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Lecture N°1. Classical groups, the case of GL(n)

The sympectic and unitary cases. Modular forms and automorphic
forms. ("Groupes classiques, le cas GL(n) le cas symplectique et
unitaires. Formes modulaires et formes automorphes, exemples").

Linear Algebraic Groups. §1-6 of [Bor66]

Radical. Parabolic subgroups. Reductive groups.
Structure theorems for reductive groups.

§6.5 of[MaPa], Automorphic Forms and The Langlands
Program

§6.5.1 A Relation Between Classical Modular Forms and
Representation Theory

§l-11 of [Bor79]: I. Definition of the L-group

[I. Quasi-split groups *
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Reductive groups

Recall: an algebraic group is irreducible if and only if it is
connected. The connected component of the identity of G will be
denoted by G°. The index of G in G is finite.

Definition

Let G be an algebraic group over a field k. The radical R(G) of G
is the greatest connected normal subgroup of G; the unipotent
radical R,(G) is the greatest connected unipotent normal subgroup
of G. The group G is semisimple (resp. reductive) if R(G) = {e}
(resp. Ry(G) = {e}).

The definitions of R(G) and R,(G) make sense, because if H, H'
are connected normal and solvable (resp. unipotent) subgroups,
then so is H - H'. Both radicals are k-closed if G is a k-group.
Clearly, R(G) = R(G®) and R,(G) = R,(G®). The quotient
G/R(G) is semisimple, and G/R,(G) is reductive. In characteristic
zero, the unipotent radical has a complement; more precisely: Let
G be defined over k. There exists a maximal reductive k-subgroup
H of G such that G = H - R,(G), the product being a semidirect
product of algebraic groups. If H' is a reductive subgroup of G
defined over k, then H’ is conjugate over k to a subgroup of H of
G such that G = H - R,(G), the product being a semidirect
product of algebraic groups. If H' is a reductive subgroup of G
defined over k, then H' is conjugate over k to a subgroup of H.
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Theorem (5.2 of [Bor66])

Let G be an algebraic group. The following conditions are
equivalent :

(1) G° is reductive,

(2) GO =S - G', where S is a central torus and G’ is semisimple,

Theorem (5.3 of [Bor66])

Let G be a connected algebraic group.

(1) All maximal tori of G are conjugate. Every semisimple element
is contained in a torus. The centralizer of any subtorus is
connected.

(2) All maximal connected solvable subgroups are conjugate. Every
element of G belongs to one such group.

(3) If P is a closed subgroup of G, then G/P is a projective variety
if and only if P contains a maximal connected solvable subgroup.

Characters and roots.

A character of G is a rational representation of degree 1;

x : G — GL1. The set of characters of G is a commutative group,
denoted by X(G) or G. The group G is finitely generated; it is free
if G is connected [Bor66], p.6. If one wants to write the
composition-law in G multiplicatively, the value at g € G of y € G
should be noted x(g). But since one is accustomed to add roots of
Lie algebras, it is also natural to write the composition in G
additively. The value of x at g will then be denoted by gX. To see
the similarity between roots and characters take Q = C; if X € g,
the Lie algebra of G, (X)X = ed,(X), where d,, is the differential
at e; d, is a linear form over g. In the sequel, we not make any
notational distinction between a character and its differential at e.

Let g € GL(n,Q), g can be written uniquely as the product

g = &s - &n, where g5 is a semisimple matrix (i.e., g. can be made
diagonal) and g, is a unipotent matrix (i.e., the only eigenvalue of
gn is 1, or equivalently g, — [ is nilpotent) and g5 - g = gn - &s-



Example: the case of GL(n)

The rank of G is the common dimension of the maximal tori,
(notation rk(G)). A closed subgroup P of G is called parabolic, if
G /P is a projective variety. A maximal connected closed solvable
subgroup is called Borel subgroup.

Exemple. G = GL,. A flag & in a vector space V is a properly
increasing sequence of subspaces

?:0#V1C“'Cvtcvt+1:\/.

The sequence (d;) (di = dimv;,i =1,---t)) describes the type of
the flag. If di =/ and t =dim V — 1, we speak of a full flag.

A parabolic subgroup of GL, is the stability group of a flag F in
Q". G/P is the manifold of flags of the same type as F, and is well
known to be a projective variety. A Borel subgroup is the stability
group of a full flag. In a suitable basis, it is the group of all upper
triangular matrices.

The case of orthogonal group G = SO(F)

of a nondegenerate quadratic form F on a vector space V) (where,
to be safe, one takes char k # 2). In a suitable basis

F(Xh ce aXn) = X1 Xp+XoXp—1+"* '+Xan—q+1+F0(Xq+la ce 7Xn—q)

where Fy does not represent zero rationally. The index of F, the

dimension of the maximal isotropic subspaces in V, is equal to g. A

maximal k-split torus S is given by the set of following diagonal

matrices:
sM

st

Ag




Example: Unitary group

Let us review some background and set up standard notation. Let
E be a quadratic imaginary field, embedded in C; 0 < m < n and
AN=OF"™. Let

where [, is the unit matrix of size ¢, and introduce the perfect
hermitian pairing

(u,v) = tilymv

on A. Let G = GU(A, (,)) be the group of unitary similitudes of A,
regarded as a group scheme over Z; and denote by v : G — G, the
similitude character. For any commutative ring R

G(R)={g € GLpym(Oe ® R)|Vu,v e A® R, (gu,gv) =v(g)(u,v)}.

Then G(R) = GU(n, m) is the general unitary group of signature
(n,m), and G(C) = GLp+m(C) @ C.

Geometric algebra (see [Dieudonné], [Garrett])

- GL(n) (geometric study).

- Bilinear and Hermitian forms, classical groups

- Witt theorem and extensions of isometries *

This section is based on notions of geometric algebra.

Concerning matrix notation, for a rectangular matrix A = (aj;) let
fA denote the transpose of A. If the entries of A belong to a ring
D with involution muni d’involution o, let A7 given by Af-; = aj-J’-.
Geometric study of GL(n) and its subgroups. The group GL(n) is
a basic classical group showing the most interesting phenomena
used in many other situations. The general linear group GL(n, k) is
the group of all invertible n x n matrices with entries in a
commutative field k. The special linear group SL(n, k) is its
subgroup of all n x n of determinant 1.

For an approach less dependant of coordonnates fix a k-vector
space V of dimension n and let GL,(V) be the group of all
k-linear automorphisms of V . Any choice of a base in V gives an
isomorphism GLy (V) — GL(n, k) using the matrix of linear
mapping in the chosen base. Let ey, - - , e, the standard bases of
k™ giving the isomorphhism GL (k") — GL(n, k).
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Conjugation of parabolic subgroups.

Let V = k" and JF the standard flag of type (di, -, dm), the
parabolic subgroup Ps is represented by blocs

di X di * * %
(d2—d1)><(d2—d1) * *
' *

0 0 0 (n—dm)x (n—dn)

Any g € P = Pg induce a natural mapping on the quotients
\/(7','/\/5/1._1 , where Vdo =0 and Vd =V )

Then the unipotent radical R,P =

{p€Ps|p=idon Vd;/Vy_, and V/Vy } is represnted by

lg, * * *

m+1

1d2—d1 * *

Levi components and conjugation

Choose a complement V,g_d’, of V4 in V with the property

V) g, C---CV)_g (an opposit flag I of F) with the opposit
parabolic P/ = Py, Then M = PN P’ is called a complementary
Levi component in P = M x R,P, a standard semi-direct product.
Then the standard Levi component is the group of matrices of the
form

d1 X d1 0 0 0
(dg—dl)x(dz—dl) 0 0
' 0
0 0 0 (n—dpn)x(n—dn)
Proposition

a) All the parabolic subgroups of given type are conjugate in
GLk(V)

b) All the Levi components of parabolic subgroup P are conjugate
by elements of P

¢) All the maximal k-split tori are conjugate in GLy (V).



Extension to modules over a scew field
This section applies unchanged when k is replaced by a scew field
(a division ring) D. Without coordinates, define a vector space V/
of finite dimension over a scew field (a division ring) D as a finitely
generated (left or right) module.
If D is not commutative, there is a modification in viewing at
D-lineair endomorphisms.The the ring Endp(V) of all D-lineair
endomorphisms does not contain D naturallurally. Then a choice of
D-bases for a vector space D of given dimension gives an
isomorphism Endp (V) to n x n matrices with coeffcients in DPP,
where D°PP is the opposite ring to D, i.e.with the same additive
group D but with the multiplication *, given by x * y = yx where
yx is the multiplication in D. The linear group GL(n, D) over D is
the group of all the invertible n x n matrices over D. A version
without coordinates is GLp(V/),and a choice of D-bases of V' gives
an isomorphism GLp(V) — GL(n, D°PP). Definitions concerning
flags and parabolics are identical to the commutative case. A flag
Fin Visa chain F= (Vg C Vg, C--- C Vg,) of subspaces.
Proposition
a) All the parabolic subgroups of a given type are conjugate in
GLp(V)
b) All the Levi components of parabolic subgroup P are conjugate
by elements of P.

Bilinear, sesquilinear and Hermitian forms; classical groups

The classical groups are defined as certain isomtries or similitudes
of "formes" on the vector spaces. First, orthogonal and symplectic
groups are defined. These can be included into more general
families.

Bilinear forms, symmetric and symplectic forms
Let Q(v) = (v, v) be the quadratic form attached to a symmetric
bilinear form (-,-) on a k-vector space V.
The associated orthogonal group O(Q) is the group of isometries
of Q (or of (-,-)), defined as

0(Q) = O((--)) = {g € GLK(V) | Vw1, v2 € V, (g1, gv2) = (v1, v2)},
and the group of orthogonal similitudes is GO(Q) = GO((:,-))
={g € GL(V),Tv(g) € kK" | Vv1,v2 € V, (gw1, gv2) = v(g)(v1,v2)}

If Vvi, v € V,(gv1,gv2) = —(v1, v2), then the bilinear form
f:VxV =k f(vi,vw)=(v1,w) is said symplectic. The
symplectic group attached to f is the group of isometries of the
form f = (vi, v2) defined by

Sp(f) = {g € GLk(V) | Vvi,v2 € V, (gv1,8v2) = (v1, 2)}, puis
the group of symplectis symilitudes GSp(f) =

{g € GL(V),Tv(g) € k* | Vvi,va € V, (gv1,8v) = v(g)(v1, )}



Structure theorems for reductive groups.

Root systems. Let V be a finite dimensional real vector space
endowed with a positive nondegenerate scalar product. A subset ®
of V is a root system when

(1) ® consists of a finite number of nonzero vectors that generate
V, and is symmetric (¢ = —®). (2) for every a € ®, s, (P) = b,
where s, denotes reflection with respect to the hyperplane
perpendicular to a. (3) if a, 3 € ®, then

2(a, B)/(ov, @) € Z.

The group generated by the symmetries s, (v € @) is called the
Weyl group of ® (notation W(®) is finite. The integers

2(av, B)/(cv, @) are called the Cartan integers of ®. The integrity
condition means that for every o and 3 of ®, (s,(83) — 3) is an
integral multiple of «, since

sa(B) = B —2a(a, B)/ (v, ).

For the theory of reductive groups we shall have to enlarge slightly
the notion of root system: if M is a subspace of V, we say that ¢
is a root system in (N, M) if it generates a subspace P
supplementary to M, and is a root system in P. The Weyl group
W(®)) is then understood to act trivially on M. A root system &
in V is the direct sum of &’ C V/and ®" Cc V", if V=V V",
and ® = &' U ®". The root system is called irreducible if it is not
the direct sum of two subsystems.

Properties of root systems.

(1) Every root system is direct sum of irreducible root systems.

(2) If @ and A € &, then A = +1,£(1/2), or £2.

The root system &, is called reduced when for every o € ®, the

only multiples of « belonging to ® are +a. To every root system

®, there belongs two natural reduced systems by removing for every

o € &, the longer (or the shorter) multiple of o :

(3) The only reduced irreducible root systems are the usual ones

(The first four are those belonging to the classical series, , with the

simple roots as follows: take R"” with the standard metric and basis

{)‘1’ t ,)\n})

An(n>1), slpr1 A=A, A2 — A3, -, Anm1 — Apy Ap — gt

Bn(n>2), 802511, A — A2, 2 — A3, Apm1 — Any Ap,

C,,(n23), SPons )\1 —)\27)\2—)\3,“' 7)\,7,1 —/\,772)\,7

Dy(n>4), s02, A=A, = A3, , A1 — Any A1 + A

Gy, Fa, Es, E7, Eg (the exceptional root systems, see [FuHa91], §21).

EXAMPLES : B,: Take R" with the standard metric and basis

{5 Ak

By, ={£(N £ X)(i <j)and £X(1<i<n)}

W(B,) = {s € GL(n, R) is a product of a permutation matrix
with a symmetry with respect to a coordinate subspace}

C,= {ﬂ:(/\,‘ + )\j) (i <j) and ﬂ:z)\,'(l <i< n},

W(Cn) = W(Bn)-



Example of G = GL(n)

Matrix description of the symplectic group, see [An87]

S = group of diagonal mattices = {diag(s™, s*2, .., s*)} where
\; € §is such that s =s;. Sis a split torus and is maximal.

A minimal parabolic k-subgroup P is given by the upper triangular
matrices, which is in this case a Borel subgroup. The unipotent
radical U of P is given by the group of upper triangular matrices
with ones in the diagonal. The Lie algebra g/,, = M, with a basis
{ejj}ij. where e is the matrix having all components zero except
that with index (/,) equal to 1,

Adgs(e;) = (s¥/sV)ej.

So the positive roots are A\j — A;j(i < j) since the Lie algebra of U is
generated by eji(i < j). The simple roots are

(A1 = A2, A2 — A3y -+, Ap—1 — Ap) (the root system of type A,_1)

The Weyl group is generated by s,, where « is a positive root;
since for & = A\j — \j, s, permutes the i and j axis, y W = &, the
group of permutations of the basis elements. The parabolic
subgroups are the stability groups of flags.

Let G = GSpj,,, be the algebraic subgroup of GLy, defined by
Ga = {v € GLan(A) | Yy =v(y)dn, v(y) € A}, for any
0, -1
1, 0,
Gy are characterized by the conditions
bta—a'b=d%c—c'd =0,,da—cb=1,, and if

a b _ _ d —t
'y:<c d)EGAthenfyl:y(fy)l( ¢ ¢ )

commutative ring A, where J, = " ). The elements of

—c fa
The multiplier v defines a homomorphism v : G4 — A* so that
v(7)?" = det(v)? and ker(v) is denoted by Sp,(A).
Matrix description of the symplectic Lie algebra sp,,
5P, = {X € gly,|*XUp + JoX = 0}. Writing elements of g = sp,,
in block form:X — (g‘ 8 ) where A, B, C € My, and B = B,

_IA
C ="'C. Note that the dimension of sp,, is n(2n+1). A maximal
sM
sh2
A
. s
torus S is
s
0 st
M\



Automorphic complex L-functions on classical groups.

» §6.5. of [MaPa] Automorphic Forms and The Langlands
Program

Automorphic L-Functions

Analytic properties of automorphic L-functions

Hecke algebras.

Section IV of [Bor79] The L-function of an automorphic
representation.
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6.5 Automorphic Forms and The Langlands Program

6.5.1 A Relation Between Classical Modular Forms and
Representation Theory

(cf. [Bor79], [PSh79]). The domain of definition of the classical modular forms
(the upper half plane) is a homogeneous space H = {z € C | Im z > 0} of the
reductive group G(R) = GL2(R):

H = GL2(R)/0(2) - Z,

where Z = {({ 2) |z € R*} is the center of G(R) and O(2) is the orthogonal
group, see (6.3.1). Therefore each modular form
f(z)= Za(n)e(nz) € My (N, ) C My(I'n) (6.5.1)

n=0

can be lifted to a function f on the group GLs (R) with the invariance condition

f(vg) = f(g) forall v € I'v C GLy(R).

In order to do this let us consider the function

oy ) fa()ig, i)™ if detg >0,
o= {f(g(—1 )ilg, —i)~F if detg < 0, (6.5.2)

where g = (ZZ) € GLy(R) and j(g,i) = |detg|~'/%(cz + d) is the factor of

automorphy.

One has f(zg) = exp(—ikd)f(g) if = = (zﬁfg Z(S)inee) is the rotation
through the angle 6.

Consider the group GL2(A) of non-degenerate matrices with coefficients
in the adele ring A and its subgroup

U(N) (6.5.3)

10
— {g =1x ng S GLQ(A) | gp c GLQ(ZP),gp = <0 1) II’lOd NZP}
p

From the chinese remainder theorem (the approzimation theorem) one obtains
the following coset decomposition:

I'n\GL2(R) = GLz(Q)\GL2(A)/U(N), (6.5.4)

using which we may consider f as a function on the homogeneous space (6.5.4),
or even on the adele group GL2(A).
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The action of GL2(A) on f by group shifts defines a representation = = T
of the group GL5(A) in the space of smooth complex valued functions on
GL2(A), for which

(=(0)F)(9) = F(gh) (9,h € GL(A)).

The condition that the representation 7y be irreducible has a remarkable
arithmetical interpretation: it is equivalent to f being an eigenfunction of the
Hecke operators for almost all p. If this is the case then one has an infinite
tensor product decomposition

=)™, (6.5.5)

where the 7, are representations of the local groups GL2(Q,) with v = p or
00.

Jacquet and Langlands chose irreducible representations of groups such as
GL2(Q,) as a starting point for the construction of L—functions (cf. [JL70],
[Bor79]). These representations can be classified and explicitly described. Thus
for the representations m, in (6.5.5) one can verify for almost all v = wv,
that the representation 7, has the form of an induced representation m, =
Ind(u1 ®pu2) from a one dimensional representation of the subgroup of diagonal

matrices
z 0

(11 @ p2) <0y

) = ralehn o)

where j; @ Q) — C* are unramified quasicharacters (see §6.2.4). This
classification makes it possible to define for almost all p an element h, =

(“ lép ) M(Ep)) € GL2(C). From this one can construct the following Euler prod-

uct (the L—function of the automorphic representation 7)

L(m,s) = [ L(mp. 5) = [ ] det(12 — p~*h,) ™! (6.5.6)

PES PES

in which the product is extended over all but a finite number of primes.
It turns out that the function L(7, s) coincides essentially with the Mellin
transform of the modular form f:

L(s, f) = L(my,s + (k—1)/2).

The notion of a primitive form f also takes on a new meaning: the correspond-
ing function f from the representation space of an irreducible representation 7
must have a maximal stabilizer. The theory of Atkin—Lehner can be reformu-
lated as saying that the representation 7y occurs with multiplicity one in the
regular representation of the group GLa(A) (the space of all square integrable
functions).



334 6 Zeta Functions and Modular Forms

More generally, an automorphic representation is defined as an irreducible
representation of an adele reductive group G(A) in the space of functions on
G(A) with some growth and smoothness conditions.

Jacquet and Langlands constructed for irreducible admissible automorphic
representations 7 of the group GLo(A) analytic continuations of the corre-
sponding L—functions L(7,s), and established functional equations relating
L(rm,s) to L(7,1 — s), where 7 is the dual representation. For the functions
L(my, s) this functional equation is exactly Hecke’s functional equation (see
(6.3.44)).

Note that the notion of an automorphic representation includes as special
cases: 1) the classical elliptic modular forms, 2) the real analytic wave modular
forms of Maass, 3) Hilbert modular forms, 4) real analytic Eisenstein series

’ y°
of type Y. ot A
their inverse Melin transforms), 6) automorphic forms on quaternion algebras
etc.

Interesting classes of Euler products are related to finite dimensional com-
plex representations

5) Hecke L-series with Grossen—characters (or rather

r: GLy(C) — GL,,(C).

Let us consider the Euler product

L(m,r,s) = HL(wp,r, s), (6.5.7)

where
L(mp, 7, s) = det(1,, — p*sr(hp))*1

These products converge absolutely for Re(s) > 0, and, conjecturally, ad-
mit analytic continuations to the entire complex plane and satisfy functional
equations (cf. [Bor79], [BoCaT79|, [L71a], [Del79], [Se68a]).

This conjecture has been proved in some special cases, for example when
r = Sym‘St is the i*® symmetric power of the standard representation St :
GL3(C) — GLy(C) for i = 2,3,4,5 (cf. [Sh&8]).

The Ramanujan—Petersson conjecture, proved by Deligne, can be formu-
lated as saying that the absolute values of the eigenvalues of h, € GLy(C) for
a cusp form f are all equal to 1.

As a consequence of the conjectured analytic properties of the functions
(6.5.7) one could deduce the following conjecture of Sato and Tate about
the distribution of the arguments of the Frobenius elements: let a(p) = e'»
(0 < ¢, < m) be an eigenvalue of the matrix h, defined above. Then for
cusp forms f without complex multiplication (i.e. the Mellin transform of f is
not the L—function of a Hecke Grossencharacter (see §6.2.4) of an imaginary
quadratic field) the arguments ¢, are conjecturally uniformly distributed in

2
the segment [0, 7] with respect to the measure = sin? ¢ dyp (cf. [Se68al).
™
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In the case of complex multiplication the analytic properties of the L-
functions are reduced to the corresponding properties of the L-functions of
Hecke Grossencharacters (see §6.2.4), which imply the uniform distribution of
the arguments ¢, with respect to the usual Lebesgue measure.

The arithmetical nature of the numbers e?#» is close to that of the signs
of Gauss sums a(p) = g(x)/\/p where g(x) = Z;i x(u)e(u/p), x being a
primitive Dirichlet character modulo p. Even if x is a quadratic character, the
precise evaluation of the sign a(p) = £1 is rather delicate (see [BS85]). If x
is a cubic character, i.e. if x> = 1 then p = 6t + 1, and the sums lie inside
the 1st, the 3rd or the 5th sextant of the complex plane. Using methods from
the theory of automorphic forms S.J.Patterson and D.R.Heath-Brown solved
the problem of Kummer on the distribution of the arguments of cubic Gauss
sums by means of a cubic analogue of the theta series, which is a certain auto-
morphic form on the threefold covering of the group GLs ([Del80al, [HBP79],
[Kub69]).

6.5.2 Automorphic L-Functions

The approach of Jacquet-Langlands made it possible to extend the whole
series of notions and results concerning L-functions to the general case of
automorphic representations of reductive groups over a global field K. Let G
be a linear group over K, G = G(A) its group of points with coefficients in
the adele ring of the field K. Automorphic representations are often defined as
representations belonging to the regular smooth representation of the group
Ga, and one denotes by the symbol 2(G/K) the set of equivalence classes of
irreducible admissible automorphic representations of G. A representation 7
from this class admits a decomposition m = ®,,m, where v € X' i runs through
the places of K and the 7, are representations of the groups G, = G(K,). In
order to construct L-functions, the L-group “G of G is introduced. Consider
the tuple of root data (cf. [Bor79], [Spr81])

of the group G; here T is a maximal torus of G (over a separable closure of the
ground field K); X*(T) is the group of characters of T'; X, (T) the group of
one parameter subgroups of 7' and A (resp. AV) is a basis of the root system
(resp. the dual basis of the system of coroots). The connected component
of the Langlands L-group “G? is defined to be the complex reductive group
obtained by inversion ¢ — 1, whose root data is isomorphic to the inverse

Po(G)Y = (X.(T),AY, X*(T), A). (6.5.9)

If G is a simple group, then the group “G(C) can be characterized upto a
central isogeny by one of the types A,, By, ..., G2 of the Cartan—Killing
classification. It is known that the map 1 +— 1y interchanges the types
B,, and C,,, and leaves all other types fixed. Thus if G = Sp,, (respectively
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GSp,,), then “G° = SO4,,11(C) (resp. “G° = Spin,, . ;(C)). The whole group
L@ is then defined as the semi-direct product of “G° with the Galois group
Gal(K?®/K) of an extension K* of the ground field K over which G splits (i.e.
its maximal torus T becomes isomorphic to GLY). This semi-direct product
is determined by the action of the Galois group I'x = Gal(K*/K) on the set
of maximal tori defined over K*.

The most important classification result of the Langlands theory states

that if
7= € AUG/K)
v
then for almost all v the local component 7, corresponds to a unique conjugacy
class of an element h,, in the group G.
Let us consider the Euler product

L(m,r,s) = [ [ Lz, 7 9), (6.5.10)
vgS

where S is a finite set of places of K,
L(my,r,8) = det(1,, — Nv~*r(h,))"*.

Langlands has shown that if 7 € 2A(G/K) then the product in (6.5.10)
converges absolutely for all s with sufficiently large real part Re(s) (cf. [L71a]).
The product (6.5.10) defines an automorphic L-function only up to a finite
number of Fuler factors. Although this is sufficient for certain questions related
to analytic continuation of these functions, the precise form of these missing
factors is very important in the study of the functional equations. A list of
standard conjectures on the analytic properties of the L-functions (6.5.10) can
be found in A.Borel’s paper [Bor79]

We refer to recent introductory texts to the theory of automorphic L-
functions and the Langlands program: [BCSGKK3|, [Bum97|, [Iw97],

For the group G = GL,, and the standard representation r = r,, = St :
LGO 5 GL,(C) the main analytic properties of the L-functions (6.5.10) are
proved in [JPShS], [GPShR&7], [Sh88], [JSh] (see also [Bum97|, [BCSGKK3],
[CoPSh94]).

Also in the case G = GL,, the multiplicity one theorem (an analogue of
the theorem of Atkin—Lehner) (cf. [AL70], [Mi89], [Li75]) has been extended
(cf. [Gel75], [Gel76]). This is closely related to the non-vanishing theorem: for
a cuspidal representation 7 one has L(m,r,,1) # 0.

For GL3 an analogue of Weil’s inverse theorem (see §6.3.8) has been proved:
if all the L-functions of type L(m®x,rs, s) (where x is a Hecke character and 7
is an irreducible admissible representation) can be holomorphically continued
to the entire complex plane, then the representation 7 can be realized in the
space of cusp forms ([CoPSh94], [JPShS]). More recent results on the case of
GL,, cf. [CoPSh02].
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Interesting classes of L-functions attached to Siegel modular forms were
introduced and studied in [An74], [An79a], [AK78]. These modular forms and
their L-functions have deep arithmetical significance and are closely related
to the classical problem on the number of representations of a positive defi-
nite integral quadratic form by a given integral quadratic form (as generating
functions, or theta—series). These numbers arise in Siegel’s general formula
considered above (5.3.71). From the point of view of the theory of automor-
phic representations, Siegel modular forms correspond to automorphic forms
on the symplectic group G = GSp,,. In this case the dual Langlands group
coincides with the universal covering Spiny, ,;(C) of the orthogonal group
SO2,,+1(C). To construct L-functions one uses the following two kinds of rep-
resentation of the L-group “G = Spin,,, . ; x Gal(K*/K): pa+1 and ry,, where
pant1 is the standard representation of the orthogonal group, and r,, is the
spinor representation of dimension 2". It is convenient to consider the follow-
ing matrix realization of the orthogonal group:

SOQn-i—l((c) = {g € SLQn—i—l(C) | tang = Gn}7

with a quadratic form defined by the matrix

0, 1, O 1 0 -0
......... 0O 1 ---0
Gn = 1, 0, 0 |’ o= " ... 0
0 --- 1 0 0 1

If 7 = ®,m, € A(GSp,,/K) then for almost all v the representation , corre-
sponds to a conjugacy class h,, in “G whose image in the standard represen-
tation is given by a diagonal matrix of the type

pant1(hy) = {a1p, -+ anp, aiil,a ,04;,%1, 1},
and in the spinor representation it becomes
Tn(hw) = {Bovs Bo.w1 05+ s Bowiy v Qig o+ Qi vy 1
where for every m < n all possible products of the type
Bowiyvlipw QG vy, 1 <0 <dg <o <y <

arise.
The element h,, is uniquely defined upto the action of the Weyl group W,
generated by the substitutions

Bow = Bowi, Qiw'— 0y, oy gy (§#10)
and by all possible substitutions of the coordinates

gy vy Qg vy Oy e
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A.N.Andrianov has established meromorphic continuations and functional
equations for automorphic L-functions of the type L(my,7,,s) where 7y is
the automorphic representation of GSp,,(A) over Q attached to a Siegel mod-
ular form f with respect to I, = Sp,,(Z), n = 2 . He has also studied the
holomorphy properties of these spinor L-functions for various classes of Siegel
modular forms f, cf. [An74], [An79a] . Analytic properties of such functions
are related to versions of the theory of new forms in the Siegel modular case
for n = 2, cf. [AP2000]. A.N. Andrianov and V.L.Kalinin in [AK78| have stud-
ied the analytic properties of the standard L-functions L(m¢, pan+1,s), where
7s is the automorphic representation of GSp,,(A) over Q attached to a Siegel
modular form f with respect to the congruence subgroup I'y(N) C Sp,,(Z).
For n = 1 these L-functions coincide with the symmetric squares of Hecke
series, previously studied by Shimura.

A general doubling method giving explicit constructions of many automor-
phic L-functions, was developed in [Boe85] and [GPShR&7].

Further analytic properties of automorphic L-functions

We refer to Sarnak’s plenary lecture [Sar98] to ICI-1998, and to the related
papers [IwSa99], [KS99], [KS99a], [LRS99|, [KiSha99].

In [IwSa99], four fundamental conjectures were discussed: (A) Grand
Riemann hypothesis; (B) Subconvexity problem; (C) Generalized Ramanu-
jan conjecture; (D) Birch and Swinnerton-Dyer conjecture. Another problem
which is related to (D) is a special value problem. Namely, the question as to
whether an L-function vanishes at a special point on the critical line.

From the classical point of view, analytic and arithmetic properties of new
classes of automorphic L-functions where studied in new Shimura’s books
[Shi2000], [Shi04], using a developed theory of Eisenstein series on reductive
groups.

6.5.3 The Langlands Functoriality Principle

(cf. [Bor79], [BoCaT79], [Gel75], [Pan84] , and for recent developments, [Lau02|,
[HenO1], [Car2000], [Li2000], [BCSGKKS3]|, [CKPShSh]). This important prin-
ciple establishes ties between automorphic representations of different reduc-
tive groups H and G. A homomorphism of the L-groups u : “H — LG
attached to G and H is called an L-homomorphism if the restriction of u to
LHO(C) is a complex analytic homomorphism to “G°(C), and u induces the
identity map on the Galois group Gg. The functoriality principle is formu-
lated in terms of the conjugacy classes of the matrices h, corresponding to
the local components 7, of an irreducible admissible representation m = ®,,m,
of the group H(Ak). It includes the following statements:

1) locally: for almost all v there exists an irreducible admissible representation
u () of the group G, = G(K,,) which corresponds to the conjugacy class
of the element u(h,) in LG;



Lecture N°2. Classical and Hermitian modular forms

Classical modular forms: the case of GL»

The Siegel modular case: G = GSp,,

Geometric algebra (see [Dieudonné], [Garrett])
Sesquilinear formes, Hermitian and antihermitian forms
Automorphic complex L-functions on classical groups.
Hermitian modular forms and L functions.

Hecke algebras.

The Rankin-Selberg method.

vV VvV VY VvV VvV VvV VY

Why study L-values attached to modular forms?

A popular proceedure in Number Theory is the following:

_ Compute f via
Construct a generating modular forms

function f =>""° 1 anq" for example A number
€ C[[q]] of an arithmetical ~s 00 ~ ut
function n+— a,, Zp(n)q" (solution)
= n=0
for example a, = p(n) " )12
Example 1 [Chand70]:
(Hardy-Ramanujan) T T
JUA—— Good bases, Values
p(n) = ‘QL‘T finite dimensions, of L-functions,
+0(emVEB—1724) /33) many relations periods,
An = Vi =172 and identities congruences, .

Other examples: Birch and Swinnerton-Dyer conjecture,
... L-values attached to modular forms



Modular forms, zeta functions, L-functions

_ _ . 2 >
Eisenstein series £, =1 + () YO dk g e My, a
n=1 d|n

modular forms for even weight k > 4 for SLy(Z),q = e , and

E> € QM a quasimodular form. The ring of quasimodular forms,
d 1 d

dq ~ 2midz
1
arithmetic, ((s) is the Riemann zeta function, {(—1) = 1

Er=1-24377 1% 4,dq" is also a p-adic modular form (due to
J.-P.Serre,[Se73], p.211)

27TiZ)

closed under differential operator D = , used in

Elliptic curves E: y? =x3+ax+ b, a,b e Z, AWiles's
modular forms fg = Z anq" with a, = p — CardE(F,)

n=1

(p [ 4a® +27b%), and the L-function L(E,s) = Zann_s.
n=1

Zeta-functions or L-functions

They are attached to various mathematical objects as certain Euler
products.

» [-functions link such objects to each other (a general form of
functoriality);

» Special L-values answer fundamental questions about these
objects in the form of a number (complex or p-adic).

Computing these numbers use integration theory of Dirichlet-Hecke
characters along p-adic and complex valued measures.

This approach originates in the Dirichlet class number formula
using the L-values in order to compute class numbers of algebraic
number fields through Dirichlet's L-series L(s, x): for an imaginary
quadratic field K of discriminant —D < —4, xp(n) = (7,°)

_ \/EL(]"XD) _

h
b 27

L(0,x)

I
|
Q=
=
o)
>
T

(Example: disc(Q(v/=5))) = —20, hyo = 2; in PARI/GP x20(n) =
kronecker(-20,n), gp > -sum(x=1,19,x*kronecker(-20,x))/20
%29 =2

Another famous example: the Millenium BSD Conjecture gives the
rank of an elliptic curve E as the order of L(E,s) at s=1 (i.e. the
residue of its logarithmic derivative, see [MaPa], Ch.6).



A short story of critical values, see [YS]
2

Euler discovered ¢(2) = ?, and (22475,2)’;1 = (‘292';' €Q,(n>1).
These are examples of critical values (in the sense of Deligne): for a
more general zeta function D(s) the critical values are defined
using its gamma factor ['p(s) such that the product ['p(s)D(s)
satisfies a standard functional equation under the symmetry
s+ v —s. Then D(n), n € Z is a critical value of D(s) if both
I'p(n) and Fp(v — n) are finite.

Hurwitz [Hur1899] showed a striking analogy to Euler’s theorem:

Yoz " H, bodx
=_1 Q=2 = 2.6220575542 - - -
Qim @my €@ /0 Vi

for 1 < m € 7Z, where a« = a+ ib, a, b € Z are non-zero Gaussian

integers and Hp, are Hurwitz numbers (recursively computed, [SI]):

1 3 567 43659 392931
Hy Hpooo = — = 220 29999 ... Recall the f la:
1,12, 10°10°130° 170 ° 10 ecall the formuia

Let o be the Welerstrass o-function satisfying ©2 = 40> — 4p.
24nH Z4n 2
Then p(z) = — + Z 4n(4n . A rapid computation of these
values: take the Fourler expansion of the Eisenstein series at z =/,
—27r.
g=e

m 2(27r
Gan(2) = 3 (a2 4 0)747 = 2004m) + G Ty 3
Gamli) _ _Him , T, — periods of ¢(s) and of £ : y? = 4x% — 4x.

R

d4m1d
1_

Classical modular forms: definition;

Let I' be a subgroup of finite index in the modular group SLy(Z). A
holomorphic function f : H — C is called a modular form of (integral)
weight k with respect to I iff the conditions a) and b) are satisfied:

> a) Automorphy condition

f((ayz + by)/(cyz + dy)) = (cyz + dﬂ/)kf(z) (1)

for all elements v € T;

> b) Regularity at cusps: f is regular at cusps z € Q U ico (the
cusps can be viewed as fixed points of parabolic elements of I');
this means that for each element o = (is> € SLy(Z) the

b
function (cz + d)~*f (az+ ) admits a Fourier expansion over
cz+d

non—negative powers of g/N = e(z/N) for a natural number N.
One writes traditionally

q = e(z) = exp(2miz).
A modular form f(z) = Za(n)e(nz/N) is called a cusp form if
n=0
f vanishes at all cusps (i.e. if the above Fourier expansion
contains only positive powers of g!/V), see [LangMF], [MaPa]



The complex vector space of all modular (resp. cusp) forms

of weight k with respect to I is denoted by M (I") (resp. Sx(I)).
A basic fact from the theory of modular forms is that the spaces of
modular forms are finite dimensional. Also, one has

My (M)M(F) € Myqy(T). The direct sum

turns out to be a graded algebra over C with a finite number of
generators.

An example of a modular form with respect to SLy(Z) of weight
k > 4 is given by the Eisenstein series

Gz = 3 (my + maz) (2)

m1,m€Z

(prime denoting (my, my) # (0,0)). For these series the automorphy
condition (1) can be deduced straight from the definition. One has
Gk(z) = 0 for odd k and

i)k >
Gul(z) = (2152_ 1))! ,25;: + ;ak,l(n)e(nz) , (3)

where oy_1(n) = 34, d* " and By is the k' Bernoulli number.
The graded algebra M(SL2(Z)) is isomorphic to the polynomial ring
of the (independent) variables G; and Gg.

Examples

Recall that By denote the Bernoullli numbers defined by the
development
X L XK
-1 Z Bkﬂ"
k=0

2mi)kB,
One has for even k > 2, 2((k) = —w

k!
22mk | Br = R L 2k N
k—1) —ﬂ‘i-nz:lﬂkfl(n)q : Ek(z)fl—Bfk;::lakfl(")q

. Gk(z) =

Es(z) =1+ 240%03(n)q” € M4(SL(2,7Z)),

n=1

Es(z) =1— 504%0‘5(n)q” € Ms(SL(2,Z)),

n=1

Es(z) =1+ 480iay(n)q" € Mg(SL(2,7Z)),

n=1
Eio(z) =1-264 % 0o(n)q" € Mig(SL(2,2)),
n=1
65520
Eio(2) =1+ == ; o11(n)q" € Mi2(SL(2,Z)),

oo
Eia(z) =1-24 Y 013(n)q" € Mya(SL(2, Z)).(Proof see in [Se70]).

n=1
with PARI/GP:
gp > k=14;Ek=1-(2%k) /bernfrac(k)*sum(d=1,20,d" (k-1)*q~d/(1-q~d)+0(q 4>
% =1 - 24xq - 196632xq~2 - 38263776%q~3 + 0(q~4)



Fast computation of the Ramanujan function 7(n)

)

o0
k=144
Put hy := ZZ dklgn = Z = :d . The classical fact is that
n=1 d|n d=1

(E43 — E62) _ 24 _ _
e =4 1:[1(1 —g"* = ;T(n)q", (Ey = 1+240hy, Eg = 1 —504hs).
n=> n>

A=

Computing with PARI-GP see [BBBCO|, The PARI/GP number theory system),
> k-1 _d
d“'q
. : - k=1.n _
http://pari.math.u-bordeaux.fr hy := g g d“q" = E T 47
n=1 d|n d=1

gp > h6=sum(d=1,20,d"5*q~d/(1-q~d)+0(q~20))
gp > h4=sum(d=1,20,d"3*q~d/(1-q~d)+0(q~20)
gp > Delta=((1+240%h4)"~3-(1-504*h6)~2)/1728

Congruence of Ramanujan 7(n) = Z d'! mod 691 :
d|n

gp > (Delta-h12)/691
% = -3xq"2 - 256%q~3 - 6075%q~4 - 70656%q~5 - 525300%q~6 + 0(q~7)

More programs of computing 7(n) (see |Sl])

(MAGMA) M12:=ModularForms(GammaO(1), 12); ti1:=Basis(M12)[2];
PowerSeries(t1[1], 100); Coefficients($1);

(PARI) a(n)=if(n<1, 0, polcoeff(x*eta(x+x*0(x"n))~24, n))

(PARI) {tau(n)=if(n<1, 0, polcoeff (x*(sum(i=1, (sqrtint(8*n-7)+1)\2,
(1) ~ix(2%i-1)*x~((i~2-1)/2), 0(x"n)))~"8, n));}

gp > tau(6911)

%3 = -615012709514736031488

Multiplicativity and Hecke theory, [An87]

The example of the Eisenstein series, of the Ramanujan function
7(n) demonstrate an interesting phenomenon: often the Fourier
coefficients a(n) of modular forms for SLy(Z) are multiplicative
number-theoretical functions or linear combinations of such

functions. The reason for this is to be found in Hecke's theory as
[e.e]

follows. Let f(z) = Za(n)e(nz) € My The "multiplicativity" of
n=0

the function a(n) should mean that there is a regular connection

between a(n) and a(nm) for any fixed m. The numbers

a(nm) = (n=1,2,...) are the Fourier coefficients of the function

> 132 [z+b
fn(z) = a(nm)e(nz) = = > f ( ) =
n=0 M =0 m
m—1
1b b
m*1 ap where f| M = (cz + d)~*f az+o .
P 0m cz+d



Defining Hecke operators through U(m), V(m)

If the operator f — f,, := f|U(m) were to carry the space My into
itself, then one could hope to find its eigenfunctions in M but for
such functions f,, = A\p,f, that is, a(nm) = A\pa(n)(n=1,2,...),
and the desired multiplicativity property would follow.

To develop this idea let us use for any positive integer m the
operators f — f|U(m), f — f|V(m):

0o m—1
FlU(m)(z) = a(mn)e(nz) = m*=1 Y~ £, (1 b)

no:oO b=0 0m
FIV(m)(z) = 3 a(n)e(mnz) = m*' £, <'g S)
n=0

In the general case note that the matrices <(1) ,17’1> in the definition of

U(m) form part of a complete system of right coset representatives
ab

for SLy(Z)\Am {'y = (0d> lad =m,,b=0...,d — 1}, where
A, denotes the set A, = {7 = (a Z) |dety = m p which is
c

invariant under right multiplication by elements of SLy(Z). The
action of this coset representatives produce the Hecke operator

FIT(m) =Y a" ' flU(m/a)V(a).

alm

The Siegel modular case: G = GSp,,

Let H,, denote the Siegel upper half plane of genus n,
H,={zeM,(C) | Z=z=x+1iy, y >0}, sothat H,isa
complex analytic variety whose dimension is denoted by

(n) =n(n+1)/2.

Put Goo = Gr, G ={7y € G | ¥(7) > 0}, Gg = GE N Gg.

The group G acts transitively on the Siegel upper half plane H,
by z— y(z) = (az + b)(cz + d) ",z € H,,

v = j :, € GI. so that the scalar matrices act trivially, and
H, can be identified with a homogeneous space of the group
Sp,(R). Let K, denote the stabilizer of the point i1, € H,, in the
group Sp,(R), Kyn = {7 € Sp,(R) [ 7(i1n) = i1p}, then there is a
bijection Sp,(R)/K, ~ H, and K, = Sp,(R) N SO2,. The group
K, is a maximal compact subgroup of the Lie group Sp,(R) and it
can be identified with the group U(n) of all unitary n x n -matrices

. a b .
via the map v = c d — a+ib.



The Siegel modular group I'" = Sp,(Z)
Let ' C G('g be its arbitrary congruence subgroup. The general
definition of modular forms is given for a rational representation
p: GL,(C) — GL,(C) a rational representation also denoted by p.
a b
d
f 1 H, — C" we use the notation f|,7(z) = p(cz + d) " f((2)).
Definition A function f : H,, — C" is called a holomorphic modular
form of weight p on T if the following conditions are satisfied:

For v = € GF and for any complex valued function

flp="1,
f is holomorphic on H,,

if n =1 then f is holomorphic at cusps of I

Let M,(I") be the complex vector space of functions satisfying the
above conditions. For each f € M,(I") there is the following

Fourier expansion f(z) = Z c(§)en(£z), where c(€) € C", € run

13
over all £ =" € M,(Q), £ >0 (for n > 1 the last condition
automatically follows by the Koecher principle).

The Fourier expansions of Siegel modular forms

Let M be the smallest integer such that
ro Lm My | u€Mm(Z),"u=uyp and we put
Om 1nm

A = An = {£=(&) eMn(R) | €=1§;,28 €2},
B = By = {{€A | £20},
C = Cp = {€€A | £€>0}.

Then A, is a lattice of half-integral matrices in the R-vector space
of symmetric matrices V = {x € Mn(R) | %% = x} dual to the
lattice L = Mp,,(Z) N V with respect to the action (£, x) — em(£x)
and for each f € M, (") there is the following Fourier expansion

fl2)= > c&em(é2), ()
(eM-1B
Moreover, for each v € Ga we have that £,y € M,(I(v)), where
['(v) is a congruence subgroup,
(@) = Y cl&em(é2),
cemy'B
with ¢,(§) € C", M, € N. A form f is called a cusp form if for all £
with det(£) = 0 in expansion (4) one has ¢,(§) = 0 for all v € G{{
that is
(Flo7)(2) = Z & (§)em(E2).
ceMm;ic

We denote by 8,(I") € M,(I) the subspace of cusp forms.



The Petersson scalar product

For f € 8K(N, 1) and h € MX(N, 1)) the Petersson scalar product
is defined by

(F. By = /¢ o (el (5)

where ®o(N) = T'J(N)\H, is a fundamental domain for the group
Fo(N) with the notations

dx = de,-j, dy = Hy,-j, dz = dxdy,

d*y =det(y) "dy, d*z=det(y) "dz, where z = x + iy,
n(n+1) ,

x=xj)=%y=(j)=%>0 k= ———. Thend*zisa

differential on H, invariant under the action of the group G;g, and

the measure d*y is invariant under the action of elements

ac€ GL,(R)on Y ={y eMy(R) | ' =y >0} defined by the

rule y — faya.

Sesquilinear formes, Hermitian and antihermitian forms

Let K be a quadratic extension of k, its subfield fixed be the
involution o.

Definition

a) A k-bilinear form f : V x V — K, f(v1,v2) = (v1,v) on a
K-vectorspace V of finite dimension is said sesquilinear (with an
implicite reference to o) if (avy, fva) = a?B(vi, va) (Va, f € K
and vi,vp € V).

b) A sesquilinear form f(vi, v2) = (v1, va) on a K-vector space V of
finite dimension is said hermitian ifVvi,va € V, (va, vi) = (v1, v)7.
The unitary group U(f) is the group of isometries f (or of (-,-)),
defined as

U(f) = U((-,-)) ={g € GLk(V) | Vv, va € V, (gV1,gV2> (vi,v2)},
and the group of unitary similitudes is GU(f) = GU((-,-))

={g € GLk(V),3v(g) € K" | Vv1,v2 € V, (gv1,8v2) = v(g)(v1,v2)}



Simultaneuos treatment of general isometries groups

Over a division algebra D with an anti-involution o. Note that
o : D — D satisfies the properties

Va,B € Do’ =a, (a+ p)° =a’ + 7 and (af)? = f%a°

Let Z be the center of D. Suppose that D is of finite dimension
over Z, and that k = {x € Z|x? = x}. Let V be a D-vector space
of finite dimension, and fix e = +1 . Let f = (-,-),f : V x V = D
a k-bilinear form with values in D on V such that Vo, 8 € D,
Yvi,vo € V., (v, vi) = e(v1,v)?, (avi,Bwa) = a?(vi, vr)B. Such
a form is said e-hermitian on V/, and such space V' (endowed with
(-,-)) is called a (D, o,¢)-space.

The group of isometries U(f) of f (or of (-,-)), is defined as

U(f) = U((-,-)) ={g € GLp(V) | Vv1,v2 € V, (gv1, 8v2) = (v1,v2)},
and the group of isometry similitudes is GU(f) = GU((:,-))

={g € GLp(V),3v(g) € k* | Vvi,va € V,(gv1,8v2) = v(g){wv1, v2)}

Orthogonalisation and isotropy vectors

A D - vector subspace U in a (D,e,0) - vector space admits an
orthogonal complement U+ = {v' € V{(u',u) = 0,Yu € U}. Note
that U N U+ = 0 is not valid in general. The kernel V is denoted
VL. The form is called non degenerate if V- = 0. Suppose for
simplicity that the space V is non-degenerate.

If Vi, V, are two (D, e, o) - vector spaces endowed with forms,
respectively, (-,-)1, (-,-)2, then the direct sum V; & V5 of D- vector
spaces is a (D, e, 0) - vector space with the form

(vi +va,vi +v3) = (vi,v))1(v2, v3)2

called the orthogonal sum. In general, two subspaces Vi, V5 of a
(D, ¢,0) - vector space V are orthogonal if Vi C V5" or
equivalently, if Vo C Vi*.

If (v,v) =0 for v € V, then v is called an isotropic vecteur. If
(v,v'")y =0 for all v, v/ € U for a subspace U of V then U is a
(totally) isotropic. If there is no isotropic non zero vector in U,
then U is said anisotropic.

Proposition

Let V be a (D,e,0)- non degenerate vector space with a subspace
U. Then U is non degenerate iff V = U & U+, with U+ non
degenerate.



Orthogonalisation in (D, o, €)-spaces

This is used for classification of orthogonal and hermitians spaces

Proposition

Let V be a (D,e,0)- non degenerate vector space. Suppose that
the case where e = —1, D = k, and o trivial is excluded. If the
product (-,-) does not vanish identically then there exists v € V
with (v,v) # 0. If V is non degenerate then it has an orthogonal
basis.

Proof. Suppose that (v,v) =0 for all v € V. Then
0=(x+y,x+y)=0x)+{y.y)+(xy) +elxy)"

If e =1 and the product (x + y, x + y) does not vanish identically,
then there exist x, y such that (x,y) = 1. Contradiction. Suppose
that e = —1 and o non trivial on D. Then there exists a € D such
that a # a“, with w = a — a%, w = —w?. If (x,y) does not vanish
identically then there existe x, y such that (x,y) = 1. Then one has
0= (wx,y) +e(wx, y)? =w’(x,y)+ (X, ¥)°w = —w + cw = —2w,
Contradiction.

In order to construct an orthogonal basis, one uses induction on
dimension. If the dimension of a non degenerate vector space V is
1, then any non-zero forme admits an orthogonal basis. In general,
one finds v € V such that (v,v) # 0. Then Dv' is non degenerate
and V is the orthogonal direct sum of Dv andDv", by the previous
proposition.

A Hermitian modular form of weight ¢ with character o

is a holomorphic function F on 3, (n > 2) such that
F(g(Z)) = o(g)F(2)j(g,Z)" for any g € T, k. Here o be a

character of Fﬁg), trivial on {(10" 5)} , and for Z € H,, put

g(Z) = (AZ + B)(CZ + D)7, j(g,Z) = det(CZ + D).

Fourier expansions: a semi-integral Hermitian matrix is a Hermitian
matrix H € (v/—Dk) ™' M,(O) whose diagonal entries are integral.
Denote the set of semi-integral Hermitian matrices by A,(0O),

the subset of its positive definite elements is A,(O)T.

A Hermitian modular form F is called a cusp form if it has a Fourier

expansion of the form F(Z) = Z A(H)g". Denote the space
HeN,(0)*+

of cusp forms of weight ¢ with character o by 84(I', k, o).



Hermitian modular forms and standard zeta functions.
Automorphic complex L-functions on classical groups. Hecke
algebras. The Rankin-Selberg method.
Hermitian modular group T, x and the standard zeta function
Z(s; f) (definitions)
Let K = Q(v/—Dk) be an imaginary quadratic field, 8 = O its
quadratic character, n € N, n’ = [ﬂ The Hermitian group

_ _(AB . (05 —1y
rn,K = {M = (CD) S GL2n(OK)|MnnM _nn} ;Mn = (ln On )

2n
2(s,f) = (H L(2s — i+ 1,9”)) > Ma)N(a)~*,

i=1
(via Hecke's eigenvalues: f|T(a) = A(a)f,a C Ok)

= HZq(N(q)fs)fl(an Euler product over primes q C O,
q

with deg Zq(X) = 2n, the Satake parameters t;q,i =1,---,n),
¢ 1
D(s,f)=2(s— =+ =
(s,6) = (s — 5+ 1.
with a functional equation s — ¢ — s;1k = 4n)

f) (Motivically normalized standard zeta function

The standard zeta function of a Hermitian modular form

Fix an integral ideal ¢ of Ok. Denote by C C I, i the congruence
subgroup of level ¢; the group is essentially a principal congruence
subgroup; it is an analogue of the group 'o(/N) in the elliptic
modular case. Write T(a) for the Hecke operator associated to it
as it is defined in [Shi00], page 162, using the action of double
cosets C£C with € = diag(D, D), (det(D)) = (a), D = (D*)1.
Consider a non-zero Hermitian modular form f € M (C, ) and
assume f|T(a) = A(a)f with A(a) € C for all integral ideals a € O.
Then

2n
2(s,f) = (H L(2s—i+1, 9"—1)> > Ma)N(a)~?,
i=1 a

the sum is over all integral ideals of Ok.

This series has an Euler product representation

.Z(s,f) = Hq(Zq(N(c!)_s)_l, where the product. is over all prime
ideals of Ok, Zq(X) is the numerator of the series

Ym0 A7) X" € C(X), computed by Shimura (see [Shi00], p.
171).



Recalls about Hecke algebras ([An87], [Shi71])

For any subgroup I of a semigroup S consider the Q-vector space

Lo(T, S) generated by all left classes M. If each double class

(M) =TMTI C S is a finite union of left classes, that is

(M) = UT M;, one defines the Hecke algebra Dg(T, S) = Lo(I, S)"
J

as the Q-espace vectiriel of elements in Lg(I', S)" fixed by T'; the
multiplication in Dg(l, S) being defined by:

O aj(rgj))(z a(gi)) = _ a4 (Tgigj).

J JdJ'

For two subgroups I and " write T ~ T if [ and " are ¢, i.e.

N T is of finite index in both I and I". The subgroup

[={M eS| M[M~! ~ T} is the commensurator of [ in S. By
Prop.3.1 [Shi71], for a family {I'y}x of subgroups commensurables

d
to a fixed [ C S the following hold F\MT, = ,ul I\ M; with
=
d=1[l,:T,NM7IT,M]. There is the decomposition
d
Mp= 0 (M0 M™ITAM)P;, M; = MP;.
=

The Hecke algebra in the symplectic Siegel modular case

For a prime q, g N, let A = Aj(N) =

{7 = (i Z) € G@fﬁGbn(Z[q*l]) v(y)* € Z[g7!],c =0, mod N}

is a subgroup in Géﬁ containing [ = I'§(N). The local Hecke algebra
L= Lg(N) =Dg(l,A) over Q

is defined as a QQ-linear space generated by the double cosets
(g) = (T'gl), g € A of the group A, with respect to the subgroup
I" for which multiplication is defined by the standard rule (see
[An87], [Shi71]). The operators of diagonal matrices T(q), T:(g?)
T(q)=T(1,---,1,q9,---,q) generate it (see p.149 of [An87]),

n n

Ti(qz):T(lv'”717q7'”7q7q27'”7q27q7”' 7q)7i:17"'7n'

n—i i n—i i



The structure of the local Hecke algebras via Satake

isomorphism
For £ = L3(N), (g1 N) for each j, 1 <j < n us above let us

denote by w; an automorphism of the algebra (@[xgtl,xlil, o xiE
defined on its generators by the rule:

X0 — XX}, xj»—>xjfl, xi+— x; (where 1 <i<n, i#j).

Then the automorphisms w; and the permutation group S, of the
variables x; (1 </ < n) generate together the Weyl group
W = W, and there is the Satake isomorphism :

Sat: L =5 QL o x| (6)

where W, indicates the subalgebra of elements fixed by W,. For
any commutative QQ-algebra A the group W, acts on the set
(A*¥)"*+1, therefore any homomorphism of Q-algebras A : £ — A
can be identified with some element

(ag,ah'-' 7an) € [(AX)nJrl]W”’ (7)

Explicit action of the Hecke operators
Any double coset (g) = (Fgl) (g € A = Aj(N)) can be

t(g)
represented as a disjoint union of left cosets: (g) = U g,

i=1
therefore any element X € £ of the Hecke algebra £ takes the form
t(X)

of a finite linear combination X = Z wi(Tgi), i € Q, gi € A.
i=1
In order to define explicit action of the Hecke operators on the

complex vector space MK(N, 1)) (g1 N) for any g = (z Z) €A
(lkv8)(2) = det(g)* "¢ (det(a)) det(cz + d)~“F(g(2)) (the
convenient notation by Petersson and Andrianov) With this
notation the automorphy condition can be rewritten as follows

(flewy)(2) = f for all v € T =Tg(N).

t(X)
In this case for any X = Z 1;(Cg;) € L this explicit expression
i=1
t(X) I

FIX = piflkpgi is well defined



Hecke polynomials in the Siegel modular case
Consider the polynomials Q(z) € Q[xo, - - - , Xn][2] and

R(z) € Qb xil2] -
CN)(Z) = (1 — XOZ)H H (1 — X0Xi; ...x,-rZ),

. r= 11<11< -<ir<n

R(z) =171 (1 = X' 2)(1 - xi2).

The coefficients of the powers of the variable z all belong to the

subring Q[xi', - -+ , x;71]"Wr. Therefore under the Satake

isomorphism (6) there exist polynomials over £ = £g(N)

Q(2) =32, (-1)Tiz', R(z) = 2" (~1)'Riz' € L[z], such that
2n 2n

Q(2) = Z(fl) Tiz', R(z) = Z(fl 'Riz', and X = SatX € L.
i=0 =0

Moreover, the polynomlals AYY il R (1 <i<n—1)and Ty with

A' = x2x -
B, o1 -1
Ri—S,'(Xl,"',Xn,Xl st s Xp )!

Ti = xo Z Si(x1,+ ,%n) = X0 H 1+ x;), generate of the Hecke
=1
algebra , where S; denotes the elementary symmetric polynomial of

degree i of the corresponding set of variables.

The spinor zeta function and the standard zeta function
Let f € MX(N, 1) be an eigenfunction of all Hecke operators
f— fIX, X € L(N) with g being prime numbers, g { N, so that
fIX = Ap(X)f. Then the numbers \¢(X) € C define a
homomorphism A\¢ : L — C, determined by a (n + 1)-tuple of

numbers (g, a1, -, ap) [(C* )”“} (the Satake parameters).
Now let the variables xp, x1, -+, x, be Satake g-parameters
a0,£(q), @1,¢(q), -+, anr(q), then

Qrq(2) = (1 - a2) [T]-, H1§i1<---<i,§n(1 — Qo - @ z),
Rrq(2) = [I11(1 — 0} '2)(1 — ;2) € Qlag, - , a2][z].

It follows then that the coefficients of (49) can be expressed in
terms of the eigenvalues \¢(X) of the Hecke operators X = T;, R;.
Next let us put Z(9)(s, f) = Qrqlqg )t =

-1
{(1 —ao(@)a ) [ II @ —ao(@)aila)-- -af,(q)qs}

r=11<i<-<i<n
The spinor zeta function Z(s, f) of f € MX(N, 1) is the following
product Z(s, f) = [ [ Z\9(s, ).

afN
The standard zeta function D(s, f, x) of f € MX(N, ) is the
product D(s, f,x) = [ DI(s, £, x) with D)(s, f, x) =
d N

(1 = x(9)¥(a)q*) " Rr.q(x()¥(q)q *)"" For a Dirichlet
character y modulo M, D(s,f,x) =

1;[ [(1 - %&‘”) ,ljl <1 B Xw(q;:l/(q)> <1 - w(q);ls/(q),lﬂ -




Examples of subgroup families {I'y}, in p-adic constructions
Let us fix [ and for A = (v),v > 1 put

F)\ = F(V) =IrNnMYrm".

For example if [ = SLy(Z), M = (0 1) the congruence subgroups

Fo(N) = {(ch> € SLy(Z) N (gg) SL2(Z)(’OV‘1’)} produce
the family {I(,)}(,) attached to M and a fixed I'q) = Io(C) C T:

F(v) = F(O) NMYTMY = ro(pv).

Notice the acion of the lowering operator (generalized Atkin's
operator): for v/ > v,

U,\v/, = (I’(V/)/\/I"(F(V/_V)) : Mk(l‘(\,,)) — Mkl’(\,,_v)),

compare with §4 of [Hi85]. Indeed,
Vy € F(V/), h”y =h=Vye€ F(V/_V)f\U,‘(/,h = f’UX/,

Examples of Hermitian cusp forms
The Hermitian Ikeda lift, [Ike08]. Assume n = 2n" even.

Let f(7) = Z a(N)g" € 82x+1(To(Dk), x) be a primitive form,
N=1
whose L-function is given by

L(f,s):H(l_a()p + 9(p)p?<2) 1H1_a =)
p/fDK |DK
For each prime p ) Dk, define the Satake parameter
{apaﬁp} = {O‘pa O(P)O‘EI} by
(1 a(p)X + 0(p)P™X?) = (1 — papX)(L — pB,X)
For p| Dk, we put a, = p~*a(p). Put

A(H) = (H)F T Fo(Hiap), H € A(0)*
plv(H)

F(H = > AH)q", Z € 3o
HE/\n )



The first Hermitian lift (even case)

Theorem 5.1 (Case E) of [Ike08] Assume that n = 2n' is
even. Let f(7), A(H) and F(Z) be as above. Then we have
F € Sopsam (T, det <),

In the case when n is odd, consider a similar lifting for a normalized
oo

Hecke eigenform n=2n"+ 1 is odd. Let f(1) = Z a(N)gV

N=1
€ 82k(SL2(Z)) be a primitive form, whose L-function is given by

L(f,s) = [J(1 — a(p)p™* + p?<1-2%) L.
p

For each prime p, define the Satake parameter {ap,alj]} by
(1= a(p)X + p** 1 X%) = (1 — P (PapX)(1 — p* (2071 X).
Put

A(H) = y(H)[< W2 T Fo(Hiap), H € Ay(0)*
plv(H)
F(Hy= Y AM)q", ZecH,
HeN,(O)*

The second Hermitian lift (odd case)

Theorem 5.2 (Case O) of [Ike08]. Assume that n=2n' +1
is odd. Let f(7), A(H) and F(Z) be as above. Then we have

F e 52k+2n/(|—5€1), detikin,).

The lift Lift(")(f) of f is a common Hecke eigenform of all Hecke

operators of the unitary group, if it is not identically zero (Theorem
13.6).

Theorem 18.1 of [”(608]. Let n, n’, and f be as in Theorem
5.1 or as in Theorem 5.2. Assume that Lift(")(f) # 0. Let

L(s, Lift(")(f), st) be the L-function of Lift(")(f) associated to
st:lg GL4,(C). Then up to bad Euler factors,

L(s, Lift("(f), st) is equal to

‘ 1 1
HL(S+k+n’—/'-I—E,f)L(s-l-k—i—n'—i-&-E,f,e).
i=1

Moreover, the 4n charcteristic roots of L(s, Lift(")(f), st) given as
follows: for i =1,---,n

—k—n'4i=Y 1 _—k—n'4i-1 —k—n'4i-1 —1 _—k—n'+i-2
app 2,a, p 2,0(p)app 2,0(p)a, p 2

p



Functional equation of the lift (Sho Takemori)
There are two cases [Ike08]: the even case (E) and the odd case (O):

f € Su1(Fo(D),0), F = Lift("(f) (E)
(the lift is of even degree n = 2n’ and of weight 2k 4 2n’)
f € Sak(SL(Z)), F = Lift("(f) (0)

(the lift is of odd degree n = 2n’ 4+ 1 and of weight 2k + 2n’).
Then, up to bad Euler factors, the standard L-function of

F = Lift("(f) is given by

[ L(s+k+n—i+5 l(s+k+n —i+3f0)

" L(s+k+n—i+ L Als+k+n—i+1F0) (E)
17, L(t(s, i), F)L(t(s, 20" + 1 — i), f)

L(t(s, i), f,0)L(t(s, 20" +1 — i), f,0)

[ s+ k+n —i+1,)

xL(s+k+n —i+31,f0) (0)
=L(s+k—L1AL(s+k—1r0)

1™, L(t(s, i), F)L(t(s,2n +2 — i), )

L(t(s, i), f,0)L(t(s, 20" +2 — i), F,0)

where t(s,i) =s+k+n —i+3.

The Gamma factor I'z(s) of lkeda's lift
In the even case since (2k + 1) — t(s,i) = t(1 —s,2n" +1—1),
using the Hecke functional equation in the symmetric terms of the
product, gives the functional equation of the standard L function of
the form s — 1 — s, and the gamma factor is given by

n

1
[[re(s+k+n—i+1/2?= Fo(s+n'+3)-
i=1

In the odd case when f € Sy (SL2(Z)), the lift is of degree
n=2n"+1 and of weight 2k + 2n’. By 2k — t(s,i) =

t(1 —s,2n+ 2 — i), the standard L functions has functional
equation of the form s — 1 — s and the gamma factor is the same.
Hence the Gamma factor of lkeda's lifting, denoted by f, of an
elliptic modular form f and used as a pattern, extends to a general
(not necessarily lifted) Hermitian modular form f of even weight ¢,
which equals in the lifted case to ¢ = 2k + 2n’, where

k= (¢—2n")/2=1¢/2—n'=(/2 — 1, when the Gamma factor of
the standard zeta function with the symmetry s — 1 — s becomes
(see p.55) [[7_; Te(s+£/2—n' +n" —i+(1/2))? =

[, Te(s+6/2 —i+(1/2)2 =TI/ Te(s + /2 — i — (1/2))2.



Eisenstein series and the Rankin-Selberg method
The (Siegel-Hermite) Eisenstein series EQ(Z)(Z) of weight 2¢,
character detfl, is defined by
E2(£)(Z) = Z (detg)’j(g, Z)~% . The series converges
serf iy
absolutely for £ > n. Define the normalized Eisenstein series
£5(2) by £5(2) = 27 [T7Ly L — 26,07 - E)(2) I
H € Np(O)*, then the H-th Fourier coefficient of Sg'g)(Z) is
polynomial over Z in {p*~("/?)1, and equals

W(H)2 T Fo(H, p~ 7)), 4(H) = (= Dk)!"/? det H.
plv(H)

Here, I:'p(H,X) is a certain Laurent polynomial in the variables
{X, = p’s,XIjl}p over Z. This polynomial is a key point in
proving congruences for the modular forms in a Rankin-Selberg
integral.

Also, we set , for s € C and a Hecke ideal character ¢) mod ¢,

E(Z,s,6,0)= Y v(g)(detg)’i(g, 2) " |(detg)j(g, 2)*.
geCx\C

A Rankin-Selberg method: the simplest case
Let us recall a Rankin-Selberg integral representation in the
simplest elliptic modular case of GLo.
Let H={a=x+1iy |y > 0} be complex upper half plane on which

the group GLJ (R) acts (of real 2 x 2 matrices v = (2 2”) of
N

positive determinant). For a natural k the action of GLJ (R) on a
function f : H — C is defined by (f|«7v)(z)=
det7*/2f(y(2))(cyz + dy) 7

For a primitive cusp form f = Z a(n)e(nz) of conductor C¢|N,

n=1
weight k and Dirichlet character 1) mod N (that is, a normalized
new cusp Hecke eigenform f € 87" (N, ) C 8x(I'1(N))), a(1) =1,

and another modular form g = Z b(n)e(nz) € My(N,w) of level
n=1

N, weight ¢ and Dirichlet character w mod N.



Classical convolution of Rankin-Selberg
For two Hecke eigenforms

F= 3 a(n)e(nz) € S4(N,v) g Zb e(nz) € My(N,w)

n=1
their convolution is defined by L(s, f,g) Yoo a(n)b(n)n—s.
Moreover, one obtains an Euler product of degree 4 if

L(s,f):Zan)ns H (1—aqq° (1—04q5)]_1
n=1 primes q
=> b(mn~* =[] (@ -Bea )1 - Bea N,
n=1 primes q
one has D(s,f,g) = Ly(2s +2 — k — L,wi)L(s, f, g), where
D(s,f,g)=
[T [(1—agBea*)(1—ayBeq*)(1—agBha )1 —alB5q ") !
primes q

(Rankin's lemma).

Classical Rankin-Selberg integral representation
uses the Petersson product (f, h)y on Io(N) = {</\7c3> € SLy(Z)}

2(47)°I(s)D(s,f,g) = (", gE(z,s — k + 1))y, where
2.9) = * 3 () (o) (Nez + d) <O Nez + o] 2.

This integral produces C-analytic continuation from the right half
plane {s € C|Re(2s — k — ¢) > 2} where both the Eisestein series
and D(s, f, g) converge, to the whole C.

Also, it produces a Cp-analytic continuation (or p-adic

D(¢+r.f,8(x))
7Tl—i—é—i—2r<f7 f>N

Dirichlet’s characters x mod p¥) which are algebraic numbers for all
integers r = 0,--- ,k — ¢ — 1 assuming k > { + 2, see [Hi85],

interpolatoon) of the critical values

(twisted by



A Hermitian integral of Rankin-Selberg type

Euler factors of the standard zeta function, [Shi00], p. 171

Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13.
Let 0 # f € My(C,v)) of scalar weight ¢, ) mod ¢, such that
Va,f| T(a) = A(a)f, and assume that 2¢ > n, then there exists
T €S, NGLy(K) and R € GL,(K) such that

M((s))y(det(T))Z(s +3n/2,f, x) =
Ac(s + 3”/27 ewX) : CO <f7 QT(X)E(S_ + n7£ - 697 Xpw»o',

where E(Z,s,0 — Uy, )¢ is a normalized group theoretic
Eisenstein series with components as above of level ¢’ divisible by «,
and weight ¢ — {g. Here (-,-)cr is the normalized Petersson inner

product associated to the congruence subgroup C” of level ¢.
n—1

[() = (4m) "N (s + ), Th(s) = 75 H r(s —j),

where h=0o0r 1, Cy a subgroup index.

The Euler factors Z4(X) in the Hermitian modular case at the
prime ideal g of Ok are

n 1
() 2(X) = [T (0~ M) 1)1 = M)t 1X))
i=1
if ¢ = q and q fc,(the inert case outside level c),
2n 1
(i) Zqs (%)Z4s(2) = [T (2 = M(@)?" 652, X0 = N(82) e X2))
i=1
if g1 # 2,97 = g2 and q; [ ¢ for i = 1,2 (the split case outside level) ,

n

(i) Zq(X) = H (1- N(q)"_lt%,-X)_l, if ¢” = q and qlc (inert level divisors ),

i=1
n

(V) 202 (X0)202 (%) = T ((1 = Man)" 62, X0 = N(02)" by, X2))

i=1

-1

if g1 # q2,q;|c for i = 1,2 (split level divisors).

where the t; ; above for ? = q, q1q2, are the Satake parameters of
the eigenform f.

)



The standard motivic-normalized zeta D(s, f, x)

The standard zeta function of f is defined by means of the
p-parameters as the following Euler product:

D(s,f,x) = HH{( X(P)a,(p)> < x(p)a4nf(p))}17

s
p i=1 P

where  is an arbitrary Dirichlet character. The p—parameters
a1(p), - .., aan(p) of D(s,f,x) for p not dividing the level C of the
form f are related to the the 4n characteristic numbers

al(p)v Tty a2n(p)7 042n+1(P), ey a4,,(p)

of the product of all g-factors Z.q(Nq(”/+%)X)*1 for all q|p, which
is a polynomial of degree 4n of the variable X = p~* (for almost all
p) with coefficients in a number field T = T(f) .

There is a relation between the two normalizations

Z(s — 5+ 5.f) = D(s.f) explained below, see [Ha97] for general
zeta functions Z(s, f) of type introduced in [Shi00], using
reprsentation theory of unitary groups and Deligne's motivic
L-functions.






Lecture N°3. Distributions, measures, Kummer congruences.

Kubota-Leopoldt p-adic zeta function and Ilwasawa algebra.

Zeta values and Bernoulli Numbers A key result in number

theory is the Euler product expansion of the Riemann zeta ((s) :

) =Jla-p=)t=>n* (defined for Re(s) > 1).

P n=1
The set of arguments s for which ((s) is defined was extended by
Riemann to all s € C, s # 1. The special values ((1 — k) at
negative integers are rational numbers: ((1 — k) = —TkA, satifying

certain Kummer congruences modp™, where By are Bernoulli
numbers, defined by the

oo
Byt" 1 1
3 T B 1 Bi——s By—t By Bs—e—0,B = ——,
n! et 30
n=0
1 1 5 91 7 (27i)% By
Bs=-—, By=——Big= —, By = Bia = —7,((2k) = — ,
5= 420 B = 35 B0 = gg: B = ggpy Bre = —5:4(2K) 2(2k)!

The denominators of By are small (Sylvester-Lipschitz):

B,
Ve € Z = cf(ck — 1)% €7 (seein [Mi-St]), Bernoulli
Kk ‘
polynomials By(x) = Z < ) Bix* 7 =" (x+ B)*"
!
i=0

N-1

1

Sk(N) =" nF = P [Bi+1(N) — Bkl
n=1

Bi(x) =x— 1, By(x) = x* - x + L,

Bernoulli numbers and Kummer congruences

Kubota and Leopoldt constructed [KuLe64] a p-adic interpolation
of these special values, explained by Mazur via a p-adic measure jic
on Z, and Kummer congruences for the Bernoulli numbers, see
[Ka78] (p is a prime number, ¢ > 1 an integer prime to p). Writing
the normalized values

Col(—k) = (1= p)(a = *)o(—k) = / xKdpe(x)

Zp

produces the Kummer congruences in the form: for any polynomial
h(x) = 37 aix’ over Z,

n n
Vx € ZP,Za;xi € p"ly = Za,-(((;))(fi) € p"Lp,
i=0 i=0

Indeed, integrating the above polynomial h(x) over . produces the
congruences. The existence of i is deduced from the above
formula for the sum of k-th powers Si(p”) for r — oo, restricted to
numbers n, prime to p.

In order to define such a measure pi. it suffices for any continuous
function ¢ : Z, — Z,, to define its integral fzp d(x)dpic.
Approximating ¢(x) by a polynomial (when the integral is already
defined), pass to the limit (which is well defined due to Kummer
congruences).



Kubota-Leopoldt p-adic zeta-function
The domain of definition of p-adic zeta functions is the p-adic
analytic group Y, = Homeont(Zy,, Cy,) of all continuous p-adic
characters of the profinite group Z, where C, = Q, denotes the
Tate field (completion of an algebraic closure of the p-adic field
Qp) (over complex numbers C = Homcont(R*, C*), y run the
characters t +— t° .
Define ¢, : Y, — C, on the space as the p-adic Mellin transform

Joy yXdpe(x) g, ()
p(y) = 1—cy(c) - 1:cy(c)’

with a single simple pole at y = yp_1 € Yp, where yp(x) = x the
inclusion character Zj, < C}, and y(x) = x(x)x¥1 is a typical
arithmetical character (y = yp_1 becomes k=0,s=1—k=1).
Explicitly: Mazur's measure is given by pc(a+ p¥Zy) =

L2] + 52 = 1B 2N - Bu(R). Bilx) = x - 3, ([LangMF],

c

Ch.XIIl), we see the zeta distribution jis|s—o(a + (N)) = —Bi(4)
Then the binomial formula

L1+ t)2dpc = > 020 t" [, () dpuc, gives the analyticity of
Cp(y) on t = y(14 p) — 1 in the unit disc {t € C,|| |t], < 1}.

The abstract Kummer congruences,
p-adic Mellin transform and the Iwasawa algebra

A useful criterion for the existence of a measure with given
properties is:

Proposition (The abstract Kummer congruences, see [Ka78])
Let {f;} be a system of continuous functions f; € €(Xp, Op) in the
ring C(Xp, Op) of all continuous functions on the compact totally
disconnected group X, with values in the ring of integers O, of C
such that Cp-linear span of {f;} is dense in €(Xp,C,). Let also
{ai} be any system of elements a; € O,. Then the existence of an
Op-valued measure 1 on X, with the property

fidp = aj
Xp
is equivalent to the following congruences, for an arbitrary choice of

elements b; € C,, almost all of which vanish

Z bifi(x) € p"O, for all x € X, implies Z biaj € p"0p. (8)

Remark. Since C,-measures are characterised as bounded Cp-valued
distributions, every C,-measures on Y becomes a Op-valued
measure after multiplication by some non-zero constant.



Proof of proposition 8.

The necessity is obvious since

Z b;a;
i

/(p”Opfvalued function)dp =
Xp

p"/x((‘)pfvalued function)dp € p"Op.
»

In order to prove the sufficiency we need to construct a measure p
from the numbers a;. For a function f € €(Xp, 9,) and a positive
integer n there exist elements b; € C such that only a finite number
of b; does not vanish, and

f = bifi € p"C(Xp, 0p),

according to the density of the C-span of {f;} in €(X,, C). By the
assumption (8) the value )~ a;jb; belongs to O, and is well defined
modulo p” (i.e. does not depend on the choice of b;). Following
N.M. Katz ([Ka78]), we denote this value by “fxp fdp mod p” "

Then we have that the limit procedure
fdp = lim / fdp mod p” " €1lim0,/p"0p = Op,
/DC,, n=o0 [y, - P P P

gives the measure /.

Mazur's measure over Xs = Zg

Let ¢ > 1 be a positive integer coprime to My = H g with S

qeSs
being a fixed set of primes containing p. Using the criterion of the

proposition 8 we show that the Q -valued distribution defined by
the formula

ES(f) = Eu(f) = cMEi(fe).  fe(x) = f(ex), (9)

turns out to be a measure where Ei(f) are defined in [LangMF],
f € Step(X,Qp) and the field Q is viewed as a subfield of C,.

Define the generalized Bernoulli polynomials B( )( X) as

00 te(aJrX)t

> B0 - Zf(a) T (10)

k=0
and the generalized sums of powers

M-1

Skr(M) =Y f(a)a*.

a=0



Then the definition (10) formally implies that
1
LB (M) — BID(0)] = Sica (M), (1)

and also we see that

k
k )
BM(x)=%" (I,)B,-,ka*' = B+ kBi 16X+ -+ By sXK. (12)

i=0
The last identity can be rewritten symbolically as
Brs(X) = (Br + X)~.

The equality (11) enables us to calculate the (generalized) sums of
powers in terms of the (generalized) Bernoulli numbers. In particular
this equality implies that the Bernoulli numbers By ¢ can be obtained
by the following p-adic limit procedure (see [LangMF]):

. 1 .
By = nIergo M—pnsk_,r(Mp”) (a p-adic limit), (13)

where f is a Cp-valued function on X, = Zs. Indeed, if we replace M
in (11) by Mp" with growing n and let D be the common denominator

of all coefficients of the polynomial B‘(({\;’)(X). Then we have from (12)
that

L (B~ B(0)] = Br s (Mp7) (mod 7). (19)

The proof of (13) is accomplished by division of (14) by Mp" and by
application of the formula (11).

Now we can directly show that the distribution E defined by (9) are
in fact bounded measures. If we use (8) and take the functions {f;}
to be all of the functions in Step(X,, Op). Let {b;} be a system of
elements b; € C, such that for all x € X, the congruence

S bifi(x) =0 (mod p") (15)

holds. Set f =", b;f; and assume (without loss of generality) that
the number n is large enough so that for all i with b; # 0 the
congruence

Bif; = 77— Sk.£(Mp") (mod p") (16)

M n
is valid in accordance with (13). Then we see that

Mp"—1

Bi.r = (Mp") Z Z bifi(a (mod p"), (17)

hence we get by definition (9):

E,f(f) = Bkyf—CkBk’fc (18)
Mp"—1

! Z Zo b; [f,(a)ak — fi(ac)(ac)¥|  (mod p").



Let ac € {0,1,---, Mp" — 1}, such that a. = ac (mod Mp"), then the
map a+— ac is well defined and acts as a permutation of the set

{0,1,---, Mp" — 1}, hence (18) is equivalent to the congruence
ak — (ac )k Vet
ES(f) = Bir — c*Bip = Z Z bifi(a)a*  (mod p").

(19)
Now the assumption (14) formally inplies that ES(f) = 0 (mod p"),
completing the proof of the abstact congruences and the construction
of measures Ef.

Remark
The formula (18) also implies that for all f € €(X,,Cp) the following
holds

E{ () = KEf (x,~'f) (20)

where x, : Xp — Cp € €(X,, Cp) is the composition of the projection
Xp — Zp and the embedding 7, — C,.

Indeed if we put a. = ac + Mp"t for some t € Z then we see that
ak — (ac)¥ = (ac + Mp"t)* — (ac)k = kMp"t(ac)*~!  (mod (Mp")?),
and we get that in (19):

ak — (ac)k
Mpn

_1ac —ac
= k(ac)* lcj (mod Mp™).
The last congruence is equivalent to saying that the abstract Kummer
congruences (8) are satisfied by all functions of the type x,‘;’lf,- for the
measure Ef with f; € Step(X,, Cp) establishing the identity (20).

The domain of definition of the non-Archimedean zeta

functions
In the classical case the set on which zeta functions are defined is the
set of complex numbers C which may be viewed equally as the set of

all continuous characters (more precisely, quasicharacters) via the

following isomorphism:

C — Homeon(RY,C*)
s — (x—x°)

The construction which associates to a function h(x) on R (with

(21)

certain growth conditions as x — oo and x — 0) the following integral

Ly(s) = /R X h(X)XS%

(which converges probably not for all values of s) is called the Mellin

transform.



The case of the Riemann zeta function

For example, if ((s) = >_,~; n~° then the function ((s)I(s) is the
Mellin transform of the function h(x) = 1/(1 — e™):

C(s)F(s) = /0001 L. (22)

—e X X

so that the integral and the series are absolutely convergent for
o0

Re(s) > 1. For an arbitrary function of type f(z) = Za(n)emmz

n=1
with z = x + iy € H in the upper half plane H and with the growth
condition a(n) = O(n€) (c > 0) on its Fourier coefficients, we see that
oo

the zeta function L(s, f) = Z a(n)n—*, essentially coincides with the

n=1
Mellin transform of f(z), that is, for Re(s) > 1+ ¢

(s) _ [ i SQusin s) = Ooe_y s
Goplls.n) = [ iy Y wsing () = [T ey Y (23)

p-adic Mellin transform
In the theory of the non-Archimedean integration one considers the
group Z¢ (the group of units of the S-adic completion of the ring

of integers Z) instead of the group R, and the Tate field C, = @p
(the completion of an algebraic closure of Q) instead of the
complex field C. The domain of definition of the p-adic zeta
functions is the p-adic analytic group

Ys = Horncont(Z;< ) (C:) = 9(Z§)7 (24)

where:
X ~v

and the symbol
Y(G) = Homeont (G, C,) (25)

denotes the functor of all p-adic characters of a topological group

G.



The analytic structure of Ys

Let us consider in detail the structure of the topological group Ys. Define
Up={xeZ; | x=1 (modp")},

where v = 1 or v = 2 according as p > 2 or p = 2. Then we have the
natural decomposition

Ys=1Y (Z/p"Z XHZX) (26)

q#p

The analytic structure on Y(U,) is defined by the following isomorphism
(which is equivalent to a special choice of a local parameter):

e:Y(Up) = T={zeC) | |z—1[, <1},

where ¢(x) = x(1 4+ p”), 1 4+ p” being a topoplogical generator of the
multiplicative group U, = Zp. An arbitrary character x € Ys can be
uniquely represented in the form y = xox1 where xq is trivial on the
component U, and x; is trivial on the other component

(z/p'z)* x [ 25
q#p

The character xq is called the tame component, and x1 the wild
component of the character x. We denote by the symbol x(; the
(wild) character which is uniquely determined by the condition

X(t)(l +p7) =t

with t € Cp, [t], < 1.
In some cases it is convenient to use another local coordinate s which
is analogous to the classical argument s of the Dirichlet series:

Op — 135
s — x),

where () is given by

X (1 + p)*) = (1 + p¥)* = exp(aslog(1l + p¥)). The character
x®) is defined only for such s for which the series exp is p-adically
convergent (i.e. for |s|, < p*~1/(P=1). In this domain of values of the
argument we have that t = (1 + p”)® — 1. But, for example, for

(1 + t)P" = 1 there is certainly no such value of s (because t # 1), so
that the s-coordonate parametrizes a smaller neighborhood of the
trivial character than the t-coordinate (which parametrizes all wild
characters) (see [Ma73], [Ma76]).



Recall that an analytic function F: T — C,

(T={z€C; | [z—1|p<1}), is defined as the sum of a series of
the type > ;0 ai(t —1)" (a; € _Cp), which is assumed to be absolutely
convergent for all t € T. The notion of an analytic function is then
obviously extended to the whole group Ys by shifts. The function

o0

F(t) =) ai(t—1)

i=0

is bounded on T iff all its coefficients a; are universally bounded. This
last fact can be easily deduced for example from the basic properties of
the Newton polygon of the series F(t) (see [Ko80], [Am-V]). If we
apply to these series the Weierstrass preparation theorem (see [Ko80],
[Ma73]), we see that in this case the function F has only a finite
number of zeroes on T (if it is not identically zero).

p-adic analytic functions on Ys

Consider the torsion subgroup Y™ C Ys. This subgroup is discrete
in Ys and its elements y € Hgors can be obviously identified with
primitive Dirichlet characters yY mod M such that the support
S(x) = S(M) of the conductor of y is containded in S. This
identification is provided by a fixed embedding denoted

. —X
ip:Q —=C,

if we note that each character y € Y™ can be factored through
some finite factor group (Z/MZ)*:

X:ZE = (Z/MZ)* - Q" &,

and the smallest number M with the above condition is the
conductor of x € Y=,

The symbol x, will denote the composition of the natural
projection Zg — Z, and of the natural embedding Z; — C;, so
that x, € Ys and all integers k can be considered as the characters
x,’; Ly — vk



Let us consider a bounded Cp-analytic function F on Ys. The above
statement about zeroes of bounded Cp-analytic functions implies now
that the function F is uniquely determined by its values F(xox). where
Xo is a fixed character and x runs through all elements y € Y™ with
possible exclusion of a finite number of characters in each analyticity
component of the decomposition (26). This condition is satisfied, for
example, by the set of characters x € Y™ with the S-complete
conductor (i.e. such that S(x) = S), and even for a smaller set of
characters, for example for the set obtained by imposing the additional
assumption that the character 2 is not trivial (see [Ma73] ). Let u be
a (bounded) Cp-valued measure on Zg. Then the non-Archimedean
Mellin transform of the measure 1 is defined by

L) =) = [

xdp, (x €Ys), (27)
%

S

which represents a bounded Cp-analytic function
L, :Ys — Cp. (28)

Indeed, the boundedness of the function L, is obvious since all
characters x € Ys take values in O, and p also is bounded. The
analyticity of this function expresses a general property of the integral
(27), namely that it depends analytically on the parameter x € Ys.
However, we give below a pure algebraic proof of this fact which is
based on a description of the lwasawa algebra. This description will
also imply that every bounded Cp-analytic function on Ys is the Mellin
transform of a certain measure .

The Iwasawa algebra

Let O be a closed subring in O, = {z€ C, | |z|, <1},
G= |Lﬂ Gj, (I' S /)7

a profinite group. Then the canonical homomorphism G; & Gj
induces a homomorphism of the corresponding group rings

Then the completed group ring O[[G]] is defined as the projective
limit

Ol[G]) = imO[lG]], (i)
Let us consider also the set Dist(G, O) of all O-valued distributions
on G which itself is an O-module and a ring with respect to
multiplication given by the convolution of distributions, which is
defined in terms of families of functions

i) 6 — o,

(see the previous section) as follows:



We noticed above that the theorem 9 would imply a description of
Cp-analytic bounded functions on Ys in terms of measures. Indeed,
these functions are defined on analyticity components of the
decomposition (26) as certain power series with p-adically bounded
coefficients, that is, power series, whose coefficients belong to O, after
multiplication by some constant from C,*. Formulas for coefficients of
these series can be also deduced from the proof of the theorem.
However, we give a more direct computation of these coefficients in
terms of the corresponding measures. Let us consider the component
aU, of the set Zg where

ac(z/p'z)* x [] 25,
q7

and let pa(x) = p(ax) be the corresponding measure on U, defined by
restriction of 4 to the subset al, C Z;.

Consider the isomorphism U, = Z, given by:

y:,yx (XGZP,_)/G Up)a

with some choice of the generator v of U, (for example, we can take
v =1+ p”). Let 1}, be the corresponding measure on Zp. Then this
measure is uniquely determined by values of the integrals

/ p (X) dity(x) = 3, (32)

with the interpolation polynomials (f) since the Cp-span of the family

() wemeeo

is dense in €(Zp, 0p) according to Mahler’s interpolation theorem for
continuous functions on Z,). Indeed, from the basic properties of the
interpolation polynomials it follows that

Z b; (T) =0 (modp") (forallxe€Zy) = b;=0 (mod p").

We can now apply the abstract Kummer congruences (see proposition
8), which imply that for arbitrary choice of numbers a; € O, there
exists a measure with the property (32).



Coefficients of power series and the Iwasawa isomorphism

We state that the Mellin transform L, of the measure 1, is given
by the power series F,(t) with coefficients as in (32), that is

/u,, X(o(y)du(ay) = 2 (/ZP ()/() d;/a(x)) (t—1)  (33)

for all wild characters of the form x(y), x(¢)(7) = t. [t — 1|, < 1. It
suffices to show that (33) is valid for all characters of the type

y — y™, where m is a positive integer. In order to do this we use
the binomial expansion

ey =3 (5 an -,

1

which implies that
[ ymauten) = [ amanii = fj ( [ () dué(><)> (1)’

establishing (33).






APPENDIX . Zeta Functions, L-Functions and Motives

6.2.7 Zeta Functions, L-Functions and Motives

(cf. [Man68|, [Del79]). As we have seen with the example of the Dedekind zeta
function (x (), the zeta function ((X, s) of an arithmetic scheme X can often
be expressed in terms of L—functions of certain Galois representations. This
link seems to be universal in the following sense.

Let X — Spec Ok be an arithmetic scheme over the maximal order Ok
of a number field K such that the generic fiber Xx = X ®0,. K is a smooth
projective variety of dimension d, and let

¢(X.5) = [T (X (p).s)
p

be its zeta function, where X(p) = X ®o, (Ok/p) is the reduction of X
modulo a maximal ideal p C Og. The shape of the function ((X(p),s) is
described by the Weil conjecture (W4). If we assume that all X (p) are smooth
projective varieties over Ok /p = F, then we obtain the following expressions
for ((X,s):
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2d
(X, s) = [ La(x, )0, (6.2.56)
=0

where
Li(X,s) = [[ Pip(X,Np=*)71,
p

and P; ,(X,t) € Q[t] denote polynomials from the decomposition of the zeta

function
2d

Cen(—1)it!
C(X(p),s) = [ Prp (X, Np=)=D7
i=0
In order to prove the conjecture (W4) (“the Riemann Hypothesis over a finite

field”), Deligne identified the functions L;(X, s) with the L—functions of certain
rational [-adic Galois representations

px,i Gk — Aut Hét(X?, Q); Li(X,s)=L(px,9)

defined by a natural action of the Galois group G i on the [-adic cohomology
groups HJ, (X%, Q) using the transfer of structure

Xg =Xk®K
l

Spec K % Spec K (0 € Aut K).
If Xk is an algebraic curve then there are Gx—module isomorphisms
He (X, Qi) = Vi(J) = Ti(X) @2, Q
(the Tate module of the Jacobian of X),
H (X, Qu) = Qu, HE (X7, Qi) = Vilp)

(Vi(p) = T1(p) ®z, Q; the Tate module of I-power roots of unity). This implies
the following explicit expressions for the L—functions

LO(XuS):CK(S)a LQ(X,S):CK(S_l),
and the zeta function

Li(X,5) = L(X,s) = [[ PLp(X,Np~*) 71,
p

(where deg Py , (X, t) = 2g, g is the genus of the curve X) is often called the
L—function of the curve X.

For topological varieties cohomology classes can be represented using cy-
cles (by Poincaré duality), or using cells if the variety is a CW-complex.
Grothendieck has conjectured that an analogue of CW-decomposition must
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exist for algebraic varieties over K. In view of this decomposition the factor-
ization of the zeta function (6.2.56) should correspond to the decomposition
of the variety into “generalized cells”, which are no longer algebraic varieties
but motives, elements of a certain larger category M. This category is con-
structed in several steps, starting from the category Vi of smooth projective
varieties over K.

Step 1). One constructs first an additive category M in which Hom(M, N)
are Q-linear vector spaces, and one constructs a contravariant functor H*
from Vi to M), which is bijective on objects (i.e. with objects H*(X)
one for each X € Ob(Vk)). This category is endowed with the following
additional structures:

a) a tensor product ® satisfying the standard commutativity, associativ-
ity and distributivity constraints;

b) the functor H* takes disjoint unions of varieties into direct sums and
products into tensor products (by means of a natural transformation
compatible with the commutativity and associativity).

In this definition the group Hom(H*(X), H*(Y)) is defined as a certain
group of classes of correspondences between X and Y. For a smooth pro-
jective variety X over K denote by Z%(X) the vector space over Q whose
basis is the set of all irreducible closed subschemes of codimension ¢, and
denote by Z4(X) its quotient space modulo cohomological equivalence
of cycles. Then in Grothendieck’s definition, for fields K of characteristic
zero one puts

Hom(H*(Y), H*(X)) = Z5™)(X x Y).

Step 2. The category Meg i of false effective motives. This is obtained from
M’ by formally adjoining the images of all projections (i.e. of idempo-
tent morphisms). In this category every projection arises from a direct
sum decomposition. Categories with a tensor product and with the latter
property are called caroubien or pseudo-Abelian categories; Meg i is the
pseudo—Abelian envelope of M/, cf. [Del79].

Step 3. The category Mg of false motives. Next we adjoin to Meg x all
powers of the Tate object Q(1) = Hom(L, Q), where L = Q(—1) = H?(P*')
is the Lefschetz object and Hom denotes the internal Hom in Mcg k. As

a result we get the category MK of “false motives”. The category MK
can be obtained by a universal construction which converts the functor

M — M®Q(—1) = M(—1) into an invertible functor. Each object of Mg
has the form M (n) with some M from Mg f -

Note that for X € Ob(Vk) the objects H'(X) are defined as the images
of appropriate projections and
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2d
H*(X) = P H'(X).
=0

The category M is a Q-linear rigid Abelian category with the commu-
tativity rule

U H'(X)QH(Y) 2 H (YY) H' (X),u®v— (—1)" v ®u,

which implies that the rank rk(H(X)) = > (—1)"dim H"(X) could be
negative (in fact it coincides with the Euler characteristic of X).

[e]

Step 4. The category My of true motives is obtained from Mg by a modi-
fication of the above commutativity constraint, in which the sign (—1)"*
is dropped. This is a Q-linear Tannakian category, formed by direct sums
of factors of the type M C H"(X)(m), see [Del79].

Tannakian categories are characterized by the property that every such
category (endowed with a fiber functor) can be realized as the category
of finite dimensional representations of some (pro-) algebraic group.

In particular, the thus obtained category of motives can be regarded as the
category of finite dimensional representations of a certain (pro—) algebraic
group (the so-called motivic Galois group).

Each standard cohomology theory H on Vi (a functor from Vg to an
Abelian category with the Kiinneth formula and with some standard func-
toriality properties) can be extended to the category Mg . This extension
thus defines the H-realizations of motives.

In order to construct L—functions of motives one uses the following real-
izations:

a) The Betti realization Hpg: for a field K embedded in C and X € Ob(Vk)
the singular cohomology groups (vector spaces over Q) are defined

H:X+— H(X(C),Q) = Hp(X).
One has a Hodge decomposition of the complex vector spaces
Hp(M)® C=@HR! (M) (h"? = dimec HRY(M)),

so that HRY(M) = HEP(M). If K C R then the complex conjugation on
X (C) defines a canonical involution Fu, on Hp(M), which may be viewed
as the Frobenius element at infinity.

b) The l-adic realizations Hj: if Char K # I, X € Ob(Vk) then the [-adic
cohomology groups are defined as certain vector spaces over Q;

H: X — H( Xk, Q) = H(X).
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There is a natural action of the Galois group G on H;(X) by way of
which one assigns an [—adic representation to a motive M € Mg

PM,: G — Aut HZ(M)

A non—trivial fact is that these representations are E-rational for some
E, E C C in the sense of §6.2.1.

Using the general construction of 6.2.1 one defines the L—functions

L(M,s) =[] Lo(M,s) (v finite),

where L,(M,s)™' = L, (M,Np,*)~! are certain polynomials in the variable
t = Np_ ° with coefficients in F.

For Archimedean places v one chooses a complex embedding 7, : K —
C defining v. Then the factors L,(M,s) are constructed using the Hodge
decomposition Hg(M)® C = @HY%?(M) and the action of the involution Fy
(see the table in 5.3. of [Del79]).

According to a general conjecture the product

AM, 5) = [[ Lo(M, ) (ve k).

admits an analytic (meromorphic) continuation to the entire complex plane
and satisfies a certain (conjectural) functional equation of the form

A(M,s) =e(M,s)A(MY,1—s),

where MV is the motive dual to M (its realizations are duals of those of M),
and (M, s) is a certain function of s which is a product of an exponential
function and a constant.

One has the following equation

A(M(n),s) = A(M,s+n).

A motive M is called pure of weight w if h??¢ = 0 for p + ¢ # w. In
this case we put Re(M) = ~ ¥ The Weil conjecture W4) (see section 6.1.3)

implies that for a sufficiently large finite set S of places of K the corresponding
Dirichlet series (and the Euler product)

Ls(M,s) =[] Lo(M, )
vgS

converges absolutely for Re(M) + Re(s) > 1.

For points s on the boundary of absolute convergence (i.e. for Re(M) +
Re(s) = 1 there is the following general conjecture (generalizing the theorem
of Hadamard and de la Vallée-Poussin):
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a) the function Lg(M, s) does not vanish for Re(M) + Re(s) = 1;

b) the function Lg(M,s) is entire apart from the case when M has even
weight —2n and contains as a summand the motive Q(n); in the last case
there is a pole at s =1 — n.

For example, for the motive Q(—1) one has

Hp(Q(-1)) = H*(PY(C),Q), Hi(Q(-1)) = Vi(n) = Ti(n) ®z, Qi,

w =2, n =—1 and the L -function

L(Q(=1),5) = ¢k (s — 1)

has a simple pole at s = 2.

There are some very general conjectures on the existence of a correspon-
dence between motives and compatible systems of [—adic representations.
Nowadays these conjectures essentially determine key directions in arithmeti-
cal research ([CRO1], [Tay02], [BoCa79], [Bor79|, [Ta79]). We mention only a
remarkable fact that in view of the proof of the theorem of G. Faltings (see
§5.5) an Abelian variety is uniquely determined upto isogeny by the corre-
sponding [-adic Galois representation on its Tate module.

This important result is cruicial also in Wiles’ marvelous proof: in or-
der to show that every semistable elliptic curve E over Q admits a modular
parametrisation (see §7.2), it is enough (due to Faltings) to check that for
some prime p the L—function of the Galois representation p, g coinsides with
the Mellin transform of a modular form of weight two (Wiles has used p = 3
and p = 5). In other words, the generating series of such a representation,
defined starting from the traces of Frobenius elements, is a modular form of
weight two which is proved by counting all possible deformations of the Galois
representation in question taken modulo p.



Lecture N°4. p-adic L-functions on classical groups.
Ordinary case. Admissible measures, special values. ("Fonctions L
p-adiques sur les groupes classiques : cas ordinaire, mesures
admissibles, valeurs spéciales").

Admissible measures: Definition. Let M be a O-module of
finite rank where O C C,. For h > 1, consider the following
Cp-vector spaces of functions on Z% : €" C €/e¢=a" C €. Then
- a continuous homomorphism y : € — M is called a (bounded)
measure M-valued measure on Zj,.

- : @M — Mis called an h admissible measure M-valued measure
on Zy measure if the following growth condition is satisfied

/ (x —aYdu
a+(pY)

for j=0,1,--- ,h—1, and et Y, = Homcont(Z}, C},) be the space
of definition of p-adic Mellin transform.

Theorem (J[Am-V], [MTT]) For an h-admissible measure s, the
Mellin transform £, : Y, — C, exists and has growth o(log") (with
infinitely many zeros).

< p*V(h*J)

P

Complex and p-adic L-functions on classical groups.

» Automorphic forms and their weights. Complex analytic
weight space. Motivic weights, introduction [EHLS].

Main result stated with Hodge/Newton polygons of D(s)
Main Theorem in the Hermitian case

Appendix 1. Zeta Functions, L-Functions and Motives. [MaPa]
Appendix 2. Automorphic L-functions (A.Borel, [Bor79])

vVvyYyyewy



Modular forms as a tool in arithmetic

We view modular forms as: where g = exp(27iz),
1) g-power series z € H, and define
i L-function
f= Zanq” € C[[q]] and as o0
n=0 = s
2) holomorphic functions Hf9:x) gx(n)ann
on the upper half plane for a Dirichlet character
H={zeC|Im z> 0} X : (Z/NZ)* — C* (its Mellin transfori

A famous example: the Ramanujan function 7(n)
The function A (of the variable z) - B
is defined by the formal expansion 7(1) =1,7(2) = 24,
A= S0 (g 7(3) = 252, 7(4) = —1472
Rt (m)7(n) = 7(mn)
_ m=ly 3, for (n,m) =1,
is a cusp form of weight k = 12 f p” =P
for the group I' = SL»(Z)). or @l primes p-

Analytic p-adic theory: zeta values vs. coefficients

It was much developed in the 60th in [Iw], [Se73] and [Wa].

Modular methods are applicable to the p-adic analytic continuation
of ((s) itself through the normalized Eisenstein series:

k —1)! C(1—k) & s B dk-1gd
(2(27ri))k JORS 2 )+szk =t T

n=1 d|n d>1 q

modular forms of even weight k > 4 for SLy(Z) as follows:
J.-P.Serre noticed [Se73], p.206, that the constant term

(L= K)
2

(1-p*~") expresses by of_;(n) = > d* "' (p fd,n>1),
d|n

the higher coefficients of the normalized Eisenstein series modp”.
In this way (;(1 — k) can be continually extended to s € Z, with a
single simple pole at s = 1 starting from s =1 — k (see [Se73]).
The Hurwitz numbers naturally appear as the critical values of the
Hecke L-function of ideal character L(s,v) = zw(a)chs,

P((@)) = a™ a=1mod (2 +2i), also definedqfor any imaginary
quadratic field K, and g, = 3", %(a)g"® is a modular form of
weight m + 1. Its p-adic analytic continuation over m and s was
constructed by Yu.l.Manin and M.M.Vishik (1974, [Ma-Vi]).



Recall: Hermitian modular group ', x and the standard zeta
function Z(s; f)

Let @ = 0 be the quadratic character attached to K, n’' = [g

AB . 0, —1I.
rn,K—{/V/—<CD>GGLG(OK)MnnM —nn},nn (, On)

2(s,f) = (HL251+1 0= 1>ZA(a)Na

i=1
(via Hecke's eigenvalues: f|T(a) = A(a)f,a C Ok)

= HZq(N(q)_s)_l(an Euler product over primes q C Ok,

with deg Zq(X) = 2n, the Satake parameters t;q,i =1,---,n),

1
D(s,f) =2(s — g + E’f) (Motivically normalized standard zeta function

with a functional equation s — ¢ — s;rk = 4n)

Main result: p-adic interpolation of all critical values D(s,f, x).
n<s<{¢—n,xmodp"

Automorphic forms, p-adic theory of weights.

p-adic analytic weight space. Motivic and arithmetical weights,
introduction to [EHLS)]

[Lan13], Arithmetic compactifications of PEL-type shimura
varieties, London Mathematical Society Monographs, vol. 36,
Princeton University Press, 2013.

For the purposes of subsequently defining p-adic modular forms for
unitary groups we assume that the PEL data considered also satisfy:
e B has no type D factor;

o () L®Zpx L®Zp — Zp(1) is a perfect pairing;

e p / Disc(Op), where Disc(Og) is the discriminant of (Og) over Z
defined in [Lan13, Def. 1.1.1.6]; this condition implies that

(OB) ® (0g) is a maximal (Og)-order in B and that Og ® Z, is a
product of matrix algebras.

Associate a group scheme G = Gp over Z with such a PEL datum
P: for any Z-algebra R

G(R) = {(g7 V) € GLOB®R(L®R)XRX : <gX,gy> = V<X,y>VX,y € L®R}

Then Gq is a reductive group, and by our hypotheses with respect
to p, Gyg is smooth and G(Z) is a hyperspecial maximal compact
of G(Qp).

Definitions of X, Y, through B, T.



Main result stated with Hodge/Newton polygons of D(s)

The Hodge polygon Py(t) : [0, d] — R of the function D(s) and
the Newton polygon Py p(t) : [0,d] — R at p are piecewise linear:

The Hodge polygon of pure weight w has the slopes j of

length; = W~/ given by Serre’s Gamma factors of the functional
equation of the form s — w + 1 — s, relating

Ap(s,x) =To(s)D(s, x) and App(w + 1 — s, X), where p is the
complex conjugation of a,, and 'p(s) = Mps(s) equals to the
product M'p(s) = []; <u T}, w—j(s), where

( ) r(C(s_./)hj If./ <w,
_i(s
i (s —j)7 rR(s—j+1)f“—’, if 2/ = w, where
_s ) —s
M(s) = 730 () . Te(s) = Mr(s)Mr(s +1) = 2(27) T (s),
WJ =W+ 0, Zh”""” =d.
j
The Newton polygon at p is the convex hull of points
(i,ordp(aj)) (i =0,...,d); its slopes A are the p-adic valuations

ordp(a;) of the inverse roots a; of Dp(X) € Q[X] C Cp[X]:
lengthy = §{i | ordp(ci) = A}.

The Hodge polygon of the Hermitian zeta function

Starting from the Gamma factors of the standard Hermitian
L-function D(s,f, x) let us describe the Hodge polygon for F = Q.
The explicit form of the Gamma factors of the standard Hermitian
L-function Z(s, f) was studied in (cf. [Shi00], p.179, [Ha97],
[Ha14], [KI], [Boul6], [Gel6]), and that of D(s,f, x) follows with
the Gamma factor

I—D() 57f7X HFCS*
with the symmetry s — ¢ — s.

These factors suggest the following form of the Hodge polygon of

D(s,f,x) of rank d = 4n as that of the Hodge numbers /"I

below (in the increasing order of slopes j, with weight w = ¢ — 1):
2-(0,4—-1),...,2-(n=1,¢—n),
2-({=n,n—1),...,2-(£-1,0),

following Serre’s recipe [Se70], p.11.



Main Theorem (the Hermitian case)

Let Qf = (f,f) be the period attached to a Hermitian cusp
eigenform f, D(s,f) = Z(s — % + %,f) the standard zeta function,
and

n
af=agp= | [T1]1ti | ", h=ordy(ar,),
alp i=1

The number af turns out to be an eigenvalue of Atkin's type
operator U, : Yy Angt — >on AquH on some fq, and
h=Pn(§) — Pu(3).

Let f be a Hermitian cusp eigenform of degree n > 2 and of weight
¢ > 4n+ 2. There exist distributions pp s for s =n,--- £ — n with
the properties:

i) for all pairs (s, x) such that s € Z with n < s < ¢ —n,

D*(s,f,x
/ xdpp.s = Ap(&X)%
. Z; f

(under the inclusion i), with elementary factors
Ap(s:X) = [1qjp Aa(s. X) including a finite Euler product, gaussian
sums, the conductor of ; the integral is a finite sum.

(ii) if ord, ((qup I, tq,,-)p—n<n+1>) = 0 then the above

distributions pp s are bounded measures, we set (1 = up s+ and

the integral is defined for all continuous characters

y € Hom(Z}, Cy) =: Yp.

Their Mellin transforms £, (y) = fZ; ydun, Ly - Yp — Cp,

give bounded p-adic analytic interpolation of the above L-values to

on the Cp-analytic group Yp; and these distributions are related by:

/ Xdups = / xx* "Sduh, X = Zy, where s* ={ —n, s, = n.
X X

(iii) in the admissible case assume that
0<h< s*—s.+1 [(f+1-2n

2
h = ord, ((qup I, tqy,-)p—"(n+1)) > 0, Then there exist
h-admissible measures 115y whose integrals [, XXpdpp are given by
P

b (Ap(s,x)%:’@) € C, with Ay(s, x) as in (i); their Mellin

, where

transforms Lop(y) = [;. ydup, belong to the type o(log x[,’).
P
(iv) the functions Lqy are determined by (i)-(iii).

Remarks.

(a) Interpretation of s*: the smallest of the "big slopes" of Py
(b) Interpretation of s, — 1: the biggest of the "small slopes" of Py.



Eisenstein series and congruences (KEY POINT!)
The (Siegel-Hermite)Eisenstein series EQ(Z)(Z) of weight 2¢,
character detfl, is defined by
E2(£)(Z) = Z (detg)’j(g, Z)~% . The series converges
serf iy
absolutely for £ > n. Define the normalized Eisenstein series
£5(2) by £5(2) = 27 [T7Ly L — 26,07 - E5(2) I
H € Np(O)*, then the H-th Fourier coefficient of Sg'g)(Z) is
polynomial over Z in {p*~("/?)1, and equals

W(H) 2T Fo(H, p~ 7)), 7(H) = (=D det H.
plv(H)
Here, I:'p(H,X) is a certain Laurent polynomial in the variables
{X, = p’s,XIjl}p over Z. This polynomial is a key point in

proving congruences for the modular forms in a Rankin-Selberg
integral.

Also, we set , for s € C and a Hecke ideal character ¢) mod ¢,

E(Z,s,6,0)= Y (g)(detg)j(g, 2) " |(detg)j(g, Z2)~*.
geCx\C

Recall :Hermitian Rankin-Selberg type integral
Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13.
Let 0 # f € My(C,v)) of scalar weight ¢, ) mod ¢, such that
Va,f| T(a) = A(a)f, and assume that 2¢ > n, then there exists
T €S, NGLy(K) and R € GL,(K) such that

M((s))y(det(T))Z(s +3n/2,f, x) =
Ac(s + 3”/27 9¢X) : C0<f7 QT(X)E(S_—i_ n7£ - 597Xp¢)>0',

where E(Z,s,0 — Uy, )¢ is a normalized group theoretic
Eisenstein series with components as above of level ¢’ divisible by «,
and weight ¢ — {g. Here (-,-)cr is the normalized Petersson inner

product associated to the congruence subgroup C” of level ¢.
n—1

F((s)) = (am) "0 (s h). Ts) = =% [ (s =),
j=0

where h=0o0r 1, Cy a subgroup index.




Proof of the Main Theorem ( ||% Kummer congruences
*(m,f

Let us se the notation Da’g(m,f,x) Ao(s:x) (m 29
The integrality of measures is proven representing ®p (m,x) as
Rankin-Selberg type integral at critical points s = m. Coefficients
of modular forms in this integral satisfy Kummer-type congruences
and produce bounded measures g whose construction reduces to
congruences of Kummer type between the Fourier coefficients of
modular forms, see also [Boul6]. Suppose that we are given

infinitely many "critical pairs" (s;, x;) at which one has an integral

fh>
f

representation Df,/g(sj,f,xj) = Ap(s,

hj=>g quT € M in a certain finite-dimensional space M
containing f and defined over Q. We prove the following
Kummer-type congruences:

Vx € Zp, Zﬁjxjxkf =0 mod pN = Zﬂjﬂf’,’g(sj,f,x) =0 mod p"
Jj J

Bj € Q, ki = s* —sj, where s = { — n in our case.
Computing the Petersson products of a given modular
form £(Z) = ", anq' € M.(Q) by another modular form

_ f
h(Z) =3, brg" € M. (Q) uses a linear form (s : <<f7 :>>
defined over a subfield k ¢ Q. '

Admissible Hermitian case

Let f € 8x(C; 1)) be a Hecke eigenform for the congruence
subgroup C of level ¢. Let p be a prime of K prime to ¢, which is
inert over F. Then we say that f is pre-ordinary at p if there exists
an eigenform 0 # fo € M,y C 84(Cp, ) with Satake parameters
tp,i such that

n _ n(n+1)
H Htp,i N(p) 2 = 1a
i=1

p

where |||, the normalized absolute value at p.

The admissible case corresponds to

H H tq,i p~ "D\ = p=h for a positive h > 0.

1
qlp i= p

An interpretation of h as the difference h = P p(d/2) — Py(d/2)
comes from the above explicit relations.



Existence of h-admissible measures

of Amice-Vélu-type gives an unbounded p-adic analytic
interpolation of the L-values of growth |og,’}(~), using the Mellin
transform of the constructed measures. This condition says that
the product []}_; t, ; is nonzero and divisible by a certain power of

pin O:
ord, (H <H tq,,-> pn(n+1)) =h.
alp \i=1

We use an easy condition of admissibility of a sequence of modular
distributions ®; on X = Ok ® Z, with values in O[[q]] as in
Theorem 4.8 of [CourPa] and check congruences of the type

e ZQ) Y7 0y(a+ (p")) € Cp¥0[[q]

forall j=0,1,...,5ch—1. Here s =/ +s,, ®y(a+(p)) a
certain convolution, i.e.

®jr(x) = 0(x) - &(s,x)

of a Hermitian theta series 6() and an Eisenstein series £(s, x)
with any Dirichlet character x mod p". We use a general sufficient
condition of admissibility of a sequence of modular distributions ®;
on X = Z, with values in O[[q]] as in Theorem 4.8 of [CourPa].

Proof of the Main Theorem (iii): (admissible case)

Using a Rankin-Selberg integral representation for D#8(s, f, x) and
an eigenfunction fo of Atkin's operator U(p) of eigenvalue as on fy
the Rankin-Selberg integral of s, := 0(x) - £(s, x) gives

'Dalg(s,f, X) _ <f0a G(X) ) 8(5’ X)>

(f.f)
_ v Fo, U000 - €(s. X)) _ v (o, U(P)(Ts0))
f (£.f) f (f.f) '

Modication in the admissible case: instead of Kummer congruences,

to estimate p-adically the integrals of test functions: M = p":

J .
/ (x — aydDe .= Z G/)(—a)jj’/ X' dD8 using
a+(M) j'=0 a+(M)

the orthogonality of characters and the sequence of zeta
distributions

1
xldDe = ~1(a) / x)x dDE
a+(M) 4(0/MO)* od y

Jx xdDY ;= DIe(s* — j, f, x) = [, x(x)xIdDs.

(the Petersson product on G = GU(7,))



Congruences between the coefficients of the Hermitian
modular forms

In order to integrate any locally-analytic function on X, it suffices
to check the following binomial congruences for the coefficients of
the Hermitian modular form Js_; \, = ZE v(€,s* —j,x)q5 : for
v > 0, and a constant C

- —l v * I3
CIT Q )y ((p"E,5" — /2 x)a
X mod M
€ CpVJ(‘)[[q]] (This is a quasimodular form if j' # s*)

The resulting measure up allows to integrate all continuous

characters in YJ, = Homeont (X, C;), including Hecke characters, as
they are always locally analytic.

Its p-adic Mellin transform £, is an analytic function on Y, of the
logarithmic growth O(log”), h = ord,(a).

Proof of the main congruences

Thus the Petersson product in £f can be expressed through the
Fourier coeffcients of h in the case when there is a finite basis of
the dual space consisting of certain Fourier coeffcients:

by, h— by (i=1,...,n). It follows that ¢s(h) = >, ~viby,, where
Vi € k.

Using the expression for ¢¢(h;) = >, vijb;j 7, the above
congruences reduce to

Z’)/,'Jﬁjbj"]i =0 mod pN.

i
The last congruence is done by an elementary check on the Fourier
coefficients b; g,.
The abstract Kummer congruences are checked for a family of test
elements.
In the admissible case it suffices to check binomial congruences for
the Fourier coefficients as above in place of Kummer congruences.



Appendix A. Rewriting the local factor at p with character 6
Notice that if 6 is the quadratic character attached to K/Q then

(1—apX)? if0(p)=1,pr=qiq2, N(q;) = p,
(1-apX)(1-apf(p)X) = § (1~ a2X2),  if (p) = ~ 1. pr = 0. N(q) = p2,
(1_aPX) if 9(p)=0,pt:q2,N(q):p.

Thus, if X =p~5, X% =p~ %, N(q) = p, ,‘Z,q(X)’1

1724 (1 = N(a1)*"tg 0, X)L = N(a2) M tyq0iX), i 6(p) =1,
1 (1= N(q)" g, X?)(1 — N(a)"t,

=11 )"t 1 X?), if (p) = —1,
[T (1= N(a)" 1, X)(1 = N(a)"t,1 X), if 0(p) = 0.
[, (1 —vp,X)2 [T (1= 06piX)> i 0(p) =1, ie. pr=quay,

=TT - a2 X)) TP (1 - B2,X7), if 0(p) = 1, ie. pr =g,

[T (1 — ap’,X) [T (1 = B, X) if 0(p) =0, i.e. pr =g

where ) ; = p""lty ;, 5;,,'P"tq_,;1r Vp.i = P2"t;1,2,;v P tggs,ie It
follows that J[, Zq(N(q)~"~(1/2)X) = X4 4 ...

Appendix B. Shimura’s Theorem: algebraicity of critical
values in Cases Sp and UT, p.234 of [Shi00]

Let f € V(Q) be a non zero arithmetical automorphic form of type
Sp or UT. Let x be a Hecke character of K such that

Xa(x) = x4|xa| ¢ with £ € Z2, and let og € 271Z. Assume, in the
notations of Chapter 7 of [Shi00] on the weights k,, 1., ¢, that

Case Sp 2n+1—ky + py <209 < ky — pty,
where p, = 0if [k, — |, € 2Z
and p, = 1if [k,] — I € 2Z; 00 — ky + pv
for every v € a if o9 > n and
og—1—ky, 4+ p, € 27 for every v € a if og < n.
Case UT  4n— (2ky,, +¢,) <200 < my — |k, — kyp — £,
and 20g — /£, € 27 for every v € a.



Appendix B. Shimura's Theorem (continued)

Further exclude the following cases

(A) Case Sp og=n+1,F=Qand x> =1;

(B) Case Sp oo =n+(3/2),F =Q;x> =1and [k] — £ € 2Z
(C) Case Sp 09 =0,c=gand y =1;
(
(
(

E

)
)
D) Case Sp 0 < 0o <n,c=g,x> =1 and the conductor of x is g;
) Case UT 209 =2n+1,F =Q,x1 =0, and k, — ky, = {;

)

F) Case UT 0<20¢<2n,c=g,x1 = 629 and the conductor of Xist
Then B

(o0, f,x)/(F, ) € 7ImIHQ,
where d = [F : Q], [m| =3 ., m,, and

(n+1)ag — n?> —n, Case Sp, k € Z?, and oo > ng),
€ =< nog — n?, Case Sp, k € 72, orog < np),

2nog — 2n% +n Case UT

Notice that #"I™/+9% ¢ 7 in all cases; if k & Z2, the above parity
condition on oy shows that g + k, € Z, so that n|m| + de € Z.

Thanks for your attention!

Many thanks to Jean-Louis Verger-Gaugry for his invitation to
this Summer School on Theory of Motives and Number
Theory at the crossroad of automorphic L functions (complex
and p-adic), zeta functions, polyzeta functions and dynamical
zeta function, held on the scientific campus of
Le-Bourget-du-Lac, to Siegfried Boecherer (Mannheim), for
valuable discussions and observations.

My special thought go to the memory of Alexey Zykin , professor of
the French Polynesia University, tragically dissapeared in Tahiti in
2017. The present Summer School on Theory of Motives and
Number Theory was conceived as a continuation of the series of
Conferences "Zeta-functions I-VI", held in J.-V.Poncelet Laboratory
UMI 2615 du CNRS, and to commemorate Alexey.
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