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PREFACE 

A preliminary idea of writing the present book was formed when I gave the Prank 
J. Hahn lectures at Yale University in March, 1992. The title of the lectures was 
"Differential operators, nearly holomorphic functions, and arithmetic." By "arith
metic" I meant the arithmeticity of the critical values of certain zeta functions, and 
I talked on the results I had on GL2 and GL2

 x GL2. At that time the American 
Mathematical Society wrote me that they were interested in publishing my lectures 
in book form, but I thought that it would be desirable to discuss similar problems 
for symplectic groups of higher degree. Though I had satisfactory theories of differ
ential operators and nearly holomorphic functions applicable to higher-dimensional 
cases, our knowledge of zeta functions on such groups was fragmentary and, at any 
rate, was not sufficient for discussing their critical values. Therefore I spent the 
next few years developing a reasonably complete theory, or rather, a theory ade
quate enough for stating general results of arithmeticity that cover the cases of all 
congruence subgroups of a symplectic group over an arbitrary totally real number 
field, including the case of half-integral weight. 

On the other hand, I had been interested in arithmeticity problems on unitary 
groups for many years, and in fact had investigated some Eisenstein series on them. 
Therefore I thought that a book including the unitary case would be more appealing, 
and I took up that case as a principal topic of my NSF-CBMS lectures at the 
Texas Christian University in May, 1996. The expanded version of the lectures was 
eventually published by the AMS as "Euler products and Eisenstein series." 

After this work, I felt that the time was ripe for bringing the original idea to 
fruition, which I am now attempting to do in this volume. To a large extent the 
present book may be viewed as a companion to the previous one just mentioned, 
and our arithmeticity concerns that of the Euler products and Eisenstein series 
discussed in it; I did not include the cases of GL2 and GL2 x GL2. Those cases are 
relatively well understood, and it is my wish to present something new. Though the 
arithmeticity in that sense is the main new feature, as will be explained in detail in 
the Introduction, I have also included some basic material concerning arithmeticity 
of modular forms in general, and also a treatment of analytic properties of zeta 
functions and Eisenstein series on symplectic groups which were not discussed in 
the previous book. 

It is a pleasure for me to express my thanks to Haruzo Hida, who read the 
manuscript and contributed many useful suggestions. 

Princeton 
February, 2000 Goro Shimura 

Vll 
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N O T A T I O N A N D T E R M I N O L O G Y 

We denote by Z, Q, R, and C the ring of rational integers, the fields of rational 
numbers, real numbers, and complex numbers, respectively. We put 

T = { z e C | |z| = l } . 

We denote by Q the algebraic closure of Q in C, and for an algebraic number 
field K we denote by K"ab the maximum abelian extension of K. If p is a rational 
prime, Zp and Qp denote the ring of p-adic integers and the field of p-adic numbers, 
respectively. 

For an associative ring R with identity element and an .R-module M we denote 
by Rx the group of all its invertible elements and by M™ the i£-module of all 
m x n-matrices with entries in M; we put Mm — M™ for simplicity. Sometimes an 
object with a superscript such as Gn in Section 23 is used with a different meaning, 
but the distinction will be clear from the context. For x e R™ and an ideal a of 
R we write x -< a if all the entries of x belong to a. (There is a variation of this; 
see §1.8.) 

The transpose, determinant, and trace of a matrix x are denoted by tx, det(x), 
and tr(x). The zero element of R™ is denoted by 0™ or simply by 0, and the identity 
element of R™ by l n or simply by 1. The size of a zero matrix block written simply 
0 should be determined by the size of adjacent nonzero matrix blocks. We put 
GL n (#) = ( i ^ ) x , a n d 

SLn(R) = { a e GLn(R) | det(a) = 1 } 

if R is commutative. If x i , . . . , xr are square matrices, diag[xi, . . . , xr] denotes 
the matrix with 

1 ? • • • , **•>f 1XJL the diagonal blocks and 0 in all other blocks. We 
shall be considering matrices x with entries in a ring with an anti-automorphism 
p (complex conjugation, for example), including the identity map. We then put 
x* ~ lxp, and x = (x*)_ 1 if x is square and invertible. 

For a complex number or more generally for a complex matrix a we denote by 
Re(a), Im(a), and a the real part, the imaginary part, and the complex conjugate 
of a. For complex hermitian matrices x and y we write x > y and y < x if x — y 
is positive definite, and x > y and y < x if x - y is nonnegative. For r G R we 
denote by [r] the largest integer < r. 

Given a set A, the identity map of A onto itself is denoted by id^ or 1^. To 
indicate that a union X = (J i G / Yi is disjoint, we write X = [JieI 5^. We understand 
that nf=Q = 1 a n d Ef=a = 0 if a > /?. For a finite set X we denote by # X or 
# ( X ) the number of elements in X. If H is a subgroup of a group G, we put 
[G : H] = #{G/H). However we use also the symbol [K : F] for the degree 

IX 



X NOTATION AND TERMINOLOGY 

of an algebraic extension K of a field F. The distinction will be clear from the 
context. By a Hecke character % of a number field K we mean a continuous T-
valued character of the idele group of K trivial on Kx, and denote by x* the ideal 
character associated with x- By a CM-Geld we mean a totally imaginary quadratic 
extension of a totally real algebraic number field. 



INTRODUCTION 

Our ultimate aim is to prove several theorems of arithmeticity on the values of 
an Euler product Z(s) and an Eisenstein series E(z, s) at certain critical points s. 
We take these Z and E to be those of the types we treated in our previous book 
"Euler Products and Eisenstein Series," referred to as [S97] here. They are defined 
with respect to an algebraic group G, which is either symplectic or unitary. To 
illustrate the nature of our problems, let us take a CM-field K and put 

(0.1) G{<p) =G* = {ae GLn{K) \ ap • ' a ' = <p}9 

where p denotes complex conjugation and ip is an element of GLn(K) such that 
tpP = ip. This group acts on a hermitian symmetric space which we write 3^- We 
shall often be interested in the special case where if takes the form 

(0.2) ^ = [ ° o']-
In this case we write Hq, or simply W, instead of 3 ^ for the symmetric space. 

Given a congruence subgroup r of G, a Hecke eigenform f of holomorphic type 
on y with respect to I"1, and a Hecke character \ of K of algebraic type, but not 
necessarily of finite order, we can construct a "twisted Euler product" Z(s, f, x)> 
whose generic Euler p-factor for each rational prime p has degree n[K : Q]. Then 
we shall eventually prove that 

(0.3) Z K , f , x ) G T £ q ( f , f ) Q 

for <To in a certain finite subset of 2 _ 1 Z and Q-rational f. Here (f, f) is the inner 
product defined in a canonical way; e is an integer determined by cro, the signature 
of y?, the weight of f, and the archimedean factor of \\ q is a certain "period 
symbol" determined by \ and (p. This is true for both isotropic and anisotropic 
<p, and even for a totally definite cp. In the simplest case in which G = G1, we 
have q = 1. 

Clearly such a result requires the definition of Q-rationality of automorphic 
forms. If G is of type G77, then we can define the Q-rationality by the Q-rationality 
of the Fourier coefficients of a given automorphic form. If [K : Q] = 2, for example, 
then H is a tube domain of the form H = { z € C^ \i{z* — z) > 0 } , and a 
holomorphic automorphic form / has an expansion 

(0.4) f(z) = Zh<h)exp(2m-tT(hz)) (zeH) 

with c(h) € C, where h runs over all nonnegative hermitian matrices belonging to a 
Z-lattice in K%. Then for a subfield M of C we say that / is M-rational if c(h) e M 
for every h. This definition may look simplistic, but actually it is intrinsically the 
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2 INTRODUCTION 

right definition. To explain about this point, we first note that J T \ 3 ^ has a structure 
of algebraic variety that has a natural model W defined over Q. We call then a J1-
automorphic function (that is, T-invariant meromorphic function on 3^ satisfying 
the cusp condition) Q-rationai (or arithmetic) if it corresponds to a Q-rational 
function on W in the sense of algebraic geometry. Now there are two basic facts: 

(0.5) The value of a Q-rational automorphic function at any CM-point of3^, if 
finite, is algebraic. 

(0.6) If f and g are Q-rational automorphic forms of the same weight, then f/g 
is a Q-rational automorphic function. 

Here a CM-point on y is defined to be the fixed point of a certain type of torus 
contained in G. If G = G71 and q = 1, then H is the standard upper half plane, 
and any point of H belonging to an imaginary quadratic field is a CM-point and 
vice versa. In such a special case, (0.5) and (0.6) follow from the classical theory of 
complex multiplication of elliptic modular functions. In more general cases, (0.5) 
was established by the author in the framework of canonical models. As for (0.6), 
it makes sense if G = G71, and we can indeed give a proof, if nontrivial, of (0.6) in 
such a case. For cp of a more general type, however, (0.6) is a meaningful statement 
only when we have defined the Q-rationality of automorphic forms. Thus it is one 
of our main tasks to define the notion so that (0.6) holds. 

Turning our eyes to Eisenstein series, easily posable questions are as follows: 
(i) Assuming that E(z, <70) is finite, is E(z, <70) as a function of z holomorphic? 
(ii) If that is so, is it Q-rational up to a well-defined constant? 

Here we take meromorphic continuation of E(z, s) to the whole s-plane, as we 
proved in [S97], into account. Every researcher of automorphic forms should be 
able to accept such questions naturally, since the answers to them for G — SL2(Q) 
are well-known and fundamental. There is a marked difference between the Q-
rationality here and the arithmeticity of Z{GQ), since the latter concerns cro in 
an interval which can be large, while E(z, do) can be holomorphic in z only at a 
single point CTQ. NOW the interval, or rather the set of critical points belonging to 
the interval, is suggested by the functional equation for Z, and we can find such a 
set even for E(z, s) by means of its analytic properties. We cannot expect E(z, a0) 
to be holomorphic in z for every critical point <70 in the set. We should also note 
a classical example in the elliptic modular case: 

(0.7) (-47T2)-1 Urn Y, {cz + d)-2\cz + d\~s 

S _ > 0#(c ,d)GZ 2 

oo , 

= ( 4 7 r y ) - 1 - 1 2 - 1 + 2 ^ f ^ a 
n = l ^ a\n 

This is a nonholomorphic modular form of weight 2, and there are similar non-
holomorphic forms of weight (n -f 3)/2 with respect to a congruence subgroup of 
Sp(n, Z). Therefore our next questions are: 

(iii) What is the analytic nature of these E(z, cr0) ? 
(iv) Can we still speak of the Q-rationality of such E(z, <J$)? 

One of the main purposes of this book is to answer these questions, which are not 
only meaningful by themselves, but also closely connected with the arithmeticity of 

I 2-Kinz 
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INTRODUCTION 3 

Z(ao). In fact, the answers to (iii) and (iv) are indispensable for the proof of (0.3) 
as we shall explain later, but first let us describe our answers. 

We first define the notion of nearly holomorphic function on any complex mani
fold with a fixed Kahler structure. Without going into details in the general case, 
let us just say that a function on such a manifold 3 is called nearly holomorphic 
if it is a polynomial of some functions n , . . . , rm on 3, determined by the Kahler 
structure, over the ring of all holomorphic functions on 3- If 3 is the above H 
of tube type with a G-invariant Kahler structure, then the ri are the entries of 
(z* — z ) - 1 , where z is a variable matrix on H. If 3 is a hermitian symmetric space, 
there is also a characterization of such functions in terms of the Lie algebra of the 
transformation group on 3-

Now we can naturally define nearly holomorphic automorphic forms by replacing 
holomorphy by near holomorphy in the definition of automorphic forms. If G = G77, 
then such a form / on H has an expansion 

(0.8) f(z) = EhPhiM** - z)}-1) exp (27Ti . tr(hz)) (z e H), 

where J2h *s t n e s a m e as m (0-4) and PhiX) is a polynomial function in the entries 
of Y whose degree is less than a constant depending on / . We say that / is 
M-rational if ph has all its coefficients in a field M for every h. For example, 
the function of (0.7) is a Q-rational nearly holomorphic modular form. We shall 
show that E(z, do) is indeed nearly holomorphic and Q-rational in this sense, up 
to a constant, which is a power of TT if G = G71. Moreover, here is a noteworthy 
consequence of our definition: 

(0.9) If f and g are Q-rational nearly holomorphic automorphic forms of the same 
weight, then the value of f/g at any CM-point ofH, if finite, is algebraic. 

It should be noted that this is anything but a direct consequence of (0.6). Also, for a 
general type of <p we cannot use (0.8). However, once we have the Q-rationality of 
holomorphic automorphic forms, we can at least define the Q-rationality of nearly 
holomorphic automorphic forms by property (0.9), though it is of course nontrivial 
to show that such a definition is indeed meaningful. So far we have taken G to be 
unitary, but the symplectic case can be handled too; in fact it is similar to and easier 
than G77, though the case of half-integral weight requires special consideration. 

Having thus presented our problems in rough forms, we can now set our program 
as follows: 

(1) We first define the Q-rationality of automorphic forms so that (0.6) holds. 
(2) We define nearly holomorhic automorphic forms and their Q-rationality so 

that (0.9) holds. _ 
(3) We prove the near holomorphy and Q-rationality of E(z, &o) up to a power of 

ix in the easiest cases, namely, when G is symplectic or of type G77, and E is defined 
with respect to a parabolic subgroup whose unipotent radical is a commutative 
group of translations on H. Let us call such an E a series of split type. 

(4) We prove (0.3) by using the result of (3). 
(5) Finally we prove the near holomorphy and Q-rationality of E(z, ao) up to a 

well-defined constant in the most general case. 
Let us now briefly describe the technical aspect of how these can be achieved. 

One important point is that certain differential operators on H are essential to 
(2) and (3). In the above we tacitly assumed that our automorphic forms are 



4 INTRODUCTION 

scalar-valued, but in order to use differential operators effectively, it is necessary to 
consider vector-valued forms. If [K : Q] = 2 and G = G(r]q), such a form is defined 
relative to a representation {p, X} of a group 

& = { (a, 6) G GL9(C) x GLq(C) | det(a) = det(6) }, 

where X is a finite-dimensional complex vector space and p is a rational rep
resentation of ^ into GL(X). Put T = C^ and view it as a global holomor-
phic tangent space of Hq; define a representation {p ® r, Hom(T, X)} of ^ by 
[(p® r)(a, b)h] (u) = p(a, b)h{laub) for (a, 6) G J?, h G Hom(T, X), and ueT. For 
a function # :H —> X we define Hom(T, X)-valued function £)# and Z}p# on W by 

(^s)(«) = EL=i «« W*« (« e r), 
(Dpg)(z) = p(H(z))-1D[p(E(z))g(z)}, 

where z = {zij)(fj=1 G H and H : H —> £ is defined by S"(z) = (i(z—*z), i(z* — z)). 
These can also be defined on 3^ for (p of a general type. Then we can show that 
if g is an automorphic form of weight p, then Dpg is a form of weight p ® r. If 
<7=1, then H is the standard upper half plane, G7? n SL2(K) = SL2(Q), £ = C x , 
p(a) = a*1 for a G C x with A: G Z, and H(z) = (2y, 2y) where y = Im(z); we can 
easily identify D# with dg/dz, so that D^g = y~k(d/dz)(ykg), and (p 0 T)(G) = 
flfc+2 Thus Dp is the well-known operator that sends a form of weight k to a form 
of weight k + 2. 

Now iteration of operators of this type, such as Dp®TDp, produces an automor
phic form with values in a representation space of ^ of a large dimension if q > 1, 
even if we start with X — C. Decomposing the space into irreducible subspaces and 
looking particularly at the irreducible subspaces of dimension one, we can define 
a natural differential operator A that sends scalar-valued automorphic forms to 
scalar-valued forms of increased weight. The significance of these iterated opera
tors and A are explained by the following fact, which is formulated only for A for 
simplicity: 

(0.10) If A is of total degree p in terms of d/dzij, then TT~PA preserves near 
holomorphy and (^-rationality. 

If G = G77, this can be derived from our definition in terms of expression (0.8). Now 
property (0.9), if true, would imply that for a Q-rational holomorphic automorphic 
forms / and g such that Af and g have the same weight, the value of (n~~pAf)/g 
at any CM-point, if finite, is algebraic. This is highly nontrivial, and in fact we 
first prove this special case of (0.9), and derive the general case from that result. 

As for problem (3), we first investigate the Fourier expansion of E(z, s) of split 
type. In fact, this was done in [S97], but here we examine the behavior of the 
Fourier coefficients at a critical value of 5. Employing their explicit forms, we find 
that E(z, a) is holomorphic in z and Q-rational, or is of the type (0.7), if the 
weight of E and a belong to certain special types. For a more general weight and 
a general <70, we prove that cE(z, ao) = AEf(z, a) with a suitable A, a nonzero 
constant c, and a suitable E' belonging to those special types. Then (0.10) settles 
problem (3) for E(z, a0). 

To treat problems (4) and (5), let us now go back to the Euler product Z(s, f, x) 
of (0.3) on G^; we refer the reader to [S97] for its precise definition. We consider 
G^ with ip = diag[</?, 77], where 77 is as in (0.2). Then G^ x G71 can be embedded 



INTRODUCTION 5 

in G^, and G^ has a parabolic subgroup whose reductive factor is G* x GLq(K). 
Given a suitable congruence subgroup JT" of G^, we can define an Eisenstein series 
E{z, s; f, x) for (z, s) G 3 ^ x C with respect to that parabolic subgroup and the 
set of data (f, x> -O- Now w e easily s e e that diag[?/>, —<p] is equivalent to rjn+q, 
so that G^ x G^ can be embedded into G{r)n+q), and 3 ^ x 3^ can be embedded 
into Hn+q. Pulling back an Eisenstein series on Hn+q of split type to 3^ x 3^ , we 
obtain a function H(z, w\ s) of (z, w; s) G 3^ x 3^ x C, with which we proved in 
[S97] an equality that takes the form 

(0.11) c(s)Z(s, f, x)E(*> «; f, X) = A(s) / H{z, w; s)f(w)6(w)mdw 

in the simplest case, where f is a congruence subgroup of G^, c is an easy product 
of gamma functions, A is a product of some L-functions, dw is a G9-invariant 
measure on 3 ^ , and 6(w)rn is a factor, similar to yk in the one-dimensional case, 
that makes the integral meaningful. If \j) = <p, then (0.11) takes the form 

(0.12) c\s)Z{s, f, x)f (*) = A'(s) f H\z, w; s)f(w)6(w)mdw. 

We evaluate (0.11) and (0.12) at s = ao for ao belonging to a certain "critical 
set," and observe that H(z, w; cr0) is nearly holomorphic in (z, w) G 3^ x 3*\ and 
even Q-rational up to a power of n and a factor q as in (0.3). Then we can show 
that 

A(a0)H{z, w\ a0) = waqY^gi{z)hi(w) 
i 

with some a G Z, and functions gi on 3 ^ and hi on 3^» which are nearly holo
morphic and Q-rational. The same is true for A'if7; both gi and /î  are defined 
on 3^ then. This fact applied to (0.12) produces a proportionality relation 

Z(<70, f, x ) € 7 r ^ q ( p , , f ) Q 

with some /? G Z and a Q-rational nearly holomorhic p ' . Now we can show that 
Z{s, f, x) ^ 0 for Re(s) > 3^/2 if G = G(7y9) and for Re(s) > n if G = G^ with y> 
of a general type. There is one more crucial technical fact that we can replace p ' by 
a Q-rational holomorphic cusp form p that belongs to the same Hecke eigenvalues 
as f. Choosing a0 so that Z(CF0, f, x) ¥" 0? we can show that (p , f) / (f, f) G Q, 
and eventually (0.3) for <7o belonging to an appropriate set. Strictly speaking, 
(0.12) is true only under a consistency condition on (f, x)> and the proof of (0.3) 
in the most general case is more complicated. 

Next, we evaluate (0.11) at a critical CTQ in a similar way, to find that 

Z(s 0 , f, x)E(z, cro; f, x) = ^ q (r , f ) g(z) 

with some Q-rational nearly holomorphic function g on 3 ^ and some r of the 
same type as the above p . Dividing this equality by (f, f) and employing (0.3), 
we obtain the desired near holomorphy and Q-rationality of E(z, ao; f, x)> which 
is the final main result of this book. 

Since the title of each section can give a rough idea of its contents, we shall not 
describe them here for every section. However, there are some points which are not 
discussed in the above, and on which special attention may be paid. Let us note 
here some of the noteworthy aspects. 



6 INTRODUCTION 

(A) As to the arithmeticity of automorphic forms, we stated only (0.6) as a basic 
requirement. However, there are other natural questions about arithmeticity whose 
answers become necessary in various applications. Let us mention here only a few 
facts we shall prove in this connection: (i) all automorphic forms are spanned by the 
Q-rational forms; (ii) the group action (defined relative to a fixed weight) preserves 
Q-rationality; (iii) in these statements Q can be replaced by a smaller field such as 
Q or Qab if the group and the weight are of special types. 

(B) In Sections 19 through 25 we give a detailed treatment of Z{s, f, x) a n ( i 
E(z, s; f, x) in the symplectic case, as well as in the case G = G77. These cases 
were mentioned but not discussed in detail in the previous book [S97]. Also, in 
the symplectic case we can define Z and E even with respect to a half-integral 
weight, and we believe that the subject acquires the status of a complete theory 
only when that case is included. Therefore in this book we treat both integral and 
half-integral weights, and present the main results for both, though at a few points 
the details of the proof for a half-integral weight are referred to some papers of the 
author. 

(C) We have spoken of a CM-point, which is naturally related to an abelian 
variety with complex multiplication. Thus it is necessary to view r \ ^ as a space 
parametrizing a family of abelian varieties. This will be discussed in Sections 4 and 
6. The topic was treated in [S98], but we prove here something which was not fully 
explained in that book. Namely, in Section 9, we prove the reciprocity-law for the 
value of an automorphic function at a CM-point, when J T \ 3 ^ is associated with a 
PEL-type. 

(D) In the elliptic modular case it is well-known that the space of all holomor-
phic modular forms is the direct sum of the space of cusp forms and the space 
of Eisenstein series. In Section 27 we prove several results of the same nature for 
symplectic and unitary groups. For example, we show that the orthogonal comple
ment of the space of cusp forms in the space of all holomorphic automorphic forms 
is spanned by certain Eisenstein series, and the direct sum decomposition can be 
done Q-rationally. This will be proven for the weights with which the series are 
defined beyond the line of convergence. 

(E) Though we are mainly interested in the higher-dimensional cases, in Section 
18 we give an elementary theory of Eisenstein series in the Hilbert modular case, 
which leads to arithmeticity results on the critical values of an //-function of a CM-
field. Also, in the Appendix we include some material of expository nature such 
as theta functions of a quadratic form and the estimate of the Fourier coefficients 
of a modular form. Many of them are well-known when the group is 5Z/2(Q) or 
even Sp(ny Q) for some statements, but the researchers have often had difficulties 
in finding references for the results on a more advanced level. Therefore we have 
expended conscious efforts in treating such standard topics in a rather general 
setting. 



CHAPTER I 

AUTOMORPHIC FORMS A N D 
FAMILIES OF ABELIAN VARIETIES 

1. Algebraic preliminaries 

1.1. The algebraic or Lie groups we treat in this book are symplectic and unitary, 
and the hermitian symmetric domains associated with them belong to Types A and 
C. Our methods are in fact applicable to groups and domains of other types, but it 
is naturally cumbersome to treat all cases. Therefore, in order to keep the book a 
reasonable length, we confine ourselves to those two types, though at some points 
we shall indicate that other cases can be handled in a similar way by citing relevant 
papers. 

We take a basic field F of characteristic different from 2 and a couple (K, p) 
consisting of an F-algebra K of rank < 2 and an F-linear automorphism p of K 
belonging to the following three types: 

(I) K = F and p = idF ; 
(II) K is a quadratic extension of F and p is the generator of Gal(K/F); 
(III) i^ = F x F a n d (x, y)p = (y, x) for (x, y) G F x F. 

In our later discussion, objects of type (III) will appear as the localizations of the 
global objects of type (II). 

Given left if-modules V and W, we denote by Hom(W, V; K) the set of all K-
linear maps of W into V. We then put End(V, K) = Hom(V, V] K), GL(V, K) = 
End(y, K)x, and SX(V, K) = { a G GL(V, K) | det(a) = 1 } . We drop the letter 
K if that is clear from the context. We let Hom(W, V) act on W on the right; 
namely we denote by wa the image of w G W under a G Hom(W, V). 

Let V be a left K-module isomorphic to K^. Given e = ± 1 , by an e-hermitian 
form on V we understand an F-linear map if : V x V —• K such that 

(1.1) tp(x, y)p = s(p{y, x), 

(1.2) <p(ax, by) = cup(x, y)bp for every a, b G K. 

Assuming <p to be nondegenerate, we define groups GU(ip)> U(ip), and SU(tp) by 

(1.3) GC%) = { a G GL(V, K) \ <p(xa, ya) = v(a)ip(x, y) with v(a) G Fx }, 
(1.4) t /(^) = { a G Gtffc) | i/(a) = 1 }, SC%) = t % ) n SL(F, # ) . 

We call ip isotropic if <̂ >(x, x) = 0 for some x G V, 7̂  0; we call <p anisotropic if 
y?(x, x) = 0 only for x = 0. 

Given (V, <p) and another structure (V7, (//) of the same type, we denote by 
(V, <p)® (V , (£>') the structure (IV, -0) given by W = V e V " and ij)(x + x\ y + y') = 

7 
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<p(x, y) + <pf(x\ y') for x, y eV and x\ y' G V. We then view U(ip) x U{p') as a 
subgroup of U(ip) in an obvious way. 

1.2. We shall often express various objects by matrices. To simplify our nota
tion, for a matrix x with entries in K we put 

(1.5) z* = V \ X-P = {XP)~\ x = tx~P, 

assuming x to be square and invertible if necessary. Now let V = K^ and ip — 
€(p* G K™. Then we can define an e-hermitian form (po on V by <po(x, y) = x(py* 
for x, y eV. In this setting we shall always write simply (p for the form (po. Then 
we have 
(1.6) GU(<p) = { a G GLm{K) | a<pa* = v(a)<p with i/(a) G F x }, 
(1.7) t % ) = { a G G L m ( # ) | a^a* = ^ }, S £ % ) = £ % ) n SLm(K). 

We shall often consider U(r)n) with 
" 0 - l r 

.In 0 
Here we are taking e ~ — 1. In particular, if if = F, the group U(nn) is usually de
noted by Sp(n, F). More generally, for a commutative ring A with identity element 
we put 
(1.9) Sp(n, A)= {ae GL2n(A) \ lanna = rjn}, 
(1.10) Gp(n, A) = {ae GL2n{A) \ lar]na = v{a)nn with I/(Q) G A X }. 

Notice that 
(1.11) det(a) = v{a)n (a G Gp(n, A)), 
(1.12) det(a) de t (a) ' = i/(a)m (a G GU{(p)). 

The latter formula is obvious. To prove (1.11), let a G Gp(n, A) and /? = 
diag[ln, i / (a)ln] . Then /? G Gp(n, A) and i/(/3) = i/(a); thus j3~la G 5p(n, A). It 
is well-known that det (Sp(n, A)) = 1, and hence det(a) = det(/3) = ^ (a ) n , which 
is (1.11). In particular Gp(l, A) = GL2(-A) and 5p(l , A) = SL 2 (4) . 

a 6 

(1.8) ^/n 

Let £ d G GL,2n{K) with a, 6, c, d of size n and let 5 G Fx. Then 

(1.13) £eGU{7]n) and z/(f) = s <^> a*d-c*6 = s l n , a*c = c*a, b*d = d*b, 
4=> ad* - 6c* = s l n , ab* = 6a*, cd* = dc*. 

1.3. Lemma, (1) Let A be a commutative ring with identity element. Let 

x = G GLm+n(i4) and a; 

of size n. Then det (a;) det (e) 
a 6 (2) If £ d 

with a, e of size m and d, h 

det(d). 

G SU(r)n) with a, b, c, d of size n, then det (a), det (6), 

det(c), and det(d) all belong to F. 
(3) Every element ofGU(r]n) is a diagonal matrix times an element of SU(rjn). 
(4) GU(<p)/ [Fx U{ip)] is isomorphic to a subgroup of Fx /{ a2 | a G Fx }. Con

sequently if A is a homomorphism of GU(<p) into a group whose kernel contains 
FxU{<p), then A2 = l. 

PROOF. For the proof of (1) and (2), see [S97, Lemmas 2.15 and 2.16]. To prove 
(3), let a G GU(r)n), p = v{a)~\ and (3 = diag[ln , pln]a. Then 0 G U{nn). 
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This settles our problem if K = F, since U(r)n) = SU(rjn); so assume K ^ F. Put 
q — det(/3). Then qqp = 1 by (1.12), and hence q = r/rp with some r G Kx. 
Put 7 = diag[a*, a - 1 ] with any diagonal matrix a such that det(a) = r. Then 
7 G U(r]n) and det(7/?) = 1. This proves (3) when K ^ F. Finally, consider the 
homomorphism v : GU(ip) —> F x . We easily see that F x [/(<£>) is the inverse image 
of { a2 | a G F x }, and hence we obtain (4). 

1.4. Let F be the field of quotients of a Dedekind domain g. By a g-lattice in a 
finite-dimensional vector space W over F we mean a finitely generated g-module in 
W that spans W over F. Every fractional ideal in F with respect to g is a g-lattice 
in F and vice versa; we call it a g-ideal. A g-ideal is called integral if it is contained 
in g. 

We now assume that F is an algebraic number field of finite degree. We denote 
by a and h the sets of archimedean primes and nonarchimedean primes of F ; we 
put v = a U h. Further we denote by g the maximal order of F. For every v G v 
we denote by Fv the ^-completion of F. In particular, for v G h and a g-ideal a 
we denote by av the ^-closure of a in Fv, which coincides with the g^-linear span 
of a in Fv. We denote by N(a) and N(av) the norm of a and av as usual. They 
are positive rational numbers with the standard multiplicative property such that 
N(a) = [g : a] if a is integral and N(av) — [gv : a„] if av is integral. 

Given a finite-dimensional vector space X over F and a g-lattice L in X, we put 
Xv = X 0 F Fv for every v G v, and denote by Z^ the gv-linear span of L in Xv if 
t> G h. Clearly Lv is a gv-lattice in Xv, and is the closure of L in Xv. Notice also 
that every g^-lattice in Xv is an open compact subgroup of Xv. 

1.5. Lemma. With F and X as above, let L be an arbitrarily fixed g-lattice in 
X. Then the following assertions hold: 

(1) If M is a g-lattice in X, then Lv = Mv for almost all v. Moreover, L C M 
(resp. L = M) if Lv c Mv (resp. Lv = Mv) for every v G h. 

(2) Given a gv-lattice Nv in Xv for each v € h such that Nv = Lv for almost 
all v, there exists a g-lattice M in X such that Mv = Nv for every v eh. 

These assertions are well-known. For the proof, see [S97, Lemma 8.2]. 

1.6. Given an algebraic group G over F, we denote by G A the adelization of G 
and by Gv for v G v the localization of G at v. (The reader is referred to [S97, 
Section 8] for basic definitions and elementary facts on this topic.) We consider G 
a subgroup of G A as usual. In particular, F A and F£ denote the adele ring and 
the idele group of F, respectively. The archimedean and nonarchimedean factors of 
G A are denoted by G a and Gh- Namely Ga = FLea ^ an(^ ^ h = G A H Ylveh ^v 
For x G G A we denote by x a , #h, and xv the projection of x to G a , Gh, and Gv, 
respectively. If G C GL(V) with a vector space V over F, then for a G G A and a 
g-lattice L in V, we denote by La the g-lattice in V determined by {La) 
for every v G h. The existence of such a lattice La is guaranteed by Lemma 
1.5 (2). In particular, for x G F£ we denote by xg the fractional ideal such 
that (xg)i; = xvgv. Also we put |X|A = FLev lxrk> where | |v is the normalized 
valuation at v. To emphasize that this is defined on F £ , we shall also write \X\F 
for \X\A-

Given algebraic groups G and Gr over F and an F-rational homomorphism / 
of G into G', we can extend / naturally to a homomorphism of G A to G'A, which 
we shall denote by the same letter / . For example, we employ T r ^ / p even for the 
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map of F'A into F A derived from the map Tr>//F : F' —> F when F ' is an algebraic 
extension of F. 

Let W be a finite-dimensional vector space over F, and L a ^-lattice in W. 
Taking an element a of Wh, we define a function A on W^ by X(x) = Ylveh ^v{xv) 
for x G Wh, where \v is the characteristic function of the coset Lv + av. We 
then denote by S(Wh) the vector space of all finite C-linear combinations of such 
functions A for all possible choices of (L, a). This is called the Schwartz-Bruhat 
space of Wh- We view every ^€«S(Wh) as a function on WA by putting £(x) = ^(#h) 
for x G WA- In particular, £(£) is meaningful for every £ £ W. We can easily see 
that the restriction of the elements of 5(Wh) to W gives an isomorphism of S(W\l) 
onto the set of all finite C-linear combinations of functions, each of which is the 
characteristic function of a coset of W modulo a g-lattice in W. This is because 
WA = W + Y with Y = {y eWA\yhe Y\veh Lv } for any fixed ^-lattice L. 

We now put 
(1.14) e(z) = e27riz ( z G C ) , 

and define characters eA " FA —> T and ev : Fv —•> T for each v G v as follows: 
if v G a, then ev(x) = e(x) for real v and ev(x) = e(x + x) for imaginary v; 
if v e h and p is the rational prime divisible by v, then e«(a;) = ep(Tri?v/Qp(x)), 
where ep(z) = e(—y) with ?/ € Um=i^~ m ^ s u c n that z — y £ Zp . We then put 
eA(^) = ELev e . f ^ ) , eh(x) = eA(^h), and ea(x) = eA (^ a ) for x £ FA. We note 
here a basic property of ev : 

d{F/Q)~l = {xeFv\ ev(xy) = 1 for every ye$v} [v e h), 

where D(F/Q) denotes the different of F relative to Q. 
We insert here an easy fact as an application of Lemma 1.3 (4): 

(*) For every a G GU(<p)A the map x »->> OLXOL~1 of U(ip)A onto itself leaves 
any fixed Haar measure of U(cp)A invariant. 

Indeed, let \x be a Haar measure of U{ip)v for a fixed v G v. Then, for a G 
GU((f)v we have ^(aXa'1) = X(a)fi(X) for every measurable set X in U(ip)v with 
a positive real number A(a). Clearly A is a homomorphism of GU((p)v into R x 

and A(FV
X) = 1. Also, \(U(if)v) = 1 by [S97, Proposition 8.13 (1)]. Therefore, by 

Lemma 1.3 (4) we have A (a) = 1, since A (a) > 0. 

1.7. Let A be a principal ideal domain and F the field of quotients of A. We 
call an element X of A™ primitive if rank(X) = Min(ra, n) and the elementary 
divisors of X are all equal to A. If m = n, clearly X is primitive if and only if 
X G GLn(A). If m < n (resp. m > n), then X is primitive if and only if X is the 
first m rows (resp. n columns) of an element of GLn(A) (resp. GLm(A)). (For 
these and other properties of primitive matrices, see [S97, Lemmas 3.3 and 3.4].) 

Given x eF™, we can find c € ^ a n d d G GLm{F) DA™ such that [c d] is 
primitive and x = d~lc. We then call the last equality a (left) reduced expression 
for x, and define an integral ideal vo(x) by 

(1.15) u0{x) = det(d)A. 

This is independent of the choice of c and d. We call VQ{X) the denominator ideal 
of x. We easily see that ISQ(X + a) = ^o(#) if a -< A (see Notation). For these and 
other properties of the symbol I/Q see [S97, Proposition 3.6, §3.7, and Lemma 3.8]. 
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We now consider our setting to be that of §1.4, with an algebraic number field 
as F. Given x G (Fv)™ with v G h, we can naturally define uo(x) to be an integral 
gv-ideal, taking gv to be A. Then we put 
(1.16) u{x) = N(v0{x)) = [fl„ : i/0(*)]. 
If x = d~1c is a left reduced expression for x, then v{x) = | det(d)|~1. Moreover, 

if uxv = n n with u G GLm(gv), v G GLn(gv), and a = diag[ai, . . . , a r] , then 

i /(x) - 1 is the product of \ai\v for all i such that a* ^ gv (see [S97, Lemma 3.8 
(2)])-

1.8. Take our setting to be the same as in Cases I and II in §1.1 with an algebraic 
number field as F. Namely, K = F or K is a quadratic extension of F. We denote 
by r the ring of algebraic integers in K and by k the set of all nonarchimedean 
primes of K. (Thus r = g and k = h if K = F.) Given v G k, an tv-ideal a, and 
a matrix x with entries in Kv, we write x -< a if all the entries of x belong to a. 
Similarly, for a matrix y with entries in KA and an r-ideal b, we write y -< b if 
all the entries of yv belong to bv for every v G k. 

Take two positive integers m and n. For x 
c d G GLm+n(K)A with 

a G (.KA)™ and d G (K/i)n> write a = ax, b = 6X, c = cx, and d = dx. With fixed 
t-ideals rj and 3 such that 93 C r, we put 

(1.17) Cfo, 3] = {x G GLm+n{K)A I det(x)h G F U h tf > 

ax ""< r> frx -< t), cx -< 3, dx -< r | . 

We easily see that this is a subgroup of GLm+n(if ) A (see [S97, §9.1]). We also note 
that if x G C[t), 3] and t/|t)3, then (det(arc) det(dx) — det(#)) G t)v$v, and hence 
we see that 
(1.18) The map x »—• ((ax, 6x)u) 1 defines a homomorphism of C[t), 3] into 

FIvloj [CLm(^/9i;3v) X GLn^ / t )^^ ] . 

1.9. Lemma. Define a subgroup p(m ' n) of GLm+n(K) by 
p(m>n) = {xeGLm+n{K)\cx = 0}. 

Let C denote the group C[tj, 3] 0/ (1.16). Then 
p{jn,n)c = 1 ^ ^ G j L m + n ( ^ ) A J ( ^ € GLn(ift;) and 

(d" 1 ^) , , -< iv for every v\t)} } . 
Moreover, assuming m = n, /e£ G denote GU{r)n), U(rjn), or SU(nn) with r\n of 
(1.8); putP = GH P(" 'n) , and D = GAnC. Then 

PAD = GAnP£'n)C 
= { x G GA I (dx)v G GLn(K)v and (d~1cx)v -< 3^ for every i/|tj3 } . 

in particular, GLrnjrn (K)A = P^n)C and GA = PAD if 93 = r. 

P R O O F . The assertions for GLm+n(K) and U(rjn) are proved in [S97, Lemma 
9.2]. Combining the result for U(rjn) with [S97, Lemma 9.10 (2)], we obtain the 
assertion for SU(rjn). As for GU(rjn), let x G GU(nn)A, P = diag[ln, v(a)ln], 
and y = p~xx. Then y G U(r)n). Suppose (dx)v G GLn(K)v and ( d " 1 ^ )^ -< 3^ 
for every v|t)3- Then we easily see that y satisfies the same conditions, and so 
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y G (U(r]n)A H Pj^ )(U(r)n)A H C). Since p is diagonal, we obtain the desired 
result for GU(r)n). 

1.10. The notation being as in §1.8, put C\}] = Cfe - 1 , 3]. Then GLm + n(K")A = 
PA C[%] by the above lemma. Therefore every element x of GLm+n(K)A can 
be written x = yz with y G P^m , n ) and z G C[a]. We then define an t-ideal il3(x) 
by 
(1.19) il3(x) = det(dy)t, 

where the right-hand side is an r-ideal defined in §1.6. We easily see that this is 
well-defined. (But it depends on m, n, and 3.) 

Next, given x G (KA)^ w e define an integral r-ideal uo(x) and a positive 
integer i/(x) by 

(1.20) i/o(a;)v = ^o(^) for every v ek, 
(1.21) i /(x)= W(i/0(aO). 

Here VQ(XV) is defined by (1.15). In other words, take g G GLU(K)A and ft G 
(.KA)™ S O that x^ = 9Zlhy 1S a reduced expression for every u G k . Then ^ ( x ) = 
det(#)t. 

1.11. Lemma. For x G GLm+n(K)A the following assertions hold. 
(1) If a = diag[lm, «ln] with K G if£ , then ilKi{oLxa~l) = il3(a:). 
(2) If dx G GLn(K)A and 3 = /it with \i G i f£ , then de t^J i l ^x )"" 1 = 

v^~ld~lcx). 
(3) If x G GLm + n(K)nP] i

m ' n )D[t), 3] and 93 ^ t, then det{dx) ^ 0 and det(dx) 
•il3(x)_1 is prime to 1)3. 

For the proof see [S97, Lemma 9.4]. 

1.12. By a CM-field we mean a totally imaginary quadratic extension of a totally 
real algebraic number field of finite degree. Given a CM-field K and an absolute 
equivalence class r of representations of K by complex matrices, we call (K, r) 
a CM-type if the direct sum of r and its complex conjugate is equivalent to the 
regular representation of K over Q. If (K, r) is a CM-type and [K : Q] = 2n, then 
r is the class of diag[ri, . . . , rn] with n isomorphic embeddings r* of K into C 
such that { T\, . . . , rn , TIO;, . . . , TUUJ } is exactly the set of all embeddings of K into 
C, where u denotes complex conjugation. In this setting we write r = {TJ}^= 1 . 
If F is the totally real field over which K is quadratic and p is the generator of 
Gal(K/F), then we have TIUJ = prt, because of the following easy fact: 

(1.22) If a is an isomorphism of K onto a subfield of C, then xpo is the complex 
conjugate of x° for every x G K. 

Therefore, if X is a matrix with entries in K, then (X*)a = t(X<T), where the bar 
is complex conjugation. Thus putting Y* = lY for a complex matrix Y, we have 
(x*y = {x*y. 

Given (K, r) as above, let K' be the field generated over Q by YTi=\ flTi f° r a ^ 
a G K. We call K' the reflex Geld of (K, r ) . It can easily be shown that K' is a 
CM-field and contains [JlLi aTi f o r all a G K (see [S98, pp.62-63, p.122, Lemma 
18.2]). 
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2. Polarized abelian varieties 

In this section we review some basic facts on polarized abelian varieties defined 
over a subfield of C. The reader can find more detailed treatments, as well as further 
references, in [W58] and [S98]. 

2 .1 . By an algebraic variety we understand an affine or a projective variety 
which is absolutely irreducible, defined in an affine or a projective space with a 
fixed coordinate system. If V is an algebraic variety of dimension n, by a divisor of 
V we mean a finite Z-linear combination of subvarieties of V of dimension n — 1. 

Suppose now V is an algebraic variety defined over a subfield of C. Then by the 
same symbol V we mean the point set consisting of all the points with coordinates 
in C satisfying the defining equations for V. If V is nonsingular, then V has a 
natural structure of a complex manifold. 

By an abelian variety we uderstand a projective algebraic variety A with a group 
structure such that the map (x, y) *-> x + y of A x A into A and also the map 
x i-> —x of A into A are both rational maps defined everywhere. We use the 
additive notation, since such a group is always commutative. Such an A must be 
nonsingular. We say that an abelian variety A is defined over a field k if the 
variety A and these maps are defined over k. Thus, we speak of an abelian variety 
A defined over a field k always in this sense. 

Let A and B be two abelian varieties. By a homomorphism of A into 5 , or an 
endomorphism when A = f?, we understand a rational map of A into B that is 
a group homomorphism. If such a map is birational, then it must be biregular, 
and we call it an isomorphism, or an automorphism when A = B. We denote by 
Horn (A, B) the set of all homomorphisms of A into B, defined over any extension 
of a given field of definition for A and J5, and put End(^4) = Hom(^4, A). We put 
also HomQ(yl, B) = Horn (A, B) <8>z Q and EndQ(A) = End(A) ® z Q. An element 
of Hom(^4, B) is called an isogeny if A and B have the same dimension and Ker(A) 
is finite. 

2.2. By a lattice in a finite-dimensional vector space W over R we understand 
a discrete subgroup of W that spans W over R. If W is of dimension m, then a 
discrete subgroup D of W is a lattice in W if and only if D is isomorphic to Z m . 
(The distinction of a lattice in this sense from a g-lattice in the sense of §1.4 will 
be clear from the context, since the latter is never defined in a real vector space.) 

Let D be a lattice in C n . Then D is isomorphic to Z 2 n . An R-valued R-bilinear 
form E : C n x C n —• R is called a Riemann form on C n relative to D, or simply a 
Riemann form on Cn /D, if it satisfies the following conditions: 

(2.1) E(D, D) C Z. 
(2.2) E(x, y) = -E(y, x). 
(2.3) The form (x, y) *-+ E(x, iy) is symmeric and positive definite. 

Usually a Riemann form is defined with nonnegativity instead of positive definite-
ness in the last condition. In the present book, however, we always consider positive 
definite Riemann forms, and so we take the above (2.1-3) to be the conditions for 
a Riemann form. 

Now, given an abelian variety defined over a subfield of C, there is always a 
complex-analytic biregular map, which is also a group isomorphism, of A onto a 
complex torus. Conversely, it is a well-known fact that a complex torus Cn/D is 
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isomorphic to an abelian variety in that sense if and only if it has a Riemann form. 
If £ is such an isomorphism of Cn/D onto an abelian variety A, we can view £ as 
a homomorphism of C n onto A with kernel D. We then call (Cn/D, £) an analytic 
coordinate system of A. 

2.3. Let A and (Cn/D, £) be as above. Given a Riemann form E on Cn/D, put 
H(u, v) = E(u, iv) + iE(u, v) for u, v e C n . Then we can show that there is a 
nonzero holomorphic function / on C n such that 

(2.4) f(u + £) = f{u)ip(£) exp (TT • H(i, u + (£/2))) for every £eD 

with a map ip : D —> T. Then the zeros of / define a divisor on Cn/D> which we 
write £ - 1 ( X ) with a divisor X on A. In this situation we say that E corresponds 
to X or that X determines E with respect to £, since it can be shown that E is 
unique for X, though X is not uniquely determined by E. 

Now we call a divisor on A ample if it determines a Riemann form on Cn/D. 
By a polarization of A we mean a nonempty maximal set C of ample divisors of 
A with the following property: if I , 7 G C, then there exist positive integers 
£, m such that IX and mY determine the same Riemann form. By a polarized 
abelian variety we mean a structure (A, C) formed by an abelian variety A and a 
polarization C of A. We shall often denote (A, C) by a single letter V. We call a 
member of C a basic polar divisor of V if the corresponding Riemann form E has 
the property that E(Dy D) = Z. Such a divisor X is characterized by the property 
that every member of C is algebraically equivalent to mX for some positive integer 
m, since two divisors on A determine the same Riemann form if and only if they 
are algebraically equivalent (cf. also [S98, pp.27-28]). 

Let A' be another abelian variety of dimension n, and (Cn /D', £') an analytic 
coordinate system of Af. Every element A of Horn(A!, A) coresponds to a C-linear 
endomorphism A of G n such that ADf C D by the relation Ao£' = £oA. Conversely 
every such A determines an element A of Horn (.A', A). Clearly A is an isogeny if 
and only if det(A) ^ 0. Similarly every element of HomQ(A/, A) coresponds to an 
element of End(C n , C) that sends QD' into QD, where QD denotes the Q-linear 
span of D. 

Let E be the Riemann form determined by a divisor X on A, and A an isogeny 
of A! onto A. We can define a divisor X' on A! by X' = X~1(X). Then X' is also 
ample, and determines the Riemann form E given by 

(2.5) E'{z, w) = E(Az, Aw), 

where A is determined by A as above. This can be shown by considering / o A 
with / satisfying (2.4). 

Let V = (J4, C) and V = (A', C) be two polarized abelian varieties of the same 
dimension. By an isogeny (resp. an isomorphism) of V' onto V we understand an 
isogeny (resp. an isomorphism) A of Af onto A such that X~X(Y) e C for some 
YeC.tt that is so, then A " 1 ^ ) G C for every X € C. 

2.4. Whenever we consider an algebraic variety V, by our convention of §2.1, 
V is defined in an afHne or a projective space with a fixed coordinate system, so 
that we can speak of the coordinates of a point x on V. For x G V and a field 
of definition k for V we denote by k(x) the field generated over k by the affine 
coordinates of x. (If V is a projective variety, the affine coordinates of x mean the 
quotients of the projective coordinates of x.) 
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We can also speak of the smallest field of definition for V. (See [W46, pp.71-72, 
Corollary 3 on page 71, in particular].) It is always finitely generated over the prime 
field. Also if V is defined over a field k and a is an isomorphism of k onto a field 
k', Then Va is well-defined; for example, it is defined by the equations which are 
the images under a of the /c-rational defining equations for V. In particular, if V 
is a point, Va is the point whose coordinates are the images of the coordinates of 
V under a. If / is a fc-rational map of V into an algebraic variety V\ rational 
over A:, then fa is defined to be the rational map of Va into Vf whose graph is 
the image of the graph of / under a. If V is defined over k, we denote by k(V) 
the field of all /c-rational functions on V, that is, all /c-rational maps of V into the 
one-dimensional afflne line. If a and k! are as above and / G k(V), then fa is a 
well-defined element of k'(Va). 

Let V = (A, C) be a polarized abelian variety. We say that V is defined (or 
rational) over k and that k is a field of definition (or rationality) for V if A is 
defined over k and C contains a fc-rational divisor, say X. For a as above, we can 
define V° by V° = (Aa, Ca), where Ca is the polarization of A° containing Xa. 
(Here we need the fact that if X is ample, so is Xa.) 

Suppose now V is an algebraic variety defined over a subfield of C. Then, as 
we did in §2.1, we identify V with the point set consisting of all the points with 
coordinates in C satisfying the defining equations for V. We denote by C(V) the 
union of k(V) for all the subflelds k of C. If a G Aut(C), then VG as a point 
set consists of the images under a of all the points in V in that sense. Let &o be 
the smallest field of definition for V. Then, for cr, r G Aut(C) we have Va = VT 

if and only if a — r on ko. Also, if A: is a subfield of C and Va — V for every 
a G Aut(C/fc), then V is defined over k. 

2.5. Let (A, C) and (Cn/£>, f) be as above; let E be the Riemann form on Cn/D 
determined by a divisor X in C. Given A G Endq(A), take A G End(Cn , C) so 
that A o ( = ^oA. Define an element A' of End(Cn , C) by 

(2.6) E(A% y) = E{x, Ay). 

Prom (2.1) we see that A'(QD) C QD, and hence there is an element A' G Endq(A) 
such that A' o £ = f o A'. We can easily verify that the map A «-> A; is a Q-linear 
bijection of Endq(-A) onto itself such that (A')' = A and (A/z)' = //A'. We call this 
map the involution of EU6.Q(A) determined by X, or by C, since clearly it depends 
only on C. Here are two easy facts: 

(2.7) If R (resp. 5) is an element of Q ^ (resp. C™) that represents A with respect 
to a Q-basis of QD (resp. C-basis of C n ) , then R = T • diag[5, ^}T~l for 
some T G GL2n(C) independent of A. 

(2.8) tr(A'A) > 0 if A ^ 0. 

Here tr(A) denotes the trace of A as an R-linear endomorphism. Indeed, since a 
Q-basis of QD gives an R-basis of C n , we easily obtain (2.7). As for the latter, 
we note that E(A'x, iy) = E(x, iAy), which means that A' is the adjoint of A with 
respect to the positive definite form of (2.3), so that we obtain (2.8). 

Suppose now A, X, and A are rational over k; let a be an isomorphism of k 
onto a field k'. Let \x i—> fi" be the involution of Endq(A a) determined by X°'. 
Then 

(2.9) A' is rational over k and (\a)" = (Ar)a-
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This is because A' can be denned algebro-geometrically by means of the Picard 
variety of A without employing E, and we can let a act on the defining formula 
for A. For details, see [S98, §1.3, formula (5) on page 5 in particular, and the last 
paragraph of §3.3 on page 25]. 

2.6. Lemma. Let (Cn/D, £) be an analytic coordinate system of an abelian va
riety A, and X a divisor on A corresponding to a Riemann form E on Cn/D via 
f. For s = £(x) and t = £(y) with x, y G iV_1£>, 0 < N G Z, put 

(2.10) Cx(«, *) = exp (2mN • E{x, y)). 

Then Cx(s, 0 JS an N-th root of unity, and moreover, for every a G Aut(C), 

(2.11) C x ( M ) a = C x " ( ^ , n -

Furthermore, if k is a field over which A, X, and all points on A of finite order are 
rational, then k contains the maximal abelian extension of Q. 

P R O O F . That Cx(5> t) is an N-th root of unity can be seen from the fact that 
E(A, A) C Z. Formula (7) in [S98, p.24] shows that (x(s, t) is the number CX,N{S, i) 
defined in [S98, §1.4] in a purely algebraic fashion without E. This definition is due 
to Weil [W48]. Therefore its behavior under a can easily be verified. Notice that 
if i?(A, A) = raZ with 0 < m G Z and A7" is a multiple of m, then Cx(s> t) is a 
primitive (N/m)-th root of unity for suitable s and t. Therefore we obtain the last 
assertion from (2.11). 

2.7. We now generalize the above notion of polarized abelian variety by con
sidering a structure V — (A, C, i\ {U}^=i) formed by a polarized abelian variety 
(A, C) in the above sense, a ring-injection i of a Q-algebra W (with identity ele
ment) into EndQ(^4), and an ordered set of points {^}[=1 of A of finite order. We 
always assume that ^(1) is the identity element of End (A). We say that V is defined 
(or rational) over a field k and that k is a field of definition (or rationality) for V 
if (A, C), every element of t(W) flEnd(-A), and every t{ are all rational over k. We 
always take such a A: to be a subfield of C. Given such a k and an isomorphism a of 
k onto a field (contained in C for the moment), we put Va = {Aa', Ca, i°\ {tf }[=1), 
where ta(a) = c{a)a'. If V = (A', C, t'\ {£-}[=1) is another such structure with the 
same W, we understand by an isomorphism of V onto V an isomorphism / of 
(A, C) onto {A', Cf) such that / o t(a) = tf(a) o f for every a eW and f(U) = t\ 
for every i. We call / an automorphism of V if V = V, and denote by Aut('P) the 
group of all automorphisms of V. Given an arbitrary (A, C), we can construct V 
as above by taking W = Q and {^} to be the set consisting of 0. We shall alwlays 
identify such a V with (A, C). 

2.8. Theorem. (1) Given V as above, there exists a subfield ki of C, called 
the Geld of moduli ofV, which is uniquely characterized by the following properties: 
(i) Every field of definition for V contains k\\ (ii) IfV is defined over k and a is 
an isomorphism of k onto a subfield of C, then a is the identity map on k\ if 
and only ifVa is isomorphic to V. 

(2) The field of moduli ofV is algebraic over the field of moduli of (A, C). 
(3) If ]Ci=i Zti D { t G A | mt = 0 } with an integer m > 2, then V has a model 

rational over its field of moduli. 
(4) V has a model over a finite algebraic extension of the field of moduli of 

(A, C). 
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Assertion (1) is given in [S59] for V without {U}, and in [S65, §1.4] for V with 
{ti}. Clearly the field of moduli of V is finitely generated over Q. As for (2), see 
[S59, Proposition 8] and [S65, Proposition 1.11]; as for (3), see [S98, Proposition 
21.1] and the remark after its proof, or [S65, Proposition 1.5]. Combining (2) and 
(3), we obtain (4). 

2.9. The notation being as in §2.7, let i\) be an equivalence class of Q-linear 
representations of W by complex matrices. We say that (A, t) is of type (W, ip), 
if we can find an analytic coordinate system (Cn/D, £) of A such that £ o ipo(a) = 
t(a) o £ for every a eW with a representation ^0 belonging to the class of ip. In 
particular, take W to be a CM-field K in the sense of §1.12. If A is of dimension 
n, then by (2.7) the direct sum of ip and its complex conjugate is equivalent to a 
rational representation of K of degree 2n, which must be a multiple of a regular 
representation of K. Thus [K : Q] divides 2n. If [K : Q] = 2n, then we see that 
(K, iji) is a CM-type in the sense of §1.12. Conversely, given a CM-type (if, r ) , we 
can always find (A, t) of type (K, r ) ; for details, see [S98, §6]. 

As an easy generalization we consider a CM-algebra Y, by which we understand 
a finite direct sum Y = K\ 0 • • • 0 Kt with CM-fields Ki. We take (A, t) as above 
with Y as W. Suppose that 2dim(^4) = [Y : Q]; let ê  be the identity element of 
Ki and let A{ = t(rriiei)A with a positive integer m; such that i(rriiei) G End(A). 
We easily see that A is isogenous to A\ x • • • x At and t embeds K{ into Endq(Aj). 
Denote this embedding by ti. Since [Ki : Q] < 2dim(^4i) as observed above, and 
[Y : Q] = 2dim(i4), we obtain [Ki : Q] = 2dim(i4i). Thus (Ai, ti) determines a 
CM-type (Ki, $*). Then we see that (̂ 4, t) is of type (Y, $) with 3> defined by 

(2.12) # ( £ U f l * e < ) =dia«[#i (a i ) , . . . , #t(a*)] (a* G Kt). 

3. Symmetric spaces and factors of automorphy 

3.1. We first define our groups over R, which will eventually be localizations of 
algebraic groups over a number field at archimedean primes. Using the notation 
of §1.2, we consider 5p(n, R), Gp(n, R) and the unitary groups of the following 
types: 

(3.1) U(rjn) = {ae GL2n(C) \ a*Vna = rjn }, 
(3.2) GU{r]n) = {ae GL2n(C) \ a*r]na = u(a)rjn with v(a) e R x }, 

(3.3) U(m, n) = { a G GLr{C) | a*/m ,na = Jm,n }, Im,n = diag[lm, - l n ] , 
(3.4) GU(m, n) = {ae GLr{C) | a*/m , na = v(a)Im,n with u(a) G R x }. 

Here r]n is the matrix of (1.8), m and n are nonnegative integers and r = 
77i -f n > 0; we put Z* = lZ for a, complex matrix Z. We easily see that if a be
longs to Gp(n, A), GU(rjn) or GU(m, n), then la belongs to the same group and 
z/(ta) = v(a). Clearly U(rjn) and GU(rjn) are isomorphic to U(n, n) and GU(n, n) 
respectively. For some technical reasons, however, we consider various objects in 
the unitary case in two different ways, with respect to these two types, even though 
the objects defined for the former types can easily be transferred to those defined 
for the latter types. Thus our discussion will be made in three cases, referred to 
as Case SP, Case UT, and Case UB: these correspond to Sp(n, R), U(rjn), and 
U(m, n). 

We now define domains f)n, Wn, and Q5m>r, by 
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Sin = {zeC%\tz = z, Im{z) > 0 } , 
Hn={zeCZ\i(z*-z)>0}, 

(3.5) 
(3.6) 
(3.7) Q5m>„ = » ( m , n) = {zeC%\ln-z*z>0} (mn > 0). 

Here for a hermitian matrix £ (in particular, for a real symmetric matrix £) we 
write £ > 0 (resp. £ > 0) to indicate that £ is positive definite (resp. nonnegative). 
We then put 

Sn = {hec%\h*=h}, S+ = {heSn\h>o}, (3.8) 

(3.9) B(z) = 

(3.10) B(z) = 

z' 
In 

J-m 
Z* 

z 
In . 

Z 

In 

(3.11) 
(3.12) 

(3.13) det [B{zj\ 

(Cases SP, UT), 
(Case UB), 
(Cases SP, UT), 
(Case UB). 

Hz) = i(z - *z), n(z) = i(z* - z) 

(2 € C£, Cases SP, UT), 

£(z) = lm-z-tz, n(z) = ln-z*z 

( 2 € C™ Case UB). 

For the moment we assume ran ^ 0. We shall discuss the case mn = 0 later. By 
straightforward calculations we can verify that 

i • B(zyr,nB(z) = diagptf*), -n(z)\ 
B(z)*Im,nB(z) = diagftfz), -r,(z)} 

det(z* - z) 

det [£(*)] = det {n{z)} 

Now if rj(z) > 0 in Case UB, then det [#(2)] / 0, and hence the left-hand side of 
(3.12) has signature (m, n), so that £(z) > 0. Similarly 77(2) > 0 if £(z) > 0. 

3.2. Lemma. Case UT: Let Xu be the set of all matrices X in C ^ such that 
iX*rjnX = diag[v, —w] with v, w e S+. Then the map (z, A, p) >-> B(z)diag[A, p] 
gives a bijection ofrin x GLn(C) x GLn(C) onto Xu. 

Case SP: Let X be the set of all X, belonging to the set Xu defined above, of 
the form X = [y y] with y G C^n. Then the map (z, p) h-+ B(z)diag[p, p] gives 
a bijection of $)n x GLn(C) onto X. 

Case UB: Let X be the set of all X G C™Xn such that X*Im,nX = diag[v, -w] 
with v G 5+ and w G S+. Then the map (z, A, p) 1—> S(z)diag[A, p] gives a 
bi/ection of <Bm,n x GLm(C) x GLn(C) onto 3C. 

This lemma is completely elementary. The proof in Case SP was given in [S97, 
Lemma 7.10]. Cases UT nd UB can be proved similarly. 

3.3. Write simply X for the set Xu defined in Case UT in the above lemma. Thus 
we have X defined in each of the three cases SP, UT, and UB. If a G Gp(ny R) 
(resp. a G GU(rjn), a G GU(m, n), mn > 0) with v(a) > 0, then we easily see 
that aX C X. Given such an a, we define the action of a on 9)n (resp. Hn, %$m,n) 
and two factors of automorphy A (a, z) and p(a, z) as follows. First we consider 
Case UB. Let a G GU(m, n) and z G 95m>n- By the above lemma B{z) G 3t, 
and so aB(z) G X. By the same lemma we can put aB(z) = jB(w)diag[A, p] with 
unique w G 93m ,n , A G GLm (C) , and /x G GL n (C) . Let us put w = az = a(z), 
A = A(a, z), and /i = //(a, z). Then we have 

(3.14) aB(z) = B(az)di&g[\(a, z), p(a, z)]. 
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We can do the same in the other two cases. In Case UT both A(a, z) and /x(a, z) 
belong to GLn(C); in Case SP we have A(a, z) = /z(a, z) G GLn(C). To make 
our formulas short, we shall often put A(a, z) = XQ(z) and /i(a, z) = na(z). For 

with d of size n let us put a = aa, 6 = ba, c = c a , and d = da. Then a = c d\ 
from (3.14) we immediately see that aaz + ba = a(z)fia(z) and /xQ(z) = caz + dQ. 
Since \i is invertible, we obtain 

(3.15) OLZ = (aaz -f 6a)(cQz -f d a ) - 1 (all cases), 
(3.16) \a{z)=ca'tz + da, Va{z) = caz + da (Cases SP, UT), 
(3.17) Xa(z) = ba • lz -f aQ, /ia(^) = c^z + da (Case UB). 

The first formula means that we can let a act on 5}n, Wn, or 93m ,n by defining az 
by (3.15). Notice that in all three cases Xa(z) and iia{z) are holomorphic in z. 
Applying another element /3 with i/(/3) > 0 to (3.14), we see that f3(az) = (f3a)z 
and 

(3.18) A(/?a, *) = A(/3, az)A(a, z), //(/3a, z) = //(/?, az)/i(a, z). 

From (3.11), (3.12), and (3.14) we obtain 

(3.19) Xa{z)*£(cxz)\a(z) = v{a)£{z), fia(zyV(az)^a(z) - v{a)r](z). 

Define a scalar factor of automorphy ja(z) and a real-valued function 6 by 

(3.20) ja{z) — j{®i z) ~ det [/iQ(z)] (all cases), 

= r det [2-^{zj\ (Cases SP, UT), 
( ' ' \ det [77(2)] (Case UB). 

Prom (3.18) we obtain j/sa(z) = jp(az)ja(z) and 

(3.22) 6(az) = u(a)n\ja(z)\-26(z). 

We note here an easy but essential relation: 

(3.23) det [Xa{z)] = det(a)u(a)-n • ja{z) (Cases UT, UB), 

which follows immediately from (3.13), (3.14), and (3.19). 
So far we have assumed ran > 0 in Case UB. We now make the following 

convention: if ran = 0 in Case UB, then 93 (ra, n) consists of the single element 
0, our group acts on it trivially, and B(0) = l m + n ; GLo(C) denotes the group 
consisting only of the identity element 1, and det(l) = 1; (Aa(z), /iQ(z), ja{z)) 
and (£(z), n(z), 6(z)) are elements of GLm(C) x GLn(C) x C x determined by 

(3.24a) £(z) = l m , Xa(z) = 57, and ja(z) = 1 if n = 0, 
(3.24b) n(z) = l n , ^ a(z ) = a, and ja{z) = det(a) if m = 0, 
(3.24c) <5(z) = 1 if mn = 0. 

Thus rj(z) = fj,a(z) = 1 if n = 0, and £(z) = AQ(z) = 1 if ra = 0. 
Also we denote by C° the 0-dimensional vector space {0} and let GL0(C) act 

on C° trivially. We identify C m x C n and GLm(C) x GLn{C) with C m + n and 
GLm+ n (C) in an obvious way, if ran = 0. Then we denote by diag[a, b] the element 
of GLm+niC) identified with (a, b) e GLm(C) x GL n(C). Then (3.14), (3.18), 
(3.19), (3.22), and (3.23) are valid. 
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3.4. Lemma. (1) Let dz = (dz^k) be a matrix of the same shape as z whose 
entries are 1-forms dzhk on each space. Then for a in SP(n, R), U{nn), or in 
U(q, r) we have d(otz) = tXa{z)~1 - dz • jia{z)~l. 

(2) The jacobian of the map z »-> az for such an ct is ja(z) Ki where K = 
n + 1, 2n, and m + n in Cases SP, UT, and UB, respectively. 

(3) Define a differential form dz on our space by 

8{z)-n~l Y[ [(i/2)dzhk A dzhk] (Case SP), 
h<k 

dz= \ 
' S(z)~m~n H J J [ii/2)dzhk A dzhk] (Cases UT and UB), 

h=lk=l 
where we put m = n in Case UT. Then dz is invariant under the map of (2), and 
therefore it defines an invariant measure on our space. 

P R O O F . We first consider Case UB. For z, w G 25m,n we have 

B{w)*Im,nB(z) 1 — wz* z — w 
w* — z* w*z — 1 

Changing w and z for aw and az and employing (3.14), we find that 

(3.25a) az - aw = tXa(w)~1(z — w)u.a{z)~l. 

Taking similarly B(w)*rjnB(z) in Cases SP and UT, we see that (3.25a) is true 
in all cases. From this we obtain (1). Computing the determinant of the linear 
map x H-» t\a(z)~1x/j,a(z)~l, we obtain (2), which together with (3.22) proves (3). 
Clearly (3.25a) combined with (3.23) implies 

(3.25b) det(a2; - aw) = det(a)ja(z)~1ja(w)~1 det(z — w). 

3.5. We now take a totally real algebraic number field F of finite degree and 
denote by a the set of all archimedean primes of F. In Cases UT and UB we take a 
CM-type (K, r) as in §1.12 with K containing F as its maximal real subfield, and 
denote by p the generator of G&\{K/F). We shall also employ the symbols g, r, h, 
and k introduced in §1.4 and §1.8. Then r can be written r = {rv } v E a with an 
embedding rv : K —• C which coincides with v on F. Hereafter we fix r and for 
a G K denote by av the image of a under rv. Then we identify a with r and 
view a also as the set of all archimedean primes of K. For c G F£ we write c ^> 0 
if cv > 0 for every v G a. To make our exposition uniform, we make a convention 
that K — F and r = g in Case SP; thus we use K and r in all three cases. 

Given a set X, we denote by Xa the product of a copies of X, that is, the set of 
all indexed elements (xv)vea with xv in X. Then all the embeddings of F into R 
(resp. K into C) given by the elements of a determine an isomorphism of F <8>Q R 
onto R a (resp. K ® Q R onto C a .). Similarly we obtain embeddings of F™ and K™ 
into (R£*)a and ( C ^ ) a . We view the former sets as subsets of the latter sets. Thus 
for a G F™ and v G a the ^-component av of a considered in ( R ^ ) a is the v-th 
conjugate of a. If a G K™, then av is the image of a under rv. 

We now define algebraic groups G, G, and Go by 

(3.26) 

(3.27) 

G = Gp(n, F), 

G = GU(rjn), 

G = Sp(n, F) 

G = U(r,n) 

(Case SP), 

(Case UT), 



3. SYMMETRIC SPACES AND FACTORS OF AUTOMORPHY 21 

(3.28) G = GU{T), G = U{T) (Case UB), 

(3.29) G0 = { a G G | det(a) = i/(a)n, i/(a) G Q } (Cases SP and UT). 

Here we are using the notation of (1.6), (1.7), (1.8), (1.9), and (1.10) with the 
present (F, K, p)\ T is a fixed element of GLr(K) such that T* = - T ; for a 
matrix Z we put Z* = lZp as we did in (1.5). Recall that in each case we have a 
homomorphism v : G —> Fx. Though Case UT is included in Case UB, we treat 
them in different ways. In Case SP we can ignore the condition det(a) = u(a)n in 
the definition of Go, since it is true for every a G G as noted in (1.11). 

For each v G v we have localizations Gv and Gv of G and G; recall that G a = 
Uvea ^v and G a = Ylve& ^v- In Case UB let (mvi nv) be the signature of iTv. We 
then put 

(3.30) G A + - { a G GA | i/(a)a € Fa
x

+ }, Fa
x

+ = { x G Fa
x | x » 0 }, 

(3.31a) G a + = Ga n G A + , G+ = G n G A + , 

(3.31b) (GO)A+ = (Go)A H G A + , G0+ = G0 Pi G A + . 

In particular, in Case UB we put 

(3.32) 0 = Y[GU(mv,nv), 0 = J J % , n„), <S+ = { a G 0 | i/(a) > 0 }. 

We define a space H by 
f (i5n)a- (Case SP), 

{HnT (Case UT), 

J |Q3(m v , nv) (CaseUB). 
u£a 

We now define the action of the elements of G A + on H as follows: In Cases SP and 
UT, given f = ( f v ) v € v € GA+ and 2 = (zv)ve& G W, we consider £a =_(&,) v 6a and 
put £(2) = (£v(2v))uGa- I n Case UB we take an element Qv G GLm(Q) so that 

(3.34) iTv = QvImv,nvQ*v. 

(The reason why we take GLm(Q) instead of GLm(C) will be explained later.) 
Clearly the map 
(3.35) a »-> (Q~lavQv)vea 

sends G A into 05. We then let G A + act on H through the map G A + —» ©+. For 
a G G A + and z = (z v ) u € a G W we put 

(3.36) Av(a, z) = A(av, zv), /iu(a, z) = /i(av, zv) (Cases SP, UT), 
(3.37) Av(a, 2) = A(Q~1av(3 i ;, zv), / / r(a, 2) = n{Q~lavQv, zv) (Case UB). 

Then, in Case UB, from (3.14) we obtain 

(3.33) H = < 

(3.38) avQvB(zv) = QvB({az)v) -diag[X(a, z), /it,(a, z)]. 

3.6. It is sometimes necessary to send S)n and Hn onto bounded domains. In 
Case UT the domain Hn can be sent onto 93 (n, n) as will be shown below. To deal 
with problems of this type and to define the domain in Case SP, we put 
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(3.39) ® n = { z G » ( n , n) \ lz = z } , 
(3.40) <E = { a G GL2 n(C) | a*7?na = - i J n > n } , 
(3.41) G' = Sp(n, C) H U(n, n), £' = Sp(n, C) n C. 

Clearly € = U(rjn)a = a£/(n, n) for every a G <E and €! = 5p(n, R)/? = /?G' for 
every /? G <£'. As an exemplary element of <£' we note 

£ l n £ l n 

-F l ' F ! 

with a complex number e such thate2 = i/2. 
Now, given a G <£ and z G 93n)n, we see that aB(z) belongs to the set Xu of 

w* w 

(3.42) ft 

Lemma 3.2 in Case UT, and so, by that lemma, aB(z) 1 
diag[A, fj] with 

A, /i G GLn(C) and to G Wn- Then we put w 
Thus 

az,A a(z) = iA, and ^xa(z) = M-

(3.43) a 
(az)* 

In In 
Aa(*) 0 
0 /za(z) 

{Z G B„, n) . 

into Wn. A simple calculation shows that az 

I n Z 
Z* l n . 

In this way z H-> az sends *8n?1 

(a az -f ba)(caz + da)"1 . 
Since 5 = ze and <£' = Sp(n, R)/?o with ft of (3.42), we easily see that every 

element of € ' is of the form [ip p] with p G C n
n . Therefore if a G <£' and *2 = z, 

then we see that aB(z) = [iy y] with y G C 2 n . From this and Lemma 3.2 (Case 
SP) we see that Xa(z) = jj,a(z) and az G f)n . Thus a sends 93 n into $)n. 

Considering similarly a~lB(w) with w G H n , we find that every a in (£ gives a 
bijection of Q3nin onto Wn, and also a bijection of *8n onto # n if a G (£'. The action 
is associative in the sense that (cry)z — a(72) for 7 G f/(n, n) and {(3a)z = /3(az) 
for /? G U(rjn). Furthermorer, (3.18) holds for (/?, a ) G € x C/(n, n) and also for 
(/?, a) G {/(77n) x (£; (3.19) is valid for a G (£ and z G ®n,n if we understand that 
£(az) = trj(az) = i(az — t(az))1 as defined in (3.9). Finally we can show that 
(3.25a) is true for z, w G 2Jn,n and a 6 ( J ' , and hence 

(3.44) d(az) = tAQ(z)~1 • dz • / i Q (2) - 1 (a G £, z 6 ® n ,n) . 

These are essentially special cases of [S97, Lemma A2.3] and the formulas stated in 
its proof. 

4. Families of polarized abelian varieties 

4.1. Let us now consider a structure V = (A, C, c; {*i}£=i) of §2.7 under the 
following conditions: 

(4.1) 1 is a ring-injection of a Geld K into Endq(A). 
(4.2) L(K) is stable under the involution a y-* a! of Endq(A) determined by C as 

in §2.5. 

Here K is as in §3.5; namely K = F in Case SP, and K is a CM-field in Cases 
UT and UB. Given V satisfying these conditions, let d be the dimension of A. Let 
(Cd/A, f) be an analytic coordinate system for A in the sense of §2.2. Then we find 
a ring-injection & : K —• C^ given by L(CL)€(U) = £(\P(a)u) for a G K and u G Cd. 
Let QA denote the Q-linear span of A in Cd. Then QA is a 2d-dimensional vector 
space over Q, and is stable under &(K). Thus it has a structure of a vector space 
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over K, so that QA is isomorphic to K\ with the integer r such that 2d — r[K : Q]. 
Since Ka = K 0 Q R, the isomorphism of Kl onto QA can be extended to an It-
linear isomorphism q of (ifa)r o n t o Cd s u c n t n a t q(a>x) = &(a)q(x) for a e K and 
x £ K}. Let L be the inverse image of A. Then we obtain a commutative diagram: 

0 • L > (K*)l • (K^l/L > 0 

(4.3) I U I 

0 • A • Cd —^—• A > 0 

Let Ex(x, y) be the Riemann form determined by a divisor X in C, and p the 
involution of K such that t(ap) = 6(a)', where a' is as in (4.2). Then, by (2.6), 
(4.4) Ex (&(a)u, v) = £ x (w, ^(a^)v) for every a G W. 
Let tr(l^(a)) denote the trace of ^(a) as an R-linear map. Clearly tr(^(a)) = 
r - Trx/Q(a), and so by (2.8), Tr^/q(aap) > 0 for a ^ 0. Then it is an easy exercise 
to show that p is the identity map if K = F, and p is the Galois involution of 
K/F ifK^F (see [S98, p.37, Lemma 2]). 

4.2. Put / ( x , y) = £?x(g(x), 9(2/)). Then (x, y) >-> / (x , y) is a Q-valued alter
nating form on Kl x A^ such that / (ax , y) = / (x , apy). For fixed x, y we consider 
a Q-linear map a i-> / ( ax , y) of ĴT into Q, and find an element #(x, y) € K such 
that / (ax , 2/) = Trx /q (a • p(x, y)). Then we easily see that (x, y) »—> p(x, t/) is 
a skew-hermitian form. Putting g(x, y) = xTy* with an element T of GLr(K), 
where y* = fyp as we defined in (1.5), we thus obtain 

(4.5) T* = - T , 
(4.6) Ex(q(x),q(y))=TrK/Q(xTy*) for every x,yeKl

r. 

With a Z-lattice L in ^ a r , d {ui}f=i C if* w e consider a set of data 

(4.7) n = { i f , j P , L , r , { W i } f = 1 } . 

We call such an f2 a PEL-type. We note here an easy fact: 

(4.8) The direct sum of & and its complex conjugate is equivalent to a Q-rational 
representation of K. 

This follows from (2.7). Given such an fi, we say that V = (A, C, i\ {U}f=1) is of 
type fi (with respect to f and q) if there is an R-linear isomorphism q : {K^)\. 
—* Cd with which we have (4.3) and such that q(ax) = &(a)q(x) and i{a) o £ = 
^oi^(a) for every a e K, q{ui) = U for every z, and (4.6) holds with some X e C. 

4.3. Let us now classify all structures of type ft. We first treat Case SP, in which 
K = F. Then *T = —T. Changing the coordinate system in jFr\ we may assume 
that T = rjn with n = r /2 . This means that r must be even; then d = n[F : Q]. 
Also any Q-rational representation of F must be equivalent to a multiple of the 
regular representation of F over Q, and hence (4.8) shows that ^ must be equivalent 
to the direct sum of n copies of the regular representation of F over Q. Namely 
we can decompose Cd into the direct sum 0 v € a Vv so that each Vv is isomorphic 
to C n and \P(a) acts on Vv as a scalar av for each a 6 F. 

Next take K to be a CM-field, and r = { r ^ g a to be a CM-type as in §3.5. 
Let mv resp. nv be the multiplicity of rv resp. prv in &. Then (4.8) shows that 
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mv + nv must be the same for all v G a. Then mv -f- nv = r since 2d = r[K : Q]. 
This time we can decompose Cd into the direct sum ® ^ e a K, so that each Vv is 
isomorphic to C r and 9(a) acts on Vv as diag[av lm v , a v l n J for each a e K. 

Putting l — n if K = F and I = r if K ^ F, we can thus put 

Crf = (C<)a, lP(a)=diag[!P i ;(a)] i ;6a> 

J a ^ l n {aeF = K), 
| diag[a„ lm„, av l n J (aeK^F). 

(4.9) 

(4.10) 

Then (4.3) can be written 

0 > L 

(4.11) 

0 > d 

with a map g such that 

(C z)a 

(*.)JA 

A - 0 

(4.12) g(ax) = 9{a)q{x) (a G ^ x G (#a)J) , 
(4.13) Ex(q(x),q(y))=TrK&/K(xTy*) for every x, y e (K*)1^ 
(4.14) Q{v>i) — U for every i. 

Conditions (2.1) and (2.3) can be written in the forms 

(4.15) TrK/Q(xTy*) G Z for every x,y G L, 

(4.16) Ex{q(x), i • q(y)) is symmetric in (x, y) and positive definite. 

Condition (4.15) concerns only L, and so we consider ft with L satisfying (4.15). 
We shall later prove the following compatibility condition on & and T : 

(4.17) If a structure of type ft exists with K ^ F, then the hermitian form iTv 

has signature (mv, nv) for every v G a . 

Once this is established, we take Qv as in (3.34), consider G, G, and other sym
bols as in §3.5 with the present T and (mv, nv). We call this setting Case UB in 
accordance with what we said in Section 3. 

Now, still with a CM-field as K, suppose that T = nn. Then (4.17) implies 
that my = nv for every v G a. We call this setting Case UT. In this case we put 
n = r /2 ; then mv = nv = n. 

4.4. We are going to determine all V of type ft of (4.7), which amounts to the 
classification of all possible maps q. Let { e^ }^ = 1 be the standard basis of If*. Given 
any map q : (K^l —> (Cz)a satisfying (4.12) (but not necessarily injective), we 
observe that q is determined by the vectors q(ek), and define a matrix Xv(q) G C£ 
for each v G a by 

(4.18) 

(4.19) 

Xv{q) 

Xv{q) Vl 

Jin 

~ 2 n 

Vl 

q(ek)v = x'l 

q{e.k)v = 
Vv 

(Case SP), 

(Cases UT and UB). 
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q in Case SP (resp. 

(resp. Xv(q) = Yv) 

injective. To prove the converse, we take qo so that Xv(qo) = m 

Here x* G Cn in Case SP and xk
v G Cmv, yk

v G Cnv in Cases UT and UB. We easily 
see that given any uo G (C2n)a , (resp. Y G (C£)a) we can find 

Cases UT and UB) satisfying (4.12) such that Xv(q) = *?? 

for every v G a. For the moment we disregard (4.13), (4.15), and (4.16). 

4.5. Lemma. (1) For q as above and /3 G (Ka)r Pu^ Q^(x) = Q(XP) f°r x £ 
(K*)*. Then q? satisfies (4.12) and Xv(qP) = Xv(q)(3*. 

(2) The map q is injective (and hence surjective) if and only if det Xv(q) ^ 0 
for every v G a. 

P R O O F . Assertion (1) can easily be verified. Suppose q(Y^i=i^iei) = 0 for 
some b — (bi) G {Ka)l. Let (3 be the element of {Ka)r

r whose rows are all equal 
to 6. Then q0{ek) = q(ekP) = 0 for every fe, and hence 0 = Xv(qP) = Xv(q)0*. 
If det Xv(q) ^ 0 for every v G a, then f3v = 0 for every v G a, that is, q is 

_ -In -̂"-n 

Case SP and Xv(qo) — l r in Cases UT and UB for every v G a. This is possible 
by virtue of the observation at the end of §4.4. Then q0 is injective since Xv(qo) 
is invertible. Given an injective g, q$lq is a ifa-automorphism of (KQ)^ and so 
we have (qQ1q)(x) = x(3 with /? G GLr(Ka). Then q = q$, and hence Xv(g) = 
Xv(qo)(3*, which is invertible. This completes the proof. 

4.6. Given an injective q, we see that the map x i—> q~l(i • q{x)) is a ifa-
automorphism of {Ka)l, and hence we have i • g(x) = q{xC) with C G GL r(i^a)-
Then i-q{ek) = qc{ek), and so from (4.18), (4.19), and (1) of Lemma 4.5 we obtain 

(4.20) i • / , ! , ( ( / ) = Xv{q)C* with Iv = diag[lmw, - l n J , 

where mv = nv = n in Cases SP and UT. We now take (4.13) and (4.16) into 
account. We have 

Ex{q(x), i • q(y)) = Ex{q(x), q(yC)) = IV^a / R(xT(j/C)*) 

= [K:F\Zv^M*vTvC*vy'v). 
This must be symmetric in (x, y) and positive definite, which is so if and only if 
TVC* is hermitian and positive definite for every v G a. Fixing our attention to 
one v, dropping the subscript v, and putting simply X = Xv(q), from (4.20) we 
obtain TC* — iTX'1IX. This is hermitian if and only if XT~lX* commutes with 
/ , that is, if and only if XT~lX* is of the form diag[/?, 7] with (3 G GLm(C) and 
7 G GLn{C). Then 

^ ( T C * ) - 1 * * = -UXT^X* = diag[-t/J, 27], 

so that both — i/3 and 27 are hermitian and positive definite. Thus iXT~1X* = 
diag[i/3, 27]. This proves (4.17). Applying Lemma 3.2 to X* (resp. Q""1^*), and 
reinstating the subscript v, we thus obtain 

J diagfc,, &]#(*;)* (Cases SP and UT), 
(4.21) Xv{q) = J d i a g [ ^ ? Cv]B(2; t | )Q* ( C a s e U B ) , 

with £v G GLmv{C), Cv e GL n r (C) , and (zv) e H; (v = £v in Case SP. Con
versely, given Xv(q) in this fashion, we see that q is injective, and reversing our 



It can easily be seen that pz(x) is holomorphic in z. In particular, in Cases SP 
and UT we have 
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reasoning, we find that TVC* is hermitian and positive definite, and hence (4.16) 
holds. 

4.7. Given z = (zv) G W, define p : (K^xH -> (C ' ) a and pz : (tfa)J ~+ (C<)a 

by specifying Xv(pz) as follows: 

( B(zvY (Cases SP and UT), 
(4.22) Xv(Pz) = { ' 

^J5(zu)Qu (CaseUB), 
(4.23) p(ar, z) = pz(x) (x G (tfa)J, zeH). 

I that pz(x) is holomorphic in z. In particular 

As observed at the end of §4.6, from pz we obtain a structure P z of type CI for 
which (4.11) holds with pz as q. To be more precise, by Lemma 4.5(2), pz(L) is a 
lattice in (C z) a so that (C^/p^L) is a complex torus. Define Ez by 

(4.25) Ez(p,(x), pz{y)) = TYKa/R(xTy*). 

Since (4.15) and (4.16) are satisfied, Ez is a Riemann form, so that (Cl)a/pz(L) 
has a structure of an abelian variety; call it Az and denote by Cz the polarization of 
Az given by Ez. For a € K denote by iz(a) the element of Endq(Az) represented 
by &(a) of (4.9) and (4.10), and by U(z) the point of Az represented by pz(ui). 
Thus we obtain a nonempty family of polarized abelian varieties 

(4.26) T{Cl) = {Vz\zeH}, Vz = (A2, C2, tz; { ^ ) } ? = 1 ) 

under the condition, which we hereafter assume, that 

(4.27) In Case UB the hermitian form iTv has signature (mv, nv) for every v G a. 

4.8. Theorem. (1) Vz is of type (4.7) for every z e W. 
(2) A structure of type (4.7) is isomorphic to Vz for some z GH . 
(3) Vz and Vw are isomorphic if and only if w = jz for some 7 G T, where 

(4.28) r = { a £ G | L a ; = Z/ and i^a — Ui e L for every i } . 

P R O O F . Assertion (1) is obvious. Given V of type f£, take q as in (4.11); then we 
obtain fv, 77̂ , £v, and z eH as in (4.21). Define S G GL/(C) a by 5 = diag[ftv]vGa 

with ttv = diag[£v] in Case SP and KV = diag[£v, £ J in Cases UT and UB. Clearly 
S&(a) = &(a)S for every a G K. Now (4.21) and (4.22) show that q(ek) = Spz(ek) 
for every &, that is, g = 5op2 . We easily see that S gives an isomorphism of Vz onto 
P , which proves (2). Before proving (3) we make some preliminary observations. 

If J2v€amvnv = 0 in Case UB, then H consists of a single point. Thus, under 
(4.27) there is exactly one isomorphism-class of structures V of type CI. In fact, it 
can be shown that this V is isogenous to the product of r copies of an abelian 
variety belonging to a CM-type; see [S98, Theorem 24.15]. 

4.9. For a G G + and z G H define M(a , z) G GL,(C) a by 

(4.29) M ( a , z ) = { d i a gh ( a 'Z ) ]- 1 ^ ^ 
[ diag[Av(a, z), p,v(a, 2 ) ] v € a (Cases UT and UB). 
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Formula (3.14) or (3.38), combined with (4.22) and Lemma 4.5(1), gives 

(4.30) Xv{p«) = Xv(pz)a*v = d iag[%(a, z\ pv(a, z)*]Xv{paz). 

(See §3.3 for the meaning of the symbols when mvnv = 0.) This means that p^(ek) = 
tM(a, z)paz(ek) for every k. Since tM(a, z) commutes with !^(a) for every a e K, 
we have pz(xa) =p*(x) =tM(a, z)paz(x), that is, 

(4.31) p(xa, z) = tMia, z)p(x, az) (x G (Ka)l, a G G+, z G H). 

If a belongs to J1 of (4.28), then we easily see that *M(a, z) sends paz(L) onto 
pz(L), and also sends Ez back to Eaz by virtue of (4.25). By (2.5) this means that 
it defines an isomorphism of Vaz onto Pz, which proves the "if-part of Theorem 
4.8 (3). Conversely, suppose that there is an isomorphism of Vw to Vz\ represent 
it by S G GLi(C)a. Then p~l o S opw defines an element a of GLr(jK"a), that is, 
Spw(x) =pz(xa). Since 5 sends (pw{L), Cw, pw{ui)) to (pz{L), Cz, pz{ui)), we see 
that a G r by virtue of (2.5). This completes the proof of Theorem 4.8. 

4.10. Given a g-lattice L in K\ and an integral g-ideal c, we put 

(4.32) T(L, c) = { a G G \ La = L and L(l - a) C cL }. 

We call a subgroup r of G (resp. G) a congruence subgroup of G (resp. G) if r 
contains r(L, c) (resp. r(L, c) fi G) as a subgroup of finite index for some L and 
c. Clearly the group of (4.28) is a congruence subgroup of G. We note here two 
easy facts: 

(4.33) det(a) and v(ct) for a in such a r are units; det(a) is a root of unity if 
aernG. 

(4.34) det(a) = 1 if a G G n T(L, rag) with 2 < m G Z. 

The first part of (4.33) is obvious. If a G T D G, then det(a) is a unit in X, 
and det(a)det(a) p = 1 by (1.12), and so |det(a) |u = 1 for every v G a by (1.22). 
Therefore det(a) is a root of unity. If a G r(L, mg), then det(a) — 1 is divisible 
by m, and hence we obtain (4.34). 

It is well-known that for a congruence subgroup r of G the quotient space r\H 
has a compact ificat ion, called the Satake compactification, which has a structure of 
complex analytic space, and as such, is isomorphic to a normal projective variety 
V*] moreover, r\H is mapped onto a Zariski open subset V of V*. Let <p denote 
the T-invariant map H —> V that gives this isomorphism. We then call (V, tp) a 
model of r\H. 

4.11. We now introduce the notion of CM-points on H. We take a CM-algebra 
Y = K\ © • • • 0 Kt with CM-fields Kt as in §2.9. We assume that K C K{ for every 
i and r = [y : K]. We denote by Fi the maximal real subfield of Ki, and by p the 
automorphism of Y that coincides with the Galois involution of Ki/Fi for every i. 
Let us now consider a if-linear ring-injection h:Y —> K$ satisfying 

(4.35) hfflp) = Th{aYT-1 (a G Y). 

Put y n = { a G y | aa? = 1 } . Then clearly h(Yu) C G. Since y u is contained in a 
compact subgroup of (Y ® Q R ) x , we easily see that the projection of h(Yu) to Ga 

is contained in a compact subgroup of Ga, and hence h(Yu) has a common fixed 
point in H. Moreover, h(Yu) has only one common fixed point as will be shown in 
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Lemma 4.12 below. We call a point on H which is obtained as such a fixed point a 
CM-point on H with respect to G. If w is a CM-point and (3 G G + , then (3(w) is 
also a CM-point, since h! defined by h'(a) = (3h(a)(3~l satisfies (4.35) and (3(w) 
is fixed by ti(Yu). 

Let us now show that in Case SP an injection h of type (4.35) always exists 
for any given Y. Take an element £ of Y x such that £p = —£. Then (x, y) •-• 
TrY/F(CxVp) is a n F-valued nondegenerate alternating form on Y x Y. Therefore we 
can find an F-linear bijection r : Y —> F\n such that TrY/F{Cxyp) — r{x)7ln ' tr{y)-
Since multiplication by a G Y is an F-linear endomorphism of Y, we can define an 
F-linear map h : Y —• F|™ by the relation r(ax) = r(x)h(a) for every a, a; G Y. 
Then we can easily verify (4.35). 

In the unitary case the matter is not so simple. However, we can find at least 
one (Y, h) as follows. We first consider Case UB. Changing the coordinate system 
of K\, we may assume that T is diagonal. Take Y to be the direct sum of r 
copies of K and define h by h{a) = diag[ai, . . . , ar] for a — {a>i)r

i=l G Y with 
di G K. Clearly (4.35) is satisfied. In Case UT we can find a G GL2n{K) such 
that (rr)na* is diagonal, and so the argument in Case UB produces a map in Case 
UT. Thus H has at least one CM-point with respect to G. Also we can always find 
CM-points on H associated with infinitely many different CM-fields Y, as shown in 
[S64, Proposition 4.10] and [S66b, pp.379-381]. 

Now let w denote the CM-point obtained as the common fixed point of h{Yu) 
as above in all three cases. Putting Xv = Xv(pw), from (4.30) and (4.31) we obtain 

(4.36a) h(a)vX* = X*diag \\v(h{a),w), fiv{h(a), w)] {v G a), 

(4.36b) pw{xh{a)) = *M(/i(a), w)pw(x) (x G (Ka)J, a G Yu). 

Since Yu spans Y over Q as will be shown in Lemma 4.12 below, we can extend 
these equalities Q-linearly to Y and define tpv : Y —> C ^ , ipv : Y —> C ^ , and 
# : Y - > E n d ( ( C n ) a ) so that 

(4.37) ipv(a) = \v(h(a), w) and <pv(a) = p,v(h(a), w) for a G Yu, 

(4.38) h{a)vXl = J S Q d i a g ^ a ) , <pv(aj\ (a G Y, v G a), 

(4.39) p^(x/i(a)) = ^ ( a K ( x ) (x G (tfa)J, a G Y), 

(4.40) * (a )=diag[* i ; (a ) J v e a , $v(a) = \ 
[ dmg[ipv{a), <pv(a)\ (K ^ F). 

(In Case SP we have ^)v = pv and mv = nv = n.) Notice that the last equality 
follows from (4.29). From (4.38) and (4.40) we see that $v(a) = ^v{a) for every 
a G K. Therefore the restriction of # to K is &. Clearly l$(a) for each a G Y 
defines an element of Endq(^4^); denote it by i'(a). Then i' is a ring-injection of 
Y into EndQ (Au,) that coincides with ^ on K. Thus we find that Vw, together 
with //, defines a structure considered in §2.9 with Y and ^ a s W ^ and # there, 
and obtain a CM-type (Ki} <^) for each i such that # is equivalent to the direct 
sum of # i , . . . , # t in the sense of (2.12). Moreover, from (4.25), (4.35), and (4.39) 
we see that Ew[t^(a)u, v) = Ew(u, t^(ap)v). Thus the automorphism /9 of Y 
corresponds to the involution of Endq(Aw;) determined by Cw in the sense of §2.5. 
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4.12. Lemma. Let (Y, h) be as in §^.ii. Then Y is spanned by Yu over Q, and 
there exists an element (3 ofYu such that Y = Q[/3]. Moreover, h{(3) for any such 
(3 has only one fixed point in H. 

P R O O F . Clearly Y<8>QR as an R-algebra is isomorphic to Cd. For y G 7 ^ Q R 
denote by yi the z-th coordinate of y viewed as an element of Cd. Then (yi)p = 
{yp)i. Since Y is dense in C d , we can find an element x of Yx such that Xi/xj ^ R 
for i •£ j , and XP/XJ ^ R for every (z, j). Put (3 = xp/x. Then (3 G Yu , and 
/?i, . . . , /3d, /3f, . . . , /3^ are all different. Thus Y = Q[/3], and hence Y is spanned 
by Yu over Q, since the powers of (3 belong to Yu. To prove the uniqueness of 
the fixed point of ft(/?), we first consider Case SP. Employing the symbols of §3.6, 
observe that 

(4.41) { a G G' | a(0) = 0 } = { diag[w, u]\u e U{n) }, 

where U(n) = ?7(n, 0) in the sense of (3.3). Let w be a fixed point of h(Yu) as in 
§4.11 in Case SP. Then for each v G a we can find £v G <£' such that f„(0) = u^ 
and 

(4.42) Zvlh(aUv = diag[av(a), av(a)} (a G Y") 

with a map av : Yu —> £/(n). Suppose i// is another fixed point of h(Yu) on W; put 
zv = ivl{w,v)' T n e n 4 = av(ct)zf

v • tav{a) for every a G Yu . Let c i , . . . , cvn be 
the characteristic roots of crv(a). Diagonalizing ^ ( a ) , we easily see that z' must 
be 0 if cVjCvk 7̂  1 for every (j, A:). Now take a to be the above (3. Prom (4.42) we 
see that cv\, . . . , cu n , cvi, . . . , cvn are the characteristic roots of h(/3)v, so that 
cVj 7̂  cvfc for every (j, A:). Thus c^c^fc ^ 1 for every (j, fc) and every v G a. Then 
^ =: tyV) which proves the desired fact. Case UT can be handled by the same 
technique. In Case UB we take an element /? of Ga so that /?(0) = w. Then taking 
fB(rav, nv) itself in place of Q3njn, we can prove the uniqueness of the fixed point 
in the same manner. 

4.13. Lemma. If w is a CM-point on H, then the entries of wVi Xv(pw) and 
ipv(a), (fv(a) of (4-38) are algebraic for every t )Ga and every a G Y. 

P R O O F . The point w can be obtained as the unique fixed point of h(a) with 
some a G Yu as above. Since we took Qv of (3.34) to be algebraic, the action 
of h(a) on H is Q-rational. (Notice that H has an obvious Q-rational structure.) 
Therefore the fixed point wv of Qv~1h(a)vQv has algebraic entries. Then from 
(4.22) and (4.38) we immediately see the algebraicity of the other quantities in 
question. 

If G = Gp{l, F) = GL2{F)y then H = 5ft. This is the so-called Hilbert modular 
case. In this case the CM-points on H can be described in a clear-cut way as follows: 

4.14. Proposition. Let G = Gp(l, F) = GL2(F). Let (K, {Tv}vea) be a CM-
type with K containing F as the maximal real subfield and an injection TV : K —> C 
which extends v : F —> R. Take an element WQ of K so that Im(rv(wo)) > 0 for 
every v G a, and put w = {wv)vea with wv — rv(wo). Then w is a CM-point 
on fft with respect to GL2{F), rv coincides with tpv of (4-38), and (Aw, t') is of 
type {K, {Tv}veBi). Conversely every CM-point on 5ft can be obtained in such a 
manner. 
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P R O O F . Given such a CM-type and WQ, we can define an F-linear ring-

injection h : K —• F | by ft (a) wo 
1 

w0 

1 
a for a G if. (Notice that (4.35) 

(4.38). Take a G K so that ft (a) = with c ^ O . Then (4.38) shows that 

with T = rji is satisfied by every F-linear ring-injection ft of if into F | . ) Tak
ing the image under TV, we obtain (4.38) for every a G K with rv in place of <pv, 
which shows that w is a fixed point of h(Kx) and (Aw, L') is of type (if, { r ^ e a ) . 
Thus w is a CM-point. Conversely, consider a CM-point w obtained from an F-
linear ring-injection ft : K —> F | . Then we obtain maps <pv : K —> C satisfying 

a b^ 
c d\ 

cvwv + dv = <pv{oi). Put WQ = c~1(a — d). Then iuv = <^(u>o)- This proves the 
converse part. 

4.15. Remark. It should be noted that our formulation is essentially the same 
as in [S98] and some earlier papers of the author, [S63], [S65], and [S79], for example, 
but some symbols are defined differently. In particular, in those articles we set 
lPi,(o) = diag[avlmi;, a v l n J for a G K ^ F, and formulas (3.34), (3.35), (3.37), and 
(3.38) were given in accordance with this change; see [S98, §§23 and 24]. Also, the 
families associated with more general PEL-types are treated in [S63]. 

5. Definition of automorphic forms 

5.1. Our setting is the same as in §3.5; thus K = F and r = g in Case SP and 
if 7̂  F in Cases UT and UB. We now define a symbol b as follows. In Case SP 
we put b = a. In Cases UT and UB we denote by b the set of all isomorphic 
embeddings of K into C, and view a as a subset of b . In all cases, for each v G b 
and a G Gal(Q/Q), or more generally for a G Aut(C), we denote by va the 
element of b that is the composed map of v and a. Then b = ap U a in Cases 
UT and UB, where p is complex conjugation. 

In (3.36) and (3.37) we defined factors of automorphy Xv and \xv for v G a. 
We now put, for a G G A + and z = (zv)vesi G H, 
(5.1) Ma(z) = M(a , z) = (/iw(a, z))v€h, 
(5.2) HvP{a, z) = A„(a, z), nvp = mv (v G a, K ^ F) , 
(5.3) ja(z) = j ( a , z) = (jv(a, * ) ) v € b , j„(a , z) = det [/xv(a, z)] (v G b) . 

The symbol M a(z) is the same as M(a, z) of (4.29); in Case SP we shall write 
also fjia(z) for Ma(z). In Cases UT and UB, we hereafter use (fiv)veh and (n„)vGb 
instead of (Av, ^ ) v G a and (mv, nv)vesL. According to the convention of §3.3 in Case 
UB, for v G a, the pair (jvp, jv) is either (det (a), l) or ( l , det (a)) according as 
nv = 0 or nvp = 0. 

To simplify our notation, for x, y G C b and /c G C we put 

(5-4a) *y = I L e b ^ > 
(5.4b) x« = n„€a < , *Kb = r u b <• 
The factors x ^ and x£ must be understood according to the context. If 0 < xv G 
R, we always put x%v = exp (yv log #„) with real log xv. If we identify KSL (resp. 
Kb) with the element of Z a (resp. Zb) whose components are all equal to «;, then 
(5.4b) is a special case of (5.4a). We shall later speak of x* a + A with A G C a . 

To define automorphic forms on W, we naturally assume that dim(W) > 0. Then 
we take a rational representation 
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(5.5) LJ: Y[GLnv{C) - • GL{X) 
v£b 

with a finite-dimensional complex vector space X. We understand that nv = n in 
Cases SP and UT, and GLUv(C) = 1 if nv = 0 in Case UB (see §3.3). Notice 
that E U b G W C ) = Uvea t G W C ) x GLnv(C)] in Cases UT and UB. In all 
cases Ma(z) is an element of Ylveb GLUv(C). We shall often write an element of 
a G Ylveh GLUv (C) in the form a = (a, b) according to the following convention: 
a = b e GLn(C)a in Case SP; a = (avp)veei G UvesL GLmv(C) and b = (av)veei G 
E U a ^ W C ) in Cases UT and UB. 

Given a map / : H —> X and a G G A + , we define f\\u;Ct : H —> X and 
/ ^ a : H - X by 

(5.6a) ( / L Q ) W = a ; ( M a ( z ) ) " V ( ^ ) (* e W), 

(5.6b) / U = / | | ( i , ( i /(a)a1 / 2a), 

where i/(a)a = (^(of)v)v€a. We easily see that (/||u,a)IL/3 = /IU(<*/3) and (/l^aOU/? 

= /LM). 
Given A: = (fcv)veb £ Z b , we can define a representation u : flvGb G^n^C) —> 

GL(C) = C x by LU(X) = det(a;)fe using the notation of (5.4a). Then we write 
f\\ka for /| |a,a; thus 
(5.7) ( / |Ua) (z )= i Q ( z ) " f c / ( az ) (2 G « ) . 

We shall often write / | | a for fW^a or f\\kCt when a; or A; is clear from the context. 
We use f\a in a similar sense. 

5.2. Given a congruence subgroup r of G or G contained in G+ and a; as in 
(5.5), we denote by M.u{r) the set of all functions / : H —> X satisfying the 
following conditions: 

(5.8) / is holomorphic; 
(5.9) /lo/y = / for every 7 G T; 
(5.10) f is holomorphic at every cusp. 

If LJ(X) = det(x)fc as above, we write Mk{F) for Mcj(r). In particular MK&(r) 
and MK\>{r) are meaningful for K G Z. Condition (5.10) is necessary or meaningful 
only in the following exceptional cases: (Cases SP and UT) F = Q and n = 1; 
(Case UB) F = Q, r •= 2, and x*Tx = 0 for some rr G if2, 7̂  0. In these cases 
F is commensurable with a "conjugate" of SL,2{Z). The precise meaning of (5.10) 
will be explained in §5.6 below. In our later treatment, we will have to prove that 
certain functions are elements of A4u(r). In order to do so, we have to verify (5.10) 
in those exceptional cases. However, since the verification is always easy and we 
are mainly interested in the higher-dimensional case, we will not give the proof of 
the fact on each occasion, leaving the task to the reader. 

If r C G, we can take / | | w 7 instead of / | w 7 in (5.9), but there is a natural 
example of r not contained in G, for which (5.9) is the right condition. For example, 
we can take r = Gl^fal) O G+ in the Hilbert modular case. In the present book, 
however, we consider almost exclusively T contained in G and also f\\u^ instead 
of /|u>7. The only exception is Theorem 10.4, in which a group r not contained in 
G and the symbol /|o;7 appear. 
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An element of Mu(T) is called a (holomorphic) automorphic form of weight UJ 
(or, of weight k, if tu(x) = det(x)fc) with respect to T. An automorphic form is 
also called a modular form usually in Case SP. 

5.3. Since it is often convenient not to specify T, we denote by M^ (resp. Mk) 
the union of Mu{r) (resp. Mk(r)) for all congruence subgroups r of G, and put 

(5.11) A, = U {<r7 \feMTe,0^geMe}, 
e 

(5.12) AUH = {heAu\ h\\u~/ = h for every 7 ^ } ( r c G ) , 

where e runs over Z b , and re denotes the representation defined by re(x) = 
det{x)euj(x). If a;(a;) = det(x)/c, we denote these by Ak and Ak(r). 

5.4. If a e GA in Cases UT and UB, from (3.23) we obtain jvp(a, z) = 
det(a)~1jv(a, z) for every v £ a.. Therefore, for k e. Z b we have 

(5.13) ja(z)k = ]\det(a)Zkv>jv(*,z)k">+^ if a e GA. 
t>€a 

This means that ja(z)k = det(a)pja(z)q with p, q e Z a , and so f\\ka and Mk(r) 
can be defined in terms of p and q instead of k. (That is what we did in [S97, 
§10.4].) Also, by (4.34), det(a) = 1 if a belongs to a sufficiently small congruence 
subgroup. Therefore Mk = Mi if kvp + kv = lvp -f lv for every v 6 a such that the 
u-factor of H is nontrivial; in particular MK\> = A ^ a - In that sense our definition 
of Mk with k in Z b may look awkward, but we shall later see that this is a natural 
definition from an arithmetical viewpoint. However, since Mk = Mq with some 
g G Z a , we can restrict e to Z a in (5.11). 

5.5. An element of Ao(r) is a /""-invariant meromorphic function on W, and it 
is known that conversely every /"-invariant meromorphic function on H belongs to 
*4o(-0 if we exclude the exceptional cases mentioned in §5.2. An element of -4O(JO 
is called an automorphic function with respect to r or a r-automorphic function 
on H. 

Now, let (V, ip) be a model of r\H in the sense of §4.10, and let C(V) be the 
field of all functions on V in the sense of algebraic geometry, as defined in §2.4. 
Then *4o(^0 consists of the functions g o tp for all g G C(V). In this sense Ao(r) 
can be identified with C(V) if we identify r\H with V. 

5.6. Hereafter until the end of Section 8 we confine ourselves to Cases SP and 
UT; we shall return to Case UB in Sections 9 and 11. In Case UT we identify 
( C n ) b with (C n x C n ) a through the map v^^JvGb '—* \£vpi t̂>JvEa> wiiere xv £ O . 
Notice that (5.5) becomes u : GLn{C)h - • GL(X) in Cases SP and UT. We now 
put 

(5.14) e(c) = exp(2?rzc) ( c e C ) , 
(5.15) ea(x) = exp (2Tri^veELxv) (x e C a ) , 

(5.16) e2(X) = e a( tr(X)) (X G (C£) a) , 

(5.17) 5 = Sn = { o e K% I a* = a } . 

1 a 1 
Observe that 0 1 G G for every a E S and diag[a, a] G G for every a € 

GLn(K), and for a function / \H —> X we have 



5. DEFINITION OF AUTOMORPHIC FORMS 33 

(5.18) f\\ 1 a 
0 1 

( * ) = / ( 2 + <T), 

(5.19) ( /IUiag[a, a]) = w('a, a*)/(aza*), 

where we view (£a, a*) as an element of J~]v(Eb GLUv (C) according to our convention 
of §5.1. Given F as above, we can find a Z-lattice M in S and a subgroup £/ of 

"1 a~ GLn(x) of finite index such that I * v I G F for every a e M and diag[a, a ] G f 

for every a G U. Thus, if / € M „ ( F ) , then 

(5.20) f{z + cr) = f{z) for every a G M, 
(5.21) /(azfl*) - a;(*o, a * ) " 1 / ^ ) for every a G C7. 

Notice that tr(cr<7') G F for cr, tr' G 5, and (a, a') H-» TrF/Q(tr(era')) defines a 
nondegenerate pairing S x S ^ Q. Let L = [h e S\ TTF/Q (tr(hM)) C Z } . Then 
(5.20) guarantees an expansion of the form 

(5.22a) / (z) = ^c (h )e2 ( / i2 ) 

with c(h) G X. (For the proof, see [S97, Lemma A1.4].) We shall often put 

(5.22b) f(z) = y£c(h)e:(hz) 
hes 

by defining c(h) to be 0 for h G 5, £ L. Usually we call the right-hand side of (5.22a) 
or (5.22b) the Fourier expansion of / , and call the c(h) the Fourier coefficients of 
f. If n = 1 and F = Q, we take LU(X) = det(x)fc with k G Z. Then (5.10) means: 

(5.23) For every a G 5L 2(Q) we have 

(/IU <*)(*) = Em=o came{mz/Na) 
with carn € C and a positive integer Na. 

In this situation we say that / satisfies the cusp condition. Now if n > 1 or F ^ Q, 
no condition of this nature is necessary, because of the following fact: 

5.7. Proposition. Suppose n > 1 or F =£ Q; let f be a holomorphic function 
on H of the form (5.22a) satisfying (5.21) with a subgroup U of GLn(x) of finite 
index. Then c(h) ^ 0 only if hv is nonnegative for every v G a. 

P R O O F . First we observe that f{x + iy) = YlheL c W e a ( ^ y ) e a ( ^ x ) > a n d hence 

(5.24) el{ihy)c{h) = A [ f{x + iy)e2(-hx)dx, 
Jsa/M 

where A = vo\{SJM)-1. Taking X = Cl with some i, put \\w\\ = ( £ J U i W 2 ) 1 / 2 

for w G X, and put also ||a|| = Max||u,||=1||a:u>|| for a G End(X, C). Taking yv = 
(27r)_1ln for every v G a in (5.24), we obtain \\c(h)\\ < Bexp ( X ^ G a

t r W 0 w i t n a 

constant B independent of h. Now from (5.21) we obtain c(/i)=o;( ia, a*)~1c(a*ha) 
for every a E U, and hence 

(*) ||c(ft)|| < B | M ' a , a*)- 1 | | exp( j : t ; € a t r (a*/ ia) , ) for every a 6 K 

Now suppose n > 1; let /i be an element of L such that hu is not nonnegative 
for some u G a. We consider Case UT; Case SP can be handled with obvious 
modifications. We can find x G (C n ) a such that 
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(**) (xix% + x2x%)u(x*hx)u < - E u ^ e a | (^ i x i + x2x^)v{x*hx)v\, 

where x\ and x2 are the first two components of x. (They are elements of Ca .) 
Since K is dense in C a , we can take such an x in Kn. Multiplying it by a positive 
integer, we may assume that x G t n . Let y = \—x2 #i 0 • • • 0] and b = xy\ here 
y G (C^) a and b G (C£)a . Then b G t£ and b2 = 0 since yx = 0. We have 

(***) tr(6*M>) = tr(y*x*hxy) = yy*x*hx == (xix? + x2x$)(x*hx). 

Put a = (1 + 6)m with 0 < m G Z. Since 1 + b G SLn(t), we see that a G U if m 
is a multiple of some positive integer N. We have 

tr(a*ha) = t r ( ( l + mfe)*/i(l + ra&)) = tr(/i) + m • tr(fe(fe + 6*)) + m2 • tr(6*M>). 

Thus E V € a t r ( a * ^ a ) ^ = P + m<i + m 2 r w i t n Pi Qi r € R > a n d r = X ^ e a O 2 ^ ! + 
^ 2 ^ ) ^ ( ^ * M ^ < 0 by (***) and (**). Now by (*), 

\\c{h)|| < B||u;(l + % 1 + 6*)-1 ||m exp(p + mq + m2r) 

for 0 < m G NZ. Making m large, we find that c(h) = 0 as expected. 
Next suppose n = 1 and F ^ Q. In this case we have S = F and we can take U 

to be a subgroup of gx of finite index. Let h be an element of F such that /iu < 0 
for some w G a . Since F ^ Q, we can find an element a G U such that |au | > 1 
and \av\ < 1 for u ^ v € a. Now tr((am)*/iam) = /ia2m in this case, and therefore 
we obtain ||c(ft)|| = 0 by taking a171 in place of a in (*) and making m large. 

Another type of proof of Proposition 5.7 for the elements of Mk> k G Z a , is given 
in [S97, Proposition A4.2]. See also [S78b, Proposition 3.1] and [S97, Proposition 
A4.5] for some results of the same nature in different settings. 

5.8. Let / £Mu,(r) and ae G+. Then we easily see that f\\ua £Mu(a~lra). 
Thus Mu is stable under the map / H-> f\\u,a for every a G G+. Now for / G 
Mu(r) and a G G+ we have an expansion 

(5.25) (fW^M^CaWeKhz). 
hes 

By Proposition 5.7, ca(h) ^ 0 only if hv is nonnegative for every v G a. We call 
/ a cusp form if ca(h) = 0 for every a G G and for every h such that det(/i) = 0, 
and denote by Su(r) (resp. Su) the set of all cusp forms contained in Mu(r) 
(resp. MUJ). In view of Lemma 1.3 (3), if / is a cusp form, then ca(h) = 0 for 
every a G G+ and for every h such that det(h) = 0. If / G«Sw(jr) and a G G+, 
then / l ^ a G S ^ - 1 ^ ) . 

To consider the arithmeticity of modular forms, let us hereafter assume that 
(X, u) has a Q-structure in the sense that X = X0 ® Q C with a fixed vector 
space XQ over Q, and u is the natural extension of a rational representation UQ : 
GL n (Q) b -> GL(XQ). (Often X = C m , X0 = Q m , and u;0 is a representation 
GLn(Q)h -> GLm(Q).) Then, given a subfield £> of C, we say that / of (5.23) is 
D-rational if c{h) G XQ <S>Q D for all h G 5, and denote by ./Vf^D) the set of all 
D-rational elements of M^- Then we put 

(5.26a) A„(D) = U { r t \ q G MTe(D), 0 ̂  p G Mc(£>) }, 
e 

(5.26b) M,(r, D) = K(r)nK(fl), A,(r, D) = A,(r) n^(D), 
(5.26c) Su,(r,D)=Su,(r)C)Mu(D), S„(D) = SU}nMu(D), 
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where re(x) = det(x)ecj(x)y e G Z b . We use the subscript k instead of u (that is, 
we write Ak{D) and Sk for Au{D) and Su, for example) if UJ{X) = det(x)fc. 

Clearly -4o(Z?) (resp. Ao(r, D)) is a subfield of *40 (resp. A)(J1)). Also 
EAo(r, D) C A ( r , E) (resp. £*40(£>) C A ( £ ) ) if E is an extension of D. 
The equalities i<Mo(^> D) = Ao(r, E) and EAQ(D) = AQ(E) are true in some 
cases, but they are not necessarily true in general. It should also be noted that Mk 
can be {0} even if kv > 0 for every v G a; Sk can be {0} even if Mk ^ {0}; see 
Proposition 6.16 below. 

5.9. For h G S we write 0 < h or h > 0 if /iv is nonnegative for every v G a. 
By Proposition 5.7 the expansion of / in (5.22a) can be written 

(5.27) f(z)= £ c(h)en
a(hz). 

0<h£L 

Let X(L) denote the set of all formal series of the form (5.27) with c(h) G C, and 
X the union of X(L) for all Z-lattices L in 5. Then X has a natural ring-structure. 
Put [x] = Tr ir/q(tr(x)) for x G S and let m be the dimension of S over Q. Then 
we can find a Q-basis { s i , . . . , sm } of S such that [s^L] C Z and s™ > 0 for 
every i and every v G a. Clearly [s /̂i] > 0 if 0 < h G L. Taking m independent 
indeterminates £i, . . . , £m , for / G X(L) as in (5.27) we put 

m 

(5.28) ,&(/)= 53 c ^ n ^ 1 -
0</i€L i= l 

We easily see that ip defines a ring-injection of X(L) into the ring C[[£i, . . . , £m]] 
of all formal power series in £i, . . . , £m with coefficients in C. Therefore X(L) 
is an integral domain, and the same is true for X. Given a G Aut(C), we obtain 
automorphisms of C[[£i, . . . , fm]] and X by applying a to the coefficients; denote 
by fa the image of / under these automorphisms. This means that for / G X(L) 
as in (5.27) we have 
(5.29) / " = £ c(ft)"e2(h«), 

0<h€L 

and clearly ip(f)a = ^(/CT)- We can in fact define fa formally in the same manner 
even when c(h) G X, since a acts naturally on X. This action of or can be extended 
to Au. Indeed, for / = p~xq G A& with O ^ p G Me and # G .A/fre as in (5.26a) 
we put fa = {p(7)~1qa. This is a vector whose components belong to the field of 
quotients of X. Clearly this is well-defined. For the moment, fa is merely defined 
formally, and, in general, not defined as a function on H. However, we shall later 
show that it is always meaningful as a function on H. 

Let us now prove 

(5.30) A„{D) DMUJ = MUD). 

If / € Au(D) PiMu,, then / = p~lq with 0 / p G Me{D) and q G MTe{D)-
Then for a G Aut(C/D) we have pfa = (pf)a = qa = q = pf. Since p is not a 
zero-divisor, we obtain fa = / , that is, / G M^D). 

There are several natural, but highly nontrivial, questions concerning M^ : 

(Ql) If f G MUJ and a G Aut(C), does the formal series for f° define an auto-
morphic form? If so, what is its weight? 

(Q2) Can we find an algebraic number field D such that M^ = MU(D) <S>D C ? 
When can we take D = Q ? 
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(Q3) Given a G G + and / G MUi how is {f\\^Y related.to fa ? Can we find 
P G G+ and a weight i\> such that (/| |u,a)a = fa\\^P ? 

We can ask similar questions on 5^ and A&. We shall answer these questions in 
Sections 9 and 10. In connection with (Q2) we note here an easy lemma. 

5.10. Lemma . (1) If D is a subfield of C and / i , . . . , fm are elements of 
MU(D) linearly independent over D, then they are linearly independent over C. 

(2) If Mu(r, D) spans Mu(r) over C, then Mu{r) = M„{T, D) ® D C. 

P R O O F . Let /<(*) = Zh Ci(h)e^{hz). Put Wh = { x e C m | YZi xMh) = ° } 
for h £ S and Y = C\heS Wh. Then each Wh, as well as Y, is a vector subspace of 
C m defined over D. Since Y has no D-rational point other than 0, we have Y = {0}, 
which proves (1). Then (2) follows immediately from (1). 

5.11. There is one phenomenon peculiar to Case UT. First put lz = {tzv)vea 

for z = {zv)vesi G H. Let a G G+. Then a? G G + and from (3.14), (3.15), and 
(3.16) we can easily derive that 

(5.31) a'(*z) = \az), A(a, z) = /z(a", tz). 

Given {a;, X} and / : H -> X, define / ' : H - • X by / ' (*) = /(**). Then we 
easily see that 

(5.32) (fL<*y = f'\UaP, 

where up is defined by u;p(a, 6) = u(b, a). Therefore / ' G .M^P if / G Mu. 
Define also / = f~ : H —> X by /(z) = /(—z*) and put a ' = £a£ for a G G+ 

with e — diag[l r, — l r ] . Then we can easily verify that 

(5.33) <*(-**) = -(<*'*)*. A(a, -z*) = /i(a', z), 

(5.34) (/ | |a,a)~ = / I U a ' , 

provided a; is R-rational, in which case / G A4WP if / G A ^ . 

5.12. The measure dz of Lemma 3.4 in Case SP can be written 

(5.35) d(x + iy) = det^)-7 1"1dx dy (Case SP) 

with dx = Y\h<k dxhk and dy = Ylh<k dyhk for real symmetric matrices x and y. 
In Case UT, for each fixed v G a we have C£ = 5V 0 iS^ with 5 of (5.17). Now 
Sv is the vector space of all hermitian matrices of size n. We can identify Sv with 
R n through the map x H-> [xhh, Re(^fc)» I rn^ /^) (/i < fc)), and define a measure 

2 

dx on 5V by pulling back the standard measure on R n . Writing z = (zhk) G C™ 
in the form z = x -f iy with x, y G Sv, we have a measure dxdy on C™ with the 
measures dx and dy on Sv given as above. It should be noted that this does not 
coincide with the standard measure Ylh k[(i/2)dzhk^dzhk] on CJJ. In fact, we easily 
see that 
(5.36) J J [{i/2)dzhk A dzhk] = 2 n ( n " 1 W y . 

h,k 

Thus the measure dz of Lemma 3.4 in Case UT can be given by 

(5.37) d(x + iy) = 2n(n~1) det(y)"2ndxdy (x* = x, y* = y; Case UT). 
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6. Parametrization by theta functions 

6.1. In this section we introduce certain theta functions, by which we parame
trize our abelian varieties in Cases SP and UT. If the basic field is Q, they are the 
classical 9 and its modification </? given by 

(6.1) 

(6.2) 

0(u, z ; r , s)= ] T e(2"1-*^zy + tp(u + a)), 
g-reZn 

ip(u, z\ r, s) = e ( 2 - 1 • tu(z - 'z)~1u)9(u, z\ r, s). 

Here u G C n , z G 55n, r, 5 G R n , and e(c) = exp(27rzc) as we set in (5.14). We 
are going to consider the pullbacks of these (with larger n) to ( C n ) b x H, which 
may be viewed also as generalizations of (6.1) and (6.2). 

We need some new symbols. First, we denote by Qab the maximal abelian 
extension of Q in C. Next, given a finite-dimensional vector space W over Q, we 
denote by «S(Wh) the Schwartz-Bruhat space of Wh (see §1.6). Also, for a square 
matrix x of size 2n we denote by ax, 6X, cx, and dx the n x n-blocks of x in the 
sense of §1.8. 

Let [F : Q] = e. In this section we often identify a with { 1, . . . , e } so that Xa 

may be written Xe for various symbols X. For example, (C n ) a can be identified 
with C e n , and diag[av]v e a with diag[ai, . . . , ae]. 

6.2. Let { /? i , . . . , (3e } be a Q-basis of F, and {71, . . . , 7e } be another Q-
basis of F determined by the condition T T F / Q ( / ^ 7 J ) = 6{j. Define a Q-linear map 
9 • Qhen - FL by 

(6.3) g(xi, ... , xe, 3/1, .. . , ye) = ( ] P A X ; , ]T^7i2/; I 

A simple calculation shows that 

(6.4) TrF/Q(g(u)rjn • tg(uf)) = wqen • V 

for u, u' G QLn- Denoting the j - th conjugate of pi by /3^, put 

/?ll ln ' •• Ple^-n 

(Xi, Vi G Qi ) . 

(6.5) 

(6.6) 

(6.7) 

5 = , 
_Pe\ *-n ' ' ' Pee*-n 

V>(a) = diag[at,]t,ea = diag[ai, ... ,ae 

,(a) = 0 
0 

tB-i 
ip(aa) ip(ba) 
if>(ca) ip{da) 

B-1 0 
0 *B 

( « € F | « ) . 

Then we can easily verify that u{a) G Qien ano^ 

(6.8) 0 M < * ) ) = g(u)a (u G Q j c n , a G F2
2£). 

Let us now define a subgroup Go = Go(F, r)n) of Gp(n, F) by 

(6.9) Go = G0(F, 77n) = { a G Gp(n, F) | i/(a) G Q } . 

This is the same as the group of (3.29). In view of (6.4) we can show that UJ defines 
an injective homomorphism of Go(F, rjn) into Gp(en, Q), and also an injection of 
Sp(n, F) into Sp(en, Q). Define also an embedding e : 5}* —» 53en by 

(6.10) £(z) = 5 • diagfz^ga • *B (z = (z„)„ea € £*). 
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Then we can easily verify that 

(6.11a) u(<*)e{z) = e{az) (a G G0(F, r?n), "(<*) > 0), 
(6.11b) M(u;(a), e(z)) = ^ " M i a g l / i ^ a , 2)]v G a - lB. 

6.3. Let us describe the above embedding e in terms of the families of abelian 
varieties established in §4.7. We consider two families 

.F(fto) = { Vz | Z G ften } , P z = (A z , Cz, ^z; { t i (2)}f = 1) , 

H^F) = {Vz\zeS%}, Vz = (Az, Cz, LZ; {U(z)}i=l), 

QQ = { Q, id., L0, 77en, {Mf=l }» 

fiF = {F,SP >L F ,^ ,{^(Ti i )}f= = i} . 

Here Lo resp. L F is a Z-lattice in Qlen r e sP- ^n- By (4-15) we have to assume 
that TrF/Q(xrjn • ty) G Z for every x , t /G L F - We take L0 = g~l{Lp)' By (6.4), 
W77en • tw/ G Z for every u, i / G Lo- Thus ffo is meaningful for this Lo- Now recall 
that for each z £ ft* the variety A2 can be given by (Cn)a/pz(LF) with the map 
pz of (4.24). Disregarding the endomorphism algebra tz(F), we observe that Vz is 
of type Ho? and so isomorphic to Vw with some w e 9)en. We obtain such a w by 
checking the period matrix X(pz o g) of (4.18). In fact, a simple calculation shows 
that the upper half of X(pz o y) is of the form 

|"/?nZi ••• 0elZi 7 n l n ••• 7 e l l n l 

\_PleZe *"' Pee^e 7le-Ln *'* 7ee-*-nJ 

This equals i ? - 1 [2(2) l e n ] • Since Pz(<7(#)) equals this matrix times *# for x G 
QLn> w e obtain 

(6.12) B.pz(g{x)) =p£{z)(x) (x G Q L J -

Therefore the map u »-» £ u for it G (C n ) a gives an isomorphism of (C n) a /p 2(LF) 
onto Cen/p£(2)(Lo), or rather, an isomorphism of Vz (minus iz) to V£(z) because 
of (6.4). 

6.4. We now define theta functions OF and (fp by 

(6.13) 6F{u, z\ r, s) = ^ e a ( 2 _ 1 • */i*ft + 'fc(ix + 5)), 
h-r€M 

(6.14) <£>F(^, <Z; r, 5) = e a ( 2 - 1 • tu(z — ~Z)~1U)6F{U, Z\ r, s). 

Here u G (C n ) a , z G %*, r, s G (R n ) a , and e a(x) = exp ( £ v € a xv) for x G C a 

as we set in (5.15); M will be specified after (6.15). If F = Q and M = Z n , then 
these coincide with the functions of (6.1) and (6.2). By an easy calculation we can 
verify that these are the pullbacks of (6.1) and (6.2) in the sense that 

(6.15) <pF(u, z\ 01 (r), g2(s)) = <p(Bu, e(z)\ r, 5) 

( n e ( C T , ^ ^ , r , S G Q 2 - ) , 

where gx(q) = £*=1 piQi and g2(q) = YlUi 7tfc f o r t(l = [*9i ' ' ' *9e] with & G 
Q n , and the same type of equality holds with 0 in place of (p. Now M = #i(Z e n) . 
It is not difficult to show that the right-hand side of (6.13) is locally uniformly 
convergent on ( C n ) a x (-fjn)a> and so defines a holomorphic function in (u, z). 



6. PARAMETRIZATION BY THETA FUNCTIONS 39 

For our later purposes it is convenient to consider functions of the following 
types: 
(6.16) 6F(u, z- A) = J2 A(/i)ea(2"1 -*/iz/i + *ftu), 

heFn 

(6.17) <pF(u, 2; A) = e a(2~x • lu{z - z)-lu)6F(u, z\ A). 

Here A G S{F£). Clearly (6.13) (resp. (6.14)) is a special case of (6.16) (resp. 
(6.17)). As we said in §1.6, we view A as a function on F£ , so that X(h) for 
h e Fn is meaningful. 

6.5. Let K be a totally imaginary quadratic extension of F as in §3.5. Take 
C e K so that Cp = -C and K = F(C). Define an F-linear map h : F4

x
n -> ^ n by 

(6.18) h(xu x2 , j/i , y2) = (xi - C^2, 2-1?/! + (2C)"12/2> (a?i, j/i € Fn
x). 

Then we have Trx/p^ujrjnh^)*) — ur)2n • tu/ for u, v! G F ^ . 
We can now define embeddings r : K^ —• F^ and ip : Wa —> #fn ^ follows: 

(6.19) 

(6.20) 

(6.21) 

A = 

A 0 
0 jl 

a(a) =diag[a^, a] ( a e K J ) , 

(w = (wv)ve8L e W*). 

A"1 

0 
0 

A* 
<r(aQ) a(ba) 

_cr(cQ) cr(da) 

Then we can easily verify that r defines an injective homomorphism of GU(r)n) 
into Gp(n, F) and 

(6.22a) h(ur{a)) = h(u)a (u e F}n, a e F&\ 
(6.22b) r(a)tl>{w) = il>(aw) (aeGU(r]n), 0 < i / ( a ) € F ) , 

(6.22c) / / V ( T ( Q ) , V>M) = i4udiag[Ai;(Q, w), /xv(a, w)],4*. 

Taking a Z-lattice LK in X^n s u c n that ^K/Q^VnV*) € Z for every x, y £ LK, 
we consider a family of polarized abelian varieties in Case UT defined in §4.7: 

(6.23a) F(SlK) = {Vw\weH*}, Vw = (Aw, Cw, tw; {U{w)}i=1), 
(6.23b) QK = { K, #, LK, r/n, {h(Ul)}s

i=l } . 

Take the map pz of (4.24) for z e fifn a n d similarly p^ for w e H*. Then a 
simple calculation shows that the upper half of Xv(pw o h) is of the form 

(6.24a) w C,w 2~l\n -(2C)~1ln 
lw -(-lw 2 " 1 ! , (2C)-Xln 

This equals Av [i/>(w)v l2n] • We also see that 

(6.24b) A-pw(h{a)) =p^w){a) (a £ F\n), 

where A — diag P ^ ] r G a - Define a Z-lattice LF in F\n by LF = H~1(LK)- Then 
the map w H> i u for u G ( C 2 n ) a gives an isomorphism of {C2n)a/pw(LK) onto 
(C2n)a/p^( l t,)(Z/F), or rather, an isomorphism of Vw to V^w) if we restrict tw to 
F. 

6.6. In Case UT we identify ( C n ) b with (C") a x ' (C n ) a via the map {xv)veh ^ 
{xvp)v€a. x (^r)uea- We now define theta functions OK and <£# by 
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(6.25) 0K(u, w;£) = J2 ^9)^9^9 + l9X + g*y), 

(6.26) <PK(U, W\ £) = ea(*2/(w - w*)~1x)0K(u\ w; £), 

e (Cn)b, w e H», £ e S(K^ . 

By an easy calculation we can verify that 

(6.27) <pK{uy w; £) = pF (Au, ^(w);£op) (£ e £ ( # £ ) ) , 

where p : F2n -> Kn is defined by p M J1 J = a - Qb for a, b e F2n, and the 

same type of equality holds with 8 in place of (p. 

6.7. In Case SP we have G = Sp(n, F). We define, in this case, open subgroups 
G° and C6 of G A and arithmetic subgroups r° and re of G by 

(6.28) C° = { £ G GA | az< g, 6e -< D"1, c ^ D, de -< 0 } , 

(6.29) G* = { £ € G° I {ar %)u -< 2D"1 and 

(c$ • ^ ^ -< 20 for 1 < i < 71}, 

(6.30) r° = GnG°, r e = G n c 9 , 
where 0 is the different of F relative to Q. Notice that G° = GA CiCfi"1, D] with 
C[ , ] defined by (1.17) with m = n, and so C° is a subgroup of G A - That Ce 

is indeed a subgroup will be shown in §A2.3. We are going to define a factor of 
automorphy of weight 1/2 in Case SP. To make our formulas short, for a G G+ 
and K G Z we put 

(6.31) ja(z)™ = n„€a*>(<*> *)" ( C a s e s S P a n d U T ) 

with j v of (5.3), in accordance with (5.4b). It should be noted that we use a, not 
b; naturally we write this ja(z)a if K = 1. 

6.8. Theorem (Case SP). There is a holomorphic function ha(z), written also 
h(a, z), on 9)* defined for each a G re with the following properties: 

(1) ha(z)2 = Caia(^)a with a root of unity (a. 
(2) hap(z) = ha{(3z)hp(z) for every a and (3 in r6. 
(3) hy{z) = 1 if c7 = 0. 
(4) Given A G S(Fg), there is an open subgroup D\ of Ce such that 

(6.32) <pF(Va(*)"~V az; A) = ha(z)<pF(u, z\ A') 

with Xf(x) = \{dx) if a G Gfl (£>Adiagpd_1, d]) with d G ILGhG jM&;)> where 
pa is defined by (5.1). In particular, we can take D\ = C° if A is the characteristic 
function of $n. 

(5) Let e be the Hecke character of F corresponding to the quadratic extension 
F(y/^l)/F and let D be the different of F relative to Q. If 7 G T°, 67 -< 2D"1, 
and c7 -< 2D, then det(d7) is prime to 2, and 

M * ) 2 = Ylv\2£v{det(d1))j1(z)&. 

This theorem, as well as the following one, will be proven in §A2.9. The function 
h7 may be called the factor of automorphy of weight a /2 (or simply, of weight 1/2). 
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For the moment, it is defined only for 7 £ Fe. We cannot define such for every 
7 £ Sp(n, F) consistently so that property (2) above holds in general. Howevere, 
we can define h1 for 7 in a certain set larger than F6', as will be shown in Theorem 
A2.4 in the Appendix. 

6.9. Theorem (Case SP). (1) Given a £ G+, let r{z) be a holomorphic func
tion on ft* such that r(z)2 = £ • ja{z)* with a constant ( £ C x . Then there is a 
congruence subgroup A of T0 depending on (a, r) such that aAa~l C re and 

/ i (a7a _ 1 , az)r(z) = r(ryz)h1(z) for every 7 £ A 

(2) Given a and r(z) as in (1), suppose a eG. Then for every A £ <S(F£) we 
have 

^>F{t^a{z)~lu, OLZ\ A) = r(z)ifF(u, z; A') 

with an element Xf £ S(Fg), which is determined by a, r, and A. In particular, if 
a = rjn and r(z) = Ylveadet(—izv)1^2, then A' is given by 

(6.33) \'{x) = \DF\-n/2 / X(y)eh(txy)dy. 

Here the branch of r is chosen so that r(z)>0 if Re(z)=0, Dp is the discriminant 
of F, eh is the character of F^ defined in §1.6, and dy is the Haar measure such 
that the measure ofJ\veh Q™ is 1. 

Put rx = GPiDx with Dx of Theorem 6.8 (4). Taking d = ln in Theorem 6.8 
(4), we obtain 

(6.34) ipF(tfj,y(z)-1u,'yz; X) =h~r(z)(pF(u, z; X) for every 7 £ TA. 

Now let s £ F, ^> 0; take a = diag[sln, ln] and r(z) = 1 in Theorem 6.9 (1); 
put (3 = a^a~l. Then np(sz) = fi7(z) and hp(sz) = hy(z) for 7 in a suitable A. 
Therefore from (6.34) with /? in place of 7, we obtain 

(6.35) ipF(tfi1(z)~1u, s • (72); A) = hy(z)(fF{u, sz; A) for every 7 £ r 

with a congruence subgroup r of G depending on A and s. 

6.10. Let us now define, in Case SP, modular forms of half-integral weight. 
First, by an integral weight we mean an element of Z a . By a half-integral weight we 
mean an element k — {kv)vea of 2 - 1 Z a such that kv = mv -f (1/2) with mv £ Z 
for every v £ a. Given such a fc, a £ T0 , and a C-valued function / on 55a, we 
define a C-valued function f\\kCt on i3a by 

(6.36) (fhaKz) = ha(z)-1ja(z)-mf(az). 

For a congruence subgroup F of G contained in T6 we denote by Mk{F) the set 
of all holomorphic functions / on 5}a which satisfy /||fc7 = / for every 7 £ F 
(and also the cusp condition if n = 1 and F = Q). We then denote by Aik the 
union of A4fc(r) for all such F, and define Ak and w4fc(r) in the same manner as 
in §5.3. If / £ Mk, by Theorem 6.8 (3) we have f(z + a) = f(z) for every a 
in a suitable lattice in S and / ( ax • ta) = det(a)~m/(2:) for every a in a suitable 
subgroup of GLn(2) of finite index. Thus Proposition 5.7 is applicable to / , and 
hence / has an expansion of type (5.27). Now, given a subfield D of C, we can 
define Mk{D), Ak{D), Mk(F, D), and Ak(r, D) in the same manner as in §5.8. 
Notice that (5.30) is true for the present Mk{D) too. 
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Suppose k G Z a and kv = K for every v G a with K € 2 _ 1 Z in Case SP and 
KG Z i n Case UT. (This means that ja(z)k = jafc)"* if ft G Z; also Â  = 0 for 
v G b, ^ a in Case UT.) We then employ «;a instead of the subscript k (that is, 
we write f\\KgLa and A ^ O D ) for f\\k& and A4/c(Z)), for example). 

In Case UT we can formulate similar results in a more clear-cut way. Indeed we 
have: 

6.11. Theorem (Case UT). Every element a of G gives a C-linear automor
phism of S(K£), written £ *-> £a for £ G S(Kg), with the following properties: 

(1) yK^Ma{z)-lu, az; £) = ja{z)a(pK{u, z\ £a), where Ma is defined by (5.1) 
and j a ( z ) a by (6.31). 

(2) eaf3 = {ea)0. 
(3) For every £ G S{K£) there exists a congruence subgroup Fe of G such that 

V = £ for every 7 G Fe. 
(4) In particular, we have 

(£^(x) = (-i)^F^\DK\~n/2 [ £(y)eh(TrK/F(y*x))dy, 

where DK is the discriminant of K, eh is the character of F^ defined in §1.6, and 
dy is the Haar measure such that the measure of Ylveh vv JS 1-

PROOF. This is essentially a special case of [S97, Theorem A7.4]. Indeed, define 
/ (z ; u, u'\ £) of [S97, (A7.3.2)] with q = 1 and H = Q = A = 1. Then we can 
easily verify that 

(6.37) <pK ,z;£) =f(2z;y,x-£). 

In [S97, Theorem A7.4] we proved the results of type (1, 2, 3) of our theorem for 
the function / in a stronger form for the elements of the group G\ = GnSL2n(K). 
Given a G G?i, put /? = £ - 1 a _ 1 £ with £ = diag[ln , 2 - l n ] ; write £a for the symbol 
13£ defined in that theorem. Then we obtain the present theorem at least for the 
elements of G\. Now G is generated by G\ and the elements of the form diag[a, a] 
with a G GLn{K). Therefore we can easily extend the results to G. As for (4), if 
a = 77, then /? = rn with r = diag[-2, - 2 " 1 ] , so that C* = ?£ = r{*>£). Combining 
(5) and (6) of [S97, Theorem A7.4], we obtain F> as stated in (4). 

Notice that in Case UT the facts corresponding to Theorem 6.9 (1) and (6.35) 
(with j * in place of h7) are trivial. Also, we shall later give Theorem A5.4 which 
essentially includes Theorem 6.11, as well as [S97, Theorem A7.4]. 

6.12. Theorem. Let !F(SIK) be defined in Cases SP and UT as in §§6.3 and 6.5. 
Then there exist a finite set A of Z-valued elements of S(Kg), a positive integer 
p, and a congruence subgroup FQ of G with the following properties, in which it is 
understood that K = F in Case SP: 

(1) The quotient 6K(U, p~lz\ A)/0#(u, p~~xz\ A') is invariant under u *-* u + £ 
for every A, A' G A and every £ G PZ(LK)-

(2) For every (uo, zo) € ( C n ) b x H there exists an element X of A such that 
#K(^O? P~XZO', X) 7̂  0. Let 0K(U; Z) denote the point in the complex projective 
space P m ( C ) whose homogeneous coordinates are (6K{U, p~lz\ A))A A, where m = 
#(A) - 1. 
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(3) For each fixed z G H the map u »—> 6>x(u, Z) defines a biregular projective 
embedding of (Cn)h/pz(Lx) onto an ahelian variety. 

(4) The polarization on the image ahelian variety determined by its hyperplane 
sections corresponds to the Riemann form of (4.13). 

(5) 0 X ( * M 7 ( 2 > , z) = GK(u, -yz) for every 7 G T0. 

P R O O F . We first consider Cn/pz(L) for z G 9)n and a Z-lattice L in Q^n such 
that xrjn • ly G Z for every x, y e L. As is well-known, we can find an element a of 

' 0 -6' Z2™ such that Z\na = L and ai7n • * a = 0 
with a diagonal matrix 6. Put 

T<5 = diag[ln, 6]. Then a"1rs gives an isomorphism of (r)n, L) onto (77n, Z\nrs). 
Thus we may assume, without losing generality, that L = Z\nT^. Then p2(L) = 
{ za -h (56 I a, 6 G Z n }. Take an integer p so that every entry of pS is divisible by 
an integer greater than 2, and put fr(u) = <£>(/m, P^; r> 0) f° r r £ (p(5)-1Zn. Let T 
be the vector space of all the holomorphic functions / on C n such that 

f(u + £)= e((p/2) • *afl>)e(pT(2 - z ) " 1 ^ + (1/2)) f(u) 
for every £ = za + 6b with a, 6 G Z n . 

(This is essentially the same as (2.4).) Let R be a complete set of representatives for 
(p6)~1Zn/Zn. Then { fr \ r G R } is a C-basis of 1 , and the map u H-> ( / r (u) ) r € i ? 

defines a biregular projective embedding of Cn/pz(L). These are well-known clas
sical results. (For detailed treatments, see [W58] and [S98, Section 27]. Observe 
that u i-> pu gives an isomorphism of Cn/pz(Z\nre) onto Q,n/ pvz{^L\nrvs)\ apply 
the standard facts as stated in [S98, §27.12] to the last complex torus.) Since the 
Riemann form corresponds to the zero divisor of a nonzero / , it corresponds to 
the hyperplane sections of the image variety. Now we obtain the desired A as fol
lows. In Case SP, we may assume that g~l(Lp) = Z\enT$ with 6 of size en. Then 
we consider ipp(pu, pz; r, 0) with r G gi((pS)~1Zen)/gi(Zen). We can express 
this as <pF(y>, P~lz\ Ar) with some Ar G S(F£) that is Z-valued. We then take 
A = { Ar } with all such r's. Since u *—> Bu for u G ( C n ) a gives an isomorphism 
of (C n ) a /p z (L) onto Cen/pe(2)(Lo), from (6.15) and the above classical results we 
obtain the first four assertions in Case SP. The existence of To satisfying (5) follows 
from (6.35). Case UT can be handled in a similar manner by means of (6.27) and 
what we said at the end of §6.5. 

6.13. With a fixed choice of A let Aw denote the image abelian variety of the map 
of Theorem 6.12(3). Hereafter we understand that the symbol Aw in Vw belonging 
to our families F(QF) and ^F(Q,K) is this projective variety. Prom Theorem 6.12 
(5) we see that 

(Cn)b/Pyz(LK) - ^ Ayz 

(6.38) <A/,(z)j j i d 

(C»)b/MM - ^ ** 
is a commutative diagram, where ©z(u) = ©K{U, Z), and K — F in Case SP. 

6.14. Proposition. Case SP: Let t G «S(F£), b, c e Fn, and r G F, > 0. 
Define t! e S{F£) by £'{h) = £{h - 6)ea(*c(/i - 6)). Then 
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(6.39) e a((r /2) • tbzb)6F(rzb +c, rz; £) = 0F(O, rz; £'). 

Moreover, # F ( 0 , rz; £) as a function of z belongs to Ma/2] it belongs to Ma/2(D) 
if £ is D-valued for any subGeld DofC. 

Case UT: Let £ G S(K£), 6, c G Kn, and r G F, > 0. Define £' G S(K£) by 
£'(h) = £(h - b)e(TrK/Q(c*{h - 6))). Then 

(6.40) e a ( r • tbwb)eK(rwb + c, r • *w& + c; rw; ^) = 0/r(O, rw; f ) . 

Moreover, 0^(0, rz; £) as a function of z belongs to Ma, it belongs to Ma(D) if 
£ is D-valued for any subfield DofC. 

P R O O F . Since 6F(0; z; £) = ipF{0; z; £), we see from (6.35) that 0F(O, rz; £) G 
Ma/2 f° r &ny £• The D-rationality for D-valued £ is obvious. Equality (6.39) can 
be verified by a direct calculation. Case UT is similar; we need Theorem 6.11 (1, 
3) instead of (6.35). 

6.15. Proposition (Case SP). Let fi G Aja with an integral or a half-integral 
weight ki for 1 < i < m. Then f\ • • • / m G Ak with k = Y^JiL\ &»• 

P R O O F . Prom Theorem 6.8 (5) we see that h^(z)2 = j^{z)a if 7 G T0 , 67 -< 
2D -1, c7 -< 2D, and det(d7) - 1 G 4g. Our assertion can easily be derived from this 
fact. 

6.16. Proposition. For an integral or a half-integral weight k let 0 •=£ f(z) = 
J2hes cWe2(hz) G Mk and let r = Max{rank(/i) | c{h) ^ 0}. Then 

{ kv > n/2 for every v G a (Case SP), 

kvp + kv>n for every v G a (Case UT); 

{ kv = r /2 < n/2 for every u G a (Case SP), 
kvp + kv = r < n for every v G a (Case UT). 

For the proof, see [S94b, Theorem 5.6 and Corollary 5.7]. Clearly it follows that 
Mo = C in both cases. If 0 ^ f G Sk, then r = n, and hence 

{ kv > n/2 for every v G a (Case SP), 

kvp + kv>n for every v G a (Case UT). 
6.17. Lemma. Let 0 < n G 2_ 1Z m Case SP and let 0 < K G Z m Case I/T. 

TTien, ^wen z0 £ H, £/iere exzsfc an element f G . M ^ Q ) ^itc/i £/&a£ /(^o) 7̂  0. 
PROOF. By Theorem 6.12 (2) there is a Z-valued A such that 9K{0, p~xzo; A) 

^ 0. Put g(z) = 0^(0, p _ 1 z ; A). By Proposition 6.14, g G Ma/2{Q) in Case SP 
and # G .Ma(Q) in Case UT. Thus a suitable power of g gives the desired / . 



CHAPTER II 

ARITHMETICITY OF AUTOMORPHIC FORMS 

7. The field *40(Qab) 

The principal result of this section is Theorem 7.10. We start with some auxil
iary lemmas. 

7.1. Lemma. Let h and k be subfields of C with countably many elements. 
Then the following assertions hold: 

(i) If k is stable under Aut(C//i), then the composite field hk is a finite or an 
infinite Galois extension of h. 

(ii) If every element of Ant(C/h) gives the identity map on k, then k C h. 
(iii) If Y is an algebro-geometric object such as a variety, a divisor, or a rational 

map, and Y° —Y for every a G Aut(C/h), then Y is rational over h. 

The proof, being completely elementary, is left to the reader. In the following 
sections we shall often make use of these principles, though we shall not explicitly 
mention them in each instance. 

7.2. Lemma. Let $ and \P be extensions of a field k which are linearly disjoint 
over fc; let & be a subfield of <P containing k such that &$ = &$'. Then $ = $ ; . 

P R O O F . Let / G <P. Then / G &$ = #* ' , so that / = E « <wW E A M A 
with aK, b\ G!^ and pK, q\ G $'. Take a finite set {c^} of elements of & linearly 
independent over k so that Y1K ha* + YlA ^ A = Z ^ ^CM- Expressing aK and 6A as 
fc-linear combinations of cM, we can put / = J2^ c^9^l E M

 C M ^ w * t n #/" ^M ^ ^'-
Then ^ c^(//iM — g^) — 0. Since fh^ — g^ G $, the linear disjointness shows that 
fhp = g^ for every \i. Thus f — g^jh^ for some /i, and hence / G $' as expected. 

7.3. Lemma. Let { fv | v G N } be a set of meromorphic functions in a con-
nected open subset D of Cd, indexed by an at most countable set N. Let k be a 
subfield of C with only countably many elements. Then there exists a point ZQ of 
D such that the specialization {fv}^^^ |—• {fv(zo)}ueN defines an isomorphism 
of the field k(fu | v G N) onto k(fv(zo) | v G N) over k. 

P R O O F . We may assume that N = {1, 2, 3, . . . } (finite or not). By induction 
we can find a subset M = { v\, u2, . . . } of AT such that: (i) v\ < v2 < • • • ; (ii) 
/i/i> fu2-> • • • a r e algebraically independent over k; and (iii) / i , . . . , fn are algebraic 
over k(fl/1 v G M, v < n). Let Sm be the set of all polynomials P(X\, . . . , Xm) ^ 0 
in m indeterminates with coefficients in k, and Wu the set of the points of D where 
fv is not holomorphic. For each P G Sm put 

Ep = {zeD-\SL1WUi\P{fUl{z),...,fUm(z))=0}. 

45 
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The closure of Ep in D has no interior point of D. Now observe that 5 m has only 
countably many elements. Recall a well-known fact that if D is covered by count-
ably many closed subsets, then at least one of them has an interior point. There
fore we find a point ZQ of D not belonging to the countable union [UI/GAT ^ ] U 
[Um=i U P E S Ep\ - Then our construction shows that k( / i , . . . , fn) has the same 
transcendence degree as fc(/i(zo)> • • • > fn(zo)) over k for every n. Therefore the 
specialization fv i-» fu(zo) defines an isomorphism of these fields as expected. 

We say that ZQ is generic for { fv | */ G A7" } over A: if zo has the property as in 
the above lemma. If ZQ is such a point, { g\ | A G L } is another countable set of 
meromorphic functions on D, and each #A is algebraic over the field generated by 
the fv over k, then clearly z0 is generic for { fv | v € AT } U { #A | A G L } over fc. 

Hereafter until the end of Section 8 we treat only Cases SP and UT. We first 
consider the fields Ao(k) and Ao(r, k) defined in §5.8. 

7.4. Lemma. (1) For every subSeld k of C, the fields Ao{k) and C are linearly 
disjoint over k. 

(2) Let r be a congruence subgroup of G and let (V, <p) be a model of r\H in 
the sense of §4.10. Let k be a sub&eld of C such that V is defined over k and 
k{V) otpc A0{r, k). Then k{V) op = A0{r, fc), where k{V) is defined as in §2.4. 

P R O O F . TO prove (1), let / i , . . . , fm be elements of Ao{k) linearly independent 
over k\ put / ; = pi/qi with pu q{ G MUi{k), v{ G Z b , and rt = ql • -qmfi. Then 
the Ti are automorphic forms of the same weight linearly independent over A:, and 
hence, linearly independent over C by virtue of Lemma 5.10 (1). Therefore we 
obtain (1). As for (2), we have Ck(V) o <p c CAo(r, k) C A0(r) = C(V) o ̂  = 
Ck(V) o ipy and hence Ck(V) o if = CAo(r, k). Therefore, by (1) and Lemma 7.2 
we obtain the desired equality of (2). 

7.5. Lemma. Let P = { £ G G | C £ = 0 } , where c^ is the c-block of £ (see 
Lemma 1.9). Put G\ = GC\SL2n{K) and denote by Q any of the groups G, G + , G, 
and G\\ put V = P P\Q. Then Q is dense in Qa, and Q (resp. Qa) is generated by 
r}n and V (resp. Va), where we understand that (G+)a = G a + and P a = P a D Qa. 

P R O O F . Put B = {f e G | det(c$) ± 0} and Ba = {£ € £ a | det(c^) <E # a
x } • 

Then # = P77P and B a = VarjVa. Indeed, we can easily verify that VnV C B and 
V*J}Va C Ba. That B C P ^ P and Ba C VarfPa can be seen from an equality 

" 0 - l n " 
.1„ 0 

c d 
0 c 

where ^EGU(rfn), s = i/(£), and c is invertible. (Notice that by Lemma 1.3 (2), if 
v(£) =det(£) = 1, then det(c) GF, so that the last matrix of (*) has determinant 1.) 
Now Ba is open and dense in Qa. Clearly V is dense in Vai and so B is dense in Ba. 
Therefore Q is dense in Qa. Now given aG<7, the set {£G<7a | det(c^cQ^) eK* } is 
open in £ a . Therefore we can find £ G £ such that det(c^ca^) 7̂  0. Then both £ 
and a£ belong to PT?P, and so a = a £ £ - 1 G Vr\nVr)nV, which gives the desired 
fact for Q. The assertion for Qa can be proved in the same manner. 

7.6. We now take our setting to be that of Section 6. We fix a positive integer 
p > 3, a subset A of S(K^)y and a congruence subgroup r 0 of G as in Theorem 
6.12; we then consider the map &K defined with these p and A as in (3) of that 

(*) 
a b 
c d 
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theorem. Let P*(C) be the complex projective space in which the map OK takes 
its values. Then Aw of §6.13 is a subvariety of P*(C). We retain the convention 
that K = F and r = g in Case SP (see §3.5). The symbol pz of (4.23) is a map 
of {Ka)2n into ( C n ) b . Recall the formula pz{xa) = l/J>a(z)paz(x) stated in (4.31). 
Substituting plz(a) with a G K\n for u in Theorem 6.12 (5), we obtain 

(7.1) 0K(pz(aj), z) = QK(plz(a), -yz) for every a G K\n and 7 G P0 . 

Define t:K\nxH-+ P*(C) and tz : K\n -+ P*(C) for z G H by 

(7.2) t(a, z) = tz(a) = GK(pz(a)y z) = (0K(pz(a), p^z; A))AeA. 

Then from (7.1) we obtain 

(7.3) £(^7, 2) = £(&> 72) for every a G AT̂ n an(^ 7 ^ ~̂b-

7.7. We fix an r-lattice L in K\n, and for each positive integer N we fix a subset 
{ui}i=i of N~lL so that iV - 1 L = L + ]Ci=i ^ i - We then consider the families of 
§§6.3 and 6.5 in the following form: 

(7.4a) W ) = { V» I z G H } , P ^ ) = P f = {AZ1 Cz, iz; {*i(z)}f=1), 
(7.4b) nAr = { / f , lP ,L, r 7 n ,{ t i i }?= 1}. 

We write fi^ and V^ instead of fi and Vz in order to emphasize N. We simply 
write L instead of LK in Theorem 6.12. Naturally U{z) = tz(ui), and so 

(7.4c) { t G A2 I JVt = 0 } = E - = i Zti(z). 

For c G JFST we have pz(ca) = &(c)pz(a) and LZ(C) is represented by lP(c), and so 
we obtain 

(7.5) iz{c)tz{a>) = tz(ca) for every c G r and a G ii^n-

Define a congruence subgroup P N of G by 

(7.6) P ^ = { 7 G G I L 7 = L, L ( 7 - 1) C L } . 

By Theorem 4.8, V^ and V^ are isomorphic if and only if z = jw for some 
7 G P N , since P of (4.28) coincides with rN for the present family. 

Let us now fix a model (VAT, <£N) °f ^N\H- If N divides M, then there exists a 
rational map p1^ : VM —* VN such that cp^ = pjSf o <pM. We can find a subfield &o 
of C with countably many elements over which the varieties VN and the maps p^ 
are defined for all M and N. Put 

00 

(7-7) ff=U 3JV, Siv = { / ° PN I / £ &o(Vjv) } . 
N = l 

Then .4o(P/v) = C#JV and 4̂o = Cfr Since Sw is finitely generated over fco, we 
see that # is countable. Now let .£ be the field generated over Q by the functions 
on H of the form 

(7.8) eK{pz{a), p~lz; Z)/eK{pz{a), p'^z; £') 

for all I, f 6 A and all a G K\n, where A is the set of Theorem 6.12. By Proposition 
6.14 each such quotient belongs to Xo(Qab); thus ^ C *4o(Qab)- For each w G H 
let &[w] denote the field generated over Q by the values f(w) for every / G £ finite 
at w. Since any affine coordinate of tz(a) is of the form (7.8), tw(a) is rational 
over &[w] for every a G K\n, and hence Aw is rational over &[w]. Also, from (7.5) 
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we see that tw(c) is rational over &[w\. Since the polarization is determined by 
hyperplane sections, V% is rational over R[w] for every N. Now by Lemma 2.6, Q a b 

is contained in the field generated over Q by the affine coordinates of the points 
tz(a), and hence Qab C R[w]. Taking w to be generic for the elements of 8. over 
Q, we see that Qab C R. 

7.8. Lemma, Given w, vJ G H, suppose that there exist an isomorhism a of 
&[w] onto &[w'\ and an x-linear automorphism A of' K\njL such that t(a, w)a = 
t(A(a), wf) for every a and X(ui) = U{ for every i. Then (V^Y = P $ , where 
[V^Y is defined as in §2.7. 

P R O O F . Since the points tw(a) are dense in Aw, we have (Aw)a = Aw>. Clearly 
a sends the hyperplane sections of Aw to those ofAwt; also tw(ui)a = tw>{ui). Now, 
from (7.5) we obtain iw(c)atw(a)a = tw(ca)a = tW'(c\(a)) = iwi(c)twi (A(a)) = 
iWf(c)tw(a)a for every c G t and a G K\n\ thus iw(c)a = LW'(C). This completes 
the proof. 

7.9. Since 8 C AQ — C#, we can find a countable subfield k of C containing fco 
such that R C k$. Replacing k by its algebraic closure in C if necessary, we assume 
that k is algebraically closed. Now let ZQ be a generic point for the elements of # 
over k. Take and fix a positive integer N. Since V^Q is defined over R[ZQ], we can 
find elements #i, . . . , gm of R such that 7 ^ is denned over Q(#i(zo), . . . , pm(^o))-
Since the coordinates of £2{)(a) are algebraic over this field, R[ZQ] is algebraic over 
Q(pi(^o), • • • , 5m(2o)). Therefore R is algebraic over Q(#i, . . . , gm). 

Let V be the affine locus of the point (<7i(zo)> • • • » Pm(^o)) o v e r &• Take a multi
ple M of N so that the ^ belong to fc^M- Since ZQ is generic for # over &, IPM(ZQ) 
is a generic point of VM over /c, and we can define a /.-rational map # : VM —* V 
by ^ ( ^ M ( ^ O ) ) = g(z0), where we write g = [gu , . . . , gm). 

Let us now prove that 
(7.9) k(pN(z0))ck(g(zo)). 

Let a G Aut(C/fc(#(zo)))- Since VM is denned over k, the point <^M(^o)cr belongs 
to Vwi and so ^M(^o)a — ^ M ( ^ I ) with zi G H. This means that 21 is generic 
for $M over k, and for J over k as well, since # is algebraic over £ M - Thus 
f{zo) »—• / (z i ) for / G &# is an isomorphism; denote it by r. Then g(zo)T = 
9 ( ^ M ( ^ O ) ) T = g(^M(^i)) = tf(v?M('Zo))a = p(zo)CT = 9{z0). Since 7 ^ is defined 
over k(g(z0)), we have (V^Q)T = 7 ^ . On the other hand, tZo(a)r = £2l(a) for 
every a G ^ n , so that (P?Q)T = V^ by Lemma 7.8. Thus V?Q = V%, and hence 
VN{ZQ) = <PN(ZI)> Since (pN(zi) = pjv ( ^ M ( ^ I ) ) = pjv ( (^M(^O))<7 = ^NO^O)*7, we 
obtain <PN{ZO) — ^AT(^O)(J? which proves (7.9). 

7.10. Theorem. (1) A)(Qab) is generated over Q by all the quotients of the 
form 6K(0, rz; \)/0K{0, rz; A') with Qah-valued A, A7 in S(K£) and 0 < r G F. 

(2) -4o(Qab)=£. 
(3) A)(^) = ^A)(Qab) for every subfield $ of C containing Q a b ; in particular, 

AQ = CA)(Qab). 
(4) ^4o(Qab) is stable under the map f \-+ f o a for every a G G+ . 
P R O O F . Prom (7.9) we obtain $N c fcS, and consequently ^o = C# = C&. 

Since Qab C R C *4o(Qab), we obtain *40 = C*40(Qab)« Now, given a subfield $ of 
C containing Q a b , we have $R c *^4o(Qab) C Ao($) and CAQ{&) C Ao = Cfi = 
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C3>.&, so that CAo($) = C<PR. By Lemma 7.4 (1), ,4o(#) and C are linearly disjoint 
over $. Therefore, by Lemma 7.2, $& = Ao(&). Taking # = Q a b , we obtain (2), 
and hence (3) as well. As for (1), Proposition 6.14 shows that any quotient of the 
form (7.8) is of the form described in (1). Now let / and g denote the numerator 
and the denominator of the quotient of (1). In Case SP, by Propositions 6.14 and 
6.15, both fg and g2 belong to -Mi(Qab), and hence f/g G A)(Qab)- Clearly the 
same conclusion is true in Case UT. This proves (1). As for (4), by Lemma 7.5 it 
is sufficient to prove the cases a = rjn and a G P fl G+. Since *4o(Qab) = £, our 
task is to show that a sends a quotient of the form (7.8) into -4o(Qab)- If OL = rjn, 
we have r • rj(z) = rj{r~lz). By Theorem 6.9 (2) or Theorem 6.11 (1) we have 

M O , r • 7?(z); Ai)/0*(O, r • 77(2); h) = M O , r ^ " 1 * ) ; \i)/9K(0, ^ ( r " ^ ) ; A2) 
= 6K(0,r-1z',\/

1)/6K(0,r-lz-\'2), 

where Â  can be obtained from A; by (6.33) or Theorem 6.11 (4). We easily see 
that Â  is Qab-valued if Â  is so. Thus 77 sends *4o(Qab) into itself. The action of 
P fl G+ will be discussed in the proof of the following theorem. 

7.11. Theorem. Let K G Z in Case UT and K G 2 _ 1 Z in Case SP. Given 
a G G+, let q(z) = ( j a(z) a) , where we take any branch of the square root of 
j Q (z ) 2 K a to be q{z) if K £ Z. Let $ be a subfield of C containing Qab- If K ^ 0 
in Case UT, then assume either det(a) = v{a)n or $ contains the reflex field 
K' of 11.12, defined for {K, r) of $3.5. Then q{z)~lf{az) G MKJ&) for every 
f £ MKeL($). Moreover, in Case UT, f\\Khot G MKh($) for every f G MKh($), 
every a G G+, and every subfield <P of C containing Qab-

P R O O F . We first assume K' C # in Case UT. By Lemma 7.5 it is sufficient to 
prove the cases a — rjn and a G P D G+. (Notice that n~l = — rjn G rjn(P fl G+).) 

L e t a = 0 d G P n ( ^ + > 5 = " ( a ) ' a n d fW = E h ^ e ^ t M G M K a ( ^ ) . Then 

a?d = 5 l n , <j(z) = r U a d e t ( ° 0 * ^ #'> a n d 

q{z)~lf{az) ^ q{z)-l^c{h)el{s-lhba")el{s-la"haz). 
h 

Since 6a* G S by (1.13), we see that tr(s~1hba*) G JP, and hence e^{s~1hba*) is a 
root of unity; thus q{z)~l f{az) G MKfk{$). In Case SP the same reasoning is valid 
for any 3> containing Qab-

Returning to the proof of Theorem 7.10 (4), we apply the same technique to 
/ = # K ( 0 , rz\ A) with a Qab-valued A. Then for a G P D G + the above reasoning 
shows that / o a belongs to .Ma/2(Qab) or .Ma(Qab), and so -4o(Qab) is stable 
under P Pi G+. This completes the proof of Theorem 7.10. 

Next we consider the action of 77 on MKSL{$). Given / G M.K8L($), put m = 
2K/[K : F] and t = fg~rn with a nonzero function g of the form g(z) = 9K (0, z\ A) 
with a Qab-valued A. Then gm^e A W Q a b ) and t G .4o(£). By Theorem 7.10 
(3), (4), AQ{$) is stable under G + . In Case SP we have q(z) = C • ^(z)™ with a 
root of unity C, and q{z)~lf(r)z) = C~~X(̂ ll7?)7 (̂̂  ° *?), which belongs to *4Ka(^), 
since £ o 77 G *4o(^) and (p||r?)m G .M^tQab). The last fact follows from the 
behavior of OK under rj as discussed at the end of the proof of Theorem 7.10 (cf. 
Proposition 6.15). By (5.30), q(z)-lf{nz) G MK8L{$). Next, take a G G + such 
that det(a) = v(a)n in Case UT. Given such an a, put r = diag[i/(a)ln, ln] 
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and /? = r~la. Then 0 G G\. By Lemma 7.5, Gi is generated by r\ and d n P. 
If 7 G Gi fl P or 7 = r, then det(d7) G F, so that j 7 ( z ) a G Q. Therefore our 
reasoning is valid for the group of elements a satisfying det(a) = v(a)n without 
the condition K' C <£. Finally take MKh in Case UT. Since j * G Q for 7 G PC\G+, 
we do not have to assume that K' c $. Thus we obtain the last assertion. 

7.12. Lemma. If (V^Y is isomorphic to V^ for a G Aut(C) and some z, w G 
W, ^ e n e(l/N)a = e(l/N). 

P R O O F . Let s be the positive integer such that { TrK/Q(xrjny*) \x, y e L} = 
sZ. Then there exists a divisor Xz on Az that determines the Riemann form Ez of 
(4.25) with T = s_1r/n. Then X2 is a basic polar divisor of Vz, and by (2.10) we 
have 
(7.10) Cxz (tz(a), tz(b)) = e(m • £*(p*(a), p*(6))) - e((m/s)TYK/Q(a7?n6*)) 

for every a, 6 G ra-1L, 0 < m G Z. Let 5 be an isomorphism of (V^Y o n ^° 
V?. Then ^ ( a ) * 7 = ^(a ) for every a G TV"1!,. Let Y = e(X£). Since X^ is a 
basic polar divisor of Vw, (Xw)a is a basic polar divisor of (Vw)a. (This follows 
from the characterization of a basic polar divisor in terms of algebraic equivalence 
mentioned in §2.3.) Therefore Y is a basic polar divisor of Vz, so that Y determines 
Ez. Therefore for a, b G N~lL we have 

e((N/s)TrK/Q(aVnb*)) = Cy(**(a), **(&)) = Cx£ ( U a ) a , *u,(6)a) 
- Cx, ;(^(a) , tw{b)Y = e((7V/5)TVx/Q(a77n6*))£T 

by (2.11). We can take a and b in N~lL so that Tr#/Q(a77n&*) = sN~2. Then we 
obtain e(l/iV)CT = e(l/N) as expected. 

8. Action of certain elements of G A on •£ 

8.1. It is well-known that Q X Q* + is closed in Q £ , and there is a canonical 
homomorphism of Q ^ onto Gal(Qab/Q) with kernel Q X Q * + . For t G Q £ we 
denote by [t, Q] the element of Gal(Qab/Q) that is the image of t under that 
homomorphism. To simplify our notation, let us now put 

(8.1) ẑ  = j]z;, 
v 

where the product is taken over all rational primes p. Observing that QA/QxQa+ 
is isomorphic to Z£, we see that the map t —> [£, Q] gives an isomorphism of Z£ 
onto Gal(Qab/Q). Now Q/Z is canonically isomorphic to Q A / ( Q B EL ZP), and we 
can let Z£ act on the last group by multiplication. For t G Z£ and x G Q/Z 
denote by tx the image of x under t. Clearly x —> e^x) = Ylpep(x) for x G Q 
gives an isomorphism of Q/Z onto the group of all roots of unity. (See §1.6 for the 
definition of ep . Notice also that e^x) = e(—x) for every x G Q.) Then we can 
easily show that 
(8.2) eh(z)t'<Ql = e h ( r 1x) (f e Z h

x , l € Q / Z ) . 

In particular, given t e Z ^ and a positive integer iV, take a positive integer r so 
that rtp-l e NZP for every prime p. Then (8.2) means e(l / iV) [ ' 'Q ]

 = e(r/N), 
which is the classical reciprocity-law in cyclotomic fields. 



8. ACTION OF CERTAIN ELEMENTS OF GA ON £ 51 

8.2. Our setting is the same as in Sections 6 and 7; see also §5.6. We retain the 
convention that K — F and r = g in Case SP. We use the symbols G, G, and Go 
of (3.26), (3.27), and (3.29) in both cases. Put Gi = GnSL2n(K) as in Lemma 7.5. 
Then G 0 nG = Gi; G = G1=Sp(n, F) in Case SP. Define i: Q£ -+ (G0)A by 

(8.3) L{S) = diag[ln, s-Hn] {s G Q£) . 

We now take the r-lattice L of (7.4b) to be x^n (Actually our treatment is 
applicable to a more general type of L, L = t^n^ f° r example, with any diagonal 
£ in Gh such that TTX/QOETM?/*) G Z for every £, y G L.) We then put 

(8.4) U1 = {xe(G0)A+\Lx = L}, 
(8.5) UN = {xeU1\Lv(xv-l)cNLv for every v G h } ( 0 < 7 V G Z ) , 

(8.6) TN = i{Z£)UN. 

Clearly U1 is a subgroup of (GO)A+ and C/^ is a normal aubgroup of U1; since 
i,(Z£) C J71, T N is a subgroup of U1 and T N = l / ^ Z j ) . We also employ FN of 
(7.6). 

8.3. Lemma. (1) ( G 0 ) A + = G0+TN = TNG0+ for every N. 
(2) G n TNGa+ =FNDTN = UNDG1 for every N. 
(3) T N C C/N fl Gi forN>2 in Case UT and for every N in Case SP. 
(4) Given x G TNFN and a multiple M of N, there exists an element 7 of rN 

and an element y of UM such that x = t{r)yj, where r = v{x)~l. 

P R O O F . Let x G ( G 0 ) A + - Then 0 < v{x) G Q£, and hence v{x) = abc with 
0 < a G Q x , b G Z£, and 0 < c € Q a

x . Put j / = *(a)x(,(6c). Then 1/(2/) = 1 and 
y G (GO)A> SO that y € ( G I ) A - By strong approximation in Gi we have ( G I ) A C 
GIUN for every iV, and hence x = t{a)-lyi{bc)-1 G Go+dU^b)-1 C Go+T^, 
from which we can easily derive (1). To prove (2), let 7 G G fl TNGa+. Then 
7 G L(s)xGa+ with s E Z j and x G t /^. We see that 1/(7) is a totally positive 
unit belonging to Q, and so 1/(7) = 1. Similarly det(7) = 1. Thus s = i/(x)h. Since 
x G J7^, we have s — 1 -< iVZ, so that 7 — 1 -< Nx. From these facts we easily 
obtain (2). By (4.34), FN c 6?i for N > 2 in Case UT and for every Nt in Case SP, 
which implies (3). Clearly it is sufficient to prove (4) for x G TN. Given x G TN, 
put r = z/(x)_1 and 2 = ^(r)-1a;. Then u(z) = 1; also z G T M G 0 by (1), and 
hence z = i(s)w-y with 5 G Z£, w G C/M, and 7 G G0. Then jeG0nTN CFN 

by (2), and hence 1/(7) = 1. Thus 5 = i/(iu), and 5 - 1 -< MZ since w G C/M. Put 
y = L(S)W; then y € UM and x = t(r)y^. This proves (4). 

8.4. We are going to define the action of a certain subgroup of G A on &. First, 
in view of Theorem 7.10 (4), the map / —• / o a is clearly an automorphism of & 
for every a G G+. 

Observe that K\njL is canonically isomorphic to (K2n)A/[(K^aTlveh ^v] -
Therefore we can define t(a, z) for a G (K^A by putting t(a, z) = £(&, 2) with 
b G i^2n such that av — b £ Lv for every i? G h. In particular, if a G K\n and 
x G T1 , then ax (mod L) and t(ox, w) are meaningful, and they depend only on a 
modulo L. Notice that t(ax, z) = t(a, z) for every a G K^n if and only if x G Ga+ • 

We now consider the action of Aut(C) on the field of quotients of the formal 
series defined in §5.9. In particular we let Gal(Qab/Q) act on £ = «4o(Qab)- For 
the moment fa for / G £ and a G Gal(Qab/Q) is just the quotient of two formal 
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series, but the following lemma will show that fa G £. For a fixed a G K\n 

the quotients of the projective coordinates of t(a, z) as functions of z belong to 
^o(Qab), and so we can let Gal(Qab) act on t(a, z). 

8.5. Lemma. (1) We have 

(8.7) t(a, z)t5 'Ql = t(at(s), z) for every s G Z£ and every a G K\n. 

Consequently & is stable under Gal(Qab/Q). 
(2) Every element of R is of the form q/r with q G MKSi(Qab) and 0 / r G 

MKSL(Q), for some positive integer K, such that qG G A1Ka(Qab) for every a G 
Gal(Q a b /Q). 

(3) For every subfield D of Qab we have 

A0(D) = {fe A) (Qab) \fa=f for every a G Gal(Q a b /D) } . 
P R O O F . We prove (1) only in Case UT. Case SP is similar and simpler. Take A 

as in Theorem 6.12 and §7.6. Let a = (% tc) G K\n with 6, c G i V - 1 ^ , 0 < i V e Z . 
By (4.24), pz(a) = (zb + c, tzb-\-c)) and hence, by Proposition 6.14, for £\, £2 G A 
we have 

6K(pz(a), p-'z- £i)/0K(pz(a), p^z; £2) = 9K(0, p^z; e[)/0K(0, p~xz\ £'2), 

where £[{h) = £i{h - pb)e(TrK/Q(c*{h - pb))) for h G Kn. Take a multiple M~of 
N so that £{h) = 0 for every £ G A if Mh i rn . Given s G Z£, take cx G Kn 

so that (ci - s~lc)v G Mr™ for every v G h. Since ^ is Z-valued, by (8.2), 
a = [s, Q] sends the last quotient to OK (0; p - 1 z ; A I ) / # K ( 0 ; p - 1 ^ ; A2) with Xi(h) = 
£i(h-pb)e(TrK/Q(.cl(h-pb))). This means that ^(a)0" = tz((tb, ^ci)), which proves 
a). 

Next, from this argument we can easily derive that every element of R is of the 
form gi/g with g, gx G -M«a(Qab) for some K such that g\, # a G A1,ca(Qab) for 
every a G Gal(Qab/Q). (In Case SP, multiplying both denominator and numerator 
of (7.8) by the denominator, and employing Proposition 6.15, we can avoid half-
integral weights.) Also g G MKa($) with a finite extension ^ of Q contained in 
Qab. Then taking r to be the product of ga for all a G Gal(#/Q) and putting 
q = g\rjg, we obtain (2). Assertion (3) follows immediately from (2). 

We now consider the following condition on FN : 

(8.8) £(<ry, z) = t(a, 72) for every a G K\n and 7 G rN. 

Let i~b be the group as in Theorem 6.12 which we fixed in §7.6. Then, by (7.3), 
condition (8.8) is satified if rN C Jo, which is so for any multiple AT of a suitably 
chosen positive integer. 

8.6. Lemma. Under condition (8.8), given x G TN, there is a unique automor
phism r(x) of & such that t(a, z)T^ = t(ax, z) for every a G K2n. Moreover, 
T(X) = [v(x)~l, Q] on Q a b , r(xy) = r(x)r{y), and / r ( x ) = / o x for f G R if 
xerN. 

PROOF. The uniqueness is obvious, since & is generated by the affine coordinates 
of t(a, z). Also the statement is true if x G rN, since (8.8) shows that the desired 
automorhism can be given by / —> / o x, which is the last assertion. Take a 
multiple M of N. Let $M denote the field generated over Q by the affine coordinates 
of t(a, w) for all a G M~~lL. Now, given x G TN, by Lemma 8.3 (4) we can put 
x = t(r)yj with r = v{x)~l, y G UM, and 7 G fN. Then for a G M~lL we have 
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t(ax, z) =t(aL(r)y-y, z) = t(cu(r)y, 72) = t(cu(r), 72) = (t(a, z) [ r , Q ]) 07 

by (8.7) and (8.8). This means that there is an automorphism a of $M that 
sends £(a, z) to t(ax, z) for every a G M~lL; moreover, / a = (f^r,(^) 07 . Thus 
cr = [r, Q] on Qab H $ M - Taking all multiples M of iV, we obtain the desired 
automorphism r(x). The equality r(xy) = r{x)r(y) is obvious from the definition. 

8.7. Lemma. Under (8.8) let a, /? G G+ and x, y G T N ; suppose y/3 G aa;Ga+-
TAen ( / o a ) r ( r r ) = / r ( y ) o /? /or every / G £. 

P R O O F . Put it; = x~1a~ly/3. Then w G Ga+n(G0)A C T N and r{x) = T(XW). 
Therefore, changing x for xu>, we may assume that ax = y/3. Changing also a 
and (3 for ca and c/? with a suitable c G Q, we may assume that a - 1 , / ? - 1 -< r. 
Take a generic point ZQ for # over A: as in §7.9. Since the map / i-> /(z0) is an 
isomorphism, we can define an automorphism a of R[ZQ] by f{zo)a — / r ^ ( z o ) for 
/ G £. Then our assertion is equivalent to the equality t(a, azo)a = t(ay, (3zo). 
To simplify our notation, put a = a i , /J = c*2, and z^ = a^zo- Observe that 
^[z^] = &[ZQ\ and A(zo)a = A(ZQ) since £(a, zo)0" = t(ax, ZQ) by our definition. 
Now we consider the following commutative diagram: 

!f<U ( C «)b > (C»)*/Pzo{L) - ^ ^(*b) 

^ (Cn)b _ > (C»)b/Pz„(£) - ^ - i4(z„) 

Here A„ = *Af(aI/, zo)"-1 with the symbol M of (4.29). From (4.31) we obtain 
A^p(a, zo) = p ( a a ~ \ z^), which gives the leftmost part of the diagram; Gz(u) = 
0K(^I Z) with OK of Theorem 6.12; Xy is an isogeny determined by KV with the 
property that A„£(a, zo) = t(aa~x , z^) and Ker(At,) = t{Lau, ZQ). Notice that 
\vt{a, z0) = t{aa~l, zu) holds even for a G ( I ^ J A - Since t(a, z0)a = £(ax, z0), 
we have Ker(Ai)a = t{La\X, ZQ) = t{Lyot2-> ZQ) = t(Lct2, ZQ) = Ker(A2), and 
hence there exists an isomorphism e of Afa) onto A(z\)a such that AJ = e\2. 
Observe that A(zu) and Xu are rational over £[zo]. Now for every a G K\n, we 
have ^aa j " 1 , zi)°" = AJt(a, zo)a = Aft (ax, zo) = £A2t(ax, zo) = ^(axa^"1, 22) — 
ei(aajf 1y, Z2), which shows that 

(*) t(a, * i ) a = e t ( a y , z2). 

Put P(z) = (A2, C2, 62). Then £ gives an isomorphism of P(z2) onto V(zi)a, which 
will be proven at the end of the proof. Taking (y_1 , 22) in place of (x, zo), we can 
define an automorphism o7 of ^[z2] = £[z0] such that t(a, z2) a ' = t{ay~l, z2); 
then P(z 2 ) a ' = P(z2) by Lemma 7.8. Put e' = e°'. Then 

(**) *(a, *i)™' = (et(ay, z 2)) a ' = e't(a, z2). 

Now let TV' be a multiple of N; taking N' to be TV of §7.9, consider g = 
(#i> • • • > 0m)> -W? K and g as in §7.9. We can find a finitely generated exten
sion k' of Q contained in k such that VM > VV, PM' 5 K an<^ 9 a r e a n ^'-rational 
and Q{ G ^ ' (VA/) . Since ^ = -4o(Qab), by Lemma 7.4 (1), .ft and /c'Qab are lin
early disjoint over Qab> and hence &[zo] and fc'Qab are linearly disjoint over Qab. 

K2n 

--1 
î ,1 

2n 
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Therefore the automorphism era' of &[ZQ\ over Qab can be extended to an auto
morphism r of A/.8[2:o] over fc'Qab- Clearly zv is generic for k'$ over kf. Now 
<PM(*I)T = <PM(W) with w G H and g{zi)T = q(ipM(zi))T = ? ( ^ H ) = #(w). 
Prom this we can derive that {V^)T = V^ . Indeed, w is generic for g over k' 
and so generic for R over fc', since £ is algebraic over Q(#). Thus /(21) >-> /(iy) 
for / G .ft is an isomorphism, which coincides with r on Q(g{zi)), and which 
sends V^ to V^' by Lemma 7.8. Since V^' is defined over Q(#(zi)), this shows 
that {V^')T = V%', so that t(a, z i ) r = t(a, w) for every a G {N'^L. Since 
P ^ ) * ' = ^(22)1 (**) together with (7.5a) shows that e' is an isomorphism of 
V% to {V%)aa'. Thus z2 = 7 ^ with some 7 G T N ' , and for a G {N')~lL 
we have £(a, 22) = Ka-> Jw) = ^(a7> w) — ^(a> w) = Kai ziY- This shows that 
t(a, z\)Ga = £(a, z2) for every a G JFC^, since our reasoning is applicable to every 
multiple Nf ofN. Thus t{a,azo)aa' = t(a, zi)aa' = t(a, z2) = t(ay, z2)a''. Applying 
a'"1 to this, we obtain the expected equality. 

It remains to prove that e is an isomorphism of V(z2) onto V{z\)°'. We first 
observe that i/(yx_1) = vfaia^1) G F f l F a + Z ^ , so that v(x) = v(y)- Applying 
a to (7.5a) and employing (*), we obtain tZl(c)a£t(ay, z2) = LZl(c)at{a, z\)° = 
t(ca, z\f = et(cay, z2) — eiZ2(c)t(ay, z2), so that iZl{c)ae = £LZ2(C). Next, let Xu 

denote the divisor XZ for z = zv given in the proof of Lemma 7.12. By (7.10) we 
have Cxu (*(a, ^)> t{b, zu)) = e((m/s)TrK/Q(a7]nb*)) for every a, b G ra_1L, 0 < 
m G Z. Let y = £ - 1 (Xf) and let E' be the Riemann form determined by Y. Then 
by (*), (2.10), and (2.11) we have, for such a and 6, 
e{mE'(pZ2{ay), Pz2(by))} = fr(t{ay, z2), t(by, z2)) = C,x°{et{ay, z2), st{by, z2)) 

= Cxi (*(a, ^i), t{b, zi))a = e((m/5)TrK/Q(ar7n6*))<7. 

In view of (8.2) and (7.10), the last quantity equals e{mEZ2(pZ2(ay), pZ2(by))}, 
since a = [i/(x)~l, Q] on Qab and i/(x) = ^(2/). Thus £" = EZ2, which means that 
s sends CZ2 to (CZl)a . This completes the proof. 

8.8. Put 
(8.9) g = (G 0 )A GG a + , g+ = gn G A + . 

Since (Go)A and Ga+ are normal subgroups of G A , g and g+ are subgroups of 
G A ; moreover, 

(8.10) g+ = (G 0 ) A +G + G a + = TNG+Ga+ = G+TNG++ for every N. 

Indeed, let a G (Go)A and (5 G G; suppose v{a(3) ^> 0. Since i/(a) G Q ^ , we 
can find an element 7 of Go such that that 1/(0:7) ^ 0- Then a/3 = 0:77"x/?, 
0:7 G (GO)A+> and 7_1/3 G G + . The equalities of (8.10) follow from this fact and 
Lemma 8.3 (1). 

Now given x G <?+, take c G Q£ so that i/(x) G cFxF*+. We then define 
cr(x) to be [c_1, Q] ( G Aut(Qab))- Then we easily see that cr(x) is well-defined 
independently of the choice of c, and thus we obtain a homomorphism 

(8.11) a : g+ —• Gal(Qab/Q). 

8.9. Lemma. (1) aUNa~l = UN for every N if a G G A and La = L. 
(2) rNUN and rNTN are subgroups ofGA. 
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(3) rNUN is a normal subgroup of rlTl. 
(4) pNTN/rNUN is isomorphic to TN/UN. 

P R O O F . Since (Go)A is normal in G A , we easily obtain (1). In particular 
7C/^V

7-1 = uN for every 7 G rN, so that rNUN is a subgroup of GA- Let 
x G T1 and 7 G r N . Then x-17X7~1 - 1 -< iVt, so that x~l^x^Tl G f/̂ , 
and hence 7x7"* € TN if x e TN. Thus T ^ T ^ is a subgroup of GA . Clearly 
a ^ ^ J a - 1 = rNUN for a G T1 . Now let x G T1 . Then xUNx~1 = UN. For 
7 G r N , we have x~l^x G £7^7 C rNUN. Thus x f ^ x " 1 C r N Z 7 N . This proves 
(3). From Lemma 8.3 (2) we obtain rNUN DTN = UN, from which (4) follows. 

8.10. Theo rem. There exists a homomorphism r : Q+ —> Aut(£) with the 
following properties: 

(1) r (0 = <7(0 on Qab. 
(2) / r ( a ) = / o a for every f G ̂  and every a G G+. 
(3) f ( « = /f-'Ql J f £ = 6(s) witli 5GZ h

x . 
(4) Ker(r) = X x G a + . 
(5) For any fixed / G £ the set { f G 5+ | / r ( 0 = / } contains C/N for some N. 
(6) Let kN = Q(e(l/JV)). Then, for every N we have 

(8.12) MrN, kN) = {f€&\ r(x) = / for every x G r " t f " } , 

(8.13) A0{rN,Q) = {f eA\fTW =f for every xeTNTN}. 

Here we remind the reader that .ft = .Ao(Qab)-

P R O O F . Fix any N as in (8.8). By (8.10), given f G (?+, we can find a; G T N 

and a G G + such that £ G xaG a + with a: G T N and a G G+. We then define an 
automorphism r(£) of ^ by / T ^ ) = fTW o a. To show that this is well-defined, 
let xa G xiQiGa+ with x\ G T M and OL\ G G + with a multiple M of N. Put 
7 = o^o:-1. By Lemma 8.3 (2), 7 G r N n TN, and / r<x) o.<* = /T(*I7) o a = 
fr{xi) o 7a = yr<>i) o a1? since ^r^7^ = ^ 0 7 as shown in Lemma 8.6. Thus r(f) 
is well-defined independently of (AT, x, a) . Next let £' G x /a /G a + with x' G T N 

and 0/ G G+. By (8.10) we have OLX' G t//3Ga+ with y G T ^ and (3 e G+. Then 
££' G xy(3a G&+, and employing Lemma 8.7, we can easily verify that T(£)T(£ ' ) = 
T(££')- Now T(£) = r(x) on Qab, and r(x) = [v(x)~~l, Q] on Qab by Lemma 
8.6. Since i/(£) G i/(x)FxFa

x
+ , this proves (1). Property (3) is clear from our 

definition and Lemmas 8.5, 8.6. To prove (4), let £ G aG a+ with a G ifx. Then 
t(a, z ) r ( ^ = t(a, az) = t(a, z), so that r(f) = id. Suppose conversely r(f) = id. 
on £ and £ G xaG a + with x G TN and Q G G + . Then 

(8.14) t(a, 2) = *(a, z ) T ^ = t(ax, az) for every a G i ^ . 

Since <T(£) = 1, we have [ i / (x)- \Q] = a(x) = 1. Now v(x) G u(TN) = Z£Q* + , 
so that v(x)h = 1. Then we easily see that x G C/^. Fix a generic point zo e H 
as before. Then (8.14) shows that t(a, ZQ) = t(ax, OJZQ), and hence VN(zo) = 
VN{az0) by Lemma 7.8, since x - 1 -< JVt. Thus az0 = jz0 with 7 G rN. Taking 
z0 generic even for the action of G+ , we find that a G Kx^. Now t(a, z) = 
t(ax, 7z) = t(ax7, z) for every a G #271 > a n d hence X7 G Ga+, so that £ = xa G 
if x G a + . This proves (4). To prove (5), we observe that t(a, z)T^x^ = t(ax, z) = 
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t(a, z) if x G UN and a G N~lL. Since & is generated by the coordinates of such 
points t(a, z), we easily obtain (5). 

To prove (6) (in which we do not assume (8.8)), let us write simply fx for 
/ r ( x ) . Let / be an element of the right-hand side of (8.12). Then / o 7 = / 
for every 7 G rN. Moreover, if 5 G Z£ and s - 1 •< NZ, then L(S) G UN, 
and so fLW == / . Thus, by Lemma 8.5 (3), / G A0(rN, kN). Similarly if / 
belongs to the right-hand side of (8.13), then the same type of argument shows that 
feA0{rN, Q). Conversely, let feA0{rN, kN).By (5) there exists a multiple M 
of N such that /* = / for every £eUM. Given xeUN, by Lemma 8.3 (4) we can 
put x = i(r)yy with r = v(x)-\ y G UM, and 7 G rN. Since / G w4o(rN, kN), 
we have f M = / = / o 7 , and hence f* = f*r)m = fv 07 = / , which proves (8.12). 
Next, let feAo(rN, Q) and x G T ^ . Then x = *,(p)x' with p G Z ^ and xfeUN. 
Since / 6 ( p ) = / and / * ' = / by (8.12), we obtain / * = / . This proves (8.13). 

8.11. Theorem. (1) R is algebraic over *4o(^\ Q). 
(2) Ao(rN, Q) and C are linearly disjoint over Q. Moreover, Ao(rN, A;) = 

fc^o(rN, Q) for every subfield k of C; in particular A0(rN) = CA0(rN, Q). 
(3) AQ(Q) and C are Jinearly disjoint over Q. Moreover Ao{k) = fcv4o(Q) for 

every subfield kofC; in particular Ao = CL4o(Q). 
(4) Given f G *4o, there exists a finitely generated extension k of Q such that 

/ € AW-
(5) Given f £ Ao and a G Aut(C), the element fa formally defined in §5.9 is 

indeed an element of Ao-

P R O O F . The linear disjointness in (2) and (3) follows immediately from Lemma 
7.4 (1). Now observe that TN/UN is isomorphic to (Z/iVZ)x (resp. to Gal(fcw/Q)) 
via the map x 1—> v(x) (resp. via x »-» <J(X)) for x G TN. Prom Lemma 8.9 
(3) and (8.12) we see that Ao(rN, fc^v) is stable under r(TN). Thus we obtain a 
homomorphism of TN/UN into the group of automorphisms of Ao(rN, k^). This 
is injective, since TN/UN is isomorphic to Gal(fcw/Q). By (8.13) the fixed subfield 
of TN/UN is Ao{rN, Q), so that ^ 0(-TN , kN) is a Galois extension of ^ ( r ^ , Q) 
whose Galois group is isomorphic to TN/UN. By the linear disjointness we have 
[kNA0(rN, Q) : A0(rN, Q)] = [kN : Q], and hence we obtain 

(8.15) Ao{rN, kN) = kNA0(rN, Q). 

Now AQ = CR by Theorem 7.10 (3) and every quotient of (7.8) belongs to A0(rN, 
kj\[) for some N. Therefore we can conclude that Ao = CAo{Q)- Then (4) and 
(5) follow immediately from this fact. Now, for any subfield k of C, we have 
CAo(k) = Ao = Cfc4o(Q), and fe4o(Q) C Ao(k). Since C and Ao{k) are linearly 
disjoint over fc, we obtain Ao{k) = kAo(Q) by Lemma 7.2. This completes the 
proof of (3). 

To prove the main part of (2), given iV, take a finitely generated extension k of 
Q so that V}v is defined over fc. Then fc(Vjv) ° <PN = &(/i> • • • » fm) with suitable 
fi G Ao(rN, C). By (4) we can find a finitely generated extension k' of k so that 
fi G ,4o( r" , fc') for every i. Then k'(l/N) o <pN = /c'(/ l5 . . . , / m ) C >to(r" , * ' ) . 
By Lemma 7.4 (2) we have kf(fu . . . , fm) = A0(rN, jfe'). Since ,4o(*') = k'.4o(Q), 
we can find pi, . . . , gr G A)(Q) so that / 1 , . . . , fm e kf(gi, . . . , # r). Take a mul
tiple M of N so that #1, . . . , p r G w40(rM, Q). Replacing A:' by /C'/CM, w e m a v 

assume that /CM C A;'. Prom (8.12) and Lemma 8.9 (3) we see that Ao(rM, &M) 
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is stable under rN. Since Ao(FN, A;A/) consists of the /^-invariant elements of 
Ao{rM, /CA/), we see that Ao{rM, UM) is a Galois extension of Ao(rN, /CA/). By 
Lemma 7.4 (1), Ao(kM) and fc' are linearly disjoint over kA/, so that k'Ao{FM,kM) 
is a Galois extension of k'AQ(rN, kM) with the same Galois group. Now the el
ements of Ao(rN, k') are contained in k'Ao(FM, kj^) and /^-invariant, so that 
A0(rN, k') = k'A0{rN, /cM). NOW we can let rNUN/FMUM act on A0{FM, kM), 
and observe that pNUN /FMUM can be mapped onto the Galois group of AQ{TM, 
khi) over Ao{rN, k^). (Taking iV = 1 here, we obtain (1).) We easily see that 
r(ax), with a G rN and x G [7^, gives the identity map on kMAo(FN, fcjv) 
if and only if z/(x) — 1 -< MZ. Given such an x, by Lemma 8.3 (4) we have 
x = *,(r)2/7 with r = v[x)~l, j / G £/M, and 7 G i"1^. Then [r, Q] = id. on 
fcAf, so that for / G A t - T ^ , ifcM) and a G T N we hare fT^ = / r ^ = / . 
By Galois theory this shows that Ao(rN, &M) = kMAo(rN, fcjv). This com
bined with (8.15) shows that ^ ( J T " , /CM) = *M ̂ ( J 1 * , Q). Thus A0(rN, kf) = 
fcUo^, fcM) = JfcUoCr*, Q). Consequently A0(rN) = C(VN)ocpN = Ckf(VN)o 
ipN = C U o ^ , &') = CA0{FN, Q). This proves the last statement of (2). Then 
for any subfield k0 of C we have CA0{FN, k0) C Ao(rN, C) = C ^ ^ , Q) = 
Ck0A0{rN, Q) C CA0(rN, /c0), so that Ck0 -A0{rN, Q) = CA0{rN, fc0). Since 
^ ( f ^ , fco) and C are linearly disjoint over k0 by Lemma 7.4 (1),. we obtain 
koAo(rN, Q) = ^ o ^ , k0) by Lemma 7.2. This completes the proof. 

8.12. Theorem. For a point w onH and a positive integer N, let &N[W] denote 
the field consisting of f(w) for all f G £JV5 where &N = AQ(FN, kw). Then &N[W] 
is the field of moduli ofV%. 

P R O O F . We shall prove this in the proof of Theorem 9.3, invoking some results 
of [S66a]. Here we prove the case where w is generic for & over Q, using the results 
obtained in this section so far. In §7.9 we observed that V£j is rational over &\w\. 
Therefore we can find a multiple M of N such that V™ is rational over RM M- Since 
/ 1—> f(w) is an isomorphism of & onto fi[w], we can let Q+ act on &[w] by putting 
f(w)x — fT^x\w) for x G G+ and / G &. As shown in the proof of Theorem 
8.11, rNUN/FMUM is mapped onto Gai(&M[w]/&N[w]). Let * be the field of 
moduli of V%. To show that <Z> C RN[w], take x G UNFN. By Lemma 8.3 (4), 
x = i(r)yy with r — v{x)~l, y G UM, and 7 G rN. Since £(a, i*;)^7^ = t(at(r), if) 
and r - 1 -< 7VZ, we obtain {V%)i{r) = 7 ^ by Lemma 7.8. Since P ^ is rational 
over the field %[«; ] on which y gives the identity map, we have (P^)y = ^w • 
Thus ( p £ ) * = {V%V = V^w, as f{wy = f(-yw) for every f e &. Since 7 G r N , 
V^w is isomorphic to 7 ^ . Therefore the property of $ stated in Theorem 2.8 (1), 
(ii) implies that x gives the identity map on #, so that $ C RN[W]. 

To show that &N[W] C #, we consider V}v, <£>AT, and p^ as in §7.9. We take a 
finitely generated extension k of kM over which VM , V}v, and pjy are rational. 
Since A;(VM)O<PM C -4o(r M ) C C A o ( r M , Q), changing /c suitably, we may assume 
that A;(VM) O y?M C A0(FM, k). Then /C(VA/) O <pA/ = X 0 ( r M , fe) by Lemma 7.4 
(2). Since (^^ = p^f o cpM, we obtain fc(V)v) ° PN = Ao{FN, /c). Now /c/v C ^ by 
Lemma 7.12. To prove our theorem, we may assume that w is generic for k& over 
fc. Then ^TV(^) (resp. <^A/(^)) is a generic point of W (resp. VM) over /c. Let a 
be an isomorphism of £JV[U>] onto a subfield of C over #. Since k and £;v[u;] are 
linearly disjoint over /c;v, we can extend a to an isomorphism of k&N[w] onto a 
subfield of C over k$. Extend this further to fc^A/M- Then ¥M{W)G is a point 
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of VM, SO that IPM{WY = <PM(W') with some wf G H. Since pjyf is fc-rational, we 
have (PN(W)CT = <pw(u/), and t// is generic for k&M over fc. Since V% is rational 
over k&M[w] = t j ^ N ) , we have (P%Y = P $ . Since tr = id. on #, (7^) f f must 
be isomorphic to V%, so that w' G r ^ t o . Therefore IPN(WY ~ ^PN{^') = <PN{W), 
and hence a = id. on .ft/vM- Thus &N[W] C $, which completes the proof. 

9. The reciprocity-law at CM-points and 
rationality of automorphic forms 

The first main purpose of this section is to study the behavior of the values of the 
elements of £ at a CM-point under certain automorphisms, which may be viewed 
as an explicit reciprocity law of a certain abelian extension. The next task is to 
extend the results of the previous two sections to automorphic forms of nontrivial 
weight. First we quote a theorem without proof: 

9.1. Theorem. Given a PEL-type ft = { # , # , L, T, ( M ? = i } as in (4-V (in 

all three cases), consider the family J7 {ft) = { Vz | z G H } as in (4-26) and define 
r by (4-28). Then there exist an algebraic number field fa of finite degree and a 
model (V, (p) of r\H with the following properties: 

(1) Let K& be the held generated over Q by the numbers t r(^(c)) for all c G K. 
Then K& C fa. 

(2) If a e Aut(C) and V Is a structure of type ft, then Va is of type ft if and 
only if a = id. on fa, where Va is defined as in §2.7. 

(3) V is defined over fa. 
(4) fa(<p(w)) is the field of moduli ofVw for every w eH. 

This is a simplified form of [S66a, Theorems 5.1 and 6.2], which are applicable 
to a PEL-type of a more general type. We call (V, <p) a canonical model for ft. We 
have Kq, = Q in Cases SP and UT, and so (1) is trivial in those cases; we will show 
in Theorem 9.3 below that fa = km if ft is ftN of (7.4b). In Case UB we can show 
that Kq, = Q if for every v G a and K# is a CM-field otherwise; here 
mv, nv are as in (4.10). 

It may be added that no complete proof of the existence of (V, <p) with property 
(4) was given, even when J1 = Sp(n, Z), in any paper published before 1966. 

9.2. Lemma. Let o be an isomorphism of fa onto a subfield k' of Q over 
K&. Then there exists a PEL-type ft' with the following properties: 

(1) ft' = { K, #, Z/, AT, {w-}|=1 } with the same K, #, T as ft, a totally positive 
element A of F, and some L', { t ^ } ^ ; we can taice A = 1 in Cases SP and UT. 

(2) k' = fa>. 
(3) If a G Aut(C), a = a on fa, and V is of type ft, then Va is of type ft'. 
(4) Let (V , (pf) be a canonical model for ft' and let J"(ft') = { V'z \ z G H } . 

Then there exists a k'-rational biregular map f of V° onto V with the property 
that f(<p(zY) = <Pf(w) whenever a is as in (3) and (VZY 1S isomorphic to V'w. 

P R O O F . Pick any V of type ft; then Va is of type ft' for some PEL-type ft'. 
This ft' does not depend on the choice of V by virtue of [S66a, Proposition 4.1], as 
explained in [S66a, p.323, lines 1~4]. Prom Theorem 9.1 (2) we see that kf = fa'. 
For K ^ F assertion (1) was proved in [S64, Proposition 5.2]. Recall that, by 
virtue of (4.17), & is determined by the signature of Tv for v G a, and vice versa. 
If K = F, we can always put T = nn as explained in §4.3, and hence T' = nn too. 
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In the proof of the following theorem we shall determine 0 ' in Cases Sp and UT 
without invoking [S64]. In any case, the space H is common to ft and Q'. 

Now, to any structure V of type fi we assign a point v(V) of V as follows: by 
Theorem 4.8 (2), V is isomorphic to Vz for some z GH;we then put x>(V) = <p{z). 
This symbol D has the following properties: 

(i) kQ(t>(P)) is the field of moduli of V. 
(ii) v(Pi) = t)(7^2) if and only if V\ is isomorphic to T*2-
(iii) If p is a C-valued discrete place of a field of rationality for V of type ft 

such that p(a) = a for every a€kn and VQ is the reduction ofV modulo 
p, then V0 is of type fi and p(t>(7>)) = t>(P0). 

Properties (i) and (ii) follow immediately from our definition; (iii) was given in 
[S66a, Theorem 6.2]. For each Q of type ftf we define t)'(Q) G V in the same 
manner. Now take any a as in (3). Then Q a is of type f2, and so t)(QQ ) 
is meaningful. We then define a point oa(Q) of V° by Da(Q) = v(Qoc~1)a. In 
view of (iii) above, x>a(Q) is well-defined independently of the choice of a. Now by 
[S66a, Theorem 6.7], (V, o) can be characterized by properties (ii) and (iii). Since 
we easily see that (Va, DCT) has these properties for fi', that theorem guaratees a 
fc'-rational biregular map / of Va onto V such that /(t>a(Q)) = o'(Q) for every 
Q of type jy. If (T>2)a is isomorphic to T^, then >oa({Vz)oc) = t)(T^)a = <^(z)Q, 
and so /(<p(z)Q) = *'{{Vz)a) = X>'{V'W) = <p'{w), which is (4). This completes the 
proof. 

9.3. Theorem. Suppose that Q is QN of (7.4b) with L = tin ^n Cases SP and 
UT; let (V, ip) and k^ be as in Theorem 9.1 and let k^ — Q(e(l/JV)). Then the 
following assertions hold: 

(1) kn = kN. 
(2) kn(V)o<p = Ao(rN,kN). 
(3) There exists a model (W, ip) of TN\H such that W is defined over Q and 

Q(W)oi> = A0(rN,Q). 

P R O O F . Once (1) and (2) are established, Theorem 9.1 (4) implies Theorem 
8.12 (for an arbitrary w). Now, given tt = £lN as in (7.4b) with L = xlnJ for each 
sEZ^ we put Qs = { K, #", L, ryn, {uit(s)} } , where Uii(s) is an element of N~XL 
determined modulo L as explained in §8.4; let -F(fis) = { Vz,s \ z G H } . Take a 
point z0 of H generic for A over Qab; fixing s, define an automorphism f of £[z0] 
by /(^o)^ = / r ^ s ^ ( z o ) f° r f€A. By Lemma 8.6 this means t(a, z0)^=t(ai(s), z0) 
for every a^K\n. By Lemma 7.8, or rather by its proof, (VZo)Z=VZo,s. Let (Vs, ips) 
be a canonical model for Qs; put ks = kns and AN = Ao{TN, fc#). By Theorem 
8.12, ^Tvf̂ o] is the field of moduli of VZo,s, which equals ks(ips(zo)). Since k^ is 
algebraically closed in AN, we see that ks = fc;v, and hence /CJV(</?S(2:O)) = ^ N [ ^ O ] . 
From this we can conclude that kN = &Q and fc^(V^) o <ps = AN, which gives (1) 
and(2) if we take s = l. 

Let a be the restriction of £ to /CAT. Taking fi; of Lemma 9.2 to be Qs, we 
obtain a fcjv-rational biregular map of V° to Vs. This means that we may assume 
that Va = Vs, and 

(9.1) <p(z)a = ips(w) if ae Aut(C), a = a on fcjv, and (T^)Q is isomorphic to TVs-
In particular, ip (ZQ ) ̂  = ips (zo ). 
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Clearly Cls depends only on {sp (mod NZP) } p . Writing Qa) (pa, and Vz,a for 
fts, <ps, and PZjS, we thus have a canonical model (Va, ipa) for fia for each a G 
Gal(kN/Q). Since (Va, <pG) is a model of FN\H, there exists a biregular map 
Po- : V -» V0- such that (fa=9a °<£. Then fcjv(^(^o)) =^Ar[^o] = ^iVr(^)cr(^o))- Since 
(^(z0) and (^(zo) are generic on V and Va over fc#, there exists a few-rational 
map of V to Va that sends ^(^o) to (Pa(zo). Clearly this map must coincide with 
ga; thus ga is fejy-rational. Now for each a G Gal(fejy/Q) and / G &N W^ have 
a well-defined element /°" of £ # , which is the same as fT^s^ it a = [s, Q] on 
few- Define an automorphism a of &[ZQ] by f(zo)a = fa{z^) for / G £. Given 
r G Gal(fcN/Q), define similarly /? by f(zQ)P = fr(z0). Then (7?2o)Q = Vz^a as 
observed at the beginning, and similarly {VZQY — VZO,T and {VZQ)a(3 = T^o,err-
Therefore ^ ( 2 : 0 ) a = ^ a ( ^ o ) , ^ ( ^ o ) / 3 = ^ r ( ^ o ) , and (p{Zo)a0=(paT(zO). Thus ((Pcr)T ° 

Sr) M * b ) ) = ( ^ ) T (<M*o)) = ( ^ M ^ ) = ^ M ^ ) ) " = M ^ V = V(zo)a(3 = 
<Par(zo) = &TT(<P(2O)), and so (# a) r o gT = p a r , since <p(z0) is generic on V over 
/CAT. Applying a well-known criterion of [W56, Theorem 3] to { Va, ga } , we find a 
Q-rational variety W and a fe;v-rational biregular map h of V onto W such that 
h = ha o ga for every <7 G Gal(fcw/Q). Put ip = h o 9?. Clearly (W, T/0 is a model of 
r N \ W . Now / i ( ^ ( z o ) ) Q - ^ ( ^ ( ^ o ) ) = ( ^ o ^ ) ( ^ o ) ) = / i ( ^ ( z 0 ) ) . Thus h(<p{zo)) 
is rational over the subfield of £JV[2O] fixed by the automorphisms a. This subfield 
corresponds to the subfield of RN = Ao(rN, few) fixed by Gal(fcw/Q), which is 
Ao{rN, Q). Since fe/^(/i(^(zo))) — £/v[zo]5 we see that Q(h(<£>(2o))) corresponds 
to Ao{rN, Q). This means that Q{W)orl> = Ao(rN, Q), which completes the proof. 

9.4. Given an algebraic number field M of finite degree contained in C, we 
denote its maximal abelian extension contained in C by Mab- By class field theory 
there exists a canonical homomorphism of M£ onto Gal (Mab/M) whose kernel is 
the closure of the product of M x and the identity component of M*. We denote by 
[a, M) the element of Gal (Mab/M) which is the image of a G Mj£. (This includes 
[t, Q] of §8.1 as a special case.) 

Let us now briefly recall the notion of a reflex of a CM-type. (For details, 
see [S98, §§8.3 and 18.5].) Given a CM-type (K, <?) in the sense of §2.9, take a 
Galois extension L of Q containing K and take elements ipu of G so that $ = 
{<pi, . . . , ipn } . (Thus n = [K : Q].) Let K* be the field generated over Q by the 
elements YlZ^i x<Pu f° r a n x e K. Then it can be shown that K* is a CM-field. 
Put G = Gal(L/Q), H = Gal(L/tf), and H* = Gsl{L/K*). Then we have 

(9.2) \J:=1^IH=UUH*^ 
with rM G G, where m = [#* : Q]/2. We can show that (K*, <£*) with <£* - { rM } 
is a CM-type, which we call the reflex of (K, $ ) . The field if* is called the reflex 
fleid of (if, $) . We can also define a map # : {K*)x —> ifx by 

(9.3) 5 ( « ) = n " = i a T " (<* 6 (*•)*)• 

The map # can be extended naturally to a homomorphism (if*)^ —• ^ A - We 
shall denote this map # also by det#*. Since {^>u, tpup}™=l gives the set of all 
embeddings of K into C, we obtain: 

(9.4) g(a)g(a)P = iVj,. /Q(a) (a G ( i f*)^) . 

We now consider a CM-algebra Y = K\ © • • • © Ku such that [Y : K] = 2n, a 
*if-linear ring-injection h : Y —> if |n s u c n ^na^ 
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(9.5) h(ap)r]n = r]nh(a)\ 

and the fixed point w of h(Yu) as in §4.11. Define CM-types (Ki, $i) as noted 
at the end of that subsection. Let (K*, <£*) be the reflex of (Ki, <£;), and Y* the 
composite field of the K*. (Note: Y is a if-algebra, but Y* is a subfield of C.) We 
then define a map g : (Y*)£ —> Y£ by 

(9.6) g(x) = (det*J( iNr y . / A r . (x)) ) ' = i . 

9.5. L e m m a . The notation being as above, for every x G (Y*)£ we have 
v(h(g(x)))=g(x)g(x)p = NY*/Q{x) and det[h(g(x))]=NY*/Q(x)n. Consequently 
h{g{x)) G (Go)A + . 

P R O O F . That g(x)g(x)p = NY*/Q{X) follows immediately from (9.4) and (9.6). 
Also from this and (9.5) we see that h(g(x)) G G A + and v(h(g(x))) = g(x)g(x)p. 
This proves our lemma in Case SP. To compute det [/i(#(#))] in Case UT, take 
the Galois closure over Q of the composite of the Ki and put G = Gal(L/Q), Hi = 
Gsl(L/Ki), # * =Gal(L/K*) , H* = Gal(L/Y*), and J = Gal(L/K). Let R be the 
group-ring of G over Z; for x = X^7eG ci7 € ^ w ^ n c7 G Z put x' = J2^eG c77_15 
for a subgroup H of G put [#] = X^aetfa* Take ^ and r^ in G so that 
#i = {¥>*}„ and <?* = {r iM}M. Then ( E „ [ # W = HJfltW hY (9-2)- Since 
& is equivalent to n times a regular representation of K over Q, we have n[G] = 
^i^lAViv Given x G (Y*)£, P u t ^i = NY*/KT(X) and ^ = de t#*(^) . Then 
g(x) = {yi)i=i and det [/i(#(x))] = IL=i Nxi/K^i), since h is equivalent to a reg
ular representation of Y over K. Now NK./K(yi) = J ] 7 € H . v 2/7 = 11^ Eye** V x*>7» 
and £ M [ J * ; ] 7 ^ E 7 € t f A ^ ^ S i n c e # * C # * , 
we can write ^2u(f~J[J] = E A I ^ K A with some a iA G G. Then NK./K(yi) = 
I I A * Q < \ s o t h a t d e t [Hti*))] =111=1 Ux^iX- Since Y,i,vV7M=n\G\> the a,A 
give n times H*\G. Therefeore the last double product is NY*/Q(X)U, which com
pletes the proof. 

Now our main theorem on the reciprocity-law can be stated as follows: 

9.6. Theo rem . Let Y, h, w, and Y* be as in §9.4 in Case SP or UT. Then for 
every f G R defined at w, the value f(w) belongs to Y*b. Moreover, if b G (Y*)£, 
then fT^ with r = h(g{b)-1) is finite at w and f{w)^Y^ = fr{r){w). (Notice 
that r(r) is meaningful, since r G (GO)A+ -) 

P R O O F . Fixing iV, we use the same symbols as in the proof of Theorem 9.3. 
Given be (Y*)£ and r as above, by Lemma 8.3 (1) we can put r = yt(s)a with 
yeUN, s G Z £ , and aeG0+. By Lemma 9.5, NY*/Q{b) = v(r)~l = s-i/{ya)~l. 
Take e G Aut(C/Y*) so that e= [6, Y*] on Ya*b; let a be the restriction of e to 
fcjy. Then <r = [s, Q] on /c;v, and we have a canonical model (Va, (ps) for Cta = Qs. 
Now let / = /1 o ip with fi G fcjv(V)- Then / G. £yv and / f is meaningful as 
an element of k^iY^)- Since <p(zo) is a generic point of V over fcyv, we have 
fi M ^ ) = / i M ^ o ) ) ^ = /(«o)^ The last quantity is f ( t ( s ) ^ o ) by the definition 
of f. Since (f[zo)^ = (ps{zo) as noted in (9.1), we obtain /f(<£>s(zo)) = /T ( t ( s ) )( zo)-
Since zo is generic for ^ over fc^, we have thus 

(9.7) ( / i o # ^ = / f o ^ for every /1 € fc»v(V). 
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Next we consider the member Vw = (Aw, Cw, LW, {t{}) of our family as in 
Theorem 9.3 for the CM-point w in question. Put Q = (Aw, CW1 if) with L' : 
Y —> Endq(A^) as in §4.11. Take e0 G K\n so that K\n = eofr(Y) and de
fine q : y a -* ( C n ) b by g(a) =pw(e0ft(a)) for a G F a . Then (4.39) shows that 
g(ca) = t^(c)q(a) for c G Y. Take a Z-lattice a in 7 so that L = eoft(a). Then 
g(a) = pw{L), and ^ of (7.2) gives an isomorphism of (Cn)h/q(a) onto Aw\ 
U — tw(q{vi)) with an element vi G Y such that e^h{vi) = n*. Take ( G y so 
that TrK/Q(eo/i(a)ryneo) = TrY/Q((O>) for every aeY. Then from (4.25) and (9.5) 
we obtain 

Ew(q(a), q(b)) =TrK/Q(eoh(a)Vnh(b)*e*0) = Tr K/Q(e0h(abP)rine*0) =TrY/Q((abP). 

Thus Q is of type { Y, *$, a, C } with respect to tw in the sense of [S98, §§18.4, 18.7]. 
We now apply the main theorem of complex multiplication of abelian varieties, as 
stated in [S98, Theorem 18.8], to Q£. Then Q£ is of type { Y, *#, g{b)~la, /< } with 
respect to an isomorphism £' of(Cn)h/q(g(b)~1a) to (Aw)£, where x̂ is the positive 
rational number such that \xL = Afy*/q(6)Z; besides, tw(q(a)) = ^ /(g(^(^) - 1a)) 
for every a G Y/a. (The present <? is not exactly the same as the map q of [S98, 
§18.4]. However, the only property of q we need in the proof of [S98, Theorems 
18.6 and 18.8] is that q{cx) = $(c)q(x) for c, x G Y. The present l$ corresponds to 
# there. Thus there is no problem with the present q.) Now for a G Y/a we have 

q(ag(b)~1)=pw(eoh(ag(b)~1))=pw(e0h(a)r)=pw(e0h(a)yL(s)a), 

so that g(a^(6)_1) = pw[La) and q(vig{b)~l) = pw(uit(s)a). Thus (Pw)£ is of 
type Qf = { K, &, La, [iT}n, {uit(s)a} } with respect to pw and £'. In other words, 
{Vw)£ is isomorphic to the member V'w of the family ?{&<') at to. Put it/ = a(w) 
and A = tM(ai w). By (4.31) we have pw(xa) = A p ^ x ) for x G (ifa)2n . Since 
Ny*/Q(b) = s - v{ya)~l, we have fi = v(a)~l. Therefore we easily see that A 
gives an isomorphism of Vw',s onto V'w. Thus {Vw)£ is isomorphic to Vw',s, so that 
(p{w)£ = (faiw') by (9.1). Let / G &N\ take / i G fcjv(^) so that / = /x o <p. Then 
/(*;)« = / i ( ( ^ M ) £ = / f ( < ^ ) £ ) = / f (<p3(u/)) = (/f o <^)(u/) = / 'M'»(a t i ; ) by 
(9.7). (Here notice that if / is finite at w, then / i is finite at ip(w), and / ^ W ) 
is finite at aw.) Since / T M = / by (8.12), we have fTW(w) = fTM*W(w) = 
fT(L(a))(aw) = f(w)£. Since r(r) depends only on 6, we see that f(w)£ depends 
only on the restriction of e to Ya*b. Therefore f(w) G Ya*b, and we obtain the desired 
equality of our theorem for / G &N . Since N is arbitrary, this completes the proof. 

In the elliptic modular case we have Go = G = GL,2(Q) and £ + = G A + , and we 
take an imaginary quadratic field as Y. Then Y* is the isomorphic image of Y in 
C. Thus the above theorem specialized to that case is exactly the principal result 
of the classical theory of complex multipication given in [S71, Theorem 6.31]. 

In this book we consider only canonical models associated with PEL-types intro
duced in Section 4. Actually we can define canonical models of arithmetic quotients 
of hermitian symmetric spaces that are not necessarily associated with PEL-types; 
we can even prove a reciprocity-law similar to that of Theorem 9.6 in such cases. 
For details the reader is referred to [S67], [S70], and [S98, Section 26]. 

9.7. Let the notation be as in Theorem 9.1, and let K G Z . For every nonzero 
element h of AKa(r) we can speak of its divisor on V, which is a divisor on the 
variety V in the sense of algebraic geometry. We denote it by div(ft). Given a 
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subfield k of C containing kn and a /c-rational divisor X on V, we define the 
standard symbols C(X) and C(X, k) of linear systems as follows: 

(9.8a) C(X) = {fe C(V) | div(/) >- -X } , 
(9.8b) £(A-,*) = £(X)nik(V). 

It is well-known that C(X) = C(X, k)®kC Also we easily see that C(div(h)) is CD-
linear ly isomorphic to MK&{r) via the map / i—> fh. (Here we have to exclude the 
one-dimensional case that requires the cusp condition. Therefore, strictly speaking, 
we have to modify the proofs of the following theorems in that case, a task we leave 
to the reader.) 

Hereafter we consider only Cases SP and UT, and denote by (VN, <PN) a model 
of rN\H such that Q{VN) o <pN = A0{rN, Q) established in Theorem 9.3 above. 
Then for any subfield k of C we have k{V)o<pN = kAo{rN, Q) C A0(rN, k). By 
Lemma 7.4 we have k(V) o <pN = Ao(rN, k). Therefore we can take Ao(rN) and 
Ao(rN, k) in place of C(V) and k(V) in (9.8a, b). 

9.8. Propos i t ion . (1) If 0 ± h G AKlk{rN, D) with K e Z and a subfield D of 
C, then div(/i) considered on VN is D-rational. 

(2) There exist a positive integer A and a nonzero element g G A\(rl, Q) such 
that div(#) considered on VN for every N is Q-rational 

P R O O F . We prove this only in Case UT; Case SP can be treated in a similar 
and much simpler way. To prove (2), let m be the complex dimension of H. 
Take m algebraically independent functions in Ao(rl, Q). Multiplying these by 
the product of the denominators, we obtain algebraically independent functions 
/ i / / o , . . . , fm/fo in A0{r\ Q) with fu e M^(rM', Q) with some M and /i > 0. 
Let zv

ah be the (a, 6)-entry of the matrix zv which is the v-th component of the 
variable z = {zv)ve& G H. Let hp = fp/fo and 

r = (27rz)-md(/ii, . . . , hm)/d(zi, . . . , zm) , 

where z\, . . . , zm are an arbitrarily fixed arrangement of the variables zv
ah for all 

v G a and 1 < a, 6 < n. In view of Lemma 3.4 (2), we see that r G ^2na(^1)-
Now for a function of the form f(z) = ]T^ c(h)e™(hz) as in (5.22a) we have 

df/dzlb = 2niZhc(h)hlael(hz), 

where hla is the image of hba under v. We have also 

(9.9) (2Tri)-ifgdhp/dz"ab = (2nirl(f0dfp/dzlb - /p0/o/dz»6) . 

Therefore we easily see that / o m r G Mu(rM', #) , where ^ is the Galois closure of 
i^ over Q and / = 2m/i + 2n. Moreover, div(r), considered on Vjy for any fixed AT, 
is the same as the divisor of dh\/\- • • Ad/im on V}v, which is Q-rational. Now we can 
view fomr as the determinant of a matrix of size n 2 # a whose (v, a, 6)-th column 
is (27TZ)_1 [fodhp/dzZb]™ . Call this column vector (/; v, a, b). Let <7 G Gal(#/Q). 
Applying cr to (9.9), we observe that 

f (/; v\ a, 6) if w = v' on K, 
(/; v, a, 6)a = -i , 

I (/; v , o, a) JI va = v p on K, 
where p is complex conjugation. Therefore we have r° = ±r, and hence div(ra) = 
div(dhi A • • • A d/im) = div(r). Then we obtain the desired function g of (2) by 
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9 = I L r a > w h e r e a r u n s o v e r Gal(#/Q). Let 0 ^ h G AKa(FN, D). Take g as 
above. Then hx/gK G A0(FN, D) and div(hx/gK) = A • div(h) - « • div(#). Since 
this divisor and div(#) are D-rational, div(h) must be £)-rational. This proves (1). 

9.9. Theorem. Let 0 < K G Z and 0 < N e Z; let D be an arbitrary sufield of 
C. Then the following assertions hold: 

(1) MK8L(FN) = M^ir", D) 0 D C provided AKa(rN, Z?) ^ {0}. 
(2) - M ^ = A W Q ) ® Q C. 
(3) Given f G v4Ka, there exists a finitely generated extension EofQ such that 

feAKa(E). 
(4) Let f G MKa (resp. f G AKa) and cr G Aut(C). Then f°', defined as a 

formal element in §5.9, is indeed an element of AiKa (resp. AKa). 
PROOF. Let 0 ^ h G AK&(rN, D). By Proposition 9.8 (1), div(h) is £>-rational. 

Then / i-> h / is an isomorphism of £(div(h)) onto MKa(FN), and this maps 
£(div(fc),Z?) onto M ^ r ^ , L>). Since £(div(h)) = £(div(h),£>) <g>D C, we obtain 
(1). Now by Lemma 6.17 there exists a nonzero element p in . M ^ Q ) - Thus 
MKa{TN, Q) ^ {0} for sufficiently large N. Therefore (2) follows from (1). Prom 
(2) we see that every element of MKa is a finite C-linear combination of elements 
of MKa(Q). Clearly this implies (4) for / G MKa. Given / G AK&, we see that 
p~xf G Ao, so that by Theorem 8.11 (4) and (5), p"1 f G A0{E) with a finitely 
generated extension E of Q, and {p~~lf)° G A$. Then we obtain (3) and (4) for 
/ G s\Ka. 

9.10. In (5.1) we defined the symbol MQ(z) = (fJ,v(a, ^ ) ) v € b - Let a; be a rep
resentation of GLn(C)b given in the form UJ(X) = ®v<z\>uv(xv) with Q-rational 
representations LOV of GLn(C). We recall that 

(9.10) ( / | | w o) (z )=a ; (M a ( z ) ) - 1 / («« ) 
in both Cases SP andJJT. 

Now, for a € Gal(Q/Q), we define a representation u)a of GLn(C)b by 

(9.11) ua(x) = ^uv(xwr). 

Thus both u and ct;a have the same representation space. 

9.11. Proposition. For each fixed v G b define a representation rv : G L n ( C ) b 

- GLn(C) by 
(9.12) rv(a;) = det(x)bxv for x G GL n (C) b , 

where ab = n ^ b ^ - f^us (r^)CT = Tw) Given z0eH, there exist a set of de
valued functions { Rv } v e h and a congruence subgroup T of G with the following 
properties: 

(1) The columns of Rv belong to MTv(F, Kv), where Kv is the image of K 
under v. 

(2) Rl = RV(T for every o G Gal(Q/Q). 
(3) det (RV(ZQ)) ^ 0 for every veb. 
(4) The columns of Rv\\Tva belong to MTv(KvQah) for every a G G+. 

Moreover, these assertions are true with the following modifications: Replace AiTv 
by Aav, where av(x) = xv\ (3) should then read: Rv is holomorphic at z0 and 
det (Rv(zQ)) ^ 0 for every veb. 

PROOF. We first prove (1, 2, 3) for MTv in Case SP with F = Q. Put 
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(9.13) xl>(u, z; A) = {2m)~l [ [d/du0)y{u, *; A) £ = 1 , 

where <p is ipp of (6.17) with F = Q. We view this as a column vector. Take 
A C <S(Qh) as in Theorem 6.12 and take Fx as in (6.34). Differentiating (6.34), we 
obtain 

(9.14) ip(u, jz; A) = h1(z)fiy(z)ip^tij)1(z)u, z\ A) for every 7 e F\. 

Put i~o = HAG A F\- Denoting the elements of A by Ai, . . . , Am, put 

<Pk(u, z) = (f{u, z\ Afc), ^ ( u , z) = tp{u, z\ Afc) (1 < k < m). 

Since u i-> ((fk(u, z))™^ is the biregular embedding of Theorem 6.12 (3), we have 

rank •n + 1 
<Pl(u, Z) ••• (fm{u, Z) 

_1pl(ll, Z) ••• lpm(u,z)_ 

for every (u, 2;) G C n x j}. Therefore, given ZQ € S)n, changing the order of A ,̂ we 
may assume that det [^i(0, z0) • • • i/>n(0, z0)] ^ 0. Also we can find an index j 
such that </?j(0, ZQ) 7̂  0. Define a C™-valued function i? by 

(9.15) R{z)=<pj{0, z)[^i(0, *) . . . ^n(0 ,z ) ] . 

Then (6.34) together with (9.14) and Theorem 6.8 (5) shows that R^y{z)) = 
j1(z)fi1(z)R(z) for every 7 in a subgroup JH of To of finite index. We easily see 
that ipk(0, z) has Fourier coefficients in Q. This proves (1, 2, 3) in the case F = Q. 

Next we consider Case SP with F ^ Q . We take the embedding a : #* —> f)en 

of (6.10), and given z0 € i } ^ choose the above R on 9)en (that is, with en instead 
of n) so that det [R(e(z0))] ^ 0. With B as in (6.5) put 

(9.16) : = 'B/ i (e (*) )Q (z e 5)*) 

with Q G Q^n. Here each Rj is an n x n-matrix. We can choose Q so that 
det [-Rj(^o)] 7̂  0 for every j . (To see this, we first note an easy fact: Given a 
nonzero polynomial p{x\, x m ) , with complex coefficients, there exist rational 
numbers gi, . . . , qm such that p(qi, . . . , qm) ^ 0. Then take a variable en x n-

• i v 
matrix X and put tBR(e(zo))X = , where each Yj is square and of size n, 

and apply the above fact to p(X) = YTj=i det(lj).) Writing {Rv } v ( E a for { i?7 } 
and employing (6.11a, b), we can easily verify that the Rv satisfy (1, 2, 3) with a 
suitable choice of F C Sp(n, F). 

Finally take Case UT. Using the symbols of §6.5, denote by Tv the above function 
Rv with 2n in place of n such that det [Tv (^(20))] 7̂  0 for a given z0 e H*. Then 
we define n x n-matrices Sv and Rv by 

Sv{w) 
(9.17) Rv{w) 

= A*vTv(il>(w))Y (weH*, DGa) 

with Y E Qnn- By virtue of (6.22b, c) we easily find a congruence subgroup F of 
G such that 

Sv(aw)=ja(w)b\v(a, w)Sv{w) and Rv{aw)=ja(w)hfiv(a, w)Rv(w) 
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for every a€T. Also, with a suitable choice of Y, we have det [SV(ZQ)RV(Z0)] ^ 0 . 
Putting Rvp = SVi we can easily verify that the set { Rv } v E h satisfies (1, 2, 3). 

As for (4), since every element of G+ is a product of an element of G and an 
element of the form diag[ln, cln] with c G F, > 0, it is sufficient to treat the 
case where a G G. Then by means of (6.11a, b), (6.22b, c), (9.16), and (9.17), we 
can reduce our problem to the case G = Sp(n, Q). In this case we prove (4) in a 
stronger form: 

(9.18) If X e -M r(Q a b) , then X\\Ta G X r ( Q a b ) for every a G Sp(n, Q). 

This is clear if a G P d G with P of Lemma 7.5. Therefore, by that lemma, it 
is sufficient to prove (9.18) when a = r\. First we take X to be R of (9.15). Let 
r{z) = de t ( - iz) 1 / 2 . By Theorem 6.9 (2) we have 

<p{u, T]z; A*) = r ( ^ f / i ^ ) « , z\ A'*.) 

with Â  given by (6.33) with A/- as A and F = Q. Clearly A^ is Qab-valued. Then 
differentiation shows that ip(u, rjz; A&) = r(z)/j>rj(z)ip[tfiv(z)u, z\ A^). Therefore 
we obtain 

( % ) W = H ) > ( 0 , ^ ; ) [ # ^ ; A i ) . . . ^ (0 ,2 ; A;]. 

This is clearly Qab-rational. Now given X as in (9.18), put Z = R~~lX. Then the 
entries of Z belong to .Ao(Qab), and so by Theorem 7.10 (4) the entries of Z o 77 
belong to A(Qab) . Thus X\\r) = (/J||T7)(Z O 77) G Mr(Q a b) , which proves (9.18). 
This completes the proof of (4). 

As for the assertions for AGv instead of MTv, the desired functions can be ob
tained by taking <Pj(0, z)~x in place of y?j(0, z) in (9.15). Then the above proof 
is applicable to this case too, with no other changes. 

9.12. Lemma. Given 7 = P Q 
r s 

Pin qln 
r±n s±n 

eSL2(Z) with s > 0 , put (3 

Then for some positive integer M we can choose the function R of Proposition 9.11 
with Rv G Aav so that it has the following property: If r G Gal(Q/Q) , t G Z ^ , T — 
[t, Q] on Q a b , and 7 - diagf*"1, t] -< MZ, then {Rv\\avv)r = Rvr\\aVTPV' 

P R O O F . We first consider Case SP with F = Q. Given A G 5(QJ) and t G Z£, 
define At, A' G 5(Q£) by A*(a:) = A (to) for x G Q^ and 

(9.19) A'(x) = / X(y)eh(txy)dy 

as in (6.33). Also, for r G Gal(Q/Q) define AT by AT(x) = A(x)T. Put <p(z, A) = 
(p(0, z\ A) and ip(z, A) = -0(0, z; A). Then our construction shows that each column 
of R is of the form f(z) = <p(z\ X)"1i/;(z, £) with some Q-valued elements A, £ of 
5(Q£). By Theorem 6.9 (2) we have f\\rj = <p{z\ A')~V(z, '̂)> a n d h e n c e (fWvV = 
ip(z; (A') r)~ i/j(z, {£f)T). Take a positive integer M so that 

{ £ G 5p(n, Q) A I £ - l2n ^ M Z } c D A n ^ 

for DA and D, of Theorem 6.8 (4). Then, by (6.32), f\\/3 = <p(z; \t)~lip{z, tt). 
Applying r to (9.19), we find that (A')r = (At)' and (£')T = (lt)\ and hence 
UW = <p{z; (\t)'y V(* , (ItY) = f\\0ri, which proves the case G = Sp(n, Q). 

To prove the case of G = Sp(n, F) , we employ the symbols of §6.2. Let (3 be the 

element of G defined in Sp(n, F) as in our lemma, and let ft = en \.en 

\ r±en Si en 
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Sp(en, Q). With B as in (6.5), put A = B • lB and a = diag[A_1, A]. Let M' be 
the integer with which R on Sp(en, Q) has the desired property. We take it so that 
R\\rM' = R. Now take a positive multiple M of M' so that Ma -< M'Z. With u; 
as in (6.7), observe that w(r)n) = rjena and u;(/?) = £/?' with 

[ l + g r ( l - ^ ) OT(A-1) 1 
? [ sr(A'l-l) 1 + qr(l - A'1) \ ' 

Therefore £ — 1 -< M'Z if g, r G MZ. Combining our result in the case F = Q 
with (9.16), we obtain 

(*) ( ( ^ l t o ) T ) „ e a = t ^( i? | | ? 7 e n a) - ( £ (z ) )Q = < iT( i? | | / ?W*)(^ ) )Q> 

since (p| |a) r = <7T||c* holds for g € Aa. On the other hand 

(Rv\\(3v)v^ = * B ( i Z | | ^ » ? e n a ) ( e ( z ) ) Q = t S ( f l | | / J ' » 7 e „ a ) ( e ( z ) ) Q 

since JR||£ = i?. Comparing this with (*), we obtain the desired equality for Rv on 
Sp{n, F). Case UT can be handled in a similar manner by means of (9.17). 

9.13. Theorem. (1) Let f G M^ (resp. f G A J with LJ as in §9.10 and let 
a G Aut(C). Then /CT, defined as a formal element in §5.9, is indeed an element of 
MUJ<T (resp. A^). Thus (Aj)* = Aw* and (M^Y = M^. 

(2) Given f G Aw>> there exists a finitely generated extension k of Q such that 
feA^k). 

(3) MU(D) is stable under f \-> f\\u a for every a G G+ and every subheld D 
ofC containing Qab and the Galois closure of K over Q. 

P R O O F . We may assume that u is irreducible. Then there is an integer e such 
that co(cy) = ceuj{y) for c G C x . Take r and R = (Rv)veh as in Proposition 9.11. 
Then we see that u>(R) o a = J^UJ^^R) for every a G T. Take a positive integer 
m so that m > e and det{y)mujv(y)~1 is a polynomial in y for every v G b; 
put s(x) = det(x)-m bo;(x) for x G GL n (C) b . Then s{R) o a = j-Kbu>(pa)s(R) 
with K = m(l + n|b|) — e. Given / G Au, put g = s(R)~1f, and observe that 
the components of g belong to AK\> and that s(R)cr = s(Ra) = sa(R). Identify 
the representation space of u; with C* with some t so that u[GLn(Q)h) acts 
on Q*. Then g G (A*)* . By Theorem 9.9 (4), ga G (AKh)\ so that /*, being 
equal to s{Ra)g°, must be defined as an element of A^. Suppose / G MUJ. Then 
g G (Al^b) > since 5(i?)_1 is holomorphic everywhere. Now for any point ZQ> take 
i? so that det [ I X e b ^ ^ o ) ] + 0. Now g° G (A1«b)* by Theorem 9.9 (4), so that 
fa = s{R)CTg<T is holomorphic at ZQ. Thus /°" is holomorphic everywhere, and so 
fa G Mu°> This proves (1). Now s(R) is rational over the Galois closure of K. 
Since / = s(R)g, we obtain (2) by applying Theorem 9.9 (3) to g. To prove (3), we 
take Rv of Proposition 9.11 with Rv G AGv. Given / G . M ^ D ) , put g = UJ{R)~1 f. 
Then g has components in *40(£>). Now Rv\\crvO- € A r ^ i ^ Q a b ) as stated in 
Proposition 9.11, and g o a has components in -4o(-D) by Theorem 7.10, and hence 
/ l l ^ a = ( ^ ( i J J I ^ a J ^ o a ) G A^D). This together with (5.30) proves (3). 

10. Automorphisms of the spaces of automorphic forms 

10.1. We are going to prove a theorem analogous to Theorem 8.10, taking auto
morphic forms instead of automorphic functions. Let u and ip be two Q-rational 
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representations of GLn(C)h. For / G Ao and g G A^ we denote by f <g> g the 
element of A,,®?/; defined in a natural way. 

We now define a subgroup <5 of Q+ x Gal(Q/Q) by 

(10.1) 0 = { (£, u) G £+ x Gal(Q/Q) | *(£) = a on Q a b } , 

where <r(£) is defined in the paragraph preceding (8.11). 

10.2. Theorem. Each element (£, cr) of <S giues a Q-linear bijection of A^ (Q) 
onto Aw* (Q) , written f t—> / ^ , c r ) , mt/i t/ie following properties: 

(1) M . ( Q ) ( e ' a ) - X ^ ( Q ) . 
(2) If feAo (Qab), tnen /«•"> = / r ^ with r of Theorem 8.10. 
(3) ( a / ) ^ = a°7 ( C ' a ) for every a G Q. 
(4) (/«'*)) (C'T) = / « O T ) . 

(5) Z^'1) = f\\„a if aeG+and / G A , . 
(6) ( / ® ( ; ) « ^ = / « ^ ® ^ ) . 
(7) / ^ ' ^ coincides with f° of §5.9 and Theorem 9.13 (1) if £ = i(s) with 

* G Z h \ 
(8) If f G A , ( r N , Q) and (£, a) G 05 with $ G T N , then /«•*> = / " . 

P R O O F . We first consider the action of <S on A (Q) • By Lemma 7.4 (1) and 
Theorem 7.10 (3), AQ(Qab) and Q are linearly disjoint over Qab> and A (Q) = 
QA)(Qab)- Therefore, given (£, cr) G 0 , we can find an automorphism of AQ (Q) 
that coincides with a on Q and with r(£) on A (Qab)- Writing this action by 
putting (£, a) on the upper right, we can easily verify all the assertions restricted 
to Ao (Q) . (As for (7) and (8), we can derive them from Theorem 8.10 (3), Theorem 
8.11 (2), and (8.13).) 

Next, to treat Au with LU of a general type, let R = (Rv)ve\> denote the set of 
functions obtained in Proposition 9.11 with Rv G AGv\ take a positive integer M so 
that the columns of Rv and Rv\\rj belong to AGv{rM) for every v e b and have 
the property stated in Lemma 9.12. By Proposition 9.11 (2), the columns of LJ(R)(7 

belong to A^{rM) for every a G Gal(Q/Q). Given f e Au (Q) and (£, a) G <$, 
by (8.10)'we have £ G :raG a + with x G T M and a G G+. Observe that the 
components of oj(R)~lf belong to AQ (Q) , and so (UJ(R)~1 / ) 'CT is meaningful. 
Then we define f^a^ by 

(10.2) /«•") = ( ^ ( ^ l l ^ a ) ^ ^ ) - 1 / ) ^ ' ^ . 
By Proposition 9.11 (4) the columns of u)a(R)\\u;<Ta belong to M^ (Q) , and hence 
f(C <0 j s in(jee(i a n element of Au° (Q) • Also we can easily verify that this does 
not depend on the choice of x and a. Then clearly (5) and (6) hold. If £ = L(S) 
with 5 G Z£, we can take x = i(s) and a = 1; then we obtain (7). If u; is 
the trivial representation, it is consistent with the above action on AQ. Also, if 
/ G Au(rN, Q) with a multiple N of M and x G T N , then 

M*)-7)tt,<T) = M/rv)(*'*)(a,1) = Mi?)-7)ao^ 
since (4), (5), and (8) are true for *4o(Q), and hence we easily see that 

(10.3) / « , < T ) = r i U a . 
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This combined with Theorem 9.13 (1) proves (1). We also note that 

(10.4a) u){R)(x«^ = uo<J{R)\\UJ*a if xeTM and a G G+, 

which is a special case of (10.2). Also from this and (10.2) with Rv as / , we obtain 

(10.4b) LJ(R)^^ =u((R'v)veb) with < = i # ' a ) . 

Let us now prove (8) assuming (4). Let / G Au(rN, Q) and (£, a) G (5 with 
£eTN. Take a common multiple N' of M and N\ let ^ef3xGa+ with /?G<5+ and 
x € T N \ Then /3 G T N by Lemma 8.3 (2), and so /«•*> - (/(/M) )<*'"> = /(*,*). 
Taking (x, cr) and 1 as (£, cr) and a in (10.3), we obtain / ^ ' ^ = / a . This proves 
(8). 

To prove the associativity of (4), we first observe that it follows easily from our 
definition (10.2) if both £ and £ are contained in T M , or £ G G+ and r — 1. Now 
assume that 

(*) (^- '1)) ( C 'T ) = 0(*<,r) for every g G A , (Q) , a € G + , (C, r) G 0 . 

Given (£, cr) and (£, r ) in (5, let $ G xaGa+ as above and a£ G 2//?Ga+ with 
?/ G T M and /? G G + . Then, assuming (*), we have 

( p ( e , a ) ) ( C ' T ) = ( ( ^ ( ^ ^ ) ) ( a ' 1 ) ) ( C ' T ) = (p(a;,(T))(QC,T) = (g(x,v)yy/3,T) 

= ((^^))(y^))(/?'1)
 = ((^O^^OM) = g{xy(3,*T) == ^ C , ^r ) ? 

which is the desired equality of (4). Thus our task is to prove (*). Observe that 
if (*) is true for fixed (a, g) and an arbitrary £, then it is true for ( a - 1 , g) and 
an arbitrary £; if it is true for some fixed a, (C, T) , and for the columns of u)(R), 
then it is true for all # G ̂ 4W (Q) and the same a, (£, r ) , since the problem can be 
reduced to uj(R)~lg, whose components belong to *4o(Q)« Therefore it is sufficient 
to prove that 

(w(/i)^1)) ( C 'T )=a;(iJ)( t tC,r) 

for a belonging to a set of generators, say B, of G+. Given a G B and (C, T) e <5, 
let C £ y/3Ga+ with y G T M and (3 e G+. For simplicity put 5 = O;(JR). Suppose 
( 5 ( « , i ) ) ^ T ) = 5 ( ^ r ) > T h e n 

Thus it is sufficient to prove 

(**) (5(o.i))(^r) = 5 (a y ,T) for every a G £ and yeTM. 

By Lemma 7.5 we can take B = (P n G+) U {r?}. We first consider the case a — rj. 

Let y G TA f . Then y G *,(t)C/M with t e Z j . Take 

and P Q 
r s 

P Q 
r s 

Pin qln 

G 5L2(Z) so that s > 0 

and w — r]yri~lf3~l. Then -< MZ; put /3 = 

w G TA / , and S<r"''T> = S{w0ri'r) = ST\\U,T^ by (10.4a). On the other hand, taking 
S\\rj as / in (10.2), we have {S\\r))^T^ = ST • [S-1(5||?7)] (y ,T) . Since S"l{S\\r)) 
has components in *4o(^A/)> assertion (8) for AQ shows that [ 5 _ 1 ( S | | T ; ) ] y = 
{S-l)T{S\\rj)T, so that (SHry)^-^ = (S||r7)r. Thus (**) with a = rj can be written 
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r*) (siur^sx^. 
Since S = u;(iJ), the desired equality (***) follows immediately from Lemma 9.12. 

Next, let a- a b 
0 d G P f l G + . Since P is generated by P f l r ^ , we may assume 

that a -< r. Let JV = p M • ^ / q ( d e t ( a ) ) with a positive integer p which will 
be determined afterward. Given (i/, r ) as in (**), let yew(3Ga+ with weTN 

and /? € £?+. Then w G ^(s)UNwith s G Z£. Take a positive integer r so that 
CL Vu I 

and a: = aury - 1 . Then we can easily verify that sr - 1 -< iVZ; put 7 = 0 d 
x G TM. Therefore S ^ T ) = 5(*^ 'T ) = 5 r | |7/3 by (10.4a). On the_other hand 
( 5 | | a ) ^ r ) = ( 5 | | a ) ^ ' T ) = (5J[a)r|l/3 by (10.3), since S||a G AU(FN, Q). We can 
put S = g _ 1 5i with g € Alfc(Q), k G Zb , and a matrix S\ whose columns belong 
to Mrf,(Q), ip{x) = det(x)fco;(x). Put q(z) = J2ha(h)e2(hz) w i t h a(h) € Q a n d 

Si (z) — Y^h cWe2(^z) w ^ n Q-rational matrices c(h). We choose p so that a(h) =£ 0 
or c(h)^0 only if h -< p _ 1 t . Then Nd~~lhb -< v for every such /1, and hence 

(Si||a)^(z) = ^ ( c O - ^ h ^ r e S C r d - ^ J e ^ C d - 1 ^ ) = (S{h)(z). 

Similarly (q\\a)T = gT| |7, and hence (S | |a ) r = ST | | 7 . Therefore (S||a)fr'T> = 
(S||a) r | |/? - ST\\JP = S(ay'T\ which is (**) for the present a. This completes 
the proof. 

10.3. Lemma. Let ci, . . . , cm be m elements of C linearly independent over 
a sub field D of Q. Then there exists a set {a} of m automorphisms of C over D 
such that det(c°)a^ ^ 0. 

P R O O F . For a G Aut(C/£>) let Ha = { x G C m | YZLi clx» = 0 } and let J be 
the intersection of Ha for all such a. Since J is a vector subspace of C m stable 
under Aut(C/D), it is defined over D. Then the linear independence of the cv 

shows that J = {0}. Therefore we can find a set {a} of m elements of Aut(C/D) 
such that f\re{<7} ^ = W - Then det(c£)CT?I, ^ 0 as desired. 

10.4. Theorem. Suppose that uj(cln) is a scalar matrix for every c G F* 
(which is the case if cu is irreducible). Let W be a subgroup of G A + containing 
an open subgroup of ( G I ) A - Suppose that W fl Gh is contained in an open compact 
subgroup of Gh and xWx~l = W for every x G L{Z£)\ let F = G DW. Further, 
given a subfield D of C and a character \ : F —» T of finite order such that 
rN D F C Ker(x) for some N, put 

(10.5) Mu(r, X) = {feMu\ / | W 7 = X(7)/ for every 7 G T } , 
(10.6) M„{r, D, X) = M„(D) nM„(r, x). 
Then the following assertions hold: 

(1) r is contained in a congruence subgroup of G, and contains rN of (7.6) for 
some N. 

(2) Mu,{F, xY = MUJT(F, XT) for every r G Aut(C), where Xr is a character 
of T of finite order determined by x> ^> and r. If r C G and x 1S trivial, then 
XT is trivial. 

(3) Mu(r, X) = Mu{r, Q, x) ®Q c . 
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(4) Let $ be the Galois closure of K over Q in Q. Then Mu(r) = JWw(r, $)®<p 
C provided T C G. 

(5) Given k = {kv)vey> G Z b , put k° = (k°)veh with k% — kva-\ for every 
G G Gal($/Q); let $k be the subfield of$ determined by 

(10.7) Gal($/£fc) = {ae Gai(<P/Q) | ka = k } . 

Then Mk(r) = Mk (J1, $k) ®<pk C provided f c G . 

P R O O F . Clearly T is contained in a congruence subgroup of G. Take N > 2 
so that J7N H (Gi ) A C W. Then by Lemma 8.3 (3), TN C d n W C T, which 
proves (1). Changing iV suitably, we may assume that x is trivial on TN. Let 
r G Aut(C) and / G ^ ^ ( r , Q, x)- Put x = L(S) with an element s of Z£ such 
that [s, Q] = r on Qat,. Given 7 G i"1, we can find a G -T such that a G 7G1 and 
X7X""1 G a (W fl £7^). Indeed, since j~1xyx~1 G ( G I ) A ? by strong approximation 
we have /y~1x^yx~1 G e(W P\ UN) with e G Gi. Then 76 gives the desired a. 
Now we can define a function Xs on J1 by Xs(7) = xia) with such an a. Indeed, 
if j8 is another element of T such that (3 G 7G1 and x^x~x G /3(W fl C/N), then 
a~l(5 G C/^fiGi = T N , so that x(a) = x(/?)- T n u s Xs is well-defined. Moreover we 
can easily show that Xs is a character of .T, since N can be changed for any larger 
integer. Put £7 = ay. Then y G UNx. Since / G M^CT*, Q), by Theorem 10.2 
(8) we have /<X'T) = / ^ ' r ) = / r , so that / T | | 7 = / ^ ' r ) = / ( ^ r ) = ( / | | a ) ^ T ) . 
By our assumption on a;, we have u;(cln) = cm = rLea0™" ^or e v e r v c £ ^a

x 

with some m G Z a . Thus / | | a = z/(a)~m/2/|Q: = ^ ( a ) _ m / 2 x ( ^ ) / , and hence 
/ r | 7 = Xr(7) / T with 

(10.8) X r ( 7 ) = X s ( 7 ) T n v € a K 7 ) ? r / 2 ( l / ( 7 ) « m , , / 2 ) T . 

Clearly Xr is a character of T of finite order; if T C G and x is trivial, then 
clearly Xr is trivial. This proves that the left-hand side of the following equality 
is contained in the right-hand side. 

(10.9) M„(r, Q, x)r = AMr , Q, Xr). 
Since we easily see that (Xr)r-1 = X> applying r _ 1 to the right-hand side, we 
obtain the opposite inclusion, which proves (10.9). 

Taking TM with an arbitrary M and a trivial character as T and x> w e see 
that .Mu ,(Q) r = A / ( U ; T(Q) . NOW we employ the notation of the proof of Theorem 
9.13. Given / G Mu, put g = s(R)~1f as in that proof. Then g G (MKh) • 
By Theorem 9.9 (2) we can put g = Yl™=i c»9" Wl^n c^ G C and gv G A/(/cb(Q)t-
Changing { cv } for a Q-basis of ]T)ILi Qc*o w e m a y assume that the cv are linearly 
independent over Q. Put /„ = s(R)gu. Then fv G A , (Q) and f° = Yl™=icZL 
for every a G A u t ( C / Q ) . Now fa G A C , and hence from Lemma 10.3 we see 
that /„ G Ala;- Since /„ G A ; ( Q ) , we obtain /„ G X W ( Q ) by (5.30). This shows 
that Mu, = MUJ(Q) 0 Q C. Suppose / G Mu{r, x)- Then for every 7 G T we 
have x ( 7 ) / = / |7_= Yl™=icvfAl- S i n c e /^l7 € X W ( Q ) and the c„ are linearly 
independent over Q, we obtain fu\l = x(l)fv f° r every v and every 7 G T. This 
proves (3). Combining this with (10.9), we obtain (2). 

To prove (4), suppose T C G; let / G My>{r, Q). By Theorem 9.13 (2) we can 
find a finite extension E of # contained in Q such that / G ̂ ( H ) . Clearly we may 
assume that E is a Galois extension of #. Then for every a G Gal(£T/#) we have, 
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by (2), r € M„{F, Q)CiAu(S) = M„(r, S)- Therefore £ > / ) " € A^w(r , *) 
for every a G S , where the sum is taken over all a G Gal(.E ,/$). Then we see 
that / G Mu,(r, $) (g)̂  JET. Combining this with (3), we obtain (4). To prove (5), 
take u)(x) = det(x)fc with A: as in (5). Since uja = u if a = id. on £>&, we have 
K ( r , $)T = Mu{r, *) for every r G Aut(C/* f c) . Then £ > / ) " G M w ( r , <2>fc) 
for every / G .Ma^i"1, 4>) and every a G #, where the sum is taken over all a G 
Gal (#/$*) . This proves that Mu,(r, $) = Mu(r, $k) ®$k # , which combined with 
(4) proves (5). 

It may be added that Xs{l) in (10.8) is often xil)- Indeed, suppose x{l) 
depends only on a1 and d7 modulo some r-ideal. Then taking a suitable N in 
the above proof, we see that aa — a1 -< Nt and da — d7 -< JVr, and therefore 
XS(T) = X(T)- Thus XT(7) = x{lY f° r s u c n a X if K T ) = 1- For example, take 
W = Cfo, 3] fl ( G 0 ) A + with C[tj, 3] of (1.17). Here t) and 3 are t-ideals such that 
93 C r; we naturally take m = n in (1.17). Taking a character cp of (tr/t)3)x, put 
x(7) = <^(det(d7)) for 7 G F. Then we have Xr = XT-

10.5. Lemma. Given r G Aut(C), a positive integer iV, and a G G+, £/iere 
exist £wo elements (3 and 7 0/ G + suc/i £na£ / T | |U;T ^ — {fWuPY and (f\\u a)r = 
fT\\uT 7 for every f G MUJ{FN) and every Q-rational representation u>. Moreover, 
if a G G, £nen /? and 7 can 6e £a&en /rora G. 

P R O O F . Decomposing a; into irreducible representations, we may assume that 
UJ satisfies the condition of Theorem 10.4. Also, by Theorem 10.4 (4), we may 
assume that / G Mu{rN, Q). Then we may take r G Aut(Q). Take a multiple 
M of 2N so that FM C a~lrNa. We have fT G M^{rN) by Theorem 10.4 
(2), and hence fr\\a G Mur{FM). Let x = t(r) with an element r of Z£ such 
that r = [r, Q] on Qab>. By (8.10) we can put xa = PyG^ with /? G G+ and 
y G T M . Then /||/3 = f^v'1^) = (/(««.r)j(v^)"1

 = ( / ^ | | a )^ _ 1 by Theorem 10.2 
(8). Thus fT\\a = (f\\f3)T as desired. Similarly we can put ax G z7Ga+ with 
z G TM and 7 G G+. By Theorem 10.2 (8), (/ | |a)(x 'T) = {f\\a)T and /(*'T> = / r , 
so that ( / | |a) T = / ( a x ' T ) = fizi^T) = / T | | 7 as expected. The last assertion is clear 
from our choice of /3 and 7. 

Returning to questions (Ql), (Q2), and (Q3) of §5.9, Theorems 9.13 and 10.4 
answer (Ql) and (Q2); the above lemma answers (Q3). 

10.6. To treat forms of half-integral weight, we naturally confine our discus
sion to Case SP. Thus G = Sp(n, F) . By a quasi-representation of GL n (C) a we 
understand a symbol ip given by 

(10.10) i/>(x) = det(x)^2cj(x) 

with a representation UJ of GL n (C) a as in §9.10. Given 7 in the group Fe of (6.30) 
and a function / on £* with values in the representation space of a;, we put 

(10.11) (fhl)(z) = hJ(z)-'(f\\^)(z) 

with /i7 of Theorem 6.8. For a congruence subgroup r of G contained in Fe we 
define M^(F) by conditions (5.8), (5.9), and (5.10), taking / | | ^ 7 instead of /]„ 7 
in (5.9); we then denote by M^ the union of M^(F) for all such T's. If / G M^, 
we have (5.20) and (5.21) with suitable M and U, in view of Theorem 6.8 (3). 
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Therefore we have an expansion of type (5.22a, b) for / . Also, Proposition 5.7 is 
valid for the present / , since what is needed in the proof is (5.20) and (5.21). Now 
for a G Aut(C) we can define f° as a formal series by (5.29). In the following 
theorem we shall prove that fG defines an element of M^ with a certain quasi-
representation i/ja. Given a G G+, let p(z) be any branch of the square root of 
j Q ( z ) a . Then by Theorem 6.9 (1) we can show that p(z)~lf\\UJ a G M^, and so we 
have an expansion 

(10.12) p(z)-l(f\la)(z) =Zhesc°,P(hK(hz). 

We call / a cusp form if ca,p(h) = 0 for every (a, p) and for every h such that 
det(h) = 0, and denote by S^(F) (resp. S^) the set of all cusp forms contained in 
M.^(r) (resp. M.^). We can restrict a to Sp(n, F) by virtue of Lemma 1.3 (3). 

Further, given a subfield D of C and a character \ : r —> T of finite order, we 
define M^{D), S^{D), A^(D), M^(r, £>), S^r, £>), and A^{F, D) hi the same 
manner as in §5.8, and put 

Mip{r,X) = {f eM^\ / | U 7 = X(7)/ for every jeF}, 
M^r, D, x) = M^{D) n A^(r, x). 

We put also A$(r) = A^(r, C) and A^ = A/>(C). 
Let A: be a half-integral weight and let m = (mv)v^8L with mv = kv — 1/2 as in 

§6.10. If UJ(X) = det(x)m , then / | |^,7 coincides with /||fc7 of (6.36), and hence 
the symbol M^ and A^ coincide with Mk and Ak of §6.10. We write Sk for S^ 
in this case. 

10.7. T h e o r e m (Case SP). Let r and \ be as in Theorem 10.4, and ip be as 
in (10.10); let $ be the Galois closure of F over Q in Q. Suppose that r C F6 

and that 67 -< 2D -1 and c1 -< 2D for every 7 G iH. Then the following assertions 
hold: 

(1) Given f G A^, there exists a finitely generated extension DofQ such that 
feAip(D). 

(2) (M^Y = M^r, (A^Y = A^r, and M^F, \)T = M^{r, Xr) for every 
r G Aut(C), where ipT is defined by ijjr{x) = det(x)a/2u;T(x), and Xr is a character 
of F of finite order determined by x, u;, and r as in Theorem 10.4 (2). 

(3) Mtir, x) = M^{r, Q, x) ^ c 
(4) A ^ ( r ) = A M r , * ) ® * c . 
(5) Given a half-integral weight k — {kv)vea G 2 _ 1 Z a , put ka = (fc£)v€a with 

K — Ka-1 f°r every a G Gal(#/Q); iet <f>k be the subfield of $ such that 

Gal($/£fc) = { a G Gai(#/Q) | A;*7 - k } . 

Then Mk(F) = Mk{F, *fc) ®*fc C. 
(6) Let D be a subfield ofC containing Qab and #. Given a G G+, let p(z) be 

any branch of the square root of ja(z)a. For f eM^(D) put g(z)=p(z)~1'(f\\u; a). 
Then g G M^{D). 

(7) Let a G G+ and r G Aut(C); let p{z) be as in (6). Then there exists 
an element (3 of G + and a branch q(z) of the square root of jp{z)& such that 
faOO'H/L P)Y = P(z)-1 • {fTLr a) for every f G M^(F). Moreover, if aeG, 
then (3 can be taken from G. 
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P R O O F . Put 0(z) = £ a G s n ea( faza/2) for z G ft* and ((x) = det(x)acc;(x). 
Define a character <p of re by ft7(z)2 = ip{l)j* for 7 G r61. By Theorem 6.8 
(5), ^(7) = ]X |2^ (de t (d 7 ) ) if 7 G T with e defined there. Let r G Aut(C). 
If / G .M^CT, x), then we easily see that Of G M${r, ipx)> so that (6f)T G 
. M ^ J H , (^x)r) by Theorem 10.4 (2); observe that ((px)r = <£Xr- (Notice that we 
get the same \r for both £ and a;, since r C G.) We define a vector-valued 
meromorphic function / ' on $)* by / ' = 0~1(0f)T. Then /'||v>T7 = Xr{l)f for 
every 7 G T. Now / ® / G -Mp with p(x) = det(z)a(u; ® u;)(x), and f<g>f = 
0~2{0f ®0f)T = ( / 0 / ) r - Therefore f'®f is holomorphic everywhere, and hence 
the square of any component of / ' is holomorphic everywhere. Thus / ' has a 
Fourier expansion, which, multiplied by 0, equals (0f)r = 0fT. Since 0 is not a 
zero-divisor in the ring of formal series of §5.9, we see that fT gives the Fourier 
expansion of / ' . This proves that fT G M^T^T, Xr)« Considering the action of 
T - 1 in the same way, we obtain the last equality of (2), which clearly implies the 
first two equalities. Next, by Theorem 10.4 (3), 0f = Y^=i c»9v with cv G C and 
gv G M^(r, Q, ipx)- Changing { cu } for a Q-basis of X ^ i Qc*" w e m a y assume 
that the cv are linearly independent over Q. Now fa = X^Li cZ®~l9v f° r e v e r y 
a G Aut(C/Q). Since fa is holomorphic everywhere, from Lemma 10.3 we see 
that 0~1gL/ is holomorphic everywhere. Thus 0~xgv G A4jp(r, Q, x)- This proves 
(3). Assertions (4) and (5) can be proved by the same technique as in the proof of 
Theorem 10.4 (4) and (5). 

Next, let the notation be as in (6). Since 0f G A4Q(D), we have (0f)\\^a G 
M^D) by Theorem 9.13 (3). Now (0 / ) | | c a = p~l{0 o a)g. By Theorem 7.11, 
p _ 1 ( ^ o a ) G A4a/2(Qab)5 and hence g G A^{D). Clearly g is holomorphic, so that 
g G Mip(D). This proves (6). To prove (7), take N > 2 so that 02 G Ma(rN), rN C 
r , and 0f eM{{rN) for every / G Al^i"1). Fix such an / ; given aeG+, take 
(3 as in Lemma 10.5; take any branch g(z) of the square root of j@(z)a. We have 
02 | |a = {92W)T and ( 0 / ) r | | r a = ((5/) | |c/?) r , and so we see that p-l(fT\\^ a) = 
=k(<7-1(/llu; /?)) r. Now let / and g be two elements of M^(r) linearly independent 
over Q. Then p'l{{afT + 6<T)IU a) =ea,b{q-\{af + bg)^ (3))T with ea,b = ±1 
for every a, 6 G Q. By an elementary argument we easily see that ea,b is a constant. 
Changing q accordingly, we obtain (7). Finally, to prove (1), let f = g~lh with 
g G Me, e G Z a and ft G MTe, where re(x) = det(x)eip(x). Taking re to be ^ 
in (4), we see that (1) is true for ft; it is also true for g by Theorem 9.13 (2). 
Therefore we obtain (1) for / . 

10.8. Theorem. Let UJ be as in §9.10 in Cases SP and UT; let ip be as in 
(10.10) in Case SP; let # be the Galois closure of K over Q in C in both cases. 
Then the following assertions hold: 

(1) (<Su;)r = S^T and {S^)T = 5 ^ for every r G Aut(C). 
(2) S^r) = 5a, ( r , <£) &><*> C and 5 ^ ( r ) = S^r, <£) (g><*> C, where r is a group 

as in Theorem 10.4 (4) or Theorem 10.7 (4). 

P R O O F . Let / G S^. Given a e G+ and r G Aut(C), take /3 as in Lemma 
10.5. Applying r to the Fourier expansion of / | | /?, we find that fr is a cusp form. 
From this we obtain {S^y = S„T. The same type of reasoning applies to 5^ , if 
we take /3 as in Theorem 10.7 (7). Thus we obtain (1). To prove (2), take / G 
S,p{r). By Theorem 10.7 (4), / = £™= 1 cvgv with cu G C and gv G M^(T, Q). 
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We may assume that the cv are linearly independent over C. Take a set of m 
automorphisms {a} of C over Q as in Lemma 10.3. Then E l L i cv9" = f° e ^ O O 
by (1), and so gu G S^{T). This proves that S^(T) = <S^(r, Q) 0 Q C. Then we 
can prove that S^(r, Q) = S^(r, <P) ®<z> Q by a Galois-theoretical argument as in 
the proof of Theorem 10.4 (4). The same technique applies to S^. Thus we obtain 
(2). 

10.9. T h e o r e m . The symbols Y, Y*, w, 6, and r being the same as in Theorem 
9.6, let a be an element of Gal(Q/Q) such that a = [6, Y*] on Ya*b. Then the 
following assertions hold: 

(1) If an element f of *4o(Q) is finite at w, then / ( r ' a ) is finite at w and 
f(r^){w) = f{w)°. (This is a generalization of Theorem 9.6.) 

(2) If an element f of A^(Q) is finite at w, then /(r'CT) is finite at w. 
(3) Let Q be a square matrix whose columns belong to AUJ(Q). If Q is finite and 

invertible at w, then Q^r^ is finite and invertible at w. 

P R O O F . TO prove (1), let / e Ao{rN, Q), and put / = go<pN^ith g e^Q{VN) 
with (V/v, (PN) of §9.7. Let ZQ be a point of H generic for *4o(Q) over Q. Then 
<PN(ZO) is a generic point of VN over Q, and so if / is finite at w, then g is defined 
at (PN(W), SO that g = p(<PN(zo))/q(<PN{zo)) with polynomials p and q such that 
q(ipN(w)) 7̂  0. Writing p and q as Q-linear combinations of Q-rational polynomi
als, we find that / = E i a ^ t / ( E j ^jsj) w ^ n at» &j € Q and U, Sj € -4o(Q) finite 
at w such that J2j bjSj(w) ^ 0. Then /<r>") = £ . <*f £ ( r ) / ( E , - &J*J(r))- By Theo
rem 9.6, t^ and s^ are finite at w\ moreover E i a f V (w) = ( E i 0 ^ ^ ) ) 0 " 

and £ \ VjSTjir)(*>) = ( E j M i M ) ' ^ °- Therefore we obtain (1). 
Let us now prove 

(10.13) If f G i K a ( Q ) with « G Z and / is finite at w, then /( r ' a) is finite at w\ 
moreover, if f(w) ^ 0, then f^a)(w) ^ 0. 

This follows from (1) if K, = 0. Put g(z) = 6K{0, rz; A) with 0 < r G Q and a 
Q-valued A. By Proposition 6.14, g G MeL/2{Q) in Case SP and g G Ma{Q) in 
Case UT. Choosing suitable r and A, we may assume that g(w) ^ 0, by virtue of 
Theorem 6.12 (2). Assuming K > 0, put h = g2K in Case SP and h = gK in Case 
UT. If / belongs to *4Ka(Q) and is finite at w, then / /f t belongs to *4o(Q) and is 
finite at w, and hence /(r'CT)/ft(r'a) is finite at w by (1); therefore / ( r ' a) is finite at 
w. Suppose f{w) ^ 0; put p = ft(r,or) / / . Then p belongs to A)(Q) and is finite 
at w. We have p^a\w)f^a){w) = h(w) ^ 0. By (1), p(r^ is finite at w, and 
hence f^a){w) ^ 0. This proves (10.13) for K > 0. Next let / G .A_Ka(Q), K> 0; 
suppose / is finite at w. If f(w) ^ 0, then applying our result to / - 1 , we obtain 
the desired fact. If f(w) = 0, then apply the last result to / + ft-1. In this way 
we obtain (10.13) for every K G Z. 

To prove (2) and (3), take Rv G . M ^ Q ) as in Proposition 9.11 so that Rv 

is finite at w and det (Rv{w)) ^ 0 for every v G b; put q = Ylvehdet(Rv). 
Then q G A>(Q)- Given / G A>(Q) finite at w, put # = uo{R)~lf. Then # has 
components in Ao(Q) and is finite at iu. We have / ( r a ) = u ^ i Q ^ ^ 7 * ' ^ , and 
#(r%CT) is finite at w by (1). Since g(w) ^ 0, we have q^a){w) ^ 0 by (10.13). 
Therefore d e t ( ^ ) ( r - a ) ( ^ ) ^ 0, so that by (10.4b), cj{R){r'a) is finite at w. Thus 
/(^^) is finite at IU, which proves (2). 
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Let Q be as in (3); suppose Q is finite and invertible at w. Observe that 
the columns of lQ~l belongs to AP(Q) with p = V - 1 . By (2) both Q^a) and 
(tQ_1)(r'dT) are finite at w. Therefore Q^a^ is invertible at w. This completes the 
proof. 

Some results, similar to, but somewhat different from, Theorem 10.9, for G = 
SP(n, Q) were given in [S78b, Section 2, Theorem 3.12, and Proposition 3.13]. 

We insert here an easy lemma which is necessary for our later purposes. 

10.10. Lemma . Let $ be as in Theorem 10.4 (4)> and Kf be the reflex field 
defined for (if, r) of §3.5 as in §1.12. Let u> and \j) be as in §9.10 and 
(10.10). Given a £ G + , take p(z) as in Theorem 10.7 (6) and put ( / | |^(a, p))(z) = 
P W _ 1 ( / L « ) W ; let a e Aut(C/Qab<£). Then 

(fL(*)<r = n\«,ct for every f e Mu, 
(fU(<x,p)Y = faU(<*,p) for every f G M^. 

Moreover, if uj(x)=det(x)Ka with K€Z, then these hold for every a£ Aut(C/Q ab) 
in Case SP and a e Aut(C/Q a b i f /) in Case UT. 

P R O O F . Let D = Q a b in Case SP and D = Qa bif ' in Case UT if u(x) = 
det(x)^a; let D = Qab# in the general case. The desired facts for / in MU(D) or 
M^{D) follow from Theorem 7.11, Theorem 9.13 (3), and Theorem 10.7 (6). Then, 
for an arbitrary / in Mu or M^, we obtain our assertion from Theorem 10.4 (5) 
and Theorem 10.7 (5). 

11. Ar i thmet ic i ty at CM-po in t s 

11.1. Let us now consider, in all three cases SP, UT, and UB, the family 
.F(ft) = { Vz | z e H } , Vz = {Az, Cz, iz\ {U(z)}s

i=1), of (4.26) with a PEL-type 
ft = {K, 9, X, T, {ui}s

i=l } of (4.7). With T as in (4.28), let (V, ip) be a model 
of r\H as in Theorem 9.1. As explained in §5.4, we can identify Ao(T) with the 
function field of V. Let Ao(r, Q) denote the set of all functions of the form / o <p 
with a Q-rational function / on V, which is meaningful since V is defined over 
Q. Then let w4o(Q) denote the union of the fields *4o(̂ > Q) for all such T. Clearly 
Ao(T) = C*4o(^ Q) and AQ = C4o(Q). For an arbitrary congruence subgroup Tf 

of G, we put Ao(r', Q) = A0{Q) n Ao(Tf). For each w G H, let $w denote the 
field generated over Q by f(w) for all / in *4o(Q) finite at w. From Theorem 9.1 
(4) and Theorem 2.8 (2) we see that Su, contains the field of moduli of Vw, which 
is algebraic over the field of moduli of (Aw, Cw). By Theorem 2.8 (3) we can find a 
model of Vw rational over $w. In this section, whenever we speak of Vw, we take it 
to be rational over $w. 

In Cases SP and UT we already defined .4o(Q) in §5.8 in terms of the Fourier 
coefficients of automorphic forms. That this coincides with *4o(Q) defined above 
can be seen from Theorem 9.3, since *40(Q) = U N = I <Ao(rN> Q) ancMo(^ N , Q) = 
QAo(FN, Q) by Theorem 8.11 (2). We can also speak of the Q-rationality of 
automorphic forms in Cases SP and UT. The main purpose of this section is to 
define such in Case UB, or rather in all three cases, in terms of a certain property 
at each CM-point. 

Let us hereafter denote by HCM the set of all CM-points of H. The field of 
moduli of {AW1 Cw) for w e HCM is contained in Q as shown in [S98, Proposition 
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26 on p.96 or Corollary 18.9]. Therefore if w G HCM, then kn((p(w)) c Q; hence if 
an element / of Ao{Q) is finite at w, then f(w) G Q, so that $w c Q. (In Cases 
SP and UT, Theorem 9.6 gives a more precise result, but we do not need it in this 
section.) Thus Vw is Q-rational for every w G HQM-

11.2. Proposition. (1) If f e A0{Q) and a G G+, then foae Ao{Q). 
(2) Let W be a subset of HCM dense in H. If f G AQ and f(w) G Q for every 

w €W where f is finite, then f G AQ(Q). 

P R O O F . Given / G v40, we can find ft so that / G *4o(-0 for r of (4.28). 
Then / = g o if with g G C(V). Let W be the subset of W consisting of the 
points where / is defined. Take a field of rationality k for g containing Q and 
take also an isomorphism a of k onto a subfield of C over Q. Suppose f(w) G Q 
for every w G W . Now <p(w) is Q-rational, and hence g°(ip(w)) = g^(w))a = 
f(w)a = f(w) = g(<p(w)). Since <£>(W) is dense in V, we obtain ga = g, that is, 
g is Q-rational, and so / G Ao{Q). This proves (2). Clearly (1) follows from (2), 
since an element of G+ maps HCM into HCM as noted in §4.11. 

It should of course be remarked that W as in (2) exists. Indeed, we have at 
least one CM-point wo in 7Y, as remarked in §4.11. Now Ga acts on H transitively, 
and the projection of G to G a is dense in G a . (The last fact in Cases SP and UT 
is proved in Lemma 7.5. In Case UB, it can be proved by means of the Cay ley 
parametrization; see [S98, Proposition 23.5].) Then we can take the set of points 
a(wo) for all a G G as W. 

11.3. Given a CM-field K, we denote by JK the set of all embeddings of K into 
C, and by I&K the identity embedding of K into C. We then denote by IK the 
free Z-module generated by the elements of JK- If (if, #) is a CM-type, then we 
naturally view ^ as a subset of JK , and denote by the same letter $ the element of 
IK that is the sum of the members of $. To make our exposition easier, we assume 
that every CM-field in this section is a subfield of C. We always denote complex 
conjugation by p. 

Let us now recall some basic properties of the period symbol associated with 
—x 

a CM-field K, which is a bilinear map PK • JK X JK —• C x / Q with certain 
properties (see [S98, Theorem 32.5]). Here we note a fundamental property: 

Given a CM-type (K, #) , take (A, t) of type (K, $) in the sense of §2.9, rational 
over Q. Let n = dim (A) and <P — $X=i ^ with y>v G JK- Then for each v 
there exists a holomorphic 1-form w on A such that St(a)uj = a[puuj if a G K and 
t(a) G End(A), where 6t(a) denotes the action of L(CL) on the space of 1-forms. 
Clearly Cuo depends only on <pu. In this setting we have (see [S98, Theorem 32.2]) 

(11.1) u> is Q-rational if and only if the value of the integral JCUJ belongs to the 
coset 7TPK((£V, 3>)Q for every 1-cycle c on A with coefficients in Z. 

Take a CM-algebra Y = Kl ® • • • 0 Kt with CM-fields Ki. We denote by JY 

the set of all nontrivial ring-homomorphisms of Y into C, and identify Jy with 
the union U!=i JK{ in an obvious way. We also denote by Iy the free Z-module 
generated by the elements of Jy, and identify Iy with the direct sum IKX ® • • • ®Ih't • 
Given a = (ai)*=1 and f3 = (/?0i=i in Iy with a?. ft G IK^ we define an element 
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PY(<*,P) o f C x / Q X by 
t 

(11.2) PY(a,P) = l[pKM,Pi)-
i= i 

In the following treatment we denote any nonzero complex number belonging to the 
coset PY{OL, /?) by the same symbol py(a , /?). The same convention applies also to 
the symbols pv(w), ^pw(w), and ^Jfc(ty) which will be defined below. 

11.4. Returning to the family ^.(il) of §11.1, we take a CM-algebra Y, a map 
ft : Y —> Kr

T, the fixed point w of h(Yu), and the injection // : Y —• EndQ(A^) 
as in §4.11. We have seen there that (Aw, L') is of type (Y, $) with some $ whose 
restriction to K is equivalent to &. We take here a Q-rational model of Vw as 
explained in §11.1. Let # v , tyv, and <̂ v be as in (4.38) and (4.40) for the present Y. 
For a G Yu we have ipv(a) = Av(ft(a), w) and y>v(a) = nv(h(a), w). Moreover, 
diag[*^v(a), *y?w(a)], being the v-component of tM(ft(a), w), represents ^ ( a ) 
on the v-th factor of (Cz)a (see §4.3). By Lemma 4.13, rpv(a) and ^ ( a ) have 
algebraic entries for every a eY. Take Bv G GLm^(Q) and Cv G GL n u(Q) so that 

(11.3a) Bv^y{a)B-1 = diag[^vi(a), . . . , V w ( a ) ] > 

(11.3b) Cvipv{a)Czl = d iag[^ i (a ) , . . . , <pvnv(a)] 

for every O G 7 with ipVj,, </?,;j- G Jy. In Case SP we have ^ = ipv and rav = nv = 
n, and so we take tpVi = ipVi and Bv = Cv. 

We now define an element p(w) = {pv{w))veh of Ylve\>GLnv(C) in Cases UT 
and UB by 

(11.4a) PvP{w) = B~ldi8ig[pY(ipvU #) , . . . , P Y W W „ , * ) ] B V , 

(11.4b) pv(t/;) = C~ 1diag[py(^ i , # ) , . . . , pyfaw,, , *)]CV , 

where u G a . In Case SP we define pv(w) for each v G a by (11.4b), and so p(w) 
is an element of GLn(C)a. Here recall the convention made in §§3.5 and 5.1 that 
b = apUa = JK in Cases UT and UB, and a is identified with a fixed CM-type of 
K] also riyp = mv for v G a. As we said in §3.3, we put GLo(C) = {1}. Thus we 
define py(w) to be the element 1 of GLo(C) if nv = 0. If we replace Cv by another 
matrix C'v in (11.3a), then C'vC~l is diagonal, and hence pv(w) does not change. 
Thus p(w) is independent of the choice of Bv and Cv. Also, if we view py( , ) as a 
coset of C x / Q , then we view p(w) as a coset of Ylveb GLnv(C)/]Jveh GLUv(Q). 

It may happen that the same CM-point can be obtained from different (Y, ft). 
However, we have: 

11.5. Proposition. (1) The coset pv(w)GLnv(Q) is determined by w inde
pendently of the choice of (Y, h). 

(2) p{(3w)g = Mf3(w)p(w)g for every (3 G G+, where Q = UvebGLUv(Q). 

P R O O F . Here we prove only (2). The proof of (1) will be completed in §§11.9 
and 11.10. Given Y, ft, and w as above, put ft'(a) = 0h(a)f3~l. Then f3w is 
the fixed point of h'(Yu) as observed in §4.11. Put £v = \v{(3, w). Then we 
have Av(ft'(a), (3w)£v = £vA„(ft(a), w) f° r every a e Yu. Therefore, if we de
fine y\)'v and ip'v by (4.37) with ft' in place of ft, then Bv^ltl)'v{a)^vB^1 = 
diag[^vi(a), . . . , ipVTnv(a)] f o r e v e i T a € Y. Thus pvp(/3w) = ^ p v p ( ^ ) C 1 - A s i m " 
ilar formula holds for pv(w) and pv((3w). This proves (2). 
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11.6. Putting 2d = r[K : Q], we are going to define an embedding of H into 
S)d. In Cases SP and UT this was done in §§6.2 and 6.5. Here we treat all cases 
uniformly. (Recall that r = 2n in Cases SP and UT; also the present d is the same 
as that of (4.9).) Since (x, y) i-> TrK/Q(xTy*) with T of (4.13) is a nondegenerate 
alternating form, we can find a Q-linear map g : K\ —> Q ^ so that 

(11.5) TrK/Q(xTy*) = g(x)rid • ^{y) (x, y G Kl
r). 

Let { ek }fc=1 be the standard basis of Q\d. Given z G H, we consider the map p z : 
(jKa)J ~> c d of (4.23) and put xfc = p ^ " 1 ^ ) ) . Now we can take (Q, pz°g~1, Vd) 
as (W, g, T) in §§4.3 and 4.4, and we can write (4.18) and (4.21) in the form 

xi •• 

_ x i • • 

with K, G GLd(C) and Z G 53d- Put «; = K{Z) and Z = e(z). Then 

(11.7) £(z) = /c(z)_1 [xi ••• xd], K(z) = [xd+1 ••• x2d] 

(11.6) X ( p z o 0 - i ) *2d 
^2d. 

/C 

0 
0' 
K 

"z 
_z 

1 / 
!<*. 

Since p2 is holomorphic in 2: as noted in §4.7, we see that both K(Z) and e{z) are 
holomorphic in 2;. Thus we have a holomorphic embedding 

(11.8) e :H^ 9)d. 

Now (p2 °9~1){J2T=:i ckek) = «0z)[e(z) ld]c for every c G Q 2 d , that is, 

(11.9) Pz(x) = K{Z)[S{Z) ld) • Wx) (x G Kl
r). 

For OL G KT
r define a G Q ^ by g(xa) = g(x)a. From (11.5) we see that 

a G Sp{d, Q) if a G U{T) = G. Also, from (4.31) and (11.9) we obtain 

(11.10) lM{a, z)K(az)[e{az) 1] • tg{x) = £M(a, z)paz{x) = pz{xa) 

= K(z)[e(z) l]'ta^g{x) = K{z)-t
li{a,e{z))[a{e{z)) l ] . ^ ( x ) . 

This proves that e{az) = a(e(z)) and 

(11.11) A*(5, e{z)) = tK(az)M(a1 z) • ^(z)'1 (a G E/(T), z G « ) . 

To avoid confusion, we hereafter denote by 2lo(Q) (resp. 2ls(Q)) the field A)(Q) 
(resp. the vector space AS(Q)) defined on S)d with respect to Sp(d, Q), where s 
is a Q-rational representation of GLd(C). Then we note a simple fact: 

(11.12) If g G 2lo(Q) and goe is finite, then g oe G -40(Q). 

To prove this, take a CM-point w on H fixed by fo(Fu) with h:Y —* K* satisfying 
(4.35)^ Define ft : y -> Q|jj by h(d) = h[o). Then (4.35) together with (11.5) shows 
that h(ap) = nd • th(a)rj^1, and e(w) is the fixed point of h(Yu). Thus £(tu) is a 
CM-point on 55^. Therefore (11.12) follows from Proposition 11.2 (2). 

We note here a basic fact on 1-forms on an abelian variety: 

11.7. Lemma. Let A be an abelian variety defined over a subfield kofC which 
is algebraic over the field of moduli of (A, C) with a polarization C of A. Suppose 
that A is isomorphic to Cd/([Zo ld]Z2d) with ZQ G S)d. Then there exists a (dxd)-
matrix P whose columns belong to 2la(Q) and such that P is finite and invertible 
at ZQ, where a is the identity map ofGLd(C) onto itself Moreover, with any such 
P define 1-forms fi , . . . , fn on Cd/([Z0 ld]Z2d) by 
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~dui' 
•Tr-'P(Zo) 

u Vdud. 
where u\, . . . , Ud are the coordinate functions on Cd. Then £1, . . . , £d, viewed 
as 1-forms on A, form a basis of holomorphic 1-forms rational over the algebraic 
closure k of k. 

This is a simplified version of [S98, Theorem 30.3]. The existence of P is a special 
case of Proposition 9.11. Notice that k does not depend on the choice of C. 

11.8. We now restrict our discussion to Case UB. Take a and P as in Lemma 
11.7 with any fixed point ZQ on fid in the setting of §11.6. By Lemma 4.12, we can 
take b £ K so that K = Q(6) and bbp = 1; put a = 61 r and 

U(z) = V{e{z)), V(Z) = P(Z)-l{P\\aa){Z) (zeH,Ze %d). 

By Proposition 9.11 (4) the entries of V belong to 2lo(Q)> and hence the entries of U 
belong to *4o(Q) by (11.12). Prom (3.17), (3.37), (4.9), (4.10), and (4.29) we see that 
M(a , z) = !?(&), which combined with (11.11) shows that /z(5, e(z)) = tK(z)^{b) • 
*/c(z)-\ and hence U(z)~l = X{z)-l$(b)X{z) with X(z) = lK(Z)~1 P'(e(z)). Since 
K = Q[6], we see that a *-> X(z)~1^r(a)X(z) is a ring-injection of K into AQ(Q)^. 
Therefore we can find an element W of GLd(Ao(Q)) such that X(z)~l\P(a)X(z) = 
W~1&(a)W for every a G K. In view of (4.10) we have 

(11.13) ^ ( ^ " ^ ( z ) ) = X{z) = diag[SIM i ^ G a • W(z) 

with square matrices 5V and Rv of size rav and nv, whose entries are meromorphic 
functions on H. Employing (11.11) and (4.29), we easily see that 

(11.14) Sv(y(z)) = Av(7, z)Sy(z), ^ ( 7 ( 2 ) ) = ^ ( 7 , z)Rv{z) (v G a), 

if 7 belongs to a sufficiently small congruence subgroup r of G. 

11.9. We took JF(ft) in §11.1 with a PEL-type ft = {if, 1?, L, T } . We now 
assume that L = (/""^(Z^) with g \ K\ -± Q\d as in §11.6. Let w G HCM- Prom 
Lemma 4.13 we see that pw(x) has algebraic components for every x G K*, and 
hence (11.6) shows that the entries of e(w) and K(W)V for every v G a are all 
algebraic. 

Let Wo be the set of all CM-points on H where both P oe and W are finite and 
invertible. Then, by (11.13), Rv and Sv are finite and invertible at every point of 
Wo. 

To prove (1) of Proposition 11.5 in Case UB, we first assume that w G Wo-
Take (Aw, tf) of type (Y, $) we considered in §11.3. Recall that Aw is isomorphic 
to Cd/pw(L). Also, we see that u \-> K(W)~1U for u G Cd gives an isomorphism 
of Cd/pw[L) onto Cd/[e(w) l</]Z2d. By Lemma 11.7 we obtain Q-rational 1-forms 
£k on Aw by putting 

6 
T T - ' P ^ w ) ) / ^ ) -

du\ 

dudJ 
where ui, . . . , Ud are the standard coordinate functions on Cd. 

We have a decomposition Cd = 0 u G a K; with K,, isomorphic to C r , on which 
&v of (24.1b) acts (see §4.3). Let x\, . . . , x ^ , 2/1, . . . , 2/£ be the coordinate 
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functions on Vv. Then these for all v are renamings of the Uk- Since W(w) is 
Q-rational, we find that the components of 

(11.15) lSv{w) 
dx\ 

dxv
m 

and lRv{w) 
dy\ 

dyv
nv 

correspond to Q-rational 1-forms on Aw. Take Bv as in (11.3a) and put 
du\ 

_<*<„. 

= tB~1 
' dx\ ' 

.dxVmv_ 
Then we find that 6i(a)du'1- = ipvi(a)du^. Now the periods of dx\ are entries of 
pw(L), which are algebraic, and hence so are the periods of du\. Therefore by 
(11.1) we see that irpYfyvi, $)du\) viewed as a 1-form on Aw, must be Q-rational. 
Comparing this result with (11.15), we find the first of the following two inclusions: 

d iagfpy(^ i , $ ) , . . . , py (Vwv , #)] e BvSv{w)GLmv{Q), 

diag[py(<p„i, <£), . . . , PY(^VUV, #)] € CvRv(w)GLnv(Q). 

The latter can be shown similarly. These can be written 

(11.16) pvp{w) e Sv{w)GLmv(Q) and pv{w) G Rv(w)GLnv(Q) 

for every v G a. Now Sv(w) and Rv(w) depend only on w (and P) , and are 
independent of the choice of (Y, h). Therefore we obtain (1) of Proposition 11.5 in 
Case UB at least for w G Wo- _ 

Now take any CM-point w. Then we can find (1 G G+ so that /3~1w G Wo- Put 
W\ = (3~1w. By (2) of Proposition 11.5, p(w)Q = Mp(wi)p(wi)Q, where p(w) and 
p(^i) are defined with a fixed (Y, h) and (Y, h') as in the proof there. Now p{w\) 
is independent of the choice of (Y, h), and therefore the same is true for p(w). This 
completes the proof of Proposition 11.5 in Case UB. 

11.10. Let us now prove (1) of Proposition 11.5 in Cases SP and UT. In Case SP, 
(6.12) shows that (11.9) is true for z e $)* with K(Z) = B~l, and (6.11b) is exactly 
(11.11). Now we consider Rv of Proposition 9.11 belonging to AGv (Q). Let 9t(z) = 
didig[Rv(z)]v and W(z) = 9^(z)_1 • tBP(e(z)), where P is the function on S)d as 
in Lemma 11.7. Then W has entries in AQ. Checking the Fourier coefficients, we 
see that the entries of W are Q-rational. Since tBP(e{z)) = diag[i?v(z)] W(^), 
(11.13) is true with the present symbols, if we ignore Sv. Therefore we can repeat 
our argument of §11.9 in Case SP to find that (11.16) is true in the present setting, 
and we obtain the desired fact. 

In Case UT, combining (6.24b) with (6.12), we obtain an element E of GL^(Q) 
and an embedding e of H = H% into fid such that pz(x) = E[E(Z) l j • tg(x) 
with a map g : K\n —> Qld satisfying (11.5) with T = rjn. (Using the symbols of 
§§6.2 and 6.5, g~~l o h~l gives the present g.) Therefore, considering the functions 
Rv of Proposition 9.11, we can handle Case UT in the same manner as in Case SP. 

As a by-product of this reasoning we obtain: 

11.11. Proposition. Let u be a Q-rational representation of GLn(C) m 
Cases SP and UT. Let W be a subset of Hcu dense in H. Then an element f 
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of AUJ belongs to AU){Q) if and only if u)(p(w) 1)f(w) is Q-rational for every 
w E W where f is finite. 

P R O O F . Take R = (Rv)vEh with Rv E Aav{Q) as in Proposition 9.11. Let W 
be the subset of W consisting of the points w where Rv is finite and invertible for 
every v eb. Then W is dense in H. Put g = u>(R)~1f. Then g has components 
in AQ. Suppose cu{p(w)~1)f(w) is Q-rational for every w E W where / is finite. 
Then g(w) = u>(R(w)~1p(w))u)(p(w)~1) f(w). The reasoning in §11.10 shows that 
(11.16) is true in Cases SP and UT with the present Rv and Sv = Rvp, that is, 
R(w)~lp(w) is Q-rational for every w E W , and hence g(w) is Q-rational for every 
w E W where p is finite. By Proposition 11.2 (2), g has components in Ao(Q). 
Since / = uj{R)g, we see that / E Au,(Q). This proves the 'if'-part. Conversely, 
if / E A J ( Q ) , then g E *4o(Q). For every w E W we can choose i? so that Rv 

is finite and invertible at w for every v E b . If / is finite at w, then so is #, 
and g(w) is Q-rational. We have cv(p(w)'~1)f(w) = uj(p(w)~1R(w))g(w), which 
is Q-rational. This completes the proof. 

11.12. Take a Q-rational representation UJ : Y[veY>GLnv{C) —» GL(V) with a 
finite-dimensional complex vector space V with a Q-rational structure. Then for 
each CM-point w we put 

(11.17) qjw(«;)=a;(p(ti;)), 

(11.17a) ?Jfc(u;) = det (p{w))k {k E Z b ) , 

and denote by AU(Q) the set of all / E Au such that ^ ( w ) - 1 / ^ ) is Q-rational 
for every w E HQM where / is finite. We call such an / Q-rationai, and put 
Mu;(Q) = MUJ CiAUJ(Q). Proposition 11.11 shows that this is consistent with what 
we already have in Cases SP and UT. Thus the point of our definition in this 
subsection is mainly in Case UB. 

11.13. Propos i t ion (Case UB). (1) If f E A; (Q) and (3 E G+, then both 
flu, 13 and f\\up belong to A , (Q) . 

(2) Let W be a subset ofHcu dense in H. Then an element f of A^ belongs 
to AUJ(Q) if ypuj(w)~1f(w) is Q-rational for every w GW where f is finite. 

P R O O F . Assertion (1) follows immediately from our definition of AUJ(Q) and 
Proposition 11.5 (2). Assertion (2) will be proved in the proof of the following 
proposition. 

11.14. Propos i t ion (Case UB). For each fixed v E b define two GLUv(C)-
valued representations av and rv of YlvehGLnu(C) by 

(11.18) (Tv(x) = xv and rv(x) = det(x)hxv for x E Y\vebGLnv(C), 

where ah = Ylveh av. Given zo E W, there exist two sets of matrix-valued functions 
{ Rv }v€b and { Qv }ve\y °n W with the following properties: 

(1) Rv and Qv are square matrices of size nv, and the columns of Rv (resp. Qv) 
belong to Aav(Q) (resp. MTv(Q)). 

(2) Rv is finite at z0, and det (RV(ZQ)) det (QV{ZQ)) ^ 0 for every v E b . 

If nv = 0, we have GLUv (C) = {1} by our stipulation. Therefore, if nv = 0, we 
simply take Rv and Qv to be the constant on H whose values are 1 in this trivial 
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group. Notice also that Proposition 9.11 gives similar results in Cases SP and UT 
in stronger forms. 

P R O O F . Let the notation be as in §§11.8 and 11.9. Put Rvp = Sv for each 
v G a. Then (11.14) shows that Rv G AUv for every v G b. Moreover, by (11.16), 
pv(w)~lRv(w) is Q-rational for every w G Wo- Let w\ be a CM-point where Rv 

(for a fixed v) is finite. Take a G G so that w\ = aw0 with w0 G Wo- Put R'v = 
Rv\\av OL. Then R~lRv has entries in AQ. Take a CM-point it; such that both w 
and aw belong to W0. Then (R^1R!u)(w)eGLnv(Qt)pv{w)'1fjLv(a, w)~1Rv(aw) = 
GLnv{Q)pv{aw)-lRv(aw) = GLnv(Q). By Proposition 11.2 (2), R~XR'V has entries 
in Ao(Q). Therefore pviwi^R^w^e GLnv{Q)pv{wo)~lHv{a, w0)-lRv{aw0) C 
GLnv(Q)(R~lRv)(w0) cGLUv (Q). This shows that the columns of Rv belong to 
Aav (Q). Now given zo € W, we can find /3 G G such that i?v is finite and invertible 
at /?z0 for every v G b . Changing i?v for it^H/?, we obtain the desired elements of 
Aav{Q) in view of Proposition 11.13 (1). 

Let us now prove (2) of Proposition 11.13. Given W and / in that assertion, 
take R = {Rv)veb as in the present proposition and put g = uj(R)~1f. Then we 
can show that g has entries in Ao{Q) by the same technique as in the proof of 
Proposition 11.11. Now let to be a CM-point where / is finite. Choose R so that 
Rv is finite and invertible at w for every v G b. Then g is finite at w and g(w) 
is algebraic. Since f(w) = w(R(w))g(w), we see that v(p(w)) f(w) is algebraic, 
so that / G AUJ(Q) as desired. 

To prove the existence of (Qv)veb, define r : GLd(C) —> GLd(C) by r(x) = 
det(x)x. By Proposition 9.11, given any ZQ G W, there exists a dxd-matrix E 
whose columns belong to A /(r(Q) and such that det£ ,(e(zo)) ^ 0. Put 5(z) = 
det (K(Z))'1 • ̂ ( z ) " 1 ^ ^ ^ ) ) for z e H. Prom (11.11) and (4.29) we easily see 
that 5(7(2;)) = j 7 ( z ) b M ( 7 , z)S(z) for every 7 in a congruence subgroup r of 
G. Let 5V be the submatrix of 5 composed of the nv rows of 5 corresponding 
to the component /xv(7, z) of M(7, z). Then Sv(j(z)) = j 7(z) b / i l ; (7, 2)5^(2) for 
every 7 G T. Since det E(e(zo)) ^ 0, we can find suitable nv columns of Sv which 
make nonzero determinant at ZQ. Call Qv the (nvxnv)-matrix composed of those 
nv columns, which clearly belong to ATv. Now by (11.13) and (11.16), for every 
w G Wo we have 

P(e(w)) G tK(w)dmg[pv(w)]vebGLd(Q). 

Since P G «4a(Q)5 this together with Proposition 11.11 implies that 

p(e(w)) G tK,{w)di3ig[pv(w)}vehGLd(Q). 

Put q(w) = Hvebdet (pv(w)). Then det [p(e(iy))] G q(ti;)Q, and hence 

q(n;)-1diag[pf;(ti;)]-€
1

b5(ti;) G GL d (Q) r (p (^ (^ ) ) ) - 1 ^(s (^ ) ) = GLd{Q). 

Therefore rv{p(w)) Qv{w) is algebraic for every w G Wo- By Proposition 11.13 
(2), the columns of Qv belong to MTv{Q)- This complets the proof. 

11.15. Propos i t ion . For every u as in §11.12 and every congruence subgroup 
FofGwe have Mu(r) = MU{F, Q) 0 C. 

P R O O F . In Cases SP and UT we already proved a stronger result in Theorem 
10.4. Thus our question here is in Case UB. We first prove that if /1 ? . . . , ft are 
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elements of M.UJ(Q) linearly independent over Q, then they are linearly independent 
over C. Indeed, for each weHcu put Xw = {xeCt | Y?i=i xi*$uj(w)~lfi(w)=0}; 
let Y be the intersection of Xw for all such w. Clearly we can omit ^Pu(w)~1 in 
the definition of Xw. Since ^^(w)'1 f%(w) is algebraic, each XW) as well as Y, is 
a vector subspace of C£ defined over Q. If Y contains a nonzero element c, then 
J2i=icifi(w) — 0 f° r a n CM-points w so that J2i=icifi — 0- Since the fa are 
linearly independent over Q, Y has no such c in Q , so that Y = {0}, which shows 
that the fa are linearly independent over C. 

Our next task is to show that M,u can be spanned by A1o;(Q) o v e r C. Denote 
Au and Ala; by AKh and A ^ b if w{x) = det(x)*b with an integer K (see (5.4b)). 
In this special case our assertion is 

(11.19) MKb = A W Q ) ® C . 

We shall prove this after the proof of Proposition 14.8. Assuming this result, we 
are going to prove the desired result for Mu. We may assume that u is irreducible. 
Then there is an integer e such that u{cy) = ceu(y) for c G C x . Take Q = (Qv)V£b 
as in Proposition 11.14 with any z0 G H. Then UJ(Q) G M„'{Q) with UJ'{X) = 
det(x)ehu;(x). Take a positive integer p so that p > e and det(x)phu;(x)~l is a 
polynomial in x\ put C^x) = det(x)'phuj(x). Then ((Q) G «4$(Q) w i t n £(x) = 

det(x)~*bo;(a:), where K = p(l + r|a|) - e. Given / G Mu, put p = C(Q) - 1 / ; then 
# has components in AKb- Since £ _ 1 is a polynomial function, g is holomorphic, so 
that g has components in MKb, or rather, # G (MKh) » where £ is the dimension of 
the representation space of u. Take a Q-basis {cv} of C. By (11.18) we can express 
g as & finite sum g = ^ c ^ with #„ G (A1«b(Q)) • Then / = ^vcvfv with 
U = {(Q)9»- Clearly fu G A , (Q) . Suppose / = £ „ C l / # with # G A,(Q)- Let 
10 b e a CM-point where fv and /£ are finite. Then 0 = Yluc^^iw)~l{f^w) ~~ 
fl{w)), so that fv(w) = fl(w). Since all such points w form a dense subset of 
H, we obtain fv = f'u. This means that the /*, are unique for / , once {c„} is 
chosen. Now, given z0 G W, take Q so that det Qv(z0) ^ 0 for every v G b . Then 
C(Q) is finite at zQ, so that /^ is finite at z0- Thus /„ is finite everywhere, and 
hence / „ G M W (Q). Now suppose / G A1 w ( r ) . Then / = / | | 7 = E ^ / ^ 7 for 
every 7 G T. Since /„| |7 G A^CQ) by Proposition 11.13 (1), the uniqueness of fu 

just proved shows that /^| |7 = fv, and hence /„ G M.u(r, Q). This proves our 
proposition. 

11.16. Before proceeding further, let us introduce some symbols. Let L be a 
CM-field containing K. For a G JK and /? G J L we denote by InfL /x(a) the 
sum of all the elements of JL which coincide with a on K, and by Res^/^ (/?) the 
restriction of (3 to K. We then extend these to additive maps 

(11-20) InfL/* : IK - / L , R e s L / * : IL - / * . 

We recall here three basic properties of the period symbol PK (see [S98, Theorem 
32.5]): 

(11.21) pK(Z, ResL/K(C)) = pL{lnfL/K(0, C) if Z e IK and C e 7L, 

(11.22) P/ f (Res L / A : (O,0=PL(C,InfL/K(O) # £ € IK and ( E / L , 
(11.23) P K ( £ P , 7?) = P/r(f, W) = PK{€, V)'1 for every f, 77 G JA'. 
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Here px(- • •) and PL{" •) a r e elements of C x / Q ; also in the following proposition 
we view det (pv{w)) for each v eb as an element of C x / Q . 

11.17. Theorem (Case UB). Let r = {rv}ve8L be a CM-type as in §5.5, and 
\P the representation of K as in (4-9) and (4-10); identify \P with the element 
^2vesL{mvrvp-\-nvTv) of IK- Then the following assertions hold: 

(1) det (pv(w))/det (pvp(w)) = PK{JV, &) for every w G HCM- In particular, if 
mv = nv for every v G a, then det (pv(w)) = det (pvp(w)) for every v G a. 

(2) Let u>(x) = C(^) Ilveai^e^(xv)av det(xvp)bv with a, b G Z a such that av -f 
bv = 0 whenever mvnv ^ 0. Then A^ = A^ and A^(Q) = <J * ^c(Q)» wnere 

C\=PK l^2avrv- ^2 (av+bv)rv, &). 
\ v 6 a u6a,n„=0 / 

In particular, Au(Q) = A^(Q) ^ 
for every v G a. 

Remark. In view of (11.23), we can replace ^ in these assertions by X^ea(n^ ~ 
mv)rv. Since q can often be transcendental, the last assertion shows that the Q-
rationality of automorphic forms in Case UB is far more complex than that in Cases 
SP and UT. 

P R O O F . If (Y, ̂ ) is as in §11.4, then we have CM-types (Ki, #*) such that 
Y = 0 * = 1 Ki and # = E i = i $i as in §4.11. Using the symbols of (11.3a, b), for 
each fixed v G a we observe that the ipVip and the ipVj are exactly the elements 
of Iy whose restrictions to K coincide with rv. Thus E S . ^vip + E?=i <Pvj — 
S l = 1 lniKi/K(rv). Also 9 = £ t i Res*, /* (**)• Therefore from (11.4a, b), (11.23), 
(11.2), and (11.21) we obtain 

det (pv(u;))/det (pvp(w)) = UUiPK {lnfKJK{rv), fy) 

= Ill=iPK{TV, ResKt/K($i)) =PK{TV, #) . 
This proves the first half of (1). Suppose mv — nv for every v G a; then & = 
Y?i=i nv{i~vp + TV), and hence PK{TV, $0 = 1 for every v G a by (11.23). This 
proves the latter half of (1). Let the notation be as in (2). Prom (3.23) and (4.34) 
we see that A& = AQ. (We already made the same type of observation in §5.4.) 
Now UJ(X) = ({x)Y[vea [det(xv)/det(xvp)]ai' det(xvp)av+b% and av + bv ^ 0 only 
if mvnv = 0. If nv = 0, then det (pv(w)) = 1, so that det (pvp(w)) = PK{—TV, $) 
by (1); if mv = 0, then nv ^ 0 and det (pvp(w)) = 1. Therefore by (1), ̂ ^(w) = 
q^^(w) with q given as above, and q = 1 if mv = nv for every v G a. Therefore 
we obtain (2) from our definion of Aw(Q). 

11.18. Proposition. With G = Gp(l, F) = GL2(F) let w be a CM-point on 
H = ft* obtained from (K, {rv}vea) and WQ G K as in Proposition 4-H- Then for 
keZ* we have ¥k{w) = PK{T,V£*kvTv, EVGaT«)-

P R O O F . In Proposition 4.14 we have seen that rv = ipv and $ = X^ea7*^' s o 

that PV{W)=PK(TV, <£). Therefore yk(w) = p(w)k = P A ' ( £ v e a A^r,,, #)• 

11.19. P ropos i t ion . TVie cose£ py(a, /3) o/ (11.2) can be represented by a real 
number. 

P R O O F . It is sufficient to consider the case where Y is a CM-field K. Let 
K, $, Wo, and w be as in Proposition 11.18; fix u G a and put <P' — $ — Tu + rup. 
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Then # ' is a CM-type, and pK(a, TU)2 = PK{&, TU - rup) = PK{&, $)PK{OL, # ' ) _ 1 -
Therefore, to prove our proposition, it is sufficient to show that PK{TU, $) can 
be represented by a real number for every CM-type & and every u G a. Now 
we can choose WQ so that TV(WQ) is pure imaginary for every v G a. Take 
f = Ru £ Aau(Fu) as in Proposition 9.11 with n = 1 in Case SP so that f(w) is 
finite and nonzero. By Proposition 11.18, f{w) represents PK(TW> #)• Since / is 
Fu-rational and the components of w are pure imaginary, we see that f{w) G R. 
This proves our proposition. 

11.20. Remark. (A) In the elliptic modular case, if / G Ao(D) with a subfield 
D of Q, then (2/7ri)~1df/dz belongs to A2(D). Therefore, by the above lemma the 
value (df/dz)(w) for a CM-point w belongs to TTPK(T, T ) 2 Q , where K = Q(w) 
and r is the identity injection of K into C. We can naturally ask the nature of the 
derivatives of an element of «4o(Q) in the general case. As one can easily imagine, 
this problem in the higher-dimensional case is highly nontrivial, and especially so 
when r\H is compact. For example, suppose F ^ Q and X^ea 7 7 1 *^ = 1 m 

Case UB. Then dim(7Y) = 1, and so, given a nonconstant element g of *4o(Q), 
we have a well-defined derivation d/dg of *4o(Q)- If z is the variable on H, then 
for every / G *40(Q) we have (df/dz)/(dg/dz) = df/dg G Ai(Q) . Therefore the 
value of (df / dz) / (dg / dz) at a CM-point w is algebraic. But what exactly is the 
nature of the coset (df/dz)(w)Q? Or more precisely, can we express it by means 
of the symbol p(u>)? In fact, (df/dz)(w) G 7rpv(w)Q, where v is the element of a 
for which mvnv — 1. In the next chapter we shall present a systematic treatment 
of differential operators acting on automorphic forms, especially such problems of 
arithmeticity in view. For example, the last fact on (df/dz)(w) is an easy special 
case of Proposition 14.5 below. 

(B) There is a somewhat more intrinsic way of defining the symbol p(w) than 
what was done in §11.4. In the setting of §4.11, we put YR = Y 0 Q R and Y^ = 
[x G 1 R I xxp = l } , where p is extended R-linearly to YR. Clearly Y^ can be 
identified with {(xcr)aejY G C J y | — l } . Define an element qw of Y£ by 
(11-24) qw=(pY(a,<P))^Jy. 
We extend ipv and <pv of (4.37) to R-linear maps of YR into C™v

v and C ^ ; we then 
define \v(h(a), w) and ixv(h(a), w) for a G F R by (4.37), so that M(h(a), w) = 
(Av(/i(o:), W), /iv(/i(a), w)) is meaningful for a G F R . Then (11.3a, b) and 
(11.4a, b) show that \v(h(qw), w) = ipv(qw) = pvp(w) and fJLv(h(qw), w) = 
Pviqw) = Pv(w)- Therefore we can define p(w) by 

(11.25) p(w) = M(h{qw),w). 

(C) All arithmetic quotients treated in this book are associated with PEL-types. 
We can also construct canonical models of certain types of arithmetic quotients not 
associated with PEL-types, as we already noted it after the proof of Theorem 9.6, 
and then can define arithmeticity of automorphic forms in such cases. In each case 
we can speak of a CM-point, say w, obtained from a CM-algebra Y\ then we have 
an element # of Iy and define the symbol p(w) in terms of py (a, $) with a G Jy 
by natural analogues of (11.24) and (11.25). These are given in [S80, §4 resp. §5] 
when the group is a quaternion unitary group resp. an orthogonal group. One 
noteworthy aspect is that $ is not necessarily a collection of CM-types for such 
groups. 



CHAPTER III 

ARITHMETIC OF DIFFERENTIAL OPERATORS 
A N D NEARLY HOLOMORPHIC FUNCTIONS 

12. Differential operators on symmetric spaces 

12.1. In this section we deal with two types of irreducible hermitian symmetric 
spaces H of noncompact type, called Types A and C, which we already discussed 
in Section 3. To treat the space given in various different forms uniformly, we use 
symbols different from those of Section 3. For each type of H we have a simple Lie 
group G, its maximal compact subgroup K such that G/K can be identified with 
H, and a complex vector space T which can be identified with the holomorphic (or 
nonholomorphic) tangent space of H, on which the complexification Kc of K acts; 
G is unitary for Type A and symplectic for Type C. The space H can be presented 
as a "ball," or a "tube" under a certain condition. We refer to Types AB and CB if 
if is a ball, and to Types AT and CT if it is a tube. If it is unnecessary to specify 
the distinction between a ball and a tube, we simply speak of Types A and C. In 
fact, we can treat all types of classical hermitian symmetric spaces of noncompact 
type by the same methods, but for simplicity we restrict our discussion to those 
two types; we refer the reader to [S94b] for a detailed treatment in the general case. 

Now G, Kc, H, and T for each type can be given explicitly in the table below. 
In each case we view H as a subset of T; we also give positive definite hermitian 
matrices £(z) and TJ(Z) defined for z G H, which are closely connected with the 
Kahler structure of H and the canonical factor of automorphy for the elements of 
G. We do not need K, nor any conceptual or geometric meaning of these objects, 
for the moment. Strictly speaking, Kc is merely isomorphic, and not exactly equal, 
to the complexification of K. Here, however, we define Kc formally as follows. Its 
connection with the maximal compact subgroup will be discussed in §A8.2. 

Type AB: G = SU{m, n) = { a<ESLm + n(C) | a*/ m , n a = / m , n }, 

Jm ,n = diag[lm , - l n ] , Kc = { (a, b)eGLm{C)xGLn{C) | det(o)=det(6) } , 

T = C™, H = {zeT\zz* < l m } , 

£(z) = l m - z • £z, rj{z) = l n - z*z. 

Type CB: G = Sp{n, C) n SU(n, n), Kc = GLn (C) , 
T = { z E C£ | lz = z } , H = { z e T | z*z < l n }, 

f(z) =rj{z) = l n - z*z. 

The space H of Type CB is equivalent to a tube; however, H of Type AB is 
equivalent to a tube if and only if m = n. We present here the explicit forms of the 
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objects associated to H of tube form; we also present a real vector subspace U of 
T such that T = E / ® R C and that H = U+iP with a domain of positivity P in U. 

0 - I n 
In 0 

Type AT: G = SU(rjn) = {aeSL2n(C) \ a*r)na = r)n }, rjn = 

Kc = { (a, b) e GLn(C) x GLn{C) | det(a) = det (6) } , 

T = C£, J 7 = { x € C ; | | x * = a ; } , tf = { z e T | i(z* - z) > 0 }, 

' £ ( * ) = T , ( z ) = t ( z * - * ) . 

Type CT: G = Sp(n, R), K c = GL n(C) , 

f(z) = 77(2:) = z ( z - z ) . 

The space H of Type CT, AT, or AB is exactly £jn , Hn, or *Bm,n in Case SP, 
UT, or UB of §3.1; H of Type CB is <8n of (3.39). The functions f and 77 are the 
same as those of (3.9) and (3.10). The space H of Type CB or CT is contained in 
H of Type AB (with m — n) or AT; £ and 7? for Type C are just restrictions of 
the corresponding functions for Type A. 

In Section 3 we defined the action of G on H and also two factors of automorphy 
AQ(z) and /xa(z); see (3.15), (3.16), and (3.17); Xa(z) - fia{z) for Type C. We 
recall here a few basic formulas: 

(12.1a) Xa(zy(){az)\Q{z) = f (z), fia{zyr]{az)fxa{z) = rj{z), 

(12.1b) d(az) = % ( 2 ) _ 1 • dz • /xa W " 1 (a G G). 

These were given in (3.19) and Lemma 3.4 (1). We also need a scalar factor of 
automorphy ja(z) and a scalar-valued function 6 defined in (3.20) and (3.21). 
Since our group G of Type AB or AT is SU{m, n) or SU{r)n), the factors det(a) 
and v(a) in the formulas in Section 3 are all equal to 1. In particular we note that 

(12.2) det (Xa(z)) = det (fMQ(z)) = ja(z). 

We have Kc = GLn(C) for Type C. We view it as a subgroup of GL n(C) x GLn(C) 
by the embedding a \-> (a, a). We make a convention that m means n for Types 
AT, CT, and CB. Then, in all cases Kc is a subgroup of GL m (C) x GLn(C). 
Hereafter we shall write an element of Kc in the form (a, b) £ GL m (C) x GLn(C) 
with the understanding that a = b for Type C. For example, (f (z), v(z)) £ Kc for 
all types. (Notice that det£(z) = det 77(2) in all cases; see (3.13) for Type AB.) We 
let Kc act on T by (a, b)u = au-lb for (a, b) <E Kc and u e T. For T of Type C, 
this is the action of GLn(C) on the space of complex symmetric matrices defined 
by u h-> au- ta for a e GLn(C). 

12.2. Throughout the rest of this section we denote by G an algebraic group of 
the following types: 

G = SU(T) (TypeAB), 

G = SU(rjn) (Type AT), 

G = Sp(n,F) (TypeCT), 

G = SU{r]n) H Spin, K) (Type CB). 
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Here F is a totally real algebraic number field and K is a totally imaginary quadratic 
extension of F; T is an antihermitian element of GLr(K). Thus our group of Types 
AB, AT, and CT is exactly the group G\ of §8.2, which is a subgroup of the group 
G denned in §3.5 in Cases UB, UT, and SP. In this sense our notation is not 
consistent, but since in this section we exclusively consider the elements of Gi, we 
simply denote it by G; we do not consider larger groups like Gp(n, F) and GU(nn) 
in this and the next sections. Now we have 
(12.3) Ga = ]jGv, 

v 6a 
and we see that each Gv is either compact or a group belonging to the four types 
of §1.1; Gv is not compact for G of Types AT, CT and CB. 

For each v G a such that Gv is not compact, we take the objects iJ, T, Kc, etc. 
associated with GV1 and denote them by Hv, Tv, K%, etc. If Gv is compact, that 
is, if Gv = SU(m, n) with ran = 0, then we put K% — S L m + n ( C ) , Tv = {0}, and 
let Hv denote the space consisting of a single element 0 (see §3.3). We then put 

(12.4a) H = \[HV, Sio = Y[Kc
v1 

vEa v6a 

(12.4b) OLZ = a(z) = (avzv)vea, ~(z) = (fv(zv), r]v(zv))vea (G #o), 

(12.4c) Ma(z) = (\{av, zv), p{av, zv))vea (G #O) 

for z = {zv)vea G H and a = (av)v^a G Ga , where £v and rjv denote the functions 
£ and 77 defined on Hv. If Gv is compact, we understand that the ^-component 
of S is 1, and the ^-component of Ma is a or Q according to the convention of 
(32.4a, b). We also put 
(12.5) a.' = { v G a | Gv is not compact }. 

In this section, by a representation {a, W} of a topological group Q, we mean a 
pair formed by a complex vector space W of finite dimension and a continuous 
homomorphism G of Q into GL(W). We now take a representation {p, X} of £0 
such that p is complex analytic. Given / G C°°(H, X) and a G Ga , we define 
/ | | p a G G - ( H , X ) b y 

(12.6) (f\\P*)(z) = p{MOL{z))-lf{az) (z G H). 

In the previous sections we considered automorphic forms with respect to a rep
resentation {CJ, V} of YlvehGLnv(C). For Type C we have £0 = TlvebGLnv(C), 
but for Type A, £Q is smaller than YlvehGLn.v(C). Also, in this section we are 
taking the group SU instead of GU or U. For these reasons we use the letter p 
instead of uo. As we said in §12.1, we can develop the whole theory for an arbitray 
hermitian symmetric space, and our exposition, being almost axiomatic, can easily 
be generalized, as shown in [S94b]. In order to deal with such a general case, it is 
easier to consider semisimple groups, which is the reason why we consider SU here. 
However, we shall later reinstate a;, and take p to be the restriction of UJ to £0. 
Anyway (12.6) is consistent with (5.6a). 

12.3. Given a positive integer p and finite-dimensional complex vector spaces 
X and y, we denote by Mlp(Y, X) the vector space of all C-multilinear maps of 
Y x • • • xY (p copies) into X, and by SP(Y, X) the vector space of all homogeneous 
polynomial maps of Y into X of degree p. Thus S\(Y, X) = Ml\(Y, X), and it is 
the vector space of all C-linear maps of Y into X. We put SQ(Y, X) = MIQ(Y, X) = 
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X and SP(Y) = SP(Y, C). We call an element g of Mlp(Yy X) symmetric if 
g{y*(i)> • • • , Vnip)) = g(yu • • • , yP) for every permutation ir of {1, . . . , p}. 

We are going to define differential operators on 7i with respect to each component 
zv of the variable point z = (zv)v€a on 7i such that Gv is not compact. Given 
such a v, 0 < p G Z, and a representation {p, X } of ^o as above, we define 
representations {p ® r*\ Mlp{Tv, X)} and {p 0 erg, Mlp{Tv, X)} of i?o by 

(12.7a) [(p 0 r£)(a, 6)ft] ( u i , . . . , up) = p(a, b)h^avu\bv,..., tavupbv), 

(12.7b) [(p ® (jg)(a, 6)ft](ui,... ,up) = p(a, &)ft(a~ V ^ \ . . . , a " V ^ T 1 ) * 

for (a, 6) G £o, ft G Mlp(Tv, X), and ^ € Tv. We use the same symbols p ® TP 

and p® erg for their restrictions to SP(TV, X), and write them simply TP and erg 
if J\T = C and p is trivial. Here we use (a, 6) to denote an element of £o with 
a = (av)ve8L G UveaGLmv(c) a n d b = (Mv€a £ I L € a G L ^ ( C ) > ignoring av or 
6V according as mv = 0 or n^ = 0. 

12.4. Lemma. (1) SP(Y) is spanned by gp for all g G S1{Y). 
(2) Given ft G Sp(Yi X), there is a unique symmetric element of MIP(Y, X), 

which we write ft*, such that ft(y) = ft*(y, . . . , y). 

P R O O F . We prove (1) by induction on dim(Y). Let Sp{Y) be the subspace of 
SP{Y) spanned by gp for all g G Si(Y). Clearly Sp(Y) = SP{Y) if dim(Y) = 1. 
Now we consider C © Y, and take a variable (t, y) G C 0 Y. For c G C and 

/ G 5i(Y) we have (ct + / (y ) ) p = E L = 0 ( ^ ) crntrnf{yy-7n. From this we see 

that the functions of the form t m / ( y ) p _ m belong to Sp(C © Y). By induction, 
Sp__m(Y) = Sp-m{Y). Since SP(C © Y) is spanned by the functions trng(y) with 
# G 5 p_m(Y) , we obtain (1) for C © Y Clearly it is sufficient to prove (2) when 
X = C. To prove the existence, by (1), we may assume that ft(y) = g(y)p with 
geS\(Y). Then put ft*(xi, . . . , xp) = <7(xi) • • • g{xp). Clearly ft* is symmetric and 
ft*(y,, . . . , y) = h(y). We prove the uniqueness of ft* by induction on p. Suppose 
p > 1 and / is a symmetric element of Mlp(Y, C) such that /(a:, . . . , x) = 0 . Then 

0 = /(:r + y, ... , x + y) = ^ f ^ j /(ST^Tz, yT^Tl/). 
m=0 ^ ' 

Viewing this as a polynomial function of y, we find that each term on the right-
hand side must vanish; in particular, / (x , y, . . . , y) = 0. Fixing x and applying 
our induction to / ( x , y, . . . , y), we obtain / ( x , xi , . . . , xp_i) = 0 for arbitrary 
Xi, which completes the proof, since the case p < 1 is obvious. 

12.5. We view Tv as its own dual over C by the pairing (it, v) •—• tr(fm;). Then, 
for g G 5P(TV) and ft G SP(TW, X) we put 

(12.8) [g, ft] = ^ # * ( a I , 1 , . . . , aVj)K[bVl, . . . , 6^) , 

where {au}„eN and {fr^jveiv are dual bases of TVi and (i/i, . . . , vp) runs over Np. 
Then [</, ft] is an element of X determined independently of the choice of dual bases. 
From (12.7a, b) we easily obtain 

(12.9) [<r*(a)g, (p®rp)(a)h} = [rp(a)g, (p®ag)(a)ft] = p(a)[9l ft] (a G #o). 

In particular, taking X = C, we can view SP(TV) as its own dual by the pairing 
(#> ft) l—> [#> ft] 5 which is indeed nondegenerate because of a simple formula 
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(12.10) [g, h] = g(x) if h(u) = tr(*xu)p with a fixed x G Tv. 

To prove this, we observe that /i*(tii, . . . , up) = Ilf=i tr(*xui); therefore [g, h] = 
S p * ( a ^ ' aM' * * * )tr( tx6l /)tr( tx6M) • • • . Since x = J ^ tr^x&^a^, we obtain (12.10). 

12.6. Let us now recall some elementary facts on the polynomial representations 
of GLn(C). Every polynomial representation of GLn(C) can be decomposed into 
a direct sum of irreducible representations. The equivalence classes of irreducible 
polynomial representations of GLn(C) are in one-to-one correspondence with the 
ordered sets of integers { n , . . . , rn} such that r\> • • • > rn > 0. If {a, W} is 
such an irreducible representation corresponding to {ri, . . . , r n } , then 

tr{<r(diag[ai, . . . , an])} = a^1 • • • a^ + £ s < r
 A ^ i ' • • ' < n 

for di G C x with A S GZ, where < in the last sum is the lexicographic ordering. We 
call then a an irreducible representation of highest weight {7*1, . . . , r n } . A nonzero 
vector q of W is called an eigenvector of highest weight if cr(diag[ai, . . . , an])q = 
a? •••<"?• 

For a: € C™ and 1 < z < Min(ra, n) we denote by det^(x) the determinant of 
the uper left i2 entries of x. Let Rn denote the subgroup of GLn(C) consisting of 
all the upper triangular matrices. Given an irreducible representation {a, W} of 
GL n (C) , there is a unique common eigenvector p of a(Rn) in W. If {ri, . . . , rn} 
is the highest weight of a, then 

(12.11) °{a)p = Iir=i deti(a)e ip for every a G Rn, 

where ê  = r̂  — r^+i for z < n and en = rn . 
We are interested in the representations { Sr (T), r r } of a group Kc defined in 

§12.3. We drop the subscript v. Thus we are looking at the objects as follows: 

(Type A) T = C ^ , [rr{a, b)h]{u) = h{taub) for (a, b) e/C = GLm(C) xGL n (C) 
and /i G Sr(T); 

(Type C) T={xeC%,\tx = x}, [rr{a)h}(u) = h{taua) for a€JC = GLn{C) 
and /i G Sr(T). 

We have K, = Kc for Type C, but /C is larger than Kc for Type A. However, clearly 
we can extend the representation rr to fC as above, and the /C-irreducibility of a 
subspace of Sr(T) is the same as that of Kc. Therefore we consider K instead of Kc. 
Also, for Type A we recall a well-known fact that every irreducible representation 
of /C is of the form p 0 cr with irreducible representations p of GLm(C) and a of 
GL„(C). 

12.7. Theorem. Type A: Let p and o be irreducible representations of 
GLm(C) and GLn(C), respectively. Then p<g>cr occurs in rr if and only if p and 
a have the highest weights 

{ri, . . . , r n , 0, . . . , 0} and {n , . . . , rn} when m > n, 
{ri, . . . , r m } and {n , . . . , rm , 0, . . . , 0} when n > m, 

with the ri such that n + • • • + rM = r and r^ > 0, where p, — Min(m, n). Such 
a p 0 cr has multiplicity one in r r , and the corresponding irreducible subspace of 
Sr{T) contains a polynomial p defined by 

PW = n f = 1 d e t i ( ^ ( x € T = C ™ ) 
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as an eigenvector of highest weight with respect to both p and cr, where a = 
Ti - ri+i for i < p and e^ = rM. 

Type C: An irreducible representation a of GLn(C) of highest weight {ri, . . . , 
rn} occurs in rr if and only if all ri are even, rn > 0, and r\ -f • • • -f rn = 2r. 
Such a a has multiplicity one in rr, and the corresponding irreducible subspace of 
Sr{T) contains a polynomial p defined by 

p(*) = IlLi det<(*)ei (xer) 
as an eigenvector of highest weight, where e% = (ri — ri+i)/2 for i < n and 

The decomposition of Sr(T) into irreducible subspaces with highest weights as 
described above is due to L.-K. Hua; the highest weight vector was determined 
by K. D. Johnson. The proof, as well as references to these and other related 
investigations, can be found in [S84b]. 

12.8. Lemma. (1) Let Z and W be different irreducible subspaces of Sr{T). 
Then [/, g] — 0 for every / G Z and every g G W. 

(2) The form (/, g) »—> [/, g] is nondegenerate on any Kc-stable subspace of 
Sr(T). 

P R O O F . We prove this for Type A; Type C can be handled in a similar and 
simpler way. Take Z to be the space described in Theorem 12.7 and take p G 
Z as in that theorem. Define similarly a function q in W. By (12.9) we have 
[^(^a, lb)f, g) — [/, rr(a, b)g) for f,g€ Sr(T). Taking a and b to be diagonal, 
we see that \p, q] = 0. Since p and q are eigenvectors of i?m x Rn, from (12.9) 
we obtain [r r( i

JRm, tRn)p, q] = 0, and consequently [Tr(*it!mi?m, tRnRn)p, q] = 0. 
Now tRnRn = { xeGLn(C) | detj(a:)7^0 for every i < n } , and hence tRmR7n x 
tRnRn is dense in GLm(C) x GLn(C). Therefore we see that [Z, q] = 0, which 
combined with (12.9) proves (1). Since the form (/, g) \-+ [/, g] is nondegenerate 
on Sr(T) as we noted in §12.5, (2) follows immediately from (1). 

12.9. Given C°° manifolds V and W, we denote by C°°(V, W) the set of all 
C°° maps of V into W. For the most part we take H as V. In fact, we will have to 
consider the derivatives of C°° functions which are defined only on an open dense 
subset of ri, such as meromorphic functions on 7i. For simplicity, however, we state 
our definitions and formulas only for C°° functions on H, but we will apply them 
to functions of more general types, without any additional comment, as the validity 
of such applications is obvious in each case. 

Since Tv has a natural R-structure, we can speak of an R-rational basis of Tv over 
C. Take any such basis {^J^iV) and for u eTv define uv G C by u = J2veN uvev 
We also put zv = X^<EJV zw£v with zvv G C for the variable zv on Hv. Then, for 
/ G C°°(«, X) we define Dvf, Dvf, Cvf, Evf G C°° (« , 5i(Tv , X)) by 

(12.12a) (Dvf)(u) = ] T uvdf/dzvu, (Dvf)(u) = ] T u„df/dzv„, 
v^N v<EN 

(12.12b) (Cvf)(u) = (Dvf )(%urh), (Evf)(u) = (Dvf)(£vu • %) 

for u G Tv. These are independent of the choice of {SU}U^N. The last two formulas 
can be written Cvf = r*(E)Dvf and Evf = al(E~l)Dvf with S of (12.4b), and 
the first two are equivalent to the expression 
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(12.13) df = ^(Dvf)(dzv) + 52(Dvf){dzv). 

Notice that Evf = 0 if and only if / is holomorphic in zv. Substituting / o a for 
/ in (12.13) and employing (12.1b), we find that 

(12.14a) ( ( D „ / ) o a ) ( u ) = D „ ( / o Q ) ( ( % , zu)u/*(a„, zv)), 

(12.14b) ((Dvf)oa)(u) = Dv(foa)(\(av, zv)*up,(av zv)) 

for u eTv and a e G&._ 
We also define D$f, De

vf, Off, and £ * / for 0 < e € Z by 

(12.15a) DeJ = DvDe
v-1f, DeJ = DvDe~lf, D°J = D?f = f, 

(12.15b) CU = CvCe
v~lf, E*J = EvErlf, C%f = E°f = f. 

These have values in Mle(Tv, X) in the sense that 

(12.15c) (Aef)(uu . . . , uc) = A{(Ae-lf)(uu . . . -, uc_i)}(uc) (u* € T,), 

where A is Dv, Dv, Cv or Ev. Clearly D%f and .D^/ have symmetric elements of 
Mle(Tv, X) as their values; the same is true for C£f and Eyf as will be shown in 
§13.9. Therefore we can view them as elements of C°°(H, Se(Tv, X)). For example, 
we have 
(12.16) (D%f){u)=plh{u) if f{z) = h{zv) with heSp{Tv). 

Indeed, h(zv) = h*(zv, . . . , zv) with h* as in Lemma 12.4 (2), and hence (Dvf)(u) 
= ph*(u, zv, . . . , Zy), and similarly (Dlf)(u, v) = p{p - l)fe*(u, v, zv, ... , zv). 
Repeating this procedure, we obtain (12.16). 

We now define De
pvf e C°°{H, Se{Tv, X)) by 

(12.17) D%J ={p® TS){E)-iCl\p{3)f\. 

In particular, since Cvf = r^(E)Dvf, writing Dp,v = Dl
pv, we have 

(12.18) (Dp.vf)(u) = p{Z)-lDvlp{Z)f]{u) (ueTv). 

12.10. Proposition. (1) De+V
l = DP®T,,VD% = De

p0Tv,vDp.v. 
(2) Dlv(f\\pa) = (D°PtVf)\UT.a, Ee

v(f\\P<>) = (Ee
vf)\\p^a. (a € G a) . 

PROOF. Identifying P®T*®TV with p®r*+l, by (12.17) and (12.18) we have 

J W „ ( ^ . „ / ) = {p®r^){E)^Cv[{p®Tt){E){DlJ)} 

= (p<Z>TF1m-1CvCS[p(S)f]=Dp+1f, 

which proves the first part of (1). The second part can be proved similarly. Now 
for a e G a and u G Tv we have, employing (12.1a) and (12.14a), 

Dp.v(f\\p<*)(«) = P{Z)~1DV [p(HM" 1)( / o a)}(«) 
= p{E)~'Dv [p{M*) {{p(E)f} o a ) ] («) = p ^ M ' J A , [(p(H)/) o a] (u) 
= p ( M - 1 ( ^ ° " ) - 1 ) { Z ? t ; ( p ( H ) / ) o a } ( t A ( a ,„ ^ O - ^ ^ Q , . , z,,)-1) 
= K M Q - 1 ) { ( D , . „ / ) O Q } ( ( A K , zv)-luii{av, zv)~l). 

Observing that the last quantity can be written [{Dp.vf)\\p%Ti. a](u), we obtain 
the first formula of (2) for e = 1. Then the general case can be proved by induction 
on e, by virtue of (1). As for Ev, we have similarly, by (12.14b) and (12.1a), 
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Ev(f\\p <*)(u) = Ev{p{M-l)(f o a)}(u) = p{Mar1VvU ° a)(£vu • %) 

= p ( M a ) - 1 p , / ) o a ) f A ( a 1 „ ^ J ' ^ ^ - ^ K , *v) ) 

= p (M Q ) _ 1 ((£>„/) o a) ((&, o a)A(av , zv)u • */A(<*IM ^ ) ( * ^ ° a)) 

= { ( p ® ^ ) ( M - 1 ) ( ( J S v / ) o a ) } ( u ) = ( ( J 5 v / ) | | p x ^ a ) ( ^ 

This proves the second formula of (2) for e = 1. The general case can be proved 
by induction on e. 

12.11. The representation r£ or erg of ̂ o on SP(TV) is essentially that of K%, By 
Theorem 12.7 it is the direct sum of irreducible representations, and each irreducible 
constituent has multiplicity one. (Since the T^-irreducibility is the same as the ag-
irreducibility, we shall simply speak of an irreducible subspace of SP(TV).) Thus, 
for each ^o-stable subspace Z of SP(TV), we can define the projection map (fz of 
SP(TV) onto Z. Now we can identify SP(TV, X) with SP(TV) 0 X by the rule 
(12.19) (ft 0 x){u) = h{u)x for ft € SP(TV), x € X, and u € TV 

(This justifies the notation p <8> r£ and p 0 erg.) Using the same symbol pz for 
the map ft 0 x *-> {ipzh) 0 x of Sp(rv) 0 X to Z 0 X, we define Z>f/, £ z / e 
C°°(W, Z 0 X ) b y 

(12.20) / ? * / = ¥>*££„/, # Z / = *>*£?/. 

Let TZ and cr^ denote the restrictions of r£ and erg to Z. Then p 0 TZ and 
p 0 erz are the restrictions of p®r% and p 0 erg to Z 0 X. Then (<Pz/)||p<g>TZ ^ = 
< ẑ(/||p<g>r« «) and (ipzf)\\p®vz

 a = (Pz{f\\P®*e a ) . Therefore from Proposition 12.10 
(2) we obtain, for every a £ Ga , 

(12.21) D*(/||„a) = (!>*/) U r , a, Ez{f\\pa) = (Ezf)\\p^z a. 

By Lemma 12.8, Z is its own dual with respect to the bilinear form of (12.8). 
Therefore we can identify Z 0 X with Si(Z, X) by the rule 

(12.22) (w 0 x){Q = [C, u]x for LU, ( e Z and x e X. 

Then ^ a s a map SP(TV, X) —> Si(Z, X) can be given by (ipzg){£) = [C» #] f° r 

# e SP(TV, X) and C € Z, and hence D ^ / and £7 Z / as 5i(Z, X)-valued functions 
can be given by 

(12.23) (DZf)(0 = [<,D$iVf\, (Ezf)(C) = [C,EPf] (C € Z). 

The symbols p®Tz and p 0 erz as representations on the space 5i(Z, X) can be 
given by 

(12.24a) [ ( P 0 r z ) ( a , 6)ft](C) = p(a, &)ft(TZ(<a„, *6v)C), 

(12.24b) [(p0<JZ)(a, 6)ft](C) = p(a, &)ft(erz(<av, *6V)C) 

for ft e 5i(Z, X) , C G Z, and (a, 6) € £o as in (12.7a, b). Take, for example, 
Z = Cxi) C Sen(T) with ^(iz) = det(u)e, 0 < e G Z, assuming that m = n for 
Type AB. Then, from (12.21) and (12.24a, b) we obtain 

(12.24c) Dz
p{f\\pa)^) = [ ( ^ / ) W ] | | ^ a, £7*(/ | |pa)ty) = [(Ezf)W]\\^a, 

where p'(a, 6) = det(a)edet(6)ep(x, y) and p"(a, 6) = det(a)~€det(6)~ep(x, y). 
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12.12. Fixing v G a and taking R-rational dual bases {ev}ueN and {e'u}ueN 
of Tv over C, put zv — YlveN ZW£V as in §12.9, and 

(12.25) Vv = Yl ef
ud/dzvv, Vv=J2 4 S / ^ — 

These are independent of the choice of bases. For geSp(Tv) we define g(Dv) by 

(12.26) g(Vv) = g*{Vv, . . . , © „ ) = £ > « , • • - ^pW/dzWl • • • dzW p , 

where (z/i, . . . , i/p) runs over iVp, and define #(2\ ) similarly. Now we have 

(12.27) 9(Vv)f=\g,D*f] for every f G C°°(« , X), 
(12.28) g{Vv)h=p\[g,h) for every h e SP{TV) 

with [g, h] of (12.8). In (12.27) we view D%f as SP(TV, X)-valued; in (12.28) 
we view h as a function on H by putting h{z) = h(zv). To prove these, sup
press the subscript v. Since {Df)(eu) = df jdzv, we have {Dpf){eUl, . . . , eVp) = 
dpf/dzUl ••• dzUp, which combined with (12.8) and (12.26) proves (12.27). Then 
(12.28) follows from (12.16) and (12.27). 

For example, since [D£exp (tr(txz^))](u) = tr(*xu)pexp {tT(lxzv)) for u, x e 
Tt,, from (12.10) and (12.27) we obtain 

(12.29) g{Vv) exp {ti{lxzv)) = g(x) exp (tr('x*v)). 

In particular, for an element # of Snk{Tv) given by #(u) = det(u)fc, we denote the 
operator g(Dv) by det(Vv)k. 

In the following theorem, we drop the subscript v for simplicity. 

12.13. Theorem. Let Z be the irreducible subspace of Sr(T) described in The
orem 12.7 and Vi be the integers in that theorem; let ( e Z, s G C, and 

L = f { (c, d) G C ^ x Cl |rank[c d] = n } (Type A), 

\ {{c,d) G C£ x CI | rank[c d] = n, c.*d = d-*c} (Type C). 
Then, for any fixed (c, d) £ L and any fixed branch of det(c2 + d)s in an open 
subset of T on which det(cz + d)s is meaningful, we have 

C(£>) det(cz + d)s = fe(s) det{cz + dyC^c • '(c* + d)"1) 

wzt/i ^z(s ) = \ 

Y[ J J ( s - i + h), /i = Min(m, n) (Type A), 

r f c /2 

For the proof, see [S84b, Theorem 4.3]. 

12.14. The notation being as in §12.11, we define a contraction operator 6 : 
Z%Z®X -> X by 0«®u;®a;) = [C, u/|x. This as a map Sx(Z, SX(Z, X)) -* X 
can be given by 

(12.30a) 0A = £MMC/„<<v) for A e Si(Z, Si(Z, X)) 

with bases {CM} and {u^} of Z such that [(M, UJU) = <5^. From (12.9) we obtain 

(12.30b) 0 o (p <g> r z <8> <rz)(a, b) = 0 o (p <g> crz <g> r z ) (a , 6) = p(o, 6) o 0 
for every (a, 6) G £Q. 
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If g € CX(H, Si{Z, X)), then Dz
0azg and Ezg have values in Sx (Z, Si{Z, X)), 

so that 6Dz
0azg and 6Ezg are meaningful as X-valued functions. In particu

lar, for / e C°°{H, X) the symbols 6Dz
(g)azEzf and BEzDzf are elements of 

Cx{n,X). We then put 

(12.31) Lzf = {-\y6Dz
p®azEzf, Mzf = (-1)"9EZD^ f. 

Then, by (12.21) and (12.30b), for every a € G a we have 

(12.32) L?( / | | „a ) = (Lf / ) | | P a , Mz(f\\pa) = (Mzf)\\pa. 

\i Z — S\(TV) and this is identified with Tv, then the map 6 can be viewed as a 
map S\(Tv, Si(Tv, X)) —> X, and is given by 

(12.33) 0h = E„eNh(a^b„) for h G Si(Tv, S i ( r v , X)) 

with dual bases {a^} and {6„} ofTv. 
Given a congruence subgroup r of G, we denote by Cp(r) the set of all / G 

C°°(W, X) such that f\\p-y = f for every 7 G T, and by Cp the union of C p ( r ) 
for all such r. Now X has an inner product (x, ?/)x which is C-linear in y and 
C-antilinear in x and which satisfies 

(12.34) (x, p(a, % ) x - (p(a*, b*)x, y)x 

for (a, 6) G £0, where (a*, 6*) = (a*, 6*)uea- This will be proven after (12.35b). 
Then, for f,g€Cp we define their inner product (/, g) by 

(12.35a) ( / , g) = M ^ 1 / ( / ( z ) , p(S(z))g(z) ) x d/x(*) 

whenever the integral is convergent, where efyz(z) is a fixed Ga-invariant measure 
on H, /i(#) = J^dfiiz), and <£ = r\H with r such that / , g G ^ ( r ) . The inner 
product is independent of the choice of T, and 

(12.35b) (f\\pa,g\\pa) = (f,g) for every a G G. 

Let us now prove the existence of ( , )x satisfying (12.34). In view of the 
structure of £0> it is sufficient to prove that if (Y, a) is an irrreducible polyno
mial representation of GLn(C), then Y has an inner product ( , )y such that 
(x, <j{a)y)y = (cr(a*)x, y)y for a G GLn(C). Now (Y, a) is a direct summand of 
(W, a>), where W = Cn ® • • • (g)Cn and a;(x) = x(g) • • • &x with C n and x repeated 
m times for some m. Clearly W has an inner product with the required property 
with respect to a;, and we only have to restrict it to Y. 

12.15. Theorem. Let Z be an irreducible subspace of SP(TV). Then Z^X has 
an inner product satisfying (12.34) w^n (Z(g>X, p®rz) and (Z<8>X, p(&oz) in place 
of (X, p) and with the property that for / , / ' G Cp, g G Cp®Tz, and h G Cp®az we 
have 

(Dzf, g) = ( - ! ) ?< / , 0Ezg), (Ezf, h) = ( - l ) " ( / , 9Dz
0azh), 

(Lzf, / ' ) = < / , L f / ' ) , ( M / / , / ' ) = < / , Mzf), 

(Lzf,f)>0, (Mzf,f)>0 
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under suitable convergence conditions (see below). 

The theory of differential operators in this section was developed in [S80], [S81b], 
[S84a], [S84b], and [S86]. In particular, the last theorem was obtained in [S84a, 
Theorem 11.5, Corollary 11.8] and [S84b, p.486]. An equivalent result formulated 
on Gv was given in [S90, Theorem 4.3, Corollary 4.4]. See also [S90, Lemma 4.2] 
for the definition of the inner product on Z ® X. The operators on Gv correspond 
to Dz and Ez, but the choice of E in [S90, (7.7)] is the same as that of (12.4b) 
only for Types AB and CB; for Types AT and CT the latter is twice the former, 
and so the present Ez is E of [S90, (7.9)] times a positive rational number, which 
may or may not be 1. Thus, in order to have the first two equalities of the above 
theorem, we have to take this constant into account, though it does not play any 
essential role in practically all applications. 

All these were formulated for functions on r\H or on T \ G a of compact support. 
To state a sufficient convergence condition in a more general case, we first note that 
given / G Cp(r), the function / on Ga defined by f(g) = p{M(g, o)~1)f(go) for 
g G Ga is left .T-invariant, where o = (o^) is a point of H such that { a G Gv | aov 

= o-j;} is the standard maximal compact subgroup of Gv with which the results 
of [S90] are formulated. To be explicit, we take o^ = 0 for Types AB and CB, 
and ov = iln for Types AT and CT. Let #v be the Lie algebra of Gv and gv = 
tv+pv its Cartan decomposition. Given { p, X }, { p', X' }, / G CP[F), h G Cp>(r), 
and a positive integer p, we say that (/, h) is an integrable pair of type (p, v), 
if i;{Yl'->Ypf)il/{Y{---Ylh) belongs to Z ^ A ^ a ) for every ^ G Si(X), $ G 
Si(X'), and every YJ, YJ G pv with p > 0 and v > 0 such that p -f v = p or 
^ -f *y = p — 1. Now the first resp. second formula of Theorem 12.15 is valid if 

(12.36) (/, g) resp. (/, h) is an integrable pair of type (p, v). 

The reason for this is explained in [S94b, p. 173]. As noted in [S90, p.257], the 
formulas are valid if / , g, h are C^ vectors in L2(r\Ga). Another sufficient con
dition is that all the holomorphic and anti-holomorphic derivatives of / are rapidly 
decreasing and g, h are slowly increasing at the cusps of G. Sufficient conditions 
for the last four formulas of Theorem 12.15 can be given in a similar manner or 
in the style of (12.36), since they are straightforward consequences of the first two 
formulas. 

The relationship between the formulation on Hv and that on Gv is explained in 
[S90, §7] and [S94b, p. 150]. See also Section A8. of the present book. 

12.16. Corollary. Put Lp.v — —0Dp($ai.vEv for each v G a' and put also 
A = X^Ea' cvLp,v with some fixed positive real numbers c1?, where a! is defined by 
(12.5). Suppose f G Cp and (/, Evf) is an integrable pair of type (1, v) for every 
t iGa ' . Then f is holomorphic if and only if A/ = 0. 

P R O O F . If / is holomorphic, then Evf = 0, and so kf = 0. Conversely, if A/ = 
0, then by the second equality of Theorem 12.15 we have X^-ea' cv(Evf, Evf) = 
( / , Kf) = 0 under the given integrability condition. Thus Evf = 0 for every 
v G a', and hence / is holomorphic. 

12.17. Let us now show that in the one-dimensional case the operators of this 
section have simple expressions. Thus take Ga = 5L 2 (R), H = { z G C | Im(z) > 
0 }, £ 0 = C x , and T = C. Then for z = x + iy G T we have £(z) = n{z) = 2y. 
We first define operators e, <5̂ , and Lk on H formally by 
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(12.37) ef = 4y2df/dz, Skf = y-k(df/dz)(ykf), 

(12.38) i fc = _ 4 _ 2 £ = ^( |L + | ^ + 2 ^ | , 

and define also 6% for 0 < p G Z inductively by 

(12.39) Sp
k
+1 = 6k+2p6p

k, 6l = 6k, S°k = 1. 

We now consider {p, C} with p(a) = ak with k G Z. We can put SP(T) = C by 
identifying an element h of 5P(T) with h(l). Then, dropping the subscript v, we 
have Df = df/dz, Df = df/dz, and (12.18) becomes Dpf = y~k(df/dz){yk/), 
which is exactly 6kf of (12.37). Similarly Ef = 4y2df/dz~ = ef with the above 
e. Since ( p 0 r p ) ( a ) = o f c + 2 p , from Proposition 12.10 (1) we see that Dp

p coincides 
with the above 6£; thus Proposition 10.2 (2) specialized to the present case gives 

(12.40) («£/) |U+ 2 pa = ^ ( / | | f c a ) , ( e / ) | U - 2 a = e(/ | | f ca) (a G 5L 2 (R) ) . 

Also we have Z = SP(T) = C, and Lz
p of (12.31) for Z = 5i(T) is exactly Lfc of 

(12.38), which has the property (Lfc/)||fc a = Lk(f\\k ot) for every a G 5L2(R). 

13. Nearly holomorphic functions 

We start with an easy lemma. 

13.1. Lemma. Let X\, . . . ,Xn be mutually commutative C°° vector fields on 
an N-dimensional C°° manifold U and n , . . . , r n be elements of C°°(U) such 
that the n x n-matrix {XjTk) is everywhere invertible; we assume that n < N. 
(Here the Xk and the r^ are complex-valued.) Define vector fields Y\, . . . , Yn by 
Yi — ]Cj=i hjXj with the functions 6^ determined by X ^ = 1 bijXjrk = <5ifc. Then 
the Y{ are mutually commutative. 

P R O O F . Since XiXj = XjXi, we can easily verify that YpYq — YqYp = J2j ^q^j 
with c f G C°°(U). Now YpYqrk = Yp Z]=1 t>qjXjrk = Yp6qk = 0 for every p and 
q, and hence V • £qXjTk = 0 for every k. Since det(Xjr^) ^ 0, we have c^q = 0, 
so that YpYq — YqYp = 0 as expected. 

13.2. We now consider an n-dimensional complex manifold W, and take n 
elements n , . . . , r n of C°°(W) with the following property: 

(13.1) Every point of W has a small neighborhood U on which there exist local 
complex coordinate functions z\, . . . , z n such that (drk/d'Zj)'jk=1 is invert
ible everywhere on U. 

Then we can define 2n vector fields d/drk and d/dfk for 1 < k < n by the 
relations 

n n 
(13.2) d/dzj = ^(drk/dzjWdrk, d/dzj = Y,iPfk/dzj)d/9rk. 

It can easily be seen that these vector fields do not depend on the choice of local 
coordinates, and so they are meaningful on the whole W. By the above lemma 
each set of n vector fields d/dr\, . . . , d/drn or d/df i, . . . , d/dfn are mutually 
commutative; however, d/dfi and d/dfj do not necessarily commute, as can easily 
be seen by a counterexample, even when n = 1. In view of the commutativity, we 
can naturally speak of d^/dr^ • • • drirn and dTn/dfil • • • dfirrL with no ambiguity. 
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The reason for choosing the symbols d/dri and d/dri for these vector fields will 
be explained by the first assertion of the following lemma. 

13.3. Lemma. (1) Let g(z, w) be a C°° function of (z, w) G W x V with an 
open subset V of C n , holomorphic in w, and let h(z, w) = deg/dwil •••dwie. 
If g is holomorphic in z, then h(z, r{z)) = (de/dril • • -drie)g(z, r{z)) whenever 
g{z, r(z)) is meaningful. Similarly, if g{z, w) is antiholomorphic in z e W, then 
h{z, f(z)) = (&/dril...dfu)g{z, r{z)). 

(2) The Ti are algebraically independent over the field of all meromorphic func
tions on W. 

(3) A C°° function f on W is a polynomial in n , . . . , rn of degree < e with 
holomorphic functions as coefficients if and only if all the derivatives of the form 
def/drh --drie are 0. 

PROOF. Since d/dri (resp. d/dfi) annihilates holomorphic (resp. antiholo
morphic) functions, assertion (1) can be verified easily. To prove (2), let X = 
(Xi, . . . , Xn) be a set of indeterminates, and Q(X) a polynomial of degree < m 
whose coefficients are holomorphic functions on W. We prove by induction on m 
that Q = 0 if Q(r) = 0. This is trivial if m = 0. Suppose Q(r) = 0 with m > 0. Then 
by (1), (dQ/dXi)(r) = (d/dri)Q(r) = 0, and hence 8Q/dXi=0 by the induction 
assumption. Thus Q is a constant, and must be 0. This proves (2). We prove the 
"if-part of (3) by induction on e. The case e = 1 is obvious. Suppose all the deriva
tives of the form def/drix • • • <9r;e are 0 with some e > 1. Then by the induction 
assumption for e—1, we can find, for each i, a polynomial Qi(X) of degree <e—1 
whose coefficients are holomorphic functions on W such that df/dri = Qi(r). Put 
Qij=dQi/dXj. By (1), we have Qij(r) = d2f/dridrj=Qji(r), and hence Qij=Qji 
by (2). Therefore we can find a polynomial P(X) of degree < e whose coefficients 
are holomorphic functions on W such that dP/dXi — Qi for every i. (Indeed, 
for x = (xi) G R n and a G R n define P(d) = J X^=i Qi{%)dxi with any path c 
connecting 0 to a. Then dP/dxi = Qi{x). Since P(x) = JQ YH=i Qi(tx)xidt, we 
easily see that P is a polynomial of degree < e with holomorphic functions on W 
as coefficients.) Then (d/dri)(f — P{r)) =0 , and hence / — P(r) is holomorphic. 
This completes our induction. The "only if"-part of (3) follows immediately from 

13.4. Let W be a complex Kahler manifold of complex dimension N with a 
fundamental 2-form Q; let f2 = i YlPn=\ hpqdzq/\dzp with local complex coordinate 
functions z\, . . . , z^ in a coordinate neighborhood U. We can then define iV vector 
fields R\, . . . , Rpj on U by the relations 

(13.3) d / ^ P = £ j L i V R 9 (1<P<N). 

It is well-known that O, for a sufficiently small £/, can be given in the form ft = 
i^2pq=i d2(f/dzqd'zp - dzq A dzp with a real-valued function (p on U. Define N 
functions rq on U by rq = dip/dzq. Then hpq = drqjd'zp, and therefore we can 
apply the principle of §13.2 to the present case to find that Rq = d/drq. 

Now the Rp may depend on the choice of the zp. However, if w\, . . . , w^ are 
coordinate functions in a coordinate neighborhood U' and vector fields S\, . . . , SN 
are defined relative to the wp in the same manner, then Rp = ^ dzp/dwq • Sq 

o n f / f l U'. Therefore if we denote by Me~l{U) the set of all elements of C^iU) 
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annihilated by XVl • • -XUe for all (1/1, . . . , ve) G {1, . . . , AT}e, this is well-defined 
independently of the choice of the zp. Then, for every open subset V of W let 
J\fe(V) denote the set of all / G C°°(V) such that the restriction of / to any 
coordinate neighborhood U belongs to Ne(U), and let M{V) = U^Lo-^OO- W e 

call an element of Af(V) a nearly holomorphic function on V relative to 0. If the 
rp are defined on U as above, then Lemma 13.3 (3) shows that J\fe(U) consists of 
all the polynomials in the rp whose coefficients are holomorphic functions on U. 
Clearly J\f°(U) is the set of all holomorhic functions on U. In our applications W 
is a hermitian symmetric space, and we can define the functions rp on the whole 
W, so that the last statement is applicable to Me{W). 

13.5. We now consider the space H of (12.4a). We first define a matrix-valued 
function rv and a scalar-valued function 6V on Hv as follows: 

(13.4a) rv{z) = -^{z)~lz = - z • ^ ( z ) " 1 (Types AB, CB), 

(13.4b) rv{z) = (*z - z ) " 1 (Types AT, CT), 

J det [2-^(2)] (Types AT, CT), 
(13.5) ov{z) = < _ 

' \ det [T7(Z)] (Types AB, CB). 

The function 6V is the same as what was defined in (3.21). We then put r(z) = 
{rv(zv))v£gL and 8{z) = (Sv(zv))vea for z = {zv)v€SL e H; we do not define rv if Gv 

is compact. We fix one v G a and consider the behavior of a function on H only 
with respect to zv. For simplicity let us drop temporarily the subscript v from the 
objects TVi DV) Dv, £v, etc. Then for u G T we have 

(13.6a) r}-l{Drf)(u) = tru, 

(13.6b) C1(D0(v) = r-tu, 

(13.6c) {Dr)(u) = -r^ur, 

(13.6d) (^Dr)(u) = - f " ^ • V 1 . 

The first two formulas can be verified in a straightforward way. As for (13.6d) for 
Type AB, for example, we have £r = —z, and so (D£)(u)r + £(Dr)(u) = —u. Thus 
(Dr)(u) = - r 1 ^ + ( ^ 0 ( w ) r ) = -^{u - u ^zr) = -g-iu(*ry + *zz) • V 1 = 
—f-"1^ • *77—1. All the remaining cases can be verified in the same fashion. 

13.6. Lemma. Let £ and ipz be as in Theorem 12.13; let s G C. Then 

(13.7) C ( W = ^ W ^ ) ' C ( r ( : ) ) . 

PROOF. For Types AB and CB we have 6{z) = det(l„ - 2*2). Taking (-z*, 1) 
to be (c, d) in Theorem 12.13, we obtain the desired formula. The other cases can 
be handled in the same manner. 

1.3.7. We now note three basic formulas: 

(13.8a) D(6s){u) = s-6str{tru), 

(13.8b) ( D l o g « ) ( u ) = t r ( ' r « ) , 

(13.8c) (5Dlog«) (u , i ; ) = - t r ( y - I v . V 1 ) (u,veT). 
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Indeed, take Z = 5i (T) and C(x) = tr('ux) with M G T i n Lemma 13.6. Then 
((Dv)f = (Df)(u), and so we obtain (13.8a). The second equality follows immedi
ately from the first one. Combining it with (13.6d), we obtain (13.8c). 

Since £ and rj are hermitian and positive definite, we see that H is a Kahler 
manifold with idd log 8 as its fundamental 2-form. For the product space H — 
FLea ^ ' w e n a v e t o t a ^ e * S^Ga " 1°& ^ ( ^ ) - Then (13.8b) shows that the entries 
of the functions (rv)ve& are exactly the rp discussed in §13.4. 

13.8. Take an R-rational basis {eu}ueN oiTv over C and put zv = YlveN ZW£V 
and rv = YlveN TW£V Following the general principle of §13.2, define vector fields 
d/drviy and d/dfvv by 

(13.9) d/dzvp = ^{drvv/dzvp)d/drvu, d/dzvpL = ^{drvv/d~zvp)d/drvu. 

These are well-defined in view of (13.6d). Now, for u = X^GJV UW£V G T^, we have 

(13.10) (Cvf)(u) = -J2 uwdf/drw, (Evf)(u) = - ^ uvudf/drvu. 

Indeed, (Dvf){u) = Y^ueNuwdf/dzvv = X ^ G A r ( A ^ ) ( i O d / / d r w , and therefore 
{Dvf)^(tVwqv) = Y^veN(Dvrv^£vUr)v)df /drvu, which together with (13.6d) and 
(12.12b) proves the first equality of (13.10); the second one can be proved similarly. 

Since the vector fields d/drvu mutually commute, from (13.10) we see that the 
values of C%f are symmetric elements of Mle(Tv, X); the same is true for E%f 
because of the commutativity of the d/drvu. 

Taking the basis {Z'^U^N of Tv dual to {£i/}vejv, we define symbols d/drv 

and d/dfv by 

(13.11) d/drv = J2 e»9/drv», 9/drv = J^ <d/drw. 

These are independent of the choice of bases of Tv. Given g G SP(TV), we define 
g{d/drv) by 

(13.12) g(d/drv)=g#(d/drv,... , d/drv) = YJ9*{^l, • • • , e'^W/dr^ ---drVVp, 

where (i^i, . . . , vp) runs over Np, and define g(d/dfv) similarly. Then we have 

(13.13) g(d/drv)f = ( - 1 ) ^ , C*/], g{d/drv)f = ( - 1 ) ^ , E*f}. 

These follow from (12.8) and (13.10) immediately. 
The notation being the same as in (12.20) and (12.23), we have 

(13.14a) {Dz
pf){Q = (-iyP(E)-\'(d/dfv){p(E)f), 

(13.14b) (Ezf)(() = (-in(d/drv)f 

for every ( £ Z, where C' = cr?(^)C- Indeed, combining (12.23) with (12.17) and 
(12.9), we obtain 

(Dzf)(0=[C,(p^^)(E)-iCr.(p(E)f)]=p(E)-l[^(EK,Cf,(A^)f)}-
Applying (13.13) to the last quantity, we obtain (13.14a). Formula (13.14b) follows 
directly from (12.23) and (13.13). 

13.9. Lemma. Let p(a, b) = det(b)k and f(z) = {Hveek6v(zv)s) ||/,a with k G 
Z a , a G G a , and s G C; let Z be an irreducible subspace of SP(TV) and \bz be as 
in Theorem 12.13. Then for every £ G Z we have 
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{DZJ){Q 

(Ezf)(0 = 

' ipi>z(-kv - sXdC'K • W 1 ) , ) / (Types AT, CT), 

. M-kv - s)({(ClK • az • V a 1 ) , ) / ( T yP e s A B> C B ) . 

(-i)p^z(-s)C(CKriaV)v)f (Types AT, CT), 
^ z ( - s )C(( t (^)A Q / I Q j ? ) t ) ) / (Types AB, CB). 

PROOF. Clearly it is sufficient to consider only Sv(zv)s; so we take a £ Gv and 

drop the subscript v. Put a = , with d of size n. For Types AT and CT 

we have r = (z* — z)~x, and therefore 

p{~)f = 2nkSk+sj-k-s(]a)-s = 2—i"( f c + s ) ( jQ ) - s det ((cz + d)ryk-s. 

Since z = z* — r - 1 , we have (cz + d)r = (cz* + d)r — c. Now C(d/df)g = 0 for 
every anti-holomorphic g, so that for every £' e Z, 

(*) C(d/dr)(p{~)f) =2-nsin^+s\ja)-%'{d/df)det{Ar + B)~ k — s 

where (A, B) = (cz* + d, —c). In view of Lemma 13.3 (1) we can apply Theorem 
12.13 with d/df as V there. (Notice that A • lB = B • lA for Type CT.) Thus the 
quantity of (*) equals 

(**) ^z{~k -s)p{E)f • C ' ( ^ ' '(Ar+B)-1). 

Now we employ (13.14a) in the present setting. Then our task is to calculate 
C^A^iAf^B)-1) with C(u) =((£-1U'tr)-1). Since M - ^ f + B ) " 1 = £(cz* + 
d) • '(cz -f d)~lr, we obtain the formula for (Dz

p /)(C) for Types AT and CT. 
The formula for (Ez f)(Q is simpler. Since ~z = lz — r~l, we see that 8s\\k OL is 

a holomorphic factor times det [(c-lz + d)r — c] s . Applying ((d/dr) to this, from 
(13.14b) and Theorem 12.13 we obtain the desired formula. 

The argument for Types AB and CB is similar but requires modifications. We 
have 1 — z*f = (rj + z*z)rj~1 = rj'1, and so (cz + d)r)~l = czri~l + drj"1 = 
—CT + d(l — z*f) = ( -c — dz*)r + d, and so 

p ( S ) / = 6k+*j-k-a(ja)-* = (ja)-s det(Af + B)-k~s 

with (A, B) = (-c-dz\ d). By Theorem 12.13, £(d/dr)(p(E)f) equals (**). From 
(3.14) we see that A = -(az)*A a(z), and hence - ^ ~ 1 • tA • £(Af + J5)"1 • ^r;-1 = 
£-1A* • (az) • */ia\ which gives the desired formula for (Dzf)((). As for (Ezf)(Q, 
we observe that 1 — lzr = t77~1, and reduce the problem to ((d/dr) det [(—c — d • 
fz)r + d] . Then the formula can be obtained in a similar fashion. 

In the above proof for Types AB and CB we obtained c+dz*. This is not a factor 
of automorphy, but may be called a quasi-factor of automorphy for the following 
reason. Put na(z) =c-\-d- lz. Since Ka(z) is the lower left nxra-block of aB(z) 
with B(z) of (3.10), we can easily verify that 

(13.15) Ka(z) = t(az)Xa(z)) Kap{z) = na(pz)Xf3(z). 

Also we can put C f t r ^ c E z - V a 1 ) * ) = C f t r 1 ^ - V a 1 ) * ) - See [S86, §§5, 6, (5.5) 
and (5.6) in particular] for the formulas essentially of the same nature given in a 
somewhat different manner. 
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13.10. Lemma. The difference rv(avzv) — X(av, zv)rv(zv) - ^ ( a ^ , zv) is holo
morphic in z for every a G Ga . 

P R O O F . Dropping the subscript v for simplicity and denoting by I T the iden
tity map T -* T, we see from (13.10) that Er = - 1 T . Define p : Kc -> GL(T) 
by p(a, 6)it = au • *6. Then r | |pa = A(a, 2) _ 1 r(az) • */x(a, z)~l. Clearly [(p ® 
cr1)(a, 6)(—lr)] = — I T, and hence by Proposition 12.10 (2) we have E(r\\pa) = 
(£,r)||p(g)cri a = Er. Thus ZJ(r||pa - r) = 0, so that r\\pa — r is holomorphic as 
expected. 

13.11. Given p = (pv)v<zSL G Z a with pv > 0 for every v and a representation 
{p, X} of ^o, we denote by ./VP(W, X) the set of all / G C°°(W, X) which are 
polynomials in the components of r = {rv)vea, of degree < pv in rv, with holo
morphic maps of W into X as coefficients. We naturally take pv = 0 if v ^ a'. 
Then, (13.10) together with Lemma 13.3 (3) shows that NP{H, X) consists of all 
/ G C°°(W, X) such that £ ^ + 1 / = 0 for every v G a'. Moreover, by Lemma 13.3 
(2) the components of rv for all v are algebraically independent over the field of all 
meromorphic functions on H. For example, if we view an element / of NP(H, X) 
as a function of zv and suppress other variables zv> for v' G a, ^ t>, then 

Pv 

(13.16) /(*) = £ 
2 = 0 

with a holomorphic map gi : Hv —> Si(Tv, X) for each z, where Pi(zv, u) means 
the element gi(zv) of Si(Tv, X) evaluated at u G Tv. Prom Proposition 12.10 (2) 
we see that NP{H, X) is stable under the maps / H / O Q and / >—> f\\p a for every 
a G Ga . The elements of \JpNp(H, X) are called (X-valued) nearly holomorphic 
functions on 7Y, as defined at the beginning of this section. We note here 

(13.17) With 9i as in (13.16) we have E*" f = {-l)Pvpv\gPv, that is, (E^f)(u) = 
{-l)Pvpv

]-gPv{zv, u) for u G Tv. 

Indeed, EPv killsgi(zv, rv(zv)) for i < pv. Now, by (13.13), [h, EPvgPv{zv, rv{zv))] 
= {-l)p"h(d/drv)gPv(zv, rv{zv)) for every h G SPv{Tv). By (12.28) and Lemma 
13.3 the last quantity is (—\)Pvpv\\h, gPv{zv,*)], which proves (13.17). 

For a congruence subgroup JT of G we denote by Np(r) the subset of Cp(r)n 
J\fp{TL, X) consisting of the functions satisfying the cusp condition, which is re
quired only when G is isogenous to 5Z/2(Q)- (For the precise statement of the cusp 
condition see §13.12 below.) We then denote by Mp the union of Np(r) for all JH. 
Clearly Mp\\p a = Np for every a £ G. Since J\f°(H, X) consists of all holomorphic 
maps of H to X, we see that Nfj(r) = Mp{r) and N° = Mp with the symbol Mp 

of Section 5. 

In this book we consider almost exclusively nearly holomorphic functions on H of 
the above type, which form the most important class from the number-theoretical 
viewpoint. However, we can also determine such functions on hermitian symmetric 
spaces of compact type. For details, the reader is referred to [S87a]. 

13.12. Continuing the discussion of §12.17, let us now consider nearly holomor
phic functions on the upper half plane H. In this case r = (2zy)_1, and so Afp(H, C) 
consists of the functions of the form YX=oV~u9v(z) w * t n holomorphic functions 
gv on H, as we already mentioned in the introduction. Since dr/dz = - ( 4 y 2 ) - 1 , 
we have 
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(13.18) d/dr = -4y2d/dz, d/df = -4y2d/dz. 

We say that an element / of JV^(#, C) n C p ( r ) , for r C SL2(Q) and p(x) = xk 

with A: G Z, satisfies the cusp condition if it satisfies 

(13.18a) For every a G 5L2(Z) we have 
{f\\ka){z) = ELo(7 r2/)~ l /E^Ln c^nexp(27rmz/iVQ) 

with Caun G C and 0 < iVa G Z. 

13.13. Let {p, X} be a representation of &$. So far we considered Dp
pv and £>J 

for a fixed vEa , 0 < p E Z , and ZcSp(Tv). We now generalize this by considering 
the derivatives with respect to the variables on the whole H. We put T = Ylv(EaL Tv 

and Te = HV£8L T£V for e - (ev)vea G Z a with ev > 0; we take ev = 0 if v i a'. We 
then denote by Mle(T, X) the vector space of all C-multilinear maps of T e (that is, 
C-linear on each single factor Tv of Te) into X, and by Se(T, X) the vector space 
of all polynomial maps of T into X homogeneous of degree ev in the variable on Tv 

for each v. In particular we put Se(T) = Se(T, C). Given heSe(T, X), there exists 
a unique element ft* of Mle{T, X) which is symmetric on T*v for every v G a, 
and such that 

h(y) = h+(yv, . . . , yv, yw, . . . , yw, ) 

for y — (yv)vea £ T. This is an easy generalization of Lemma 12.4 (2). For 
g G Se(T) and g G 5e(T, X) we define [g, ft] G X by an obvious generalization of 
(12.8); also we define representations {p <g> r e , Se(T, X)} and {p 0 cre, Se(T, X)} 
of j?o by 
(13.19a) [(p(g>re)(a, b)h](u) = p(a, b)h((tavuvbv)vea), 

(13.19b) [ ( p ^ e ) ( a , 6)/i](u) = p(a, 6)ft((a-1txt, • ^ W a ) , 

for (a, 6) E £o, ft E 5e(T, X) , and u e T. We write these representations simply 
r e and cre if X = C and p is trivial. 

Now we define operators De, D , Ce, and Ee acting on C°° functions on H by 

(13.20) i>e = n „ 6 . ^ . s e = n „ € . ^ . ce = n . e a ^ " , £e = r u ^ -
These send C°°(W, X) into C°°(W, 5e(T, X)) . We then define an operator De

p by 

(13.21) £>«/ = ( / 0 ®r e ) (S) - 1 C e [p (H) / ] . 

Since S e0O is isomorphic to <2)vGa5'et;(r t ;), every irreducible subspace of Se(T) 
has multilicity 1. Therefore, for every ^o-stable subspace Z of Se(T) we can define 
a projection map <pz of 5e(T) ® X onto Z ® X. Then we identify 5e(T, X) with 
Se(T) 0 X by the generalization of (12.19), and define Df f and Ez by 

(13.22) Dz
pf = ^ / , £ Z / = <PzE'f. 

Denoting by TZ and oz the restrictions of r e and oe to Z, we have obvious 
generalizations of (12.21), (12.22), (12.23) and (12.24a, b, c). 

For a, 6 G Z a let us write a < b if av < bv for every v G a, and a < b if a < b 
and a y^b. Then, as a generalization of (13.16), for / G NP{H, X) we can put 

(13.23) /(*) = X>a(*,r(z)) 
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with a holomorphic map ga • H —> Sa(T, X) for each a, where ga{z, u) means 
the element ga(z) of Sa(T, X) evaluated at u eT. Then (13.17) has the following 
generalization: 

(13.24) (E?f)(u) = (H(-l)p'pv\)gP(z, u) (u e T). 
v t'Ga 

13.14. Lemma. Let G be a Lie subgroup of GLn(C) and L the Lie algebra of 
G; let f be a C°° map of an interval (a, b) into G and p : G —> GLm(C) be an 
analytic homomorphism. Then f(t)~1df/dt G L and 

(d/dt)P[f(t)} = p[f{t)}dP\f{tyl df/dt}. 

P R O O F . For a fixed t0 G (a, b) and a small e G R, > 0, define a C°° map 
g : (-£, e) -+ L so that #(0) = 0 and exp(g(h)) = /(*o)_1/(*o + h). Then 

f(to)-lf(t0) = (d/d/i)exp (^(/i))h=0 = limh_o [exp (cj(h)) - l]/fc = c/'(0) G L, 

since # has values in the vector space L. Next, 

p(/(*o + ft)) = p(/(<o))p(exp(0(/O)) = p(/( t0) ) exp {dp(g(h))), 

and hence, similarly, 

jt(p(f(t)))t=t0 =p(f(to))^xp(dp(g(h)))h=0 =p(f(to))dp{g'(0)), 

which combined with the equality f{to)~1f'{to) = </(0) gives the desired result. 

13.15. Proposition. (1) Let p and e be elements of Z a with nonnegative 
components such that pv = ev = 0 for v £ a'. If f G NP(H, X), then Eef G 
A^(W, 5e(T, X)) with qv = Max{pv - ev, 0), and De

pf G Afp+e(H, S c(r , X)) . 
(2) In particular, if f is holomorphic, then 

(13.25) (D«/)(«)(«) = ^ / l „ ( z ) ( u ) + P ; ( r ( z ) , « ) / ( z ) (u € T) 
a<e 

with fta G A/"a (W, 5e(T, X)) and a map Pe
p : T x T -> End(X) which is determined 

by p and e independently of f, and which as a function of {u', u) G T x T is 
homogeneous of degree ev in uv and also in u'v for every v G a. 

(3) Define pe
p(r) G Se(T, End(X)) by pe

p(r)(u) = Pe
p{r, u) for ueT. Then 

P°p+V(r, u)x = [£>v(P;(r, u ) x ) ] M + Pv
p{r, u)P;{r, u)x 

+ [dre(rv • ^ , V^) (p^( r ) : r ) ] (w) for x e X, 

where we view v as an element of Z a such that (v)v = 1 and (v)V' = 0 for 
v' ^ v, and pe

p{r)x is the element ofSe(T, X) such that (jpe
p(r)x)(u) = pe

p{r)(u)x = 
P^(r, u)x. 

(4) Pe
p{au' • lb, tQr1ub'l)p{a, b) = p{a, b)Pe

p{u', u) for every (a, 6) G RQ. 

P R O O F . The assertion concerning Ee f is obvious in view of (13.10) and Lemma 
13.3 (1). Next, take E as / in Lemma 13.14. Since Y2veN uvvd/dzvl/ can be 
written ^2kCkd/dtk with Ck G C and real parameters £&, from that lemma we 
obtain 
(13.26) p(~r1Dvp(E)(u')= dp(CHDvS)(u'), rl{Dvi1){u')) = dp(rv-'u\ *rvu') 

for u' € Tv, in view of (13.6a, b). Define Pv
p :TxT -+ End(X) by 

(13.27) PZ(r,u)=dp(rv-tuv,trl.uv). 
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Then (13.26) together with (12,18) shows that 

(13.28) (DPtVf)(uf) = (Dvf)(uf) + Pv
p{r, u')f (u' G Tv). 

If / is a polynomial in r of degree < p with holomorphic coefficients, then (13.6c) 
shows that Dvf is a polynomial in r of degree < p-j-v. The same is true for Dp^vf, 
since Pp (r, u) is linear in r. By Proposition 12.10 (1) and induction, we see that 
De

pf G Np+e{H, Se(T, X)). We prove (2) by induction on £ v € a e „ . Our assertion 
is trivial if e = 0. Now fix one v, and assume (13.25) for some e; put h — Yla<e ^a-
and define pp(r) as in (3). By Proposition 12.10, Dp+Vf = Dp®Te^v(Dpf), and so 

(D^f){u') = (Dp®re,vh)(uf) + [2W,*(PpM/)]K). 
Here we view pe

p(r)f as an element of C°° (« , Se(T, X)) by the rule (pp(r)f)(u) = 
p«(r)(u)/. Now V e , , / i G E 6 < e + „ ^ b ( « , ft^, 5e(T, X))) by (1). By (13.28) 
we have 

[Dp*T'lV(pe
p(r)f)](u') = Dv(Pp;(r)f)(u') + P^Te(r, u ')(p«(r)/) 

= P;(r)(Dvf)(uf) + Q(r,uf)f 

for u' G Tv with an element Q(r, u') of Si(X, Se(T, X)) given by Q(r, ?z')x = 
Dv(pp(r)x)(u /) -f Pp0Te{r, uf)(pe

p(r)x) for x G X Since pe
p(r) is homogeneous of 

degree e in r, from (13.6c) we see that Dv(pe(r)) is homogeneous of degree e-\-v 
in r. Also, P^Te(r, u') is bilinear in (r, i / ) . Thus we obtain (13.25) for Dp+Vf with 
Pp+Vir, u)x = (<3(r> uv)x)(u), that is, 

P p
e + > , u)x = [!?,,(P;(r, w)x)]( t i v)+[P pV e (r , u)(p«(r)x)](ti) (uGT, X G X ) . 

This proves (2). To prove (3), take h G 5e(T, X); then 

[d{p®re)(A, B)h](u) 

= (d/dt)t=o{p(exp(tA), exp(*J3))/i(* exp(L4) • u • exp(tB))} 

= dp(A, B) • h(ti) 4- [dre{A, B)h] {u). 

Take h = pe
p(r)x. Then 

[^®r«(r , t i ) (^(r)x)](u) 
= Pv

p{r, u)(pe
p(r)x)(u) + [dr e (r , • *uvi Vwuv)(p£(r)x)](u). 

This proves (3). Finally, combining (13.24) and (13.25), we obtain (EeDe
pf)(u, w) 

= cP*(w, u)f(z) with c = Hvea(-l)evev\. Now replace / by f\\pa with a G Ga . 
By Proposition 12.10 (2), {EeDe

pf)\\p®re®ae a = EeDe
p{f\\pa), and hence 

P p
e K U ) ( / | | P a) = p(AQ, /iQ)-1Pp

e(AQ^ • Va , 'A" V a *)(/ ° a) 

for every holomorphic map f :H —> X. Therefore 

Pp
e(w, w)p(A a , Pa)'1 = P(AQ , ^ a ) _ 1 P p ( A a ^ ' V a , ^ a ^ a *)> 

from which we obtain (4). 

13.16. Lemma, Given {p, X} as before and f G C°°(7i, X) , /or it, it' G Tv 

wz£/i a fixed t ;Ga ' , we Aave 

[(DP0<7V<VEV - £„/?„,„)/] (u, «') = P ; « «)/, 
(Z-p.u — MPyV)f = Bp,vf 
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with a constant element Bp,v of End(X) depending only on p and v, where 
Lp,v = —0Dp®(Tu.vEv and MPtV = -9EVDP,V with 6 of (12.33), and u (resp. 
u') corresponds to the operator Dv (resp. Ev). 

P R O O F . By (12.12b) and (12.18) we have 

(Dp®av,vEvf)(u, u') = {(p®<Tv)(S)-lDv[p(E)Dvf(u')]}(u) 

By (13.26) the first term of the last line equals P^{r, u){Evf){u'). On the other 
hand, by (13.28), 

(EvDp,vf)(u, u') = Ev[(Dvf)(u)](uf) + Ev[P;{r, u)f](u'). 

By (12.12b) the first term on the right-hand side is (DvDvf)(u, ^u' • tn)1 and by 
(13.10) the second term equals -Pp{u\ u)f + P^r, u)(Evf){u'). Since (DvDvf) 
(u, u') = (DvDvf)(uf, u), we obtain the first formula, which immediately implies 
the second formula with Bp,v = —6Pp. 

13.17. Lemma. Let {p, X} and {cr, Y} be representations of &o, and let 
f e C°°(W, X) and g e C°°(H, Y). Then for ueT we have 

(13.29) D^a(f®9)(u)= ] T (l)(D;f)(u)®(Db
ag)(u), 

where the sum is extended over all a, b 6 Z a with nonnegative components such 

that a + b = e, and ( 6 J = n u € a ^ Vr SimilarlY if X = Y = End(W), 

p(a, b)x — po(a, b)x for xeEnd(W) with a representation {p0, W}, and a is trivial, 
then the above formula holds with ® replaced by multiplication in End(W). 

P R O O F . Since Cv is given by (13.10), for fx e C°°{H, X) and 9l e C°°(W, Y) 
we have Cv(fi <g> 9\){u) = (Cvfi){u) <g> gx + / i 0 [Cvgi)[u) for u eTv, and 

Cv<Cv(fi ®9i){u, u') = (Cv>Cvh){u, u')®9l + (Cv/i)(w) <8> {Cvigi){u') 
+ {Cv,h){uf) ® (Cv9l){u) + / i ® {CV'Cvgi){u, u') 

for u £TV and u' e Tv*. Applying the Cv successively, for u eT we find that 

ce(h ®5i)(«) = £ (^)(^°/1)H®(c6
5l)W-

a+6=e ^ ' 

By (13.21), Dlm{f®g){u) = (p ® a)(ErlCe(p(E)f ® a(S)g)(t^1ur]-'), and 
therefore taking f\ = p ( ~ ) / and g\ = cr(£)g, we obtain (13.29). The case X = 
V = End(VK) can be proved in the same manner. 

14. Arithmeticity of nearly holomorphic functions 

14.0. Before discussing our problems in the general case, let us first illustrate 
the main ideas by sketching the proof of the following statement in which we take 
G = SL2(Q): 

Let f e MkiQab) and g e *4/c+2p(Qab) with positive integers k and p. Let K 
be an imaginary quadratic field embedded in C, and let r G H H K; suppose that 
g has neither pole nor zero at r. Then ( 7 T _ P ^ / / ^ ) ( T ) belongs to K^, where 6p

k 

is the operator of (12.39), which equals Dp
p with p(x)=xk as explained in §12.17. 
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This is one of the easiest cases of (0.6) in the introduction, formulated with K^ 
instead of Q. Our proof is by induction on p. We may assume that f(r) ^ 0. 
Indeed, if f(r) = 0, then we take f\ G .Mfc(Qab) so that fi{r) ^ 0, and put f2 = 
/ + / i - Then our assertion on {^~p8p

kf /g){r) follows from that on {n~p8p
kfv/g)(r) 

for v — 1, 2. We first observe that the group { a G SL2(Q) \ OL(T) = r } contains 
an element, say a, of infinite order. Assuming / ( r ) ^ 0, put h = (f\\ka)/f. 
Then h is a Qab-rational modular function, so that h(r) G i\ab by classical theory 
of complex multiplication, which is actually a special case of Theorem 9.6. Now 
we easily see that 8k(rs) = r's 4- r8ks for any meromorphic functions r and 
s, where r' = dr/dz. Applying this principle to the equality f\\ka — hf, we 
obtain (8kf)\\k+2a = Sk(f\\ka) = 6k(hf) = tif + h8kf. Put A = j Q ( r ) . Then 
A is an eigenvalue of a, so that A is an element of K that is not a root of 
unity. We have also {f\\ka)(r) = \~kf(r), h[r) = \~k, and (($*/)||fe+2 a) (r) = 
A-*-2(«*/)(r) . Therefore (\-2~l)(6kf)(r) = \khf(r)f(r). Now K~lh' G ^ ( Q a b ) , 
and hence (TT~1h'f/g) G -4o(Qab), if 9 £ -4fc+2(Qab) and g(r)• =̂  0. We have thus 
(K~l{hf)/g){r) = Afc(A-2 - l ) - 1 ^ - 1 ^ / / ^ ) ^ ) G Kab, which proves the case 
P = l. 

If p > 1, we first observe that <5£(rs) = XZa=o ca(^or)(^fc °s) w i t n ca = 
p\/[a\(p — a)!], and so 

(^ / ) | | f c + 2 p a = ^ ( / | | f c a) = *£(ft/) = h6lf + E ^ i c a ( W ( * r V ) -

Evaluating this equality at r, we obtain 

(*Z/)M(A-2* - lJA"* = E L i ca(«gft)(r) • ( ^ r V ) ( r ) . 

Take qa G .42tt(Qab) so that qa(r) ^ 0. Then 

^ W M ^ ) = (X~2p - 1 )"^* E L i ca(7T-^h/qa)(r) • (n^qa^f/g)^). 

Since #/ga G A-a+2P(Qab), our induction shows that (7ra~pqa8P
:~af/g)(r) G i^ab-

As for the other factor, we have 7r~a^/i = 7r1-a^""1(7r-1A /), and Tr"1/*' G *42(Qab). 
Therefore our induction is applicable to that factor. We can thus conclude that 
*-p(6p

kf/g)(T) e Kah. 

We shall prove in Theorem 14.7 below a generalization of the above statement, 
essentially by the same idea, and then in Theorem 14.9 a similar but much stronger 
result. Since we have to deal with vector-valued or matrix-valued functions, our 
treatment will become more involved than the above proof. The generalization of 
the fact K~xh! G *42(Qab)> given in Proposition 14.5, is highly nontrivial in Case 
UB. 

14.1. Thus our principal interest in this section is in the nature of the value of 
Dp f at a CM-point of H. We start with some results without arithmeticity. 

Let {p, X} be a representation of RQ. Given h G Se(T, Se(T, X)) and (u, w) G 
T x T, we define hu,hw G Se(T, X) by hu(w) = hw{u) = h(u, w). Then we obtain 
p, q G 5e(T, Mle(T, X)) defined by p{u) = (hu)* and q(w) = {hw)*. Moreover, 
p* and q* are meaningful as elements of Ml€(T, Mle(T, X)). We can easily verify 
that p* = q*\ we then denote this same element of Mle(T, Mle(T, X)) by /i**, 
and define 0e

x : Se(T, Se{T, X)) -> X by 

(14.1) @x h = J2 ^** ( a ^ i > a^2» • • • 5 &i/i 5 ̂ 2 5 • • • ) • 
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Here we write Te = Ylve& T£v = Ylili î» lel = J2vea e^> where each T? is identified 
with some Tv\ {aUi} and {bUi} are dual bases of Tt; the summation is over all the 
elements {(<v,, btyi)}^=1. Then we can easily verify that 

(14.2) 0% o (p®re®cre)(a) = 0ex °{p®o-e®re)(a) = p{a)o9e
x for every a G SIQ. 

Given g G C°^{H, S€(T, X)) , we can view De
p^ae g as an element of C^°(H, 

Se(T, Se(T, X))). Thus 0e
xDe

p®ai g is meaningful as an element of CX{H, X). 

14.2. Proposition. Let {/?, X} and {po, X} be representations of &o such 
that p(a, b) = det(b)kpo(a, b) for (a, b) G £o with k G Z a . Let f be an element 
of Afp(H, X) such that f\\pj = / for every 7 in a subgroup r of Ga . Then 
there exists an integer N(po, p) that depends only on po and V with the following 
property: if kv > N(po, p) for every t )Ga' , then 

e<p 

with holomorphic maps ge : H —> 5e(T, X) such that ge\\p®ae 1 = 9e for every 
7 G JT, where e runs over the elements of Z a such that 0 < ev < pv for every 
v G a. Here a' = { v G a | Gv is not compact } as already defined in (12.5). 

P R O O F . We prove this by induction on |p|. Our assertion is trivial if p = 0. 
Fixing e, put TTQ = p0 ® ae and 7r(a, 6) = det(6)fc7ro(a, &)> and Ye = Se(T, X). 
Then d7r(x, y) = dn^x, y) + 5Zvea ^ * t r ( ^ ) ^ 5 where ly is the identity element 
of End(Fe). Define Pe

p and Pv
p by (13.25) and (13.27) (with Ye as X there). Then 

P£(r, u) = P^0(r, u) + ]£v fcv • t r ^ u ^ l y . Now we have 

(14.3) PZ{w,u) = Y,v<eku<l^u) with ^ e 5 e ( T , 5 e(T,End(y e))) 
depending only on po &fld e; moreover qe(w, u) = tr( tit;u)ely. 

We prove this by induction on \e\ — J2veaev. If |e| = 1, we have P%{w, u) — 
P%(w, u) with some v, and <7e(^ ^) = tr^wvuv)\Y\ thus (14.3) is true if |e| — 1. 
Assuming (14.3) for some e, define p%(w), qv{w) G Se(T, End(Fe)) by p£(iu)(u) = 
P%{w, u) and qly(w)(u) = ^ ( w , u) for w, u e T. Then, by Proposition 13.15 (3), 
for y G ye we have 

P$+V{r, u)y=[Dv{Z„<ek''qv{r, u)y)](uv) + I»{r, u ) £ , < e A ; ^ ( r , u)y 

+ [dre(rv ^uv, trvuv){52l/<ekt'qt/(r)y)](u). 

Thus we easily see that P^+ r(r , u) = £„<«,+„ * ^ ( r > u) w i t h 5^ € ^ ( T , Se(^, 
End(ye))) depending only on po and e. Moreover se+v(r, u) — tr(*r'vuv)qe{r', u). 
Thus we obtain (14.3) for P^ + v . 

Next, define Ae, Be>l/ G End(Fe) by 

(Ac<p)(«/) = # Y ( [ ^ K *)*>](*)) aild (Se.^)(^) - ^ ( M ™ , *H(*)) 
for v? G Ye = Se(T, X) and w eT, where [g(iu, *)^](*) is an element of 5e(T, Ye) = 
Se(T, Se{T, X)) whose value at (ui, u2) G T x T is [g(u;, ui)^](u2). We have 
ge(w, u) = tr(^u'w)ely, so that (12.10) implies that (Bem€ip)(w) — tp{w), that is, 
Be.e = U'- Thus Ae = kelY -f X^l/<e kvBeM. Observe that Ae is invertible if kv > 
M(po, e) for every v G a' with an integer M(po, e) that depends only on po and e. 
Observe also that if a map g :H —>Yeis holomorphic, then D%g — Yla<e ^a ( r) w ^ t n 

holomorphic maps ha : H —> Sa(T,Se(T, Ye)), and 0e
xD%g = Xla<e^x^a( r)- By 
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(13.25), he(r) = P%(r, *)g, and so 9e
xhe{r) = (Aeg)(r). Now we consider a given 

element / of Afp° of our proposition. Then / = ^2a<p£a{r) with holomorphic maps 
£a :H -> Sa(T, X) as noted in (13.23). By (13.24), £p = cE^f with c G Q x , 
and so £p\\p^apl — £P for every 7 G r by Proposition 12.10 (2). Define an 
integer N(p0) p) by N(p0, p) = Maxe<p{M(p0, e)}. Suppose fc^ > N(p0, p) for 
every v G a' and put g = A~l£p. (So we take p as the above e and consider P% 
with 7r = p0crp . ) Prom Proposition 13.15 (4) and (14.2) we see that AP commutes 
with (p0crp)(^o), and hence g is a holomorphic map of H into SP(T, X) such 
that to g\\p®(jvl — 9 for every 7 G R Now the p-th degree part of 0p

xDp
p^aPg 

is (i4pp)(r) = tp{r), so that / - 6p
xDp

0aPg G E a < P ^ a ( « > * ) • Applying our 
induction to the last difference, we complete the proof. 

14.3. Lemma. Af^{r) is finite-dimensional over C for every congruence sub
group r of G. 

PROOF. We can find a positive integer K and a nonzero element h of MKSL(r') 
with a congruence subgroup r' contained in R Such an h can be obtained by 
h — Y[veBL<tek{Qv) with Qv of Proposition 11.14. Take a positive integer m so 
that vriK > N(p, p) with N(p, p) as in Proposition 14.2. Given / G A/£(JT), we 
have hmf G Np,{r'), where p'(a, b) = p{a, 6)det(6)m*a . By Proposition 14.2, 
hmf = Ze<P

0exDp>®<re9e with ge G M^^{r'). Since AV®*e ( O is finite-
dimensional, we see that hmf belongs to a finite-dimensional vector space over C, 
which implies our lemma. 

14.4. To consider arithmeticity, we go back to the setting of Sections 5 and 11, 
and note that Tv has a natural Q-structure. In each case the structure can be 
obtained by taking a natural coordinate system of Tv determined by the matrix 
entries. In Case UB, as already noted in the proof of Lemma 4.13, the action of 
G + on H is Q-rational. 

Let us now take a Q-rational representation {a;, X} of £, where 

(14-4) & = l\vebGLnv(C). 

Since £0 C .ft, we can speak of the restriction of u; to £0. Taking this restriction 
to be p, we can define various objects with respect to p. To define arithmeticity, 
however, we have to consider them relative to u>. First of all, we can express an 
element of & in the form (a, b) with a G WveSiGLrriv{C) and b G nve&GLnv(C); 
for Type C we have A = &o and 00 = p, and we take a = b and mv = nv = n; for 
Type A if a = (av)v Gb £ &, then a = (avp)ve& and 6 = ( a v ) u e a ; see §5.1 for our 
convention. We can then define u®re and o;0cre by (13.19a, b) with u in place of 
p. We denote the symbols De

p, Dz
p, Np, etc. by D£, £>£, A/J, etc. Then (12.21) is 

true for a in G = U(T) or G = U(rjn) in the unitary case with Z C Se(T) and CJ 
in place of p. This is because (12.1a, b) are true for such an a, and so the proof 
of Proposition 12.10 is valid. If a;(re) = det(x)fc with k G Z b , then we replace the 
subscript LJ by k. 

Let / G C°°(W, X) and w G WCM- Then we say that / is u>-arithmetic (or 
simply arithmetic, if a; is clear from the context) at w if ^u{w)~lf(w) is Q-
rational. Then we denote by A/£(Q) (resp. A/£(r, Q)) the set of the elements 
of A/J (resp. Afp(r)) that are cj-arithmetic at every point of HCM- If {̂ > -X"} is 
clear from the context, we simply call an element of J\f% arithmetic if it belongs to 
A/£(Q). Prom Proposition 11.5 (2) we see that if / G A/£(Q) and a G <5+, then 
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fillet G -A/£(Q). For Type C we have u = p, and so A^(Q) is meaningful. For 
Type A, however, we cannot speak of A/"^(Q) for the reasons explained in Theorem 
11.17. 

14.5. Propos i t ion . For each v £ a.' define a representation { TV, S\{TV) } of & 
by [rv(a, b)h](u) = hi^avuby) for h G S\{TV) and u GTV. (This is a special case of 
(12.7a).) Then n^Dyf G ATv(Q) f°r every f G *40(Q). 

P R O O F . By (12.14a), Dvf G ATv. Thus the main point of our lemma is the Q-
rationality. In Cases SP and UT we can put / = gi/go with g0, gx G . M ^ Q ) , 0 < 
/i G Z, since A)(Qab) is generated by the quotients of (7.8). Let zv

jk be the (j, fc)-
entry of zv. Then ^~19odf/dz^k has a Fourier expansion with coefficients in Q, 
as we already observed in (9.9) in a similar setting. This means that TT~lg^Dvf G 
Mt(Q) with f (a, b) = det(b)2^rv(a, 6). Thus ^~lDvf G ^ ( Q ) . 

In Case UB the matter is not so simple. We employ the notation of §11.6; in 
particular we consider the embedding e : H —> 9)d of (11.8). Also, let F, (Az, Cz), 
and $z be as in §11.1. Take a point z0 of H generic for the elements of Ao(r, Q) 
over Q in the sense of Section 7. Then $ZQ is algebraic over the field of mod
uli of (AZo1 CZO), which can be generated by f(e(zo)) for all f G ^ ( F 1 , Q) fi
nite at £(20), where F 1 = Sp(d, Z). Therefore we can find elements fi, . . . , fp 

of ^ ( F 1 , Q) such that fi o e, . . . , fp o e are algebraically independent, where p 
is the complex dimension of H. Put g3 = fj o e. By (11.12), Qj G AO(Q). Then 
d/dgi, . . . , d/dgp are well-defined derivations of AQ(Q), and for / G -4o(Q) w e 

have Dvf = Yl*j=i(df/®9j)Dv9j- Since df/dgj G Ao(Q), our task is to show that 
Dvgj G ATv(Q), or rather Dv(f o e) G ^4Tv(Q) for every f G 2lo(Q) for which 
f o e is meaningful. Fixing v, put m = mv and n = nv. We may assume that 
T = diag[£i, . . . , Cr] w ^ h ^ £ Kx such that ££ = — ̂ . Our i? defines an embed
ding of F into R, and in §3.5 we fixed an embedding of K into C that extends v. 
For x e K denote by xv the image of x by that embedding. By (4.17) we may 
assume that i^v > 0 for /i < m and i^v < 0 for fi > m. Take real numbers 
Si, . . . , sr so that s^ = i^v for fi < m and s2^ = — i^v for fi > m. Then we can 
take diag[si, . . . , sr] as Qv of (3.34). Put [F : Q] = £. For each // take Q-bases 
{afJLj}tj=1 and {a^j}j=i of F so that 

(14.5) TrF/Q(Cla,3af^k)=63k/2. 

Let {e^}^- ! be the standard basis of K\\ put h^ = a^e^ and / i ^ = ^ a ^ e ^ . 
Then the elements 

ftn? • • • 5 ^i t3 » ^ r i , • • • , hrt, hn, ... , / i l t , , / i r l , . . . , h!rt 

form a Q-basis of K\. Define g : K\ —» Q^d so that the image of these by g is the 
standard basis { e^ } k = 1 of Q ^ . Then (11.5) is satisfied. Let pz and K(Z) be as in 
(11.9) and (11.7). From (4.19) and (4.22) we see that 

Oy Zy Cy 
[Pz{ei)v '" Pz(er)v] = 

Zy Oy Cy 

where b = diag[si, . . . , sm] and c = diag[sm+i, . . . , sr]. Now we have C d = (C r ) a , 
and we identify a with {1, . . . , t} so that our fixed v corresponds to the index 1. 
Focusing our attention on the first r components of the vectors pz(g~1{ek)) and 
employing (4.10), (4.12), (4.18), (11.6), and (11.7), we see that 
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K(Z)S(Z) 
0 

ZvP 
* 

Zvl 
7 
* 

K{Z) ~lzvp' 
Zvl 

-y 
* 

with (mxmt)-matrices /?, (3' and (nxnt)-matrices 7, 7' whose entries can be given 
explicitly in terms of the conjugates of sM, a^-, a^-, and £M. Now for a function 
-0 on H denote by dvi/j the holomorphic f-part of the 1-form dtp; in other words, 
dvij) = {Dvip)(dzv) (see (12.13)). Then 

AC • dve - tK = dv(Ke) • */c — dvK • *(«£) 

<M7 • V - V ' *7) ' '*« - ^ ( 7 • V + V • '7) *" 

0 0 0_ 

Since this matrix is symmetric, using the explicit forms of /?, /?', 7, 7 ' and (14.5), 
we find that 

[ 0 dzv (T 
/c • dve -tK = i ldzv 0 0 

[ 0 0 0_ 

Defining D on fid by df = (Df)(dZ) for the variable Z on fid, we have dv(f o 
e) = ((Df) o e){dve). Put X = { £7 G C^ | *[/ = [7 } and view it as the (holo
morphic) tangent space of fid- Define Si(T)-valued function Y on fid by Y(U) = 
n^lDj^P^UP-1) forJJ G T with P as in §11.8. Then Y(U) for an algebraic 
U is an element of 2lo(Q). Let Sv, Rv, and W be as in (11.13); put A{z){U) = 
y(£(z) ) (^ (z )C/W(z)) and JR = diag[5„, Rv]vea- Then 

Tr"1 Z\(f o e)(dzy) = ir-ldv(f oe)= A^W-1 • 4(P o £ ) d ^ ( P o e)W~l) 
U iJyQiZylLy 

Fly ' CLZyDy 

0 
0 
0 

Since W has entries in AQ(Q), A(W)(U) for w G WCM and algebraic U is alge-
0 u (T 

braic. Put B(Z)(TX) = A(z) 
0 

0 0 
0 0 

for u G Tv. Then 7r"1Dt;(f o e){u) 

iB^SyuRy). Thus for it; G 7YCM we have 

(*) T r - ^ q M u ; ) - 1 ^ 

We saw in (11.16) that p ^ t y ) " " 1 ^ ^ ) and p ^ w ) - 1 ^ ^ ) are algebraic for every 
w £ WCM where Foe and W are finite and invertible. This means that the quantity 
of (*) for algebraic u is algebraic. This proves that n"1Dv(f o e) G ATV(Q) as 
expected. 

14.6. Lemma. Let {a;, X} and {£, Y} be Q-rational representations of &, and 
let <p be a C-linear map of Y into X such that ipC(a) = w{ot)ip for every a G £. 
Define a map tpe : Mle{T, Y) -> Mle(T, X) by ipe(h) = (poh for h G Mle(T, Y). 
Then the following assertions hold: 

(i) ipe o (C0Te)(») = (a;(g)re)(a) o <£e and (fe o (C®cre)(c0 = (u;<g)ore)(a:) o ipe for 
every a e i 

(ii) ipeCeg = Ce(ipg), veEeg = Ee((pg), and <peD%g = D%((pg) for every g G 
C°°(W, Y). 
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(iii) ^CQ C CO;, <PMQ C MU;, and ipAc, C A , . 
(iv) If (p is Q-rational, f G C^, and / is (-arithmetic at w, then ipf is 

uo-arithmetic at w. 

P R O O F . Assertion (i) follows from (13.19a, b), and the first two equalities of (ii) 
from (13.10). Employing these and (12.17) (or (13.21)), we obtain the last equality 
of (ii). Assertions (iii) and (iv) follow immediately from our definition. 

14.7. Theo rem. Let Z be a R-stable subspace of Se(T). If f G A*;(Q)» then 
7r~\e\D%f is arithmetic at every CM-point where f is finite. 

P R O O F . Taking (^2 as (/J of Lemma 14.6, we see that it is sufficient to prove 
the case Z = 5C(T), that is, the case D%f = DeJ. We take X = C m . Let g 
be an m x m-matrix whose columns are all equal to / . Define a representation 
{V>, End(X)} of .ft by ip(x)y = uj(x)y for y G End(X). Then our question can 
be reduced to the nature of D^g. Now given w G Hcu where / is finite, take 
R — {Rv)V£a. as in Proposition 11.14 (resp. Proposition 9.11) in Case UB (resp, 
Cases SP and UT), so that the Rv are finite and invertible at w\ here we take the 
columns of Rv in Aav(Q) with crv(x) = xv. Put A\ = LO(R) and A2 — cA\ -f g 
with c G Q. Then A\ is finite and invertible at w\ we can also take c so that A^ 
is invertible at w. Since g = A2 — cA\, it is sufficient to prove the arithmeticity 
of DjpA at w for every A G A/,(Q) that is finite and invertible at w. Fix such 
an A and take (Y, h) as in §4.11 such that w is the fixed point of h(Yu)\ take 
also (3 G Yu as in Lemma 4.12 and put 7 = h(/3). Now our method of proof is an 
adaptation of that of §14.0. Put B = A-l{A\\^-y). Then A| |^7 = AB and B has 
entries in ^4o(Q)> a n d so B(w) is algebraic. Since ^w = w, we have 

(14.6) B(w) = A{W)~1UJ(M1(W)-1)A(W). 

By (12.21) we have ( £ > ^ ) | | ^ T e 7 = £ £ ( 4 ^ 7 ) = ££(AB), and hence, by Lemma 
13.17, for u G T we have 

(14.7) o;(M-1)(I?Si4)(*A-1uM-1)= £ ( * ) (DSA)(u)(D?J3)(u), 

where ^ denotes the trivial representation of £. Put 

Ra(u) = 7r-WA(w)-l(Da
u,A)(w)(tp^upz1), 5 6 (u )=7r - l b l (Df J B)H( t p->p- 1 ) , 

where ' p ^ u p " 1 = ( tp^(w)-1u t ,p„(u))-1) t ) 6 a for u = (u„)„ea € T. Then B(w)- 1 

times (14.7) gives 

(14.8) Re(tCuO-B(w)-1Re(u)B(w)= ]T (*) B^-^MS^u) . 

Here £ = (p«(w)"Vt;(7> w ) - 1 ? ^ ) ) ^ and £' = ( p ^ M ^ A ^ , w ^ p ^ u ; ) ) ^ . 
Since A G A/>(Q), we see that ^ ( w ) - 1 ^ ^ ) is algebraic. Therefore our task is 
to prove the algebraicity of Re(u) for algebraic u. We are going to prove this by 
induction on |e|. Since jw = w, Proposition 11.5 (2) shows that £ and £' are 
algebraic. Also, the linear endomorphism R(u) »-> R^^uQ of Se[T, End(X)) com
mutes with another endomorphism R i-> B{w)~lRB(w). Now we can choose 7 so 
that (C'^C)®'6' a n d -B(^ ) - 1 ®£(W) have no common eigenvalue, as will be shown 
at the end of the proof. Take any algebraic u. By the induction alssumption, Ra{u) 
on the right-hand side of (14.8) is algebraic. As for Sb{u), we have 6 ^ 0 , so that 
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we have Db
LB = D^v{DvB) for some c and some v £ a. By Proposition 14.5, 

the entries of TT~1DVB belong to v4Tv(Q). Since \c\ < |e|, the induction assumption 
implies the algebraicity of 5&(u). Thus the sum on the right-hand side of (14.8) is al
gebraic. Viewing (14.8) as a system of linear equations with Re{u) as the unknown, 
we obtain the desired algebraicity of Re(u). Notice that if |e| = 1, the right-hand 
side of (14.8) consists of a single term n~1B(w)~1(DvB)(w)(tpvp(w)~1upv(w)~1) 
with u £TV for some v. Therefore Proposition 14.5 gives its algebraicity. 

To prove the existence of 7 = h{(3) with the desired property on eigenvalues, 
consider # and (Ku $%) defined for the present Y as in §4.11; put [Y : Q] = 2d. Then 
there exist d maps y^y% for 1 < i < d of Y into C such that y\, . . . , yd are the 
eigenvalues of $(y)\ moreover these maps together with their complex conjugates 
form exactly the set Jy of §11.3. By (4.37) and (4.40) we see that a i , . . . , a^ are 
exactly the eigenvalues of M(/i(a), w) for every a £ Yu. Clearly we may assume 
that LJ is irreducible. Then we can find a homogeneous polynomial representation 
cr of R such that a(a, b) = det(a)^idet(6)i/a;(a, b) with //, v £ Z a . Prom (14.6) 
we see that B(w)~1^B(w) has the same eigenvalues as a[M7(w)) <S>a[M1(w)). 
Therefore each eigenvalue of B(w)~1 ® B(w) is of the form Yii=i Pi* w ^ n integers 
Xi such that £Zt=i ^i = 0- O n t n e °ther hand each eigenvalue of (C'^C)0 '6 ' is of the 
form Yli==1(3~f2i with nonnegative integers fii such that Yli=i fa ~ 2|ej. (In Case 
SP we have Av(7, w) = ^ ( 7 , w) and £' — C> ^ut still our statements are valid.) 
Suppose that B(w)~1 <g> B(w) and (£' <g> £)®'el have a common eigenvalue. Then 
there exist d integers «;$ such that J^Ji==1 /?^* = 1, X^ = 1 «z = 2|e|, and |«i| < AT 
with a positive integer AT depending on u> and e. Now the map a >—> (c*i, . . . , a^) 
sends y n into a dense subset of Td , since Y" is dense in Cd and x p /x £ Yu for every 
a: € Yx. Therefore we can find an element /? of Yu such that n£=i # * 7̂  1 for 
every {tti} as above. This proves the desired fact, and our proof is now complete. 

14.8. Propos i t ion . Let (V, tp) be a model of T/H with the properties given in 
Theorem 9.1 in Case UB; suppose that T C SU(T). Then the following assertions 
hold: 

(1) If 0 7̂  h£AK,h(r, Q) with /c £ Z, then div(h) considered on V is Q-rational. 
(2) There exist a positive integer m and a nonzero element g £ Amh{r> Q) such 

that div(p) considered on V is Q-rational. 

PROOF. Let p be the complex dimension of H. Take p algebraically indepen
dent functions fti, . . . , hp in Ao{r, Q). Let zv

ah be the (a, 6)-entry of the matrix 
zv which is the v-th component of the variable z = (zv)ve8L £ H. Put 

q = 7r~pd{hi, . . . , hp)/d(zu . . . , zp), 

where z\, . . . , zp are an arbitrarily fixed arrangement of the variables zv
ah for all 

v £ s! and all (a, b). Prom Lemma 3.4 (2) we see that q2 £ A^(r), where £(x) = 
det(x) r b . Now we consider Dvhi for v £ a'. By Proposition 14.5, 7r~1(Dvhi)(w) 
(tpvp(w)~1upv(w)~1) is Q-rational for every Q-rational u £ Tv and for every 
w £ WCM where /i* is finite. Prom this we see that q2 £ A^(Ty Q) with £(x) = 
Uve^ det{xvp)2nv det{xv)2rn". By Proposition 11.17 (2), ^ ( Q ) = q • -4C(Q) with 
a certain constant q. Thus <\~lq2 £ A-b(^, Q)- Now div(g) considered on V is 
the divisor of dh\ A • • • A dhp, which is Q-rational. Taking g = q_1g2 , we obtain 
(2). Then assertion (1) can be proved in exactly the same fashion as in the proof 
of Proposition 9.8 (1). 
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P R O O F OF (11.19). Let h = l\vehdet(Rv)K with Rv as in Proposition 11.14. 
Then 0 ^ / i G AKb(r, Q) with a suitable r as in Proposition 14.8. Then (11.19) 
can be proved by the same technique as in the proof of Theorem 9.9 (1), (2). 

14.9. T h e o r e m . (1) Let W be a dense subset of H contained in HCM (see 
§11.1), and {a;, X} a Q-rational representation of A. If an element f of Af£ is 
uj-arithmetic at every point ofW, then f G A/£(Q). 

(2) Let Z be an irreducible subspace of Se(T). Then 7r~^D^f G A / ^ Z ( Q ) 
and n^Ezf G K'®*Z(Q) for every f G A/£(Q), where \e\ = £ . € a ^ and p'v = 
Max(pv - ev, 0). 

P R O O F . Fix p\ let A/̂  be the set of all / G A/J that are ^-arithmetic at every 
point of W. Put ((a) = det(a)Khuj(a) for a G R with 0 < « G Z. Let A/£ (resp. 
jVc*(Q)) be the set of all h G N% of the form 

(14.9) h = 52s<p*-W0xDl*a.9s 

with gs G M^^ (resp. gs e M^a
s{Q))- By Proposition 14.2, J\IJ = A/£ if K 

is sufficiently large for every v G a'. Fix such a tt. By Proposition 11.15 we see 
that N£ is spanned by A/£ (Q) over C. By Theorem 14.7 and Lemma 14.6 (iv), 
n~^9xD^aa gs is ^-arithmetic at every point of HCM for every gs G M^a

s{Q), 
and hence A/J (Q) C A/j?(Q) C A/£. Let us now prove that A/£ C A/£ (Q). Take a basis 
B of C over Q including 1; let h G A/2. Then /i = J2cGC ckc with a finite subset C of 
£ and kc G A/£(Q). For every w G W we have ^ ( w ) - 1 / ^ ) = £ c c ^ ^ ) " 1 ^ ^ ) . 
Since ^p^(w)~1h(w) and ^ ( ^ ) _ 1 f c c ( ^ ) are algebraic, we have kc(w) = 0 for c ^ 1, 
and hence h(w) = k\(w) for every it; G W. Since W is dense in H, we have h = h\. 
This proves that A/<f = A/£(Q) = A/£(Q). To show that A£ C A#(Q), take any 
u>o € HCM and take g G MKob{Q) with some «o G Z so that <7(u>o) 7̂  0. Such a q 
in Cases SP and UT is obtained in Lemma 6.17; in Case UB take q = Ylveb det(Qv) 
with Qv of Proposition 11.14. Changing q for its suitable power, we may take 
K, = KQ. Let / G A£. Clearly qf G A/Jf = A/£(Q). We can take 9 ( ^ 0 ) ^ ( ^ 0 ) as 
<Pc(wo). Then ^LJ{wo)~1f(wo) = ^ c ^ o ) - 1 ^ / ) ^ ) ? which is algebraic. Since this 
is so for every WQ G HCM, we see that / G A/J(Q). This proves (1). 

Next, by Lemma 14.6, in order to prove that n'^D^f G A/£®*Z(Q), it is suffi
cient to show that n~^D^f G A/^^ e (Q) . Take too and q again; then we can put 

Qf = E S < P ^ , ^ = ^ " ' ^ x ^ c ® ^ 3 #s w i t h #s G «^C®^(Q)- T h u s o u r Question is 
the arithmeticity of 7r~^D^(q~1£s). First, Lemma 13.17 shows that 

DZ(q-1es)(u)= J2 (l) (^-«(9_1))(«)(^-)(«) 
a+6=e ^ ' 

for u G T, where —n stands for — nh. Put px = (pvp(wo))v6a and p2 = (p^('u;o))i;Ga' 
Then we can write p(u>0) = (pi, p2)- For ^ G 5e(T, X) we have [^3U;®re(^o)~1/0](^) 
= ¥uj{w0)~1'ip(tPi1up2). Now T T - H D ^ ^ - 1 ) is arithmetic by Theorem 14.7. On 
the other hand, by Lemma 14.6 (ii) we have n^D^ts = ir~]sl~lblDb

c6s
xDs

C(g)as QS = 
7T-^-^(es

x)bDs
c^b

aS gs. Hence by Theorem 14.7 and Lemma 14.6 (i, iv) 7T~^Db
ces 

is arithmetic. Thus 

VuvAwor^-MDiiq-HsKu) 
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= E u)q{wo) t7r"|a| (D-«^'1))] (^r1^)^^)-1^-'6"^.)]^1^), 
a, b ^ ' 

which is algebraic for every algebraic u e T. This completes the proof of the part 
of (2) concerning D%. 

Finally, to deal with Ez, it is sufficient to show that 7r^Eef G A/^(g)C7e(Q) if 
/ € «^£(Q)- Clearly it is sufficient to prove it when |e| = 1, that is, Ee = Ev 

with some v. We prove this by induction on |p|. If p = 0, then / is holomorphic 
and Evf = 0. Thus we take \p\ > 0. First we assume that / = 7r~^D^g with 
some g G Mjp(Q) and Q-trational ip. Then D^g — D^yD1^~v g with some ipf 

and ?/. If v ^ i;', then 7rSv / = n'1D^iVt7r2-^EvD^~v'g with some ip". Now 
^ i - b i ^ P - ^ ^ G A/^rv '(Q) by Theorem 14.7, and so <K2-^EVDP^V' g is arithmetic 

by our induction. Then, by what we already proved, 7r~l D^» ,v/ir2~\p\ EVD^~~V g is 
arithmetic. Next, assume v = v'. Then, by Lemma 13.16, 

nEvf = ^-\v\EvD^,vD\g = ^'^D^^^E^g - Air^D^g 

with b = p-v and A G Si{Tv,Si{Tv, End(y))) defined by A(u, ul) = P ^ r f e « u) 
for u, v! €TV, where Y is the representation space of ip<g)Tb. For the same reason 
as in the case v ^ v', the first term on the right-hand side and n~^D^g are 
arithmetic. To deal with the whole second term, put h = 7T~^D^g and ip = 
V>®r6; let w G HCM- Then [y^rv®Gv(w)-1 Ati\(u, u') = A(u, u'W^w^h bY 
Proposition 13.15 (4). Since A is Q-rational, we can thus establish the arithmeticity 
of nEvf for / = n-^D^g. _ 

Now take an arbitrary element / G A/J(Q). We again employ the expression 
qf = ^2s^~^0s

xD^aS gs with gs G jVt^^a
s(Q)- Since q is holomorphic, we 

have q • 7ri?v/ = nEv(qf) = Ys^'^EyO^D^^ ds' ^ what we proved about 
EvTT~^D^g, each term of the last sum is arithmetic. Since q is arithmetic, nEvf 
is arithmetic at every CM-point where q is not zero. By (1) this implies that Evf 
is arithmetic. This completes the proof. 

We note here a simple fact: 
(14.9a) The symbol C being as above, let A/J(JT, Q) denote the set of elements h 

of the form (14.9) with gs G Mc®as(r, Q). Then .A/£(r, Q) = AT*(r, Q). 

We have seen that A/"c*(r, Q) C A/J(r, Q). Let h G Af%(r, Q). By Proposition 
14.2 we have (14.9) with gs G M$®as{r). Applying Proposition 11.15 to the last 
set, we have gs = ^beB bgs^ with gs^ G M^aa(r, Q). In this way we can put 
h = Ylcec c^c with a finite subset C of B and fcc G A/£(r, Q). We have seen in 
the above proof that h = k\. This proves (14.9a). 

14.10. Proposi t ion. Aft = A/£(Q) ® Q C and A/£(r) = A/£(r, Q) 0 Q C. 

P R O O F . Let / i , . . . , /M be elements of A/J(Q) linearly independent over Q. 
Suppose J2i=i aifi = 0 with a* G C. Let {fri}™^ be a Q-basis of $Zf=i Qa^ and let 
a i = E j c i j ^ with c^ G Q. Then £V fy E ; Ctj/i = °> a n d s o E j &j E ; ^ ^ ( w ) - 1 

-fi(w) = 0 for every W G WCM- Since ^ ( w ) " 1 / * ^ ) *s algebraic, we have E ; c u 
-fi(w) = 0 for every j and every w G HQM- Therefore Yli cijfi — 0 f° r every j> 
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so that Cij = 0. Thus â  = 0, which shows that the fi are linearly independent 
over C. To prove that A/£(Q) spans A/J over C, take £, JB, and q as in the proof 
of Theorem 14.9. We have seen that A/?(Q) spans A/JP over C. Let / G A/£; then 
qf G A/,?, and so g / = I3c€£ c tc with tc € A/j?(Q). Thus / = YlceB ctc/<l- I f w e 

change q for g' and g ' / = YlceBctc with *c ^ A/<?(Q), t n e n tf'^c = <#c- Given 
an arbitrary point wo of W, we can choose a Q-rational q so that q(wo) ^ 0. 
Then £c/g is nearly holomorphic of degree < p in a neighborhood of wo- Since 
£c/<7 = t'c/q', this shows that t c /g G A/J(Q). This proves the first equality. Next 
let / G AfP(r). Then / = £ c € B c£c with <?c G_A/£(Q), and £ c c((? c - ^c | |7) = 
/ — /Il7 = 0 f° r every 7 G J1. Since #c||7 G A/J(Q), we obtain pc||7 = pc, so that 
gc G N%{r, Q). This proves the second equality. 

14.11. We now restrict our treatment to Cases SP and UT. Let {u;, X } be a 
representation of £. If / G A/£(.F), then /(z) = X}e<p#e(z)(r(2)) with holomor
phic maps ge :H —> 5e(T, X) as noted in (13.23). Recall that r\,(z) = (*zv —Zv)-1. 

Therefore we easily see that ge(z + 6) = ge(z) if J E T , and hence ge(z) = 

YlheL ce{h)e^(hz) with ce(h) G Se(T, X) and a lattice L in the vector space 5 of 
(5.17). Thus we can put 

(14-10) M = Zh(=LSh(r(z)H(hz) 

with SH G Ue<p Se(T, X). Now, for 7 = diag[a, o j e f w e have o;(*a, a*)f{aza*) = 
/(z) by (5.19). Since rv(a2a*) = ta~1rv(z)a~1 , we easily see that pc(z) = 
(a;(g)cre)(£a, a*)ge(aza*). Thus pe satisfies (5.21) for a suitable {/ with u®ae in 
place of a;. Suppose now n > 1 or F ^ Q. Then from Proposition 5.7 we can 
conclude that ce(h) ̂  0 only if hv > 0 for every v G a. Consequently s^ of 
(14.10) is not zero only if hv > 0 for every v G a. If n = 1 and F = Q, we need 
the cusp condition (13.18a). 

To speak of the rationality of / over a number field, we assume that {UJ, X} has 
a Q-rational structure, and write the expansion of (14.10) in the form 

(14.11) f{z) = Y,^~li-r{z)H{hz) 

with polynomials qh belonging to |Je<p Se{T, X). Notice that in Case SP, 7T~1ir(z) 
= (2TT • Im(z))"1 . Given e G Aut(C), for u G T = Y\V^TV we define u& e T by 

f uvt if ve = v' on K, 
(14-12) (uM)v = \ t , 

I uv> if ve = v p on i t , 
where p is complex conjugation. In Case UT we are viewing each v as an em
bedding of K into C (see §3.5). For q G 5e(T, X) we define qe G Se(T, X) with 
respect to the natural Q-rational structure of Se(T, X). Then for / as in (14.11) 
we define f£ formally by 

(14.13) f'{z) = Y.^-li-r{z)^)el{hz). 
heL 

This includes, as a special case, what we defined in §5.10. Given a subfield W of C, 
we say that / is W-rational if q^ is W-rational for every h. We denote by N%{W) 
the set of all W-rational elements of A/J, and put A/£(r, W) = A/J(r ) nN*(W). If 
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W = Q, this is consistent with what was defined in §14.4; see (1) of the following 
proposition. 

Now for e G Z a we define ee G Z a by {ee)v> = ev if v' = ve on F. (In other 
words, ee is defined so that aee = (ae)£ for a G Fx.) 

14.12. Theorem (Cases SP and UT). (1) The set JVJ(Q) defined in §14.4 con
sists of all the Q-rational elements of' J\[% in the above sense. 

(2) For every e G Aut(C) and / G A/J the formal series f£ defined by (14.13) is 
indeed an element of A/^f. 

(3) We have {(m)-\e\D^f)e{u^) = ({m)-^De
u%f£){u) and ({m)WEef)£(u&) 

= ((m)^Eeefe)(u) for every / G Af£ and uE T. 
(4) Let Z be a ^-stable subspace of 5e(T), and W a subfield of C containing 

the Galois closure of K over Q. Then {m)-^D^ (resp. ( T T Z ) ! 6 ^ ) sends Af£{W) 
into A / ^ z ( W O (resp. Afi'^W)), where p(, = Max(0, pv - ev). 

P R O O F . We first prove (3) in a formal sense when |e| = 1. By (13.28) we have, 
for u eT, 
(*) (m^D^iqhiir-H^eKhz))^) = (7rir1e2(hz){Dv(qh(7r--1ir))(u) 

+ 2ni • tr{hvuv)qh(-K~lir) -f- P£(r, u)qh(-K~lir)}. 
By (13.6c) we have 

(ni)~1Du;,v(qh('K-1ir))(u) = Y^^Qh/dzy^in'Hr) • ( T T - 1 ^ • *u • T T " " 1 ^ ) ^ , 

where ŵ  = YLiiu^^a^ for u G T with a Q-rational C-basis {aM} of TVy and 
in particular zv = Ylazv^a^- Therefore the right-hand side of (*) can be writ
ten e'^(hz)£h{^~1ir){u) with a polynomial £h of degree < p + v with values in 
Si(Tv, X). Write uo in the form LJ(X) = ®V€8LUV(XVP, XV), where xvp = xv in Case 
SP. From (13.27) we easily see that PJjl(r, u) = P ^ £ \ u^) if ve = vf on F (even 
if ve = vfp on K). Thus if we replace (u>, v, g/i(7r_1zr)) by (o;£, i/ , ^(7r_ 1zrW)), 
then ^(7r - 1zr)(^) is replaced by l£

h{i:~lir^){v}£^), as can easily be verified. This 
proves (3) for DUiv The general case of (3) can be proved by induction on |e|, 
which is not completely trivial. First, for h G Se(T, X) put g(u) = h(u^). Then 
g G Se£(T, X) and 

(14.14) [(CJ£ 0 re£)(a)#] (ix) = [{UJ 0 re)£(a)ft] (t t^) for every a G £. 

Here we can also take a in place of r. Notice that (o;£®re£)(^) acts on Se£(T, X) , 
but (w 0 re)£(Si) acts on S e(r , X) (see §9.10). Now take h G C°°(W, Se(T, X)) 
and define 0 G C 0 0 ^ , Se£(T, X)) by p(u) = h ^ l ) . Then from (14.14) we can 
easily derive 

(14.15) (DZ^^g){u,w) = {Dl^re)ch){u^\w) (u,wGT). 

Once this is established, our induction can be done in a straightforward way. This 
proves (3) for D„. The statement concerning Ee can be proved by using (13.10) in 
a similar and simpler way. Clearly our argument proves (4) for Z = Se(T). For Z 
of a general type, we only have to observe that (pz is Q-rational, and so it sends 
K*r-{W) (resp. M^C{W)) i n t o X ^ T Z ( W ) (resp. Af^az(W)). 

To prove (1) and (2), we use the symbols K, C, B, and q in the proof of Theorem 
14.9. By Lemma 6.17 we may assume that q G -M«b(Q)- Let / G A/£(Q). In that 
proof we showed that qf = Zls<P

7r~ |sl^x£)c<S)^s 9s w i t h 9s e -^C<^s(<5)- T n e n for 
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every a G Aut(C/Q) we have g° = gs, and hence qfa = {qf)° = qf by (3). Thus 
fa — /» which means that / is a Q-rational element of Af£. Conversely let / be 
a Q-rational element of A/£. By Proposition 14.10 we have / = J2ceBcfc with 
fc G A/J(Q). Let g^ and qch be the polynomials defined for / and fc by (14.11). 
Then q^ = J2C£BC(lch' We ^ a v e s n°wn that fc is Q-rational, so that qch is Q-
rational. Then q^ = qm, and hence / = / i G A/J(Q). This proves (1). To prove 
(2), we employ the expression qf = Z ^ p O 7 ™ ) - 1 ^ * ^ ® ^ #s w i t h #s € -^C®^-
Since (14.15) holds with a in place of r, we obtain, by (3), 

{(iri)-WD^,gsY(uM, «,M) = [ M ^ l t f - ^ sf](UN, «;) 
= [(7r t)-WD^< r„ €,](«,«;), 

where £s is defined by -^(-u) = gl{u^), and hence 

(14.16) [{*i)-l']8'xDfa*. 9s]e = ( T T t ) - ! ' " ^ ^ ! ^ . . 4 -

This shows that (g/)£ is meaningful as an element of N?£. If we take another 
q' e MKb(Q), then q{q'ff = (O T ' / ) e = g'fo/) ' , so that ( 9 / ) 7 9 = ( q ' / W -
Define a function /* by /* = (qf)£/q. This is defined where q is not zero. Given 
z0 G W, we can find q' G jM«b(Q) so that qf{z0) ^ 0. Since /* '= {q'f)£/q\ we 
see that /* is defined as a C°° function on H. Besides, the equality /* = (qf)£/q 
shows that /* G N%t, and qf* = (qf)£". Now (g/)£ and g/£ coincide as formal 
series, and hence g/* coincides with qf£ as a formal series. As shown in §5.10, q 
is not a zero-divisor in the ring of formal series defined there. Therefore, expressing 
f£ and /* as polynomials in r whose coefficients are elements of the ring, we see 
that f£ is the expansion of /* in the sense of (14.11). This proves (2). 

14.13. P ropos i t ion (Cases SP and UT). Let $ be the Galois closure of K over 
Q. Then the following assertions hold: 

(1) M* = M£($) ®<p C and «A/£(r) = A/£(r, $) ®<*> C for every r C G as in 
Theorem 10.4 such that Myb(r, Q) ^ {0} for some fi G Z, > 0. 

(2) IfW is a subfield of Q containing $ and Qab, then N%{W) is stable under 
the map f \—> /H^ a for every a G G . 

P R O O F . Take an arbitrary subfield ^ of Q containing $; let J5 be a ^-basis of 
C and M a Q-rational C-basis of [je<pSe(T, X). Suppose 0 = YlceAcfc with a 
finite subset A of B and / c G A/J(^). Put / c = J2eeM T,hes a(c> ^ h)l{^-li • 
r(z))e2{hz) with a(c, ^, h) G 1̂ . Then 0 = YlceA ca(c> »̂ 'O f° r e v e r y (A ft)> a n d so 
a(c, •£, ft) = 0 for every (c, ^, ft), that is, fc = 0 for every c. This result is of course 
applicable to the case IP = #. Thus, to prove (1), it is sufficient to prove, in view of 
Proposition 14.10, that A/£(<£) spans Af£(Q) over Q. Let / eJ\f£(Q). We use the 
expression qf = X ^ ^ 7 ™ ) - ' 5 ' ^ ^ ^ 5 ds w i t h 9s € ^C®^8(Q) a l ready employed 
in the proof of Theorem 14.12. By Theorem 10.4 (4) we have gs = ^2ceA cgc,s with 
a finite subset A of Q, linearly independent over $, and with pc,s G A l ^ ^ ^ ) . 
Then g / = £ c e A cfcc with fcc = E s < P ( ^ ) ~ | s | ^ x ^ c ^ s 9™. By Theorem 14.12 
(4), kc G J\T?{$). If we change g for another g', then we have a similar expression 
q'f = Sc€^ c f cc- T n e n ° = Z^CGAC(^^C - 9*c)» a n d hence g;A;c = gfc£. Thus 
q~lkc = g ' - 1 /^ . Since we can choose q G Al^aCQ) so that g does not vanish 
at any given point of W, we can define a C°° function fc on H by / c = q~1kc. 
Clearly fc G A/^(^), and / = XICEA C/C* ^ ^ S P r o v e s t n e first part of (1). Suppose 
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/ G A/*^(r, Q). Taking q to be a power of an element of M^r, Q), we may 
assume, by (14.9a), that gs G M^a

s{r, Q); thus, by Theorem 10.4 (4) we may 
assume that gCiS G Mc®as(r, <£). Then kc G A/J(JT, <£), and hence fc G A/£(r, <£), 
which, together with the second part of Proposition 14.10 proves the second part 
o f ( l ) . 

To prove (2), we again take / G N%{W) and apply the above procedure to / . 
We can take A to be the set { ab | a G A\, b e A2}, where Ai is a finite subset of W 
including 1 and linearly independent over <£, and A2 is a finite subset of Q including 
1 and linearly independent over W. Then, as shown above, / = Y2aeAl YLbeA2

 a^/a& 
with fab G N%(<P). Since / G N%(W), what we said at the beginning shows that 
fab = 0 if b ^ 1, and so / = ^2aeA afa. Now we obtained fa in the form 
fa = ^ ~ 1 E s < P ( 7 r 0 " | s | ^ x ^ c ^ ^ a , s with ga,s G M^CJS^). Apply ||wa to this 
equality with a G G. Then from Theorem 9.13 (3), (12.21), (14.2), and Theorem 
14.12 (4) we see that /a | |u,a G -A/J(#Qab)« This completes the proof. 

14.14. Let us now extend our results of Sections 12 through 14 to the case of 
modular forms of half-integral weight. We naturally restrict our discussion to Type 
CT (that is, Case SP), employing the symbols introduced in §10.6; in particular we 
take a symbol -0> which we called a quasi-representation of £ in §10.6, given by 
(14.17) tp{x) = det{x)*/2Lj{x) 

with a Q-rational representation {uo, X} of GL n (C) a . (If cu(x) = det(x)m with 
m G Z a , then we can put I/J(X) = det(x)fc with kv = mv +. (1/2); see §6.10.) We 
also consider the group Q consisting of all couples (a, p) formed by a G G and 
a holomorphic function p on H such that p(z)2/j* is a root of unity, the group-
law being defined by (a, p)(o/, pf) = (aa', p{a'z)p'(z)). For 7 in the group re of 
(6.30) we put 7 = (7, h7) with h7 of Theorem 6.8. Then 7 H-> 7 is an injective 
homomorphism of Te into Q. We call a subgroup A of Q a congruence subgroup of 
Q if the projection map of Q onto G gives an isomorphism of A onto a congruence 
subgroup r of G, and the inverse of this isomorphism coincides with the map 7 i-> 7 
on a congruence subgroup of re n T. Any conjugate £ / i£ _ 1 of such a A with £ G Q 
is also a congruence subgroup, by virtue of Theorem 6.9 (1). We shall often view a 
congruence subgroup r of re as a congruence subgroup of Q by identifying it with 
its image in Q through the map 7 1—> 7. 

Now for a = (a0 , p) G G and / G C°°(H, X) we put 

(14.18a) (fU OL)(Z) = v{z)-\f\\„ Q 0 ) ( Z ) . 

If UJ(X) = det(x)m and ip(x) = det{x)k with k = m + a/2 as above, then we write 
/||fc a for /H^a ; then 

(14.18b) (/IUa)W=p(z)-1(/IUa0)W. 
For simplicity we put Ma(z) — Mao(z) and OLZ = aoz. We also define quasi-
representations ip 0 r e and ^ 0 cre by 

(14.19) (^0r e) (x)=det(x) a / 2(o;0r e) (a : ) , (^0a e ) (x)=det(x) a / 2(o;0( j e ) (x) . 

We define £ > ^ , A/,^, Z?«, and D% by (12.17), (12.18), (13.21) and (13.22) with 
I/J in place of /?, in which we take $(£) = det(r])a/2Lu(£) with positive det(^) a /2 . 
Then Proposition 12.10 and (12.21) are true with ip in place of p and with a G Q. 
The proof of Proposition 12.10 is valid for ip if we put 
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(14.20) rl>(Ma)=p-Lj{Ma). 

Lemma 13.9 is valid also for half-integral k and a € Q. 
We already defined M^, «S ,̂ and A^ in §10.6. We denote by C^(A) the set of 

all / G C°°{H, X) such that / | | ^7 = / for every 7 G A, and by C^ the union 
of C^(A) for all congruence subgroups A of Q. We denote by AT? (A) the subset 
of Afp(H, X) fl C^/,(4) consisting of the functions satisfying the cusp condition, 
which is required only when G is isogenous to 51,2 (Q)> and which is an obvious 
modification of (13.18a). We then denote by N^ the union of Af^(A) for all such 
A. The inner product ( / , g) for / , g G C^ can be defined by (12.35a) with tp in 
place of p. Then Theorem 12.15 is valid with ip in place of p, since the problem 
can be formulated on a suitable covering group of Ga , and can be reduced to the 
results of [S90] by virtue of the principle of [S94b, Proposition 2.2]. 

Now ij) can be viewed as a local homomorphism of ^ into GL(X), and so dip : 
(CJ7i)a __> End(X) is meaningful. Therefore Lemma 13.14 and Proposition 13.15 
are valid with i\) in place of p. 

We say that an element / of A/T is arithmetic at w G HQM if tyip(w)~1f{w) is 
Q-rational, where we naturally put ^P^(w) — Ylv£gidet(pv(w))1^2^puj(w). Since we 
are interested only in the algebraicity, the choice of square roots does not matter. 
We then dfine A/^(Q) to be the set of all / G A/^ that are arithmetic at every 
w G HCM- Now for / G A/J we have an expansion of type (14.10), and so we define 
fE by (14.13) and the rationality of / over a subfield of C in the same way as for 
the elements of A/J. Then we can verify that the results up to Proposition 14.13 
are all valid with ip in place of u. 

14.15. Let us now specialize our discussion to the Hilbert modular case, by 
taking G = SL2{F) and X = C. Then we can put T = C a , Se(T, X) = C by 
identifying h G Se(T, X) with ft(l, . . . , 1), and u(x) = xk for x G ( C x ) a with 
an integral or a half-integral weight k (see §§6.10 and 14.13). Therefore, rewriting 
the expansion of (14.11), we see that every element of A/J is of the form 

(14.21) /(*) = Y, E <h' e)(*yree«(hz) (z 6 8?) 
heF 0<e<p 

with c(h, e) G C, where y = Im(z); c(ft, e) ^ 0 only if /i = 0 or h > 0. Then 

(14.22) /£W = E E c{h,ef^y)-esea{hz). 
heF 0<e<p 

Thus / G A/J(W0 with a subfield W of C if and only if c(h, e) G W for every /i 
and e. Write £>£ for I £ . Then ( T T Z ) " ' 6 ' ^ = (TTZ)"'6' E U a ^ I w i t h t h e symbol 6 
of (12.39). Also, we can ignore (u) and (u^) in Theorem 14.12 (3). 

We note that the space A/£ can be completely determined; see [S87, Theorem 
5.2]. Also a generalization of Theorem 10.9 (1) can be given as follows: 

14.16. Theorem. Let Y, h, w, and Y* be as in §9.4; suppose G = SL2(F). 
(Thus Y is a CM-field and h is an F-linear ring-injection of Y into F$.) Let f G 
Mk(Q) and p G Mk+2e(Q) with k G Z a and 0 < e G Z a . Gwen a G Gal(Q/Q), 
Ze£ 6 be an element of ( Y * ) A SMC/I £/ia£ a = [6, Y*] on Ya*b and Ze£ r = /i(^(6) -1) 
wztfi £ of (9.3). Then 
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for every CM-point w such that p{w) ^ 0. 

For the proof, see [S75, Main Theorem III]. Notice that p{r>a)(w) ^ 0 by Theo
rem 10.9 (3). 

The arithmeticity of D^f at CM-points was first obtained in [S75] for G = 
GL2(F) and in [S80] for orthogonal and unitary groups. A general framework of 
the arithmeticity problems of zeta functions and Eisenstein series was presented 
in [S78c]. The notion of near holomorphy wets introduced in [S86], and further 
developed in [S87a]. Most of the results in Sections 13 and 14 were essentially given 
in those two papers. A notable exception is Theorem 14.12, which was not given 
there. As explained in [S87a, Section 3], we can develop the theory axiomatically 
so that all the results for other types of groups can be proved in the same manner, 
once a few basic facts such as the result corresponding to Proposition 14.5 in each 
case is established. Such a result was given in [S78c, Theorem 4] for a certain 
quaternion unitary group belonging to Type C, and also in [S80, Proposition 6.6] 
in the orthogonal case. We can also characterize the elements of .Mu,(Q) in Case 
UB by the properties of the theta functions that appear as the Fourier coefficients 
of a given automorphic form; see [S78a] and [S78b, §7]. If dim(Hv) < 1 for every 
v G a (which is the case if G = 5Z/2(F)), then we can completely determine the 
structure of A/J, so that we can state Proposition 14.2 in a much stronger form; for 
details, see [S87a, Theorems 5.2 and 5.5]. 

15. Holomorphic projection 

15.1. Our next aim is to find a certain projection map A/£ —> M^. It is necess-
sary to consider Oh = X^GTV Ma^> ^ ) defined by (12.33) with any pair of dual 
bases {av} and {bu} of T for several specific h G Ml2{T, X) = 5 i (T , S i (T ,X)) . 
(We again fix one v G a, and drop the subscript v from the objects Tv, T£, etc.) 
For example, for h(x, y) = txy we can easily verify that 

(15.1) 0h= 5^ t a I / 6 I / = A(T)ln , 
veN 

where \{T) = m for Type A and A(T) = (n + l ) /2 for Type C. 
We now define a C-linear endomorphism tj) of SP(T) by 

(15.2a) ^ = 0 if p = l, 
(15.2b) i$h){x) = ^2veN K{av, x-lbvx, x, . . . , x) (p > 1), 

for h G SP(T) and x G T. We can easily verify that this is independent of the 
choice of dual bases, and tprp(a) = Tp(a)ip for every a G Kc, and hence, for each 
irreducible subspace Z of SP(T) there is a constant cz such that iph = czh for 
every h G Z. Thus cz — 0 if p = 1. 

15.2. Lemma. The constant cz is a rational number such that — 1 < cz < 1 
for Type A and —1/2 < cz < 1 for Type C. Moreover, cz = 1 if Z contains the 
element h of SP(T) given by h(x) = x\^ and cz < 1 otherwise. In particular, 
cz = — 1 (resp. cz = -1/2) for Type A (resp. Type C) if Z contains the element 
h of S^OO given by h(x) — det2(x). 

P R O O F . Type A. Let I = Min(ra, n) and let C = Y?i=i ea ( e T) w i t h t n e 

standard matrix units e^. By Theorem 12.7 we can take a highest weight vector of 
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Z in the form h{x) = Yu=i ^U(x)Ci with 0 < Q G Z. Take A; G Mlp(T, C) so that 
h(x) = /c(x, . . . , x) by the rule which can be illustrated by the following example: 
if p = 9, ci = c2 = 2, c3 = 1, then 

*11 ^12 

*21 ^22 ^21 ^ 2 2 

Then p!h* = ^ K with k ^ x i , . . . , xp) = feCa^i), . . . , x ^ ) . Since h(£) = 1, 
we have cz = W^XC) = ( V P O E T T E I / M a i » C • % C C ••• » 0 - Each kn(x, y, 
£, . . . , C) belongs to the following three types of functions: Xuyu, Xuyjj (i ^ j ) , 
and xuyjj - Xjiyij (i ^ j). The value X^ M a ^> C • *&i/C»" C> • • • > C) is 1, 0, and 
— 1, respectively. Therefore we obtain - 1 < c^ < 1. If h{x) = x ^ , then the only 
possible type is x n y n , and hence c^ = 1. If detj(x) with i > 1 is involved in 
h, then X112/22 — #2iyi2 can always occur, and hence cz < 1. In particular, if 
h(x) = det2(x), then that is the only possible type, so that cz = — 1. 

Type C. We can employ the same technique as for Type A with l n in place of C, 
h(x) = n i L i detj(x)Ci and the same k. Then p\cz = Yin YLu K(a>v, bv, 1, . . . , 1). 
Each &7r(x, y, 1, . . . , 1) belongs to the following three types of functions: xuyu, 
xuVjj (i ^ J.)» a n d xuyjj-Xijyij (i ^ j). The value X ^ M a ^> 6„, 1, . . . , 1) is 1, 0, 
and —1/2, respectively, and hence —1/2 < cz < 1. The remaining part concerning 
cz for each Z can be proved in the same manner as for Type A. 

Before stating the next proposition, we define an operator Lu,v by 

(15.3) •L'LJ.V = ~^L)UJ^(j^vhiv. 

This is a special case of (12.31), which we already mentioned in Corollary 12.16 
and Lemma 13.16, and L^^fW^a) = {L^^f^^a for every a G G a . 

15.3. Proposition. Let 0 ^ p = {pv)ve8i € Z a with pv > 0 /or every v G a 
and {a>, X } a representation or a quasi-representation (in the sense of §14-13) of 
&. Suppose that for every v G a such that Hv is nontrivial we have cu(av, bv) = 
det(6v)fcv with kv G (1/2)Z. For an irreducible subspace Z of Si(Tv), put 

OLZ = i{kv - K + (1 - i)cz}, 

where K, = m + n or n + 1 according as G is of Type A or C, where we understand 
that K = 2n for Type AT. Suppose that for each v such that pv > 0 the number 
kv satisfies the following inequalities: 

kv > m + n -f pv — 1 or kv<m + n + \— pv if G is of Type A, 
kv > n + pv or kv < n + (3 — pv)/2 if G is of Type C. 

Put Av = Ylz (l ~~ « ^ w , v ) for 0 < i < pv, where Z runs over all the irreducible 
subspaces of Si(Tv), and 21 = Y[v€gL* Y\A=I ^l» where a* = { v G a | p v > 0 } . (No
tice that the estimate of cz given in Lemma 15.2 shows that az i=- 0.) Let f G Af£. 
Then 21/ G M„ and f = 21/ + £ v E a * Lu,vtv with tv G A/J. 

P R O O F . We fix one v and consider / as a function of zv, suppressing the 
remaining variables. By (13.16) we have / = $ ^ = 0 ft, f%{zv) = 9i(rv(zv)), q = pv, 
with a holomorphic map gi : Hv ^> Si{Tv). Then Evf — Yll^i^vfi, and £^/i 
is of degree i — 1 in rv . To study the highest term Evfq, write simply y for gq. 
Then y* is a holomorphic map of Hv into Mlq(Tv, X). Let us now write simply 
T, r, /c, D, £ , etc. for Tv, rv, kv, Dv, Ev, etc. By (13.10), for u eT we have 

a n yi2 2:13 
^21 2/22 ^23 
^31 2/32 ^33 
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(Efq){u) = - ] T uu(d/dru)g*{r, . . . , r) = -qg*(u, r, . . . , r). 

By (12.7b) and (12.18) we see that {Du(g><TiEfq)(u, v) = det^-^^u^rj, v) with 
Y{u, v) = D {detirj^iEf^i^u ^j}-1)} (v) for u, v G T. Then by (13.8a) and 
(13.6a, b) we have D(det(rj)k)(v) = k • det^Hr^rv), and 

D^u^rj-1)^) = - r . * ^ - 1 u - V 1 - S " " 1 ^ - V " 1 -lvr. 
Therefore 

- q^iDcuQaiEfq)^ v) = k • tr(*rv)flf*(u, r, . . . , r) - #*(w, r, . . . , r) 
+ (g - 1)0* (u> (Dr)(v), r, ... ,r) + ^2 v„{dg*/dzu)(u, r, . . . , r) , 

where w = r ^vu + u^vr. Applying 6 to this equality, we obtain kg(r) from the 
first term on the right-hand side and, by (15.1), —Kg(r) from the second term with 
K, given as in our proposition. Now (Dr)(v) is given by (13.6c), and therefore 6 
times the third term is (1 - q)(ipg){r)> The last sum J ^ is of degree at most q — 1 
in rv. Thus we obtain 

Lu,,vf = LwiVfq ~pv{kv -Av + ( l - p v ) ^ } £ ( r ) (modAfp '), 
where pf

v =pv — 1 and p't —pt for v ^ t Ga. (This is true even if pv = 1.) Let y>£ be 
the projection map Sq{Tv) —• Z. Then ^{fc^ — ft + (1 — p^)^} = X ^ z az¥z- Now 
LWiV maps A/£ into itself. Therefore, for an irreducible subspace W of Sq(Tv) we 
have 

(1 - a^L^v)f = ^ ( 1 - c ^ a z ^ z t f = 5 Z ( a ^ z # ) ( r ) ( m o d ^ P ' ) 

with a^ = 1 - a ^ / a z - Call the last sum g1. Taking (1 — ot^L^^f and g' in place 
of / and g, we obtain, for another irreducible subspae Y of 5^(7^), 

(1 - a ^ L ^ X l - a ^ L ^ ) / = T,zt{Yiw}(bzVz9,)(r) (mod A/>') 

with bz G Q. Repeating this procedure, we find that A%f E A/£ with A£ defined 
in our proposition. Therefore if /i = 21/, then /i G A/J = A ^ . Since r i i ^ l ls a 

polynomial in L^ v whose constant term is 1, we obtain the desired expression for 
/• 

15.4. Corollary. Let f G A/J and h = 21/ w /̂& 21 as in Proposition 15.3. Then 
we have (ip, f) = (<£>, h) for <p G A ^ , provided either ip is a cusp form, or r\H 
is compact for a congruence subgroup R 

P R O O F . We have f = h + X)v € a , LUiVtv with tveAf£. By Theorem 12.15, 

(<£> L^^yty) = (<£, —OD^^fjl^Eyty) = ( EV<f, Eyty ) = 0 , 

since Ev<p = 0 because of the holomorphy of ip. This proves the desired equality. 
We need a suitable convergence condition, which is certainly satisfied for <p or r 
as above. 

15.5. In Cases SP and UT, for / G A/J let qh{u, / ) denote the polynomial in 
u ET which appears as a Fourier coefficient of / as in (14.11). Then we put 

(15.4) Til = { f G N* | qh{u, f\\a) = 0 for every a G G and every h 
such that det(h) = 0 }, 

(15-5) TP = {feUP,\(f,Su) = 0}, 
(15.6) fts(r) = ft£njv#(r), T1z(r) = TipnM£(r). 
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Here u is either a representation or a quasi-representation of £, and F is a congru
ence subgroup of G = U(rjn) or Q (see §14.13). Clearly S^ = M^HIZ^. Notice that 
(f,g) is meaningful for f,ge 7££, since the elements of nv

u are rapidly decreasing 
at the cusps. 

15.6. P ropos i t ion (Cases SP and UT). The notation being as above, the fol
lowing assertions hold: 

(i) T?(n = {fenunl(/,sun) = o}. 
(2) 7Z%(n = SUn 0 T£{r) and K*=S„® T*. 
(3) Let p : n% —> 5W be the projection map obtained from the last direct sum 

decomposition of (2). Then (n%)£ =npJe and p(f)£ = p(f£) for every eeAut (C) , 
and (/, g) = (p( / ) , g) for every / € ft£ and every g G 5^ . 

P R O O F . Clearly the left-hand side of the equality of (1) is contained in the 
right-hand side. Let / be an element of the right-hand side and let ^ G 5 W . Take 
a subgroup F' of F of finite index so that g G S^{F') and take a set of represen
tatives A for F'\F. Then £ a E A # | | a € 5 w ( r ) , so that 0 = £ a 6 A ( / , 0 | | a ) = 
£aeA</ll<*-\<7> = [ r : r ] ( / , f l > . Thus / G 7 J ( r ) . This proves (1). By 
Lemma 14.3 , n%(F) is finite-dimensional over C, and hence from (1) we ob
tain the first equality of (2), which clearly implies the second equality. To prove 
(3), take / G A/J; modifying the expression for qf in the proof of Theorem 14.9, 
we can put qf = £ s ( 7 r i ) ~ i s l ^ ^ c ^ s 9s w i t h 9s e M^®^- By (14.16) we have 
q£fE = (qf)£ = £ s(^)~' s '^x-^c^®cr s£ ^s' ^ u *s a r e P r e s e n ta t ion of £, then given 
a G G, take (3 as in Lemma 10.5. Then by that lemma and Proposition 12.10 (2), 
(g/)e||Ce a - ((g/) | |c/?)£ and <f\\Kha = (?|Ub/?)E, and hence f ^ a = ( /L / ? ) £ . 
Suppose / G 7££; then from the last equality we see that f£ G n%e. This shows that 
(n%)£ C n%e. Considering the action of e~l similarly, we obtain (n%)£ = n%e. 
If u is a quasi-representation, given a G Q, we can find /? G £ with which we can 
make a similar type of argument, as shown in the proof of Theorem 10.8. Then we 
obtain the desired result. Let A = ^vesLLUJ^ and A' = X ^ e a ^ 6 ^ ( s e e Corollary 
12.16). From the proof of Theorem 14.12 we easily see that A maps n% into itself. 
Then Theorem 12.15 shows that A is a hermitian operator on n%(F), so that n%(F) 
is a finite direct sum 0 ^ ^ , where £M = { / G 7££(JT) | A / = / / / } . By Corollary 
12.16 we have «Sw(r) = £0, so that TP(F) = £ ^ o < ^ by (1). Let / G n%(F); 
then / = g + £ ^ 0

 hn w i t h 9 € 5 w ( r ) and ^ G ^ , and f£=g£ + J2^o h^. By 
Theorem 10.8 (1), p£ G S^e. Now, for a fixed h G A/J, take mEvh and a; as #s 

and C in (14.16). By Theorem 14.12 (3) we have £s = mEveh£, and hence (14.16) 
shows that (L^^h)6 = Lu,eV£h£. Thus (A/i)£ = A'/i£, so that we have A'fo^ = ^h6^ 
and hence <sj*, ft* ) = 0. Thus E ^ o ^ G ^ T h i s s h o w s t h a t ^ = P(/£)> 
which is the second equality of (3). Since f — p(f) G 7J , the last equality of (3) 
follows from (15.5). 

15.7. P ropos i t ion (Case UB). Suppose that r\H is compact for a congruence 
subgroup T of G. Put T? = { / G A/£ | ( / , Su) =0} and T*{Q) = T j n A C p ( Q ) . 
Then the following assertions hold: 

(i) TP(r) = {/ e A/>(r) | {/, sun) = o}. 
(2) JSfltr) = 5W(£) © T?(r) and Af£ = S^ ®T*. 
(3) JV£(Q) = SU{Q) ® ^ P ( Q ) ^ d 0-P = 73>(Q) ® Q C. 

P R O O F . Under our assumption, (/, g) is meaningful for every / , g G A/^, and 
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so (1) and (2) can be proved in the same manner as for Proposition 15.6. To prove 
(3), put A = J2vea, Lu,v. Then, for the same reason as in the proof of Proposition 
15.6, A / ^ r H e ^ with £v = {feN*(r)\Af = iAf}, S w ( r ) = £ b , and TP(r) = 
E ^ O ^ M - By Theorem 14.9 (2) and Lemma 14.6 (iv), A maps Af£(r, Q) into itself. 
Therefore, in view of the last equality of Proposition 14.10 we see that \x G Q and 
£fi = (£fi H.A/£(Q)) 0 Q C , from which we obtain (3) in a straightforward way. 

15.8. L e m m a (Cases SP and UT). Let W be a subfield of C containing the 
Galois closure of K in C over Q; let g G Aii(W) and h G M,i'{W) with /, V G 
2 _ 1 Z a ; further define the operator Ap, by Ap,h = (Dp,h)(ip) with p'(a, b) = det(6)* , 
Z = ®v£SiZy = Cip C Snp(T), where Zv = Ctpv C SnPv(Tv), rj) = ELea^t" and 
ipv = det(x)Pv. Put IQ = Mm{/V, lv\v G a} and k = / + V + 2p. Suppose that 
lo > n/2 in Case SP and l$>n in Case UT. Then there exists an element q of 
Mk(W) such that (m)-n\p\(gA$h, f) = (q,f)for every f G Sk. 

P R O O F . From (12.24c) and Theorem 14.12 (4) we see that (m)'n^A^ sends 
Aii'{W) into A/^?^2p(^)- Therefore, if g or h is a cusp form, then gAp,h belongs 
to 1Z™P with a;(a, 6) = det(6)fc, and hence our assertion follows from Proposition 
15.6 (3). If neither g nor h is a cusp form, then I = /xa and V = i/a with 
/z, v G 2 - 1 Z by virtue of [S97, Proposition 10.6 (3)]. This case will be proven in 
§A8.8. 

If G = 51/2 (F), we can prove a result stronger than Proposition 15.3 and Propo
sition 15.6. In fact, for every weight k G 2 _ 1 Z a , there exists a C-linear map 
Pk : Up-^k ~~* $k with the following properties: 

(15.7a) (f,h) = (pk(f),h) for every f G \JpN» and h G <Sfc; 

(15.7b) Pk{fr=Pka(fa) for every a G Aut(C). 

See [S87b, Proposition 9.4] for the proof. 



CHAPTER IV 

E I S E N S T E I N SERIES OF S I M P L E R T Y P E S 

16. Eisenstein series on U(rjn) 

16.1. This section concerns Cases SP and UT. Thus G = Sp(n, F) or G = U(rjn) 
as in §3.5, and G\ = G 0 SL2U{K). We retain the convention that K = F, r = g, 
and p = id^ in Case SP. We start with preliminary discussions on certain infinite 
series that appear as nonarchimedean factors of a Fourier coefficient of an Eisenstein 
series. We first put 
(16.1a) S={heK%\h* = h}, 
(16.1b) S(a) = SH (ra)S, 5h(a) = E U h S { a ) v , 

(16.1c) S=<?n = S a x J j 5 w (C5A ) , SV = SZ = {X e Sv\tr(x - S(V)V) Cgv}. 
v€h 

Here a is a fractional ideal in F or K. We need the symbols e, eh, e a , and eA 
introduced in §1.6; we also recall that e£(X) = exp (2m £ u € a t r ( X ) ) f o r x € (C£) a 

and ea(x) = e^(x) for x G C a , as defined in (5.15) and (5.16). Similarly we put 

(16.2) el(W) = ex(tr(W0) for W G (Kx)% such that tr(W) G F x , 

where x is one of the symbols v, h, and A. For example, e£(YZ) is meaningful 
for Y, Z G Sv in both Cases SP and UT. 

For G G SA we define an integral r-ideal vo(cr) and a positive integer i/(a) by 
(1.20) and (1.21). Since a* = a, we can show (see [S97, §13.4]) that 

(16.3) M<?) = (flni/o(o-))r. 
We then put 
(16.4) u[a]=N(8nu0{ar)) (a G SA). 

Notice that u(a) = i/[a] [K:F] . For s G 5 A in Case SP we put 

(16.5) 7 (s) = n 7V(«), 7.(5) - / e . (x 5 • fx/2)rfx, Lv = {gv)l
n, 

(16.6) o;(s)=7(5)/ |7(5) | , 

where dx is the Haar measure of [Fv)\ such that fL dx = 1, and we assume that 
7(5) ^ 0 in (16.6). Clearly 7v(s) = 1 for almost all i>, and so the product over all 
v G h is meaningful. Since we view Sv as a subset of 5 A , we can speak of 7(5) 
and LU(S) for s G Sv. We shall show in Lemma A1.6 that 7^(5) ^ 0 if v\2. 

Let $ be the different of F relative to Q. Take an element 6 of F£ such that 
d = 6g. Given £ G 5, we put 
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(16.7a) a°e(C, a) = J Ja w (C , s), «2(£ *) = E <C(-$T W W " ' , 
ufc aeSv/S(x)v 

(16.7b) aKC,*)=IKfc'*)' "J(C*) = E "(C*)e?(-CC*M*)-'. 
vfc <r€Sv/S(g)v 

The series aj? and oPv are denned in both Cases SP and UT, but a\ and OL\ 
are defined only in Case SP under the condition that v\2 and c C 4g. Clearly 
7v(s) = 7„(s + b) if 6 -< {2/Sv)gv, and hence o;v(s) = u>„(s + 6) for such a b. 
Since I /QW depends only on a modulo (tv)JJ, we see that the series of (16.7a, b) 
are formally well-defined. These series appear as nonarchimedean factors of the 
Fourier coefficients of Eisenstein series, as will be shown in Proposition 16.9 below. 

We call an element ip of Sv regular if: 

K = F, n is even, and det(2^) Gg^ ; or 

K = F, n is odd, and det(2^) G 2g*; or 
K ^ F, n is even, and det(e^) G t*, where e is an element of K* 

such that e~ltv = { x G Kv | TrK/F(xxv) C &v }; or 

K ^ F, v is unramiffted in K, n is odd, and det(^) G £*. 

In Case SP, for £ G S[nGL r (F v ) we define A(f) as follows: Put ft = ( - l ) r / 2 det(f) 
if r is even, and h = 2(- l ) ( r- 1) / 2det(£) if r is odd; then A(£) = 1 if Fv(h^2) = 
i^ , A(£) = —1 if F^ft1/2) is an unramified quadratic extension of Fv, and A(£) = 0 
if Fv(h1/2) is ramified over F„. 

16.2. Theorem. Let ( G S£, v G h, and rank(C) = r; suppose ( = 0 or 
C = diag[£, 0] m t t £ e SyC\ GLr{Kv)\ put q = \TTV\~~1 with a prime element irv of 
Fv. Define power series A^(t) and Al(t) in an indeterminate t by 

A°it) = E <(-C<»ie(cr), 

cr6Sv/S(v)v 

o-G5 v /5(s)T , 

w/iere e(a) zs the integer defined by v[cr} = qe(a\ (This means that A^(q~s) — 
ai((, s).) Then A°c = /?#£ and A^{t) = fl{t)g\{q~l/2t) with polynomials g\ with 
coefficients in 7* whose constant terms are 1 and rational functions f£ given as 
follows: 

f?(t) = (i-t)np?]{i-q2lt2) (Ca5esp r 2Z) 
c (i - \qv»-r)/H) n!LTr>/' a - g

2«-'-«+it2) 
fm = ^ ( ^ n A , : 1 \.. .,/„.„. (C^e SP, r i 2Z), T-r[(n-r+l)/2) Q _ 2 n - r - 2 i + 2 ^ 2 ) 

TT[(n+l)/2] / j _ 2 t - l t 2 \ 

C (1 - Ag(2n--)/2t) n !LT r ) / 2 1 (1 - q2n+l-r-*H*) 
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n!-i+1)/2] ( i-^2 - 1^2) 
^ W = pj[(n-r+1l)/2] ( 1 _ g2n+2-r-2if2) ^ G 2 Z ) ' 

if ere A = l z/ C —0 anc^ ^ = ^(£) otherwise; rl is the symbol defined as follows: 
1 if i is even or v splits in K, 
- 1 if i is odd and v remains prime in K, 
0 if i is odd and v is ramified in K. 

(16.8) r* = I 

Moreover, A® = ft if £ is regular or ( = 0, except when K ̂  F, v is ramified in 
K, and C ^ 0; A\ = ft if £ G GLr(gv) or ( = 0. 

The assertion concerning A9 and the formulas for ft were given in [S97, Theorem 
13.6]. We shall prove the part concerning A^ and ft in §A1.9. 

16.3. By a Hecke character of an algebraic number field K we understand a 
continuous homomorphism ip of K£ into T such that ip(Kx) = 1. For such a xj) we 
denote by tpv, ^ a , and ^h its restrictions to K£, K£, and K£, respectively. Also 
we denote by I/J* the ideal character associated with ip. We put V>*(a) = 0 if a is 
not prime to the conductor of ip. In the setting of §16.1, we have ijja(x) = £a|2a|2* :~ /l 

with h G Z a and /c G R a . In this book we always assume that ijj is normalized in 
the sense that Y2ve& KV = 0. 

Given a Hecke character ip of K, we define the L-function L(s, ip) as usual, and 
its partial series Lc(s, ip) for an integral ideal c in F by 

(16.9) Lc(s, V) = I I t1 " ^ ( P W P ) " * ] " 1 = £(*, ^) I I [J " r(p)N(p)-s}. 
pfc p|c 

Here p denotes a prime ideal in K. We also put ^ = fj . ?/V 

16.4. For x a b 
c d G GL2n{K)A with a G (iC/On* w e write a = ax, 6 = 

5X5 c = cx, and d = dx. We let G A act on W through the projection map G A —> Ga 
(see §3.5), and define ja(z) = ^(a, 2) for a G G A and z eHby (5.3). We put 

(16.10) P = { £ € G | < * = 0 } , 
(16.11) Q = { f e P | &* = ( )} , i j = { ^ e P | o € = i } . 

We already introduced modular forms of half-integral weight in §6.10. To deal 
with them adelically we need to consider the metaplectic group M A and its subset 
OT defined by 
(16.12) JOT = { G G M A I pr(a) G PAC6}, 

where pr is the map of (16.13) below and Ce is defined by (6.29) (see also (A2.12a, 
b)). We need the following facts (1 ~ 4) which will be explained in detail in §A2 
in the Appendix I: 

(16.13) There is a surjective homomorphism pr : M A —> G A = Sp(n, FA) whose 
kernel is T (viewed as a subgroup of MA in a certain way). 

(16.14) There is a lift G —> M A which combined with pr gives the identity map 
onG. 

(16.15) There is also a lift rp : P A —* M A m the same sense that coincides with 
the lift of (16.14) on P. 
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(16.17) j*(z)=jk(a,z) 

For a = pr(cr) with aeMA and zeH we put aa = aQ, ba = 6a , cG = ca , da = dQ, 
^•(JJ) =az = az, and ^ ( 2 ) = ja(z). 

(16.16) For every a G 971 there is a holomorphic function ha(z) = /i(<r, z) of z eH 
with the following properties: 

(16.16a) h(<7, z)2 = C • j(pr(cr), z ) a with C € T; /I(<J, z) G T if pr(a) a = 1; 
(16.16b) h(t • r P (7 ) , z) = t ^ l d e t ^ ) ^ 2 if teT and 7 G P A ; 
(16.16c) h(p<JT, z) = h(p, z)h(a,rz)h(r, z) if pr(p) G P A and pr(r) G C^; 
(16.16d) ft(cr, 2) coincides with h of Theorem 6.8 if a belongs to r6 of (6.30). 
We shall always view G and its subgroups as subgroups of M A by means of the lift 
of (16.14). In §14.14 we defined a group Q consisting of all (a, p) such that p2/j* 
is a root of unity. We can view Q as a subgroup of M A by identifying (a, p) with 
the element a of M A such that pr(<j) = a a and ha = p. 

Let k be an integral or a half-integral weight. Here an integral weight means an 
element of Z b ; a half-integral weight occurs only in Case SP; see §6.10. We define 
Aik as in §§5.5 and 6.10. Now we define a factor of automorphy j k by 

j(a,z)k (aeGA,keZh), 

K{z)ja{z)W (a€M,k<tZb), 

where [k] — (kv — l / 2 ) u € a , and we are employing the notation of (5.4a). We put 
[k] = k if k E Z b . Then, given f : H -> C and a € GA or a € 971, we define 
f\\ka :H^Cby 
(16-18) (fh<T)(z)=j*(z)-1f(az). 

For k G Z b this is consistent with (5.7). If k is half-integral, a G G f] 971, and we 
identify a with the element (a, /ia) of (7 of §14.14, then (16.18) is consistent with 
(14.18b); notice that f\\k(^r) = (/|U<x)||fcr if pr(<r) G P A or pr(r) G Ce. Prom 
(16.16b) and (16.17) we obtain 

(16.19) jk(rP{p), z) = |det(dp)|fc-Wdet(dp)W if p G PA. 

16.5. For two fractional ideals r. and t) in F such that ?rj C g we put 

(16.20a) D[y, tj] = { x G GA | ax -< r, bx -< ty, cx -< tn, d* -<: r }, 
(16.20b) D0[?, t>] = { x G Dfc tf] | xa(i) = i } , 
(16.21) i = in = ( i l n , . . . , iln). 

Notice that D[y, tj] = GA fl C[ty, ttj] with G[ , ] of type (1.17). 
We now take a fractional ideal b in P , and recall that 

(16.22) GA = PAD0[b-\b}. 

We already stated the equality G A = P A P > [ & ~ \ b] at the end of Lemma 1.9, but 
we can take D0 in place of D, since the equality at any archimedean prime holds 
by virtue of [S97, Propositions 6.13, 7.2, and 7.12]. Thus every element x of G A 
belongs to pA)[b - 1 , b] for some p G PA-

Now we fix a weight k which may be integral or half-integral, and make the 
following convention: pr means the identity map of G A onto itself if k is integral; 
otherwise it is the map of (16.13). We are going to define various functions on G A 
or M A according as k is integral or half-integral. For example, we define a real 
positive number e{x) and an ideal ilb(^) by 
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(16.23) e(x) = | det(dpd*)\A and i\b(x) - det(dp)r if pv(x) E pD0[b-\ b] 
with p E PA, 

where | | A is the idele norm on F£. These are well-defined, and 

(16.23a) e(xa) = |j*(i) |2 a , e(xh) = N(ilb(x)y2/[K:F] (x E GA) . 

For these see [S97, Lemma 18.5]. Clearly e(itx) = e(x) for 7r E P. 
In addition to b and k, we take an integral ideal c in F and a Hecke character 

X of K satisfying the following conditions: 

(16.24a) Xa(z) = a?ika|*K~* with « G R a such that ^vGaKv = 0 and 
J [jfe] (Case SP), 
| (kv - kvp)vEa (Case UT); 

(16.24b) Xv{°) = 1 J'̂  v eh, a E t*, and a - 1 E tvcv; 
(16.24c) £>[b-1, be] c £>[2tr\ 2D] if jk is half-integral 

Thus c C 4g if fe is half-integral. Hereafter until the end of this section we put 

(16.25a) D = D\b~l, be] and D0 = Do[b~\ be] if k E Z b , 

(16.25b) D= { x E M A |pr(a : )ED[b- \ be]} and 

D0 = {xeD\pr{x)eDQ[b-\ be]} if fc£Zb, 

We view P A as a subgroup of MA by the map rP of (16.15). Then PAD is a subset 
of MA if fc ^ Z b . Notice that P A A) = PA£> C 971, and so j% is meaningful for 
a E P A 5 . 

Next we define a function /i on GA or M A as follows: 

(16.26a) fj,(x) = 0 if x(£ P A 5 , 

(16.26b) /i(x) = X h ( d e t ( d p ) ) - 1 X c ( d e t K ) ) ~ 1 ^ ( i ) - 1 | j x ( i ) r - -

if x = pif; wifcn p E P A and w € D, 

where m = k in Case SP and m = (fcv + kvp)vea in Case UT. Our Eisenstein series 
EA{X> S) is defined for (x, s) E G A x C or (x, s) E M A x C by 

(16.27) £ A ( z , S) = EA (x , 5; x, 5 ) = ] T /x(ax)e(ax)- s , A - P\G. 

This is formally well-defined, since we can easily verify, employing (16.19), (16.16c), 
and (16.24a), that /J,(TTX) = /J,(X) for every IT E P. We investigated this series for 
integral k in [S97, Sections 18, 19]. Our principal aim of this section is to treat 
the case of half-integral k. 

16.6. Define an element ( of Sp(n, F)A by 

(16.28) Ca = l, & = [ £ " V 1 " 
with an element 6 of F£ such that i5g = T). From (6.29) we easily see that 

(16.29) C#[23-1> 29] = £>[2?>_\ 2t>]C, C^[2J>_1, 2D] U D[2i~\ 25] C C e . 

We then define an element £ of M A by 

(16.30) p r ( 0 = C and h((, z) = 1. 
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Notice that the condition pr(C) = ( implies that C G 9Jt, and so h((, z) is mean
ingful; then in view of (16.16a), the condition /i(C, z) = 1 determines C uniquely. 

Now let G be an open subgroup of £)[b_1, be], and ip a function on G A or M A 
such that ip(axw) = J™(i)~V(£) if a 6 G, pr(w) G G, and tu(i) = i. Define a 
function # on H by #(x(i)) = j£(i)<p(x) for every x such that pr(x) G G. This 
is well-defined independently of G and g\\k^f = 9 for every 7 E G D G. In Case 
SP we can show that the correspondence ip 1—> # gives a bijection from the set 
of all such </?'s (with a fixed G) onto the set of all functions g on H such that 
<?||fc7 = g for every 7 G G fl G. In Case UT, in order to obtain a bijection, we have 
to associate several functions on H to ip; for details, see [S97, Lemma 10.8]; see 
also §20.1 below. 

Assuming k to be integral, define <p' on G A by <p'(x) = ^(XUJ"1) for x G G A 
with u G (Gi)h- By strong approximation in Gi, we can find an element a G 
GflGu;. Define g' on H corresponding to (// by the above principle. Then we can 
easily verify that 
(16.31a) g' = g\\kcx. 

Next, assuming k to be half-integral, by strong approximation we can find an 
element Co of G such that Co G G fl GC - 1 . Clearly Co G C0. Define ip' on M A by 
ip'(x) = <p(xQ for x G M A and define g' on H corresponding to (p; by the above 
principle. Then we have 

(16.31b) gf = g\\kCo-

To show this, take x G M A SO that pr(x) G G fl C^C - 1 ; P u t V = C_1^C- Then 
(0%s) ( i ) = ^'(x) = £(&C) = ^ since pr(CoCy)^C. Now 
Jk{toCy, z) =jk(C0xC z) = jfc(Coz, z)jfc(C, 2) = jk((0x, z), since jfc(C, 2) = 1. Then 
(#IUCoCy)(i) = (#IUCoz)(i), which proves (16.31b). 

16.7. Returning to EA of (16.27), we note, in both Cases SP and UT, that 

(16.32) EA(axw,s) = Xc{det{dw))~1j!^(i)-lEA(x,s) if aeG and weD0. 

In Case SP we now define a function EA(x, s) on G A x C or M A x C by 
(EA(x{,s) ( X G G A , fcGZa), 

(16.33) E*A{x, a) = X{6)-" • < „ , ? , , . , udf7&, 
[£A(xC, s) (x^ M A , ki Za). 

This is independent of the choice of 6 in (16.28). We are going to study the Fourier 
expansion of EA(x, s). This was essentially done for integral k in [S97, Section 18] 
(see Remark 16.12 below), and so we consider here only Case SP, putting our 
emphasis on the case of half-integral k. First, by the principle of §16.7 we define 
functions E(z, s) and E*(z, s) of (z, s) G H x C so that 
(16.34) E(x{i),s)=j*(i)EA(x,s)9 J5*(x(i), s )= j* ( i )££ (x , s) if pr(x)GG a . 

We consider E(z, s) in both Cases SP and UT; as for E*, we define it, for the 
moment, only in Case SP. By (16.31a, b) we have 
(16.35) E*(z, s) = x ( < $ ) - " 4 ( z ^ E f a z , a). 
Now we have 
(16.36) E(z, s)=J2 N(ilb(a))u'x[a]6(z)a-<m-iKV2\\ka, A0 = P\(GnPAD), 

ot€AQ 
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(16.37) x W ^ W!1 , NN_i 

Here m is as in (16.26b); u = 2 in Case SP and u = 1 in Case UT; 6(z) = 
(det ((i/2)(z* - z)) ) v , which is consistent with (3.21) and (13.5); and xW is 
an element of T defined for a G G D PAD by 

X a(det(dQ))x*(det(dQ)i lb(a)-1) if c / fl, 

X*(ilb(a)) -1 if c = fl. 
(There are two <5's. However, 6 in (16.35) never appears together with z, and 
there will be no fear of confusion.) Notice that by Lemma 1.11 (3), det(dQ) ^ 0 
and det(dQ)ilb(a)_1 is prime to c if c ̂  g. To prove (16.36), take x in G A or MA 
so that pr(x) G G a and x(i) = z; let a £ G. We are going to calculate each term 
of (16.27). By (16.26a), fx(ax) ^ 0 only if a G PAD. Thus A of J 16.27) can be 
replaced by AQ of (16.36). Put ax = pw with p G F A and it; G i) . By (16.23a), 
e(ax) = e((ax)h)e((aa;) a) , e((ax)h) = JV(ilb (<*))"", and e((ax) a) = |jax(i)|2a-
Thus, by (16.26b), 
(16.37a) v(ax)e(ax)-s 

= A r ( i l b ( a ) H X h ( d e t ^ 

Assuming c ̂ g , we see that da is invertible and (dQ)h = (^p^)hj and hence 
det(d a) i lb(a) - 1 =det(da)det(dp)~1Q = det(dw)g. Therefore x*(det(da)ilb(o:)~1) 
= (Xh/Xc) (det(d tu)), so that 

X[<x] = Xh{det(dpdw))~ (xh/Xc) (det(c^)) = Xh(det(dp))~ Xc(det(dw))~ . 

Now Ja(z)Jx(S) = JaxiS) a n d S(az) = \jax{i)\~2 • Combining all these and (16.34), 
we obtain (16.36) when c ̂  g. The case c = 9 can be handled in the same manner. 

Next put r = GDD[b-1, be]. By [S97, Lemma 18.7 (4)] there exists a subset B 
oiGn(Uv\cQv'D[b-\ be]) such that 

(16.38) GDPAD= [J ppr. 
/3EB 

Let Up be a complete set of representatives for (P D (3F(3~1)\pr. Clearly P\(G D 
PAD) can be given by U/3GB ^/3- Since ilb(a) = ilb(/?) if a e /3JT, we have 

(16.39) J5(z, «) = 2 AT(ilb(/5))^ J ] X[a]S(zy^m'iK)/2\\ka. 
PeB aen0 

Recall that in Case SP the ideals ilb(/3) for /? G JB form a complete set of repre
sentatives for the ideal classes of F (see [S97, Lemma 18.7 (5)]). 

Take F — Q, for example; then K = 0 and k G 2~XZ; we can take B = {1}, and 
c = cZ with 0 < c G Z. Thus, as a special case of (16.39), we have 

(16.40) E(z, s)= Y, Xc(det(dy))-1«(z)- f c/2 | | f c7, 
7€(Pnr) \ r 

where we understand that Xc(det(dQ)) = 1 if c = 1. Thus \ c may be viewed as a 
Dirichlet character which is even or odd according as [k] is even or odd. 

Now the convergence of the series of (16.27) can be reduced to that of ^2ae^ of 
(16.39), and to that of J2aen \6(az)8*l w h e r e n = (p n ^ ' ) \ r ' w i t h a congruence 
subgroup r' of G. As noted in [S97, Proposition A3.7 and §A3.9], the last series is 
convergent for Re(s) > n in Case UT and Re(s) > (n + l ) /2 in Case SP. Thus the 
series for E(x, s) is convergent in that domain. 
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16.8. Since j% for w G C° is a factor of automorphy in the ordinary sense, 
from (16.32) we can easily derive that 

(16.41) E*A{axw, s) = X c ( d e t ( a u ; ) ) " 1 ^ ( i ) - 1 ^ ( x , 5 ) 

if aeG and pr(w) G Do^bc^b'1], 

and so it has a Fourier expansion of the form 

(16.42) Ex(rp(q
Q 7 ) ) = E c ^ ^ s ) e A ( ^ ) (qeGLn(FA),aeSA) 

^ ^ q ' ' hes 
with c(h, q, s) G C. The principle of such an expansion is stated in [S97, Propo
sition 18.3] for integral fc, but the case of half-integral k is similar. (Cf. also 
Proposition 20.2 below.) Now write an element z of £ja in the form z = x + iy 
with x, y e S& with yv > 0 for every v G a. Take q and a in (16.42) so that 
<7h = 1? q& — y1/2, o~h = 0, and a a = x. Write simply y}l2 for such a q. Then from 
(16.34) we easily obtain 

(16.43) E*{x + iy, s) = det(y)~fc/2 ] T c(/i, y1/2, s)el(hx). 
hes 

To obtain the explicit form of c(/i, g, s), we first put 

(16.44) £(p, hi s, s') = / e^(-hx) det(x + z#)_ s det(x - ig)~s' dx 
Jsv 

(s, sf e C; 0 < g e Sv, h e Sv, v e a), 
E(y, tu; t, *') = JJ^(yv , «;„; tvi t'v) (t, t' G C a , y€5 a , yv > 0, weS&). 

Here for s G C and z e 9)n we choose the branches of det(z)s and det(z) so that 
their values at z = iln are ins and i~ns, respectively, where ia is defined by 

(16.45) ia = exp(7T2a/2) (a G C). 

The function f was investigated in [S82]. We note here only that the integral of 
(16.44) is convergent for sufficiently large Re(s -f s'), and can be continued as a 
meromorphic function of (s, s') to the whole C 2 . We also put, for T e S, 

ufc <7€S t,/S(g)„ 

"l(r, a, X) = II E e^-C1^)^^^))^^-^)^^)-5. 
vfc aeSv/S(g)v 

16.9. Proposition (Case SP). Suppose that c ^ g and det(qv) > 0 for every 
v G a; let y = tqSLq8i. Then c(h, q, s) ^ 0 onfo/ i/ {tqhq)v G (^b~1c~1) l ;5v m^ft 5V 

0/ (16.1c) for every v G h, in which case 

c(fe, g, s) = C . X h ( d e t ( - g ) ) " 1 | d e t ( g ) h | ^ + 1 - 2 s | P F | - 2 n s + 3 n ( n + 1 ) ^ 

• det(y)sa+iK/2~(y, h; 5a + (fe + i«)/2, sa - (fc - z/c)/2) 

• ae
t(sil -lqhq, 2s, x) , 

where C = 1 and e = 0 if k e Z a , ana7 C = e(n[F : Q]/8) ana7 e = 1 if k £ Z a ; Eb 
is an element of F£ such that SbQ = b_1D if k G Z a , and Sb = I if k £ Z a ; JD/T is 
the discriminant of F. 
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If k g Z a , our assumption (16.24c) implies that bv = X)v for v\t. Therefore 
(e^1 • tqhq)v G Sv if v\c for both integral and half-integral k. The proof will be 
given in §A2.13. 

16.10. Proposition (Case SP). With ft, q such that c(ft, q, s) ^ 0 and €b as 
in Proposition 16.9, put r = rank(/z) and lghg = diag[ft/, 0] with g £ GLn(F) 
and h! G Sr. Let p^ be the Hecke character corresponding to F(cl/2)/F, where 
c = (-l)[ r /2] det(2ft'), if r>0; let ph = 1 if r = 0. Then 

(16.46) a^^qhq, 2s> X) = A c ^ - ^ C s ) J J / M f V ( x ( ^ ) K | 2 s + e / 2 ) 

with a hnite subset c of h, polynomials fh,q,v with coefficients in Z independent 
of x> &fld functions Ac and A^ given as foiiows: 

[n/2] 

Lc(2s, X) J ] L c ( 4 s - 2*> X2) if k G Z a , 
A c ( s ) = A ? ( s ) = < 2 = 1 

[(n+l)/2] 
J ] L c (4 s -2z + l , x 2 ) i f / c £ Z a , 
2 = 1 

[(n-r)/2] 
Afc(s) = Lc(2s - n + r /2 , x/^) I I L c ( 4 s ~ 2n + r + 2i - 1, x2) 

2 = 1 

if 2/cv + r G 2Z, 
[(n-r+l)/2] 

Ah(s)= Yl Lc{4s-2n + r + 2i-2,x2) if 2kv + r£2Z. 
2 = 1 

The set c is determined as follows: c = 0 if r = 0. If r > 0, take a G n^k ^^nCflt;) 
so that (e^1 • fa • tqhqa)v = diag[rv, 0] with rv G 5£ for every v^c. (Such an a 
is guaranteed by [S97, Lemma 13.3].) Then c consists of all the primes v not 
dividing c such that rv is not regular in the sense of §16.1. 

This follows immediately from Theorem 16.2. 
Next, to state a theorem concerning the analytic nature of E(z, s), we first put, 

for i — 1 or 2, and s G C, 
n - l 

(16.47) r&(s) = 1, r^(s) = T T " ^ " 1 ) / 4 n r(s - (ay/2)) (n > 0). 

16.11. Theorem (Case SP). Write simply rn for J^; define 7(s, h) and Q(s) 
as follows: 

Q(s) = QtK(s) = l[l{s + iKv/2,\kv\), 

"2/z + nl 

7(5, ft) = < rn ( 5 + -

rn ( s + ̂  

r2,+1fs + -J J] r(2*-o 

(n/2 < h G Z, n even), 

(n/2 < ft G Z, n odd), 

( 0 < ft < n / 2 , ft € Z), 
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(n/2 <h(£Z, n odd), 

(n/2 < h £ Z, n even), 

( 0 < / i < n / 2 , hi Z). 

Put V(s) = g(s)A?(s)E(z, s) with E of (16.36). Then V{s) is a meromorphic 
function in s on the whole C with only finitely many poles, and each pole is simple. 
In particular, V is an entire function of s if \ 2 ¥" 1- U X2 = 1) ^ e poles ofV are 
determined as follows: 

(I) x2 = 1 and c ^ g : Let m = Maxve8L\kv\. If m > n /2 , V has no pole except 
tor a possible pole at s = (n + 2)/4 which occurs only if 2\kv\ — n G 4Z for every 
v such that 2\kv\ > n. If m < n/2, V has possible poles only in the set 

(i) {j/2\ jeZ, [(n + 3 ) / 2 ] < j < n + l - m } if keZa, 

(ii) { (2j + l ) /4 | j e Z, 1 + [n/2] < j < n + (1/2) - m } if /c g Z a . 

(II) x2 = 1? c = 5, and k e Z a : In tin's case each poie belongs to the set of 
poles described in (I) or to 

(iii) { j / 2 | j e Z , 0 < j < [ n / 2 ] } , 

where j = 0 is unnecessary if \ ¥" 1-

We can derive this from Propositions 16.9 and 16.10 by means of the principle of 
[S97, Proposition 19.1] and the procedure described in [S97, §§19.4~19.6] in Case 
UT. In fact, the detailed discussion was given in [S94a, pp.565-571]. 

16.12. Remark. (I) In [S97, §18.6], we considered E(x, s) for integral k in 
Cases SP and UT. In Case UT we have j% = det(x)"j™ with v = (—kvp)v£8i and 
m = (kv + kvp)vea, and hence the present j£ can be written j™'" in the notation 
of [S97, (10.4.3)]. Thus our E(x, s) coincides with E of [S97, (18.6.1)] if we take 
j ^ u there to be the present j™'y. Also we considered there E*(x, s) = Ex{xr)^1, s) 
in both Cases SP and UT, instead of (16.33), and obtained its Fourier expansion 
in [S97, Proposition 18.14]. The function is different from the present E^ but 
the nature is the same. At any rate, both functions can be handled by the same 
methods. 

(II) We can define EA(X, S) also on ( G I ) A with Gi = SU(rfn) in Case UT and 
the corresponding E(z, s). This was done in [S97, Section 18]. In this case we take 
k e Z a . By Lemma 1.3 (2), det(da) e F for every a e G\. Therefore we put 
ilb(a) = det(dp)g in (16.23), and take \ to be a Hecke character of F satisfying 
X&(x) = x&\xsi\lK~k> To obtain the formula corresponding to (16.39) in this case, we 
take Gi and Pi in place of G and P, and take B so that G\ f] (P{)xD\b~~l, bc]i = 
U/3eJ3 -Pu^Ti* where X\ = ( G I ) A H X for any subgroup X of G A - With this choice 
of B the ideals il& (/?) for (3 G B form a complete set of repressentatives for the 
ideal classes of P ; see [S97, Lemma 18.7 (5)]. Then with Up = (Pi n / J P i / ? - 1 ) ^ ! 
we have 

(16.48) E{z, s) = Yl N(MP))2S £ xM*(*) s a~ ( f c- i K ) / 2 |Ua-

r[s + h-1 2h + n-2 
rn[s + -

7 ( s , h) = \ rn[s + 

[(n-l)/2] / , 
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(III) Let L = X)r=i( te* + &~len+i) w ^ h the standard basis { e* } ^ 1 of .RT^ in 
Case UT. Take ( e Kx such that (^ = ~C- Then we can easily verify that L is a 
maximal lattice with respect to the hermitian form £77 in the sense of [S97, §4.7]. 
Clearly D[b~\ b] = { a G GA \ La = L }. Therefore the results of [S97, Section 5] 
are applicable to Lv and D[b~x, b] fl Gv for every v G h. 

17. Arithmeticity and near holomorphy of Eisenstein series 

17.1. The purpose of this section is to study the nature of E(z, s) at suitably 
chosen points so belonging to an interval. We are going to show that the value 
or the residue of E at so is nearly holomorphic, sometimes holomorphic, and 
arithmetic up to a power of 7r. Throughout this section we put 

(17.1) d=[F:Q]. 

We return to the setting of §§16.5 and 16.7 in Cases SP and UT. However, in Case 
UT we take G\ = SU(r]n) instead of G = U(rjn). Therefore, in this section until 
Theorem 17.9, we speak of Case SU instead of Case UT. We shall return to Case 
UT in §17.10. The notation being as in §16.7, let T be a congruence subgroup of 
G\ or Q according as A; is integral or half-integral, where Q is the group defined in 
§14.14. As we said there, we view every congruence subgroup of Fe as a congruence 
subgroup of Q. In Case SU we take k e Za. We also take an element n of R a such 
that ^2veaL^v = 0- For £ = (a, p) G Q we put â  = a a , b$ = 6a , ĉ  = c a , and 
d$ = da. Then we put 

(17.2) r p = { 7 e r | c 7 = o}, 
(17.3) JS(z, *; fc, *, r) = 2 8{z)s^k-^f2\\ka ((z, s) eH x C). 

atrp\r 
(17.3a) E(z, 5; fc, r) = E{z, 5; fc, 0, J1). 

To make the sum at least formally meaningful, we have to assume 

(17.4) \j1(z)\iK-kj^(z) = l for every 7 G T p . 

The series is convergent for Re(s) > (n + l) /2 in Case SP and Re(s) > n in Case 
UT, as noted in [S97, Proposition A3.7 and §A3.9]. If A is a congruence subgroup 
contained in i"1, then we can easily verify that 

(17.5) [rp : rf]E(z, s; fc, /c, T) = ^ E(z, s; fc, «, rOIUa. 
ae r i \ r 

To study the properties of E(z, s; fc, «, T) for an arbitrary T, we introduce 
special types of congruence subgroups as follows: 

(17.6a) T0(c) = Gi fl £>[b-\ be], 
(17.6b) T(c) = { Q G r0(c) I a7 - 1 ̂  re, ba -< xb~lc } , 

(17.6c) ru(c) = {ae r0(c) | det(dQ) G g x W } , 
(17.6d) W = {xeFx\x-lecv for every v\c } . 

Here we fix b and assume (16.24c). We also denote by E(z, s; fc, x? c) the series 
of (16.36) in Case SP and that of (16.48) in Case SU; though E depends also on 
b, we suppress it, since it has no essential effect on the nature of E. 
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17.2. L e m m a (Cases SP and SU). (1) Fu{c) = Fu(c)pF(c). 
(2) Let X be the set of all Hecke characters of F satisfying (16.24a, b) with a 

fixed K. Let r be a congruence subgroup of G\ or Q which satisfies (17.4) and 
contains JT(C). Then X ^ 0 and 

# ( X ) [ r p : r(c)p]E(z, s; fc, fc, T) = £ £ E(z, s; fc, X , c)||fc a. 
xex aer(c)\r 

(3) If a is a multiple of c, then 

E(z, s; fc, x, c) = ^T Xc{det(d^)"1E(z, s; fc, x, a)IU£-
^r0(a)\r0(c) 

(4) Let Xn = (n-f l ) /2 in Case SP and Xn = n in Case UT. Then E(z, s; fc, *, T) 
can be continued to a meromorphic function on the whole s-plane which is holo-
morphic for Re(s) > Xn. Moreover it has a pole at s = Xn only if k = K = 0, in 
which case it has a simple pole at s = Xn with a positive real number as its residue. 

P R O O F . TO prove (1), take a G Fu(t). Then det(dQ) G eW with e G ^ . B y 
strong approximation on SLn(K), we can find an element q of GLn(x) such that 
Q — da -< ct and det(g) = e. Put 

a_\q* -dabaq~ 
P~[0 q"1 

Then /? G Fu(c)p and /3a G T(c), which proves (1). Next, since T(c) C T, from 
(16.19) and (17.4) we see that e[fcl|e|lK~[fc] = l for every eGg x such that e — 1 G c. 
Thus X 7^0 by [S97, Lemma 11.14]. Take any xoGX; observe that, for a g-ideal a 
prime to c, we have J2xex X*ia) = #(X)Xo(a) if a = ag with aeW; otherwise the 
sum is 0. Now take the sum of (16.39) or (16.48) for all x e X . For aeKpCpr0(c) 
we have ^ x € X X H T ^ O only when det(d a) i l b(a) _ 1 =ag with aeW, so that ih(P) 
is principal. Since the ilb(/3) for all / 3 G B represent the ideal classes of F, we can 
take /3 = 1, and hence a G F0(c) and det(dQ) G Wgx, that is, a G r u(c) . Also 
x[a]=Xa(det(d a))x*(det(dQ)g)=Xc(det(d a))~ . Since r 0 ( c ) p = r u ( c ) p , we have 

(*) J2 E ^ 55 *, X, 0 = # (X) ^ ( x o ) c ( d e t ( d a ) ) - 1
< 5 ( x ) — ^ ~ - ) / 2 | U a 

with ft = A(c ) p \ r w ( c ) . By (1) we can take F(c)p\F(c) as K. Then the right-hand 
side of (*) is #{X)E{z, s; fc, P(c)). Combining this with (17.5), we obtain (2). To 
prove (3), put F = i"b(c) and F' = r 0 (a) ; denote by D' the group of (16.25a, 
b) defined with a in place of c. By strong approximation we have D C D'G\, 
and so D = DT. Let Tj= r'\F, A0 = P \ ( G n P A 5 ) , and A^ = P\(G n P A 5 ' ) . 
Since P A fl 5 = P A fl D\ we easily see that PAD = ( J ^ r PAD'Z- Therefore J40 

can be given by U^ET^OC- Prom this and (16.36) or (16.48) we obtain (3), since 

XH) = xWXc(det(d^))_ 1 for £ G T. 
As for (4), the holomorphy for Re(s) > An follows from the convergence of our 

series in that domain. Now E(z, s; fc, x> c) n a s meromorphic continuation to the 
whole s-plain by Theorem 16.11 in Case SP and by [S97, Theorem 19.7] in Case SU. 
Also, from these theorems we see that E(z, s; fc, \-> 0 ls holomorphic at s = Xn 

except when fc = 0 and x = 1> in which case it has a simple pole at s = Xn with a 
positive number as its residue. Combining this with the equality of (2), we obtain 
(4). 
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= E{z, s; fc, x» 0 • < 

17.3. Hereafter we assume that « = 0, which means that a Hecke character \ 
of F satisfying (16.24a) is of finite order. Let us now put 

(17.7) D(z, s; k, x, 0 
[n/2] 

Lc(2s, X) I I Lc(As - 2i, x2) (Case SP, fc G Z a) , 
i= i 

[(n+l)/2] 

J ] Lc(4s - 2 i - l , x2) (Case SP, fc £ Z a), 
i= i 

n - l 

J j L c ( 2 s - z , x ^ ) (CaseSU), 
i=0 

where 6 is the quadratic Hecke character of F corresponding to K/F. 
We begin our investigation of E at special values of s by considering the special 

case in which k = fia. with /x G 2_ 1Z; naturally /i G Z in Case SU. We then define 
E*(z, s) in Case SP as in §16.7, and in Case SU we put 

(17.8) E*(z, s) = E{z, s; /aa, x, c)|^a7? (Case SU). 

Here we assume that c ̂  g and Xa(#) = sgn(xa)Ma. We have a Fourier expansion 

(17.9) E*(x + iy, s) = J2 c^y> sX(hx) 
hes 

with ch(y, s) = det(y)-^2c(h, y1/2, s) 

as observed in (16.43) and [S97, Lemma 18.7 (2)]. The formula for c(/i, • • •) in Case 
SU is given in [S97, Propositions 18.14 and 19.2]; these correspond to Propositions 
16.9 and 16.10. 

Now, if the series E(z, s) of (16.36) or (17.3) with A: = /xa is convergent at s = 
/i/2, then clearly E(z, /i/2) is holomorphic in z, and so it belongs to M^. It can 
happen that E(z, s) is not convergent at s = /z/2, but that analytic continuation 
allows us to speak of E(z, /i/2). Then we can ask the following questions: 

(Rl) When is E(z, /x/2) meaningful? IfE(z, /i/2) is meaningful, is it holomorphic 
in z? If so, is it an element ofM^aiQ)? 

(R2) IfE(z, /x/2) is not holomorphic in z, can we say something about its analytic 
nature? What happens if we take a more general k? 

(R3) Are there more values of s for which we can describe the nature of E(z, s)? 

We can ask similar questions by taking D of (17.7) in place of E. We shall answer 
these questions in Theorems 17.7, 17.8, and 17.9. In particular, we shall see that 
E(z, /i/2) can be nonholomorphic but nearly holomorphic in certain cases. 

17.4. We are going to consider the behavior of Ch(y, s) at s = /i/2. To recall 
some of the properties of the function £ of (16.44), we first put 

(17.10a) A = An = (n + l ) /2 , i = 1 ( Case SP), 
(17.10b) A = An = n, 6 = 2 (CaseSU). 

In [S82] we obtained a function u(g, /i;a, (3) defined for (#, /i;a, (3) as in (16.44), 
holomorphic in (a, j3) G C 2 , with which we have 
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(17.11) £(g, h; a, (3) = ^ — 2 ^ / ? (a + /? - A ) ^ . , ^ ) - 1 / ^ / ? ) - 1 

•&et{g)x-a-l36+{hg)a-x+"'lA6-{hg)f3-x+l'P'4 

• u>(2ng, h; a, (3). 

Here p (resp. q) is the number of positive (resp. negative) eigenvalues of h 
and t = n — p — q; 6+ (x) is the product of all positive eigenvalues of x and 
S-(x) = 6+(-x); r^ is defined by (16.47); 

T = (2p - n)a + (2q -n)/3 + n + t\+ (tpq/2), 
e=pa + q/3 + t + (t/2){t(t - 1) - p q } . 

In particular we have 

(17.12) £(g, h;a, 0) = 21-xi-na(2n)nar^(a)-1 det(h)a-xen{igh) if h > 0, 

(17.13) a9, 0; a, 0) = in0-na2n(X+l-a-0)7rnx£^^lzA ^ ^ A - a - ^ 

(17.14) lim £(g, h;X + s,s) = 2arnXnnXr^{X)-1en{igh) if q = 0 
s — • ( ) 

with a = [(n + p)/2] in Case SP and a = p in Case SU. 

For these see [S82, (4.34.K), (4.35.K), (1.31)]. To state one more formula, we take 
an indeterminate T and define polynomial functions tpr(X) of X G C™ by 

n 

(17.15) det(nn -X) = J^(-l)Wr(X)Tn~r. 

Notice that ipu (diag[A\ 0]) = <pv{X) f° r v < n. Now we have 
(17.16) Lo{2ny, h;\ + l,0)= 2-pXnLp(n-pV2en(ihy)6+{4nhy)-1 

v 
• /_.{—^)vhv{t(n — p)/2)ipp-ly(4:7rhy) if q = 0, where 

i /=0 

b0(a) = 1 and &„(<*) = JJ (ct + (tm/2)) if v > 0. 
m=0 

This was proved in [S93, Lemma 9.2 (iv)]. Put X = nhy in (17.15) and multiply by 
(Tiry)-1; then we obtain det [(TH/)"1 - T"1/*] = T,r=odeti7ry)~1<Pr('Khy)(-T)-r, 
which shows that 

(17.17) det (iry) ~1 <pr (nhy) is a polynomial of degree <n — rin the entries of(ny)~l 

with coefficients in the field generated over Q by the entries of h. 

17.5. Lemma. Define Lc(s, ip) by (16.9) with a Heche character ip of F. 
(1) If 0 > r a e Z , i/jv{xv)=sgn(xv)m for some vGa, and c^g , then Lc(m, ijj) = 0. 
(2) If tpa(x) = sgn(x a)m a with 0 < m G Z, then Lc(m, ?/;) G 7rd mQa b and 

L c ( l - m , ip) € Qab-
(3) If ^a(^) = sgn(a:a)ma with 0 < ra G Z, then Lc(s, ip) at s = —m has a zero 

of order at least d except when m = 0, ip = 1, and c = g, in which case the order 
of zero is d — 1. 

PROOF. Take f € Z a so that 0 < £v < 1 for every v G a and m - t e 2Za . 
Then L(s, VO I L e a ^ ( ( s + O / 2 ) i s holomorphic on C except for possible simple 
poles at s = 0 and 5 = 1, which occur if and only if ip = 1. Assertions (1) and (3) 
can easily be derived from this fact. Assertion (2) is included in a result which we 
prove as Theorem 18.12 in the next section. 
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17.6. Proposition. Let E* be defined as above with K = 0, c ^ g, and k = 
/xa, /i G 2 _ 1 Z; suppose ji > A; let h € S and r = rank(/i). In Case ££/ /et 0 6e 
t/ie quadratic Hecke character of F corresponding to K/F. Then Ch{y, s) is finite 
at s = /i/2. Moeover, Ch{y, /i/2) ^ 0 only in the following cases, and in each case, 
except in case (viii), the value can be described as follows: 

(I) h = 0. 
(i) ix = A : co(y, M/2 ) G Q a b . 
(ii) (Case SP) fi = [n + 2)/2, F = Q, and X

2 = 1 : 
co(y, /i/2) = cdet(y)-1/2 w i t i l c G C; c G 7r-AQab if /i $ Z. 

(iii) (Case SP) 2 < /i = (n + 3)/2, F = Q, and x2 = 1 : 
c0(y, /i/2) = C7r"ndet(y)_1 with c G Q a b . 

(iv) (Case SP) /i = 2, n = 1, F = Q, and x = 1 : 
c0(y, /x/2) = cK~ly~l with c G Q a b . 

(v) (Case SU) \i = n + 1, F = Q, and x = 6>n_1 : 

co{y, /i/2) = C7r~ndet(?/)~1 with c G Q a b . 

(II) h^O. 
(vi) fi> X and hv > 0 for every v G a : 

c^(2/, /i/2) = ce2(ihy) with c G Q a b . 
(vii) /i = A and /iv > 0 for every i; G a : 

ch(y, /i/2) = ce%(ihy) with c G Q a b . 
(viii) (Case SP) /i = (n + 2)/2, F = Q, x2 = 1-
(ix) (Case SP) v = (n + 3)/2, F = Q, x2 = 1, 0 < r < n, and /i > 0 : 

Ch(y, /x/2) = C7redet(7ry)~16+(7r/iy)a;(27ry, h\ A + 1, 0) with c G Q a b 

and e = r ( r — n)/2 . 
(x) (Case SU) /i = n + 1 , F = Q, x = 0 n _ 1 , 0 < r < n, and ft > 0 : 

ch(y, /i/2) = C7redet(7T2/)~15+(7r/i?/)u;(27ry, h; n + 1, 0) with c G Q a b 

and e = r( r — n). 

PROOF. By Propositions 16.9 and 16.10, Ch{y, s) in Case SP is easy finite non-
vanishing factors times 

(*) /OOAc^AfcO O J ] ttVv, hv; s + /i/2, * - /x/2), 

where we denote by f(s) the product Ylv£c of (16.46). Since we know the explicit 
forms of Ac and A^, we can derive our assertions from their properties and the 
formulas concerning £ in §17.4, combined with Lemma 17.5. The verification is 
fairly straightforward, but lengthy, as there are many combinations of n, /i, x> and 
ft, which produce different results. Therefore, we discuss here only a few typical 
cases in Case SP, leaving the remaining cases to the reader. Case SU can be handled 
in a similar and much simpler way by employing the formulas of [S97, Propositions 
18.14 and 19.2]. 

First of all, since Xa(^) = sgn(xa) /2a, from Lemma 17.5 (2) we see that 

(17.18a) 0 ^ Ac(/i/2) G 7r#Qab, where 

{ / x ( 2 m + l ) - r a ( m + l) with m = [n/2] if /x G Z, 

m(2/x - m) with m=[(n+ l)/2] if /i £ Z. 
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We also observe, for (n + l ) /2 < / J € 2 _ 1 Z, that 

(I7.i8b) r*{n) e \ , 2 , 

(I) Suppose h = 0 and /i G Z; then in (*) we have / = 1 and £(y, 0; • • •) is 
given by (17.13). Thus (*) takes the form 

[n/2] 

(**) A c(5)-1Lc(2s - n, x) I I M 4 s - 2n + 2i - 1, x2) 
2 = 1 

• a • 2-dns7rdnA det(y)(A-2s)ar^(25 - X)dr^{s + fi/2)-dr^(s - fi/2)~d 

with a G Qab- Take /z = (n + 2)/2 with even n, for example. By Lemma 17.5 (3), 
Lc(2s — n, x) has a zero of order at least d at s = /x/2 for any x- Now Yu=i ^s 

finite everywhere except when x2 — 1» m which case the factor for z = n /2 has a 
pole of order 1 at s = /x/2; the other factors belong to Qab. Now, from (17.18b) we 
easily see that the product of the last gamma factors of (**) at s = fi/2 produces 
a rational number times 7rn /4. Thus the whole product is 0 if x2 ¥" 1 o r F ^ Q-
If X2 — 1 and F = Q, we obtain a constant times de t (y) - 1 / 2 , as stated in (ii). 

Still with // = (n + 2)/2, assume that n £ 2Z. Then the first line of (**) has a 
different expression, but the second line is the same. This time F^(2s — X)dr^(s — 
fj>/2)~d has a zero of order d at s = fi/2. Then we obtain (ii) in this case in a 
similar manner. 

Next suppose \x.— (n + 3)/2 with odd n. Again we see that the nonvanishing 
can occur only if F = Q and x2 = 1? m which case 

[n-l)/2 
A 0 ( 5 ) = L c ( 2 s - n , x) ]J Lc{As-2n + 2i - I, I). 

i = i 

Suppose n = 1; then /J, = 2 and we easily see that the nonvanishing can occur only 
when x = 1> a n d the result is as stated in (iv). If n > 1, we have // < n, and so 
Lc()tx - n, x) £ Qab; also Ili=7 has a pole of order 1 at 5 = /x/2 and its residue 
is a rational number times Yu=i Lc(l — 2i, 1), which belongs to Qat>. In this 
way we obtain (hi) and (iv). 

(II) Suppose h ^ 0; define ph as in Proposition 16.10 and put r = rank(/i); 
let pv (resp. qv) be the number of positive (resp. negative) characteristic roots 
of hv. Then (xPh)v(x) = sgn(xv)^+^r^2^+qv for v G a. First suppose r = n and 
2/x + n ^ 2Z; then A^ = 1. From (17.11) we see that the last factor Ylvea. °f (*) ls 

finite at s = /x/2, and is nonzero only if qv = 0 for every v, in which case (17.12) 
shows that ch(y, fi/2) is an element of Qab times AC(/J,/2)~1 r^(/i)~d7Tdn^e2(ihy). 
Employing (17.18a, b), we see that Ch{y, /x/2) = ce^ihy) with c G Qab-

The case 0 < r < n is more complicated. Suppose // £ Z, r < n G 2Z, and 
r ^ 2Z, for example; then 

l(n-r)/2] 
(***) A^s ) = Lc(2s - n + r /2 , xp/0 I I L ^ 4 5 - 2n + r + 2 i - 1, x2)-

2 = 1 

By (17.11), n . e a £(•••) of (*) is a finite factor times n „ 6 a / ? ( 2 a + / i - A ) r / + ^ ( a ) " 1 

with (7 = 5 — /x/2, where t = n — r. First suppose // = A; then £ is odd and (***) 
is finite at s = /i/2; the last Ylvea is 0 a t cr = 0 if qv > 2 for some v G a. Thus 
we may assume that gv < 1 for every v G a. Suppose gv = 1 for some v. Then 
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M + \rl2\ + <?<; = (n + r + l ) /2 EE /x - n + r /2 (mod 2). Therefore the first factor of 
(***) is 0 at s = /x/2 by Lemma 17.5 (1). Thus the nonvanishing occurs only when 
qv = 0 for every v e a, that is, when h is totally nonnegative. Then employing 
(17.14), we obtain the desired formula as given in (vii). 

Next suppose /x = A + 1. Then (***) is finite if x2 ^ 1; it has a pole of order at 
most 1 at s = /x/2 if x2 = 1. This time the product of gamma functions has a zero 
of order at least d at a = 0. Therefore the nonvanishing can occur only if x2 = 1, 
F = Q, and A^ has a pole of order 1 at s = /x/2. In that special case suppose 
q > 1; then r}{2a -f l)/r^+q(a) has a zero of order at least 2 at a = 0, so that the 
nonvanishing can occur only if # < 1 . If r = n— 1, then x = Ph and so the signature 
formula for \Ph says that q G 2Z, a contradiction. Thus we may assume that q < 1 
and r < n - 3. Suppose q = 1. Then [/x] + [r/2] + q = (n + 3 + r ) /2 = /x - n + r /2 
(mod 2). Therefore L c ( 2 s - n + r /2 , xp/i) is 0 at s = /x/2 by Lemma 17.5 (1). Thus 
we may assume q = 0. Then from (17.11) we obtain the desired formula as given 
in (ix). All the remaining cases can be handled more or less in the same manner. 

To make our statements shorter, we make the following convention: whenever we 
speak of a function / (z , /x/2) belonging to a set, it means that / (z , s) is finite at 
s = /x/2, and the value as a function of z belongs to the set in question; whenever 
we speak of E(z, s; z^a,...) or D(z, s; i /a , . . . ) , we assume that v £ 2 _ 1Z in Case 
SP and i^GZin case SU. In §14.11 we defined N£{W) for p G Z a , a representation 
u) of GL n (C) b , and a subfield W of C. In Case SU, viewing Z a as a submodule of 
Z b in an obvious way, we can speak of N%{W) for k G Z a . 

17.7. T h e o r e m (Cases SP and SU). (i) If fi > A, then E(z, /x/2; /xa, O be
longs to .MMa(Qab) except when F = Q and A -I- (1/2) < /̂  < A + 1. 

(ii) If F = Q and \i = A + 1, then £?(*, /x/2; /xa, T) beiongs to A^(Qab). 
(iii) If /x > A, then J5(z, /x/2; /xa, x> c) belongs to A/fMa(Qab) except in the 

following four cases: 
(A) Case SP: /x = (n + 2)/2, F = Q, and X

2 = 1; 
(B) Case SP: n = 1, /x = 2, F = Q, and \ = 1; 
(C) Case SP: n > 1, /x = (n + 3)/2, F = Q, and x2 = 1; 
(D) Case SU: /x = n + 1, F = Q, and x = 0n+1. 

(iv) In Cases (B), (C), (D), E{z, /x/2; /xa, x , c) beiongs to A ^ ( Q a b ) . 
(v) Taking an integer /x < A, put i/ = 2A — /x and 

J n(n -f 2)/4 (Case SP, n e 2Z), 
6 ~" 1 (n + l)A/2 (all othe cases). 

Then £)(z, /x/2; z/a, x5 c) belongs to 7rdejMlya(Qab) except in the following three 
cases: 

(E) Case SP: /x = 0, c = g, and x = 1; 
(F) Case SP: 0 < /x < n/2, c = g, and x2 = 1; 
(G) Case SU: 0 < /x < n, c = 9, and x = ^ -

(vi) If n = 1 and c = g, then £)(z, 0; 2a, x, c) belongs to 7rdA/(2a(Qab) except 
when F = Q, in which case it belongs to TTN"^ (Qab)-

P R O O F . We first prove (iii) and (iv) when c ^ g. By Theorem 7.11, .MMa(Qab) is 
stable under / H-> / | | a for every a e Gi or a G Q. As for A/"Ma(Qab), we need it only 
when F = Q. Therefore, by Theorem 14.13, it is stable under / 1—• / | | a for every 
such a (see §14.14). Thus it is sufficient to prove (iii) and (iv) for E*(z, s) instead 
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of E(z, s; • • •). Now the desired facts for E* follow immediately from Proposition 
17.6. The case in which /i > A-hi is the easiest: E*(z, /x/2) = J2hes bh^Z{hz) w i t h 
bh ̂  0 only if h is totally positive and bh G Qab- All other cases are similar. Special 
care must be taken when /x = A + 1 and F = Q. Here let us discuss only the case 
in which n > 1 in Case SP. We assume x2 — 1> since the function is holomorphic 
otherwise. By (hi) and (vi) of Proposition 17.6, c0(y, /x/2) = adet(7n/) - 1 with 
a G Qab and ch(y, /x/2) = be^iihy) with b G Qab if det(ft) ^ 0. For 0 < rank(fe) = 
r < n, Chiy-t /x/2), if nonzero, can be given by the formula of (ix) of Proposition 
17.6. From (17.16) and (17.17) we easily see that ch(y, /i/2) = qfayY^e^ihy) 
with a Qab-rational polynomial q of degree <n — r. Thus E*(z, /x/2) in this case 
belongs to A^ a (Q a b ) . 

Next suppose c = g; then /x G Z. Fix an arbitrary prime ideal p of K By 
Lemma 17.2 (3), E(z, s; k, x, 5) = XI^GA E{Z, 55 »̂ A? P)IU a with a finite subset 
A of r0(c). Therefore we obtain (iii) and (iv) in the case c = g from those in the 
case c 7̂  g. 

Once (iii) and (iv) are established, (i) and (ii) can be obtained by combining (iii) 
and (iv) with Lemma 17.2 (2), because of the stability of -MMa(Qab) and A/^(Qab) 
under | |M aa as mentioned at the beginning. 

As for (v), the method of proof is the same. In Case SU, Ac is given in [S97, 
Proposition 19.2], which is the same as the product of L-functions in (17.7). If 
c 7̂  g, we again reduce the problem to Ac(s)E*(z, s; ua). Thus the question is the 
behavior of Ac(s)ch(y, s) at s = /i/2 with k = vs.. The analysis of the value is 
similar to that of Ch{y, s) at s = /x/2 in the proof of Proposition 17.6, and so we 
do not go into details here. We note only that we need tha value £(y, h; A, /x — A), 
which can be obtained from [S82, (4.34.K), (4.35.K)]. If c = 9, with any fixed prime 
ideal p we have 

B(s)D(z, s; k, x, fl) = ^ D(z> 5 ; *> * ' P ) l l * a 

[n/2] 

(1 - X*(P)N(P)-2S) n (1 - X*(p)2N(p)2i-4s) (Case SP), 

n - l 

J ] (1 - (xertPWiPy-28) (Case SU). 

Observe that we can choose p so that B(/JL/2) ^ 0 if we exclude Cases (E), (F), 
and (G). Therefore we can derive the desired conclusion of (v) for c = g from that 
for c = p. 

We shall prove (vi) in §A2.14. 

17.8. Theorem (Cases SP and SU). Suppose 0 < /x < A; put s^ — A - (/x/2). 
Then E(z, s; /xa, x> 0 ^ ^ a^ most a simple pole at s = sM, which occurs only if 
X2 = I in Case SP and x~ ^ in Case SU. The residue at s — sM is of the form 
7r~dlA-g(z) with an element g o/A/fAta(Qab) and constants 7 and A given by 

n(n/2 - /x) (Case SP, /x G Z, n G 2Z), 
(n - l)(n/2 - /x) - 1 (Case SP, /x G Z, n £ 2Z), 

7 = ^ (n + 1 - 2/x)[(n + l)/2)] (Case SP, /x £ Z), 
^ n(n —/LA) (Case SU), 

with J3(s) = < 
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A = RF • I 

[n/2-fi] 

L(n + l - / i , x ) J ] CF(2Z + 1 ) (Case SP, ^ ^ Z), 
i= i 

[n/2-/x] 

[ J C F ( 2 Z + 1 ) (CaseSP, »$Z), 

J ] L(i, A*"1) (Case SU), 
i=2 

where RF is the regulator of F, and £F is the Dedekind zeta function of F. Moreover, 
g(z) — Ylha(h)&2(h'z) wtth aW = 0 whenever rank(/i) > 2/x in Case SP and 
rank(/i) > \i in Case SU. 

P R O O F . The method of proof is the same as in Theorem 17.7. Namely, we 
reduce the problem to E*(z, s), and study the behavior of the Fourier coefficients 
at s = Sp, employing the explicit form of c(/i, q, s) given in Proposition 16.9. In 
particular, we have to analyze £(#, h\ s -f /x/2, 5 — fi/2) at s = sM, for which we 
need (17.11) and [S82, (4.35.K)]. The details may be left to the reader. There is 
one more nontrivial point: that the property a(h) = 0 for rank(/i) > t with a fixed 
t can be preserved by the transformation g *-* g\\ct for every a e G\. For this, see 
[S94b, (5.14)]. 

17.9. Theorem (Cases SP and SU). Let <P be the Galois closure of K over Q 
and let k be a weight (which means that k £ Z a in Case SU); suppose that kv > X 
for every v £ a and kv — kv> £ 2Z for every v, v' £ a. 

(ia) Let /J, be an element of 2 _ 1Z such that X < /u, < kv and /x — kv £ 2Z for 
every v £ a. Then E(z, /x/2; fc, T) and E{z, \ij2\ fe, x, 0 belong to 7rQA^(#Qab) 
except when F = Q and // = (n + 2)/2 in Case SP, where a = (n/2) X ^ e a ( ^ ~~ M) 
and 

f n(k-fj, + 2)/2 if jx = A + 1 and F = Q, 
I n(k — /xa)/2 otherwise. 

(ib) For /i and a as above, E(z, \xj2\ k, \, c) belongs to nQ Af£ i&Q&b) except 
in Case (A) of Theorem 17.7, where 

(n(k-fj, + 2)/2 in Cases (B), (C), (D) of Theorem 17.7, 
1 n(k — /xa)/2 otherwise. 

(ii) Let /i £ 2 _ 1 Z; suppose that 2X — kv<jj,<kv and \/J, — X\ + X - kv e 2Z 
for every v £ a. Suppose also that n, F, x> an<^ c do n°fc &# Jn^° Cases (A), (E), 
(F), and (G) of Theorem 17.7. Then D{z, /i/2; fe, x, c) belongs to 7rfy/£($Qab), 
where 

J n(fc - /x -h 2)/2 in Cases (B), (C), (D), 

1 (n/2) (A: — j / / — A|a — Aa) otherwise, 

and (3 = (n/2) X ^ e a ( ^ + //) - de with 

{ [{n + l)2 /4] - fi (Case SP: 2// -f n £ 2Z and /i > A), 

[n2/4] (Case SP: 2// + n i 2Z or yu < A), 

n ( n - l ) / 2 (CaseSU). 
(hi) Suppose n = 1, // = 0, and 2 < fcv £ 2Z for every t; £ a. Then 

D(z, 0; fc, x, c) belongs to 7r^/V;r(<£Qab) with r = (fc-2a)/2 and /? = £t,€a*t//2, 
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except when F = Q and c = Z. If F = Q and c = Z, then it belongs to 
7rfc/Wfc

fc/2(Qab). 

Assertion (hi) means that if n = l we have results even in Cases (E) and (G). It 
is conjecturable that similar results hold in Cases (E), (F), and (G) even for n > 1. 

P R O O F . For p G Z a and a weight q define the operator Ap by Ap
qf = (D% /)(V>) 

with /9(a, 6)=det(6)«, ^ = ® v G a ^ = Ci/> C Snp(T), where Zf, = C^ u C 5 n P v ( r v ) , 
^ = IlV€a^tM and ^ = det(aOPv. Then, by (12.24c) and Theorem 14.12 (4), 

(17.19) ^(£Q a b ) C n^^X^^Q^). 

(See §14.14 if q£Za.) Let simply E(z, s; fc) denote E(z, s; fc, T) or E(z, s; fc, x> 0-
We now apply Lemma 13.9 to each term of E with £(x) = det(x)Pv. Employing 
the formula for ipz given in Theorem 12.13, we find that 

(17.20) ApE(z, s; q) = <*(s)(i/2)nME(z, s; q + 2p) 
n pv n n n {-s - ̂ /^ -b+^+v/*} ^case sp^ 

with cp(s) — I veaa=l6=1 
n pv 

Iinn{-s-^/2)-6 + a } (CaseSU). 
u 6 a a = l 6 = 1 

This is so even when q£Za; see §14.14. Now, given p as in (ia), put p — (fc—/za)/2. 
Then 0 < p G Z a , and (17.20) with q = pa yields 

(17.21) ^E(z, M/2; jxa) = c ^ / 2 ) ( i / 2 ) » W £ ( z , /i/2; fc). 

Observing that c£a(/x/2) ^ 0, we obtain our assertions of (ia) and (ib) from (i) 
and (ii) of Theorem 17.7 and (17.19). 

Next, let p be given as in (ii). If fi > A, the above proof is applicable also 
to this case, and we obtain the desired result from (iii) and (iv) of Theorem 17.7, 
except that we have to multiply the functions by the product of certain values of L-
functions, and hence a power of TC appears as stated. If \x < A, we put u = 2A — // 
and p = (fc - i/a)/2. Then v > A, 0 < p G Z a , and 

(17.22) Ap
aD(z, /i/2; i/a, x, 0 = {i/2)nM<*M2)D(z, p/2; fc, X , c). 

Observing that cp
a(fi/2) ^ 0, we obtain our assertion of (ii) from (v) of Theorem 

17.7 and (17.19). Assertion (iii) follows from (vi) of Theorem 17.7 in the same 
manner. 

17.10. In our later investigations we need the series £ A of (16.27) in Case UT. 
We put JB*(x, s) = EA(xrj~\ s). Given r G Gh in Case UT, we define functions 
Er(z, s) and E*(z, s) of (z, s) G W x C by 

(17.23a) Er(x(i), s) = Er(x(i), s; fc, x, c) = j * ( i ) £ A ( r x , s), 
(17.23b) £r*(x(i), a) = £r* (s(i), *; fc, X , c) = j*( i )Ej tfrs , a) 

for x e Ga. Then we put 
n - l 

(17.24) D r(z, s; fc, X, c) = Er{z, s; fc, X , c) J\ Lc{2s - i, X i ^ ) , 
2 = 0 

where xi is the restriction of x to ^ A • Here recall that in Case UT, x i sa Hecke 
character of K. 
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17.11. Lemma. Let x be a Hecke character of K satisfying (16.24a) with £ G 
Z a and K = 0. Then x(c) for every c € K£ and x*(a) for every x-ideal a are 
algebraic. 

P R O O F . Since x*(a) iS 0 o r x(c) f° r some c G K£, it is sufficient to treat x(c)-
Given c, we can find a e Kx and a positive integer m such that c7nv = at. 
Then c m / a = ef with e G rL<Ehr* a n d / € ifa . We can find an integral g-
ideal c with which (16.24b) is satisfied. We can also find a positive integer v such 
that ev

v — 1 G xvtv for every v\t. Then x(eI /) — 1» a n d hence x(e) is a root of 
unity. Now / = a" 1 , so that x( / ) = |a|^a~* G Q. Since x(a) — 1> w e n a v e 

x(c)m — x ( e )x ( / ) £ Q> which proves our lemma. 

It should be noted that given £ G Z a , a Hecke character x ^ in the above 
lemma always exists; see [S97, Lemma 11.14 (3)]. 

17.12. T h e o r e m (Case UT). Let fc G Z b and /i G Z; put m = (fev 4- kvp)vesi. 
Let x be a Hecke character of K satisfying (16.24a, b) with K = 0, and xi the 
restriction of x to F£. Further let K' be the reflex field (in the sense of §9.4) of 
the CM-type (K, {TV}) we fixed in §3.5, and Kx the field generated over K' by the 
values x(c) for all c G K£. (Then Kx C Q by Lemma 17.11.) Then the following 
assertions hold: 

(i) Suppose mv = \i > n for every v G a; then Er(z, \ij2\ fc, x> 0 belongs to 
Mk(KxQ&b) except when /J, = n + 1, F = Q, and xi = 0n+1. 

(ii) Let k and n he as in (i). If ji = n + 1, F = Q, and xi = # n + 1 , then 
Er(z, /z/2; fc, x, c) belongs to Af£(KxQah). 

(hi) Let k and /j, be as in (i); put v = 2n — \i and e = n(n + l ) /2. Then 
Dr(z, i//2; fc, x? 0 belongs to 7TdeMk(KxQah) except when 0 < v < n, c = g, and 
Xi = 0". 

(iv) Let $ be the Galois closure of K over Q. Suppose n < /J, < mv and 
li-mv G 2Z for every v G a. Then Er(z, /i/2; fc, x, 0 belongs to 7raA/]£(#XxQab)> 
where a = (n/2) X^ea(m<; ~ A6) a n d 

J n ( m - / i + 2)/2 if j * = n + l , F = Q, and X i = 0 n + 1 , 
1 n(rn — //a)/2 otherwise. 

(v) Suppose 2n — mv < /i < mv and m^ — /x G 2Z for every t> G a. Then 
Z)r(2, /i/2; fc, X? C) belongs to 7r^A/fc(#ifxQab)5 except when 0 < /x < n, c = g, 
and xi = 0^, where 0 = (n/2) X^ea(m ^ + /-0 ~~ c^ r i(n ~ I ) / 2 an(^ 

J n ( m - / x + 2)/2 if /i = n + 1, F = Q, and X i = # n + \ 
1 (n/2)(m — |/x — n|a — na) otherwise. 

REMARK. (1) If fcvp = kv for every v G a, then Xa = 1, so that x is of finite 
order. Therefore Kx C Qab in that case. 

(2) We can define E(z, s; fc, T) for fc G Z a and a congruence subgroup r of 
U(rjn) in Case UT by (17.2), (17.3), and (17.3a). Then (17.5) holds for A C T C 
U(rjn). Now we can take J \ in SU(r]n). Therefore the nature of E(z, /z/2; fc, T) for 
r C f/(77n) can be reduced to the case T C SU(r]n), which is given in Theorems 
17.7 and 17.9. 

P R O O F . We first note that E*A has a Fourier expansion of the form 
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(17.25) Ex(\l 7 J ) = = E c ^ ^ ' 5 ) e A ( ^ ) (qeGLn{K)A,veSA) 
^L q M hes 

with e(/i, g, s) G C. We assume c ̂  g and take fc and /x as in (i). Given r G Gh, 
by [S97, Lemma 9.8 (3)] we can put rrj^ = a~1tw with a G G, iu G £>[bc, b - 1 ] , 
and * = diag[gi, $i], qx G GLn(K)h. Then, by [S97, Lemma 18.7 (1), (2)] we have 

(17.26a) Er(z, s) = xM^a^)"1 jk
a{z)-lE;(az, s), 

(17.26b) £*(*, s) = J ] d e t ( 2 / ) - ^ 2 c ( / i , g, *K(fcr)> 

where % = gi and ga = y1^2- Now c(ft, g, 5) is not much different from ^ ( y , s) 
of (17.9) in Case SU. Indeed, using the symbols of [S97, Proposition 18.14], put 

X = c(S)N(bc)-n2\det(y)\s*S(y, h\ (s + /i/2)a, ( s - M / 2 ) a ) . 

k - i ; Then that proposition says that c(h, g, 5) ^ 0 only if (q*hq)v G (bct>) 5V for 
every v G h, in which case 

c(fc, g, 5) = x{det(qi))\det(qi)\l-sa0
c(ujq*hq, 2s, X l ) X , 

where UJ is an element of F£ such that u>g = bD, and c^(y, 5) = det(y)_ / x a /2 

•c(ft, 2/1/2, 5), where c(h, y1/2, 5) is a special case of c(ft, g, 5) with gi = 1. Notice 
that the quantity X stays the same. Now a®(uq*hq, 2s, xi ) ls given in [S97, 
Proposition 19.2], and its nature does not depend on g. Therefore the analysis of 
c(h, g, s) at s = fi/2 is practically the same as that of c^(y, s) in Case SU; the only 
essential difference is the additional factor x(det(gi)) | det(gi)|^TM/ . Combining 
this with (17.26a, b), we see that 

X (de t (gr 1)de t (a u ; ) c ) |de t (g 1 )^ / 2 - n E r (z , /x /2) 
is of the same nature as E(z, fi/2; /xa, xi> c) in Case SU as stated in Theorem 17.7, 
(hi), (iv), except that we have to consider H^a with a in G, not necessarily in G\. 
Therefore by Theorem 7.11 we obtain (i), (ii), and (iii) when c ^ g . To deal with 
the case c = g, we use the equality 

Er(z, s; fc, x, fl) = J2b Erb{z, s; k, x, p) 
of [S97, (19.6.1)], where p is a prime ideal and b runs over a finite subset of Gh-
Thus the results for c = g follow from those for c ^ g. 

Given k and fi as in (iv), put p = (TO — /xa)/2 and define k' G Z b by k'vp = 
kvp — Pv and fcj, = kv — pv for v G a; define also ^ £ a as in the proof of Theorem 
17.9. Then clearly k'vp + k'v = /J, for every v G a and moreover 

(17.27) A^Eriz, /i/2; *', x, c) = (V2)nlplc£a(/i/2)£ r(z, /i/2; fc, X, c). 

To show this, we first observe that ^ £ a ( / I U ' a ) = ( ^ a / ) I U a f° r e v e r v <* £ G. 
Indeed, if a G (Gi) a , this is a special case of (12.21), since \\ka = | | m a and 
llfc'tt = | |M aa. If OL G Ga , then a = c(3 with /3 G (Gi) a and c G C a such that 
|cv | = 1 for every v G a, and the equality for a can be reduced to that for (3 (see 
also §14.4). Now, given r, by [S97, Lemma 9.8 (3)] we can put r = a~lfu with 
a G G, / = diag[p, g], g G GLn(K)h, and u G £>[bc, b - 1 ] . Then a a = u a . For 
z = x(i) with x G G a we have 

Er(z, s) js( i)" 1 = ^ A ( ^ , 5) = EA{fux, s) = Xc(det(au))~1£ ,
A(/wa^, 5) 

= Xc(det(a u))" 1E / (ax(i) , s ) ^ ( i ) " 1 = Xc(de t (a n ) )~ 1 ^ / (a2 , s ^ z ) - 1 ^ ! ) " 1 . 
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Thus we obtain 
(17.28a) Er(z, s) = X c (de t ( a u ) ) " 1 E / ( az , s)j*{z)-\ 

In [S97, Lemma 18.7 (3)] we showed that 

(17.28b) Ef(z, 5) = x ( d e t ( ^ ) - 1 ) | d e t ( ^ ) | - s ^ i V ( a / ( a ) ) s x [ a ] / ^ ) - - m / 2 | U a , 
aeA' 

with A! = P \ ( G n P A / £ > [ b ~ \ be]/"1) and a/(a), x M / as described there. These 
symbols are independent of A:. Therefore term-wise application of the differential 
operator shows that (17.27) is true for Ej in place of Er for the same reason as in 
(17.20). Then from (17.28a) we obtain (17.27). Now we have 

(17.29) AP^K'(W) c 7rnlplK+np(W). 

for a subfield W of C containing $. Therefore we obtain (iv) from (i), (ii), and 
(17.27), since c£a(/x/2) ^ 0 as observed in the proof of Theorem 17.9. Finally, 
given /x as in (v), we can repeat the above proof with Dr in place of Er if \i > n. 
If \i < n, we put v = 2n — \i, p = (m — va)/2, and k" = (kvp — pv, kv - pv)vesL-
Then k" + k"p = v for every v G a, and 

(17.30) A'Mz, /x/2; ft", X, c) = (t/2)nlPlcPa(|x/2)Dr(z, /x/2; fc, x, c). 

Thus we obtain (v) for the same reason as above. 

17.13. Lemma. Define Er(z, s) by (17.23a) for r € Gh in Cases SP and UT 
with k € Z b and K, = 0. 77ien £/iere zs a finite sum expression 

m 

(17.31) Er{z, s) = Y,hcSiE{z, s; A : , ^ ) ! ! ^ 
i= i 

with bi€Q, 0 < Ci G R f l Q , congruence subgroups Fi of G, and c^ G G. Moreover, 
in Case UT we can take Fi in SU(r}n). 

P R O O F . In Case UT we have (17.28a, b) with / = diag[<?, g\. By [S97, Lemma 
18.7 (4)], A' of (17.28b) can be given by U(3eB SP@ w i t h a finite subset B of G and 
S ^ ( P H prp-^prp-1, where F = G n / ^ [ b " 1 , be] /"1 . For 7 G Sp we have 
a/(7/3) = a/(/3) and x[7/?]/ = c/?Xc(det(d7)) with a constant cp independent of 7. 
Therefore, taking a suitable congruence subgroup of /3JT/?_1 , we obtain expression 
(17.31) for Ef, which combined with (17.28a) proves (17.31) in the general case. 
Now (17.5) is valid in Case UT, and in that formula we can take Fi in SU(r)n). This 
proves our lemma in Case UT. Case SP is simpler, since we have G A = GD[b_ 1 , b], 
so that (17.28a) holds with / - 1, and Ex(z, s) is given by (16.39). 

18. Eisenstein series in the Hilbert modular case 

18.1. In this section we consider Eisenstein series when the group G is SX2(F), 
and as applications we treat critical values of certain L-functions of a totally imag
inary quadratic extension of F. Though our results on Eisenstein series are essen
tially special cases of what was obtained in Sections 16 and 17, we present them in 
a somewhat different fashion. We start with some elementary facts on L-functions 
of F stated in the form suitable for our later applications. Throughout this section 
we denote by D, Dp, and Rp the different of F relative to Q, the discriminant of 
F, and the regulator of F. We put [F : Q] = e and N(x) = NF/Q(x) for x e F. 
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Then N(xg) = \N(x)\ = |x|a for x G Fx. For a0 e F and a g-ideal a we put 
ao + a= {ao + a | a £ a } . 

Given K, G S(F\l) and fc G Z a , we can find a subgroup U of gx of finite index 
such that K,(ud) = n(d) and u~k\u\k = 1 for every u G U and every d G F. As 
explained in §1.6, we view /c as a function on F. With such a J7 we put 

(18.1) £>*(*, *) = [gx : C/]"1 ^ K(d)d~k\d\k-sa (seCx). 
deF*/u 

Clearly this does not depend on the choice of £/, and is convergent for Re(s) > 1. 

18.2. Lemma. Let tv = 0 or 1 according as kv is even or odd. Put i?t(s, ft) 
= rt(s)Dk(s, K) with rt(s) = n ^ a 7 r _ ( s + ^ ) / 2 r ( ( 5 + ^ ) / 2 ) - Then Rt(s> « ) c a n 

be continued as a meromorphic function of s to the whole C, and satisfies 
Rt(l — 5, K) = Rt(s, ft*) with the element K* of S(Fh) given by 

«*(x) =i"l*l / K(y)eh(-xy)dy, 
JFh 

where \t\ = ^2ve8Ltv and dy is the Haar measure of F^ such that YlvehQv has 
measure DF ' . Moreover, Rt{s, K) is entire except when t = 0, in which case 
Rt{s, K) is holomorphic on C except for possible simple poles at s = 0 and s = 1 
with residues —2e_1Ac(0)i?F and 2e-1«*(0)i?F, respectively. 

Though this can be proved by the standard method by taking a suitable zeta 
integral on F£, we shall derive it from a more general result concerning the Mellin 
transform of a Hilbert modular form in §A7.3. 

Take K to be the characteristic function of the set a$ -f a as above, for example. 
Then /^(O) = i~^D^1/2N(a)-\ and so if t = 0, (that is, if k G 2Za,) then 
Dkis, K) has a simple pole at 5 = 1 with residue 2e~1Dp ' N(O)~1RF-

18.3. We put P = {a G G\ca = 0 } and H = S)f as before. In addition, we 
put H = F£ - {0} and 

(18.2) jh(z) = (cvzv + dv)v(ESL for h = (c, d) G H and z eH. 

We easily see that jhj{z) = jh{iz)j7(z) for h G H and 7 G G. Given k G Z a 

and A G «5((F2
1)h)> we can find a subgroup U of gx of finite index such that 

uk\u\~k = 1 and \{uh) = X(h) for every u € U and every h G F2
X. Then we put, 

for (2, s ) G H x C , 

(18.3) Ek{z9 *; A) = fo* : C/]"1 ] T A(fc)^(z)- f ey s a- f c /2 | jh(z) | f c-2 s a 

= [Sx : ^ l - 1 I ] A(c> d)(cz + d)-ky8*-k/2\cz + d\k-2a*, 
(c,d)eH/u 

where of course y = Im(2). The sum is formally well-defined, independently of the 
choice of U. Defining A7 for 7 G G by A7(ft) = A(/i7 -1), we can easily verify tha t . 

(18.4) Ek(z, s; A7) = Ek{jz, s; X)j7{z)-k for every 7 € G. 

If we put J T = { 7 G G | A 7 = A } , then clearly f is a congruence subgroup of G, 
and Ek(z, s; A)||fc7 = Fk(z, 5; A) for every 7 G T. 

Let us now show that Ek(z, s; A) is a finite "linear combination" of transforms of 
functions of type (17.3). We first put XQ = [0 1] and observe that XQOL = [cQ da] 
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for a G G, P — {a G G\ xoo; G Fxo }, and the map a H-> X$QL gives a bijection 
of P\G onto FX\H. Then we easily see that the map (d, a) i-» dx^a for (d, a) G 
Fx xG gives a bijection of {Fx/U) x (P\G) onto ff/17. 

Given A G ̂ ((Fj jh)? take U and T as above, and take also a complete set of 
representatives B for P\G/T, which is finite by [S97, Lemma 9.8 (3)]. Then P\G 
can be given by [_\(3eBn^f3 w i t h % = (p n Pr0~1)\0r0'1. Write an element 
ft of ff/£7 in the form ft = ofc07/? with d e Fx/U, (3 G £ , and 7 G 7 ^ . Since 
A(dx07/3) = \(dxQ(3(3~l7(3) = \(dxo(3), we have 

(18.5) Ek(z, *; A) = [g* : t / ] " 1 ^ £ \(dx0(3)d-k\d\k-2s* £ i / 'a-* / 2 |U70 
/3GB d£F*/U l^n0 

= ] T Dfc(2s, ^ ) E ( z , s; fc, prp-l)\\kfr 

where /c/3 is defined by «^(d) = A(dx0/?) for d G F and 15(z, 5; fc, /3J7?-1) by 
(17.3a). Since (17.3) is convergent for Re(s) > 1 and Dk(2s, KQ) is holomorphic for 
Re(s) > 1/2, we see that Ek(z, s; A) is meaningful as a holomorphic function of s 
at least for Re(s) > 1. Also, from Lemmas 17.2 and 18.2 we see that Ek{z, s; A) 
can be continued as a meromorphic function of 5 to the whole C. We can actually 
derive a stronger result from the explicit Fourier expansion of Ek(z, s; A), which is 
our next problem. For that purpose we need 

18.4. Lemma. For a g-ideal m we have 

D1
F

/2N(rn)J2(z + a)-a(z + a)-^= £ e.(te)H(y, 6; a,/?). 

Here z = x + iy € H, a £ C a , (3 G C a , Re(av + (3V) > 1 for every v G a, and 
S(y, 6; a, (3) = FLeaf (lfo> ^ ; a v , (3V) with 

£(g, h; s, s') = / e(-ht)(t^ig)~s(t-ig)~s'dt (s, sf GC; 0 < # G R , ft GR). 

P R O O F . Put / (x ) = (x + iy)~a(x-iy)~P for a; G R a with a fixed 2/ G R a , > 0, 
and let f(x) be its Fourier transform. (That / is L1 will be shown later.) Then 
f(x) = S(y, x; a, (3). By the Poisson summation formula we obtain vol(Fa/m) 
' E a e m / ( x + a ) = Z)6e(dm)-i ea(bx)f(b)i w h i c h S i v e s t h e desired equality, and 
which holds if the left-hand side is convergent and defines a C°° function of x. To 
see the last point, we take an easy equality 

\x + iy\-2r = T[r{rv)-1 / e-tM2tr"-1dt, 

valid for z = x + iy G C a and r € R a , > 0. Then we can easily verify that 

\x + iy\~2rdx = ne/2y»-2r ]J r(rv - l/2)r{rv)~l 

v£a 
if 2r — a ^> 0. Let T be a compact subset of H. By a well-known principle, there 
exists an open subset U of H containing T, whose closure is compact and contained 
in W, and a constant C\ such that 

(*) \h(w)\<Cl I \h(z)\dv(z) 
Ju 

for every w G T and every holomorphic function ft on W, where dv(z) is the 
Lebesgue measure on C a . Take a compact subset X of Ra and a compact subset Y 

L 
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of {y G R a | y > 0} so that U C X + iY. Let M = # { a G m | ( a + I ) n l ^ 0 } . 
Then, for any finite subset A of m, we have 

/ / J2\x + iy + a\~2rdxdy-M [ I \x + w\~2rdxdy<MC2 f ya~2rdy<MC3 

if r belongs to a compact subset Z of {r G R a | 2r — a > 0}, where C2 and C3 
are constants depending only on Y and Z. By (*) we have J2aeA \z + a l ~ 2 r < C4 
for every z G T and every r e Z with a constant C4 depending only on X, Y, 
and Z, Now jur^ i i r^ l < C ,

5M~Re(a"f /3) for every w e H if (a, /?) belongs to a 
compact subset S of C a x C a , where C5 is a constant depending only on 5. Thus / 
belongs to L x (R a ) and ^ ] a € m f{x + a) is locally uniformly convergent for (x, a, /?) 
if Re(a + /?) > a. Since (d/dxJ){z-az-P) = -ayZ^^z-^ - pvz~az-^-v, we see 
that X^aGm(^/^a;^)/(:E + a ) Is l°cally uniformly convergent if Re(a + /3) > a. The 
same is true for derivatives of any order. This proves that Xlaem f(x + a ) converges 
to a C°° function if Re (a + /?) > a, which completes the proof. 

Notice that the above f is exactly the function of (16.44) with n = 1. We insert 
here an easy fact: 

18.5. Lemma. Let f{z) = YlheF ^We^(^z) and d(z) ~ J2heFcWea{hz) be 
elements of M^ with 0 < fi G 2 _ 1Z, and let a G Aut(C). If b{h)a = c{h) for 
every k e F , . ^ 0, then b{0)a = c(0). Consequently 6(0) zs contained in the field 
generated over Q &?/ the b{h) for all h ^ 0. 

P R O O F . By Theorem 9.9 (4) or Theorem 10.7 (5), fa G M^a, and hence b(0)a-
c(0) = f<T—g£AifX8L. Since /x>0, we have 6(0)a—c(0)=0, which proves our lemma. 

18.6. We now take A in (18.3) to be the characteristic function of (ao 4- a) x 
{bo + b) with ao, bo G F and g-ideals a and b. Then we can take 

U = {w G gx I u > 0, {u - l)a0 G o , ( u - 1)60 G b}. 

Notice that S((F2)h) is spanned by such A's. Let A = [{ao + o) D i7 'x]//7 and 
•S = [(&o + b) fl Fx]/C7; also let KA resp. ft# be the characteristic function of 
a0 -f a resp. 60 + b. Then 

[8* : C/]j/fc/2—£fc(z, «; A) = e(a0) a) V d~k\d\k~2s& 

deB 

\k-2sa. + ^2 J2 (cz + d)-k\cz + d\k 

cEA debo + b 

where e(ao, a) is 1 or 0 according as ao G a or ao ^ a. For a fixed c E i w e have 

J2 {cz+d)-k\cz+d\k~2sa = c~k\c\k-2sa Y^ {z+c-lbo+a)-k\z+c~lbo+a\k-2s*. 
d€bo + b aec~1b 

By Lemma 18.4 this equals 

c-k\c\k-2s*D~1/2N{cb-1) Yl ea{bx + bc~1bo)E{y, 6; sa+fc /2 , s a - f c / 2 ) . 

Thus the Fourier expansion of i?fc can be given by 

(18.6) Ek{z, s; A) = e(a0, a)y°*-k'2Dk(2s, KB) 

+ Dp^NW-iy^-Wsiy, 0; sa + fc/2, sa - k/2)Dk{2s - 1, ^ ) 



18. EISENSTEIN SERIES IN THE HILBERT MODULAR CASE 153 

+ [S* : ̂ - ^ - ^ ^ ( b ) - 1 ^ - ^ 2 J2 e a(te)S(j/ , 6; 5a+/c/2, sa-k/2)<p(b, 5) 

with ^(6, 5) = E a , c e a C a ^ o ) ^ ^ ^ ^ ^ - 2 ^ , 
where the last sum is taken over all (a, c) G b - - ^ - 1 x A such that ac = b. Notice 
that it is a finite sum. 

18.7. Proposition. The product Ek{z, s; A) Ylve& T(s + |^v|/2) can be contin
ued as a meromorphic function of s to the whole C, which is holomorphic except 
for possible simple poles at s = 0 and 5 = 1. The pole at s = 1 occurs if and only 
if k = 0, and the residue is 2e-27re JV(ab$)_1i?F; the pole at s = 0 occurs if and 
only if fc = 0, aoGa, and 60 Gb, and the residue is —2e~2Rp-

PROOF. Put A(s) = J X e a
r ( 5 + IM/2) and£ f c(s, 5; A) = £ 6 G F c 6 (? / , s)ea(6x). 

We already know meromorphic continuation of Ek(z, 5; A) to the whole C (which 
can actually be derived from the above Fourier expansion). Thus our task is to 
study A(s)cb(y1 s) for each b. From (17.11) and the above formula for <p(6, 5), we 
see that A(s)cb{y, s) is holomorphic everywhere if b ̂  0. Now, from (17.13) we 
obtain 

(18.7) «„, 0;. + W 2 ; . - *./») - r • . S - * ^ - . r ( a + ^ ; ( 'U . /2 ) -
For 6 = 0, Zi(5)co(y, 5) consists of two terms: one involving A(s)Dk{2s, KB) and 
the other involving A(s)Dk{2s — 1, KA)- From Lemma 18.2 we easily see that the 
former has possible simple poles at 5 = 0 and 5 = 1/2; similarly, by (18.7), the latter 
has possible simple poles at 5 = 1/2 and 5 = 1. Therefore A(s)Ek{z, 5; A) may have 
poles only at these points, and the residue at 5 = 0, 1/2, or 1 is a constant times 
y~k^2, 2/ a - f c)/2 , or y~fc/2, respectively. However, by (18.4), these must be invariant 
under the action of ||/c7 for every 7 G T, which is possible only when 5^1 /2 and 
A: = 0, and the residue is a constant. Therefore A(s)Ek{z, 5; A) is entire if fc^O. 
If Ar = 0, it has possible simple poles at 5 = 0 and 5 = 1. The residue at 5 = 0 is 
that of e(ao, a)Ro(2s, KB) at 5 = 0. By Lemma 18.2 this is nonzero if and only if 
ao G a and bo 6 b. Similarly, by (18.7) and Lemma 18.2, the residue at 5 = 1 is a 
nonzero constant times the residue of i?o(25 — 1, K,A) at 5 = 1, which is nonzero. A 
simple calculation gives each residue as stated in our proposition. 

18.8. We now assume that k = jua with 0 < /i G Z, and take the value of Ek 
at 5 = fjb/2. From (17.12) and (18.7) we obtain 

a u m / (-^rW'h^eiigh) if h > 0, 
«***°> = (o if h<o, 

( — m if [x — 1, 
l im^ )0;a + ̂ a) = | 0 .f ^ > ^ 

lim f (0, 0; (7 + 2, a)/a = -ng"1. 
a—•() 

Putting k = fia. and 5 = fi/2 in (18.6), we have 

(18.8) Dl
F

/2N(b)(-27ri)-»er(firE^(z, fx/2; A) 

= l9x:U}-1 J2 ^)ea(M+^i(/i)+P2(0) + C 
0 < 6 € F 

with <p(b)= Y, A r(a) / i | iV(a)r1ea(a60), 
0^aeb~lt>-1,a-1beA 
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P i (a) = e(oo, a ) ^ / 2 7 V ( b ) ( - 2 7 r i ) - ^ r ( M ) e ^ a ( s , « B ) , 

/ 2 - ^ ( 5 , «A) if A* = 1, 
V2{s) = \o if »>i, 

_ f (87rj/)-1A^(a)-1 if F = Q and /x = 2, 
| 0 otherwise. 

Notice that S(y, 0; (s + 2)a, sa) has a zero of order e at s = 0, which is why C — 0 
i f * V Q . 

Next let us consider E^z, i//2; A) for 1/ = 2 — /x. We note that 
f {-2iY^g^-le{igh) if ft > 0, 

(-2z)^2"17r^-1 if /i = 0, 
0 if fc<0. 

These can be obtained from (17.11) and the formula u>(g, / i ; l , /?) = 2~1e(igh) 
given in [S82, (4.35K)]. If /x = l, then v = \ and EMa(z, i//2; A) = E^z, /x/2; A), 
which is already given. Therefore we assume / i > l , so that v<0. Then 

(18.9) Dy2N{b){-2i)-^-^E^{z, i//2; A) 

= feX * ^ ] _ 1 E ^(&)ea(^) + 2"e^a(^ - 1, KA) + C" 
0 < 6 € F 

with y>'(6) = J2 {Nic^Nic^e^c-'bbo), 
ceA,c-lb£b-1t)-1 

' e{a0, a)e{b0, b)iV(b)(47rt/)-1 if F = Q and // = 2, 
otherwise. 

18.9. Theorem. Let X be a Q^-valued element o/<S((F2
1)h) and let 0 < // G Z. 

77ien t/ie following assertions hold: 
(1) E^z, /i/2; A) belongs to /7rAzeA^Aia(Qab) except when F = Q and jz = 2, in 

which case if belongs to TTIA/CJ (Qab)-
"(2) E^z, 1 — /x/2; A) belongs to 7reA/f/xa(Qab) except when F = Q and /z = 2, 

in which case it belongs to 7rA/"2 (Qab)-

P R O O F . We may assume that A is the characteristic function of (ao + a) x 
(&o + b). Prom (18.4) and (18.8) we see that £?Ata(z, /i/2; A) belongs to .M^a ex
cept when F = Q and /i = 2. Since <£>(&) G Qab> Lemma 18.5 shows that 
n-^E^iz, /i/2; A) G ^ a ( Q a b ) . Suppose F = Q and /x = 2. Then (18.4) and (18.8) 
show that E2&(z, 1; A) satisfies condition (13.18a) with p = l. Thus E2&{z, 1; A) G 
A/J • Now (p(b) G Qab5 and from that fact we can conclude that E2&{z, 1; A) G 
7r2A/*2

1(Qab) for the reason which will be explained in the proof of the following 
proposition. This proves (1). Assertion (2) can be proved in the same manner. 

REMARK. In (18.3) take F = Q, U = {±1}, k = 2, and take A to be the 
characteristic function of J"J Zp , which means that a = b = Z and ao = &o — 0-
Then I>2a(<s, «A) = C(5)> a n d (18.8) with fj, = 2 shows that 

(2m)-2E2(z, 1/2; A) = ( S ^ ) " 1 - (1/24) + E £ i e a( te) Eo<a|5 «-
which is exactly twice formula (0.7) of the introduction. This type of nearly holo-
morphic Eisenstein series occurs in Cases SP and UT if F = Q, as shown in Theorem 
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17.7 (iv). For further investigations of the series of this nature, see [S83, §9] and 
[S85a, pp.290-291]. 

18.10. Proposition. For 0 </i£ Z, boE F, and a g-ideal b put D^{s\ &o, b) = 
-D/ia(s, ft), where n is the characteristic function of 6Q + b; put also Q(/J>\ 6O, b) = 
(2ni)~^eDp2Dfl( \i\ bo, b). Then the following assertions hold: 

(1) Q(/i; 60, b) € Qab- Moreover, let a = [t, Q] with t G Z£ (see §8.j;. Then 
Q(//; 60, b)a — Q(fJ>; b\, b) with an element bi e F such that (tb\ — bo)v G bv for 
every v G h. 

( 2 ) ^ ( 1 - ^ 6 0 , b ) G Q . 

P R O O F . Take E^z, /z/2; A) as in §18.8 with a0 = 0 and a = g. Then </?(&) G 
Qab and for a and 61 as above, <p{b)a is the quantity obtained from the formula for 
ip(b) with 60 replaced by 61. Suppose \x > 1; exclude the case in which F = Q and 
/x = 2. Then £>2 = C = 0. Since £>i(/i) = 7V(b)(-l)^er(/i)eQ(/i; 60, b), Lemma 
18.5 shows tht Q(/z; 60, b) G Qab and Q(/x; 60, b)0" = Q(/x; 61, b). If F = Q and 
// = 2, then E^z, 1; A) G A/2, and so we need an analogue of Lemma 18.5 for the 
elements of M\. For f(z) = c(7n/) -1 + YlheQ a{h)e{hz) G A/̂ 1 and r G Aut(C) we 
have fr(z) = ^ ( T H / ) " 1 + X)/»eQ a(/i)Te(/i*) G A/̂ 1 (see §14.15). Now A/^ contains 
no element, other than 0, of the form p(7ry)_1 -f q with p, g G C, as can easily be 
verified. Therefore, modifying the proof of Lemma 18.5, we obtain (1) for fi > 1 
even when F = Q and /x = 2. Then, from (18.8) we see that E2si{z, 1; A) belongs 
to 7r2A/2 (Qab) in that case. To prove (2) for /i > 1, take E^&(z, v/2; A) with 
60 = 0. Then <p'(b) G Q, and hence D^v — 1; /c^) G Q by Lemma 18.5 (with the 
modification when F = Q and /i = 2, mentioned above). This proves (2) for /J, > 1. 

Suppose \x = 1. Take 00 6 a and put a""1!)-1 = c; denote by «/ the char
acteristic function of c; define «* as in Lemma 18.2 with KA as K. Then K* = 
i~eN(a)~1Dp ' K'. Now the above reasoning applied to the case \i = 1 with 
ao G a shows that 

^ / 2 iV(b ) ( -27 r i ) - e D a ( l , * B ) + 2"e£>a(0, *A) € Qab-
In particular, this quantity belongs to Q if 6Q G b. Prom the functional equation 
of Lemma 18.2 we obtain Da(0, KA) = 7r-e£>a(l, «„) = (?rz)-e

JD]/2A^(c)JDa(l, «'). 
Take 60 G b and c = gb with g G Fx. Then Z>a(l, «') = #~a£>a(l, KB), and so 

^ / 2AT(b)(-27rz)- e D a( l , KB){1 + ( -^ ) - a | ^ | a } € Q. 
Choosing a suitable #, we find that Q(l; 60> b) G Q if 60 G b. Taking c to be b, 
we find that Da(0, KA) £ Q if ao G a. Then applying cr to the Fourier coefficients, 
we obtain Q(l ; 60, b)a = Q(l; 61, b) for the same reason as in the case /x > 1. 
This proves (1) for fi = 1. As for assertion (2) for /i = 1, we have seen that 
D\(0; ao, a) G Q if ao G a. If ao ^ a, then taking 60 = 0, we immediately see 
from Lemma 18.5 that £>a(0, KA) = 2eP2(0) G Q. This proves (2) for fi = 1. 

That Q(/x; b0, b) G Qab for /z > 1 was proven by Klingen [K] in a somewhat 
different formulation. 

18.11. Let il> be a Hecke character of F, and f the conductor of ip. We under
stand that the symbol ^a(x)i/>*(xb) for x = 0 and a g-ideal b denotes ip*(b) or 
0 according as f = g or f ^ g. Then, for any fixed g-ideal a, x 1—»/0a(x)^*(xa_1) 
defines a function of 2 G a/af. Indeed, we easily see that the property that x a - 1 is 
prime to f depends only on x+af. Take a E Fh

x so that a = ag. If x G a and x a - 1 
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is prime to f, then ^a(x)^*(xa~ l) = ipa{x)(iph/ipO(xa~l) = ^i{ax"l)^(a~l)y and 
clearly this depends only on x + af. 

We now define the Gauss sum g(V>) of 0 by 
>*(£>) if f = fl> 

Y, *a(t)f(tf8)ea(t) if f^fl. 
^ teCfo)-1/*-1 

We note that |g(^) | 2 = JV(f) (see [S97, (A6.3.2)]). 

(18.10) g(V) = { 

18.12. Theorem. Let 0 < /x € Z and /e< ip be a Hecke character of F such that 
ip&(%) = a:Ma|a:|—^a. For any g-ideal c put 

PC(M, V) = g(V)- 1(2^)^ e
J Dy 2Lc(M, V0-

Then the following assertions hold: 
(1) L(l — //, -0) is Pfl(^, 0) times an element of Q x . 
(2) Both L c(l — /i, T/>) and PC(M? ^0 belong to the field generated over Q by the 

values of 0 , (Vhich is contained in Qab5 since if) is of finite order). 
(3) For every a G Gal(Qa b /Q) we have Pc(/x, 0)CT = Pc(/i , ^ ) and L c( l -

H,rl>)' = Lc(l-n,il>°). 

PROOF. Put R(s, ip) = N{tf)s/2rit)(s)L{s, ip) with r ( t ) of Lemma 18.2, where 
t = toa with an integer to such that 0 < to < 1 and to — /x G 2Z. Then 
#(s , 0) = W^P(1 - 5, ^ ) with W^ = ( -z) ' 0 C ^(f )" 1 / 2 g(^) ( s e e tS97> Theorem 
A6.2, (A6.3.3)]). Therefore (1) can be verified by a straightforward calculation. 
Since Lc(s, ip) = L(s, V0IIp|c C1 ~ ^ ( f O ^ p ) - 5 ] , it; i s sufficient to prove (2) and 
(3) for c = $. Clearly (2) follows from (3). Thus, in view of (1), we only have to 
prove that L(l — /i, ipY = L(l — /i, tpa) for every a G Gal(Qab/Q)« Take a com
plete set of representatives {ai}™=1 for the ideal group of F modulo the subgroup 
{p2 \p G F, N{p) > 0}. Put UQ = {u G gx \ N(u) > 0} and U = UQn (1 + f). Then 
the ideals xa~l for all v and all x G Fx/Uo cover the ideal group of F exactly 
twice, and hence 

m 

2[U0 : U]L(s, < / > ) = £ E riya-^Niya-1)-3 

v=l ye(Fxna„)/U 
m 

= YN^S E (̂̂ a;1) Y, ri^demdg)-*. 
v=l xEau/a„$ de(x+a„f)/U 

If d G x + a^f and ip*(x~1dg) ^ 0, then tp*(x~1dg) — 7pa(d~1x), and hence 
m 

2{U0:U}L(s,4>) = YNMS E ^ ( x ) r ( x a ; 1 ) £ Va(d)7V(dfl)-s. 

Thus 
m 

2 L ( l - / i , V ) = [ 0 x : ! 7 o ] ^ W ( a , ) 1 - ^ £ ^ ( z ^ O ™ ; 1 ) ! ^ ! - M; *, a,f). 

Applying a to this equality, we obtain L(l — //, ipy = L(l - //, ipa) as expected. 

18.13. For v G a, 0 < m G Z, jfc G Za, and 0 < p G Za we define differential 
operators 6^ and <5£ on H by 
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(mi) tu-v-^bfft)={^iy 
(i8.i2) « E = n « . + * . - 2 • • « . + * • 

where / is a function on H. As explained in §12.17, 6^. is a special case of Dp
p, 

and maps N« into M^p for 0 < q G Z a . Moreover, {-Ki)~^8p
k maps M%{W) into 

•^fc+2p(^) f° r e v e r y subfield W of C containing the Galois closure of F over Q. 
This is a special case of Theorem 14.12 (4), and in fact, can be verified by a direct 
calculation employing the expression (14.21) for the elements of A/^. Now we have 

(18.13) W\\ka) = (*jfe/)IU+2Pa for every a G G, 

(18.14) W ) = (a)" 'V-* I I nk;+rv+Vv) (r G Ca). 
^ a l ^Kv ^ Tv) 

The former is a special case of Proposition 12.10 (2) as noted in §12.17; the latter 
can be verified by a direct calculation. Next, for h in the set H of §18.3 we have 

(18.15) ^{j h («)- f c | j fc(«) | f c- 2 s V a - f c / 2} 

= (2*)̂  v*-^(z)-u(z)r2 8 a n r{srt k+kX)v) 

with £ = k + 2p. Indeed, we can find a G G such that j a = jh> Then the left-hand 
side of (18.15) is <5£(ysa-fc/2|Ua), which equals (6%ya*-k'2)\\k+2Pa by (18.13). 
From this and (18.14) we obtain (18.15). Thus, if Re(s) is sufficiently large, 

(18.16) f?kEk(z, s; A) = (2i)-^Ek+2p(z, s; A) TJ ^ ^ t ^ • 

By analytic continuation, the equality holds for every 5. 

18.14. Theorem. Let $ be the Galois closure of F over Q, and A a Qab-
valued element o/<S((F2

1)h); let k be an element ofZa such that kv > 1 for every 
v G a and kv — kv' G 2Z for every v, v' G a. T/ien, /or every fi G Z swc/i #m£ 
/i—fcv G 2Z and 2 — kv < /J, < kv for every t ) 6 a , the function Ek(z, /x/2; A) belongs 
to 7raA/2(^Qab), uAere a = (1/2) £ €a(fc„ + ^)» a™rf * = (* — |/x — l |a — a)/2, 
except when F = Q and |/i — 1| = 1, m W/MC/I case t = k/2. 

P R O O F . First suppose that ji > 0; put p = (k - /ia)/2. Then 0 < p G Z a , and 
(18.16) shows that 

*gaEMa(*, fi/2; A) = (2i)-Wd5fe(z, /x/2; A) 

with c G Q x . Therefore our assertion follows from Theorem 18.9 (1) combined with 
the fact that TT'^S^ sends A/J?a(*Qab) into Af^p($Qah). Next, take an integer 
i/ such that 2 — kv < v < 0 and */ — kv G 2Z for every v G a. Put fi = 2 — u and 
p = (fe - /xa)/2. Then 0 < p G Z a , and (18.16) shows that 

S^E^z, I//2; A) = (2i)- |p|CJ5fc(*, i//2; A) 

with C ' G Q X . By virtue of Theorem 18.9 (2), we obtain the desired conclusion for 
the same reason as in the case \i > 0. 

18.15. We now take a totally imaginary quadratic extension K of F, and denote 
by r the maximal order of K. We consider the L-function L(s, x) °f a Hecke 
character x of K such that Xa(^) = Y[aeJK (x°l\xa\Y° w i t n M e ^ » where J # 
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and IK are as in §11.3. Then we can easily find a CM-type r = ^2vea rv of K such 
that 
(18.17) Xa(x) = n ( ^ / K 1 ) m " 

i>Ea 

with 0 < mv G Z. Fixing a CM-type (K, r) and m G Z a , > 0, put 

(18.18) Lm{s, I) = [rx : C/]"1 ^ ^ ( a ) a - m | a | m - 2 s a . 

Here £ G S{Kh), a - m | a | m - 2 s a = n,,€a(aTw)~mvlaTvlm, '"~28> u i s a subgroup of 
rx of finite index such that £(ua) = £(a) and u~m\u\m = 1 for every u G U. 
Clearly such a U exists, and Lm(s, £) does not depend on the choice of U; we easily 
see that the sum is convergent for Re(s) > 1. 

18.16. Theorem. The notation being as above, suppose m ^ 0; then the fol
lowing assertions hold: 

(1) Lm(s , £) E L e a ^ ( s + mv/2) can be continued as an entire function of s to 
the whole C. 

(2) Suppose that £ is Q-valued and mv — mV' G 2Z for every v, v' G a; let p 
be an integer such that 2 — mv < p < mv and p — mv G 2Z for every v G a. Then 
Lm(/i /2, £) G 7rapK(^vesimvTv, r )Q, where a = (1/2) £ v G a ( r a v + p) and pK is 
the symbol of §11.3. 

(3) If x is a Hecke character of type (18.17), then L(/x/2, X ^ ^ ^ E ^ a 7 7 7 " ^ ' 
r )Q for // and a as in (2). 

P R O O F . Assertion (1) will be proven in §A7.4. To prove (2), we first assume 
that p > 1. Take WQ G K SO that Im(itfov) > 0 for every v G a, and put w = 
(^ov)^ea- By Proposition 4.14, w is a CM-point of H. Define an F-linear bijection 
g : F£ —> K by g{c, d) = CWQ + d, and put A = £ o g. Then A G «5((^2)h) and 
jh(t(;)m = p(/i)m for h G F 2 \ ^ 0, and hence 

heH/u 
= [rx:g

x]-y/2-XK^), 
where y = Im(u>). (Notice that we may take U C gx in (18.18).) Given p and a as 
in (2), we have Em(z, p/2; A) G 7raA/"4(Q) by Theorem 18.14, and hence its value at 
w belongs to na^irri(w)Q. Since y is algebraic and ^pm(w) = PK(Ylv£8imvTv> T) 
by Proposition 11.18, we obtain (2). To prove (3), let fj be the conductor of x» and 
A a complete set of representatives for the ideal classes of K modulo f), consisting 
of integral ideals prime to rj. Then 

L{s,x) = Y.^^~lN^y E X*(ax)N(avrs 

aeA (x€Wa/Uh 

with Wa = a n ( l + f ) ) n # x , l + l) = {l+x\xe f)}, andC/^ = r x n (1 + Ij). Let £a 

be the characteristic function of afl (1 + fj). Since x*( a r ) = Aa(^)"1 = a _ m | a : | m 

for a G 1 + I), we have u~m | t i |m = 1 for u e U^, and hence 

L(s, X) = [tx : U„] J2 X*(a)-1iV(a) sLm(s, ta). 
aeA 

Now x*(a) G Q by Lemma 17.11. Therefore (3) follows from (2). 



CHAPTER V 

ZETA F U N C T I O NS ASSOCIATED WITH HECKE EIGENFORMS 

19. Formal Euler products and generalized Mobius functions 

19.1. Our setting is the same as in Section 16; thus we consider only Cases SP 
and UT. We do not consider G\ =SU(rjn) with K^F in this section. Let us first 
make the following notational convention: For v G h and a subgroup X of G A (resp. 
GLn(K)j±) we put Xv —X D Gv (resp. Xv =X fi GLn(Kv)). In fact, whenever this 
notation is used, Xv is the projection of X to Gv. We now take a fractional ideal b 
and an integral ideal c in F, and consider the subgroup £>[b_1, be] of G A defined 
in §16. We also take a divisor e of c such that e -1c-fe = g, and throughout this 
section we denote by C the subgroup of G A defined by 

(19.1) C = {xe D[b-h, be] | ax - 1 ^ re } . 

Recall the equality G A = PA^[b _ 1 , b] as stated in (16.10). It may also be empha
sized that b, c, and e are in F. 

To define Hecke operators, put 

(19.2a) E = r L G h GLn(vv), B = { x G GLn{K)h \ x -< x } , 

(19.2b) B' = { x G B | x - 1 -< re } , E' = B' n E, 
(19.2c) X = GQ(e)G, Q(e) = { diag[r, r] | r G B' } . 

By [S97, Proposition 5.10 or 7.8] (see also Remark 16.12 (III)) we have 

(19.3) GA = D[b-\b]Q{a)D[b-\b]. 

Thus Gv = CvQ(c)vCv for every v \ c, and so Xv = Gv for such a v\ clearly 
Q(t)v C Cv and 3£<, = Gv for v\t. We are primarily interested in the cases e = g 
and c = c; if e = c, the group is essentially a principal congruence subgroup; if 
e = £, it is an analogue of the group rQ(N) in the elliptic modular case. 

19.2. Lemma. (1) X C CPh. 
(2) Let Jv = Cv n P v . If v|c and a G ©(e)^, then CvaCv V\PV — JvuJv and 

tsy&tsy = (^yCfJy. 

(3) Let a = diag[g, q] G Q(t)v with v\c, v\t. Then CvaCv = U d ^ ^ Q * 

with "d € Ey\EvqEv and b G 5(b- 1)v /d*5(b- 1) ud, where S{ ) is as in (16.1b). 

P R O O F . To prove (1), it is sufficient to show that aCv C CVPV for every a — 
diag[g, q] G Q{t)Vi v G h. Since C^P^ = G^ if v\c and 3EV = Cv if v|e, we may 
assume that v\t and v\t. Put Av = L>[b~a, b]v. Let a G Gv. Since Gv = AVPV, 
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we have a a = /3~ln with /3 G Av and n G Pv. Since v\c, both a a and da belong 
to GLn(xv). Also 0 = c^ = c^gaa + dpqca, we have c^ = -dpqcaa~lq* -< r^b^c^, 
and hence /? G Cv, which proves (1). To prove (2), we may again assume that 

v\z, since CvaCv — Cv and cr G Jv if v|e. Given a = 

/? 
d* -6* 
0 d~l . Then /3 e Jv and /3a = 1 0 

s 1 

, I G Cv, v|c, put 

with s G 5V. Now let <r = 

diag[g, q] G Q(e)w and TT = aicra2 G Pv with ^ G Cv . Applying the result just 

proved to a^, we obtain elements fa G Jv such that faoa = 

Then /?i7r/?2 - l q 0 
e g 

5» 1 

- 1 

with SiESy. 

with some e G ( ^ ) n - Since fair/32 G Pw, we see that 

e = 0, which shows that 7r£jvo~Jv, and hence CvaCv f)Py = JvaJy. Next, take any 
7, £GCV. By (1), icre = £C w i t h C^C^ a n d C^^V Then CeCvaCvnPv = JyaJv, 
and hence 'yae££JvcrJy C CvaJv, from which we obtain CvaCv = CvaJv. As for 
(3), since CvaCv — CvaJv, each coset of Cv\CvaCv has a representative in aJ^. 
Then our assertion can be verified in a straightforward way. 

19.3. Lemma. The set X is closed under multiplication. 

P R O O F . It is sufficient to prove that Xv is closed under multiplication for every 
v G h; again we may assume that v\c and v\z. Let CvaCv = \Jd hCv[[d, b]] with 

1 ; similarly let CvrCv = 
0 d 

d,bte,gCv[[d,b]][[e,g]] = Ud,b, e,g 

a G Q(t)v as in Lemma 19.2 (3), where [[d, 6]] = 

Ue,p<^[[e, 9\] for r€Q(e) v . Then Ct,aCt,rC1, = LI 
Cvdia,g[de, de][[l, x]], where x = # + e*6e. Since [[1, x]] G Cv and diag[de, de] G 
Q(e)v, we obtain the desired result. 

19.4. Lemma. Employing the symbols of (16.1a, b, c), put LQ = t™ and 

W = { (#, h J e B ' x B ' l #L0 + /iL0 = L0, hv G ££ for every v\c} , 
Sf = {a e Sh \ crv e S(b~1t)v for every v\c } . 

Then a complete set of representatives for C\X can be given by 
ih {K g xah 

9*h 
(g, h) G E'\W/(E' x 1), a G S'/gS^b'1^* }' 

with 

where we let e G E' and (/, 1) G E' x 1 act on W fry e(#, h)( / , 1) = (eg/, eh). 

P R O O F . This is essentially the local problem of finding CV\XV. This is trivial 
if v\t. If i>f c, then the question is about CV\GV. Since Gv = CVPV, we can take 

representatives from (CvnPv)\Pv. Now (C t ; nP v ) \P u can be given by ^ 

a G Ey\GLn(Kv) and 5 G 5 v / 5 (b _ 1 ) v , as noted in [S97, p.131, last 4 lines]. Also 
in [S97, Lemma 16.4] we showed that the map (g, h) h-» g _ 1 h gives a bijection of 
Ev\Wy onto GLr(Kv). Therefore the desired fact can easily be verified. If v\c and 

v\t, then by Lemma 19.2 (3), CV\XV can be given by 
0 d 

with d G EV\BV 

and & G S(b-l)v/d*S(b-l)vd. This time W,, = Bv x £„ and EV\WV/(EV x 1) = 
(By/Ey) x 1, and so the same conclusion holds in a much simpler way. 
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19.5. We shall state some of our results in terms of formal Dirichlet series of 
the form J2aCv c(a)[a]. Here c(a) £ C and {[a]} is a system of formal multiplicative 
symbols defined for the fractional ideals a in K as follows: the [p] for the prime 
ideals p are independent indeterminates; [r] = 1 and [ab] = [a][b]. Substituting 
(p{a)N(a)~s with an ideal-character (p for [a], we obtain an ordinary Dirichlet 
series. Hereafter we denote by ̂ a ^n e s u m o v e r a ^ the integral ideals o in K. 

Given f £ G A , take q £ B so that f E D[b~\ b]diag[g"\ g*]D[b~\ b], which 
is feasible by virtue of (19.3). Then we put 

(19.4) vb(£) = det(q)v. 

If /? = diag[ln, 6^"1ln] with an lement 60 £ F£ such that b = boQ, then 

(19.5) MQ^MPtfi-1) 
with v0 defined in §1.10. Let D, <5, and S be as in §16.1. Given ( G S, we define 
a formal Dirichlet series a£(£) by 

(19.6) a?(0 = rK(0> "2(0= E ^K'W^W]. 
vfc T£SV/S(X)V 

This can be obtained by substituting (r, [VO(T)]) for (cr, *4<r]~s) in (16.7a). Clearly 

(19.7) a?(c7C7*) = a°(C) if c € ILeh 8» and 7 G E. 

19.6. Lemma. Le£ 5 ' be as in Lemmas 19.4, and ô be as above. Let £ E Sh 
and # E B; suppose g*(g E b e - 1 5 . 77&en 

S e g ^ - ^ r J I i / o C f c o r J l ^ O for X = S'/gS^b^g* 
rex 

only if £ E b e - 1 5 , m which case the sum equals \det(g)\^Ka®(bQl£), where \X\K 
denotes the idele norm of x £ i f £ , and K = n + l in Case SP and K = n in Case 
UT. 

P R O O F . Recall that VQ(T) depends only on r mod 5h(t). Change r for r + 
7 with 7 £ Sh(b - 1e). Then the sum in question is multiplied by the factor 
e£(—<5-1C7), which is nonzero for some such 7 if £ $. bt~lS. Thus the sum is 
nonzero only if £ £ bt~lS, in which case the sum is QP(1)Q1Q times [5h(b-1e) : 
gSyi{b"lt)g*\. The last number is | d e t ( p ) | ^ as noted in [S97, Lemma 13.2]. This 
proves our lemma. 

19.7. We consider the Q-algebra 9t(C, X) spanned by the C£C for all £ E X 
over Q, with the law of multiplication defined as usual (see [S97, Section 11]). This 
is meaningful because of Lemma 19.3. Similarly we can consider 9t(Cv, Xv) for each 
v E h. These algebras are commutative. Indeed, the commutativity of £K(C, X) can 
be reduced to that of JR(CV, 3EV) as can easily be seen. If v\t, then 9i(Cv, Xv) is 
just Q'CV1CV. The commutativity of fH(Cv, 3fv) for v\t follows from the existence 
of an injection UJV into a commutative ring as will be shown in Theorem 19.8 below. 

We now define formal Dirichlet series T and %v with coefficients in 9t(C, X) and 
W(Cv,Xy) by 

(19.8) T= Yl cZch(t)]> ** = E ^Cv[i/b(0]. 
$ec\x/c secv\xv/cv 
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If f = diag[r_1, r*] with r £ B', then looking at the elementary divisors of £ and 
r, we easily see that C£C determines E'rE' and vice versa. Therefore we have 
(19.9) T = ^ Cdiag[ r - \ r* ]C[de t ( r ) t ] . 

r < E £ ' \ # ' / £ ' 

For an integral t-ideal a we denote by T(a) the sum of all the different C£C with 
£ £ X such that i/b (£) = a. Then clearly 

(19.10) £ = n ^ = E r ( a ) [ a ] . 

We have %v = 1 if u|e, since Cv = Xv for such a v. 

19.8. Theo rem. Let ti, . . . , tm be m indeterminates, where m = 2n if K ^ 
F and v splits in K, and m = n otherwise. Then for each v £ h prime to e there 
exists a Q-linear ring-injection 

(19.11) UJ:<R(CV,XV)-+ Q[ti,...,tm9t^\...,t^] 

such that LJ(ZV) has the following expressions: 

(I) v\c. 

a*) - i - f r l TT i - g 2 i f r 2 ] (Case SP) 

n t o ( i - g 2 i [ q 2 ] ) ^ _ T T T 2̂  
rnua-^-^MHi-sVM) 
2 n -> «*-ir 

" ( * « ) = r r n „ " ^ j : , . , w " " l r- ,x ( C a S e U T ' ** = <?)> 

W ^ ) = I I 7 , 2 n , - T r g J , U r u ( C a S e U T ' » " = O l ^ ) -

(II) W|c. 
n 

^ ( ^ » ) = n ^ 1 - 9n**[p])_i (Cas e sp)> 
n 

w(X„) = J J ( 1 - ? f c (n -1 )ii[q])_1 (Case UT, pfcr = q2), 
i = l 
n 

"(£») = I I ^ 1 - ^ " ^ i D ^ U " r ^ n + i f e ] ) - 1 (Case UT, pt = q i q 2 ) . 
2 = 1 

Here <J(TV) = J2$ex UJ(C'vCCv) [^b(0] » ^ == CV\XV/CV] p is the prime ideal in F 
at v and q = N(p); in Case UT, q and q* are prime ideals in K\ qi ^ q2. 

PROOF. For v\c the formulas were given in [S97, Theorem 16.16 and (16.17.5)]; 
as for the injectivity of u, see [S97, Proposition 16.14]. Suppose p|c and p\c in 
Case UT. We first consider the case pt = q2/fc with k = 1 or 2; then N(q) = qk. 
Given a coset Evd with d £ Bv, we can find an upper triangular g such that 
Evd = Evg\ we may assume that the diagonal elements of g are of the forms 
7rCl, . . . ,7ren with ei £ Z, where 7r is a prime element of Kv. We then put 
uj0(Evd) = nr=i(^~lfe*i)Ci- Next, given CvaCv with a £ Q(c)v, we take a de
composition CvaCv = U^CvZ with £ £ P^ and put u(CvaCv) = J2^uJo(Evd^). 
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We then extend u) to %\{CV, Xv) Q-linearly. It can easily be verified that LJ is 
a ring-homomorphism. (This is similar to what was done in [S97, §16.13].) Its 
injectivity can be proved in the same manner as in [S97, Proposition 16.14]. By 
Lemma 19.2 (3) we have 

u&v) = £ MEvd)[S{b^)v : (TSib-1)^] [det(d)t] 
d€.Ev\Bv 

= £ LU0(Evd)\det(d)\-n[det(d)t], 
d£Ev\Bv 

since [S^fr1)* : d*5(b"1)ud] = |det(d) | - n by [S97, Lemma 13.2], where | | is 
the valuation of Kv such that |7r| = q~k. The last sum is essentially the series B 
of [S97, Lemma 16.3], and so using the formula for B given there, we obtain the 
desired formula for w(fZv) in the present case. Case SP can be handled in the same 
manner. (This is actually done in [S94, Theorem 2.9].) Finally consider the case 
pr = qiq2- In this case GLn{Kv) can be identified with GLn(Fv) x GLn(Fv), and 
Ev with E% x £7°, where E% = GLn(gv). Let Evd = E%a x E%b with d e GL{KV) 
and upper triangular matrices a and b in GLn(Fv) whose diagonal elements are 
7rei, . . . , 7rCn and 7ren+1, . . . , 7re2n, respectively, where n is a prime element of Fv. 
Putting uo(Evd) = nr=i(2~ l*i)ei((7~^n+i)Cn+S w e define u(CvaCv) in the same 
manner as in the above case, and repeat the calculation with these modifications 
to obtain the desired result. 

19.9. Lemma . With a fixed v G h prime to e, put OJ(%V) = Tv(t\, . . . , £m) 
with a rational expression Tv defined for each fixed v as in Theorem 19.8. Let 9iv 

be the subalgebra of fR(Cv, Xv) generated over Q by Tv(a) for all integral xv-ideals 
a, where Tv(a) is the sum of all CV£CV with £ G Xv such that ^b(£) = a. Let A 
be a Q-linear ring-homomorphism of*Rv into C that maps the identity element to 
1. Then there exist m elements fa of C such that fa ^ 0 if v f c and that the 
series £ a M ^ ( a ) ) M co^nc^es with the expression Tv(fa, . . . , /im)-

P R O O F . First assume that K ^ F, v\t, and pr = q. Let P(X) be the poly
nomial in an indeterminate X such that P([q]) coincides with the denominator of 
CJ(TV) given in Theorem 19.8. Then we see that P has coefficients in u(9iv) and 
hence U and t~l are integral over LJ(9KV). Identify 9{v with u(9Kv). Then the inte
grality guarantees that A : uj(9tv) —> C can be extended to a homomorphism A' of 
Q[ti, . . . , tn, tj"1, . . . , t~x] into C. Putting fa = \'(U) and applying A' to u;(Tv), 
we obtain our assertion in the present situation. If v\ c and pr = qiq2> then the 
denominator can be written -PiCfaiD^Qte]) w ^ n polynomials Pi, and we again see 
that U and t^1 are integral over u(9Kv), and hence we obtain the same conclusion. 
All the remaining cases can be handled in the same manner, except that if v|c, 
then the quantities t~l do not appear, so that we cannot say that fa ^ 0 for v\c. 

We now present a lemma concerning a generalized Mobius function \x defined 
on the set of r-submodules of a torsion r-module, which will play an essential role 
in the next section. Here r is the ring of algebraic integers in an arbitrary algebraic 
number field K. We denote by k the set of all nonarchimedean primes of K. 

19.10. Lemma. To every finitely generated torsion x-module A we can unique
ly assign an integer fi(A) so that 

if A = {0}, 
0 if A^{0}. 

iy assign an znitycr fas*) so uiai 

(19.12a) Yl ^ B ) = I I 
BCA { 
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Moreover /J, has the following properties: 
_ (1 if A = {0}, 

(,9.13b) ! > W S ' = {° **,{(.}. 
(19.12c) fi(A 0 B) = /J,(A)/J,(B) if aA = bB = {0} with relatively prime integral 

ideals a and b. 
(19.12d) M((t/p)r) = (-l)rAT(p)r(r*-1)/2 if 0 < r G Z and p is a prime ideai in K. 

(19.12e) fji(A) 7̂  0 if and only if A is annihilated by a squarefree integral ideal. 

P R O O F . We can define fi(A) inductively by n(A) = — S B C ^ M ^ ) * Parting 
from ^({0}) = 1> which shows also the uniqueness. To prove (19.12b), we may 
assume that A = L/N with two r-lattices L and N in Kn. For every r-lattice X in 
Kn put X' = { y e Kn | lyX C r } . Given an r-submodule B of A, take an r-lattice 
M so that N C M c L and S = M/iV. Put ^ ( £ ) = <p(M'/L') with any fixed r-
isomorphism y> of Nf/L' onto A. Then ip gives a one-to-one map of the set of 
all r-submodules of A onto itself, and ip(B) = A/J3 and A/ip(B) = £ . Therefore 
£ B c A M ^ / £ ) = £ B C ^ W > ( 5 ) ) = E c o i M C ) . w h i c h combined with (19.12a) 
gives (19.12b). Next, if A and B are as in (19.12c), then every r-submodule of 
A® Bis of the form A'®B' with r-submodules A! of A and £ ' of B. Then (19.12c) 
can be derived from the relation /-i(A) = -^2ccAf^(C) by induction. The formula 
of (19.12d) follows from the well-known equality £? = 0 ( - l ) r W(p) r ( r ~ 1 ) / 2 cJ? = ° 
which holds for n > 0, where c™ denotes the number of r-submodules of (r/p)n 

isomorphic to (r/p) r . To prove (19.12e), we first observe that yu(r/p2) = 0 for ev
ery prime ideal p. Given A, let C be the maximum r-submodule of A that is 
annihilated by a squarefree integral ideal. Suppose A ^ C; then C ^ {0} and 
—fi{A) = £ j D c c / i ( J ^ ) + E B ^ C , B^A M^)- The first sum on the right-hand side is 
0. Therefore we obtain n{A) — 0 by induction. The converse part follows from 
(19.12c, d). 

19.11. Let C denote the set of all r-lattices in Kn. For LeC and y£GLn(K)A 
we denote by yL the r-lattice in Kn such that (yL)v — yvLv for every v G k. For L 
and M in C we define a fractional ideal {L/M} and a multiplicative symbol [L/M] 
(in the sense of §19.5) by 

(19.13) {L/M} = det(y)t, [L/M] = [{L/M}] = [det(*/)r] 

with any y e GLn{K)x such that M = yL. These are well-defined. Clearly we 
have [L/M][M/N] = [L/N]. If L, M e C and M C L, we can speak of fi(L/M). 
Moreover, for each u ^ k w e can speak of fx(Lv/Mv) either by viewing Lv/Mv as 
an r-module, or by defining // for rv-modules, which makes no difference. From 
(19.12c) we easily obtain 

(19.14) M(L/M) = rL e k MWM,). 

We now take a subset A of £ satisfying the following condition: if L C H C M, 
L, M e A, and H e C, then H e A. Fixing an integral ideal c, we write L < M 
and M > L ii L C M and Mv = Z^ for every v|c. 

19.12. Lemma. For £wtf functions a and (3 defined on A w/z£A values in a 
Z-module, we have 
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a(L) = V^ P{M) for every L G A 
L<MeA 

<̂ => 0(L) = ] T v(M/L)a(M) for every L G A, 
L<MeA 

a(L) = ] T ^ ( M ) for every L e A 

L>MeA 

« = • 0(L) = J2 V<(L/M)a{M) for every LeA. 
L>MGA 

Here and in Lemma 19.14 below each sum may be an infinite sum, and so we 
have to assume that it is convergent in a suitable sense, or it is a formal sum. 

P R O O F . Assume the first equality. Then, for a fixed L G A, we have 

£ »{M/L)a{M)= £ /x(M/L) £ 0{H) 
L<M£A L<MeA M<HeA 

= E w E ^M/L)-
L<HeA L<M<H 

The condition L < M < H can be changed into L C M C H. Applying (19.12a) 
with H/L as A to the last sum, we find that the last double sum equals /3(L), 
which proves the first =>. All the other cases can be proved similarly by employing 
(19.12a) or (19.12b). 

Notice that if r = Z, then n i—• /i(Z/nZ) is the classical Mobius function, and 
the first half of Lemma 19.12 is exactly the classical Mobius inversion formula if we 
take A = { n Z | 0 < n G Z } and consider a(nZ) a function of n. 

19.13. Lemma. For any fixed L G C we have 

E [M/L]= £ [L/M]= E [det(x)t] = n n ( l - 9 J - 1 [ q « ] ) " 1 . 
LCMGC LDMeC xeB/E i=l v£k 

£ »{M/L)[M/L]= E M£/M)[L/Jtf] = n n ( l - 9 r 1 [ q » ] ) , 
LCMEC LDMeC i=l v£k 

where qv is the prime ideal at v and qv = i V ^ ) . 

P R O O F . Putting M = tx~1L or M = xL with x £ B, we see that the first two 
sums equal to the third sum, which is clealy the product of ^2xesv/Ev [det(x)tv] 
for all v G k. Each such sum is determined by [S97, Lemma 3.13], and so we obtain 
the first line of equalities. Notice that the sums are independent of L. Next, the 
product of the first sums of the two lines (for a fixed L) is 

E »(M/L)[M/L) J2 \N/M]= Y, WW E ^MIL)-
LCMEC McNeC LCNeC LCMCN 

Applying (19.12a) to the last sum, we see that the double sum is 1. Similarly the 
product of the second sums of the two lines is 1. Therefore we obtain the second 
line of equalities. 

19.14, Lemma. Let a and 7 be functions defined on A with values in a Z-
module Y, and let 6 be a function on A with values in End(Y). If 

a{L) = Y 6(N) ]C 7 ^ f°r every L G A' 
L<N<EA H£A.L+H=N 

then 
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5^ li{M/L)a(M) = ]T V{M/L)8{M) ]T ^H) for every L e A-
L<MeA L<MeA LDHeA 

P R O O F . For fixed L and AT in A we have 

]T 7(ff)= E ( E MWJ7(5)= E MWM)e(M), 
HeA,L+H=N NDHGA ^ L+HCMcN ' LCMcN 

where e(M) = T,MDH€A1(H)> a n d h e n c e 

Q ( L ) = ^ S(J\0 J ] n{N/M)e{M) 
L<NeA LCMCN 

= E E KN/M)S(N)e(M)= E 0(M)» 
L<MeA M<NeA L<M€A 

where /?(M) = E M < N < E A M N / M ) < 5 ( A / > ( M ) . Therefore Lemma 19.12 gives the 
desired conclusion. 

20. Dirichlet series obtained from Hecke 
eigenvalues and Fourier coefficients 

20.1. Let us now take the ideals b, c, and e as in §19.1 and the group G as in 
(19.1); in addition we take a Hecke character ip of K such that 

(20.1) ipv(a) = 1 for every flErJ,DGh, such that a — 1 G t^Cy. 

Let /c be an integral or a half-integral weight (see §16.4). We assume that 

(20.2) b _ 1 C 2D-1 and be C 2D if k is half-integral. 

This means that C c D [ 2 D - 1 , 2D] and c C 4g if k is half-integral, and so j£ is 
meaningful if a € pr - 1 (G) . Then we denote by Mk(C, ip) for integral A; (resp. 
half-integral fc) the set of all functions f : G A —» C (resp. f : M A —• C) satisfying 
the following two conditions: 

(20.3a) f(axw) = '0 c(det(a u ; )) '1 j^( i ) -1f(x) if aeG, we G, (resp. pr(w) G C) 
and w(i) = i, where I/JC = n v | c ^ v 

(20.3b) For every p G Gh (resp. p G M A such that pr(p) G GjJ there exists 
an element fp of Mk, called the p-component of f, such that f(py) = 
(/j>IU2/)(i) for everY yZG* (resp. y G M A such that pr(y) G Ga). 

Clearly fp is uniquely determined by f and p. In general aw for an arbitrary 
w G C may not be an element of GLU(K)A, but (a^)v G GLn(r v) for v|c, so that 
^c(det(a l i ;)) is meaningful (see (1.18)). Also, if k is half-integral, x G M A , and 
pr(x) G G, then x G 971, so that j£(i) and \\kx are meaningful (see §16.4). Put 
rP = GnpCp~1 and 

(20.4) Mk(r?^) = {feMk\f\\ky = A(det(a(p-1yp)))f for every 7 G H>}. 

Here a(x) is the a-block of x; we consider only the case p = 1 if k £ Z b ; notice 
that T 1 C re by (20.2), so that / ||fc7 is meaningful for 7 G T1 . It can easily be 
verified that fp of (20.3b) belongs to Mk{rp, ip). Now, by [S97, Lemma 8.12] we 
can take a finite subset B of Gh so that 

(20.5) G A = M GqC and qv = 1 for every q G B and every v\c. 
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Then for integral k we can show that the map f \-* (fq)qeB is a bijection of 
Mk{C, ip) onto YlqeB-Mk{rqi ip) (see [S97, Lemma 10.8]). In this situation we 
write f <-> (fq)qes. We call f a cusp form if fp G Sk for every p, which is the case 
if fq G Sk for every q G B. We denote by Sk{C, ip) the set of all cusp forms contained 
in Mk{C, ip). If ip is the trivial character, then we denote Mk{C, ip) and Sk(C, ip) 
by Mk(C) and <Sfc(G). Clearly Mk{C, ip) = A4fc(C) and 5fc(C, </>) = 5fc(C) for any 
ip if e = c. Notice that Mk(rp, ip) ± {0} only if 

(20.6) i/>a(Cn) = Ck for every root of unity C G K such that C - 1 G re. 

In Case SP we have G A = GC because of strong approximation in G = 5p(n, F) , 
and so we can take B = {q} with any g G Gh, and hence f H / 9 is a bijection 
of Mk(C, ip) onto Mk{rq, ip). The same conclusion holds for half-integral Ar with 
g = 1. Indeed, we first observe that M A = G • pr_ 1(G). Given / G . M ^ r 1 , T/0> 
define f : M A —• C by f(aw) = ^c(det(a„,)) (/||fcw)(i) for a G G and w G 
pr _ 1 (G) . Then this is well-defined and satisfies (20.3a). Now given p G pr_ 1(Gh) 
and y G p r _ 1 (G a ) , take a G G and x G pr_ 1(G) so that p = ax. Then f(py) = 
ipc(det(ax)) (/||fcxy)(i). Since pr(x)a = a - 1 , if we choose a suitable element 
£ = (a" 1 , t(z)) in the group Q of §14.14, then / | | f cx = f\\k£ G A4fc. Thus f 
satisfies (20.3b). Clearly / i = / . This proves the surjectivity of the map. The 
injectivity follows immediately from (20.3b). 

Now, with 5 as in (16.1a), put 

(20.7) S+ = { f € S | f v > 0 for every v G a } . 

20.2. P ropos i t ion . Given f G Mk(C, ip), there is a complex number c(r, q; f), 
written also Cf(r, q), determined for r G S+ and q G GLU(K)A, such that 

= det(q)lk]p\det(q)a\k-W £ c(r, ^; f)e-(i^r^)el(r5) , 
T6S+ 

for every s G 5 A , where rp should be ignored if k is integral, and [k] is the integral 
part of k as defined in §16.4. Moreover Cf(r, q) has the following properties: 

(20.9a) cf (r, q) ^ 0 only if e£(q*Tqs) = 1 for every s G 5h(b-1e); 
(20.9b) cf (r, q) = Cf(r, gh); 
(20.9c) cf (6*r6, g) = det(fc)^| det(6)| f c-^c f (r, bq) for every b G GLn(K); 
(20.9d) /0h(det(e))cf(r, qe) = Cf(r, g) for every e e E'. 

Furthermore, if f5 G G fl diag[r, f]Gp_1 with r G GLn( lf )h and p G Gh, then 

(20.9e) / ( / ? , /3 -^ ) /p ( /3 -^ ) = ^c (de t ( a^ r ) ) £ T € S + Cf(r, r)e2(r*), 

where / p is the p-component of f and app is the a-block of /3p. Here we take 
p=l if fc£Zb. 

REMARK. Taking (3 = 1 and p = diag[r, f] in (20.9e), we obtain 

(20.9f) fP(z) = E r e S + cr(r, r)e£(r*) if p = diag[r, f]. 

If fc ^ Z b and p = 1, then /3 of (20.9e) belongs to 9JT, so that jp is meaningful. 

(20.8) firp q sq 
0 q 

P R O O F . We first consider the case of integral k. Let x = with q G q sq 

GLU(K)A and 5 G 5 A ; put p = Xh, define fp by (20.3b), and put fp{z) = 
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S T G S c ( r ) e a ( T Z ) - Then x(i) = igaga + s a . Since c(r) depends only on p, we can 
put 

f(x) = f(pxa) = (/p| |x)(i) = det(g*)fc J2 c ^ «> s)e2(iq^q)el(rs) 
res+ 

with C(T, g, s) = e^—rs)^), which depends only on gh, Sh, and r. Now f(axw) 
= f(x) for every aeR and wGRh fl C, so that we easily see that c(r, g, s + /i) = 
c(r, g, 5) for every h e S + Tiveh ^v with an r-lattice M in 5 (depending on 
q). Thus C{T, g, 5) is independent of s. Therefore we obtain (20.8) and (20.9b). 
Now given /3, r, and p as in the last part of our proposition, take y e P& so 
that z = y(i). Then we can put /?_1diag[r, f]y = pit; with w G C. By (20.3a, 
b), f(diag[r, f]y) = f(pw) = -0c(det(a t i,))" f(ptua) = V>c(det(a„,))~ (/p | |w)(i). 
Since (/? -1y)a = wa> we have /p | |w = fp\\(/3~1y). Observing that tpc(det(aw)) = 
ipc(det(a^r)), we have (/P||(/?~1y))(i) = V>c(det(a^r))f (diag[r, f]y). Applying 
(20.8) to f (diag[r, f]y), we obtain (20.9e). The remaining properties of Cf(r, g) 
can easily be verified by means of (20.3a). 

As for half-integral k, identify every element of P A with its image under rp. 
Then we can repeat the above argument to obtain our assertion in the same 
manner, except (20.9e); the only necessary modification is that we have to take 
|det(g)|fc-M -det(g)M instead of det(g*)fc, in view of (16.19). To prove (20.9e), we 
put diag[r, r\y = (3w with y as before and w G pr _ 1 (C) . Then /3_1z = w(i) and 
we have again f(diag[r, r\y) =ipc(det(aw)) (/i||it;)(i). By (16.16c) and (16.19), 
(*) JkMi))jtd) =4 , ( i ) =det(dy)Ifc)|det(dy)|fc-W. 
Now j£J(i)~1fi(/3~1z) = (/i||w)(i). Therefore, employing (*) and applying (20.8) 
to f(diag[r, f]t/), we obtain (20.9e). 

20.3. Assuming k to be integral, we now define the action of SK(C, X) on 
Mk(C, tp); the case of half-integral k will be explained in Section 21. We first make 
the following observation. If £ belongs to the set X of (19.2c), then (a^)v is in-
vertible for every v|c, and so ipc{det(a^)) is meaningful. Put </?(£) = ^C(det(a^)). 
Then tp(a£0) = <p(a)ip{€)(p(0) for a, 0 G C. 

Now, given ( G l and f G Mk{C, ip), take a finite subset Y of Gh so that 
C& = Urjer °y a n d d e f i n e f ICf C : G£ -* C by 
(20.10) {f\C£C){x) = ^ ^c(det(a y) )"1 f (xy- 1) (x G G£). 

yev 
We can easily verify that this does not depend on the choice of Y, and also that 
f\C£C G Mk(Cy ip). This action can be extended linearly to the whole 9t(C, X). We 
easily see that it defines a ring-homomorphism of 9t(C, X) into End(Mk{C, ip))-
We then define a formal Dirichlet series f|T with coefficients in Mk{C, ip) by 

(20.11) f|T= J2 ({\C^C)[ub(0}. 
S€C\X/C 

where i/b(£) is defined by (19.4). Clearly f|T = £ a {{\T(a))ia}- Notice also that 
(f|C^C)(x) = E , € y f ( ^ - 1 ) i f e = c. 

As in §19.11 let C denote the set of all r-lattices in K™. We put L0 = *i a n d we 
shall often express an element L of C in the form L = yL0 with y G GLn(K)h- Let 
D, 5, and 5 be as in §16.1. For r e S put 
(20.12) £ T = { L G £ | T r ^ G b e - ^ - 1 for every ^ G L } . 
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We easily see that CT consists of all the t-lattices yLo with y G GLn(X)h such 
that y*ry G be _ 1 D - 1S. Notice that if L G C and L C H G CT, then L G £T ; 
moreover, if det(r) •=/=• 0, the set { M G CT | L C M } for a fixed L is finite. For L 
and M in C let us write L < M if L C M and Z^ = M„ for every v\c. 

We consider the Fourier expansion of Proposition 20.2 and investigate their re
lationship with the formal series T. By (20.9a), for y G GLn(F)h we have 

(20.13) c(r, y; f) ^ 0 = > y*ry G be"1!)-1^ <=> t/L0 G £T . 

Now our first main result of this section can be stated as follows: 

20.4. Theo rem. Given reS+, LeCT, and feMk(C,ip), take qeGL^K)^ 
so that L — qLo and define formal Dirichlet series D(r, q\ f), a(r, L), and A(r, L) 
by 

D(T, q; f) = J2 ^ c (de t ( ^ ) ) | de t (x ) | ^ c ( r , qx; f)[det(x)t], 
xEB'/E' 

A(T, L) = | det(g)|^[det(gg*)t] £ KM/L)a(r, M), 
L<MeCT 

a(r, L) = \&et{q)\l[Aet{qq*)-\}a({{ebq*Tq). 

Here \W\K denotes the idele norm of w G ATj£; « = n + l in Case SP and n = n 
in Case UT; fi(M/L) is the Mobius function introduced in Section 19; Sb is an 
element of F^ such that SbQ = b~1d; a® is the series of (19.6). Then 

[det(§)t]-A(r, L)D(T, q- f) = £ /,(M/L)^c(det(y))[det(y)r]c(r, y; f|S), 
L<M£Cr 

[det(g)t]^c(detto))c(r, q; f | I ) = £ [ d e t ^ r ^ r , M)D(T, y- f), 
L<MeCT 

where y in the last two sums is an element ofGL^K)^ chosen for each M so that 
M = yLo and y~1q G B'. In particular, if f \T(a) = A(a)f with A(a) G C for every 
integral x-ideal a, then 

4(T,L)£>(T,g ;f) = £;A(a)[a] £ /i(M/L)^(det(y))[det(g*y)t]c f(r, y), 
a L<MeCT 

V>«(det(9))c(T, 9; f) 5 ^ A(o)[o] = £ [det(g*y)t]^(r, M)£>(r, y; f). 
a L<MeCT 

REMARK. The series a(r, L) and A(r, L) are defined independently of the choice 
of g, as can be seen from (19.7). D(T, q\ f) depends only on (r, qE', f). Thus, if 
e = g, it is independent of the choice of q, and we can put D(T, q; f) = D(r, L; f). 
Then we can write D(r, M; f) for D(r, y; f) in the above formulas. The sum 
YlL<Mecr

 ls a fim^e sum if det(r) ^ 0. In general it may be an infinite sum. We can 
show, however, that in all cases A(T, L) can be expressed as an easy Euler product 
times a finite sum which is essentially a lower-dimensional version of A(T, L) (see 
[S94a, Proposition 5.4]). 

PROOF. Taking a subset Tl of Gh that represents C\X, from (20.10) and (20.11) 
we obtain 
(20.14) (f|T)(x) = Yl ^c(det(a,))-1f(a;2 /-1)[^(y)] (x G GA) . 

yen ^ 

By Lemma 19.4 we can take 7Z to be the set of all y = \ y ~ 
[ 0 g*h 

with 
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{g, h) G E'\W/(E' x 1) and a G S'/gSh(b-1z)g*. Applying [S97, Proposition 3.9] 
to (3~1y/3 with /? as in (19.5), we obtain u^{y) = det(gh*)v0(boa). Thus 

(f IS) 0*0 = E^c(det(/i-^))f(xy-1)[det(^/i*)i/0(^oC7)]. 
q sq] 
0 q 

every q G GLn(K)h, that 

c(r, q; f|X) = £ ^ ( d e t ^ " 1 * ? ) ) ^ (r, ^ - ^ ) e S ( - V r ^ " V ) [ d e t ( ^ * ) i / o ( 6 o ^ ) ] . 

By (20.13) we may assume that g*hq*rqh~1g G bt~1d~1S. Therefore, by Lemma 
19.6 we have, with Sb defined as in our theorem, 

(20.15) C(T, q; f|T) = ^c(det(h-lg))\det(g)\]<
K[det(gh*)t} 

•c(r, qh-'Lg; f J a ^ e ^ V g / T " 1 ) , 

where (g, h) runs over E'\W/(Ef x 1) under the condition that hq*rqh~1 G 
be_ 1D_ 15, which is so, by (20.13), if and only if qh~xL0 G CT. We now fix r G S+ 
and p G GL n( iOh, and put 

A = { M G £ r | Mv = {pL0)v for every v\t }, 
X = {i/ G GLn(K)h \yveE'v for every v\t }. 

Now take L = gL0 G A with q G p X (If we start from a given q, then we define 
A with g asp . ) Then it can easily be seen that (#, h) «—• (g/i_1Z,o, qh~1gLo) gives 
a one-to-one map of the set of all such (#, /i) onto the set of all (JV, Jf) in A x A 
such that L + H = N and L < N. Given M G A, we can choose y G pX so that 
M = yLo- Then, for a fixed r put 

c(M) = ^c(det(y))c(r, y; f) |det(y) |^[det(y)t] , 
c\M) = </>c(det(y))c(r, y; f|T)[det(y)r]. 

These are well-defined because of (20.9d). Therefore (20.15) can be written 

c'(L)= £ a(r,N) Y, °W-
L<N£A L+H=N,H£A 

By Lemma 19.14 we obtain 
J2 »(M/L)c'(M)= J2 KM/L)a(r,M) £ c(H) 

L<MeA L<M€A LDHeA 
for every L G A. Now the condition L < M G A is equivalent to L < M G £T , since 
M G A if L G A and L < M. Therefore we obtain the first equality of our theorem. 
The second equality follows immediately from this and Lemma 19.12. The last two 
equalities are immediate consequences of the first two. 

20.5. Lemma. Let r G S+ fl GLn(K) and L = qLo G £ r ; let b be the set of 
all primes v G h prime to c such that 6bq*rq is not regular in the sense of §16.1. 
Then 

[n/2] 

n ^ n M M r ^ - M ) I I ^~N(p)2l[p}2) (CaseSP), 

A(T, L) = { 

II ftlHlIIK1 - (O 'CP^ (t»)i_1N) (Case UT). 
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Here p is the prime ideal of F at v and gv is a polynomial with constant term 
1 and with coefficients in Z; hv = 1 if n is odd, and hv(t) = 1 — p*(p)N(p)n/2t 
with the Heche character pr of F corresponding to F(cl/2)/F, c = (—l)n/2det(r), 
if n is even; 0 is the Heche character of F corresponding to K/F. 

P R O O F . If L < M G Cr, then we can put M = qxL0 with x G B'. Therefore 
A(r, L) = Uv]c Mr, L) with 

(20.16) AV(T, L) = ^ / i ( L 0 / x * L o ) | d e t ( x ) | ^ [ d e t ( x x * ) r ] a ° ( x - 1 ( ^ 9 * ^ ) ^ ) ) 
X 

where x runs over Bv/Ev under the condition that x~1(ebq*rq)vx G Sv. If v £ b, 
then AV(T, L) = ctv

,((ebq*rq)v), which is given by Theorem 16.2; if v G b , then 
AV(T, L) is a finite sum, and each av

l(x~1(ebq*rq)vx) is a polynomial times a 
rational expression given in that theorem. (Notice that, in view of (16.7a), a £ ( 0 = 

A£([pt]) with A® of that theorem.) Therefore we obtain our lemma. 

20.6. Suppose now f \T(a) = A(a)f for every a as in the last part of Theorem 
20.4. We naturally assume that f ^ 0. By Lemma 19.9, for each v G h we can 
determine complex numbers Xv^ so that XlaMa)[a] = Y[vehTv{^v,i> ••• > ̂ v,m) 
with Tv in that lemma. Let Z~l denote the denominator of the expression for 
%(^v,i> . . . , \v,m) obtained from the expression for u){$v) given in Theorem 19.8. 
Namely, denoting by p the prime ideal in F at v, we have: 

(I) v\c. 

Zv = ( l -7V(p)»[p])- 1f [ [ ( l - iV(p)"A t ) > i[p])( l - iV(p)"A;j[p])} (Case SP), 

Z» = f [ { ( ! - ^ ( q ) n _ 1 ^ , i [ q ] ) ( l - W(q)BA-J[q])} (Case UT, pr = qe), 

2n , v - 1 
Z- = 1 1 ( l -^(qi) 2 nA-j[qi])( l - iV(q 2) - 1Av , i [q2] ) (Case UT, pt = q i q 2 ) . 

i = l ^ J 

(II) v|c, vfe-
n 

Z, = J ] (1 - i\r(p)nAVfi[p])"1 (Case SP), 
i = i 

n 
ZV = H(1- J V t q r - ^ q ] ) - 1 (Case UT, pt = qe), 

»=i 

z - = I I { 0- - ^(qi)n_1Av,i[qi]) (i - ^(q2)n-1A1),n+<[q2])} 
2 = 1 ^ ' 

(Case UT, pr = qiq2). 
(III) v\t. Zv = 1 (Cases SP and UT). 

Then from Theorem 19.8 we obtain 
(20.17) £ - ^ A ( a ) [ a ] = r j Z t ) , 

a v£h 

where £ is a formal Dirichlet series given by 

- l 
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£ = n { ( j - w) fi(i - N(p)2i[p}2)} (case sp)> 
pfc ^ t = l ^ 

£ = n f i f1 - ( » i " 1 )* (P )^ (P ) i " 1 N ) (Case UT), 

where (0*"1)* is the same as in Lemma 20.5, and p runs over all the prime g-ideals 
prime to c. We define also a similar formal Dirichlet series £o by 

I(n+l)/2] / v - 1 
£ ° = n I I U-mp)2n+2-2ilP}2) (CaseSP), 

£ o = I 1 I I f1 - (^n+i"1)*(P)^(p)n+i-1[pt]N) (Case UT). 
Pfc 2 =1 ^ ' 

20.7. Theorem. Let f and Zv be as above and let r G S+ Pi GLn(K) and 
L = qLo G CT with q € GLn(X)h- TAen we /iai>e 

D(T, q; f) • £o • I] »»(N) • I I ^ M " 1 

v6b vfc 
= I I Z - S ^(M/L)^e(det(j/))[det(g*y)r]cf(r, y), 

vEh L<MeCT 

where M = yLo as in Theorem 20.4, and b , c/v, and hv are determined for r and 
q as in Lemma 20.5; we put hv = 1 in Case UT. 

P R O O F . This follows immediately from (20.17), the third equality of Theorem 
20.4 concerning A(r, L)D(T, q; f), and Lemma 20.5. 

20.8. Lemma. Let 0 ^ f G M.k(C, ijf) with integral or half-integral k as in 
§20.1. Then the following three conditions are mutually equivalent: 

(1) Case SP: kv > n/2 for some v€a ; Case UT: kv + kvp > n for some v G a. 
(2) Case SP: kv > n/2 for every vGa; Case UT: kv + kvp > n for every v G a. 
(3) cf (r, r) ^ 0 for some r G S+ D GLn{K) and some r G GLn(K)h. 

Moreover, these conditions are satisfied if f is a cusp form. 

P R O O F . We first note that G A = Urelr} G * diag[r, r\C with a finite subset 
{r} of GLn(AT)h. This is trivial in Case SP since G A = GC\ in Case UT the fact 
is included in [S97, Lemma 9.8 (3)]. Given f ^ 0, take p G Gh so that the p-
component of f is nonzero; we may assume that p = diag[r, r\ with r G {r}. 
Then, in view of (20.9f), the mutual equivalence of (1), (2), and (3) follow from 
Proposition 6.16. The last assertion follows from (6.42). 

20.9. Theorem. Let O ^ f G Mk{C, VO with integral k; suppose that the con
ditions of Lemma 20.8 are satisfied. Then there exist r G 5+ D GLn(K) and 
r G GLn(K)h such that 

(20.18) 0 ^ Vc(det(r))c(r, r; f|T) = A(T, rL0)D(r, r; f). 

Suppose in particular that f\T(d) = A(a)f as above. Then Cf (r, r) ^ 0 and 

(20.19) </>c(det(r))cf(r, r)\[Zv = D(T, r; f) • £ 0 • J J ^ d p t ] ) " 1 • J ] gv([px\) 
v€h vfc vGb 



20. HECKE EIGENVALUES AND FOURIER COEFFICIENTS 173 

with the symbols as in Lemma 20.5 and Theorem 20.7. 

PROOF. We have Cf (r, q) ^ 0 for some r e S+ Ci GLn(K) and some q e 
GLn(K)h. Then D{r, q; f) 7̂  0. Let C'T be the set of all lattices M £ CT such that 
qL0 < M and M = rL0 with some r G GLn(K)h for which £>(T, r; f) ^ 0. Since 
C'r is a finite set containing qLo, it has a maximal element. Writing it rLo with 
r such that D(T, r; f) ^ 0, we obtain (20.18) and (20.19) from Theorems 20.4 and 
20.7. 

20.10. Lemma. Let B be as in (20.5); let f G Mk(C, ^ ) ; also let f <-> (fp)PeB 
and f|T <-• (gq)qej3 in the sense of §20.1. Further let RP be a complete set of 
representatives for rp\(X D G). Then 

& = E E ^(det(a(p-1
79)))-1(/p||7)K(p-179)]. 

peB jeRp 

This was given in [S97, (11.9.1) and (11.11.3)] for forms on a unitary group of a 
general type. The proof given in [S97, Lemma 11.8, §§11.9 and 11.11] is applicable 
to the present case. In Case SP the matter is simpler, since we can take B = {1}. 

20.11. We now assume our f to be a cusp form. Thus, given an eigenform 
f G <Sfc(C, T/>) as in §20.6 and a Hecke character \ of K, we put 

[m/2] 

Lc(2s, x) I I W 4 5 " 2*> X2) (Case S P) ' 
(20.20) A"(s , x) = < i = l 

[ ] Lcf)(2s - 2 + 1, x i ^ " 1 ) (Case UT), 
2 = 1 

(20.21) Z(s,f,X)= I I Zv(x*{<\)N(q)-s), 
veh, v\\) 

(20.22) S ( * , f , x ) = £ x*(a)A(a)iV(a)-s. 
a+tf)=t 

Here Lc is defined by (16.9), Xi is the restriction of x to F£, J) = gfi(the conductor 
of x)» # is the Hecke character of F corresponding to K/F, and Z<,(x*(q)./V(q)~s) 
should be understood as follows: In Case SP, it is the expression obtained from Zv of 
§20.6 by substituting X*(p)N(p)~s f° r [p]; similarly in Case UT, it is obtained from 
Zv by substituting ( x ^ i ) ^ ) - * , X*((\2)N{q2)-) or x*(q)^(q)" s for ([q i], [q2]) 
or [q] according as px = qiq2 or px = qe. From (20.17) we obtain, at least formally, 

(20.23) Z(s, f, x) = *Zn(8/u, X)T(s, f, x), u = 2/[K : F}. 

20.12. Lemma. (1) The series of (20.22) and the product of (20.21) are abso
lutely convergent for Re(s) > 2n + 1 in Case SP and Re(s) > 2n in Case UT. (This 
is preliminary to the stronger result given in the following theorem.) 

(2) If ip is of finite order and the conditions of Lemma 20.8 are satisfied, then 
the eigenvalues A (a) generate a finite algebraic extension of Q that depends on f. 
(As to the nature of this extension, see Lemma 23.15 below.) 

(3) If e = c, the space Sh(C) is spanned by eigenfunctions f of the above type. 

P R O O F . As explained in [S97, §20.13], the convergence can be reduced to that 
of Ylrecxx \N(v>b{T~)) |. Also, as explained in the proof of [S97, Lemma 20.11], 
J2rec\x •^(/ ib(T)) S n a s a n Euler product, whose Euler factor in Case SP can be 
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obtained by substituting (7V(p)~s, N(p)1) for ([p], tj) in the expression for u;(Xv) 
in Theorem 19.8. Then we find that the series is convergent for Re(s) > 2n -f 1 in 
Case SP. Similarly, in Case UT, it is convergent for Re(s) >2n, as already noted in 
[S97, Proposition 20.4 (3)]. To prove (2), assuming that ip is of finite order and the 
conditions of Lemma 20.8 are satisfied, denote by D the field generated over Q by 
the values of ip and the conjugates of K; let a G Aut(C/D) . In Lemma 23.14 below 
we shall establish a nonzero element i° of Mk(C, VO s u c n t n a t fa\T(a) = X(a)afa 

for every a. Since Mk(C, ip) is finite-dimensional, the A(a) must belong to a finite 
algebraic extension of D. As for (3), with X as in (19.2c) we see that r~l eX for 
every reX if e = c. Since 9t(C, X) is commutative, [S97, Proposition 11.7] shows 
that CTC for every reX defines a normal operator on Sh(C). Thus we obtain (3). 

We can now state our main theorems about the above Euler product. 

20.13. Theorem. The function Z(s, f, \) can be continued to a meromorphic 
function on the whole s-plane. Moreover, the Euler product on the right-hand side 
of (20.21) is convergent, and consequently Z(s, f, x) ¥" 0> at ^eas^ for Re(s) > 
(3n/2) + 2-[K:F\. 

The proof will be completed in §22.9. We shall also show in Theorem 22.11 that 
the bound (3n/2) + 2 — [K : F] is best possible in general. 

If e = c, we can state analytic properties of Z in a better form; for some technical 
reasons we denote the weight of f by h instead of k. 

20.14. Theorem. Let f be an eigenform contained in Sh{C) with C as above; 
suppose that e = c and x&{x) — ^ll^a| t,c~^ w^h £ G Z a and K G R a , X^ea Kv = 0; 
suppose also that 0 < hv — lv < 1 for every v G a in Case SP. Put 

1l(s, f, X) = Z(s, f, X) I ] r»M ((*/«) + («»/2)) 
with u = 2/\K : F] and r£'e defined as follows: 

Case SP. ry{s) = / ^ ( s + hv - {tv + n+ l)/2)gn(s, £v), 

gn{s, a) = { 

Case UT. 

rUs + a — n r a 
S+2 

a + n if a> n, 
2 J V 2 [ 2 

A 1 a + 2 - n ( s + ^ ) r ( s - | ) f[r(2s-i) if („ - 2) /2 < a < n; 

ry(s)=Pv(s)q2n(s, \2hvp + ev\) 
hv + hvp + \d. 

r2As-n + 

Pv{s) 
5 + 

\2hvp + r2is+2hvp + e-V \ 

\2hvp -f £ 
V 

q\s,a)=~JXr(s-a--

2hvp + - l 

2 = 1 
' ) • ' 

if dv > 0, 

if dv < 0, 

(0<teZ). 

Here JT£ is defined by (16.47); dv = hv - hvp — £v for v G a in Case UT. Then 
7l(s, f, x) can be continued to the whole s-plane as a meromorphic function with 
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finitely many poles, which are all simple. The set of poles of 7Z(us, f, x) is con
tained in the set of poles of the function V{s) defined as follows: in Case SP, V 
is the product of Theorem 16.11 defined with {2n, £, x} as {n> >̂ x} there; in Case 
UT, V is the product given in [S97, Theorem 19.3] defined with {2n, 2hvp + £v, x} 
as {n, kv, x} there. 

Some more precise results concerning the poles of Z and 1Z in Case SP are given 
in [S96, Theorems Bl and B2]. The proof of the above theorem will be completed 
in Section 25. Notice that pv(s) and ql(s, £) are polynomials in s; in particular, 
pv = 1 if 0 < dv < hv + hvp and qt(s, a) = 1 if a > t — 1. By (6.42) we may assume 
that hv > n/2 for every v G a in Case SP, which is why gn(s, a) is defined only 
for a>(n- 2)/2. (Correction to [S97, Theorem 19.3], lines 3~4 from the bottom: 
Read "the set described in Case I" for "the set of (19.3.1).") 

21. The Euler products for the forms of half-integral weight 

21.1. Let us now briefly indicate that the analogues of the theorems of Section 
20 can be proved for the forms of half-integral weight. We content ourselves only 
with giving definitions and making statements without proofs, since such require 
lengthy calculations; the reade is referred to [S95b] for details. We first put 

(21.1) U = { a G MA | pr(a) G D[2X>~1, 2D] }, 

(21.2) Z = { a G M A | pr(a) G X0 }, X0 = D[2*-\ 2D]Q(s)D[2D-\ 2D], 

where Q(Q) is defined by (19.2c). Let k be a half-integral weight. Given an element 
a = £I<T£2 G Z with & G U and pr(cr) G £o, w e Put 

(21.3) Jk((*,z)=jk{Z1S2,z) (zeH) 
with j k of (16.17). 

21.2. Lemma. (1) Jk(a, z) is well-defined. 
(2) Jk&z)=jk(£1z) if £eU. 
(3) Jk(£av, z) = Jk(Z, arjz)Jk{a, r}z)Jk{<q, z) if a G Z and ^neU. 
(4) J fc(a, z) = jW{M<*)> z)Jk~W(a, z). 

The proof of (1) requires a nontrivial fact [S95b, Lemma 2.2]; see the first para
graph of [S95b, p.32]. Once this is established, the remaining assertions follow 
immediately from (21.3). 

21.3. We now take C, B'', and E' as in §19.1, and put T = G H C. This is T 1 

of §20.1, and Mk{T, ip) is meaningful. As noted there, Mk{C, ip) is isomorphic 
to Mk(T, ip). We put f = / A if an element f of Mk(C, ip) corresponds to / G 
Mk(r, ip). Given q G Bf, we take a decomposition G n (Cdiag[J, q]C) = \JaeR Ta 
with R C G fl X0. Then we define f\Tq and i\Tq by 

(21.4) f|Tg = ( / | r , ) A , (/ |T,)(z) = ^ ^ c ( d e t ( a a ) ) - 1 J f e ( a , z)~lf(az). 

It can easily be seen that f\Tq is well-defined and belongs to Mk(T, T/J). For an 
integral 9-ideal a we denote by T(a) the sum of Tq for all E'qE' such that det(^)g = 
a, and put f|T = £ f l (f|T(a))[a]. By [S95b, Theorem 4.4] we can establish the 
analogues of 9i(Cv, Xv) and tuv in the present case so that u{%v) = 1 for v\t and 
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n 
(21.5b) W(Tv) = J ] ( l - ^ [ p ] ) - 1 (fle-'O, 

1 = 1 

where q = N(p) and p is the prime ideal at v. Assuming f |T(o) = A(a)f for every 
a, we have complex numbers Xv^ with which we have 

(21.6a) £ . ]TA(a)[a ] = J[zv, 
a vGh 

(21.6b) £=nn( i- iv(p)2i"" i[p]2)_i, 
P+c i = l 

f 1 Me), 

(21.6c) Z„ 1 = 1 

f [ {(1 - JV(p)wAW|i[p]) (1 - iV(p)nA-j[p])} H O , 

where p is the prime ideal at v. 
Given a Hecke cha.ra.cter \ °f F of conductor F), we put 

(21-7) Z{8,ftX)= I I Zv{x'(p)N(p)-s), 

where Zv{x*{p)N{p)~s) is the expression obtained from Zv by substituting x*(p) 
iV(p)-s for [p]. 

21 A. Theorem. The formulas and assertions of Theorems 20.4, 20.7, 20.9, and 
20.13 and Lemmas 20.5 and 20.12 are true for f G A4k{C, ip) with half-integal k 
if we make the following modifications: £ 0 = flpfc n!=7i2] [l ~ iV(p)2 n + 1 -2 i[p] 2] _ 1 ; 
a®(£bq*rq) should be replaced by al^qrq), with a j defined by 

al(0 = l[[al(C s), al(0= £ "(K^Ki-tfCwW)} (CeS), 
v\z <reSv/S(Q)v 

where uo{6~la) is as in (16.7b); 
r [(n+l)/2j . 

A(r,L)=n^(^(p)-i/2w)n MMr1 n ( I - ^ P ^ W 2 ) ; 
veb v\c ^ i = l ' 

b zs the set of all v G h s^c/i £fta£ vfc and (tqrq)v £ Ev; hv = 1 if n is even, and 
hv(t) = 1 — p*(p)iV(p)n/2t with the Hecke ideal character p* of F corresponding to 
F(c^2)/F, c = ( - l ) ^ - 1 ) / 2 d e t ( 2 r ) , if n is odd; in Lemma 20.12 (2), A(a) must 
be replaced by N(a)1^2\(a). 

We add a remark about the last point. Put T'(a) = 7V(a)1/2T(a) and A'(a) = 
iV(a)1/2A(a); take a G Aut(C/£>) with D of the proof of Lemma 20.12. Then in 
Lemma 23.15 below we find an element fa of Mk(C, ip) such that fa\T'(a) = 
\'(a)afa. Therefore the assertion must be formulated in terms of N(a)1//2X(a). 

21.5. Theorem. Let f be an eigenform contained in Sk{C) with C as above; 
suppose that e = c and x&(x) = #L e | £ a | m ~ ^ + e with e G Z a and K G R S such 
that 0 < ev < 1 for every v G a and X^ea Kv — 0- Put 



AUi-n^ + V^) II r(2 s-"-^) i f (n-2)/2<a<n, 

n - 1 
r ( s - ! V ? ) I I r(2s-a-l) if a =(n-2)/2. 
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7l(s, f, X) = 2(«, f, X) I I ̂ ' " ( ^ + *K*)/2) 

w;z£/i i ^ e defined as follows: 

r^e{s) =zri(s+{kv + ev-n- l)/2)g(s, K - ev), 

^1 / o-— n\ 

p(s, a) = < 

2 
t = ( n + l ) / 2 

T/ien !Z(s, f, x) c a n &e continued meromorphically to the whole s-plane with finitely 
many poles. Moreover each pole is simple. In particular, IZ is an entire function of 
s if X2 ¥" 1- U X2 — 1> the poles are determined as follows: Let £ = Max?;€a{ kv — 
ev}. If £ > n, IZ has no pole. If £ < n, IZ has possible poles only in the set 
{ (2j + l ) /2 | j G Z, n + 1 < j < In + (1/2) - £ } . 

22. The largest possible pole of Z(s, f, x) 

22.1. Put An = (n + l ) /2 in Case SP and An = n in Case UT. We consider the 
set 5 of (16.1a) and put 

(22.1a) S+ = { f € S | fv > 0 for every v G a } , 

(22.1b) S+ = ]JS^ S+ = « € S„ | £ > 0 } . 
•u€a 

Given a subgroup C7 of GLn(K), we define an equivalence relation ~ in 5 + with 
respect to U by: cr ~ <r' if and only if cr' = a*ao with a e U. We then denote by 
S+/U the set of all equivalence classes in this sense. 

Take b, c, e, and C as in §19.1; define E' by (19.2b). For q G GLn(K)h and 
<7 G 5 + put 
(22.2a) C/g - GLn(K)nqE*q-\ £* = GLn{K)&E', 
(22.2b) i/ff>g = [E/^ : l ] " 1 , Ua,q = {aeUq\ a*aa = a} > 
Let f G <S/c(C, ^) and g G A ^ C " , VO with integral or half-integral k and /. Here 
C' is a group of the same type as C with possibly different b, t, and e; I/J and ipf 

are Hecke characters of K. We consider the Fourier coefficients Cf and cg in the 
sense of Proposition 20.2. We assume that 

(22.3a) Vh(det(a))cg(o-, qa) — cg(a, q) for every a G E\ 
(22,3b) (i/>/il>%(x)=x-t\xa\t-iK with KGRa, E ^ a ^ = 0 > w h e r e 

J [I] - [k] (Case SP), 
I (^ — 'up — kv -f ^vpJvGa (Case UT). 

Notice that (20.9d) impies (22.3a) with f and ip in place of g and ipf. We then 
define, for s G C, 

(22.4) £V«(s;f , g ) = ] T ^.9cf(cr, g)cg(tr, 9) de t ( a ) - s a ~ h , where 
aes+/uq 
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J (l/2)(* + i - i / c ) (CaseSP), 
^ " \ (l/2)(kv + kvp + lv + lvp - iKv)vesL (Case UT). 

This is well-defined. Indeed, if aeUq, then det (a)Gt x and Cf(a*ra, q)=det(a)^p 

•Cf(r, ag) by (20.9b, c). Since aq = qq~1aq and q~1aq£E*, by (20.9b, d) we have 

(22.5) cf{a*Ta, q) = ^ a(det(a) ) det(a)[fc^cf(r, q) for every a G C/g. 

A similar relation holds for cg. Combining these, we easily see that each term of 
(22.4) depends only on the equivalence class of a under Uq. Now the right-hand 
side of (22.4) is convergent for sufficiently large Re(s). This will be proven in §A6.7. 

22.2. Proposition. Define m, ra' G Z a as follows: m = k and ra' = I in Case 
SP; ra = (kv -f kvp)vea and ra' = (lv + lvp)vea in Case UT. Then the following 
assertions hold: 

(1) Dq^(s\ f, g) can be continued to a meromorphic function on the whole plane, 
which is holomorphic for Re(s) > 0. Moreover it is holomorphic at s = 0 if ra ̂  ra' 
or K T̂  0. 

(2) The right-hand side of (22.4) is absolutely convergent for Re(s) > 0 if g is 
a cusp form. 

(3) Let p = diag[g, q\; let fp and gp be the p-components of f and g, respec
tively. If ra = ra' and K = 0, then Dq^(s; f, g) has at most a simple pole at s = 0 
whose residue is a positive number times (gp, f p ) . 

The proof will be completed in §22.4. 

22.3. Let fp and gp be as in (3) above; take /? = 1 and r = q in (20.9e). 
Then 

Take a congruence subgroup T of Gi so that fp G .Mfc(jn) and #p G A1/(r) ; take 

also an t-lattice L in 5 so that G .T for every 6 G L. Let X = Sa/L and 

Y = S+/Uq, the latter being defined modulo the map y i-> a<ra* for a eUq. Write 
the variable z on Wn in the form z = x + iy with x € Sa and y £ S£; define a 
measure drr on 5 a by d a ^ I I u e a 0 ^ with dxv defined on Sv as in §5.12. Clearly 

(22.6) / fp(x + iy)gp{x + iy)dx = vol(X) ^ c f(a, ?)cg(a, g)e^(2iay). 
^ X creS+ 

We recall a well-known formula 

(22.7) / e-tr^det(y)s-^dy = r^s)det(r)-s (Re(s) > \ n - l;r G S+), 

where F^ is defined by (16.47). Put 

#(</) = $ ^ "".9M(*> ?/)' M ( a ' y) = cf ( a ' *)<*(*> <?K(2*ay) d e t ( y ) s a + \ 

where T is a fixed complete set of representatives for S+/Uq. Since M{a*aa, y) = 
M(cr, aya*) for every a G Uq by (22.5), putting d'y = det(y)~Anady, we have 

/ J2 M{<j,y)d'y= f J2 ^2v*,qM(a*o-a,y)dfy= f £ H{aya*)d'y 
JV aES+ JY aeUqa£T ^Y aeUq 
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= v f H(y)d,y = v ̂  u^q f M(<r, y)d'y = 1/ • r ( ( s ) ) Z ^ ( 5 ; f, g), 
J si aeT Jsi 

where T((S)) = J J r > + ftc)(47r)-l<8+fc»> 
v €a 

and i/ is the number of the roots of unity ( in K such that C - 1 G e; we employed 
(22.7) in the last step. Termwise integration can be justified for sufficiently large 
Re(s) because of the convergence of (22.4). Combining this with (22.6), we obtain 

v • vo l (X)r ( ( 5 ) )Z\„ (s ; f, g) - / / fp(x + iy)gp(x + iy)6(z)h+sa-x"adxdy 
Jx JY 

for sufficiently large Re(s), where 6(x + iy) = (det(yv))vea. Put fp = mP as in 

(17.2). Then a b 
0 a G JT P for every 6 G L and every a in a suitable subgroup U' 

of [Tg of finite index. Therefore 1 x 7 is "commensurable with" rp\H. Now we 
have 8~2Xn*dxdy — cdz = cY\veadzv with dzv as in Lemma 3.4; c — 1 in Case 
SP and c = 2n^-n^F:^ in Case UT as explained in §5.12. Thus the last double 
integral is a positive rational number times 

(22.8) J fp(z)^iz)6(z)h+s&+x^dz (Z = rp\Hn). 

Clearly j^~lj!y = j * if both k and I are integral, but the case of half-integral 
weights is not so simple. However, by (16.17) and Theorem 6.8 (5), the equality 
always holds for 7 in a suitable congruence subgroup r of G\. With this choice of 
T, we have j^=(j^I)-1\j^\2 for 7 ^ . Thus, putting F(z) = fp{z)^z)8h+s'* 
with s' = s -f An and defining m and m' as in our proposition, we find that 

J?01==.j:. |^|2m-2/i-2s'a^fc-Z)-l for e y e r y ^ e p 

Let S) = F\W n and ft = T p \ r . Choosing T suitably, we may assume that rnKx = 
{1}. Then (22.8) equals 

[r(z)dz= f 1£rb(z))dz= / ^ w J E l ^ l ^ - ^ - ^ C ^ - 1 } ^ 

The last sum over TZ can be written 6m~h~s *E(z, s + A n ; r a - r a ' , K, T) with 
£(••• ) of (17.3). Thus 

(22.9) r((s))Dq^(S] f, g) = A [ fp{z)gp{z)E{z,s + \n; m-m'', «, T)6(z)m dz. 

with a constant A, which is a positive rational number times vol(X) l. 
22.4. Proof of Proposition 22.2. By Lemma 17.2 (4), £ (z , s\ m - m!', «, JH) is 

holomorphic for Re(5) > An. Moreover, by a well-known principle, if it has a 
pole of order t at so, then (s — soYE as a function of z is slowly increasing 
at every cusp. If f ^ 0, (6.42) shows that mv > Xn — 1 for every v G a, and 
hence f L e a ^ m ^ ) " 1 ^ 0. Therefore (1) and (3) follow immediately from (22.9) 
combined with Lemma 17.2 (4). To prove (2), we observe that if the series for 
A?,o(<s; f> f) and Dq,o{s; g, g) for real s are convergent, then the Cauchy-Schwarz 
inequality gives 

J2 ^,g|cf(<r, g)cg(<r, q)det(<i)-sa-h\ < [Dq,Q(s; f, f)Dq.0{s; g, g ) ] 1 / 2 , 
*€S+/Uq 

and therefore assertion (2) in the general case follows from the special case f = 
g. Now we know that Dq:o(s; f, f) is holomorphic for Re(s) > 0. Since all its 
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coefficients are nonnegative, the series defining Dq$(s\ f, f) must be convergent for 
Re(s) > 0. This completes the proof. 

22.5. Now given f G <Sfc(C, ip), a Hecke character x of K, r G S + , and r G 
GLn(iiT)h, we define a formal Dirichlet series V(f, \) a n d an ordinary Dirichlet 
series D(s, f, x) by 

(22.10) 2>(f, x) = J2 VKde t( r a))x*(det(x)r)cf(r, rx)|det(xx*)|^An[det(x)r], 
xeB'/E' 

(22.11) 
D(s, f, x) = Yl ^(det(rx))x*(det(x)r)c f(r, rx)\det(xx*)\J.Xn\ det(x)\8

K, 
xeB'/E' 

where B' and E' are as in (19.2b), and | \p is the idele norm in F£. These depend 
on r and r, but we fix them in the following treatment. Let 
(22.12) GLn(K)A = [ J GLn(K)qE* 

qeQ 

with a finite subset Q of GLn(if)h; put then 
Xq = GLn(K)nrB*q-\ Xa,q = {^eXq\a = £*r£} (qeQ,ae S+), 

B * = B / . G L n ( / f ) a . 
Given x e B*, take £ G GLn(K) and q e Q so that rx G £<?£*. Then x G r~1£qE* 
and ( e l q . Prom this we easily see that B' jE' can be given by [Leo { r _ 1Ch^ | 
( G V [ / g } . Therefore we have 

(22.13) D(f, x) = £ I d e t C r - 1 ? ^ * ) ! ^ 

• X ) Cf< r ' ^ ) ^ h ( d e t ( ^ ) ) x * ( d e t ( r - 1 ^ ) r ) | d e t ( 0 | 2 A - a [ d e t ( r - 1 ^ ) r ] . 
Cexg/t/q 

22.6. Take /J, G Z b under the following conditions: /xv > 0 for every v G b; 
/iv < 1 for every t; G a in Case SP; fiv/J>vp = 0 for every v G a in Case UT. 
Given x as above, let f be the conductor of x- We define a weight / and a Hecke 
character ip' of if by 

f M + ( n / 2 ) a (CaseSP), 
( 2 2 J 4 a ) H M + na (CaseUT), 

(22.14b) ^ = ! _! _n 
X ' V r (CaseSP), 

X " V ~ n (Case UT). 
Here pT is the Hecke character of F corresponding to the extension F{cl/2)/F with 
c = (—l)Cn/2l det(2r); ^ is a Hecke character of K such that ip{y) = y~ a |y | a for 
y G i^a and the restriction of (p to F ^ is the Hecke character of F corresponding 
to K/F. Such a ip always exists, but not necessarily unique; see Lemma A5.1. We 
fix one such <p in the following treatment. 

As will be shown in §A5.5, there exists an element g G Mi(C, ip') such that 

(22.15) cg(a, q) = | d e t f o ) | # V ( d e t f o ) ) - 1 

• £ X . ( d e t ( 0 ) r ( d e t ( r - 1 f r ) t ) d e t ( O w ' 

for a € S+, where 
C = {ae D[b^e, bid] | a a - 1 -< re } 
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with the same c as before and some b\ and Ci; Ci is divisible by e, f, and the 
conductor of pT or ip. 

We take this g to be that in (22.4); naturally (22.3b, c) must be satisfied, which 
is so only for a suitable choice of /i. In fact, given f £ <S/c(C, ip) and x> define 
ipf as above, and put (tpx)a(x) = £**'Ix*]*'~iK w i t n *' £ Z a and « £ R a . Then 
(<W)a ( s ) = x- ' jxal*"^ with £ = £' + [n/2]a in Case SP and t = t' + na in 
Case UT. Now take /i £ Z b as follows: In Case SP define fiv by the conditions 
0 < fJLv < 1 and ii - [k] - tf £ 2Za . In Case UT, put 

(2^.1oaJ /iv '=• %v n̂ Vp -j- KV and /^p == U it tv ^ /cVp /cv, 
(22.15b) jL4.y = 0 a n d fivp = kvp - kv — t'v if t'v < kvp - kv. 

We consider g with this /J,. Then (22.3b, c) are satisfied. 
Let Vq(f, g) denote the formal Dirichlet series obtained from the right-hand side 

of (22.4) with det(a)" / l[det(a)r] in place of d e t ( a ) - s a - h . Then 

(22.16) de t ( r ) h [de t ( r ) r ] - 1 | de t ( 9 ) | - n / V(de t (g ) - 1 )P g ( f , g) 

= J2 ^h (de t (0 )x* (de t ( r - 1 ^ ) r ) c f ( r , ft)| de t (0 | - ( n / u ) a [de t (^*) r ] , 
texq/uq 

where u = 2/[K : F], To see this, take complete sets of representatives R and Ya,q 
for S+/Uq and Xaiq/Ua,qi respectively. Then we easily see that \_\aeRYa,q gives 
Xq/Uq. In Case UT, for x £ Kx we can easily verify that 

(22.17) (^x)a(^)_ 1^" f c p = x1'-kP\x\iK-1' = x»\x\na-2h. 

Here we have to remember that kp and h belong to Z b ; t' and h ar elements of Z a 

viewed also as elements of Z b . To make our formulas short, let us put ^ = det(£) 
temporarily. Then the sum over Xq/Uq in (22.16) in Case UT equals YlaeR va,qAa 

with 
A* = E « e x „ „ V'a(t)- 1c f(r , ^n\-naX*{dir-^q)v)m^} 

= <*(*, q) E « W x ) a ( ^ ) - 1 ( t ) - f c p l t r n a X a ( < t ) x * ( d ( r - 1 ^ ) t ) [ d ( e r ) r ] 
= nr-^-^T-'a^ctia, q)ZsX*(dt)x*(d(r-^q)x)(dty, 

where we employed (22.17) in the last step. By (22.15) the last sum over £ equals 
|det(g) |^n /V / (det(g))" 1c g(o- , q). Therefore we obtain (22.16) in Case UT. Case 
SP can be handled in a similar and simpler way. 

Now (22.16) together with (22.13) gives 

(22.18a) V(N(a)-So[aaf)]) 

= d e t ( T ^ | d e t ( r ) | - n / 2 £ ^ 

(22.18b) D{us + s0, f, X) 

= tet{TY*+h\det(r)\-K
u^ 

qeQ 

where u — 2/[K : F] , s0 = (3n/2) + u- 1, and the left-hand side of (22.18a) means 
the formal series obtained from P(f, \) by substituting 7V(a)~s°[aap] for [a]. 
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22.7. Lemma. Given a formal Dirichlet series ]Cacrca[a] wztfi ca G C, sup
pose that J2acv | c a ^ ( a ) ~ s | < °° forRe(s) > a and also that it can be decomposed 
formally into an Euler product in the sense that E a c ° [ a ] = IIp^Gp]) with 
complex polynomials Vp(x) such that VJ,(0) = 1 defined for all prime ideals p in K. 
Then the infinite product ]\p Vp((p(p)N(p)~s)~ , for any T-valued ideal character 
<p, is convergent to the Dirichlet series E a c t ca(p(a)N(a)~s and nonvanishing for 
Re(s) > a. 

P R O O F . We can formally put Vp{x)~1 = l + X]^Li^ ,n^ n with 6p,n G C. 
Then ]Tp E^Li bp,nN{p)~ns is a partial series of J2acaN(a)~s and therefore 
E P E£Li \bP,n<p(p)nN(p)-ns\ < oo for Re(s) > a. Thus the infinite product must 
be convergent. Clearly each factor Vp(ip(p)N(p)~~'s) is nonvanishing, and hence 
we obtain our lemma. 

22.8. Lemma. Given (?/>, r) as above and an integral ideal y in F, there exists 
a Heche character x and V> £ Z b with the following properties: (i) our discussion 
of $22.6 is applicable to (x, /-O; (ii) /i ^ 0; (iii) the conductor of x Is prime to £. 

PROOF. In Case SP take /i G Z a , ^ 0, so that 0 < \xv < 1, and put t' — \x- [fc]; 
in Case UT take /i E Z b , / 0, so that fiv > 0 and /^p = 0 for every v G a, 
and put t' = (//„ — fci; -f kvp)vea. We can find an integral r-ideal a prime to £ 
so that if £ is a root of unity in if and C — 1 € a, then £ = 1. Put W = {e G 
r x | e - 1 G a }. Then the map e H-> (log |e v | ) u G a gives an isomorphism of W onto a 
Z-lattice in [x G R a | Ylveaxv = 0 }• Now e ^ ^a( e) — 1 lel* e~* defines a T-valued 
character of W. Therefore we can easily find K G R a such that ^2vea KV = 0 and 
^ ( e ) " 1 ^ ! * ^ " * ' = \e\iK for every e G W. Now ^ W = a?c|x|~c~iK' with c G Z a 

and «' G R a , £ v G a < = 0. Therefore, by [S97, Lemma 11.14 (1)] there exists 
a Hecke character x °f ^ whose conductor divides a and such that Xa(x) = 
ip8L(x)~1x~t l^al* ~lK> This proves our lemma. 

22.9. We are now ready to prove Theorem 20.13. Given an eigenform f G 
«Sfc(C, I/J), take fj, and x as in Lemma 22.8 with an arbitrary choice of £. Since 
f is a cusp form, by Lemma 20.8 and Theorem 20.9 we can find r G GLn{K)\y 
and r e S+ such that cf(r, r) ^ 0 and (20.19) holds. Then we consider (22.18a, 
b) for these r, r, x- Observe that D(s, f, x) can. be obtained from D(r, r; f) of 
Theorem 20.4 by substituting X * ( ^ ) ( ^ / ^ C ) ( * ) | * I K f° r M> * € ^ h > anc* multiplying 
by (^ /^ c ) (de t ( r ) ) . Let £ ' (s) denote the Euler product obtained from Z(s, f, x) of 
(20.21) by substituting ( ^ M ) t o p ) ^ P P ) ~ s for N(^)~s for each prime ideal <p in 
if, where 7r<p is the prime element of Ky. Then (20.19) gives an equality between 
formal Dirichlet series which leads to 

(22.19) Vc(det(r))c f(r, r)Z'(s) = £>(*, f, x)P(s)A(s). 

Here P is a finite Dirichlet series with constant term 1, and A is the product 
of certain L-functions obtained from £oELfc ^ ( [p* ] ) - 1 of (20.19) by substituting 
X*(pt)'0*(pr)AT(pt)~s for [pr] for each prime ideal p in F. 

Put Pg(f, g) = £aGi,a«[det(<j)t] a n d £>(f, x) = £ f l
6 « M with a* A G C. 

Then D{s, f, x) = E A ^ a ) " * , and (22.18a) shows that ^2abaN{a)'a°[aaP] = 
SgeQ ^9 2a€f i a£[det(cr)t] with dq G C. Our g will be given in §A5.5 as a certain 
theta series 0(z, A). Since /x =£ 0, g is a cusp form by (A3.16) or (A5.5). Therefore 
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Proposition 22.2 (2) applied to Dq,K{s\ f, g) in (22.18b) shows that ^ a %N(K°)~S\ 
< oo for Re(s) > s$. The same holds obviously for P, and also for A, as can easily be 
seen from the explicit forms of £o and /i^([pr]). Thus the Dirichlet series expressing 
Z'(s) has the same property, and clearly the same is true for Z(s , f, x)- Now given 
an arbitrary Hecke character LJ of AT, Lemma 22.7 shows that the Euler product for 
Z(s, f, LJ) is absolutely convergent and nonvanishing for Re(s) > s0, if we remove 
the Euler ^3-factors for *P dividing the conductor of x- By Lemma 22.8, we can 
choose x s o that the conductor of x is prime to any integral ideal in F, which 
means that the Euler ^3-fact or of Z(s, f, LJ) for an arbitrary ^3 is nonvanishing for 
Re(s) > So- Consequently the whole Euler product for Z(s, f, a;) is nonvanishing 
for Re(s) > so- This proves the second part of Theorem 20.13. 

To prove the first part concerning meromorphic continuation, observe that the 
above Zf coincides with Z(s, f, x$) if w e remove, if necessary, finitely many Euler 
factors. Here we can take an arbitrary X5 w e do not have to assume / i ^ O ; still 
(22.19) holds. Therefore meromorphic continuation of Z(s, f, x) f° r a n arbitrary 
X follows from Proposition 22.2 (1), (22.18b), and (22.19). 

In the above proof we employed formal Dirichlet series and stated equality 
(22.18a) in order to emphasize that (22.18b) is not merely an equality between 
two functions, but also the equalities between the formal Dirichlet series, which is 
essential for the desired convergence of the series. 

Theorem 20.13 concerns integral k. As noted in Theorem 21.4, the result is valid 
also for half-integral k. The proof is the same as above; indeed, our discussions of 
§§21.1~8 include that case. 

22.10. To show that the bound so is best possible, we denote by % the vector 
space consisting of the functions g of the form 

(22.20) g(z) = Y, A(£) det^rpe2(Cr^z) (A G <S(Vh), z G H). 

Here V = K™, V G Z b ; Z = /z + (n/2)a in Case SP and I = n + na in Case UT; 
we assume \iv > 0 and fivfivp = 0 for every v G a in Case UT and 0 < \xv < 1 for 
every v G a in Case SR As will be shown in §§A3.16 and A5.5, T\ is contained in 
Mi and stable under g ^ g\\i a for a € G. Let T{ = T\ n S\ and let U\ denote the 
orthogonal complement of T/ in Si. Then we see that both T/ and U\ satisfy [S97, 
(10.7.1, 2, 3)]. Therefore we can speak of T/(C) and Ui(C) for a subgroup C of G A 
of the above type. In fact, g of §22.6 belongs to 7J(C;, V0> as ^ s construction in 
§A5.5 shows. As noted in [S97, §10.9], for every s G Gh the map f i-> f(xs) sends 
T/(C) and Ui{C) onto 7^(sCs - 1 ) and U^sCs-1). Now we have an inner product 
on Si(C) defined by [S97, (10.9.6)]. Then Ui(C) is the orthogonal complement of 
T/(C) in Si(C). Indeed, that T/(C) and Ui(C) are orthogonal is obvious. Suppose 
f G SL(C) and (f, T/(C)) = 0. Given g G T{, we can define g G Ti(d) with a 
sufficiently small open subgroup C\ of C so that g is one of the components of g. 
Put C = \JyeY yd w i t h y CGh and g l (x ) = X)y€y g ( ^ ) - Then g l G ̂ ( C ) and 
0 = (f, gx) = # (F ) ( f , g) by [S97, (10.9.8)]. Prom this we easily see that every 
component of f is orthogonal to T/, that is, f G Ui{C) as expected. 

22.11. Theorem. Let s0 = (3n/2)+2 —[if : F]; /e^ f 6e an eigenform belonging 
to Sk(C, ip) with integral or half-integral k as in §20.11 and let x be a Hecke 
character of K. Then Z(s, f, x) has a pole at s = so only if the components of 
f in the sense of (20.3b) belong to T/ with I = fi + (n/2)a or / = \i + na iu^/i 



184 V. ZETA FUNCTIONS ASSOCIATED WITH HECKE EIGENFORMS 

/x G Z b as in §22.10. Moreover, for such I and fi and an arbitrary x, there exists 
an eigenform f G T({C') for some C such that Z(s, f, x) has a pole at s = s0> 
provided \i ^ 0. 

P R O O F . Since every Euler factor of Z(s, f, x) is nonvanishing at so> we may 
remove any finite number of Euler factors by assuming c = e and changing c for 
its suitable multiple. Then f E«Sfc(C) and we may assume I/J to be trivial; thus 
we have (22.19) with Zf{s) = Z(s, f, x)- We can even assume that P = 1 with 
a suitable choice of c, since only finitely many ideals are involved in P. Then 
Z(s, f, x) has a pole at s = s0 if and only if D(s, f, x) has a pole a t s = s0, since 
A is finite and nonzero at so. Now, by Proposition 22.2 (1), the right-hand side of 
(22.18b) has a pole at s = 0 only if k = I in Case SP and kv + kvp = lv + lvp for 
every v G a in Case UT. Assuming these conditions on fc and /, take C so that 
det(G DpCp'1) = 1 for every p £ Gh*, such a C always exists in view of (4.33) 
and (4.34). Then we have Sk(C) =Si(C). In view of our remark about the map 
f(x) H-> f(xs) in §22.10, both T/(C) and Ut{C) are stable under T(a), and so, by 
Lemma 20.12 (2), Si(C) is spanned by some eigenforms, each of which belongs to 
either T/(C) or Ui(C). Suppose f is an eigenform belonging to UiiC). Given x> 
define g as in §22.6. Then (/p, gp) = 0 for every p, and so by Proposition 22.2 
(3), (22.18b), and (22.19), Z(s, f, x) is finite at s = s0. Thus f €7J'(C) if it has a 
pole at SQ. 

Next, given k as above with /i ^ 0, take a Hecke character x a n d define g as 
in §22.6 with r = l n and an arbitray r G 5 + . Take also an integral ideal a in F so 
that if £ G GLn{K), £*r£ = r, and £ — 1 -< ra, then £ = 1. Change c for ac; then 
from (22.15) we see that CK(T, 1) ^ 0, so that g ^ 0. We have g G 7J'(C") with 
some C". Suppose Z(s, f, x) is finite at s = s0 for every eigenform f G T/(Cf); 
then we see that -D(5, f', x) is finite at s = SQ for every f G T/(Cf), which is 
not necessarily an eigenform. In particular D(s, g, x) is finite at s — SQ. This is a 
contradiction, since Proposition 22.2 (3) together with (22.18b) with f = g shows 
that D(s, g, x) has a positive residue at so- This completes the proof. 

22.12. Remark. (I) In the above we expressed Z(s, f, x) times some factors 
as a finite linear combination of the functions Dq,K(s; f, g), each of which can be 
given by an integral of the form (22.9). In fact, at least if e = 9 in Case SP, we 
can express Z(s, f, x) itself as a single integral similar to that of (22.9) times some 
elementary factors. We refer the reader to [S96, (4.1)] and [S94a, (8.11)] for the 
explicit forms. 

(II) If G = 5Z/2(F), that is, if n = 1 in Case SP, then we have a result supple
mentary to the above theorem. Indeed: 

22.13. Theorem. We have Z(s, f, x) 7̂  0 for Re(s) > 2 in the following three 
cases: (i) k = [fc]; (ii) k ^ [k] and kv > 3/2 for some v G a; (hi) k = 3a/2 and f 
is orthogonal to T£,2. Moreover, in these cases Z{s, f, x) is finite for every s G C 
except that it has a possible simple pole at s = 1 and s = 2 if k = [k]. 

If fc = [fc], the function Z(s, f, x) coincides with the function of [S91, (10.3)] 
as explained at the end of [S95a, §6], and hence nonvanishing follows from [S91, 
Proposition 3.3 and (10.4)]. The information concerning possible poles is given 
in [S95a, Theorem 6.4]. As for the case fc ^ [fc], we refer the reader to [S95b, 
Proposition 6.2] and the succeeding paragraph. In this case Z is entire. 



CHAPTER VI 

ANALYTIC CONTINUATION A N D N E AR HOLOMORPHY 
OF EISENSTEIN SERIES OF GENERAL TYPES 

23. Eisenstein series of general types 

23.1. To emphasize the dimensionality, denote the group U(rjn) and the space 
H in Cases SP and UT by Gn and Hn, and the symbols Mk and Sk by Ml and <S£; 
we write M£ and 9Jln for M A and DJl. We make the convention that G° = {1} and 
M\ = <S£ = C; also we understand that pr is the identity map of G\ onto itself if 
the weight is integral. We are going to introduce Eisenstein series associated with 
elements of <S£ on subgroups Gr embedded in Gn. These include those of Section 16 
as special cases. The series of this type in the unitary case was treated in [S97] and 
we indicated there that the symplectic case can be handled in the same manner. 
In this section we present a more detailed treatment in Cases SP and UT, which, 
in Case UT, is essentially included in what was done in [S97]. Fixing an integer r 
such that 0 < r < n, we write each element a of (-£00In *n ^ n e f ° r m 

~a\ a<i b\ 62 1 
a3 a4 63 64 
C\ C2 di d,2 

.c 3 c4 ds d4l 

(23.1) a = 

xa = x(a) = 

that x(a) = 

for x = a, 6, c, d, and i = 1, 2, 3, 4. We understand 

where X\ is of size r, and x4 is of size n — r. Then we write X{ = Xi(a) and 
xi (a) x2{a) 
x3(a) x4(a) 

xi(a) if r = n, and x(a) = x4(a) if r = 0. We define a parabolic 
subgroup P n , r of Gn by 

(23.2a) P n ' r = { a G Gn I a2(a) = c2(a) = 0, c3(a) = d3{a) = 0, c4{a) = 0 } 
(0 < r < n), 

(23.2b) Pn = P n ' ° = { a e Gn | c(a) = 0 }, P n ' n = Gn, 

and define also maps 7i> : (ifA)2n (tfA)£ and Ar : {KA)H - tfA by 

(23.3) 7r r(a) = Ar(a) = det (d4(a)). ai(a) bi(a) 
_ci(a) di(a) 

These define homomorphisms P™'r -> G^ and P A
r - • Kj£. Clearly A0(a) = 

det(dQ). We understand that G°A = 7r0 ( P A ' 0 ) = 1> fl"n(a) = a, and An(a) = 1 
for a G G A . Notice that P n , r is a parabolic subgroup of Gn in the sense of [S97, 
Section 2]; see [S97, §2.11] in particular. 

185 

http://dx.doi.org/10.1090/surv/082/06



186 VI. ANALYTIC CONTINUATION AND NEAR HOLOMORPHY 

Assuming r > 0, for z G C™ we let pr(z) denote the upper left (r xr)-block of z, 
and use the same letter pr for the map (C™)a —> (C£)a defined by pr({zv)ve8L) = 
(pr(zv)vea)' Then for a G P^ ' r ano^ z ^ ^ n w e n a v e 

(23.4) pr(a^) = ?r r(a)p r(z), j ( a , s) = A r(aa)j(7r r(a) , pr{z)). 

Here A r(aa) = (Ar(a)g, K{OL)V)V^ € c b i n C a s e U T - F o r /? G G^ and 7 G G £ - r 

we define an element (3 x 7 of G^ by 
"a^ 0 6/? 0 

(23.5) / ? x 7 = 0 0 
cp 0 dp 0 
0 c7 0 dy] 

"w 
w 
z' 

Writing Qn for the group Q denned as in §14.14, we put 

(23.6) Vn'r = { (a, p) G Gn I a G P n ' r } , 

and define homomorphisms 7i> : Vn,r —> £/r and Ar : P n ' r —> i7^ by 

(23.7a) 7rr((a, p)) = (7rr(a), |A r(a) | - a /2p') with p'(z) = p 

(23.7b) A r ( ( a , p ) ) = A r ( a a ) , 

where it should be observed that p'(z) does not depend on the choice of w and z'. 

23.2. We now fix a weight k as in Section 16, and make the convention that 
Qn = Gn and Vn'r = P n ' r if k is integral. We put [k] = k if k is integral, and 
[fc] = (fcv — l /2) v G a otherwise; we also put m = k and £ = [k] in Case SP, and 
m = (kvp + kv)veEi and £ = (fc„ - kvp)ve& in Case UT. Clearly 

(23.8) J f cK,^)=j f c(7r r(0,PrW)A r(OW|A r(Ol f c- [ f c l ^ f € ^ r . 

For 0 < r < n and a congruence subgroup J1 of Qn we put 

(23.9) Mr
k(r, P n ' r ) 

= { / G ^ | / | U 7 r r ( 7 ) = A r ( 7 ) £ |A r ( 7 ) | -V forevery T ^ n r } , 
(23.9a) S£(r, P n ' r ) == A<£(r, Vn'r) H <S[. 

These spaces are { 0 } unless the following condition is satisfied: 

(23.10) There is a homomorphism ip of irr(mVn,r) into T such that (p(nr(7)) = 
Ar(7)£|Ar(7)|-* for every 7 G m r » r . 

Clearly <̂ 2 = 1 in Case SP. As will be shown in the proof of Lemma 23.13 below, </? 
is of finite order also in Case UT. Under (23.10), S£(r , P n ' r ) consists of all f e S£ 
such that f\\ke = y>(c)/ for every e G 7 r r ( r n P n ' r ) . For / G <S£(r, P n ' r ) , * € Wn, 
and 5 G C we put 

(23.11) «(z, s; / ) = f{pr(z))[8{z)/8{pr{z))Y*-™/\ 

where <5(z) = (det ((i/2)(z* —2))J v € a ; we understand that 5(po(^)) = 1- We note 
that 

(23.12) S(z, s; f)\\k0 = «(z, *; /|U7rr(/3))Ar(/?)-<|Ar(/?)|<-2sa if /? 6 P " ' r , 
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and slso that a~e\a\e = a~k\a\m for every a G Kx if k G Z b . 
We now define an Eisenstein series E^r(z, s; / , JT) by 

(23.13) En
k<T{z, s; f, T) = £ 6(z, s; / ) | | f e 7 , A = (rn P " ' r ) \ r . 

The sum is formally well-defined, since / G <S£(-T, Vn'r). It is convergent for 
Re(2s) > n + r + 1 in Case SP and Re(s) > n + r in Case UT (see [S97, Proposition 
A3.7 and §A3.9]). For f c f w e can easily verify that 

(23.i3a) [ rnP: rn?K' r (v ; / , r )= £ js£'r(z,*; /, niUa. 
aer'\r 

The series E^'T(z, s; f, r) can be denned even when r = 0 or n. If r = n, we 
have $£( r , P"-n) = S £ ( r ) and 

(23.14) ££•"(*, s; f, r) = / . 

If r = 0, we have <5(z, s; c) = c6(z)s&~m/2 for a constant c G C, and 

(23.15) <s°(r, P-°) = { C if ^W'l^WI'88^ forever^ 7ernP-0, 
1 { 0 } otherwise, 

where we understand that 7 = (pr(7), p7) if k ̂  [k] and p 7 = 1 if fc = [fc]. Thus 

(23.16) JB^°(Z, 5; c, r) = c£Va-m/2 | | f c7 , A = ( r n r ° ) \ r . 
We can now ask questions similar to (Rl, 2, 3) of §17.3 about the nature of 

E^r{z, 5; / , r) for some values of 5. The answer will given in Theorem 23.11. 

23.3. To define the adelized version of our Eisenstein series, we take a set of 
data (fc, b, c, e, x) a s i n §§16.5 and 19.1; we assume conditions (16.24a, b, c). We 
denote the subgroup D[y, rj] of G\ by Dn[r., rj] and similarly C of (19.1) by C n . For 
simplicity let us put Dn = Dn[b~\ be], D% = D%\b~l, be], and 

(23.17a) C n ' r = { x e ^ n | a i ( x ) - l - < r e , a2(x) -< re, ftjfr) ^ t b ^ e } , 

(23.17b) Co , r = ^ H C n ' r . 

It can easily be verified that Cn,r is indeed a subgroup of G\ and that 7i>(Pn'r D 

G Z>n, we see that ad* — 1 -< re, and hence the first C n ' r ) c C r . If x = c d 
two conditions on a\ and a2 can be replaced by d\(x) — 1 -< re and d3(x) -< re. 

For every g G G£ we have 

(23.18) G^PJTfflWb-Sbkr1. 
We already noted this in (16.22) when g = 1 and r = 0, but the equality with 
g = 1 is true for an arbitrary r by virtue of [S97, Propositions 6.13, 7.2, and 7.12]. 
Then the case of more general g follows from that special case by an easy principle; 
see a remark at the end of [S97, Section 5], Now, taking g G P£,r, we define an 
t-ideal a9

r{x) for x G G\ and also an R-valued function er on G\ by 

(23.19) a£(x) = Ar(p)r if x G pgDn[b-\ b]g~l with p € P £ r , 
(23.20) er{x) = \\r{p)\r{p)P\F if xepD^[b~\b] with p e P £ r . 

These are well-defined, and depend on b. If r = 0 and g = 1, a£(x) coincides 
with ilb(x) of (16.23); also £0 coincides with e of (16.23). We have 
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(23.21a) sr(xh) = N(a1
r{x))~u, where u = 2/[K : F] , 

(23.21b) er(xa) = [6(z)/S(Pr(z))}-& if z = x(i). 

The first equality is obvious; the latter follows easily from (23.4). For x G M £ we 
put a£(x) = a^(pr(x)) and er{x) = £ r(pr(x)). 

In Case UT our treatment in this section is a special case of what was done 
in [S97, §§12.5-12.9]. This can be seen by taking (Gn , D[b, b"1] , C n ' r ; G r , G r ; 
P n ' r , ?rr, Ar) here to be (G^, G^, Z?^; G*\ £><"; P, TT, A0) there; define also ^ and 
^ there by £*(w) = X c ( d e t ( ^ ) ) _ 1 for w G G n ' r and f*(x) = Xc(det(dx)) _ 1 for 
x G G r . Case SP can be handled in the same manner as noted in [S97, §12.13]; a 
similar but a somewhat different treatment was given in [S95a]. 

Now we consider <S£(Gr, xo) as defined in §20.1 with xo given by Xo{°) ~ 
x(ap)_ :L . Taking an element f of <S£(Gr, Xo)> we define a function \x on G\ or 
on M£ according as A; is integral or half-integral as follows: ji{x) = 0 if pr(x) ^ 
pn,rcn,r. i f x = p w w i t h p r ^ € pn,r ^ p r ^ £ ^ n , ^ t h e n 

(23.22) ^ ) = x ( A r ( p ) ) " 1 X c ( d e t ( d u ; ) ) - 1 ^ ( i ) - 1 f ( 7 r r ( p ) ) . 

This is well-defined. Notice that bk = be if b G X a and |6V| = 1 for every v G a 
in Case UT. For half-integral k we have to establish 7rr(p) as an element of M£, 
which will be done in §23.8. We can easily verify that 

(23.23) fi{axw) = Xc{det{dw))~l^(i)"1 fi{x) if a G P n ' r and pr(w) G C£' r . 

Then we define a function EA{X, S; f, x> G n , r ) for s G C and x G G^ or x G M£ 
according as k is integral or half-integral by 
(23.24) EA(x,s) = EA(x,s;f,x,Cnn=^2^x)er(ax)-s, A = Pn<r\Gn. 

aEA 

This is well-defined. The domain of convergence for (23.24) is the same as that for 
(23.13), as explained in [S97, §12.11]. 

23.4. Fix an element g G G£ such that gv — 1 for every v\c. By [S97, Lemma 
9.8 (3)] or by strong approximation on Sp(n, F), we can find a finite subset {q} of 
P£'r such that G\ = |_J9 GntfGn 'r and 

(23.25) Q = 9 x diag[^, ip] with <p G GLn_ r(i if)h ) qv = 1 if v|c 
We can take # = 1, but for some technical reasons, we consider q with g of a more 
general type. For such a q we have 

(23.25a) P%rqCn>rq-1 = P%rCn'r. 

Indeed, if v\ c, then P^rC^r = P„n'rL>£ = G£, and hence P^rqvC^rq~l = G£. 
Since gv = 1 for v\c, we obtain (23.25a). 

Since EA(X, S) satisfies a formula of type (20.3a), the principle of [S97, (10.7.5)] 
defines a function Eq(z) = Eq(z, s; f, x> C) for z G Hn for each q by 

(23.26) EA(qy, s) = (Eq\\ky)(i) if pr(y) € GJ. 

The function EA is completely determined by the functions Eq. In Case SP, E\ 
determines EA. 

Next, for each fixed q we consider a complete set of representatives 1Zq for 
Pn'r\[Gn n PYqCn'rq~1]. By [S97, Lemma 9.6(3, 4) and Lemma 9.8(1)] we can 
find a finite subset {C} of P£ ' r such that GnnCqCn'rq~1 ^<6,GnnP^rqCn'rq-1 = 
U c (Gn D Pn'rC,qCn'rq-1), and each C is of the form 
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(23.27) ( - e x diag[s, s] with s G GLn-r(K)h and e G Br, (v = 1 if v\c, 

where Br is any fixed subset of G^ satisfying (20.5) with r in place of n. We 
can and do take Br = {1} in Case SP. Then we can take 7Zq to be a subset of 
U c (Gn H (qC^q-1). With K as in (16.24a), we put 

(23.28) 6{z, a; / , K) = f{pr(z))[S(z)/6{pr(z))}s-^-^/2. 

If & = 0, this is the same as (23.11). 

23.5. Proposition. Suppose e = c; let q and g be as in (23.25); suppose q = I 
in Case SP. Then we have 

^,W = Xh(Ar(«)-1) 1^(9)1^ 
• J2 ^(o?(a))U 8x a(Ar(a))x ' (Ar(a)o«(a)- 1) t f (z ,S ; / e 9 ,K) | | f ca, 

aenq 

where u is as in (23.21a), feg is the eg-component of f in the sense of (20.3b), 
and e is the element of G£ in (23.27) for ( such that a G C)qCn'Tq~l. 

In Case UT this is included in [S97, Proposition 12.10] as a special case. The 
proof there can easily be translated into the symplectic case. However, there is one 
nontrivial technical point in the case of half-integral &, which will be explained in 
§23.8. 

23.6. Proposition. Let X be the set of all Hecke characters of K satisfying 
(16.24a, b) with K — 0. Suppose e = c and X ^ 0 ; put F' = {a G Gn n 
D[b~1c, be] | aa — 1 -< c }. Let f G <S£(r", Pn>r) with a congruence subgroup F of 
Gn containing r'. Take Br as in §23.4 with 1 as one °f ^s rnembers, and take 
f G <S£(Cr) so that f «-» (fb)beBr with f1=fandfb = 0forl^be Br. Then 

[^nr:P'rnr]#WP(M;/,r) = J £ £i(z, *; f, x, cnnU, 
xtx $er'\r 

where £q(- • •) denotes Eq{z) of (23.26) with q = 1. 
Here if k is half-integral, we identify r' with its image in Qn under the map 

7 i—> (7, h7), which is meaningful, since F' C Fe by (16.24c). 
The proof in Case UT was given in [S97, Proposition 20.10]. The symplectic 

case can be proven in a similar and simpler way; in fact it is an easy modification 
of the proof of Lemma 17.2 (2). We insert here an easy fact: 

23.7. Lemma. Let P' = f | r = o p n , r ' Then PADn = PAD71. 

P R O O F . Clearly it is sufficient to prove that P£ C P'ADn. Let a G P£. By [S97, 
Proposition 3.5] we can find an element g of Yly^GL^iy) such that (c?a^_1)h 
is upper triangular. Put 7 = diag[#, g\. Then 7 G Dn and (0:7"l)h. £ ^h> fr°m 

which we obtain the desired fact. 

23.8. The symbol 7rr(p) in (23.22) is meaningful as an element of Mr
A, since 

there exists a homomorphism 7rr : pr~1(P£' r) —> MA with the following properties: 

(23.29a) pr o 7rr = 7rr o pr. 

(23.29b) If £ G p r - ^ A r) and 7rr(£) G OTr, then £ G 9JT and jk{£, z) = Xr{0[k] 

•\K(0\k-[k]Jk{*r(0,Pr(z)). 
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(23.29c) The restrictions of irr and Xr to Vn'r coincide with the maps of (23. 
7a, h). 

(23.29d) ir where £r denotes the canonical lift Gr -» M£. 

For the proof, see [S95a, Lemmas 3.4 and 3.5]. 

Now as to the proof of Proposition 23.5 for half-integral fc, we take y G pr_ 1(G£) 
and put z = y(i). Then Ei(z) = J2aeA Kay)e(ay)~sJy(i)' Since fx(ay) ^ 0 only if 
a G GnnP2;rCn'r, we can take a in Hi. Then a G CCn ' r with some £ as in (23.27). 
Clearly C G P£'° fl P£ ' r . Now we can put aapr(y) = xx' with x G P£>° D P^r and 
x' G G2 such that x'(i) = i. This is well-known, and proved in [S97, p.54, lines 8~9]. 
Then C,x G P £ ' ° n P £ ' r . Put a = rP{£x) with rP of (16.15) and w = a'1 ay. Then 
pr(u>) G CQ'T and pr(7rr(<r))h = 7rr(pr(<j))h = 7rr(£) = 1, and hence 7rr(<j) G 9JT. 
By (16.16c) and (23.29b) we have j*(z)j*(i) = j*y(i) = j*w(i) = j*(i)j*(i) = 
jfc(7rr((7), i)Ar(cr)[fcl|Ar(cr)|fc~^j^(i). Once this is established, we can repeat what 
was done in [S97, p.98] to obtain the formula of Proposition 23.5 

23.9. Theorem. The notation being the same as in §23.3, suppose that e = c 
and n > r > 0. Assuming that f\T(a) = A(a)f for every a, define Z(s, f, x) by 
(20.21) or (21.7). Put 

Fq(z,8\t,x>C)=Eq{z,3\f,x>C) 
[(n+r)/2] 

J[ Lc(As-2i, x2) 

[(n+r+l)/2] 

Z{us, f, x) ' { Yl L^As ~ 2i + *' A2) 
i=r+l 

n+?—1 
J] Lc(2S-i,Xi^) 

V i=2r 

^T.K (S) = I I fr(S ~Xr + ( m « + »«r;)/2)7(a + (*Kv/2), m„) 

wz£/& 7(5, a) defined in both cases as follows: 
Case SP: 

(Case SP, fc G Z a ) , 

(CaseSP, A;£Z a ) , 

(CaseUT), 

7(5, a) 

rls+--
2a + n + r )4+v) (• €Z, a > ^ € Z 

^ ( ^ ( a - r ) ^ ) 

Ao+l-r I 5 +" 
[(n+r)/2] 

n (̂2 
i=a-f 1 

(aG Z, a > ( n - h r ) / 2 ^ Z), 

s — i) la GZ,-<a<-^-

^n(«+(a-r)/2) 

r[s+ a-1 

A a + l - r l 5 + 

2 a + n + r - 2 ri [ 5+ 

( a g Z, a > (n + r ) / 2 e Z ) , 
a—r\ l ,„ n+r ,„ , 

a ^ Z , a > — - £ Z , 

a—r 
[(n+r-l)/2] n 

i=[a] + l 

r ( - 2 5 - i - - , _ r n-fr 
a ^ Z , - < a < - ^ -

Case UT: 7(5, a) = on+ r(s, a ) r2(s - r + (a/2)). 
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Here t = [K : F] , u = 2/t, m = k in Case SP, m = (kv + kvp)ve8i in Case UT; 
K = ( r - f l ) / 2 m Case SP and Ar = r m Case £/T; 0 and xi a r e ^ e same as 
in (20.20); g n + r ( s , a) is defined as in Theorem 20.14 (with n-h r in place of t). 
Then the product r£^(s)!Fq(z, s; f, \-> C) car* be continued to the whole s-plane as 
a meromorphic function with finitely many poles, which are all simple. The set of 
poles of this product is contained in the set of poles of the function V(s) defined as 
follows: in Case SP, V is the product of Theorem 16.11 defined with {n-\-r, k, x} 
as {n, fc, x} there; in Case UT, V is the product given in [S97, Theorem 19.3] 
defined with {n -f r, m, x} as {̂ > k, x} there. 

The proof will be completed in §25.6. Notice that kv > n/2 in Case SP and 
mv > n in Case UT for every v G a by (6.42). 

In the above theorem we assumed r > 0. If r = 0 and f is constant 1, then we 
easily see that the function of (23.24) is exactly that of (16.27), and the conclusion 
of Theorem 23.9 is reduced to Theorem 16.11 in Case SP and to [S97, Theorem 
19.3] in Case UT, if we simply take Z(us, f, x) to be 1 and r = 0 in the definition 
of various objects. 

23.10. Corollary. The function E^r{z, s; / , T) of (23.13) can be continued 
as a meromorphic function of s to the whole complex plane. In particular, it is 
holomorphic for Re(4s) >Max(n -f r -f 2, 3r -f 2) if Maxv6a2|fcv| >n + r in Case 
SP, and for Re(2s) > Max(n + r, 3r) if Mmvea\kv + kvp\ >n + r in Case UT. 

P R O O F . Let X and r' be as in Proposition 23.6. Given JP, we can take c 
(employed in the definition of Ff) so that F' C F; changing c for its suitable 
multiple, we may also assume that X ^ 0 , by virtue of [S97, Lemma 11.14 (3)]. 
By Lemma 20.12 (2), <S£(Cr) is spanned by eigenforms. Therefore the desired 
meromorphic continuation follows from Proposition 23.6 and Theorem 23.9. To 
obtain E(z, s; f, x> C) fr°m -̂ "(z* 55 f> X> C) whose analytic properties are given 
in Theorem 23.9, we have to divide the latter by Z{us, f, x) and some //-functions. 
Employing Theorem 20.13 and the standard fact on the nonvanishing of L-functions, 
we obtain the last assertion. 

For 0 < r G Z and a weight k we put 

r { x e R | x > 2 } (CaseSP: r = l; k = [k] or Maxv€a*t; >3/2) , 

(23.30) A(r, k)=< {x eR\x> (3r/2) + 1 } (Case SP: all other cases), 

[ { x e R | x > 3 r } (Case UT). 

23.11. Theorem. Suppose that n > r > 0; put A = (n + r + l ) /2 in Case 
SP and A = n -f r in Case UT. Let k be a weight; put m = k in Case SP and 
m = (kv + kvp)V£Si in Case UT. Let f and x be as above with n = 0 in (16.24a); 
let g G Sl(r, Vn'r) with an arbitrary congruence subgroup r of Gn. In Case UT 
let xi denote the restriction of \ t° F/im Define Eq as in §23.4; define also Tq 

as in Theorem 23.9 when f is a Hecke eigenform. Let /z € 2 - 1 Z in Case SP and 
\i eZ in Case UT. 

(I) If A < fi < mv and \x — mv e 2Z for every v G a, and fi G A(r, fc), then 
E^,r(z, JJL/2; g, T) and Eq(z, /x/2; f, x> C) belong to Ml except when F = Q and 
li = (n + r + 2)/2 in Case SP, where 

( (n + r){m - \i + 2)/2 if \i = A + 1 and F = Q, 
j (n-f r)(ra —/ia)/2 otherwise. 
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(II) If \x is as in (I), then Eq(z, ///2; f, x, C) belongs to Af^ with t = (n + 
r)(m — /ia)/2 except in the following two cases: 

(A) Case SP, F = Q, 2// G { n + r + 2, n + r + 3}, and x2 = 1, 
(B) Case UT, F = Q, /i = n + r + 1, and \i = #M-

(If /J,= A+l, then the statement of (I) is applicable regardless of the nature of x>) 
(III) Suppose that 2A - mv < fi < mv and |/i - A| + A - mv G 2Z for every 

v G a. Then .F9(2, /i/2; f, x> C) belongs to A/]*, where 

f ( n + r)(fc - ju + 2)/2 (Case SP, /x = A + 1, F = Q, and x2 = 1), 
t = } (n + r){m - \x + 2)/2 (Case UT, // = A + 1 , F = Q, and xi = ^ ) , 

[ (n + r){ra — |/x — A|a — Aa}/2 otherwise, 
except in the following four cases: 

(C) Case SP, \x — 0, c = g, and x = 1; 
(D) Case SP, 0 < \i < (n + r) /2, c = g, and x2 = 1; 
(E) Case SP, fi = (n + r + 2)/2, F = Q, and x2 = 1; 
(F) Case UT, 0 < /z < n + r, c = 5, and xi = ^ -

23.12. Theorem. Let n, r, A, f, x> fl^d Xi ^e a<5 in Theorem 23.11 and let k 
be a weight. Suppose k = //a in Case SP and (kv + kvp)vea = //a m Case f/T with 
\x such that 0 < /i < A; put Sy = A — (/i/2). T/ien ^ ( 2 , s; f, x> C) ^ a s a^ raost 
a simple pole at SQ, which occurs only when x2 — 1 in Case SP and xi = ^ in 
Case UT. Moreover, the residue is an element of M.k> 

These two theorems will be proven in §25.7. We can naturally ask whether the 
nearly holomorphic functions of Theorem 23.11 are arithmetic up to a well-defined 
constant. That is indeed so in most cases as will be shown in Theorems 27.16 and 
28.9. We end this section by proving three lemmas concerning the rationality of 
certain automorphic forms and Hecke eigenvalues. 

23.13. Lemma. Put <S£(F, Vn'r, D) = Sr
k{r, P n ' r ) H Mr

k(D) for any subfield 
D of C. Let $ be the Galois closure of K over Q in C. Then <S£(F, P n ' r ) = 
<S£(F, Vn'r", D) <g>£> C if D D $Qab- In particular, suppose k = KSL with K, G 2 _ 1 Z 
in Case SP and K G Z in Case UT. Then <S£(F, P n ' r ) = <S£(F, P n ' r , D) ®D C t/ 
J5 3 Qab irc Case 5P and D D -fcT'Qab in Case UT, where Kf is the reflex field 
defined for (K, r) of §3.5 as in §1.12. 

P R O O F . The notation being as in (23.10), let e = 7rr(7) with 7 G Ff l 'P n ' r ; then 
Xr(j) G r x and \<p(e)\ = 1. Since ip(s)2 = KilYKi^) , we see that ip(e)2 is a 
unit contained in $, and |<^(£)2c7| = 1 for every isomorphic embedding a of ^ into 
C. Therefore </?(£) is a root of unity whose square belongs to 3>. Thus ip is of finite 
order. Suppose D D <2>Qab; let A = 7r r (FnP n ' r ) and / G S£(F, P n ' r ) . By Theorem 
10.8 (2), we can put / = YlaeA a9a w ^ n a fin^e subset A of C and ga G S£(D). 
We may assume that A is linearly independent over D. Then for 5 G A we have 
EaGA a^(^)^a = <p{e)f = f\\e = EaGA a3a\\e. Since < (̂e) G Qab and ga\\e G 5^(2?) 
by Theorem 9.13 (3), we have (f(s)ga = ga\\e, that is, ga G <S^(F, P n ' r , D). This 
proves the first assertion. Suppose k = KB. with « given as above. Let D' = Qab 
in Case SP and D' = i^ ;Q a b in Case UT. Given / G <S£(F, P n ' r , Q), take a finite 
Galois extension E of Df so that / is F-rational and put G = G&l(E/D'). Take 
7 and e as above. Then for a G G we have <p{e)fa = ((p(e)f)a = (/He)"7 = 
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fa\\e by Lemma 10.10, and hence fa G Sr
k{T, P n ' r , E). Therefore Y,aeG{bf)a G 

S^{r, Vnj\ Dl) for every b G E. This shows that / is an ^-linear combination 
of elements of <S£(-T, Vn'r', D'). This combined with the first assertion proves the 
second assertion. 

23.14. Lemma. Let f £Mk{C, ip) as in §20.1 with ip of finite order, and let 
ae Aut(C); put /J,(T, q; f) = | det(g)h|A^c(r) #> 0» wftene v — 0 or 1/2 according as 
k is integral or half-integral. Then there exists an element ofMk* (C, V^)* which we 
write fa and which is uniquely determined by the property /X(T, g; fa) = /i(r, g; f ) a 

for every (r, g), w/iere /ca zs defined as in Theorem 10.4 (5) °r Theorem 10.7 (5). 
Moreover, if the conditions of Lemma 20.8 are satisfied and f|T(a) = A(a)f as in 
§20.6 or §21.3, then f a |T(a) = Aa(a)fa, where Aa(a) = \{a)a (N (a)u)a / N{a)u. 

P R O O F . Let fp be the p-component of f with p = diag[g,§], q G GLn(K)h- By 
Theorem 10.4 (2), Theorem 10.7 (2), and the remark after the proof of Theorem 
10.4, we have (fp)a GMk°{TP, ipa), where rP = Gf]pCp~1 and we take p = l if k£ 
Z b . (Take W of Theorem 10.4 to be pCp~l. Then T there is r*\) We first consider 
the case of integral k. By [S97, Lemma 8.8 (3)] there is a finite subset Q of GLn(X)h 
such that GA — LL<EQ Gdiag[g, g|G; in Case SP strong approximation allows us to 
take Q = {1}. Given f, we define fa G .Mfc*(C, i/;0") so that its p-component is 
{fp)a for every p = diag[g,g] with q G Q. Our task is to show that c(r, q; fa) = 
c(r, q\ f)a for every (r, q). Since .A4fc is spanned by .Mfc(Q), it is sufficient to prove 
the case where fp G Alfc(Q) for every such p. Given r G GLn(K)h, we can find 
/3 € G and p = diag[#, $] with q e Q so that diag[r, f] G /3pC. Then we have 
(20.9e). Take s G Z£ so that [s, Q] = a on Qab, and put x = diag[ln, s _ 1 l n ] 
and a = / 3 _ 1 . Since de t (x _ 1 axa _ 1 ) = 1, by strong approximation in G\ we have 
x"1axa~1 eUNG\ with [/^ of (8.5) for any N. Thus we can put x~lax = ue with 
EGGia and U£UN- Then IXGGA- Take iV so that both / p and / p | | a belong to 
Mk(rN, Q) with TN of (7.6). Then (/p | |a)" = (/„)<«*•"> ^ d ( /p)" = (/„)<*"'ff> 
by Theorem 10.2 (8). Thus (fp\\aY = (/p)<QX'a) = ( /P ) ( x U £ ' a ) = (/p)a | |e. Put 
7 = e~l. Since x G x - 1 = C and x commutes with p and diag[r, f], we have 
diag[r, f] G x~l/3xpC = ju~1pC. Now we can choose sufficiently large iV so that 
UN Pi G A C pCp~l. Then diag[r, f] G 7pG, so that we can write formula (20.9e) 
with (f7, ^ a , 7) as (f, ^ , /?). Applying cr to (20.9e), we obtain ( /p) a | |7 _ 1 on the 
left-hand side. Comparing the two equalities, we find that c(r, q; fa) = c(r, q; f ) a , 
since u G UN and so we have ipc(det(a^alp)) = 1 for a sufficiently large N. 

Next let us consider the case of half-integral k. We define fa e Mk{C, ipa) so 
that its 1-component is (fi)a. Given r G GLn(X)h, take (3 G G so that diag[r, f] G 
/?C, and take a, e, and 7 as above. Then both /3 and 7 belong to 9Jt, and so h$ 
and /i7 are meaningful. Put 6{z) = 6(0, z\ £) with the notation of (A2.23), where 
we take £ to be the characteristic function of rLeh(fln)v- Then 6~l f\ G A[k]{Q), 
and the above reasoning shows that ((0_1/i)ll[fc]/?~~1)<T = (^~1/i)cr||[/c«7]7_1- By 
Proposition A2.5, hp{(3-1z)0(p-lz) = 9(0, z\ H), and by Theorem A2.4 (6), (8) and 
(A2.3a) we have {/3£){y)=e£{yr), where e - |det(r) |^ / 2 . The same holds with 7 in 
place of /?, so that [e'lh0{0-1z)0{0'lz)Y = 9(0, z; e~x-H)° = 6{0, z- e~x >H) = 
e~1h1{/y~1z)6(,y~1z), since e _ 1 • @£ is Q-valued. Therefore we obtain 

[e-ljK
g{p-'z)h{(3-'z)]a = e - ! j f ( 7 - ^ ) ^ ( 7 - ^ ) . 

Employing (20.9e), we obtain [e~1c(r, r; f)]CT = e~lc(r, r; P ) as expected. 
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To prove the assertion concerning A(a), substitute N(aY[a] for [a] in (20.18), 
and apply a to the coefficients of the formal Dirichlet series; see Lemma 20.5 and 
Theorem 21.4 for the explicit forms of A(r, L). Comparing the coefficients of [a], 
we obtain the last equality of our proposition. 

23.15. Lemma. The notation and assumption being the same as in Lemma 
23.14, suppose that f\T(a) = A(a)f for every a. Let W be the field generated 
by the A(a) over Q for all a prime to c. Then W is totally real or a CM-field, 
and the latter can occur only in Case UT. 

P R O O F . Denote complex conjugation in C by p. If T(a) = J2T CrC and rv = 1 
for every v|c, then we easily see that T(ap) = YLTCT~1C. Therefore from [S97, 
Proposition 11.7] and [S95b, Lemma 4.5] we can easily derive that \{a)p = A(ap) 
if a is prime to c. In Case SP this means that A(a) is real, and hence, by Lemma 
23.14, ACT(a) is real for every a € Aut(C). Since (JV(a)")0" = ±N(a)», we see 
that A(a)a is real for every <7, so that W is totally real. In Case UT, we have 
X(a)ap = Xa{a)p = Xa{ap) = X{ap)a = X{a)pa, so that op = pa on W. Thus W is 
totally real or a CM-field in Case UT. 

24. Pullback of Eisenstein series 

We fix two integers r and n as in §23.1 and put t = n — r and N = n + r. 
Taking (n, r, N) in place of (r, n- r,n) in (23.5), for (/?, 7) G Gn x Gr we can 
define /3 x 7 as an element of GN and view Gn x Gr as a subgroup of GN. 

We have GN = U^= 0 PNru{Gn x Gr) with rv given by 24.1. Lemma. 

(24.1) TY, = 'IN 0 ' 
1N_ , u = ' 0 

> 
9v 
0 , 9v = 0 

Ol 
0_ e f f . 

Moreover PNrl/{Gn x Gr) = U ? , / j , 7 P N T„{{£ , X \2n-2V)$ x 7) , where Z runs over 
Gu, 0 over Pn'u\Gn, and 7 over Pr'l'\Gr. Furthermore, ( ^ ^ ( 7 ) ^ x 12„_2^) x 

7 € ry P ru for every 7 € P r , I / , where K„ = 1„ 
0 

PROOF. This is essentially included in [S97, Propositions 2.4 and 2.7, and Lem
ma 2.6]. Indeed, put tp = rjr, 

(24.2) 

(24.3) 

U) = 

T = 

ip 0 ' 
0 -<p_ , ^ = 

r 0 ir 0" 
i t 0 0 

[o 0 In . 
? 

0 0 
0 7?r 

It 0 

T 

= 

fit 
0 
0 

. 0 

- I t 
0 
0 

0 
l-2r 
0 

- 1 2 

, R = dia 

0 0 n 
0 -A 
It 0 

r 0 A* J 

*-m 
0 
In 

l r 
0 

A = 0 r l r 

Denote the group U((p) of (1.7) by G^ = G(ip) in conformity with the notation of 
[S97]. We have Gn = G(r)n), for example. Then r]r = A* — A and SrjNS* = to, and 
so S-lG"S = GN ; ^ =tTrjnT, and so G^ =T~lGnT', also i? • diag[a, ^ i ? " 1 = 
a x /? for a e Gn and /? G Gr'. Now in [S97, Proposition 2.4] we showed that 
P%\GUJ/[G4) x G?̂ ] for a certain parabolic subgroup P# of Gu has exactly r + 
1 orbits, say Xv for 0 < v < r, and gave an explicit set of representatives for 
P%\XV. Observing that P% = SPNS~l (cf. [S97, (21.1.8)]) and employing the 
above isomorphisms among the groups involved, we see that PN\GN/[Gn x Gr] 
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has exactly r + 1 orbits. To find good representatives, for x G G put [cx dx] = 
[a b o! b'\ with a, a' G K^ and 6, b' G if^. Clearly the rank of [a a'] depends 
only on PNx{GnxGr). Since this rank is n+v if x — TV, we obtain the first asserion 
of our proposition. Then the second and third assertions can easily be verified by 
translating (or by modifying) the proof of [S97, Lemma 2.6 and Proposition 2.7]. 
For a more direct proof in Case SP, see [S95a, pp.556-557]. 

We now consider Cr and G n ' r of §23.3. We put Dn = Dn[b " \ be] as we did 
there; hereafter we assume that e = c. We define a subgroup C of Dn and an 
element a of G^ by 
(24.4) Cf = {xeDn\ d3{x) -« re } , 

f diag[ln, 0~llr, l n , Ovlr]Tr 
Gv ~ i - 1 

[diag[ln , 6v
llr, l n , 0vlr] 

where 9 is an element of F£ such that 6g = b. To see that C is indeed a subgroup, 
take the homomorphism x i—• ( ( d ^ ) , of Dn into f l .c GLn(rv / r vc v) noted in 
(1.18). Then C' is the inverse image of the subgroup of the latter group defined by 
the vanishing of the lower left (t x r)-block. Notice also that C can be defined by 
the condition a2(x) -< re instead of d3{x) -< re. 

24.2. Lemma. (1) P ^ r C n ' r = P£rC'. 
(2) Let q be any fixed element of G7^ as in (23.25). Then 

(24.5) 
if v\c, 

if v\c, 

{PNrr(G" x Cr))nPZDNv = U P N r r ( ( f x l2t)P x l 2 r ) , 

where 1Zq is the subset of [Jc Gn n (C^C71'^"1) of §23.4, andS = GrPiX with X of 
(19.2c) defined with e = c and r in place of n there; we take 1Zq = { 1} if r = n. 

P R O O F . TO prove (1), by mens of the map x »-> exe~l with e — diag[ln, 01n], 
we may assume that b = g. Given x G C", put ?/ = 7rr(x). Then we easily see that 
Wry* — T]r = z — z* with a matrix z -< re. Fix a prime v\c, assume K ^ F, and 
put f = e — ep with e such that rv = gv[e]. Then (z — z*)v G fcvSv with 5V of 
(16.1c). Then successive approximation produces an element kv of Gr

v fi GL2r(*v) 
such that / c " 1 ^ — 1 -< r^c^, as proved in [S97, Lemma 17.2 (2)]. (Take (<5, ip) there 
to be ( / , f~lr]r) here.) Let p = (pv) with pv = kv x 12* for v|c and pv = 1 for 
all other v's. Then p G P^r and p _ 1 x G Gn ' r , and hence x G P£ ' r G n ' r , which 
proves (1) in Case UT, since Cn,r C C". Case SP, in which / is unnecessary, can 
be proved in a similar and simpler way. 

Next, to prove (2), we first assume q = 1. Let a = (£ x l2t)/? with f G G r and 
/? G Pn'r\Gn. By Lemma 24.1, PNrr{Gn x G r) is a disjoint union of PNrr{a x l2 r) 
with such a's. Thus our task is to determine PNrr{a x l 2 r) contained in P^DNa. 
Put u) = a(a x h r ) ^ " 1 . Since G f = P ^ D ^ for v\t, and (TVO-1), , G P * for v|c, 
we only have to find those a such that UJ G P^DN. Clearly tuv = (a x l2r)v for 
v{c. Fix a prime v\c and write a in the form (23.1). Then 

(24.6) U!v 

ai a2 

0 3 O-A 
0 0 

Cl C2 

C3 C4 

0(d - 1) 0a2 

-eh 
-9b3 

1 
0 ( 1 - d x ) 

-0d 3 
-92bx 

61 
63 
0 

di 
d3 
6»6i 

62 
64 
0 
d2 
d4 

062 

0 
0 
0 
0 
0 
1 
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By Lemma 1.9, u G P^DN if and only if (dw)v G GLN(KV) and ( d j 1 ^ ) ^ -< (tbc)t, 
for every v\c, which is so only if da G GLn{Kv) and d~lca -< (tbc)v for every v\c, 
as can easily be seen from (24.6). Then a G P^Dn C P£'r£>n by Lemmas 1.9 and 
23.7, and /? G P%rDn, since £ x 1 G P n ' r . Thus we may restrict p to G n nP£ ' r £> n . 
As explained in §23.4, we may assume that {3 = £w with w G .Dn and £ as in 
(23.27). If r = n, we can take /? = 1, and so can take C, = w — 1. Assuming 
n > r, we have £ x 1 G P££>n since (£ x l)£w = a G P££>n, C« = ! for vlc> 
and P ^ 1 ^ ^ G£ only if t/|c. Consequently d̂  G GLr(Kv) and d^T1^ -< (tbc)v for 
every v\c by Lemma 1.9. Write (w in the form (23.1) and put pi = a(£w)i, q% = 
b(Cw)i, Ti = c(Cw)i, Si = d((w)i; put e = djlc$. Then 

[ca da] = diag[d^, l2t][r/ s'] with r ' = r + diag[e, Q]p and 5'= 5 + diag[e, 0]g. 

Compute Cu and d^ with these ca and dQ. Fix v\c. Recall that £v = 1 for such 
a v. Since e^ -< (tbc)v, qv -< (tb~1)v and 5V G C?Lr(tv), we see that s'v G GLr(xv). 
Focusing our attention on the upper right (n x r)-block of (d~lCuj)v we see that 

(*) ,/-! 
- ^ 3 

-< (rbc)v. 

Thus {s3)v -< («)„, and hence w G C", so that /? G CC" C P ^ C " = P ^ ' r C n ' r by 
(1). This means that changing w suitably, we may now assume that w G Cn,r. 
From (24.6) we easily see that a(w x l)cr -1 G DN, and hence cr((£ x 1)£ x l)cr_1 G 
P£DN which is true also when n = r, since £ = iu = 1. Thus, for j3 G CCn ' r we 
have a((f x 1)/? x l ) * " 1 G P ^ D N if and only if [<r((f x 1) x l ) ^ " 1 ^ G P f £>^ 
for every v|c, in which case we can repeat the above computation of d~lcu with 
w = 1. Then in (*) we have s'v — 1, and hence d^ — 1 -< rvcv and c% -< (tbc)v. 
From (24.6) we see that the lower right (r x r)-block of d~lcu is —02b^d^1, and 
so &£ -< (xb~1c)v. Thus ( e l Conversely suppose £ e Gr Pi X and v|c. Then 
& x 1 G C^' r , and so [<r((f x 1) x l ) ^ - 1 ] ^ G £>^. This proves (2) when q = 1. For 
a more general g, we can repeat our argument with (3 G £qCn,rq~1 since qv = 1 
for every v|c. This completes our proof. 

24.3 . Lemma. Define i\b on GL2n+2r(^0A by (1.19) (or (16.23)) by taking 
N as both m and n there. Let a = r r((£ x l2t)P x W ) with £ G S and 
ft G CqCn,rq~1, where q = g x diag[y?, ip] and £ = e x diag[?, 5] as in (23.25) 

and (23.27); let x = a(q x ehs)a~1 with e = L n and h £ G^ such that 

hv = 1 /or eve?!/ u|c. T/ien t/b(^_1CeSf) ^s prime to c and 

(24.7) ilb(x) = 6>~r de t ( / i )de t (5^)z / b( / i - 1^)" 1 , 
(24.8) [det(dx)"1l9-rAr(/3)]i; = 1 (mod c r , ) for every v|c, 

where i/f, is defined by (19.5) and Xr is defined by (23.3). 

PROOF. Put p = Qqwq~l with weCn'r, ti = ehe, and / = r r( .($xl)CgxA /)a"1 . 
Then a: = fcr(w x l)cr_1 and a(w x l)^""1 G J D N as seen in the proof of Lemma 
24.2. Therefore ilb(x) = ilb(/)- If v\c, then (V1 qv, hv, ev, and gv are all identity 
matrices (of various sizes), and so fv = [Trcr_1<7((^ x 1) x l)cr_1] . Now ^ x l G 
C n , r since £v G CT. Therefore ilb(/% = ih(rra~1)v = 0~rxv, since 

(24.9) {Tr<j-l)v = diag[ln, ^ l r , l n , fl"1!^ if v|c. 
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Also i/b(€v) = *v, since £v e Cr. Thus ub(h £eg) is prime to c. Suppose v\t. 

Then, putting £eg = 

show that 

a b 
c d 

and h! V 
d' , by a direct calculation we can 

lcf df]v 

c 0 6af d 0 6-lb' 
0 0 0 0 s(f 0 
a 0 0cf b 0 6-ld' 

Clearly ilb(/)^ = det(s(p)vilb(z)v with a matrix z G GL±r{Kv) such that 
' a 0c' 6 <9-1d/" 

c 6>a' d 6~lbf 

o - r 

d2 

Put p = he, 7 = h x£e#, and .A = diag 

Pvl\cz dz]vAv 

l r 

J v 

- l l 

01 r 

0 d 7 

6b^ 0 

0 

0 
IT 1 ! , 

l r Then 

Since A G £>2r[b~\ b], by Lemma 1.11 (2) we obtain \\b(z)v = det{h)v0-rv{){i)-1 

with 7' = ~" U C'-y Ci-y 

06̂  . In view of (19.5) we easily see that ^o(77)v — vb{l)v 

Combining all these, we obtain (24.7). 
Next, let v|c; then xv = (^(j"1^)^ with u = a((f x 1)/J x l ) a _ 1 . By (24.9), 

diag[ln, 0v l r](dx) i ; = (do;),;, and {du)v can be obtained from (24.6) by taking a 
there to be (£ x 1)/? here. Since (3V = wv £ C™'r and £v G C£, we see that 

I" l r V\ 0 "I 
( d w ) v = 0 d 4 ( /3) v 0 ( m o d t v c „ ) 

[.2/2 2/3 l r j 
with matrices yi with entries in xv. Now the right-hand side belongs to GLN{XV). 
Therefore, taking the determinant, we obtain (24.8). 

If r = n, we can take /? = 1 and £ = 1. In this case formula (24.7) takes a 
simpler form: 
(24.10) ilb(a(tf x ehe)a-1)) = e~n det(h)iyb(h-l^g)-\ 

24.4. Lemma. Le£w, u/ G Wr and z eHn; let £ e Gr and (3 G Gn; /urtfier /e* 
TV, fre defined by (24-1). Then we have the following formulas: 

(24.11a) J(TU, diag[z, w]) = det [X - pu{w)pu{z)], 

(24.11b) j ( r r , diag[z, w\) = det [ l r - w • p r(z)] = Jiv^1, w) d e t fa"1™ + PrO*)]* 
(24.12) j ( r r ( ( £ x 12<)/? x l 2 r ) , diag[z, w}) 

= J(3{z)Jdpr{Pz))j{r]-\ w)det fa:1™ + £pr(/3z)]. 

P R O O F . The first two formulas can be verified by a straightforward calculation. 
Now, ptting y = pr(/3z), we have p r((f x l)/3z) = £y and 

j ( r r ( (£ x l2£)/3 x l 2 r ) , diag[z, w]) 

= j ( r r , diag[(£ x l)/3z, w])j((£ x l2t)/? x 1, diag[z, w]) 
= det[l - w • {€y))jsxi(0z)j/3(z) = detfa"1™ + £y]j{r)-\ w)j^{y)j/3{z). 

by (23.4) and (24.11b). This proves (24.12). 

We now define functions 6(w) and 5(u/, w) for u;, K/ G Hr by 
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(24.13) S(w) = 6(w, w), 8{w', w) = (det [(i/2)(w* - w')v])vea (€ C a ) . 

The symbol 6{w) is consistent with 6 of (16.36). By [S97, (6.6.9) and (7.14.7)], 

(24.14) 6(-yw', 7w)mj*(w)j*(w') = 6(w', w)m for every 7 G G r , 

if k and m are as in §23.2, since j * = j™ TlvesLdet(a)Z VP -

24.5. Lemma. Let h G Ra and s = (s<,)v<=a G Ca; suppose that hv > 0, Re(sv) 
> 0, and Re(sv) + {hv/2) > 2\r — 1 /or every v G a, u^ere Ar = (r + l ) /2 m Case 
SP and \ r = r m Case f/T. TTien /or every holomorphic function f on Hr such 
that 6(w)h/2f(w) is bounded, we have 

ch{s)6{w')-sf{™') = I 6(wf, w)~h\8(w', w)\-2s6(w)h+sf{w)dw 
Jnr 

with ch(s) = 2a7TbY[r^(sv + K - \r)K{sv + hv)-\ 

where dw = Ylve&dwv
 w^1 ^Wv defined as in Lemma 3.4, a = r(r + 3)[F : Q]/2 

m Case SP, a = 2r2[F : Q] in Case UT, b = r\r[F : Q] in both cases, and r^ is 
defined by (16.47) with 1 = [K : F}. 

This is a restatement of [S97, Propositions A2.9 and A2.ll]. The expression for 
the exponent a can be given uniformly a = r ( l + Xr)[F : Q] in both cases, if we 
take the measure on Hr in Case UT to be det(y)~2rdxdy described in §5.12. 

24.6. We now consider EA of (16.27) with the present GN as G there. We 
assume k to be integral; we shall make comments in the case of half-integral k 
in §25.6. Recall that E& is determined by the set of data { k, b, c, x } satisfying 
(16.24a, b, c). We put m — k in Case SP and m = (kvp -f kv)ve8i in Case UT 
as we did in the previous sections. We are interested in EA.(xq\cr~~l, s) with the 
elements a and q\ of G^ given by (24.5) and q\ — q x she as in Lemma 24.3. To 
be explicit, we have 

(24.15) EA{xqi(j-\ s) = J2 M(«xgia-1)e(axgio--1)- s , A = PN\GN. 
aeA 

The function \i is given by (16.26a, b) with PN and DN as P and D there. For 
some practical reasons, we hereafter use the letter a instead of h; thus 

(24.15a) q\ — q x eae, a G G^, av = 1 for every v\c. 

Now, from Ex(xqicr~l, 5) we obtain a function Hq,a{i, s) of (3, s) G W^ x C 
by the standard principle, that is, Hq,a(y(i), s) = EA{qia~ly^ s)jy(\) for every 
y G Ga

v. Suppressing the variable s, we write the function simply Hq,a{i). Then 
putting 3 = s/(i), we have #<,,<*(3) = EaeAP<*(3) with 

Pa (3) = M(agio-1y)£(agia-1y)- s j^( i) . 

From (16.23a) and (16.26b) we easily see that 

(24.16) pQ(3) = / i ( a h g 1 o - 1 ) £ ( a h g 1 o - 1 ) - ^ ( 3 ) s a - ( m - ^ / 2 | | f c a , 

where £(3) = (det ((z/2)(a* -3)t,))„G a- By Lemma 24.1, PN\GN can be given as 
lX=o A, with A, = PN\PNrv{Gn x G r) . Put 

(24.17) £,(3) = ^ p a ( 3 ) , £„(*, ti;) - £„(diag[z, ti;]) (z eHn,w€ Hr). 
a€A„ 
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We have then HqM = XX=o^- The functions Hq,a and £v involve s, but for the 
moment we suppress it. Prom (24.16) we easily see that 

(24.18) pQ | |a ' = paa> for every a' G GN n D' 

with a suitable open subgroup Df of DN independent of a. Take a congruence 
subgroup r of Gr such that 12„ x T C D'. Then, from (24.17) and (24.18) we 
obtain 

(24.19) £„||(l2n x 7) = £v for every 7 G T. 

Our next task is to obtain an explicit form of £r(z, w). Given y G G£ and 
a G Ari we have fi{ayqia~1) -=f=- 0 if and only if ayq\a~x G P^DN. Since (<ji)v = 
1 for every v|c and P^Z?* = Gv for 1; f c, we have P£DNaq±l = P£DNa. 
Therefore by Lemma 24.2 (2) we can replace Ar by the set of elements a of the 
form a = r r((£ x l)/3 x l) with f G S and /? G ft^; we have /? G CqC^q'1 where 
C and g are as in (23.25) and (23.27). Changing the notation, we use the letter 
b instead of g in (23.25); thus q = b x diag[<p, </?] with b G G^, &u = 1 for every 
v\c. Put x = ayqi(j~l with such an a and y G G^ as above. Since x G P^DN, 
we can put x = pw with p G P ^ a n d w £ DN. Then we have dx = dpd^ and 
det(dp)r = ilb(x), and so by (24.7) and (24.8), 

Xh(det(dp))~ Xc(det(dw))" = (xh/Xc)(det(dp))~ Xc(det(dx))~ 

= X* ("b (a-^eb)) (xh/Xc) (#~r det(a) de t ( ^ ) ) _ 1
Xc (#r Ar (/3)"1) 

= X h ( 0 - r d e t ( a ) d e t ( p ) ) ~ y ^ ^ ^ 

24.7. To simplify our notation, we put rj = rjrj p = p r , and 

(24.20a) s = sa - (ra - i«)/2 (G C a ) , 

(24.20b) vi(0 = Ma~1&t>), Nl(£) = N(v1(t)) ( f € S ) , 

where iV(y) denotes the absolute norm of an r-ideal £. These are temporary and 
will be discarded soon. It should be remembered that v\ depends on b, a, 6, and 
e, among which a, b, and b can be fixed, but e depends on (3. Now, by (16.23a) 
and (24.7), 

e(<*h<7iO = s(xh) = 7V( i l b (x)p = W1(£)«|0-r det(S ^) |£ , 

where u = 2/[if : P]. (Notice that |det(a) |K = 1, since det(a) det(a)p = 1.) 
Since det(s)t = a?(/3), the last factor of the equality at the end of §24.6 can be 
written x*(Ar(/?)a?(/?)-1). Combining all these formulas with (16.26b) and (24.16), 
we obtain 

(24.21) pa(i) = X h ( e - M e t ( a ) d e t ( ^ ) ) " > - M e t ( ^ ) | ^ 

•X*(^i(0)iV1(0-"siV(a?(/3))usx[/?]((5s ||fca)(3), 

where X[/?]=Xa(Ar(/?))X*(Ar(/3)a?(/3)-1). Put 

(24.22a) M(w',w)=6(w)m+sdet{w'-w*)-m\det{w'-w*)[-2s (w, w'<EHr), 

(24.22b) A(s) = x(6 '_ rdet(a)det(^))~1 |6 ' - rdet(¥)) |^u s . 

Now («5s | |fca)(3)=^(3)-1 | iQ(3)|-2s6(3)s. By (24.12) and (24.13) we obtain 
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{S*\\ka)(dmg\z, w]) =jl(p(/3z)y1 | j ? (p( /3z))p 2 s ( W I U ^ 1 ) 

• det [tptfz) + r,-'w]-m |det [tp(J3z) + ri^w] \~2s ( W I M -

Transforming our functions by 77, we put 

(24.23) T{z, w) = H,,a(diag[2, r)w])j*(w)-\ Fv(z, w) = £„(z, 1 7 ^ ( t i ; ) " 1 . 

Change w for —w*; then from the above calculations we obtain 

(24.24) 6{w)mrr(z, -w*) = A(s) £ ] T x*( i / i (0)M(0~ U 8J€ ( P O 9 * ) ) " ' 
/3€TC,£e.~ 

• | j e(p( /3z)) | - 2 s x[/3] iV(a?(^)) u s M(^(^), w){6(zr\\P). 

We note here an easy fact: If / G Sl(r) and 7 G i"", then the expression 
M K t i / . ^ K ) - 1 ! ^ ^ ' ) ! - 2 * / ^ ) 

is invariant under (w, £) 1—> (71/;, 7^) for every 7 G T. This follows immediately 
from (24.14). 

24.8. We take B as in (20.5) with r in place of n, which we denoted by B r 

in §23.4; we assume that cv = 1 for every c e B and every v|c; we take B = {1} 
in Case SP; also, in Case UT we take each c in the form c = diag[d, d] with 
d G GLr{K)h (see [S97, Lemma 9.8 (3)].) We put rc = Gr D cCrc~l for each 
c G B. Let f G <S£(Cr). For each c e B define fc as in (20.3b). For every function 
ip on Hr we define a function ^~ = ^ on H r by ^(w) = ip(—w*). Notice that 
ip G <S£p(rc) if i> G S£(-Tc). This is easy in Case SP; we need (5.34) in Case UT. 

We now assume that n > r, and consider 

(24.25) / T{z, w)J^w)8{w)mdw (D = r0\Hr) 

with a congruence subgroup To of Gr contained in ra, where ipa — (/a)~ and dw 
is as in Lemma 24.5. This can be written Y^=o If with 

(24.26) I„= [ Tu{z, w)^J^8{w)rndw. 

By (24.19), these integrals are (at least formally) meaningful for a suitable choice of 
Jo. As explained in [S97, §22.12], integrals of this type converge locally uniformly 
on Hn x { s G C I Re(s) > a0 } for some cr0 G R. We shall also show in §24.10 that 
Iv = 0 for 0 < v < r. 

To compute J r , we first note 

IT = / Fr{z, -w*)fa(w)8(w)mdw. 

Now * î(£) and iVi(f) depend only on r a £ , and so, in view of the remark at the end 
of §24.7, each term of (24.24) times / a(w) is invariant under (w, £) i-> (yw, 7^) 
for every 7 G ra. Let ,Ra be a complete set of representatives for ra\E, and let 
T\z, —w*) denote the function such that 8{w)rnT,{z, —w*) is the right-hand side 
of (24.24) with J2&R* i n P l a c e o f E^e s • T h e n 

TT{z, -w*)6(w)mfa(w) = Yl F(*> - ( 7^ )* ) (^ m / a ) (7^ ) , 
7 E r a 

so that 
Ir = li[ T\z, -w*)6(w)mfa(w)dw, 
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where /z = [ra : r0][Jo H t x : 1], For c € G£ put 

(24.27) fa\%i = £ X*h(a" 1 ^) ) iV( i , b (a - 1 ec) ) - u Va|Ue. 

Then / a |T^ 6 = £ € € f l a X * M 0 ) ^ i ( 0 ~ u s / a | U £ . By Lemma 24.5, termwise inte
gration yields 

. ( / a | | 0 (p (^ ) )6 (p (^ ) )~^[ /3 ]N(a? ( /3 ) ) U 5 5 s | | ^ 

= Hcm(s)A(s) ^ ( /a |%)(p( /3z))x[ /?]^(<( /3)) u s ( (5 / ( (5op)) s | | ^ 

= MCm(s)^(s)^x[/?]iV«(/?))US(5(z, *; / f l | % , «)||/? 

with cm of Lemma 24.5 and <5(- • -) of (23.28). Put 

(24.28) f | x T = ^ ( f | C r C ) x * ( ^ ( r ) ) 7 V ( ^ ( r ) ) ^ s (C = CT). 
rec\x/c 

This is obtained from (20.11) by substituting \*c(iyb(r))N'(i/(,(r)) u s for [i/(,(r)]. 
Let f | xT <-• Cft)6€B. By Lemma 20.10 we have f'eb = Y.aeB fa&eb-

Define E(x, s; f |XT, x, C n , r ) by (23.24) with f |xT in place of f; associate a 
function Eq to this by (23.26) for q as in (23.25), and denote it by Eq(z, s; f |XT). 
Combining the above calculation with Proposition 23.5, we obtain a fundamental 
formula 
(24.29) /zcm(s)x(0)rAT(bt)-™sEq(z, s; f|xT) 

= Y]xh(de t ( a ) ) / Jq,a{z, -w*; s)fa(w)6(w)mdw, 

where Jq,a(z, w\ s) = Hq,a (diag[z, r)w\)j§(w)~l. (We can take / x to be the same 
for all a £ B, since [ra : Jo] does not depend on a; see [S97, Lemma 8.15].) Now, 
our termwise integration can be justified for sufficiently large Re(s), because of the 
validity of Lemma 24.5 for such an s and of the convergence of (24.25) and the 
series expressing Eq in (23.26). Assuming that f is an eigenform, multiply both 
sides of (24.29) by A?+ r(s, x). Then we obtain 

(24.29a) iiCm(s)x(0)rN(bt)-rusfq(z, s; f, *, C) 

= V x h ( d e t ( a ) ) f A^r(s, X)Jg.«(z, -ti;*; a)fa{w)S{w)mdw. 

24.9. So far we have assumed that n > r in the above treatment, but everything 
is meaningful even if n = r. Suppose n = r; then the sum Yip m §24.8 consists of 
a single term for (3 = 1; p(z) = z for z G Hn = Hr, q = b, ( = 1, e = 1, and so 
we have J r = /icm(s).4(s)/a|T{J. Then (24.29) can be written 

(24.30) Vcm(sM0)nN(bv)-nusf'b{z, s) 

= X!*h(det(a)) / Jb-°(Z' " ^ S)/a(^)^)m^> 
where f'b(z, s) is the 6-component of f|xT. In particular, if f is an eigenfunction 
as in §20.6, we have f'b{z, s) = T(us, f, x)fb(z)-
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24.10. Let us now prove that Iv = 0 for 0 < v < r. Fixing v, take a complete 
set of representatives 1ln (resp. IT) for Pn^\Gn (resp. Pr'u\Gr), and put 
PU?,7 = Pa for a = r„((£ x l2n-2v)P x 7) with CGG", / ? € G n , and 7 € G r . By 
Lemma 24.1, ^i/ = ^ G G u S/3e7en ^2jeizr Pt,P,-y ^ e t ^ be a congruence subgroup 
of Gr such that l 2 n x P C D' with £>' as in (24.18). Take a finite subset T of Gr so 
that G r = U T € T - P r , l / ^ (see [S97, Lemma 9.8]). Then we can take Kr = | J r E T ftr 

with TlT = ( P ^ n T P T - ^ T P . Put </r = £ ^ G „ E/?e^n PW,r| |(l x r " 1 ) . If 
e 6 TT, then 1 x r"1 ^ G £>', and so p ^ , T | | ( l x T " 1 ^ ) = p ^ , ^ by (24.18). Thus 
£v = S r e T J2eenT ^ l l ( l x e ) . Now, given 7 G P ^ T I T / V " 1 , put a; = ^7T I /(7)""1K; I / 

with /c„ of Lemma 24.1. Then by that lemma we have 

?v((£ x \2n-2v)P x r){l2n x r - ^ r ) G PNT„((U>€ X l2n-2i/)/? x r ) , 

and hence p^/^IKl x T~1^T) = Pu,£,/?,r, since p a depends only on PNa. This 
shows that 0 r | | ( l x 7) = gr for such a 7. Next, put 

(24.31) p°(*, w) = p(diag[*, to]) (2 eHn, we Hr) 

for a function p on HN\ let P be the unipotent radical of Pr»l/ and let £ G P a . 
Since p„(£tt;) = pi/(^) for every w £ Hr and j ^ = 1, from (24.11a) we see that 
[ « 1 l M l 2 n x C)(/? x 7))]° = [Ss\\r„(P x 7 ) ] ° . Now, for a = rua' with a' = 
(£x l2n-2t/)/?xr we have pQ | | (l x r " 1 ) = c<>5s|| (T„Q/(1 X T " 1 ) ) with a constant ca, 
andhence [pQ | | ( lxr- 1) ( lxC)]° = ^[^11(^(1x0^ (lxr'1))]0 = ca[£ s | | ( ^ ' ( I x 
r _ 1 ) ) ] ° = [PalK1 x r _ 1 ) ] ° - T h u s b r | | ( l x 0 ] ° = (flr)° for every ( G P a . Put 
p(u>) = (gT)°(z, w) with fixed r and 2;. We have shown that g\\j = g for every 
7 G P ^ D r P r - 1 and g\\( = g for every C € P a . Therefore, by [S97, Lemma A3.8], 
(V>> X^erc #lle) = 0 for every if) G «S£ if r > 1/. Consequently (^(tu), £^(2, w)) = 
0 for every such ip, at least for sufficiently large Re(5). Tranforming Ev by 77, we 
obtain i^ = 0. 

24.11. Lemma. Let k be an integral or a half-integral weight, and & a subfield 
of C containing the Galois closure of K over Q. In order to emphasize the dimen
sionality, denote byN£*(&) (resp. A/^'P(P, &)) the setM%(&) (resp. A/£(P, 9)) of 
§14-11 defined with respect to Gn. If f G jV^ + r ' p (^) , then f°{z, w) can be written as 
a finite sum f°(z, w) = Y?a=i 9a{z)ha(w) with ga G N^,p(&) and ha G Nl*{&). 
In particular, if p = 0, the conclusion holds for every subfield & of C containing 
the field $k of Theorem 104 (5) or Theorem 10.7 (5). 

P R O O F . Take congruence subgroups P l of Gl for i = n, r, and n + r so that 
rn x rr c P n + r and / G A/£ + r ' p (P n + r , # ) . We can take each P* to be a principal 
congruence subgroup of some level such that A/^'P(P2) = A/^'P(P\ )P) ®# C as in 
Proposition 14.13 (1). Let { M U i b e a ^ " b a s i s of A/£ ,p(P r, # ) . We easily see that 
f°(z, w) as a function of z (resp. w) belongs to A/;n 'p(Pn) (resp. JV£'p(Pr)). (If fc 
is half-integral, Proposition A2.12 is essential.) Therefore for each fixed z we have 
f°(z, w) = X]a=i^a(^)^a(^) with complex numbers ga(z) uniquely determined 
by z and a. Since f]w { x G C* | X^a=ixa^a(^) } = {0}, we can find t points 
u>i, . . . , wt of Hr such that det (^a(^6)) 6==1 ¥" 0- Solving the linear equations 

/° (z , ^b) = E L i P a W h a ( w 6 ) , we find that pa G A/^'p. Let a G Aut(C/l?); then 
fa = f and (ha)a ~ ha. Comparing the Fourier coefficients of / with those 
of ga and /ia , and applying a to them, we can easily verify that / ° (z , w) = 
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Y?a=i(9a)a{z)ha{w), and hence (ga)a = ga, that is, ga G N£'P(\P). This proves our 
lemma in the general case. In the case p = 0, we have Mk{rr) = Mk {Tr', $&) (g)̂ fc 

C by Theorem 10.4 (5) or Theorem 10.7 (5), and hence the above argument is valid 
if $k C &. 

25. Proof of Theorems in Sections 20 and 23 

25.1. Our computation of Section 24 is sufficient for the proof of Theorem 23.9 
and a special case of Theorem 20.14. To prove the most general case of the latter 
theorem, we have to introduce certain differential operators. They are necessary 
only in the case n = r, and so we speak of G2n instead of GN. Returning to the 
setting of Section 12, we take T and SP(T) as in §13.13 and also A as in (14.4), all 
with 2n instead of n there. Thus Tv = C%% in Case UT and Tv = { z G C%% \*z = 
z } in Case SP; & = GL2 n(C)b . We shall simply write r for the representation rp 

of §§13.13 and 14.4. 
Given a representation {a;, X} of £, an irreducible subspace Z of SP(T) as in 

§13.13, and C.E.Z, w e define differential operators B^ and CQ on H2n by 

(25.1) B C / = (jDf/XC), Ccf = (Ezf)(() 

for / G C°°(W2n, X), where Z)f and £ z are defined in (13.22) and §14.4. Then 

(25.2a) ( £ c / ) | | „ a = B^ 1( / | | u ;a) with ^(u) = ({\*(})u • '/Xafo)). 
(25.2b) ( C c / ) | | w a = C ^ ( / | | w a ) with i/>2{u) = C(%(3)~ V a C * ) " 1 ) , 

where u e T and 3 is the variable on 7Y2n. Indeed, put A = Aa(a), /J, = /j,a(%), g = 
D%f, and define ^1 as above for a given ( G Z. Then, by (12.21) and (12.24a), or 
rather by their generalizations mentioned in §13.13, we have 

B^ (f\\u a) = [D5V\\U a)] fa) = w(A, ^{g o a ) ( r ( % ' / i ) " 1 ^ ) 
= (<7l|wa)(C)=ff(0La=(5c/)La, 

which gives (25.2a). The other formula can be proved in the same way. 
Let us now consider the case UJ(X) = det(x)fc with k G Z b and Z = ® v G a Z v , 

where Z^ is the irreducible subspace of Snev(Tv) whose highest weight vector is 
detn(u)€v for u € Tv with 0 < ev G Z (see Theorem 12.7). We assume ev < 1 in 
Case SP. For u G C2,™ we denote by ut the lower left (n x n)-block of z. We then 
define an elements ip of Sne(T) by 

(25.3) y>(u) = JJ d e t ( ( u ^ ) e " (u G T). 
uEa 

Then cp G Z. This is clear in Case UT, since we can find an element (a, b) e & such 
that the upper right (n x n)-block of taub is U£. In Case SP, the inclusion <p E Z, 
which holds only under the assumption that ev < 1, can be seen as follows. 

Clearly it is sufficient to consider a single v, and so we drop the subscript v, 
Using the symbols ax, bx, cx, and dx for x G C2^, we have (txux)e = tbxauax-\-Y 
for (x, x) G £ and u eT with a matrix y that does not involve u u . Thus ip^xux) 
as a function of u is of degree < 1 in u\\. Let W be the irreducible subspace of 
Sn{Tv) contained in the r(^)-span of <p. A highest weight vector of W can be given 
in the form Y\v(^e^v{u)Cu with [cu) such that n = ^uvcu. Since this must be of 
degree < 1 in u u , we see that W = Z, which proves that (p G Z in Case SP. 
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25.2. Given k G Z b , /?, 7 e Gn, and a function g on Hn x Wn, we define a 
function g\\k{0 x 7) on Wn x Wn by 

(25.4) (g\\k{0 x 7))(z , w) = ^ ( z ) - 1 ^ ^ ) - 1 ^ ^ 7^) (*, w € Hn). 

Fixing A;, let us hereafter write Be and Ce for B^ and C^ with </? as above. 
Employing the symbol p° of (24.31) with r = n, for /?, 7 G G n we have 

(25.5a) [Se(/|U(/3 x 7))]° = det(y)e(Befy\\k+e((3 x 7), 

(25.5b) [Ce(f\\k(/3 x 7))]° = det(7)-e(Ce/)°| | f c_e(/? x 7), 

where we consider e as an element of Z b via the natural injection of Z a into Z b . 
To prove these, take UJ{X) = det(x)fc and £ = </? in (25.2a). For a = /? x 7 
and 3 = diag[z, w] we have (Aa(3)tt • tl^a{}))e = \<y(w)u£ • ^ ^ ( z ) , and hence ^1 = 
j*p(w)jp(z)<p, which gives (25.5a). Formula (25.5b) follows from (25.2b) in a similar 
way. Ce can be denned in both cases, but actually it is unnecessary in Case SP. 

Now take two elements e and e! of Z a such that ev > 0, e'v > 0, and evev = 0 
for every v G a. Put De,e' = BeCe>. Then from (25.5a, b) we obtain immediately 

(25.6) [Z?e.e'(/IU(/J x 7))] 0 = det(7) e- e ,(Z) e ,e ' /)0 |U+ e-e '( /3 x 7). 

25.3. Lemma, Let rn be as in Lemma 24-1 with N = 2n and let s = (sv)veSi G 
C a ; let m = k in Case SP and m = (kv + kVp)vea in Case UT. Then 

[De,ei6*\\kTn)]° = V(s)(6s+e'\\hTn)° 

with #(s) - J J tpv(-mv - sv) J[ 22n<"ipv(-sv), 
ev>0 ef

v>0 

where h — k^e — e' in Case SP, h = (kvp, kv-\- ev — e^)u€b in Case UT, and ipv 

is the polynomial tpz of Theorem 12.13 for Z with detn(x)ev or detn(x)e*> as its 
highest weight vector. 

P R O O F . Take (rn , ip) as (a, Q in Lemma 13.9. Focusing our attention on 
one v G a, we drop the subscript v. For 3 = diag[z, w] we have AQ(3) = 

1 'ti 
z 1 

Therefore 
> ^ ( 3 ) = 

1 w 
z 1 and Ma(3)" 

- wz 0 
0 1 — zw 

1 —it; 
-z 1 

[C(3)'1Aa(3)* ' Va t e ) " 1 ] , = ~i' *(1 - ^ ) ~ 1 , 

and hence ^ r X ^ ) * • Vafe)"1) = H ) n e . ; ( r » , 3)" e by (24.11b). Similarly, for 
e 'v>0we have 

[%(3)Ma(3M3)], = (w- w*) • *(1 - tDz)-^(z) , 
and hence 

v(*Aa(3)Ma(3)»?(3)) = {4i)ne'6(z)e'6(w)e'W~iTe' = (4i)"e'(«5e'||_e, r„)°(z, «;). 

Therefore we obtain the desired result from the formulas of Lemma 13.9. 

25.4. To prove Theorem 20.14, we first consider Case UT. Given h and £ as in 
that theorem, put d = (dy)vea, dv = hv — hvp — £v, e = (ev)veBL, ev = Max(dv, 0), 
e ' — (Ou€a> ev = Max(-dv , 0), and k — h — d. We now consider EA of (24.15) 
on Gj? with this k. Changing c for its suitable multiple, we may assume, without 
changing Z(s, f, x)> that (16.24b) is satisfied. Notice that d = e—e' and kv — kvp = 
£v for every v G a, so that condition (16.24a) is consistent with the assumption 
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on x m Theorem 20.14. We now take Hb,a and Ev of §24.6 with n — r, and apply 
De,e> to them; recall that q = b if n = r. For v — n we obtain, from (24.21), 
Sn = A(s)Zze~X*{vi(0)Ni(0~us{6s\\k(Tn(Z x 1)))(3), and hence by (25.6) and 
Lemma 25.3, 

(£>Cfe<£n)°=^(*Ws)£^ 

Put 
Q{z, w) = (De,efHh,a)°{z, riw)tf(w)-\ Gu{z, w) = (De,e,£u)° [z, rjw^w)-1. 

Then 
8{wr'Qn{z, -w*) = ^ W s ) ^ x * ( ^ i ( 0 ) i V i ( 0 - u s ( < 5 s , | U 0 W M X ^ , - ^ * ) , 

where m' = (/^ + / i v p ) t ; e a , s' — s-he', and M' is defined by (24.22a) with m' and 
s' in place of m and s. 

Now (Z)e,€/£i,) = 0 if v < n and d^O. In view of (25.6) this follows from 

(25.7) [De,e' (6s\\k T„)]° = 0 if v < n and e + e' ^ 0. 
To prove this, take gv as in Lemma 24.1. Then for 3 = diag[z, w] we have 

A(T„, 3) I n P^ ' *W 
9u ' *Z I n 

V{TV, 3) = I n 9vW 
9vZ I n 

and we can easily verify that [£(3) 1A(r1/, 3)* • */i( r^ 3) x]£
 n a s r a n k < n. There

fore, taking (rUl <p) as (a, C) m Lemma 13.9, we find that (<Be(6s\\icrl/)) = 0 if 
e ^ O . Similarly [*A(7V, 3) • t/i(r l /, 3) ^(3)]^ has rank < n, and so we obtain, by 
the same lemma, (Ce'(<f>s||fcTv)) = 0 if e' ^ 0. This proves (25.7). 

Thus g = Gn if d ^ 0. Returning to the setting of §24.8, given f e «S£(C), we 
consider 

/ a(z, -w*)fa{w)6{w)m'dw (© = r0\wr) 
with the function / a associated with f as before. Repeating the calculations in 
§§24.8 and 24.9 with Q in place of T, we find that 

(25.8) / i c m / ( s / ) x W n ^ ( b r ) - ^ ^ ( s ) ^ ( z , s) 

= ] T X h ( d e t ( a ) ) / JJ | a(z, -u ; ' ; «)/a(ti;)fi(fi;)^dti; 

for sufficiently large Re(s), where J'ba(z, w\ s) = (De,e'Ht>,a) (z, r]w)j^{w)~l. If 
d = 0, (25.8) becomes (24.30), and so (25.8) is true for any d. 

In Case SP with integral h the matter is simpler. Given h and t as in Theorem 
20.14, put e = h — t and k = £ We have again [Be£u)° = 0 for 1/ < n if e 7̂  0, 
as the proof of (25.7) is valid in this case too. Then we have (25.8) with (/i, s) in 
place of (ra', s'). 

25.5. Let E% denote £ A of (16.27) defined with GN as G, and £^(3) denote, for 
t e G£ and 3 6 HN, the function defined by formula (17.23a), which is meaningful 
for integral A; in Cases SP and UT. In Case SP, if t € a~1D' with a sufficiently 
small open subgroup D' of G^[, then we easily see that E^ — E^\\a. Observe that 
Hq,a = E? with t = qla~l. 

Suppose that f is an eigenform; then f'h{z, s) = %{us, f, x)fb(z) a s noted at the 
end of §24.9, and Z{us, f, x) = A?n(s, x)X(us, f, x) by (20.23), and hence from 
(25.8) we obtain 
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(25.8a) fiCm'(s,)X(0)nN{bv)-nus^(s)Z{us) f, X)fb(z) 

= $ > h ( d e t ( a ) ) / A?"(*. xVU^ -™*\ s)fa(w)8(wr'dw 

Now, for the reason explained in [S97, §23.12], the integral of (25.8a) defines a 
meromorphic function on the whole s-plane. To make the result more precise, we 
first consider Case SP, and put Q(s) = Qln

K{s)K2
c
n with the symbols of Theorem 

16.11, taking 2n in place of n there. Now Q(s)Jf
h a is the pullback of Q(s)Z)e,e/£fn, 

and hence it is meromorphic on the whole s-plane with possible poles only in the 
finite set described in Theorem 16.11. Therefore we can say the same for Gln

K(s) 
times the left-hand side of (25.8a). This means that Ql^K(s)ch(s)^(s)Z(2s, f, x) 
can be continued to the whole s-plane with possible poles in the same set. Recall 
that s = (sv) = sdi—(k—iK)/2. Therefore our task is to show that Ch(s)&(s)Gl™K(s), 
with s replaced by s/2, produces the gamma factors as stated in Theorem 20.14. 

For that purpose, let us write g ~ g' for two meromorphic functions g and 
g' on C if both gjg' and g'/g are entire. Employing the explicit form of tyz in 
Theorem 12.13, we find that 

n - l 

#(s) - n r i ( s + ^ + i K » -6)/2)-
ev>0b=0 

Then by Lemma 24.5 we have 
(*) ch{s)9(s) ~ n rl (s + ev - \ n + (kv + iKv)/2)r\ (s + (kv + iKv)/2)'\ 

Take 7(s, a) as in Theorem 16.11 with 2n in place of n. If a > n, we easily see that 
7(s, a) times (*) gives the desired TV

M of Theorem 20.14. If (n - 2)/2 < a < n, 
we have 

7(*, a) = r j 0 + 1 ( S + a/2)r(2s -a-I) YFb=a+2 T(2s - b) 

~ r}a+1(s + a/2)r(s - (a + l ) / 2 ) r ( s - a/2) YTb=a+2 ^ s - b) 

~ ^«+2(* + */*)r(s - «/2) IK=a+2 m* - b). 
The last product times T^(s + a/2)~1 gives #n(s, a) of Theorem 20.14 for a < n. 
This completes the proof of Theorem 20.14 in Case SP. 

Case UT can be handled in the same manner. In fact the argument was given 
in [S97, §23.12]. Though the function J^a is different from that of [S97, (23.11.3)], 
the necessary r*"1 in Case UT in Theorem 20.14 is a special case of r^m of [S97, 
Theorem 20.5]. We have to take h and m in [S97, Theorem 20.5] to be (hv+hvp)vea 

and d with the present d and h\ also 1̂ , /x, n, rv there are — {hvp)ve8i, £, 2n, n 
here; fc of [S97, §23.10] is m' here. Then ch{sf)&{s) of [S97, (23.11.3)] coincides 
with cm/(s/)l^r(s) of (25.8a). In this sense no new proof is necessary in Case UT. 

25.6. We next prove Theorem 23.9. Take integral k in Case SP. Using the 
notation of Theorem 16.11, multiply both sides of (24.29a) by ££^ r (s) and observe 
that £ j^ r ( s )A? + r ( s , x)Jg,a is the pullback of V{s)\\a with V of Theorem 16.11 and 
some a E G. Then we find that Ck{s)Q^r(s)Jr

q(z1 s; f, x> C) can be continued to 
the whole s-plane as a meromorphic function whose poles are contained in the set 
described in Theorem 16.11 (with n + r in place of n). Employing the explicit 
forms of Cfc(s) and (7£^r(s), we obtain Theorem 23.9 for integral fc in Case SP. 
Case UT can be treated in a similar way. In fact, Theorem 23.9 in Case UT is a 
special case of [S97, Theorem 20.7] which is proved in [S97, §23.13]. 
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We have assumed k to be integral in the above. If k is half-integral, we can still 
make all the arguments in Sections 24 and 25 valid by modifying the formulas suit
ably, though the analogue of Lemma 24.4, as well as the analysis of pQ(3), becomes 
more complicated. We can eventually find the analogues of (24.29), (24.29a), and 
(25.8) for half-integral k, and obtain the desired results as stated in Theorems 21.4 
and 23.9. For details, the reader is referred to [S95b]; to be precise, the formulas 
for half-integral k corresponding to (24.29) and (25.8) are given in [S95b, (7.22) 
and (8.4)]. 

25.7. Let us now prove Theorems 23.11 and 23.12. Let the notation be as in 
those theorems. We first consider the case of integral k. Observe that the assertions 
of Theorems 17.7, 17.8, and 17.9 are applicable to E^ = Hq,a of §25.5 in an obvious 
sense, since E^ = Ei\\a as noted there. In Case UT, Theorem 17.12 is applicable. 
We now evaluate (24.29) and (24.29a) at s = /i/2. Applying Lemma 24.11 to 
{Hq,a)° and taking the transform of the result by 1 x 77, we find that 

(25 .9) JqAZ> W> / V 2 ) = 12i9ai(z)hai(w) 

with holomorphic or nearly holomorphic gai and /iai, according to the nature of 
(n, r, /i, F, x)- Moreover, suppose K = 0; let W = #Q ab in Case SP and W = 
i f x #Q a b in Case UT with the notation of Theorems 17.9 and 17.12; then 

(25.10) 7r~agai and hai are W-rational, where a = X^ea(m*> ~~ A0(n + r ) /2-

Suppose f is an eigenform and /iGA(r, fc); then f | x T=A^ r ( s , x)~l^{us-> f> x)-
By Theorems 20.13 and 22.13, Z(us, f, x) ^ 0 at s = /i/2 if /x G A(r, fc); A?r(s, x) 
is finite at s — /i/2. Also, from the formula for cm(s) in Lemma 24.5 we can easily 
derive that 

(25.11) cm(s) G TT^M^QIQX a t s = M/2 if n = 0, 

and cm(s) ^ 0 at s = /i/2 for any K. Therefore from (24.29) we obtain 

(25.12) Eq(z, /x/2; f, X, C) = Ea , t ( K v fa ) 9ai(z), 
where h'ai is a constant multiple of hai(—w*). Thus Eq(z, /i/2; f, x, C) belongs to 
M7^ or A/"^,p (of Lemma 24.11) with some p, according to the nature of (n, r, /i, F, 
x). The conclusion holds for an arbitrary f in view of Lemma 20.12 (3). The 
results concerning E^r(z, /i/2; g, r) follow from those for Eq(z, /i/2; f, x-> C) by 
Proposition 23.6. As for Tq(z, /x/2; • • • ) , we employ (24.29a) instead of (24.29). 
Since A^+ r (s , x)Jq,a is the pullback of D(z, /x/2; • • • )||a or Dt(z, /i/2; • • •), the 
same technique is applicable. In this way we obtain Theorems 23.11 and 23.12 
from the theorems of Section 17 mentioned above. Finally, the case of half-integral 
k can be handled in the same way, since the analogues of (24.29) and (24.29a) 
can be proved as explained at the end of §25.6; for details the reader is referred to 
[S95b]. 

We insert here a lemma which will be needed in Section 28. 

25.8. Lemma. The notation being as in Lemma 24-11, suppose that n = r and 
f G A/"fc

n,p(^). Then we have a finite sum expression (iri)n^e ~e\(De^f)° (z, w) — 
Y?a=i 9a(z)ha{w) with ga, ha G N%+e_el{&), where qv = pv + nev if ev > 0 and 
qv = Max(0, pv — ne'v) if ev = 0. 

P R O O F . Prom our definition of De.e> and Theorem 14.12 (4) we see that De.e>f 
is a nearly holomorphic function on H2n of degree q\ also, it has Fourier expansion 
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whose coefficients belong to (7ri)nle_e \&. We know that (De,e'f)°(z, w) has the 
automorphy property of an appropriate type. Therefore we obtain our assertion by 
the same type of argument as in the proof of Lemma 24.11. 

26. Near holomorphy of Eisenstein series in Case U B 

26.1. In [S97, Section 12] we defined certain Eisenstein series in Case UB similar 
to those of Section 23. The main purpose of this section is to prove analogues of 
Theorems 23.11 and 23.12 for such series. To define Eisenstein series, we have to use, 
as we did in [S97], certain unbounded forms of the symmetric spaces instead of the 
bounded domain 2$m,n of (3.7). Let us now recall some basic symbols introduced 
in [S97, Sections 6, 10, and 12] in the unitary case. We fix a CM-type (K, r), r = 
{ryj^a , as in §3.5 throughout this section. 

For <p = p* G GLn(K) we denote the group U(ip) of (1.7) by G^ in conformity 
with the notation of [S97]. We put V = K\, and speak of the structure (V, <p) and 
its localizations (Vv, ipv) for v G v. For v G a let rv be the dimension of maximal 
(^-isotropic subspaces of Vv, and put n = 2rv -f tv with 0 < tv G Z. Then ipv has 
signature (rv + tv, rv) or (rv, rv -f tv). We take and fix an element K of K such 
that 
(26.1) KP = — K and %Kv^pv has signature (rv + tv, rv) for every v G a. 

For each v G a we fix an element ov G GL n(C) , as we did in [S97, §10.3], so that 
0 0 -ilr, 

(26.2) Kv<Tv<pv(Tv = -UPV, <Pv 0 Oy 

0 

with 0 < 6V = 0* G GLtv(C). In this book we take crv from GLn(Q), which is 
certainly feasible; then 0V G GLtv(Q). This is necessary for our later investigation 
of arithmeticity problems. We then put 

(26.3) 

(26.4) 

where 0 < 
i = F of y 
(26.5) 

3(r, 

9 = 
' b y 

0, 

e 

IJLea 

ecr
r
+t 

•Uy 

xeC* 

= 3{rv, 0V), 

yeC^ i{x* -x)>y*6- ly], 
6 GLt{C). (See [S97, §6.14] if rv = 0.) We define the origin 

1 — 1 — \iujt;6a> If 0 e3Z-
In [S97, §§6.3 and 10.3] we defined the action of G£ on 3 ^ and also factors of 

automorphy «(a, z) and //(a, z) for a G G^ and z G 3 ^ . Strictly speaking, these 
are first defined for a G Y\yeaLU{(p'v)^ and then transferred to G^ via the map 
7 ^ (cTvlvVv^ve* for 7 € G£. 

In the present book (in conformity with what we did in Sections 3, 4, and 5) 
we write \(a, z) for K[OL, Z), and put fiv(a, z) = n{<jvav(j~l, zv), /xV/9(a, z) = 
X(avava^1, zv), and rvp = rv + tv for v G a; we then put /i(a, z) = (/L4v(a, 2 ) ) v e b -
This is an element of \\v^h GL r t ,(C). We also put j ( a , z) = ja(z) = (jv(a, z))veh 

with jv(a, z) = det (/x„(a, z)) and / ( a , z) = j£(z) = j a (^ ) f e for k G Z b . We 
then define the spaces of holomorphic automorphic forms Aik-> Mk(r), and also 
the space of cusp forms S*., Sk(r). (For the definition of a cusp form, see [S97, 
§10.5].) In order to emphasize <p, we denote these by J M ^ , <S^(JT), etc. 
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If (p is totally definite, we understand that 3^ consists of a sigle point, written 
also i = i^, and M% = S£ — C. For these and other conventions, see [S97, §§6.14, 
10.3, and 10.5]. 

Taking Kip to be T of Sections 3 through 5, we can let G^ act on H = 
r L e a ® ( r v + *v» rv)- Notice that by our choice of K, the signature (rv + tv, rv) is 
exactly (mv, nv) in those sections. See the following § for the map of H onto 3^ . 

26.2. Define £(z), 7/(z), and <5(z) for zG3(r, 0) as in [S97, (6.1.8) and (6.3.11)]. 
Then formulas (12.1a, b) are valid as shown in [S97, Section 6]; also, E can be de
fined by (12.4b). Since our exposition of Sections 12 and 13 is practically axiomatic, 
all the definitions and formulas there are valid for G^ and 3^ /once we have the 

x 
right definition of r(z). In fact, for z = 

(26.6) r{z) = -

y 
i\r 

le-ly 

G 3(r, 6) put 

Then r(z) = f(z)~ -zlr 

0 
moreover, formulas (13.6a, b, c, d), (13.7), and 

(13.8a, b, c) are all valid in the present case. (We take T — C^+ i in those for
mulas.) The verification is straightforward. Notice that the entries of 77-1, being 
entries of ir(z), belong to A/'1(3(^5 #)); the same is true for £ - 1 , as can be seen 
from [S97, (6.1.11)]; thus 

(26.7) The entries of £(z) _ 1 and r]{z)~l belong to X1 (3(r, 0)). 

Naturally, for z G 3 ^ we put r(z) = {rv{zv))v€A with rv denoting the function r 
on 3£ • Then we can speak of nearly holomorphic functions on 3^ , and can define 
N£ for d e Z a and a Q-rational representation of R = n ^ b ^ ^ ( C ) . 

In [S97, Lemma A2.3] we defined a holomorphic bijection t of 53 = 53(r + £,r) 
onto 3 = 3(r, 0). Prom the equality on line 8 from the bottom in [S97, p.216] 
we see that —2idz — tn(z)dt(z)fj/(z) for z G 53 with holomorphic functions K 
and /i on 53 with values in GLr+t(C) and GLr(C). Therefore —2i((Df) o t)(u) = 
£>(/ ° t)(*«(z)du/x(z)) for u G T = C^+t and / G Co c(3). Let r0 and <50 denote 
the functions on 53 corresponding to r and <5 on 3 as above. Take / = log 5. 
By [S97, (A2.3.2)] we have / o t = log<S0 - log|j(z)|2 -f c with a holomorphic 
function j on 53 and a constant c. Also, by (13.8b), (D\og6o)(u) = tr( fr0u) and 
(Z) log 5) (it) = tr(lru). Combining these, we find that 

(26.8) r(t(z)) - (i/2)K(z)rQ(z) • l^{z) is holomorphic in z G 53. 

We can naturally consider the map of H = ELea ®(r*> + *v> rv) °nto 3^ by taking 
the above i at each v G a. Denoting the map again by t, from (26.8) we easily 
see that / o t G Nd(H) if / G Afd(3^) with d G Z a . If / is an automorphic form 
on y , we have to multiply / o t by a certain factor in order to get an automorphic 
form on H, but since that factor is holomorphic on H, it does not change the degree 
of near holomorphy. 

26.3. Now we can introduce the notion of CM-point on 3^ in exactly the same 
fashion as on H. To be precise, we consider a CM-algebra Y such that [Y : K] = n, 
and take a i^-linear ring-inject ion h : Y —>• K„ such that h(ap) = (ph(aY<p~l for 
every a G Y. Then /i(F") is contained in G*, and has a unique common fixed point 
w on 3^ , which we call a CM-point on 3^- We can also define the symbols p{w) 



210 VI. ANALYTIC CONTINUATION AND NEAR HOLOMORPHY 

and ^Pfc(w) for fceZb (see (11.17a)). These can be obtained by transferring the 
corresponding objects on H to those on 3 ^ by the above map t, or equivalently, 
by repeating their definitions with the symbols of Section 11 replaced by the cor
responding ones on 3^- Then Mk(Q) and Mk(r, Q) are meaningful, and all the 
results of Section 11 are valid in the present case. Also, N*(Q) and N*(r, Q) can 
be defined in the same way as in §14.4, and all the results of Section 14 in Case UB 
can be translated to the present case. To emphasize </?, we shall often write M% 
and J\f$'d for Mk and Af*. We note a simple fact: 

(26.9) If jk(h(a), w)=a£ for every aeYu with eely, then ^k{w) = py(e, # ) . 

Here <£ and ly are as in §11.3. This follows immediately from (11.3a, b), (11.4a, 
b), and (11.17a). 

26.4. With (V, ip) as above, put (W, ip) = (V, <p) 0 {Hq, rjf
q) (see §1.1) with 

Hq = KL and rfq = 0 lq 

U 0 
. We are going to consider Eisenstein series on G^ 

relative to this decomposition of (W, ip). For our later purposes, however, it is more 
natural to start from an arbitrary (W, V0> and consider such a sum decomposition 
for various different (V, ip) as follows. Given (W, t/0, let l(ip) be the dimension of 
a maximal totally ^-isotropic subspace of W. We fix a decomposition (W, ip) = 
(Z, C) ® (^2/' Vi) w ^ n an anisotropic (, so that I = 1(I/J), take a standard basis 
{#i}?ii of Hi with respect to r)[, and put 
(26.10) (K, yv) 

,"0 0 1, 
= {Z, 0 ® ( YJi=\(K9l-r+i + Kg2l-r+i), Vr ) > ^r 0 

where 7̂ . is the restriction of r}[ to E [ = i ( ^ ^ - r + i + ^<72/-r+i)- Put p — dim(Z) = 
tv -f- 2sv for v £ a with s^ = /(C)- Taking (£, sv, t^) in place of (<£>, r„, tv) in 
(26.2), we choose AC, TV, 0<, SO that 

" 0 0 -ila 

(26.11) K ^ C ^ = - < , £ = I 0 0„ 
t l , 0 

Fixing an integer r such that 0 < r < I, take ipr as (p of §26.1; then rv = r -f s„. 
Put then 

0 0 -ilr , - 1 0 1 
ev = diag 11 (26.12) <£<; = 0 

llr 0 
0 
0 

rv+tv i U 0 

(26.13) fv = diag[lr, rv, «v
 x l r ] , crv = £v£v. 

Then we can easily verify that KV£V<PV€V = —^"> a n d £v<£>"e£ coincides with </?(, 
of (26.2), so that (26.2) holds with the present av. Thus we let G^ act on 3 ^ r as 
in §26.1 for 0 < r < /; Clearly (V0, <p0) = (Z, Q. 

^ 0 0 lm 

0 v? 0 
Jm 0 0 

3^ . Take m = l-r and ip = ipr\ then <# = <5<0<5* and SG^S'1 = G*1 with <5 
0 l / _ r ' " 

In [S97, §12.1] we put ip = , and defined the action of G^ on 

diag /+*> l r 0 
Let <T(, denote av of (26.13) defined with r = I. Then 

we can easily verify that al
v6 coincides with rv of [S97, (12.1.4)], and therefore the 
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action of al
v{8(38-l)v{al

v)-1 on y for /? G G^ is exactly that of /? defined in [S97, 
p.93, line 10]. Therefore we can put (W, ip) = (Vj, <#)> and identify G^ with G ^ . 
Then all what we did in [S97, Section 12] is applicable to the present situation. 

26.5. Throughout the rest of this section we fix an element k of Zh. Before 
considering Eisenstein series on G^, we prove a few basic facts on cusp forms. 
Fixing a positive integer q < /(^;), put (V, (p) = (Vr, ipr) with r = I — q and write 
a point iv of 3 ^ in the form 

Zy Uy2 
$v tUy\ Wy 

with zv e eg, uvl e C* , uv2 e C% , wv e C ^ 

Write then 3 = (z, u, w) with z = (zv)vegL, u = (uv)vesi, w = {wv)ve8i, where 
uv = [uv\ uV2]\ then w G 3^- In particular, for u = 0 we put 

(26.14) (z, 0, w) = diag[z, w] (z eH*,we 3*), 

though u^ is not necessarily square. 
Let / G A 4 t ( r ) . In [S97, (A4.4.1)] we obtained a Fourier expansion 

(26.15) / ( z , u, 11;) = £ c* (tx, w)e«(hz) (0 < 9 < Zty)) 
hGA 

with a Z-lattice A in Sq = { x G K% | x* = a;} and functions c£(u, iu). More pre
cisely, given w G y and u G (C£)a , the function / is defined for z(z* — z^) > pv 

with a positive definite hermitian matrix pv determined by uv and wv, and 
we have (26.15) there. Emphasizing the dependence on / , we put cq

h(u, w) = 
c^(w, w; / ) . (If TV = 0 for every v G a, then y consists of a single point, 
u = (^i)vea, and (26.15) takes the form / (z , it) = X^/IGA ch(u) e i (^ z)*) 

26.6. Proposition. The notation being as above, the following assertions hold: 
(1) c\(u, w) 7̂  0 only if hv > 0 for every t; G a. 
(2) / is a cusp form if and only if cl

h(u, w; f\\k&) = 0 for every a G G^ and 
every /i such that det(ft) = 0, where I = l(ip). 

(3) CQ(U, W) does not depend on u, and so we can put CQ(U, W) = CQ(W; / ) . 
(4) / is a cusp form if and only if CQ(W\ /||fca) = 0 for every a G G^ and every 

q such that 0 < q < l{ip). 
(5) / is a cusp form if and only if CQ(W; f\\k(x) = 0 for every a G G^. 

P R O O F . All these assertions except (5) were proven in [S97, Proposition A4.5]. 
(The case in which F = Q and dim(W) = 2 = 2q was excluded in (1). But in 
that case SU(ip) is conjugate to 5Z,2(Q), and so assertion (1) follows from the 
cusp condition.) To prove (5), let 0 < t < q < /(,0), 3 = diag[z, 3'] and 3' = 
diag[z', w] with z G Hf, z1 G H*__t, and w G y . Then, for f e M% we have 
/(3)—S9G5 t Cg(^' 3/)ea(P2r)- ^ n t n e °^her hand we have a Fourier expansion 

/(3) = E ^ G S * E ^GS<-< a * / i M < ( 0 * ) e r ' ( f t * ' ) 
with functions a ^ on y . Then clearly CQ(IU; / ) = ao,o(w) and 

c'0(diag[z', w]; / ) = £ hGSq_ t a0 ,h(^)e|~ i(/ iz /) , 
and hence if CQ(37; / ) = 0, then c^w; / ) = 0 for every q > t. Therefore (5) follows 
from (4). 

26.7. Define a map eq : H* x y —• 3 ^ by eq(z, w) = diag[z, w]. We view 
L / ^ ) x G^ as a subgroup of G^. For (3 G U{nq) and 7 G G^' we easily see that 
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(26.16) (/? x 7)eg(z, w)=eq{0'z, jw), j(/3 x 7, eq(z, w))=j((3f, z ) j ( 7 , w), 

where 0' = diag[l9, /c_1l9]/?diag[l9, K,lq}. Now, taking it of (26.15) to be 0, for 
/ G M\ we obtain an expansion of the form 

(26.17) f(eq(z, w)) = J2 cq
h(w; f)el(hz) (0 < q < Zfofr)) 

hes* 
with some functions cq

h(w\ f) of w G 3^ , which belong to M% as can easily be 
seen. Clearly cq

0 coincides with that of Proposition 26.6 (3). 
Transferring Proposition 11.15 to 3 ^ , we have M\ = M%(Q) ® C. Therefore 

we can let an element a of Aut (C/Q) act on M% by {Yl,uc^9yY ~ Yl,vcl9v f° r 

cy G C and gv G M%(Q). Similarly we can let a act on J\f£. By Proposition 11.13 
(1), M%(Q) is stable under g t-> g\\k7 for every 7GG^. Therefore we have 

(26.18) ( / | U 7 r = fa\\kl for every 7 G G*. 

It should be noted that fa depends on k. In fact, Mk = Mi if kv -f kvp = lv + lvp 

for every v G a, but .M/^Q) = tM/(Q) with a constant t which may not be 
algebraic; see Theorem 11.17 (2). Therefore fa defined with k as its weight is 
t/t*7 times f° defined with I as its weight. Thus, whenever we speak of fa in 
Case UB, it should be understood that k is already fixed. 

26.8. Proposition. (1) We have cq
h{w; f°) = cq

h{w; f)° for every f G M\ and 
every a G Aut(C/Q). 

(2) If r is a congruence subgroup of G^, then S^(r)a — S%(r) for every 
a G Au t (C /Q) and 5]f ( r ) = <S^(r, Q) ® Q C. 

P R O O F . Given T, we can take congruence subgroups A of U(rjq) and T2 of U(<p) 
so that f(eq(z, w)) as a function of z (resp. w) for a fixed w (resp. z) belongs to 
Ml{I\) (resp. Ml{r2)) for every / G Mt(r). Take a Q-basis P of M ^ A , Q) 
over Q. Then P is a C-basis of A^(i~\). We have f(eq(zy w)) = J2Pep 9P(W)P(Z) 
with some functions gv on 3^- Let X (resp. y) be the set of all CM-points on Hq 

(resp. 3*0 • We have 

{0} = C\xex { (CP) € C I E P € P CpP(x) = 0 } , 
since X is dense in H*. Therefore we can find a finite subset X oi X such that 
# X = # P and det (p(x)) £ p x ^ 0. Then, from the equations f(eq(x, w)) = 
S P €P9P( W )P ( X ) f° r all x G X we see that #p(w) G . M ^ A ) . We can put p(z) = 
J2hbh(p)e*(hz) with &fc(p) G Q. Then we have 

(26.19) cq
h(w;f) = Zpeph(p)gP(v>). 

Now for a: G A' and y G ^ we easily see that the point £90r, y) is a CM-
point of 3 ^ and <P*fo(*> 2/)) = ^k{x)^k{y). Therefore, if / G A4jf(r, Q), then 
E P G P ^ ( ^ ) " " 1 •Sp(y)^fc(z)~1p(*) = ? f c M & , y ) ) ~ V M z , «0) € Q for every 
Or, y) G X x X Taking x in X, we see that Vk{y)~1gP(y) G Q for every t/ G ^ 
and every p £ P. Thus #p G .M^ (r2 , Q) for every p G P, and hence c£(u>; / ) G 
A ^ ( r 2 , Q) if / is Q-rational. Next, let / be an element of M%{r) that is not 
necessarily Q-rational. By Proposition 11.15 we have / = ^aeAafa with a fi
nite subset A of C and fa G M%(r, Q). Let a G Aut(C/Q) . Then cq

h(w\ / ) = 
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a 
0 

L° 

b 
e 
0 

c 
/ 
d_ 

EaeA<(^fa) and cl{wj') = £ a £ ^ a"C«(«); fa) = E a e ^ oCT^(u;;/a)CT = 
c^(iu; f)a, since c^(u>; / ) is Q-rational. This proves (1). Suppose / is a cusp form; 
then by Proposition 26.6 (4), cg(w; f | | 7 ) = cg(w; ( / | | 7 ) ' ) = 4(w; / | | 7 ) " = 0 for 
every 7 G G^, which means that fa is a cusp form. This proves the first assertion, 
since Aif(P) is stable under a, which can be seen from Proposition 11.15. Once 
this is established, the second assertion can be proved by the same technique as in 
the proof of Theorem 10.8 (2) by means of Lemma 10.3. 

26.9. With {91} as in §26.4 put I'q = £ * = 1 Kg{ and Iq = J2Ui K9\^ where 
q = I — r, 0 < r < l(ip); put also (V, ip) = (Vr, ipr). Then the decomposition on the 
first line of §26.4 can be written (W, ip) = (V, ip) © (Iq + Iq, rjq). Define a parabolic 
subgroup P? of G* by 
(26.20) P = P? = {aeG^\lqa = Iq}. 

If we represent every element of G^ according to the decomposition W = Iq@V@Iq, 
then P consists of the elements of the form 

(26.21) a 

where d represents the restriction of a to Iq. We then define a homomorphism 
7rr : P —• G^ and a homomorphism Xr : P ^ Kx by 

(26.22) 7rr(a) = e, Ar(a) = det(d). 

For simplicity we shall often write IT for 7rr. If r = l{ip), then J9 = {0} and 
pi> = G v = G^7, and we understand that ?rr(a) = a and Ar(a) = 1 for a G G0 . 

For a congruence subgroup P of G^ we put 

(26.23) M*(r, P) = {f€MZ\ f\\kn(1) = \r(~f)e\\r(1)\-ef for every 7 € . T n P } , 
(26.23a) S£( r , P) = M%{r, P ) n 5 ^ , 

(26.24) S%(r, P, Q) = «SJf (r , P) n A*£(Q), 

where £ = (kv — kvp)ve8i. Then 

(26.25) 5 H r , P) = S*(r, P, Q) ® Q C. 

Indeed, let / G <5^(P, P) . By Proposition 26.8 we can put / = YlaeA a9a w ^ n a 

finite subset A of C and ga G <Sjf (Q); we may assume that 4̂ is linearly indepen
dent over Q. Then, for every 7 G P we have Yla

 a-V(7)£|Ar(7)|~*<7a = f\\n(j) = 
Haa9a\\n{l)- Since_#a|!7r(7) G 5Jf(Q), we have £a |K(7) = A r(7) f |A r(7) | -^Q , that 
is, ga G «S£(P, P, Q), which proves (26.25). 

We now define a holomorphic map 

(26.26) p% : 3 * -> 3^ 

by p$(*, w, w) = w for (2, u, it;) G 3^' as in §26.5. (If rv = 0, then p{$)v = iv.) 
We write simply p for p? if there is no fear of confusion. 

Given / G S£(P, P ) , we put, for (2, s) G 3* x C, 

(26.27) 6a.f{z) = 6(2, s; / ) = f(p(z)) [6(z)/6{p(z))]sa~m/\ m = {kv+kvp)vetL, 

(26.28) E*-*(z9 s; / , P) = ] T «a./|Ua, .4 = (P n P ) \P , 
a£A 
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where 6(z) = (^(zv))vesL with S(zv) defined by [S97, (6.3.11)]; we understand that 
6(p(z))v = l if 3£ is trivial. These are similar to (23.11) and (23.13), and in fact, 
the series of (26.28) was investigated in [S97, §12.3]. For f c T w e can easily verify 
that 
(26.28a) [ m P : r , n P ] ^ ( M ; / , r ) = Yl Et^{z,s',f,r')\\ka. 

aerf\r 
If r = Ity>), then <S£(F, P) = 5^(r) and «,,/ = / , and so E%^(z, s; / , F) = / (* ) . 

26.10. Let us now recall briefly the notion of automorphic form on C?£, the zeta 
function associated to an eigenform, and also Eisenstein series of the above type 
formulated as functions on G^. We let n denote the size of <p as we did in §26.1. 
Given an open subgroup D of G^ such that D fi Gj£ is compact, we denote by 
M%(D) (resp. S%(D)) the set of all functions f : G£ —• C satisfying the following 
conditions: 

(26.29a) f(axw) = j£,(i)_1f (x) if a G G*, w G £>, and w(i) - i. 
(26.29b) For every p G G^ there exists an element fp of M% (resp. S%) such that 

f(py) = (/PIU2/)(i) for every y G G*. 
To find a good D, we first assume that 
(26.30) det(y>) € gxNK/F(Kx) if n is odd, 
which is always satisfied if we change ip for its suitable multiple by an element of 
F x . We also fix a g-maximal r-lattice M in V and an integral g-ideal c, and put 

(26.31) M = {xeV\ ip{x, M) C d{K/F)~l } , 

(26.32) D* = { 7 G G£ | Mj = M, M ^ - 1) c c„M„ for every v|c } , 

(26.33) X = { £ € G£ I Cv e D* n G£ for every v|c } , 
where d(K/F) is the different of i^ relative to F. Then we can define the action of 
tR(D*, X) on S^{D^) and a formal Dirichlet series f |T for f G S%(D*) as in [S97, 
§§11.6-11.11]. They are similar to what was done in §20.3 of the present book. To 
be precise, f |T = £ f l (f |T(a)) [a], where T(a) is the sum of all different D^TD^ with 
r e X such that the ideal ua(r) defined by [S97, (11.11.1)] coincides with a. We can 
also define Z(s, f, x) f°r a n eigenform f and prove a theorem similar to Theorem 
20.14; see [S97, (20.4.1) and Theorem 20.5]. (Corrections: In [S97, (20.4.1)] the 
condition qf c must be replaced by qjcl), where rj = F Pi (the conductor of x)-
Also after "ip = ip" in [S97, p. 196, line 4] insert: "Changing c for its suitable 
multiple, we may assume, without changing Z(s, f, x)> that the conductor of \ 
divides c.) Furthermore, in the setting of §26.9, given f G S^D^), we can define 
an Eisenstein series E^ix, s; f, x> D^) for (x, 5) G G^ x C, a Hecke character x 
of K, and a suitably chosen open subgroup D^ of G^, and prove its meromorphic 
continuation. These are similar to F A of (23.14) and Theorem 23.9. For details, see 
[S97, Section 12 and Theorem 20.7]; in particular, D^ is given by [S97, (20.6.8)], 
and we assume that \ satisfies (16.24a, b) with £ — (kv — kvp)vea and c is divisible 
by the ideal e of [S97, Lemma 20.2]. (The last assumption is [S97, (20.3.2)].) 

Let p be an element of G^ of the form p — diag[w, 6, u] (with respect to the 
decomposition W = I'q + V + Iq of §26.9) with ueGLq{K)h and beG%, such that 
pv = 1 for every v\c. Then we define a function Ep(z, s; f, x> D^) of (z, s) G 3 ^ x C 
by 



(26.35) UJ = 
i/> 0 
0 -<p V (n = dim(V)). 
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(26.34) Ep(y(i), s; f, *, ^ ) ^ ( i ) " 1 = EA(py, s; f, x, D+) for every y G Gt 

26.11. We are going to state an analogue of Lemma 24.11. We first put 

0 ~l<7+n 
lg+n 0 

Then in [S97, (21.1.6)] we took an element S of GL2q+2n(K) such that SrjS* = «u;. 
For (/?, 7) G G^ x G^ we define an element [/?, 7)5 of G77 by 

(26.36) [/?, 7 ] s = 5"1diag[/?, 7]5. 

In [S97, Proposition 22.2] we defined an embedding tv : 3 ^ x 3^ -* W*+n which 
is compatible with (26.36) in the sense that 

(26.37) [/?, 7 W ( * , w) = *c/(/fe, 7^) (* e^,we 3^)-

We note that ijj(z, w) is holomorphic in z and antiholomorphic in iy (see [S97, 
Proposition 6.11 and (22.2.1)]. For a function / on H*+n we define its pullback 
/ ° to be a function on 3 ^ x 3^ given by 

(26.38) / ° (z , to) = «(«;, p ( z ) ) _ m / ( ^ ( 2 , u;)) (z G 3* , u; G 3*), 

where m = (kv + kvp)v€a and <5(u>, p(z)) is defined by [S97, (6.6.8)]. 
To study the nature of f° at CM-points, take CM-points z0 and Wo on 3 ^ 

and 3^ obtained from maps r : Y —> K7^^ and 5 : Z —> If™ with the properties 
described in §26.3, where F and Z are CM-algebras. Define £ : Y ® Z -> K^Xll 
by f(6, c) = S_1diag[r(6), s(c))S for (6, c) G Y" © Z; put 30 = ^t/(^o, wo). From 
(26.37) we see that 30 is the CM-point fixed by £((Y © Z)u). Let * (resp. <£' and 
E) be denned for (y, g) (resp. (Z, s) and (y © Z, ^)) as in (4.40). 

We are going to show that E = $ + $' p. For that purpose we use the notation of 
[S97, §6.10 and the proof of Proposition 22.2]. (The factor of automorphy K there 
is now written A, and so we use A instead of «.) Put a = [/?, 7]s with /3 G G^ 
and 7 G G^; put also /% = TV{3VT~1, y'v = t r ^ c r " 1 , and ev = [/%, 7 ^ . In the 
first paragraph of that proof, we showed that av = U~1evUv. Let 31 = L(ZQ, WQ); 
then 30 = U~lil. Take (3 = r(b) and 7 = 5(c) with b G y u and c G Z u . Then 
e3i = 3i and a^o = 3o- Suppressing the subsript v for simplicity, we have 

(26.39) Aa(3o) = \(U-leU, U'1^) = A(C/-1,3i)A£(3i)A(l7, C T ^ ) . 

Define M (w) and JV(z) as in [S97, (6.11.4)]. By [S97, (6.11.5)], 

A£(3i) = M(^o)diag[A/3(zo), ^7(w0)]M(w0) 1. 

Putting A = X(U~1,^I)M(WQ), we obtain the first of the following two equalities: 

(26.40a) Aa(3o) = A • diag[A/5(z0), /x 7 (^o) ]^ _ 1 , 

(26.40b) ^ (30) = B • diag[A7(w0), ^ ( ^ o ) ] ^ " 1 . 

The second formula, in which we take B = n(U~l, 31 )N(ZQ), can be proved similarly. 
In view of the definition of # in (4.37) and (4.40), from (26.3ya, b) we easily see 
that E = <P + $'p. Also, our definition of the symbols p^ in §11.4 shows that 

(26.41a) Pvpiio) = Av • diag[pvp(z0), p v ( ^ o ) ] ^ \ 

(26.41b) p^ao) = S v • diag[p^(^0) , p ^ z o ) ] ^ 1 -
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Here we used (11.23) to find that pz(£p,$'p) = pz{£,$') for f G Iz> 
Our reasoning is valid even when G£ is compact, in which case y consists 

of a single point i^. In fact, we can view i^ as a CM-point in the following 
way. Take £ G GLn(K) so that ((p(* is diagonal, and define s : Kn —> K% by 
s(ai, . . . , an) = C-1diag[ai, . . . , an](; thus Z = Kn in the present case. Then 
s(ap) = (ps(aYip~1

1 so that we can take i^ to be the above w$. (If in addition 
-0 = </>, then we take z0 = i^.) Prom (4.37), (4.40), and (3.24a, b) we see that 
(Kn, $') in this case is the sum of n copies of (if, rp), where (if, r ) is the CM-type 
we fixed in §3.5, and pvp(i^) = VK{JVQ, rp)ln = PK(T„ , r ) l n and pv(i^) = 1. Then 
(26.41a, b) are valid, and ^ ( i ^ ) = PK(Y^veakvpTv, nT)- Therefore, according to 
our general principle of §11.12, we have 

(26.41c) Mk(Q) = Pi<(J2veakvpTv, nr)Q for every k G Z b if G% is compact. 

Notice that this is consistent with Theorem 11.17. 

26.12. Lemma. If f G A/^' , then /°(z , w) can be written as a finite sum 
f°(z, w) = X)o=i 9a(z)ha(w) with ga G A/^,rf and fta G A/^'d. Moreover, if f 
is Q-rational, we have q~1f°(z, w) = E L i ^ ( z ) ^ M w ^ 9a ^ -̂ fc ' (Q) and 
ha eN%'d{Q), where q = P/r(]Cu€a(A; t,-fc^Tt,, X ^ € a ^ T v ) wztfi tv as in (26.1). 
This holds even if G^ is compact, in which case we understand that 3 ^ = {i^} and 
•^T' (Q) ~ PK(YLvea-kvPTv, nr)Q. In particular, if i/j — ip and G£ is compact 
then /°(i*\ i*) G p * ( £ v € a ( k „ + M ^ > n r ) Q -

PROOF. Take congruence subgroups i ^ of SU(£) for £ = <p, ijj, n so that / G 
N]?'d(n) and [ r v \ T^] 9 C n . In view of Proposition 14.10, it is sufficient to 
prove the last assertion for / G A/̂ 7, (JT77, Q). We first prove that f°(z, w) (resp. 
/°(z , w)) as a function of z (resp. w) belongs to A / ^ i ^ ) (resp. A/^ ' d ( i^ ) ) . 
The main point here is near holomorphy, since the desired automorphy property 
follows from [S97, (22.3.3)]. As for the assertion concerning the functions of z, 
since 6(w, p(z)) is holomorphic in z, it is sufficient to show that /(tf/(z, w)) 
as a function of z belongs to A/"d(3^)- Now, if w = 7(1^) with 7 G G^, then 
£(/(z, w) = oau(z, i^) with a = [1, 7)5 by (26.37). Recall also that ^ ( 2 , w) = 
U~h(z, w) with U G G2 and *(z, w) defined by [S97, (6.10.2), (6.14.2), (6.14.3)]. 
Since / o a G A/"d for every a G G2, it is sufficient to show that f(t(z, i^)) as 
a function of z belongs to A/"d(3^)- Now t(z, i^) is holomorphic in z, and hence 
the problem can be reduced to r{i) for 3 = i(z, i^). Focusing our attention on 3 ^ 
with a fixed z; and suppressing the subscript v, from [S97, (6.10.2)] we obtain, for 
3 = t(z, i*), r(j) - (*j - a ) - 1 = diag[if(z), 2z l r ] _ 1 , which combined with (26.7) 
shows that the entries of r(j) are nearly holomorphic in z of degree 1. This gives 
the desired fact concerning z. Similarly <5(u>, p{z)) and L(Z, w) are holomorphic 
in w; also r(*,(i^,w)) = diag[2zlg+r, ir^{w)T~l)~l with some r G GL r+ t (Q). 
Therefore we obtain the desired near holomorphy of / ° (z , w) in w. 

Next, let {ga}e
a=i be a Q-basis of Af^d(r^, Q). For each fixed w we have 

/°(z , to) = YJ1=I 9a(z)ha(w) with complex numbers ha(w) uniquely determined 
by w and a. Since f|z { x G Cfi | J^o=i xa9a(z) } = {0}, we can find e points 
zi, . . . , ze of 3^ such that det (ga{zb))e

a 6 = 1 7̂  0. Solving the linear equations 
/°(*6, w) = E«=i ^a(^6)ftaH, we find that ha G A^ ' d . 



26. NEAR HOLOMORPHY OF EISENSTEIN SERIES IN CASE UB. 217 

To prove the Q-rationality of the ha, take ZQ, WO, and 30 as in §26.11. Prom 
(26.41a, b) we easily see tht Vk(io) = Vk{zo)VkP{w0). Now 

VkP(wo)/Vk(w0) 
= Y[[det(pv(w0))/det(pvp(wQ))]kvp~ v = pKl "}T(kv ~ kvp)rv, ^ t v r v \ 

by Theorem 11.17 (1) and the remark after it. Thus ^ ( 3 0 ) = Vk{z0)^ko(w)q 
with q of our proposition. By Proposition 11.19 we may assume that every period 
symbol is real. Therefore 

(*) J(w^^ 
a=l 

Since the CM-points on 3 ^ form a dense subset of 3^ , we can take the above za to 
be CM-points. In §26.1 we took algebraic av and 0V, and so the entries of zv and 
wv are algebraic for the same reason as in the proof of Lemma 4.13. Therefore from 
[S97, (6.6.1) and (6.6.8)] we see that 6(WQ, P{ZQ)) is algebraic. Since / and ga 

are Q-rational, ^ (3o ) _ 1 / ( 3o ) and ytk(zo)~~l9a(zo) are algebraic. Taking z0 of (*) 
to be those za, we see that ^pkiw^)"1 q'1 ha(wo) is algebraic for every a and every 
CM-point WQ on 3 ^ , that is, q~lha is Q-rational for every a, which completes 
the proof. Our argument is valid even for compact G% for the reason explained at 
the end of §26.11. 

26.13. Theorem. Define Ep by (26.34) for f G S%(D*)', assuming f to be a 
Hecke eigenform, put 

q+n—l 

Fp(z,s;f,x,D*)=Ep(z,s;f,x,D*)Z(s,f,X) ]~[ Lc(2s - j , Xx0j), 
j=n 

where 6 and xi are as i>n 

$20.11 and n = dim(V); define E^{z, s\ / , T) by 
(26.28); let u G Z and m — (kv -f kvp)vesi. Suppose that n of (16.24a) is 0. Then 
the following assertions hold: 

(i) If Max(2n + 1, q + n) < u < mv and mv — u G 2Z for every v G a, then 
Ep(z, i//2; f, x, D*) and E^(z, i//2; / , T) belong to Nl

k, where 
__ J ( g + n ) ( m - i / + 2)/2 if i/ = g + n + l, F = Q, and Xi =0", 

\{q + n)(m — us)/2 otherwise. 
(ii) If 2q + 2n — mv < u < mv and mv — v G 2Z for every v G a, then 

Tp(z, i//2; f, X, D^) belongs to A/^, except when 0 < u < q -i- n, c = g, and 
X\ = 0U, where 

f {q + n){m-u + 2)/2 if u = q + n + 1, F = Q, and xi = ^ , 
1 ((7 + n){m — |i/ — q — n|a — (g -j- n)a}/2 otherwise. 

(iii) Suppose m = pa. with an integer p such that 0 < p < q -f n; put s^ = 
5 + n - (/i/2). Then ^*p(z, 5; f, x> -D^) ^&s at most a simple pole at sM, which 
occurs only when xi = 0fl. Moreover, the residue is an element of Mk> 

P R O O F . Our reasoning is the same as in §25.7. For simplicity, we suppress (f, x> 
D^) in the symbols Ep and Tv. In [S97, (22.6.6)] we showed, for an eigenform f, 
(26.42) pcm(s)C'(s)Z(s, f, x)Ep(z, s) 

= A?(s, x) V x h ( d e t ( a ) ) f {Hp.a)°{z, w; s)fa(w)6(w)mdw. 
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Here B is a complete set of representatives for G^G^/D^; f <-> (fa)aeB in the 
sense of [S97, p.80] (which is similar to the notation of §20.1); Ta = G? n o D ^ a " 1 , 
£ a = T a \ 3 ^ , and 11 = [ r a H r x : 1]; cm(s) is given by [S97, (A2.9.2)] with 
s = sa - m/2 and C'{s) by [S97, (22.6.5)]; A?(s, x) is as in (20.20) in Case UT; 
Hv,a{h, s) = Eqo(%, s) for i G W*+n with EQo of type (17.23a) obtained from an 
Eisenstein series on Gq£n of type (16.27) in Case UT. (See [S97, p. 184, line 3]; q0 

denotes ^ I S ^ 1 there.) Prom (26.42) we immediately obtain 

(26.43) jzcm(s)C"(s).Fp(z, s) 

= A?+n(a, x) J > h ( d e t ( a ) ) / (ffp,fl)0(z, TIT, s)/a(ti;)tf(ti;)mdii;. 

Now evaluate (26.42) at 5 = i//2 with i/ as in (i). By Theorem 17.12 (iv), 
Eqo(i, i//2) belongs to T T ^ A / ^ Q ) with a = (n + g) E v e a ( m « " ^)/_2_and * as 
in (i), and so, by Lemma 26.12, {Hp,a)°{z, w;u/2) = naqYTi==i9ai{z)hai(w) with 
9ai G A / ^ Q ) and hai G A / ^ ( Q ) . From [S97, (A2.9.2)] we see that for 5 = u/2 
with i/ as in (I), cm(s) G 7rd°Q , where do is the complex dimension of 3^- Since 
Xa(a) = ^ | x a | - m for x G F a

x , Lemma 17.5 (2) shows that A?(i//2, x) € TT^Q* 

with 7 = dn*/ - dn(n - l ) /2; also C'{v/2) G Q *. Thus 

(26.44) Z(v/2, f, x)J5?p(z, ^/2) = T ^ ^ ^ v o l ^ ) ^ , / a ) ^ ( z ) 
a, z 

with some ^ - G A/^'^Q). By [S97, Proposition 20.4 (3)], Z(s , f, x) is finite and 
nonzero for Re(s) >n . Therefore from (26.44) we obtain (i) for Ep(z, v/2) when f 
is a Hecke eigenform. The result holds also for an arbitrary f G S£ (D^), since the 
last space is spanned by eigenforms as shown in [S97, Proposition 20.4 (1)]. This 
proves (i) for Ep(z, v/2), which combined with [S97, Proposition 20.10] proves (i) 
for Ep^iz, i//2; / , T). To prove (ii), we employ (26.43) and Dqo instead of (26.42) 
and Eqo, where Dqo is defined by (17.24). Then we obtain (ii) from Theorem 17.12 
(v). Similarly (iii) follows from Theorem 17.8, since Ac+ n(s, x) is finite and nonzero 
a t Sj2-

REMARK. For the proof of (i) we employed the nonvanishing of Z(s, f, x) f° r 

Re(s) > n. In fact, it is plausible that such nonvanishing holds for Re(s) > 3n/4. 
If that is so, we can replace Max(2n + 1, q + n) by Max((3n/2) -f 1, q + n). 

We can naturally ask whether the functions of Theorem 26.13 are Q-rational. 
The answers will be given in Theorems 27.16, 29.6, and 29.7 below. 

26.14. Lemma. The notation being as in \26.10, let f be a nonzero element of 
S^{D'P) such that f \T(a) = A(a)f with A(a) G C for every a. Then the eigenvalues 
A(a) generate an algebraic number field stable under complex conjugation. 

P R O O F . Let S%(D*, Q) denote the set of all Q-rational elements of S^D^). 
(We call f as in (26.29a, b) Q-rational if fp is Q-rational for every p.) By Propo
sition 11.15 we have S^{D^) = <S£(£> ,̂ Q) <8>Q C. From Proposition 11.13 and 
[S97, (11.9.1)] we see that S£(D*, Q) is stable under JH(D^, X). Since S%{D*, Q) 
is finite-dimensional over Q, each A(a) is algebraic. Now, if T(a) — Y^rD^rD*, 
then we easily see that T(ap) = £ r D^r^D*. By [S97, Proposition 11.7] we have 
(f |T(a), f > = (f, f\T(ap)), so that X(ap) = A(a), which gives the desired result. 



CHAPTER VII 

ARITHMETICITY OF THE CRITICAL VALUES OF ZETA 
FUNCTIONS A N D EISENSTEIN SERIES OF GENERAL TYPES 

27. The spaces of holomorphic Eisenstein series 

27.1. Let {W, ip), (Z, C), (K, </v), and l = l(ip) be as in §26.4; let keZb. Our 
next task is the construction of a certain subspace of Mk, spanned by holomorphic 
Eisenstein series, such that Mk is the direct sum of <Ŝ  and that subspace. Put 
m = (kvp -f kv)vea and £ = (kv - kvp)vE8L. By [S97, Proposition 10.6 (3)], Aljf = 
<Ŝ  either if ip is anisotropic, or if F ^ Q and rav ^ TTV for some v, v' G a. 
Therefore, our problem is meaningful only when ip is not anisotropic, that is, 
l(ip) >0 , and m = //a with /J, G Z, which we assume throughout this section. We 
present our results not only in Case UB, but also in Cases SP and UT, but for 
the most part give the proof in Case UB; in the other two cases we only need 
minor (or rather, obvious) modifications and the following changes of symbols: 
G^, G^, P?, 3 ^ , 7rr, Ar, pr, I, Mt, Ml, St, Si, £# '* , and diag[z, w] should be 
replaced by Gn, Gr, P n ' r , Hn, irr, Xr, pr, n, Ml, Mr

k, S%, Sr
k, E^r of §§23.1 and 

23.2, and diag[u>, z); Z = {0} in Case UT. The case of half-integral k can be 
included if we take Qn and Vn,r in place of Gn and Pnr; of course \x — 1/2 G Z in 
that case. We put [k] = k if k is integral and [k] = k — a/2 otherwise; also we put 
m = k and •£=[&] in Case SP. 

We denote by F an unspecified congruence subgroup of G^, and by p a real 
variable on (0, co). We put iq = ilq and view it as as an element of H*', also we 
write pf or pr for p^r (see §23.1 and (26.26)). We note here two basic formulas 
(see (23.4), (23.8), and ]S97, (6.9.1), (12.3.4)]): 

(27.1) Pr{ai) = 7rr(a)pr(a), 
(27.2) jk{i) = Xr(a)^\Xr(a)\k-Wjk{nr(a), p r(3)) (a G P?, 3 G 3*). 

The factor \Xr(a)\k~W can be eliminated if k is integral. Since it is cumbersome 
to have such a factor in each case, we hereafter state our formulas only for integral 
k. The corresponding formulas for half-integral k can be found in [S95a, Section 
8]. We note that 
(27.3) a~k\a\m = a-£\a\e for every a G Kx if k G Z b . 

Given a function / : 3 ^ -+ C, we define * / : yi~l -> C by 
lim /(diag[pii, w}) (Case UB, w G y1'1), 

(27:4) {$f)(w) = { P~*x , 
v J ^ Urn / ( d i a g K pii]) (Cases SP, UT, w eH71'1), 
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whenever the limit exists. If ipi-i is totally definite or ip — !}[, we ignore w, and 
so <J>f is a constant. We define $q for 0 < q < l(ip) by $q = 0 # 9 ~ \ with the 
identity map as $° . Then $qf, if meaningful, is a function on 3 ^ r , r = I — q. If <pr 

is totally definite or ip = n'q, then $qf is a constant. 

27.2. Lemma. For f G M^(r), the following assertions hold: 
(1) {$qf){w) = cQ

0(w; f) = l im^oo /(diag[/oi9, w]). 
(2) / is a cusp form if and only if <P(/||fca) = 0 for every a e G^. 
(3) W l U a ) = \r(a)-k(<Pqf)\\k7rr(a) if a G Pf and q = / - r. 
(4) <£z-r/ belongs to A4£r(r> Pr^) of (23.9; or (26.23). 
(5) In Cases SP and UT if f(z) = £/>es» c(ft)e2(ft*) for zeHn as in (5.22a), 

then $nf = c(0), and ($n~r f)(w) = £ , € ^ ^(diag^, 0 n _ r ] ) < ( s H if r > 0. 

P R O O F . That CQ(W; f) = l im^oo /(diag[pig, it;]) can easily be seen from (26. 
17) and Proposition 26.6 (1). Then we obtain (1) for q = 1. Assuming (1) for 
q = t and taking q = t + 1 in the proof of Proposition 26.6, we obtain 

($*/)(diag[z', w]) = 4(diag[z ;, w]\ f) = ^2 aoAw)e*(hz')> 
h<EF 

so that ($($*/)) (u;) = ao,o(^) = co+1(^5 / ) a s shown there. This proves (1) for 
an arbitrary q by induction. Assertion (5) can be proved in a similar and simpler 
way. Then (2) follows from Proposition 26.6 (5), or from the definition of a cusp 
form in §5.8. Next, let a G Pr^, /? - 7rr(a) and q = I - r. By (27.1) and (27.2), for 
3 = diag[z, w] with z G 7ia and w G 3 ^ ' we have a{i) = (21, Hi, /?iu) with some 
21 and ui, so that 

(/||fca)(diag[2?, w]) = A r ( a ) ~ ^ H - 1 / ( ^ i , wi, /?w) 

= A ^ a ) - ^ ^ ) - 1 E h ^ ( u i , 0w, f)ei(hZl). 

Observe that z\ = (az+b)a* with a G GL g (C) a and b G ( C | ) a that depend only on 
a, and iii is independent of z, and hence c^itr, / | | a)=^Xr(a)"kjp(w)~lcq

)(Pw\ / ) , 
which together with (1) proves (3). Since A r(a) G r x for a G P / fl T and |it|m = 
\u\»a = 1 for u G r x , (4) follows from (3) and (27.3). 

27.3. Lemma, Let X be a complete set of representatives for P^\G^/T; let 
f G A^^(r) and q = l-r. Then $q(f\\kCt) = 0 for every a e G^ if and only if 
$q(f\\k€~l) = 0 for every £ G X, in which case # 9 _ 1 ( / I U a ) is a cusp form for 
every a G G^. 

P R O O F . Given a G G^, we can put a = 7£ - 1 /3 with 7 G T, ( e I , and /? G 
Pr^. By Lemma 27.2 (3), #*(/ | |a) = ^ ( / H r 1 / ? ) = c * * ( / | | r ^ I M / ? ) with a con
stant c, from which our first assertion follows. Next, given any e G G<Pr+1, we can 
find 8 eG^ such that 7rr+1(<5) = e. Then # (#9 - i ( / | | a ) | | e ) = ^ ( ^ ( / j l a t f ) ) = 
c ^ ( / | | a f i ) with a constant c', again by Lemma 27.2 (3). Therefore, if $«(/ | |G^) = 
0, then by Lemma 27.2 (2), ^9~1(/| |o;) must be a cusp form. 

27.4. Lemma. Let a G Rr
p and b G Rr

q with r < q < p, where R is a field with 
infinitely many elements. If rank [a b] = r, then there exists an element x G R% 
such that rank(ax -f b) = r. Moreover, if R isH or C, such an x can be found in 
any nonempty open subset of R?. 
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P R O O F . We may assume that 0 < rank(a) < r, since our assertions are obvious 
In 0" otherwise. Take u G GLr(R) and v G GLP(R) so that uav = 

0 < n < r. Changing a and b for uav and u6, we may assume that a = 

0 0 
In 0 
0 0 

with 

Put b = with c e Rq and d G Rr
q
 n\ let 2/ be the upper (n x g)-block of x. 

Choosing a suitable y, we have y + c 
d 

Then rank(d) = r — n and ax + b 

rank(ax -f b) = r as desired. 

27.5. Lemma. For a e G^ andO < r < I we have <P({6oproa)-a\ja\~2a) ^ 0 
i/ and on/?/ if a e P^JPi_11 where we understand that 6 o pr o a = 1 if r = 0. 

P R O O F . Put q = l — r. Let Z and #; be as in §26.4 and let {i^, . . . , up} be a K-
basis of Z; express a by a matrix with respect to the basis { # i , . . . , gi, u\,..., up, 
<#+i,..., #2*}; thus dim(Z) = p and dim(W) = 2/H-p. Write the q x (2Z-fp)-block 
of a whose i-th row is the (l+p+i)-th row of a for 1 < i < q in the form [a b c] 
with c , c E Kf and 6 £ Jf£. This q x (2/-hp)-matrix represents the restriction of a 
to Iq = ^21=1 K9i+i> s o that a G P/^.1 if and only if its top row except the upper left 
entry of c vanishes. Now fix one i )Ga; take KV and rv as in (26.11) and define av 

by (26.13) by taking r there to be /. Let h be the gx(2/-hp)-matrix whose i-throw 
is the (l + sv + tv + i)-th row of (aao~~1)v. Then h = [ K~1av bf cv b" ], where 
b' (resp. b") consists of the first sv+tv (resp. the last sv ) rows of K~lbvr~l. Since 
we are looking at matrices in 3J? and in the group acting on it, hereafter we suppress 

the subscript v. Recall that 77(3) = i{f-j) -1)*^1*) for 3 = r G 3^ (see [S97, 

(6.1.8)]). Let 3 = diag[pii, w] with w € S^'-"1 and let y be the upper left {q x g)-
block of r){ai)~l. Put a = [a\ 02] and c = [c\ C2], where ai (resp. c\) is the first 
column of a (resp. c) and n~la\ ~ af and tCla2 = a". Then n = [a7 d ci e] 
with d — [a" b'] and e = [02 6"]. Let us first assume that 3vZ-1 is nontrivial. 
Observe that ^(p r(^3)) is the lower right rv x ri;-block of 77(0:3), where rv = 
r -f sv. Therefore by Lemma 1.3 (1) we have 2rv6(pr(a$)) = 2q+ri'6(a$)det(y) = 
2<?+rw | ja(3)r2^(3)det(y), and hence \j«{t)\2S(pr{ai>)) = 2 ^ H p • det(y). Observe 
that the upper 0/ rows of /i(a, 3) is [ipa' + ci dw + e\. Since 77(3) = diag[2p, 77(11;)] 
and 77(ai3)-1 == /i(a, 3)77(3)"1/x(ct, 3)*, we obtain, by a direct calculation, y = A + B 
with 

A = {ipa' + ci)(2p)~1(z/9a/ + ci)* and S = (dw + e)7/(w;)-1(diy -f e)*. 
Thus 

\U(l)\2${Pr{ai)) = S(w)p • d e t O ^ d c l + ^C 4- D) 
with matrices C and £> which do not involve p. Since cic\ is of rank < 1, we 
easily see that the right-hand side is a polynomial of p. (We shall later show 
that ((<5 o pr o a) | jQ |2) t is a polynomial in p even if 3v ' - 1 is trivial.) Suppose 
$((£ o p r o Q;)~a |jQ |"2a) 7̂  0; then this polynomial (for any fixed v G a) must be 
a constant. Since A and B are nonnegative, we have p • det[A + B] > p • det(B), 
and hence det(J3) = 0. It follows that rank(du' + e) < q. This is so for every 
w £ 3r ' - 1 • By Lemma 27.4 we have rank[d e] < q, and hence rank[02 b C2] < q. 
Thus we can find u G SLq(K) such that the top row of u[a2 b c2] is 0. Put 
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(3 = diag[n, l r + p , u, l r ; then (3 G Pf, nr(/3) = 1, and jp = 1. Change a for /3a 
and observe that S(pr(a%))\ja($)\2 does not change. Thus we may assume that the 
top row of [a2 b c2] is 0. Then the top row of [d e] is 0, and so the top row of 
B is 0. Let v and v' be the first components of a\ and c\. Suppose v =£ 0. Then 
the top row of A is 0 for p = IKV'fv. Thus p • det(y) = 0 for such a p, so that 
the constant p • det(y) must be 0. On the other hand, the quantity is positive for 
0 < p G R, which is a contradiction. Therefore v = 0, and hence the top row of 
[a b C2] is 0, which means that the present a belongs to PiLv Thus the original 
a belongs to P^Pf_x as expected. 

We have assumed that 3 ^ i _ 1 is nontrivial. If 3i?z~3 is trivial, then I = 1 and 
sv = 0, and so r = 0 and a = 1. In this case p(a, j ) v = (pa'i + Ci)v, and 
hence 8(pr{&d))v\ja(z)v\2 = Kpa'z + ci)^!2, which is again a polynomial in p. Thus 
3>((<5 o p r o o;)~ a | ja |_ 2 a) ^ 0 only if a' = 0, in which case a = 0. Since s^ = 0, C 
is anisotropic. Now [a b c] represents ^ a , so that &£&* = 0. Thus 6 = 0, which 
shows that a G PQ as expected. This proves the 'only if'-part. 

Conversely, let a = 75 with 7 G P / and e G P(_i\ put £ = 717_ 1(e). Then 
by (27.1) and (27.2), for 3 = diag[pii, w] we have p r(ea) = p r i _ 1 (pi-i{e%)) = 
p r ' " 1 ^ ) and <5(pr(a3))|ja(3)|2 = |A r(7)Af_i(£)j c(^) |2^(pr i~1(^)) which proves 
the 'if'-part. 

27.6. Lemma. Let 5]?(3) = 6(3, 5; / ) tw*A *Ae notation of (26.27) with f G 
S%, <p = <pr, anrf /e£ a G G^. TTien for Re(s) > 0 and I > t > r we have 
^ - t{<S(3)m / 2~ s a ^ / I I H } ^ 0 on/y if a = fa with /? G Pr^ and 7 G f f , m 
which case for 3 = diag[u/, u>] with (11/, u>) G Wf_t x 3 w , u> ~ ift, we have 

(27.5) ^(3)m/2-sa[«5;||fca] = **"* {^(3)m/2~~[^ |U «]} 

= 6(w)m'2—\Xr((3)Xt^)\m~2sa(Xr(0)Xt(j)yk6(w, s; /|U7rr(/?))||fc7rt(7). 

PROOF. Let a = /?7 and 3 = diag[u/, w] as above. Put g — /||7rr(/?). By [S97, 
(12.3.5)] or (23.12) we have «J||/3 = A r(/3)- f c |A r(/3) |m-2 s a^, and 

(*) « ( 3 ) - / 2 — . ( ^ | | 7 ) =j7
f c(3)-1b7(3)r-2 s a5(Pr(73))<5(p r(73))m / 2"S a . 

Put £ = 7rt(7). Then p r(7a) = p?(p t(73)) = Pr^Ptil)) = P?(£w), and hence, by 
(27.2), the quantity of (*) equals A((7)-* : |A t(7)|ro--2sa<5(u;)m/2-sa • {6%\\£). Prom 
these we obtain (27.5). Now by [S97, Proposition 10.6 (1)], |<5(z)m/2/(2)| < C for 
every z G y with a constant C. Therefore, for a € G^ we have 

* ( j ) m / 2 - ' a $ | | a ] | = | / (P r (a3) )5(p , (a3) ) m / 2 - s a j Q (3 ) - 2 s a 

< G *(pr(aa)) 8*j*h) - 2 s a 

By Lemma 27.5 the last quantity, with 3 = diag[pii,3i] and Re(s) > 0, tends 
t o O a s p — > o o i f a ^ Pfpf_v This proves the case t = I - 1. Suppose that 
our lemma is true for #'"*, t > r, and fl-1*1^)™/2-**^^]) ^ 0. Then 
# / - i (5(3) m / 2 - s a [^ \ \a} ) ^ 0, and so a = fa with /? G Pr^ and 7 e P?\ also, 
by (27.5), for w G 3W we have 

a & - ^ { S ( ™ ) W 2 - s a ^ 5. / | |7r r(/?))| |^(7)} = ^ { ^ - t ( 6 ( 3 ) m / 2 - s a [ ^ | | a ] ) } 
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= &-t+1(6{i)m'2-s*[6y\\a])^o 
with some a G C x and 0 < b G R. Applying our result in the case ^l"t = $ to the 
quantity involving iu on the left-hand side, we have 71̂ (7) = £ V with £' G P ^ 
and 77' G PfLi- Now we can easily verify that 

(27.6a) Pf H Pt = {ae Pf \ ixt{a) G P r "}, 

(27.6b) 7 r t ( P ^ n i ^ ) = i ^ , 

and hence we can put £' = 7Tj(£) and 77' = 7̂ (77) with £ G P ^ fl P ^ and 77 G 
P * n P ^ . Then a = ^ _ 1 7 , £ _ 1 7 € P / \ # e ^ > and 7 r t ( r *7) = V € P ^ , 
and hence £ - 1 7 G Pt_x by (27.6a). Therefore induction proves our lemma. 

27.7. Lemma. Put cu = <pu P = Pf, and Q = Pf,r<t<L For each 
£ in the set X of Lemma 27.3 let Z^ be a complete set of representatives for 
(P fl Q) \Q/ (£P£ _ 1 H Q). For every C G Z^ such that C£P H P ^ 0 choose and fix 
an element 77 G C£P fl P. Le£ F denote the set of all such 77 's. Then the following 
assertios hold: 

(1) Y is a finite set, P = L U y ( p n Q ) r 7 ( P n P ) , and G ^ U ^ y p > t ( ^ ( p n P ) ) . 
(2) If P^ is a complete set of representatives for (r}rrj~l nQnP)\(rjFr\P), then 

UveY C~lRv £ i v e s U £ G X ( £ P £ _ 1 n Q ) \ ( £ p n <3P)> where C is ta&en for each 77 so 
that C e Z^ and 77 G C£P-

(3) 7rt gives a bijection of R^ onto [rjtAr]^1 n P?)\qtA, where A = 7rt(P D P) 
and 77̂  = 7^(77). 

PROOF. Clearly Q£P = U C e z / P n ( 2 ) C £ p for every £ G X Thus G^ = U c e x ^ r 

= U , c ( p n Q ) a P , and hence P = UU(P n Q ) ( « r HP) = U e y ( p n Q M P n P ) -
Applying TT£ to this equality, we obtain Gu = \Jv€Y P?nt(r)(r n P)) by (27.6b). 
To see that this union is disjoint, suppose that 7̂ (77) = a7rt(r]f^) with a G P£\ 7 G 
P fl P and 77, 77' G Y. By (27.6b) we can put a = 7rt(/3) with / ^ G P f l Q . Then 
^tiPv'lV'1) = 1- Since pn^rj'1 G P, (27.6a) shows that prj^rj'1 G P f l Q , and 
hence 77' G (P fl Q)n(r f] P ) . Thus 77 = 77', which proves the expected disjointness. 
Since P?\GU /T' is finite for any congruence subgroup P ' of Gw, Y" must be finite. 
Now Q = Q-1 = U c e z . ^ r 1 n g ) C " 1 ( p n Q ) , and hence QP = U c e z ^ T 1 H 
Q)(~lP. Therefore ( ^P^ - 1 D Q)\(f P H QP) is represented by the disjoint union 
of kr^1 fl Q) \ [£P n (£P£ - 1 n Q K " 1 ^ ] , which is represented by (fPf-1 n Q H 
C ~ l p C ) \ ( ^ H C _ 1 P) , ad can easily be verified. With 77 G Cf ̂  H P, this is clearly 
represented by £~1Rn. Finally we have T T ^ P D P) = 77^, and our last assertion 
can easily be verified by means of (27.6a, b). 

27.8. Lemma. The notation being as in Lemma 27.7, suppose that At(7)fc = 1 
for every 7 G P D P ; let p^ e S£ (£Pf_1, Q) with y> = <pr for each £ G X. Then 

(27.7) <^{<5(3)W2-sa £ ^ ( j j s ; ^ ? zrC^Wkt} 

veY 
at least for Re(s) > (n -f r + l ) /2 in Case SP and Re(s) > / + r -f dim(Z) in Cases 
UT and UB. Here cv = Ar(C_1)At(77) and qv = c~^| | f c7r r(C_ 1) with ( G Z^ such 
that 77 G C£P H P. 
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REMARK. If P is sufficiently small, we have 0 < At(7) € 0X for every 7 £ P n P 
(even if X ^ P) . Then Xt{-f)k = A* ( 7 ) ^ = 1. Thus the condition that A* (7)* = 1 
for every 7 G P D P is satisfied for a sufficiently small P. 

P R O O F . Let us first show (27.7) by formally applying ^l~t termwise. Each 
term is of the form #z_ '{(K3)m/2~sa[£(3, s; p^) | | a ]} with a e ( f P ^ - 1 n Q)\fP. 
By Lemma 27.6 this is nonzero only when a e QP. Thus putting T^ = (£P£ - 1 H 
Q)\(£P H QP) , we see that the left-hand side of (27.7) equals (formally) 

(27.8) ] T J]) ^ - t { * ( a ) m / 2 - a [ * ( j , * ; P * ) M } . 

By Lemma 27.7 (2), U^ex-^ can be replaced by U T / G Y C " 1 ^ - Let 7 € P^ and 
e = 777-1. Then rfxer\ e P n P, and hence |A t(e)|a = 1 and Xt(e)k = 1; thus 
At(7)fc = At(r7)fc and |A t(7) |a = |At(r?)|a. Therefore, taking ( C \ 7) as (/?, 7) in 
Lemma 27.6, we see that (27.8) equals 

(27.9) 5(«,)™/2-.a J2 \cX~2s& £ 6(-w> s> Qn)W*th) 

with cv and qv as stated in our lemma. Since \r(/3) = \t{/3)\r(7rt(/3)) for every 
/3 G P fl Q, we easily see that qn G S^faA^1, Pf). By Lemma 27.7 (3), TT^P^) 
gives (7fcZA77£

_1nP^)\7ftZi, and hence the last sum over 7 in (27.9) is E0J,'p{w, s: qv, 
r]tAr)^l)\\r)t, which proves (27.7) at least in the formal sense. Now the condition 
Re(s) > 14- r + dim(Z) in Case UB guarantees the local uniform convergence of the 
series of (26.28) on 3 ^ , as well as its uniform convergence in a suitable domain X, as 
proven in [S97, Proposition A3.7]; see [S97, (A3.5.3)] for the explicit description of 
X. Now viewing the sum in question as an integral over a discrete set, we can apply 
the Lebesgue convergence theorem to justify our formal calculation. The necessary 
condition for the theorem is given by [S97, Lemma A3.6, (A3.6.4), and line 11 from 
the bottom on page 226]. Cases SP and UT can be handled in a similar way. 

2T.9. L e m m a . (1) Let aeG^ and fe «S£(P, P^ ) , 0 < r < I; suppose Re{s) > 
(n + r + l ) /2 in Case SP and Re(s) >l + r + dim(Z) in Cases UT and UB. Then 

*•- {«(,)-/—K-(3.«/. OH} - {5{wr^,v „ „ _,. 
(2) If 5(3) = 5 ( 3 ) m / 2 " 5 a E ^ x £ J ? " U * *>£> e r r 1 ) ! ! ^ with X and ^ of Lem-

ma 27.8, then ^l~r(S\\k'n'1)=S(w)rn^-SAp71 for every r / G l and 5 as in (1). 

P R O O F . Though these are essentially special cases of Lemma 27.8, it is easier 
to derive them directly from Lemma 27.6. In fact, the quantity of (1) is the sum 
of ^l~r{6m^~sa[6^\\^a]} for 7 <E (PflP r^)\P. By Lemma 27.6 the nonvanishshing 
can occur only if 7a 6 P?, that is, only if a € TP^. This proves (1) for a <£ TP^. 
If a = 1, nonvanishshing can appear only from (P D P^)\(r Pi P$). which is 
represented by 1. Therefore, taking (3 = 7 = 1 in Lemma 27.6, we obtain (1). This 
formal proof can be justified for the same reason as in the proof of Lemma 27.8. 
Assertion (2) follows immediately from (1), since ^rj~1 G £F£~1P^ only if £ = rj. 

27.10. Lemma . Let 0 < r < /. Put N = n + r in Cases SP and UT and 
N = Z + r+dim(Z) in Case UB; put also \(a) = ( a + l ) / 2 in Case SP and A(a) = a 
in Cases UT and UB. Suppose that p > X(N) if F ^ Q and p > A(iV) + l ifF = Q. 
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Suppose also that /x e A(r, k) if r > 0 in Cases SP and UT, and \i > 4r + 2dim(Z) 
in Case UB, where A(*, *) is defined by (23.30). Then equality (27.7) and the 
equalities of Lemma 27.9 are valid for s = /x/2. 

P R O O F . Our task is to derive ^>l~t{A(^ /i/2)} = A'(w, /x/2) from the type of 
relation 3>z-t{.4(3, s)} = Af{w, s) established in Lemmas 27.8 and 27.9. Clearly it 
is sufficient to prove the case I — t = 1. 

We first consider the assertion of our lemma concerning (27.7) for t = n — 1 
and r = 0 in Cases SP and SU. This means that the desired conclusion is valid 
for A(z, s) = 8(z)m/2-sa[E^0{z, s; 1, r ) | | a ] , a e Gn. The proof given in [S95a, 
pp.579-580] is quite technical and requires rather involved preliminaries [S95a, 
pp.549-551], and so we refer the reader to those pages for the detailed proof. The 
fact was proven only in Case SP, but the proof is applicable to Case SU with obvi
ous modifications. (We can easily give the analogues of Lemmas 2.3, 2.4, and 2.6 
of [S95a] in Case SU. In Case UT we may assume that T is contained in SU(r]n), 
as explained in the proof of Lemma 17.13; the condition Re(2s) > n + 1 should 
be changed for Re(s) > n. In the proof we need Proposition 6.16, as well as the 
holomorphy of E™£(z, /x/2; /xa, T) and E^~1'°(z, /x/2; /xa, T) which is guaranteed 
by Theorem 17.7 (i). Also we have to assume that /x ^ A(n) (see [S95a, p580, line 
11]), which is why we have to assume /i > X(n) instead of /i > A(n) even if F ^ Q.) 

Let us now consider the action of # on E^,ip in the general case. Let A(%, s) 
denote the function inside the brackets of (27.7). We first take Case UB. By [S97, 
Proposition 20.10] A(%, s) is a finite linear combination of functions of the form 
£(3) m / 2 " s a [# i (3 , s; f, x, D*)\\ka] with a € G*. We may assume that each f is an 
eigenform of Hecke operators, since <Sj?(D^) with D^ of (26.32) is spanned by such 
eigenforms (see [S97, Proposition 20.4 (1)]). Taking p = 1 in (26.42) and applying 
||a, we obtain, employing [S97, (22.3.3)], 

Axcm(s)C /(S)Z(5, f, X)Ei(h *; f, X, D*)\\ka 

= A?(s, X) y > h ( d e t ( a ) ) / (Hlta\\k[a, 1]5)°(3, w; s)fa(w)8(w)mdw, 

where n — dim(K). Recall that J*70(3, w) = 5(w, pr{b)) f^uid, w)) f° r a func
tion T on 7iN, where N = l + r + dim(Z), and Hi,a(z) for z e HN corresponds to 
Eqo(z) with some qo e G£ in the sense of (17.23a). Put <£a = Hiia\\k[a, l]s and 
£ a(z, s) = 6(z)m/2-sa(Ea(z, s) for z e HN. By Lemma 17.13, we can put 

(*) <£a(z, «) = 5 > c ? J E ( * , s ; k, A)\\kai 
iei 

with a finite set / and fy, c;, /*, a; as described there. The map i\j : 3 ^ x 3 ^ —> HN 

is defined by [S97, (22.2.1)]. Put u = <^_i nd define LVI : 3 ^ x 3 ^ -* W N _ 1 in the 
same way, where C7i denotes the element of U(rjN-i)ai corresponding to U. Then we 
can easily verify that 6[/(diag[pii, 31], w) = diagjpii, ^ ( 3 1 , w)] for 3! e 3 ^ and 
w E y . (Relevant formulas are [S97, (6.10.2), (22.1.2), (22.1.3), (22.1.4), (22.1.6), 
and (22.2.8)]. From these we can easily derive that U = I2 x U\ in the sense of 
(23.5).) Also pj?(diag[pii, 31]) = Pr (3i)-

Put $($a(z, s)) = %(* i , s), where 2* € H ^ 1 . Then ^ ( ^ , s) = « ( ^ ) m / 2 - « 
•£«(*!, s) for Re(s) > A(JV) with a function <E'a of type (*) defined for ^ G ^ - 1 . 
This is a special case of Lemma 27.8. Moreover, $($a{z, M / 2 ) ) = 3'a{zi, /i/2) for 
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\i > X(N) if F ^ Q and \x > \{N) + 1 if F = Q, as we said in the second paragraph 
of this proof. Now 

£°(diag[/?ii, 3i], w\ s) = 5(w, p r(3i))~m5a(diag[pii , tuAti, w)], s), 

so that (#(3a)°)(3i» w; 5) = (5ra)°(3i5 w; 5)> which holds for Re(s) > TV and also 
for s = fx/2 as above. By [S97, (22.2.7)] we have 

6(LU{Z, W)) = h\6(w, Pr(3))l~2^(3)^W 

with a positive costant A, and the formula holds for (31, U\) in place of (3, U) with 
the same h. Put 21(3, «) = ^(3)m / 2 ~ s a^i(3 , *; f, X, £^) | |*a. Then 
(**) £>(*)»(* s) 

with ea e C and ©(5) = cm(s)C'(s)Z(s, f, x)A?(s, x)'1-
To see the behavior of the integrals under $, take 3 = diag[/9ii, 31] with p > 1 

and 31 in a compact subset of 3W- Since ^(3, w) = diag[pii, ^(31, it;)], we see that 
^(3, w) belongs to the subset X of HN described in [S97, p. 189, line 7 from the 
bottom] if w belongs to the Siegel set 6f employed there. Therefore the argument 
of [S97, §22.12] proves the absolute and uniform convergence of the integrals of 
(**) for such 3 and 5 belonging to a compact subset of C. (In [S97, §22.12], 3 
was taken in a compact set, but the argument there is valid for any 3 such that 
^(3, &) C X.) Thus we can apply $ to (**) and obtain 

(***) ©(a)(«a)(3 l j s) 

= / i s a - ™ / 2 £ > a / (#J°(3i , w; s)\6{w, pr(^))r-2safa(w)S(wr/2^dw 

= 5[li)m/2-s*Y^ea [ « ) ° ( 3 i , 11/; 8)fa{w)6(w)mdw. 

The last integrals define meromorphic functions of s on the whole C; moreover they 
are meaningful at s = /x/2. Now V is finite and nonzero at 5 = fx/2, as already 
seen in the proof of Theorerm 23.11 given in §25.7 in Cases SP and UT and in the 
proof of Theorem 26.13 in Case UB. Thus $(2l(*, /x/2)) is meaningful and equals 
Vifi/2)-1 times the last line of (***) at s = /x/2. 

Returning to the question at the beginning, let *4/(3i, s) denote the right-hand 
side of (27.7) with l-t = l. Then (£4)(31, 5) = A'(ti, 5) for Re(s) > \(N). Since 
A is a finite linear combination of functions of type 21, we see that A'(i\, s) is a 
inear combination of some functions that can be given by the last line of (***) times 
/D(s)"1. Therefore ^ (4 (* , M/2) ) is meaningful and must coincide with *4/(3i, M/2) . 
This proves the assertion of our lemma concerning (27.7) in Case UB for I — t = 1, 
which proves, by induction, the general case. Cases SP and UT are similar. As 
for the assertion concerning the equalities of Lemma 27.9, the left-hand sides are 
special cases of that of (27.7); the only point is that the right-hand sides can be 
given explicitly as stated in that lemma. Therefore the above proof is applicable to 
them. This completes the proof. 

27.11. With /c, m, and \i as in §27.1, for 0 < r < I we put, in Case UB, 

(27.10) Etr(z;f,r) = Et"p'~(z,fx/2;f,r) (z € 3*). 
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for / G <S)?r(P, P^) , whenever the right-hand side is finite. (Hereafter we use 
z instead of 3 for the variable on 3^-) In general this may not be holomorphic 
in z. We denote by £%'r the vector space spanned over C by Epr(z; / , P)||/ca 
for all a G G^, all congruence subgroups P of G^\ and all such / ; we then put 
£^r = £^r n M%. Clearly these spaces are stable under the operator ||fc£ for 
every £ G G^. In Cases SP and UT we take E^r{z, s; / , P) as E^r(z, s; / , P) . 
Therefore the symbols £^' r and £^ , r are more natural in those two cases, but we 
state our results in all three cases by using £^,r and £^ > an0^ giy e ^ n e P ro°f mainly 
in Case UB, although we indicate necessary modifications in the other two cases. 
The reader is reminded of the remark we made in §27.1; for example, I = n and 
ip = T}n in Cases SP and UT; the case of half-integral weight can be included. 

If r = /, then E^(z, s; / , P) - f(z) for every / G <S^(P) by (23.14) and the 
remark at the end of §26.9, so that 

(27.11) £$>l=£$>l=S$. 

We have k = m = /xa in Case SP. Now, in Cases UT and UB we can restrict P 
to the congruence subgroups of SUfy), by virtue of (23.13a) and (26.28a). Since 
j * = C1JHJ3L for 7 G G^ with c7 G Q and c7 = 1 for 7 G SU(ip), the spaces £^' r 

and £^ depend only on /z. We have to be more careful, however, when we speak 
of the rationality of modular forms over a number field. 

27.12. Lemma. Let 0 < r < I. Impose the condition of Lemma 27.10 on ji if 
r < L Then the function of (27.10) is meaningful and the following assertions hold: 

(i) e£r = £tr. 
(2) ^ - * ( f ^ r ) C £%* ' r for r<t<l and in particular <Pl~r(£^r) = S*r. 
(3) $s{£tr) =0ifs>l-r. 
(4) If ge £^r and <Pl-r(g\\kct) = 0 for every a G G*, then g = 0. 

PROOF. All the assertions are trivial if r = /, and so we assume r < /; notice 
that (3) for r = I follows from Lemma 27.2 (2). Taking m = JISL in Theorems 17.7 
(i), 23.11 (I), 26.13 (1), we see that E%,r(z-, / , P) is meaningful and holomorphic. 
Thus we obtain (1). Assertion (2) follows from Lemmas 27.8, 27.9, and 27.10. 
Then ^l~r+1(£^r) = ${$l-r{£^r)) = $(S%r) = 0 by Lemma 27.2 (2), which 
gives (3). To prove (4), let g = X^e/ f̂c (z> /*> -^)llai with a finite set of indices 
7, cti G G^, congruence subgroups Pj, and /$ G 5Jj?r(Pi, P / ) . Take a congruence 
subgroup T so that P C Die/ a " 1 ^ and A*(P n Vf )k = 1 for every t > r. For 
each i we can find a finite set B{ such that Fiai = \_jgeB. /?P Then /?P/?_1 c P* 
for every /? G P; , and P* = U / ^ B , Pr/S"1^1. Therefore, taking r», /?P/?~\ and 
/3a"1 as T, P ' , and a in (23.13a) or (26.28a), we find that 

iei (3eBi 

with some constants Ci./j. Thus we may assume at the beginning that P* = a^jTa"1 

for every z G 7 with some P. Now if /? G cr^r with a G Pr^ and £ G G^, then 
(/3P/3-1 n i ^ ) \ / ? r can be given by CJT with T = (£P£_ 1 nP r ^ ) \£P Also, for r G T 
we have 

<J,,/||<7T - A r ( a ) " f c | A r ( a ) r - 2 ^ ( 2 , s; / | M C T ) ) | | T 
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by (23.12) or [S97, (12.3.5)], and hence 

Etr(z; / , 0rp-i)\\(3 = \r(a)-kEt>r{z; f\\irr(<r), ^ ^ U -

Therefore, with X = P^\G^/T we can put g = ^ex Etr(z'i h> ^ £ - 1 ) l l £ - Sup
pose that $l~r(g\\a) = 0 for every a G G*. Then by Lemmas 27.9 (2) and 27.10 
we have hv — <l>l~~r(g\\ri~l) = 0 for every rj G X, so that g = 0, which proves (4). 

We are now ready to state our main theorems on the structure of the spaces of 
holomorphic Eisenstein series. 

27.13. Theorem. Suppose n > 1 in Cases SP and UT, and 21 + dim(Z) > 2 
in Case UB; put £%'r(r) = £^r nMf(r). Then we have 

Mt = ®l
r=Q£tr and ^ ( r ) = 0 U ^ r ( r ) 

for every congruence subgroup F of G^ provided the following condition is satisfied: 

(27.12) Case SP: \i > 3n/2 if n > 2; /x > 3 if n = 2 and F = Q; /z > 2 if n = 2 
and F ^ Q ; 

Case UT: /i > 4 if F = Q and n = 2; /x>3n — 2 otherwise; 
Case UB: fi > S if F = Q and I = dim(Z) = 1; /x > 2dim(Wr) - 3 other

wise. 

PROOF. We need the condition on /x of Lemma 27.10 for every r < Z, which is 
why (27.12) is required. Suppose that ^2r=0pr = 0 with p r G 5^ ' r . By Lemma 
27.12 (3) we have $l{p0\\a) = - T!r=i &lM**) = 0 for every a G G^, and hence 
Po = 0 by Lemma 27.12 (4). Similarly we find that ^> / -1(pi||a) = 0 for every 
a G G^, which means that p\ — 0 for the same reason. Repeating this process, 
we obtain pT — 0 for every r, which proves that the £^,r for 0 < r < I form 
a direct sum. Now given g G Af^, take r so that # G Aif(r) and Ar(.T f| 
P?)k = 1 for every r; take also X r = P^\G^/r. Put ^ = ^ l ^ " 1 ) for each 
( e l 0 and /o = Ezex0

Et,0(z'i hO f ^ " 1 ) ! ! ^ Then by Lemma 27.9 (2) and 
Lemma 27.10, <Pl((g - /o)!^"1) = 0 for every £ G X0 . By Lemma 27.3 we have 
^{(g ~ /o)| |a) G <S^ for every a G G*. Put ^ = ^((g - fo)^'1) for 
77 G Xx, and A = ^ ^ ^ f r P.,, ^ T 1 ) ! ^ Then &'1 ((g - fa - Mr,-1) = 0 
for every n G -Xi, and hence $l~2((g — / 0 — / i ) | | a ) G Sj?2 for every a G G^7 

by Lemma 27.3. Continuing in this fashion, we find some elements fr G £^r 

for r < / — 1 so that if we put fi=g — X}r=o/r> then $(fi\\a) = 0 for every 
a G G^, which means that // G S% = £^' . This proves the first equality. If 
g G -Mjf(r), then £ ( . = 0 Ml7 = E U > /r f°r every 7 € r , so that f r | | 7 = / r , that 
is, / r G A^^(r) n£jf'r, which completes the proof. 

27.14. Theorem. Le£ n and \i be as in Theorem 27.13; put £% = £ ^ 0 ^ 
and £*(r) = £%nMt{r). Then 

£t = {f e Mt\ {f, g) =Q for every g e St), 

£*>r = {fe£t\ #(/||*a) G C" 1 , r fo r e y e ^ a G G^} if r < L 
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Moreover, if q : Aif —> S^ denotes the projection map determined by the decom
position Mt =St 0 £t\ then q{f)a = q{fa) for every a G Aut(C/Q). 

P R O O F . The first and second equalities follow immediately from Theorem 27.13. 
If / G £tr, r < /, and g G Ŝ f, then ( / , $ ) = 0 by [S97, Lemma A3.8]. (Take 
the present 63j, Pf, 1 to be g, P, r in that lemma.) This together with the first 
equality gives the third equality. Put UJ — <pz-i; suppose r < l\ then by Lemma 
27.12 (2), * ( / | | a ) G £%'r for every / G S^r and every a G G^. Conversely suppose 
that / = £ l = o # s with gs G S^8 and that * ( / | | a ) G ££r for every a G G^. Since 
<£(#s||a) G £%,s by Lemma 27.12 (2) and the £%,s for 0 < s < I form a direct sum, 
we obtain <£(#s||a) - 0 for s ^ r. By Lemma 27.2 (2), gs G £^ , s D S% = {0} for 
s / r , and hence / = gr G £^ , r , which proves the third equality. The last assertion 
concerning q will be proven at the end of the proof of Theorem 27.16. 

27.15. Theorem. Let 0 < r < I. Put N = n + r in Cases SP and UT and 
N = /-f-r + dim(Z) in Case UB; put also X(a) = (a-j-l)/2 in Case SP and A(a) = a 
in Cases UT and UB. Suppose that \x > X(N) if F =£ Q and \i > X(N) + 1 if F = Q. 
Suppose also that [i G A(r, k) if r > 0 in Cases SP and UT, and \i > 4r + 2dim(Z) 
in Case UB, where A(*, *) is defined by (23.30). Given a congruence subgroup r 
of G*, let £tr(r) = Mk(r) H £^r and let X = P^\G^/T with a fixed r < 
I. Then f H-> (&l~rif\\£~1))eGX gives a C-linear isomorphism of £^r{F) onto 
Yl^xSt^rr\Pf)- Moreover, if f € £ ^ r ( r ) and Pi = ^ ( / l l r 1 ) , then 
f = E^xEt'r(z;Pi^rr1)U. 

PROOF. If / e £ f r ( f ) , then «f- p( / | |£ - 1 ) eS^^r^1, Pf) by Lemma 27.2 
(4) and Lemma 27.12 (2), and so our map is meaningful. The injectivity of the map 
follows from Lemma 27.3 and Lemma 27.12 (4). Now, given p5 € S%r ( t T £ - \ P?) 
for each £ € X, put g = J2^x Et'r(z; Pi, tr^Ut- Then g e Spr{r) and 
^ i - r (# l l £ - 1 ) = Ps, f° r every £ £ X by Lemma 27.10, which proves the surjectivity. 

27.16. Theorem. Let fi and r be as in Theorem 27.15. Put £%'r(r,Q) = 
£tr n Mt (r, Q) and £%(r, Q) = Stn Mfir, Q). Then 

(1) E^'r(z; f, r) is Q-rational if f is Q-rational. 
(2)£tr(r) = £^r(r1Q)^c. 
(3) £$(r) = £t{r, Q) 0 Q C if (27.12) is satisfied. 

P R O O F . Assertion (1) will be proven in §§28.12 and 29.9. Now every ele
ment g of £ ^ ' r ( r ) can be written g = X^ex ^t^ iz'^ %> £^£ - 1)ll£ w i t n Qi ^ 
S^^rC1, P?) by Theorem 27.15. By Lemma 23.13 and (26.25), % is a C-linear 
combination of elements of <Sj?r(£r£~\ Pf, Q). Therefore (2) follows from (1). 
Assertion (3) is immediate from (2) and the second equality of Theorem 27.14. 

To prove the last assertion of Theorem 27.14, take a G Aut(C/Q). Then {£%)a = 
£$ by (3); also (S%y = S% by Theorem 10.8 (1) and Proposition 26.8 (2). The 
desired fact now follows immediately from these equalities. 

27.17. Remark. (A) We excluded the case n = 1 in Theorems 27.13 and 27.14. 
If n = 1 in Case UT, we have SU(rji) = SL2{F). Thus the case n = 1 is about 
the Eisenstein series for SL2 (F). In this case the equalities of Theorem 27.14 are 
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true for k = /xa with 1 < ji G 2 - 1 Z; if \i — 1/2, however, we need the residues 
of E™&°(z, s) at s = 3/4. For details, the reader is referred to [S85b]. Theorems 
27.15 and 27.16 include the case in which n = 1 and r = 0; we have to assume 
/i > 3/2 if F 7̂  Q and /x > 5/2 if F = Q. In fact, we can show that the orthogonal 
complement of <S â in M1^ is spanned by Q-rational elements for every [x > 1/2. 
The proof is given in [S87b, Theorem 9.1]; the case in which fi = 3/2 and F = Q 
is complicated; we have to invoke the results of Pei [P] and Miyake [M]. 

(B) The case JJL = \{N) is not included in Theorem 27.16. In fact, in Corollaries 
28.12 and 29.8 below we shall prove that E^r(z, / , F) is Q-rational for every Q-
rational / , if m = //a, \x = A(iV), \x > (3r/2) + 1 in Case SP, \x > 3r in Case UT, 
and fi> 2n in Case UB. 

(C) The series defining E^lfr(z, s; / , F) is convergent for Re(s) > {n + r + l ) /2 
in Case SP, for Re(s) > n + r in Case UT, and for Ke(s) > I + r 4- dim(Z) in Case 
UB. In these cases the value E%^r(z, /i/2; / , F) is clearly holomorphic, and we do 
not need Lemma 27.10 for the proof of our lemmas and theorems after that lemma. 
Though the results even in such convergent cases are by no means trivial, it may 
be emphasized that one of the main points of our treatment in this section is in the 
fact that the above theorems are valid beyond the range of convergence. 

28. Main theorems on arithmeticity in Cases SP and U T 

28.1. Throughout this section we put d = [F : Q] and denote by $ the Galois 
closure of K in C over Q; also we fix a weight k G Z b and put m = k in Case SP 
and m = {kv + kvp)vea in Cases UT and UB; k may be half-integral in Case SP. Let 
G = Sp(n, F) in Case SP, G = U{rjn) in Case UT, and G = G* with (V, tp) as in 
Section 26 in Case UB. Given a congruence subgroup r of G and / , g G C°°(H, C) 
such that /||fc7 = / and g\\kl — 9 for every 7 G i"1, we define the inner product 
(9,f) by 

(28.1) < $ , / > = vol(D)-1 / ^ ) / ( z ) 5 ( z ) m d z , vol(S) = / dz, 2) = r \ W , 

whenever the integral is convergent, where dz = Ylv£8idzv with dzv of Lemma 
3.4 in Cases SP and UT; dz on y is given by [S97, (10.9.1)]. This is essentially 
the same as that of (12.35a). Here, as well as in (28.2) below, we assume that Ga 

is not compact. For compact Ga , inner products are defined in [S97, (10.9.5)], but 
we shall not employ them in the present book. 

Let C be an open subgroup of G A such that C D Gh is compact. Take a finite 
subset B of Gh so that G A = LLe# GpC. Let W be a subfield of C such that 
#Qab C W in Cases SP and UT and Q c f i n Case UB. Let (gp)Pes n g e 
Mk{C) in the sense of §20.1 or §26.10 (or [S97, §10.7]). We call g VT-rational if 
9P € Sk{W) for every p G B. If q G Gh H GpC, then q = apu with a G G and 
u G G, so that gq = pplUa"1. Therefore #g G A4fc(W) by Theorems 9.13 (3), 10.7 
(6), and Proposition 11.13. Thus the W-rationality is independent of the choice 
of B. (In Case SP we can always take B = {1}, and hence we can speak of the 
rationality of g\ over any field, but we shall not employ it in this section.) Let 
5fe(G, W) denote the set of all W-rational elements of Sk{C). By Theorem 10.8 
and Proposition 26.8 (2) we have Sk{C) = Sk{C, W) ®w C. In Cases SP and UT 
we easily see that g G <S/c(G, W) if and only if cs(r, q) of Proposition 20.2 belongs 
to W for every (r, q). 
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Now given also (fb)beB <-+ f £ Sfc(C), we put 

(28.2) (g, f) = #(B)- X £)(<&, / 6 ) if Ga is not compact. 
beB 

This is well-defined independently of the choice of C and B; see [S97, §10.9]. 
In the following lemma we assume that <p is isotropic in Case UB, since if ip is 

anisotropic, then Proposition 15.7 guarantees the map p with no condition on k 
and p. 

28.2. Lemma. Let k be a weight and let 0 < p G Z a . Suppose that for every 
v G a we have kv > n + pv in Case SP, mv > 2n + pv in Case UT, and mv > 
dim(V) -f pv in Case UB; suppose also that (27.12) is satisfied if m = //a with 
li G 2 _ 1 Z. Let D = <2>Qab if m <£ 2~1Za in Cases SP and UT; let D = Q otherwise. 
Then there exists a C-linear map p : M£ —> <Ŝ  wi£/i £/ie following properties: 

(1) (9, f) = (p(#), f) for every / G Sk and every # G A/£. 
(2) p(#)a = p(^a) for every a G Aut(C/Z?) and every g G A/^. 

PROOF. Take the operator 21 of Proposition 15.3. Given g G A/^, put ft = % . 
We have h £ Mk by that proposition, and (#, / ) = (2lg, / ) for every / G <Sfc by 
Corollary 15.4. Since 21 is a Q-rational polynomial of the operators LUjV for v G a 
with o;(x) = det(x)fc, we see that $l{ga) = (%) a for every a G Aut(C/D) by 
Theorems 14.9 and 14.12. If m £ 2 _ 1 Z a then Sk = Al/c, and so we have properties 
(1) and (2) with 21 as p. If m = //a with /x G 2_ 1Z, then take q of Theorem 27.14 
and put p = q2l. Then we obtain (1) and (2) from that theorem. 

28.3. We now consider only Cases SP and UT, and take our setting to be that 
of Section 22; Case UB will be treated in Section 29. We take C in the form (19.1) 
with e = c and a Hecke eigenform f G Sk(C) as in §20.6 with trivial T/>; we also 
take K = 0 in (22.3b). Then the Euler p-factor of Z(s, f, x) i s 1 f° r Plc- We 
note that the square of vol(X) of (22.6) is a rational number by [S97, (18.9.3) and 
(18.9.4)]. Therefore from (22.9) and (22.18b) we obtain 

(28.3) r{{s))D(us+*0, f, x) =yo\mdet(r)h+saJ2aPbpS(9PE(s + Xn), fp) 

with ap G Q, 0 < bp G Q, E(s) = E(z, 5; m—m', 0, JT), and a certain finite subset 
A of Gh; ap G Qab in Case SP; u = 2, An = ( n + l ) /2 , and s0 = (3n/2) + 1 in 
Case SP; u = 1, An = n, and s0 = Sn/2 in Case UT; h is defined by (22.4a) with 

Now vol(D) is the Euler-Poincare characteristic of r\H times a constant that 
depends only on the choice of the measure of H. (This is a well-known principle 
valid for any arithmetic quotient of a hermit ian symmetric space. If the quotient is 
compact, it follows from the classical generalization of the Gauss-Bonnet formula; 
the noncompact case was proved in [Ha].) In the present case, the constant is ird° 
times a rational number, where d0 is the complex dimension of H. (The constant 
depends on the type of Gv. In the symplectic case, the rationality follows, for 
example, from [Si, II, p.279, Theorem 11], which gives vol(P) when T = Sp{n, Z). 
In the unitary case it follows from the formula for vol(jD) in [S97, Proposition 24.9], 
in which we can take &et(6v) = 1 for every v G a.) Therefore, using the notation 
of (22.19) and putting a = us + SQ, we obtain 

(28.4) cf(T, r)r((s))Z(a, f, x) 
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= det(T)h+™P(a)A(o)nd°J2a'pb;s{gpE(s + \n), fp) 
peA 

with af
p G Q; a'p e Qab in Case SP. Here A, P, a'p, and bp depend only on (r, r) . 

Strictly speaking, (28.4) holds for a Hecke eigenform f with a special property 
relative to the pair (r, r) as explained in Theorem 20.9; also, given f, we can 
always find (r, r) with which (28.4) holds. Now, for an arbitrary eigenform f and 
arbitrary (r, r) we have 

(28.5) r{(s))Z{<r, f, X) E ^M/L)X*{det(qty)x)N(det(q*y)x)-'Tc{(T,y) 
L<Mecr 

= det(T)h+s*P(a)A(a)nd° £ a ^ * < <7p£(s + A„), fP) 

with the same A, P, ap, and 6P, where the sum on the left-hand side is as in 
Theorem 20.7. Indeed, we obtained (22.19) from (20.19), and (20.19) is a special 
case of the equality of Theorem 20.7. Therefore (28.5) can be obtained by employing 
that equality instead of (20.19). The function A is obtained from £o ELfc ^ °^ 
Theorem 20.9 as explained in §22.9; £o and hv for k £ Za are given in Theorem 
21.4. Thus we obtain 

n/2 
A ( < J ) = L C ( O - - § , xPr)Y[Lc{2a-2n - 2 + 2i, x2) (Case SP, &GZa, nG2Z), 

• 4 = 1 

(n+l)/2 
A(a) = Y[ Lc(2a -2n-2 + 2i, X

2) (Case SP, k G Z a , n (£ 2Z), 

n/2 

A(cr) = f ] | L c ( 2 a - 2 n - l + 2i, x2) (Case SP, k i Z a , n G 2Z), 
i = i 

( n - l ) / 2 
A(cr)=L c (cr - f ,xPr) 17 i c ( 2 o " - 2 n - l + 2 i , x2) (Case SP, fc£Za, n^2Z) , 

i = l 
n 

A(o-) = YlLc{2a - n + 1 - i, xi^4"*"1) (Case UT). 
i = i 

Here pT is the Hecke character of P given in Lemma 20.5 and Theorem 21.4; Xi 
is the restriction of x to P. 

28.4. Lemma . The notation being as above, let hp be an element of Sk(D) 
given for each p G v4, where D is a subfield ofC containing #Qab- Then there exists 
an element q ofSk{C, D) independent of f such that YlpeA^p, fp) = (q, f )• 

P R O O F . Recall that fp GSk{Tp) with Tp = GOpCp~1. Take P c f]peA pP s o t h a t 

ftp G<Sfc(P) for every p € > , let P p = U ^ x p
r £ - Put then /£ = # ( X p ) - i ^ e x p M £ -

Then tipeSk(rp, D) and (/ip, / p ) = (/ip, / P ) . For each &G/3 let A = {pG-4|pG 
G6C} and ĝ  = #(B) Z)P<E„4b ^pllap> where a p G G is chosen so that p G ap6C. 
Define q G 5fc(C, D) by q ^ (g6)6€B. Then <</fc, fb) = #(B) £ p G ^ 6 ( / i p K , A ) 
= # ( ^ ) XlpG^b^p' / p ) ' anc^ h e n c e w e obtain the desired conclusion. 

28.5. Theorem (Cases SP and UT). Let {A(a)} be a system of eigenvalues on 
Sk(C) in the sense that fo|T(a) = A(a)fo for every a with some fo G Sk(C), ^ 0 
(see $20.6). Let \P be the field generated by the A(a) over #Q ab; put 
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(28.6) V = { f G Sfc(C) | f |T(o) = A(a)f for every a } , 

(28.6a) V(^) = V n 5 , ( C ^ ) , V(Q) = Vn5 f c (C, Q). 

Then \P is stable under complex conjugation and V = V(^) <g># C. Moreover, put 
mo = MinvGam t, and assume that the following condition is satisfied: 
(28.7) m0 > (3n/2) 4-1 in Case SP and m0 > 3n in Case UT. 
Then __ __ _ 

< g , g ' ) / < f , f ) G Q if g , g / G V ( Q ) and 0 ^ f G V(Q). 

P R O O F . That \P is stable under complex conjugation follows from Lemma 23.15. 
By Lemma 20.12 (3), Sk(C) is spanned by eigenforms of the operators T(a), which 
are normal. Prom [S97, (11.9.1)], Theorem 9.13 (3), (21.4), and Theorem 10.7 (6) we 
see that the T(d) map Sk(C, &) into itself, and so they generate a ring of semisimple 
^-linear transformations on Sk(C, #) . Therefore we have V = V(&) 0 ^ C and 
«Sfc(C, &) = V(^) 0ZY with a vector subspace U over & stable under the T(a). Each 
eigenform in £Y ®# C, being not contained in V, must be orthogonal to V. Thus U 
is orthogonal to V. 

To prove the main part of our theorem, put Z{s) — Z(s, f, x)- This depends 
only on the A(a). We first consider Case SP. Define \i G Z a so that 0 < \xv < 1 
and mo — kv + \iv G 2Z. Put / = \x + (n/2)a, £' = /i- — [fc], z/ = mo — (^/2), and 
Co = m0 . By [S97, Lemma 11.14 (3)] we can find a Hecke character % of F such 
that x&{x) = x&t l^al* • We consider (28.4) by employing g defined as in §A5.5 
with such x and M5 then gp G A^^(^Qab)- Observe that n + l<v<kv — lv and 
kv — lv — v G 2Z for every z; G a. Evaluate (28.4) at 5 = [y — n — l ) /2 (which 
means that a = <j0). Putting Q = P(((i/ - n - l ) /2)) A(<J0), we thus obtain 

(28.8) cf(r, r)Z(ao) = ^ det(r)>*+*aPr,r(<7o)Q £ (cpfe£?(i//2), / p ) 
PE.A 

with ep G Qab; w e write PT?r for P in order to emphasize its dependence on (r, r ) . 
Prom (22.4a) we see that 5 -f hv — TUQ + (n + l ) /2 G Z for every v G a, so that 
det ( r ) / l + 5 a G <2>Qab; also we can easily verify that Q ^ 0. By (17.21) and Theorem 
17.7 (i) we can put E{v/2) = Aq

VQy with y G A^ a(Qab) and q = (k - I - i/a)/2. 
Therefore, by Lemma 15.8, there exists an element hp of Mh(@Qa,b) such that 
(epgpE(v/2), fp) = 7rn^(hf

py f p ) . Put hp = h'p if k £ 2~1Za ; otherwise put 
hP = q{tip) with the map q of Theorem 27.14. (Recall that Mk = Sk if fc ^ 2 _ 1 Z a 

by [S97, Proposition 10.6 (3)].) Then hp G 5fc(Q) and (h'p, fp) = (hp , / p ) since 
(5^ , 5^) = 0 if k G 2" 1 Z a . By Lemma 28.4 we find an element q of Sk(C, Q) 
independent of f such that Ylp^A^p, / p ) = (q, f ) . Clearly «Sfc(C, Q) = V(Q) 0 
(JA <g># Q), and V(Q) is orthogonal to U ®& Q. Let q r r be the projection of q to 
V(Q) with respect to this direct sum decomposition of Sk{C, Q). Once /i, x> and 
(r, r) are fixed, then gp, Prr, and E are independent of f. Thus given 0 ^ f G V, 
there exists (r, r) such that Cf (r, r) ^ 0 and 

(28.9) cf (r, r)Z(<70) = 7rd°+^l de t ( r ) ^ s a P r , r ( a 0 )Q( q r r , f ) . 

Let S denote the set of all pairs (r, r) for which such an f exists. Since (7Q > 3n/2-\-
1, Z((70) ^ 0 by Theorem 20.13. Therefore, given f G V, we have (qT ; r , f) ^ 0 
for some (r, r) G 6 , which implies that the q r r for all (r, r) G S generate V 
over C, and hence they generate V(Q) over Q. Also we see that PT>r(cr0) ^ 0 for 
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every (r, r) G &. Now, given f G V(Q) and an arbitrary (r, r) G 6 , we may 
not be able to use (28.8), but evaluating (28.5) at s = [y — n — l ) /2, we find 
that (q r , r , f )e^d°-n^Q-1Z{a0)Q. Therefore (g, f)e7r-^-n^Q-1Z(a0)Q for 
every g, f G V(Q). The main assertion of our theorem immediately follows from 
this fact. 

Next let us treat Case UT. Define fi G Z b as follows: fivp = 0 and fiv =mv—mo 
for every v G a; put t' = (fiv - kv + kvp)vesL. Then (22.15a, b) are satisfied. By 
[S97, Lemma 11.14 (3)] we can find a Hecke character x of K such that Xa{x) = 
x~f l^al* • Put v = mo — n and cr$ = mo/2. Define g as in §A5.5 and mf as in 
Proposition 22,2; then m'v=^v-\-n for vGa, and hence 2n<u = mv — m'v for every 
v e a.; gp G A4M+na(Q)5 since x* is algebraic-valued by Lemma 17.11. Evaluate 
(28.4) at s= (ra0 — 3n)/2. Then a and Z?(s-r-An) become cr0 and E(u/2), and 
m - m ' = i/a; det(r) h+ a ae$.JBy Theorem 17.7 (i) we find that E(v/2) G A W Q a b ) 
so that epgpE(u/2) G .Mfc(Q). Then we can repeat our argument in Case SP, by 
putting hp = q(epgpE(v/2)) without employing Z\£a. 

28.6. Corol lary. The notation being the same as in (28.2) and Theorem 28.5, 
let 0 ^ f <-• Ub)beB e V(Q). Then (g, fa) G (f, f )Q for every g G Mk(Q) and 
every a G B. 

P R O O F . We may assume that g G <S^(Q). Indeed, M.k 7̂  <S/c only if m = /ia 
with // G 2 - i Z , in which case we put g' = q(#) with the map q of Theorem 27.14. 
Then g' G <S&(Q) and ( # , / ) = ( < / , / ) for every / G <Sfc, so that it is sufficient 
to treat the case g G <Sfc(Q). Given g G «Sfc(Q), we may assume, changing C for 
its suitable subgroup, that g G <Sfc(ra), where ra = G Pi aCa~l. Fixing a G B, 
define g <-> {gb)bes € <S/c(C, Q) so that ga = g and ^ = 0 for a ^ 5 G B. 
We have <Sfc(C, Q) = V(Q) 0 (W <g><j/_Q) with U as in the proof of Theorem 28.5. 
Let g' be the projection of g to V(Q) with respect to that decomposition. Then 
# ( S ) _ 1 ( ^ , fa) = <g, f) = <g', f >, which belongs to (f, f )Q by Theorem 28.5. 

28.7. L e m m a. In the setting of Sections 24 and 25, let R G M"£r(S) with 
a subfield E of C containing Qab and the Galois closure of K over Q, and let 
S0 = De^>AlJl and S{z, w) = S0(diag[z, w]) for (z, w) eHn x 7-T, where De,e>, 
which we ignore if n ^ r, is as in $25.2, and Af/gL with 0 < p G Z a is as in 
Lemma 15.8 and the proof of Theorem 17.9. Let Lv be the operator of (15.3) 
defined on rir with u(a, b) = det(6)m, ra = ^a+2 p + e — ef. Then there exists an 
element T(z, w) of *%2ve8LYliLo^'IJlS which is holomorphic in w and such that 
(S(z, w), f{w)) = (T(z, w), f(w)) for every f G S^, provided v > (n + r ) /2 in 
Case SP and v >n-\-r in Case UT. 

This will be proven in §A8.12. 

28.8. T h e o r e m (Cases SP and UT). The notation being as in Theorem 28.5, 
let 0 7̂  f G V(Q); let x be a Hecke character of K such that Xa(x) — #ll#a|~£ with 
£ G Z a , and let <r0 € 2~~1Z. In addition to (28.7), assume the following condition: 

Case SP: 2n+l—kv-\-jiv<(7Q<kv — \iv where /J,V=0 if [kv]—£v G 2Z and ^v = l 
if [kv] — £v £ 2Z; 00 — kv + fiv G 2Z for every v G a if <7o > n and 
CTO — 1 -f kv — fj,v G 2Z for every v G a if do < n. 

Case UT: 4n - (2kvp + 4 ) < 2cr0 < mv - \kv - kvp - 4 | and 2o-0 - £v G 2Z 
for every z; G a. 
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Further exclude the following cases: 
(A) Case SP: <r0 = n + 1, F = Q, and x2 = 1; 
(B) Case SP: a0 - n + (3/2), F = Q, x2 = 1 and [fe] - £ G 2Z; 
(C) Case SP: a0 = 0, c = g, and x = 1; 
(D) Case SP: 0 < cr0 < n, c = g, x2 = 1> a^d the conductor of x is g; 
(E) Case UT: 2cr0 = 2ra + 1, F = Q, Xi = #> and fe„ - kvp = tv\ 
(F) Case UT: 0 < 2cr0 < 2n, c = g, Xi = 02<T°> and the conductor of x is t. 

Here xi is the restriction of x to F£ and 6 is the Hecke character of F corre
sponding to K/F. Then 

(28.10) Z(cro, f, x)/(f, f) e T T ^ H + ^ Q , 

where d = [F : Q], \m\ = ^ € a m « ' a n d 

{ (n + l ) a 0 - n 2 - n (Case SP, fc € Z a and a0 > n), 

ncjo — n2 (Case SP, k ^ Z a or ^o < n), 

2na0 - 2n2 + n (Case UT). 
Notice that n\m\ + de G Z in all cases. If /c ^ Z a , for example, the above 

condition on CFQ shows that G$ + kv G Z, which implies that n|ra| -f de G Z. 
P R O O F . There are two ways to prove this: the first one applies to the whole 

critical strip, and the second one only to the right half of the strip. However, the 
latter can cover certain cases to which the former does not apply. Let us begin with 
the first method, using the notation of §§25.4 and 25.5, in which the weight of f 
was written h instead of A:; at the end of the proof we shall reinstate k as the 
weight of f, and obtain the condition on CTQ in terms of k as stated above. 

Cast UT (1st method). Define dv, e, e', and A; as in §25.4; put m = (kv 4-
kVp)vesi a n d m ' = {hv + hvp)vea. (At the end we must change m! into m.) We 
evaluate (25.8a) at s = cr0; we have to change c, as we did in §25.4, so that the 
conductor of x divides c. Put v = 2GQ and H'h {%, s) = A2 n(s, x)Hb,a{ti s) for 
3 G H2n. We first treat the case 2<7o < 2n. For the reason explained at the beginning 
of §25.5, H'ha is a function of type (17.24). Therefore, by (17.30), H'ba(i, v/2) = 
A^Ri with Rid) = J9r(3, i//2, fc', x, 0 , where /* = 4n - 1/, p = (m - /xa)/2, and 
&' is such that (kv -h fc(,p)vea = M&- By Theorem 17.12 (iii) we can put R\ = 7raR 
with a = dn(2n + 1) and R G M^Q). (Our Hf is a function on H2n, so that 
we have to take 2n in place of n in Theorem 17.7. For example, 7r~~2n\p\ A^R 
is Q-rational.) We have to assume that 0 < mv — /J, G 2Z for every v G a. Since 
mv = hv + /ivp — dv = 2/i^p + £v, this means that 
(i) An - (2hvp + £v) < is <2n and v - tv G 2Z for every i; G a. 
Case (F) of our theorem must be excluded. In (25.8a) we have cm/(s /) G 7rd°Qx 

for the same reason as in (25.11); employing the formulas of Theorem 12.13 and 
Lemma 25.3, we see that ^(s) ^ 0 if in addition to (i) we assume 
(ii) v < mv + 2dv whenever dv < 0. 

Define So as in Lemma 28.7 for the present R. Then iraS = [De^Hf
ba(^, v/2)]° 

a n d 7rn\e-e~2p\S 

is a Q-rational function, to which Lemma 25.8 is applicable. Take 
T(z, w) as in Lemma 28.7 and put Ta,b(z, w) = T(z, r}w)j^{w)~l. For the same 
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reason as in Lemma 25.8, we can put Ta^(z, w) = 7r
n\2P^e-e I ]T\ tabi(z)gabi(w) with 

tabi £ J^h (Q) an(^ 9ai>i £ Mh(Q)- The integral over Va of (25.8a) is a constant 
times (fa, S(z, rjw)jl^(w)~1), where /a(w) = /a ( -w*) . By the property of T in 
Lemma 28.7, the last inner product equals (/£, Tajfc(z, it;)), which means that we 
can replace K\nJ'h at s = v/2 in (25.8a) by iraTa^(z, —w*). Putting g'abi{w) = 

gabi{—w*) and changing tabi for its suitable scalar multiple, we find that 

(iii) 2(a0 l f, X)fb(z) = ^ £<<£ w , / a >t'oW(z) 
a,z 

with 7 = a -f n\2p -f e — e'| and some £'a6i G JVj£ (Q). Take the Fourier expansion 
with respect to z, and compare nonzero Fourier coefficients. Then we find that 
Z(a0, f, x) = ^^2a(ga, fa) with some ga G Mh(Q). Applying Corollary 28.6 
to the right-hand side, we obtain (28.10). (If v satisfies (i) and dv > 0, then 
2n < 2hvp + £v = hv + hvp — |dv|, so that 2<7o satisfies the conditions stated in our 
theorem. Conversely, those conditions imply (i) and (ii) if 2<TO < 2n.) 

The case 2cr0 > 2n is similar; we use Theorem 17.12 (i) or (v) and (17.27); we 
need (ii) in order to insure that iP'(s) ^ 0; also, instead of (i) we assume 

(iv) 2n < 2ao < mv and 2<7o — £v G 2Z for every i> G a. 

Now /i-y -f hvp — \dv\ = mv if dv > 0, and hv + /iV/0 — |dv| = mv •+• 2dv if dv < 0. 
Therefore, changing (/i, m') into (/c, m), we obtain the condition on cr0 as stated 
in our theorem. (If dv > 0, then (iv) implies that 2hvp + £v > 2n, and hence 
An — (2hvp + lv) < 2n < 2<7Q; if dv < 0, then —£v < hvp — hv, and hence 
An — (2hvp + £v) < An- (hv -f hvp) < n < 2cr0, if we assume hv -f /ivp > 3n.) Also 
we have to exclude the case in which 2cr0 = 2n -f 1, F = Q, and Xi = #• Even in 
that case we have (28.10) if kv — kvp ^ £v, as will be shown by the second method. 

Case SP (1st method). The case of integral k can be proved in the same way as 
above. Writing again h for the weight, take e G Z a so that x&(x) — #a+ e l xa|~ / l~ e 

and 0 < ev < 1 for every v G a; put k = h + e. (That is what we did at the end of 
§25.4.) We evaluate (25.8a) at s = <7o/2. Suppose cro < ft. We employ (17.22) and 
Theorem 17.7 (v) with v = 2n -f 1 - cr0. We have to assume that 0 < kv — v G 2Z 
for every i; G a, that is, 2n + 1 — hv — ev < CJQ < n and cr0 — 1 -f hv — ev G 2Z 
for every v G a. In this case ^(s) ^ 0 with no extra condition. Writing (fc, yu) for 
(/i, e), we obtain "the left half" of our theorem with the condition as stated in our 
theorem. "The right half" can be obtained from (17.21) and Theorem 17.7 (iii). (If 
2n+l — kv+/j,v < cro < kv—fjLv, then kv—\xv > n+1 / 2 and 2n+l—kv+/j,v < n+1/2. 
Thus <7o < kv — \xv if <7o < n, and cro > 2n + 1 — kv + nv if cro > n.) 

The case of half-integral weight can be handled by employing [S95b, (8.4)] instead 
of (25.8a). 

Case SP (2nd method). Define fi G Z a and take cr0 as in our theorem; assume 
that <70 > n + 1 / 2 . Put I = /x+(n/2)a and i/ = c r 0 - (n /2) ; then v > ( n + l ) / 2 and 
0#< k — I — l/a. G 2Za . Define g as in §A5.5 with the present /JL and %. Evaluating 
(28.4) at s = ( z / - n - l ) / 2 , we have again (28.8) withQ = r ( ( ( z / - n - l ) / 2 ) ) ~ 1 A ( a 0 ) 
for the present v and CTQ. By the same procedure as in the proof of Theorem 28.5 
we find an element q^ of V(Q) such that 

(28.11) cf(r, r)Z(<T0) = ^ 0 + n | g | d e t ( r ) ^ a P T , r ( a 0 ) Q ( q „ f) 

with q= (k — l — va)/2. We have de t ( r ) / l + s a G ̂ Q a b for the same reason as in the 
proof of Theorem 28.5. Let us now assume that k G Z a ; then cro G Z. By (22.4a) 
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we have qv + s + hv = kv — (n + l) /2 , and so from the explicit form of T((s)) in 
§22.3 we see that T T ^ + ^ I / X O O ) - 1 G T T ^ I - ^ Q * , where 7 = n 2 /4 if n G 2Z and 
7 = (n2 —1)/4 if n ^ 2Z. Applying Lemma 17.5 (2) to each factor of A, we find that 
A(cr0) G 7r^n+1)CT°-d/3, where /? = n(3n + 4)/4 if n G 2Z and /? = (n + l)(3n + 4)/4 
if n ^ 2Z. Therefore, dividing (28.11) by (f, f ) , we obtain our assertion in Case 
SP from Theorem 28.5, at least for cr0 > n + 1/2. In view of Theorem 17.7 (i) we 
have to exclude the case v — (rc + 2)/2 if F = Q. Also, if v — (n + 3)/2, we cannot 
apply Lemma 15.8 to E(u/2). However, if fi ^ 0, then g is a cusp form, and hence, 
by Theorem 17.9 (ia), 7T-n^epgpE{u/2) is a #Qab-rational element ofK* of (15.4) 
with suitable u and a, so that we can take hp = 7T~n^p[epgpE(u/2)) with the 
map p of Proposition 15.6 (3), and eventually obtain q^ from hp. This is why we 
have the condition [k]—£e 2Z in the bad case (B). The case of half-integral weight 
can be handled in the same way. 

Case UT (2nd method). Define \i G Z b by (22.15a, b) with t' = -£; put m! = 
(fiv + jivp + n)v£8L and v = 2<7o - n. Then n <v <mv — m'v and mv — mf

v - v e 2Z 
for every v G a. We have (28.4) with g defined by using the present \i and x-
We evaluate (28.4) at s = (^/2) - n; then we have de t ( r ) / l + s a G # again. We 
see that Xa(#) = sgn(x)2a°a for x € F£, so that we can apply Lemma 17.5 (2) to 
A(<7o). Therefore we obtain our assertion in Case UT, at least for CTQ > ft, in the 
same manner as in Case SP. There is no problem if g is a cusp form, and so the 
conditions in Case (E) are stated as above. 

We now consider the arithmeticity of the Eisenstein series of Section 23. 

28.9. Theorem (Cases SP and UT). Let n, r, f, g, x be as in Theorem 23.11; 
let mo be as in Theorem 28.5. Suppose that f G V(Q) and g is Q-rational; 
suppose also that mo > (3r/2) + 1 in Case SP and mo > 3r in Case UT. (Notice 
that f G <S£(C), so that n in Theorem 28.5 is now r.) Let \ n = (n + l ) /2 in Case 
SP and Xn = n in Case UT. In the setting of Theorem 23.11 we can state the 
arithmeticity of each function as follows: 

(I) Let 11 be as in Theorem 23.11 (I). Suppose that /i > (3r/2) + 1 in Case SP 
and /a > 3r in Case UT. IfF = Q, suppose moreover that ji £ {An + r + l /2, A n + r + 
1} in Case SP and n 7̂  A n + r + 1 in Case UT. Then TT-°cE^r{z, /x/2; g, T) and 
n~aEq(z, fjb/2; f, Xi C) are Q-rational, where a = Ylvea(mv — /x)(n "~ r ) /2-

(II) Suppose F = Q and \i = An + r + 1. Then 7T~aEq(z, /z/2; f, x> C) with a 
as above is Q-rational in Case SP if x2 ¥" 1> and also in Case UT if xi ¥" #M-

(III) Let u. be as in Theorem 23.11 (III). Exclude Cases (A), (Bj^JC), (D), 
and (F) of the same theorem. Then n~P (f, f )~lTq(z, /x/2; f, x> C) is Q-rational, 
where (3 = J2v<EEL(mv + fj)(n + r)/2 - de with e = [(n + r)2/4] in Case SP and 
e = (n + r)(n + r - l ) /2 in Case UT. 

PROOF. We evaluate (24.29) at s = fi/2 as we did in §25.7. By (25.11), cm(s) G 
7TdoQ* at 5 = fi/2, and by Lemma 17.5 (2), h2r{^/2, x) 6 ?rdMQ*b with an integer 
M which can be explicitly given. Therefore, by (25.9) and (25.10), we find that 

(28.12) Z{uu.l2, f, X)Eq(z, jz/2; f, x, C) = ^ ^(h'ai, / a><4(*), 
aeB 

where 7 = X^ea(m<; - /x)(n + r) /2 + dM and p ^ , ft^ G A/^(^) with some t. 
Now (25.9) was obtained by applying Lemma 24.11 to (Hq,a)°. Instead, by virtue 
of Lemma 28.7, we can replace Jq,a by a function Tq,a(z, w), which is holomorphic 
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in w, and similar to T^a in the proof of Theorem 28.8. We eventually find (28.12) 
with h!ai £ M.k{&)- Here we have to verify that Jq^a is a function of type A^R of 
Lemma 28.7, which is so if we exclude the bad cases stated in (I) and (II). Then we 
find that (A'ai, / a ) e (f, f )Q by Corollary 28.6. By Theorem 20.13 and (28.10), 
Z(<70, f, x) € 7rr 'mi+d£ (f, f )QX for aQ = ufi/2 with e given by the formula there 
in which we have to take r in place of n. An explicit calculation of M shows that 
M = r/i + e. Therefore we obtain our assertions for Eq in (I) and (II). We obtain 
the assertion for E^r for the same reason as in §25.7. 

As for (III), the desired result can be derived from (24.29a), Theorem 17.7 (hi, 
v), Theorem 17.12 (i, hi), (17.22), and (17.30) in a similar way. If k £ Z a , then we 
use [S95b, (7.22)]. 

28.10. In the above theorem the case in which F = Q and \i = A n + r + 1 is 
excluded, though that case can be handled under a certain condition on x- It is 
conjecturable that the arithmeticity as in the above theorem is always true for 
\x — A n + r + 1 even when F = Q. In fact, we can at least prove the rationality as 
stated in the above theorem if the following inequality holds: 

(28.13) (n + r)(A n + r - 1) > 4Ar - 2 + (n + r - 2)ra. 

Here we assume F = Q, and so m = (mv)vea € 2 _ 1 Z. Indeed, if /i = A n + r + 1, 
then the degree of near holomorphy, written t in the above proof, is given by 
t = (n 4- r)(m - \i + 2)/2. Then Lemma 28.2 is applicable to h'ai of (28.12) if 
m > 2Ar — 1 + 1 , which is equivalent to (28.13). Thus, under (28.13), that lemma 
allows us to replace h'ai of (28.12) with p(h'ai), which belongs to <S£(^)- Therefore 
we obtain the desired arithmeticity. 

28.11. Corollary. The notation being as in Theorem 28.9, suppose that m = 
//a with JJL 6 2~1Z such that \i > (3r/2) + 1 in Case SP, \x > 3r in Case UT, 
and fj, > A n + r in both cases; if F — Q, suppose in addition that n $. JA n + r + 
1/2, A n + r + l } in Case SP, and JLL ^ An + r + l in Case UT. Then E^r(z, /x/2; g, T) 
and Eq(z, /x/2; f, \i C) are Q-rational. 

P R O O F . This follows immediately from Theorem 28.9 (I), since a = 0 if m = /za. 

28.12. Proof of Theorem 27.16 (1) in Cases SP and UT. Let us first treat Case 
SP. The desired fact is included in Theorem 28.9, but the proof of the theorem 
requires the map q of Theorem 27.14, which is guaranteed by Theorem 27.16. 
Therefore, to prove Theorem 27.16, we need the same theorem, but this does not 
produce any vicious circle, since the proof of Theorem 28.9 on Gn requires Theorem 
27.16 on Gr with r < n, and we can justify the whole proof by induction on the 
dimensionality, which is as follows. 

First of all, the case r = 0 of Theorem 27.16 (1) is guaranteed by Theorem 17.7 
(i). Therefore, if n = 1, the stability of £^ under Aut(C/Q) is true at least for 
fx > 2; in fact, it is true even for /i = 2 as noted in Remark 27.17 (A). Thus we 
have the map q of Theorem 27.14 for the forms on G1; see [S87b, Theorem 9.1 and 
Proposition 9.4] for the most comprehensive results in the case n = 1. Let /x be as 
in Theorem 27.15 with 1 = r < n. Notice that [i G A(l, /za) if and only if [i > 2. 
Therefore Z(s, f, x) ¥" 0 a t s = ji if fi > 2, and hence the proof of Theorem 28.5, 
as well as that of Corollary 28.6, is valid for the forms of weight /ia on G1 with 
such a fi. Consequently (28.10) is valid for n = 1 and cr0 = /i; then our proof 
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of Theorem 28.9 establishes Theorem 27.16 (1) for r = 1. This settles Theorem 
27.16 for n = 2. To prove Theorem 27.16 for an arbitrary n > 2, we assume that 
it is true for Gn for every nf < n. Let 1 < r < n and let /i be as in Theorem 
27.15. Our induction assumption guarantees the map q for the forms on Gr. Since 
\i > (3r/2) + 1, Theorem 28.5 and Corollary 28.6 are valid for the forms of weight 
/xa on G r , and again the proof of Theorem 28.9 establishes Theorem 27.16 (1) for 
those r and /i. This completes the proof in Case SP. Case UT can be handled 
similarly. 

28.13. Remark. (A) For m = /xa we already stated in Theorem 27.16 the 
arithmeticity of E^r(z, /x/2; g, JP) under the condition that /J, > A n + r if F ^ Q 
and \i > Xn+r + 1 if F = Q. Thus the result for \x = \n+r given in Corollary 28.11 
is not included in that theorem. 

(B) In [S76] and several subsequent papers the author obtained various results 
concerning the critical values of the zeta functions on GL2 and GL2 x GL2, as well 
as some other related zeta functions. The most comprehensive results in the case 
with a totally real number field as the basic field were given in [S88] and [S91], in 
which references to the papers in the intermediate period can be found. In [S76] 
we formulated the result of type (28.10) in the form, for example, 

(28.14) [n-k (/, f)-lD{m, / , gj\" = *-*</", r)~lD{m, f , g°) 

for every cr£ Aut(C), where / is a Hecke eigenform of weight k and g is another 
modular form with respect to congruence subgroups of SZ/2(Z); D(s, / , g) is of 
type (22.4). Though we can in fact state (28.10) in such a form, in the present 
book we content ourselves with a weaker statement, since the proof of the results in 
the form (28.14) would make our exposition longer and more tedious. At any rate 
we believe that what was done in Section 10 combined with careful examinations 
of the behavior of the Eisenstein series of Sections 16 and 17 under Aut(C) can 
give the desired formulas with no extra new ideas. Also, we can prove, employing 
(22.9), the algebraicity of the critical values of the functions of (22.4) in the form 
similar to (28.10), but the task of giving precise statements for these can be left to 
the reader as easy exercises. 

There are a few more technical points. In [S76] we relied on the existence of 
a "primitive" Hecke eigenform, which is not guaranteed in general, in the case of 
Sp(n, F ) , for example. However, in [S81a] we introduced a method by which this 
difficulty can be avoided, and mentioned that the higher-dimensional symplectic 
case could be handled by the same method. Indeed, in this section we proved 
the expected results by the basic idea of [S76] combined with the technique of 
[S81a]. The latter requires the nonvanishing of Z at a critical point, which we 
proved in Theorem 20.13, and the result is best possible in the sense of Theorem 
22.11. However, given a point a smaller than the limit of Theorem 20.13, it seems 
possible to find a suitable \ s u c n that Z(a, f, \) ¥" 0- A result of this nature for 
the zeta function on GL2 was proved by Rohrlich in [R]. A similar result in the 
higher-dimensional case will certainly allow us to state our theorems in improved 
forms. 

(C) As we already noted at the end of Section 15, if G = SL2(F), the map p 
of Lemma 28.2 can be established for every k € 2 _ 1 Z a with no condition on the 
degree of near holomorphy, and the nonvanishing of Z can be given in a better 
form, as noted in Theorem 22.13. Therefore Theorems 28.5 and 28.8 can be stated 
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in stronger forms. For example, if k G Z a , these theorems are true if we assume 
mo > 2 instead of (28.7). For details, see [S91] and the papers cited there. 

Also, take r = 1 in the setting of Theorem 28.9 in Case SP and assume m0 > 2. 
Then the conclusions of (I) and (II) are true for every /i as in Theorem 23.11 (I) 
and (III), excluding the cases specified there, as already noted in §28.12. 

29. Main theorems on arithmeticity in Case U B 

29.1. We now consider Case UB with (V, <p), G^, and 3 ^ as in §26.1; we use 
the symbols rv, tv, and i^ defined by (26.1) and (26.5). Also, we put d = [F : 
Q], n = dim(V), and 

(29.1) a' = {vea\rv > 0 } . 

This is the same as a' of (12.5). By (3.23) and (3.24a, b) we have 

(29.2) jk
a(z) = J ] d e t K ) - * - f ] jv(a, z)k^k^ (k G Z b , a G G£). 

v€& v€a.' 

Thus we can ignore the kv for v G a' in the definition of .M^, but we need them 
in the definition of Eisenstein series of type E^iip. 

In our proof it will become necessary to study the nature of (Af^nf)(zJ w) defined 
by [S97, (23.6.4)]. To recall the definition of A^f, we take xj) = <p in the setting 
of §26.11. Then both t and LV are maps of 3 ^ x 3 ^ into H*. Let k G Z b and 
q £ Za . (This q is not q in §26.11; q there is now 0; also we use q in place of 
m in [S97, (23.6.4)], so that we shall speak of Ak

q.) We consider SP{T) of §13.13 
for Type A with p G Za ' and T = Y[vea, TV,TV = C£ for every v e a'. Then, for 
u G T and (z, w) G 3 ^ x 3^ we put 

(29.3) £(u) = H det [4K)]^, &,«;(") = f j det[^(fMK)^7V(^))]1^1. 
uEa vEa 

9«>0 qv<0 

Here ^ 0 0 (resp. ^ (V)) denote the lower left (resp. the lower right) (rv x rv) -
block of F ; M(wv) and N(zv) are defined by [S97, (6.11.4)]. Then f G 5p/(T) 
and Cz,™ € 5p//(T) with p' = (Max{rvqv, 0})vea, and p" = (Max{-r„gv , 0})v € a , ; 
there is an irreducible subspace W (resp. Z) of SP>(T) (resp. 5p//(T)) containing 
£ (resp Cz,w)] see [S97, §23.6]. Now for a function / on H* we define Akf to be a 
function on 3 ^ x 3 ^ given by 

(29.4) (Akf)(z, w) = ^ ( / l U t r 1 ) ^ * , u;)), BZtVJg = [Ez Dj g){^ &|U,), 

where C/ is as in [S97, (22.1.6)], # is a function on H*, p{x) = det(x)fc, and 
EzDp

vg, as defined in §13.13, is a function on W* with values in Si (W, 5i(Z, C)). 
In [S97, Lemma 23.9] we showed 

(29.5) U d e t ^ - ^ Ah
q{f\\k[/3, j}s)(z, w)=jk

0
+<1(z)-1j^(wf\Ak

qf)((3z, >yw) 

for (/?, 7) G G^ x G*\ where [/?, 7]$ is defined by (26.36). (The reader is reminded 
of the difference between the present notation about the factor of automorphy and 
that of [S97]; see §5.4.) 
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29.2. Lemma. Let f e A/^(Q) with e e Za ; put h = k + q, a = ^2ve&rvqv, 
and e! = ( e ' J^a , e'v =Max{ev+rvqVi 0}. Then 

(29.6) T T - q " 1 ^ / ) ^ , w) = £ f t ( * ) / M W 

with a finite set of indices I and gu h{ G A/jf(Q), where q = Px(X^<Ea(^ ~~ 

P R O O F . By (29.5), A*f has at least the desired automorphy property of the 
right-hand side of (29.6). To prove its near holomorphy, we can reduce the problem 
to the nature of (Aqf)(z, i^) or (Ag/)(i^, w) by the same argument as in the proof 
of Lemma 26.12. Put g = /HE/"1. Then g € Ne, and so, by Proposition 13.15 (1), 
the components of EzD^g belong to Afe . Since (z,w and L(Z, W) are holomorphic 
in (2, w), we see that (Aqf)(z, w) is a polynomial in (i(z, w) — i(z, w)*) whose 
coefficients are holomorphic functions in (2, w). Therefore the argument in the proof 
of Lemma 26.12 shows the desired near holomorphy. 

To prove the Q-rationality, take the symbols ZQ, IUQ, 30, and 31 as in §26.11. 
Put A = A(£/ -1, 31), /i = /i(f7 -1, 31), and j = j{U~1, 31) for simplicity. Prom 
the definition of U in [S97, (22.1.6)] we see that Uv has algebraic entries for ev
ery v 6 a; also by Lemma 4.13, ZQ, WO, 31, and 30 have algebraic coordinates. 
Therefore £, Cz0,w0i M(WQ), N(ZO), A, //, and j are all Q-rational. Define £' and 
C by £'(tx) = ^ ( A - ^ . V 1 ) and C'M = C W ^ M ) . Then (£.0,™0</)(3i) = 
( £ Z D ^ ) ( £ , C z 0 ^ o ) ( 3 i ) = i - f c ( ^ Z ^ / ) K / , C')(3o) by the generalization of (12.21) 
and (12.24a, b) mentioned in §13.13. Put fi(u) = g{pvp(lo)~1u • ' p ^ o ) - 1 ) and 
Ci(u) =C{tPvp($o)'U'Pv($o))- Fixing our attention on one v G a, we suppress the 
subscript v. By (26.41a, b)) we have 

Ci(u) = det [£'{tM(w0)-tX-tpvp(io)upMo)^N(z0))}"1 

= det [£'(diagppp(2o), tp(wo)]-tM(w0)-tXutiN(z0)diag[pp(w0), p(z0)])]~9 

= det(p(wo)p(z0))~9('(u). 

From the explicit forms of M(w) and N(z) in [S97, (6.11.4)] we see that £(M(w0)u-
tN(zo)) = £'(u). Therefore we obtain £1 = det (p(wo)p(zo)) 9£' by the same type 
of calculation as for £1 and £'. Now, in the proof of Lemma 26.12 we have shown 
that <pfc(3o) = Vk(zo)Vk(w0)c\. Therefore 

( ^ r w ^ z ( 3 o ) - 1 S z ^ / ) ( e ' , C ' ) ( 3 o ) = [ % ( 2 o ) ^ ( ^ o ) q ] - 1 ( ^ Z ) 7 / ) ( 6 , C i ) ( 3 o ) 

= [yh(zoWh(wo)q]-\EzDyf){Z', C')(3o) 

= jk[<ph(z0)<ph(w0)q]-l(BZo,Wo9)(il). 

By Theorem 14.9 (2), n~aEzD^f 6 M%Tw9trz<5). Since f and C' are Q-
rational, 7r~Q times the first quantity of the above series of equalities is algebraic, 
and hence n~a DPh(zo)^P/i(wo)]~ (\~1{Aqf){z0, w0) € Q. Now we can repeat the 
proof of Lemma 26.12 with A*f in place of f° there, since the necessary properties 
of the function are guaranteed by what we proved in the above. Thus we obtain 
(29.6). 
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29.3. Lemma. In the setting of%26.11, let R G M?,a{Q), S0 = B{{Ap
VSiR)\\k 

U~l), and S(z, w) = S0(t(z, w)) for (z, w) e ^ x 3* , where v G Z, 0 < p G Z a , 
k is an element ofZh such that (kv -+- kvp)ve& = 2p-\- i/a, zl£a is as in Lemma 15.8 
and the proof of Theorem 17.9 in the unitary case, and B denotes the operator BZjW 

of (29.4) with Qv > 0 for every v, which we consider only if ip = ip. (Thus Bg = 
(D^g)(£), which does not involve the parameters (z, w), and So = Affgi(R\\l/aU~1) 
if ip ¥" ¥>•) Let h = k + e — e' and m= (hv -f hvp)ve&; let Lv be the operator of 
(15.3) defined on 3 ^ with u(a, b) = det(6)m. Then there exists an element T(z, w) 
°f S^Ga X ^ o QLIS which is holomorphic in w and such that ( S(z, w), f(w)) = 
(T(z, w), f(w)) for every f G S%, provided v > Maxv€SLrv. 

This will be proven in §A8.13. Once this is established, we have an expression 

(29.7) T T - ^ H - q " 1 ^ , w) = £ ^ ) ^ W , 
iei 

where a and q are as in (29.6), I is a finite set of indices, TV = 2~1(dim(Vr) -f 
dim(WO), 9i G .A/£'(Q), and hi G Mh(Q). Indeed, put / = TT-^A^R. Then 
/ is Q-rational by Theorem 14.12, and 5 = ixN^Ak

qf, to which Lemma 29.2 is 
applicable. Thus S has an expression of the form (29.6), so that 5 has an expression 
of the form (29.7) with Q-rational nearly holomorphic gi and hi. By Theorem 14.9 
(2), the same is true for every element of E v g a E S o Q ' ' ^ ' anc* hence, for T in 
particular. Now T is holomorphic in w, and so the proof of Lemma 26.12, modified 
in an obvious way, gives the desired expression (29.7). 

29.4. The notation being as in §26.10, let {A(a)} be a system of eigenvalues on 
S%{D*) in the sense that f0|T(a) = A(a)f0 for every a with some f0 G S^{D^), ^ 
0, where h G Z b . Put 

(29.8a) V = {f G S%{D*) | f|T(o)=A(a)f for every a } , 
(29.8b) V(Q) = V H 5 [ ( ^ , Q) (see §28.1). 

By Lemma 26.14, the A(a) are algebraic. Therefore we have V = V(Q) ^ ^ C . For 
the same reason as in the proof of Theorem 28.5 we have S£(D^, Q) = V(Q) © U 
with a vector space U over Q that is orthogonal to V(Q). We are going to state our 
main theorems on the arithmeticity, in which we need also a Hecke character \ of 
K such that Xa(#) = #£|#a|~~* with £ G Z a . Here £ is basically arbitrary; also we 
denote by h, instead of fc, the weight of a Hecke eigenform. However, whenever 
we consider an Eisenstein series Ep(z, v/2\ f, x> D^)i w e denote the weight by k 
and assume that £ = (kv — kvp)vea, as we did in §26.10. 

29.5. Theorem. The notation being as above, put rao = Mmvea'{hv + hvp) and 
assume that rao > 2n and G£ is not compact. (See Theorem 29.7 below for the 
result in the compact case.) Then 
(29.9) (g, g ' ) / ( f , f) e Q if g, g' e V(Q) and O ^ f e V(Q). 

Moreover, let O ^ f E V(Q) and let do be an element of 2 _ 1 Z such that 

(29.10a) » - U , H ) S > . s ( I ( < + / , o l h c r ^ 

(29.10b) 2<T0 - £v G 2Z for every v G a, 

(29.10c) cr0 < 0 or 2<r0 > n if c = g, \\ = 62<7°, and the conductor of \ is r, 
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where xi -is the restriction of x to F£ and 9 is the Hecke character of K corre
sponding to K/F. If <p is isotropic, suppose also that 
(29.11a) hv - hvp > £v for every v G a, 
(29.11b) 2a0 ^ n + 1 if F = Q and xi = On+1. 
Then 

(29.12) £(<x0, f, x ) e ^ q ( f , f )Q, 

where 7 = (dn/2){2a0 - n + 1) + £ v € a {^(ft* + /ivp) + {tv/2){2hvp + 4 ) } and 
<I = Ptf (X^ea 4 T V , E v G a ^r*>) with the CM-type r = ]T v € a rv of K fixed in §3.5 
and the period symbol PK of §11.3. 

Notice that 7 G Z. Indeed, for every v G a we have ricr^ + {tv/2)£v = 2rv<jQ -f 
(tv/2)(2cro + 4 ) ^ Z by (29.10b), from which we can easily derive that 7 G Z. 

PROOF. Put q = (hv — hvp — 4)uea and k = h — q; then £ = (kv — kvp)ve8i. 
We needed the ideals b and c for the definition of D^. Changing c for its suitable 
multiple, we may assume, without changing Z(s, f, x)> that the conductor of \ 
divides c. Define EA by (16.27) in Case UT with these fe, x, b, c. Then (16.24a, 
b) are satisfied with /c = 0. In [S97, (23.11.3)] we proved 
(29.13) e(8)ch(s')#(s)Z{89 f, x)/6(z) 

= y ) x h ( d e t ( o ) ) / A-(s, x ) ( 4 ^ b , a ) ( z , ^ ) / a W ^ r d ^ . 

Here ra = (/iv 4- hvp)vesL; the symbols 23, (fb)beB, A™, #6,OJ and c^ are essentially 
the same as those in the proof of Theorem 26.13, though we have ip = </? here; they 
are explained in [S97, §§23.10 and 23.11]; ^ is given in [S97, Lemma 23.8]; e(s) is 
the factor written e • ds in [S97, (23.11.3)], which equals e(fc, m, s)c(x) of [S97, 
(23.10.3)]. (In fact, k and m there are (fcv -f- kvp)vE8L and g here. Also we should 
add corrections: The symbol C(o^a * V a 1 ) °f [S97, p.192, line 3 and line 9 from 
the bottom] should be £( —t)K* • V Q 1 ) ; a^ s o ' ^n e right-hand side of the equality in 
[S97, p. 194, line 5 from the bottom] needs an extra factor (—1)*, where t is the 
sum of rvmv for all v G a such that mv > 0; the quantity of [S97, p. 195, line 5] 
needs an extra factor (—l)rm.) Putting m* = kv + kvp and /i = 2ao, we evaluate 
(29.13) at s = fi/2 with \x under the condition 

(*) 2n - m* < fi < m* and fx — m* G 2Z for every f G a. 

Observe that m* = 2hvp + £v and (*) follows from (29.10a, b), since ra* = 2hv — 
£v - 2qv. Now from [S97, (A2.9.2)] we easily see that ch(sf) G 7rd°Qx at s = a0, 
where do is the complex dimension of y . As for ^(s) , by [S97, (23.2.1) and Lemma 
23.8], its ^-factor in the obvious sense equals 

(**) U:=iU^[(-s+(ml/2)+i-j) 
if rv > 0 and qv < 0. For such a v, we easily see that (**) is nonzero at 5 = ao 
under (29.10a). Examining the case vvqv > 0 in a similar way, we find that ^(s) G 
Q x at s = 00 under (29.10a). Clearly e(<ro) £ Q • Now Hb,a is a function of type 
Er of (17.23a) obtained from Ex, and hence A™(s, x)H^a is a function of type Dr 

of (17.24). Therefore, by Theorem 17.12 (v), its value at s = /x/2 for \i as in (*) 
is an element of ^A/^ (Q), with (3 and e given there. (We write e instead of t 
employed there.) This result combined with (29.6) gives 
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(29.14) T r ' o - T q - i ^ f, x)fb(z) = £ vol(©fl) ]T< V M » fa)9a^{z) 
aeB iela 

with /iG ,M , #a?6)i G A/^'(Q), where 7 = 0-\-^2veBLrvqv and e' is as in Lemma 29.2. 
For the reason explained in §28.2 we have vol(£>a) = ra7rd° with 0 < r a G Q. 
Let us now assume that (p is anisotropic. Then Va is compact, and so, by 
Proposition 15.7 (3), we can find h'ahi G «SJ£(Q) such that raha^,i — h,

ahi be
longs to the set T£ in that proposition. Then the right-hand side of (29.14) is 

Let w be a CM-point of 3^; let tyh{w) denote a fixed element of C x that 
represents the coset ^ ( w ) defined by (11.17a). Then ga,b,i{w) £ Vh(w)Q by 
our definition of JV^ (Q). Therefore the last sum ]Ta ^ at z = W can be written 
tyh{w) J2a(^a n fa) with some ft"^ G <S£(Q). By means of the same technique as 
in Lemma 28.4 we can find an element j of <S£ (D^, Q) such that ]Ca( ^a,i> fa) ~ 
( j , f ) . Let g be the projection of j to V(Q) with respect to the decomposition of 
<S^(D^, Q) mentioned in §29.4. Observe that g depends on b and w, but it is 
independent of f. Writing g&;U, for g, we thus have 

(29.15) Z(a0, f, x)Vh{w)-1Mw) = ir'*q(gblW, f > 

for every f G V(Q). Now suppose m0 > 2n. Put ev = 0 if hv -f ftup — mo G 2Z 
and £„ = 1 if /iv + /^p - mo ^ 2Z. Define ^ G Z a as follows: £v — hv — hvp — ev if 
rv > 0 and lv—m§- 2hvp if r<, = 0. By [S97, Lemma 11.14 (3)] we can find \ a s 

in our theorem with this L We can easily verify that (29.10a, b) are satined with 
<JQ = mo/2, and so we can consider (29.15) with this \ a n d H> = TUQ. By [S97, 
Proposition 20.4 (3)], Z(m0 /2 , f, \) ¥* 0, since m0 > 2n. Therefore (29.15) shows 
that given f, we can find (6, w) so that (g&>u;, f ) ^ 0. Consequently the g ^ 
for all (6, w) span V over C, and hence V(Q) over Q. Now ^ ( w ) - 1 fb{w) G Q, 
and hence from (29.15) we see that (f , f) G 7r~7q - 1Z(mo/2, f, x)Q for every 
f, f G V(Q), from which (29.9) follows immediately. 

Returning to an arbitrary cr0 satisfying (29.10a, b, c), choose (6, w) so that 
fb(w) ^ 0. Dividing (29.15) by (f, f) and using the formula for f3 in Theorem 
17.12 (v), we obtain (29.12) when <p is anisotropic. 

Let us next assume that tp is isotropic. Then we cannot use Proposition 15.7. 
Instead we use Lemma 29.3, which requires that qv > 0 for every v G a. Now 
A™Hb,a is Dr of type (17.24) as we already noted, and its value at s = JA/2 is, by 
(17.27) or (17.30), of the form AIJi with R e MUSi. Here p = (m* - i/a)/2, 1/ = /x 
if /J, > n and z/ = 2n — \i if /i < n; i? is of the form Dr($, v/2; kf, x, c) with k' 
such that (kv -f fc^a)v€a = ^a. Taking (A/, z/) as (fc, JJL) of Theorem 17.12 (v), we 
find that R G 7rcA/fI/a(Q) with some c G Z, if we assume (29.10c) and (29.11b). 
By Lemma 29.3 we can replace A"(/z/2, x){A*Hh,a){z, w) by T(z, w) with T of 
the form (29.7). Therefore we can repeat what we did in the anisotropic case, and 
obtain (29.14) under (29.11a), with ha,b,i € «Mj£(Q)- Replacing these by elements 
of «S£(Q) by virtue of Theorem 27.14 (which is necessary only when m G Za), we 
eventually obtain (29.15). Then we make a special choice £v = hv — hvp — ev with 
ev = 0 or 1. Since (29.11a) is satisfied by such an £, our proof of (29.9) is valid in 
the present case. Then (29.12) follows immediately from (29.15). 

29.6. Theorem. Let the notation be as in Theorem 26.13 (see also [S97, The
orem 20.7]); let q be as in $26.9. Let f G V(Q) and f G <S£(Q), where V(Q) 
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is defined within Si^{D"p) for a fixed system of eigenvalues {A(a)} as in §29.3; put 
mo = Mmvea<{kv -f kvp}; suppose that mo > 2n and G£ is not compact. 
_ (I) For v as in Theorem 26.13 (i), the functions TT~0EP{Z, vj2\ f, x, D^) is 
Q-rational, where (3 — Ylvea.(mv ~~ v)°l^^ except when ip is isotropic, F = Q, 
v = q -f n + 1, and Xi =®v\ moreover, TT~^E^{Z, vj2\ / , r) with the same (3 is 
Q-rational, except when ip is isotropic, F = Q, and v — q -f n -f 1. 

(II) For v as in Theorem 26.13 (ii), the function Tr'^q"1 (f, f )~xTp{z, i//2; f, 
X, D^) is Q-rationai, where a = ^2vGa(mv + v — n — q + l)(n + q)/2 and q = 
VK (X^ea ^ T v Z^vea ^ r ^ ) ' Provided the following two cases are excluded: (i) 0 < 
v < q + n, c = g, and Xi = ®v\ (n) ¥ JS isotropic, F = Q, */ = g -f n + 1, and 

P R O O F . TO prove (I), we evaluate (26.42) or its consequence (26.44) at s = v/2. 
First suppose <p is anisotropic. Then, by Proposition 15.7 (3), we can replace 
hai of (26.44) by an element of <S£(Q). If p is isotropic, we express Hp,a in the 
form Hp^ = Al&R with some e and i? G A4 l/a(Q)- This is possible by Theorem 
17.12 (i) and (17.27). (Here we have to exclude Case (ii) of (II).) Then we apply 
Lemma 29.3 and (29.7) to Hp^a and eventually find an expression of type (26.44) 
with hai £ M%(Q). The whole procedure is similar to what was done in the proof 
of Theorem 29.5. Since vol(£>a) G 7rd°Q, we eventually find, in both isotropic and 
anisotropic cases, that 

(29.16) Z{yl2, f, x)Ep(z, v/2) = 7 r * + ^ ^ ( / i a , , fa)gai(z) 
a, i 

with some hai e MtiQ) and gai e A / ^ Q ) , where q is as in Lemma 29.2, a = 
(n+tf) 2v6a(m^~" t/)/2? a n d 7 — dnv — dn{n—l)/2. By the same technique as in the 
proof of Corollary 28.6 we can derive from (29.9) that (h , fa ) G (f, f )Q for every 
h G M%(Q) and every a G B. Also, Z{y/2, f, x) ± 0 for v > 2n by [S97, Theorem 
20.4 (3)]. Therefore, dividing (29.16) by (f, f) and employing (29.12) with h = 
k, we obtain our assertion of (I) on 7r~^Ep(z) . . . , D^), which combined with 
[S97, Proposition 20.10] proves the result about TT~^E^{Z, .... , F). Assertion 
(II) follows from (26.43) combined with Theorem 17.12 (v) in a similar way. 

29.7. Theorem. The notation being as in §29.4, suppose that <p is totally def
inite; let f 6 V(Q). 

(I) Let <7o be an element of 2 - 1 Z such that 

(29.17) 2n - {2hvp + £v) < 2aQ < 2hvp + £v and 2cr0 - £v G 2Z for every v G a. 

Then, under (29.10c), Z(a0, f, x) € Tr0pK(J2veaL{2hvp + £v)rv, n r ) Q , where (3 = 
dna0 - dn{n - l ) /2 + (n/2) Et,€a(2h«P + ^ ) -

(II) Assertions (I) and (II) of Theorem 29.6 are true in the present case, if we 
replace (f, f) there by PKiYLvesL^vpTv, nr) and put tv — n for every v G a. 

P R O O F . Define k G Z b by /cvp = /ivp and kv = hvp + £v for v G a. Then 
^ = ( ^ - / c v p ) t ; € a . Moreover, by (29.2), S%{D*) = S%{D*), and theHeckeoperators 
on S^{D'P) stay the same by the change of h for k; also, Mk{Q) = Mh{Q) by 
(26.41c). Therefore our calculations of [S97, §22.4 through §22.11] are valid with 
the present k. In particular, by [S97, (22.11.3)] we have 

(*) C'(s)Z(s, f, X)fb = £ cafaA?(s, X)(Hb.a)°(i, i; *), 
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where ca G Q, C" is as in [S97, (22.6.5)], and A? is the function of (20.20) in 
Case UT. (See [S97, (20.3.3)]; also we may assume, without changing Z, that 
the conductor of \ divides c as noted in §26.10.) Put \i = 2cr0 and M(3, s) = 
A™(s, x)i?6,a(3> 5); notice that kv + kvp = 2hvp + £v. For the same reason as in 
the proof of Theorem 26.13, we can apply Theorem 17.12 (v) to M(a, /x/2) to 
find that under (29.17) and (29.10c), Mfe, /x/2) belongs to T T ^ A / ^ Q ) with j3 = 
(n /2)X^ G a (m^ + / / ) - < M ™ - l ) / 2 and some P- B y [S97> (22.6.5)], C"(/x/2) G Q*. 
By Lemma 26.12, M°(i, i; /x/2) G 7 T ^ ( X ^ € J 2 / ^ P + 4 ) T V , n r ) Q . Take 6 so that 
/ b ^ 0; then / a / / b € Q by (26.41c). Therefore we obtain (I) from (*). Assertion 
(II) can be obtained from [S97, (22.11.2)] and Lemma 26.12 in a similar way. 

29.8. Corollary. The notation being as in Theorems 29.6 and 29.7, suppose 
that f and f are Q-rational, and m = vs. with an integer v > Max{2n + 
l , n -f q}; suppose also that v ^ n -f q + 1 if F = Q and (p is isotropic. Then 
E%1<p(z, i//2; / , r) and Ep{z, z//2; f, x, D*) are 'Q-rational 

This is an immediate consequence of those two theorems. 

29.9. Proof of Theorem 27.16 (1) in Case UB. Our reasoning is similar to that 
of §28.12. We have {W, ^) = (V, y>) © (ffg, ifq) and {V, y>) = (Z, C) © (#r , r/r) 
with r = I — q as in §26.4 and Theorem 26.13; thus dim(W) = n + 2q with 
n = dim(V) = 2r -f dim(Z), and the lowest dimensional case is dim(VF) = 3. We 
may assume that dim(Z) > 0, since if Z = {0}, then our group is reduced to Case 
UT. Also, there is no problem if W = Z, and so we assume that / > 0. Since £ is 
anisotropic, we have Theorems 29.5, 29.6, and 29.7 (without employing the map q 
of Theorem 27.14) for the forms on G^ if /1 > 2dim(Z). Then we obtain Corollary 
29.8 for Epc, that is, Theorem 27.16 (1) for r = 0. This establishes Theorem 27.16 
in Case UB when dim(W) = 3. Now we make the induction assumption that the 
theorem is true for G^ with dim(V) < dim(W). Let 0 < r < I and let [i be as in 
Theorem 27.15. Our asumption guarantees the map q for the forms on G^, since 
fj, > 2n. Then Theorems 29.5 and 29.6 are valid for the forms on G^ with such a 
fi. Consequently we obtain Corollary 29.8 for E^1<p, that is, Theorem 27.16 (1) for 
such r and //. This completes the proof. 

29.10. Remark. (A) In the above we stated the case of totally definite (p sep
arately, but we can state the results for anisotropic <p uniformly, and view the 
totally definite case as a special case. The only point we must remember in that 
case is that Mk(Q) = PK(Y^vea^vPTv^ n r ) Q ^ stated in (26.41c), and conse
quently (f, f ) G PK(Y^V€8L^VPTV, n r ) Q . Also, the condition ra0 > 2n does not 
apply to the totally definite case. 

(B) In Theorem 27.16 we stated a result of the type given in the above corollary, 
but the case i/ = n + g > 2 n + l proved in the corollary is not included in that 
theorem. Also, the case in which v = n + q + 1 > 2 n + l , F = Q, and (p is 
anisotropic is included in the above corollary, but not in Theorem 27.16. 

(C) We assumed (29.11a) when <p is isotropic, but probably this is unnecessary, 
since Lemma 29.3 is likely to be true without the condition that qv > 0 for every v. 
At least the case G^ = U{rj) is covered by Theorem 28.8. We can also handle some 
cases by means of Lemma 28.2 without assuming (29.11a). This method restricts 
do to a certain range, which is not large, but often nonempty. We leave the precise 
statement to the reader, as it is an easy exercise. 
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A l . The series associated to a symmetric matrix and Gauss sums 

A 1.1. In this section we give some results necessary for the explicit calculations 
of the factors of automorphy of half-integral weight, and also prove the part of 
Theorem 16.2 concerning A^ and /£. 

We consider Fv with a fixed v in h prime to 2. For simplicity we drop the 
subscript v. Thus F denotes a finite algebraic extension of Q p with an odd prime 
number p, g the integral closure of Zp in F, and p the maximal ideal of g. We 
denote by D the different of F relative to Q p and by n an unspecified prime element 
of F ; also we put q = [g : p]. Let ev be the T-valued character of the additive 
group F defined in §1.6. Here, to avoid a possible confusion, we use e^ without 
dropping the subscript v. Recall that c)-1 = { a G F | ev(ag) = 1 } . We define the 

quadratic residue symbol I - I for c G g as usual by the property that 

(Al.l) 1 + ( - J = the number of x (mod p) such that x2 — c G p. 

We put then I — J = I - j for every k e Z. 

Given a G F x such that ad = p~m with 0 < m G Z, we put 

(A1.2) r(a) = ] T ev{ax2). 

This is well-defined. 

A1.2. Lemma. 

r(a) = 

xes/p" 

qm/2 if m G 2Z, 

q(m-i)/2 ^ fy\ ev{^-lay) if m £ 2Z. 
y£9/p 

PROOF. Assuming m > 2, we have 
r( a)= E Ee"(ofo+rrm"1*)2) 

yeg/p™-1 ze$/p 

= ^ ev(ay2) ^ e^an^yz), 
yeg/p™-1 zee/p 

since an2m~2 G D_1. The last sum over z is nonzero only if y G p, in which 
case the sum is q. Thus r(a) = qr(7T2a) if m > 2. Repeating this procedure, we 
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obtain r(a) = gm /2 if m is even, since r(a) — 1 if m — 0. If m is odd, we have 
r(a) = ^ m " 1 ) / 2 r (7 r m - 1 a ) . Putting 6 = TT772"^ and employing (Al.l) , we see that 

'(*)= E {1 + (J)}^6»)= E (jW^-
This completes the proof. 

A1.3. Lemma. If ad = p~m as above, we have: (1) r(a)2 — qm ( — 
V P 

(2) r(ca) = r(a)(^y ifce9\ 

P R O O F . The first equality for even m and the second one for an arbitrary m 

follow easily from Lemma A 1.2. Put ip(y) = I - I . Assuming m = 1, we have 

r{a)r{a) = ] T ^{y)ev(ay) ] T ^{z)~lev(-az) 
!/€(fl/p)x ^ U / p ) * 

= ^ ^ ( y ^ " 1 ) e v ( a ( y - ^ ) ) = E ^ E e v ( a * ( x - l ) ) . 
y,«e(8/p) x *e (9 /p ) x ^e (g /p ) x 

The last sum over 2: is q — 1 or —1 according as x = 1 or x ^ 1 (mod p). 
Thus |r(a) |2 = 9 - Y,X£(Q/P)* ^(X) = ?• Clearly r(a) = ^ ( - l ) r ( a ) , and hence 
r(a)2 — i/;(—l)q if m = 1. This together with Lemma A1.2 proves (1) for odd m. 

A1.4. We now define symbols S, L, A, 7(s), and u(s) as follows: 

(A1.3) S = Sn = {xeF%\tx = x}, 

(A1.4) L = fli, A = A" = S"n f l;[> 

(A1.5) 7(5) = / ev{xs • *x/2)da? (5 G S), 

(A1.6) w(s) = i/(&01/27(s) (s G S). 

Here dx is the Haar measure of F„ such that fL dx = 1, and 5 is an element of 9 
such that d = £g; i/( ) is defined by (1.16). (In the next section we use a different 
measure.) In Lemma A1.6 (4) below we shall show that w(s) = /y{s)/\/y(s)\, which 
is consistent with (16.6). If n = 1, s G F x , and sfl = p ~ m with 0 < m G Z, then 

(A1.7) T{S/2) =qrn f ev{sx2/2)dx = qmj{s). 

A l . 5 . Lemma. (1) Given a G S n , there exists an element a ofGLn(g) such 
that acr • la is diagonal 

(2) If a G Sn fl GLn($) and n > 1, then xcr • *x = 1 for some x G g^. 
(3) If a, r e Snr\GLn(g) and det(cr)/det(r) is a square in $/p, then a = *ara 

with some a G GLn(g). 

P R O O F . Since 2xa -ly = (x -{- y)a • *(x + y) - xcr • tx - yu • *t/ and 2 ^ p, the 
ideal generated by xo -ly for all x, y G L coincides with the ideal generated by 
za • lz for all z G L. Thus, to prove (1), excluding the trivial case a = 0 and 
multiplying a by an element of F x , we may assume that this ideal is 0. Take 
z G L so that za • *z G 0X and put M = {2/GL|ycr- t2: = 0 } . Given x G L, put 
y = x - (xa • tz)(za • <2;)-12;. Then y e M and thus L = g z ® M . This means that 
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for some a G GLn($) we have aa • ta = diag[z<7 • tz) r] with r G A71-1. Applying 
induction to r, we obtain (1). 

Clearly it is sufficient to prove (2) for diagonal a of size 2. Thus put a = 
diag[a, d] with a, d G g*. Suppose d/a = - c 2 with c £ gx. Then for r, s G g 
we have ar2 + ds2 = a(r — cs)(r + cs). Since 2 ^ p we can find r , 5 e g so that 
r+cs = 1 and r —cs = a"1 . Then ar2-hds2 = 1 as desired. If -d/a is not a square, 
let K = F(£) with £2 = —d/a. Then if is an unramified quadratic extension of F, 
and the integral closure of 9 in if is $[£]; moreover a • N^/p{r -f s£) = ar2 + ds2 . 
It is well- known that NK/F ($[£]*) = £JX, and hence -/VK/FO" + S£) = a _ 1 for some 
r, s G g . This completes the proof of (2). 

To prove (3), we first note that an element of gx is a square if and only if it is 
a square modulo p, since 2 £ p. Let a and r be as in (3). Our assertion is trivial 
if n = 1; thus we assume n > 1. By (2) we have xa -lx — \ for some x € L. Then 
the above proof of (1) shows that aa • la = diag[l, <J'] with some a G GLn(g) 
and some cr' G S n - 1 . Clearly & G GLn_i(g). For the same reason we may assume 
that r = diag[l, r'\ with r ' G S71"1 nGL n _i(g) . Then det(cr /)/det(r /) is a square. 
Applying our induction to a' and r ' , we obtain (3). 

Al .6 . Lemma. (1) ^y(cs) = 7(5) [ ——— I if c G g x , where v§ is defined in 

§1.7; (2) ^ ( S ) 2 = ^ _ ^ _ ^ ; (3) | 7 ( s ) | = K ( 5 s ) - i / 2 ; ( 4 ) u ; W = 7 W / l 7 W I ; 

(5) 7(5) = 7(5 + 6) and UJ(S) = a;(5 4- 6) if J6 G A; (6) j(—s) = 7(5) and 
u;(—s) = LJ(S)~1. 

PROOF. By Lemma A1.5 (1) we may assume that s = diag[si, . . . , sn] with 
SiGF] we may also assume that si£'0~1 if and only if i>r with some r<n. Put 
sid = p~rni with 0<ra ;GZ for i<r and A = 5^[=1mi. Then z/0(<5s)=pA, and 

7(a) = I I / e»(*i*2/2)d& = Y[q-m*T(Si/2) = utfs)-1 Y[r(Si/2) 
i = l ^ i = l i = l 

by (A1.7). (If r = 0, then ^o(^) = g and 7(5) = 1.) Therefore, from Lemma A1.3 

(2) we obtain (1). Also, by Lemma Al.3 (1) we have 7(s)2 = ^(5s) _ 1 

which proves (2) and (3). Then \UJ(S)\ = 1, which implies (4). Clearly 7(5) = 
y(s + b) and u(5s) = i/(£(s -f &)) if 5b G A. Therefore we obtain (5); the formulas 
of (6) are obvious. 

A1.7. Given £ G An , we define two infinite series a°(C, s) and ax(C, s) by 

(A1.8) a°(s) = Q°(C, *) = £ e ^ - r 1 ^ ) ^ ^ ) - , 
aGS/A 

(A1.9) a i ( S) = a 1 ( C , s ) = ^ w ^ - ^ J e ^ - d " 1 ^ ) ^ ) - . 
aeS/A 

The sums are formally meaningful in view of Lemma A1.6 (5). These are the same 
as al

v of (16.7a, b). The series a° was investigated in [S97, §§13-15]. (In this 
section we assume uf 2, and hence Tn of [S97, (13.1.4)] coincides with the present 
An.) The purpose of the remaining part of this section is to determine a l as a 
rational function of q~~s as stated in Theorem 16.2. 

For positive integers m and n we put 
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(ALIO) A m (n )=p-™A/A. 

Define formal power series A^(t) in an indeterminate t as in Theorem 16.2, and 
using the symbol e(a) introduced there, define also A^m(t) by 

(Al . l l ) A^m{t) = Yl wtf'^evi-S-1^)^ (0 < m G Z). 
crGAm(n) 

Clearly A^m(t) is a polynomial in t and l im™-^ Al,m(t) = A^(t) if A]• is conver
gent at t. In fact, a® is convergent for sufficiently large Re(s) as observed in [S97, 
p.104, lines 1-3], and hence the same is true for a i ( s ) , since |O;(<J-1<T)| = 1. 

To determine a£, we need the number iVm(^, <p) defined for <p G An and ip e Ah 

defined by 
(A1.12) ATm(^, y>) = # { Pm(x) | x G j&, * ^ x - ^ Pm } , 

where we write X -< p m if a matrix X has entries in p m (as we did in §1.8) and 
Pm is the natural map of Q% to 9n/{pm)n with any /i and n. 

A1.8. Lemma. 7Vm(U,diag[l, cr]) = Nm(lh, l ) iVm (U_i , cr) /or every cr G 
An. 

P R O O F . Suppose *££ — diag[l, cr] -< p m with a: G 0^+1? P u t x = (w 2/] w ^ n 

u G 0^ a n d V € 9n- T h e n 

(*) ' m z - l G p ™ , ^ y - < p m , £ y y - ( T ^ p m . 

The number of pm{u) for it satisfying the first relation is Nm(lh, 1). For each fixed 
u we are going to show that the number of pm{y) for all y satisfying the last two 
relations of (*) is JVm(l^_i, cr). Then we obtain our lemma. To do this, fix u, 
and take a G GLh(g) so that lua = [b 0jl_1] with beg. Let c be the upper 
left entry of a - 1 • ta"1 and d the lower right submatrix of taa of size h — 1; let 
w = a - 1?/ and let z (resp. z') be the lower h — 1 rows (resp. the top row) of 
w. Then 62c — 1 G p m , and y satisfies the last two relations of (*) if and only if 
z' -< p m and tzdz — a < pm. Thus the number of pm(y) equals Nm(d, a). Now 
det(d) = cdet(a)2 by Lemma 1.3 (1). Since b2c — 1 G p m , this means that det(d) 
is a square of a unit, and hence d = *ee with some e G GLh-i{%) by Lemma A1.5 
(3). Thus Nm(d, a) = 7Vm(l/l_1, cr), which completes the proof. 

A1.9. Proof of the part of Theorem 16.2 concerning A]- and /£ . Let 0 < k G Z 
and cr G p _ m A. Taking the A:-th power of (A1.5) and (A1.6), we obtain 

v{<j)-k'2u){5-lG)k = q-mnk Yl ^{S^xa ' V 2 ) , 
*e(0/pm)£ 

where ek(y) = ev(tr(y)) for a matrix y of size k. Therefore, for £ G A we have 

a€A m (n ) 

= q-mnk £ J- e^-r^^eJ^-^a-VZ) 
aGAm(n) x€(g/pm )£ 

= fmnfc E E e-((25)~1(^-2CH 
ze (g /p m )£ o-6Am(n) 

= g m n ( n + l ) / 2 - m n f c i V m ( l f e 5 2 £ ) . 
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Let A°^m(t) be the right-hand side of (Al.l l) without the factor u(5~la). Put 

6 = ( — J . By Lemma A1.6 (2), 0heW = u{5~la)2h, and hence 

A^m(0hq-h) = Yl <{-b~lt°)ohe{a)q~he{cT) 

crEAm(n) 

= Y. e:(-6-1<;a)u;(5-1a)2hv(a)-h. 
crGAm(n) 

Combining this with the above result, we obtain, for sufficiently large /i, 

A%6hq~h) = lim A*;m{Ohq-h) 
^ 7 7 1 — • O O ^ 

= lim qmni-n+l^2-2mnhNm{\2h, 2 0 . 
m—*oo 

Similarly, taking k = 2h -f 1, we obtain 
A i , m ( ^ _ ^ _ 1 / 2 ) = ^ eJ(-r 1Ca)o;(5-1a) 2 , l + 1 i / ( (7)- ' 1- 1 / 2 , 

CTGAm(n) 

so that 
Al^9-/i-l/2) = H m g m n ( n + l ) / 2 - m n ( 2 H l ) J V m ( l 2 f c + l j 2 C ) . 

^ 7 7 1 — • O O 

Putting e — 1/2 and r = diag[£, £], by Lemma A1.8 we have 

, W o - „ - i m l i m g ' " C > + 1 ) ( " + a ^ - ^ " + 1 > ( 2 f c + 2 ^ m ( W 2 , 2 T ) 
^ q ' ~ - ™ c o 9 m - m ( 2 / l + 2 ) i V m ( l 2 f t + 2 ) 1 } 

= A°T(eh+1q-h-1)/A°e{eh+1q~h-1). 

Since this holds for infinitely many h, we have Aj(t) = A?(0g_1/2i)/>l°(0g -1/2*). 
Let C = diag[£, 0] with ? e S ; n GLr{F). By [S97, Theorem 13.6], A°(t) = 1 - * 
and A® = frgT with a polynomial gT with coefficients in Z whose constant term is 
1 and a rational function fT given as follows: 

(i - 1 ) nK"+1>/2i (l - q
2it2) 

fr(t) = >-^^r! vk— '- if r is odd, 
(1 - \qV"+i-r)/H) n [ = r r ) / ] (1 - g2n+2-r-2it2) 

M t ) = ^ - ^ D / 2 ] ( 1 _ ̂ +3-^,2) lf " 1S BVen' 

where A = A(diag[e, £]) with the symbol A( ) defined in §16.1. If r is odd, we see 
that A = 0A(£); if further £ e GLr(g), then diag[e, f] e GL r + i (g) , and so # r = 1 
as noted in [S97, Theorem 13.6]. If ( = 0, then r = diag[e, 0], and so p r = 1 by 
the same theorem. Therefore substituting 6q~~l/2t for t in the formulas for /T , we 
obtain our assertions concerning A^ and /£ of Theorem 16.2. 

A2. Metaplectic groups and factors of automorphy 

A2.1. Our basic field is a totally real algebraic number field F and we employ 
the symbols a, h, v, and g introduced in §1.4; we denote by d the different of 

F relative to Q. For x = , e i?2n w ^ n a-> &> c> a n d ^ m K' w e P u t 

a = ax, 6 = 6X, c = cx, and d = dx if there is no fear of confusion. 
With a positive integer n we now put 
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X = Fl L = fli, L*^*-1!,, V = rjn = 0 - l n 

In 0 
G = Sp(n, F ) , P = { a G G \ ca = 0 } , 

ft A = { x G GA I det(cz) G F£ } , n„ = { a G Gv | det(cx) ^ 0 } . 

(The present G is G of (3.26) in Case SP.) We let G act on I x I = F£n by 
right multiplication. Then we can define the metaplectic groups MP(XA) and 
Mp(Xv) for each v G v in the sense of [W64] with respect to the alternating form 
(#, 2/) i—> xr^n • ty on i 7 ^ x i 7 ^ . Recall that these groups, written M A and Mv for 
simplicity, are groups of unitary transformations on L2(XA) and on L2{XV)\ there 
are exact sequences 

(A2.1a) 
(A2.1b) 

1 -
1 -

- T —> M A —» G A —* 1, 
-+ T —• Mv —• Gv —y 1 (v e v). 

We denote by pr the projection maps of M A and Mv to G A and Gv. There is a 
natural lift r : G —> M A by which we can consider G a subgroup of M A - There 
are also two types of lifts 

(A2.2) rP:PA^MA, rn : CtA -> M A , 

which satisfy the formulas 

(A2.3a) [rP(a)/](x) = |de t (a Q ) |A / 2 e A (a :a a .H Q - t x/2) / (xa a ) if a € > A , 
(A2.3b) rn(a/3~/) = rP{a)m{(3)rP(~/) if a, 7 G P A and /? G ftA, 

(A2.3c) [rn(i8)/](x) = |det(c/3)|JL
/2 / f{xa0 + yc0)eA{qi3(x, y))dy if (3 GfU, 

qp{x, y) = (l/2)xap • % • lx + (l/2)ycp • *d^ • ly + x ^ • ̂  • ly. 

Moreover rp = r on P and rn = r on G fl CtA. There are also similar lifts of Pv 

and flv into Mv given by the same formulas with the subscript A replaced by v. 
We denote these lifts also by rp and r^, since the distinction will be clear from the 
context. Here the measure on XA is the n-fold product of the measure Il^eauh ^vX 
on F A , / dvx = N{pv)~1/2 for v G h, / 0 dvx = 1 for v G a. We can let Sp(n, R) 
act on f)n and define factors of automorphy //(a, z) for a G ^ ( n , R) as in §3.3. 
We define a space H and a vector space hi by 

(A2.4) W = i%, W = ( C n ) a . 

For cr G M A , a = pr(<r) G G A , and z eH we put 

(A2.5a) /i(a, z) = /x(a, z) = (/j,(av, zv))ve&, 

(A2.5b) > ( z ) = ja(z) = (,7(av, ^ ) ) v € a , J K M *v) = det (//(c^, zv)), 

(A2.5c) ja{z)* = ja{z)* = ]Jj{av, zv). 
vGsk. 

We let Gv = Sp(n, R) act on C n x # n by 

(A2.6) a(u, z) = (*/x(a, z)~lu, az) 

for a G G^, and let G A act on H and U xHby 

(A2.7) a(z) = (avzv)v €a, a(u, z) = (V(c*v, z , , ) - 1 ^ , a ^ ) ^ 
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for z £H and a £ G A , ignoring a^. We define the action of an element a of M A 
(resp. Mv) on H and U x H (resp. 9yn and C n x S)n) to be the same as that of 
pr(cr). 

We now define a C-valued function ip(x\ it, z) forxGXa , z£H, and u£li by 

(A2.8a) <p(x; u, z) = J J ^ ( x ^ ; uv, zv), 
VEB. 

(A2.8b) <Pv{xv\ uv, zv) = e((l/2)*u(z — !)~1u+ (l/2)xz • lx + xu), 

where the subscript v is suppressed on the right-hand side of the last formula. 

A2.2. Lemma. Let M' be the group formed by all the couples (a, g) with a £ 
Sp(n, R) and a holomorphic function g on f)n such that g(z)2 = t - ja{z) w^h 
t £ T, the law of composition being (a, g)(a', g') = (aa ' , g(a,(z))g/(z)). Then 
for each v £ a, Mv is isomorphic to M' via the map £ i—> (pr(£), g$) £ M' for 
£ £ Mv with #£ determined by 

(A2.9) i£Vv)(x\ u, z) = gz(z)-lipv(x', £(ti, z)) (f € M„). 

In particular g^{z) = det(—iz)1/2 if £ = rn(rjn). 

PROOF. Let r = r\p(a) with a £ P. Then from (A2.3a) we can easily derive 
that (rifv)(x; u, z) = g~1ipv(x; r(u, z)) with gT = | de t (d Q ) | / . Also, if a = 
rci(Vn)) formula (A2.3c) together with an easy calculation shows that 

(A2.10) (<T(pv){x\ u, z)= / yv(y, ix, z)e(-x • ly)dy 

= det(—iz)~xl2^v[x\ cr(u, z)). 

Now from (A2.1b) and Lemma 7.5 we see that Mv is generated by rp(Pv), rn(r}n), 
and T. Therefore we have (A2.9) with a certain g$ such that g^(z)2/ja(z) £ T. 
Then £ >-» (pr(£), g$) defines a homomorphism of Mv into M'. In particular, an 
element t of T is mapped to (1, t~l). Therefore we see that the map is injective. 
Given (a, g) £ M' , take £ e Mv so that pr(£) = a. Then g2/g2 £ T, so that 
g$ = £# with t e T , and so (a, g) is the image of ££. Thus our map is surjective. 
The last assertion of our lemma follows from (A2.10). 

Thus, writing #(£, z) for g^{z), we have #(££', z) = #(£, £'z)#(£', *) for f > £' £ 
Mv . Moreover, we have shown that 

(A2.ll) g(rP(a), z) = \det(da)\l/2 if a £ Pv, v £ a. 

A2.3. For two fractional ideals y and t) in F such that jt) C 9 we define a 
subgroup D[y, rj] of G A by (16.20a) and put D^y, tj] = Gv n -Dfc, t)]; we define also 
a subgroup Ce of G A , which may be called the "theta-subgroup," by 

(A2.12a) C* = G a I L , 6 h C * , 
(A2.12b) C« = { £ e A , ^ 1 . 9} I * , ( (* , » ) 0 = Xv(x, y) 

for every x€Lv and y € L* } if t; € h, 

where Xufo 2/) = ev{x • ty/2) for x, y e (-FiOn- Then it can be shown that 

(A2.13) C* = {£ € Dvfi-1,*] | (a€ • «64)« € 2r>-x and 
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where a „ denotes the (i, i)-entry of a. We see from (A2.12b) that C% is indeed a 
group. Also we easily see that 

(A2.14) C6
V D Dv[2D~l, 2d] U Dv[2^~\ 2X)]ev 

with e G G A given by 

(A2.15) £a = l 2 n , ev 
0 - ( J ^ l n 

o~vln 0 
for v G h , 

where 8 is an arbitrarily fixed element of F£ such that d = 5g. Since G^ coincides 
with Ps(Xv, Lv) of [W64, n°36], we obtain a lift 

(A2.16) rv:C°-> Mv 

which is written r'L there. 
We are going to define a factor of automorphy, h(a, z), of weight a/2 for z G W 

and a in the set 

(A2.17) DJl = { a G M A J pr((j) G P A C^ } . 

Clearly rP(PA) c9Jt. Notice that 77 G GnOT since rjh = diag[<51n, S~lln]e EPAC6. 
We denote by S(-Xh) and <S(XA) the Schwartz-Bruhat spaces of X^ and X A -

We shall often view an element £ of S(Xh) as a function on X by restricting f to 
the image of X in X^ (see §1.6). Given £ G «S(Ah), we put 

(A2.18) £A{%) V>, Z) — ^ h V ^ a ; u, z) for x G -XA, z eH, u eU. 

For fixed z and u we view £A as an element of S(XA), SO that CF̂ A for o G M A 
is meaningful. Now there is another action of OT on S(X\^) as follows: 

A2.4. Theorem. For ei/en/ a e$Jl we can define its action on S(X\l) which is 
a C-linear automorphism, written £ t-> a£ for £ G S(X\1), and also a holomorphic 
function h(a, z) of z eH by the formula 

(1) (<^A)fa ti, z) = h{a, z)-l(°e)A{x\ a(u, z)). 

Moreover, this action and h have the following properties: 
(2) M*,*) 2 = 0"a(*)a with ( G T . 
(3) h(t-rP{j), z) = r 1 | d e t ( d 7 ) a | i / 2 i f t e T and T^A-
(4) h{paT,z) = h{p,z)h(o-,Tz)h{T,z) and (P°T)£ = P(°(T£)) if pr(p) G F A and 

pr(r) G G*9; in particular, /i(-<7, z) = h(cr, z). 
(5) CT-£ depends only on £ and pr(cr)h-
(6) {o eDJl\a£ = £} contains an open subgroup of MA for every £ G S(Xh). In 

particular, if £ is the characteristic function of Ylveh ^«j then °£ = £ for every 
G such that pr(cr) G Ce. 

(7) If £{x) = Ylveh£v(xv) with £v G S(XV), £v is the characteristic function of Lv 

for almost all v, and cr = r^r), r G P A G * with G* = {a G Ce \ L%(ca)v = 
Lv for every v G h}, then a£(x) = Y[veh[rn(Tv)£v](xv). 

(8) If £ is as in (7) and pr(cr) = pa with (3 G PA and a G Ce, then a£{x) = 
]\ve\i[rP^v)rv{oLv)£v\{xv), where rv is the lift of (A2.16). 

P R O O F . Let r G M A and a = pr(r); suppose a e Ce. Take £„ G Mv for each 
v G a so that pr(£v) = av . Then we can define an element 7 of M A such that 
pr(7) = a and 
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(A2.19) (7^A)(Z; U, Z) = J ^ M a ^ J O ^ ) JJ(^^i;)(^; uv,,zv) 
v£h vGa. 

for £ = n v € h ^ as in (7) (see [W64, n°38]). Then r = C7 with C e T. Now every 
element cr of 9JI can be written a = rP{(3)r with such a r and /? G P A - Applying 
rP(/3) to (A2.19), we obtain 

(A2.20) 0 ^ A ) ( Z ; U, z) = C^(^h) J ^ M A ; )&<£«] (̂ V, ^> **), 

where f = Hveh rp(Pv)rv(av)£v. By (A2.9) we can write (A2.20) in the form 

(A2.21) (rfA)(x; u, z) = ^ ( z ) - 1 ^ ^ ; a(u, z)) 

with h(z) = C_1 FIi;€a^(r^(^t;)^v» ^ ) - We have assumed that £ = r L e h ^ > but 
clearly £*->£' can be extended to a C-linear automorphism of <S(Xh), which we 
write again ^ »-> £'. Then (A2.21) holds for every £ G S(Xh) with the same h(z). 
We put /i(a, z) = /i(z) and ° £ = £'. To show that these are independent of the 
choice of (3 and r, take £ to be the characteristic function A of n^eh ^ » a n d recall 
that r ^ C ^ A * = \ v (see [W64, n°21]). Now (A2.3a) shows that {rP{/3v)\v){0) = 

— 1/2 

|det(d^.)|v / . Therefore, putting x = 0 and u — 0 in (A2.21), we obtain 

(A2.22) (<TAA)(0; 0, z) = | d e t ^ ) ^ 7 2 • h{z)~l. 
Since pr(tr) 6 /?£>[fl~\ D], from (1.19) we obtain | detC^)^!^1 = N(ilD(pr(a))), 
which depends only on pr(cr). Thus h(z) is determined by cr, and consequently 
formula (1) is established with °r£ well-defined. Clearly (2), (4), (5), and (8) 
follow easily from our definition of h(cr, z) and a£\ (3) follows from (A2.ll) if 
we take £v = 1 and a = 1; the first part of (6) can be derived from the fact 
that {l eC6

v\rv{i)£v=£v) is open for every £v G S{XV) (see [W64, n°21, 
n°36]). Finally let a = TQ(T) with r = (3a with /? G P A and a G G*. Then 
rn{rv) = rp((3v)rn(av); moreover rn{av) = r , ( a , ) by [W64, p.168, last line]. 
Therefore (7) follows from (8). The second half of (6) follows also from (8). 

Given £ G S(X\l), we define a theta function 6(u, z\ £) for (u, z) G U x H by 

(A2.23) 0{u,z;t) = YltAfau>z)' 

A2.5. Proposition. For every a e G DDJl we have 

6(a(u, z)\ a£) = h{a, z)6{u, z\ £). 

Moreover, for every (3 G G and £ G TlveaMv such that pr(£) = /3a, there is a 
C-linear automorphism £ \—> (! of S(Xh) such that 

6((3(u, z); £') = 6(u, z; £)]]g(tv, zv). 
i;Ea 

P R O O F . By virtue of [W64, Theorem 4 or 6] we have Z^ex( a^A)(£; u, z) = 
X ^ G X ^ A ( £ ; U, Z) f° r every a G G, which combined with (1) of Theorem A2.4 
proves the first assertion. Now, by Lemma 7.5, G is generated by G D 9Jt, since 
G Pi 971 contains 77 and P. Therefore the second assertion follows from the first one. 

To state our formulas on h(a, z), we need the symbols j(s) and LO(S) of (16.5) 
and (16.6), as well as il3 of (1.19). 
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A2.6. Lemma. Let a E 9Jt; if a or an"1 belongs to rn(fi,A H PAC6), then 
h(cr, z) is completely determined by Theorem A 2.4 (2) and the following formulas: 

lim h(<r, r\)/\h(a, ri)| = ^ ( - c " 1 ^ ) if a = r Q (a) with a e ^ n PACe, 
r—»-oo 

limh(<7, ri)/|/i(cr, r i ^ u ^ ^ d ! 1 ^ ) if a = rn(arj~1)r) with aenAr/r\PACe, 
r—•() 

where i is the origin ofH defined by (16.21). In particular 

(A2.24) h{rj, z) = Y[ d e t H ^ ) 1 / 2 , 
V£SL 

where det(—izv)1/2 is chosen so that it is positive when Re(zv) = 0. 

In order to speak of u(s), we need to know 7(s) ^ 0. That 7(—c^ lda) =̂  0 and 
7(5~2d~1ca) ^ 0 will be shown in the following proof. 

P R O O F . Write a, 6, c, d for a a , frQ, cQ, da; let a = r^(a) with a € QA^PAC6; 
Jet A be the characteristic function of YlveylLv. By (A2.22) and (A2.3c) we have 

N{i\(a))1/2h(a, z)-1 = (<TAA)(0; 0, Z) 

= | det(c)|^ /2 / AA(2/c; 0, z)eA(yc • *d • "y^dy 
JxA 

= | det(c)|X1/2 / AA(x; 0, z)eA(xc _ 1d • tx/2)dx 
JxA 

= | det(c) |^1 / 2 J J / <pv(x; 0, (z + c " - 1 ^ ) ^ J J / ev(xc""1d • tx/2)dvx. 

Prom (A2.10) we see that the integral over Xv is equal to det(—i{z-\-c~ld)v)~1^2. 
The integral over Lv is JV(Z>v)~n/2-7u(c""'1d). Our equality shows that yv{c~~1d) ^ 
0. Since jv{s) = 7v(—s), we obtain the first formula. We can take r\ to be a, since 
77 e PAC6 as we noted it immediately after (A2.17). Then we find our assertion 
concerning h(rj, z). Now if p = diag[<51n, 5""1ln], then (8) of Theorem A2.4 together 
with (A2.3a) shows that ^A = Y[veYlrP(pv)\v = iV(D)"n/2A/, where \'(x) = X(6x). 
Let a = r^an'1)^ with a E QA* H PAC6. By (1) of Theorem A2.4 we have 

(crAA)(z; 0, z) = ( ^ ( O J T T ^ A A K Z ; 0, 2) 

= N(J>)-n'2h(r), z)'1(m(ar]-1)Xf
A)(x] 0, 77(2)). 

Since ari~l = , , a calculation similar to the above one shows that 
[-d c\ 

{MaV^)\'A){0; 0, V(z)) = |det(d)H1/2AT(0)V2 

• 7(-<5-2d-1c) FJ det (ifc"1 + d-1^)'1'2. 

Since (A2.22) is nonzero, we see that j(6~2d~1cQ) ^ 0. Putting z = ri and taking 
the limit as r —» 0, we obtain the second formula. 

A2.7. Propos i t ion. Let ip* be the quadratic ideal character of F correspond-
ing to the extension F(y/=:1)/F. Suppose a e G n PAD[2D~X, 2ti\. Then da is 
invertible, det(da)ili)(Q!)~1 is prime to 2, and 
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h{a, z)2 =sgn(iV F / Q(det( r f Q) )^*(det(^) i l , (a)- 1 ) j a (z) a . 

PROOF. From Lemma 1.11 (2), (3) we obtain ^ o ^ - 1 ^ " ^ ) = det(dQ)ila(a) - 1 

and also the first two assertions of our proposition. Since a = ar)~lr) = r^ar}"1) 
•7*0(77), Lemma A2.6 shows that 

lim/i(a, z)2/\h(a, z)\2 = u>{8~2 d~l ca)2. 

By Lemma Al.6 (2), nv\2uv^~2d^lc0)2 = %l)*(vQ{8~ld~1ca)). This combined with 
Theorem 2.4 (2) proves our last assertion, since lim2_+o ja(z)a = NF/Q(det(da)). 

A2.8. Propos i t ion . (1) If a e r p D " 1 , 2D], then iv{8-2d-lca) = 1 for v|2, 
det(da)g is prime to 2, and 

(*) ]™o^a' 2) = WF/Qidetid*))^-2^1^) 

(2) Let /? = f a ^ - 1 with a as above and £ = diag[ln, s l n ] , 0 < s G g; suppose 
(3 6 r [2D - 1 , 2D]. Let ^£ be the ideai character ofF corresponding to the extension 
F{yfs)/F. Then det(dQ)jj is prime to 2s and 

h(0, z) = h(a, sz)r/>;(det(da)e). 

PROOF. Let a G r [ 2 D _ 1 , 2D]; then det(da)g is clearly prime to 2 and ila(a) = 
g, so that vo(8~1d~1ca) = det(dQ)g by Lemma 1.11 (2). Since d~lca -< 2DV 

for v\2, we see from (16.5) that /yv(8~2d~1ca) = 1 for v\2. By Lemma A1.6 
(3), i T t ; ^ 2 ^ 1 ^ ) ! = "((S-^Cah)'1'2 for v\2, and hence \l{8'2d-l

Coi)\ = 
1 / 9 

N[det(da)g) = lim2_+0 \h{a, z)\~l. This combined with Lemma A2.6 proves 
our first equality of (*). By (16.5) we can easily express the quantity in question as 
a sum over L/Lda as stated. Next, if /3 is as in (2), then c$ = sca and d@ = da, so 
that h(/3, z)/h(a, sz) is a constant, which equals j(8~2d^1cp)/^f(8~2d~1ca) by (1). 
If u |2det (d a ) , then d~l is v-integral, so that ~iv(8~2d^lcp) = 7^((5~2d~1ca) = 1. 
Now det(da)g is prime to 2s since b@ -< 2D -1 and c@ -< 2sD. If v|det(da) and 
v{2, then by Lemma A1.6 (1) we have 

*(«-V„) = *(«-«•«.) („0(<_4VJ = *(«-'*'*> (sjjjj;) • 
Therefore we obtain the formula of (2). 

A2.9. Proof of Theorem 6.8. Observe that 0(u, z\ £) coincides with <£>F(u, Z\ A) 
if X(x) = £(*#). Then (1), (2), (3), and (5) of Theorem 6.8 are special cases of 
Theorem A2.4 (2), (4), (3), and Proposition A2.7, respectively. Given such A and 
£, put Dx = {<J e Ce I a£ = ^ } , where we write a£ for r£ with any r e M A 

such that <7 = pr(r) . This is meaningful by Theorem A2.4 (5), and Dx is an open 
subgroup of Ce by Theorem A2.4 (6); moreover DA = Ce if £ is the characteristic 
function of Ylveh^- Now let the notation be as in (4) of Theorem 6.8. Then we 
can put a _ 1 =7<7 with 7 = diag[td, d_1] and aeDx> Put £\=a £. By Theorem 
A2.4 (4) we have £=a£x and £l=~i(J£=7£, and so by Proposition A2.5, 

6(a(u,z);£) = ha(z)6{u, z\ ^£). 



258 APPENDIX 

If £ is as in Theorem A2.4 (8), then by that assertion and (A2.3a) we have (7-£)(x) = 
£(x • *d), so that (7£)(*x) = A(dx). Clearly this is valid for an arbitrary A G S(Fg). 
Thus we obtain (4) of Theorem 6.8. 

Proof of Theorem 6.9. The first part of (2) of Theorem 6.9 follows from Proposi
tion A2.5. To prove (6.33), take a = 77 in Proposition A2.5 and substitute 77(11, z) 
for (it, z). Then we obtain 0(-u , z\ v£) = hT1{r]z)9{r}{u, z)\ t). Prom (A2.24) we eas
ily see that h^rjz) = / ^ ( z ) - 1 , and hence 0(j)(u, z)\ £) = hr){z)6(—u, z\ r}£). Now 
0(-u, z\ £1) = 0(u, z\ £2) with £2{x) = h{~x). Therefore 0(77(1*, z)\ £) = hv{z) 
•0(u, 2; f ) with £'{x) = (V?)(-x). By Theorem A2.4 (7) and (A2.3c) we obtain 

H{x) = \DF\-"/2 I £(ty)eh(-txy)dy, 
JFZ 

and hence we obtain A' as given in (6.33). 
To prove (1), we first consider the case a G G. Take any nonzero £ in S(Xh) 

and define t! as in Proposition A2.5 with any choice of £ for a given a G G. (Take 
a as (3 there.) We may assume that r(z) = YiveadiZv, zv). By Theorem A2.4(6) 
we can find a congruence subgroup r of G such that 1£ — £ and 1£' = £' for every 
7 G r. Let 7 G a~1Ta fl r. By Proposition A2.5 we then have 

fe(a7a"1, az)0(a(u, 2); f ) = 0(crya-1a(u, z ) ; f ) = r(yz)6(<y(u, z)\ £) 
= r(7z)ft(7, *)0(u, 2; ^) = r(7z)/i(7, z)r(z)-l9(a(u, z): £'). 

Since 0(?z, z\ £') is a nonzero function, we obtain (1) when a G G. To treat the 
general case, we observe that every element of G + is the product of an element 
of G and an element of the form diag[ln, s l n ] with s G F x , ^> 0. Therefore we 
can reduce our problem to the equality h(a~fa~l, az) = hy(z) for 7 in some 
congruence subgroup when a = diag[ln, s l n ] . We easily see that it is sufficient to 
prove it for 5 G 9. Taking a and 7 here to be f and a of Proposition A2.8 (2), we 
btain h(aja~1, z) = ^(sz)^*(det(d7)g). Since s » 0, we have ip*(det(d7)g) = 
1 if det(d7) — 1 G 4sg. Thus we can define the desired congruence subgroup by 
that congruence condition. This completes the proof of Theorem 6.9. 

Let us now study the behavior of h(a, z) and the action of 9Jt on <S(Vh) under 
the reflection z 1—> —zp, where xp is defined for x G (C™)a by xp = xv for each 
v G a. Observe that this reflection maps H onto itself. Putting a* = EaE"1 for 
a G GA with E = diag[ln, - l n ] , we see that {C6)* = C9, a*{-zp) = -a(z)p for 
z eH, fJ>o{a, z)p = /JLo{a*, -zp), and //(a, z) = /i(a*, ~zp). 

A2.10. Proposition. There exists an automorphism of MA which is written 
a H-> a*, consistent with a h-» EaE~l for a G G, and determined by the relation 
{&/)* = 0"*/* / o r / € L2{XA), where f*(x) = f(—x). Moreover, pr(cr)* = pr(cr*), 
rp(a)* = rP(a*) for a G P A , rn(/?)* = rn(/?*) /or /? G fiA, ** = t'1 for t G T, 
9Jt* =<rjt, ^ z) = /i(0r*, - * ' ) and a\t) = (*£)* for every a eM and £eS(Xh), 
where t is defined by t{x) = £(~x). 

PROOF. From (A2.3a, c) we easily see that [ r P (a ) / ]* = r P ( a * ) / * for a G F A 
and [rn (/?)/]* = rn (/?*)/* for /? G OA- Prom Lemma 7.5 we easily see that MA 
is generated by 7*P(PA), ^Q(^A)> and T, and hence these equalities prove our 
assertions except the last two, which follow from Theorem A2.4 (1) and (A2.22) 
combined with the relation (£A)*(X\ U, Z) — (£*)A(X;U, -ZP) that can easily be 
verified. 



A2. METAPLECTIC GROUPS AND FACTORS OF AUTOMORPHY 259 

A 2 . l l . We conclude this section by investigating h(a, z) for a in the subgroup 
Sp(r, F) x 5p(s, F) of Sp{r + s, F). To emphasize the dimension, let us denote 
the symbols G, P, X, W, ZY, M A , and 3tt by G<n\ p(n>, X< n \ H{n\U^l\ M{£\ 
and 9JT^n\ Let n = r + s with positive integers r and 5. For /? G G^/ and 7 G G ^ 
we define an element /? x 7 of G ^ by (23.5). 

Let us now study how this injection (/?, 7) i-> /?X7 of G)£ x G ^ into G^/ can be 
extended to their metaplectic coverings. First, for / € L2{X^]) and / ' G L2{X^]) 
we define f ® f e L2{X^) by (/ ® /7)(x,x7) = f{x)f{xf) for x G X^ r) and 
x' G -X"A • Given a G M ^ and a7 G MĴ  , we have a unique unitary operator 
(a, a7) on L 2 ( x £ ° ) such that (a, a') ( / 0 / ' ) = af ® a ' / ' for all such / and 
f. Then, checking the formula of [W64, (15)], we find that (a, a') G M^n) and 
pr((cr, a')) = pr(cr) x pr(cr7). (Notice that (cr, a') 1—> (<r, cr7) is not injective.) For 
z G W(r) and z7 G W(s) define [2, zf) G W(n) by [z, z']v = diag[zv, z(J; similarly for 
u G «(r> and vl G £/(s) define [u, vl\ G W(n) by [u, v!\v = ' ( ^ v , ' < ) • Clearly 

(A2.25) <p(x, x7; [u, uf], [z, z7]) = <p(x; it, z)(/?(x7; u\ z'). 

Observe that (a, or7} G SDI^ if a G fXTl̂ ) and cr7 G SflW. 

A2.12. Proposition. / / cr G OT^ and a' G 9JtW, we have 

h((a, a7), [z, z7]) = h(a, z)h{a', z7) and (°>°'){l®l') = (*£) (8) ( a ' f ) 

for * G <S(x£r)) and P G «S(x£°), where ( ^ f ) ( x , x7) = l{x)l'(x7). Moreover, if 
a G G ^ and a' G G^s\ then a x a' as an element of M^ coincides with (a, a7) , 
and hence 

h(a x a7, [z, z7]) = /i(a, z)h{a!, z') 

if a G G<r> H 0H(r> and a7 G G ^ n M^. 

P R O O F . Formula (A2.25) together with (A2.22) proves the first equality, which 
together with Theorem A2.4 (1) proves the second one. Let a G G ^ and a7 G G ^ . 
If a G P ( r ) and a7 G P ( s ) , formula (A2.3a) gives a x a' = (a, a 7) . Since G is 
generated by P and 77, our proof will be complete if we can show r\r x 1 = (r)r, 1) 
and 1 x r]s = (1, 77*5). Now, from Lemma A2.6 we easily see that 

(A2.26) ft (a x 1, [z, z7]) = /i(a, z) if a G G^r) and det(dQ) ^ 0. 
0 - 1 Observe that rjr = /?7 with ,3 = and 7 = 0 l r 

Clearly 
l r 2 • l r 

det(d/3)det(d7) 7̂  0, and hence the equality of (A2.26) is true with (3 and 7 in 
place of a. Since 7 G C*, Theorem A2.4 (4) shows that 
ftfar, z) = /i(/3, 7*)M7, *) = M ^ x 1, [7z, z7])/i(7 x 1, [z, z7]) = ft(r/r x 1, [z, z7]). 
On the other hand we already know that h{ (rjr, 1 ) , [z, z7]) = /i(/7r, z). Observe 
that if h(cr, w) = ft(r, it;) for some w and pr(cr) = pr(r), then a = r. Therefore 
we have (7/r, 1) = r̂ r x 1. Similarly (1 , r/s) = 1 x 775, which completes the proof. 

A2.13. Proof of Proposition 16.9. We consider only half-integral /c; the case of 
integral k can be handled by the same methods (see Remark 16.12). We identify 
any element of P A with its image under rp, as we did in §16.5. We start with an 
obvious equality 
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0) E*A(x, s) = x(6)-n £ rt<*xCM<*xQ-, A = P\G. 
aEA 

Let a e G and pr(x) G P A G & ; suppose ^{OLXQ ^ 0. Then a#C G P A A SO that 
a G PA£>[b_1, bc]C_1PA. Now (1.18) shows that det(cy)v ^ 0 if y G Dpb"1, bc]C_1 

and v|c. Therefore we see that det(ca) ^ 0, and so a G P77P by [S97, Lemma 2.12 
(2)], where rj is rjn of (1.8). Thus we can take P\PrjP in place of A in (i). By [S97, 
Lemma 18.8 (2)] we can take rjR as P\PrjP, where R is given by (16.11). Thus 

£*(x, 5) = X(S)-n J2 ^xQe{axQ-s if pr(x) G P A G a . 
aGn.R 

(ii) 

In 
0 In 

. Clearly r(S) = R. Putting f = diag[g, §], For a G 5 A put r(cr) = 

from (16.42) we obtain 

(iii) c(/i, (j, s) = x(6)~n I E* (r(a)f, s)e£(-A<7)dt7, 

where we take the measure of SA/S to be 1. To simplify our notation, put g(x) = 
fj,(x)e(x)~s. Putting x = T(<T)£ and a = r)r(a) with a G 5 in (ii), we obtain 

£ ' ( r ( a ) £ , a) = * ( « ) " " £ff(»7T(a + aKC). 
aes 

Substituting this into (iii), we find that 

(iv) c(h, g, s) = X(6)-n [ g{vT(a)tt)el(-ha)da. 
JsA 

Since r(6)f = f r f a " 1 ^ , from (16.41) we see that E*(r(a + 6)f) = E*(T(<T)£) if 
6 G 5h and q~lbq < D~2bc. Then (iii) shows that c(/i, q, s) ^ 0 only if (tqhq)v G 
(3lT 
Consequently a * ^ 1 • tqhq, 2s, %) is meaningful. 

_1c 1)VSV for every v G h, which is the first statement of Proposition 16.9. 

Our next task is to determine the value of g{xQ for x — rfr(a)^. Putting 
y = x£, we have 

Vh ~6i 0 
2/a — X& — (dy

lcy)h = -62(q laq)h. 
0 - ? 
q aq 

We assume det(gv) > 0 for every v G a. Since ^(77) = rj and we are identifying 
T((T)£ with rP(r(<7)£), we have, by (A2.3b), x = r f i (77)^ (T(<T)£) = r^i(r]r(a)l) = 
rn(x). Now j*(xC,i) = i x W by (16.30), and j*( i ) = Adet(gz + a£)£ with A G T. 
(The branch of det(z)fc was chosen in §16.8.) Then from Lemma A2.6 we can 
easily derive that Ae(n[P : Q]/8) = uj(—q~1aq). Since oo(—s) = CJ(S)""1, we have 
j ^ ( i ) - 1 = Cu>(q~laq) det(qi + aq)~k with C = e(n[F : Q]/8). 

Now g(x() ^ 0 only if y G P A - D ^ " 1 , be], which is so if and only if {S2q~1aq)v -< 
bvcv for every v|c, by virtue of the characterization of PAD in Lemma 1.9. Assum
ing the last condition, let y^ = pw with p G Ph and w G £>[b-1, be]; take 6 e F h

x 

so that 6g = b. By Lemma 1.11 (2), 
detidyd-1)^ = d e t ^ ) ^ ^ ) - 1 - ^ ( f t - M - 1 ^ ) = ^ ( b - ^ V ^ S ) . 

Since cL = cLcL,, we obtain •pu,w, 

(v) Xh(det(dp)) ^ ( d e t ^ ) ) = Xh(det(dj,)) (xh/Xc)(det(dp
 1dy)) 

= Xtl(det(-6q-'))X*{Mb-162q-1<Tq)). 
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Here notice that vo(b~1d~ 1cy) is prime to c by Lemma 1.11 (3). By (16.23a), 
e(yh)=N(ilb(y)y2 = \6~ndet(qh)\\i,(b^82q^aq)2 and e(ya) =e(xa) = | jx( i ) |2 a . 
Temporarily denote the quantity of (v) by ^(^h)- Combining all these and taking 
Sb as in Proposition 16.9, we obtain 

x(6)-ng(x0 = x(5)-nM(2/h)£(yh)-s£(xa)-s
Jx

fc(i)-1|jx(i)|fe-i« 
= C\6ndet{q^)\2/Xh(det{-q-1))x*(M^bq-^qlH^bq-1aq)-2s 

• Lj{q~laq) det(gt + aq)lk\ det(gi + aq)a\k~iK-2s&. 

For a fixed q the last product can be written in the form 

C|<5"det(9)|i^h(det(-g-1))n/.K) 
vGv 

with functions fv on Sv which we choose in the manner obvious from the above 
expression. Then from (iv) we obtain 

c(h, q, s) = C |^de t (g ) | i 5
X h(de t ( -g - 1 ) )c (S) \{ f fv{av)en

v{-hav)dav, 

where c(S) is the factor determined by da = c(S) Ylvev d^v, whose value is given in 
[S97, (18.9.3)]. Since (S2q~1aq)v -< bvcv C 2DV for every v\c, we have vo(8ebq~1aq)v 

— gv and {q~1aq)v -< 2D"1 for v\c. Therefore, from (16.5) and (16.6) we obtain 
uj[(q~1aq)v) — 1 for v\t. Thus, for v|c, we can take fv to be the characteris
tic function of qvS(<)-2bc)v • lqv. Put \iv = N(bvcv)-n^n+1^2\det(qv)\n+1. Since 
(tqhq)v G ('Ob~lc~1)vSv, the integral over Sv for v\c is the measure of the set 
qvS{X)-2bc)v • *gv, which equals ^ A ^ < ; ) n ( n + 1 ) . 

For v G h, vf c, taking the variable change av i-+ bvqvav • £gv, we find that 

/ fv(^v)^v(-h(Tv)dav = Vv' X*{M<Jv))u(6~1°rv)v{crv)~2sev(-Tav)dav, 
J Sv J Sv 

where r = (e^1 • lqhq)v. The last integral is clearly the ^-factor of OL\{T, 2S, X)-
As for v G a, the integral over Sv produces £(yv, hv\ . . . ) . We shall not go into 

details here, since such a calculation is practically the same as what was done in 
[S97, §18.11] for integral k. Taking the product of all these factors, we can complete 
the proof. As we said at the beginning, the case of integral k can be proved in a 
similar and much simpler way. 

A2.14. Proof of Theorem 17.7 (vi). Suppose n=\ and c = g; then keZ* and 
G = PUPrjP by [S97, Lemma 2.12 (1)]. Since P\PrjP can be given by rjR by [S97, 
Lemma 18.8 (2)], P\G can be given by {l}UrjR. Thus, by (16.33), for ( e G a we 
have 

EliZ, *) = x(6)-V(£CM£C)-s + £'(£>») 
with E'{£, s) = xiS)-1 J2 rtatCMctQ-'-

aer)R 

Given z = x + iy G $)*, take £ = r(x)diag[?/1/2, y~1^2}. We now apply our compu
tation of §A2.13 (for k G Z a , or that of [S97, §18.11]) to £'(£, s) to obtain 

£'(£, *)j*(i) = y-k'2 £ *{K yl,\ s)ea(hx) 
heF 

with quantities c(h, y1/2, s), to which the formula of Proposition 16.9 is applicable; 
we simply take c = g in that formula. Observing that £ of (16.28) belongs to 
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diag[e6 \ £fc]£)[b \ b] with £{, of Proposition 16.9, we see that x(<5) V(£CM£C) s 

= x*(b5-2)AT(b-19)2s
2/sa. Therefore 

(*) L(2s, X)E*(z, a) = X*(^-2)N(b-^)2sL(2s, x)y s a _ f c / 2 

+ L(2S, X)y-k/2 Y, °(h> yl/2> s) ea(^)-
heF 

Our problem is the nature of D(z, 0; 2a, x, g) for n = 1. If x 7̂  1» t n e n (v) OI" 
our theorem says that it belongs to 7rd.M2a(Qab)- Suppose x — 1; then L(2s, x) = 

CF(2S) and the analysis of the Fourier coefficients at 5 = 0 in the setting of (v) is 
applicable to the second term of (*). Thus (*) with k = 2a at s = 0 gives 

CF{0)y-a + 7TdJ2ahea(hz) 
heF 

with ah G Q a b . By Lemma 17.5 (3), (F (0) = 0 if F ^ Q. It is well-known that 
C(0) = —1/2. Thus, for A; = 2a and 5 = 0, (*) produces an element of 7rdAl2a(Qab) 
or 7T.A/2 (Qab) according as F 7̂  Q or F = Q. This result is for E*. Transforming 
E* back to E by Co as in (16.35), we can complete the proof. 

A3. Transformation formulas of general theta series 

A3.1. For X = (xij) G Cq
q and F e C > e define X <g> Y G Q g by 

Txny ••• xi(7F 
x ® y = 

Let V be a g-dimensional vector space over F and S : V xV -^ F a, nondegenerate 
F-bilinear symmetric form. For each v G v we have an Fv-bilinear symmetric 
form Sv : V x V —* Fv . For each v G a put 7V = diag[l r t ;, — 1SJ with the 
signature (rv, sv) of Sv; we also take and fix an Fv-linear bijection Av : Vv —> 
(F 9 ) v so that 5w(x, y) = t(^x) / v(A v 2/) and put Tv(x, y) = t(Avx)(Avy). For p = 
(Pi> • • •» Pn) G V™ with j9j G K we define elements Sv\p] and Tv\p] of (Fv)£ by 
^ [p ] = {Sv{pi, pj))%j=1, Tv\p] = {Tv(pi, pj))?j=1. Notice that Sv\p] is meaningful 
also for v G h. 

A3.2. Let us again emphasize the dimension as we did in Section A2, by using 
the symbols G ( n ) , H{n\ U{n); in addition we use D(n)[j:, tj] and 0^ for £>[?, ij] 
and 0. We now define a theta function g(u, z\ A) for 2 G W^n\ iz G U^nq\ and 
A G 5(Vh») by 

(A3.0a) fl(u, 2; A) = ^ *(&)#(& «, ^) , 

(A3.0b) <P(p;ti,*) = IJ*„(p ) ( P 6 ^ A ) , 

<2>v(p; u, x + iy) = eyuilq 0 4 ^ ) " ^ + 2~1tr(xSv[p] + iyrv[p]) + ti (u'{Avp)) 

for p G VJ\ x + iye fin, and u G Cnq, 

where 4„p = (A,px . . . Avpn) G {Fv)q
n for p=(pu... ,pn) G FJ1, u' = (wi . . . u9) 

G C£ for *u = («txi . . . *tig) G Cn(? with u, G C n . If g - 1, V = F, S(x, x) = x2 , 
and i4v = 1 for all v, then we see that g(u, z; A) coincides with fl^(w, 2; A). In 
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the general case g can be obtained as a "pullback" of 6^nq^ as will be shown below. 
It should be noted that g(u, z\ A) = 0 for every (it, z) only if A — 0. 

We let GA act on H{n) x U^nq) by a(u, z) = {w, az) for a G GA with 

(A3.1) wv = diag[lrt; <g> */i(a, ^ )^ 1 , l*v ® */x(<*> 4 _ 1 K -

We now put 93^ = 97t if g is odd and d)lq = GA if Q is even, and define a factor 
of automorphy Js(a, z) for a G 9tt9 by 

(A3.2a) J 6 (a, z) = < 

f J\ja{z)^-^\ja(z)v\^ if q is even, 

h{a, z)q Yl ja(z)vSv\j«{z)v\Sv if q is odd. 
v£a. 

JS If q is even, Jb is a factor of automorphy; if q is odd, however, Theorem A2.4 (4) 
implies the following weaker property: 

(A3.2b) J 5 ( a / ? 7 , z) = Js(*, z)Js((3, 7 z ) J 5 ( 7 , z) 
if pr(a) G P A , /? € 9Jt, and pr(7) G C*. 

A3.3. Theorem. Let \ be the Hecke character of F corresponding to the exten
sion F(det(5) 1 / / 2 ) /F or F((—l)9/4det(5)1^2) according as q is odd or even; let 
pr denote the identity map of GA onto itself if q is even. Then every a G DJlq 

gives a C-linear automorphism A ^ a A ofS(V£) with the following properties: 
(0) J 5 (a, z)-lg(a(u, z)\ QA) = g(u, z\ X][if a G G n 3Jt9. 
(1) The map A i—• CTA does not depend on { Av } v e a (though it depends on S). 
(2) (^)A = a(TA) for every a and r in GA if q is even; <<*"-) A = p(a(TX)) when

ever pr(p) G P A and pr(r) G C6* if q is odd. 
(3) aX depends only on A and pr(cr)h-
(4) pr ({ a G 9Jlq \ aX = A }) contains an open subgroup of G A for every A G «S(V^). 
(5) For pr(cr) = r G Ph we have 

(*A)(x) = |det(a r)h |^ / 2Xh(det(aT))e hf tr(5[x]a r -'K)/2]x{xaT), 

(6) 

where 5[x] = (Sv[xv])veh and (xu .. .,xn)a = (J27=i xiaij)1j=i f°r (xu • • •, xn) 
G V£ and a G (Fh)£. 

( n ) ( x ) = ir J^X(y)eh U^Sixu yA dsy. 

Here Y = V£, dsy is the Haar measure on Y such that the measure of 
( E L l &vei)n f°r each V e h Wlth a bsLSis i ei }i=l °f V 0Ver F 1S N{X)v)-qn/2 

| det(5(ei, e j )) |J / 2 , and r = (n/2) £ u € P (rv - sv) or -nJ2ver sv according 
as q is even or odd. 

(7) J5(-77, nz)Js{r}, z) = 1 and -»("A) = A. 

Since V has no fixed coordinate system, det(S) means the coset of det (S(ei, e7)) 
modulo { o? | a G P x } with { e* }™=1 as in (6) above. Clearly x i s well-defined. 
Thus our theorem is "coordinate-free" (as far as V is concerned). In the proof, 
however, we use a matrix representation, and so hereafter we assume that V = Fq 

and S{x,y) = lxSy for x, y G Fq with lS = S £ GLq{F). Then Av G GLq(Fv), 
Sv = tAvIvAv, and Tv = tAvAv for each v G a. In this setting, the formula of (6) 
can be written 
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(A3.3) C>A)(x) = r | i V F / Q ( d e t ( 5 ) | - / 2 f X(y)eh(-tv(txSy))dy) 

where Y = (P,?)h, and the measure of (Qv)n *s N(j)v)~~nq/2 for each v eh. 
The proof of our theorem requires some preliminaries. We first define an em

bedding if; : TiS71^ —• H^nqS) and an injective homomorphism a i—• a s of G^ into 
G™ by *{z) = ( ^ ( z w ) ) v € a , 

^«(z + «y) = 5^ 0 x + iTv ® y, a 5 = 
lq<g) aa S ®bQ 

c - i ^ £ lq<8>da 

It can easily be verified that il)(a(z)) — as(i^(z)) and 

fj,(as, il>{z))v = (Av 0 l n) ^ i a g f l ^ 0 /x(a, s )v , lSv 0 /i(a, z ) J ( A, 0 l n ) 

for each v G a. Prom these we obtain immediately 

(A3.4) j a s (m? = 3o(z)o» J ] J a ( z ) - ' « ^ ) t " . 
t;€a 

To find a relationship between Js(a, z) and h(as, ip(z)), we take integral ideals 
b and c such that as G Z}(n<?)[2()~1, 2D] for every a G £>(n>[2Mr\ 2cS]. Then 
5 G GLq(gv) for every i; f be. 

A3.4. Lemma. For a G GnPA-DpMr 1 , 2ct>] we feave 

h(as, 1>{z)) = X a(det (d a ) )x*(det (d Q ) i l (a ) - 1 )J 5 (a , z), 

w/iere x* ^ t/ie idea/ character associated with x °f Theorem A3.3. 

P R O O F . From Theorem A2.4 (1), (2), and (A3.4) we easily see that 

(A3.5) ft(a5, il){z)) = tJs{a, z) with t G T. 

By Lemma A2.6 we have 
l inv_oMa, z)l\Ka, z)\ =u>, \imz^0 h(as, ip(z))/\h(aSl ip(z))\ = J 

with u) = uj(6~2d~1ca) and J = LJ(6~2S~1 0 d~lca). Let a G P A T with r G 
£)[2bD-1, 2rt>]; write simply c and d for cT and d r . Clearly d~1ca = d _ 1c. From 
(A3.2a) and (A3.4) we see that J — *Xa(det(da))£, where f = 1 or £ = cuq 

according as q is even or odd. If v \ 2bc, then 5 _ 1 = tTv • diag[$i, . . . , sq]Tv with 
TveGLq(gv) and Si€&*. By Lemma Al.6 (1) we see that 

7v (<5"25-1 0 d^c) = fl^-'sid-'c) = 7„(<r2<T1c)« ( ^ f f ? i c ) J • 

By Lemma 1.11 (2) we have v0(5~1d~1c) = vfo{6~1d~1ca) — det(da)i lD(a)_ 1 . If 
v|2bc,then |det(d)|v = 1, and hence both (2-1S'1d-1c)v and {2-1S-1S"1(g>d''1c)v 

are v-integral. Therefore (A1.5) shows that 7^=7^ , = 1. Notice that nv t2u ;2 = 

^*(i/0(^~1d-1c))9 / 2byLemmaA1.6(2), if q is even, where ip* is as in Proposition 
A2.7. Combining all these, we obtain our lemma. 

P R O O F OF THEOREM A3.3. We are identifying V with Fq and Vn with Fq, and 
hence Sv\p] = tpSyp and Tv\p] = lpTvp for p e (Fq)v. Define A : l/<n«> -» U^nq) by 
A(u)v = (fAv 0 ln)uv and also u : F*q -* Fq by u(x\ . . . xg) = t(txi . . . % ) 
for Xi E F*. Then a straightforward calculation shows that 

(A3.6a) g(u, z; A) = 0(n«)(.A(u), ^(z); Aow), 
(A3.6b) a5(.A(u), ^(z)) = (A{w)1tp(az)) if a(u, z) = (w, az). 
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For a e GnDJlq we can find an element £ G ]XeaMp((F„q)v) such that pr(f) = 
(c*s)a and YlveEig{€v, i>{z)v) = JS(OL, z). Then, for £ = A o UJ Proposition A2.5 
together with (A3.6a, b) shows that 

Js(a, z)g{u, z; A) = 6^(as(A(u), </>(z)); £') = (j(a(u, z); V) 
with A7 = t! oa ; - 1 . Putting A' = QA, we obtain (0). Let t be the conductor of x; 
let E = D[2bT>-1, 2cD] and E' = { a G E \ xt{det(da)) = 1 } , where \t = ELie X«-
If a € GDPAE, then Lemma A3.4 and Proposition A2.5, combined with the above 
argument, show that 
(*) QAoa; = Xa(det(dQ))x*(det(dQ) i l 0(a)-1)^(Aoa;) 

with 0 = as- In particular, aA OMJ = ^(A o UJ) if a G G D E'. This together with 
Theorem A2.4, (6) shows that aA = A for every a in a congruence subgroup J1 of 
G depending on A. Take an open subgroup D of E' so that r D G H D. We take 
D C G^ if q is odd. By strong approximation, given cr G 3Jl9, we can take a G G so 
that pr(a) G a£). Then a G 97tq. Define CTA to be aX. It is then easy to verify that 
this is well-defined and has property (2) for even qy and also properties (3) and (4). 
To prove (5), let pr(cr) = r e Ph- Given A G S({F%)h), take a G G so that r G a £ ' 
and that aA = aA. Then we easily see that 
(**) Xa(det(dQ))X*(det(d a)i l ,(a)-1) = x (de t (a r ) ) . 
Let £ = A o UJ and (3 = as. From (*) and (**) we obtain ?£ = x(det(aT))( aA) o UJ. 
Changing E' for a smaller group if necessary, we may assume that TS and as have 
the same effect on £. Then we obtain 
(***) x(det(a r))(QA)oo; = ^ with pr(<p) = rs. 
Taking (p to be rp(rs), from Theorem A2.4 (8) and (A2.3a) we obtain 

^£(y) = \det(lq^ar)\][2eh(y{S^aT'%)-ty/2)£(y(lq^ar)), 
which combined with (***) proves (5). To prove (6), or rather (A3.3), we first 
observe that (A3.5) is valid for a = 77. Now the first formula of Lemma A2.6 shows 
that both h(rj, z) and h(775, ̂ {z)) are positive if z G R i with i of that lemma, 
and hence ir • h(r]s, ip(z)) = Js{r], z) with r as in (6). Then from (A3.6a, b) we 
obtain 7?Aoo; = i r- 7(Aoa;) with 7 = 775. Observe that 7 belongs to the set P A G * 
of Theorem A2.4 (7) (of degree nq). Therefore, by (A2.3c) we have 

U(x) = I de t (c 7 ) h | i / 2 J £(yc^)eh(xb7 • <c7 • tydy (Y = ( F ^ ) h ) , 

which can easily be transformed to (A3.3). To prove (2) when q is odd, first let 
a G 971 and pr(/o) G Ce. With an open normal subgroup D of G0, take a G 
G fl pr(<r)jD and (3 G G n pr(p)£>. Then a/3 G G n pr(ap)D. Take £> so small that 
'(^A) = "(/*A), ^A = 'A, and ^ A = (°«A. Since / ? G ( ? n C 0 , (A3.2b) shows 
that Js(a(3, z) = Js{a, /3z)J5(/?, z), and hence we obtain (a/3U = Q(^A) from 
(0). Thus (<">A = (a/3)A = Q(^A) = a{P\) = a{p\). Next let pr(r) G F A and 
cr G 9ft. Then a = np with pr(7r) G P A and pr(p) G C*. From (***) we see 
that (T7r>C = T(WC) ^ every C G <S((i™ )h) . Therefore (™>A = ( r7r^A = ("O^A) = 
T(,r(^A)) = r( (7 r^A) = T(aA). This proves (2). To prove (1), it is sufficient to 
show that aX for a G G fl OTg is independent of { Av } . If q is even, this follows 
from (5) and (6), since P and 77 generate G. Suppose g is odd. By (2) and (5), 
it is sufficient to show that aA for a G G fl Ce is independent of {̂ 4V } . Now 
am G Z}[2bD-1, 2cD] for some positive integer m. Therefore Lemma A3.4 shows 
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that / I ( Q 5 , ip(z)) = tJs(a, z) with a root of unity t. Then a Aow = t~l -7 (A o u>) 
with 7 = a^. Now the set of all { Av } is not necessarily connected, but it can easily 
be shown that the set of all { Tv } is connected. Since / i (as , ip(z)) is continuous in 
{ Tv } , we see that t does not depend on { Av } . This proves (1). Finally, to prove 
(7), we recall that h(-rj, z) = (̂77, z) as stated in Theorem A2.4 (4). Therefore 
from (A2.24) we easily see that h{—n, z)h(rj, z) = 1. This combined with (A3.2a) 
proves the first half of (7). Then the second half of (7) follows from (0). 

A3.5 . We are going to introduce a series involving harmonic polynomials on 
Vn. Given a finite-dimensional complex vector space W and 0 < a G Z, we denote 
by &a(W) the vector space of all C-valued homogeneous polynomial functions on 
W of degree a. We then denote by Va{Cm)the vector subspace of 6 a ( C £ j spanned 
by the functions p satisfying the condition 

(A3.7a) Y^ d2p/dxihdxik = 0 for every h and k, 
i=l 

where x = (x^) is a variable on C ^ . For instance, we can take p(x) = ip^px) with 
(f G 6a(C™) and p G C ^ satisfying the condition 

(A3.7b) lPhPk — 0 whenever d2<p/dyhidykj ^ 0 for some i and j , 

where p^ denotes the h-th column of p, and y = {yhi) is a variable on C™. 

A3.6. Lemma. Letu(x)=exp(J2™k=i YZ=i chk%ihXik) for x E R ^ with chk = 
ckh G C. Then \p{D)(ujip)}(0) = \p(D)ip](0) for every p G P a ( C £ J and every C°° 
function ty in x, where D is the (q x m)-matrix whose (z, h)-entry is djdx^. 

PROOF. We first observe that if a is a polynomial in n variables yi, . . . , yn 

and cti = da/dyi, then 

(*) Hd/dyu • • • , d/dyn)(yi/3)}(0) = [*i(d/dyu • • • , d/dyn)l3](0) 
for every z and every C°° function /?. This is completely elementary. Now our» 
lemma is trivial if a = 0. Assume that it is true for degree < a and that a > 0. 
We have ap(x) = J ^ hxihPih(x) with p;h = dp/dxih, and hence 

MZ?)(W)](0) = X> f c ( I>)3 /0x i f c M)](O) 

= £ b i / , ( Z ? ) ( w - W * i / , ) ] ( 0 ) + X I 2chfc[pifc(^)(^fcwV)](0). 
i, h i, h, k 

Since pih G P a _ i ( C ^ ) , by our induction assumption the first sum on the last line 
is Yli h\Pih(D)dipJdxih](0), which is [ap(D)ip](0). By (*) the second sum equals 
Yli,h^k2chk[(dpih/dxik){D){uj^)](0), which is 0 by (A3.7a). This completes the 
proof. 

A3.7. Coming back to the space V and the form 5, for each v e a put 

(A3.8a) X+ = {xeVv\ (Avx)i = 0 for i>rv}, 
(A3.8b) X- = {xeVv\{Avx)i = 0 for i<rv}, 

where ŷ  for y G R 9 means the i-th component of y. Clearly Vv = X+ 0 X~. For 
y G 14, we denote by y+ and y~ the projections of y to X+ and X~. 

Given m and m' in Z a whose components are all nonnegative, we denote by 
'Prn,m,(Vn) the vector space over C spanned by all functions p on V™ = I IueaKn 

of the form 
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(A3.9) p(x) = Yl pv(Avxi)p'v(Avx-) 
v£a. 

with pv G Vmv(Cnv),Pv e Pmi(C*"), where Avx$ = (Avxfx,..., Avx$n) for 
xv = (x^ i , . . . , x w ) with xvi G Vv. Write p of (A3.9) as p = (pv, p'v). We let 
every element -\x of G L n ( C ) a act C-linearly on Vm,m'{Vn) by defining \xp = 
{Hvpy, ~pyP'v) with (vs)(y) = s{yv) for s = pv , p^, and 1/ = [iv or 7ZV. Notice that 
this action is compatible with both (A3.7a) and (A3.7b). 

Now for z G H, A G <S(V^), and p G Pm ,m'(Vn) we consider a series 

(A3.10) / (* ; A, p) = J2 *(&)?(&)*(£; 0, *). 

A3.8. Theo rem. T/ie notation aX being as in Theorem A3.3, we have 

Js{a, z)-lf(a(z); "A, V(« , ̂ p ) = / (* ; A, p) 

for every a G G D 9Jtg. 

P R O O F . Write the variable tt in the form l̂î  — (^ii»* • •»^Ci > • • • ? ^Jg» • • • ? •̂ug)* 
We can then define a differential operator 5 = YiveeiPv(Dv)p,

v(Df
v) on Z//, where 

Dv = [d/dvPvi) with 1 < i < r„, 1 < j < n, /?(, = {d/du3
vi) with rv < i < q, 1 < 

j < n, Ev = (d/dali), E'v = (d/d&jj with 1 < t < g, 1 < j < n. Employing 
Lemma A3.6 we can easily verify that [Bg(u, z\ A)]u=o = (2iri)N f(z; A, p), where 
N = Ylve^rUv + m'v)' Therefore we obtain our assertion by applying B to the 
equality of Theorem A3.3 (0). 

We can associate with the above / a function / A ( # ; A, p) with a variable x on 
GA or M A , according as q is even or odd, by 

(A3.ll) fA(aw; A, p) = Js(w, i ) " 1 f(w(i); -A, ^{w, i)'lp) 

for a G G and w G 2Jtg, where i is as in Lemma A2.6; we take pr(u>) G C0 if q is 
odd. This is well-defined by virtue of Theorem A3.8. Now we have 

A3.9. Propos i t ion . For every a G G and y G Wlq such that y(i) — i and that 
pr(y) G Ce if q is odd, we have 

fA{axy; A, p) = Js{y, i ) _ 1 /A(x; yA, V(*/, i)_ 1p)-

P R O O F . Given x, take (3 G G and it; G 071̂  so that x = fiw and pr(iu) G Ce. 
Then 

fA(axy, A, p) = /A (wy, A, p) 
= Js(wy, i ) - V ( ^ ( i ) , ("y)A, V(^y, i)_ 1p) 
= Js(y, i ) " 1 ^ ^ , i ) - 1 / ^ ) . w(yA), V K i ) " 1 • V(y, i ) " V) 
= Js(y, i ) - 1 ^ ^ , yA, V(y, i )"V). 

A3.10. Propos i t ion . Tfte notation being as in Proposition A2.10, we have 
Js{a\ -zP) = Js(a, z) and a*'(A*) = (ffA)* /or even/ a G 07^ and A G 5 ( 1 ^ ) , 
tuyere A* is defined by A*(x) = A(—x). 

P R O O F . The first equality follows from Proposition A2.10 and (A3.2a) immedi
ately. By virtue of strong approximation and (4) of Theorem A3.3, it is sufficient 
to prove the second assertion when a G G n 3Jtq, in which case the desired fact 
follows from (0) of Theorem A3.3, since o(u, -zp\ A*) = g(u, z\ A). 
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A3.11. Remark. (I) Define an algebraic group 0(S) by 

O(S) = {ae GL{V) | S(ax, ax) = 5(x, x) }. 

Fixing (Av)ve& as above, put A% = Avav for every a G 0(S)&. Then we can 
define our series g and / with A% in place of Av. Thus g and / are essentially 
parametrized by 0(3)*. 

(II) If r < Min(#, m), we easily see that the subdeterminants of x G C ^ of 
degree r define elements of Vr{C%). In particular, if rv = q = n, we can take 
pv(Avx+) = det(Avxv) in (A3.9). In this case fivpv — det(fj,v)pv. 

(III) Take q > n and S = T e GLq(F) with rv—q and sv = 0 for every v G a; 
take also a subset a' of a. For x e C J and v £ a! let pv(x) be the determinant 
of the first n rows of x; let pv = 1 if ?; ^ a'. We have clearly 

/ (z ; A, p) = J2 A ( ^MCa)e^ (2 - 1 • <£S£z). 

Then Theorem A3.8 shows that this is an element of Mk with k = (<?/2)a -f- a'. 
It is a cusp form if a' ^ 0 . Indeed, by Lemma 7.5, G is generated by G D SDTg, 
and hence Theorem A3.8 shows that the tranform of f(z\ A, p) by an element of G 
(understood in the sense of (10.12) if k £ Z a) is of the form f(z; A', p) with some 
A'. If a' ^ 0 , we have clearly f(z; A', p) = E / i e s ^ C 1 ) ^ ^ ) w ^ C W 7̂  0 on^y 
for det(/i) ^ 0; thus / (z; A, p) is a cusp form. To find A such that f(z; A, p) ^ 0, 
take £ e gq

n so that p(fa) ^ 0 and put X = { £' G g£ | ' f ' 5£ ' - *£S£ }. Then X 
is a finite set. Therefore we can easily find A G S((F%)h) such that A(£) ^ 0 and 
A(f) = 0 if ^ £' G X or £' £ fl*. Then clearly / (* ; A, p) ^ 0. 

Let us now derive from Theorem A3.3 explicit formulas for aA in two forms 
convenient in applications. For simplicity, we put aA = / 5 A i f a = pr(/?) with 
(3 G 97tg, q odd. This is meaningful in view of Theorem A3.3 (3). Now our first 
formula is: 

A3.12. Lemma. Let t be the conductor of \ of Theorem A3.3, and x* the ideal 
character associated with \> For A G S(V£) put 

Ux = {ae D[2T)-\ 2tt] | CTA = A and det{da)v = 1 (mod lv) for every v\t}. 

Then, for every a G diag[p, tp~l)U\ with p G GLn(Fh) we have 

(«\)(x) = \det(p)h\fxh(det(p))\(xp) 

where xp is as in Theorem A3.3 (5). In particular, if such an a belongs to G, 
then 

P R O O F . Let a = ra with r - diag[p, tp~1] and a G U\. By Theorem A3.3 
(2, 5) we have (QA)(x) = (rA)(x) = |det(p)h|A2Xh(det(p))A(xp). Suppose a G G. 
Since tpda = d0, we have 

Xa(det(dQ))x*(det(dQ)il0(a)-1) = Xh(det(p))xe(det(d"1)) = Xh(det(p)), 

which completes the proof. 
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A3.13. Proposition. Given A E 5(7h
n), let M be a g-lattice in Vn such 

that X(x + u) = A(x) for every u G M. Further let j , t), and 3 be fractional ideals 
of F with the following properties: 

(i) 2(1 +6ij)~lS(xi, Xj) G ? for every i, j and every x G Vn such that X(x) ^ 0. 
(ii) 2(1 + 8ij)~1S(yi, yj) G t) for every i, j and every y G M', where 

M' yeVn ^ 5(xi, yi) €Q * for every x e M 
i = l 

(iii) A(xa) = A(x) for every a G JXeh GLn(gv) such that av - 1 G (jv)JJ for every 
t; G h, where xa is as in Theorem A3.3 (5). 

Then with \ and t as in Theorem A3.3 and Lemma A3.12 we have 
(1X){x) = xe(det(a7))A(x(a7)3) for every 7 G B, 

where (a7)3 is the projection of a7 to f] • GLn(Fv), B = D[2d~x^~ 2 t r 1 t j - 1 n 
D\2X>-1*, 2-1ZUr1b], a = y"1 n g, b {2_1c)j:(6 Pi 3)}] if g is even, and B 

t Pi 3 n 4a Pi 4D~2at)_1 if g is odd. 
We first prove: 

A3.14. Lemma. Let b and c be fractional ideals in F such that be is integral, 
and a an integral ideal such that a C b D c. Further let 25(b) ~ G a Ili/eh ^ ( ^ ) aftd 
2£'(c) = G anv€h^v( c)> where 2?v(b) resp. Ev(c) denotes the set of all elements of 

Gv of the form In 
0 

b 
In resp. with b G {by)™ resp. c G (cv)£. T/ien 

a, aj. 

In 0 
C l n . 

D[b, c] is generated by 25(b), 2s"(c), and D[i 
P R O O F . Since £>v[a, a] = Dv[b, c] if v { a, it is sufficient to show that Dv[b, c] 

is generated by Ev{b), E'v(t), and Dv[a, a]. If v \ be, then Dv[b, c] is conjugate to 
Dv[9, 9] = ^ ( n , gv), and hence our assertion follows from a well-known fact that 
Sp(n, Qv) is generated by Ev(g), E'v(g), and diag[a, la~l] with a G GLn(gv). If 

a 6 
t>|bc and G £\,[b, c], then *ad — 1 -< (bc)Vl and hence a G GLn((jv), and 

ca 
-1 

0 a~lb 
1 

We use the matrix representation as in the 

c d j 

a b 
c d 

which proves our lemma. 
P R O O F OF PROPOSITION A3.13 

proof of Theorem A3.3. Let a G P A with aa = l n . Then Theorem A3.3 (5) 
shows that aX(x) = X(x)eh{tv{txSxba)/2). Therefore aA = A if a G E^-1^1). 
Put (3 = r)~lar) and A' = ^A. Substituting y -f z for y in (A3.3), we find that 
A'(x) = eh(tr( tx5z))A /(x) for every z G M, and hence \'{x) ^ 0 only if x G M'. 
By (ii) this means that X'{x) ^ 0 only if lxSx has entries in t) . Therefore aA' = A' 
if a G E(2d-1t)~1). Suppose /? G £'(2D H 2t)-1t}-1). Since /? G Ce and a G P A , 
we have ^ A ) = ^ A = (ar7)A = ap*A) = *>A, and hence ^A = A. By Lemma A3.12 
the expected formula for 7A is true for 7 E D[e, e] with a suitable ideal c. We have 
seen that it is also true for 7 G 25(2trV~1) U 25'(23 Pi 2D~1rr1), which together 
with Lemma A3.14 proves our proposition for odd g, since 6{£X) — 6eX at least for 
<5, e G C6. If g is even, the associativity is true for all <5, e G G A , and so ^A = A for 
/? G E(2d~lt)~1). Therefore we can take B in the form stated in our proposition. 

The following lemma, though unnecessary in the present book, is of independent 
interest, and so we give here a proof. 
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A3.15. Lemma. The notation being as in Lemma A3.14, let T(b) = G (1 E(b) 
and r ' (c) = G n F'(c). Then F[b, c] is generated by T(b), T'(c), and F[a, a]. 

P R O O F . Let X be an open normal subgroup of D[b, c] contained in D[a, a]. 
Given a G T[b, c], Lemma A3.14 allows us to take u\, . . . , um in E{b) U F'(c) U 
D[a, a] so that a = ui--'Um. By strong approximation, i^ G A X with some 
ft G G. If w» G D[a, a], then ft e G n F>[a, a] = F[a, a]. If u{ G F(b), we can 
take ft from T(/J), and similarly if Ui G F'(c), we can take ft from T"(c). Then 
a = ui • • • um G ft • • • /3mA", and hence a = ft • • • /?m7 with 7 G (7 D A C T[a, a], 
which completes the proof. 

A3.16. We now consider the special class of theta series by taking n = q. Thus 
we put W = F™, and identify it with Vn. For z G f j a , A G S(W\1), a totally positive 
symmetric element r of W, and // G Z a such that 0 < /iv < 1 for every ^ G a, put 

(A3.12) 0{z, A) = £ A(&) d e t ( 0 ^ ( ^ ) . 

This is a special case of the function defined by (A3.10). Indeed, let 5(x, y) = 
2 • lxry for x, y G V = Ff1; we can take p(£) = det(£)M for £ G W as explained 
in Remark A3.ll (II). Then 6 of (A3.12) can be obtained as f(z; A, p) of (A3.10). 
We now put Wln = D)l with SDt of (A2.17) if n is odd and Mn = GAiin is even. 
Putting / = /./,+ (n/2)a, we define a factor of automorphy J ( a , z) for a G 9Jtn by 

(A3 13) J(CL z) = { ^ ^ if U iS e V e n ' 
1 ' } {a'Z) \ fc(a, z)nfa{z) if n is odd. 
From Theorem A3.8 we obtain 

(A3.14) 0(az, QA) = J (a , 2)0(3, A) for every aeGf) DJln. 

Moreover, for each A, our function 0(z, A) is an element of M.[. (See §6.10 for the 
definition of Aii if I ^ Za.) Now, by the principle of (A3.11) we can associate with 
the above 9 a function 9f

A(x, A) with a variable x on GA or M A , according as n 
is even or odd, by 
(A3.15) 0'A(x, A) = J(ti;, i ) " 1 0(u;(i), "A) 

for x = aw with a G G and it; G 9Jtn; we take pr(u>) G C0 if n is odd. This is 
well-defined. It should be noted that 9'A is the function associated with 9 by the 
principle of §16.6 only if J = j l , which is not necessarily true if n is odd. In the 
rest of this section we put 

S={xeW\tx = x}. 

We no longer use S of §3.1 in the rest of Section A3, but reinstate it in Section A4. 
As a special case of what we said in Remark A3.11 (III) we have 

(A3.16) 9{z, A) is a cusp form if / i ^ O . 

A3.17. Proposition. Let \ be the Hecke character of F corresponding to the 
extension F ( d e t ( 2 r ) 1 / 2 ) / F or F ( ( - l ) n / 4 d e t ( r ) 1 / / 2 ) / F according as n is odd or 
even. Then 

(A3.17) ^ A ( r P [ j S | ] , A ) = x ( d e t ( q ) ) d e t ( ^ | d e t ( g ) | l / 2 

• E^w H^q) det(0"e2(i • 49 • ^r^e^^s) 
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for every q G GLU{F)A and s G 5 A , where rp is the identity map of GA onto 
itself if n is even. Moreover if (3 = rp (diag[r, r\)w with /3 G G, re GLn(F)h, 
and w G 2ttn, pr(w) G D[2D~l, 2D], then 

(A3.18) J(/3, ^z)0[fi^z, A) = X h ( d e t ( r ) ) | d e t ( r ) H / 2 

• E € e W r A ) ( a r ) d e t ( 0 ^ ( ^ r ^ ) . 

P R O O F . Given x G 9Jtn, take a G G and w as in (A3.15). Then a G 9Jtn. 
Put z = w(i). By (A3.14) and (A3.15) we have 0'A(x, A) = J{w, i)~l6(z, WX) = 
J{w, i)_1J(Q:? z)~1e(az1

 a(wX)). By (A3.2b) and Theorem A3.3 (2) we have 
J {aw, i) = J ( a , 2) J(w, i) and a{wX) = XA since pr(ty) G C*. Therefore 

(A3.19) ef
A{x, A) = J(x, ^ - ^ ( ^ ( i ) , XX) if x G 9Kn. 

Take x = rp q sq 
0 q 

. By Theorem A3.3 (5) we have 

•0A(0, "A), where # = r P Thus we obtain (A3.18) from (A3.17). 

(*A)(y) = |det(g)h |^ /2Xh(det(9))eKCyr2/5)A(^) (y G Wh). 

This combined with (A3.12) and (A3.19) gives (A3.17). To prove (A3.18), take the 
element x so that pr(x) G P a and x(i) = z. Since /3_1z = ty_1x(i) with (3 as in 
(A3.18) and G a acts trivially on 5(Wh) , (A3.15) shows that J(/3, p~1z)9{(3-lz, A) 
= J(/3, /T 1*) J(w~lx, i j f l^ t i r 1 *, WX) = J((3w-lx, \)6'A{(3w-lx, WX) = J(#, i) 

rq rsq 
0 fg 

A3.18. Fixing an integral ideal e in F, we put 

« = n , 6 h W S ( c ^ h ) , £„ = GLn(flv), K = { i € K | x - H e v } , 

jR' = { x G J? | xv G F ; for every v|e } , R* = iJ' • W& ( c WA) . 

We take JU and r as above and a Hecke character u of F such that 

(A3.20) w a ( - l ) » = (-l)»llMll, |H | = E v 6 a M», tf2€e, 

and denote the conductor of a; by f. Taking an element p of GL n(F)h, we define 
a series 9 by 

(A3.21) 0 ( z ) = J2 ^ a ( d e t ( O ) a ; * ( d e t ( p - ^ ) 0 ) d e t ( O ^ ( t e r ^ ) . 
£ewnp#* 

Here it is understood that u;a(6)o;*(6a) for 6 = 0 and a fractional ideal a denotes 
u;*(a) or 0 according as f = g or f ^ g. For a G 9ttn we define jl

a(z) by (16.17). 
The ideal e is needed only for some technical reasons; the series of (A3.21) is 

most natural when e = g. Notice that 9 is identically equal to 0 if condition 
(A3.20) is not satisfied, which can happen only if n is odd. 

A3.19. Proposition. Let pT be the Hecke character of F corresponding to the 
extension F(cl'2)/F with c = (-l)fn /2Met(2r); put f = f n e and J = upT. 
Then there exist a fractional ideal b and an integral ideal c such that c C e, the 
conductor of u/ divides c, D[b~l, be] C D[2D~l, 2D] if n is odd, and 

(A3.22) 9{>yz)=uj'c(det{a1))jl
1{z)9(z) for every 7 G G n G, 

where C = { x 6 £>[b_1, be] | ax - 1 -< e } . Moreover, if 0 G G D diag[r, f]G with 
r G GLn(F)h, then 
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(A3.23) jl
0(/3-1z)e(/3-1z)=uj'(det(r)) 1 ^(det (d / 3 r ) ) |de t ( r ) |X / 2 

£ a ; a ( de t (0 ) ^* ( de t ( ^ - 1 r ) g ) d e t ^ e ^ ^ z ) . 
tewnpR+r-1 

In particular, suppose that lg • 2rg G r. for every g G pLo and th(2r)~1h G 4t~~1 

for every h G pL0 with fractional ideals r. and t, where L0 = 81', fet f) be the 
conductor of pT. Then we can take (b, c) = (2_1?>£, fjfif f i y ^ f 2t) if n is even and 
(b, c) = (2"1Da_1, () H f H 4a H af 2t) if n is odd, where a = j " 1 n fl. 

P R O O F . For /? and r as above, we have ilo(/3) = det ( r ) - 1 g; thus by Proposition 
A2.7, 
(A3.24) />(/?, z)2 = ^ 2 ( d e t ( ^ r ) ) ^ h ( d e t ( r ) ) ^ ( z ) a , 

where ip is as in that proposition and ^2 = IIi;|2^>- It follows that 

(A3.25) J(P,z) = {^2(det(d0r))i)h{det(r))}[n/2]jj3(z) if n i 2Z. 

In particular J(a, z) = ip2{det(da))[n/2] jl
a(z) if a e G n £>[23_1, 20] and n $ 2Z. 

Now define Ae«S(Wh) by A(a;)=wh(det(p)-1)A ,(p-1a;), A'(x) = n w € h *(.(*»), w i t h 

A;(w)=|w,.(det(y)-1) if y € K> "If. 
[ 0 otherwise. 

Then the function 0(z, A) of (A3.12) coincides with 6 of (A3.21). Notice that 
\{xa) = a;f(det(a)) X(x) for every a G Ylveh^v- Applying Proposition A3.13 
to the present A, we find a fractional ideal b and an integral ideal c such that 
D[b - 1 , be] C J?[2D-1, 2d] if n is odd, the conductors of x and u divide c, and that 

(A3.26) (wA)(x) = xt(det(aw))X(x(aw)y) for every w G £>[b~\ be], 

where x is as in Proposition A3.17, and t is its conductor. This combined with 
(A3.14), (A3.18), and (A3.25) proves our assertions up to formula (A3.23). Let ty 
be the conductor of x- Then f)' = f) if n is even and J) H 4g = fj' fl 4$ if n is odd. 
Therefore Proposition A3.13 gives our assertion on (b, c) as stated above. (In fact, 
the ideal t) of that proposition is 4(D2f/2t)~1 in the present case.) 

A3.20. Example. Take 6 of (A3.21) with trivial CJ, p = a, e = g, r = 2 " 1 l n , 
p = l n , and n G 4Z. Then i = (l + (n/2))a and p r is trivial; thus we can take 
£ = Q and t = 4Q in Proposition A3.19, so that b = 2_1i) and c = 4g. Therefore 
0 G M O O with T = Gf)D[2d-\ 2D]. By (A3.16), 0 is a cusp form. If *ff = *&£ x, 
then de t (0 = ±det(£i), and so det(£)a = det(£i)a if [F : Q] is even. If [F : Q] 
is odd, then '(/?£) ( 0 0 = *& and det(/3£)a = - d e t ( f ) a with /? = diag[- l , l n _ ! ] . 
Thus 9 is nonzero if and only if [F : Q] is even. 

A4. The constant term of a theta series at 
each cusp depends only on the genus 

A4.1 . Our purpose is to prove the fact stated in the title, and to discuss its 
consequences in connection with Siegel's theory of quadratic forms. Our setting 
is the same as in §A3.1. For simplicity we use matrix expressions; thus taking 
lS = S G GLq(F), we put W = F«, 
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O(S) = {ae GLq(F) | *aSa = S} , 

and S[x] = txSx for x G W\ we also identify W with Vn. For A G S(Wh) we view 
A also as a function on WA by putting A(x) = A(#h). 

A4.2. Theorem. Let a e G and A G <S(Wh). #e/me p(u, z; A) fa/ (AS.Oa) 
with W in place ofVn. Let t{z) = C l l ^ a ^ W ^ " ^ ^ ^ ! ^ ^ ^ C £ T and 
any choice of the branch of ja(zyv

q' '~Sv, (If a G 3DT9, we can take Js(a, z) to be 
t(z).) Then the following assertions hold: 

(1) There exists Ai G <S(Wh) determined by the equation 

(*) t (2)-1^(a(u, z); A) = g(u, z; Ai). 

(2) Define \i G 5(Wh) by /i(x) = A(72;) with an element 7 G 0(5)h5 define \i\ 
by taking /x in piace of A in (*J. Then ji\{x) = Ai(7#). 

P R O O F . Given A and a G G n$Jlq, take £ so that a£ = A and put ^ = Ai. 
Then from Theorem A3.3 (0) we obtain 

Js{a, z)-lg(a(u, z); A) = g{u, z; Ai). 

Now G D dJlq contains P and 77. By Lemma 7.5 every element of G is a product 
of finitely many elements in P U {77}, since 77_1 = —77 and — 1 G P. Now if the 
assertion of (1) is true for (a, t) and (o/, £'), then we easily see that it is true for 
K , t"), where £"(z) = Ct(a'z)t'(z) with any ( G T. Therefore we obtain (1). 
As for (2), for the same reason it is sufficient to prove it when a e P or a = — 77 
with t{z) = J 5 ( a , z). If a G P, taking /? = a""1, we have (*) with Xx = ^A. By 
Theorem A3.3 (5) we have 

(P\)(x) = e(/3)eJtT(S[x]a0 • %)/2\X(xap) 

with a constant e(/3) that depends only on (3 and S. Then clearly (^A)(7#) = 
(/3/i)(x), which is the desired relation for a G P. Next take a = —rj. Then (*) 
holds with Ai = ^A by Theorem A3.3 (7). Now ^A is given by (A3.3). For 7 and 
/x as above, we have d{^y) = dy, and hence we can easily derive from (A3.3) that 
(vfji)(x) = (vA)('yx) as desired. This completes the proof. 

A4.3. Theorem. (1) Suppose that n = 1; given A G S(Wh) and 7 G 0(S)h, 
define /i G S(Wh) by //(#) = A(7x). Then #(0, z; A) - #(0, z; /x) is rapidly de
creasing at the cusps of G. 

(2) Suppose moreover that S is totally definite. Put 

(A4.1) / ( z , A) = £ A(0)ea(Sfo]z/2) (z G«?) . 
gew 

If fi is as above, then / ( z , A) — /(z , /x) is a cusp form. 

P R O O F . Put v = A - /x; then clearly #(0, z; A) - p(0, z; /x) = #(0, z; z/), and if 
a and t(z) are as in Theorem A4.2, then 

(A4.2) t{z)-lg{0, az; v) = g{0, z; ux) 

with v\ = Ai - /ii. By Theorem A4.2 (2), we have \i\[x) = Ai(7x), so that 
^i(0) = 0. Since n = 1, the definition of the series g shows that the function 
of (A4.2) must be rapidly decreasing. This proves (1). Assertion (2) is merely a 
special case of (1). 
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A4.4. Theorem. Let L be a Q-lattice in F 9 , and let 

/(z,L) = £ e a ( S [ ^ / 2 ) (z € 55?). 
gGL 

Then the following assertions hold: 
(1) / ( z , L) — / (z , 7L) is a cusp form for every 7 G 0(5)h-
(2) Let { Lj } i = 1 be a complete set of representatives for the classes of lattices in 

the genus of L with respect to O(S). Put e* = # { a G O(S) \ cxLi = Li} and 

(A4.3) P(z)=(T,eT1) Yt^f&Li). 
^ 1 = 1 ' 1 = 1 

Tiien / ( z , L) - p(z) is a cusp form. 

P R O O F . Clearly h(z, L) = h(z, A) if we take X(x) = Ylvey1Xv(xv) with the 
characteristic function of Lv as Xv. Therefore (1) follows from Theorem A4.3 (2). 
Assertion (2) follows immediately from (1). 

Now p of (A4.3) equals F(S, z) with the function F defined by Siegel in [Si, 
I, p.372, (78); p.542, (129)]. He proved (2) of Theorems A4.4 when F = Q in 
[Si, I, p.376]. The number Yli=i eif1 ls the mass of the genus of L in his sense. 
If we put f(z, L) = Y,heFr(b, L)ea(bz/2) and p(z) = £ 6 G F ro(&)ea(&z/2), then 

r(6, L) = #{g G L \ S[g) = b} and r0(6) = ( E t i ^ r l ) _ 1 E t i ^ " ^ ( ^ U). Thus 
ro(b) is the weighted average of the numbers of representations of b by 5, for which 
Siegel gave his product formula. 

We can also show that p is an Eisenstein series by means of the Siegel-Weil 
formula. Siegel gave this fact in [Si, I, p.373, Satz 3; p.543, Satz III] for n > 4. 
The case of an arbitrary n is explained in [S99, Section 5]. 

In Sections A2 through A4 we have assumed that the basic filed F is totally 
real, but we can actually treat the case of an arbitrary number field. Indeed, 
such a theory was presented in [S93], which gives at least the generalizations of 
the results up to Lemma A3.15 without assuming F to be totally real. Also, in 
[S97, Section A7] we treated theta series of a hermitian form in a similar fashion. 
In the next section we will give some more results complementary to this theory. 
Generalizations or analogues of Theorems A4.2, A4.3, and A4.4 can be proved for 
theta series over an arbitrary number field and also in the hermitian case by the 
same methods. 

A5 . T h e t a series of a he rmi t i an form 

This section concerns Case UT. Thus K is a CM-field; see §3.5. For y G K£ and 
p G Z a we note that |t/|M = fLea l ^ l ^ ' where \yv\ is the standard absolute value 
in C, not its square. For b G Kx, for example, we have | 6h | ^ = |fea|/c = |&|2a-

A 5 . 1 . Lemma, Let y?0 be a Hecke character of F such that (po{x) = x^lxl -^ 
for x G F* with v G Z a . Then there exists a Hecke character (p of K such that 
tp = (fo on F £ , (p(y) = t/*/|y|-l/ for y G i^a

x, and the conductor of (p divides a 
power of the conductor of (p^. 

P R O O F . Let a be the conductor of </?0- We can find a positive integer m such 
that if C is a root of unity in K and £ - 1 G ra m , then ( = 1; see [S97, Lemma 24.3 
(1)]. PvLtU = {beK*l\vehxZ I 6 - 1 ^va171}. For x = abc with aeKx,beU, 
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and ce F£, define ip(x) = b^\ba\-uif0{c). This is a well-defined map of KXUF£ 
into T. Indeed, suppose abc = 1; put £ = a/ap. Then C = bp/b G UDK C t x . Since 
\Cv\ = 1 for every v G a, £ is a root of unity. By our choice of am, we have £ = 1, 
so that a € F x and 6 G F A H £/. Thus ^o(c) - 1 = <A)(a&) = <Po(&) = bZ\b&\~". This 
shows that <p is a well-defined character of KXUF£. Since KXUF£ is a subgroup 
of JKJ£ of finite index, by [S97, Lemma 11.15] we can extend <p to a T-valued 
character of i f£ , which is clearly a Hecke character with the desired properties. 

A5.2. Lemma. Let E* = {ae GL^K)* Hveh GLn(xv) \ a - 1 < ra } and T = 
{ diag[a, a] | a G £?* } witt an integral g-ideal a, and let C be an open subgroup 
of D\b~l, be] containing T and such that ax — 1 -< ra /or every a: G C. Suppose 
a D c and a - 1 c is divisible by the relative discriminant of K over F. Then C — 
r(cn(Gi)A) . 

P R O O F . Given g G C, put u = det(p). Then tmp = 1 and uv G r* for every 
v eh. Suppose we can find b G Kx such that u = b/bp, b — 1 -< ra, and 6V G r* 
for every v G h. Then putting /i = diag[e, e] with e = diag[6, l n - i ] , we see that 
h e T and / i - 1 g G C f l (GI )A » which proves our lemma. Clearly the problem is 
to find bv with the required properties for each v G v. There is no problem for 
v G a. If v G h and vfc, then v is unramified in K, and hence the desired bv 

exists by virtue of [S97, Lemma 5.11 (1)]. Suppose v\t\ put / = det(a^)„. Since 
ag(dgY — 1 -< re and u — det(agdg) -< re, we see that / G r*, / — 1 G rvav , and 
wv — / / / p £ ^ c v . Put io = uvfpI/. Then u?wp = 1 and it; — 1 G tvcv . By our 
asumption on a_ 1c and [S97, Lemma 17.5], there exists an element c G t J such 
that c — 1 ZzTyOLy and w = c/cp. Put bv = cf. Then uv = bv/bp and bv — I € xvav 

as desired. This completes the proof. 

A5.3. In [S97, Section A7] we treated theta series of a hermitian form, and 
proved transformation formulas for them analogous to Theorems A3.3, A3.8 and 
Propositions A3.13, A3.17, and A3.19. However, the formulas in [S97] were given 
in terms of (6?i)A for C?i = G n SL2n{K) with G = U(rjn) in Case UT. Let us 
now show that we can formulate the results in terms of G A - (The group G of [S97, 
Section A7] is the present G\.) 

Let the notation be as in [S97, Theorem A7.4]; in particular we recall that with 
V = K% we defined the action of ( G I ) A on «S(Vh)> ^na^ d eP e nds on a hermitian 
element H in AT|. We let e denote (instead of \ w e u s e d m [S97, Theorem A7.4]) 
the quadratic Hecke character of F corresponding to K/F. By Lemma A5.1 there 
exists a Hecke character ip of K such that <p = e on Fj£, <p(y) = y _ a | y | a for 
y G K^ , and the conductor of y? divides a power of the conductor of e. We are 
going to show that we can extend the action of ( G I ) A on 5(Vh) to that of G A- We 
define r, 5 G Z a so that Hv has signature (rv, sv) for every v G a and put 

(A5.1) JH(a, z) = Y[ 3V(OL, z)r"jvp{a, z)*v {a eGA, zeH), 

using the notation of (5.3). We also define A = (Av)ve8i and f(z; u, u'\ A) as in 
[S97, (A7.3.2)] for z G H, (u, u') G (G£)a x (CJ) and A G 5(1^) . We defined 
the action of G1 on H x (GJ) a x (CJ) by [S97, (A7.3.4), (A7.3.5)]. Clearly this 
action can be extended to the action of G by the same formulas. (The symbols 
if, /x(aT, z r ) , «(aT , zT) there correspond to a, /i(av, 2V), A(av, ZV) here.) 
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A5.4. Theorem. Every element a of GA gives a C-linear automorphism of 
<S(Vh), written A ^ J A for A G «S(Vh), with the following properties: 

(0) If a G ( G I ) A , then this action is the same as that of [S97, Theorem A7A]. 
(Notice that G there is G\ here.) 

(1) / ( a ( z ; u, u')\ aX) = JH{&, z)f(z\ w, v!\ A) for every a G G . 
(2) (ff,ff)A = ff,C7A). 
(3) The map A •—• aA depends only on crh, H, and the choice of y>\ it does not 

depend on { Av } v e a or cra. 
(4) { a G G A I aX = A } is an open subgroup of GA for every A G <S(Vh)-
(5) If a G P h , then 

("A)(0 = | d e t ( a C T ) | ^ h ( d e t ( a a ) ) ^^-Hi^H^b^X^a^ 

(6) If 77 = 0 - U 
In 0 

, we have 

("A)(a:) = ip | i V F / Q ( d e t ( 2 F - 1 ) ) | n ^ A ( y ) e h ( - 2-1TY* /F(tr( J/* # * ) ) ) * / . 

Here p = n^2vea(rv - sv) and dy is the Haar measure on Vh such that the 
measure of Y[veh(xv)n IS \^K\~nq^2i DK being the discriminant of K. 

P R O O F . Assertions (1~6) for a G ( G I ) A are those given in [S97, Theorem A7.4]. 
In order to distinguish them from the present ones, let us denote those old ones 
for a G ( G I ) A by (l) i , (2)i, . . . , (6)i. To define the action of G A on <S(Vh), put 
Q = { diag[a, a] | a G GLn{K) } . For A G S(Vh) and p = diag[a, a] G QA with 
a G GL71(K)A, we define PX by 

(A5.2) (PA)(*) = |det(o h) |^Vh(det(a)) 9A(xa) (x G VA). 

Clearly pp'\ = p(p,\) for p, p' eQA- We have G A = < 2 A ( G I ) A and aA is meaningful 
for a G ( G I ) A - Thus, for a = pa G G A with p G Q A and cr G ( G I ) A we naturally 
put QA = p(aX). To show that this is well-defined, put per = p'a' with pf G QA 
and a' G ( G I ) A ; put also h = p~lp'. Then h = a{af)~l e Qf) (G?I)A- Since 
the definition of PA in (A5.2) is consistent with that of (5)i, we have p(a A) = 
p(h(a'X)) = p{ha'X) = p(aX). Thus aA is well-defined, and clearly (3) holds. 

Before proving (2), we first make the following observation: Given w G (GI )A» 
put y = p~1wp with p = diag[a, a]. Then y G ( G I ) A - We have to show that 
P(V\) = ™(P\), which is equivalent to 

(*) If X'(x) = A(xa), then {wX'){x) = (vA)(xa), where x G VA. 

In view of (4)i, (*) is true for w in a sufficiently small open subgroup D of ( G I ) A 
depending on A and a. Now ( G I ) A = G\D, and G\ is generated by rjn and 
Pi = { g G Gi | cp = 0 }. Therefore, in order to prove (*) for that particular A, it is 
sufficient to prove (*) for w G Pi and w = 7?n, and for an arbitrary A. If w G Pi , 
(*) can be derived from (5)i by a straightforward calculation. If w = r/n, we obtain 
the desired fact from (5)i and (6)i by observing that p~1rjnp = r/ndiag[t, i] with 
t = a*a, and e(det(t)) = 1. 

Now, to prove (2), let a = pa as above and let /3 = r r with r = diag[6, 6] G QA 
and r G ( G I ) A - Then /3a = rp£cr with £ = p~lrp. We have shown that P(̂ A) = 
r(pA), from which we immediately obtain ( ^ A = ^(°A). As for (1), we have it for 
a G Gi; if a G Q, we can verify it by a direct calculation. Since G = QGi, we 
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obtain (1) in the general case in view of (2). Similarly (5) follows from (5)i and 
(A5.2), since P = QP\. To prove (4), define E* and T as in Lemma A5.2 with an 
integral ideal a and put C = { a G D[a, a] | a — 1 -< ra }. (We are taking c in that 
lemma to be a2 here.) Given A G «S(Vh), we can take a so that X(xa) — X(x) for 
every a e E* and aX = X for every a G C D (Gi)A. We also assume that o is 
divisible by the relative discriminant of K over F and by the conductor of ip. Then 
pX = X for every p £ T by (A5.2). Since C = T(C n (Gi) A ) , we see that aA = A 
for every a G C, which proves (4). This completes the proof, as (6) is (6)i. 

A5.5. We now consider the case q = n; thus, hereafter V = K™. We take 
fj, G Z b such that \iv > 0 for every v G b and ^vfivp = 0 for every v G a, and 
take also r G 5 + . We then put / = \i -f na and 

(A5.3) 0(z, A) = 5 3 A(0 detCO^e^e*rfz) (A G 5(Vk), ^ € W). 

Here we understand that det(£)MP = 1 for every f if /x = 0. Taking r to be # 
in the above theorem and fixing a Hecke character (/?, we have an action of G A on 
*S(Vh). Now we have 

(A5.4) 9{az, aX) = jl
a(z)e(z, A) for every aeG. 

Indeed, 0(z, A) is the series of [S97, (A7.13.1)], and (A5.4) for a e G\ was given 
in [S97, (A7.13.4)]. If a = diag[a, a] with a G GLn(K), then (A5.4) follows 
immediately from (A5.2), so that (A5.4) holds in general. From (4) of the above 
theorem we see that 0(z, A) belongs to Mi. We have, for the same reason as in 
(A3.16), 

(A5.5) 8(z, A) is a cusp form if \x / 0. 

We now define a function 9A on G A by 

(A5.6) 0A(x, A) = j< ( i ) " 1 ^ ! ) , XX) (x G GA). 

Then from (A5.4) we easily obtain 

(A5.7) 9A{axw, A) = ^ ( i ) " 1 ^ ^ , WX) if aeG, we GA, and w(i) = i. 

Let a; be a Hecke character of K, and f the conductor of UJ. Taking an integral 
g-ideal a, put 

(A5.8a) oj'=u(p-n, fj = f n a , R* = {w eVA\w-Kxa) . 

We then define A0 G S(Vh) as follows: Ao(x) = u;h (de t (x) - 1 ) if x e R* and 
xv e GLn(vv) for every v\\)\ X0(x) = 0 otherwise. Fixing r G GLn(K)h, put 
Ai(x) = u;(det(r)~1)A0(r~1x) for x G Vh- In [S97, Proposition A7.16] and its 
proof, we found a group 

(A5.8b) C' = {we D[b~\ be] | aw - 1 •< va } 

with a fractional g-ideal b and an integral g-ideal c divisible by f) and the con
ductor of (f such that 

(A5.9) wXi =uj'c(det(aw)ylX1 for every we (Gi)AnC. 



278 APPENDIX 

(Corrections to [S97, Proposition A7.16]: D[b~l, be] there should be replaced by 
its subgroup defined by aw — 1 -< a; 4Jo(det(a7)) in [S97, (A7.16.1)] should be 
^ ( d e ^ a ^ ) ) . Here we are taking ra as a there.) Now (A5.9) is true for every 
w G C" if c is suitably chosen. Indeed, by Lemma A5.2 we can shoose c so that 
C = T(C n (Gi ) A ) . Since (A5.9) for w G T follows from (A5.2), we have (A5.9) 
for every w G C. 

Put g(x) = 0A(x, Ai). Then (A5.7) and the last fact show that g G Mi(C\ UJ') 
with the notation of §20.1, since (20.3b) can easily be verified by means of (A5.6). 
Let p = diag[g, q\ with q G GLn(K)h and let gp be the p-component of g in the 
sense of (20.3b). We are going to show that 

(A5.10) gp(z) = W ' (de t ( g ) ) -1 |de t (g) |^ / 2 

£ a ; a (de t (0)^*(de t ( r - - 1 ^) t ) d e t ^ r e ^ * ^ ) . 
CevnrR+q-1 

Here it is understood that u;a(6)o;*(6j) for 6 = 0 and a fractional ideal y denotes 
CJ*(J:) or 0 according as f = r or f ^ r. Indeed, for z = y(i) with y G G a we 
have jl

y(i)-lgp{z) = g(py) = j ^ i ) " 1 ^ , p\i) by (A5.6), so that gp(z) = 0(s, *Ai). 
Therefore, by (A5.2) and (A5.3) we obtain 

gp(z) = | d e t ( ^ ) | ^ V ( d e t ( 9 ) ) n ^ A i ^ d e t ^ ^ e ^ r r ^ ) . 

If det(f) 7̂  0, then Ai(£g) / 0 only when £ G rR*q~l and det(r - 1£g)t is prime 
to J), in which case 

o;(det(9))A1(^) = u ; h ( d e t ( r - 1 ^ ) ) u ; a ( d e t ( O H ( d e t ( r " 1 ^ ) ) ~ 1 

= u ; a ( d e t ( 0 ) ^ * ( d e t ( r - 1 ^ ) r ) . 

Checking also the case of £ with zero determinant, we obtain (A5.10). On the 
other hand, taking (f, r) of (20.9f) to be (g, q) here, we find that 

(A5.ll) cg(a, q) = Idetiq^uj'idetiq))-1 

. ^ a ; a ( d e t ( 0 ) a ; * ( d e t ( r - 1 ^ ) t ) d e t ( 0 ^ , 

where £ runs over V D rR*q~l under the condition that £*r£ = a. 
Now in the setting of §22.3, take (x_1? *) there to be (a;, a) here. Then we 

obtain g in Case UT in that §, since (A5.ll) gives exactly (22.15). 
In Case SP the matter is simpler. We take 6 of (A3.21) with x~l as u; we also 

take (r, q) to be (p, r) in (A3.23). By Proposition A3.19 this corresponds to an 
element g of Mi{C\ ^') with tp' — X~1PT and a suitable C. Combining (A3.23) 
with (20.9e), we obtain (22.15). Notice that det(apdp) - 1 G c for (3 in (A3.23), 
since diag[r_1, tr]/3 G C with r there. 

A6. Estimate of the Fourier coefficients of a modular form 

A6.1. Let us first recall a basic fact on reduction theory of symmetric and 
hermitian matrices. We consider S of (16.1a) and 5 + , S+ of (22.1a, b) in Cases SP 
and UT, and let R denote the group of all upper triangular elements of GLn(K) 
whose diagonal elements are all equal to 1. (Here K is as in §3.5, and so K = F 
in Case SP.) We embed F naturally into F a and extend the map TVF/Q : F ~* Q 



A6. ESTIMATE OF FOURIER COEFFICIENTS 279 

to an R-linear map of Fa = R a into R, and denote it by the same symbol TTF/Q. 
Given a positive number r > 1, we denote by Ar the set of all diagonal matrices 
diag[<Sl5 . . . , 6n] with Si G jFa

x such that 

(A6.1) ( « i ) v > 0 , r-1<(6l)v/TrF/Q(6i)<r, and TrF/Q(6i)<rTrF/Q(6i+1) 

for every i and every v G a. (We of course ignore 5n+i-) For a compact subset C 
of R we define a Siegel set & by 

(A6.2) 6 = 6 ( r , C) = {r*dr | r G C, d G Z\r }. 

Let £7 be a subgroup of GLn(x) of finite index. Then we can choose r, C, and a 
finite subset B of GLn(K) D t™ so that 

(A6.3) 5+ = (J (J u*66(r, C)b~lu. 
beBueu 

This and (A6.5) below are well-known. To state another basic fact on r\Hn for 
any congruence subgroup T of Gn , take any nonempty open subset X of 5 a and an 
element yo of 5+, put 

(A6.4) T = { x + iy G « » | x G X, yd < 2/ € 5+ }, 

where we write yo < y (and y > yo) if yv > (yo)v for every t; G a. Then there 
exists a finite subset A of G such that 

(A6.5) Hn = \Ja€AraT. 

A6.2. Lemma. Let L be a ^-lattice in 5, and U a subgroup of GLn(x) of finite 
index. Then there exists a positive constant M with the following property: Given 
h G L n S + , there exists an element u of U such that tr^u^hu)'1) < M for every 
v G a. 

P R O O F . By (A6.3), given h G L n 5 + , we have b*u*hub G <5(r, C) for some 
b G B and u e U. Put b*u*hub = r*dr with T £ C and d = diag[5i, . . . , <5n] G 
Zir. Then ( i^ /m)" 1 = br^d^rb*. From (A6.1) we obtain (£*)„ < r T r F / Q ( ^ ) < 
r2TrF/Q(6i+i) <r3(Si+i)v, and hence (Si)'1 < r 3 ^ ) " 1 . Since br~l belongs to a 
compact set independent of /i, we have 

(*) tr((«*ft«)«') < M ' ( ^ ) - 1 

with a positive constant M ' independent of h. Now r is upper triangular, so that 
Si = (b*u* hub) ii and this belongs to a fractional ideal a depending only on L and 
U. Thus TrF/Q(<Si) G Tr F / Q ( a ) , and (£i)v > r - 1 Tr F / Q (6 i ) > M " with a positive 
constant M " independent of h. Combining this with (*) we obtain our lemma. 

A6.3. Lemma. Let L be a ^-lattice in Fl and / ( x i , . . . , xt) be a nonzero poly
nomial in t indeterminates #i , . . . , xt with complex coefficients of degree d{ with 
respect to Xi for each i. Then there exists a positive constant M depending only 
on L and {di} with the following property: Given £ G F^ there exists an element 
b of L such that f(b) ^ 0 and |(& - bi)v\ < M for every i and every v G a. 

P R O O F . We may assume that L = bl with a fractional ideal b. For 0 < r G R 
and a G F a put Br(a) = { b G b | \(a - b)v\ < r for every v G a }. We can find r 
such that #Br(a) > Max(di, , . . , dt) for every a G F a . Now given ( G F^, we can 
find b\ G -Br(£i) s u c n that /(&i> x2i • • • ? #t) ¥" 0; then we find 62 G Br(£2) such 
that / (6i , &2, ^3, • • • , ^t) 7̂  0. Eventually we find bi G jBr(&) for 1 < i < t such 
that /(&i, . . . , 6t) ^ 0. This proves our lemma. 
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A6.4. Proposition. Let k be a weight and let f(z) = Ylhes c W e a ( ^ z ) € -Mfc 
in Cases SP and UT; put m = k in Case SP and m = (fcv + fcU/0)vea w& Case f/T. 
TTien £/ie following assertions hold: 

(1) If / is a cusp form, then 6{z)m/2f(z) is bounded on Hn', and |c(ft)| < 
M|det ( / i )m / 2 | for every / i G S with a constant M depending only on / . 

(2) If mv 7̂  77V for some v, v1 G a, then / is a cusp form. Consequently, if f 
is a not a cusp form, tlien m = /ca with 0<t tG2*~ 1Z. 

(3) If m = K3L with 0 < « G 2- 1Z, tueu |c(/z)| < Mdet(/i)*a for every / i G S + 
with a constant M depending only on f. 

P R O O F . The first half of (1) and (2) were stated in [S97, Proposition 10.6] and 
proved in [S97, §§A4.9 and A4.10] for integral k. The case of half-integral k can be 
reduced to the case of integral k by considering f2. To prove the second half of (1), 
we first take M > 0 so that \6{z)m/2f{z)\ < M on the whole H. Then \f{x + iy)\ < 
Mdet(y)-m/2. Therefore, from (5.24) we obtain \c(h)\ < Mf det(y)~m^2e2(-ihy) 
with a positive constant Mf. Since / is a cusp form, c(h) ^ 0 only if h G 5 + . Thus 
taking y = h~l, we find the desired estimate of c(h) as stated in (1). 

Before proving (3), we make two elementary observations. Let g(z) = ^2heS a(h) 
-e™(hz) G Mk- The series is absolutely convergent, and so \g(z)\ < Y^h \aWe&(^z)\ 
= J2h \a(h)e2{ihy)\. If yo<y G S+, then tr(h(y—yo))v>0 for every vGa, so that 
e2(ih(y-yo))<l- Thus e2(ihy)<e2(ihy0), and hence \g(z)\<^2h\a(h)e2(ihy0)\. 
This means that every element of Mk is bounded on the set T of (A6.4). Next we 
observe that 

(A6.6) | det(x + iy)\ > det(y) (x G Sv, y G S+). 

To show this, put £ = y~1^2 and take a unitary matrix u so that uexeu* = 
diag[di, . . . , dn] with d; G R. Then | det ((x + iy)y~1) = \det(exe + iln)\ = 
Uu=i \d" + *l > *> w h i c h proves (A6.6). 

To prove (3), we first assume that k is integral. Take J1 so that / G A/f/e(ri); 
put D = [jaGA ra with A as in (A6.5) and f0 = f\\k(3 for (3 e D. Since { /g | (3 G 
£)} = {/ a | a G A } , by our observation we have |//3(z)| < M\ for every (3 G 
D and every z G T. Here and in the following we denote by Mi, M2, . . . some 
positive constants depending only on JT, A;, and / . Given z G Wn, take (3 € D 
and w G T so that 2 = (3w\ put c = ĉ  and d = d% with £ = (3~l. Take 

l"l si a g-lattice L in S so that n G f for every s G L. By Lemma A6.3 we 

can find M2 with the property that for every x G 5 a we have det(cs + d) ^ 0 and 
||(s — x)v\\ < M2 with some s G L, where ||J£|| = Max; ? j{ |X^|}. Putting 2 = x + iy, 

we choose such an s for this particular x and put C — -1 • Then £ G 

G and j0(w)-1 = j0{0-lz)-.1 = jfc) = j ^ C ^ C , *) = j t f C 1 , C M C , *), so 
that / ( z ) = j ^ H / ^ H = jfc(C, ^ - y K C - 1 , C*)-7/3(«>). Put u = C«. Then 
J(£C~\ C2) = (cs + d)u - c = (cs + d)(u- (cs + d)~1c), JQ(Z) = det(s - z), and 
u = (s - z)~l. Since (cs 4- d)~lc £ S, we have , by (A6,6), 

(*) | det ( « - (cs + d ) " 1 ^ ! > 5(u) = \JQ(Z)\-26(Z) = |det(s - z)|-2<5(z). 

Therefore, for k = /ta we have 

(**) | / ( z ) | <Mj|det(cs + d)\-K&\det(z - s)\K*6(z)-Ka. 
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Since £ G a~lT with some a G A, we have cs + d -< j with a fractional ideal j in K 
depending only on A and T. Therefore | det(cs + d)|Ka > M3 . Since ||(x —s)^|j < M2, 
we see that | det(x—s+iy) \Ka as a polynomial function of y has bounded coefficients. 
Now ly^l2 < \y^yvv\ < ( ^ + * w ) 2 / 4 < trQ/)2> a n d n e n c e I det(x - s + zy)|*a < 
M 4 ( l 4- t r (y)n)K a . Thus from (**) we obtain 

(A6.7) \f(x + iy)\ < Mbdet(y)-™{l + tr(y)nya 

on the whole Hn. We have assumed that k is integral. If k is half-integral, applying 
(A6.7) to / 2 , we find that (A6.7) is also true for half-integral k. Combining (A6.7) 
with (5.24), we have 
(***) \c(h)\ < M6e2(-ihy)det(y)-™(l + tT(yy)Ka 

for every ft G 5. Suppose c(ft) ^ 0 and ft G 5 + . By (5.21), we have c(u*hu) = c(ft) 
for every u in a subgroup U\ of GLn{x) of finite index that depends only on R 
We can also find a ^-lattice L\ in 5 such that c(ft) ^ 0 only if ft G Li. By 
Lemma A6.2 we can find u G U\ so that tr((u*ftit)~1) < M7. This means that 
to prove (3), we may assume that tr(ft~x) < Mj. Take y = ft-1 in (***). Then 
|c(ft)| < M8det(ft)Ka. This completes the proof of (3). 

A6.5. Lemma. For & = S(r , C) as in (A6.2) the following assertions hold: 

(1) For every x G & and every v G a we have 

det(xv) < (xu • • • xnn)v < M • det(x^) 

with a positive constant M depending only on &. 
(2) There exists a positive constant M' depending only on & with the property 

that (xu)v/(xu)v' < M' for every x G 6 , every i, and every v, v' G a. 
(3) For every i < n, the number of elements e G g x sucft that ex^ = x'it for 

some x, x' £ & is bounded by a constant depending only on 6. 
P R O O F . Let x = r*dr with r G C and d = diag[<5i, . . . , Sr] G AT. Focusing our 

attention on one v G a, let us drop the subscript v. We easily see that x n = <5i, 
and linear form of 61, . . . , 6{ with coefficients in a compact set. Therefore 
from (A6.1) we obtain xu < MSi with M depending only on 6 . Also we easily see 
that xn—Si > 0. Thus det(x) = 61 • • • Sn < x u • • • xnn < Mn8i - • - 6n < Mndet(x), 
which proves (1). As for (2), we have seen that (6i)v < (xu)v < M(6i)v. Prom 
(A6.1) we see that {Si)v'/(6i)v < r2 for every v, v' G a. Therefore (xu)vt/(xu)v < 
M(6i)v'/(6i)v < Mr2, which proves (2). To prove (3), suppose exu = x'u for some 
x, x' G S and e G g x . Then (exn)v/(exn)vf < Mr2, ad hence ev/ev/ < M2r4. 
Multiplying the inequalities for all v' G a, we find that M~2r~~4 < ev < M2rA for 
every v G a. Clearly the number of such e G gx is finite. This proves (3). 

A6.6. Proposition. Let U be a subgroup ofGLn(v) of finite index and let 5(a) 
be defined by (16.1b) with a fractional ideal a in K. Further let 1Z — [S(a)P\S+]/U 
(see §22.1). Then Ylaen(^et((J)~SB' is convergent for Re(s) > Xn with Xn of §22.1. 

P R O O F . Take B and 6 = &(r, C) as in (A6.3). We first prove that for every 
g-lattice A in 5 the series X^heenA det(ft)~sa is convergent for Re(s) > An. For 
that purpose, take M as in Lemma 6.5 (1). We may assume that A C 5(a) with 
some a. Given ft G 6 n A, put hi = ha. Then det(ft^)"1 < M{h\ •••ftn)~1 and 
|(ftij)u|2 < \{hihj)v\. Now for fixed positive constants T, To and t — (tv)vea G R a 

such that tv > TQ and tv/tvr < T for every v, v' G a we have 
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(A6.8) #{aea\\av\<tv for every v G a } < Mx E U a ^ 
with a positive constant M\ independent of t. This will be shown at the end 
of the proof. Now take M' as in Lemma A6.5 (2); put e = [F : Q]. Then 
(hi)l > Mf-eNF/Q(hi) > M'~eN{anF), since h{ G aHF. Thus we can take (hihj)v 

as tv in (A6.8). Therefore the number of elements h G 6flA with given fti, . . . , hn 

as their diagonal elements are at most M?{n~1)/2 - A ^ / Q ^ I • • • hn)^K:F^n-l)/2. Ob
serve that [K : F](n—1)/2 = An —1. In view of Lemma 6.5 (3), our series in question 
converges if Ylg I^F/Q(^) |A n _ 1 _ s is convergent, where g runs over aP\Fx mod
ulo multiplication by the elements of gx. Since such a series is convergent for 
Re(s) > An, we obtain the desird result concerning Ylheer\A^e^(^)~s&' Returning 
to Ylaen det((j)~sa as in our proposition, we may assume, by (A6.3), that a in the 
sum belongs to b&b~l for some b G B. Thus it is sufficient to consider the sum of 
det(cr)~sa for all a G b&b~1P\S(a), or equivalently, the sum for all a G 6fl6*5(a)6, 
to which the above result is applicable. Therefore we obtain our proposition. 

To prove (A6.8), given £, put r = Maxv€a£„. Then To < r < Ttv, and so the 
problem can be reduced to the case in which tv = r for every v G a. Let {ai}f=1 

be a Z-basis of a, where d = [K : Q]. Suppose |(]T) i=1 rriiOLi) | < r with ra; G Z 
for every v G a. Then |rai| < AT with a positive constant A depending only on 
{ai}f=1. Change A for Max(A, T0

-1). Then AT > 1, and hence the number of such 
mi is < 3AT. Thus we obtain (A6.8). 

A6.7. Let us now investigate the convergence of the series of (22.4). As ex
plained at the beginning of §22.3, Cf(cr, q) (resp cg(cr, q)) for a G S are the 
Fourier coefficients of an element of Sk (resp M.t). By Proposition A6.4 we have 
|cf(a, q)\ < Mdet(o-)m/2 and |cg(<7, q)\ < M / de t (a ) m , £ for every a G S+ with 
constants M and M' independent of <7, where m and m' are as in Proposition 
22.2; e = l/2 if g is a cusp form and e = 1 otherwise. Therefore 

|cf(cr, g)cg(<7, g)det(<r)-f la-*| < MM' |de t (a ) ( c - s ) a | , 
where c = 0 if g is a cusp form, and c is the element of Q such that m' = 2ca if 
g is not a cusp form. Also, Cf (a, q)cs(a, q) ^ 0 only if a belongs to a lattice in 5 
depending on q. Therefore, by Proposition A6.6, the series of (22.4) is convergent 
if Re(5) is sufficiently large. 

A7. The Mellin transforms of Hilbert modular forms 

A7.1. This section concerns the case in which G = SL2(F) and ri = .fja in the 
setting of Section 5 and §10.6. We put g* = {a G 0X | a > 0}. 

Let f(z) = YlheF ^{h)e&(hz) G Mk with an integral or a half-integral weight 
k. As noted in (5.21) and §6.10, we can find a subgroup U\ of g^ of finite index 
such that f(u2z) = u~kf(z) for every w G t / i , s o that a(u2h) = uka(h) for every 
u G U\. We now put 

(A7.1) D(s, / ) = [fl* : U}-1 J2 <*(/>)N"fc/2"sa ( s e C * ) , 
h€F*/U 

where U is a subgroup of g* of finite index such that a{uh) = uk/2a(h) for every 
u eU. This is formally well-defined independently of the choice of U. By Proposition 
A6.4, \a(h)\ < M\h\k/2+aa for h ^ 0 with a constant M independent of /i, where 
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or = K/2 if k = KB. with K G 2 - 1 Z and a = 0 otherwise. Therefore the sum is 
convergent for Re(5) > 1 + a, and defines a holomorphic function of s there. 

To find analytic continuation of D(s, / ) , put 

(A7.2) f*{z) = (-iz)-kf{-z-1). 

Observe that (/*)* = / , /* = icf\\kri, and /* G Mk, where c = X ^ J A ] , , . 

A7.2. Theorem. The notation being as above, put i?(s, / ) = Fk(s)D(s, f) with 
A(«) = Uvea(27r)'s~kv/2r{s + (kv/2))^ Put als° /*(*) = 32heFa*(h)e*(hz)- Then 

R(s, f) can be continued as a meromorphic function of s to the whole C, and 
satisfies R(—s, / ) = R(s, /*) . Moreover, R(s, f) is entire except when k = /sa 
with K G 2 _ 1 Z, in which case R(s, f) is holomorphic on C except for possible 
simple poles at s = —K/2 and s = K/2 with residues — a(0)i?i?/2 and a*(0)/?i?/2, 
respectively, where Rp denotes the regulator of F. In particular, R(s, f) is entire if 
f is a cusp form. 

P R O O F . Put g = / - a(0), g* = /* - a*(0), ip(z) = YlheAa(h)e*(hz) w i t t l 

a fixed complete set of representatives A for Fx/U, Y = {y G R a | y > 0}, Yi = 
{y€Y\y*>l}, Y2 = {y€Y\y»<l}. Then 5(z) = £ u 6 t / E ^ a(u/»)e.(uJiz) = 
Eue i ; uk/M™), so that 5(n/)2/ f e / 2 + ( s-1 ) a = E u 6 [ / v(<«»)(«y) fc /2+(* -1)a- Thus we 
have, at least formally, 

/ 5(%)/ / 2 + ( s-1 ) a%= [ >p(iy)yk/2+(s-1)f 

JY/U JY 
dy 

= £>(&) I ^{ihy)yk/^s-1>dy=YJ
a(h)r^s)\h\~k/2~S& = [^ • W s > /)• 

heA ,'Y h£A 
Our formal calculation is valid for Re(s) > 1 + a, because of the convergence of 
HheA \a{h)h-k/2-sa\. Now we have 

I 9(iy)yk/2+is-1]*dy= [ g(iy)yk/2+^l)ady+ f g(iy)yk'2+^*dy. 
JY/U JYi/U JY2/U 

All three integrals are convergent for Re(s) > 1 + a. If ya > 1 and Re(s) < Re(s'), 
then \ysa\ < \ys a | , and hence the integral over Yi/CT" is convergent for every 5 G C. 
To deal with the integral over Y2/U, take U so that a*(uh) = uk/2a*(h) for every 
u G [/. From (A7.2) we obtain g(iy~1) = ykg*(iy) — a(0) + a*(0)?/fc, and hence 

/ g{iy)yk'2+^»dy= f g{iy-')y-kl2-^*dy 
JY2/U JYi/U 

= [ 9*{iy)yk/2-[s+l)&dy 
JYI/U 

~ a(0) f y-W-W'dy + a*(0) / yW'l'+^dy, 
JYi/U JYI/U 

provided Re(s) > 1 + a and the last three integrals are convergent. The integral 
involving g* is convergent for every s e C. We have a(0) = a*(0) = 0 if / is a 
cusp form. If not, then k = «a with /c G 2 _ 1 Z by Proposition A6.4 (2). Now we 
need a formula 

(A7.3) f y~a*dy = (a - l ) - 1 2" 1 [g x : U\RF if Re(a) > 1, 
JYi/U 
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which will be proven at the end of the proof. Thus, putting M = [QX : U]~l, we 
obtain 
(A7.4) R(aJ) = M [ g{iy)ykl2^s-l^dy + M f g*(iy)yk/2-^l)ady 

JYi/U JYI/U 

- a{0)(RF/2){s + K/2)~1 + a*(0){RF/2)(s - K / 2 ) " 1 

for sufficiently large Re(s), where the last two terms occur only if k = KSL. Since 
the integrals over Y\/U are convergent for every s, the right-hand side defines a 
meromorphic function on the whole C with poles and residues as described in our 
theorem. To obtain the functional equation, change / for /*. Since (/*)* = / , 
R(s, /*) can be obtained by exchanging (#, a(0)) for (#*, a*(0)) in (A7.4). Then 
we easily see that it coincides with iZ(—s, /* ) . This proves our theorem. 

To prove (A7.3), take a set of generators {ei}^==1 of U, where r = [F : Q] — 
1. Take r + 1 real variables {U}l-0

 an(^ Pu^ Vv = ^o^xp (X)[=i Mog \ti\v) for 
v € a. with to > 0. We easily see that the jacobian of the map t i—> 2/ is 
±(r + 1)£Q det (log \si\v). , where v is restricted to the set of arbitrarily chosen r 

elements of a. This quantity equals ±(r + l)£o2 -1[9x : U]RF. Therefore 

/ y-°*dy = (r + 1)<S2-1[0X : U]RF f°° C{r+1)adt0, 
JYi/U J\ 

which gives (A7.3). 
A7.3. Proof of Lemma 18.2. Given K and t as in our lemma, put 

f(z) = 6(z, *) = £ K(0eea(ez/2) = J2 a(h)ea(hz). 
ZeF heF 

This can be obtained by putting n = 1 and r = 1/2 in (A3.12). As explained 
after (A3.14), / G Mk with k = t + a/2; / is a cusp form if t ^ 0. Clearly 
a(h) = He=2h « (0 f *• T a k e U o f C18-1) s o t h a t ^ C g " and put U2 = {u2 \ u G U}. 
Observing that \_jheFx m* {£ G F | £2 = 2/i} gives Fx/U, we have 

h€F*/U2 C2=2h 

= ^ a(/i) |2/i | -< / 2- s a = [8
X : U2]2-^2-saD(s - 1/4, / ) . 

h£F*/U2 

Consequently 

(A7.5) Rt(s, K) = 2rR((s/2) - (1/4), / ) , 

where r = [F : Q] — 1. Taking rj as a in (A3.14) and substituting rjz for z, we 
obtain 0(z, ^/c) = J(T/, r}z)f(r)z), and hence /*(z) = z " ' * ! ^ , ^K) . NOW ÂC can 
be obtained from Theorem A3.3 (6), where we take 5(x, y) = xy for x, y G F. 
Putting «* = i~^\ -^K, we find tt* as given in Lemma 18.2. Then all the assertions 
of Lemma 18.2 can be derived from Theorem A7.2 in view of (A7.5). 

A7.4. Proof of Theorem 18.16 (1). The notation being as in §18.15, for 0 < 
m G Z a and £ G S{Kh) put 

f(z) = 0(z , £)=Y1 ^ ) ^ m p e a ( a a ^ z ) - ^ <*(/i)ea(/i*) (z G W). 
Q G K h € F 

This can be obtained from (A5.3) by putting n — 1, r = l , / i = m, and A — £ 
Since n = 1, we have SU(rj) = SL2(F) by Lemma 1.3 (2), and hence / G Mk 
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with k = m + a, where M.k is defined with respect to G = SL2{F). Clearly a(h) — 
T,aa?=h£(a)amp- T a k e u o f (18-18) s o t h a t U c B+ and put U2 = {u2 \ u G U}. 
Observing that U / I G F X / ^ 2 {a ^ ^ I aaP ~ ^} &iyes Kx/U, we have 

heF*/U2 aaP^h 

= Yl a(h)\2h\-^2-s* = [g* : t/2]£fc(* - 1/2, /) . 

Thus 

(A7.6) L m (s , I) = 2'[r* : g * ] - 1 / ^ - 1/2, / ) , 

and therefore (1) of Theorem 18.16 follows immediately from Theorem A7.2, since 
/ is a cup form if m ^ 0. 

We can actually include the case m = 0 and prove some results for Lm (s , £) 
completely parallel to Lemma 18.2. The precise statement may be left to the reader, 
as the task is easy and we do not need it in the present book. 

A8. Certain unitarizable representation spaces 

A8.1 . Given a finite-dimensional vector space W over C, we denote by &{W) 
the symmetric algebra over W, and by &e(W), for 0 < e G Z, its subspace consisting 
of all the homogeneous elements of degree e. Then Se{W) of §12.3 and 6 e (W) are 
dual to each other with respect to the pairing 

(A8.1) ( a , x1>-xe) = a * ( x i , . . . , xe) (x» G W, a G Se(W)). 

We now take our setting to be that of Sections 12 through 14. We denote by JC 
the maximal compact subgroup of Ga given by /C = {a G Ga | OJ(O) = o }, where 
o = (ov)vea with ov = 0 for Types AB and CB and ov = i\n for Types AT and 
CT. Then we denote by g the Lie algebra of Ga, and by £ the subalgebra of g 
corresponding to /C. Since we have a fixed complex structure of H = G/K,, we have 
a well-known decomposition gc = £c © P+ © P- with the following property: 

(A8.2) [*c, P±] C p±, [p+, p+] = [p_, p_] = {0}, [p+, p_] = lc. 

We denote by U the universal enveloping algebra of g o We let g act on the set 
C°°(Ga) of all C00 functions on Ga by (y/)(x) = (d/dt)t=of(x • exp(ty)) for 
F € g and x G Ga , and extend the action to that of il on 0°°^^) as usual. More 
generally, we view every g-module as a H-module, and vice versa. We say that a 
U-module y is unitarizable if it satisfies the following condition: 

(A8.3) y has a positive definite hermitian form { , } : y x y —* C such that 
{Xg, h} = -{g, Xh} for every g, h ey and every X G g. 

Let y and y' be two unitarizable il-modules. Then we define a g-module structure 
on y®cy' as usual by defining X(g®gf) = (Xg)®gf+g®Xg' for g ey, g' G y\ 
and X G g. Defining an inner product on y®cy' by {g®g'', h®hf) = {#, /i}{/i, ft'}, 
we easily see that y 0 c !V is unitarizable. 
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A8.2. Given a representation {p, V} of /C, we denote by C°°(p) the set of all 
elements / of C°°(Ga , V) such that f{xk~l) = p(k)f(x) for every k e K, and 
x G Ga . Then Xf = -dp(X)f for every X G t and / G C°°(p). Let Ad : G a - • 
Aut(g) denote the adjoint representation of G a . For g e Ga the action of Ad(g) 
can be extended to it, which we denote also by Ad{g). In the following we consider 
exclusively Ad{k) for keK.lt is well-known, and in fact, can easily be verified, 
that 
(A8.4) [(Ad(k)B)f](x) = p(k)(Bf){xk) if f e C°°(p),Be il, k e /C, x e Ga. 
In view of (A8.2), S(p±) can be embedded in U. Then 6(p±) is stable under Ad(k) 
for k G /C. 

Let us now describe p± and /C more explicitly, explaining their relation with the 
symbols T and Kc of §12.1. For the moment, our group is a single factor Gv, not 
Ga . For each type there exist an injection 60 of K into Kc and C-linear bijections 
L± of T onto p± with the following properties: 

(A8.5a) i0{k) = Mk{o) for k e /C, 
(A8.5b) p = {*+(u) + * , _ ( t Z ) | u e r } , 
(A8.5c) * ± ( u ) * = M ^ ) for ueT, 
(A8.5d) i4d(fc)6+(u) = t+(*a-1u6-1) and i4d(fe)^(w) = t_(oix-*6) in0( /c) = (a, 6). 

Here MQ(z) is defined by (5.1) and (12.4c); we put [X + iY)* = X - iY for 
X + iY £ gc with X,Y G g; the reader is reminded of the convention made in 
§12.1 that Kc for Type C is identified with the set of all (a, a) G GLn{C)2. 

Now the explicit forms of i± are as follows: 

Types AB and CB: i+(u) 

Types AT and CT: i+(u) = \P 

0 U 

0 0 

a 
P 

? 

0 iu 
0 0 

i - ( « ) 

/3" 

0 0 
*u 0 

*-(«) = £/? 

( « € r ) , 

0 0 
-i-lu 0 r 

/? = u € T 

For these, see [S90, Section 5], where classical groups of other types are also treated. 
Given a representation {p, V} of Kc, we have a representation p o t0 of /C; for 

simplicity, we write also p for p o *,0- In other words, we identify k with £o(&) 
for k G /C. For such a {p, V} and h G C°°(W, V), we define b? G C°°(Ga , V) by 
hP(x)=p(Mx(o)y1h(x(o)) for x G Ga . Then ft' G C°°(p), and moreover, h h-> hp 

is a C-linear bijection of C°°(H, V) onto C°°(p). Now we have 

(A8.6a) L+(u1)'-H(ue)g^ = (De
pgy^(uu...1ue)1 

( A 8 . 6 b ) ^ ( t i l ) - - - 6 _ ( t i c ) ^ = ( £ e ^ ® ^ ( t i i , . . . , U C ) 

( ^ C ° ° ( H , V); tii, . . . , ^ € 1 ; ) . 

For these, see [S90, pp.259-260, Proposition 7.3] and [S94b, Proposition 2.2]. From 
(A8.6b) we see that g is holomorphic if and only if Ygp — 0 for every Yep-. 
More generally, g is nearly holomorphic if and only if there exists a positive integer 
t such that Y\ • • • Ytgp = 0 for every Yi, . . . , Yt G p_. Now we denote by if(p) 
the set of all / G C°°{p) such that Y/ = 0 for every Y G p_. Then H{p) consists 
of the functions of the form gp with all holomorphic maps g of H into V. 
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In the following treatment, we include the case of half-integral weight. Strictly 
speaking, in such a case we have to formulate everything in terms of suitable cov
ering groups of Ga and /C. Since the formulation is obvious, we do not explicitly 
employ those coverings, and we merely state the results for both integral and half-
integral weights. See [S94b, p. 151] for relevant comments on this point. 

We insert here an elementary lemma. Let Q be a unimodular Lie group, L its 
Lie algebra, and r a closed unimodular subgroup of Q. Then F\Q has a (/-invariant 
measure p. 

A8.3 . L e m m a. (1) Let X e L. If cp is a C-vaiued r-invariant C1 function on 
Q such that both if and X(p belong to Ll(r\Q), then L , X i p d p , = 0. 

(2) Let f and h be C-valued r-invariant C1 functions on Q and let X G L. 
Then 

f Xf-hdp=-f f-Xhdp, 
Jr\g Jr\Q 

provided / / i , Xf • h, and f • Xh all belong to Lx{r\Q). 

P R O O F . Put c = fr,QX(pdp and F(g, t) = {Xip)(g • exp(tX)) for g G Q and 
t G R. Then fr\gF(g, t)dp(g) = c for every t. Similarly fr^g \F(g, t)\dp,(g) = 
Jr,g \X(p\dfjL, and hence F(g, t) is integrable on [0, 1] x {r\Q). Therefore 

c= f [ F(g, t)dfi{g)dt = f f F(g, t)dtd^(g) 
Jo Jr\g Jr\gJo 

-L 
rr\g Jr\g. 

[p{g • exp(X)) - (f(g)]dfi{g) = 0, 
*r\G 

which proves (1). Here we employ the fact that F(g, t) = {d/dt)if>{g • exp(tX)), 
which holds only under the assumption that <p is C1. Assertion (2) can be obtained 
by taking fh to be <p in (1). 

A8.4. T h e o r e m. Let p(a, b) = det(b)K for (a, b) € #o tuith « € 2~1Z a in Case 
SP and K G Z a otherwise; let «o = Min^^a^^. Suppose that the following condition 
is satisfied: 
(A8.7) Ko > n/2 in Case SP, Ko>n in Case UT, and KV > Min(mu, nv) for every 

v G a such that Gv is not compact in Case UB. 
Then the following assertions hold: 

(1) For any nonzero f G H{p) the il-module structure of i l / is completely 
determined by K independently of the choice of / . Moreover, w J—• wf for w G 
S(p+) gives a bijection of 6(p+) onto il/. 

(2) Such i l / is irreducible as a il-module. 
(3) Such it/ is unitarizable. 
(4) If{ , } is an inner product on i l / as in (A8.3), then {S p (p+) / , &q(p+)f} = 

0 for pi=- q. 

We can show that (1) does not hold without (A8.7); see Proposition A8.9 below 
for the precise statement. 

P R O O F . For the present p, we see that dp is a C-linear map of t into C. 
Therefore, in view of (A8.2), a well-known procedure shows that given y G il there 
exists an element w G 6(p+) such that yf = wf for every / G H(p). Therefore 
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i l / = 6 ( p + ) / , and if we can show that w i-> wf for w G S(p+) is injective for 
every such nonzero / , then we obtain (1). For that purpose, for h G il/ and k G /C, 
define kh by kh{x) = p(k)h{xk) for x G Ga . Then k{Bf) = (Ad{k)B)f by (A8.4), 
and hence h *-> kh for h G i l / defines a representation of K. We can restrict 
the action to © e(p+)/ . In view of (A8.5d) the decomposition of 6 e(p+) into /C-
irreducible subspaces follows from the decomposition of (a sum of tensor products 
of) {r r , Sr(Tv)} described in Theorem 12.7; in particular, each irreducible subspace 
has multiplicity 1. Let V be a /C-irreducible subspace of 6 e(p+)• Then Vf is {0} 
or isomorphic to V, and il / is the direct sum of all such Vf, since no two different 
V's are isomorphic. Therefore it is sufficient to prove that Vf ^ {0} for every V. 
Let QV be the Lie algebra of Gv and let p+ = p+ n QQ. Then V = ® v € a Wv and 
e = Ylvea. ev w r t n a n irreducible subspace Wv of Se t,(p+). Therefore it is sufficient 
to show that Wvf ^ 0 for every v G a. Thus we focus our attention on a single v\ 
in other words, we may assume G a = Gv, p+ = p+, T = TVi Se(T) = Sev(Tv), and 
V = Wv; so hereafter we drop the subscript v. Let us put ip^ = ^P®r* for i/> G 
C 0 0 ^ , Se(T)). By (A8.6a), for # G C°°{H) and X; = L+(Ui) with MI, . . . , ue G T, 
we have 

(A8.8) * ! • • • X c ^ = {D°pg)M(uu . . . , uc) = ^ ( < p z ^ ) ( e ) ( u i , . . . , uc) , 
z 

where Z runs over all the irreducible subspaces of Se(T). For each Z we take its dual 
bases {£;} and {uJi} with respect to (12.8). Then the value of ipzD^g, as an element 
of 5e(T), equals £ 2 U>f s)(Ci) ^ i in view of (12.22) and (12.23). (Strictly speaking, 
we should write { ( / } and {u;f} for these bases, but we suppress the superscript Z, 
merely remembering that they depend on Z.) Therefore the last quantity of (A8.8) 
equals YLz S i [(Dp 9)(Q)^i] & (v>u . . . , ue). From this we obtain 

(A8.9) zg" = J2Y,( {{Dz
pg)(ti)"i){e\ *) for every z G 6 e (p+) . 

Z i 

Here we identify ©e(p±) with &e(T) through t±t so that (A8.1) takes the form 
(a , x\'"Xe) = a*(t±(xi), . . . , t±(xe)) for X{ G p± and a G Se(T). Given V as 
above and 0 ^ y G V, take a /C-irreducible subspace Z of Se(T) so that (Z, V) ^ 
0; put p — ^2i{Dp g)(d)uji with this particular Z. Then ygp = (p^e\ y), since 
(Z ' , V) = 0 for Z ' 7̂  Z. Thus our task is to show that p ^ 0 if g is nonzero 
and holomorphic. Now Dpg for a holomorphic g is a polynomial function of the 
function r(z) of (13.4a, b) of degree e with holomorphic coefficients. Its highest 
homogeneous term is of the form q(r)g with q G Se(T, Z), as can be seen from 
(13.25); moreover, q is independent of g as noted there. Therefore the highest 
homogeneous term of p is gJ2i q{r){d)^i- To find q{r)(Q), take s = 0 and a = 1 
in Lemma 13.9. Then we find that q(r)(&) = ( - l ) e ^z(—«)0( r )? since £'~1 = ir 
for Types AT and CT and £ - 1 z = -r for Types AB and CB. From the formula for 
ipz in Theorem 12.13 we see that the last quantity is nonzero under the condition 
on K of our lemma, and hence p ^ 0, which completes the proof of (1). 

To prove (4), we first observe that {Ag, h} = {#, —A*h} for g, h G i l / and 
A G g o Therefore (A8.5c), applied to all factors Gv of G a , shows that {p+#, /*} = 
{#, p_/i}. From (A8.2) we can easily derive that 6 p ( p _ ) 6 g ( p + ) / = 0 if p > g, and 
hence {6 p (p+) / , 6 g ( p + ) / } C {/, 6 p (p_)© q (p + ) / } = 0 if p > q. This proves (4). 

To prove (2) and (3), it is sufficient to consider again the problem on a single 
Gv. Indeed, take f(x) = Ylve&fvfav) f° r x — {xv)vea G G a with xv G Gv and 
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fv G H(pv), pv(av, bv) = det(bv)Kv. Then clearly iif = ®v€aii({Jc)/v» a n d hence 
our problem can be reduced to that on Gv. Therefore we drop the subscript v in 
the same sense as above. Now, to prove that iif is irreducible, it is sufficient to 
show that for any z G S(p+), ^ 0, there exists an element w of S ( p - ) such that 
wzf = / . Since p _ / = 0, from (A8.2) we easily see that 6 e ( p - ) S i ( p + ) / = 0 for 
i < e and © e(p_)(5e(p+)/ C C / . Therefore it is sufficient to show that for any 
z £ ©e(p+)> ¥" 0) there exists an element w of 6 e (p_) such that wzf ^ 0, even 
with a special choice of / . Now z can be expressed as a sum of elements y, each 
y being contained in some V as above. Let f = gp with a holomorphic g. Then 
we have seen in (A8.9) that zf = (h^e\ z) with an element h G A/"p̂ Te whose 
highest term is a(r)g with a G Se(T, Se(T)). The above computation of p shows 
that a(r) = Y^z cz^2id{r)UJi w r t n cz G Q x . Taking E, p(g>re, and h in place 
of Dp, p, and # in (A8.8) and (A8.9), and employing (A8.6b) instead of (A8.6a), 
we find that 

^ ( e ) = E E < [ ^ ' ^ ^ M ] ^ r e ^ e ^ ) ^ every w G 6 e (P - ) , 
Z' j 

where Z' runs over all the irreducible subspaces of Se(T), and {££} and {u;-} 
are dual bases of Z'; we use Z', since we will have to consider the double sum 
E z E z " R y (13.14b), for every 7 G Z' we have {-l)e{Ez'h)(^) = i(d/dr)h, 
which equals g • 7(<9/<9r)a(r), since ^(d/dr) annihilates the terms of degree < e. 
Taking d/dr in place of Vv in (12.28), we obtain ^y(d/dr)a(r) = e![7, a]. Thus 
E z ' E J ( ^ Z ^ ) ( C - K = ( - l ) c e ! 0 £ z ' £ i [ C j , a ] ^ . Take 2 to be constant 1 and 
evaluate our functions at the identity element 1 of Ga . By Lemma 12.8 (1), [Z, Z'\ = 
0 for Z ^ Z', and hence we obtain 

(wzf)(l) = ((«,fcW)(l),z) = ( - l ) e e ! X ; ^ E l O . Ci](^-, 11,>(<*, z>. 

Pick a /C-irreducible subspace V of 6 e (p + ) so that the V-component of z is nonzero. 
Let Z be the /C-irreducible subspace of Se(T) such that (Z, V) 7̂  0, and let V be 
the image of V under i- o(^+) ~x. Take {4^ } for this particular Z so that (u\ , 2;) = 1 
and (wu z) = 0 for i > 1. Put /? = Ej[Cj, Ci]^j5 then /? ^ 0 by Lemma 12.8 (2). 
Take w G V so that (/?, w) ^ 0. Then (wz/)(l) = (- l ) e e!c z ( /? , w) ^ 0, which 
completes the proof of (2). 

To prove (3), we first consider Map with 99 = f£, where 0 ^ / 0 E SK(r) with 
a congruence subgroup JT of G. Then every element of il<^ is left T-invariant. We 
then put 

(A8.10) {9,h}= [ ~g(x)h{x)dx 
Jr\G& 

for g, h G U</?. This is convergent, since /o is a cusp form. Then by Lemma 
A8.3 we easily see that il<^ is unitarizable. We employ this fact to prove (3). In 
view of (1), it is sufficient to prove our assertion for a special choice of / . In 
Case SP we can take G a = Gv = Sp(n, R) . Put K = q/2 with q > n in Case 
SP. Take a real quadratic field F and put G' = Sp(n, F) and G a = Gv x G r ' 
so that {v, */} is the set of archimedean primes of F. By Remark A3.11 (III), we 
can find a nonzero cusp form y? on G' of weight (q/2)(v + v')*+ v'. Since G' is 
dense in Ga , we can find an element 7 of G' such that </?(7(i)) 7̂  0. Changing 
<̂  for < |̂J7, we may assume that <p(i) ^ 0. Put / (x) = <pa(x, 1) for x G Gv, 
where or(a, a7) = det(a)«/2det(a')1+(<?/2) for (a, a') G GL n(C)2 . We easily see that 
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0 ^ / G H(p). Let g' be the Lie algebra of G'a. Then il can be embedded into 
il(g'c) and (af)(x) = (aipa)(x, 1) for a € il. Our proof of (1) shows that the map 
af »-> aipa is bijective. Since (p is a cusp form, i l ^ c ) ^ 1S unitarizable as we 
have shown by means of (A8.10). Therefore, il/, being g-isomorphie to a subspace 
of il(g'c)</?a, must be unitarizable. This proves (3) in Case SP. Case UT can be 
handled in a similar way, but here we first prove a lemma applicable to both Cases 
UT and UB. 

A8.5. Lemma. LetQ = SU(m, n), K = SU(m, n)Tl[t/(m)x{7(n)], and p(a, b) = 
det(fr) for (a, b) G /C. Then there exist a discrete subgroup F of Q and a nonzero 
element f of H(p) such that r\Q is compact and f(*yx) = f(x) for every 7 G F. 

P R O O F . Take a real quadratic field F and a CM-field K such that [K : F] = 2; 
put a = {v, v'}. We can then find an element T of GLm^n{K) such that T* = —T, 
i% has signature (ra, n), and i7 ,̂/ is positive definite. (The easiest way to find such 
a T is to take it to be diagonal.) With this T we consider the injection of SU(T) 
into Sp(d, Q) and the embedding e : H —> ?)d of §11.6, where d = 2(rn + n). Put 
I/J(Z) = det (/c(z)) for zeH with AC of (11.7). Prom (11.11) we obtain 

(A8.ll) jf(a, e(z)) = tp(az)ja(z)2ip(z)-1 for every a G 5E/(T), 

since det [Ma(z)] = ja(<z)2, which can be seen from (3.23), (3.24a), and (5.1). 
Now take a nonzero element 6 of .Ma/2 o n $)d and a congruence subgroup F' 
of Sp{d, Q) so that 92 G M^r')] put #(z) = ^(*)- 1 / 20(e(z)) for 2 G W with 
any fixed square root T\)(Z)~1I2 of ^ (z ) " 1 , which is meaningful as a holomorphic 
function on H. Changing 9 for 0||a/2/3 with a suitable /? G 5p(d, Q) if necessary, 
we may assume that g =£ 0. Take a congruence subgroup F\ of SU(T) so that 
{a I a G A } C F'. From (A8.ll) we see that j7 (z)~ 2^(7z) 2 = #(<z)2 for every 
7 G r i . Then ^ ( z ) " 1 * ; ^ ) = x(7)#W f° r every 7 6 A with a character x • A —> 

{±1}. We obtain the desired J1 and / by putting r = {7 G A | x(?) = 1} a n d 
/ = gp. Indeed, r\Q is compact, since iTv> is definite. 

Returning to the proof of Theorem A8.4 (3) in the unitary cases, take / and 
F as in Lemma A8.5 with Q = Gv, and for g, h G il/* define {g, h} by (A8.10), 
which is meaningful, since r\Gv is compact. By Lemma A8.3, iifK is unitarizable. 
This completes the proof of Theorem A8.4. 

A8.6. Lemma. Let f G H(p) and / ' G H(pf) with p(a, b) = det(6)* and 
p'{a, b) = det(b)K with ft, K! G 2 - 1 Z a . Suppose that both K and nf satisfy condi
tion (A8.7). Then the C-linear span of the products af • / ? / ' for all a, /? G il is 
unitarizable. 

P R O O F . Let i l / • il/7 denote the C-linear span of the products in question. We 
view 6(p+) and <5e(p+) as representation spaces of /C through Ad. In the proof 
of Theorem A8.4 we have seen that g H-> kg for g G il/ and fc G K defines a 
representaion of /C, which is equivalent to {Ad, 6 ( p + ) } . The same is true for i l / ' . 
Naturally we use pr instead of p for the action of K, on il/7; similarly we put 
{kip){x) = p{k)pf{k)il;(xk) for fc G X and ip G i l / • i l / ' . Define a C-linear map 
a : i l / ® U/' -> i l / • i l / ' so that a(g ® /i) = #/i. We let /C act on i l / ® i l / ' by 
*($ ®h) = kg® kh. Then clearly *<r(<p) = <r(kip) for <̂  G i l / (8) it/ ' , and cr is 
a 0-homomorphism. Let Tp = £ e + e , = p 6 e ( p + ) / ® ©e'(p+)/ ' . Then i l / • i l / ' = 
E^L0cr(Xp). By Theorem A8.4 (3), both il / and i l / ' are unitarizable, and hence 
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so is it/ &U/'; let { , } be a hermitian inner product with the property of (A8.3) 
on that space. Put Mp = Ker(cr) n %p and Lp = {x e %p\ {x, Mp} — 0 }. Then 
Ip = Lp © Mp, since Tp is finite-dimensional. By Theorem A8.4 (4), %p and 
Tg for p ^ q are orthogonal. Observe also that they have no isomorphic K-
irreducible subspaces. Now every element of Ker(cr) is contained in ^2pep ^P with 
a finite set P, and hence Ker(cr), being /C-stable, is the sum of some /C-irreducible 
subspaces, each of which is contained in Tp for some p. Thus Ker(a) = ® Mp , 
and ilfmf =Ker(a) ©L with L = © p Lp = {</> G il/®il/' | {<£>, Ker(a)} = 0}, which 
is a g-submodule. Now 11/ • ilf' is ^-isomorphic to L, and hence is unitarizable. 

A8.7. L e m m a . Let W be a sub field of C such that #Q ab C W in Cases SP 
and UT and Q C W in Case UB, where # is the Galois closure of K in C over 
Q. Let p(a, b) = det(b)K for (a, 6) G £o witfc K € 2 _ 1 Z a m Case SP and « e Z a 

otherwise. If f is an element of Af%(W) such that iifp is unitarizable, then there 
exists an element q of MK(W) such that ( / , h) = (q, h) for every h G SK. 

P R O O F . Take dual bases {av} and {bv} of Tv with respect to (it, v) »—• tr^uv) as 
in §12.5 for a fixed v G a; define an element Cv of it by Cv = X ^ i v /-+(a^)^-(^)5 
which is clearly independent of the bases. We can take these bases so that bu = 
av — ~av for every v. Take a hermitian form { , } on i l / p as in (A8.3). Then 
{Ag, h} = {g, -A*h} for g, h G iifp and A G 0c, so that by (A8.5c), 

{Cvg, h] = < ^2 L+Mi-Mg, h > = - ^2 {L-(av)9, i-{av)h) 

Taking in particular g = h, we see that if Cvg = 0, then YlveN {L-(av)9i L-{av)g} 
= 0, and hence L-(au)g = 0 for every v. Thus we obtain the direct part of 

(A8.12) Cvg = 0 for every v G a 4=> Xg = 0 for every l G p _ . 

The converse part is obvious. Let Lv denote the operator Lu,v oi (15.3) with 
CJ(X, y) = det(y)K. Then, for a function ip on H, we have 

= Z ( A ^ , , P ^ ) p M r * ( ^ , ^) = -(L^)' 

by (A8.6a, b) and (12.30a, b). Given / as in our lemma, take P so that / G A/£(P) 
and put A' = X^ea' X ^ o CLl

vf, w n e r e a' = {?; G a | Gv is not compact}. Then A" 
is finite-dimensional, since it is a subspace of A/£(P). Now # p = X^ea' ZlSo CCl

vfp 

C H/p, and hence we can diagonalize the £ v on Xp simultaneously. Consequently 
we can diagonalize the Lv on X simultaneously. Let h G SK. Then Lvh = 0, as 
/i is holomorphic. Suppose Lvg = \vg with g e X and 0 ^ Av G C for some 
v. Then 0 = (g, Lvh) = (Lvg, h) — \v(g, h) by Theorem 12.15, and hence 
(g, h) = 0.Lety = {g £ X \Lvg = 0 for every v G a ' } , X(W) = A/£(P, W 0 n # , 
and y (W) = } ^ n * ( W ) . By Theorems 14.9 (2) and 14.12 (3), Lv maps X{W) 
into itself, so that we have a Jordan decomposition X(W) = y(W) 0 Z with a 
subspace Z over W such that Z ®w C is spanned by the eigenfunctions of the Lv 

not belonging to ^ . Given W-rational / , let q be the projection of / to y(W) 
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with respect to this decomposition. Then (f, h) = (q, h) for every h € SK. Now 
Cvqp = ~(Lvq)p = 0 for every v G a, so that qp G H(p) by (A8.12), that is, q is 
holomorphic. Thus q is the desired element of MK(W). 

A8.8. Proof of Lemma 15.8. The notation being as in the lemma, put f — gp 

with p(a, b) = det(6)', f = hp\ s = Ap,h, and e{a, 6) = det (6) r + 2 p . Take Z and ip 
as in our lemma, and take £i = ip in (A8.9); take also y G V so that (o;i, y) = 1. 
(Notice that dim(Z) = dim(V) = 1.) Then (A8.9) shows that yf = s£. Thus 
(^S)P^ = f8e e it/ . i t / , so that tt{{gs)p£) C i l/ • i l / ' . By Lemma A8.6, il / • i l / ' 
is unitarizable, so that ii[(gs)p£) is unitarizable. Therefore we obtain the desired 
element q by Lemma A8.7. 

A8.9. Proposition. Let Ga = Sp{n, R) or SU(m, n); Ze£ p(a, 6) = det(6)* for 
(a, 6) G #o with K G 2 _ 1 Z, 0 < K < (n - l ) /2 z/ G a = 5p(n, R) and K G Z, 0 < 
« < Min{m, n} — 1 z/ Ga = SU(m, n). Then there exist two nonzero elements f\ 
and f2 o/ # (p) such that il/i and il/2 are not il-isomorphic. 

P R O O F . Put v = 2/c+l if Ga = Sp(n, R) and 1/ = /c+1 if G a = S[/(ra, n); put 
also I/J(U) = detjy(u) for u G T. Let Z be the irreducible subspace of SU(T) with 
^ as its highest weight vector in the sense of Theorem 12.7. By [S94b, (4.9c)], 
(Dfg)(Q = C,{V)g with V of (12.25) for every C e Z and every g G C°°{H). 
(The symbols A and h there correspond to K and z/ here.) Take F c 6 e ( p + ) 
corresponding to Z as in the proof of Theorem A8.4. Then, by (A8.9), 

yg'^^iiCiMg-Vi^tV) forevery y G V. 
i 

Let /1 = gf with a nonzero constant g\ on W. Then ^2(^)^1 = 0, so that Vf\ = 0. 
Next take f2 = gp

2 with g2{z) = ip{z) for z e H. Then Ct(^)02 = ^![G, ^] by 
(12.28), and hence, (0/2)(1) = ^ ( SJCi» ]̂<̂ i> 2/) = ^K^> 3/>> which is not zero 
for some y G V. Thus Uf2 is not isomorphic to il / i , which proves our proposition. 

A8.10. We have been dealing with a set of objects {G, /C, 7i, g, i l} . Suppose 
we have two more sets {G*, /Q, Wi, &, ili} of the same type for i = 1, 2; suppose 
also that there exist an injective homomorphism i" of (Gi x G2)a into G a and 
a holomorphic injection J of Hi x W2 into Ti such that /(/Ci x K2) C /C and 
J((3z, iw) = J(y9, 7) J(z, w) for (/?, 7) G (Gx x G 2 ) a and (z, w) G « i x « 2 . To 
avoid possible confusions, we assume our setting to be one of the following types: 

Cases SP and UT: d = Gn , G2 = G r , G = G n + r , Hi = H n , H2 =Hr,H = 
Hn+r, J(z, w) = diag[z, IU], and J(/3, 7) = /3 x 7 with the notation of Sections 24 
and 25. 

Case UB: Gi = G^, G2 = G*, G = G*,Wi = 3 ^ , H 2 = 3 * , and « = H* + n 

with the notation of Section 26 and [S97, Section 21]; I and J will be described 
later. 

In these cases the map extended to the complexification of K\ x K,2 is a collection 
of several maps each of which is equivalent to the diagonal embedding of GL r(C) x 
GLS(C) into GL r + s (C) for some (r, s). 

We consider (p, K) for G as in Theorem A8.4, and define similarly pi for Gi 
with the same n. Now gi x #2 can be embedded in g, so that ili (8) H2 can be 
viewed as a subalgebra of il. For a function /i on G a we define a function h° on 
(Gi x G 2 ) a by ft°(x, j/) = /*(/(*, 3/)) for (ar, y) G (Gx x G2)a- Clearly (a0/3)(/i°) = 
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((a <S>/?)/*)° for (a, /?) 6 il2 x il2. We define fcA, as before, by {kh){z) = p{k)h{zk) 
for k G K, and z G Ga , and similarly put ((k>k ^g){x, y) = pi(k)p2{kf)g(xk, yk') 
for p G Co c((Gi x G2) a) , (a, y) G ( d x G2) a , and (fc, *') € /Ci x /C2. Clearly 
( / ( M ' l h J ^ f f e . f c ' ) ^^ 

A 8 . l l . Lemma. For every feH(p), ^ 0, £/ie (fli x ^-module { h° | ft G 11/ } 
is unitarizable, provided (A 8.7) is satisfied for the group G. 

P R O O F . Put AT = { g e itf ( g° = 0 }, Tp = 6 p (p+) / , iVp = iVnTp . By Theorem 
A8.4 (3), itf is unitarizable; let { , } be a hermitian inner product on it/ with 
the property of (A8.3). Put Mp = {x G Tp \ {x, Np} = 0 }. Then Tp = Lp © Mp, 
since Tp is finite-dimensional. By Theorem A8.4 (4), Tp and Tq for p ^ g are 
orthogonal; also they have no isomorphic (/Ci x /C2)-irreducible subspaces. Now 
every element of iV is contained in J2Pep ^P w ^ n a finite set P, and hence N, 
being (/Ci x /C2)-stable, is the sum of some (K\ x /C2)-irreducible subspaces, each 
of which is contained in Tp for some p. Thus N = 0 Np, and it/ = M 0 AT with 
M = 0 p M p = {# G 11/ | {#, N} = 0}, which is a fa x g2)-submodule. Now (it/)° 
is (gi x g2)-isomorphic to M, and hence is unitarizable. 

A8.12. Proof of Lemma 28.7. Let p0(a, 6) = det^)"*, p(a, b) = det(b)2p+"a , 
and p'(a, 6) = det(6)m. For the same reason as in §A8.8, we have (A^R)9 = aRp0 

with an element a of it. Assuming that n = r, recall that £>e,e/ = BeCe>, Beg = 
(Dpg)((p), and Ce'<? = (£' lyp)((^ /), where <£> is as in (25.3) and ip' is defined by the 
same formula with e' in place of e. Taking Ap

aR and the present Dp as # and 
Dz

p of (A8.9), put g = T,i{Dp9)((i)ui with {0} and {a;*} as in that formula. Then 
@9P — (qp®T , /?) for every /? in the /C-irreducible subspace V of 6n | e | (p+) such 
that (Z, V) ^ 0. Now we view Z as a representation space of the complexification 
of /Ci x /C2. Then C ^ is stable under the group action, and so Z = Cip + Z' with 
a subspace Z' stable under the group action. Take {Ci} so that 0 = </? and Z' = 
S i > i CCi- Prom (25.3) we obtain <^(diag[a, 6]u • diag[a', b']) = det(6a;)ev?(u), and 
hence from (12.9) we see that u)\ has the same property, and J2i>i ^ ^ is {tC\ x/C2)-
stable. Take an element j3 of V such that (u>i, 0) = 1 and (a;*, /3) = 0 for i > 1. 
Now (A8.9) evaluated at r. G Ga + r involves re(M(r., o)). However, if we take 
r. = 7(x, y), from what we said about the u^ we can easily derive that (qp®r , /?) 
at y = J(x, y) equals {Dfg){^{l{x, y))y where pi(a, 6) = p(a, 6)det(fr)e. Thus 
(/?^P)° = [{D%g)(ip)Pl]°. Taking similarly E ^ in place of £>f, we can find an 
element 7 of il such that {'y(3gp)° = [(De,e'#)p']°- (This can be justified, since Dp 

is considered on Ile^X) ^ > and £ z on J ] e , > 0 Gv, and eve(, = 0 for every v.) Thus 
(jPaRp0)° = (SQ )°. We consider De^ only when n = r, and so if n ^ r, what 
we need is merely {aRp0)° = (5^')°- Now TT-CS0 G A T P ' ( H ) with some c and p ; 

by Theorem 14.12 (4), and hence TT~CS(Z, W) as a function of w (resp. z) belongs 
to M£(r) (resp. N&{r')) with a congruence subgroup T of Gr (resp. T ; of C71). 
All such nearly holomorphic forms with respect to V x F form a finite-dimensional 
vector space with a £T-rational basis as the proof of Lemma 24.11 shows. 

Now suppose that v > (n + r)/2 in Case SP and v > n 4- r in Case UT. Then 
the fa x g2)-module { h° | h G ili?Po } is unitarizable by Lemma A8.ll . Define Lv 

on H r and £ v on G£ as in the proof of Lemma A8.7 with K = m. Then we can 
repeat the proof of Lemma A8.7. To be explicit, put X = J2vesi YIZo CL{

VS and 
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*(•=) = J2ve^ZoSLivS^ w h e r e S' = 7T~C5. Then X{S) is a finite-dimensional 
vector space over E. For a function ft G C°°{Hn x H r ) define / / G G°°(G£ x 
G£) in an obvious way by restricting p' to the complexification of K\ x JC2. 
Then, as in the proof of Lemma A8.7 we have Cvhp = —{Lvh)p , and so Xp = 

E t , 6 a E £ o C j C t ( 7 ^ a j R P o ) ° » s i n c e (5o')° = S P ' - T h u s XP' i s contained in a unita-
rizable space. Therefore, by the same procedure as in the proof of Lemma A8.7 and 
keeping the variables on Hn and Gn constant, we can find an element T of X(S) 
such that LVT = 0 for every v G a and (S'(zy w) — T(z, w), /(it;)) = 0 for every 
/ G S^. The unitarizability implies (A8.12) in the present case, so that T(z, it;) is 
holomorphic in w. Thus ncT gives the desired element T of Lemma 28.7. 

A8.13. Proof of Lemma 29.3. We assume that rv > 0 for every v G a, since 
we do not need Lemma 29.3 otherwise. The idea of the proof is the same as in 
§A8.12. However, the map t: 3^ x 3^ of [S97, (6.10.2)] is antiholomorphic in the 
variable w on 3 ^ , and so we have to change it for a holomorphic one. Thus put 
w = (wv)vesi, where 

—X 

L y . 
if z = 

y J 

Notice that iv = iv. Also, put P = (P v ) v € a , Q = {Qv)vesL, R ~ (Rv)vea. with 
Pv = diag[- l r„, l t v + r j , Qv = d i a g ^ , l r J , iJv = diag[l ru , - I t J . For a = (av) G 
FLea^X^v) w * t n Pv zs i n (26.2), put 5 = a~ = (Pva^"Pv)v6a . Then we can 
easily verify that a G F L e a ^ ^ ) * 55; = ait;, Av(5, it;) = iJA^a, w)Rv, and 
/iv(5, it;) = /zv(a, it;) for every i; G a. 

Now we define J : 3^ x 3^ - • W*+n and / : G^ x G£ -> G£ by J(z , it;) = *(*, w) 
and /(/?, 7) = [r^/Jr-1, ( ( v y ^ 1 ) " ] * with the symbols of (26.2) and [S97, (6.10.2), 
(6.10.5), (12.1.4), (22.2.1)]. 
_ For / G G°°(W) define / = / ~ € G°°(H) by /(ti;) = / ( S ) . Then ( / |Ua)~ = 
f\\KOL for every a G G^ and K G Z a . Define Lv and Cv as in the proof of Lemma 
A8.7 for a fixed K, and define a differential operator Lv on H by Lvf = (Lvf)~. 
Then we easily see that Lv(f\\Ka) = (Zu / ) | |«a for every a G G£. Now all differen
tial operators D on Hv such that D(/ | |K i )a) = (Df)\\Kva for every a G G% form a 
polynomial ring generated by rv elements Di, 1 < i < rv, such that Dj is of degree 
2z and D\ = Lv. (See [S90, Theorem 3.6 (3), (4)].) Since Lv is of degree 2, we have 
Lv = aLv + 6 with constants a and 6. Take a nonzero holomorphic function / on 
Hv. Then / is holomorphic, and so Lvf = Lvf = 0, so that Lvf — 0. Therefore 
b must be 0. Thus Lv = aLv, and clearly a ̂  0. This shows that Lvg = 0 if and 
only if Lvg = 0, that is, if and only if Lv7j — 0. 

Let i?i = # | | I / - 1 , p0(a, b) = det (&)"*, and a;(o, b) = det(6)m. By the same 
argument as in §A8.12, we find an element e of il such that [eR^)° = {SQ)°. By 
Theorem 14.12 (4), 7r~cA'p8iR for some c G Z is a Q-rational nearly holomorphic 
function. Define Lv on y as in the present lemma and Cv on G£ as in the proof 
of Lemma A8.7. Let M(z, w) = 7T-CS0(L(Z, it;)). Since S0 = J B ^ P ^ I I C / " " 1 ] , 
formula (29.6) is valid with M in place of A\f. By (12.32) and Theorem 14.9 (2), 
A/If ( r , Q) is stable under the Lv for any congruence subgroup r of G^. Thus 
M(z, w) belongs to a finite-dimensional vector space over Q that is stable under 
the Lv. Put 5i(z, ty) = S(z, it;). Then 5i(z, it;) = 5o(J(z, iy)) and M(z, w) = 
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7r-cSi(z,t5). Let X = £ v e a £ £ 0 C 4 M , X(Q) = Ew € ._E,~o Q 4 ^ , and A" = 
E U a Ez^o C L t 5 i . Then X(Q) is finite-dimensional over Q. For / G C 0 0 ^ x3^) 
define / " G C°°(GixG*) by f»(x, y) = o;(M (* i y )(o))-V(*(o), y(o)). Then Sf = 
(5^)° = (eiZi0)0, which is contained in the unitarizable space by Lemma A8.ll . 
Therefore the Cv are diagonalizable on (Xf)u)', so that the Lv are diagonalizable 
on X'. Now / H-> / maps A" (anti-C-linearly) onto X, and hence the Lv and Lv 

are diagonalizable on X. Therefore we have a decomposition X(Q) =y0®y with 
y0 = {h G # ( Q ) | Lvh = 0 for every v e a.} and a vector space y spanned by the 
eigenfunctions g of the Lv such that Lvg ^ 0 for some v. Then (#(z, w), f(w)) = 
0 for every f E S% and every # G ^ for the same reason as in the proof of 
Lemma A8.7. Let 7i(z, w) be the projection of Af (z, w) to y0- Then (M(z, w) -
r i ( z , tu), f(w)) = 0 for every f e S% and I^Ti = 0 for every v. Thus L^Ti = 0, 
and so Lvf\ = (Z^Ti)~ = 0. Since fY G A", (A8.12) shows that 7\ is holomorphic 
in w, so that 7\ is holomorphic in w. Thus 7rcTi gives the desired T of our lemma. 
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