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Zeta values and Bernoulli Numbers
A key result in number theory is the expansion of the Riemann
zeta-function ζ(s) into the Euler product:

ζ(s) =
∏
p

(1− p−s)−1 =
∞∑
n=1

n−s (de�ned for Re(s) > 1).

The set of arguments s for which ζ(s) is de�ned was extended by
Riemann to all s ∈ C, s 6= 1. The special values ζ(1− k) at

negative integers are rational numbers: ζ(1− k) = −Bk

k
, satifying

certain Kummer congruences modpm, where Bk are Bernoulli
numbers, de�ned by the

∞∑
n=0

Bnt
n

n!
=

tet

et − 1
;B0 = 1, B1 = −1

2
, B2 =

1
6
, B3 = B5 = · · · = 0,B4 = − 1

30
,

B6 =
1
42
, B8 = − 1

30
,B10 =

5
66
,B12 =

691
2730

, B14 = −7
6
, ζ(2k) = −(2πi)2kB2k

2(2k)!
,

Their denominators are small by the Sylvester-Lipschitz theorem

∀c ∈ Z implies ck(ck − 1)
Bk

k
∈ Z (see in [Mi-St]),

using the known formula for the sum of k-th powers via Bernoulli
polynomials Bk(x) =

∑k
i=0

(k
i

)
Bix

k−i = ”(x + B)k”

Sk(N) =
N−1∑
n=1

nk =
1

k + 1
[Bk+1(N)− Bk+1] , B1(x) = x−1

2
,B2(x) = x2−x+

1
6
, · · ·

2



Kummer congruences and p-adic integration
Kubota and Leopoldt constructed [KuLe64] a p-adic interpolation
of these special values, explained by Mazur via a p-adic measure µc
on Zp and Kummer congruences for the Bernoulli numbers, see
[Ka78] (p is a prime number, c > 1 an integer prime to p). Writing
the normalized values

ζ
(c)
(p)(−k) = (1− pk)(1− ck+1)ζ(−k) =

∫
Z∗p

xkdµc(x)

produces the Kummer congruences in the form: for any polynomial
h(x) =

∑n
i=0

αix
i over Z,

∀x ∈ Zp,
n∑

i=0

αix
i ∈ pmZp =⇒

n∑
i=0

αiζ
(c)
(p)(−i) ∈ pmZp,

Indeed, integrating the above polynomial h(x) over µc produces the
congruences. The existence of µc is deduced from the above
formula for the sum of k-th powers Sk(pr ) for r →∞, restricted to
numbers n, prime to p.
In order to de�ne such a measure µc it su�ces for any continuous
function φ : Zp → Zp to de�ne its integral

∫
Zp
φ(x)dµc .

Approximating φ(x) by a polynomial (when the integral is already
de�ned), pass to the limit (which is well de�ned due to Kummer
congruences).
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Kubota-Leopoldt p-adic zeta-function
The domain of de�nition of p-adic zeta functions is the p-adic
analytic group Yp = Homcont(Z∗p,C∗p) of all continuous p-adic

characters of the pro�nite group Z×p , where Cp = Q̂p denotes the
Tate �eld (completion of an algebraic closure of the p-adic �eld
Qp) (over complex numbers C = Homcont(R∗+,C∗), y run the
characters t 7→ ts .
De�ne ζp : Yp → Cp on the space as the p-adic Mellin transform

ζp(y) =

∫
Z∗p

y(x)dµc(x)

1− cy(c)
=

Lµc (y)

1− cy(c)
,

with a single simple pole at y = y−1p ∈ Yp, where yp(x) = x the
inclusion character Z∗p ↪→ C∗p and y(x) = χ(x)xk−1 is a typical
arithmetical character (y = y−1p becomes k = 0, s = 1− k = 1).

Explicitly: Mazur's measure is given by µc(a + pvZp) =
1

c

[
ca
pv

]
+ 1−c

2c = 1

cB1({ capv })− B1( a
pv ), B1(x) = x − 1

2
, ([LangMF],

Ch.XIII), we see the zeta distribution µs |s=0(a + (N)) = −B1( a
N ).

Then the binomial formula∫
Z

(1 + t)zdµc =
∑∞

n=0
tn
∫
Z

(
z
n

)
dµc , gives the analyticity of

ζp(y) on t = y(1 + p)− 1 in the unit disc {t ∈ Cp‖ |t|p < 1}.
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p-adic zeta functions of modular forms
From the p-adic zeta function of Kubota-Leopoldt, one extends
p-adic zeta functions of various modular forms constructed, such as
p-adic interpolation of the special values

L∆(s, χ) =
∞∑
n=1

χ(n)τ(n)n−s , (s = 1, 2, · · · , 11)

for the Ramanujan function τ(n) de�ned by the expansion

q
∏
m≥1

(1− qm)24 =
∑
n≥1

τ(n)qn = q−24q2 +252q3−1472q4 + · · · ,

twisted by Dirichlet characters χ : (Z/prZ)∗ → C∗; it was done in
the elliptic and Hilbert modular cases by Yu.I.Manin and B.Mazur,
via modular symbols and p-adic integration, see [Ma73], [Ma76]).
In the Siegel modular case the p-adic standard zeta functions of
Siegel modular forms were constructed in [Pa88], [Pa91] via
Andrianov's identity (of Rankin-Selberg type).
PRESENT GOAL: To describe analytic p-adic continuation of the
standard zeta function LF (s) of a Hermitian modular form
F =

∑
H A(H)qH on the Hermitian upper half plane Hn of degree

n, where qH = exp(2πiTr(HZ )), H runs through all semi-integral
positive de�nite Hermitian matrices of degree n, i.e. H ∈ Λn(O), in
the integers OK of an imaginary quadratic �eld K = Q(

√
−DK ).

Analytic p-adic continuation of their standard zeta functions is
constructed via p-adic measures, bounded or growing.
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Modular forms, zeta functions, L-functions

Eisenstein series Ek = 1 +
2

ζ(1− k)

∞∑
n=1

∑
d |n

dk−1qn ∈Mk , a

modular forms for even weight k ≥ 4 for SL2(Z), q = e2πiz), and
E2 ∈ QM a quasimodular form. The ring of quasimodular forms,

closed under di�erential operator D = q
d

dq
=

1
2πi

d

dz
, used in

arithmetic, ζ(s) is the Riemann zeta function, ζ(−1) = − 1
12

,

E2 = 1− 24
∑∞

n=1

∑
d |n dq

n is also a p-adic modular form (due to
J.-P.Serre,[Se73], p.211)

Elliptic curves E : y2 = x3 + ax + b , a, b ∈ Z, A.Wiles's

modular forms fE =
∞∑
n=1

anq
n with ap = p − CardE (Fp)

(p 6 | 4a3 + 27b2), and the L-function L(E , s) =
∞∑
n=1

ann
−s .
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Zeta-functions or L-functions
They are attached to various mathematical objects as certain Euler
products.

I L-functions link such objects to each other (a general form of
functoriality);

I Special L-values answer fundamental questions about these
objects in the form of a number (complex or p-adic).

Computing these numbers use integration theory of Dirichlet-Hecke
characters along p-adic and complex valued measures.
This approach originates in the Dirichlet class number formula
using the L-values in order to compute class numbers of algebraic
number �elds through Dirichlet's L-series L(s, χ): for an imaginary
quadratic �eld K of discriminant −D < −4, χD(n) =

(−D
n

)
hD =

√
DL(1, χD)

2π
= L(0, χ) = − 1

D

D−1∑
a=1

χD(a)a.

(Example: disc(Q(
√
−5))) = −20, h20 = 2; in PARI/GP χ20(n) =

kronecker(-20,n), gp > -sum(x=1,19,x*kronecker(-20,x))/20

% 29 = 2

Another famous example: the Millenium BSD Conjecture gives the
rank of an elliptic curve E as the order of L(E , s) at s=1 (i.e. the
residue of its logarithmic derivative, see [MaPa], Ch.6).
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A short story of critical values, see [YS]
Euler discovered ζ(2) =

π2

6
, and

2ζ(2n)

(2πi)2n
= − B2n

(2n)!
∈ Q, (n ≥ 1).

These are examples of critical values (in the sense of Deligne): for a
more general zeta function D(s) the critical values are de�ned
using its gamma factor ΓD(s) such that the product ΓD(s)D(s)
satis�es a standard functional equation under the symmetry
s 7→ v − s. Then D(n), n ∈ Z is a critical value of D(s) if both
ΓD(n) and ΓD(v − n) are �nite.

Hurwitz [Hur1899] showed a striking analogy to Euler's theorem:∑′
α∈Z[i ] α

−4m

Ω4m
=

Hm

(4m)!
∈ Q,Ω = 2

∫
1

0

dx√
1− x4

= 2.6220575542 · · ·

for 1 ≤ m ∈ Z, where α = a + ib, a, b ∈ Z are non-zero Gaussian
integers and Hm are Hurwitz numbers (recursively computed, [Sl]):

H1,H2, · · · =
1
10
,
3
10
,
567
130

,
43659
170

,
392931
10

, · · · . Recall the formula:

Let ℘ be the Weierstrass ℘-function satisfying ℘′2 = 4℘3 − 4℘.

Then ℘(z) =
1
z2

+
∞∑
n=1

24nHnz
4n−2

4n(4n − 2)!
. A rapid computation of these

values: take the Fourier expansion of the Eisenstein series at z = i ,
q = e−2π:

G4m(z) =
∑
a,b

′(az + b)−4m = 2ζ(4m) +
2(2π)4m

(4m − 1)!

∑
d≥1

d4m−1qd

(1− qd)
,

G4m(i)

Ω4m
=

Hm

(4m)!
, π,Ω � periods of ζ(s) and of E : y2 = 4x3 − 4x .
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Analytic p-adic theory: zeta values vs. coe�cients
It was much developed in the 60th in [Iw], [Se73] and [Wa].

Modular methods are applicable to the p-adic analytic continuation
of ζ(s) itself through the normalized Eisenstein series:

(k − 1)!

2(2πi)k
Gk(z) =

ζ(1− k)

2
+
∞∑
n=1

∑
d |n

dk−1qn = −Bk

2k
+
∑
d≥1

dk−1qd

1− qd
,

modular forms of even weight k ≥ 4 for SL2(Z) as follows:

J.-P.Serre noticed [Se73], p.206, that the constant term

ζ(1− k)

2
(1−pk−1) expresses by σ∗k−1(n) =

∑
d |n

dk−1 (p 6 | d , n ≥ 1),

the higher coe�cients of the normalized Eisenstein series modpr .
In this way ζ∗p(1− k) can be continually extended to s ∈ Zp with a
single simple pole at s = 1 starting from s = 1− k (see [Se73]).

The Hurwitz numbers naturally appear as the critical values of the
Hecke L-function of ideal character L(s, ψ) =

∑
a

ψ(a)Na−s ,

ψ((α)) = αm, α ≡ 1 mod (2 + 2i), also de�ned for any imaginary
quadratic �eld K , and gψ =

∑
a ψ(a)qNa is a modular form of

weight m + 1. Its p-adic analytic continuation over m and s was
constructed by Yu.I.Manin and M.M.Vishik (1974, [Ma-Vi]).
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Complex and p-adic analytic continuation
A classical example of analytic continuation is given by the
Riemenn zeta function with

ζ(s) =
(2π)s/2

2Γ(s/2)

∫ ∞
0

(θ(iy)− 1)y (s/2)−1dy (Re(s) > 1),

through the theta function θ(z) =
∑

n∈Z e
2πin2z which is a modular

form of weight 1/2 on the complex upper half plane H.

For a Dirichlet L-function L(s, χ), an integral representation uses
I) theta function with Dirichlet character χ mod N

θ(z , χ) =
∑
n∈Z

χ(n)nνe2πin
2z , χ(−1) = (−1)ν , ν = 0, 1, or

II) meromorphic zeta distributions

µs(a + (N)) :=
∑
n≥1

n≡a mod N

n−s = N−s
∑
n≥1

(n + (
a

N
))−s : the integral

L(s, χ) =

∫
X
χ(x)dµs(x) =

∑
a mod N

χ(a)µs(a + (N)) =: µs(χ) over

X = Ẑ or Zp is a �nite sum of partial series, =− Nk−1Bk( a
N )

k
.
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Methods of constructing p-adic L-functions

Our long term purposes are to de�ne and to use the p-adic
L-functions in a way similar to complex L-functions via the
following methods:
(1) Tate, Godement-Jacquet;
(2) the method of Rankin-Selberg;
(3) the method of Euler subgroups of Piatetski-Shapiro and the
doubling method of Rallis-Böcherer (integral representations on a
subgroup of G × G );
(4) Shimura's method (the convolution integral with theta series);
(5) Shahidi's method.
There exist already advances for (1) to (4), and we also tried to
develop (5), see [GMPS14].
We used the Eisenstein series and a p-adic integral of Shahidi's
type for the reciprocal of a product of certain L-functions.
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Hermitian modular group Γn,K and the standard zeta
function Z(s; f) (de�nitions)

Let θ = θK be the quadratic character attached to K , n′ =
[
n
2

]
.

Γn,K =

{
M =

(
A

C

B

D

)
∈ GL2n(OK )|MηnM

∗ = ηn

}
, ηn =

(
0n
In

−In
0n

)
Z(s, f) =

(
2n∏
i=1

L(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

(via Hecke's eigenvalues: f|T (a) = λ(a)f, a ⊂ OK )

=
∏
q

Zq(N(q)−s)−1(an Euler product over primes q ⊂ OK ,

with degZq(X ) = 2n, the Satake parameters ti ,q, i = 1, · · · , n),

D(s, f) = Z(s − `

2
+

1
2
, f) (Motivically normalized standard zeta function

with a functional equation s 7→ `− s; rk = 4n)

Main result: p-adic interpolation of all critical values D(s, f, χ),
n ≤ s ≤ `− n, χ mod pr .
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The idea of motivic normalization: Ikeda's lifting [Ike08]
The Gamma factor of Ikeda's lifting, denoted by f, of an elliptic
modular form f and used as a pattern, extends to a general (not
necessarily lifted) Hermitian modular form f of even weight `, which
equals in the lifted case to ` = 2k + 2n′, where k = (`− 2n′)/2
= `/2− n′=`/2− n′, when the Gamma factor of the standard zeta
function with the symmetry s 7→ 1− s becomes (see p.43)∏n

i=1
ΓC(s + `/2− n′ + n′ − i + (1/2))2 =∏n

i=1
ΓC(s + `/2− i + (1/2))2 =

∏n−1
i=0

ΓC(s + `/2− i − (1/2))2.
This Gamma factor suggests the following motivic normalization
D(s) = Z(s − (`/2) + (1/2)) for which
ΓD(s) = ΓZ(s − (`/2) + (1/2))2, and the L-function becomes
D(s) = Z(s − (`/2) + (1/2)) with symmetry
s 7→ 2(`/2)− 1 + 1− s = `− s of motivic weight `− 1 and

ΓD(s) =
n−1∏
i=0

ΓC(s − i)2, with the slopes 2 · 0, 2 · 1, . . . 2 · (n − 1),

2 · (`− n), · · · , 2 · (`− 1), so that Deligne's critical values are at
s = n, . . . , s = `− n.
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General zeta functions: critical values and coe�cients
More general zeta functions are Euler products of degree d

D(s, χ) =
∞∑
n=1

χ(n)ann
−s =

∏
p

1
Dp(χ(p)p−s)

, ΛD(s, χ) = ΓD(s)D(s, χ),

where degDp(X ) = d for all but �nitely many p, and Dp(0) = 1.

In many cases algebraicity of the zeta values was proven as

D∗(s0, χ)

Ω±D
∈ Q({χ(n), an}n), where D∗(s, χ) is normalized by ΓD,

at critical points s0 ∈ Zcrit as linear combinations of coe�cients an
dividing out periods Ω±D, where D∗(s0, χ) = ΛD(s0, χ) if h`,` = 0.

In p-adic analysis, the Tate �eld is used Cp = ˆ̄Qp, the completion
of an algebraic closure Q̄p, in place of C. Let us �x embeddings{

ip : Q̄ ↪→ Cp

i∞ : Q̄ ↪→ C,
and try to continue analytically these zeta values

to s ∈ Zp, χ mod pr .
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Main result stated with Hodge/Newton polygons of D(s)
The Hodge polygon PH(t) : [0, d ]→ R of the function D(s) and
the Newton polygon PN,p(t) : [0, d ]→ R at p are piecewise linear:

The Hodge polygon of pure weight w has the slopes j of
lengthj = hj ,w−j given by Serre's Gamma factors of the functional
equation of the form s 7→ w + 1− s, relating
ΛD(s, χ) = ΓD(s)D(s, χ) and ΛDρ(w + 1− s, χ̄), where ρ is the
complex conjugation of an, and ΓD(s) = ΓDρ(s) equals to the
product ΓD(s) =

∏
j≤w

2

Γj ,w−j(s), where

Γj ,w−j(s) =

{
ΓC(s − j)h

j,w−j
, if j < w ,

ΓR(s − j)h
j,j
+ ΓR(s − j + 1)h

j,j
− , if 2j = w , where

ΓR(s) = π−
s
2 Γ
( s
2

)
, ΓC(s) = ΓR(s)ΓR(s + 1) = 2(2π)−sΓ(s),

hj ,j = hj ,j+ + hj ,j− ,
∑
j

hj ,w−j = d .

The Newton polygon at p is the convex hull of points
(i , ordp(ai )) (i = 0, . . . , d); its slopes λ are the p-adic valuations
ordp(αi ) of the inverse roots αi of Dp(X ) ∈ Q̄[X ] ⊂ Cp[X ]:
lengthλ = ]{i | ordp(αi ) = λ}.
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p-adic analytic interpolation of D(s, f, χ)
The result expresses the zeta values as integrals with respect to
p-adic Mazur-type measures. These measures are constructed from
the Fourier coe�cients of Hermitian modular forms, and from
eigenvalues of Hecke operators on the unitary group.

Pre-ordinary case: PH(t) = PN,p(t) at t = d
2
The integrality of

measures is proven representing D∗(s, χ) = ΓD(s)D(s, χ) as a
Rankin-Selberg type integral at critical points s = m. Coe�cients
of modular forms in this integral satisfy Kummer-type congruences
and produce certain bounded measures µD from integral
representations and Petersson product, [CourPa]. For the case of p
inert in K , see [Bou16].

Admissible case: h = PN(d
2

)− PH(d
2

) > 0 The zeta distributions
are unbounded, but their sequence produce h-admissible (growing)
measures of Amice-Vélu-type, allowing to integrate any continuous
characters y ∈ Hom(Z∗p,C∗p) = Yp. A general result is used on the
existence of h-admissible (growing) measures from binomial
congruences for the coe�cients of Hermitian modular forms. Their
p-adic Mellin transforms LD(y) =

∫
Z∗p

y(x)dµD(x), LD : Yp → Cp

give p-adic analytic interpolation of growth loghp(·) of the L-values:

the values LD(χxmp ) are integrals given by ip

(
D∗(m, f, χ)

Ωf

)
∈ Cp.
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A Hermitian modular form of weight ` with character σ
is a holomorphic function F on Hn (n ≥ 2) such that
F (g〈Z 〉) = σ(g)F (Z )j(g ,Z )` for any g ∈ Γn,K . Here σ be a

character of Γ
(n)
K , trivial on

{(
1n

0

B
1n

)}
, and for Z ∈ Hn, put

g〈Z 〉 = (AZ + B)(CZ + D)−1, j(g ,Z ) = det(CZ + D).

Fourier expansions: a semi-integral Hermitian matrix is a Hermitian
matrix H ∈ (

√
−DK )−1Mn(O) whose diagonal entries are integral.

Denote the set of semi-integral Hermitian matrices by Λn(O),
the subset of its positive de�nite elements is Λn(O)+.

A Hermitian modular form F is called a cusp form if it has a Fourier
expansion of the form F (Z ) =

∑
H∈Λn(O)+

A(H)qH . Denote the space

of cusp forms of weight ` with character σ by S`(Γn,K , σ).
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The standard zeta function of a Hermitian modular form
Fix an integral ideal c of OK . Denote by C ⊂ Γn,K the congruence
subgroup of level c; the group is essentially a principal congruence
subgroup; it is an analogue of the group Γ0(N) in the elliptic
modular case. Write T (a) for the Hecke operator associated to it
as it is de�ned in [Shi00], page 162, using the action of double
cosets CξC with ξ = diag(D̂,D), (det(D)) = (α), D̂ = (D∗)−1.

Consider a non-zero Hermitian modular form f ∈Mk(C , ψ) and
assume f|T (a) = λ(a)f with λ(a) ∈ C for all integral ideals a ∈ O.
Then

Z(s, f) =

(
2n∏
i=1

Lc(2s − i + 1, θi−1)

)∑
a

λ(a)N(a)−s ,

the sum is over all integral ideals of OK .

This series has an Euler product representation
Z(s, f) =

∏
q(Zq(N(q)−s)−1, where the product is over all prime

ideals of OK , Zq(X ) is the numerator of the series∑
r≥0 λ(qr )X r ∈ C(X ), computed by Shimura as follows.
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Euler factors of the standard zeta function, [Shi00], p. 171
The Euler factors Zq(X ) in the Hermitian modular case at the
prime ideal q of OK are

(i) Zq(X ) =
n∏

i=1

(
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X )

)−1
,

if qρ = q and q 6 | c, (the inert case outside level c),

(ii) Zq1(X1)Zq2(X2) =
2n∏
i=1

(
(1− N(q1)2nt−1q1q2,i

X1)(1− N(q2)−1tq1q2,iX2)
)−1

,

if q1 6= q2, q
ρ
1

= q2 and qi 6 | c for i = 1, 2 (the split case outside level) ,

(iii) Zq(X ) =
n∏

i=1

(
1− N(q)n−1tq,iX

)−1
, if qρ = q and q|c (inert level divisors ),

(iv) Zq1(X1)Zq2(X2) =
n∏

i=1

(
(1− N(q1)n−1t−1q1q2,i

X1)(1− N(q2)n−1tq1q2,iX2)
)−1

,

if q1 6= q2, qi |c for i = 1, 2 (split level divisors).

where the t?,i above for ? = q, q1q2, are the Satake parameters of
the eigenform f.
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Notice the important dychotomy for the L-factors
in the Siegel modular case (that is, of symplectic type) vs. the
Hermite modular case (of unitary type). In these cases the
correspopnding complex component of the Langlands L-group is
either GSpinO(2n + 1)(C), with the Euler factors of degree 2n + 1
(the standard representation of GO(2n + 1), resp. of degree 2n (the
spinor representation of the L-group) (the symplectic case), or, in
the Hermite case, the complex component of the L-group is
GL2n(C)× GL2n(C), with the Euler factors of degree 4n (the
standard representation of the L-group), see also 16.16, p.133, in
particular, formula (16.16.2) at p.134 of [Shi97a] or [Shi97b] for a
concise exposition.
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The standard motivic-normalized zeta D(s, f, χ)
The standard zeta function of f is de�ned by means of the
p-parameters as the following Euler product:

D(s, f, χ) =
∏
p

2n∏
i=1

{(
1− χ(p)αi (p)

ps

)(
1− χ(p)α4n−i (p)

ps

)}−1
,

where χ is an arbitrary Dirichlet character. The p�parameters
α1(p), . . . , α4n(p) of D(s, f, χ) for p not dividing the level C of the
form f are related to the the 4n characteristic numbers

α1(p), · · · , α2n(p), α2n+1(p), · · · , α4n(p)

of the product of all q-factors Zq(Nq(n′+ 1

2
)X )−1 for all q|p, which

is a polynomial of degree 4n of the variable X = p−s (for almost all
p) with coe�cients in a number �eld T = T (f) .

There is a relation between the two normalizations
Z(s − `

2
+ 1

2
, f) = D(s, f) explained below, see [Ha97] for general

zeta functions Z(s, f) of type introduced in [Shi00], using
reprsentation theory of unitary groups and Deligne's motivic
L-functions.
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Description of the Main theorem
Let Ωf be a period attached to an Hermitian cusp eigenform f,
D(s, f) = Z(s − `

2
+ 1

2
, f) the standard zeta function, and

αf = αf,p =

∏
q|p

n∏
i=1

tq,i

 p−n(n+1), h = ordp(αf,p),

The number αf turns out to be an eigenvalue of Atkin's type
operator Up :

∑
H AHq

H 7→
∑

H ApHq
H on some f0, and

h = PN(d
2

)− PH(d
2

).
De�nition. Let M be a O-module of �nite rank where O ⊂ Cp. For
h ≥ 1, consider the following Cp-vector spaces of functions on Z∗p :
Ch ⊂ Cloc−an ⊂ C. Then
- a continuous homomorphism µ : C→ M is called a (bounded)
measure M-valued measure on Z∗p.
- µ : Ch → M is called an h admissible measure M-valued measure
on Z∗p measure if the following growth condition is satis�ed∣∣∣∣∣

∫
a+(pv )

(x − a)jdµ

∣∣∣∣∣
p

≤ p−v(h−j)

for j = 0, 1, ..., h− 1, and et Yp = Homcont(Z∗p,C∗p) be the space of
de�nition of p-adic Mellin transform

Theorem ([Am-V], [MTT]) For an h-admissible measure µ, the
Mellin transform Lµ : Yp → Cp exists and has growth o(logh) (with
in�nitely many zeros).
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Main Theorem.
Let f be a Hermitian cusp eigenform of degree n ≥ 2 and of weight
` > 4n + 2. There exist distributions µD,s for s = n, · · · , `− n with
the properties:

i) for all pairs (s, χ) such that s ∈ Z with n ≤ s ≤ `− n,∫
Z∗p
χdµD,s = Ap(s, χ)

D∗(s, f, χ)

Ωf

(under the inclusion ip), with elementary factors
Ap(s, χ) =

∏
q|p Aq(s, χ) including a �nite Euler product, gaussian

sums, the conductor of χ; the integral is a �nite sum.
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(ii) if ordp
(

(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)

= 0 then the above

distributions µD,s are bounded measures, we set µD = µD,s∗ and
the integral is de�ned for all continuous characters
y ∈ Hom(Z∗p,C∗p) =: Yp.

Their Mellin transforms LµD(y) =
∫
Z∗p

ydµD, LµD : Yp → Cp,

give bounded p-adic analytic interpolation of the above L-values to
on the Cp-analytic group Yp; and these distributions are related by:∫
X
χdµD,s =

∫
X
χx s

∗−sdµ∗D, X = Z∗p, where s∗ = `− n, s∗ = n.

(iii) in the admissible case assume that

0 < h ≤ s∗ − s∗ + 1
2

=
`+ 1− 2n

2
, where

h = ordp

(
(
∏

q|p
∏n

i=1
tq,i )p

−n(n+1)
)
> 0, Then there exist

h�admissible measures µD whose integrals
∫
Z∗p
χx spdµD are given by

ip

(
Ap(s, χ)

D∗(s, f, χ)

Ωf

)
∈ Cp with Ap(s, χ) as in (i); their Mellin

transforms LD(y) =
∫
Z∗p

ydµD, belong to the type o(log xhp ).

(iv) the functions LD are determined by (i)-(iii).
Remarks.
(a) Interpretation of s∗: the smallest of the "big slopes" of PH

(b) Interpretation of s∗− 1: the biggest of the "small slopes" of PH .
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Eisenstein series and congruences (KEY POINT!)
The (Siegel-Hermite)Eisenstein series E (n)

2` (Z ) of weight 2`,
character det−`, is de�ned by
E

(n)
2` (Z ) =

∑
g∈Γ

(n)
K ,∞\Γ

(n)
K

(det g)`j(g ,Z )−2`. The series converges

absolutely for ` > n. De�ne the normalized Eisenstein series
E

(n)
2` (Z ) by E

(n)
2` (Z ) = 2−n

∏n
i=1

L(i − 2`, θi−1) · E (n)
2` (Z ) If

H ∈ Λn(O)+, then the H-th Fourier coe�cient of E(n)
2` (Z ) is

polynomial over Z in {p`−(n/2)}p, and equals

|γ(H)|`−(n/2)
∏

p|γ(H)

F̃p(H, p−`+(n/2)), γ(H) = (−DK )[n/2] detH.

Here, F̃p(H,X ) is a certain Laurent polynomial in the variables
{Xp = p−s ,X−1p }p over Z. This polynomial is a key point in
proving congruences for the modular forms in a Rankin-Selberg
integral.

Also, we set , for s ∈ C and a Hecke ideal character ψ mod c,

E (Z , s, `, ψ) =
∑

g∈C∞\C

ψ(g)(det g)`j(g ,Z )−2`|(det g)j(g ,Z )|−s .
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An integral representation of Rankin-Selberg type
The integral representation of Rankin-Selberg type in the Hermitian
modular case:
Theorem 4.1 (Shimura, Klosin), see [Bou16], p.13.
Let 0 6= f ∈M`(C , ψ)) of scalar weight `, ψ mod c, such that
∀a, f|T (a) = λ(a)f, and assume that 2` ≥ n, then there exists
T ∈ S+ ∩GLn(K ) and R ∈ GLn(K ) such that

Γ((s))ψ(det(T))Z(s + 3n/2, f, χ) =

Λc(s + 3n/2, θψχ) · C0〈f, θT(χ)E(s̄ + n, `− `θ, χρψ)〉C ′′ ,

where E(Z , s, `− `θ, ψ)C ′′ is a normalized group theoretic
Eisenstein series with components as above of level c′′ divisible by c,
and weight `− `θ. Here 〈·, ·〉C ′′ is the normalized Petersson inner
product associated to the congruence subgroup C ′′ of level c′′.

Γ((s)) = (4π)−n(s+h)Γιn(s + h), Γιn(s) = π
n(n−1)

2

n−1∏
j=0

Γ(s − j),

where h = 0 or 1, C0 a subgroup index.
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The Hodge polygon of the Hermitian zeta function
Starting from the Gamma factors of the standard Hermitian
L-function D(s, f, χ) let us describe the Hodge polygon for F = Q.
The explicit form of the Gamma factors of the standard Hermitian
L-function Z(s, f) was studied in (cf. [Shi00], p.179, [Ha97],
[Ha14], [Kl], [Bou16], [Ge16]), and that of D(s, f, χ) follows with
the Gamma factor

ΓD(s) = L∞(s, f, χ) =
n−1∏
j=0

ΓC(s − j)2,

with the symmetry s 7→ `− s.

These factors suggest the following form of the Hodge polygon of
D(s, f, χ) of rank d = 4n as that of the Hodge numbers hj ,w−j

below (in the increasing order of slopes j , with weight w = `− 1):

2 · (0, `− 1), . . . , 2 · (n − 1, `− n),

2 · (`− n, n − 1), . . . , 2 · (`− 1, 0),

following Serre's recipe [Se70], p.11.
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Geometric study in the p-ordinary case
This case corresponds to the coincidence of the Hodge polygon and
the Newton polygon, it was considered in [EHLS] using methods of
algebraic geometry and the theory of algebraic modular forms,
These methods use in�nite dimensional towers of spaces over Q̄
containing automorphic forms of all levels of type Npr , and their
specializations at CM-points on Shimra varieties.

On the other hand, the case p inert in K was studied in [Bou16],
based on methods in [CourPa].

The present method treats all p unrami�ed in K and coprime to
the level c of f; it is based on a modular construction of admissible
measures as sequences of zeta distributions via an integral
representation of Rankin-Selberg type. This method allows to
reduce consideration to congruences between Hermitian modular
forms of �xed level cp.
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Proof of the Main Theorem (ii): Kummer congruences
Let us se the notation Dalg

p (m, f, χ) = Ap(s, χ)
D∗(m, f, χ)

Ωf

The integrality of measures is proven representing D
alg
p (m, χ) as

Rankin-Selberg type integral at critical points s = m. Coe�cients
of modular forms in this integral satisfy Kummer-type congruences
and produce bounded measures µD whose construction reduces to
congruences of Kummer type between the Fourier coe�cients of
modular forms, see also [Bou16]. Suppose that we are given

in�nitely many "critical pairs" (sj , χj) at which one has an integral

representation Dalg
p (sj , f, χj) = Ap(s, χ)

〈f, hj〉
Ωf

with all

hj =
∑

T bj ,Tq
T ∈M in a certain �nite-dimensional space M

containing f and de�ned over Q̄. We prove the following
Kummer-type congruences:

∀x ∈ Z∗p,
∑
j

βjχjx
kj ≡ 0 mod pN =⇒

∑
j

βjD
alg
p (sj , f, χ) ≡ 0 mod pN

βj ∈ Q̄, kj = s∗ − sj , where s∗ = `− n in our case.

Computing the Petersson products of a given modular

form f(Z ) =
∑

H aHq
H ∈M∗(Q̄) by another modular form

h(Z ) =
∑

H bHq
H ∈M∗(Q̄) uses a linear form `f : h 7→ 〈f, h〉

〈f, f〉
de�ned over a sub�eld k ⊂ Q̄.

29



Admissible Hermitian case
Let f ∈ Sk(C ;ψ) be a Hecke eigenform for the congruence
subgroup C of level c. Let p be a prime of K prime to c, which is
inert over F . Then we say that f is pre-ordinary at p if there exists
an eigenform 0 6= f0 ∈M{p} ⊂ Sk(Cp, ψ) with Satake parameters
tp,i such that ∥∥∥∥∥

(
n∏

i=1

tp,i

)
N(p)−

n(n+1)
2

∥∥∥∥∥
p

= 1,

where ‖‖p the normalized absolute value at p.

The admissible case corresponds to

∥∥∥∥∥∥
∏

q|p

n∏
i=1

tq,i

 p−n(n+1)

∥∥∥∥∥∥
p

= p−h for a positive h > 0.

An interpretation of h as the di�erence h = PN,p(d/2)− PH(d/2)
comes from the above explicit relations.
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Existence of h-admissible measures
of Amice-Vélu-type gives an unbounded p-adic analytic
interpolation of the L-values of growth loghp(·), using the Mellin
transform of the constructed measures. This condition says that
the product

∏n
i=1

tp,i is nonzero and divisible by a certain power of
p in O:

ordp

∏
q|p

(
n∏

i=1

tq,i

)
p−n(n+1)

 = h.

We use an easy condition of admissibility of a sequence of modular
distributions Φj on X = OK ⊗ Zp with values in O[[q]] as in
Theorem 4.8 of [CourPa] and check congruences of the type

Uκv
( j∑
j ′=0

(
j

j ′

)
(−a0p)j−j

′
Φj ′(a + (pv )

)
∈ CpvjO[[q]]

for all j = 0, 1, . . . ,κh − 1. Here s = j ′ + s∗, Φj ′(a + (pv )) a
certain convolution, i.e.

Φj ′(χ) = θ(χ) · E(s, χ)

of a Hermitian theta series θ(χ) and an Eisenstein series E(s, χ)
with any Dirichlet character χ mod pr . We use a general su�cient
condition of admissibility of a sequence of modular distributions Φj

on X = Zp with values in O[[q]] as in Theorem 4.8 of [CourPa].
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Using algebraic and p-adic modular forms
There are several methods to compute various L-values starting
from the constant term of the Eisenstein series in [Se73],

Gk(z) =
ζ(1− k)

2
+
∞∑
n=1

σk−1(n)qn =
Γ(k)

(2πi)k
∑
(c,d)

′(cz+d)−k (fork ≥ 4),

and using Petersson products of nearly-holomorphic Siegel modular
forms and arithmetical automorphic forms as in [Shi00]:
the Rankin-Selberg method,
the doubling method (pull-back method).
A known example is the standard zeta function D(s, f , χ) of a
Siegel cusp eigenform f ∈ Skn(Γ) of genus n (with local factors of
degree 2n + 1) and χ a Dirichlet character.
Theorem (the case of even genus n ([Pa91], [CourPa]), via the
Rankin-Selberg method) gives a p-adic interpolation of the
normailzed critical values D∗(s, f , χ) using Andrianov-Kalinin
integral representation of these values 1 + n − k ≤ s ≤ k − n
through the Petersson product 〈f , θT0

δrE 〉 where δr is a certain
composition of Maass-Shimura di�erential operators, θT0

a
theta-series of weight n/2, attached to a �xed n × n matrix T0.
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Proof of the Main Theorem (iii): (admissible case)
Using a Rankin-Selberg integral representation for Dalg (s, f, χ) and
an eigenfunction f0 of Atkin's operator U(p) of eigenvalue αf on f0
the Rankin-Selberg integral of Fs,χ := θ(χ) · E(s, χ) gives

Dalg (s, f, χ) =
〈f0, θ(χ) · E(s, χ)〉

〈f, f〉
(the Petersson product on G = GU(ηn))

= α−v
f

〈f0,U(pv )(θ(χ) · E(s, χ))〉
〈f, f〉

= α−v
f

〈f0,U(pv )(Fs,χ)〉
〈f, f〉

.

Modication in the admissible case: instead of Kummer congruences,

to estimate p-adically the integrals of test functions: M = pv :∫
a+(M)

(x − a)jdDalg :=

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′
∫
a+(M)

x j
′
dDalg , using

the orthogonality of characters and the sequence of zeta
distributions∫
a+(M)

x jdDalg =
1

](O/MO)×

∑
χ mod M

χ−1(a)

∫
X
χ(x)x jdDalg ,∫

X χdD
alg
s−+j = Dalg (s∗ − j , f , χ) =:

∫
X χ(x)x jdDalg .
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Congruences between the coe�cients of the Hermitian
modular forms

In order to integrate any locally-analytic function on X , it su�ces
to check the following binomial congruences for the coe�cients of
the Hermitian modular form Fs∗−j ,χ =

∑
ξ v(ξ, s∗ − j , χ)qξ : for

v � 0, and a constant C

1
](O/MO)×

j∑
j ′=0

(
j

j ′

)
(−a)j−j

′ ∑
χ mod M

χ−1(a)v(pvξ, s∗ − j ′, χ)qξ

∈ CpvjO[[q]] (This is a quasimodular form if j ′ 6= s∗)

The resulting measure µD allows to integrate all continuous

characters in Yp = Homcont(X ,C∗p), including Hecke characters, as
they are always locally analytic.
Its p-adic Mellin transform LµD is an analytic function on Yp of the
logarithmic growth O(logh), h = ordp(α).
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Proof of the main congruences
Thus the Petersson product in `f can be expressed through the
Fourier coe�cients of h in the case when there is a �nite basis of
the dual space consisting of certain Fourier coe�cients:
`Ti : h 7→ bTi (i = 1, . . . , n). It follows that `f(h) =

∑
i γibTi , where

γi ∈ k .
Using the expression for `f (hj) =

∑
i γi ,jbj ,Ti , the above

congruences reduce to∑
i ,j

γi ,jβjbj ,Ti ≡ 0 mod pN .

The last congruence is done by an elementary check on the Fourier
coe�cients bj ,Ti .
The abstract Kummer congruences are checked for a family of test
elements.
In the admissible case it su�ces to check binomial congruences for
the Fourier coe�cients as above in place of Kummer congruences.
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Appendix A. Rewriting the local factor at p with character θ
Notice that if θ is the quadratic character attached to K/Q then

(1−αpX )(1−αpθ(p)X ) =


(1− αpX )2 if θ(p) = 1, pr = q1q2,N(qi ) = p,

(1− α2pX 2), if θ(p) = −1, pr = q,N(q) = p2,

(1− αpX ) if θ(p) = 0, pr = q2,N(q) = p.

Thus, if X = p−s , X 2 = p−2s , N(q) = p, Zq(X )−1

=


∏

2n
i=1

(1− N(q1)2nt−1q1q2,i
X )(1− N(q2)−1tq1q2,iX ), if θ(p) = 1,∏n

i=1
(1− N(q)n−1tq,iX

2)(1− N(q)nt−1q,i X
2), if θ(p) = −1,∏n

i=1
(1− N(q)n−1tq,iX )(1− N(q)nt−1q,i X ), if θ(p) = 0.

=


∏n

i=1
(1− γp,iX )2

∏n
i=1

(1− δp,iX )2 if θ(p) = 1, i.e. pr = q1q2,∏n
i=1

(1− α2p,iX 2)
∏n

i=1
(1− β2p,iX 2), if θ(p) = −1, i.e. pr = q,∏n

i=1
(1− α′p,iX )

∏n
i=1

(1− β′p,iX ) if θ(p) = 0, i.e. pr = q2,

where α′p,i = pn−1tq,i , β′p,ip
nt−1q,i , γp,i = p2nt−1q1q2,i

, p−1tq1q2,i . It

follows that
∏

q|p Zq(N(q)−n−(1/2)X ) = X 4n + · · ·
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Appendix A (continued).Relations between αi(p) and ti ,q
were studied and explained by M.Harris [Ha97] for general
Hermitian zeta functions Z(s, f) of type introduced in [Shi00],
using reprsentation theory of unitary groups and Deligne's approach
to L-functions, see [De79], in terms of a n-dimensional Galois
representations ρλ : Gal(K̄/K ) −→ GL(Mf,λ) ∼= GLn(Eλ) over a
completion Eλ of a number �eld E containing K and the Hecke
eigenvalues of a vector-valued Hermitian modular form f:

Z(s − n′ − 1
2
, f) = D(s, f) = L(s,Mf,λ �M(ψ))

for an algebraic Hecke ideal character ψ as above of the in�nity
type mψ, see [GH16], p.20. Here the symbol L(s,Mf,λ �M(ψ))
denotes the Rankin-Selberg type convolution (it corresponds to
tensor product of Galois representations). Notice that L(s,Mf,λ) is
of degree 2n, and L(s,Mf,λ �M(ψ)) is of degree 4n because
L(s, ψ) = L(s,R(ψ)) is of degree 2.
Moreover, M.Harris suggested a general description of D(s) with
given Gamma factors and analytic properties as some D(s, f) some
under natural conditions on Gamma factors, giving higher versions
of Shimura-Taniyama-Weil conjecture (i.e. higher Wiles' modularity
theorem). This can be stated also over a totally real �eld F
(instead of Q), and its quadratic totally imaginary extension K , see
[GH16], [Pa94].
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Appendix B. Shimura's Theorem: algebraicity of critical
values in Cases Sp and UT, p.234 of [Shi00]

Let f ∈ V(Q̄) be a non zero arithmetical automorphic form of type
Sp or UT. Let χ be a Hecke character of K such that
χa(x) = x`a|xa|−` with ` ∈ Za, and let σ0 ∈ 2−1Z. Assume, in the
notations of Chapter 7 of [Shi00] on the weights kv , µv , `v , that

Case Sp 2n + 1− kv + µv ≤ 2σ0 ≤ kv − µv ,
where µv = 0 if [kv ]− lv ∈ 2Z
and µv = 1 if [kv ]− lv 6∈ 2Z; σ0 − kv + µv

for every v ∈ a if σ0 > n and

σ0 − 1− kv + µv ∈ 2Z for every v ∈ a if σ0 ≤ n.

Case UT 4n − (2kvρ + `v ) ≤ 2σ0 ≤ mv − |kv − kvρ − `v |
and 2σ0 − `v ∈ 2Z for every v ∈ a.
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Appendix B. Shimura's Theorem (continued)
Further exclude the following cases

(A) Case Sp σ0 = n + 1,F = Q and χ2 = 1;

(B) Case Sp σ0 = n + (3/2),F = Q;χ2 = 1 and [k]− ` ∈ 2Z
(C) Case Sp σ0 = 0, c = g and χ = 1;

(D) Case Sp 0 < σ0 ≤ n, c = g, χ2 = 1 and the conductor of χ is g;

(E) Case UT 2σ0 = 2n + 1,F = Q, χ1 = θ, and kv − kvρ = `v ;

(F) Case UT 0 ≤ 2σ0 < 2n, c = g, χ1 = θ2σ0 and the conductor of χ is r

Then
Z(σ0, f, χ)/〈f, f〉 ∈ πn|m|+dεQ̄,

where d = [F : Q], |m| =
∑

v∈amv , and

ε =


(n + 1)σ0 − n2 − n, Case Sp, k ∈ Za, and σ0 > n0),

nσ0 − n2, Case Sp, k 6∈ Za, orσ0 ≤ n0),

2nσ0 − 2n2 + n Case UT

Notice that πn|m|+dε ∈ Z in all cases; if k 6∈ Za, the above parity
condition on σ0 shows that σ0 + kv ∈ Z, so that n|m|+ dε ∈ Z.39



Appendix C. Examples of Hermitian cusp forms
The Hermitian Ikeda lift, [Ike08]. Assume n = 2n′ even.

Let f (τ) =
∞∑

N=1

a(N)qN ∈ S2k+1(Γ0(DK ), χ) be a primitive form,

whose L-function is given by

L(f , s) =
∏
p 6 |DK

(1− a(p)p−s + θ(p)p2k−2s)−1
∏
p|DK

(1− a(p)p−s)−1.

For each prime p 6 | DK , de�ne the Satake parameter
{αp, βp} = {αp, θ(p)α−1p } by

(1− a(p)X + θ(p)p2kX 2) = (1− pkαpX )(1− pkβpX )

For p|DK , we put αp = p−ka(p). Put

A(H) = |γ(H)|k
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

F (H) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ H2n.
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Appendix C (continued).The �rst theorem (even case)
Theorem 5.1 (Case E) of [Ike08] Assume that n = 2n′ is
even. Let f (τ), A(H) and F (Z ) be as above. Then we have

F ∈ S2k+2n′(Γ
(n)
K , det−k−n

′
).

In the case when n is odd, consider a similar lifting for a normalized

Hecke eigenform n = 2n′ + 1 is odd. Let f (τ) =
∞∑

N=1

a(N)qN

∈ S2k(SL2(Z)) be a primitive form, whose L-function is given by

L(f , s) =
∏
p

(1− a(p)p−s + p2k−1−2s)−1.

For each prime p, de�ne the Satake parameter {αp, α
−1
p } by

(1− a(p)X + p2k−1X 2) = (1− pk−(1/2)αpX )(1− pk−(1/2)α−1X ).

Put

A(H) = |γ(H)|k−(1/2)
∏

p|γ(H)

F̃p(H;αp),H ∈ Λn(O)+

F (H) =
∑

H∈Λn(O)+

A(H)qH ,Z ∈ Hn.
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Appendix C (continued). The second theorem (odd case)
Theorem 5.2 (Case O) of [Ike08]. Assume that n = 2n′ + 1
is odd. Let f (τ), A(H) and F (Z ) be as above. Then we have

F ∈ S2k+2n′(Γ
(n)
K , det−k−n

′
).

The lift Lift(n)(f ) of f is a common Hecke eigenform of all Hecke
operators of the unitary group, if it is not identically zero (Theorem
13.6).

Theorem 18.1 of [Ike08]. Let n, n′, and f be as in Theorem
5.1 or as in Theorem 5.2. Assume that Lift(n)(f ) 6= 0. Let
L(s, Lift(n)(f ), st) be the L-function of Lift(n)(f) associated to
st : LG→ GL4n(C). Then up to bad Euler factors,
L(s, Lift(n)(f ), st) is equal to

n∏
i=1

L(s + k + n′ − i +
1
2
, f )L(s + k + n′ − i +

1
2
, f , θ).

Moreover, the 4n charcteristic roots of L(s, Lift(n)(f ), st) given as
follows: for i = 1, · · · , n

αpp
−k−n′+i− 1

2 , α−1p p−k−n
′+i− 1

2 , θ(p)αpp
−k−n′+i− 1

2 , θ(p)α−1p p−k−n
′+i− 1

2
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Functional equation of the lift (thanks to Sho Takemori!)
There are two cases [Ike08]: the even case (E) and the odd case (O):
f ∈ S2k+1(Γ0(D), θ),F = Lift(n)(f ) (E )

(the lift is of even degree n = 2n′ and of weight 2k + 2n′)

f ∈ S2k(SL(Z)),F = Lift(n)(f ) (O)

(the lift is of odd degree n = 2n′ + 1 and of weight 2k + 2n′).
Then, up to bad Euler factors, the standard L-function of
F = Lift(n)(f ) is given by∏n

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ)

=



∏
2n′

i=1
L(s + k + n′ − i + 1

2
, f )L(s + k + n′ − i + 1

2
, f , θ) (E )∏n′

i=1
L(t(s, i), f )L(t(s, 2n′ + 1− i), f )

L(t(s, i), f , θ)L(t(s, 2n′ + 1− i), f , θ)∏
2n′+1

i=1
L(s + k + n′ − i + 1

2
, f )

×L(s + k + n′ − i + 1

2
, f , θ) (O)

= L(s + k − 1

2
, f )L(s + k − 1

2
, f , θ)∏n′

i=1
L(t(s, i), f )L(t(s, 2n′ + 2− i), f )

L(t(s, i), f , θ)L(t(s, 2n′ + 2− i), f , θ)

where t(s, i) = s + k + n′ − i + 1

2
.

43



The Gamma factor ΓZ(s) of Ikeda's lift
In the even case since (2k + 1)− t(s, i) = t(1− s, 2n′ + 1− i),
using the Hecke functional equation in the symmetric terms of the
product, gives the functional equation of the standard L function of
the form s 7→ 1− s, and the gamma factor is given by

n∏
i=1

ΓC(s + k + n′ − i + 1/2)2 = ΓD(s + n′ +
1
2

).

In the odd case when f ∈ S2k(SL2(Z)), the lift is of degree
n = 2n′ + 1 and of weight 2k + 2n′. By 2k − t(s, i) =
t(1− s, 2n + 2− i), the standard L functions has functional
equation of the form s 7→ 1− s and the gamma factor is the same.
Hence the Gamma factor of Ikeda's lifting, denoted by f, of an
elliptic modular form f and used as a pattern, extends to a general
(not necessarily lifted) Hermitian modular form f of even weight `,
which equals in the lifted case to ` = 2k + 2n′, where
k = (`− 2n′)/2 = `/2− n′=`/2− n′, when the Gamma factor of
the standard zeta function with the symmetry s 7→ 1− s becomes
(see p.43)

∏n
i=1

ΓC(s + `/2− n′ + n′ − i + (1/2))2 =∏n
i=1

ΓC(s + `/2− i + (1/2))2 =
∏n−1

i=0
ΓC(s + `/2− i − (1/2))2.
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Thanks for your attention!

Many thanks to Athanasios BOUGANIS for his invitation to a
two days workshop entitled "Arithmetic of automorphic forms
and special L-values" at Durham University, on Monday 26th
and Tuesday 27th of March 2018, to Siegfried Boecherer
(Mannheim), Sho Takemori (MPIM) and Emmanuel Royer
(University Clermont Auvergne) for valuable discussions and
observations.
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