the functional equation >JI F(2k - 2 -s)=C-ll'l' F(s); 
(Ill) if <PF =I= 0, where if> is the Siegel operator ( 1.1.12), then 

>JI F(s) = cw<l>F(s)tp<l>F(s - k + 2), where 'P<1>F(s) is the function of Theorem 
1.2.4 corresponding to the modular form <PF E ~Jik, and c is a certain 
constant; in particular, >JI F(s) has four simple poles at the points 
s = 0, k-2, k, 2k- 2 if <PF is an Eisenstein series, and is an entire function· 
if <PF is a parabolic form; 

(IV) if <PF= 0, that is, if F is a parabolic form, then >JI F(s) has at most/ 
two simple poles at the points s = k-2, k; if k is odd, then >JI F(s) is an 
entire function. 

§3.2. Reduction to the case of parabolic forms 

In this section we show that Theorem 3.1.1 holds when F is not a para', 
bolic form, that is, when <PF =I= 0. 

In this case, either by Theorem 1.3.3. or by direct computation based 
on the relations of Maass [7], as in [12], we obtain the relation 

(3.2.1) 

(for Re s sufficiently large), where Z<I>F(s) is the zeta-function of the 
<PF E W11'. By Theorem 1.2.2, the Euler product Z<t>F(s) = D<t>F(s) is a 
multiple of the Dirichlet series R<I>F(s) corresponding to <PF. Then l};<!>F(s)' 
is a multiple of the function (211)-'r(s)Z<1>F(s), from which the assertion 
(Ill) of Theorem 3.1.1 follows. The remaining assertions follow from (Ill) 
and the properties of l};<I>F(s) listed in the first part of Theorem 1.2.4. 
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§ 3.3. The integral representation (I) 

To prove Theorem 3.1.1 for parabolic forms we set off from the 
identities of Theorem 2.4.1. The left-hand sides of these identities admit an 
integral representation, from which the theorem follows. Here we take the 
first step towards setting up this integral representation. 

Let F E ITT~ be a parabolic form with Fourier coefficients a(N) (for 
N E ITT,, N > 0). The Dirichlet series on the left-hand sides of the 
identities of Theorem 2.4.1 can be expressed in terms of series of the form 

00 

(3.3.1) 'V a (mN) 
RN (s)=RN. F (s) = LJ "" , 

where N = ( b~2 blc
2

) is an arbitrary positive definite semi-integral primitive 

matrix. It follows from (I.I.IS) that the series RN(s) is absolutely conver
gent in the domain Re s > k + I. We set 

(3.3.2) { 
XN (R) ={XE M, (R); 'X = x, CT (XN) = O}, 

xN(Z)=XN(R) n M,(z), 

where CT, as usual, denotes the trace. For every M E ITT,, the function 
exp(27TiCT(MX)) is a character of the compact group XN(R)/XN(Z). This 
character is trivial if and only if M is a multiple of N : M = mN (for some 
m E Z). Thus, 

(3.3.3) exp (2niCT (MX))dX = { 1 if M . mN, 
0 otherwise 

where dX is the normalized Haar measure on XN(R)/XN(Z). We set 

- ( c -b/2) N = -b/
2 

a and let v > 0 be a real number. Integrating term-by-

term the Fourier expansion of F over XN(R)/XN(Z) and using (3.3.3) we 

(3.3.4) 

~ ( N) . (- 2>tvma(NN) )-
- LJ a m exp V det N -

m=i 
00 

- L a(mN)exp(-4:rt]ldetN vm) 
m=i 
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(a(ON) = 0, since F is a parabolic form). Using the Mellin integral 
00 

(3.3.5) J exp(-av)v'-1 dv=r(s)a-' (a>O, Res>O), 
0 

we obtain 

(3.3.6) (4n y det N)-' r (s) RN (s)= 

.1 
~Y s(R)/X ,:v(Z) 

F (X-J iv Fi)dX}v'-1 dv, 
\/detN 

where RN(s) is the series (3.3.1). As we have noted, the left-hand side of 
this identity is absolutely convergent in the domain Re s > k + 1. It 
follows from (3.3.4) that the inner integral on the right-hand side tends 
zero exponentially as v -+ + 00 . It follows from this and the estimate ( 1. ( 
that the right-hand side converges absolutely in the domain Re s > k. 

§ 3.4. Hyperbolic geometry 

The integral representation (3.3.6) shows that the Dirichlet series RN(s) 
in which we are interested can be obtained by some sort of integration of 
the restriction of F to a (real) three-dimensional domain HN C H2 • The •· 
subsequent transformations of this representation are essentially based on '··· 
the fortunate circumstance that the Siegel modular group r 2 = Sp2 (Z) has''' 
a rather large subgroup r N which acts on HN as an automorphism group i 
(for instance, rN VIN has finite invariant volume). In this section we con:;; 
sider the geometrical side of this situation. 

We introduce some notation. For A=(: :) we set 

(3.!i.1) - ( d -c) 
A= -b a, =J,AJ~' 

Obviously, we have 

(3.4.2) 

If N is a real symmetric positive definite 2 X 2 matrix, we set 

(3.4.3) 
{ 

XN= XN (R) ={XE 1112 (R); 'X = X, a (XN) = O}, 

Ys=YN(R)={_YE!V]z(R); YN'Y=dctY·N, detY;> 

{ 
w - } Ifs= x+ v N; XEXN, v>O cll2-
det1V 

THEOREM 3.4.l. Let NE M2 (R), with 'N = N and N > 0. We set 

(3.4.4) G.v={ (~ ~); AEY:\', BEXN, CEX;v, DEYN, A'D-B'C= 1 
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Then GN is a subgroup of the real symplectic group Sp2 (R) of genus 2. For 

every M = ( ~ ~) E GN the transformation 

(3.4.5) z-+ M (Z) =(AZ+ B) (CZ+ D)-l (Z EHN) 

is an analytic automorphism of the domain HN C H2 ; the group GN acts 
transitively on HN. 

PROOF. It follows at once from the definition that for any 
g E GL2 (R), the following sets are equal: 

(3.4 .. 6) XN='gXgN'gg, YN=g-'YgN'gg, 

(3.4.7) HN = 'gHgNtgg. 

It follows from (3.4.6) and (3.4.2) that 
- - t 

{ 
x.,, = t gX____., g = g-1 x____.,. g-1, 

I gNtg gNig 

Y- =g-1y____.,g='gy____.,'g-1. 
J.V gNtg giVtP. 

(3.4.8) 

It follows from (3.4.4), (3.4.6), and (3.4.8) that 

(3.4.9) G.v=MgG,N1g1VTg', where Mg=('~ ~-1) • 

Suppose that the theorem holds for the matrix gN'g. Since Mg E Sp2 (R), 
it then follows from (3.4.9) that GN is a group and GN C Sp2 (R). Let 
M E GN and Z EHN. 

1
Then M ( Z) = (Mg(Mj' MMg)Mi') (Z). Since, by 

(3.4.9) and (3.4.7), Mi MMg E GgNtg and Mi (Z) E HgNtg> we have 
M (Z) E Mg (HgNtg) = HN. 

Now we choose g such that gN'g = £ 2 • By the preceding argument it 
suffices to prove the assertion for N = £ 2 • In this case N = N = £ 2 , and 

(3.4.10) 

We set 

{
XE={(:_:); a,bER}, YE={(_~ !);a,bER}, 

HE={(: _!)+ivE; a, bER, v>O}. 

R={ illf= (~ ~), A, DEYE, B, CEXE }, 

S={M=(~ ~)E111,(R); A'D-B'C=E }· 

= R n S. The condition (~ ~) E Sp,, (R) for a real 2n X 2n 

matrix is equivalent to the relations. 
(3.4.H) A'B=B'A, C'D=D'C, A1D-B'C=E,,. 

Since the matrix ( a b) 1 (c di) is always symmetric, it follows from 
-b a d -c 

1) that GE C Sp2 (R). Let M 1 , M2 EGE. Since M 1M 2 E Sp2 (R), we 
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then have M 1M 2 ES. From the obvious fact that XE and YE are Abelian 
groups under addition, and from the easily checked inclusions 

YEYEcYE, XEXEcYE, XEYEcXE, YEXEcXE 

it follows that M 1M2 ER. Thus, M 1M2 ER n S =GE. Further, since 

for M = (~ ~) ESP2(R) 

( 'D -'B) 
M-'= -'C 'A 

and since 'XE =XE, 'YE = YE, the matrix M-1 belongs to GE together 
with M. Hence GE is a subgroup of Sp2 {R). 

We claim that 

(3.4.12) 

Let Z= (ba b) +-ivEEHE. Obviously, 
-a; 

( 

1 · a b' ) 
M= -JvE -JJ-b a) EGE 

0 -
1
-E -Jv 

and M (iE)= Z. Thus, the left-hand side of (3.4.12) is included in the 
right-hand side. 

To prove the reverse inclusion we use the following well known and 
easily checked identity: if 

(
A B) , Y' Z=X+iYEHn. M= c D ESpn(R), M(Z)=X +i ' 

then 

(3.4.13) Y'='(CZ+Dt'Y(CZ+Dt'· 

Let M = (~ ~) EGE,A= ( _:
1 

a~), B = (~, -b~), 

( 
d d,) ' ' D = -.d, d, , and M ( iE) = X + iY . Then by (3.4.13) and (3.4.1 

we have 

Y' = '{D-iCt' (D+iCt'= [D'D+ C'Cr'=(d2+a;+c2 +c;)-1 E. 

Thus, it is enough to check that a(X') = 0. Since the determinant of 
iC + D is d2 + di + c2 + ci , 

M (iE) = (d' +a;+ c2 + c;t' [ (b + ia b, + ia,) (d-ic -d,-ic')_J 
b1 -ia, -b+ia d1-ic1 d+ic, _ 

and a(X') = 0 can be checked immediately. We have proved (3.4.12), f_ 
which the second and third assertions of the theorem obviously follow>, 
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N = E. This completes the proof. 
According to Theorem 3.3.1, for every real symmetric positive definite 

2 X 2 matrix N we have a Lie group G N C Sp2 (R) and its homogeneous 
space HN CH2 • We now claim that every such pair (GN, HN) is isomorphic 
in the natural sense to the pair (G, H), where G = SL2 (C) and His a 
three-dimensional hyperbolic space. 

The group G = SL2 (C) acts on the three-dimensional hyperbolic space 

(3.4.14) H={u=(z, v); z EC, v > O} 

by the rule 

(3.4.15) a=(a ~): u=(z v)-+a(u)=( (az+~)(]>;+6) v ) 
y 6 ' Ll0 (u) ' Ll0 (u) ' 

where 

(3.4.1G) 1'. 0 (n)=I yz + 6 J
2 + J y J

2v2
• 

To the product of elements of G there corresponds the composition of 
transformations, and the function Li.

0
(u) is an automorphy factor: 

(3.4.17) l'. 0 ,(n)=l'. 0 (T(u))l'.,(u) (cr, TE G, u E JI). 

The action of G on H is transitive, and the stabilizer of the point (0, 1) 
is the special unitary group U = SU(2). Thus, the map 

(3.4.18) a-+ a((O, 1)) 

identifies JI with the homogeneous space G/U, on which G acts by left 
multiplication. Note, finally, that the invariant element of volume on JI is 

(3.4.19) du = v-3 dx dy dv (u =(x + iy), v)). 

Let us now go over to establishing an isomorphism of any one of the 
pairs (GN,HN) with (G,H). First let N=E2 • If 

-b1 a1 

( 

a1 

!VI= a3 b3 

bs -as 

(see (3.4.4), (3.4.10)), we set 

(3.4.20) 

(see (3.4.10)) we set 
(3.4.21) hE (Z)=(b + ia, v) EH. 

an arbitrary real symmetric positive definite 2 X 2 matrix N, we choose 
a real g such that gN'g = µE (with µ > 0). If ME GN and Z EHN, then 
according to (3.4.9) and (3.4.7), 
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We set 

(3.4.22) 

A. N. Andrianov 

{
'\Jg (J\IJ) ='1'E(M!,'MMg) E 1Vl2 (C) 

kg \Z) =hE (Mg (Z)) EH 

(J\IJ E GN), 

(ZEHN)· 

THEOREM 3.4.2. Let NE M 2 (R) with 'N = N and N > 0, let 
g E GL2 (R) be such that gN1g = µE (with µ > 0). Then the following 
assertions hold: 

(!) tpg(GN) = G = SL,(C), and the map '\J'g : GN-> SL2 (C) is an iso
morphism of real Lie groups; 

(II) the map hg: HN-> H = {u =(z, v); zE C, v>O} is an analytic 
isomorphism; 

(Ill) the map hg is compatible with the actions of GN and G, that is, 
for any Z EHN and M E GN we have the relation hg(M(Z))='\Jg(M)(h,(Z)); 

(IV) under the given maps the automorphy factor of the pair (GN, HN) 
goes over into the automorphy factor of the pair (G, If), that is, for any 

Z EHN and any J1I = (~ ~) E GN we have the relation 

det(CZ + D) = A" <Ml(hg(Z)) (see (3.4.16)). 
PR 0 0 F. First le'\: N and g be the identity matrix E. The assertions (!) 

and (IV) can be checked by direct computation, and (II) is trivial. Let us 
check (Ill). Since hE(iE) = (0, 1 ), it is enough to check that '1'E realises 
an isomorphism of the stabilizer of iE in GE with the stabilizer of (0, 1) 
in G. It is easy to see that the stabilizer of iE in GE consists of all the 
matrices of the form 

"2 
b, 
ai 

-bi 

where the matrix ( a,b b,) +i('ab, b, ) is unitary. The fact that this 
- 1 ai i-az 

matrix is unitary is equivalent to aj + a~ + bj + b~ = I. On the other 

( 
a1 + ib1 bo + ia2 ) 

hand, the image under '1'E of M is the matrix b + . - .b , 
- 2 ia2 a1- i 1 

this also is unitary if and only if ai + bi + a:f + bi = 1. Hence the 
stabilizer of iE goes over into the group SU(2) = U, the stabilizer of 
point (0, 1) E If, and (Ill) follows. 

Now let N be any positive definite real 2 X 2 matrix, and let 
gN1g = µE (for g E GL2 (R). Since the map M-> !Vfi1MMg (where 

(1wg =('g ~,)) is an analytic isomorphism of GN onto GµE =GE 
' g ' 
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(3.4.9)), and the map Z -+ M;;1 (Z) is an analytic bijection of HN onto HE 
(see (3.4.7)), the assertions (!) and (II) follow from the corresponding asser
tions for N = E. Let us check (III) and (IV), relying on the fact that they 
have already been checked for N = E. Let Z EHN and M E GN; then 

h,(M(Z)) =hE(M"i/M(Z)) =hE(M"i/MM g (111";/ (Z) )) = 

= 1pE(M;;1 Jlf Mg)(hE(!Wg' (Z) )) =')lg(M)(hg{Z)). 

(
A B) Similarly, if Z E HN and M = C D E GN, then since 

we have 
JVf"{/JlfJJilg = (gC:g gD:-1) , 

det (CZ+ D) = det (gC1g1g-1zg-1 + gDg-1) = 

The theorem is now proved. 

§3.5. Picard subgroups of the modular group 

In this section we investigate the nature of the discrete subgroup 

(3.5.1) I',v = G,.. n Sp,(Z) cG,v 

when N is semi-integral. For this purpose we consider the image of r N 

under the map 1/Jg constructed in the last section. It turns out that for a 
suitable choice of g this image is an arithmetic discrete subgroup of Picard 
type of the group G = SL2 (C). 

We fix some notation. Let 

(3.5.2) 

We set 

(3.0.3) { 

(
a bf2\ 

N-- b/2 c / , a, b, cEZ, a>O, D=D(N)=b'-4ac<O. 

1 (2c -b ) 
gN=.J(2c .J-D) 0 .J-D ESL,(R), 

( 

1
gN Q ) !vlg = 
0 

_1 E8p2 (R). 
J.Y gN 

It is easy to see that 

(3.5.4) 

For ME GN and Z E HN we set 

(3.5.5) {
')JN (M) = 1pg., (M) = 1JlE (M~1 MMg ) E G, 

.J• "'1Y N 

JiN (Z) =hgN (Z) = hE(Mg~ (Z)) EH 

(see §3.4). 
On the other hand, let K be an imaginary quadratic field, D the ring of 

in.teg;ers of K, and 0 1 the subring of index f. For any full module M in K 
coefficient ring 0 1 we set 
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(3.5.6) r (01, M) = { (~ ~)ESL, (C); a, o E 0 1, ~EM, l' E M-1
} • 

The f(0 1, M) is an arithmetic discrete subgroup of SL2 (C) with quotient 
space of finite volume. 

The main result of the present section is the following: 
THEOREM 3.5.1. Let 

( 
a b/2) 

N = b/2 c, > O, 

with a, b and c relatively prime integers. Let D = b2 
- 4ac = df2, where 

d is the discriminant of the imaginary quadratic field K = Q(yD). Then 
the restriction of l)lN to the subgroup r N c GN maps it isomorphically 
f(D1, fil ,.): 

where \!l;v = ~2 {a, w }', w b- yv and {a, w} is the module of K havin 
a, "' as basis. 

REMARK !. The condition (a, b, c) = 1 does not reduce the generality, 
because GtN = GN and ftN = fN for t E Z. , 

REM ARK 2. In § 2.3 we have defined a correspondence between binary> 
quadratic forms and modules in quadratic fields; under it the form with ' ' 
the matrix N corresponds precisely to the module {a, w} (see (2.3. 14)). 

PROOF. We define the integral analogues of the sets XN, YN,XFf and 
Yjj (see (3.4.3) and (3.4.1)), by setting 

{ 
X;v(ZJ=XNnM,(ZJ, YN(ZJ=YNnM,(Z), 

(3.5.7J XN (Z) = XN n M, (Z), y N (Z) = y N n Mz(Z). 

Then 

fN={ (~ ~); AEYN(Z), BEXN(Z), CEXN(Z), DEYN(Z), 

We define R-linear maps l)li, l)lz, 1jl3 and 1)l4 of the sets Yjj, XN, Xjj 
YN, respectively, into C. Let A E Yj/. Then according to (3.4.8), 

t t ( a, b,) . g/JA gN E Y if= YE, that is 'gIJA'gN has the form b , (with 
- 1 ai 

a,, bi ER). We then set 

1)l1(A)=a1 + ib1 for (A E Y N). 

(3.5.8) 1)l2(B)=b2 + ia, for (BEX"). 

lfCEXjj,then gxC'g,-=(ba, b,)EXE. We set 
3 -a3 
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'ljl 3(C)=b 3 - ia3 for (CE X"fi). 

If DE YN, then g"Dg'jf =( a,b b,)EYE. We set 
-4. a\i. 

'ljl,(D)=a4 - ib, for (D E YN)· 

(
A Bl 

Jn this notation, for C D} E GN we obviously have 

N (('A B) )- ('ljl1 (A) '\jl2 (B)) 
'ljl C D - 'ljl3 (C) 'ljl4 (D) . 

Thus, to prove the theorem it suffices to check that 

(3.5.9) 'ljl,(Y N (Z)) ='ljl.(Y N (Z)) = D,, 

(3.5.10) 

(3.5.11) 

'ljl2(XN (Z)) = ~2 {a, w}2
, 

('ljla (X"fi (Z)) = ~2 {a, w}2
• 

It follows from Lemma 2.3.l that {a,w}·{a,w}=aD1 and since 

97 

ww = ac, we see that the modules· -;{a, w}2 and ..". {a, w}2 are mutually 
w w' 

inverse. All the sets (3.5.7)· are obviously free Z-modules of rank 2. Let us 
find Z-bases for them. Since (a, b, c) = 1, it is easy to see that as bases 
of the Z-modules Yjj(Z) and YN(Z) we can take, respectively, 

( E2 , ( _ ~ ~)) and ( E2 , ( _ ~ ~)) • 

Let (a, c) = 6. We choose "f, ci E Z such that 

(3.5.12) aa +ye= -8. 

Then it is not hard to verify that as Z-bases of the modules XN(Z) and 
x;v (Z) we can take, respectively 

(3. 5.13) (1 (c 0) (ba 8)) (1 (-a 0) 
8 O - " ' 8 by and 8 0 cf ' (

by -ll)\ 
-ll ba!· 

Using these bases, let us check the equations (3.5.9)-(3.5.11). From the 
definition of the maps 'ljl1· and 11'4 we find easily that 

ipi(E2)=1p,(E2)=1, 'ljl1 ((_~ ~)) =W, 'i''• ((_~ :))=w. 

Since, by Lemma 2.3.1, 0 1 ={1, w}={i,01} this then proves (3.5.9). Using 
definition of 1jl2 and (3.5.12), we obtain after the corresponding 

( 
1 (c 0)) 1 - (. (ba 8 ) ) 1 'Pz 8 0 -a = 8 w, % 0 by =-c(cll+baw). 
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On the other hand, since ro iii = ac, Oi2 = bro - ac 
(see (3.5.12)), we obtain 

-'-{a ro}2=c{ffi 1 } 2=c{i w bw-ac}-
roz ' c ' ' c ·' c2 -

(
-'! a) 

and a!& c/o, E SL.(Z) 

= {©, -l'c+a.( bW-;ac), ic-~ ~ ( bW;ac)} = 

= {Oi, o+ ~b Oi, ~ Oi} = { ~ ;;;, o+ b;;;;}. 
(Note that (b, Ii) = 1 because (a, b, c) = 1. This proves (3.5.10); (3.5.11) 
is proved similarly, and the theorem is proved. 

Now we consider how the various groups I'(,01, M) are related to one 
another. 

LEMMA 3.5.1. Let M be a full module of an imaginary quadratic field 
K. Then there exist numbers a, 'Y EM and {3, Ii E M-1 such that 
ao - 'Y/3 = l. 

PROOF. For (a, 'Y) we take any Z~basis of the module M. Since 
1 E MM- 1

, there exist an x and a y in M-1 and integers n" n2 , m 1 and 
m2 such that (an 1 + "(n2 ) x + (am 1 + "(m2 ) y = l. Hence, setting 
Ii = n 1x + m,y and /3 = - (n 2x + m 2y) we come to the required assertion1 
and the lemma is proved. . { 

PROPOSITION 3.5.1. Let M be a full module of an imaginary quadrati' 
field K with coefficient ring :01. If M is similar to the square of some 
:01 -module, then I'(,01, M) is conjugate inside SL2 (C) to r(:01, :01)=SL,( 

More precisely, let M = oMf. Let a, 'YE Mj1 and {3, Ii eM1 with 

ao - 'Yf3 = 1 (see Lemma 3.5.1). Then (a ~) ((Jfet1 o) 
crr (01, i'vl) cr-1 =SL, (D1), where a= , . 

Y 0 o y, 
PR 0 0 F. The proposition is proved by direct computation. 
COROLLARY. In the notation of Theorem 3.5. l, we suppose that 

(a, c) = l and set 

(3.5.14) :)( :' 
where °'N and y ,. are integers for which 

(3.5.15) axa + y ,-c = -1. 

Then 
(3.5.16) cr,.r(D1, l!.!i,)criV' = SL,(01). 

PROOF. The corollary follows from Theorem 3.5.1 and Proposition 3 

by taking into account that row = ac and {a, ro }-' = .i. {a, w}. 
a 

We conclude this section by comparing the groups r N for different 
having the same discriminant. 
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PROPOSITION 3.5.2. Let 

N= (b;2 
b/2) ( a1 bi/2) , and N 1 = 

C bi/2 C1 

be two semi-integral positive definite matrices. Suppose that 
(a, c) = (a 1 , c1 ) = I and that they have the same discriminant 
b' - 4ac = bj - 4a 1c1 = df2 , where d is the discriminant of the corres
ponding imaginary quadratic field. We set 

(3.5.17) M = MgN1j>E;1 (a!faN,) M<Jv, E Sp2 (R), 
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where the matrices iJ!IgN and iVIgN, are defined by (3.5.3), the matrices aN 

and aN by (3.5.14), and i/JE is the Isomorphism of GE onto SL2 (C) defined 
• by (3.4.20). Then the following assertions hold: 

(!) MGN, M-1 = GN; 
(II) for every u EH (see (3.5.5)) 

M ((hN'r' (a!f, (u))) = (hN)-1 (al{ (u)), 

in particular, M (HN,) = HN; 
(Ill) MrN M- 1 = rN; 

• (IV) M E Sp2 (Z). 
PROOF. (I) and (Ill) are proved similarly. We prove (Ill), say. From 

(3.5.16) we have 

1j>N (fN) = a;;,'aN,1J>N' (I'N1) a;;,1,a N• 

Recalling the definition of the map 1j>N (see (3.5.5)), this can be rewritten 
in the form 

1pE (M;;~r NM gN) = a;;,'aN11J>E (iVIg];.,f N,lVI •N,) a!f,aN = 

=1J>E NE' (a!faN,) M;;)v,fN,Mg,y
1
1j>E;1 (a!f,aN)), 

and hence, since 1J>E is an isomorphism, we obtain 

M;;~r NJ]!J •N = 1j>E;1 (a!faN,) M;;j;,,f N,M m,1l>E:' (rrl{,aN ), 

which proves (Ill). 
Using the definition of the map hN (see (3.5.5)), we find that 

M ((hNir1 (al{, (u))) = M (M •N, (hE;' (al{, (u)))) = M gN1J>E;1 (a!fu_,,,,) (iz;;;1 (a;;,\ (u))). 

By part (Ill) of Theorem 3.4.2 this last expression can be rewritten as 

MgN1J>ll (alf) (hE:' (u)) = MBN (hE;' (a# (u))) = (hNr' (a;;,1 (u)), 

which proves (II). 
:c; As for the last assertion, it has to be proved by an explicit (and rather 
. long) computation of the matrix M. Since there is nothing in this computa
'i:tion apart from matrix multiplication, we allow ourselves simply to state the 

result: 
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- (a1a 1 + y1e) 
1 

-2"'1 (b,-b) (e-e1) 
1 
2(b,-b) 

1 -(e1y1 +a1a) 1 (a-a1) 2Y1 (b-bi) 2 (b,-b) 
M= 1 1 (ay1a-ya1a1) 2 ya1 (b-b1) -(ye, +aa). 2 y (b 1-b) 

1 
2 ayi(b-b1) (ya1e- ay1e1) 

1 
2°' (b,-b) - (,xa, +ye) 

where (o., y) are integers satisfying (3.5.15), and (a,, y1) are similar numbers 
for N 1 • Since b2 -4ac =by -4a 1c1 , we have b := b1 (mod 2). HenceM is an 
integral matrix. Since it is symplectic, by construction, this proves (IV) and 
with it the proposition. 

§ 3.6. The integral representation (II) 

We now concern ourselves with further transformations of the integral 
representation (3.3.6). We keep to the notation and assumptions of § 3.3. 
We also fix some more notation and assumptions about N: 

I a b/2) 
(3.6.1) N= \b/2 e E~., N>O, (a, b, e)=1, D=b2 -4ae; 

K = Q (.JD), d is the discriminant of K and D = df2; £) is the ring of 

integers of K, 0 1 is the subring of index f, ro 
b- yD 

2 

and 
SN={u=(z,v)Eli; zECil!IN, v>O}. 

The integration on the right-hand side of (3.3.6) is over a certain su 
set of the domain HN C H2 (see (3.4.3)) isomorphic to a three-dimensiona. 
hyperbolic space Ii. The isomorphism is realized by means of the map hNc; 
(see (3.5.5)). By definition, 

kN(X+ 
1
/" R) =(>!>z(X), v)Eli (XE XN(R), v>O), 

detN 

where 1jl2 : XN(R)-+ C is the map (3.5.8). According to (3.5.10), the map 
hN gives an analytic bijection between the domain of integration on the 
right-hand side of (3.3.6) and the set SN. It is easy to see that the Jacobi. 
of the change of variables is equal to (det NT"'. Thus, · 

~ 

(3.6.2) j { j F(X+-v~:tNR)ctx}v'-'dv= 
0 xl'\,(R)/X,v(Z) 

where u = (x + iy, v),.dz = dx dy. 

= ( det N)-112 J F ((hNt' (u)).vH dz 
SN 

PROPOSITION 3.6.1. Let FE iD1~. We set F(Z) = (det Y)k/2 F(Z), 
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where Z = X + iY E H 2 . For every N satisfying (3.6. l) we set 

(3.6.3) F N (u) = F ((hNt' (u)) = v"F ((hNt' (u)) (for u = (z, v) E H) 

Then the following assertions hold: 
(I) if ·a E r (81, lliN) (see (3.5.6)), then 

(3.6.4) FN (a (u)) = FN (u) (for u EH) 

(II) if Fis a parabolic form, then F N(u) is bounded on H. 
PROOF. It follows from (1.1.5) and (3.4.13) that 

(3.6.5) F(M (Z))=F(Z) (for ZEHN, MEI'N). 

IOI 

If a Er (Dt> lliN), then, by Theorem 3.5.1, a= \jJN (M), withM E rN Cr,, 
and hence by part (Ill) of Theorem 3.4.2, we obtain 

FN (a (u)) = F ((hNt' (a (u))) = F (M ((hN)_' (u))) = F N (u). 

Now (II) follows from (1.1.14 ), and the proposition is proved. 
From (3.3.6), (3.6.2) and (3.6.3) we see that if F E ffik and N satisfies 

(3.6. l ), then ,_, 
(3.6.6) (4nt'(detN)_2_I'(s)RN(s)=) FN(u)v'-•+2 du (Res>k+1), 

SN 

where du is the invariant measure (3.4.19). In the relevant domain both 
sides are absolutely convergent. The right-hand side converges absolutely 
in Re s > le 

Let 

be the subgroup of parallel translations in r (D1, lliN) , and let 

(3.6.7) I'' (Dt,lliN) = LJ r;,, (81,lliN) U;, 
i 

(where G' denotes for every group G C SL2 (C) the corresponding group 
of transformations of H) be a decomposition into disjoint left cosets. Let 
DN be a fundamental domain for r• (D1> lliN) on H. Then the set 

Siv=LJa;DN is, obviously, a fundamental domain for r;,, (81, lliNl· On the 
' other hand, since the set SN is also a fundamental domain for r;,, (D1, lliN) 

and the expression under the integral sign in (3.6.6) is invariant under 
transformations of r;,,(D1, lliN), we can write down (so far purely formally) 

~ FN {u) v•-•+2 du= J FN (u) v•-"•2 du= L} ) FN (u) v•-•+2 du= 
.sly SN i <JiDN 
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= J EN(u,s-k+2)FN(u)du, 
DN 

(3.6.8) EN (u, s)=v' 2,; t.0 (ut' (uEH). 
crEr~<o 1• m,N)'-r't£i1, m.l\·> 

(We have used Proposition 3.6.1, the fact that the measure du is invariant 
and (3.4.15)). 

The series (3.6.8) is an Eisenstein series for the group f(01, 12I;v) (see 
[22] ). As is well known, for arithmetic discrete subgroups of SL2 (C) 

, 

every such series converges uniformly and absolutely in any domain of the 
form Re s > 2 + e (with e > 0) (see [22] and the references quoted 
there; for the series (3.6.8) this can easily be deduced from the results of,> 
§3.7). It follows that the transformation carried out above is legitimate in/:'! 
the domain Re s > k, where all the series and integrals converge absolutel:,1'..I 
So we have proved the following proposition. 

PROPOSITION 3.6.2. For every FE \11~ and eve1y N satisfying (3.6.1) 
we have the identity 

1-< 

(3.6.9) (4nJ-'(detN)_2_f(s)RN(s)= J EN(u, s-k+2)FN (u)du, 

,...._, DN 

where EN(u, s) is the series (3.6.8) and FN(u) the function (3.6.3). The 
left- and right-hand sides are absolutely convergent in the domains 
Re s > k + 1 and Re s > k, respectively. 

To obtain a convenient integral representation for the linear combinati' 
of series RN(s) that occur in the identity of Theorem 2.4.1 we need to p 
together the integral representations (3.6.9) for various N with fixed 
discriminant. To do this we use Propositions 3.5.l and 3.5.2. 

Suppose that the matrix N satisfies (3.6.1) and that (a, c) =I; let a;; 
be the matrix (3.5.14). Then by the corollary to Proposition 3.5.1, 

(3.6.10) aNf(D1, 12!N)a;v1 =SLz(D1l· 

It follows that for any fundamental domain DN of f(D 1, 12!N) the set 
Dr = aN(DN) is a fundamental domain for SL2(D1). Making the cnamg1e 0.1 

variables u -+ d/J (u) on the right-hand side of (3.6.9) we obtain 

(3.6.11) J EN(u,s-k+2)FN(u)du= 
DN 

= J EN (a'N (u), s-k+2) FN (a'N (u)) 
DI 

We now consider the nature of the function occurring in the second 
PROPOSITION 3.6.3. Suppose that N satisfies (3.6.1) with (a, c) = 1 

and let aN be the matrix (3.5.14). Then the following identity holds: 
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(3.6.12) EN (u"if (u), s) = 
1 =z (av)' b.(~. 6 ,(u) (u= (z, v), Res> 2), 

"• 6EK 
vo,+oD1=ta, roJ 

where A(7 ,6 i(u) =I '"fZ + IJ 12 +I "t l2 v2
. 

PROOF. It is easy to see that the transformations corresponding to two 
matrices in r(81, WN) having bottom rows ("t, IJ) and ("t1> IJ 1) belong to 
the same left coset of r;. (81, WN), if and only if('"{, IJ) = ±('"f1 , 01 ). 

Furthermore, it is not hard to check that a pair ('"{, IJ) is the bottom row 
of some matrix of f(81, WN), if and only if yWN + 881 =8;. Since by 
(3.4.15)-(3.4.17) for u = (~~) E SL 2(C), and u = (z, v) EH we have 

v(a"jf(u)) v v v 

t;a (a"jf (u)) t;a (a"jf (u)) t;a"if (u) t;aa"if (u) /;Cv.oJ•rl (u) ' 

and b.«v. eo) (u)= I e I' b.cv. o) (u), for e EC, to prove the theorem it 
therefore suffices, by what we have said above, to prove the following 
lemma. 

LEM MA 3.6.1. Let '"f, IJ E K. We set 

(y, o) u"jf = '!__ c (y" 81). 

"' 
Then the condition yWN + 881 = f! 1 is equivalent to the condition 
Y181 + 8,81 ={a, w}. 

PRO 0 F. As we pointed out above, the condition y2!N + 881 = 8 1 is 

equivalent to the existence of a, il E K such that (a ~) E f(8 1, 2!N)-
By Proposition 3.5.1, \y 

crN (~ ~) u"jf = (~: ~:) E SL.(81). 

By (3.5.14), the matrix er}/ has the form 

_, 1 ('~ 0) le, e2 ) 
0".N =-- a \ v c 0 "' 83 e. ' 

where e,, <2 E{a,w}, e,, s.E{a, wt'=~{a, ;;;}, and e1e4 -e2e3 =1. From these 
relations we obtain 

y, =a (s,a0 +e,yo) E{a, w}, 
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It is easy to check that for any full module M of K with coefficient ring 
0 1 the condition yDr!- 601 = M for some pair 'Y, o E K is equivalent to 
the condition that /, o E M, and that there exist a, {3 E M- 1 such that 
ao - /31 = I. The lemma now follows from this remark and from the com
putations made above, and with it the proposition is proved. 

PROPOSITION 3.6.4. Let FE WI); and let D be a negative integer. We 
choose some N satisfying (3.6.1) and with (a, c) = 1, and we set 

(3.6.13) FD(u)=FN(a!{(u)) (uEH), 

where FN is the function (3.6.3) and aN is the matrix (3.5.14). Then 
(I) Fn(u) does not depend on the choice of N with the conditions 

imposed; 
(II) Fn(a(u)) = Fn(u) for every a E SL2 (D1), and u EH; 
(III) if F is a parabolic form, then Fn(u) is bounded on H. 
PROOF. Let N and N 1 be two matrices with these properties, and let 

be the matrix (3.5.17). Using the definition of FN(u), the assertions (II) 
and (IV) of Proposition 3.5.2, and the relation (3.6.5), we obtain 

F" (a;f (u)) =F ((h"t' (a/{ (u))) = F (M ((li"1t 1 (a!l, (u)))) = 

= F ((h"11-1 (a!f, (u)) = FN, (a;J-, (u)), ' 

which proves (I); now (II) follows from (3.6.4) and (3.6.10); and (III) 
follows from part (II) of Proposition 3.6.1. 

THEOREM 3.6.1. Let FE ~ti, and let D be a negative integer. We 
represent D in the form D = dj2, where d is the discriminant of the field 
K = Q(y1D). We denote by (N;) (for i = 1, ... , h = h(D)) (respectively, 
(Mi), for j = 1, ... , h = h(D))) a complete system of representatives of 
the equivalence classes in the narrow sense of positive definite primitive 
matrices N E m2 with discriminant D (respectively, of the similarity 
of modules of K with coefficient ring D1). Then for any character X 
the group H(D) we have the identity 

1 -,s h 

(3.6.14) (4nt'(l~I) 2 
r(s)]x(N;)RN,(s)= 

i=i 

h 

=) {] x(M;) e'''; (u, s-7'+2)} FD(u) 
Di i=i 

where RN/s) are the series (3.3.1), Fn(u) is the function (3.6.13), for ever' 
module M of K with coefficient ring £)1 

(3.6.15) E" (u, s) =} (N (M) v)' 
y, OEK, 

VD1+6D1~M 

Df is a fundamental domain of SL 2(D1) on H, and du is the measure 
(3.4.19). The left-hand side of (3.6.15) is absolutely convergent in the 
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domain Re s > k + 1, and the right-hand side in Re s > k. 

p ROOF. If the representatives N, = (~;-/~;/;2) satisfy the condition 
I I 

(a;, c;) = 1, then from Proposition 3.6.2, the relations (3.6.11) and (3.6.12), 
and Proposition 3.6.4, we infer that the left-hand side of (3.6.14) is equal 
to 

(3.6.16) 
h I { ~ x(N,)EM(Ni)(u, s-k+2)} Fn(u) 

n1 i=i 

where M(N,)={a,,; (I), - VD)} is the module of K corresponding to the 
binary form with matrix N; (see § 2.3). 

According to § 2.3, the set of (M(N,)) (for i = 1, ... , h(D)) is a com

plete system of representatives for the classes of H(D) and x(N;) = x(M(N;)) = 
x(M(N1)). Since every series EM (u, s) obviously only depends on the class 
of the module M, the sum on the right-hand side of (3.6.14) does not 
depend on the choice of the system of representatives (M; ). Replacing the 
(Mi) by (M(N;)), we see that the right-hand side of (3.6.14) is equal to 
(3.6.16). 

Let us now get rid of the condition (a;, C;) = I. Since (by (1.1.10)) the 
left-hand side of (3.6.14) does not depend on the choice of the system of 
representatives (N; ), it is sufficient for this purpose to remark that each 
integral primitive non-degenerate binary quadratic form ax2 + bxy + cy2 is 
equivalent in the narrow sense to a fbrm a'xr + b'x,y 1 + c'y°i with 
(a', c') = I. It is easy to see that the required form can be obtained by a 
change of variables of the form x = x, + 1, y = y,, for a suitable integer 
1. This proves the theorem. 

§3.7. Eisenstein series and theta-series 

In this section we obtain an integral representation of the Eisenstein 
series of the previous section in terms of suitable theta-series. 

Let K be an imaginary quadratic field. For every pair M 1 , M2 of full 
modules of K and every real t > 0 and u = (z, v) EH we set 

(3.7 .1) exp ( - ": L'l<v. 6) (u)) , 
('\', O)E1111XM2 

where L'lcv. 6) (u) = f yz + 6 f
2 + I y f

2v2
• 

PROPOSITION 3.7.1. The following properties hold for the theta-series 
6M ,M (t, u): 

' ' (I) for any fixed u = (z, v) EH the series (3.7.1) is absolutely and uni-
formly convergent in any domain of the form t ;;;. e (with e > OJ; 

·· (II) for every t > 0 and u E H. 
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(3.7.2) 0M,,M2(t, u)<[1+c' (I zl2+,vv2+1)1/2 exp (-,,-=-;-ctc::vo;-..,.,
(I z 12+v2+ll 

where the positive constants c and c' depend only on M 1 and M 2 • 

(III) (the inversion formula) for every t > 0 and u EH 

u) , 
where for every module M with the Z-basis (ex, (3) we set 

(3.7 .4) 1 (a fl) !>.(M)=-det - -
2 a (3, ' 

1 -
M*= t>.(M) M. 

The theorem is proved using standard methods in the theory 
series. We merely indicate the main ideas. (I) is obvious, since the series 
(3.7 .1) is, in fact, the theta-series of some positive definite quaternionic 
quadratic form (depending on u). From the inequality 

t>.<v.o) (u)?i 212~:2+ 1 (I "112+ I 01'l 
it follows that the series (3.7.1) is majorized by the fourth power of 

standard theta-function 0(a)= L:exp(-nan2
) with ex= ctv(I z 1

2 + v2 + 
c only depending on M1 and M2 • Combining this with the estimate 
I e(ex) - l \ < c 1 ex- 112 exp(-";) (for ex> 0), which follows from the inversio 
formula for 0(ex), we obtain (II). The inversion formula (3.7 .3) can be 
proved directly on the basis of the Poisson summation formula, or can b 
deduced from the inversion formula for the theta-series of quadratic for 
(see [ 17], Proposition 23). 

Let us now compute the Mellin transform of the theta-series (3.7.1). 
subsequent applications it is enough to restrict ourselves to the case 
M 1 = M 2 = M. We use the notation of §2.3: K = Q(yD) is an imaginar 
quadratic field of discriminant d, D1 is the subring of index f in the 
of integers D of K; for a full module M of K we denote by DM its 
coefficient ring and by N(M) its norm. 

PROPOSITION 3.7.2. Let M be a full module of K with DM = 
Suppose that M c D1 and (N(M), f) = 1. Then 

MxM-(O, O)= Uf' U x"1'(M') 
f'lf M'c!iJf/f'M ' 

f) M'~Df/f'> (N(M'), 1/1')~1 

where for every l ;;;, 1 and every module M such that M C Dz and 
f)l c D;ir vve set 

xz(M)={(')', o)E K x K; '\'Dz + oD, = M}. 

We begin by proving two lemmas. 
LEMMA 3.7.1. Let M be a full module of K. 

and Dt c Du- Then the conditions 

(3.7.5) (N(M) 1)=1, 
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and 
(3.7.6) 

are equivalent, and if they are satisfied, then OM = 01· 
PROOF. Let 0 ={1, w}. Then 0 1 ={1, fw}. Since MM= N(Jlf)OM, 

we can find CX;, f3; E M such that _La,[3, = N(M). Let 13; = a; + b;fw 

with a; and b; E Z). If (N(M), f) = 1, then we can find c and d E Z 

such that cN(M) + df = 1, hence 

1 = c_La,iJ, + df = c)a,a, + f(d +cw L;a,~,) EM+ ff), from which 

(3.7.6) follows. Conversely, from (3.7.6) it follows that we can find 
a E M and ~ E O such that a + !{3 = 1, hence N(cx) = I (mod fl. In parti
cular (N(cx), f) = I. Since N(cx) = 0 (mod N(M)), this proves (3.7.5). 

Suppose then that (3.7 .5) and (3.7 .6) are satisfied. Since M + fO = 0 1, 

we have M + fO = 0 1, hence MM + f2'iJ + f(f)M + 0111) = D1, so 
that MM c 0 1. But MM= N(M)Ow Since (N(M), f) = 1, it follows 
from N(M)fhr c 0 1 that OM c 0 1 and the lemma is proved. 

LEMMA 3.7.2. Let M be a full module of K. Suppose that 
Du =01, Mc 0 1 and that (N(M), f) = I. Then for any divisor f' off 
and any number y E 0 111. the following two conditions are equivalent: 

(3. 7. 7) f"'I E 1vl, 

(3. 7 .8) y E 0 111' M. 

PROOF. By Lemma 3.7.1 there are a EM and~ E [)such that 
a + f{3 = 1, hence if (3.7 .7) holds, we obtain 
Y =ya +(fl!')~ X f'y E 01wM + 0111· M = 01!1' M. Conversely, since 
f' 0 111' c 0 1, from (3. 7 .8) we have !' y E !' Of!r M c O/M c M, and the 
lemma is proved. 

PROOF OF PROPOSITION 3.7.2. For every pair ('Y, o) =/= (0, 0) of 
integers of K and every natural number f we denote by ( 'Y, o, f) the 
greatest natural number that is a common divisor of 'Y, o and f. Let 

(y, 6) EM x M -(0, 0), !' =(y, 6, f), (y', o')= ;. (y, 6). 

We set M' = 0111· y' + Of/t' 6'. Obviously, f)f/f' c OM'· By Lemma 3.7.2 
M' c 0 111' M. Since ('Y', 8 ', flf') = 1 and 'Y', 8' E Om·, we can find 
rational integers a, b and ~ E O such that a'Y' + b8' + (flf')f3 = I. Hence 
M' +(flf')O = f)f/f'· Then by Lemma 3.7.1 we see that (N(M'), flf') = 1 
and Du· = Ot11'· Thus, the left-hand side of the equality to be proved is 
contained in the right-hand side. Conversely, let (y', 6')E XIII' (M'), with 

c Om· M. We set ('Y, 8) = (j''Y', f'o '). Then by Lemma 3.7.3, 
('Y, 8) E M X M. This proves the proposition. 

PROPOSITION 3.7.3. Let M be a full module of the imaginary quadratic 
field K, and [) M = 0 1. Suppose that M c f) 1 and (N(M), f) = I. Then 
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the Mellin integral of the function E!M M(t, u) - 1: 

) (GM, M (t, u)-1) t'-l dt 
0 

is absolutely convergent in the domain (Re s > 2, u E HJ and in this 
domain it is equal to the expression 

2ic'r (s) 2j (f'f2' ~ N (M'f' EM' (u, s), 
I' II M'cfl1wM, 

fJM'~fJl/I" (N(M'), 1/1')~1 

where r(s) is the gamma-function and EM '(u, s) the Eisenstein series 
(3.6.15). 

PROOF. The convergence follows from the estimate (3.7.2). Since 
00 

) exp ( - ": l'!.<v. o) (u)) t'-1 dt = ic'r (s) v'l'!.0,'. o) (u), 
0 

and, by definition 

v' ~ l'!.(V'.o> (u) = 2N (M'f' EM' (u, s), 
(v, 6)EX'(M') 

the formula follows from Proposition 3.7 .2. 
Before going further, let us convince ourselves that there is no 

generality in assuming that (N(M), f) = 1. 
LEMMA 3.7.3. In each class of the group H(df2

) there is a module M 
for which M c f)1 and (N(M), f) = 1. 

PROOF. In the language of quadratic forms (see §2.3) this means 
every primitive integral positive definite binary quadratic form ax2 + bxy 
of discriminant b2 ~ 4ac = dj2 represents some number coprime to f, wn.icn.·cc. 
is obvious. 

THEOREM 3.7.1. Let K be an imaginary quadratic form of discrii>nirzan_, 
d, let f be a natural number, and let M" ... , Mh (where h = h(df2

)) 

a complete set of representatives of the similarity classes of modules of 
with coefficient ring f)1. Let x be a character of the group H(df2 ) 

satisfying the following condition: 
(3.7 .9) for every f' > 1 such that !'If the character x is non-trivial 

the kernel of the epimorphism v(f, !ff'): H(df2 ) -+ H(d(f/f')2). 
Then in the domain (Re s > 2, u E H) the following identity holds: 

h 

(3.7.10) 21c'r(s)Ld12(s, X) :S x(111;)EM'(u, s)= 
i=i 

00 h 

= .\ {:S x(M;)N(ll1;)'(8M,,M,(t, u)-1))t'-1 

0 i=1 

where the EMi(u, s) are the Eisenstein series (3.6.15), eM. M.(t u) are 
l• l ' 

theta-series (3.7.1), and Laf' (s, X) is the L-series of the order 8 1 with 
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character x, defined in § 2.4. Jn the domain in question the left- and 
right-hand sides of the identity (3.7 .10) are absolutely convergent. 
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PROOF. First of all we note that both sides of the identity (3.7.10) are 
independent of the choice of the system of representatives (M;). For the 
left-hand side this is obvious, and for the right-hand side it follows easily 
from the identity eaM aM(t, u) = eM M( I Ci 12 t, u) (for Ci E K) by a change 
of variables in the cor;esponding integrals. Thus, we may prove the identity 
for any special system of representatives. We choose the (M;) in such a 
way that for every i = 1, ... , h the modules M; satisfy the conditions 
M; c DI> and (N(M), f) = I. This can be done by Lemma 3.7.3. 

The absolute convergence of the right-hand side of the identity in 
(Re s > 2, u E H) follows from Proposition 3.7 .3; the convergence of the 
left-hand side follows from the properties of Eisenstein series mentioned 
above. 

Let M 1 and M 2 be modules of K such that 
M1, M, c Dz, DM1 = DM, = f;,, and (N(M 1 ), I) = (N(M2 ), 1) = I. Then 
the conditions M' C M,, M' ~ M2 and (N(M'), 1) = 1 on a module M' are 
8bviously equivalent to the following conditions on M" =N(M,r'M'M,: 
M" c 5) 1, M" ~ M2M~' and (N(M"), I) = I. Since N(M') =N(M")N(M1 ) 

and the Eisenstein series EM'(u, s) depends only on the class of M', we 
now obtain the identity 

~ N (M't' EM' (u, s) = N (1111\-' Sdl' (s, M21l1~1) E"2 (u s), 
1\i'C.i1f1, 1'1'_,]1.f2, ' 1 

(N(lW'), l)=i 

where Sdt' (s, M)= ';iN(M")-' and the sum extends over all modules M" for 

which M" c 0 1, M" ~ M and (N(M"), 1) = I. 
Applying this identity to the inner sum on the right-hand side of the 

identity of Proposition 3.7.4 for M = M;, we can rewrite it in the form 
00 

f (GM., M. (t, u)-1) t'-' dt = 
J ' ' 0 

h' 

= 2:;c'r (s) L en-· N (Df//·111,)-' ~ Sd(f/j')2 (s, iV!j (Df!t·M;r'J EM; (u, s), 
I'll ;~1 

where the Mj (for j = 1, ... , h' = h(d(f/f')2 )) ranges over a complete set 
of representatives of the classes of H(d(f/f')2 ) chosen such that Mj c D11f' 
and (N(Mj), f/f') = 1 for every j. Sine:_ N(Df!r M,) = N(M,), after multiply
ing both sides of the last identity by x(M;)N(M;)' and summing over i 
from l to h, we obtain 
00 h 

1 { 2 x (M;) N (M;)' (eM,, M; (t, u)-1)} t>-1 dt = 
0 i=i 
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h' 

= 2ic'r (s) ~ (f't" ~ ( 
f'\I h,j=I i:s;;i~h. 

Df!f'Mi-Mk 

where h' = h(d(f/f')2 ). By the condition (3. 7 .9) on x the inner sunamaticin 
over i on the right-hand side of the relation just obtained is zero if 
f' > 1. Thus, extending the equality, we have 

h - Af. 
2ic'r (s) Li x (Mi) ~dt' (s, M;lVli') E '(u, s) = 

i.J=i 
h h 

= 2ic'r (s) { Li x. (M,) ~df' (s, M;)} f Li % (M ;) EM; (u, 
i=i J=i 

Finally, we note that for integral ide·als M of D1 such that f)M=Dt 

(N(M), f) = 1 the theorem on unique factorization into prime ideals 
It follows that 

~ 
McDt, 

DM=Dt. (N(M), f)=I 

r.(M} II ( X(\ll) )-1 
N (M)' = i - N (\ll)' ' 

\ll 

where \IS ranges over all the prime ideals of D1 such that f)\jl = Dt 

(N(j)S), f)=1. The theorem is now proved. 

§ 3.8. Proof of the main theorem for parabolic forms 

Keeping to the notation and the assumptions of Theorem 3.1.1, SU]Jpcis1 
that F is a parabolic form and let a(N) (for N E ln., N > 0) be the 
coefficients of its Fourier expansion (1.1.8). For every primitive NE ln2> 
with N > 0 we denote by RN(s) =RN F(s) the Dirichlet series (3.3.1). 

Since F ¢ 0, we can find an integer D < 0 with the following two 
properties: 

(3.8.1) there exists a primitive matrix NE m, with N > 0 and 
D(N) = D such that RN(s)¢0; 

(3.8.2) represent D in the form D = df2, where d is the discriminant 
the field K = Q(y'D); then for any integer f' > 1 with f' I f and for 
primitive matrix N' E ln 2 with N' > 0 and of discriminant d(fjf')2) the 
series RN.(s) is identically zero. 

We fix a number D with the properties (3.8.1) and (3.8.2) up to the'i 
end of this section, and keep to the notation d, f, K introduced in (3.8. 

Let Ni, ... , Nh (with h = h(D)) be a complete set of representatives. 
the equivalence classes in the narrow sense of primitive matrices N E sn,· 
with N > 0 and of discriminant D. It follows from (3.8.1) that there e · 
a character x of the group H(D) such that 

h 

(3.8.3) r x. (Ni) RN (s) * 0. 
i=i i 
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Let us write down the identity of Theorem 2.4.1 for the form F and a 
pair (D, xl with the properties (3.8.1), (3.8.2) and (3.8.3). From the 
theorem on the identity of absolutely convergent Dirichlet series and from 
the condition (3.8.2) it follows that the function <I>F(s, xl of Theorem 
2.4. l is a constant: 

h 

(3.8.4) <DF (s, X) = ~ X (N,) a (Ni)= a (X)· 
i=i 

Thus, in this case the identity of Theorem 2.4.1 has the form 
h 

(3.8.5) Ln(s-k+2, x) ~ x (Ni) RN. (s) =a (X) ZF (s). 
i=1 l 

Using this identity and Theorem 3.6.1 we obtain the integral representa
tion 

(3.8.6) a (X) (4n)-' r (s) ZF (s) = 

s-1 h 

= ( [~[) 2 J Ln(s-k+2, X) { ,S x(lvli)EMi(u, s-k+2)} Fn(u)du, 
Di i=i 

where Re s is sufficiently large and the notation is as in Theorem 3.6.1. 
As our next step we transform the expression under the integral sign on 

the right-hand side of (3.8.6), on the basis of the identity (3.7.10) of 
Theorem 3. 7. I. First of all, let us make sure that we can do this. 

LEMMA 3.8.1. Suppose that D satisfies (3.8.1) and (3.8.2) and that Xis 
chosen so that (3.8.3) holds. Then X satisfies the condition (3.7.9) of 
Theorem 3. 7. I. 

PR 00 F. Suppose the contrary. Let x be a character that is trivial on the 
kernel of the epimorphism v(f, f/f') for some f' > 1 with f' I f. Since 
the same is then true for any prime divisor p of f', we may assume 
that f' = p is a prime. Then x is induced by some character x' of 
H(d(f/p)2

). Let N;, ... , N~· (with h' = h(d(f/p)2)) be a complete set of 
representatives of the classes of primitive matrices of discriminant d(f/p) 2 • 

Then for every m ;;, 1 we have 
h h' 

(3.8.7) ~ X (Ni) a (mN,) = ~ x' (Nj) 
i=i i=i 

a (mN,), 

where {N) denotes the class of N. 
We claim that for every j = 1, .... , h' and m ;;, 1 the inner sum on 

the right-hand side of (3.8.7) is zero. To see this we compute in two ways 
the Fourier coefficient with the suffix pmNj of Tk(p)F, where Tk(p) is the 
pth Hecke operator. On the one hand, since Tk(p)F = Ap(p)F, by (3.8.2), 
this coefficient is equal to 'AF(p)a(pmNj) = 0. On the other hand, using 
Proposition 2.1.2 and (3.8.2), we find that it is equal to 

p2h-3a(mNj)-l- p"-2(Il(p )a)(pmNj) +a(p2mNj) = p•-2(TI(p )a )(pmNj). 

now write out this expression by the formula of Theorem 2.3.2 (this 
is the only place where we use this formula). It follows from (3.8.2) that 

'i 
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the term (A) in this formula is zero, so that 

' 'I (TI (p) a) (pmN;) =--
eflP 

a (mN;). 
i~i~h. 

v(f, f/p) {Ni}={Nj} 

It follows from what we have said that the sum (3.8.7) is zero for all 
m ~ I, which contradicts the condition (3.8.3) and proves the lemma. 

Combining the identity (3.8.6) with the identity (3.7.10) of Theorem 
'3.7.1, we obtain 

(3.8.8) a(%) (2nt2' r (s) r (s- k + 2) ZF (s) = 
s-1 oo h 

= "~' \ ~ ,-2
- J { .l ~ X (M ;) N (M ;)'-•+2 (8M;, M; (t, u) -1) t'-•+1dt} FD (u) 

Di 0 J=i 

Now we transform the inner integral in the right-hand side of (3.8.8), 
using the inversion formula (3.7.3). For every full module M of K, Jet 
Ll.(M) and M * be defined by the equations (3.7.4). Then it easily follows 
from the definitions that 

(3.8.9) I il(M)I = N(M) vi~I , I il(M)l I il(M*)I = 1, 

where D is the discriminant of the coefficient ring of the module M. 
Hence in the case M 1 = M2 = M the inversion formula (3.7 .3) can be 
written in the form 

1 ib(M*)I \ Ll (M) I (8u, M (t, u)-1) =121 Ll (M*) I (8M*, M• (t, u)-1) + 12 

Using this formula for M = Mi, we obtain 

J jil(M;)\(8u
1
,u

1
(t, u)-1)t•-•+1 dt= 

0 

00 

= J I Ll (M1) I (8u
1
, M; (t, u)-1) f-h+i dt + 

1 

00 

+ .\ iil(M;)l(eM;,M;(+, u)-1)t•-·-0 dt= 
1 

00 

= J I Ll (M;) \ (8M
1
, M; (t, u)-1) t•-k+l dt+ 

1 

00 

+ r I Ll (Mj) I (8M• ,,. (t, u)-1) t•-•-l dt + j . ] ' " J 
1 

00 00 

+ J I il (MJl I t•-•-1 at- .\ \ il (M1) I 
i ' 
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Computing the last two integrals, substituting the expressions obtained in 
(3.8.8) taking account of (3.8.9) and the obvious relation Xf.Mi) = x(M/) (since 
M and M* belong to reciprocal classes), we finally find the following 
integral representation: if Re s is sufficiently large, then 

3-k 

(3.8.10) 2nk-zj ~ J
2 

a(x) 'JIF(s)= 
00 h 

= .\ {J ~ X(Mi)i~(Mi)j'-"+2 (8Mi,Mi(t, u)-1)ts-h+1 dt}FD(u)du+ 
Di 1 i=1 

00 h 

+ J { ) ~ ?( (M})i ~(Mi) lk-s (GMj, Mj (t, u) -1) t'<-'-l dt} FD (u) du+ 
Di 1 i=i 

h 

+ k-~-s { '); X (Mi) I~ (Mi) 1s-h+2
} .\ FD (u) du+ 

j=i Di 
h 

+ ,_=.k { ~ X (1Vlj) I~ (Mj)j'-s} .\FD (u) du. 
i=1 DI 

We claim that the first two integrals in (3.8.10) are absolutely convergent 
for all s and are therefore entire functions of s. To see this it is enough to 
show that for every full module M of K with coefficient ring D1 the integral 

00 

J {)1eM,M(t, u)-11t'dt}IFD(u)ldu 
Df 1 

is finite for alls. From (3.7.2) it follows easily that the inner integral is 
finite for all s, and if v -+ 0 (respectively, 00) and I z I is bounded, it tends 
to infinity not faster than v-c (respectively, vc ), where c is a positive con
stant depending on M and s. The fundamental domain D1 is a union of a 
compact set and finitely many neighbourhoods of parabolic vertices, that 
is, points where D1 goes out to the boundary of H at inequivalent para
bolic fixed points of the group SL2 ( [)1 ) (see [22]). Since Fis a parabolic 
form, it easily follows from the definition of FD (u) that, as u tends from 
within D1 to one of its parabolic vertices, FD (u) tends to zero like 

exp (- : ) (respectively, exp(- c'v)) if this vertex lies in the plane v = 0 

(respectively at infinity). Thus, the function 
00 

I FD(u)I J I GM. uCt. u)-1 I fdt 
1 

is bounded on D1 for all s. Since D1 has finite invariant volume, the relevant 
integral is indeed finite for all s. 

Thus, the representation (3.8. JO) gives a meromorphic analytic continu
ation of >Ir F(s) to the whole complex plane. This function is regular at all 
points, except possibly for simple poles at s = k and s = k - 2. If at these 

there are poles, then the residues there are obviously equal to 
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k-3 h 

(3.8.11) + "~-· \ ~ \-
2
-a(xr1 { ~ x(M;)} j FD(u)du 

}=1 Dt . 

for any pair D, x satisfying (3.8.1)-(3.8.3). 
Now we prove the functional equation. Since by (3.8.9) CM/)* = Mi, 

substituting into the right-hand side of (3.8.10) the system of 
representatives CM/) for (Mi), x for x and 2k - 2 - s for s, we see that 
this does not change it. Hence, 

(3.8.12) a(x)'l'F(s)= a(X)'l'F(2k - 2 - s). 

From the definition of the group structure on the set of classes of primitive; 
positive definite matrices N E ITT 2 with fixed discriminant (see § 2.3) it 
follows that the matrices 

( 
a b/2) ( a - b/2) ( (1 0)) 

N= b/2 c and N'= -b/Z c ='UNU U= O _ 1 

belong to reciprocal classes (since the modules corresponding to them are 
conjugate). From (1.1.10) we see that a(N') = a('UNU) = (-l)ka(N), hence 

h h 

(3.8.13) a (X) = 2; x (N,) a (N,) = 2; x (Ni) a (Ni)= 
i=1 i=i h 

=(-i)k 2; x(Ni)a(N,)=(-i)ka 
i=i 

Since by (3.8.3)and (3.8.5), a(x) =/= 0, we deduce from (3.8.12) and 
(3.8.13) the functional equation 'JIF(2k - 2 - s) = (-l)k'JIF(s). 

Finally, from a(x) =/= 0 and (3.8.13) we see that x =/= x for odd k, so 
that x is not identity character, and then the residues (3.8.11) at the 
possible poles are zero and 'JIF(s) is an entire function. Theorem 3.1.l is 
now proved. 

Conclusion 

We give here a list of some open problems that arise naturally in 
connection with the theory we have developed. 

I. Let F E ITT~ be a parabolic form of genus 2 and weight k, which is 
an eigenfunction of all the Hecke operators Tk(m) (form = l, 2, ... ) .. 
Is F determined by its eigenvalues. 

2. For some positive integer k we denote by m the space of Dirichl~t 
series whose coefficients have not more than polynomial growth and whi9. 
satisfy the two following conditions: 

(!) for every Z(s)E ,Bk, the function 'Jl(s) = (2rr)-2'r(s)r(s-k+2)Z(s) 
be continued analytically as an entire function to the whole s-plane; 

(II) the functional equation '11(2k - 2 - s) = (-1 )k 'Jl(s) holds. 
Is it then true that dim ,8f, < oo? Does 3~ have a basis consisting 
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series with an Euler product expansion? Do these Euler products have the 
form ZF(s) for some FE MP 

3. Theorem 1.2.4 and Theorem 3.1. l and the Zharkovskaya relation 
(Theorem 1.3.3) suggest the following conjecture on fhe analytical properties 
of the zeta-function ZF(s) of a modular form of genus n. 

Let F E M~ (for n and k > 1) be an eigenfunction of all the Hecke 
operators. We set 

where ZF(s) is the zeta-function (1.3.21) and the 'Yn.k(s) are defined by 
the relations 

1'i.h(s)=I'(s), 1'n,h(s)=y,,_,,,,(s)y,,_1,h (s - k + n) (n > 1). 

Then 'l'F(s) can be continued analytically to the wholes-plane as a mero
morphic function with finitely many poles; the functional equation 

11'F(nk - n(nti): 1 - s)=(-1)'· 2"-
2 1l'F(s) 

holds; if F is a parabolic form, then 'It F(s) is entire. 
From Theorem 3.1.1 and Theorem 1.3.3 it follows that these assertions 

hold if q,n-Z F of= 0, where <P is the Siegel operator. It follows from 
Theorem 1.3.3 that it is enough to prove them for parabolic forms. 
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THE METHOD OF DIAGRAMS IN 
PERTURBATION THEORY 

E. B. Gledzer and A. S. Monin 

In this paper the mathematical methods of quantum field theory are applied to some problems that 
arise in the statistical description of mechanical systems with very many (in the idealized case, infinitely 
many) degrees of freedom. 

This application is based on a graphical representation of the individual terms of the formal perturba· 
tion series in powers of the coupling constant in the form of Feynman diagrams. 

A variety of properties of such diagrams makes it possible to sum partially the perturbation series with 
a view to obtaining closed integral equations that contain the required quantities as unknowns. The 
approach is treated in more detail in connection with the statistical hydrodynamics of a developed 
turbulent flow, which is similar to the theory of a quantum Bose field with strong interaction. 

The functional formulation of statistical hydrodynamics makes it possible to obtain integral equations 
of turbulence theory, which can also be derived by means of diagram methods. At the end of the paper, 
some closed equations of statistical hydrodynamics are considered. 

Contents 

Chapter 1. Introduction . 118 
Chapter 2. Perturbation theory 122 

§ 2.1. The state space and generating functionals 122 
§2.2. The Schrodinger equation in the interaction representation 126 
§2.3. Feynman diagrams . 131 
§ 2.4. Functional equation for the scattering operator 135 
§2.5. Vacuum expectation values . 138 
§2.6. Perturbation theory in non-evolution equations 141 
§2.7. Divergences in diagrams 146 

Chapter 3. Summation of diagrams . 148 
§ 3.1. Convergence of perturbation series 148 
§ 3.2. Dyson equations . 150 
§3.3. The Ward identity 156 
§3.4. Functional equations of statistical hydrodynamics 158 
§3.5. Approximate integral equations of statistical hydrodynamics 164 

References 166 

117 


