
6.5 Automorphic Forms and The Langlands Program

6.5.1 A Relation Between Classical Modular Forms and
Representation Theory

(cf. [Bor79], [PSh79]). The domain of definition of the classical modular forms
(the upper half plane) is a homogeneous space H = {z ∈ C | Im z > 0} of the
reductive group G(R) = GL2(R):

H = GL2(R)/O(2) · Z,

where Z = {
(

x
0

0
x

)
|x ∈ R×} is the center of G(R) and O(2) is the orthogonal

group, see (6.3.1). Therefore each modular form

f(z) =
∞∑

n=0

a(n)e(nz) ∈ Mk(N,ψ) ⊂ Mk(ΓN ) (6.5.1)

can be lifted to a function f̃ on the group GL2(R) with the invariance condition

f̃(γg) = f̃(g) for all γ ∈ ΓN ⊂ GL2(R).

In order to do this let us consider the function

f̃(g) =

{
f(g(i))j(g, i)−k if detg > 0,
f(g(−i))j(g,−i)−k if detg < 0,

(6.5.2)

where g =
(

a
c

b
d

)
∈ GL2(R) and j(g, i) = |detg|−1/2(cz + d) is the factor of

automorphy.
One has f̃(xg) = exp(−ikθ)f̃(g) if x =

(
cos θ
sin θ

− sin θ
cos θ

)
is the rotation

through the angle θ.
Consider the group GL2(A) of non-degenerate matrices with coefficients

in the adele ring A and its subgroup

U(N) (6.5.3)

=

{
g = 1×

∏
p

gp ∈ GL2(A) | gp ∈ GL2(Zp), gp ≡
(

1
0

0
1

)
mod NZp

}
.

From the chinese remainder theorem (the approximation theorem) one obtains
the following coset decomposition:

ΓN\GL2(R) ∼= GL2(Q)\GL2(A)/U(N), (6.5.4)

using which we may consider f̃ as a function on the homogeneous space (6.5.4),
or even on the adele group GL2(A).
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The action of GL2(A) on f̃ by group shifts defines a representation π = πf

of the group GL2(A) in the space of smooth complex valued functions on
GL2(A), for which (

π(h)f̃
)
(g) = f̃(gh) (g, h ∈ GL2(A)).

The condition that the representation πf be irreducible has a remarkable
arithmetical interpretation: it is equivalent to f being an eigenfunction of the
Hecke operators for almost all p. If this is the case then one has an infinite
tensor product decomposition

π =
⊗

v

πv, (6.5.5)

where the πv are representations of the local groups GL2(Qv) with v = p or
∞.

Jacquet and Langlands chose irreducible representations of groups such as
GL2(Qv) as a starting point for the construction of L–functions (cf. [JL70],
[Bor79]). These representations can be classified and explicitly described. Thus
for the representations πv in (6.5.5) one can verify for almost all v = vp

that the representation πv has the form of an induced representation πv =
Ind(μ1⊗μ2) from a one dimensional representation of the subgroup of diagonal
matrices

(μ1 ⊗ μ2)
(
x

0
0
y

)
= μ2(x)μ1(y),

where μi : Q×
p → C× are unramified quasicharacters (see §6.2.4). This

classification makes it possible to define for almost all p an element hp =(
μ1(p)

0
0

μ2(p)

)
∈ GL2(C). From this one can construct the following Euler prod-

uct (the L–function of the automorphic representation π)

L(π, s) =
∏
p
∈S

L(πp, s) =
∏
p
∈S

det(12 − p−shp)−1 (6.5.6)

in which the product is extended over all but a finite number of primes.
It turns out that the function L(π, s) coincides essentially with the Mellin

transform of the modular form f :

L(s, f) = L(πf , s+ (k − 1)/2).

The notion of a primitive form f also takes on a new meaning: the correspond-
ing function f̃ from the representation space of an irreducible representation π
must have a maximal stabilizer. The theory of Atkin–Lehner can be reformu-
lated as saying that the representation πf occurs with multiplicity one in the
regular representation of the group GL2(A) (the space of all square integrable
functions).
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More generally, an automorphic representation is defined as an irreducible
representation of an adele reductive group G(A) in the space of functions on
G(A) with some growth and smoothness conditions.

Jacquet and Langlands constructed for irreducible admissible automorphic
representations π of the group GL2(A) analytic continuations of the corre-
sponding L–functions L(π, s), and established functional equations relating
L(π, s) to L(π̃, 1 − s), where π̃ is the dual representation. For the functions
L(πf , s) this functional equation is exactly Hecke’s functional equation (see
(6.3.44)).

Note that the notion of an automorphic representation includes as special
cases: 1) the classical elliptic modular forms, 2) the real analytic wave modular
forms of Maass, 3) Hilbert modular forms, 4) real analytic Eisenstein series

of type
∑′ ys

|cz + d|2s
, 5) Hecke L-series with Grössen–characters (or rather

their inverse Melin transforms), 6) automorphic forms on quaternion algebras
etc.

Interesting classes of Euler products are related to finite dimensional com-
plex representations

r : GL2(C) → GLm(C).

Let us consider the Euler product

L(π, r, s) =
∏
p

L(πp, r, s), (6.5.7)

where
L(πp, r, s) = det(1m − p−sr(hp))−1.

These products converge absolutely for Re(s) � 0, and, conjecturally, ad-
mit analytic continuations to the entire complex plane and satisfy functional
equations (cf. [Bor79], [BoCa79], [L71a], [Del79], [Se68a]).

This conjecture has been proved in some special cases, for example when
r = SymiSt is the ith symmetric power of the standard representation St :
GL2(C) → GL2(C) for i = 2, 3, 4, 5 (cf. [Sh88]).

The Ramanujan–Petersson conjecture, proved by Deligne, can be formu-
lated as saying that the absolute values of the eigenvalues of hp ∈ GL2(C) for
a cusp form f are all equal to 1.

As a consequence of the conjectured analytic properties of the functions
(6.5.7) one could deduce the following conjecture of Sato and Tate about
the distribution of the arguments of the Frobenius elements: let α(p) = eiϕp

(0 ≤ ϕp ≤ π) be an eigenvalue of the matrix hp defined above. Then for
cusp forms f without complex multiplication (i.e. the Mellin transform of f is
not the L–function of a Hecke Grössencharacter (see §6.2.4) of an imaginary
quadratic field) the arguments ϕp are conjecturally uniformly distributed in

the segment [0, π] with respect to the measure
2
π

sin2 ϕdϕ (cf. [Se68a]).
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In the case of complex multiplication the analytic properties of the L-
functions are reduced to the corresponding properties of the L-functions of
Hecke Grössencharacters (see §6.2.4), which imply the uniform distribution of
the arguments ϕp with respect to the usual Lebesgue measure.

The arithmetical nature of the numbers eiϕp is close to that of the signs
of Gauss sums α(p) = g(χ)/

√
p where g(χ) =

∑p−1
u=1 χ(u)e(u/p), χ being a

primitive Dirichlet character modulo p. Even if χ is a quadratic character, the
precise evaluation of the sign α(p) = ±1 is rather delicate (see [BS85]). If χ
is a cubic character, i.e. if χ3 = 1 then p = 6t + 1, and the sums lie inside
the 1st, the 3rd or the 5th sextant of the complex plane. Using methods from
the theory of automorphic forms S.J.Patterson and D.R.Heath–Brown solved
the problem of Kummer on the distribution of the arguments of cubic Gauss
sums by means of a cubic analogue of the theta series, which is a certain auto-
morphic form on the threefold covering of the group GL2 ([Del80a], [HBP79],
[Kub69]).

6.5.2 Automorphic L-Functions

The approach of Jacquet–Langlands made it possible to extend the whole
series of notions and results concerning L-functions to the general case of
automorphic representations of reductive groups over a global field K. Let G
be a linear group over K, GA = G(A) its group of points with coefficients in
the adele ring of the field K. Automorphic representations are often defined as
representations belonging to the regular smooth representation of the group
GA, and one denotes by the symbol A(G/K) the set of equivalence classes of
irreducible admissible automorphic representations of GA. A representation π
from this class admits a decomposition π = ⊗vπv where v ∈ ΣK runs through
the places of K and the πv are representations of the groups Gv = G(Kv). In
order to construct L-functions, the L-group LG of G is introduced. Consider
the tuple of root data (cf. [Bor79], [Spr81])

ψ0(G) = (X∗(T ), Δ,X∗(T ), Δ∨) (6.5.8)

of the group G; here T is a maximal torus of G (over a separable closure of the
ground field K); X∗(T ) is the group of characters of T ; X∗(T ) the group of
one parameter subgroups of T and Δ (resp. Δ∨) is a basis of the root system
(resp. the dual basis of the system of coroots). The connected component
of the Langlands L-group LG0 is defined to be the complex reductive group
obtained by inversion ψ0 �→ ψ∨

0 , whose root data is isomorphic to the inverse

ψ0(G)∨ = (X∗(T ), Δ∨, X∗(T ), Δ). (6.5.9)

If G is a simple group, then the group LG(C) can be characterized upto a
central isogeny by one of the types An, Bn, . . . , G2 of the Cartan–Killing
classification. It is known that the map ψ0 �→ ψ∨

0 interchanges the types
Bn and Cn, and leaves all other types fixed. Thus if G = Spn (respectively
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GSpn), then LG0 = SO2n+1(C) (resp. LG0 = Spin2n+1(C)). The whole group
LG is then defined as the semi–direct product of LG0 with the Galois group
Gal(Ks/K) of an extension Ks of the ground field K over which G splits (i.e.
its maximal torus T becomes isomorphic to GLr

1). This semi-direct product
is determined by the action of the Galois group ΓK = Gal(Ks/K) on the set
of maximal tori defined over Ks.

The most important classification result of the Langlands theory states
that if

π =
⊗

v

πv ∈ A(G/K)

then for almost all v the local component πv corresponds to a unique conjugacy
class of an element hv in the group LG.

Let us consider the Euler product

L(π, r, s) =
∏
v 
∈S

L(πv, r, s), (6.5.10)

where S is a finite set of places of K,

L(πv, r, s) = det(1m −Nv−sr(hv))−1.

Langlands has shown that if π ∈ A(G/K) then the product in (6.5.10)
converges absolutely for all s with sufficiently large real part Re(s) (cf. [L71a]).
The product (6.5.10) defines an automorphic L-function only up to a finite
number of Euler factors. Although this is sufficient for certain questions related
to analytic continuation of these functions, the precise form of these missing
factors is very important in the study of the functional equations. A list of
standard conjectures on the analytic properties of the L-functions (6.5.10) can
be found in A.Borel’s paper [Bor79]

We refer to recent introductory texts to the theory of automorphic L-
functions and the Langlands program: [BCSGKK3], [Bum97], [Iw97],

For the group G = GLn and the standard representation r = rn = St :
LG0 ∼→ GLn(C) the main analytic properties of the L-functions (6.5.10) are
proved in [JPShS], [GPShR87], [Sh88], [JSh] (see also [Bum97], [BCSGKK3],
[CoPSh94]).

Also in the case G = GLn the multiplicity one theorem (an analogue of
the theorem of Atkin–Lehner) (cf. [AL70], [Mi89], [Li75]) has been extended
(cf. [Gel75], [Gel76]). This is closely related to the non-vanishing theorem: for
a cuspidal representation π one has L(π, rn, 1) 
= 0.

For GL3 an analogue of Weil’s inverse theorem (see §6.3.8) has been proved:
if all the L-functions of type L(π⊗χ, r3, s) (where χ is a Hecke character and π
is an irreducible admissible representation) can be holomorphically continued
to the entire complex plane, then the representation π can be realized in the
space of cusp forms ([CoPSh94], [JPShS]). More recent results on the case of
GLn, cf. [CoPSh02].
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Interesting classes of L-functions attached to Siegel modular forms were
introduced and studied in [An74], [An79a], [AK78]. These modular forms and
their L-functions have deep arithmetical significance and are closely related
to the classical problem on the number of representations of a positive defi-
nite integral quadratic form by a given integral quadratic form (as generating
functions, or theta–series). These numbers arise in Siegel’s general formula
considered above (5.3.71). From the point of view of the theory of automor-
phic representations, Siegel modular forms correspond to automorphic forms
on the symplectic group G = GSpn. In this case the dual Langlands group
coincides with the universal covering Spin2n+1(C) of the orthogonal group
SO2n+1(C). To construct L-functions one uses the following two kinds of rep-
resentation of the L-group LG = Spin2n+1 �Gal(Ks/K): ρ2n+1 and rn, where
ρ2n+1 is the standard representation of the orthogonal group, and rn is the
spinor representation of dimension 2n. It is convenient to consider the follow-
ing matrix realization of the orthogonal group:

SO2n+1(C) =
{
g ∈ SL2n+1(C) | tgGng = Gn

}
,

with a quadratic form defined by the matrix

Gn =

⎛⎜⎜⎝
0n 1n 0
· · · · · · · · ·
1n 0n 0
0 · · · 1

⎞⎟⎟⎠ , 1n =

⎛⎜⎜⎝
1 0 · · · 0
0 1 · · · 0
· · · · · · · · · 0
0 0 · · · 1

⎞⎟⎟⎠ .

If π = ⊗vπv ∈ A(GSpn/K) then for almost all v the representation πv corre-
sponds to a conjugacy class hv in LG whose image in the standard represen-
tation is given by a diagonal matrix of the type

ρ2n+1(hv) =
{
α1,v, · · · , αn,v, α

−1
1,v, , α

−1
n,v, 1

}
,

and in the spinor representation it becomes

rn(hv) = {β0,v, β0,vα1,v, · · · , β0,vαi1,vαi2,v · · ·αim,v, · · ·},

where for every m ≤ n all possible products of the type

β0,vαi1,vαi2,v · · ·αim,v, 1 ≤ i1 < i2 < · · · < im ≤ n

arise.
The element hv is uniquely defined upto the action of the Weyl group Wn

generated by the substitutions

β0,v �→ β0,vαi,v, αi,v �→ α−1
i,v , αj,v �→ αj,v (j 
= i)

and by all possible substitutions of the coordinates

αi1,v, αi2,v, · · ·αin,v.



338 6 Zeta Functions and Modular Forms

A.N.Andrianov has established meromorphic continuations and functional
equations for automorphic L-functions of the type L(πf , rn, s) where πf is
the automorphic representation of GSpn(A) over Q attached to a Siegel mod-
ular form f with respect to Γn = Spn(Z), n = 2 . He has also studied the
holomorphy properties of these spinor L-functions for various classes of Siegel
modular forms f , cf. [An74], [An79a] . Analytic properties of such functions
are related to versions of the theory of new forms in the Siegel modular case
for n = 2, cf. [AP2000]. A.N. Andrianov and V.L.Kalinin in [AK78] have stud-
ied the analytic properties of the standard L-functions L(πf , ρ2n+1, s), where
πf is the automorphic representation of GSpn(A) over Q attached to a Siegel
modular form f with respect to the congruence subgroup Γn

0 (N) ⊂ Spn(Z).
For n = 1 these L-functions coincide with the symmetric squares of Hecke
series, previously studied by Shimura.

A general doubling method giving explicit constructions of many automor-
phic L-functions, was developed in [Boe85] and [GPShR87].

Further analytic properties of automorphic L-functions

We refer to Sarnak’s plenary lecture [Sar98] to ICI–1998, and to the related
papers [IwSa99], [KS99], [KS99a], [LRS99], [KiSha99].

In [IwSa99], four fundamental conjectures were discussed: (A) Grand
Riemann hypothesis; (B) Subconvexity problem; (C) Generalized Ramanu-
jan conjecture; (D) Birch and Swinnerton-Dyer conjecture. Another problem
which is related to (D) is a special value problem. Namely, the question as to
whether an L-function vanishes at a special point on the critical line.

From the classical point of view, analytic and arithmetic properties of new
classes of automorphic L-functions where studied in new Shimura’s books
[Shi2000], [Shi04], using a developed theory of Eisenstein series on reductive
groups.

6.5.3 The Langlands Functoriality Principle

(cf. [Bor79], [BoCa79], [Gel75], [Pan84] , and for recent developments, [Lau02],
[Hen01], [Car2000], [Li2000], [BCSGKK3], [CKPShSh]). This important prin-
ciple establishes ties between automorphic representations of different reduc-
tive groups H and G. A homomorphism of the L-groups u : LH → LG
attached to G and H is called an L-homomorphism if the restriction of u to
LH0(C) is a complex analytic homomorphism to LG0(C), and u induces the
identity map on the Galois group GK . The functoriality principle is formu-
lated in terms of the conjugacy classes of the matrices hv corresponding to
the local components πv of an irreducible admissible representation π = ⊗vπv

of the group H(AK). It includes the following statements:

1) locally: for almost all v there exists an irreducible admissible representation
u∗(πv) of the group Gv = G(Kv) which corresponds to the conjugacy class
of the element u(hv) in LG;
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2) globally: there exists an irreducible admissible representation u∗(π) = π′ =
⊗vπ

′
v ∈ A(G/K) such that π′v = u∗(πv) for almost all v. In this situation

the representation π′ is also called the lifting of the representation π.

In particular, according to this principle every automorphic L-function of
the type L(π, r, s) where r : LG→ GLm(C), must coincide with the L-function
L(r∗(π), rm, s) of the general linear group GLm with the standard representa-
tion rm of the L-group LG0 ∼→ GLm(C). These automorphic L-functions are
called standard L-functions, and as was noted above their analytic properties
have to a certain extent already been studied.

Liftings of automorphic forms can be studied using the Selberg trace for-
mula ([BoCa79], [Sel89, Sel89], [Arth83], [ArCl89]). This powerful tool es-
tablishes a connection between characters of irreducible representations and
conjugacy classes, generalizing the classical result for finite groups.

The functoriality principle for automorphic forms is closely related to the
problem of parametrizing the set of equivalence classes of irreducible admissi-
ble representations over global and local fields by means of representations of
the Galois group (or more precisely by means of homomorphisms from the Weil
group of the ground field (6.2.6) to the L-group LG, regarded as a group over
C in the local case, or as a group over all completions Eλ of some number field
E in the global case). It is conjectured that to an admissible homomorphism
of that type must correspond a non-empty set, referred to as an L-packet, of
classes of irreducible admissible representations of the group G(Kv) or G(AK)
(this is the Langlands conjecture). In this correspondence the L–function of
a representation of the Weil group (6.2.6) is identified with the L-function
of the associated automorphic (irreducible, admissible) representation of the
reductive group.

In the case G = GL1 this conjecture is the essential content of class field
theory (both local and global) establishing a correspondence between char-
acters of the group Gal(K/K) and automorphic forms on GL1, which are
characters of the idele class group (in the global case) or characters of the
multiplicative group (in the local case).

The task of passing from GL1 to other reductive groups is a vast non-
commutative generalization of class field theory. We have considered above
special cases of this correspondence attached to classical modular forms, the
group GL2 and two–dimensional Galois representations (both complex and
l–adic). These examples seem to be a promising start to a theory, which is in-
tended to tie together algebraic varieties (motives), Galois representations and
automorphic forms (automorphic representations). An excellent introduction
to the Langlands program is contained in [BCSGKK3] and [CKM04].

6.5.4 Automorphic Forms and Langlands Conjectures

For some recent developments in automorphic forms and applications we also
refer to [Laff02], [Lau02], [Hen01], [Car2000], [Ha98], [Li2000]. A significant
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progress in the area of automorphic forms and their applications has been
made in the last decade.

A fundamantal problem of number theory is to classify representations
of the Galois group Gal(F s/F ) where F s is a separable closure of a global
field F , and a fundamental problem of group theory is to give the spectral
decomposition of the space L2(G(F )\G(AF )) of automorphic forms over a
reductive group G over F .

We only mention the work on the local Langlands conjecture (for G =
GLn(K) over a local field K), cf. [Hen01], [Car2000], [Ha98], and [LRS93],
where the general case in positive characteristic was treated.

Also, we only mention Lafforgue’s work on the Langlands conjecture in
positive characteristic, cf. [Lau02], [Laff02], [L02], where the Langlands cor-
respondence was established for G = GLr with arbitrary r over a function
global field F = Fq(X) of characteristic p > 0 where X is a smooth projec-
tive curve over Fq. For a geometric version of the Langlands correspondence
we refer to [BCSGKK3], and to [Ngo2000], containing a proof of a Frenkel-
Gaitsgory-Kazhdan-Vilonen conjecture for general linear groups.




