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EULER PRODUCTS CORRESPONDING TO
SIEGEL MODULAR FORMS OF GENUS 2

A. N. Andrianov

ar cle we construct a theory of Dmchlet series with Euler product expansions corresponding
jutomorphic forms for the integral symplecnc group in genus 2; in Chapter 2 we establish
sction between the eigenvalues of the Hecke operators on the spaces of such forms with the

+ “oefficients of the eigenfunctions (Theorem 2.4.1); in Chapter 3 we demonstrate the possibility
tic. continuation to the entire complex plane and derive a functional equation for Euler products
a'fa the eigenfunctions of the Hecke operators (Theorem 3.1.1), Chapter 1 contains a
'p_késent state of the theory of Euler products for Siegel modular forms of arbitrary genus
sketch of the classical Hecke theory for the case n = 1.
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introduction

In the numerous applications of zeta-functions to arithmetic it frequ
turns out that a decisive role is played by the properties (zeros, pole
values taken, . . .) of zeta-functions outside, or on the boundary o_f,"fi 10
domain of convergence of the Dirichlet series which define them. On
other hand, these applications themselves, especially in problems concer
with primes, usually turn out to be possible only for those zeta-furictions
that have expansions as products of Euler type or can be expressed: 'in
terms of such products. The problems of analytic continuation and o
product expansion of zeta-functions are different in character, but.é@p
deeply connected.

At the moment, the only general approach to the problem of aﬁ&lyti'
continuation is based on the theory of automorphic forms for discrete
transformation groups (the equivalent language of the theory of induece
representations is often used): if one succeeds in associating in a nat'uf:i
way a zeta-function with a suitable automorphic form, say, by means o
integral transformation, then its analytic continuability to the wholé com
plane usually follows easily, and at the same time a functional equation
describing a symmetry of the zeta-function with respect to some ve_r:t
line. This is how the general Hecke L-functions of algebraic number:fiel
the zeta-functions of quadratic forms, the zeta-functions of simple algeb
over global fields, and so on, have been considered. Naturally, by ahd b
it was just the zeta-functions corresponding to various classes of auto
morphic forms that were discussed, often without any visible aim.

The theory of Euler product expansions of zeta-functions begins"'\_.if'it
the celebrated paper of Hecke in 1937 [1]. Up till then, apart from a
isolated examples,') the possibility of expanding zeta-functions as’'Eu
products either followed from general theorems of arithmetic such as
uniqueness of prime factorization, or was postulated as part of the
definition {(Artin L-functions); or else nothing could be said about th
possibility of such an expansion. Hecke considered zeta-functions corre
ponding to classical modular forms, that is, automorphic forms for-the,
modular group Sp;{Z) = SL,(Z) and its congruence subgroups. Thi
includes, in particular, the zeta-functions of positive integral quadrati
in an even number of variables. It turned out that although the Di_ritill
i

In 1917 Mosdell proved that Ramanujan’s r-function and some similar functions are multip_l'i_.c?_l.
from which the Euler product expansions for the corresponding Dirichlet series follow. In Mords
proof the idea of Hecke operators was present, but was not developed at the time. :
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ries corresponding to a specific modular form need not have an Euler
product, the space of all such series, corresponding to forms of fixed inte-
al weight for a fixed group (which is finite-dimensional) has a basis con-
sisting of series that have Euler products of a special type. The modular
rms whose associated Dirichlet series have an Euler product can be
characterized in an invariant way as the eigenfunctions of certain operators
the Hecke operators.

In the post-war years the algebraic aspects of Hecke’s theory have been
{he subject of intensive generalization. Abstract Hecke rings were defined,
the structure of Hecke rings was studied for many classes of algebraic
groups, and their representations were classified; explicit formulae were
obtained for the spherical functions giving one-dimensional representations

. the Hecke rings of p-adic groups. Finally, Hecke rings came to play an
important part in the theory of finite groups and in the theory of
representations of algebraic groups.

Conversely, the analytical side of Hecke’s theory turned out to be very
fficult to generalize to higher dimensions. We have in mind the problem
analytic continuation and the functional equation for the Euler products
that correspond naturally to representations of the Hecke rings of algebraic
oups on spaces of automorphic forms (see Langlands’ lectures [2] and
3], where the most general conjectures in this direction are stated). At the
oment, comparatively general results have only been obtained for the
groups GL, (see {4] and the references listed there). The present situation
‘that to one and the same automorphic form there correspond both a
Dirichlet series, for which the possibility of analytic continuation can be
:"oved, although there is no way of deducing an Euler product expansion,
and an Euler product, for which it is not clear how to prove analytic con-
I_iuation. (In the case considered by Hecke, the Dirichlet series correspond-
g to the eigenfunctions of all the Hecke operators coincide with the Euler
oducts, and the two parts of the theory merge.)

What has been said is entirely applicable to the most natural and
iportant (from the analytic and arithmetical points of view) higher-
mensional analogue of modular forms — the case of analytic automorphic
mms for the Siegel modular group Sp,(Z) and its congruence subgroups
_iegel modular forms). These were discovered by Siegel in 1935 in
mneciion with his classical investigations on the problem of integral
presentations of quadratic forms, and they have numerous links with
ithmetic. Since then, the theory of Siegel modular forms has reached

out the same level as the theory of classical modular forms (see, for
ample, [5]). Much has also been done towards the construction of the
ogue of Hecke’s theory. By means of integral transformations generali-
ng Mellin transforms, Maass has associated with Siegel modular forms
chlet series admitting analytic continuation to the whole complex

ane, and satisfying functional equations (see [6], where Maass’s investi-

?
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gations in this direction are summarized). He also began [7} the develo
ment of the theory of Hecke operators on Siegel forms, he proved that
they are Hermitian, and obtained interesting induction formulae. Shimur
[8] determined the structure of the Hecke rings for the groups Sp,(Z
and found generators for them. Satake [9] classified the one-dimension
representations of the p-adic symplectic group (spherical functions). Fin;
the rationality of the local zeta-functions of the symplectic group (the :
p-factor in the Euler products) has been proved, and their Structure_'ﬁas
been determined (Shimura [8} for n = 2, and Andrianov {10], [11] fo
any n). In no case of n > | has the possibility of analytic continuatic
of the Euler products been proved, nor has their arithmetical meanmg b
clarified.

In the present article we construct a theory, to a certain extent complet
of Euler products for the next case after that analysed by Hecke — t
case of modular forms for the full Siegel modular group of genus 2. Tk
main part of the paper, Chapters 2 and 3, are devoted to this. The basic
results of the theory are Theorem 2.4.1 (the relation between the elgen
values of the Hecke operators and the Fourier coefficients of the
eigenfunctions) and Theorem 3.1.1 {analytic continuability and the:
functional equation for Euler products). Chapter 1 contains a survey of
the present state of the theory in arbitfrary genus #n, including a sketc
Hecke’s theory.

The conceptual plan for the study of Euler products for modular fo'
in genus 2 was first realized by the author in [12], under some rest_né__t
which greatly simplify the technical side of the proofs. The interest tha
this article met among the specialists has prompted me to write this.
exposition of complete proofs of the general assertions. The resulis of :th
present article were announced in [13]. ;

NOTATION. Z, Q, R and C denote the rings of rational integers, the
field of rational numbers, the field of real numbers, and the field of con
plex numbers, respectively.

If A is a commutative ring with a unit element, then M, (A) is the rin
of n X n matrices with entries in A; GL,(A) and SL, (A) denote the:
general linear group and the special hnear group of order n over A, Fo'
square matrix X = (x;;), ‘X = (x;;) denotes the transpose,

o(X) = X;; the trace of X, and det X the determinant of X. E,
# X n identity matrix, and
0 E,
n=(_z, o )

For a commutative ring A with a unit element

Spa(A) ={ﬂ"f € Mon(A); ﬂ-/[JntM = Jn}
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is the symplectic group of genus n over A.

© The inequality 4 > B (respectively, A 2 B) for real symmetric matrices
4 and B means that all the eigenvalues of the matrix A — B are positive
(respectively, non-negative).

Chapter 1
MODULAR FORMS AND EULER PRODUCTS

§1.1. Siegel modular forms

For further details on the facts and definitions set out below, see [5]—

[71.
The Siegel upper half-plane of genus n 2 1 is the set of symmetric
n X n complex matrices having positive definife imaginary part:

H,={Z =X +iY €M\C); %2 =2, Y>>0}

H, is a complex manifold of complex dimension n(n+1)/2.
The real symplectic group of genus 1 Sp, (R) acts on H,: if

AB
M € Sp(R), M == (C D) (M split up into n X #n blocks), then the map

(11.1)  Z— M{Z) = (AZ + B)CZ +D)* (Z € H,)

is an analytic automorphism of A, . It is easy to see that this action is
transitive (the subgroup of matrices with € = 0 already acting transitively),
and that the composition of transformations corresponds to matrix
multiplication:

(1.1.2) MM {2y = MM, (Z).

This allows us to identify A, with a certain homogeneous space of the
group Sp,(R): we denote by K, , say, the stabilizer of the point
£, € H,:

K, ={M € Sp(R); MGE,) = il,};

then the map M — M (iE, ) defines a bijection
(1.1.3) Spa(RVE, — H,,

which is compatible with the action of Sp, (R) if it acts by right multipli-
cation on the left-hand side. K, is a {maximal) compact subgroup of the
A B
¢ D

the group of n X n unitary matrices U(n).
- The image under the map Sp,(R) - H, of the Haar measure on Sp,(R)
_defines an element of volume on A, , unique up to a constant factor, that

Lie group Sp,(R), and the map M = ( ) - A -+ iB identifies K, with
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is invariant under Sp, (R), and can be written in the form

(1.4.4)  dZ = (det Y)-oD [ dzes [| dyes  (Z=X+i¥).
s GEB

The most important discrete subgroups of Sp,(R) for arithmetié&}
applications are the subgroup of integral matrices :

T, = SPn(Z) = Spn(R) N JM’zn(‘Z):

which is calied the Siegel modular group of genus n, and its subgroups of
finite index. Each such subgroup acts discretely on H,,. As Siegel has:
proved, there exists a fundamental domain for the action of I', on'H.
that is, a closed subset D, C H, such that every orbit of T, on H
D, , but that no two interior points of D, are in the same orbit of T
Hence, there also exists a fundamental domain for any subgroup of fi
index in I',. The choice of fundamental domain is not unique. No. =
fundamental domain for a subgroup of finite index of the Siegel modul
group is compact, but it has finite invariant volume. We only consider t
case of the full modular group T, . Co

A modular form of genus n and weight k, where n and & are natural
numbers, is any function F(Z) that i3 holomorphic on H, and satisfie:
following two conditions: o

A B

(1.1.5) for every M = (C.‘ D

det(CZ -+ DY*F(M (Z)) = F(Z) (Z € H,);
(1.1.6) the function F(Z) is bounded in every domain of the forn
{Z=X -+iYE€H,, Y =cE, c>0}. e
For n > 1 the condition (1.1.6) is a consequence of holomorphism a
{1.1.5) (the Koecher effect). Lk
Modular forms occur in the following simple manner in arithmetic:

A be a symmetric positive definite integral matrix with even diagonal
entries and det 4 = 1. The order m of such a matrix is necessarily"

) € T, we have the functional equation

divisible by 8. Then for every n = 1, ..., m, the theta-series of A
(1.1.7y P = 3 exp(nic (XAXZ)= Y r, (B exp (nic (BZ)
XEMm,n(Z) B

where z € H,, B ranges over all the integral n X n matrices with evfe_"
diagonal entries satisfying ‘B = B, B = 0, and ¢ 4 (B) denotes the nti
of integral representation of the quadratic form with the matrix 3B:b
the quadratic form with the matrix 34, is a modular form of genus 7
weight m/2 [15]. Similarly, if we do not impose the condition det 4
we obtain modular forms with respect to subgroups of finite index of
Siegel modular group. This is the basis of the application of modular fo
to the arithmetic of quadratic forms. For details see [14]—[17].f
All modular forms of genus » and weight k& form a vector spdce’
which we denote by Mp. It is one of the basic facts of the theory th
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for any #, k =1,2,..., the space M} is finite-dimensional.
.. Every modular form F € ME has a Fourier expansion
(1.4.8) F(Zy= > a(N)exp(2nioc(NZ)),

Newp, N20

(1.1.9 R ={N =) EM,(Q); 'N=N, ns, Zny; €72}

ig the set of symmetric semi-integral n X » matrices.

. We have seen above that important number-theoretical functions can turn
up as the Fourier coefficients of modular forms. This, in part, explains why
they are of constant interest to us. For the time being, we note just two
generaf properties of the Fourier coefficients.

vy 0
0 v
y € GL,(Z), the telation (det VY*F('VZV) = F(Z), and hence for the
Fourier coefficients the relation

(1.1.10)  o(VN'V) = (del VYia(N) (N € Ry, V € GLy(Z)).

From (1.1.5) we obtain, for matrices of the form ( ), where

Let N € M,, ¥ =0 and let » be the rank of N. Then there exist matrices
N’ 0‘

: o 0

Now det N' only depends on N; we denote it §(V). Then for any modular
form F € ML we have the following bound on its Fourier coefficients

[14]:

(1.1.11) | a(¥) | = O(8(N)Y),

VeSL,(Z) and N' € %, N'> 0, such that ‘VAV = (

The spaces My for different # are connected by the Siegel operator &.

r

0
If Z' € H,_; and A > 0, then (O i?a.) €H, It follows from (1.1.8) that
for any F € My the following limit exists:
(70
(1.1.12) ((DF)(Z)=}£2F ((O i?m)) .
It is easily checked that ®F € ME™  The linear operator
b M — ME™ (n > 1) so constructed is called the Siegel operator, and

;_i_'n a number of cases it allows us to reduce certain problems about forms
of genus »n to analogous problems about forms of smaller genus (see §1.3).
Let us consider the kernel of the operator &:

o (1.1.13) Ny ={F €My, OF=0}.
Forms in % are called parabolic of genus #n and weight &, and can be

characterized by the condition that in their Fourier expansion (1.1.8) all
¢ coefficients a(N) with det N = 0 vanish. For n = [ parabolic forms are
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determined by the condition that FGR) = 0 as A — + oo, which is equi\',_r=
to a(0) = 0. For any parabolic form F € Rk we have the following boun
[141: "

- k{2
(1.1.14)  [F(Z)|=0((detY) =Xy €l

and hence for the Founer coefficients of such a form the bound
(1.1.15) [a(N) =0 ({det NY*?),

where in both cases the O depends only on F. _

We conclude this section with the construction of an invariant comple
ment to the subspace of parabolic forms. It is easy to see that for ever
pair F, F; € ME of modular forms, the measure on H, '

F(Z)T(D) (et V) dZ, (Z=X+iY),

where dZ is the invariant element of volume of (1.1.4),is T, —mvanant s
that the integral :

(1.1.16) (F, F)= S F(Z)F1(2) (det Y)* dZ,

Dy

where D, is some fundamental domain for I}, provided that it conve_;l_;ge'
absolutely, does not depend on the choice of fundamental domain énd*‘- ..

absolutely provided that at least one of the forms F or F, is parabohc
this case (F, F;) is called the scalar product of F and F,. :
We denote by & the orthogonal complement in MP to the subspac
% of parabolic forms. Then we have the direct decomposition

(1.4.47) mr =& @ N

Under ® the space 8} is embedded into m,?"l. The forms in &% éfe_:;c‘siile
Eisenstein series of genus n and weight k. In many respects the study:
Eisenstein series often reduces to that of forms of smaller genus.

§1.2. Hecke's theory

In this section we give an account of the foundations of Hecke’s: theor
[1] of Euler products corresponding to modular forms of genus 1. A
detailed treatment of all the relevant matters can be found in Ogg 8
lectures [17).

The spaces 3} of modular forms of genus 1 and weight & is different
from {0} only for k=4,6,8,... . For all such k the subspace &} 0
Fisenstein series is one-dimensional and is spanned by the series

En(z)= 2 (nz4-my*  (z=az+iy, y>0).

(n, MCZXZ—(0, 0}
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he series Ey(z) has the Fourier ex_pansion

(1.2.4)  Ex(2)=20(k)+ 2(2";))’]‘ Z (2 d*) exp (2mina).

n=1 dln
: The example of the Eisenstein series (1.2.1)}, as well as the numerous
gamples of theta-series of positive definite integral quadratic forms in an
ven number of variables, which wers analysed by the number theorists of
he classical period, demonstrate an interesting phenomenon: it often
wappens that the Fourier coefficients a(n) of modular forms of genus 1 are
multiplicative number-theoretical functions or linear combinations of such
unctions. The reason for this is to be found in Hecke’s theory.
- One could argue as follows: let

)= 2 a{n)exp (Zninz) c M}.

Inge

n the widest sense, the “multipiicativity” of the function a(n) should mean
hat there is a regular connection-between a(n) and a(nm) for any fixed m.
The numbers al{nm) (=1, 2,...) are the Fourier coefficients of the
unction

. "o, b
122 fn@= 2 (5] = 3 lo.n)

._vhere for any function f deflned on the upper half-plane A, and matrix

b
I == (j d\ €{M e GL:(R); det 3/ >0} we set
!

(1.2.3) Pl M = (es+ )" f :‘:;if; )

f the operator f = f,, were to carry the space 9%} into itself, then one
c_:o'u!d hope to find its eigenfunctions in M} ; but for such functions

= N, f, that is, a(mm) = Ay,a(n) (n=1,2,...), and we would obtain the
_eqmred multiplicativity. Now f,, belongs to Smh if and only if f,, | M = [,
for all M € T'y = Sp,(Z). Smce

: (124) fIhMl‘thz = flh-Mrle

and fl M =ffor M €Ty, f€ M}, the above condition holds, in parti-
cular, if for each matrix M € I', the set of matrices

[om AR

b
m) M b=0,1, ..., m—i} coincides (up to order) with a set of the

: )
rm {M”(O m) tb=0,1, ..., m—1, with M, 61‘1}. Taking, for

z_lfnple, M = J,, it is easy to check that this is false for any m > 1. To
get out of this difficulty, it is natural to try to widen somewhat the class
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1 S
b ) (b=0,..., m—1). All the matrices ( b ) belong t
m Om

. 1
of matrices 0
the set S,, of all 2 X 2 integer matrices of determinant m. It is easy 'fo_-

15 e
see that for distinct b =0,...,m—1 the matrices ( 0 m) belong to distingt

left cosets of Iy in S,,. Hence we can try to include the set _

15 i
{(O m) ; b=0, ..., m—i} in a left transversal to I'y in S,,. It is easy
to see that we can take as such a transversal the set '

b
(1.2.5) {(g d); g, d>0, ad=m, be=0, 1, ...,d—i}.

In particular, there are only finitely many left cosets. Thus, in place of th
operators f = f,, we arrive at the operator
(26 o Tami=mtt B fho (fEM.
T

THEQREM 1.2.1, For every integer m =2 1 and k > 0 the operator.
T (m) does not depend on the left transversal to Ty in S, and maps
S into itself The subspace Wy < WL of parabolic forms is invar:‘anr
under all the T, (m).

PROOF. If {Ms0; M, €T} is another transversal, then bearing in mm
{1.2.4) and the definition of modular forms, we obtain

2 Moo= 2 flp Molro= 3l o.

Using the transversal (1.2.5), we see that T} (m)f together with f also
satisfies the analytic conditions in the definition of a modular (respectively
parabolic) forms. Finally, if {o} is a left transversal to I'; in S,,, then fi
any M €', the set {oM} is another transversal. Hence, for any M E L
we have (Tk(m)f)lkM T\ (m)f, and the theorem 1is proved. :

The operators Ty (m) were defined by Hecke and are named after hun
The further development of the theory is merely a technical matter.

Multiplying together the transversals (1.2.5) for different m, it is not
difficult to establish the multiplication table for the operators Ty () on .M

427 Ta(m)Talm)= 3| Tu(Ipt)d*™*  (m, m=1,2, ..
da|m, my :

In particular, all the 7, (m) commute,
By direct computation using the transversal (1.2.5) we find the Foune
expansion of the modular form T, (m)f (for f € Mh):

(12.8)  Ty(mf=a(0) 3 &1+ z( S o (L) d )exp('z_};ﬁgz"

dim n==1 djm,n
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where a(n) n=0,1,...) are the Fourier coefficients of f.

Suppose that f is an eigenfunction for all the Hecke operators
T, (m) (m = L2,...)y: T im)f= )\f(m)f. Equating the corresponding Fourief
coefficients on the left- and right-hand sides of this relation, and using
(1.2.8), we obtain

(1.2.9) a(0) d%dk-lﬂhf(m)a(m (m=1,2, ...),

(1.2.10) > a(%g—)d’ﬂ:?kf(m)a(n) (m, n=1, 2, ...).

dim, n
f'Se:tting r =1 in (1.2.10), we obtain
(1.2.11) a(m)= Ay (m)a(l) (m=1,2, ...

Thus, the Fourier coefficients of an eigenfunction are multiples of a multi-
plicative function A((m) with the multiplication table

('1212) hf (m) Z,]— (mi) — Z Kf ( mT:i

i )d’“l (m, my=1, 2, ...)

d[m, my

(see (1.2.7)).

This has a particularly pretty formulation in the language of Dirichlet
series (see [1]).

THEOREM 1.2.2. (I). Let f € MY be an eigenfunction of all the Hecke
operators Ty (m):

Th(m’)f = 1‘f(l'n)f (m=1,2,.. ')'

hen the Dirichlet series

is'absolutely convergent in the domain Re s > k + 1 (respectively, in
e s >§ + 1, if [ is a parabolic form), and has in this domain an Euler
roduct expansion of the form

(1.2.14) Dy () =111 =4 (p) p=* 4 pr 125y,
P

__Fiere p ranges over all the prime numbers.
:.(II). With any form

o= 20 a (n)exp (2ninz) € M}

Wwe associate the Dirichlet series

a{n)

ns

IR

(1.2.15) R;(s)=

Il
"

7
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Then the series R (s) is absolutely convergent in the domain Res > k+ 1 -
(respectively, Res > E[2+ 1if fE N}, and if [ is an eigenfunction of all
the Hecke operators T, (m), then we have the identity

(1.2.16) RA8)=a(1)D s).

PROOF. The identity (1.2.16) follows from (1.2.11). The convergence
the relevant domains follows from the bounds (1.1.11) and (1.1.15). The
Euler product expansion (1.2.14) follows from the multiplication table
(1.2.12): since P\f(m)kf(ml) = ?\f(mmi) if (mmy) = 1, we have

Dy (s) *—‘Q (52’0 Ay (%) p%);

next, each of the power series > AM{p®)® can be summed on the basis:
the recurrence relation ?\f(p)lf(ps) = 7\f(p'5 1y + pkl ?\f(pa‘l), &= 1'.-".:-T:'h1_
proves the theorem.
In connection with these results there arises the question how man
eigenfunctions of all the Hecke operators T;(s1) there are in M. This
guestion was answered by Petersson soon after Hecke’s paper. Peterssor
defined the inner product (1.1.16) (for » = 1 and for congruence subg
of I';} and showed that for any two modular forms f, fi € M}, of which
at least one is parabolic

(1.247)  (Tu(m)f, f)=( Tum)fy)  (m=1,2,...).

From this we obtain the following theorem.

THEOREM 1.2.3. ML has a basis consisting of eigenfunctions for all
Hecke operators T (m). All the eigenvalues of all the Ty (m) are real :

PROOF. It follows from (1.2.17) and the fact that ! is one- _
dimensional that the Eisenstein series (1.2.1) is an eigenfunction of all ti
Ty (m). It therefore suffices to prove the theorem for the subspace Mk
parabolic forms. The relations (1.2.17) show that each of the operators
T, (m) on Wi is Hermitian. Since they all commute (see (1.2.7)), the_.
theorem follows from a standard result in linear algebra.

It follows from Theorems 1.2.2 and 1.2.3 that the space of Dmch
series R (s) associated as in (1.2.15) with modular forms f € M has
basis consisting of Dirichlet series having expansions as Euler product
the form (1.2.14),

Finally, the space of Dirichlet series Ry(s) (with f € ML) can be
characterized by simple analytic properties.

THEOREM 1.2.4. (I) Let f € Wi Then the Dirichlet series Rf(s)
(see (1.2.15)) has the following properties:

(1.2.18) Rf(s) can be confinued as a meromorphic function to th
s-plane.

(1.2.19) The function
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B
Y

Py () 4 0) _1_( )_:(0)

where Pis) = (2m)~* F(S)Rf(s), F(s) is the gamma-function, and a(0) the

zeroth coefficient of f, is entire.

(1.2.20) The following functional equation holds:

L

k
Py (e—8) = (— 1) 2 ; (s)s

(I). Conversely, every Dirichlet series with coefficients of no more than
polynomial growth, satisfying the conditions (1.2.18), (1.2.19) and (1.2.20)
is of the form Rg(s) for some f € M.

PROOQF. Using the Mellin transform we obtain the integral representation

(1.2.21) by(s)= j (f(it)—a(0) £2d:  (Res>k-+1).
‘ 0

Since fi—z™!) = zXf(z) (for z € H,), we obtain

[+s]

yO={ (e—eO)ria—20y [(—L)r-a=
4 1

= | v—eO) @2ttty 20 22O
1

The function f{if}—a(0) tends to zero exponentially as ¢ = + oo, Thus, the

last integral above is absolutely convergent for all s and is a holomorphic

-functlon of 5. This proves (1.2.18) and (1.2.19). The last expression for

_) is multiplied by i under the substitution s > k — s, and this proves

e functional equation.

‘The assertion (II) is easily obtained if we use the inverse Mellin transform

11 01
atri . i .
atrices ( 0 1) and (“_ 1 0) This proves the theorem

‘Here we have the classical theory for the full modular group I'; = Sp,(Z).
e basic features of this theory carry over, with natural technical compli-
tions, to modular forms of integral weight for congruence subgroups of
(see [1], [17]). We shall be concerned with the case n > | later.

§1.3. Euler products corresponding to forms of genus x.

:Flor the definition of the Hecke operators, only the following three
r‘Z’Ii’er‘ues of the set S, were essential: the transformations in S, take the
pper half-plane H, into itself; Iy S, I, = S,,; and S,, consists of finitely

m >
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many left cosets of I'y. This remark makes it straightforward to def1ne"-:
analogous operators for any genus .
THEOREM 1.3.1. For n 2 1 we write

(1.3.0) 8D ={g € Mypo(2); 'g8Jng = (@), 1(@)=1, 2, ...}

(see notation, p. 48). Then every double coser T, gT,, with g € S,
splits into finitely many left cosets of T, '

M
(1.3.2) F“gr“tpi T.0;.

For each such double coset and each modular form F € M we set

_ ﬂ(n-i-i) s
{1.3.3) Th (Tngla) F=r (@) 2 fleos,

‘A B
where for o == (C D) £ 5™
{1.3.4) Flyo = det(CZ + D)""F((4Z + B)Y{(CZ -+ D)™Y).

Then the operator Ty (',gl’,) does not depend on the choice of the tm
versal and maps the space % into itself; the subspace Wi of pambohc
forms is invarignt under all the T). -

PROOF. It is easy to see that the number of left cosets of T,
I',gl’, is equal to the index of g7'I',gNTI", in T,. This index is finite;
since the subgroup contains a subgroup of [, of finite index, namely. t}
subgroup of matrices congruent to the 1dent1ty matrix modulo r{g). It 1s
easy to see that for g, g, € §W

(1.3.9) Fluglegy = Flugg,.

By the definition of modular forms, Fy M =F for M € T',,. Thus, if

{M;o;}, with M; € I, is another left transversal, then for each i we hay

FyM;0; = F|, 0;, and the operator T, (I",,gT",,} is indeed independent of th

choice of transversal.
If M € T,, then the set {o;M} is another left transversal so that:

(T, (T, 21", )F) kM = T, (T,gT,)F. 1t is not hard to check that for

g € S each left coset I',g has a “triangular” representative, that is, one

A B : .
of the form ( 0 D) . Taking a transversal consisting of upper-triangula

matrices, we verify that the function T, (I',gl',)F also satisfies, together
with F, the analytic conditions in the definition of modular forms -
(respectively, parabolic forms). This proves the theorem.

The operators T, (T, gT",) (for g € §")) generate a ring of operators
each space IMp (or RE). To study general properties of all these rm'

rings of operators are representations of it. The definition below is due
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Shimura [8].

Let L = LY be the free C-module generated by finite linear combinations
of the double cosets (I', gI',,) for all g € S We define a multiplication
law in L starting from the requirement that the product of two double
cosets should correspond to the product of the corresponding operators.
Let g1, &2 € S™ and let T, gyT, = U T84y, T,22T, = U T, gy, be de-
compositions into disjoint left cosets. It is easy to check that for every
g€ S the number of pairs (i, /) of indices such that Vp81:89 = T8
depends only on the double cosets I' g, T",,, ", g, ", and T", gI",,. We denote
this number by uI',g,T,. [',g,T,; T,&l,) and define the product of the
double cosets I',g,I', and I',g,T", by the formula

(I‘nglrn) (rngz]:‘n) = 2 “(Pnglrn 'Pngzrn; I‘ngrn)(rngrn) B

where the summation extends over all the double cosets I',gT", contained
in I',g: 1,8, (there are only finitely many of these). Extending this
multiplication law linearly to the whole of L") we obtain an associative
ring, which is called the (abstract) Hecke ring of T',. As Shimura has shown,
L™ is a commutative integral domain. The map (I",gl',) = T4 (T,8l,)
obviously defines a representation of the Hecke ring L) on the space %
of modular forms.

Just as in the case n = I, for the discussion -of Euler products we need
a certain amount of 1nformat10n about the muitiplication rules for the
operators T, . We obtain this by considering the multiplication of the
corresponding elements of L), As Shimura [18] has shown, each double
set I', gl’,, (with g € S0Y) contains a unique diagonal representative

ving diagonal entries dy,...,d,,e;,...,e, such that
(1.3.6) Aildirr, dplen, errple;,  dig; = 1r{g).
¢ denote by 7(d,,...,d,;e;,...,e,) the corresponding double coset,
garded as an element of L®) Qne sees easily that
(1.3.7) T(dy, -y dus ey o e)Tdy, .. ., d €} o v .y €)=
= T(dyd,, . .., eqer),
ovided that (e,, e;) = 1. In particular, if for every m=1,2,...we let

(m) denote the sum of all the double cosets I', gI", with r(g) = m (by
.6) these are finite in number):

(1.3.8) T(m):r(z (Caglu)= D T(dyy ..., dn; €y, +.., en),

g)=m dies=m

(1.3.9) P(m)T(m)="T(mm,) for (m, m;)=1.

e consider the formal Dirichlet series
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(1.3.10) D(s)= 2 T (m)m".
By (1.3.9), D(s) has a (formal) expansion as an Euler product of the .fo'

(1.3.11) D(sy=[] D, (s), where D, (s)zﬁiﬁT(pﬁ)p‘és
F4 - =

{p ranges over all prime numbers). _
To compute the p-component D, (s} we need some information on_:f
product of the double cosets I', gl',, for which #{g) is a power of a fix
prime p. All such double cosets generate a subring Lp(") of L™ Shimura
(8] has shown that L, is a polynomial ring over C in n + 1 independe
variables, which we can take to be the double cosets _
rd, ....4Lp, ., T, .. L e P PR D, D)
B W B et e e —

n n n—1t i n—1i i

U<i<n). __
Thus, Dp (s) can be regarded as a power series in r = p~ with polyndi_h al

coefficients, and the question arises, say, whether or not it is formally
equal fo some rational function in ¢ with polynomial coefficients. Fo'r':
small » one can carry out direct computations. For instance, it follows
Hecke’s computations [1] that for n = 1 b

Dyls) =1 — T4, p)p~* + pT{p, p)p~>)". o
For n = 2 and 3 the series D, (s) were computed by Shimura [8) and
Andrianov [19], respectively. For arbitrary # 2 1, Shimura [8] has'co
jectured that for any prime p the series D_(s) is formally equal to a
rational function in p~ with coefficients in Lp(”), whose numerator. an
denominator are of degrees 2”2 and 27, respectively. This conjectur
proved by Andrianov [10], [11] 1) We give a detailed description df._-th
corresponding result in the language of one-dimensional representatidn
Hecke rings. i
The set of all Clinear homomorphisms of Lp(”) into C that tak_é_ the
element into 1 has a simple parametrization. Each double coset T, gl
g € S and r(g) = p®, has a left transversal I', consisting of matrice
the form o

-5

pltx w L. %

/ 0 pdz*...*

(0 g) , with D=

(1.3.12) . S
0 0 0...ph k
Let A = (@, @, . . ., @,) be an arbitrary (n + 1)-tuple of non-zero
complex numbers. With (I, gl’,) and the (n + 1)-tuple of paramet@_'r_ -
associate the number '

L As1. G. Macdonald has pointed out to the author, Shimura had an unpublished praof of his'conj
at about the same time, but by a diffesrent method. He has subsequently obtained considerably:
results. -
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(1.3.13) (Tngln)a =08 ) i[_]1 (o™,

- where the summation extends over a left transversal of T' gI', in '), written
“in the form (1.3.12). It follows easily from the definition of multlphcatwn
“in L") that the map (T,gL,) > (I',gT,), defines a Clinear homomorphism
of L, P m) into C taking the unit element into 1. Conversely, every such

: homomorpmsm e L, () - C has the form e, gl,) = (I,87,), for some
S(n + 1)tuple 4 = (ao, L, e) ECT oy ..o, # 0. The homo-

* morphisms corresponding to two {(n + 1% tuples (&g, . .., e,)and

(e, -+ - 5 @) coincide if and only if @y = &g, and o =e, ; (=1,...,7),
~ for some permutation ¢. In these terms we have the following result on

- the series Dy(s) (see [11]).

:_' For any (n + 1)-tuple of non-zero complex numbers 4 = (®g, ..., o, )

~ there is a formal identity

aéo Ta(ph) 5= Pp a(t)Qp,a ()7

where
an_2 .
Ta(p®)= 2 (TngTn)ay Ppa(t)= 2 @i(&s, «uu, an)orit),
r(g)=pb =t
all the @; are symmetric polynomials, Qo= 1, @un_, (as, ..., &n) =
(n—1)n et
T @y . .an)® T, and

n
Op, 4 (&) = (L~ at) r[=Ii 1$1<“1__[.<ir5n(1“050&i; oo OlGd);
The power series on the left-hand side of the identity is convergent in some
neighbourhood of zero, and is equal to the right-hand side in this
neighbourhood.
We now turn our attention to the representations of Hecke rings on
spaces of modular forms. Let F € IRE be a modular form of genus » and
weight k. Suppose that F is an eigenfunction of all the operators
T (T gly), for g € St

Tk(:{‘ngrn)F = }"F(Pngrn)F

It is not hard to show that the eigenvalues A\p(I', gT",) are of no more
than polynomial growth:

34 | Ar(TugTo)] = O((&)"),

where the constant ¢ depends on # and k& only (the idea of the proof: it
1s easy to give an estimate of the form O(r(g)%) for the number of left
set in the double cosets I',gI', (with g € S(’”) where ¢, depends on n

Q__nly, now we take a left transversal consisting of matrices of the form
(_:1:;3.12) and find the Fourier coefficients of the form T, (T",gl,)F; on the
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other hand, these coefficients are equal to the coefficients of F, multiplie
by Ag(T,gT,); by equating the corresponding expressions and using thg-
estimate (1.1.11), we obtain the required result). In particular, for the
eigenvalues of the operators T, (m) (m =1, 2, .. ) corresponding to the ele
ments T(m) of the Hecke ring {see (1.3.8)), .
nh—T-l—(—n—'i'—i)
(1.3.15) Thoim)F=m 2 Y  Flo=As(m)F,

OET, “5p”

where S§ = {g €8™ ; r(g)=m}, we have the estimate
(1.3.16) | Ap(m)] = O(m),

with ¢ depending only on »n and k.
We consider the Dirichlet series

(1.3.17) Dy(s)= 3 22t
Mm==i ;
From the theory of the formal series. D(s) treated above and the estim
(1.3.16) we deduce the following theorem on the series Dp(s), which:
analogous to the first part of Theorem 1.2.2.
THEOREM 1.3.2. Let F € ML  be an eigenfunction of all the Hecke
operators Ty (T, gT,) (for g € SN, In particular, :

To(m)F = Ap(m)F (for m =1, 2, ...)

(see (1.3.15)). Then the Dirichlet series (1.3.17) is absolutely converéei:t
a right half-plane Re s > o and has there an Euler product expansio

(1.3.18) Dy (s) :111 (2 2o (P9 p~) =IPIDp. r (s);
each of the p-components D, p(s) is a rational fraction of ps:
(1.3.19) Dy, p(8y="Pp, r(p~*}@p. r(p~) 1,

where PP,F(I) and QP,F(t) are polynomials with real coefficients of_'_.d_egre
2"—=2 and 1", respectively; the polynomial Qp’p(t) has the form

gn—1 (nk-r—n(ﬂ;-i ))

(1.3.20)  Qp e(®)=1—Ap(p)tt...4p

12" =

={1—al (p)y [] I t—af(paf(p ---i?ﬂ

r=l 1S <lpsin R

where AF (p) = (o (py, . . ., ozf(p)) are the parameters that by (1.3
correspond to the one-dimensional representation T(T,gT,) - Ng (T, 8L}
of the ring Lp("). o /
PROOF. All the assertions of the theorem, apart from the fact that the
coefficients of Pp,F and Qp,F are real, follow from what has been_-'__s'aldi
It is shown in [11] that the coefficients of P, pand Q, p are linear
combinations with rational coefficients of the eigenvalues Az(T, 2l
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shall see later that all these eigenvalues are real, and the assertion follows.

: DEFINITION. Let F € RE be an eigenfunction of all the Hecke
operators T, (', gl',) (for g € S(”}). We define the zeta-function of the form
F to be the Euler product

(1.3.21) Zp (3) =g Qp. » (P72,

‘where QP,F(I) are the polynomials defined in Theorem 1.3.2.
It follows from the estimate (1.3.14) that the parameters ocf (p) satisfy

| af(p) = O(p="),

here ¢’ depends only on # and k. Hence the product (1.3.21) is absolutely
convergent in a half-plane Re s > ¢’ and is an analytic function of s in this
half-plane.

- Forn =1, Zg(s) = Dp(s). For n > 2 these functions do not coincide.
That Zp(s), rather than Dg(s), can reasonably be regarded as the “right”
ta-function of F is shown by the analysis of the case n = 2 (see §8§2.4
nd 3.1), as well as by the relation due to Zharkovskaya, which is intro-
uced below. General conjectures about the analytic properties of Zg(s)

e given in conclusion at the end of this article.

‘Recently Zharkovskaya [20] has proved a theorem that reduces the study
f the zeta-functions Zp(s) of arbitrary modular forms to that of parabolic
yms. For n = 2 this theorem, as shown in [12], follows from results of
[aass [7].

THEOREM 1.3.3. Let FE€ WME (n > 1, k > 0) be an eigenfunction of
I operators of the Hecke ring L™ Then the form ®F € MEL, where
-is the Siegel operator (1.1.12), is an eigenfunction of all the operators of
e Hecke ring LOY)  and if F is not parabolic (that is, ®F #+ Q), then in
e domain of absolute convergence the following relation holds between the

(1.3.22) Zp(8)=Zar($)Zor(s — k& -+ n).

.Finally, we consider the question of the existence of eigenfunctions of
‘the Hecke operators.

HEOREM 1.3.4. For all n and k 2 1 the space R}, has a basis con-
iing of eigenfunction of all the Hecke operators T, (I, gI",)) (for g e gy,
the eigenvalues of all the Hecke operators on R} are real '
ROOF. First of all, one checks that for any two modular forms F,

€ IME, of which at least one is parabolic, and for any g € §®

- (1.3.23) (Th(Tngln)F, F)y=(F, T (L.glW)Fy),

_:re (, ) is the scalar product (1,1.16). This relation was proved by

ass [7] for the operators T(m); for an arbitrary double coset the proof
nalogous. By (1.2.23), the Hecke operators on the space of parabolic
ms are all Hermitian. Since they commute, the theorem is true for 7.
definition (see 1.1.17) and (1.3.23)), the subspace &% — Mp of
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Eisenstein series is invariant under all the T;. As was shown by = .
Zharkovskaya [20], there exists an epimorphism T - T* of L onto L= _
that for any F € S we have the relation ®T,F = T, *®F. Hence the
subspace MG} < IME is invariant under all the operators of L"~1): (g
induction on » and Theorem 1.2.3, we arrive at the required result, :._-5

With this we come to an end of the general facts known about the Ey
products corresponding to Siegel modular forms of arbitrary genus. TH_é
principal gap in the theory as compared with Hecke’s theory for n = 1.
the lack of any analytical connection between the Fuler product and'
corresponding modular form. In the following chapters we shall see the
form this connection takes in the case n = 2.

Chapter 2

EIGENVALUES OF THE HECKE OPERATORS AND THE FOURIER
COEFFICIENTS OF EIGENFUNCTIONS IN GENUS 2.

§2.1. Action of the Hecke operators on the Fourier coefficients

Let F € ME be a modular form of genus 2 and weight k. In this-
section we begin the study of the Fourier coefficients of the form:
Ty (m)F, where T, (m) is the mth Hecke operator (see (1.3.15)). Acco
to (1.3.9), it suffices to restrict ourselves to the case when m = p% i
power of a fixed prime number. With this in mind, we begin by constr

ing a special left transversal V(p®) to Spé in T',, where

(2.1.1) Spe={g € M, (Z); "gJag = pAJ.}. _
As was pointed out in §1.3, each left coset of $;8 in I'; has a repres

of the form (O D)’ with A, B, D € M,(Z). A matrix of the shap
indicated belong to Spé  if and only if
(2.1.2) *AD = pSE,, 'BD = 'DB.

1t is easily seen that two integral matrices (A B) and ( A Bl) ‘sa
Y & 0D 0D, /) °
(2.1.2) belong to the same left coset of T'y if and only if there are |

V € GLy(Z) and T € M,(2Z), with *TV = 'VT, such that
D, =VD, A, =1'V4, B, =1'W"B <+ TD.
For a given D the matrix A4 is uniquely determined by the first rel'
(2.1.2). Clearly, for an integral D the corresponding A is again mtegr_
and only if

o

(2.1.3) D€ GL,(Z) (% %B) GLa (Z),

where a, § == 0, ¢ + 8 < 8. The double coset (2.1.3) splits into_._.-fih
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many left cosets of GL,(Z). It is easy to see that a transversal can be
taken to be the set

p* 0
( 0 potB R (Pﬁ)a
where

(2.1.4) R(pﬁ)z{(’: Z:) €SLy(Z): (s, us) mod pﬂ}

Uy Ug .
is any set of 2 X 2 integral matrices ( * v“) , whose first rows range
1 Y2

over a complete system of representatives of the equivalence classes of
pairs of coprime integers under the equivalence relation

(2.1.5) (uygy wg) ~(uf, u)(mod pb) «=> au, = u;, au, = u, (mod pb)

(that is, the “projective line mod pf>), and whose second rows are chosen
so that u,v, — uyu; = 1.

Summing up what we have said, we obtain the following proposition.
PROPOSITION 2.1.1. For every prime p and every integer § =2 0 we can
take as a left transversal to 5;25) in I'y (see (2.1.1)) the set

4 B @ 0
(2.1.6) V(pé)m{(o D) 'DE (% p“+ﬁ) R{(ph), a0, =0,

a+B<8, A=pb D,'BD ="'DB, Bmod D} :

where the sets R(p®) are defined above (see (2.1.4), and B mod D means
wat B ranges over a complete system of representatives of the eguivalence
‘classes of 2 X 2 integral matrices (satisfying the previous condition) under
1e equivalence relation

B =B, (mod Dy<=> (B — B))D-' ¢ M, (Z).

Let

F(Z)= 2  a(N)exp(2nioc(NZ) M}

_ NeRo, N20

‘be the Fourier expansion of some modular form of genus 2 and weight &
'__ee (1.1.8), (1.1.9)). By definition (see (1.3.3) and (1.3.8)) and by

)F = ph=8i6 3 Flg=
gevind)
=pR=38 3 B g (N) (det Dy exp (Sniio (V (AZ - B) D-1)) =

N (A B b
(i 2 evon

= pl2k-3)8 %‘, %‘, a (N) (det Dy™* exp (2nic (pPDIN'D1Z)) Ip (V),
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Ip(Ny= p exp (2rio (NBD™)).
!gp=!DB, Bmod D :
Collecting together the terms with thé same power in the exponent, we

obtain
Tr(p)F= 2 a(p® N)exp(2nio (NZ)),

Nemg, Nz=0
where :
(2.4.7) a(p® N)= i
—= p(zr-3)0 N a (p~SDN'D) (det D)™ 15 (p~*DN'D
De (pm 0 )R(pﬂ}. s
0 pm+ﬁ

a, pz0, alph=d
It is easy to see that for U € SL,(Z) and half-integral N we have the
relation

d that for D=5 . ) v [ e b2 )
and that for - ( 0 pa-’.“ﬁ r IV = (b/g c ) we have |
pieth, if a==b=0(mod p*), c==0(mod p**P), .
49) I :{ __
@49 () 0 otherwise.

We set § — (@ +f)=v>0. Using {2.1.8) and the fact that :
R(p#) C 8S1,(Z), the relation (2.1.7) can be rewritten in the form
(2.1.10) a(p®; N)= Z pR—DBHCR-3
o+-Bry=5,

o, B, v=20

X 2 a(P‘ﬁDaﬁUNfUDaB)p—(3c:+5)1Da5(p—GDaBUNtU.D
UER(P)

* 0 a b2 s 2] bu/2‘
where Dmﬁ = ( 0 pa_Ha) . We set N= (b,fz ¢ ) N and UN'U = (bu./z Cu_ ..
(for U € SL,(Z)). Then "

ay poh=? %; bup™¥

%" wp®—? ¢, p*rB—y

PO DagUN'Y Dy =

and hence, bearing {2.1.9) in mind, we obtain

2.1.11) a(pb; N)=

= > pl-biH@r-5y > al pe
et fv=o, Uer(ph),

o, B, v20
e, = 0pi+7y,

b, =c, = 0{pY¥)
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Wwe now introduce some notation, to put this formula in a more convenient

orm.
Denote ¥ the set of all complex-valued functions on the set

__'ij'{N £ N., N =0} that are constant on the classes of equivalent matrices in
~the nairow sense:

(2.4.12) o ={p: (N € Ry N >0}~ C | o(UN'T)=p(N)(U € SLo(Z))}.

“According to (1.1.10), the Fourier coefficients a(N) of any modular form
F € Mi can be regarded as the valuies taken by some function in 9.

- We define a representation of the Hecke ring L' of the group

I, = SLo(Z) on 9. Let g € S (see (1.3.1)), and let

I'gly = Uficn

e a decomposition of the double coset I'; g, into a disjoint union of
eft cosets of T";. For each ¢ &€ U we set

(2.1.13) (72 (T1gTy) @) (V) = X ¢ (0:V o).

t is easily seen that all the operators T, are independent of the system of
epresentatwes {o;} and map 9 into 1tself We extend this action linearly
o the whole of LW, 1t follows easily from the definition of multiplication
n L1 and the fact that L1} is commutative that the map 7 = 7, is a
representation of L) on 9.

. We also define operators A*(sm) and A"(m) on 9 for every natural

i} ¢ (mNV) if mNER,
(A" (m} @) (V) “—“{ 0 if m N ¢ N,

As.an immediate consequence of the definition we have the formulae
AT (m) AY (m)) = A" (mmy) (m,my=1,2, ...),
(2.1.15) {

(A" (m) @ (N} = p (mN),
(2.1.14) {

“(m) AT (m)=A"{mmy) (m,m=1,2, ...}
AT () T (CigT) A~ () =T, (TigT) (m=1,2, ..., g€SM).
Fmally, for each m=1,2, ... we set

(2.1.16) (m) = T4 (ri (é i) 1“1) A- (m).

: .’i O
ce LO pg) R (p?), where R(pP) is the set (2.1.4)), is a left transversal to

1 0
n o (0 pﬁ) I'y, for any prime power m = ,p‘3 we have

(MM(mmwmzz(mwm(io fio)_
UeRph) (0 PP ) Ny (0 PB) o
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Ucrob),
a, = 0 (mod »fh

!

a
where ( b

bulz) -~
buf2 ¢y = u.

We now write out (2.1.11) in terms of the notation just mtroduced
PROPOSITION 2.1.2. Let

F(Z)= 21 a(N)exp (2nic (NZ)) € M3,

Mgz, N20

and let p be a prime number, and & = 0. Then

(Tx(p% F) (Z)= >, a(p%; N)exp (2nic (NZ)),
NeRo, Nz0
where
a{ph; Ny= 2, pR=2B+ZR=3W (A= (p¥) II (p8) A* (p%) 2) (V)
C=+fé+$‘>—"g,

(and a( ) is regarded as a function in 9%).

REMARK. In the corresponding formula in [12] the operators are’
written down in the reverse order, a common error in such cases. Howeve
the formula is used correctly.

PROOF. Since U € SL,(Z), the conditions a, =b, =¢, =0 (mod p”) ar
equivalent to a =b=¢ =0 (mod p7). Then keepmg (2.1.14) and (2.1.1.7
in mind we find that the term in (2.1.11) corresponding to the partition
5 =a+ f +'vis equal to

ple—DBHER-3) > (A* (p%) a) ( P (aup‘ﬁ bu/f%)) _
UeR (pﬁ), bu!"z Cupﬁ
ay, 22 0 (modphy o
= P2y (I (p8) A* (p) ) (p~
when p— VNEmz, and is zero otherwise. The proposition is now proved:

oo

§2.2. Summation of the series E a{pdNyid

In this section we ‘establish that for every prime p and positive deflmt

a bi2

o (5/2 ¢ _
where ¢ (...) are the Fourier coefficients of some eigenfunction F € 93??;
all the Hecke operators T, (p®)) is closely connected with the generating
series for the corresponding eigenvalues, and is, in particular, a ratlonal '
fraction with the same denominator.
First of all we introduce, in a form that will be convenient in wha
follows, a result of Shimura [8] on the summation of generating series
eigenvalues. '

) EM,, with (a, b, ¢, p) = 1, the series of the section head
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THEOREM 2.2.1. Let p be a prime number, gnd let F €%, be an
cigenfunction of all the Hecke operators Ti(p®) (with & = 0):
Te(pOF = 2p(p®)F (6 =0,1,...).

Then we have the identity

2.2.1) Ggo hp (PO) £ = (1 — p*=42%) Qp,  (£) 71,

(2.2.2) Up,r ()=
= 1Ay (P) t - (Ar (D)2 — hp (PF) — P¥*9) £ — hp (p) P33 4 p**-ogh,
_ COROLLARY. If F € Mi is an eigenfunction of all the Hecke operators
T (T28l2) (for g € S, then in the domain of absolute convergence the
following relation holds between the Dirichlet series Dy (s) and Zg(s) (see
(1.3.17) and (1.3.21)}

Dp(s)=0(2s — 2k + 4)"*Zp(s),
where { is the Riemann zefa-function.

. The main result of this section is the following proposition.
PROPOSITION 2.2.1. Suppose that the modular form

F(Z)= 2 a(N)exp (2mic (NZ)) € M}
NgNe, N20
is an eigenfucntion of all the Hecke operators Tk(pa) for some fixed
prime p and § = O:
Tu(p)F = dp(p®)F (6 =0,1,...).
bi2
Then for any positive definite matrix N == (Z /9 ) € N, such that
(a, b, c, p) = 1 we have the identity ¢

@2.3) { 2 (P°N) 28} Qp, r () = a (V) — p"~2 (I (p) @) (N} £ -+

+ 1P (I (P —T1 (p9) — 1) @) (V) + 75 (T (p) A~ (p) @) ()] 2,

Wwhere QP,F(I) is the polynomial (2.2.2), and A~ and Il are the operators
(2.1.14) and (2.1.16).
PROOF. Let us set

(>

Mult1plymg out the expression on the left-hand side, and using (2.2.2), we

EM 8

a(pSN) 18} Qp, 5 (t) = i A

(2-2.4) by=a (p"N) — Ay (p) 2 (p¥=1N) + (r (p)2 Dz (P?) — P** " @ (p*~2N) —

— P9y (p) & (p7=ON) + Pt (),
here a(p”™*N) = 0 if v—i<0. By Proposition 2.1.2 we have
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(2.2.5) e (p%) a(poN) =

= > pUDBER=3Y(A* (po) A~ (p¥) I (pB) A* (p%) @):_E(N
o-pty=>5 :

Carrying out a purely formal computation using (2.1.15), we come to the
relation :

(2.2.6) (hp (p)*—hr (2) — ) a (p°N) =
= (A* (p9) (p*2 (I (p)* — 1 (p%) + p— 1) 4 p"*A* (p) L (p) +
+ p¥I0(p) A () @)

If v = 4, the formulae obtained then give us '.
by={{A" (p*) — A" (p*=1) (&* (p) + P" T (P) -1 PP A7 (p)) + .
+ A* (pv=2) (p? 4 (TL(p)*— 1L (p?) -+ p— 1) + P A7 (p) 1L (p) + p** 311 (p) A~ (p)) -

— pP3AT (pv3) (AT (p) + p* T (p) -+ p¥ AT (p)) 4 PV 0AT (p¥=4) 1 ) (
hence, using (2.1.15), we obtain
by==p*~4 (A" (p¥=2) (I (p)*-— 1 (p*) — (p-+1)) @) (IV).

Similarly, since (A~ (ma)(N) = 0 we find

by== P (A" (p) (T1 (§)* —T1(p*) — (p -+ 1)) @) (),

by = ((p™~* (I (p)* — 1L (p*) — 1) + p*~°H (p) A~ (p)) @) (),

bi= — p*2 (1 (p) a) (N),

bo == i.
Thus, to complete the proof of Proposition 2.2.1 it suffices to prove'ﬂ_i

following lemma. :
LEMMA 2.2.1. For every prime p the following operator identity holds

At (p)(Il(p)* - (p*) — (@ + 1)) = 0.
PROOF. By (2.1.16) and (2.1.15) we have

R O A A E N LY R P

o3 9o

The following identity in the Hecke ring LY} is well known and readily
verified: i

f(nfo p)n) = (o pn)+eror(n(; )

!

Since the mapping T — T, is a representation of L), we have

2 EUEr=Te (1 ) r) s wreenr () ) n)ae,

=AM ()P4 (p+ 1A
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This proves the lemma and the propasition.

§2.3. The operators II{p*} and the composition of quadratic modules

In this section we show that the operators II{p®) on A have a simple
interpretation in terms of the composition of modules in imaginary quad-
ratic fields.

We start by recalling the basic definitions and facts of the theory of
modules in quadratic fields. More detail can be found in [21], Ch. 2.

et K be an algebraic number field of finite degree over the field Q of
rational numbers. A module! in K is any Z-module M C K. Every module
M C K has a Z-basis, that is, a finite collection @,, ..., o, of elements
of M such that every element of M has a unique expression as an linear
combination of them with coefficients in Z.

Two modules M, and M, in K are said to be similar if M, = aM, for
some ¢ = 0 in K.

A module M of X is said to be full if QM = K. Every full module has
a Z-basis of [K : Q) elements. A full module K that contains 1 and is
itself a ring is called an order of K.
If M is a module of K, the ring Oy ={a € K; oM < M} is called the
coefficient ring of the module M. The coefficient rings of similar modules
coincide. For every full module there exists a similar module that is con-
tained in its coefficient ring.
The coefficient ring of any full module of K is an order of K. Every
order of X is contained in the maximal order £ of all the integers of K.
Let M be a full module with basis ®, ..., ©,,wheren=[K: Q]. The
number D (M) = det(Spg 1o {w;0;) is independent of the choice of basis
and is called the discriminant of M. The discriminant of the maximal order

d= drc = d(D)

is' called the discriminant of K.

Let M be a full module of a field K of degree n over Q, and let £, be
coefficient ring. In £, we choose a basis o,,...,a,, and

W1, - .., ©, in M. Then the absolute value of the determinant of the

ansition matrix from the first basis to the second,

{2.3.1) N (M) =| det (a:;) ], where o; :2 17 2

1s-independent of the choices of bases, and is called the norm of M. If a
I module M is contained in its coefficient ring ©,,, then
M) = [D,; : M] (the index of M in Dip).

We only consider modules of finite type.
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Now let K be a quadratic extension of Q. Every such field K is of
form K = QG/do), where dy # 0, 1 is a square-free rational integer, As o
basis of the maximal order £ of Q&/dy) we can take the numbers 1 ap
w, where w = .L*T...\/_‘b if dg =1 (mod 4), and w =+/dy if dy = 2.0

(mod 4). The discriminant d of © (in other words, the discriminant of
field QG/dy)) is equal to dy in the first case, and to 4d, in the secor
Any order ' of Q(/d,) has the form
(2.3.2) ;=74 Zjao,
where f in the index [D : ©,l. The discriminant of O, is equal to df?
Let M, and M, be two full modules of K = Qf/d). Then the set
MM, is again a full module in K and is called the product of M, and
Mz. If ‘9;\[1 = th and DM.‘, = Dh’ then

(2.3.3) D = Oy,

where f is the greatest cornmon divisor of f; and f,. For any two full
modules M, and M, of K the following relation for the norms holds

(2.3.4) N(M M) =N(M)N(M,).

For every full module M we denote by M the module that consists of thi
conjugates & over Q of the elements @ of M. M is a full module with the sam
coefficient ring as M, and we have the formula

(2.3.5) MM =N (M) Dy
M is said to be conjugate to M.

Let £’ be a fixed order of K. It follows from (2.3.3) and (2.3. S) that
all the full modules of K having &' as coefficient ring form a commutatwe
group under multiplication of modules. The quotient group of this group
the subgroup of modules similar to ©' is called the class group of mod
of the ring £, and is denoted by

H(D')=H(D),
where D is the discriminant of ©’. The group H(D') is finite forian
order ©’. For the order (D) of the group H(D) we have the formula

2. 2y __ @i

(2.3.6) k) =hid) 2O,
where @ and ¢ are the Euler functions of K and Q, respectively, and e
is the index of the group of units of ©; in the group of units of th
maximal order £.

Suppose that f' divides f. Then the map

(2.3.7) M—»Op M

induces an epimorphism of the class group of modules of a:)f onto’ the
class group of modules of £, which we denote by v(f, f'): :
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(2.3.8) v(f, f):H{df*) —H(df'*) i 1 h.
Let us consider the relation between quadratic modules and prime
numbers.

PROPOSITION 2.3.1. Let K = QG/d) be a quadratic field with discrimi-
nant d, and Dy an order of K with discriminant df*. Suppose that p is a
przme number not dividing f. Then the existence of a full module M in K

is equivalent to the solubility of the congruence x* = d (mod 4p). If this
congruence is soluble, then there are precisely two modules M, and M,
having the properties (2.3.9) if p does not divide d, and then M, = M,
or precisely one such module M if p divides d.

" PRQOF. We denote by {a, B} the full module M with the basis «, .
_We use the following lemma, which is proved in [21], Ch. 2, §7, Lemma
{

'LEMMA 2.3.1. Let y €K, v4Q;let ay* + by + ¢ = 0, where a, b,
¢ relatively prime rational integers with a > 0 (such a, b and ¢ obviously
exist, and are uniquely determined by ). We set M = {1, y}. Then

(2.3.10) N (M)=1/a, O ={1, ay}, D (Dy)==b*— 4ac.

Let M satisfy the conditions (2.3.9). Since the index of M in £y is p,
the smallest natural number contained in A is p. Hence M has a basis of
the form p, py : M = {p, py}, with v € K. Let ay® +by+c¢ = 0, where
b and ¢ are integers with (g, b, ¢} = 1 and @ > 0. Then by Lemma
2.3.1, p = N(M) = N(p)N {1, y}=p¥a, hence a = p. On the other hand,
2. — dgc = D = df?. Thus, b* = df* (mod 4p). Since d = 1 or 0 (mod 4}
d.(f, p) = 1, it follows that the congruence x? = d (mod 4p) is soluble.
onversely, if this congruence is soluble, then #* —4pc = d has a solution
m:integers (b, ¢). Since d is the discriminant, {p, b, C) 1. Consequently,
(p, bf, cf*) = 1. Let v be a root of the equation py? + bfy+¢f? = 0.
__h_en it follows from Lemma 2.3.1 that the module M = {p, py} satisfies
the conditions (2.3.9).
Let M; ={p, py;} (i =1, 2) be two modules satisfying (2.3.9). As we
have seen, the v, satisfy equations of the form py?+ b;y; +¢;=0(G=1,2),
)"“ 1 and b} — 4pc; = df*. Since b} = df*? (mod 4p), we

£ b, (mod 2p). In the first case bz = b, + 2ip and

wbgisz}:{p’ SUES, Vd_lp}z{p, —biiszd} _

'_last module is equal to either M, or M,. Similarly, in the second case
=-b, + 2Ip and
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sty ={p, M_lp}z{p,:_bi_ﬂﬁ}ﬂgi or M,

This completes the proof of the proposition, because if p divides d, then
M, = M,.

We conclude the survey part of this section with a description of th
correspondence between modules in quadratic fields and binary quadratic
forms. For definiteness, we restrict ourselves to imaginary quadratic’ f1eld
since we do not need any others, '

First we recall some definitions. Let

F (z, y)y=ax® + bxy + cy?
be a binary quadratic form. The discriminant of F is the number
= d(F)=b* — 4ac.
The form is called integral 1f @, b and ¢ are integers. In this case the
greatest common divisor
e{F)=(a, b, c) _
is called the divisor of F; F is said to be primitive if e(f) = 1. With ea
binary form we associate the matrix
a b,’Z)
b2 ¢/’ _
If F is positive definite then N > 0, and if F is integral, N € Ra. Tw
forms F and F, are said to be equivalent (in the narrow sense) if - -
(2.3.11) N(E)="UN(F\U, U € SL,{Z). '

This means that F, can be obtained from F by means of an integral li
change of variables with determinant 1. If F and F; are two equivalé_
forms, then d(F) = d(F,) and e(F) = e(F,). The set of all integralforms
with a fixed discriminant D # 0 splits into finitely many classes of eqm
lent forms. i

Let K = QG/d) be an imaginary quadratic field with dlscrimmant
Let M be a full module in K. With every ordered basis o, § of M} sta
from the condition

N:N(F):(

50

1 o4
(2.3.12) —l.—det 2
we associate the binary quadratic form
(2.3.13) F=Fu(z, y) = az® 4 bay +cy*=
1 i s
=won @@+ = 5on (o —-By) (e

Clearly, F is positive definite. It follows easily from Lemma 2.3.1 tl'
integral, primitive, and that d(F) = b? — dac = df?, where df? is th
discriminant of the coefficient ring 9, = ©; of M. Conversely, _1f
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- F(x, ») = ax® + bxy + ¢y is a positive definite integral primitive form of
~ discriminant df? = b? — dac > 0, then

(2.3.14) M=M (F)={a, ?:_fz_V_f}

is a full module with coefficient ring D;.

It is easy to check (see [21], Ch. 2, §7, Theorem 4), that the indicated
. correspondence defines a bijection between the set of all classes of similar
- modules of Q(/d) with the coefficient ring ©; and the set of all-classes of
" equivalent (in the narrow sense) positive definite integral primitive binary

_ quadratic forms of discriminant df*. As the first of these sets is a group,
“the second one can also be given a group structure. The group law on the
classes of binary forms was first introduced and studied by Gauss and is
called the composition of forms. We again denote by H{D) the group of
all classes of equivalent (in the narrow sense) positive definite integral
primitive binary quadratic forms of discriminant D.

We now turn to the operators IL(»") (see §2.1). First of all, using the
correspondence just described between binary quadratic forms and modules,
we give another realization of the space 9 (see (2.1.12)), or to be more
precise, of one of its subspaces.

a b2
Each matrix N= (5/2 c) €Yt,, with N > 0 can be regarded as the

matrix of the positive definite integral binary quadratic form
(2.3.15) F = Fy = ax® + bxy + cy?,

and vice versa. For matrices N € 9t, we use the same definitions and
notation as for the corresponding forms Fp . In particular,

e(N) = e(Fy), d(N) = d(Fy), and M(N) = M(Fy) (see (2.3.14)).

.We denote by 9 the space of all complex-valued functions @ on the
oduct {1, 2, ...} x M, where M is the set of all full modules of all
imaginary quadratic extensions of Q satisfying the condition

¢(m; M) = ¢(m; My) if M and M, lie in one and the same quadratic field
and are similar. On the other hand, we denote by A* the subset of 9
consisting of functions that vanish on {V € R,; det N = 0}.
IfNER,, N>0, then N = e(N)N', where N' is primitive. We
sociate with ¢ € % a function § € A*, setting

(2.3.16) W)= p(e(N)N")=(e(N); M(N")).

Obviously, the map § — ¢ is an isomorphism of the spaces 9 and 9*.
h__érefore, we can regard any operator on %* as an operator on 9], and
onversely, In particular, carrying over to % the operators (2.1.14), we
ive at the operators
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(A* (m) Q) (my; M) =3 (mamg; M),
— : ifm | m,y,

(8 (m) ) me; 2y = [ O/ W00 L
for ¢ € A ,and m =1,2,.... We now turn to the operators (p%y. -

THEOREM 2.3.1. Let ¢ € %, and let m be a natural number. Let
K = QG/d) be an imaginary quadratic field of discriminant d, and M a
full module in K with coefficient ring 0.  Suppose that p is a prime
number with (p, m) = 1. Then

(D) if (p, /) = 1, if the congruence x* = d (mod 4p) is soluble and p
does not divide, d, then

(I (7%) ) (m; M) =@ (m; BBM)-+0 (m; M) (B=1,2, ...), o
where R and B are the modules of index p in ©; with coefficient }_'i_n
£; (see Proposition 2.3.1};

(1) if (p, £y = 1, if the congruence x* = d (mod 4p) is soluble, and
divides d, then ;

(2.3.47)

@) ) mi )= €073 B0 76 21

where B is the submodule of T; of index p with coefficient ring Df
(see Proposition 2.3.1); .
(D) if (p, /) = 1 and the congruence x* = d (mod 4p) is Soluble,-.: th

(UpByg)(m; M)=0 (B =1,2,...);
(IV) if p divides [, then

(TUP))(m; My=gp(pm; Dy, M),

where Dyp is the order of K with discriminant d(flpY* (compare (2 :3
PROOF. Let’

Flz, )=Flz, Y)=az® + bxy + cy?, {(a, b, &)=1, B> — 4ac = dfz;

be the binary quadratic form corresponding to the module M undef-:___
(2.3.13). We consider the congruence

(2.3.18) Flx, y)=az® + bay + cy* =0 (mod pP).

Let us call a solution (u,, u,) of (2.3.18) primitive if (u,, u,) = 1.:We
introduce the equivalence relation (2.1.5) in the set of all primitive so
of the congruence (2.3.18). It is easy to verify that in case (I) (2.3.1
precisely {wo inequivalent primitive solutions, in case (II) there are no
primitive solutions if § > 1, and if § = 1, then all primitive soluti'(_)i_’i_sr
equivalent; in case (II) there are no primitive solutions, and in case (
all primitive solutions are equivalent if § = 1. Hence and from (2.1.]
follows that the theorem holds in case (II) for § > 1 and in case (1L )
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[uy Uy .
(forU-z( s Gy = alf + buyu, + cull.

Uy Uy
CASE (I). Let (#,, u5) and (uy, #;) be two inequivalent primitive solu-
tions of (2.3.18). Since b* — 4ac 5= O (mod p), we may assume that
Fluy, uy) = pPay, Fluy, uy) = pPa,, where {(a,, p) = (g5, p) = 1. We choose
integers vy, v,, vy, U5 such that
Uy Uy My Uy
v = (0 ) esn@, o= ) s @),

i 1

a b/2\ .
We denote by N = (b/Z c ) the matrix of F and set

B i a;pb b2 . [ @ 51[2)
Ni=UN U’_(bifz e ) Vi \oye poe)

fapl  by/2 N by/2 )
’ 2T \by/2 phey )
:Then, by definition (see (2.1.17)),

- trr
Ny UsN'Uyp = (52/2 .
| (TH{pP) Q) (m, M)=q (mN%)+ o (mN}),
‘where ¢ is the function in %* corresponding to ¢ € A (see (2.3.16)). We

“consider the modules

- {0 B} o (i, Ve

f the field QG/d). It follows from Lemma 2.3.1 that the coefficient ring
f each of these modules is ©;, that they are both contained in Dy,
nd that ¥ (Q,) =N (Dp)=pb. We claim that ﬁi+uzm§)f. To see this

is obviously sufficient to check that ( Pa p) =1. We set

2
ot
Ul =1 = (z; 2) € SLy (Z).

ince the solutions (u;, u,) and (u,, u,) are inequivalent,

2 = Ujuy — uu; =0 (mod p). From the fact that TN, 'T = N, it

ollows that a,pPt? + b t,¢, + ¢t} = a,p® and

@ pPrity + by(tyts + tyts) + 2¢,tstsa = by. The congruence

1f1 + 1ty = 0 {mod p) follows from the first equality; from the second
t follows that by ;bl = t,{bit; + cyts) (mod pP). If biz" b, were divisible

Y p, we would have the system of congruences

11‘1 + clt4 = bty oty =0 (mod p), which would imply that

1= ¢; = 0 (mod p), which is impossible, because b} — pPa;c; = df? is
ot divisible by p. From what we have proved it follows that

Ly =B, D, =3B, where P and 38 are the unique pair of submodules of
of 1ndex p with coefficient ring ©,. Let M,, M{*, M,, M§ be the
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modules of QG/d) corresponding to the matrices Ny, Nf', Ny, NS,
-espectively. Then since (a;, p) = 1, we have

= o, VS (o U VOY e VY,

from which, using (2.3.5) we deduce that the module M ¥ is similar t_b_z _
M. Similarly one checks that M3 is similar to M. Thus, since M;
and M, are similar to M, we have

(T (PP) @) (m; I) =" (m; MY)+ G (m; M§)= (m; MER)+ G (m; MBP)
This proves (I). '

CASE (II). As was pointed out above, we need only consider the case
B = 1. Let (1;, u,) be a primitive solution of (2.3.18). Since this con-
gruence does not have any primitive solutions modulo p?, we have :
Fuy, up) = ayp, with (a,, p) = 1. We choose integers vy, v, such that

U e Uy uz) g
=y o) €SLa (2.

fet

fa b/2) . ap b2y ay b2\ .
N=lpo ¢/ N“';UNUL”(WZ ci)’ fz(buz pci)”

and let M, M, and M{ be the modules corresponding to the matrices N,
N, and N{, respectively. According to the definition, in this case . _
(IUPYP)m; MY = § (m; M{F), so that we need only check that M is

similar to M. It follows from Lemma 2.3.1 that P= { P, b1—~£ Vad
hence :

1% = { o b =1V} {p 4 0i=1V ) }= {am L=V 8)}

Since M, is similar to M and R2=PB is similar to £;, we see that M
is similar to M$, and (I1) is proved.
CASE (IV). Let (u,, u,) be the unique primitive solution (up to-
equivalence) of the congruence (2.3.18) modulo p; let v,, v, be integ
such that E

U 1ty uz)
== (U1 2y € 5Ly (4).
We set

v )

pas b2\ a4 b2
blfz 3 NiﬁUNtU———'( ), Iﬂ( ! i

b1/2' €1 51/2 pC.i
Since b} — 4paye; = df* = 0 (mod p?), we have b; =0 (mod p). S
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he matrix N, is primitive together with &V, we have {(¢,, p} = 1. It follows
hat ¢; = 0 (mod p) (this is trivial for p % 2; for p = 2 we have to take
nto account that 4 = [ or 0 (mod 4)). We set NJ = pN,. From what we
ave just said it follows that N, is semi-integral; it is easy to see that N,

s primitive. According to (2.1.17) we have (II(p)p(m; M) = ¢(mpN,),
where @ is the function in 9f* corresponding to ¢. Let M, and M, be the
modules corresponding to the matrices N, and N,, respectively, Since M,

s similar to M, we need only check that M, is similar to Q;pM;. By
Lemma 2.3.1,

Oimp= {11 li:,{%/—d} '
T-hus,

= {pai, @iy, bi_g Vd . O bi_; Vi } = {al, _I’_L%ﬁ} = pM,

e have used the fact that (¢, p) = ). This proves (IV).

Below we need the following lemma, which is not a formal consequence
f Theorem 2.3.1.

S LEMMA 2.3.2. In the notation and under the hypotheses of case (IV) of
heorem 2.3.1, the following identity holds for every ¢ E aqA -

((Z{p)*—T1(p®)—1)p)(m, M)=0.

PROOF. In the notation introduced in the proof of case (IV) of Theorem

3.1, we have (IN(p)e(mal) = @(mpN,). Since the matrices (g 2) aﬁd
l
:p) (for7=0,1,...,p — 1)-form a left transversal to I'; in

{1 0
(0 p) Ty, by definition of the operators I(p) (see (2.1.13) and (2.1.16))

-have

f(p)ﬂfp)(mN)::g(P(m (é p)N;(i l))"”(’” (g DNJ(S 2))m

lbi — 4P '%“'i‘PlCd\)
+ @ (miy).

Pt
=Sie(m EN

=0 2;+Plci ey
he other hand, since @, = 0 (mod p), any primitive solution of the
ngruence (2.3.18) modulo p is also a solution mod p?. It then follows
t the set (u, + vy, u, +Iv,) (for2=0,1, ..., p— 1) is a complete
't of mod p? inequivalent primitive solutions of the congruence (2.3.18)
?, and hence (see 2.1.17))
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(IL(p* cP) (mN) =

E q}( ( p) (u1+lv1 u2+zuz)Nf(u1+zv1 u2+1vz) (1 0)).:'

Uy Uy Uy g 0 p?

p-1 + Zb* -+ Iy -b?i- + pley \
=0 _'_“"I_Plci pPey

Comparing the expressions obtained and noting that e(mN;) = cp(mN) w
came to the assertion of the lemma.

The following theorem, or more precisely a corollary of it, is needed
the proof of the functional equation for Euler products. This is an analo"
to Theorem 2.3.1 for the case when m is divisible by p and § = :

THEOREM 2.3.2. Let § € U, let K = QG/d) be an imaginary quiza‘r
field with discriminant d, and let M be a full module in K with coefficier
ring £ Then for any prime number p and any natural number m th
following formula holds for the action of the operator 1(p),

(P &) (pms M)=(A+TL 5 Gms M),
{M3EH(END,
vipf, HEM;1={M}
where . _
(2.3.19) (A) = (pm; BM)-+¢ (pm; BM)

if (p, ) =1, if the congruence x? = d (mod 4p) is soluble and p does_-n
divide d; here B and ® are the submodules of ©; of index p with
coefficient ring Oy;

(2-3-20) (A)=¢(pm; {M)
if p, NH = = d (mod 4p) is soluble and p divides d; here  is. rhe
submodiile of mdex p in 8; with coefficient ring Dy

(2.3.21) (4)=0
if (p, H=1,x* =d (mod 4p) is insoluble, and

(2.3.22) (A)=¢(p®m; Dy /pM)

if p divides f (see Theorem 2.3.1 and Proposition 2.3.1); in the sum'o
right-hand side e, denotes the index of the group of units of s in.
group of units of 90,{M'Y} the similarity class of the module M’, and v
the epimorphism (2.3.8). -
PROOF. In the computations to follow we go over wherever conveni
from the language of modules to the language of matrices or quadrati_
and vice versa. In particular, let

a bj2 4 .
=(b/2 C)’ b—ac::df,

Py
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be the semi-integral primitive positive definite matrix corresponding to the
module M, and let ¢ € A be the function corresponding to ¢ (see (2.3.13)
and (2.3.16)). According to (2.1.17) we have

—

@@ e = 3 o (n(y Jovw () ) =),

UgR(p)

1 0 1 0

- 1 ¢ )

= 2 o (pm (g p) oo (o )
U=(,1or)eR ),
auf-}—bmuz-&-cugzﬂ (mod p)
1 0 i 0
e i
o3 ofels Yot 1)

U=(jfj;‘j)eﬂ(m,

aui-tbitgusteudzi (modp)

As far as the sum (4) is concerned, it follows from the proof of Theorem
2.3.1 that one of the formulae (2.3.19)—(2.3.22) holds for it, according as
to which of the clauses are satistied. Thus, to prove the theorem it remains
to check that (B} is equal to

epf ~
(2.3.23) (B) = - o (m; M;).

2
(M)EH (0N,
V(pf, UM 3= M)

a b/2
b2 ¢
definite matrix of discriminant D = b* — 4ac = df?, and p a prime number.
Then for every U € R(p) for which the matrix N, is primitive, we have

ol I{ N }={N}, and conversely, every primitive matrix N' of discrimi-
nt d(pf)* such that v(pf, H{N'}={N}, Is equivalent to some matrix N,
(with U € R(p)) (we denote by {N'} the equivalence class in the narrow
sense of the matrix N', and by ~(,) the map on groups of equivalence

sses of matrices that corresponds to the map (2.3.8) on module cluss

LEMMA 2.3.3. Let N= ( )be a semi-integral primitive positive
f

PROOF OF THE LEMMA. Replacing N by UN ‘U, we see that the first
$_ertion need only be checked in the particular case when U= E, and

£ 0(mod p). Weset ® =—;— (b —+/D). Then in the case under discussion to

_é;_matrixN there corresponds the module  {¢, ®}, and to N, = N the
odule {e, pw}. It is required to prove that ©;{a, pe} is similar to
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{a, @} . Since O; ={1, @} and (g, p) = 1, we have

Di{e, po}={a, op, va, phow — pac}={e, o}.
a b'j2

B2

equivalent matrix we may suppose that ¢' =0 (mod p). Since

(b2 —4d'c' = d(pH?* =0 (mod p?) and N' is primitive, we then have

b'=0 (mod p) and ¢' =0 (mod p?) (the latter is obvious if p # 2, :

and if p = 2, we must take into account that d = 0 or 1 (mod 4)). Thu

,_( ay  pbi/2
T \phy2  ple

Conversely, let N ’m( ) At the expense of passing to an

) , and (¢, p) = 1. We have to check that the matrix

) AR . =1
Ny= (bu’2 ‘ ) is equivalent to N. We sef oy = 3 (by —+/D) and
0} =é- (b —+/D). Then M(N") = {ay, pa}, M(N,) = {a;, 01}, and
M(N) = {a, 0}. By assumption, O;{a;, po~ {a, ©}, but i
Orfa, po={1, eoij{a, po}y={a, @} Thus, the modules M(N,) an
M(N) are similar, and hence N, is equivalent to N, which proves the le
Since '

(2.3.24) (B = > ¢ (mN),
Uei(p),
N, primitive

by Lemma 2.3.3, to prove (2.3.33) it suffices to check that in this sum
each class {Ny} occurs precisely e, flep times,

Bearing in mind the fact that there are precisely two unifs in the orde
of an imaginary quadratic field, apart from the maximal orders of the
fields Q(/—4) and Q(/-3), where there are, respectively, 4 and 6 units
we find that

(2.3.25) 7 _ 03 if d=—3, f=
EJ-‘ .
1 otherwise

We consider the following four cases: R
(D (p, /Y = (p,d) = |, and the congruence x* = d (mod 4p) is solubl
(I (v, H =1, (p, d) = p, and the congruence x* = d (mod 4p) i
soluble; !
(D (p, fH = 1 and the congruence x? = d (mod 4p) is insoluble;
(IV) (p, N =
Since the number of elements of the set R{(p) is p + 1, and the numbe
of mod p mequwalent primitive solutions of the congruence
ax® + bxy + ¢y® = 0 (mod p) (see (2.1.5)) is equal in the cases (I)_ {1
(ITD), and (IV} to 2, 1, O, and 1, respectively {see the proof of Thec_)_r
2.3.1), the number of terms in the sum (2.3.24) isp — 1, p, p + I;an
in the cases (D), (I, (IID) and (IV), respectively. :
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On the other hand, by (2.3.6) the number of distinct classes

(W' y€ H(d(pf)?) such that v(pf.f){ N'}={N} that is, the order of the kernel
of the epimorphism »(pf, /) is egual to

hdph® ey  D{ph o)

e A —— T,

hdf?) ey QU @lpf)
t is easy to verify that this number in the four cases (I) — (IV),
espectively, is equal to

.3.96 cf —1), S & 1y, X
(2.3.26) (p—1) Py o Pl P

epjf epf

Comparing these numbers with the number of terms in the sum (2.3.24)
and taking Lemma 2.3.3 into account, we see that (2.3.23) holds if

= e

Accf)rding to (2.3.25) it remains to consider two cases: d = —4, f = 1
and d = =3, f=1. Let d = —4, f = 1; in this case we can take for N the
dentity matrix F,. By definition (see §2.1), the elements of R(p) can be
enumerated by the points (u;, #,) of the projective line mod p. We
consider the automorphism ¢ of this line defined by o(u,, 1,) = (—1y, uy).
This automorphism is of order 2, and it is easy to see that its fixed points
are precisely the equivalence classes mod p (see (2.1.5)) of primitive
solutions of the congruence u} + 2 = 0 (mod p). Thus, on the set of

ty U,
classes (1, , u,) for which the matrix &, is primitive (U = (,1 d))> o
cts without fixed points. Since W e

- Ug uj) (1 O)t (—‘ 25} u;) (IL1 U2) (1 0)! Ly [62)

— Vs Uy 0 1 — Vs Iy o vy Vs 01 (U] %) !
in: this case every class {N,} occurs at least twice in the sum (2.3.24), and
:3.23) follows from Lemma 2.3.3 if we compare the number of terms in
(2:3.24) with the numbers (2.3.26).

The discussion of the case d = =3, f = 1 is similar. Here we can take N
o 1 172
-;be

(11’2 1
tive line mod p given by 7(uy, uy) = (u; + u,, —u,). The theorem is
v proved,

) , and consider the automorphism 7 of order 3 of the pro-

§2.4. Euler products

.__I_n this section, using the formulae obtained above, we establish explicit
ations between the eigenvalues of the Hecke operators on the space 3
‘modular forms of genus 2 and weight k and the Fourier coefficients of
eigenfunctions. As we have seen in §1.2, in the case of modular forms
enus 1, these connections look equally simple in the language of the
ficients themselves and in the language of the corresponding Dirichlet
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series (see (1.2.11) and (1.2.16)). For genus 2 the language of Dirichlet:
series turns out to be more natural. Here, instead of the single identity.-
(1.2.16) there arises a infinite series of identities, numbered by the equiva
lence classes in the narrow sense of positive definite integral prnmtwe b1
quadratic forms.
Let
FZ)y= > a(N)exp(2nic (NZ)e M
NeRo, N20

. be a modular form of genus 2 and weight k. Suppose that F is an elgen
function of all the Hecke operators T (m) (for m=1, 2, ... )

Tum)F = Ap(m)F  (m=1,2,...).
As in §2.2, we define for every prime p the polynomial
Qp, w(t)=1 — he(p)t +(a(p)® — hp(p®)—p™ " — %F(p)p“"”st“rp‘”‘ "t*

As we have seen in §2.2 (see the Corollary of Theorem 2.2.1), in some
right half-plane Re 5 > ¢ we have the identity

P =110 »(p™) =0 o= 2540 5 Arm L0
m=1
where {(s) is the R1emann zeta-function.

On the other hand, let us fix some integer D < 0. We denote by d ‘the
discriminant of the imaginary quadratic field K = QK/D), so that D :_._d
For every character x of the class group H(D;)=H(D) of similar module
of K with coefficient ring £;, we denote by

Lo n=TI(1— Jgr) " @es>1),
%

the L-series of ©; with character x, where in the product % ranges ove
the prime ideals of ©; whose coefficient ring is £; and whose norm:s.: ar
coprime to f (every ideal is also a full module). In §2.3 we have c_l_é_f_l_n_q
a bijection between the set of equivalence classes in the narrow senseiof

£

a
b/2 ;
b* — dac = D and the set of similarity classes of modules of K = QR/
with coefficient ring ©,. This bijection allows us to introduce on th
of equivalence classes of matrices, the structure of an Abelian group whi¢
we continue to denote H(D).

In this notation, the main result of the present chapter can be
summarized as foliows:

THEOREM 2.4.1. For every integer D = df* < Q and every characte
of the group H(D), the following identity holds in some right halfpla'
Re s > o

biz
positive definite matrices N -:( . )EER2 with discriminant
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I3 o
N; .
Lp(s—h-+2, ) 3 x@Wy) 3 28V _ (s, ) T 0 r (7)™
i==1 m=1 »
where N; (fori=1,2,... , h=h(D))is a complete system of representatives

of the equivalence classes in the narrow sense of positive definite primitive
matrices N € Ry with discriminant D and

h
e (s, = 2 2V {TT (1— o) (1— ) 2} )3
ol7

=1

here p ranges over the prime factors of f, the Fourier coefficients a(N) of
F are regarded as the values of some function a € N {see (2.1.12)), and
'[I(p) and A™{p) are the operators on WU defined in 82.1 (see (2.1.14) and
(2.1.16)).

- REMARK. The function ®5(s, x) can be computed explicitly on the basis
of the formulae in §2.3 (see (2.3.17) and the formula in case (IV) of
Theorem 2.3.1). Let M; be modules corresponding to the binary forms

with matrices N; (see (2.3.14)), let 2 (m; M) be the function in % corres-
ponding to a(N) (see (2.3.16)). Then

3

i Y ~ ¢ 8

(2.4.1) D (s, 1) = 2 %Z v (M) a (—6—1_ ;‘Df/ﬁMi) ,
1

61164F =1

where u is the Mobius function.

PROOF OF THE THEOREM,. The absolute convergence of the left- and
right-hand sides of the identity in some right half-plane follows from
¢1.1.11) and the results of §1.3.

Let M; = M(Fy,) (see (2.3.15) and (2.3.14)), and let a{(m; M) be the
function in 9 corresponding to a(n) (see (2.3.16)). For every prime p and
every natural number m such that (m, p) = 1 we now compute the series

00 R h

--620 a(mp®; ) p=%, where a(n, ¥) = _Zli a(nlN;)y (V)= 2 a(n; M)y (M).

= i=1

or brevity we call an ideal of Oy regular if its coefficient ring coincides
ith ©; According to Proposition 2.3.1 and Theorem 2.3.1, the following
ses are possible.

(D) p does not divide f and O, has precisely two regular prime ideals
d % of norm p. In this case we have, by the first part of Theorem

3.1,

(LL(p) @) (m; Mi)=a(m; BMs)+ a(m; BMy),

M) ~T1(p*) — 1) a) (m; Mi)=Ta(m; P2My)+2a (m; PBM) +

a(m; BEM)— a(m; B2M ) —a (m; WM ) —a(m; M) =a(m; M),

Nce the module $PPM;=pM; is similar to M; and
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(T (p) A= (p) @) (m; M= (A" (p)a) (ms BM) + (A" (p) @) (ms BM ) =0
Thus, by Proposition 2.2.1 we obtain: :

242 {3 atmp’, 00} O rlp7) =
5=0

h — .
= 3 000 {@m; M) — 5z @ (mi VM) + (s BUY) + il ]

p23—2k+4

i=1
o i
= a(m; X)ﬂu% @ (m, %)+ psrrg @ (ny 1) =
_ ERACOERN ST 7 (F) _
= ( i _'(Ns}g)s—m-z) (11'“' (Nys—h2 ) a(m::__X)

(I1) p does not divide f and Dy has just one regular prime ideal % =i§' 0
norm p. In this case we have, by the second part of Theorem 2.3.1,

(L (p) @) (m; Ms) = (m; BM.),
(T {p)* —TL(p% — 1) @) (m; My)="a (m; B2M ) —a (m; M;) =0,
since the module
PIM ;= PPM ;= pM;

is similar to M;, and
(IL(p) A~ (p) @) (m; M) =(A" (p) @) (m; BM;)=0.
Thus, by Proposition 2.2.1 we obtain:

(2.4.3) {Z a(mp®, ) p“’s} Qp. 7 (p7) =

p=0

h
= 3 1019 {@ s M) ——Ziz & s M)} =

i=1

= (1 ) et 4

(IIN) p does not divide f and ©; has no prime ideal of norm p. Ii_i':'- this
case P=pD; is a regular prime ideal of norm p?. '
By the third part of Theorem 2.3.1, we obtain:

(I1(p) @) (m; My) =0,
(I (p)*— T (pH — 1)) (m; Ms)= —a(m; M),
(I1{p) A~ {p) @) (m; M) =0,
and hence, by Proposition 2.2.1,



Euler products corresponding to Slegel modular forms of genus 2 87

244 {3 empb, 1Pt} Qs r(p™) =
O=

— i ~,
¥ (85 {a(m; M,—)»—-pz—s_zm—;;a\m; M’,-)}z

= (1= ey ) e (m )
(% (B) =% (pDs) = 1)
(IV) p divides f. In this case, using Proposition 2.2.1 and Lemma 2.3.2,
we obtain:

(24.5) {3 aimpb, ) p=5} Qp. 5 (p7)
G=0

i
s

=3 0 (M) {@(m; M) —— ez (1L (p) @) (s M)+
=1
=+ p23—3k+s (LL(p) A~ (p) @) (im; M:)} =
I (p) A~ { ~
_2 X, JW) {(1“ e htE ) ('1 e T.'s:z%)%—) a} (m; ﬂ’.[;‘).
The assertion of the theorem is a formal consequence of the identities
(2.4.2)-(2.4.5): applying for each p the corresponding identity (it is con-
venient to consider first the primes p that are coprime to f, and then the

p dividing f), we obtain

e }Hop (P =

i=1 plf

5 x0n) {I0 (1~ 4 ) (1 58t 0TI ).

here $ ranges over all the regular prime ideals of D, of norm coprime
The theorem is now proved.

Chapier 3

ANALYTIC CONTINUABILITY AND THE FUNCTIONAL EQUATION
FOR GENUS 2

§3.1. The main theorem

This chapter is devoted to a proof of the main theorem, which we now
ate.

:'_TH EOREM 3.1.1. Let F € Mi -be a modular form of genus 2 and
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weight k (for integral k 2 Q). Suppose that F is an eigenfunction of all rh'e.
Hecke operators T (m) (see (1.3.15)): T, (m)F = Ap(m)F (form=1,2, ...
For every prime number p, let

Op,r(ty=1 — Melp)t + (Ap(p)>—Ap(p?)—p® -9}t — hr(p)p™ 4 + o,
and for Re s > g, ler

Zr()=T10pr(p ) (=t(@s—2k+4) 3, 2200
r

ms
ma=1i
be the zeta-function of F (see §8§1.3 and 2.2). We set
Wo(8)=(2a) ">T(s)T(s — k - 2)Zp(s),

where 1'(s) is the gamma-function. Then the following assertions hold:
(1) the function Yy (s) can be continued analytically to the whole s-
plane as a meromorphic function having ar most finitely many poles;
(II) W (s) satisfies the functional equation ¥g(2k — 2 —5)= (_I)k\lip(s)
(11D if ©F + 0, where @ is the Siegel operator (1.1.12), then
Vr(s) = cbap@)ep(s—k+2), where o (s) is the function of Theore;
1.2.4 corresponding to the modular form ®F € Wk,  and ¢ is a certain’
consmm; in particular, W (s) has four simple poles at the points
=0, k=2, k, 2k—2if ®F is an FEisenstein series, and Is an entire funct
zf OF is a parabolic form,
(IVY if ®F = 0, that is, if F is a parabolic form, then ¥g(s) has at mos
two simple poles at the points s = k=2, k; if k is odd, then ¥Vg(s) is an
entire function. '

§3.2. Reduction to the case of parabolic forms

In this section we show that Theorem 3.1.1 holds when F is not a. para
bolic form, that is, when ®F == 0.
In this case, either by Theorem 1.3.3. or by direct computation base
on the relations of Maass [7], as in [12], we obtain the relation

(3.2.1) Zp(sy=Zop($)Zorls — k + 2)

(for Re s sufficiently large), where Zg(s) is the zeta—function of the: fbr__m
®F € M4 By Theorem 1.2.2, the Euler product Zyp(s) = Dypp(s) is 2
multiple of the Dirichlet series R4 r(s) corresponding to ®F. Then ’,U(pF.(
is a multiple of the function (2m)*I'(5)Z4r(s), from which the assertio
(I of Theorem 3.1.1 follows. The remaining assertions follow from __(_H_
and the properties of Yy, r(s) listed in the first part of Theorem 1.2.4.
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§3.3. The integral representation (1)

To prove Theorem 3.1.1 for parabolic forms we set off from the
identities of Theorem 2.4.1. The left-hand sides of these identities admit an
integral representation, from which the theorem follows. Here we take the
first step towards setting up this integral representation.

Let F € Ni be a parabolic form with Fourier coefficients a(&) (for
N E R, N > 0). The Dirichlet series on the left-hand sides of the
identities of Theorem 2.4.1 can be expressed in terms of series of the form

- N
(3.3.1) Ry (s)=Ry.r(s)= > 220
me=i
a b2
‘where NV = ( B2 C) is an arbitrary positive definite semi-integral primitive

- matrix. It follows from (1.1.15) that the series Ry (s) is absolutely conver-
~gent in the domain Re s > k + 1. We set

= Lty _
(3.3.2) { Xy R)={XEM,(R); ‘X=X, 0(XN)=0},

Xy (Z)=Xy (R) N M (Z),

.where 0, as usual, denotes the trace. For every M € ., the function
‘exp(2mio(MX)) is a character of the compact group Xy (R)/ Xy (Z). This
character is trivial if and only if M is a multiple of N : M = mN (for some

1 if M=mN,

(3.3.3) exp (2nio (MX dXz{
5 P (emior( 2 0 otherwise

X (R X (2)
here dX is the normalized Haar measure on Xy (R)/ Xy (Z). We set

—b/2
=( Cb 9 / ) and let v > 0 be a real number. Integrating term-by-
— a

3.3.4) FX+—2_N)dX=
xN(ng/xN(Z) ( Vet ¥ )

= 2 a(mN)exp(—%%%):

= 2 a(mN)exp(—4n)/ det N vm)

m=1
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(a{ON) = 0, since F is a parabolic form). Using the Mellin integral
(3.3.5) S exp (—ow)r Vv =T (o™ (@0, Res=>0},

[\

we obtain

(3.3.6) (4n 'V det N)=°T (s) Ry (8)==
zio{ | F (X F)ax } o

o " Vdet N
i} X (RYX (2

where Ry (s) is the series (3.3.1). As we have noted, the left-hand side o
this identity is absolutely convergent in the domain Re s > k + 1. It
follows from (3.3.4) that the inner integral on the right-hand side tends t
zero exponentially as v = + eo. It follows from this and the estimate (1
that the right-hand side converges absolutely in the domain Re s > k&

§ 3.4. Hyperbolic geometry

The integral representation (3.3.6) shows that the Dirichlet series Ry
in which we are interested can be obtained by some sort of integration ¢
the restriction of F to a (real) three-dimensional domain Hy C H,. Th
subsequent transformations of this representation are essentially based on
the fortunate circumstance that the Siegel modular group I', = Sp,(2)
a rather large subgroup I'y, which acts on Hy as an automorphism gi‘_é_
(for instance, I'y\Hy has finite invariant volume). In this section we: c
sider the geometrical side of this situation.

b

d) we set

a
We introduce some notation. For A4 == (c

~ d —c¢ " [0 1)
(3-4-1) Aﬂ(—b Q);ﬁleJI Ji:(—"l O' .

i

Obviously, we have
(3.4.2) AA = AF, A'd=det A-E,

If N is a real symmetric positive definite 2 X 2 matrix, we set
XN:X‘:\,—(R)={XEA{[?‘(R); iX::X, G(XN)zO}, :
Y_-\"ﬁYN(R)ﬂ{YElWE (B); YN‘YﬂdCLY'IV, detY?/

T iv AT. - ..
Hay {X+_—__~wem N X€Xy v>0 } =i

THEOREM 3.4.1. Let N € M,(R), with 'N = N and N > 0. We se

(3.4.3)

4 B i
(3’4'4) GN:{ (C D) 5 AEY'{;: BEXN: CEX';{F‘: DEYN1 AtD——B!
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Then Gy is a subgroup of the real symplectic group Sp;(R) of genus 2. For

c D) €Gy the transformation

(3.4.5) Z—>M{(Z)=(AZ+B)(CZ - D) (Z€Hy)
is an analytic automorphism of the domain Hy C H,; the group Gy acls
transitively on Hy.
PROOF. It follows at once from the definition that for any
g € GL,(R), the following sets are equal:

(3.4.6) Xy="gX 8 Yn=877 51,8
(3.4.7) Hy= *gI{gthg.

1t follows from (3.4.6) and (3.4.2) that

{X~ gX — ge=gtX g7,

4
every M= (

gte eNg

Vg =& 1Y,_/g—— gy — ‘g

(3.4.8)
g?\’ g g:\rt

It follows from (3.4.4), (3.4.6), and (3.4.8) that

g 0
(3.4.9) Gy = MG, M7, where Mgm(g ) :

uNig 0O gt
- Suppose that the theorem holds for the matrix gN'g. Since M, € Sp,(R),
t then follows from (3.4.9) that &, is a group and GN C Sp,(R). Let
M€ Gy and Z € Hy. Then M (Z) = (M (M, 11"‘I/IM )M ) (Z}. Since, by
3.49) and (3.4.7), M, 'MM € Ggyr, and M (Z) E HgN!g, we have
MAZ) € My (Hpyg? =

Now we choose g such that gN's = E,. By the preceding argument it
uffices to prove the assertion for N = E,. In this case N = N = E,, and

a b a b\I
X.E={ (b '""'a,); a, bER}1 YE:{(—Z) a,f; a, bER}s

b
HE:{ (z _a)+LUE, a, bER7 U>O}

A B
R:{M:(C D), A, DEYs B, CEXy }
A B t t
Sm{M (c D)em(ﬁ) A'D—B'C=E }

A B
Then Gy = R N . The condition (C D) €Sp, (R) for a real 2n X 2n

natrix is equivalent to the relations.
(3.4.11) A'B=B'A, C'D=D'C, A'D-B'C=E,.

o t \
Since the matrix ( @ b) (; d) is always symmetric, it follows from
—b a -

4.1 1) that GE - Spg(R) Let M1 . M'z = GE Since M1M2 & sz(R), we
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then have M;M, € S. From the obvious fact that X and Y, are Abéha_n
groups under addition, and from the easily checked inclusions

YEYECYE*) XEXEC:}]E! XE}rECXE, YEXEC XE
it follows that M, M, € R. Thus, M;M, € R NS = Gy. Further, since.

A B
for M_—-(C D)Esz(R)

and since ‘X, = X, 'Y = Yg, the matrix M~ belongs to Gg togethe_
with M. Hence Gg is a subgroup of Sp,(R).
We claim that

(3.4.12) Hy={M{Ey; MEGg).

b
Let Z= (; a\" -+ ivE € Hg. Obviously,
—ay

‘a b
JVE ——

M= \/u(i—'b a) EGE
0 \/UE

and M {(iE}= Z. Thus, the left-hand side of (3.4.12) is included in the
right-hand side,

To prove the reverse inclusion we use the following well known an
easily checked identity: if

A B
Z=X+4+iYcH, M= (C D) €Spn (R), M(Zy=X'-+iY",
then ‘
(3.4.13) - Y ' =XCZ -+ DYy Y (CZ+ Dy

A B ) a [ by ¢
(2 B)ecuan( 2 %) 0=l %) e

d d &
D= ( p C’Z) and M {E} = X' + i¥'. Then by (3.4.13) and (3.4.1
—d, d, _

we have
=D —iCy 1 (D+iC)y 1= D*D—{—CfC]‘l—(d"‘-l—dz-{—cz—]—c‘*)‘lE

Thus, it is enough to check that o(X") = 0. Since the determmant 0
iC+Disd®> +d? +c* + ¢},

. ) b--ia bi+iay Jd—ic —di;:ic:'

MGEy=(d*+ d2 42 -L g%yt

@By =@ d;+ -0 [(bj—ial -—b—Ha) (di—ici d+ic

and g(X') = 0 can be checked immediately. We have proved (3.4.12

which the second and third assertions of the theorem obviously follo
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N = E. This completes the proof.

According to Theorem 3.3.1, for every real symmetric positive definite
2 X 2 matrix N we have a Lie group Gy C Sp,(R) and its homogeneous
space Hy C H,. We now claim that every such pair (Gy, Hy) is isomorphic
in the natural sense to the pair (G, H), where ¢ = S1,(C) and H is a
three-dimensional hyperbolic space.

The group G = SL,(C) acts on the three-dimensional hyperbolic space

(3.4.14) H={u=(z, v); 2 € C, v > 0}
by the rule
a By (03+4-B) (724 6) v
(3.4.15) 0= (Y 6) D= (z, V)—>0O (u}z( Ay (@) ) Au(u)) ,
‘where
(3.4.16) Aguw)y=|vz + & 2+ |y %~

;.To the product of elements of & there corresponds the composition of
transformations, and the function A_(u) is an automorphy factor:
: (3.4.17) Ay =A{t()AL{u) (o, T €G, u € H).
‘The action of G on H is transitive, and the stabilizer of the point (0, 1)
is the special unitary group U = SU(2). Thus, the map

{3.4.18) ¢ — o((0, 1))
entifies A/ with the homogeneous space G/U, on which G acts by left
‘multiplication. Note, finally, that the invariant element of volume on 4 is

(3.4.19) du = p3drdydv (v ={z+ iy), v).

Let us now go over to establishing an isomorphism of any one of the
pairs (Gy, Hy) with (G, H). First let N=E,. If

a, bl [£2°) bg
-‘—bi a bg g
M= a3 bs ay b, €y
. by —as —by a4
ee (3.4.4), (3.4.10)), we set
fay 4 iy bz+i‘12)
(3.4.20) Vo (M) = (bgmiag I ACE

;id for a b

ie¢ (3.4.10)) we set

_ (3.4.21) hp (Z)=(b + ia, v) € H.

Or an arbifrary real symmetric positive definite 2 X 2 matrix N, we choose
eal g such that gN'g = pE (with u>0). If M € Gy and Z € Hy, then
c’c’g)rding to (3.4.9) and (3.4.7),
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tg 0
MMM € Gur="06g, MPZYEHg=Hg (Mg=(0 g-l)) .
We set

Vg (M) =% (MMM e M, (C) (MeGy),

(3.4.22) { by (Z) =hg (M3 (Z) € H {(ZEHp).

THEOREM 3.4.2. Let N € M,(R) with 'N = N and N > 0, let
g € GL,(R) be such that gN'g = pE (with ¢ > Q). Then the following'
assertions hold:

4y 1pg(GN) = (7 = 8L, (C), and the map Py v~ SLy(C) is an zso—-
morphism of real Lie groups; :

(I1) the map h cHy > H= {u =(z,v); z€C, v>0} is an analyric:'
isomorphism,

(1) the map h, is compatible with the actions of Gy and G, that zs.'.
for any Z & Hy and M € Gy we have the relation h, (M (Z))=} (M)(h (Z)y

(IV) under the given maps the automorphy factor of the pair (GN, HN)_'
goes over into the automorphy factor of the pair (G, H), that is, for an

= M 48
Z € Hy and any | ——(c D

det(CZ + D) = A, (R (2)) (see (3.4.16)).

PROOF. First let N and g be the identity matrix E. The assertions (I
and (IV) can be checked by direct computation, and (II) is trivial. Let
check (II1). Since hz(E) = (0, 1), it is enough to check that {5 realise
an isomorphism of the stabilizer of iE in Gy with the stabilizer of (0,
in G. It is easy to see that the stabilizer of iE in Gg consists of all the
matrices of the form

) € Gy we have the relation

a1 b, as by,

——b1 @y bg — s
M - —dg "—'bz a4 bj_ ?
_"'_bZ a2 —'bj iy

. ay by (ay b
where the matrix ( b, a1)+ (bz— |
matrix is unitary is equivalent to a? + a3 + % + b3 = 1. On the other

@y -+ iby bz—}—iaz)_ :
— bytity @g—iby)
this also is unitary if and only if a? + b} + a} + b} = 1. Hence the:
stabilizer of iF goes over into the group SU(2) = U, the stabilizer of th
point (0, 1) € H, and (III) follows.
Now let N be any positive definite real 2 X 2 matrix, and let
gN'e = uE (for g € GL,(R). Since the map M — M;MMg (where - .

. 3
g0 . . .
(M§ s( 0 g‘l)) is an analytic isomorphism of Gy onto G,p = GE_'____(S

: ) is unitary. The fact that thiS'___'

hand, the image under P, of M is the matrix (



Euler products corresponding to Siegel modular forms of genus 2 95

(3.4.9)), and the map Z — Méj‘ {Z) is an analytic bijection of Hy onto Hg
(see (3.4.7)), the assertions (I} and (II) follow from the corresponding asser-
tions for N = E. Let us check (III) and (IV), relying on the fact that they
have already been checked for N = L. Let Z € Hy and M € Gy, then

Dy MUZ)y =hopl M5 M(ZY) = b MM M g (M (Z))) =
= (MG MM g) bl MG (5))) =g M)(h(Z))-

4 B
Similarly, if Z € Hy and A = (C D) € Gy, then since

* #
MPFMM = ( ) ,
§TE T \gCly ghg
we have
det (CZ + Dy =det (gC'g'g 2 Zg" - gDg1) =
= AmE(M?MMg) (hg (M3 (Z))) = Albg(M) (g (Z))s

The theorem is now proved.

§3.5. Picard subgroups of the modular group

In this section we investigate the nature of the discrete subgroup

(3.5.1) Ty =Gnx N SpofZ) =G
when N is semi-integral. For this purpose we consider the image of I'y
under the map Y, constructed in the last section. It turns out that for a
suitable choice of g this image is an arithmetic discrete subgroup of Picard
type of the group ¢ = SL,(C).
We fix some notation. Let

_ a b/.‘Z\
(3.:}-2) N = (b/‘) . I [22% b, CEZ, d>0, D—_—.D(N)=b2—4a6’<0.
e set
3.5 PG 0 V=l EE

[
gx 0
Mng( O"” gﬁl)({sz(R).

5.4) gNthJ'\" == ‘\/(det N)E_
or M € Gy and Z € Hy, we set
{wN (M) =pg (M) =pr (Mg MM,y )EG,
1Y (Z) = hgy, ()= ha (MG AZ)) EH
ee §3.4).
On the other hand, let K be an imaginary quadratic field, © the ring of

.'_t_egers of K, and £; the subring of index f. For any full module M in K
ith coefficient ring ©; we set




96 A, N. Andrianoy

@56 1o, m={(* }) €512 o, se0, pear, vern}.

The (D, M) is an arithmetic discrete subgroup of SL,(C) with quotlen
space of finite volume.
The main result of the present section is the following:

THEOREM 3.5.1. Let
a bj'Z)
::(b;'2 ¢ >0,

!

with a, b and c relatively prime integers. Let D = b* — 4ac = df?, wh’er
d is the discriminant of the imaginary quadratic field K = Q(/D). Then
the restriction of V¥ to the subgroup 'y C Gy maps it zsomorphzcally on
F(Ds, An):

P Ty =T (D5, W),
where ?INu_;-—z—-{a, o}, wx—b-ﬁ—;-/—&
a, o as basis.

REMARK 1. The condition {a, b, ¢} = 1 does not reduce the generah
because Giy = Gy and I}y = Uy for t €Z.
REMARK 2, In §2.3 we have defined a correspondence between bi_
quadratic forms and modules in quadratic fields; under it the form wit
the matrix N corresponds precisely to the module {a, o} (see (2.3. 14)'
PROOF. We define the integral analogues of the sets X, Yy, XN and
Yy (see (3.4.3) and (3.4.1)), by setting :

o5 7 { Xy (Z) =Xy N M2 (D), Yy @)=Yy Mas(D),
G5\ X (D)= X5 N Mo (D), Y5(2)=Y5 N My (2).

Then __
A B |
Nz{ (c D) s AEY 5 (Z), BEXN (L), CE€ Xy (Z), DEY y(2), A'D—B'C=F,

We define R-linear maps i, P2, 3 and ¥, of the sets Yg, Xy, X
Yy, respectively, into C. Let A € Yj. Then according to (3.4.8),

and {a, 0} is the module of K 'kavin

b
'gNAey €Yy =Yy, that is tgfidley has the form ( gi ai) , {with.
- U1 i .

as, by € R). We then set
Y(d)=a, + ib, for (A E¥g

ay by
If B € Xy, then teBg = (bz __a,,\e Xz We then set

(3.5.8) Po(B)=b, -+ ia, for (B € Xx).

If C € Xy, then gxClax m(as )E Xz We set

by —ag
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Vy(C)=by — iag fOr (C € X7).

a, b
‘ 4) EII—E. We set

Yy(D)=ay — iby for (D €Y y).

In this notation, for (

It D € Yy, then gxDgi) =

¢ D

(e ol (20 vl

Thus, to prove the theorem it suffices to check that

\
) € (5 we obviously have

(3.5.9) Py (Y5 (2) = (Y y (Z) = Dy,
(3.5.10) Ve (X iy (8) =— {a, 0)F,
(3.5.11) (s (X (2)) = =5 {a, 0"

It follows from Lemma 2.3.1 that {a, w}-{a, ©}=aD; and since
w = ac, we see that the modules- é{a, o} and -f-z—{a, o} are mutually

verse. All the sets (3.5.7) are obviously free Z-modules of rank 2. Let us
find Z-bases for them. Since (a, &, ¢) = 1, it is easy to see that as bases
f the Z-modules Y§ (Z) and Yy (Z) we can take, respectively,

(2 (e o)) ma (o ()

et (g, ¢) = 8. We choose v, ¢ € Z such that
L (3.5.12) aa -+ ye = —0.

hen it is not hard to verify that as Z-bases of the modules Xy (Z) and
+(Z) we can take, respectively

Cesan (S o) (5 e (5(70 0 (55 )

_._:sing these bases, let us check the equations {3.5.9)—(3.5.11). From the
efinition of the maps ¥, and v, we find easily that

==t w({_L o)) =5 w((_,}))=o

ince, by Lemma 2.3.1, O; ={1, o}={1, @} this then proves (3.5.9). Using
he definition of ), and (3.5.12), we obtain after the corresponding

i (e 0 _ i fbo 1
L 0 —-a)) fcu 1p2((6 by))——;(cé—f-bo'm)
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On the other hand, since ®@ = gc, ®* = bo — ac and (F/;’ c/ﬁ) €81y (Z)
(see (3.5.12)), we obtain
wlaop=c{L 1} oo fr & Foey

- (5 e (E22), fo g (o))

= {6, 6+25, 256} = {15, 6+~”—°im

(Note that (b, &) = 1 because (e, b, ¢) = 1. This proves (3.5.10); (3. S 11
is proved similarly, and the theorem is proved.

Now we consider how the various groups I'(D,, M)} are related to or
another. '

LEMMA 3.5.1. Let M be a full module of an imaginary quadratic field
K. Then there exist numbers o, vy € M and 8, 8 € M™! such that :
o —yB=1.

PROOF. For (&, v) we take any Z-basis of the module M. Since
1 € MM™, there exist an x and a y in M~! and integers ny, 1y, m; an
m, such that {(an; + yn,) x + (@m, + ym,) ¥ = 1. Hence, setting
8 = nyx + myy and § = — (n,x + myy) we come to the required assertlo
and the lemma is proved.

PROPOSITION 3.5.1. Let M be a full module of an imaginary quadrat
field K with coefficient ring ;. If M is similar to the square of some.
Q; -module, then T(D;, M) is conjugate inside SL,(C) to T(D5 Op= _SL
More precisely, let M = M3} Let o, v € M{* and B, & eM, with
ad — 4B = 1 (see Lemma 3.5.1}. Tkeﬂh « B (1/8)4 o\

e e where g = ’
ol (24, M) o SL, (), re o (Y 6) ( 0 Vﬁ)

PROCF. The proposition is proved by direct computation. '

COROLLARY. In the notation of Theorem 3.5.1, we suppose thd
(a, &) = | and sert

’ o o
—Vn— @ e 0
(3.5.14)  oy= ~  |€SLy(Q),
w
Oy [O)] 0 avc
where oy and vx are integers for which
{3.5.15) are 4+ yac = —1.
Then
{3.5.16) onl{D;, U)ot = SL(D;).
PROOF. The corollary follows from Theorem 3.5.1 and Propos1t10n
by taking into account that @ ® = g¢ and {a, 0}t == {a, o) -

We conclude this section by comparing the groups FN for dlfferen .
having the same discriminant.
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PROPOSITION 3.5.2. Let

N (a b/2) g N (ai b,/2
- b;".?. c » an = 51[2 Ci)

" pe two semi-integral positive definite matrices. Suppose that

(a, ¢} = (@1, 1) = 1 and that they have the same discriminant

2 p? — dac = b} — da,cy = df?, where d is the discriminant of the corres-
-ponding imaginary quadratic field. We set

(3.5.17) M =My VE (030w M;}vl € Spz (R),

vhere the matrices MgN and Mgl\,l are defined by (3.5.3), the matrices oy
—and oy, by (3.5.14), and Y is the isomorphism of Gg onto SL,(C) defined
by (3.4.20). Then the following assertions hold:

D MGN1 M = Gy

(I1) for every u € H (see (3.5.5))

M (RN (o7, (@) = (&) (o (W),

n particular, M <HN1 ) = Hy,

(Im MI‘N1 M7 =Ty

(IV) M € Sp,(2).

PROOF. (I) and (III} are proved similarly. We prove (III}, say. From

" (Tx) = oiton ™ (Twv,) 63,0,

be (M T M) = OO b (M gy T Mgy ) 00y =

BNy
=Vr (V& (ONon,) Mgy I'ny Mgy, 47 (08 0x)),
and hence, since 4y I8 an isomorphism, we obtain
M E;,I‘NM By = Vi (07 0w,) M;;}“I‘ v M g Niwpgl {(OW,0x),
ich proves (1ID).
Using the definition of the map A" (see (3.5.5)), we find that
M (A (07, (1)) = M (M gy, (R (07, (u)))) = Mgy b7 (oW ay,) (hE (O, ().

BY part {(III} of Theorem 3.4.2 this last expression can be rewritten as
" Mgy ¥ (oF) (R ()} = Mgy (it (0% (w))) = (B")* (0 (),

ich proves (D).

As for the last assertion, it has to be proved by an explicit (and rather
ng) computation of the matrix M. Since there is nothing in this computa-
?1011_ apart from matrix multiplication, we allow ourselves simply to state the
al result:
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(—@etye) —gu®i—b) (=) ghi—b )
FUO—b) —(emtaa g Omi—b  (a—a)

1 1
(oyse —youar) 5y (0—0b1) —(yer+oa). 5y (0—b)

ké‘ oys (b—by) {(vouse —ayicy) % o (by—b) — (aa+ 'VCU

where (a, y) are integers satisfying (3.5.15), and (a,, y,) are similar numbers
for N,. Since b% — 4ac = b? —4a,c,, we have b = b, (mod 2). Hence M is an
integral matrix. Since it is symplectic, by construction, this proves (IV) anc
with it the proposition.

§3.6. The integral representation {l1)

We now concern ourselves with further transformations of the integral
representation (3.3.6). We keep to the notation and assumptions of §3-
We also fix some more notation and assumptions about N:

fa b2
kb/2 ¢

K =Q /D), d is the discriminant of K and D = df?*; 9O is the Iing"d

integers of K, £y is the subring of index f, m=-b—'~——‘-@~, %IN—-—-—{a, co}‘-"

(36'1) N= ) EERZ: N > 0# (a:- b1 C)=1: D =b2——4(16';.'_;

2

and
Sy={u="(2v)€H; s€C/UAx, v>0} _
The integration on the right-hand side of (3.3.6) is over a certain su
set of the domain Hy C H, (see (3.4.3)) isomorphic to a three-dimension
hyperbolic space H. The isomorphism is realized by means of the map
(see (3.5.5)). By definition,

N —
WX e N) =0 (), MER (X € Xx (R), v>0),
where 1, : Xy(R) = C is the map (3.5.8). According to (3.5.10), the map
ol gives an analytic bijection between the domain of integration on:the
right-hand side of (3.3.6) and the set Sy. It is easy to see that the Jac

of the change of variables is equal to (det NY!?. Thus,

=]

(3.6.2) S { F(x+-17£t—&zv) ax}vtdv =
0 X RV X ()
=(det 1)~ | F(h )-l(u»
Sy
where u = (x +iy,v),.dz = dx dy.
PROPOSITION 3.6.1. Let F € M.  We ser F(Z)=(det Y)”?_FZ
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where Z = X + 1Y € H,. For every N satisfyving (3.6.1) we set

(38.3) Fy@)=F (@™ ) =v"F (A") () (for u = (z, v) € H)
Then the following assertions hold:
() if 0 ET (Dy, Uy) (see (3.5.6)), then

(3.6.4) Fyulo@)=Fy @ (for u € 0

(1) if F is a parabolic form, then F N @) is bounded on H.
PROOF. It follows from (1.1.5} and (3.4.13) that

(3.6.5) F(M (ZY)=F(Z) (for ZEHy, M ETw).

If 0 €T (Dy, Uy), then, by Theorem 3.5.1, o =" (M), withM €Ty C I},
and hence by part (IIl) of Theorem 3.4.2, we obtain

Fy (o () =F (5" (0 (w)) =F (M (") (u))) = Fy (u).

Now (IT) follows from (1.1.14), and the proposition is proved.
From (3.3.6), (3.6.2) and (3.6.3) we see that if F € NE and N satisfies
(3.6.1), then
1—3s
(3.6.8) (4m)™*(det N) 2 I'(s) Ry ()= S Fo @) v"2du  (Res™> k1),

Sy

where du is the invariant measure (3.4.19). In the relevant domain both
sides are absolutely convergent. The right-hand side converges absolutely
in Re s > k.

Let

rena={(5 0 ) seu

/

be the subgroup of parallel translations in T'(D;, %y), and let
(3'6-7) (25, y) = U | ("vag[N) O,

(where G' denotes for every group G C SL,(C) the corresponding group
of transformations of H) be a decomposition into disjoint left cosets. Let
Dy be a fundamental domain for I' {9y, Uy) on H. Then the set

SN:UO'iDN is, obviously, a fundamental domain for I'k (D4, %y). On the

other hand, since the set Sy is also a fundamental domain for I'e (D7, An)
;}_I)d the expression under the integral sign in (3.6.6) is invariant under
transformations of Tw(9; Ay}, we can write down (so far purely formally)

F (u) vs—k+n dit = S FN (u) pS=hez du = 2 5 FN (u) vs—h+2 du =
S

N Sy i 0; D
2 SF (01 () v (07 (w))* ™2 doy (u) = 3] 5 A (u) )HH'Z du =
© 1 Dy i Dy
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= § B e s—h+ 2 Fy (w
By M
where
(3.6.8) Ey(u,s)=0" > Ao (W)™ (w€H).
OEL (D o ) Dy Up)

{(We have used Proposition 3.6.1, the fact that the measure du is 1nvar1an
and (3.4.15).

The series (3.6.8) is an Eisenstein series for the group I(D;, A} "('se
[221). As is well known, for arithmetic discrete subgroups of SL,(C).
every such series converges uniformly and absolutely in any domain of t]
form Re s > 2 + & (with € > 0) (see [22] and the references quoted
there; for the series (3.6.8) this can easily be deduced from the result
§3.7). 1t follows that the transformation carried out above is legitimate
the domain Re s > k, where all the series and integrals converge absolute
So we have proved the following proposition.

PROPOSITION 3.6.2. For every F € Mi and every N satisfying (3.6
we have the identity

1—s n e :

(3.6.9) (4m)~*(det N) 2 I'(s) Ry (s)= j Ey (u, s—k4-2) Fy () du

DN X :

where Ey(u, §) is the series (3.6.8) and FN(u) the function (3.6.3). The
left- ‘and right-hand sides are absolutely convergent in the domains
Re s > k +1 and Re s > k, respectively. -
To obtain a convenient integral representation for the linear comblnati_‘
of series Ry(s) that occur in the identity of Theorem 2.4.1 we need: to
together the integral representations (3.6.9) for various N with fixed
discriminant. To do this we use Propositions 3.5.1 and 3.5.2.
Suppose that the matrix N satisfies {3.6.1) and that (¢, ¢) = 1; let g
be the matrix (3.5.14). Then by the corollary to Proposition 3.5.1,°

(3.6.10) 0y T (D5, Uy) 0F = SLy (D). b
It follows that for any fundamental domain Dy of I'(Dy, Uy) the sét
Dy = GN(DN) is a fundamental domain for SL,(£;). Making the chan
variables « —~ o3 (1) on the right-hand side of (3.6.9) we obtain -
(3.6.11) S Ey (uys—F=+2) Fy (1) du=
Dy

= | Ex (0% (@), s—Fe-2) Fiy (03 ¢

Df :
We now consider the nature of the function occurring in the second mt
PROPOSITION 3.6.3. Suppose that N satisfies (3.6.1) with (a, c)
and let gy be the matrix (3.5.14). Then the following identity holds
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(3.6.12)  Ey (07 (), §) =

1 -
=5 (@)® 2\ Aw o) () (u=(z ), Res>2),
noeH
PO+ ={a, 0}

where Ay sy(u)y=1vz+8 12+ ] |?v2.
PROOQF. It is easy to see that the transformations corresponding to two

matrices in T(D;, Ay) having bottom rows (v, §) and (v;, 6,) belong to

the same left coset of Ty (£, Ux), if and only if (y, 8) = *(y,, 8,).

Furthermore, it is not hard to check that a pair (y, 8) is the bottom row

of some matrix of T(Dj;, Uy), if and only if yUx + 0 =D;. Since by

(3.4.15)—(3.4.17) for 0 = (%8) € SLy(C), and u = (z, v) € H we have

v (o7 () _ v _ v _ v

Do (o (@) Bo (oq} (1)) Aog} (w) Aac;\} (w} A

]
iy )

cand Ay, ey (W)=] & |*Agy, & (v), for e € C, to prove the theorem it

. therefore suffices, by what we have said above, to prove the following
lemma.

LEMMA 3.6.1. Let v, 6§ € K. We set

(Y, 6) G.l_'\’l: % ('\713 61)

- Then the condition Yl + ﬁgf = §), is equivalent fo the condition
le '|L 61Dj${a, 5}
PROOF. As we pointed out above, the condition 2y - 80;= 9y is

quivalent to the existence of «, § € K such that (a 2) Er®s, Uy
By Proposition 3.5.1, ¥

oo a8 com

By (3.5.14), the matrix oy' has the form

’ﬂ ;
GR}S 1 a 0 JSI 82 ,
Ve 0 o k63 &

.1 —
where &y, € € {a, 0}, &, & €{a, co}‘lm; {a, w}, and &g, ~€,83==1. From these

- 2. 0

(C‘ f') | —(:“ 0 (51 32) (ao ﬁo)_ Ve (“1 ﬁi)

_ y b o _70" 0 o ‘B Bl \Yo Sof 0 ‘{ FIY
where o

0= = (40t + Eav0) € (@, ©) = {@, B), Bi=—x (esfo+-eado) € {2, B},

V1= a (830 + &,70) € {@: o}, 81 == a (83 + £,60) € {a, (—0}
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It is easy to check that for any full module M of K with coefficient riné
£y the condition y0;-4-80;=M for some pair v, 8§ € K is equivalent f
the condition that v, § € M, and that there exist o, § € M™! such that’
@b — By = 1. The lemma now follows from this remark and from the corr
putations made above, and with it the proposition is proved. o

PROPOSITION 3.6.4. Let F € Mk and let D be a negative integer. We

choose some N satisfying (3.6.1) and with (a, ¢) = 1, and we set
(3.6.13) Fp(uy=Fy (o ()  (v€H),
where Fy is the function (3.6.3) and oy is the matrix (3.5.14). Then

() Fp(u) does not depend on the choice of N with the conditions
imposed,; :

(I1) Fp(ou)} = Fy(u) for every 0 € SL, (D;), and u € H,;

(111 if F is a parabolic form, then Fp(u) is bounded on H.

PROOF. Let N and N, be two matrices with these properties, and let
be the matrix (3.5.17). Using the definition of FN (1), the assertions (II),
and (1V) of Proposition 3.5.2, and the relation (3.6.5), we obtain
Fo (0f () =F (57 (08 () = F (M (0" (o7, () = _

= F (" (o, () = Frv, (0%, (u
which proves (1); now (I1) follows from (3.6.4) and (3.6.10); and (III}
follows from part (I} of Proposition 3.6.1.

THEOREM 3.6.1. Let F € R and let D be a negative integer. We
represent D in the form D = df?, where d is the discriminant of the fiel
K = Q&/D). We denoze by (N)y (for i = 1, ..., h = h(D)) (respectivel
(M), forj =1, ... = W(DY)) a complete system of representatz’ves'b
rhe equivalence classes in the narrow sense of positive definite przmztw
matrices N € Ry with discriminant D (respectively, of the similarity classes
of modules of K with coefficient ring 9y). Then for any character ¥ of
the group H(D) we have the identity s

15

i h
(3.6.14) (43;-8(%1—) “ T8 ) (V) Ra, (5) =

i=1

S{Z’“M)E (u, s-—fs+2)}FDG? di

Dy 3=t

where RN (8) are the series (3.3.1), Fp(u) is the function (3.6.13), for"'
module M of K with coefficient ring £,

o ol 1

(3.6.15) EY(u,s)=5 (N(M)p)’ 3 Az o) (@EH, Res

v, DEX, B

VOO0 =M

Dy is a fundamental domain of SLy(Oy) on H, and du is the measai'{-’
(3.4.19). The lefr-hand side of (3.6.15) is absolutely convergent in th
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* domain Re s > k + 1, and the right-hand side in Re s > [.

PROOF. If the representatives N; = (‘;’ /g‘/cz) satisfy the condition
I ]

- (a; ¢ = 1, then from Proposition 3.6.2, the relations (3.6.11} and (3.6.12),
. and Proposition 3.6.4, we infer that the left-hand side of (3.6.14) is equal
. to

k
(3.6.16) 5 {3 %) B (u, s—k+2)} Fp(w)

Dj i=1

. where M(N ,-)={a,-,-;—(bi — V' D)} is the module of K corresponding to the
- binary form with matrix NV; (see §2.3).

. According to §2.3, the set of (M(N;) (fori =1, ..., k(D)) is a com-
- plete system of representatives for the classes of H(D) and x(V;) = x(M(N;)) =
- y(M(N;)). Since every series EM(u, s) obviously only depends on the class
of the module M, the sum on the right-hand side of (3.6.14) does not
depend on the choice of the system of representatives (M;). Replacing the
(M) by (M(N)), we see that the right-hand side of (3.6.14) is equal to
(3.6.16).

Let us now get rid of the condition (aq;, ¢;) = 1. Since (by (1.1.10)) the
feft-hand side of (3.6.14) does not depend on the choice of the system of
representatives (V;), it is sufficient for this purpose to remark that each
integral primitive non-degenerate binary quadratic form ax?® + bxy + ¢y? is
equivalent in the narrow sense to a form a'x? + b'x;y, + ¢'v} with

(e', ¢") = 1. It is easy to see that the required form can be obtained by a
change of variables of the form x = x, + [, ¥y = y,, for a suitable integer
. This proves the theorem.

§3.7. Eisenstein series and theta-series

In this section we obtain an integral representation of the Eisenstein
series of the previous section in terms of suitable theta-series.
Let X be an imaginary quadratic field. For every pair M,, M, of full
modules of K and every real £ > 0 and u = (z, v} € H we set

i
(371) G)Mi. Mg (t, u) = 2 exp ( m—— A{?. &) (Ur)) )

(v, BYEM ¢} My
.:Where Aw’ &) (u) = I Y2 -+ 8 P -+ I Y |2U2'

Jormly convergent in any domain of the form t = & (with & > 0);
(1) for every t > 0 and u € H,
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, fladeaye i
(3-7.2) ®ﬂ‘I1,M2(t? u)é[i"{-c ("”—"—'—') ekp( Wm—)

where the positive constants ¢ and ¢’ depend only on M, and M,.
(TID) (the inversion formula) for every t > Qand u € H

1 1
(3.7.3) Onyap @ w)= 21 A (M) [|A (M) @M‘fv M (T, u) ’

where for every module M with the Z-basis (x, ) we set

ﬁ) -

= ¥

5/ JM* e i05 M.
The theorem is proved using standard methods in the theory of thef

series. We merely indicate the main ideas. (I) is obvious, since the serie

(3.7.1) is, in fact, the theta-series of some positive definite quaternioni

quadratic form {depending on u). From the inequality
A, o)(u)él—zmr (v [+18)
it follows that the series (3.7.1) is majorized by the fourth power of ‘th

standard theta-function ©(a)= Yexp(—mnoun?) with o= civ({z |* 4 v* —\— i )

¢ only depending on M; and M,. Combining this with the estimate
1O(e)— 1| < a7 t/? exp(——g—? (for & > 0), which follows from the mversao

formula for ©(«), we obtain (II). The inversion formula (3.7.3) can'b
proved directly on the basis of the Poisson summation formula, or ca
deduced from the inversion formula for the theta-series of quadratic fo
(see [17], Proposition 23). :
Let us now compute the Mellin transform of the theta-series (3.7.1
subsequent applications it is enough fo restrict ourselves to the case
M, =M, = M. We use the notation of §2.3: K = Q/D) is an 1mag
quadratic field of discriminant d, ©; is the subring of index f in the
of integers © of K; for a full module M of K we denote by O its
coefficient ring and by N(M) its norm. :
PROPOSITION 3. 7 2. Let M be a full module of K with D ——;S)
Suppose that M C 25 and (N(M), /) = 1. Then
J'WXM'—(O, O)= Uf’ U Xf/f'(Mr)’

7 MCDHJHM ]

R pgr=gypny (NOMY), 17571

where for every | = 1 and every module M such that M C £, and
9, o Oy we set

XU ={(y, 8) K X K; yO,; -+ 89, = M.

We begin by proving two lemmas.
LEMMA 3.7.1. Let M be a full module of K Suppose that M e

and D¢ < Oy Then the conditions
(3.7.5) (N(M) f)=

(3.7.4) A (M) =+ det (g
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and
{3.7.6) M 4 = Oy
are equivalent, and if they are satisfied, then Dy = Oj. _

PROOF. Let © ={1, ). Then O; ={1, fo}. Since MM = N(M)D,,,
we can find oy, f; € M such that Da;B; = N(M). Let f; = ¢; + bifw
with ¢; and b; € Z). If (N(M), /) = 1, then we can find c and d € Z
such that ¢N(M) + df = 1, hence
1 = 2B + df = Do, + fd + co 2u;p;) € M + /D, from which
(3.7.6) follows. Conversely, from (3.7.6) it follows that we can find
¢ €M and P € O such that « + ff = I, hence N(x) = I (mod f). In parti-
cular (M(ey), /) = 1. Since N{e) = 0 (mod N(M)), this proves {3.7.5).
~ Suppose then that (3.7.5) and (3.7.6) are satisfied. Since M + fO = D,
~we have M + 1O = Oy, hence MM + /2D -+ {OM + QM) =9;, so
that MM < Oy But MM = N(M)D,. Since (N(M), f) = 1, it follows
“from N(M)D, < £y that D, < Oy and the lemma is proved.

. LEMMA 3.7.2. Let M be a full module of K. Suppose that
Oy =55 M < Oy and that (N(M), ) = 1. Then for any divisor f' of f
and any number v € Dy the following two conditions are equivalent:

(3.1.7) fv e,
(3.7.8) v € Oy M.

PROOF. By Lemma 3.7.1 there are &« € M and § € O such that

+ f8 = 1, hence if (3.7.7) holds, we obtain

=ya + (f/f')§ X f'v € OypM - Oyyp M = Opyp M. Conversely, since
‘O < Oy, from (3.7.8) we have [y € f'Opp M < O;M <= M, and the
emma is proved.

* PROOF OF PROPOSITION 3.7.2. For every pair (y, 6) # (0, 0) of
ntegers of K and every natural number f we denote by (v, &8, f) the
reatest natural number that is 2 common divisor of v, 6 and f. Let

(Vi 6) EMx M —(0’ 0), 7 :('W 8, s ("l”: 6’)= fi: (?1 6)

We set M = Oyp v -+ Dpyye 8. Obviously, Oy = Our. By Lemma 3.7.2
M' < Dyp M. Since (v, 8", f/f) = 1 and v', 8’ € Dyp, we can find
ational integers ¢, b and § € © such that ay' + b6’ + (f/f)B = 1. Hence
M -(f/7")D = Oy Then by Lemma 3.7.1 we see that (MM, fif') = 1
and Oar == Oyp.  Thus, the left-hand side of the equality to be proved is
contained in the right-hand side. Conversely, let (y’, §)e X7 (M’), with
< Dpyp M. We set (y, 8) = (f'y', f'8"). Then by Lemma 3.7.3,

Y. 8) € M X M. This proves the proposition.

- PROPOSITION 3.7.3. Let M be a full module of the imaginary quadratic
ﬁé‘ld K, and Oy = Dy Suppose that M — £, and (N(M), f) = 1. Then
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the Mellin integral of the function @M,M(t, uy — 1
S (®nr, 31 (8, w)—1) 51 dt
;) >
is absolutely convergent in the domain (Re s > 2, u € H) and in this
domain it is equal to the expression
2T () 2 (1™ ) N (M) E™ (u, 5),
1 Mg,

Dppre=Dpre, (N, F1£)=1 .
where T'(s) is the gamma-function and EM (4, s) the Eisenstein series
(3.6.15). '

PROOF. The convergence follows from the estimate (3.7.2). Smce

[~}

5 exp ( — S By () ) £ db= T (5) A, ) (1),
[

and, by definition

v X Agie @) =2N (MY EY (u, 3),
v, MEXI)

the formula follows from Proposition 3.7.2. :
Before going further, let us convince ourselves that there is no loss o
generality in assuming that (N(M), f) = :
LEMMA 3.7.3. In each class of the group H(df?) there is a module M-
Jor which M < ©; and (N(M), f) =
PROOF. In the language of quadratm forms (see §2.3) this means that
every primitive integral positive definite binary quadratic form ax? +_b_xy
of discriminant b? T dac = df? represents some number coprime to f, w
is obvious. :
THEOREM 3.7.1. Let K be an imaginary quadratic form of discrimin
d, let f be a natural number, and let My, ..., M, (where k = h(df?))
a complete set of representatives of the similarity classes of modules..o
with coefficient ring ;. Let x be a character of the group H(df*)

satisfving the following condition:
(3.7.9) for every f' > 1 such that f'|f the character X is non- frivial on
the kernel of the epimorphism v(f, fif"): H(df?*) - H(d{(f{f)?*). :
Then in the domain (Re s > 2, u € H) the following identity hold

R

(3.7.10) 2a°T () Laje (s, %) Zi(Mi)E Hu, §)=

i=1

[ {Z % (M) N (M) (One,, o, (8, u)—i)}ts

i=1
where the EMi(y, s) are the Eisenstein series (3.6.15), @M M(t u), are
theta-series {3.7.1), and Ldf’ (s, X) is the L-series of the order £y with
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character X, defined in §2.4. In the domain in question the left- and
right-hand sides of the identity (3.7.10) are absolutely convergent.

PROOF. First of all we note that both sides of the identity (3.7.10) are
independent of the choice of the system of representatives (M,). For the
left-hand side this is obvious, and for the right-hand side it follows easily
- from the identity ©,pr o2 (2, #) = Oy p (1 [2t,u) (for « € K) by a change
of variables in the corresponding integrals. Thus, we may prove the identity
for any special system of representatives. We choose the (44;) in such a
. way that for every | = 1, ..., h the modules M; satisfy the conditions
M; < £y, and (N(M), f) = 1. This can be done by Lemma 3.7.3.

- The absolute convergence of the right-hand side of the identity in

(Re s > 2, u € H) follows from Proposition 3.7.3; the convergence of the
left-hand side follows from the properties of Eisenstiein series mentioned
above.

. Let M, and M, be modules of K such that

My My 00 O = O, = O, and (N(M), ) = (N(M,), I) = 1. Then
the conditions M" C M, M" ~ M, and (N(M"), I) = 1 on a module M’ are
obviously equivalent to the following conditions on M" = N(M,) '"M'M, :
M'< Oy, M"~ M,M;* and (NM'™), D = 1. Since N(M") = N(M")N(M )
and the Eisenstein series £V (u 5) depends only on the class of M', we
now obtain the identity
N(MY 2 EM (u, 8) =N (M) Cae (s, MpM7) EM? (i, 3),

MU My, M Ma,
(N (M"Y, D=1

where Lge (s, M)==2>N(M")-* and the sum extends over all modules M" for
which M" = Q,, M" ~ M and (NM"), ) =

~ Applying this identity to the inner sum on the right-hand side of the
1dent1ty of Proposition 3.7.4 for M = M;, we can rewrite it in the form

(ej\fi, M (t, u)y— D) ide=

e T

i’

= 20T (8) D ()N Oy )™ 3, Laggrrne (52 M (DM ™ E (u, 5),

f J=1
where the M; (for j =1, "= h(d(f/f")?)) ranges over a complete set
of representatwes of the classes of H(d(f{f')?) chosen such that M: < Oy
:and (N(M) fIf) = 1 for every j. Since N(D;p M;) = N(M,), after multiply-
ing both s;des of the last identity by x(M W(M;Y and summing over i
from 1 to h, we obtain

{Z X (M) N (M) (@M M, (& u)—1) }t"ldt—

=i
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v o
=2 TORE™ 3 (D KM G 6 M3 E™
11 R, J=1 1sgigh, o

DMy~
where k' = A(d(f/f'}*). By the condition (3.7.9) on x the inner summs:
over i on the right-hand side of the relation just obtained is zero if:
f" > 1. Thus, extending the equality, we have

25T (s) 2 M) Cape (55 MM E (u, §) =
i, j=1
h

h L
3 — ML o
= 22T () { 2 1 (Mo Lo (5, MO 0 (MNE™ (u, )
Finally, we note that for integral ideals M of ©; such that DM_—D}_

(N, /3 = 1 the theorem on unique factorization into prime 1deals hol
1t follows that

Yy (P V-1
2 N(fv'ns“ﬂ(i”mzms) ’
MCD_‘f!
D=0y, (v (1), p=1

where % ranges over all the prime ideals of ©; such that Og = Df and
N(B), Hi=41. The theorem is now proved. :

§ 3.8. Proof of the main theorem for parabolic forms

Keeping to the notation and the assumptions of Theorem 3.1.1, sup
that F is a parabolic form and let a(N) (for N € ®,, N > 0) be the
coefficients of its Fourjer expansion (1.1.8). For every primitive N €%,
with N > 0 we denote by Ry(s) = Ry p(s) the Dirichlet series {3.3.1).

Since F=£0, we can find an integer D < 0 with the followmg tw
properties:

(3.8.1) there exists a primitive matrix & ¢ %, with N > 0 and.
D(N) = D such that Ry(s)=%0;

(3.8.2) represent D in the form D = df?, where d is the discriminan
the field K = Q4/D); then for any integer f' > 1 with /' | f and for
primitive matrix N’ € %, with N’ > 0 and of discriminant d(f{f")?) th
series Ry-(s) is identically zero,

We fix a number D with the properties (3.8.1) and (3.8.2) up to'th
end of this section, and keep to the notation d, f, K introduced in (3.

Let Ny, ..., N, (with h = k(D)) be a complete set of representativ
the equivalence classes in the narrow sense of primitive matrices N.€
with N > 0 and of discriminant D. It follows from (3.8.1) that ther
a character ¥ of the group H(D) such that

(3.8.3) E; % (Vi) Ry, (5) 0.
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Let us write down the identity of Theorem 2.4.1 for the form F and a
- pair (D, x) with the properties (3.8.1), (3.8.2) and (3.8.3). From the

. theorem on the identity of absolutiely convergent Dirichlet series and from
the condition (3.8.2) it follows that the function ®z(s, x) of Theorem
'2.4.1 is a constant:

(3.8.4) Or (s, %)= _Z‘i %N a (Vi) =a (y).

i=

Thus, in this case the identity of Theorem 2.4.1 has the form
. h
(8:8:5)  Lo(s—k+2 %) 2 x (Vi) Bw, (5} =2 (0) Zr (5)-

==

Using this identity and Theorem 3.6.1 we obtain the integral representa-
ion
(3.8.6) a(y) (4n) T (s) Zp (s) =
s—1
:(%) 2 5 p(s—k+2, x){ ,v (M)E" (u, s—k+2) } Fo (u) du
Dy
where Re s is sufficiently large and the notation is as in Theorem 3.6.1.
As our next step we transform the expression under the integral sign on
he right-hand side of (3.8.6), on the basis of the identity (3.7.10) of
heorem 3.7.1. First of all, let us make sure that we can do this.
LEMMA 3.8.1. Suppose that D satisfies (3.8.1) and (3.8.2) and that x is
hosen so that (3.8.3) holds. Then x satisfies the condition (3.7.9) of
heorem 3.7.1.
PROOF. Suppose the contrary. Let x be a character that is trivial on the
ernel of the epimorphism »(f, f/f") for some f' > 1 with f' | f. Since
he same is then true for any prime divisor p of f', we may assume
hat f* = p is a prime. Then ¥ is induced by some character x' of
(d(fip)*). Let Ny, ..., Ny (with &' = h(d(flp)*)) be a complete set of
epresentatives of the classes of primitive matrices of discriminant d(f/p)?.
hen for every m =2 1 we have
h h*
G87) ZaWdamNy= V) 3 - a@mN,

=,
here {N} denotes the class of V. VO R =
We claim that for every j = 1, . ..., 2’ and m = 1 the inner sum on
he right-hand side of (3.8.7) is zero. To see this we compute in two ways
he Fourier coefficient with the suffix pmN of T, (p)F, where T)(p) is the
th Hecke operator. On the one hand, since T, (P)YF = Ap(P)F, by (3.8.2),
his coefficient is equal to )\F(p)a(pmN} 0. On the other hand, using
roposition 2.1.2 and (3.8.2), we find that it is equal to
- pPta(mNy -+ ph(l(p)a)(pmiN3) +a(pimN) = p"H(T1(p)a) (pmlV3).
We now write out this expression by the formula of Theorem 2.3.2 (this
S the only place where we use this formula). It follows from (3.8.2) that
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the term (A) in this formula is zero, so that

r ej
(L (p) ) (PmN;) = — 2 a (mN).
v (f, 1) IN;}=(05)

It follows from what we have said that the sum (3.8.7) is zero for all
m 2 1, which contradicts the condition (3.8.3) and proves the lemma

Combining the identity (3.8.6) with the identity (3.7.10} of Theorem
3.7.1, we obtain

(3.8.8) « (x) (231)‘25 P T (s—k42) Zr ()=

o IR SZx(M,)N(M,)s 2 @, ) ) P L

0 j=1

Now we transform the inner integral in the right-hand side of (3. 8 8Y.
using the inversion formula (3.7.3). For every full module M of K, le
A(M) and M* be defined by the equations (3.7.4). Then it easily follow
from the definitions that

(3.8.9) | A(M)] = N(M) i%&l, PAMM)) ] AME)| = 1,

where D is the discriminant of the coefficient ring of the module M: :
Hence in the case M, = M, = M the inversion formula (3.7.3) can be
written in the form

[A (M) ]| (O, e (£, u) —1) =-jz—| A (M*) | (Oppe, aax (8, w) —1) _lLI_é.%flfi)_l_]' A

Using this formula for M = Mj-, we obtain

S | A (M) | (O, (F, w)—1) 10 di =
0 :
= S | A (M) (GMJ., M, @, uwy—1 £ gy +
1

| A (M )] (GMJ-,MJ. (% , u) ~1) o8 =

+
——— g

018 () | @), (8, w)— 1) 42 di oy

+ ) [A (M| (ez\f;!‘, st (& ¥)— fyth-1de 4

hb!__—--;g *-“—-"-'g

+ § 1A o ai— || )
i 1 '
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Computing the last two integrals, substituting the exgressions obtained in
~ (3.8.8) taking account of (3.8.9) and the obvious relation x(M;) = x(M") (since
- M and M™* belong to reciprocal classes), we finally find the following

¢ integral representation: if Re s is sufficiently large, then
: 3—k

(3.8.10y  2m*2 %'Ta(x) Vr(s)=

oo h
= [0 S %0018 31 42 @u a1, (1 w)—1) 744 dt ) Fo (1) du+
Df 1 j=1
o N
LSS a0 A I P O, g (1 ) — 1) 8772 dt ) Fip () du -
‘Df 1 j=1

13

s { S )|yt | Fp @ dut

j=1 Dy

h
1 -
s { 2w a e} [ Fo ) de.
i=1 by
We claim that the first two integrals in (3.8.10) are absolutely convergent
for all § and are therefore entire functions of s. To see this it is enough to
show that for every full module M of K with coefficient ring £; the integral

(] 1omacts w11 ar} 7o
by "1

is finite for all s. From (3.7.2) it follows easily that the inner integral is
finite for all 5, and if v ~ 0 (respectively, e0) and |z | is bounded, it tends
to infinity not faster than v™¢ (respectively, v¢), where ¢ is a positive con-
stant depending on M and s. The fundamental domain Dy is a union of a
'compact set and finitely many neighbourhoods of parabolic vertices, that
points where D, goes out to the boundary of H at inequivalent para-
bolic fixed points of the group SL,( ©;) (see [22]). Since F is a parabolic
form, it easily follows from the definition of Fj,(u) that, as u tends from
within Dy to one of its parabolic vertices, Jp, (1) tends to zero like

exp (———«—) (respectively, exp(— ¢'v)) if this vertex lies in the plane v = 0

espectively at infinity). Thus, the function

(=7}

| Fp(u)l 5 | @5, arlt, u)—1 | £dt

3 1

.bounded on Df for all s. Since Dy has finite invariant volume, the relevant
tegral is indeed finite for all s.

Thus, the representation (3.8.10) gives a meromorphic analytic continu-
ion of Wy(s) to the whole complex plane. This function is regular at all
oints, except possibly for simple poles at s = k and s = k — 2. If at these
ints there are poles, then the residues there are obviously equal to
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b3 h
Ilz ’ a(X)_l{Z %(Mj)}SFD(u)du
i=t _

Dy

n2-k
(3.8.11) ==

for any pair D, x satisfying (3.8.1)—(3.8.3).
Now we prove the functional equation. Since by (3.8.9) (M)* = M

substituting into the right-hand side of (3.8.10) the system of :
representatives (M Y for (M) x for x and 2k — 2 — s for s, we see that
this does not change it. Hence

(3.8.12) AV r(s)= a(x)Vp(2k — 2 — 3).
From the definition of the group structure on the set of classes of primiti
positive definite matrices N € |, with fixed discriminant (see §2.3) it
follows that the matrices B

a b2 , a —b/Z) z ( (’i 0))
2(5/2 c) and N,—.—_(_wz . = UNU | U= 0 —1

belong to reciprocal classes (since the modules corresponding to them afe
conjugate). From (1.1.10) we see that a(N’) = g('UNU) = (—1)*a(N), henc

(3.8.43)  a(p) = Ex(N)a(N)—Ex(N a(N)-_

— 1) 2 % (Ni) a{N; )-—(-—1)

Since by (3.8.3) and (3.8.5), a(x) #+ 0, we deduce from (3.8.12) and .:

(3.8.13) the functional equation Y2k —2~-5)= (—l)k‘I’F(S) E

Finally, from a(x) ¥ 0 and (3.8.13) we see that x # x for odd k, s

that x is not identity character, and then the residues (3.8.11) at the:

possible poles are zero and ¥ (s) is an entire function. Theorem 3.1
now proved.

Conclusion

We give here a list of some open problems that arise naturally in
connection with the theory we have developed. :

l.Let F € Mi be a parabolic form of genus 2 and weight k, Wthh
an eigenfunction of all the Hecke operators 7, (m) (for m =1, 2, ..
Is F determined by its eigenvalues.

2. For some positive integer & we denote by 8k the space of Diricl
series whose coefficients have not more than polynomial growth and W
satisfy the two following conditions: :

() for every Z(s)¢ 8%, the function ¥(s) = (27) *D(s)I'(s— c+2)Z(S
be continued analytically as an entire function to the whole s-plane;

(II) the functional equation W{(2k = 2 — 5) = (—1)"\11(3) holds. "

Is it then true that dim 8} << co? Does 3% have a basis consisti
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series with an Euler product expansion? Do these Euler products have the
form Zg(s) for some F € ME?

3. Theorem 1.2.4 and Theorem 3.1.1 and the Zharkovskaya relation
(Theorem 1.3.3) suggest the following conjecture on the analytical properties
of the zeta-function Zr(s) of a modular form of genus n.

Let F &€ WM} (for » and k == 1) be an eigenfunction of all the Hecke
operators. We set

Wi(s) =(271) " 9, 1()Z(s),

where Zg(s) is the zeta-function (1.3.21) and the v, ,(s} are defined by
. the relations

?lvk(s):r(s)# Vn,k(s):?n —1.11(S)Y11 —1.Jt (s — &k + ]‘l) (n = 1)

- Then ¥r(s) can be continued analytically to the whole s-plane as a mero-
- morphic function with finitely many poles; the functional equation
W — 2O 4 — ) (=) Wi(s)

holds; if F is a parabolic form, then Wz(s) is entire.

From Theorem 3.1.1 and Theorem 1.3.3 it follows that these assertions
~hold if "72F # 0, where & is the Siegel operator. It follows from

- Theorem 1.3.3 that it is enough to prove them for parabolic forms.
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THE METHOD OF DIAGRAMS IN
PERTURBATION THEORY

E. B. Gledzer and A. S. Monin

In this paper the mathematical methods of quantum field theory are applied to some problems that
i'grise in the statistical description of mechanical systems with very many (in the idealized case, infinitely
“'many) degrees of freedom.

This application is based on a graphical representation of the individual terms of the formal perturba-
ion series in powers of the coupling constant in the form of Feynman diagrams.
A variety of properties of such diagrams makes it possible to sum partially the perturbation series with
a view to obtaining closed integral equations that contain the required quantities as unknowns. The
\pproach is treated in more detail in connection with the statistical hy dredynamics of a developed
urbulent flow, which is similar to the theory of a quantum Bose field with strong interaction.
- The functional formulation of statistical hydrodynamics makes it possible to obtain integral equations
f turbulence theory, which can also be derived by means of diagram methods. At the end of the paper,
ome closed equations of statistical hydrodynamics are considered.
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