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PREFACE TO THE FIRST EDITION 

Ever since the year 1925, when I succeeded in determining the characters 
of the semi-simple continuous groups by a combination of E. Cartan's infini
tesimal methods and I. Schur's integral procedure, I have looked toward the 
goal of deriving the decisive results for the most important of these groups by 
direct algebraic construction, in particular for the full group of all non-singu
lar linear transformations and for the orthogonal group. Owing mainly to 
R. Brauer's intervention and collaboration during the last few years, it now 
appears that I have in my hands all the tools necessary for this purpose. The 
task may be characterized precisely as follows: with respect to the assigned 
group of linear transformations in the underlying vector space, to decompose 
the space of tensors of given rank into its irreducible invariant subspaces. In 
other words, our concern is with the various kinds of "quantities" obeying 
a linear transformation law, which may be prepared under the reign of each 
group from the material of tensors. Such is the problem which forms one 
of the mainstays of this book, and in accordance with the algebraic approach 
its solution is sought for not only in the field of real numbers on which analysis 
and physics fight their battles, but in an arbitrary field of characteristic zero. 
However, I have made no attempt to include fields of prime characteristic. 

The notion of an algebraic invariant of an abstract group 'Y cannot be 
formulated until we have before us the concept of a representation of 'Y by 
linear transformations, or the equivalent concept of a "quantity of type ~." 
The problem of finding all representations or quantities of 'Y must therefore 
logically precede that of finding all algebraic invariants of 'Y· (For the notion 
of quantities and invariants of a more general character, and their close inter
dependence, the reader is referred to the restatement in Chapter I of Klein's 
Erlanger program in slightly more abstract terms.) My second aim, then, 
is to give a modern introduction to the theory of invariants. It is high time 
for a rejuvenation of the classic invariant theory, which has fallen into an 
almost petrified state. My vindication for having proceeded in a much more 
conservative manner than our young generation of algebraists would probably 
deem desirable, is the wish not to sacrifice the past; even so, I hope to have 
broken through to the modern concepts resolutely enough. I do not pretend 
to have written the book on modern invariant theory: A systematic handbook 
would have to include many things passed over in silence here. 

As one sees from the above description, the subject of this book is rather 
s~ecial. Important though the general concepts and propositions may be 
~Ith which the modern industrious passion for axiomatizing and generalizing 
I as Presented us, in algebra perhaps more than anywhere else, nevertheless 
ham convinced that the special problems in all their complexity constitute 

:he stock and core of mathematics; and to master their difficulties requires on 
Be whole the harder labor. The border line is of course vague and fluctuating. 

ut quite intentionally scarcely more than two pages are devoted to the 
general theory of group representations, while the application of this theory 

vii 



viii PREFACE TO THE FIRST EDITION 

to the particular groups that come under consideration occupies at least fifty 
times as much space. The general theories are shown here as springing forth 
from special problems whose analysis leads to them with almost inevitable 
necessity as the fitting tools for their solution; once developed, these theories 
spread their light over a wide region beyond their limited origin. In this 
spirit we shall treat among others the doctrine of associative algebras, which 
in the last decade has risen to a ruling position in mathematics. 

The relations to other parts of mathematics are emphasized where occasion 
arises, and despite the fundamentally algebraic character of the book, neither 
the infinitesimal nor the topological methods have been omitted. My experi
ence has seemed to indicate that to meet the danger of a too thorough spe
cialization and technicalization of mathematical research is of particular 
importance in America. The stringent precision attainable for mathematical 
thought has led many authors to a mode of writing which must give the ' 
reader an impression of being shut up in a brightly illuminated cell where every 
detail sticks out with the same dazzling clarity, but without relief. I prefer 
the open landscape under a clear sky with its depth of perspective, where the 
wealth of sharply defined nearby details gradually fades away towards the 
horizon. In particular, the massif of topology lies for this book and its 
readers at the horizon, and hence what parts of it had to be taken into the 
picture are given in broad outline only. An adaptation of sight different 
from that required in the algebraic parts, and a sympathetic willingness to 
cooperate, are here expected from the reader. 

The book is primarily meant for the humble who want to learn as new the 
things set forth therein, rather than for the proud and learned who are already 
familiar with the subject and merely look for quick and exact information · 
about this or that detail. It is neither a monograph nor an elementary text
book. The references to the literature are handled accordingly. 

The gods have imposed upon my writing the yoke of a foreign tongue that 
was not sung at my cradle. 

"Was dies heissen will, weiss jeder, 
Der im Traum pferdlos geritten,'' 

I am tempted to say with Gottfried Keller. Nobody is more aware than 
myself of the attendant loss in vigor, ease and lucidity of expression. If at 
least the worst blunders have been avoided, this relative accomplishment is to 
be ascribed solely to the devoted collaboration of my assistant, Dr. Alfred, 
H. Clifford; and even more valuable for me than the linguistic, were his 
mathematical criticisms. 

PRINCETON, N. J., 
September, 1938. 

HERMANN w EYL 

NOTE. A reference to formula (7.6) [or to (3. 7.6)] indicates the formula 6 in section 7 
labeled as (7.6) in the same chapter [or in Chapter III respectively]. 

PREFACE TO THE SECOND EDITION 

The photosta~ic process employed for the reprinting ruled out any appreci
able c.h~nges which otherwise might have been desirable. But a new chapter 
contammg Supplements, a list of Errata and Addenda, and a short Bibli
ography for the years 1940-1945 have been added. Two of the supplements 
develop an alternate and more direct approach to some of the problems in the 
theory of the orthogonal and symplectic groups dealt with in Chapters II v 
and VI. Supplement C describes a particularly straightforward and powe;ful 
process for the generation of invariants discovered by M Schi'ffe h l D · · r, w ereas 
su~p ~ment ~P.P~Ies the "matrix method" of Chapters III and IX to the 
sph.tti°:g of a d1v1s10n algebra by extension of the ground field, without the 
hm1tat10n to normal algebras and finite extensions. 

PRINCETON, N. J., 
March, 1946. 

HERMANN WEYL 
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CHAPTER I 

INTRODUCTION 

1. Fields, rings, ideals, polynomials 

Before we can start talking algebra we must fix the field k of numbers wherein 
we operate. k is the closed universe in which all our actions take place. I 
should advise the reader at first to think of k as the continuum of the ordinary 
real or complex numbers. But generally speaking, k is any set of elements a, 

called numbers, closed with respect to the two binary operations: addition and 
multiplication. Addition and multiplication are supposed to be commutative 
and associative. Moreover, addition shall allow of a unique inversion (sub
traction), i.e. there is a number o, called zero, such that 

a+o=a 

for every a, and each a has a negative - a satisfying a+ ( - a) = o. Multiplica
tion shall fulfill the distributive law with respect to addition: 

a(f3 + 'Y) = (af3) + (CX'Y ), 

from which one readily deduces the universal equation 

(1.1) a•O = O. 

Multiplication also is required to be invertible (division) with the one exception 
necessarily imposed by (1.1): there shall exist a unite or 1 satisfying 

(1.2) a·E =a 

for all a, and every a except o shall have an inverse a -l or 1/ a such that a. a -l = e. 
Were e = o, all numbers a would be = o according to (1.1) and (1.2); this 
degenerate case we once for all exclude by the axiom E ~ o. 

Any number a gives rise to its multiples 

a= la, a+ a= 2a, 2a +a= 3a, · · ·; 

?ere the integers 1, 2, 3, ... are symbols of "multipliers" rather than numbers 
Ill the reference field k. Two cases are possible: either all the multiples 

(n = 1, 2, 3, ... ) 

of the unit e are ~ o, or there is a least n for which ne = o. In the latter case 
the integer n must be a prime number p. Indeed for a composite number 
n ==== n1'n2 (neither n1 nor n2 = 1) we should have 
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and hence niE or n 2E would equal 0 in contradiction ton being the least vanis~in~ 
multiple of E. One distinguishes these two cases by a~c~ibing the characteristic 
o .or p to the field k. In a field of prime charactenstic p the p-fold of any 

number a vanishes: 
pa = p(w) = (pE)a = o. 

In a field of characteristic zero we can form the aliquot part f3 = a/n of a with 
any integer n, i.e. a number {3 satisfying the equation n{3 = a. Indeed this 

equation amounts to 
nE·f3=a, 

and as the first factor nE is ,e. 0 the equation is solvable accordin~ to the a:iom 
of divisibility. Hence our field k contains the subfield of the rat10nal multiples 

Of E: 
mE/n (n a positive integer 1, 2, 3, · · · , 

many integer 0, ±1, ±2, · · · ), 

which is isomorphic to the field of ordinary rational numbers n.i/"!' and may be 
identified with it. To this most primitive field of charactenstic 0 we shall 
always refer as the ground field K, and our remark thus asserts the fact that 
any field k of characteristic O contains the ground field K. From now ?n :ne sha.ll 
assume the refrg_ence field k to be of chara<;_terjstic 0 without ment10nmg ~his 
restriction ag;in and again; we shall not try to discuss any of o~: problem.s m a 
field of prime characteristic. So even when we use the phrase m an a:b~trary 
field" or something similar we mean "in an arbitrary fi~ld of cha~~ctenstic ?"· 

If one omits the axiom requiring the existence of an mverse a one obtams 
the general notion of a ririg rather than a field; o.nly addition, .subtraction and. 
multiplication are possible in a ring. The classical example is the set of all 
integers. If a product a{3 of two elements of the ring n::er vanishes. unle~s a 
least one of the factors vanishes, the ring is without nulldwisors. Starti~g with 
given ring R without null divisors, we may formally i~troduce fract10ns a/ 
as pairs of elements a, (3 in R of which the second term.{3 is ,e. 0, and t~en defin . 
equality, addition, and multiplication in accordance wi~h the rules w~ich we .al 
learned in school. The fractions form a field, the quotient field of R; it con tam 
R if we identify the fraction a/1 with a. . . . 

With respect to a given ring Ra set a of its elements is called an ideal if 

a ± {3, A.a 

lie in a for any a, {3 in a and any number X in R. The c~se where a co~sists o~ th 
one element o only is expressly excluded. The classical example is provide 
by the integral multiples of a given integer. The ideals serve as modules fo. 

congruences : 
X = µ(mod a) 

INTRODUCTION 3 

Dleans that the difference X - µ of the two numbers X, µ of R lies in a. A finite 
number of elements a1 , · · · , ar in a constitute an (ideal) basis of a if every 
element a in a is of the form 

(X; in R). 

a is then the ideal (a1 , · · · , ar) with the basis a1, · · · , ar. In a field k there 
is only one ideal, the field itself. For if a is a number ,e. 0 in the given ideal a, 
the latter will contain all numbers of the form A.a and hence every number fJ 
whatsoever: X = {3a -i. In the ring of ordinary integers every ideal is a principal 
ideal (a). a is a prime ideal if the congruence 

Xµ = 0 (mod a) 

never holds unless one of the factors>., µis = 0 (mod a). 
A formal expression 

n 

f(x) = L a;X; 
i-0 

involving the "indeterminate" (or variable) x, whose coefficients a; are numbers 
in a field k, is called a (k-)polynomial of x of formal degree n. If an ,e. 0, n is 
its actual degree; 0 is the only polynomial not possessing an actual degree. 
Everybody knows how to add and multiply polynomials; they form a ring k[x] 
without null-divisors. Indeed if a is of actual degree m, b of degree n: 

then 

ab = amfJnxm+n + ... 
is of degree m + n since amf3n ,e. 0. One sees that this proposition will still 
hold when the coefficients are taken from a ring without null-divisors rather 
than from a field k. This allows us to pass to polynomials of a new indeter
minate y with coefficients taken from k[x] or, what is the same, to k-polynomials 
of two indeterminates x, y, and so on. The k-polynomials of several indeterminates 
x, Y, · · · form a ring k[x, y, · · · l without null-divisors. 

In a given polynomial F(u, v, ... ) of certain indeterminates u, v, ... one 
may carry out the substitution 

u = f(x, y, · · ·), v = g(x, y, · · ), . · · 

by means of certain polynomials f, g, ... of other indeterminates x, y, 
the result is a polynomial rI>(x, y, ... ) of x, y, 

F(J(x, y, · · · ), g(x, y, ... ), ... ) = rI>(x, y, ... ). 

!n Particular one may substitute numbers a, {3, ... for the "arguments" u, v, ... 
in F; the resulting number F(a, (3, ··.)is called the value of F for the values a, {J, 
· · · of the arguments u, v, 
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f(x) being a polynomial in x, a is a zero or a root off if f(a) = 0. A poly. 
nomial of degree n has at most n different zeros; this follows in the well-known 
way by proving thatf(x) contains the factors (x - a1)(x - a2) · · · if a1, a2, · · · 
are distinct zeros. Hence a polynomial f(x) ~ 0 does not vanish numerically 
for every value of x in k, provided the reference field k is of characteristic 0, 
because such a field contains infinitely many numbers. One can even find 
rational value of x for which the value off is ~ 0. Induction with respect t 
the number of indeterminates permits generalization of this proposition t 
polynomials with any number of arguments. If 

F(x, y, ... ) ; R1(x, y, ... ), Rz(x, y, · · · ), · · · 

are a number of non-vanishing k-polynomials then the product FR1R2 · · · is als 
~ 0; and hence our statement can be sharpened to the following 

LEMMA (1.1.A). (Principle of the irrelevance of algebraic inequalities.) 
k-polynomial F(x, y, ... ) vanishes identically if it vanishes numerically for al 
sets of rational values x = a, y = {3, · · · subject to a number of algebraic inequalitie 

Rz(a, {3, · • ·) ~ O, · · · . 

From the ring k[x, y, ... ] of k-polynomials in x, y, .. · one can pass to th 
field k(x, y, ··.)of the rational functions of x, y, · · · ink by forming the quotien 
field of k[x, y, . · · ]. 

The derivative f'(x) of a polynomial f(x) is introduced as the coefficient of ti · 
the expansion of f(x + t) as a polynomial in t: 

(1.3) f(x + t) = f(x) + t.j'(x) + · · · 
The familiar formal properties of derivation are immediate consequences thereof 
One might restate the definition (1.3) as follows: there is a polynomial g(x, y 
satisfying the identity 

(1.4) f(y) - f(x) = (y - x) -g(x, y); 

f'(x) is = g(x, x). While in Calculus the unique determination of g(x, x) i 
brought about by requiring g(x, y) to be continuous even for y = x, Algebr 
attains the same by requiring g to be a polynomial. The derivative of 

f(x) = ao + a1X + a2X
2 + · · · + anXn 

is 

f'(x) = a1 + 2a2X + · · · + nanXn-l. 

Hence the only polynomial f (x) in a field of characteristic zero whose derivati 
f'(x) vanishes is the constant: f(x) = ao. 

For a polynomial f((x)) = f(x1, · · · , Xn) of n variables x; one may fo 
similarly to (1.3): 

(1.5) f((x + t-y)) = f(x1 + ty1, · · ·, Xn + tyn) = f((x)) + t-f1((x, y)) + · · · . 
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The coefficient fr ( (x, y)) of t in this expansion by t is called the polarized poly
nomial Dyrf off; it involves the new variables y; in a homogeneous linear fashion: 

(I.6) 

Sometimes the new variables y; are designated by dx; and then the polarized 
form is called the total dijf erential df of f. The polar process has the formal 
properties of differentiation: 

(1.7) 

D(f + g) = DJ + Dg, 

D(af) 

D(f.g) 

= a·Df (a a number), 

= Df-g + f·Dg. 

The degree of a monomial 

x~ 1 x~2 
• • • x~· 

of our n variables x1 , X2 , · : · , Xn is the sum 

r = r1 + r2 + · · · + rn 

of the non-negative integral exponents r1, ·. · , rn. Each polynomial f((x)) 
is a linear combination of monomials; if all these monomials are of the same 
degree r: 

(1.8) (r1 + · · · + rn = r) 

the polynomial is called homogeneous or a form of degree r. In (1.8) the sum 
extends over all sets of non-negative integral exponents r 1 , • • • , rn with the 
sum r. Multiplication of all variables X; with a numerical factor A has the 
effect of changing 

(1.9) f((x)) into ;\'-f((x)). 

Another way of writing such a form is this: 
n 

(l.10) f((x)) = L {3(i1, · · ·, ir)X;1 • • • X;, 
i-1 

where each of the r indices i runs independently from 1 to n. In this expression 
~he coefficients {3 are not uniquely determined; they become so, however, if one 
llnposes the condition of symmetry upon the {3: 

{3(i1• ' • · · , i,•) = {3(£1 , · · · , ir) 

j.rovided 1', · .. , r' is any permutation of 1, ... , r. Then the {3 are obviously 
inked to the a's by the following relation: 

(1.U) r! (. . ) 
<Xr1 · • •rn = ! ! f3 i1 , • • • 1 tr r1. · · · rn. 

if ri of the r indices ia are = I, r2 of them = 2, · · . , r n of them = n. 



6 THE CLASSICAL GROUPS 

(1.10) suggests introducing the multilinear form 

(l.12) f((x, y, · · ·, z)) = L: (3(i1i2 · · · i,)x;1Yi2 · · • Zi, 

depending on r sets of n variables: 

X = (x1 , · · · , Xn), 

(1.13) Y = (y1 , · · · , Yn), 

z = (z1 , · · · , Zn). 

From it we fall back upon the form (1.10) by identifying 

(1.14) x = y = . . . = z with x. 

Symmetry of the coefficients (3 with respect to the indices ia is equivalent to th 
symmetry of the multilinear form f(x, y, .. ·, z) with respect to permutatio 
of the r sets x, y, ... , z. Hence our result may be expressed thus: there exists 
uniquely determined symmetric multilinear form f(x, y, · · ·, z) which by th 
identification (1.14) passes into a given form f((x)) of degree r. 

On putting}. = 1 + tin (1.9) one finds that the polarized form Dyxf change 
back into r} if y is replaced by x: 

(Duxf(x) )y-x = r.j(x). 

The same is clear from (1.10) which, under the assumption of symmetric (3' 

at once yields 

Hence the symmetric multilinear form f(x, y, · · · , z) corresponding to th 
given form f( u) of degree r arises from f = f( u) by complete polarization: 

DxuDyu ... D,,,f(u) = r! L: (3(i1' i2' ... ' i,)Xi1Yi2 ... Z;, • 

This again shows its uniqueness. 

2. Vector space 

The next fundamental concept on which we must come to a common unde 
standing right at the beginning is that of vector space (ink). A vector space 
is a k-linear set of elements, called vectors; i.e. a domain in which addition 
vectors and multiplication of a vector by a number in k are the permissib1 
operations, satisfying the well-known rules of vector geometry.

1 
n vecto 

e
1 

, • • • , en form a coordinate system or a basis if they are linearly independen 
while enlargement of the sequence by any further vector would destroy t 
independence. Under these assumptions every vector ! is uniquely expressibl 
in the form 

(2.1) 
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where the numbers Xi are the "components" of !· The number n, which does 
not depend on the choice of the coordinate system, is called the dimensionality 
of the vector space P or the order of the linear set P. Transition to another co
ordinate system e; , · · · , e~ is effected by a non-singular linear transformation 
A as described by the matrix 11 a;k 11 in the following manner: 

(2.2) Xi = L ai!,X~ (i, k = 1, · · · , n). 
k 

A non-singular matrix A = 11 a;k 11 is one whose determinant, det A or I A I , is 
different from 0; the inverse transformation A-1 sends the column of n numbers 
x' back into the column x. On writing the components in a column (matrix 
of n rows and one column), (2.2) lends itself to the abbreviation 

(2.3) x =Ax' 

in terms of matrix calculus. 
There is another interpretation of this, or rather of the modified equation 

x' = Ax, to the effect that it describes a linear mapping ! ~ !' of P upon itself 
in terms of a fixed coordinate system. In that case we need not suppose A 
to be non-singular. A mapping!~!' carrying each vector! into a vector!' is 
linear if it sends 

! + t) into !' + t)' and a! into a!' 

(a any number in k). If such a correspondence changes the basic vector e; 
of our coordinate system into 

it will carry 

where 

(2.4) 

I e; 

! = L: x;e; into !' 

x; = L: a;kXk or x' = Ax. 
le 

The identical mapping ! ~ ! is represented by the unit matrix 

En = E = 11 Oik 11 · 

When we express a given linear mapping ! ~ !', (2.4), in another coordinate 
system in which the vector x has the components y given by 

(2.5) x =Uy, 

U being the non-singular transformation matrix, the result will be 

y' = (U-1A U)y, 
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as one readily derives from (2.5) combined with 

x' = Uy' or y' = u-1 x'. 

Henc-e the matrix A changes into u-1AU which arises from A, as we shall say, 
by "transformation with U." Therefore the characteristic polynomial 

j XE - A j = An - b1X n-l + • • • ± bn 

of the indeterminate X is independent of the coordinate system, in particula 
the trace b1 , 

tr(A) = L: a;i , 
i 

and the determinant 

bn = det A. 

A square matrix A of n rows and columns is said ti) have degree n; the sam · 
term applies to any set ~ = {Al of n-rowed matrices A. 

In the algebraic model of the n-dimensional vector space a vector simply means 
sequence ! of n numbers: 

! = (xi , · · · , Xn). 

The numbers are the coordinates of ! with respect to the "absolute coordina 
system": 

(1, 0, ... ' 0), 

e2 (0,1,···,0), 

en = (0, 0, ... ' 1). 

What our considerations have shown is the simple fact that every n-dimension 
vector space in the general abstract axiomatic sense is isomorphic to this uniqu 
algebraic model. 

A linear formf(!) depending on an argument vector! may be defined withou 
reference to a coordinate system by the functional properties: 

f(! + !') = f(!) + f(!'), f(a!) = a .J(!) 

Its expression in terms of a coordinate system will be a linear form of the co 
ponen.ts x; of ! in the algebraic sense: 

f(!) = a1X1 + · · · + Ci.nXn 

with constant coefficients a;. Hence we know what a multilinear formf(!, · · · , 3 
is, depending on r argument vectors !, . · · , 3. By the identification ! = t) 

... = 3 it leads to a form f(!) of degree r of a single argument vector !· In th 
same manner f(!) arises from each of the forms sf(!, · · · , 3) into whichf(!, · · · , 3 
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changes by a permutation s of its r arguments !, t), · · · , 3, and hence in partic
ular from the symmetric form 

1 
Ti~ sf(!, .. ·, 3); 

the sum here extends to all r! permutations s. It is clear how to tie these 
remarks up with the considerations at the eml of the first section concerning 
algebraic forms. It is much easier to describe what a form of degree r is -in a 
manner independent of the coordinate system, by passing through the corre
sponding multilinear forms. The definition of the polarized form by means of 
the expansion off(! + t · t)) in terms of the parameter t shows that the polar 
process is invariant under any change of coordinates. A natural generalization 
is the study of forms f(!, t), · · ·) depending on various argument vectors !, I}, · · · 

with pre-assigned degrees µ, 11, • • • • When we stick to the algebraic model of 
vector space our independent definitions prove that a formf((x)) = f(x1 •• • Xn) 
of degree r changes into a similar form by any linear transformation (2.3); and 
the same is true of a form depending on various rows (1.13) each of which 
undergoes the same transformation (2.3) as x. 

Within the n-dimensional vector space P there may be defined an m-dimen
sional linear subspace P1, (m ~ n). A coordinate system e1 · · · em in Pi can be 
supplemented by n - m further vectors em+1 , · · · , en to form a basis in P. 
With respect to this basis adapted to P1 the vectors x in P1 are those whose last 
n - m components vanish: 

X = (xi , · · · , Xm , 0, · · · , 0). 

Hence the universal algebraic model for this situation is described thus: the 
vectors in P are the n-uples (x1 . · · Xn), the vectors of the subspace Pi are 
the n-uples of the particular form (x1 • •• XmO • • · 0). P mod P1 is the (n - m)
dimensional vector space into which P turns if one identifies any two vectors 
land !' which are congruent modulo Pi , i.e. whose difference lies in P1 . 

Pis decomposed into two linear subspaces 

P = P1 + P2 

if each vector ! splits into a sum !i + !2 of a vector !i in Pi and !2 in P2 in un
ambiguous fashion. Uniqueness is assured if the only decomposition of 0: 

is 0 + 0, or if the two spaces are linearly independent (have no common vector 
except 0). A basis for Pi together with a basis for P2 forms a coordinate system 
for the whole space P (adaptation of the coordinates to a given decomposition); 
hence the sum of the dimensionalities ni + n2 of Pi and P2 equals n. Relative 
to the adapted coordinate system, the vectors of Pi and P2 have the form 

(xi · · · Xn1 1 0 · · · 0), (0 • • • 0, Xn1+i • • • Xn)• 
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The word "sum" will occasionally be used (but never the word "decomposition") 
even if unicity or linear independence does not prevail. The process of sum
mation of (independent) parts may easily be extended to more than two sum
mands: 

P = P1 + · · · + P1; i = i1 + ... + i1' ia in Pa ; 

independence meaning that 0 + · · · + 0 is the only decomposition of 0 into 
components lying in the subspaces pa . 

In case a linear mapping A carries every vector in the subspace P1 into a· 
vector of the same subspace, we call P1 invariant under A, and the mapping 
A of P1 upon itself is called the transformation "induced" in P1 by A. If the 
coordinate system is adapted to the subspace P1 the matrix A has the form (2.6), 

(2.6) (2.7) 

where the matrix A1 of degree m is that induced by A in the subspace, while 
A 2 may be interpreted as the corresponding transformation of the "projected'" 
space P mod P1 . In case P breaks up into two subspaces P1 + P2 both invariant 
under A, the matrix A has the form (2. 7) in terms of a basis of P adapted to tha 
decomposition. 

One knows how matrices of a given degree n may be added, multiplied b , 
numbers and among each other; the multiplication is associative but not com, 
mutative. The transposed matrix of A 11 a;k 11 shall be denoted by 

A* = 11 aik 11 , 

It is the matrix of the substitution 

~'=~A 

where~ denotes a row of numbers (h, · · · , ~n). A column x of n numbers ma 
be called a covariant, a row ~ a contravariant vector. From them we may for 
the product 

~x = ~1X1 + · · · + ~nXn = (~x) 

which is a one-rowed square matrix or a number. If under the influence o 
transition to a new coordinate system the x undergo a non-singular transform 
tion x = Uy, the ~shall be subjected to the contragredient transformation 

~ = 11U-1 

so that ~x remains unchanged: 

~x = 11U-1 Uy = 1/Y· 

We consider covariant and contravariant vectors as vectors in two di:fferen 
"dual" spaces P and P*. A change of coordinates in one shall be automaticall 
connected with the contragredient change in the other space, so that the produc 
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~x has an invariantive significance. The mapping x ____, x' Ax is in invariant 
manner tied up with the mapping ~ ____, e = ~A in the dual space: 

ex = ~Ax = ~x', 

i.e. the product of e with x equals the product of ~with the image x' of x. 

3. Orthogonal transformations, Euclidean vector geometry 

An orthogonal transformation (2.4) is one leaving invariant the quadratic 

form 

(3.1) x*x = xi + · · · + x! ( = x? + . . . + x~2). 

This amounts to the equation 

(3.2) A*A = E 

for A, from which follows at once 

(3.3) AA*= E 

since the relation of a matrix A and its inverse A-1 is mutual. Another way of 
putting it is to say that an orthogonal matrix is identical with its contragredient. 
As for the determinant, it foliows from (3.2) that its square = 1, hence 

<let A = + 1 or - l. 

According to these two cases one speaks of a proper or an improper orthogonal 
transformation. 

Let A ik be ( - 1) i-k times the determinant of the matrix A after the ith row 
and kth column have been cancelled. The familiar identities 

:t airAkr = det A or 0 
r=l 

according as i = k or i ~ k, show that for a non-singular A the quotient 
~ki/det A is the (ik)-element of the inverse A-1

; hence the contragredient matrix 
IS 

A II Aik/det A II. 
We therefore have 

(3.4) 

according as A is a proper or an impropflr orthogonal transformation. 
The minor 

Inay be denoted by 

ai 1 •• ·ip. 1; 1 •• • ,..p • 
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In the theory of determinants one proves the following identities between the 
minors of II aik II and those of II Aik II : 
(3.5) A;1 ... ;,,ki···k, = (det A)'-

1
-a<i······<i···«·· 

Here p + u = n and 

i1 • • • i, LI • • • La , 

stand for two even permutations of the figures 1, 2, · · · , n. In particular 

For an orthogonal matrix A we combine (3.5) with (3.4) and find: 

(3.6) 

the upper sign holding again for the proper and the lower for the improper 
transformations. These simple formal relations will later on be useful. 

Everybody is familiar with the part the orthogonal transformations play in 
the most fundamental-the Euclidean-geometry, where, after the choice of 
the unit of length, foot or meter, each vector l has a certain length the square 
of which is given by a positive definite quadratic form (H) in l· The corr 
sponding symmetric bilinear form is the scalar product (ltJ). The conditio 1 

(ltJ) = O means that l and t) are perpendicular. An orthogonal or 
coordinate system e1 , ••• , en is one in which (H) has the normal form 

(H) = xi + · · · + x~, 
or, in other words, one such that 

(e; ek) = o;k . 

All Cartesian coordinate systems are equivalent in Euclidean geometry; th 
transition from one Cartesian coordinate system to another is accomplished b 
means of an orthogonal transformation; according as it is proper or imprope 
the two systems are of equal or opposite "orientation." A linear mappin 
l ~ l' = Al leaving unchanged the lengths of vectors is expressed in terms of. 
Cartesian coordinate system by an orthogonal matrix A ; in case A be prope 
we have to do with a "rotation." 

Again and again in Euclidean geometry one has to construct a Cartesia. 
coordinate system in the following inductive way. One first chooses (or 
given) a vector a .,t. 0. By the positive normalizing factor 

a = 1/V(Q(i) 

one changes a into a vector e1 = aa of unit length, and takes e1 as the first basi 
vector. Thereupon one chooses an arbitrary vector l -;t. 0 perpendicular to e1 
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and then takes the "normalized" l as the second element e2 of our basis. The 
next step requires the solution of the two simultaneous homogeneous linear 
equations 

while at the last instant there are n - 1 such equations to solve: 

According to the general theory of linear equations, our equations always have 
solutions l .,t. 0 because throughout the whole process their number remains 
lower than the number n of the unknown components of l = (x1 , · · · , Xn). 
To this construction we sometimes refer as the classical inductive construction 
of a Cartesian system of axes. 

In our previous remarks about Euclidean or orthogonal vector geometry we 
had in mind as reference field k that field which one ordinarily uses for all 
geometric and physical measurements: the field K of all real numbers. However 
on analyzing the last construction one realizes that it merely requires the field 
k to satisfy the two conditions: 

1) A square sum a
2 + {3

2 + .. · + ·l is never zero unless all the individual 
terms a, {J, ... , -y are zero. 

2) The Pythagorean equation 

a2 + {32 = -y2 

has a solution -y for any two given numbers a and fJ. 
The second hypothesis allows us to express any square sum as a square; indeed 

a finite square sum 

may be added up step by step: 

A field satisfying the first condition is called a real field; when the second condi
tion also holds we speak of a Pythagorean fie"lrl. The role of this condition in 
~eometry is that it enables us to lay off a given segment on a given straight 
hne.2 

4. Groups. Klein's Erlanger program. Quantities 

The set GL(n) of all non-singular linear transformations in an n-dimensional 

d
'Vector space P, the set SL(n) of all unimodular linear transformations (whose 
et · o+ erm1nant = 1), the set O(n) of all orthogonal transformations, and the set 

(n) of all proper orthogonal transformations are groups. And this notion of a 
:;ou~ is the third pillar on which our edifice is to be erected. In any point field, 

Wit a given set of .elements p called points, we can study one-to-one corre-
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spondences S: p --? p'. E means the identity, s-1 the inverse correspondenc 
p'--? p, and two correspondences 

S: P--? p', 

<Combine to form a composite 

T: p'--? p" 

TS: p--? p". 

A group r is a set of correspondences containing the identity E, the invers 
s-1 of any S in r and the composite TS of any two correspondences S an 
Tin r. Considered as an abstract group y, our set r consists of elements s (o 
irrelevant nature) for which a composition st is defined satisfying the thre 
rules: 

1) the associative law (st)u = s(tu); 
2) there is a unit element I such that Is = s I = s for alls; 
3) every elements has an inverse s-1, ss-1 = s-1s = I. 
When we turn to the abstract standpoint we shall always change the capital 

like r, S, · · . into the corresponding lower case types y, s, . . . . The give 
transformation group r is a faithful realization of the abstract group scheme 
A realization of 'Y is given if with every elements there is associated a one-to-on 
correspondence S: s --? S such that 

I--? E, s-1 --? s-1
, ts--? TS; 

it is faithful provided different elements s are associated with different S. Eve 
group 'Y in the abstract sense is capable of a faithful realization the point field 
which is the group manifold 'Y itself; this is accomplished by associating with th. 
element a the "translation" in 'Y: 

(4.1) (a): s' = as (with the inversion s = a - 1s') 

(regular realization). A realization by means of linear substitutions m 
n-dimensional vector space is called a representation of degree n. 

This is not the place for repeating the string of elementary definitions a 
propositions concerning groups which fill the first pages of every treatise 
group theory. 3 Following Klein's Erlanger program4 (1872) we prefer to d 
scribe in general terms the significance of groups for the idea of relativity, " 
particular in geometry. Take Euclidean point space as an example. Wi, 
respect to a Cartesian frame of reference f each point p is represented by i 
coordinate x = (x1, x2, X3), a column of three real numbers. (On purpose 
deviate from the common usage in calling the entire symbol (x1 , x2 , x3) • 

coordinate, in the singular.) The coordinates are objectively individualiz 
reproducible symbols, while the points are all alike. There is no distinguishi · 
objective property by which one could tell apart one point from all the othe 
fixation of a point is possible only by a demonstrative act as indicated by te 
like "this," "here." All Cartesian frames (of reference) are equally admissibl 
any objective geometric property possessed by one of them is shared by 
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other:>. The coordinates x, x' of the same arbitrary point p in two such frames 
are linked by a transformation S: 

(4.2) 

where the non-singular A 

(4.3) 

x: = a; + I: a;kXk 
k 

11 a;k 11 satisfies a relation 

A*A = aE 

(i, k 1, 2, 3) 

with a number a (that accounts for the arbitrariness of the yardstick). Each 
such transformation ( 4.2) effects a transition from a given Cartesian frame to 
another one. At the same time S may be interpreted as the expression of a 
similarity mapping p --? p' = up of the point space upon itself in terms of one 
given Cartesian frame. The group of all these transformations or automor
phisms of space describes the exact kind of relativity inherent in the point 
space, its exact degree of homogeneity. For instance, the group characteristic 
of Euclidean geometry tells us that all points are alike, and at a given point all 
directions, and so on. 

In affine point space the restriction (4.3) is replaced by the weaker one 
det A ~ 0, or, if one takes the term affine in the sense in which it was first intro
duced by Euler where it included preservation of volume, det A = 1. With these 
and other examples, in particular the projective geometry, before his eyes, Klein 
advanced the principle that any group of transformations may serve as the 
group of automorphisms and that it defines the kind of geometry we are dealing 
with. Let us distinguish two closely related ideas, (1) automorphism and (2) 
coordinatization (sit venia verbo!). 

1) Automorphisms. Leibnitz declared: Two figures are similar or equivalent 
if they cannot be distinguished from each other when each is considered by 
itself, because they have every imaginable property of objective meaning in 
common.5 Leibnitz thus exhibited the true general meaning of similitude. If 
geometry is based on a system of axioms one might describe the objective prop
erties and relations as those logically defined in terms of the undefined funda
mental geometrical concepts entering into the axioms. A similarity mapping 
or _automorphism is a one-to-one correspondence u : p --? p' = up among the 
pomts p of the space which changes every figure into a similar one, or which 
does not destroy any objective point relation. (The mapping p --? p' does not 
destroy the relation R.(P, q, ... ) if the images p', q', ... fulfill the relation R 
whenever the original points p, q, . . do.) The automorphisms necessarily 
form a group, because each figure is equivalent to itself and equivalence is a 
8Ymrnetric and transitive relation. The group axioms are exactly the formal 
expression for these trivial facts. The mathematician unwilling to draw on any 
exter~al truth will be inclined to take the view that any group whatsoever can be 
appointed as the group of automorphisms; he declares by this appointment or 
~onvention that he is going to study only such relations among points as are not 

estroyed by the mappings of his group. 



16 THE CLASSICAL GROUPS 

2) Coordinatization. With respect to a frame f the point space is mappe 
upon a field of reproducible symbols or coordinates: 

p---->x or x = x(p). 

(The word "field" is here used in the loose sense of a range of variability. 
We suppose that the coordinatization sets up a one-to-one correspondenc 
between the points p and the coordinates x. There is no objection to regardi 
as the frame of reference this coordinatization itself. By means of an aut 
morphism 

11: p----> p' up 

we can define a new coordinatization 

x'(p) = x(p') = x(up) 

which is equivalent to the first one and in no way objectively distinguishabl 
from it. Both are linked by the transformation S, 

x' = S(x) {x = x(p), x' = x(p')}, 

which describes the automorphism 11 in terms of the coordinate system x. Th 
transformations S expressing the several automorphisms 11 in terms of the give 
frame f form a group isomorphic to the group of automorphisms. At the sam 
time the group of the S describes the transitions between the various equivale 
frames. The utmost we can hope for is to define objectively a class of equal 
admissible frames such that any two frames within that class will be equivalen 
This is the relativity problem: to fix objectively a class of equivalent coordinat 
zations and to ascertain the group of transformations S mediating between the 
(The individual transformation function Sis, .just like the coordinate x itself, 
reproducible symbol.) 

However, not only points are required to be represented by reproducib 
symbols, but also every other kind of geometric entity, and when passing 
physics all sorts of physical quantities like velocities, forces, field strengt 
wave functions, and what not, expect a similar symbolic treatment. One oft 
acts as though once the points have been submitted to it by fixing a frame 
reference for them, all these other things will follow suit without ·necessitati 
further provisions. This is certainly not quite true; at least further units 
measurement have to be fixed at random so as to make the scheme of referen · 
complete. Without prejudicing the situation beforehand we may then talk of 
frame of reference which takes care of all sorts of entities, while the law 
transformation for the symbols describing a given sort of entity (points or elect 
magnetic field strengths) relatively to the frames depends on the particul 
entity under consideration. The group of automorphisms will then be 
abstract rather than a transformation group. This seems to be a natural st 
beyond Klein's own formulation of his program. The abstract group charact 
izes the "geometry" in Klein's sense while the type of a variable quantity in th 
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geometry is characterized by its transformation law. Each element s of the 
abstract group describes the transition from one frame to another. The trans
formation law stat~s how the symbol or coordinate representing any arbitrary 
value of th: _quantity under consideration with respect to a frame f changes 
under trans1t10n to another frame f' by means of s; it is therefore a realization 
of the abstract group through transformations in the field of coordinates. I 
now give the systematic axiomatic formulation in which (I) refers to the "ge
ometry" or "space" as such, (2) to a particular quantity in it. 

A. The "symbolic" part (dealing with group elements and coordinates). 
(I) Let there be given a set 'Y of elements called group elements. Each pair 

s, t of group elements shall give rise to a composite element ts. There shall be a 
unit element I satisfying Is = s I = sand an inverse s-1 for each group element 
s: s-

1
s = ss-

1 
= I. (The associative law is not explicitly required.) 

(2) Let there be given a set (or "field") of elements called coordinates x 
and a realization ~: s ----> S of the group 'Y by means of one-to-one correspond~ 
ences x ----> x' = Sx within that field. 
B. The "geometric" part (dealing with frames and quantities). 

(I) Any two frames f, f' determine a group element s called the transition 
from f ~o f'. Vice versa, a group elements "carries" a fr~me f into a uniquely 
determmed frame f' = sf such that the transition (f----> f') = s. The transition 
f----> f is the unit element I, the transition f' ----> f the inverse element. If s t are 
the transitions f----> f', f'----> f" respectively, then the composite ts is the tra;sition 
f ----> f". 

(2) ~ q~antity q of the type ~ is capable of different values. Relatively to 
an arb1~ranly fixed frame f each value of q determines a coordinate x such that 
q --: x is a one-to-one mapping of the possible values of q on the field of co
ordinates. The coordinate x' corresponding to the same arbitrary value q in 
any othe~ ~rame f' is linked to x by the transformation x' = Sx associated with 
!!:e trans1t10n ( f----> f') = s by the given realization m. 

n F~r a better understanding we may add the following remarks. The con-
_ec~ion between frames and group elements as established by B (1) is very 

similar to that between points and vectors in affine geometry. 6 The last axiom 
un_der B(I) entails the associative law for composition of group elements The 
epistemologist _will stress the fact that the objects under A, the group el~ments 
anh~ the coordmates, are objectively individualized and reproducible symbols 
w ile any two f . I 'b . ' " ' . rames are, m ,ei mtz s words, indiscernable when each is 
considered b 't lf" Th . . fuc . Y 1 se · ey are mtroduced m order to make possible the 

ation of the values of all sorts of quantities in our geometry by reproducible 
~bols. From a mathematical standpoint one ought to observe that the 
axioms B (1) · 1 · th mvo ve m no way more than the axioms defining a group so that 

e elements of every associative group may be considered as tr~nsitions 
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between frames in an appropriate "geometry." Indeed, if a group 'Y is given, 
one may call each element s of 'Y at the same time a "f~~me" and defin~ the 
transition from frame s to frame t as tlte group element ts . Then our ax10ms 
linki:µg group elements to frames are obviously fulfilled provid~d. the ~roup 
multiplication is associative. In the same manner, the mathemat1c1an w~ll not 
hesitate to identify the values of the quantity q with their respective coordmate 
x, and the requirement that only such relations matter or have objective signifi 
cance as stay unaltered when xis replaced by 

x' = Sx ( s --+ 8 in W) 

for every s will mean to him a mere convention by which he proclaims that h 
will study no other relations. 

All this sounds general and abstract enough. Kevertheless our formulatio 
B (2) is still too narrow for some important purposes since we have to consi?e 
the possibility that a single coordinate system will not be capable of coverm 
the whole range of values of q. However, we are not going to dwell on sue 
further generalizations; on the contrary, we shall from now on restrict ourselve 
to the particular case where the realization ~ is a representation and the c 
ordinate therefore any n-uple of numbers (x1 , · · · , Xn) in a given number field 
(k-vector). The word "quantity" shall now be reserved for this case, and w 
once more repeat the definition under this limitation :

7 

A quantity q of type Wis characterized by a representation W of-yin k: s-+ A(s 
of a certain degree n. Each value of q relatively to a frame f determines a k~v~ct 
(x

1 
, ... , xn) such that the "components" x; of q transform under the transition 

to another frame f' according to A(s). 
Representations of degree 1 are representations by numbers: 

s--+ >-.(s); >-.(I) = 1, >-.(st) = >-.(s)>-.(t). 

The particular representation of degree 1 for which >-.(s) = 1 identically in 
s--+ 1, is called the identical representation; a quantity having this type is called 

scalar. 
We are now safely back in the waters of pure mathematics. The notions 

inequivalence, reduction, and decomposition present themselves quite. ~aturally ·, 
their application to a representation W of 'Y or to a type W of quant1tie~. Th 
are of even more general significance inasmuch as any set of matrices m 

replace the group W. . . . , 
Let then ~(be a set of linear transformations or matrices A m an n-d1mens10n. 

vector space P. If one changes the basis of that space by means of a no 
singular linear substitution U each A is changed into 

A'= u-1AU; 

the A' form the equivalent set W'("'W). 
W is called reducible if P contains a linear subspace P' invariant under all t 
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tran~fo.rmations A of W that is neither the whole space P nor the zero space 
cons1stmg of the vector 0 = (O, · · · , 0) only. When Pis referred to a suitable 
coordinate system all matrices A are then of the form (2.6). 

W decomposes if P breaks up into two non-vanishing subspaces P1 + P2 invari
ant under all A's of&. In the coordinate system adapted to this decomposition 
P1 + P2 each matrix A has the form (2. 7), which fact shall be indicated by 

A= Ai+ A2. 

These definitions apply in particular to a group & : s --+ A (s) of matrices 
A (s) homomorphic with the given group 'Y· If U is a fixed non-singular matrix 
the representation 

s--+ A'(s), A'(s) = u-1A(s)U 

is equivalent to the first one. We shall treat equivalent representations as one 
and the same, the difference lying only in the basis of the representation space 
in terms of which the linear operators are expressed in matrix form. The trace 
x(s) of A (s) is called the character of the representation. Equivalent representa
tions have the same character. In case of reduction all A(s) have, relatively to the 
adapted coordinate system, the form (2.6). The part A 1(s) defines a repre
sentation &i of 't of degree m, and the part (x1 , ... , Xm) of the quantity 
(x1 , · · · , Xn) is itself a quantity, of type &1 ; we say that it is contained in the 
latter. If & is irreducible the quantity itself is called irreducible or primitive. 
In case of decomposition (2. 7) our quantity consists of the juxtaposition of two 
independent parts 

whose components transform only among themselves. Nothing prevents one 
from considering the electromagnetic four-potential together with the field 
strength as a single quantity of 10 components; but of course this is a rather 
artificial unity and it is much more natural to decompose it into its two inde
pendent parts of 4 and 6 components respectively, the potential and the field 
strength. It obviously is of paramount importance to know whether a quantity 
br~aks up into a number of independent primitive partial quantities, i.e. whether 
a given representation & may be split into irreducible constituents: is it true that 
a subspace P1 of P invariant under the operators A (s) of & possesses a comple
nientary invariant subspace P2 such that the whole representation space p 
breaks up into the two linearly independent parts P1 + P2-and is this true for 
any representation & of the given group)'? The answer is affirmative in the 
lllost important cases, in particular, as we shall see later, for all finite groups. 

On our way we encountered the following process of addition by which two 
representations 

&: s-+A(s) and &': s-+A'(s) 
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of the same group and of degrees m and n respectively give rise to the representa 
tion ~+~'of degree m + n: 

s---+ A(s) + A'(s). 

The quantity (x1 , • · · , Xm) of type~ is combined with the quantity (y1 , • . · , y,. 
of type ~{' to form the quantity 

(x1 , · · · , Xm , Yi , · · · , y,.). 

The character of~+ ~'is the sum of the characters of ~and~'. 
Another important procedure is that of multiplication~ X ~'. If the vecto. 

X = (x1 , · · ·, Xm), y = (y1 ' ... ' y,.) 

undergo the linear transformations 

A= II a;k \I, 

respectively, then the mn products 

A'=lla~qli (

i, k = 1, ... , m; 

p, q = 1, . · ·, n 

(4.4) (i = 1, · ·. , m; p = 1, ... , n) 

undergo a corresponding linear transformation A X 
product of A and A'. In explicit form 

c = A x A' = 11 C;p, kq 11 

is obviously given by 

' C;p, kq = a;kapq , 

and our definition at once yields the law of composition 

(A X A')(B X B') = (AB X A'B'). 

~ X ~' is the representation 

s---+ (A(s) X A'(s)) 

of degree mn. The same sign X will be applied to the corresponding quantit' 
The character of ~ X ~l' is the product of the character of ~ with that of 
The problem arises quite naturally to decompose the product of two primit' 
quantities into its primitive constituents, partial cases of which will be discu 
later (Chapters IV and VII). 

The numbers ( 4.4) may be considered as the components Z;p of a vec 
z = x X y in an mn-dimensional vector space PP'. When considering lin 
forms in that space it will often be convenient to replace the most gen 
vector z with mn independent components by the vector x X y where x; and 
are independent variables; this procedure is called the symbolic method in inv 
ant theory. 

Let us call attention right here to some important representations of the f 
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linear gr?up GL(n), by _stressing the representation aspect of forms of n variables 
an~ their transformat10n ~nder the influence of linear substitutions on the 
variables. Take any non-singular linear transformation A: 

(4.5) 

Under its influence all monomials of given degree r, 

undergo a linear transformation (A),, and this correspondence A ---+ (A), is 
a representation of degree 

n(n + 1) .. · (n + r - 1)/1·2 ... r. 

On the ot.her hand we consider an arbitrary form f of degree r depending on a 
contravanant argument vector (~1 , ••• , ~ .. ) and write it as 

(4.6) 

While ~; are transformed according to 

(4.7) ~. = I: ak;~~. 
k 

f changes into a form of the new variables ~~ whose coefficients u' proceed 
fro b h ri·. ·r,. 

m u,, · · .,,. Y t e same substitution (A), as encountered above Indeed the 
rth power of the invariant product · ' 

(tx) = ~1X1 + · · · + ~ .. x,. 

equals the special form (4.6) with 

In the symb r th d (~x)'. . o ic me o one replaces the arbitrary form f by the specialized 

The Products of the components of r vectors x, y, ... , z: 

Xi1Y•2 • · · Z;, 

which are d" 1 
(4.5) cogre ient Y transfo~med into vectors x', y', ... , z' by the same A, 
t"lrnb' ~ndergo the transformation A X A X . . . X A. A quantity F of thi 
".!"'with then' comp t F(. . . . s 

cording t (l _onen s ii • i2' · · · , i,) is called tensor of rank r. Ac-
o .10) we write our form (4.6) as 

L v(i1 ~ · · · i,) ~;1 ~;2 ... ~;, 
With 8Ym t. . me nc coefficients v(i1 i2 ... i,), where 
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if r1 of the r indices ia are = 1, r2 of them = 2, and so on. Hence the manifold 
of forms of degree r is nothing else than the set of all symmetric tensors F of 
rank r-where symmetry means that F(i1 i 2 ••• ir) does not change its 
value under arbitrary permutations of the indices or arguments i 1 i 2 · • • ir . 
Within the tensor space of rank r the symmetric tensors form a linear subspace 
which is invariant under all (non-singular) transformations A. Another such 
invariant subspace consists of all skew-symmetric tensors whose components 
change sign under the influence of transposition of two arguments, e.g. i 1 and i2: 

F(i2 i1 ia · · · i,) = -F(i1 i2 ia · · · i,). 

A special case of the problem mentioned above of decomposing the product of 
several primitive quantities into its primitive components is the splitting of 
tensor space into irreducible invariant subspaces. This will be treated in 
Chapter IV for the full linear, in Chapters V and VI for some other groups. 
Indeed, the X-product of r (covariant) vectors is the quantity called arbitrary 
tensor of rank r. 

Before closing this section I want to touch on a question concerning relativity 
in Euclidean space although it is but loosely connected with our interests here, 
on which however there has arisen much confusion among mathematicians and 
philosophers; I mean the question of the relation of congruence to the group of 
automorphisms of Euclidean space. If one bases geometry on a number of 
fundamental relations as "lies on", "between", "congruent", an automorphism 
is a correspondence not affecting any such relation. Leaving out first the' 
relation of congruence one finds that an automorphism, as far as vectors are ; 
concerned, must be a linear vector transformation S. Supposing that con
gruence is established by means of proper orthogonal transformations A, the 
further condition on S, viz. not to destroy congruence, amounts to the require
ment that s commutes with the whole group o+ of congruences: 

s-1AS =A' 

must be a proper orthogonal matrix whenever A is such. All linear trans
formations S satisfying this condition form a group, the so-called normalizer of 
o+. The normalizer of a group comprises that group; in our case it is actually 
larger because it contains the "reflections" (improper orthogonal transforma
tions) and dilatations, besides the "rotations". The group o+ plays its intrinsic 
part in Euclidean geometry long before the "extrinsic" question of all auto-' 
morphisms arises; its normalizer rather than o+ itself is the group of auto
morphisms. What shall we say then to Kant's discussion of the distinction of" 
"left" and "right" in §13 of the Prolegomena8 where he claims that "by no .. 
single concept, but only by pointing to our left and right hand, and thus de
pending directly on intuition (Anschauung), can we make comprehensible the 
difference between similar yet incongruent objects (such as oppositely winding. 
snails)." No doubt the meaning of congruence in space is based on intuition, 
but so is similitude. Kant seems to aim at some subtler point; but just this 
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point is one which can be subsumed under the general "concept" of a group and 
its normalizer. While a group is, generally speaking, not derivable from its 
normalizer, there is nothing mysterious in the possibility that the normalizer 
may be actually larger than the group itself. 

6. Invariants and covariants 

Let there be given a group r of linear transformations A in an n-dimensional 
vector space P. A function f(x, y, · · ·) depending on a number of argument 
vectors 

(5.1) X = (x1, · · · , Xn), Y = (y1, · · · , Yn), · · · 

in P will change into a transform f' = Af if x, y, · · · are sent by the linear 
transformation A into x' = Ax, y' = Ay, · .. : 

f'(x', y', · · ·) = f(x, y, · · · ). 

We then have B(Af) = (BA)f, as it should be. If Af = f for all substitutions A 
of our r, the function f is called an invariant of r. In this sense the scalar 
products (xx), (xy), ... are orthogonal vector invariants. We shall be con
cerned with the algebraic case exclusively where f is a polynomial, homogeneous 
with respect to the components of each argument vector, and therefore is called 
an invariant form. The degrees µ, v, · · · off in x, y, · · · may coincide or not. 

With this elementary notion we contrast the general notion of invariant. 
While the former is concerned with a given group r of linear transformations A, 
the latter is relative to a given abstract group 'Y = { s l and a number of repre
sentations of 'Y of degrees m, n, · · · respectively: 

(5.2) ~: s ~ A(s), 58: s ~ B(s), · · · . 

A function cp(x, y, ... ) depending on an arbitrary quantity x of type ~' another 
Y of type 58, ... , will be a certain function f of the numerical vectors 

(5.3) X = (x1, · · · , Xm), Y = (y1, · · · , Yn), · · · 

in terms of a given frame of reference, and will be a certain function!' in another 
frame of reference in which the same argument quantities have the components 

/ ( I I) 
X = X1, · · · , Xm, 

/ ( I I) Y = Y1 , · · · , Yn , · · · : 

cp = f(x, y, ... ) = f'(x', y', ... ). 

If s is the transition from the first to the second frame: 

x' = A(s)x, y' = B(s)y, · · · , 

We denote the transform f' by sf. Our function cp is an invariant provided its 
algebraic expression f does not depend on the frame: sf = f for all elements s of 
the group "f. If one is a mathematical purist and therefore wants to eliminate 
frow the definition the '•frames" and "quantities" in favor of the group elements 
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and the numerical vectors, one will call the function f(x, y, · · ·) of the nu~erical 
vectors x, y, ... an invariant with respect to the given representat10ns 2!, 
~ •.... of "Y if 

f(A(s)x, B(s)y, · · ·) = f(x, y, · · · ). 

It is evident how to subsume the elementary case, the case of "vector invariants", 

under this more general scheme. . 
In the classical theory of invariants, -y is the special (or unimodular) linear 

group SL(n) and the argument quantities x, y, · · ." are ar_bitrary forms in n 
variables. We explained near the end of the preceding sect10n how su~h for?1s 
are to be interpreted as quantities of a particular type. The usual view_pomt 
of the classical theory is slightly different in that it looks upon the variables 
and the coefficients of the forms as numbers whose ratios only matter because 
the values of the n variables are considered as homogeneous coordinates. of a 
point in projective (n - 1)-space rather than as components of a :ector in an 
affine n-space. The vanishing of a given form defines an. algebraic spread of 
n - 2 dimensions· the vanishing of an invar~ant J depending on a number o{ 
arbitrary such f~rms defines a projectively invariant algebraic relationshi 

between the corresponding spreads. 
One particular extension of the elementary concept toward the general _de 

serves special mention, the case when the arguments are a number ?f covarian. 
vectors x, y, ... and a number of contravariant vectors ~; 11, ." • • . _While x, y, · · · 
are transformed cogrediently according to any substitut10n A 111 the group 
each of the vectors ~, 11 , ••• undergoes the contragredient transformation A 
The product (~x) is the most fundamental invariant of this type, both for th 
full linear group GL(n) and for any subgroup r of it .. The study of _such _func 
tions f(xy ... , ~ 11 ••. ) shall be included under the title of vect~r mvanants 
because here, as in the strictly elementary case, we refer to one given group. 
of linear substitutions rather than to an abstract group "Y and a number of 1 
representations. (If x, y, ... are point coordinates in a projective (n - 1) 
space, then~' 11 , •.• are plane coordinates and vice versa.) . 

In returning to the general case, let us fix ou~ attent10n on the fo_r. 
f(x, y, ... ) which are of pre-assigned degreesµ., v, · · · m the argument quantit1 
x, y, . . . . These forms are linear combinations of the 

m(m + 1) ... (m + µ. - 1) n(n + 1) · · · (n + v - 1) 
(5.4) N = 1 . 2 ... µ . 1·2 ... v 

monomials of the prescribed degrees, 

) 
ai am 81 f3n 

z(a1 ••. ctm/31 ••• {3,. • • . = X1 ... Xm Yi ... y,. ... 

(a1 + · · • + am = µ., /31 + · · · + f3,. = v, · · · ). 

The exponents a f3 ... of course are non-negative integers. While the 
components x, under~o the linear transformation A (s), the Yk the transf~rmatio 
B(s), ... , our monomials undergo a certain compound transformat10n U( 
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which establishes a compound representation U: s---> U(s) of degree N. The 
invariant forms f(x, y, · · ·) are thus turned into linear invariants of a single 
quantity z of type U. However, one should emphasize the fact that this line
arization of the problem of invariants is possible only if we study invariant forms 
of pre-assigned degrees µ, v, . . . . 

The linear invariants L(x) of a quantity x = (x1 , • • • , x,.) of given type 
2(: s---> A (s) form a subspace of then-dimensional space of all linear forms of x. 
l being its dimensionality, we have exactly l linearly independent linear invari
ants. On taking them as the first l coordinates of an arbitrary x in a new co
ordinate system, we obtain a reduction of 2( to the form 

A(s) = 11~1 ~II· 
l is the maximum degree with which the unit representation s ---> E 1 is contained 
in 2(. When in particular the theorem of full reduciblity holds, we may describe 
l as the maximum number of times the identical representation s ---> 1 is con
tained in 2!. 

An invariant may be described as a scalar depending on a number of arbitrary 
quantities x, y, · · · of prescribed types. If the transform sf differs from f by a 
constant factor X(s), 

(5.5) sf = X(s) .j, 

f is called a relative invariant with the multiplier X(s). f = 0 is still an invariant 
relation between the variable quantities x, y, . . . The invariants in the 
original sense are then to be distinguished as absolute invariants. The multiplier 
is a representation s ---> X(s) of degree 1. Still more generally, a covariant of 
type 4): s---> H(s) is a quantity f of that type depending on arguments x, y, ... 
which are quantities of given types 2!, 'S, ... respectively. With regard to a 
given frame of reference, f will have h components 

f1 = f1(x, y, · · · ), · · · ,Jh = fh(x, y, · · · ), 

just as x, y, · · . have the components (5.3). After transition s to another 
frame, the new components which arise from the old ones by the linear sub
stitution H(s) shall be the transforms f~ = sf1 , . ·. , f~ = sfh ;·hence on putting 

r;(x', y', ... ) = f;(x, y, ... ) 
with 

x' = A(s)x, y' = B(s)y, · · · , 
the equation 

!' = sf = H(s)f 

is to hold. The system of simultaneous equations 

f1 = 0, ... 'fh = 0 

(i = 1, ... ' "h) 

then has an invariant significance, independent of the frame of reference. 
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As an illustration of relative invariants let us consider the classical case where 
'Y is the full linear group GL(n), consisting of the linear transformations 

A : x~ = L a;kXk , 
k 

and where the quantities which appear as arguments inf are arbitrary forms of 
given degrees in then variables ~;. Under these circumstances X(A) will be a 
homogeneous polynomial of the n2 variables a;k ; hence for the special 
transformation 

(5.6) 
I 

X; =ax; 

the multiplier X(A) will equal aa with a non-negative integral exponent G. 
On applying the relation 

X(A)X(B) = X(AB) 

to the transformation A and that one B = 11 Ak, 11 whose elements consist of the 
minors Aki of A: 

AB= BA = t:..E 

where t:. = I A [ is the determinant of A, one finds 

(5.7) X(A)X(B) = t:.a 

But since t:. is an irreducible polynomial of the n2 variables a;k and X(B) is 
polynomial no less than X(A), (5.7) forces X(A) to be a power oft:.: 

(5.8) 

The integral exponent g is called the weight of the relative invariant. On' 
account of formula (5.8) relative invariants of the full linear group GL(n) ar 
absolute invariants of the unimodular group SL(n). 

On the background of these general notions concerning fields, vectors, groups 
representations we now set out to study the algebraic vector invariants of th 
most important groups, in particular of the full and of the unimodular line 
group, GL(n) and SL(n), and of the orthogonal group, O(n) or o+(n), in 
dimensions. 

CHAPTER II 

VECTOR INVARIANTS 

1. Remembrance of things past 

The theory of invariants originated in England about the middle of the 
nineteenth century as the genuine analytic instrument for describing configura
tions and their.inner geometric relations in projective geometry. The functions 
and algebraic relations expressing them in terms of projective coordinates are 
to be invariant under all homogeneous linear transformations. Cayley first 
passed from the consideration of determinants to more general invariants. This 
procedure accounts for the title of his paper, Memoire sur les Hyperdeterminants1 

(1846), which one may look upon as the birth certificate of invariant theory. 
In his later nine famous Memoirs on Quantics2 (1854-1859) he succeeds, among 
other things, in obtaining a complete set of invariants for cubic and biquadratic 
forms. His work was taken up in England by Sylvester and Salmon. Sylvester 
taught at Johns Hopkins University for some years, and there founded the 
first mathematical journal on this continent: The American Journal of Mathe
matics. The pages of its first volumes are filled with papers on invariant theory 
from Sylvester's prolific pen. In Germany, Aronhold, Clebsch and Gordan 
became adherents and promoters of the new discipline. In Italy, Brioschi, 
Cremona, Beltrami, and Capelli were attracted to the subject. This early 
period has a formal character throughout: the development of formal processes 
and the actual computation of invariants stand to the fore. Almost all papers 
refer to one group, the continuous group of all homogeneous linear trans
formations. 

Another impulse, in a somewhat different direction, came from number 
theory, more particularly from the arithmetic theory of binary quadratic forms. 
Here one had been led to consider not a continuous but a discrete group, the 
group of unimodular linear substitutions with integral coefficients. Gauss, in 
his Disquisitiones arithmeticae, studied equivalence of quadratic forms with 
respect to this group. Besides and after Gauss, we have Jacobi in Germany 
and Hermite in France as outstanding men in this line of investigation. 

The formal period of classic invariant theory is followed by a more critical 
and conceptual one which solves the general problems of finiteness less by explicit 
computations than by developing suitable general notions and their general 
properties along such abstract lines as have lately come into fashion all over 
the whole field of algebra. Here there is only one man to mention~Hilbert. 
His papers (1890/92) mark a turning point in the history of invariant theory. 3 

Be solves the main problems and thus almost kills the whole subject. But its 
27 
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life lingers on, howe,·er fiickering, during the next decades. A. Hurwitz makes a 
new and important contribution by introducing integral processes extending 
onr the group manifold (1897); in England A. Young, working more or less 
alone in this field, obtains far-reaching rrsults on the representations of the 
symmetric group and uses them for invariant-theoretic purposes (1900 and 
later). In recent times the tree of invariant theory has shown new life, and has 
begun to blossom again, chiefly as a consequence of the interest in invariant
theoretic questions awakened by the revolutionary developments in mathemati
cal physics (relativity theory and quantum mechanics), but also due to the 
connection of invariant theory with the extension of the theory of representa
tions to continuous groups and algebras. 

The rise of projective geometry made such an overwhelming impression on the 
geometers of the first half of the nineteenth century that they tried to fit all 1 

geometric considerations into the projective scheme. The narrowing down of 
the projective group to the affine group or to the group of Euclidean motions of 
metric geometry was accordingly effected by adjoining some so-called "absolute" 
entities: the plane at infinity, the absolute involution. The same attitude is 
expressed when one treats metric geometry in vector space by allowing arbitrary 
affine coordinate systems and arbitrary linear transformations, while adding the 
fundamental metric form xi + x~ + · · · + x! as something absolute, instead of 
sticking to the metrically equivalent Cartesian coordinate systems only and the 
corresponding group of orthogonal transformations. As this procedure easily 
admits extension into infinitesimal geometry, it has remained in use with great 
success, particularly for the purpose of general relativity theory. In group 
theory it amounts to considering each group of linear transformations as a 
subgroup of and in relation to the total linear group. The dictatorial regime 
of the projective idea in geometry was first successfully broken by the German 
astronomer and geometer Mobius, but the classical document of the democratic. 
platform in geometry establishing the group of transformations as the ruling 
principle in any kind of geometry and yielding equal rights of independent 
consideration to each and any such group, is F. Klein's Erlangen program. The 
adjustment of invariant theory to this standpoint has been slow; it could 
not be made without recognizing that the study of the groups themselves and 
their representations necessarily has to precede the study of their invariants. 

Decisive for the development of the theory of groups was the use E. Galois 
(1832) made of groups of permutations for the investigation of ll.lgebraic equa
tions; he recognized that the relation of an algebraic extension K to its ground 
field k is to a large extent determined by the group of automorphisms. His 
theory may be described as the algebraic relativity theory of a finite set of 
numbers which are given as the roots of an algebraic equation.4 Galois's brief 
allusions remained for a long time a book of seven seals. Only by C. Jordan's 
Traite des Substitutions (1870) was the newly gained field opened up to a wider 
circle of mathematicians. The algebraic problems connected with the elliptic 
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and modular functions-partition, transformation, complPx multiplication
furnished the most important material for the new concepts. Going ahead in 
this direction F. Klein and H. Poincare created the theory of automorphic 
functions. While Galois's theory deals with finite groups, infinite di::;cretc 
groups here come to the fore. Crystallography became the motive for a detailed 
study of infinite discrete groups of motions. 5 S. Lie founded a general theory 
of continuous groups from the infinitesimal standpoint, and "lhowcd its im
portance by many applications to geometric questions and differential equations." 

The theory of representations of groups by linear transformations was created 
above all by G. Frobenius7 during the years 1896-1903. Burnside, independent 
of him, and I. Schur in continuance of his work, found an essentially simpler 
approach by emphasizing the representing matrix itself rather than its trace, 
the Frobenius character. For Lie's infinitesimal groups E. Cartan demon
strated the fundamentai propositions concerning structure and representations. 8 

The matter is closely connected with hypercomplex number systems or algebras. 
After Hamilton's foundation of the quaternion calculus (1843), and a long 
period of more or less fomal work in which the name of B. Peirce is outstanding, 
Molien (1892) was really the first to win some general and profound results in 
this direction. 9 Of paramount importance for the modern development is 
Wedderburn's paper10 of the year 1908, where he investigates agsociative 
algebras in an arbitrary number field k; also I. Schur's study of irreducible 
representations in an arbitrary number field (1909) should be mentioned as 
fundamental. 11 Since then the development has been pushed ahead, in America 
chiefly by L. Dickson's and A. A. Albert's efforts, in Germany through E. 
Noether and R. Brauer. 

This brief enumeration of names must suffice here in place of a real history, 
as our link to the past. 12 The bibliography will help to round out the picture 
with respect to modern times. 

2. The main propositions of the theory of invariants 

It will be convenient, before going on, to illustrate the notion of vector invari
ant (Chapter I, §5) by two familiar examples, the symmetric group and the 
orthogonal group. 

In the theory of algebraic equations one is led to consider symmetric functions 
f(x1 , x2 , · .. , xn) of n arguments x1 , .. · , Xn , i.e. functions invariant under 
the group 'lrn of all n! possible permutations of then arguments. These permu
tations are obviously linear transformations of the n-dimensional vector x = 
(x1 , X2 , · · · , Xn). The elementary symmetric functions cp1 , cp2 , · · · , <Pn are 
the coefficients of the polynomial 4>(t) of the indeterminate t, 

(2.1) ¢(t) = (t - X1)(t - X2) · · · (t - Xn) 

= tn - cp1(x)tn-l + cp2(x)tn-2 - · · · ± <Pn(x), 
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whose roots are x1 , X2 , • • • , Xn • Thus 

(2.2) 

'P1(x) = L X;, 
; 

<,?2(X) = L X;Xk, 
i<k 

'Pn(X) = X1X2 · · · Xn. 

The main fact concerning symmetric functions is that they can be expressed in 
terms of the elementary symmetric functions rp;(x). More explicitly, if 
f(x1 , X2 , • • • , Xn) is any symmetric function of n arguments x1 , ••• , Xn , there 
exists a function F(~1, ~2, · · · , ~n) of n arguments ~1 , ... , ~n such that 
(2.3) f(x) = F(rpi(x), <p2(x), · · · , 'Pn(x)). 

We say that the functions rp;(x), (i = 1, 2, ... , n), form a functional basis for 
the symmetric functions. This is almost trivial if we take the notion of function 
in its widest scope; for then it simply states the fact that the values of the , 
elementary symmetric functions 'P1(x), · · . , 'Pn(x) determine the values of the 
arguments Xi , · · · , Xn uniquely but for their order. Indeed, the equation 
<l>(t) = 0 uniquely determines the set of its roots. But if f(x1 , ... , xn) is a 
polynomial in X1 , · · · , Xn the question arises whether or not f is expressible in 
terms of the functions rp;(x), (i = 1, 2, ·. · , n), in the same algebraic fashion; 
that is, does there exist a polynomial F for which (2.3) holds? The truth of this 
is asserted by the so-called fundamental theorem of symmetric functions: the 
functions <p;(x), (i = 1, 2, · · · , n), constitute an integral rational basis, or integrity 
basis, for the symmetric forms. The restriction of the hypothesis, namely 
that the given symmetric function is integral-rational, is thus counterbalanced ' 
by a corresponding narrowing of the inference: the functional expression F off • 
by means of the basis <pis also of integral rational nature. Thus the "algebraic ' 
theorem" referring to formsf is not a particular case of the "functional theorem" 
in which the functional dependence in f and F is understood in the widest 
possible sense; on the contrary, it is the algebraic theorem alone that needs an 
elaborate proof. 

A similar situation prevails in many cases. "All invariants are expressible 
in terms of a finite number among them": this so-called first main theorem of 
invariant theory is suggested by our present example. We cannot claim its 
validity for every group 'Y; rather, it will be our chief task to investigate for each 
particular group whether a finite integrity basis exists or not; the answer, to be 
sure, will turn out affirmative in the most important cases. In those cases, 
and here is the point I wish to emphasize, one will find the purely functional 
part-asserting that the values of all invariants are determined by the values 
of the basic invariants-almost trivial; the essential difficulties lie in the alge
braic part only. 
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I choose the group which rules the classic Euclidean geometry, the group 
r = O(n) of orthogonal transformations, as a further instance to throw more 
light on this point. Let us consider functions of two arbitrary vectors x, y 
which are invariant under all (proper and improper) orthogonal transforma
tions. The first fundamental theorem asserts that the scalar products which 
may be constructed for these two vectors, namely the three products 

(2.4) (xx), (xy) = (yx), (yy), 

form a basis. The functional part of this statement is nothing else than the 
fundamental proposition about the congruence of triangles: "The triangles 
ABC and A' B'C' are congruent when two sides and the included angle of one 
triangle coincide with the corresponding elements of the other," or "Two figures 
each consisting of a couple of vectors x, y and x', y' are congruent, i.e. are 
changeable into each other by an appropriate orthogonal transformation, if 
and only if 

(xx) = (x'x'), (xy) = (x'y'), (yy) = (y' y')." 

Deeper lying but still true is the algebraic proposition that every orthogonally 
invariant form f(x, y) is expressible as a polynomial of the three scalar products 
(2.4). Let us see if we can prove this by the methods used in demonstrating 
the congruence theorem in analytic n-dimensional geometry, where the co
ordinates vary in the field K of all real numbers. 

Let the two vectors x, y be numerically fixed. By the "classic inductive 
construction" (Chapter I, §3) one may choose a new Cartesian coordinate 
system e1 e2 . . . en such that x lies in the direction of the first fundamental 

' ' ' vector e1 and y lies in the plane (e1, e2
): 

x = ae1, 

y = {3e1 + '}'C2. 

The integral rational invariantf(x, y) must then be equal tof(x', y'), where 

x' = (a, 0, 0, · · · , 0), 

y' = ({3, 'Y, 0, · · · , O). 

Thusf(x', y') is a polynomial in the three quantities a, {3, 'Y· But 

a2 
= (x'x') (xx), 

a{3 = (x'y') (xy), 

{32 + 'Y2 = (y'y') (yy); 

hence 

a= v(xx)' 
_ , / (xx)(yy)-(xy) 2 

'Y - 'V (xx) 

In this way, square roots and the denominator (xx) creep in. 
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It is fairly easy, however, to get rid of the square roots. We found f(x, y) 
to be equal to a certain polynomial F of the quantities a, {3, "Y· Invariance off 

for the particular orthogonal transformations which consist in changing the 
direction of the first or the second fundamental axis shows that F remains un
altered under the two substitutions 

(1) "Y ~ -"}'; (2) a~ -a, {3 ~ -{3. 

The polynomial F is a linear combination of monomials 

M = aaf3b"Yc; 

because of the invariance just mentioned, the exponent c must be even in all 
terms of F and the two exponents a and b of equal parity, i.e. either both even, 
or both odd. According to these two cases, M is either a monomial of the 
squares a

2
, {3

2
, i or a{3 times such a monomial. Hence F can be written as a 

polynomial in i:/, {3
2

, i and a{3, that is, in 

(xx), (xy), (yy), (xy)2/(xx) . 

f is thus rationally expressible by the scalar products with a power of (xx) as 
denominator. 

In a similar manner one may find a rational expression of f(x, y) in terms 
of the scalar products containing a power of (yy) as its denominator. By com
bining both results one can get rid of the denominators also, as we shall soon see. 
But the whole method is too clumsy to encourage its generalization to more than 
two arguments. 

The problem of orthogonal invariants of an arbitrary number of argument 
vectors x, y, · · · , z will be solved in §9 along another line of approach. The 
result is analogous. The symmetric matrix of all the scalar products 

II (xx) (xy) ... (xz) 
,I 

(2.5) ! j (yx) (yy) · · . (yz) 

Ii·.·············· 
I; (zx) (zy) · · · (zz) 

is a complete table of basic invariants. 
This suggests the possibility of assigning to a given group r of linear trans

formations a finite number of typical basic invariants independent of the number 
of argument vectors to be co;1sidered. Such a table would consist of certain 
invariants depending on some "typical" argument vectors u, v, · · · ; and it 
would yield an integrity basis for the invariants of an arbitrary number of argu
ment vectors x, y, z, ... if one substitutes these argument vectors x, y, z, · · · 
in all possible combinations (repetitions not excluded) for the typical ones 
u, v, . . . . In this sense the orthogonal group possesses the scalar product (uv) 
as its only typical basic invariant. For one gets a basis of invariants of h 
independent vectors x, y, · · . , z, whatever this number h may be, in forming 
all the scalar products (2.5). 
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When one is called upon to express certain functions like the invariants in 
terms of given quantities like the basic invariants, it is essential to know whether 
these quantities are dependent or not. Thus the basic invariants for the sym
metric group, the elementary symmetric functions 'Pi(x), are independent in the 
strict functional sense that they can simultaneously assume arbitrarily as
signed values ai : 'Pi(x) = ai. Indeed, the components Xi of the vector x are 
taken as the roots of the equation 

tn - a1tn-I + °'2tn-2 - · · · ± an = 0. 

The algebraic independence of the polynomials i,o;(x), the fact that there exists 
no rational relation among them, is an immediate consequence of this strict 
functional independence. It is desirable, however, to have a purely algebraic 
proof for this purely algebraic proposition: that a polynomial F(h, ~2, · · • , ~n) 

of n independent variables ~1 , 6 , · · · , ~n vanishes identically in the latter if it 
vanishes identically in x1 , X2 , · · · , Xn after the ~; are replaced by the elementary 
symmetric functions i,o;(x). Such a proof becomes indispensable when one 
operates in an arbitrary number field rather than in the domain of complex 
numbers. 

We give a demonstration by means of a double induction, on the number n 
and on the degree of F. Observe that 

i,o1(x) = X1 + i,o~(x) 
(2.6) I I ( 1P2(X) = X1ip1 (X) + ip2 X) 

'Pn(x) = X11P:-1(x), 

where i,o;, , ip:_1 are the elementary symmetric functions m X2 , • • • , Xn . 
Hence if we put x1 = 0 in the identity 

F(i,o1 , i,o2 , · · · , 'Pn) 0, 

we obtain 

' ' ' ) F(i,o1, i,o2, · · · , 'Pn-1 , 0 = 0. 

Since we assume as hypothesis for induction that i,o;, · · · , 'P:-1 are algebraically 
independent, it follows that 

F(~, , ~z , · · · , ~n-1 , 0) 0, 

whence F has the form 

F = ~nG(/;1, · · · , ~n). 

Since 'Pn(x) ~ 0, G(i,o1 , ... , 'Pn) = O; but G is of lower degree than F and so 
must vanish identically. 

One cannot expect that this same situation, which we encounter here in the 
case of the symmetric group, will prevail in general; there may exist algebraic 
relations among the basic invariants even though their set is not redundant. 
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This happens for instance if r is the alternating group, consisting of the even 
permutations of the arguments x1 , X2 , · · · , Xn • A set of basic invariants for 
the alternating group consists of the elementary symmetric functions c,o1(x), · · · , 
ip,.(x) together with the "difference product" 

A(x) = IT (x; - Xk). 
i<k 

The square A2
, the "discriminant," is a symmetric function and is therefore 

expressible in terms of the \Oi(x). But we shall see that this relation is in a sense 
the "only" one to which our set of invariants is bound. 

We prove first that the invariants c,o1(x), · · · , \On(x); A(x) form an integrity 
basis for the alternating group. A form f(xi , · · · , Xn) that is invariant with 
respect to the even permutations is changed into one and the same form f' 
by all odd permutations. The sumf + f' = Fis symmetric whereas! - f' = g 
is alternating, i.e. changes its sign under the influence of transposition of two 
variables. g therefore vanishes if we identify two of its variables, say Xi and 
Xk , and so must be divisible by x; - xk . Being divisible by each of the prime 
polynomials Xi - xk, it must be divisible by their product A(x): 

g = AG. 

The polynomial G is evidently symmetric. After expressing the symmetric 
forms F and G in terms of the elementary symmetric functions, one gets an 
expression for fin terms of the c,o;(x) and A(x) by means of the equation 

f =HF+ AG). 

(It is not surprising that A appears in the first power only, since A2 can be 
expressed as a polynomial D of the c,o;(x).) 

In turning to the second part of our statement, we observe that in two senses, 
the "functional" and the "algebraic" sense, it can be maintained that the quad
ratic equation 

(2.7) A
2 

- D(c,oi, · · · , c,on) = 0 

mentioned above is the only one holding among our basic invariants c,o1(x), 
<Pn(x); A(x). As for the functional aspect, we remark that the invariants may 
take on arbitrary values c,o1 = a1 , · · · , \On = an , A = b subject only to 

(2.8) 

Indeed, the coefficients a1 , · • • , an determine the roots x1 , • · • , Xn but for 
their order, and according to this order A(x) may take on either of the 
values ±b allowed by (2.8). As for the algebraic aspect, every polynomial 
H(~1, · · · , ~n ; 71) of the independent variables ~1 , ••• , ~n ; 71 which vanishes 
identically in X1, • · • , Xn after the substitution ~; = 'Pi(x), 71 t:..(x), is a mul-
tiple of the left side of (2. 7) : · 

H(~i 1 • • • 1 ~n ; 71) = £(6 1 • • • , ~n ; 1J) { 1/
2 

- D(~i , • · · , ~n) J, 
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L being a polynomial again. To prove this, consider H as a polynomial in 1/ 

and divide by 7]
2 

- D(h, · · · , ~n). The remainder is linear: A(h, ... , ~n) 
+ 71B(h, · · · , ~n). The above substitution yields both equations A(c,o) ± 
t:..B\>p) = O, according to the arrangement of the variables X1, · · · , Xn. There
fore A(tp) and B(tp) vanish individually, whence AW = BW = 0. 

No less instructive regarding the problem of relations among the basic in
variants than this example of a finite group is the continuous group of all ortho
gonal transformations. We considered above invariants depending on two 
vectors x, y. Their basic invariants (xx), (xy), (yy)-at least if the number of 
dimensions is ~ 2--are capable of all numerical values satisfying the inequality 

(2.9) (xy) 2 ~ (xx)· (yy); 

for the lengths of two sides of the triangle and the angle included may be as
signed arbitrarily. The inequality (2.9) is surely to be counted as a relation 
from the general functional standpoint; from the algebraic standpoint, how
ever, (xx), (xy), (yy) are independent since they are not bound by any algebraic 
equation. 

What is the behavior in this respect of an arbitrary number h of independent 
vectors x, y, ... , z and their table of scalar products (2.5)? The scalar products 
are algebraically independent as long as h is less than or equal to the dimen
sionality n, but not so if h > n. The scalar products of n + 1 vectors x, y, 
. · . , z satisfy, for instance, the equation 

(xx) (xy) 

(yx) (yy) 

(xz) 

(yz) = 0. 

(zx) (zy) · · · (zz) 

In case h ~ n the problem of determining h vectors x, y, · · · , z such that the 
matrix (2.5) of their scalar products coincides with a given symmetric matrix 
I! a;k fl of h r.ows and columns has a solution in the real field Kif and only if the 
quadratic form with the coefficients a;k is positive definite. Our statement is 
merely a different formulation of the well-known fact that such a form may be 
linearly transformed into the square sum of the h independent variables. One 
sees that the table (2.5) of the basic invariants is bound only by inequalities 
when h ~ n; algebraic equations, however, appear as soon as the number h of 
vectors surpasses the dimensionality n. A purely algebraic proof valid in any 
reference field will be given in Part C, §17. 

We proved in the case h = 2 that every invariant formf(x, y) depending on 
two vectors x, y is expressible either as 

F((xx), (xy), (yy))/(xx)"' · or as G((xx), (xy), (yy))/(yy) 13
, 

where F and G are polynomials. The polynomial 

t 13 F(~, 1/, t) - ~"G(~, 1/, t) 
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vanishes if we make the substitution ~ = (xx), T/ = (xy), !; = (yy). Since 
(xx), (xy), and (yy) are algebraically independent, it must vanish identically in 
~' 71, !;. Thus Fis divisible by(', say F = ~aF1 , whence 

f(x, y) = F1((xx), (xy), (yy)). 

In spite of our success in proving the first fundamental theorem for orthogonal 
invariants of two vectors, we should get into serious trouble if we attempted to 
deal in the same manner with h > 2 independent vectors. The procedure be
comes entirely hopeless if h surpasses the dimensionality n and the scalar 
products are no longer algebraically independent. To overcome these difficul
ties a new formal apparatus is needed. 

The first main problem in the theory of vector invariants of a given group r 
is the determination of a set of basic invariants, and the first main theorem 
(which we cannot, however, assert for all groups r) states the finiteness of such 
a basis. The second main problem consists in determining "all" algebraic re
lations holding among the basic invariants 

<P1(x, y, · · · ), <P2(x, y, · · · ), · · · , rp,(x, y, · .. ), 

or rather, to find a number of such relations of which all others are algebraic 
consequences. The finiteness of this number is averred by the second main 
theorem. It holds for any group for which the first main theorem is true; for it 
is a special case of Hilbert's general theorem asserting that every polynomial 
ideal has a finite ideal basis. It was first developed by Hilbert exactly in this , 
context of the theory of invariants. All polynomials R(6 , ~2, • • • , ~r) ("re- · 
lations") of r independent variables ~1 , 6 , .. · , ~r that vanish after the sub
stitution ~i = <Pi(x, y, · · · ) identically in x, y, ... form an ideal g within the . 
ring of polynomials of the indeterminates ~1 , • .. , ~r . The ideal 3' has a 
finite ideal basis R1, . · · , Rt according to Hilbert's theorem. All relations ; 
R = 0 holding among the r basic invariants rp1(x, y, · · · ) are thus consequences 
of the t relations 

R1 = 0, · · · , Rt = 0. 

This general solution of our problem does not free us from the duty of ascer- · 
taining an actual basis R1 , · · . , Rt for the relations in each particular case · 
that may come under our consideration. 

A. FmsT MAIN THEOREM 

3. First example: the symmetric group 

After all the planning of our journey, the moment of departure has finally 
come; we now embark on a systematic investigation of ve~tor invariants. Our 
first concern will be the first main theorem, which we shall prove by explicit 
construction of a finite integrity basis for the most important groups. In 
this section we study the group -irn of all n! permutations of then components 
X1 , • • · , Xn of our generic vector x. 
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It is an immediate consequence of the definition of the polar process (Chapter 
I §1) that it changes an invariant into an invariant, whatever may be the 
u~derlying group r of linear transformations in ourn-dimensional vector space. 
More precisely, if f(x, y, ... ) is a form depending on several vectors x, y, · · · 
and invariant under cogredient transformation of x, y, · · · by any element of 
r, then the polarized form Duxf(x, y, ... ) is also invariant; here u is a new 
vector transforming cogrediently with the others. On this remark rests the 
importance of polarization for invariant theory. 

We mentioned in §2 the fundamental algebraic theorem that the elementary 
symmetric functions (2.2) form an integrity basis for invariant~ f(x) of -irn de
pending on a single vector x = (x1 , · · • , Xn). Our task now IS to solve the 

• • ( (I) (2) (m)) d d. b•t same problem for mvariants f x , x , · · · , x epen mg on an ar I rary 
• (1) (2) (m) Th . t h. h number m of mdependent vectors x , x , · · · , x . e conJeC ure w IC 

offers itself at once is that full polarization of (2.2) will yield a complete table of 
typical basic invariants. If one adjoins the factor i ! to <Pi , the polarized table 
reads as follows: 

(3.1) 
<t'2(u, v) 

rpa(u, v, w) 
............................ 
<Pn(u, v, · · · , w) = LUiVk · · · W1 

(i ~ k) 

(i, k, l all ~) 

(i, k, ... , l all ~). 

Our statement means (§2) that one obtains an integrity basis for the invariants 
() () ( ) • (1) (2) (m) b f(x 1 

, x 2 , ••• , x m ) dependmg on m argument vectors x , x , · · · , x Y 
substituting these arguments for the "typical" arguments u, v, w, · · · in all 
possible combinations (repetitions included) in the forms (3.1): 

(a1 , a2 , • • • , ai = 1, 2, · · · , m; i = 1, 2, · · · , n). 

In order to avoid the crowding of indices, the m argument vectors will be 
called x, y, ... , z. The proof will be given by complete induction with respect 
to the dimensionality n. For this purpose each vector x = (x1 , X2 , • • • , Xn) 

is to be considered as combining a number x 1 with an (n - 1)-dimensional 
vector x' = (x2 , ... , xn). The elementary symmetric functions of th~ (n

1 
- 1)

dimensional vectors (unpolarized or polarized) are designated by <P1, <P2, · · · , 
'P~-1 . Every form f(x, y, ... , z) is an aggregate (linear combination) of terms 

xry~ ... zi . faf3· ..• /x', y', ... 'z'). 

If f is symmetric, so also is fafJ .. ''/, and, according to our assumption of the 
truth of our theorem for n - 1 dimensions, f af! ... 'I is expressible (in an integral 

• I I 

rational way) by the polarized elementary symmetric forms <,?1, · · · , <,?n-1 • 

The given f(x, y, ... , z) appears thus as an aggregate of terms 

a /3 '/ ( ')Pl( ')P2 ( / 
)Pn-1 

X1 YI · · · Z1 • <Pl <,?2 • • • <,?n-1 ' 
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where (cp;y; indicates a product of Pi factors cp; each of which may depend on dif
ferent arguments. 

We now make use of the equations (2.6) in their polarized form 

( 
(I) (2) (i)) '( (I) (2\ (i)) 

'Pi x ' x ' . . . ' x = 'Pi x ' x ' . . . ' x 
i 

"""" (a) I ( (!) + L., X1 'Pi-I X , 
(a-I) (a+l) 

x 'x ' 
a=l 

( i = 1, . . . , n - 1 ; cp~ = 1), ' 

and thus express cp; in terms of <Pi , <P:-1 and the variables x 1 , y1 , .. · , z1. In 
this way we eliminate the quantities 

' ' <Pn-1 , 'Pn-2 , ' ' 'Pl 

one after the other, replacing them by <Pn-1 , <Pn-2 , · · · , cp1 and X1 , Yi , · · · , Z1 • 
f(x, y, , z) is then expressed as an aggregate of terms 

(3.2) xry~ ... zl . (<P1Y1 ... (<Pn-lr-I . 

The last part of this term is symmetric even when the first component x1 of 
each vector x is interchanged with' the components x2 , •.. , Xn of x. As the 
whole functon f is symmetric in all n components, the term (3.2) may be re
placed by 

( )
Pl ( )Pn-1 1 ~ a /3 'Y 'PI • • · 'Pn-1 • - L., Xi Yi · · · Z i · 

n i~I 

The sum appearing here arises by consecutive polarizations from the power sum 

u,(x) = 't x; (P = a + {J + • · • + 'Y), 
i=l 

and Newton's well-known formulae show how to express these in terms of the 
elementary symmetric functions cp1 , cp2 , · · · , <Pn . 

To leave no gap we add their simplest derivation. The polynomial 

1/;(X) = tr (1 - Xx;) = 1 - cp1(x)X + cp2(x)X2 
- ••• ± <Pn(x)X n 

i=-1 

has the logarithmic derivative 

The Taylor expansion on the right side is to be understood in the formal sense 
such that no questions of convergence arise: 

N 

- Y,'(X) = Y,(X) · I: u,(x)x•-1 (mod XN). 
• ~1 
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From this follow the recursive formulae 

-2cpz(x) 

..................................... 

with the convention cp,(x) = 0 for 11 > n. 
It should be observed that the case n = 1 is itself covered in our inductive 

process, and hence the theorem has been proved in full detail. 

4. Capelli's identity 

We have shown in the preceding section that an integrity basis for invariants 
of the symmetric group depending on one argument vector becomes one for 
invariants depending on an arbitrary number of argument vectors by complete 
polarization. This, however, is definitely not so for every linear group r. None 
the less it is a remarkable fact that an integrity basis for invariants depending 
on n arguments, where n is the degree of r, does yield a basis for rn > n argu
ments by complete polarization. To show this we need a certain powerful 
formal instrument, Capelli's identity. 13 It is concerned with the result of 
successive polarizations. 

Let x, y, z, ... be a row of independent vectors in an n-dimensional vector 
space, x', y', z', ... the same vectors in (the same or) a different arrangement . 
.:lx'x as well as Dx'x may symbolize the polar process. By performing several 
polarizations like Dx'x, D 11 •y , D,., in succession on a form f(x, y, z, · · ·) one will 
get 

provided x' does not coincide either with y or z, nor y' with z. The auxiliary 
symbols .:lx'x , .:ly'u , . . . may be used instead of Dx'x , D11 •11 , • • • to indicate 
by their composition this result regardless of whether the coincidences just 
mentioned occur or not: 

We propose to compute how the composite operator D,.,D71 ,yDx'x differs from this 
"pseudo-composition." For this purpose we introduce the symbol Ox•x defined 
by 

if x' = x, 

if x' ~ x . 
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We then obtain directly from these definitions 

D • .,!::..y•y!::..x•xf = L z; ~ (2: x~y~ _fl_) 
l az1 i.k ax; ayk 

(4,l) ""'"' I I I a3
f ""'"' I I a2f ""'"' I I a2f 

= L,,, X;YkZl - + Ox'z L,,, Z;Yk -- + Oy'z L,,, X;Zk --
i,k,l ax; ayk az1 i,k ax, ayk i,k OX; ayk 

= f:..,.,!::..y'yf:..x'xf + Ox'zf:..y'yf:..z'xf + Oy'zf:..•'yf:..,,,,J, 

Our chief interest is in the alternating sum 

D ••• t::...•y !::..•'x 

L ± D,., f:..y'y !::..x'x Dy., !::..11'11 !::..11'x 

Dx'z !::..x'11 !::..x'x 

extending to the 3 ! permutations of x', y', z'. The individual terms in the 
expansion of this determinant of operators are to be written in such a way 
that the factors follow each other from left to right as they stand in the de
terminant itself: the first factor is taken from the first column, the second factor 
from the second column, etc.; the same rule is to be observed throughout the 
following. After performing alternation on (4.1) we may exchange x' and z' 
in the second term on the right, and y' and z' in the third term, provided we 
change the signs of these terms. We thus obtain 

L ± Dz'• !::..11'11 !::..x'x = L ± f:..,,, !::..y'11 !::..x'x - 2 L ± Oz'• !::..11'11 f:..,,,x, 
(:z:',y',z') 

or 

L ± (D,., + 28,,.) !::..11'11 !::..x'x = L ± f:..,,, !::..y'y !::..x'x • 

Written in determinant form, this result reads: 

(Da) D •• + 2 t::...11 !::..,,, 

D11z !::..Yll !::..11z 

D rz !::..xy !::..xz f:..xz !::..:ry !::...,,, 

the meaning of this equation being that corresponding minors of order three are 
equal. 

This equation for three consecutive polarizations should have been preceded · 
by those holding for one or two such operators: 

(Di) 
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Their extension to four or more consecutive polarizations is obvious. Using 
first (D2) for the last two columns of the determinant on the left side of (D3) 

and then (D1) for its last column, one gets the fundamental equation we were 

aiming at: 

D •• + 2 Dz-v D.x t::.. •• !::..zy !::..u 

D11• D1111 + 1 D""' f:..yz !::..1111 !::..11z 

D,,. D""' Dxz !::...,. !::..zy !::..xz 

Similarly, form independent vectors x, y, . · · , z instead of three, we obtain 

I~ .. ~.~. ~rr:. ~ .1? .. _. _. _. ..... ~~" ..... ~·~ 

I 
D11z D.Vll + 1 D11z 

D,,. Dxu Dzx 

(Apologies should be made that x, y, · · · , z run upwards and backwards; this 
is a consequence of the bad habit of reading operators from right to left.) 

The operator determinant on the right side transforms f(x, y, · · · , z) into 

with the inner sum extending alternatingly over all permutations x', y', · · · , z' 
of x, y, ... , z. This sum is zero unless all m indices i, k, .. · , l are different. 
As this is impossible when m > n the result will in this case be zero. When 
m = n the inner sum is ± [xy ... z] or 0, according to whether the sequence 
i, k, · · . , l is an even or odd permutation of 1, 2, · · · , n or contains equal in
dices. Here the "bracket" [xy ... z] designates the determinant 

which is invariant under the unimodular group SL(n); as a matter of historical 
interest, it is this particular invariant from which the whole development of 
invariant theory started. Hence for m = n one obtains 

[xy · · · z].flf, 
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where 

a a a 
ax1 ax2 ax,. 

anf a a a 
Of= :E ± ay1 ay2 ay,. f 

(i,k,·. ·,!) oX;8yk · · · 0Z1 ................. 
a a a 

0Z1 0Z2 az,. 

is derived from f by the so-called Cayley fl-process. The sum extends alter
natingly over all permutations i, k, · . · , l of 1, 2, · · · , n. 

We thus arrive at Capelli's identity. In its final form the notation x, y, · 
· .. , z may be replaced by the more pedantic x1

, x2
, • •• , xm, and the symbols 

D,,~,,,. by DfJa. 
THEOREM (2.4. A). 

Dmm + (m - 1) 
ifm > n, f-{o 

- [x1 x2 • • • xn]·Of ifm = n. 

Du 

We shall refer to the two cases m > n, m = n of this formula as Capelli's gen-: 
eral and special identity, respectively. 

6. Reduction of the first main problem by means of Capelli's identities 

The way in which Capelli's identity is used for the investigation of invariants; 
depending on m argument vectors x1, x2

, ••• , xm can be described as follows· 
for an arbitrary group r of linear transformations A. Polarization DfJa carries an 
(absolute or relative) invariant f(x1, x2

, ••• , xm) into an invariant DfJaf (of the· 
same multiplier). The special Capelli identity shows that, in the case m = n, 
Of is a relative invariant whose multiplier equals the multiplier off divided by. 
the transformation determinant. In particular the operator n applied to an. 
absolute invariant f will yield an absolute invariant provided r consists of uni
modular transformations; in the following we have preferably this case in mind.· 

A form f(x1, x2
, • • • , xm) is of a certain degree r1, r2 , • • • , rm in each of its· 

arguments x1, x2
, • • · , xm. The sum r = r1 + r2 + · · · + rm is its total degree. ' 

We arrange forms f(x1, x2
, • • • , xm) first according to their total degree, i.e. f 

is of lower rank than f* in the hierarchy of forms if the total degree off is lower 
than that off*. For instance Of is lower than f (in the case m = n) since the· 
fl-process diminishes the total degree by n. Within the set of all forms of given 
total degree, lexicographic arrangement according to the individual degrees· 
r1' ... 'rmisfollowed;thusfislowerthanf*ifthefirstofthedegreesr1' ... 'r,,. 
in which f and f* differ has a lower value for f. Forms coinciding in all their 
m degrees r; are considered of equal rank; we abstain from imposing an order of 
precedence upon them. 
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The main term in the operator determinant of Capelli's identity, 

(Dmm + m - 1) · · · (D22 + l)Du, 

transforms f into 

r1(r2 + 1) · · · (rm + m - l)f = pf. 
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The numerical factor p multiplying f is ~ 0 when r1 > 0, i.e. when f actually 
contains the first variable x1

• For any other term we observe that .we may 
drop the diagonal factors Daa + a - 1; their effec~ is merely to mu~t1ply f by 
certain constants which we collect into a factor p . Such a term is then of 

the form 

p*Dfl,a, • ·' DfJ2a2DfJ1a1' 

where ar > a,_1 > . . . > a2 > a1 , (3i ~ a; , and {31 , (32 , · · · , (3, is a p~rmuta-
. f a In particular (31 > a1 and r ~ 2. The mam term tion o a1 , a2 , • · • , r • • • • • • 

being the only one in which no factor DfJa with different md1ces a, (3 appears, 

it follows that if we set 

g> = D{J,a, • • • DfJ2a2' 

f* = -p*DfJ1aJ 

the left side of Capelli's identity takes the form 

pf - 'L g>f*. 
. • • /31. 

The degree of DfJiaJ in xa1 is one less than that off, _while its degree m x IS 

one greater. The former is decisive; since .a1 < f31 , f* is lower than f. 
Capelli's identities may now be written as follows: 

{5.1) pf= :E ti'f* (m > n), 

(5.2) 
(m = n), 

where (1) f* and nf are of lower rank than f and are invari~nts if f is an inva.rian~, 
(2) g> is a succession of polar operations, and (3) p > 0 if f actually c?ntan.1s x · 

Let us now suppose we have chosen from among the (absolute) mvanants 
of the group r depending on m argument vectors x1, · · · , xm a finite set 

(5.3) <Pl 1 cp2 ' ••• ' <Pl 

for which we want to prove that they form an integrity basis. for. all these in-
variants. We assume that the table (5.3) is closed under polanzat10n:. . 

AssuMPTION I: Every DfJa<Pi is itself one of the cp's or at least is expressible in an 
integral rational manner by the set of the cp's. . . . . 

I contend: this assumption once granted, (5.3) is an mte~nty bas;s for the 
m > n arguments x1 • • • xm provided those <Pi not dependmg on x form an 

' ' 2 m 
integrity basis for the m - 1 arguments x , · · · , x . . . . * 

Indeed, owing to (5.1), f is expressible by the set (5.3) if the mv.anants f 
occurring on the right side are so expressible; for in view of Assumpt10n I, and 
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the formal properties (1.1.7) of polar operators, such an expression of f* = 

F*(ip1 , ip2 , ••• , ip1) leads to a similar expression of g>f*, as one is able to turn 
the polar processes Dpa of which 9> is composed, upon the arguments <P1, · · · , <P1 
of F*. Our reasoning presupposes that factually contains x1, for then p does 
not vanish. The f* are of lower rank than f. In using complete induction 
with respect to the rank, we shall be stopped only when the invariant f under 
consideration becomes of degree r1 = 0 with respect to x1

• 

One can go one step further and, even in the case m = n, cut the number of 
arguments down to n - 1 by means of Capelli's special identity (5.2) if one 
adds the 

AssuMPTION II (concerning the case m = n only): The determinant [x1x2 
• • • xn] 

occurs among the ip' s or is expressible in terms of them. 
Since we vary the number m of arguments our result is more conveniently 

expressed in terms of typical basic invariants. We once more formulate this 
notion as follows: Let there be given a number of invariants 

(5.4) <Pi((u)), 

depending in linear fashion on some variable vectors u1, u 2
, • • • (not necessarily 

the same for each function); they constitute a complete table of typical basic 
invariants form arguments if (5.4) changes into an integrity basis for invariants 
of m arguments x1, · · · , xm by substituting for u1, u2

, ••• these arguments in all 
possible combinations (repetitions included). As such substitution results in a 
set (5.3) satisfying the requirement I, we infer by using induction with respect 
tom: 

THEOREM (2.5.A). A finite table of typical basic invariants of a linear group 
of degree n will be a complete set for any number m of arguments if this can be 
shown to be true for n arguments; even n - 1 arguments will suffice provided the 
determinant [u1u2 

• • • u n] appears in the table or is at least expressible by the 
invariants of the table. 

Even if the elements A of r are not unimodular, the first part of the theorem 
holds for relative invariants whose multipliers belong to a given group, i.e. to a 
set containing µ1(A)/µ2(A) together with any two multipliers µ1(A), µ2(A); the ' 
second part requires that group to include the transformation determinant I A I. 

In almost all cases the proof of the first main theorem consists of two parts: 
a formal part in which the reduction to n or n - 1 arguments takes place by 
dint of Capelli's identities, and another more conceptual part in which the 
proof for this restricted number of argument vectors is accomplished by con
siderations similar to those we used in proving the theorem of congruence in §2. 
The formal part can be carried through for any group, whereas the conceptual 
part cannot be brought down to such a general mechanized procedure and 
remains specific for each particular group. How this combination works out 
shall now be shown for the groups SL(n) and O(n). 
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6. Second example: unimodular group SL(n) 

We shall take up the question of invariants of the unimodular group SL(n) 
at once for any number of covariant or Latin vectors x, y, · · · and any number 

of contravariant or Greek vectors ~' 71, • • • • 

THEOREM (2.6.A). 

[xy . · . z], (~x), [~11 · · · rl 

· complete table of typical basic invariants for the unimodular group. 
is iy means of Capelli's identities the proof is reduced to the case where only 

n - 1 Latin and n - 1 Greek vectors 

(6.1) 
1 xn-1., x' ... ' ~!' .•. ' ~n-1 

are present. we must show that a
2
n invariant form f depending on them is 

expressible in terms of the (n 1) products 

(i, k = 1, · · · , n - 1). 

Let us suppose that the vectors (6.1) are numerically given in arbitrary fashion 

but so that t,he determinant 

(6.2) A = det. (~; xk) ~ 0. 
i,k=l.- · .,n-1 

LEMMA (2.6.B). Under the assumption (6.2) we ~an intro~'!!:1ce a.ne~ coor~inate 
system by unimodular transformation such that x , · · · , x coincide with the 
first n _ 1 basic vectors e1, ••• , en-i and such that the nth component of each of the 

1 i:n-1 · h n - 1 contravariant vectors ~, · · · , ,. vanis es. 
Taking this lemma for granted we proceed as follows. Before the trans-

formation we have 

1 ( 1 1 1:1) ~ = h 1 ~2 1 • • • 1 <;n 

......................... 
(6.3) ......................... 

i:n-1 (tn-1 i:n-1 i:n-1). 
c; = c;l , <;2 , • • •' c;n J n-1 ( n-1 n-1 n-1) 

X = X1 , X2 , • • • ,Xn 

after the transformation, 

x 1 = (1, O, . · · , 0, 0) 
(6.4) ........................... . . . . . . . . . . . . . . . . . . . . 

n 1 c-n-1 tn-1 tn-1 0) 
~ - = ~l , <;2 1 • • • 1<;n-l1 • xn-l = (0, 0, ... ' 1, 0) 

Because of the invariance of (~ixk), 
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moreover, the invariant f depending on the arguments (6.3) is equal to the 
same function f of the arguments (6.4). We introduce the polynomial <P{~t} 

2 • 
of (n - 1) variables ~1 by 

f (~ .. ~. : : : . ~ .. ~ 
0 0 ... 1 0 

~~ .•• ~~-1 0) 
......... " " . . = <I> { ~~ j . 
~~-1 • • . ~:=~ 0 

The last two observations then lead to the equation 

(6.5) f(x1, ... , xn-1 I ~1, ... , ~n-1) = <I>{ C~'xk)}, 

holding numerically for any vectors x and ~ satisfying the algebraic inequality 
(6.2). A is not identically zero, as is shown by taking x 1 

••• xn-i and 
~1 

• • • ~n-i both to be the first n - 1 basic vectors e1 
••. en-i of the absolute 

coordinate system. Hence, on account of the principle of irrelevance of alge- , 
braic inequalities, (6.5) is an identity. 

The proof of the lemma follows. Passing from the absolute coordinate ; 
system e; to a new one e; by means of 

-1 1 1 + + 1 n e =Xie • • • Xne, 

-n-1 n-1 1 + + n-1 n 
e =Xi e • • • Xn e , 

en = Z1e
1 + · · · + Znen, 

will produce the effect that x1, ... 'xn-l coincide with the new axes e1, ... 'en-1• 

In denoting by Dk the minors of the component matrix 

xL , x~ 
(6.6) 

n-1 n-1 
X1 1 • • • 1 Xn 

the condition that our transformation be unimodular is expressed by the fol-
lowing linear equation for the unknowns Zk : , 

(6.7) 

An arbitrary contravariant vector ~ transforms according to 

~; = xf ~i + · · · + x~ ~ .. 
~n = Zi ~1 + • • · + Zn ~n • 

(i = 1, · .. , n - 1), : 

If we require that the new nth component ~n of each of our n - 1 given contra
variant vectors ~1, ... ' c-l vanish, we have to add the following n - 1 equa
tions to (6.7): 

(6.8) (i = 1, · .. , n - 1). : 
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The system (6.7), (6.8) of n equations for the n unknowns Zk has a uniquely 
determined solution provided its determinant 

1 1 h, • · • 1 ~n 

(6.9) 

is different from zero. This would suffice to prove our main theorem because 
we could well use this determinant instead of A. However, by a simple formal 
calculation A can be shown to coincide with (6.9). 

The theorem and its demonstration are valid in any reference field k. 

7. Extension theorem. Third example: group of step transformations 

In the present section we deal with covariant vectors only. From a given 
group r of linear transformations on n variables X1 , • • • , Xn we construct the 
"extended group" r• in n + v variables 

(7.1) X1 • · • Xn I X1 · · • Xv 

consisting of all matrices 

(7.2) II~ ~II 
which satisfy the following conditions: 

(7.3) A in r, det C = 1. 

The partition in (7 .2) corresponds to the partition of the n + v variables into 
block (x1 ••• xn) and rim (i1 ••• x.). In terms of homogeneous plane coordi
nates the extension r 1 (v = 1) represents~ 

1) the group of translations, if r consists of the identity only; 
2) the group characteristic for affine n-space if r is GL(n) or SL(n); 
3) the group characteristic for Euclidean geometry if r is the orthogonal group 

O(n) or o+(n). 
In view of such important applications it is gratifying that we are able to 
master the consequences of extension upon the invariants by the following 
simple and genera]14 

THEOREM (2.7.A). A complete list of typical basic invariants for r becomes 
one for the extension r' by adding the bracket factor [xy · · · z] depending on n + v 
typical arguments xy · · · z. 
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PROOF. Capelli's identities reduce the burden of our proof to showing that 
an invariant of r·, 

(7.4) 
(

Xi • • • Xn ii • · • i,_i i,) 

f ·····. ······ ....... ' 
Yi •.• Yn 'fit ... Yv-i fi, 

depending on n + 11 - 1 arguments x, · .. , y, does not involve the rim variabl 
and hence is an invariant in n-space with respect to r. We assume x, . · · , 
to be numerically given vectors for which the determinant 

Xi • • • Xni1 • • • i,_i 
(7.5) ················· ~ 0, 

Yi • • • Yn iii ••. Yv-i 

and we make the following substitution belonging to r•: 

x; = x; (i = 1, ... , n); -' - ( 1 Xa = Xa a = , • • • , II - 1); 

x; = (biXi + · · · + bnXn) + (ciii + · · · + Cv-iXv-i + i,). 

We can determine the n + 11 - 1 coefficients bi , ••• , bn ; Ci , .•. , c,_i sue . 
that the last transformed component x; becomes 0 for each of the numericall 
given vectors x, · · · , y: the determinant of these n + 11 - 1 linear equatio 
for the n + 11 - 1 unknown coefficients is exactly (7.5). Because of the i 
variance off we find that (7.4) equals 

As this equation holds numerically for any arguments satisfying the algebrai . 
inequality (7.5), it must be a formal identity. Therefore f is free of the l 
component i., of its argument vectors. In the same way one shows that th' 
other rim components i 1 , · · · , i,_i are missing. 

By direct application of the extension theorem we determine a complete tabl · 
of typical basic invariants depending on covariant vectors only for the grou 
of "step transformations," i.e. of all transformations (7.2) which satisfy th · 
conditions: 

det A = 1, det C = 1. 

We again suppose the widths of the steps to be n and 11 and use the notation 
(7.1) for the block and rim components. 

THEOREM (2.7.B). All purely covariant vector invariants of the group of step 
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transformations are expressible in terms of two types: the (total) bracket [x · · · yzltot. 
depending on n + 11 arguments, and the block bracket of n arguments: 

Xi • • • Xn 

[x • • • y]block = · · · · · · · · 
Yi • • • Yn 

Generalization to a staircase consisting of more than two steps is immediate. 
Jn particular one may consider a staircase of n steps of width 1 in n-space, i.e. 
the group of all "recurrent matrices" 

1 0 0 

£l2i 1 0 

0 

0 

0 

0 

••• an,n-1 1 

with l's along the main diagonal. Invariants of this group are called semi
invariants. 

8. A general method for including contravariant arguments 

The extension theorem of the last section works only for invariants of co
variant vectors. There is, however, a general method for deriving a table of 
typical basic invariants for both kinds of vectors from a table for covariant 
vectors. Let x\ ... , xn-i be n - 1 covariant or Latin vectors in n-space; the 
minors (of order n - 1) of the component matrix (6.6), when arranged in proper 
order and fitted with alternating signs, are the components of a contravariant 
vector 

~ = [xi_ ••• xn-1], 

as is readily seen from the identity in the covariant vector x: 
i i 

Xi • • • Xn 

n-i n-i = l:1Xi + • • • ~nXn = (~x). 
Xi • • • Xn " 

Xi • • • Xn 

Our statement holds with respect to any group r of unimodular linear trans
formations. On interpreting the ~ as homogeneous point coordinates in pro
jective (n - 1)-space this is the well-known process of generating a point by 
intersection of n - 1 planes. 

Let F(xy .. · ; ~.,, ... ) be an invariant form depending on a number of 
Latin and Greek arguments; in particular it may be of degree h ~ 1 in ~· We 
carry Finto an invariant G whose degree in ~ is h - 1 by first polarizing with 
respect to ~: 

n oF -L: !ll: ~;, 
i=l u.;:; 
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and then taking for ~ the vector (x1 
••• xn-1

]. The new Latin arguments 
x1, ... , xn-l introduced by this process we shall call the symbolic vectors. The. 
result is the invariant 

x~, · · ·, x~ 

1 n-1 
X1 1 

h 
•••I 

n-1 1 x,. = G(x1 ... xn-; ... ). 

aF aF 
a~,' ... ' a~ .. 

We added the factor 1/h so as to make certain that by the restitution of ~for 
[x1 

••• xn-1] our G changes back to F. ~ is called the restituent. The process 
of restitution applies to any invariant G depending linearly on the n - 1 i 

b l• t 1 n-1 sym o ic vec ors x , · · · , x : 

G(x1, · · · , xn-l) = L b(i1 · · · i,._1)x~ 1 • • • x7.-::.11 • 

One first makes G skew-symmetric by alternation: 

1 " G( 1 n-1) (n - 1) ! £....,, ± X I • • • I X I 

the sum extending alternatingly over the permutations of x1, · · · , x"-1, and' 
then performs the restitution [x1 

••. x"-1
] ~ ~. The result, which we indicate. 

by G(x1 
••• xn-1

) ~ F, is given by the formula 

F = (n 2 l)! L ± b(i1 ··· in-1)~;., 
where the sum runs alternatingly over all permutations i1 · · · in-1 in of 1, 2, · · ·, n.: 

Here are the two simplest examples of restitution: 

(8.1) [x1 
• • • x"-1x] ~ (~x). 

(8.2) (~! xl) ... w-1 xn-l) ~ 1 [~! ... r-1 ~]. 
(n - 1)! 

By repeating the process which led from F to G one can lower the degre~· 
in ~ until it becomes zero; after having thus eliminated ~ one may in the same 
manner do away with the other Greek arguments. To be sure, a new set o , 
symbolic Latin vectors is introduced at every step, and it is for this reason: 
that it is so important that we possess a table of typical basic invariants sum.; 
cient for any number of Latin arguments. Our considerations evidently le 
to the following . 

LEMMA (2.8.A). In order to show that a table of typical basic invariants 
complete it suffices to convince one's self: 

1) that it contains a complete table of such invariants for covariant argumen 
only; 

2) that a "term" (a product of basic invariants) containing in linear fashi 
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the n - I symbolic vectors changes by restitution into an invariant expressible in 
terms of the basic invariants of our table. (In applying restitution, such 
{actors of the term as contain no symbolic arguments, in particular "purely 
Greek" factors, can be disregarded.) 

The method was worked out in detail by R. Weitzenbock;15 he u:-;es what he 
calls a "complex symbol" p = (Pi , · · · , Pn) for the symbolic vectors 
x', ... , x"- 1

, the same for each of them, and automatically takes care of alter
nation by the multiplication rule PkPi = -p;pk. 

When applying the method one has to have frequent recourse to a certain 
formal identity concerning bracket factors. L(x) being a linear form, one has 

L(x1), 
(8.3) 

n+I 
X1 1 

= 0. 
... ' 

We write x y .. · z for xi+2, · · · , xn+1, develop the determinant by the first 
column, and break it between the (i + I)th and (i + 2)th term: 

(8.4) [x1 
• • • xixy · · · z] ·L(xi+1

) - + · · · = L(x) · [x1 
• •• xi+Iy ... z] - + 

The sum on the left side consists of i + 1 alternating terms which arise from 
the one written down by selecting one vector at a time from the sequence 
x1, ... , x\ xi+1 as the argument of L, leaving the remaining ones in the bracket 
factor in their natural order; the same holds for the right side with regard to 
the sequence x, y, ... , z. 

When we are given a term containing a bracket factor, the identity (8.4) 
obviously enables us to draw one symbolic vector after the other into this 
bracket factor, which then lends itself readily to restitution: 

[x1 ... xn-1 x] ~ (~x). 

If our table contain::l the invariant (~x) we may therefore in Lemma (2.8.A) 
assume that the term destined for restitution involves no bracket factor. Had 
we proved in Theorem (2.6.A) merely the fact that the bracket factor [xy · · · z] 
is the one basic "Latin" type for the group SL(n), then this reasoning together 
with the formula (8.2) would have provided a new demonstration of the complete 
Theorem (2.6.A) dealing with both kinds of vectors. 

By induction one derives from (8.4) the identity 

(85) " 1 . ~ k 
• £....,, ± [x · · · x' x · · · yz · · · u]. L(x' , · · · , x ) 

= L ± L(x, · · ·, y).[x1 
• • · xkz ... u]. 

Lis a skew-symmetric multilinear form of k - i arguments. The sum on the 
left extends alternatingly to all "mixtures" of 

x1, ... , xi 'vith i+l k 
x ' ... 'x 
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i.e. to all permutations of x1 
• • • xk which preserve the order within both sec 

tions, while the right-hand sum runs over all mixtures of 

x, .. · , y with z, · · . , u. 

This identity simultaneously draws k - i further symbolic vectors into 
bracket. A special case is the formula 

(~x), (~z) 
(8.6) 

(tx), (tz) 

where t is the restituent. As an application we prove 
THEOREM (2.8.B). By adding to the table for SL(n + 11) given in 

(2.6.A) the block bracket [x · · · y]b1 of n covariant arguments x, ... , y and the ri 
bracket 

(8.7) [~ · · • 77Jrim = 

f/1 f/. 

of v contravariant arguments ~' · · · , 11, one obtains a complete table for the grou 
of step transformations dealt with in Theorem (2.7.B). 

j\ccording to a previous remark and to formula (8.2) one needs bother mere · 
about terms containing no total Latin bracket and at least one Latin blo 
bracket. We then split the term into a product of factors of type [x ... y] 
and a product of factors of type (~x). The first partial product is concern, 
with the n-space of block components only, and by applying to it our identi 
we may gather all symbolic vectors x1, ... , xi present in that part into o 
such factor [x · · · y]b1. . We are then left with a term of the form 

[x1 ... xix ... y]b1.. (~xi+r) ... (11xn+•-1). 

If the absolute coordinate system be denoted by er ... en' er ... e.' the blQ 
bracket may be written as a total bracket factor: 

[x1 ... xix ... ye1 ... e.]. 

We apply (8.6) and thus find after restitution with t as the restituent 

(~x), (~y), (~e.) (~x), ... ' 
................................. 

(tx), ... ' (ty), (tx), · · ·, (ty), fr, 
Simultaneous expansion with respect to the last 11 columns shows that this is 
aggregate of terms of the form (~x) and (8.7). 

9. Fourth example: orthogonal group 

In investigating the group O(n) of all proper and improper orthogonal tra 
forruations16 A it is convenient to take into consideration (besides the absolu 
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or "even" invariants) the special kind of relative invariant (called "odd") 
whose multiplier µ(A) is + 1 for proper and -1 for improper rotations. The 
determinant [x1 

• • • xn] of n vectors is an odd invariant. Capelli's special 
identity shows that Qf is an odd or even invariant according as the invariant f 
is even or odd. For the time being, the reference field is supposed to be the 
field K of all real numbers. In the case of the orthogonal group no distinction 
need be made between covariant and contravariant vectors. 

The odd as well as the even invariants are absolute invariants for the proper 
orthogonal group o+(n). Vice versa, an absolute invariant f of o+(n) is carried 
by all proper rotations into itself, by all improper rotations into one and the 
same new form j', and f is therefore the sum of an even and an odd invariant 
with respect to the total group O(n): 

f = Hf+ f') + Hf - f'). 

THEOREM (2.9.A). A complete table of typical basic invariants of the orthogonal 
group consists of (l) the scalar product (uv) and (2) the bracket factor [u1u2 · ·. un]. 

The product of two bracket factors can be expressed by the scalar products 
owing to the well-known relation 

(9.l) 

(x1y1) (x1y2) 

(x2 yr) (x2 y2) 

On taking this into account one may state our theorem thus: 
r;: . Every even orthogonal invariant depending on m vectors x1, x2, , xm 

in n-dimensional vector space is expressible in terms of the m2 scalar products 
(x"x11

). Every odd invariant is a sum of terms 

[u1u 2 
• • • un] ·f*(x1, · · · , xm), 

where u1, ... , u n are selected from the row x1, · · · , xm and f * is an even invariant. 
The proof follows the scheme laid out in §6; it becomes, however, a little 

more involved because the starting point for the application of the Capelli 
argument as set forth in §5 must be secured by an inductive conclusion from 
n - 1 to n. By using Capelli's general and special identities, the theorem 
T:: (m ~ n - 1) is reduced to the theorem r:-r concerning n - 1 argument 
vectors. When n - 1 vectors x1

, ••• , xn-r are numerically given and linearly 
independent, one may introduce a new orthogonal coordinate system such 
that they lie in the (n -· 1)-dimensional space spanned by the first n - 1 funda
mental vectors ("non-formal" part). Thus one has reduced the question to 
t~e study of orthogonal invariants in n - 1 dimensions, or more precisely, 
~lllce they depend on exactly n - 1 vectors, to r:=i . In view of this situation, 
it seems best first to pass from 

(9.2) r:=i ~ r:-1 ~ r:, 
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and then to generalize T: to T";; . The two steps into which the transition 
r:=~ ~ r: breaks up according to (9.2) are performed by the "non-formal" 
argument and Capelli's special identity respectively, whereas the transition 
T: ~ T";; (m > n) rests on Capelli's general identity. As it is obvious how, 
to carry out the second part, we turn to the inductive proof of T: according. 
to the scheme (9.2). Let us first restate 

T: . An even invariant depending on n vectors x1, · · . , xn in n-dimensional · 
space is expressible in terms of their n2 scalar products; every odd invariant arises 
from an even one by multiplication with the bracket factor [x1 

• •• xn]. 
We prove first the step r:=~ ~ r:-1

• Let 

(
X1 , · · · , Xn-1, Xn) 

f(x, · · · , y) = f · · · · · · · · · · · · · · · · · · 
Y1' ... ' Yn-i, Yn 

be an even invariant depending on n - 1 vectors x, · · · , y in n dimensions. 
The function 

(
Xi , · · · , Xn-i) (Xi, · · · , Xn-i , 0) 

fo ~:,··-.·.·.·,··~~-~ "=f ~:,··-.·.-.·,··~~~:.··~ 
is an even orthogonal invariant in n - 1 dimensions, and hence according to: 
r:=~ is expressible as a polynomial F in the (n - 1)2 scalar products 

(xx)*, · · · , (xy)*, 

(yx)*, .... ' (yy)*, 

where 

(xy)* = X1Y1 + • • • + Xn-lYn-i • 

If f were odd, the improper orthogonal substitution 

(9.3) 
I I I 

Jn: X1 =Xi,·•• ,Xn-i = Xn-1, Xn 

would show that fo = -fo , hence fo = 0. . 
If x, ... , y are numerically given one can find a vector z ,t. 0 perpendicular 

to all of them and then apply the classical inductive construction of a Car.;· 
tesian coordinate system in such a way that the last axis en has the directio 
of z. In terms of this new coordinate system e1, ... , en the last componen 
of each of the vectors x, . · · , y will vanish: 

- I+ + - n-1 y = y1e · · · Yn-ie . 
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Invariance off with respect to the proper orthogonal transformation which we 
have thus performed results in the equation 

f(x, · · · , y) = fo(x, · · · , y), 

where x, ... , 'fj are the (n - 1)-dimensional vectors with the components 

xi, · · · , Xn-1, 

fii , · · · , Yn-1 . 

If f be odd we obtain at once 

(9.4) f = O; 

if f be even we apply r:=~ to the even orthogonal (n - 1)-dimensional in
variant fo as mentioned above and thus find 

(

(xx), ... , (xy)) 
f 0(x, · · · , y) = F · · · · · · · · · · · · · · · · 

(yx), ... , (gg) 

Since our transformation \Vas orthogonal, 

(xy) = (xy), 

and therefore, as we claimed, 

f(x, · · ·, y) = F (~~~)·'· ·:::: · · ~x:~). 
(yx), ... ' (yy) 

(9.5) 

The equations (9.4) and (9.5), one for the odd and the other for the even 
invariants hold numerically irrespective of the values of the vectors x, · · · , Y 
and conse~uently also as identities in the formal sense. Our result is 
T~-1 • There does not exist any odd invariant form of n - 1 vectors in n dimen

sions, while every even invariant of n - 1 vectors is expressible by their scalar 
products. 

The other step T~-1 ~ T~ is taken care of by Capelli's special identity 
applied to invariants f(x1, , xn) depending on n vectors. Its right side, 

(9.6) 

contains the factor P..f of lower rank than f. If f is even, P..f is odd, and by 
hypothesis for induction can be expressed as the product of [x1 

• • • xn] with a 
polynomial of scalar products. One then resorts to the equation 

[x1 
••• xnf = det (x"'x~) (a, {3 = 1, ... ' n), 

in order to express the eyen invariant (9.6) in terms of scalar products only. 
It should be noticed that merely this special case of the equation (9.1) enters 
into our proof. 
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The reader is asked to compare the proof thus finished with the preliminary 
clumsy attempts at achieving the same end in §2; the promise given there is 
now redeemed. The method goes through, as it stands, in any Pythagorean 
reference field k. 

By the Extension Theorem (2.7.A) we can determine a complete table of 
typical invariants depending only on covariant vectors for the group that is 
characteristic for Euclidean geometry of rank v in an (n + v - 1)-dimensionat 
space, i.e. for the extension r· of the proper orthogonal group r = o+(n). 
The table consists of: scalar product, block bracket and total bracket. By' 
means of Weitzenbi:ick's method of complex symbols contravariant argument· 
may be included.17 

B. A CLOSE-UP OF THE ORTHOGONAL GROUP 

10. Cayley's rational parametrization of the orthogonal group 

At first glance our hypothesis requiring the underlying field to be of Pyth 
gorean nature seems necessary in t.he case of Euclidean geometry, where layin 
off a given segment on a given line is the fundamental metric construction, 
It is not without surprise, therefore, that one finds the decisive results to hol 
for any number field k (of characteristic 0); this is essentially due to th''. 
possibility of a rational parametrization of the orthogonal group which w 
first discovered by Cayley.18 Unfortunately Cayley's parametric representa 
tion leaves out some of the orthogonal matrices, and a good deal of our effort§ 
will be spent in rendering these exceptions ineffective. Our algebraic ambitio 
is aroused; we interrupt the main trend and enter into a closer investigatio · 
of the orthogonal group in an arbitrary reference field k. · 

A matrix A may be called non-exceptional if 

<let (E + A) ~ 0. 

We then introduce a matrix S by 

with the inversion 

S is likewise non-exceptional, and we have the mutual relations 

(10.1) 

(10.2) 

S = (E - A)(E + A)-1 = (E + A)-1(E - A), 

A = (E - S)(E + S)-1 = (E + S)-1(E - S). 

In view of the commutability ,of both factors, 

E-S 
A= --

E+S 

would not be an inappropriate notation for the latter. 

Let now G 

(10.3) 
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II g;k II be an arbitrary matrix. The equation 

A*GA = G 

57 

.expresses the condition that the substitution A leaves invariant the bilinear form 

L: g;kXiYk· 

LEMMA (2.10.A). If the non-exceptional matrices A and S are connected by 
(10.1) and (10.2), and G is any matrix, then A_ *GA = G if and only if 

(10.4) S*G + GS = 0. 

Taking the transpose of (10.1) one gets 

E-A*=S*(E+A*). 

Multiplying on the right by GA and taking account of (10.3) one finds 

G(A - E) = S*G(A + E), 

and hence, on dividing by A + E on the right, 

-GS= S*G. 

Vice versa, if we assume (10.4) and multiply the transposed equation 

A *(E + S*) = E - S* 

of (10.2) on the right by G, we find 

A*G(E - S) = G(E + S), 

which yields (10.3) on right-multiplication by (E + S)-
1

• 

The usefulness of the substitution (10.2) lies in its changing the quadratic 
relations (10.3) for A into the linear relations (10.4) for S. We shall make 
use of this lemma in the case when G is symmetric and non-degenerate, in 
particular G = E, and also when G is anti-symmetric and non-degenerate. 
Let us repeat our result when applied to the case G = E: 

'THEOREM (2.10.B). Every non-exceptional orthogonal matrix A is expressible 
in the form (10.2) where S is a non-exceptional skew-symmetric matrix. Con
versely, if Sis a non-exceptional skew-symmetric matrix, then the matrix A defined 
by (10.2) is non-exceptional and orthogonal. 

Throughout this and the following sections, S = 11 s;k 11 stands for a skew
SYmmetric matrix. Notice the equation holding for such matrices: 

(10.5) det (E - S) = det (E + S*) = det (E + S). 

A queer observation is urged upon us: A as given by (10.2) has the deter
minant + 1 since numerator and denominator have the same determinant 
~O according to (10.5). Hence this representation and the hypothesiR 



58 THE CLASSICAL GROUPS 

det (E + A) ~ 0 on which it was based must be impossible 
orthogonal transformations: 

COROLLARY 1. 

det (E +A) = 0 

for every improper orthogonal matrix A. 
-A is improper if A be proper, provided our space is of odd dimensionality n. 

Hence 

det (E - A) = 0 

for every proper orthogonal matrix A in such a space. This relation implie 
that the homogeneous linear equations 

n 

L (i'>ik - aik)Xk = 0 
k=l 

have a solution (x1 , · · · , Xn) different from zero. 
COROLLARY 2. A proper rotation in a space of odd dimension has an "axis'~ 

through the origin whose points are fixed under the rotation. 
There must be a more direct reason for the fact established in Corollary l~ 

than our argument reveals. It is simple enough. On taking the determinant 
of both sides of the equation · 

A *(E + A) = A* + E, 

one finds for an improper A, 

- det (E + A) = det (A* + E) = det (E + A). 

. We shall now turn to a closer study of proper orthogonal matrices, in par . ./ 
t1cular to those exceptional matrices A satisfying the equation · 

det (E + A) = 0. 

If A is exceptional, so is any conjugate A' = ['-1A l', 
orthogonal matrix; for 

and hence 

det (E + A') = det (E + A). 

If the non-exceptional A is represented in the form 

A = (E - S)/(E + S), 

then the conjugate A 

A' = (E - S')/(E + S'), 
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where 

and det (E + S') = det (E + S) ~ 0. 

For an exceptional A the homogeneous linear equations 

(10.6) 
n 

L (8;k + a;k)Xk = 0 
k-1 

(i = 1, .... n) 

have a non-vanishing solution x1c . The linear subspace of all vectors x satis
fying these equations may be called P0

• To P0 we are going to apply the 
following 

LEMMA (2.10.C). P0 being an m-dimensional linear subspace of P one can 
introduce an orthogonal coordinate system e1 , ez , · · . , en such that the first m 
fundamental vectors e1, · · • , em lie in (and span) P0

. This is true provided the 
reference field k is real and Pythagorean. If k is real, the construction may require 
several consecutive adjunctions of square roots of square sums. 

The proof of the first part consists in the classic inductive construction of a 
Cartesian coordinate system, which is feasible under the hypothesis that the 
field k is real and Pythagorean. Otherwise it requires the adjunction of square 
roots of square sums. A few words about this process! 

Let k be a given real field and c a number given in k as a square sum, 

c = ci + · · · + c~, 
but not itself a square in k. The polynomial 'Y2 

- c of the indeterminate 'Y 
is then irreducible in k. The field (k, ye) arising from k by the adjunction 
of the square root ye consists of all k-polynomials of the indeterminate 'Y 
modulo/ - c; i.e., the vanishing of such an elementf('Y) means its divisibility 
by/ - c. All elements of (k, ye) are uniquely expressible in the form 

a+h (a, bin k). 

!he one observation we wish to make here is that (k, y c) is real provided k 
itself is real. In other words, it never comes to pass that 

(10.7) (a1 + ba)
2 + · · · + (a, + b.'Y)

2 = 0 (mod 'Y2 
- c) 

unless all the numbers a" , b" in k vanish. (10.7) is equivalent to the following 
two equations in k: 

(ai + · · · + a;) + (bi + · · · + b;)c = 0, 

a1b1 + · · · + a.b. = 0. 

The first equation may be written 

La! + L: (b"c;)
2 

= 0 (p = 1, · · ·, v; i = 1, · · ·, h). 
p p,i 
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Because k is real one infers from this 

or indeed the vanishing of all ap and bp . 
The process of adjoining the square root of a square sum may be called. 

"Pythagorean adjunction." Our observation makes possible successive Pythag- · 
orean adjunctions without bringing our construction to a breakdown, since· 
the field stays real throughout the extensions. 

Let us now proceed, as we promised before, to apply our lemma to the · 
m-dimensional subspace P0 of all vectors x satisfying (10.6). After introducing 
the new Cartesian coordinate system, the first m axes e1 , • . · , em of which·. 
span P0

, our matrix A takes on the form . 

since (10.6) now has the solutions 

e1 = (1, o, ... , o Io ... o), 

em = (0, 0, · · · , 1 I 0 · · · 0). 

The square sum of the elements in the first row is = 1, 
n 

( -1) 2 + I: a~k = 1, hence 
k-m+l 

On account of the reality of the field this has the consequence that all elements 
a1k (k = m + 1, · · · , n) vanish. The same applies to each of the first m rows,· 
proving that the starred upper right rectangle is empty as well as the lower 
left one. The det (E + B) must not vanish; otherwise we should have a. 
solution 

(O, · · · , 0 [ Xm+l , · · • , Xn) 

of (10.6) outside P0
• Hence B is necessarily a proper orthogonal transforma-. 

tion, and as A was supposed to be proper, the determinant of our m-dimen-~ 
sional -Em must equal +1; thus m has to be even: m = 2p, n - 2p = q .. 
The result is this: 

After a suitable orthogonal transformation U of A, 

A = u-1_A[;, 

A breaks up according to 

where B is a non-exceptional proper orthogonal matrix in q dimensions. 
From this we easily deduce 
LEMMA (2.10.D). In a real reference field k any proper orthogonal matrix A 
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may be written as the product of two commuting non-exceptional proper orthogonal 
matrices Ai , A2 . 

PROOF. Let us first assume our field k to be real and Pythagorean. .Making 
use of our transformation U we put 

- (0, 
Ai= l, 

-1) . . (0, + ... + 
0 1, 

-1) 
0 + Eq, 

(p summands) 

. (0, 
+ 1 

' 

-1) 
0 + B; 

- (0, A2= 
1, 

Then all conditions desired prevail for Ai, A2 with regard to A, as they prevail 
for the transformed A 1 , A 2 with regard to A. 

If k is real, the construction goes through after a suitable chain of Pythagorean 
adjunctions extending k to a larger real field K. Because of 

det (E + Ai) ,t. 0 

we may write, according to Theorem (2.10.B), 

Ai = (E - S)(E + S)-i. 

The skew-symmetric S = II s;k II will commute with A, and 

(10.8) 

Incidentally S 

det (E + S) = det (E - S) ,t. 0. 

u-i;su, where 

- ( 0, S= 
-1, 

1) . . ( o, + ... + 
0 -1, 

and Oq is the q-rowed zero matrix. 

consequently the inequality det (E + A2) ,t. 0 amounts to 

(10.9) det { (E - S) + (E + S)A l ,t.O . 

Commutability with A, 

SA= AS, 

imposes a certain number of linear conditions on the !n(n - 1) unknowns 
8;k (i < k). As the coefficients of these equations lie in k we are able to find 
basic solutions s(l)' ... ' s(N) in k such that every solution (in K or in any 
field over k) is a linear combination of them: 

(10.10) 
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Both determinants (10.8) and (10.9) become polynomials in r1 , · · · , r.v after 
introducing S by (10.10). They cannot vanish identically in the formal sense 
since we know values of the parameters r in K for which both are ~O. Hence 
we can find such values in k or even rational values for which neither vanishes 
numerically. 

Although this finishes the proof of our lemma, it still may be worth while 
to follow up the prerniling situation a little more closely. In multiplying two 
commuting non-exceptional proper orthogonal matrices 

the result will be 

_ E - S1 
Ai - E + 81' 

( ) 
(E - 81) (E - S2) 

10.11 A = A1A2 = (E + 81 )(E + 82) 
(E + 8182) - (S1 + S2) 
(E + S1S2) + (81 + 82)' 

and this again is of the same form (10.2) with the skew-symmetric 

S = 81 + S2 
E+8182' 

One encounters here what in the scalar sphere is known as the law of addition 
for tangents. The rule breaks down of course if 

det (E + S182) = 0, 

and the wider range of binary products (10.11) by which they embrace the . 
exceptional besides the non-exceptional transformations, is due to this occurrence. 

11. Formal orthogonal invariants 

Cayley's parametrization would show at once that the proper orthogonal · 
matrices form a rational irreducible algebraic manifold within the n2-dimen- , 
sional space of all matrices-were it not for the exceptional elements left out : 
in the cold by the parametrization. It is a sound guess that eventually they . 
will not matter. Acting on that hope we try the following modified definition 
of an orthogonal invariant whose advantage lies in its more formally algebraic 
character. Consider an arbitrary form f(x, y, ... ) depending on several 
vectors x, y, ... in our n-space and homogeneous of prescribed degreesµ, 11, 

in these arguments. Perform the substitution 

(E - S)(E + 8)-1 

cogrediently upon x and y and . · · , wh'ere 8 = 11 Sik i I is skew-symmetric and 
the tn(n - 1) quantities s;k (i < k) are treated as indeterminates. The result . 
will be a rational function of those indeterminates whose denominator is a : 
certain power h = µ + 11 + ···of det (E + S): 

f(x, y, · · · ; S;k) 

IE+ Slh 
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We postulate the identity 

f(x, y, · · · ; Sik) = I E + S lh .J(x, y, · · · ) 

in x, y, and the tn(n - 1) variables Sik : such a function f is called a formal 
orthogonal invariant. 

This postulate submits the coefficients of f to a number of homogeneous 
linear equations with rational coefficients. Hence we can find a set of linearly 
independent basic invariants f1 , · · · , f .v of the prescribed degrees with rational 
coefficients such that every invariant f (in k) is a linear combination 
aif1 + · · · + a.vf.v with constant coefficients a (in k). Irrespective of the 
underlying number field k of characteristic 0, our problem has now been brought 
down to one concerning the ground field K of rational numbers only. 

The main issue will be to confirm Theorem (2.9.A) for formal orthogonal 
invariants. We shall simply have to overhaul our former procedure so as to 
remove what clogs the "exceptions" may put on its wheels. Lemma (2.10.D) 
was devised to meet that purpose. Indeed, a function invariant with respect 
to the transformations A 1 and A2 is also invariant for A = A 1A 2 , and thus 
invariance can be extended from the non-exceptional to all orthogonal trans
formations. A few preliminary observations will prepare us for the task ahead 
of us. 

we introduce the special improper orthogonal involution Jn : 

(9.3) 
I I I 

X1 = X1, · · · , Xn-1 = Xn-1 , Xn = -Xn. 

A formal invariant f shall be called even or odd according as Jn changes f into f 
or -j. The transformation Jn-I changing the sign of the (n - l)th variable 
onJy Will have the same effect because the proper transformation J n-IJ n , 

I I 

Xn-I = -Xn-I, Xn = -Xn, 

leaves f unaltered. Indeed, in denoting by 8n-I,n the skew-symmetric matrix 
in which 

Sn-I,n = -Sn,n-I = 1 

are the only elements ~ 0, J n-IJ n is the square Of the non-exceptional 

f being a formal invariant, the form f' into which f changes by Jn is a formal 
invariant also. Invariance of f' with respect to 

A = (E - S)(E + S)-1 

is the same as invariance of f with respect to 

A' = r;,1AJn = (E - S')(E + S')-1 (S' 
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f + f' is even and f - f' is odd. Therefore every formal invariant is the sum 
of an even and an odd one. If 

is a formal invariant in n-space, then 

(11.1) 

is a formal invariant in (n - 1)-space. The remark about J n-1 and Jn shows 
that the latter is even if the former is such. If, however, the given f be odd, 
then (11.1) is obviously zero because Jn is the identity in the subspace Xn = 0. 

We are now ready for the revision of our proof in the new more formal inter
pretation: 

THEOREM (2.11.A). Any even formal orthogonal invariant is expressible in . 
terms of the scalar products of its arguments. Any odd formal orthogonal invariant 
is a sum of terms [xy · · · z] .J*, where x, y, · · · , z are any n of the arguments and 
f* is an even formal invariant. 

The salient point, and the only one where a non-formal numerical argument ' 
comes in is this. Let f be a formal invariant depending on n - 1 arguments · 
and let 

X = (x1 , · · · , Xn) 

Y = (y1 , · · · , '!Jn) 

be numerically given rational values of its arguments. There exists a rational 
vector rf 0 perpendicular to all of them. Choosing it as the nth axis, and•, 
thus performing a certain proper orthogonal transformation A according; to· 
Lemma (2.10.C), we succeed in qurying x, · · · , y into n - 1 vectors 

x' = (x~ , · · · , x~-1 , 0) 

y' = (y~ , · · · , Y~-1 , 0) 

whose last component 0. Is it true that 

(11.2) f(x, · · · , y) = f(x', · · · , y')? 

Construction of A may necessitate several successin Pythagorean adjunc
tions, so that A lies in a real field K over K. By Lemma (2.10.D), A is the' 
product A 1A2 of two non-exceptional factors 

A2 = (E - S2)(E + 82)-
1 
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in K. Formal invariance off implies invariance for A1 and A2 and hence for A· 
thus (11.2) holds good. ' 

A form with coefficients in a field k of characteristic 0, numerically invariant 
under non-exceptional rational proper orthogonal transformations is obviously 
formally invariant. Hence we may note as a corollary to our the~rem the fact 
that invariance can be extended from such particular transformations to all 
proper orthogonal transformations in any field whatsoever over K. 

12. Arbitrary metric ground form 

After attaining this degree of generality, it is easy to substitute an arbitrary 
non-degenerate quadratic form 

(12.1) 
.. 

L g;kXiXk 
i,k-1 

for the square sum hitherto used, 

(12.2) xi+··· + x!. 
The coefficient matrix G 11 g;k 11 may lie in a reference field k of character-
istic 0. The linear substitutions B in k leaving (12.1) invariant, 

(12.3) B*GB = G, 

form a group, the orthogonal group Oa(n) with the "metric ground form" (12.1). 
According to Lemma (2.10.A), a non-exceptional transformation B of that 

kind may be written in the form 

(12.4) B = (E - T)(E + T)-1
, 

where T satisfies the linear condition 

GT+ T*G = 0. 

Formal invariance is defined in an obvious manner m terms of this para
metrization. 

After a suitable adjunction of square roots extending k to a field K over k 
one is able to transform the new ground form (12.1) into (12.2) by means of a 
certain substitution H: 

G = H*H. 

This is brought about by the classical inductive construction of a Cartesian 
coordinate system when 

(12.5) (xy) 
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is considered as the scalar product.* The substitutions B of our present group 
arise from the orthogonal substitutions A by transformation with H: 

B = H-1AH. 

However, this correspondence presupposes that we operate in the larger field K. 
The representation (10.2) of A leads to (12.4) with 

T = H-1SH, 

and this indeed changes the condition 

S* + S = o into GT+ T*G = 0. 

If f(x, y, · · · ) is a formal invariant of our new group 0 0 (n) in K, then 
f(H-1x, H-1y, · · · ) is a formal orthogonal invariant in K and hence expressible 
in terms of bracket factors and scalar products. The same is then true for 
our original form f(x, y, · · · ) under the proviso of course that we now define 
the scalar product by (12.5). This result once established, one may after- ' 
wards confine oneself to the field k again. 

A case of particular interest to the analyst is the field K of all real numbers. 
The metric ground form is then a non-degenerate quadratic form with real 
coefficients, not necessarily positive definite; thus the various possibilities as 
described by the index of inertia present themselves. They cause no diffi
culties for the study of the corresponding invariants (Lorentz group). 

13. The infinitesimal standpoint 

We are now prepared to give our investigation a new turn by introducing the 
idea of infinitesimal orthogonal transformations, and we shall thus attain a 
still more succinct and trim interpretation of invariance. This idea has sprung ; 
from the soil of continuous variables and in order to grasp its significance we , 
shall follow the historical development and first consider the continuum of all 
real numbers as our reference field again. Surprisingly enough, however, the 
method goes through in a formal algebraic modification for any reference 
field k of characteristic 0. 

Take the group 0+(3) = D of rotations in 3-space as an example. This 
group serves to describe the mobility of a top, a solid body, one point o of 
which, the center, is fixed in space. Let t1 , t2 be any two moments during the · 
motion of our top. That spot on the top which covers the space-point pat .· 
time t1 will cover a point p' at time t2, and the mapping p -> p', i.e. the dis- · 
placement achieved in the time interval t1t2 \Vill be an operation H(t1t2) of the, 

*One must be careful, however, to choose the first basic vector e such that a = (ee) ~ O. 
Then every vector xis capable of a unique decomposition 

x = ~e + x' 

where x' is in the (n - !)-dimensional space defined by (ex') = 0. The square root to be · 
extracted at this first step is that of a. 19 

VECTOR INVARIANTS 67 

group D. "Mobility" must always be described by a group; for H(tt) will bE 
the identity, H(t2t1) the inverse of H(t1t2), and H(t1t3) = H(M3)H(t1t2). A ma
terial substance distributed throughout space (or any portion of it) moveE 
as a rigid body about o if the group of possible displacements is our group D. 
In this description we compare the positions of the substance at two separatE 
times t1 , t2, ignoring the intermediate states through which it passes. It seem~ 
more natural to describe the actual continuous motion in time as one in which 
the position of the top undergoes an infinitesimal rotation during each time 
element (t, t + dt), so that the motion appears as an integral-like chain of 
infinitesimal operations of D. 

We use Cartesian coordinates X1 , x2 , x3 with o as origin; x1 , x2 , x3 are the 
coordinates of p or the components of the vector arm r = op. In order to 
avoid concepts discredited by the history of mathematics, we shall replace the 
infinitesimal displacement (dx1 , dx2 , dx3) by the velocity i;: 

(i:1 = dxif dt, X2 = dx2fdt, ±3 = dx3/dt). 

At every .moment t we have a definite velocity field in space determining the 
displacement of the body during the following time element dt. Each rotation 
being a linear transformation, the equations defining the velocity i: in its 
dependence on the point p must be linear and homogeneous: 

(13.1) (i, k = 1, 2, 3). 

The further requirement that xi + x; + xi stays invariant, leads to: 

2 L X;X; = 0 or 2 L s;kXiXk = 0. 
i i,k 

If we write this equation as 

the coefficients are symmetric and hence the vanishing of the quadratic form 
for all x requires the vanishing of those coefficients: 

Sik +Ski = O; 

thus 11 s;k 11 Is skew-symmetric. In 3-space we put 

S23 = d! I S12 = da. 

Then (13.1) changes into the well-known kinematic formula: i: = vector 
?roduct of the arm r = op with a constant vector b = (d1 , d2 , d3 ) [constant = 
Independent of p]. If the velocity field of a substance is of this character at 
any moment, then the substance moves like a rigid top around o. 

In euclidean n-space the infinitesimal rotations are likewise described by 
equations 

(i, k = 1, ... , n) 

With a skew-symmetric matrix II S;k II. 
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In a similar fashion each continuous group of transformations will contain 
its infinitesimal elements which are infinitely small displacements of the point 
field. They are conveniently replaced by their velocity fields. Composition 
of two infinitesimal displacements amounts to adding their velocity fields. 
Hence the infinitesimal elements of a transformation group will form a linear 
pencil; they are nothing else than the pencil of line elements issuing from the 
unit element I on the group manifold I'· Every element of the group, at least 
every element which can be reached from I along a continuous path on I' will 
be constructable from the infinitesimal elements by stringing these together in 
an integral-like chain. This theory of the reduction of a continuous group to 
its infinitesimal elements, to which we return in more detail in Part B of Chap
ter VIII, is due to the Norwegian mathematician Sophus Lie. Enriched by 
the fundamental idea that was his, we now turn back to our algebraic endeavors. 

By applying the algebraic definition of the derivative (Chapter I, §1) to a 
rational function IP = f / g of one variable, one finds 

IP1 
= (gf' - fg')/g2, 

the accent denoting the derivative. Assuming the polynomials f and g to be 
relatively prime, one concludes from IP' = 0, or 

gf' - Jg' = 0, 

that f' = g' = 0, since f' and g' are of lower degree than f and g respectively; 
therefore f, g, and IP are constants. 

Let F be a form of preassigned degrees µ, 11, ••• in a number of argument 
vectors x, y, · · . . A substitution A cogrediently performed on all arguments 
changes Finto a new form which we now designate as F(A). In introducing 
new arguments dx, dy, ... besides x, y, ... we construct the total differential 
dF as the polarized form 

(13.2) "aF "aF dF = L.J -dx; + L.J -dy; + 
; ax; ; ay; 

By means of a given n-matrix B one substitutes 

dx =Bx, dy = By, ... 

the resulting form dBF has the same degrees as F in all arguments. The fact 
that an infinitesimal orthogonal transformation is given by 

dx = Sx (S skew-symmetric) 

leads one to adopt the definition: 
F is an infinitesimal orthogonal invariant if 

(13.3) dsF = 0 

identically in the skew-symmetric S = 11 s;k 11. The equation (13.3) is linear 
with respect to the !n(n - 1) indeterminates Sik (i < k), and so this equation 
comprehends !n(n - 1) homogeneous linear equations for the coefficients of F. 
The link with our previous developments is provided by the following simple 
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THEOREM (2.13.A). The not1:ons of formal and infinitesimal orthogonal in

variants coincide. 
We first prove that a formal invariant is an infinitesimal one. ~et S be a 

rational skew-symmetric matrix. From the given F we form the difference 

(13.4) (
E - 'AS) - F E - 'A · ___<!>N___ 

F E + 'AS ( ) - I E + 'AS lh 
(h = µ + 11 + ... ), 

using a parameter 'A. The "derivative" of (E - 'AS)/(E + 'AS) for 'A = 0 
equals -2S, as proved by the equation 

E - 'AS_ E = -2"AS 
E +'AS E +'AS 

The numerator <t>('A) in (13.4) is a polynomial whose value <t>(O) for 'A = 0 is thus 

<t>(O) = -2.dsF. 

If F is a formal invariant, the left side of (13.4) vanishes identically; hence 

<P(O) = 0, dsF = 0. . 
The demonstration of the converse is a little more involved; the marn tool 

is the composition law (10.11). We have the equation 

E - 'A *S E - T E - 'AS 
(13.5) E + 'A *S = E + T. E + 'AS' 

where 'A and 'A* are two parameters and 

We put 

(13.6) (E - "A*S) , (E - 'AS) _ ("A* - "A) .<f>('A, "A*) 
F E+"A*S - F E+"AS - IE+"ASlhlE+"A*Slh' 

where <I> is a polynomial. The derivative of 

(
E - 'AS) 

F E + 'AS = 1P('A) 

is by definition 

(13.7) 
'( ) <I>('A, 'A) 

IP A = I E + 'AS 12h. 

Using (13.5) and applying to (13.6) the same argument as in the first p~rt of 
the proof, one finds that (13.7) becomes equal to -2dF when one first rntro
duces in (13.2) the differentials dx, dy, · · · by 
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and then substitutes 
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E - XS 
E + XSx, 

for x, y, . . . . Therefore if F is an infinitesimal invariant, one obtains 

ip'(X) = 0, ip(?-) = const. = ip(O). 

Substitution of the value X = 1 into the identity 

F(E - XS)= F 
E+ XS 

leads to the invariance of F with respect to the transformation (E - S)(E + sr' 
provided I E + S I ~ 0. 

C. THE SECOND MAIN THEOREM 

14. Statement of the proposition for the unimodular group 

In n-dimensional vector space the typical basic invariants with respect to 
the group of all unimodular linear transformations are the Latin bracket factor 
[xr, · · · , Xn] of n covariant vectors X;, the Greek bracket factor [tr, · · · , tnl 
of n contravariant vectors t;, and the mixed factor (tx), the product of a 
covariant vector x by a contravariant t· (Lower indices are now used for 
distinguishing several vectors since no notation for vector components is 
needed.) Among these basic invariants there exist relations of the following 
five types: 

(I) 

(II) 

(III) 

(IV) 

(V) 

0, 

Lz ± [xrX2 · · · Xn][XoY2 · · · Yn] 0, 

L< ± [t1t2 · · · tnJ(toX) = 0, 

L< ± [trt2 · • · tn][to172 · · · 17n] = 0, 

(tr Xr) · · · (tr Xn) 
= 0. 

The Latin letters denote covariant vectors, the Greek ones contravariant vec
tors. The alternating sum Lz ± in (I) and (II) consisting of n + 1 terms 
refers to the sequence xo J x1 · · · Xn ; the same in (III) and (IV) with respect 
to to [ h · · · tn . The identities (I) and (II) follow at once from the fact that 
the left side is a skew-symmetric multilinear form depending on n + 1 vectors 
Xo , X1 , · · · , Xn . 

THEOREM (2.14.A). (Second main theorem for the unimodular group.) All 
relations holding among the basic invariants are algebraic consequences of relations 
of these five types. 20 
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For the sake of a precise formulation of the second main theorem, one will 
first have to consider quantities like 

(14.1) (tx) 

as independent variables ("formal standpoint"); the Latin and Greek "symbols" 
x and t are here devoid of any independent significance. Nevertheless, it is 
to be understood that a bracket factor containing two identical symbols is 
zero, and that a bracket factor like [x1x2 · · · Xn] changes into ±[xrx2 ... Xn] by a 
permutation of the x.-with the positive sign for even, the negative for odd 
permutations. Let F be an integral rational function of such variables com
posed of certain Latin symbols Xr , X2 , · · · and certain Greek ones h , t 2 , •••• 

All the functions J obtained by substituting into the expressions on the left 
side of (I) to (V) these symbols in all possible combinations for the Latin and 
Greek letters used there-of course Latin symbols should be substituted for 
Latin letters only, Greek symbols for Greek letters-form the basis of an ideal 
S = { J l. One returns to the old standpoint by replacing each of the Latin 
and Greek symbols Xr , X2 , · · · ; ti , t2 , · · · by a variable covariant or contra
variant vector respectively, and then interpreting the symbols (14.1) in their 
old meaning, as determinants and inner product; this procedure is what I call 
the substitution. The second main theorem contends: If F goes over into 0 by 
substitution, then it belongs to the ideal S. 

Besides (I) to (V), I make use of the following typical expression, which 
vanishes by substitution: 

1 (toXo) (to Xr) (~oXn) 

(VI) (t1 Xo) (~1 Xr) (~rXn) 
........................ 
(~n Xo) (~nX1) (~nXn) 

It belongs to the ideal 3; for on expanding by the first column and replacing 
determinants like det(t;Xk), (i, k = 1, ... , n) which appear as factors, by 
the product 

[X1 · · · Xn][tr · · · tn] 

modulo (V), one obtains (I) (where one has to take t = to) multiplied by 
[~! • · · tn]. 

Without loss of generality we may suppose F to be homogeneous in each 
of the Latin and Greek symbols. For F may be decomposed in such homo
geneous parts according to the degrees in those symbols; and if F changes into 
zero by substitution, the same holds for each individual part. (When com
puting the degree of a monomial term of F one has of course to consider each 
variable of degree 1 in the symbols that occur, of degree 0 in those that do not 
occur.) A single term of F may contain l Latin, X Greek bracket factors; then 
the total degree in the Latin symbols minus the total degree in the Greek 
symbols is n(l - ?-) for this term. Consequently under the assumption of a 
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homogeneous F the difference l - A. has the same value for all terms of F. 
The product of a Latin and a Greek bracket factor, [xi · · · Xn] and [h · · · ~nl, 
may be replaced, mod (V), by a polynomial of variables of type (~x), namely, 
the determinant of the (~ixk). Hence we may assume that F contains either 1 

Latin or Greek bracket factors exclusively, and each term of F the same number 
of them. Since our table of fundamental relations is symmetric with respect 
to the part played by the Latin and Greek symbols, we confine ourselves to the 
case where only Latin bracket factors occur in F. After these preparations, 
the following sharper formulation of the second main theorem will hold: 

T 0 • A homogeneous F which becomes zero by substitution and contains only 
variables of type (~x) is = 0 modulo expressions of type (VI) alone. 

Tx. If, however, the homogeneous F involves Latin bnt no Greek bracket factors, 
besides variables of type ( ~x), then it is = 0 modulo expressions of types (I) and (II). 

15. Capelli's formal congruence 

Upon the homogeneous F we are going to apply that Capelli identity which 
involves n + 1 Latin arguments in n-dimensional space. However, we now 
regard the Latin and Greek symbols, not as vectors, but simply as ingredients 
of the notations (14.1). Therefore we ought first to define the polar process .· 
according to this interpretation ("formal polarization"); Capelli's relation will 
then hold as a congruence mod S rather than as an equation. 

x and y being two of the Latin symbols, the polar process D = Dyx is assumed 
to satisfy the formal laws (1.1.7). We derive from them how Dyx affects any 
polynomial/ as soon as we know how it affects the arguments (14.1) off. This 
is defined by the following rules: 

1) A variable is changed into zero by D 11x if its symbol does not contain the 
letter x; 

2) D11x[XX2 · · · Xn] = [yx2 · · · Xn], D11x(~x) = (~y). 
To prove Capelli's congruence we proceed exactly as before, distinguishing, 

however, from the beginning the two cases that our homogeneous F contains 
either (a) variables of type (~x) only, or (b) bracket factors besides. One 
introduces symbols x~ , x; , · · · , x~ not occurring in F and forms the sum 

(15.1) 

extending alternatingly to the (n + 1) ! permutations of x~, x; , ... , x: . In 
the case (a) this expression is obviously made up of terms 

(15.2) 

where Q is a monomial of the variables occurring in F. Hence (15.1) is con
gruent to 0 modulo determinants of type (VI). After forming (15.1) one sub
stitutes Xo , xi , ... , Xn for x~ , x; , ... , x~ . That this has the same effect as 
in the earlier less formal interpretation, one sees by the same procedure em-
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ployed there, when one now makes use of the following two facts which take 
the place of the usual differentiation formulae: 

(a) x and x' being two different symbols, we have 

D11xlf(x', x)}x'-x = {D11x·f(x', x) + D11xf(x', x)}x·-xi 

((3) if f(x') be linear in x' then D11x' f(x') = f (y). 
According to the rules (1.1. 7) it is sufficient to give the proof of (a) for the 

case when f is one of the variables. The only variable in which both ~ym?ols 
x x' actually occur together is a bracket factor [x'xxs · · · Xn]. The left side ~s 0, 
a~· [xxx3 ••• xn] with two equal x means 0 by definition, whereas the right 

side equals 

[yxxa · · · Xn] + [xyxs · · · Xn], 

which is also 0 by definition. 
In this manner one finds that (15.1) goes into 

(15.3) Lx' ± (Dx~Xn + nox~xJ ... (Dx;xz + 2ox;x,) (Dx;x, + 1 · OxixJDxo:rJ 

after the original symbols x0 , Xi , · · · , Xn are substituted for the new ones 
x~ x; ... , x: . The alternating sum in (15.3) has now to be interpreted 

l l I • f 
such that x~ , x; , ... , Xn is replaced by all th~ permutations o Xo; Xi , · · · '. Xn 
one after the other. Ox'x means 1 or 0 accordmg as the symbols x and x com
cide or not. The result is that (15.3) is congruent to 0 modulo type (VI)· . 

In the case (b) we proceed as follows. We have to apply (15.3) on a monomial 
F which is a product of variables of type (~x) and of Latin bracket factors; at 
least one bracket factor is present. On first extending the sum only to the 
permutations of x; , ... , x: we are capable of successively drawing all ~ymb?ls 
x'i . . . x' into one bracket factor. This is done by means of the identity 

' ' n 
(8.4) for the two cases 

L(x) = (~x), L(x) = [xy2 · · · YnL 

where it reduces to (I) and (II) respectively. Our transformation, by whi~h 
all n symbols x; , ... , x~ are finally thrown into one bracket factor [xi , · · : , Xn] 
is however not an identity from the "formal standpoint," as was the case m §8, 
but a transformation modulo expressions of type (I) and (II)· Disregarding 
factors which do not contain the symbols x~ , x; , · · · , x~ , the sum (15.3) is 
now an expression either of type (I) or of type (II). \Ye thus arriv_e at the 
result that (15.3) is congruent to O modulo types (I) and (II) provided the 
homogeneous F involves Latin bracket factors. 

16. Proof of the second main theorem for the unimodular group 

If F is of degrees r0 , ri, ... , Tn with respect to the symbols Xo, Xi , 
we may write Capelli's congruence just proved in the form 

(16.1) 

'x,. 



74 THE CLASSICAL GROUPS 

Here 

p = ro(r1 + 1) · · · (rn + n), 

and hence p ~ 0 if F actually involves the symbol x0 • The polynomial F* 
is of lesser rank than F and derived from F by polarization; gi is a succession 
of polar processes. 

We defined "formal polarization" such that it does not matter whether 
polarizatio? o~ a given F is. carried .out ("formally") before or ("not formally") 
after substitut10n. Hence If F vamshes by substitution the same will hold for · 
~ny G derived from F ~y polarization, in particular for ~he forms F* occurring : 
m (16.1). The express10ns (VI) as well as (I) and (II) change into expressions 
of the same structure by polarization. We have therefore, by means of the 
congruence (16.1), reduced the validity of the respective theorems To and T., 
for a given F to their validity for the lower F*, as long as F actually contains 
the symbol Xo . The inductive procedure thus started will end in entirely 
eliminating Xo from F. The same procedure may be repeated as long as F 
still contains more than n Latin symbols by assigning to n + 1 of these symbols 

1 

the role played by Xo ' X1 ' ... ' Xn in the above. In this manner one finally I 

comes down to F's involving not more than n Latin symbols x . . . x 1 , , n • 

In the case (a) such an F is a function of nv variables of the form 

(K = 1, · · · , 11; k = 1, · · · , n)j · 

the n_umb~r. v is not subject to any limitation. Theorem T0 will be proved by 
showmg: If m case (a) the number of Latin symbols is n, our F cannot become ' 
zero through the substitution unless it was zero before the substitution. ' 

This is readil:y done, as one can find at once n covariant vectors x1 , ••• , Xn .. 
and 11 ~ont~avanant _vectors ~' such that the inner products (~,xk) become equal · 
to arbitranly preassigned numbers z,k . For this purpose one has only to take ' 

Xi = (1, 0, 0, · · · , 0 ), 

X2 = (O, 1, 0, ... ' 0 ), 
..................... 
Xn = (O, 0, 0, ' 1 ), 

' Z11:n). 

. !n case (b~, if the homogeneous F contains not more than n Latin symbols, 
It is necessarily of the form 

[X1X2 · · · Xn( G ( (~, Xk)}, 

where the second factor G again depends on variables of type (~,xk) alone. 
Not more than one such term can occur because the exponent l is fixed by the 
difference between the total degrees of F in the Latin and Greek symbols. 
Hence, here again it is true that F can vanish after the substitution only if it 
does before the substitution; indeed the vanishing of F after the substitution 
implies that of G. 

VECTOH INVARIANTS 75 

17. The second main theorem for the orthogonal group 

If r is the group O(n) of all proper and improper orthogonal transformations, 
then we have only one basic type of invariant. namely the scalar product (xy). 
A typical relation among scalar products is the following, involving n + 1 
vectors x and n + 1 vectors y: 

(xoyo) (xo Yi) (xo y,,) 

.J (x1 Yo) (XiY1) (xiyn) = 0. 
......................... 
(Xn Yo) (x,,y1) (Xn Yn) 

THEOREM (2.17.A). (Second main theorem for the orthogonal group.) Every 
relation among scalar products is an algebraic consequence of relations of type .!. 

m Latin "symbols" xi, . · · , Xm being given, a "relation" is a polynomial 
in the !m(m + 1) variables (x"x~) that becomes zero when one replaces the 
symbols Xi , · · · , Xm by arbitrary vectors, and the variable (xax~) by the scalar 
product of the two vectors x" , x~ ("substitution"). \Ve agree that even from 
the formal standpoint (x"x~) and (x~x") shall be considered one and the same 
variable. \\'hen replacing the "letters" Xo , X1 , · · · , Xn , Yo, Yi, · · · , Yn in the 
expres::;ion .J by any of the "symbols" x one must allow a letter y to be replaced 
by the ::;ame symbol x" as a letter x; it is useless, however, to replace different 
letters x (or y) by the same symbol x" since the whole expression .J is skew
symmetric in the x's (and in the y's). The expressions derived from .J by the 
described replacemrnts of the letters x and y by the symbols x" in all possible 
combinations form the basis of an ideal S, and the exact rendering of the second 
main theorem states that every relation R is congruent to 0 mod S. 

The proof is again given by means of Capelli's congruence. The formal 
definition of the polar process D = Dvx is here as follows: D(uv) = 0 if neither 
u nor v equals x; D(xu) = (yu) if u is different from x; D(xx) = 2(xy). The 
rules (a) and (/3) of §15 remain valid; one need only check the case f(x', x) = 
(x'x) for (a). In forming (15.1) we shall obtain some terms that are built quite 
similarly to (15.2): 

(17.1) '"' I ( I I Q · £....x' ± (xo Yo) X1 Yi) · · · (xn Yn); 

but just these terms are == 0 modulo the ideal S defined above. However, 
this is not the only possibility no-w. Suppose that a term of F, for instance, 
contains the factor (xoxi) and that the first polarization Dxbxo is performed on 
this factor; it then goes into (x~x 1 ). The second polarization Dx;x, performed 
on this factor in its new form, will change it into (x~x;). Hence we should be 
prepared for the possibility that, instead of the alternating sum in (17 .1), 
another might occur whose leading term involves, in addition to variables of 
the kind (x~yo), also variables of the kind (x~x;) joining two of the new symbols x'. 
But Lx· will then certainly be = 0 according to the convention (xy) = (yx). 
Capelli's congruence therefore proves to be true modulo the ideal here intro
duced, whose basis consists of expressions of type J alone. 
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Using this congruence the number of symbols may gradually be reduced to n. 
To finish the proof we must show: a polynomial F of the !n(n + 1) variables 

(17.2) (a, {3 = 1, 2, · · · , n) 

will be zero before the substitution if it is changed into zero by the substitution. 
In §2 we alluded to a demonstration of this based on the fact that (in the field K 
of real numbers) vectors Xa can be determined such that the scalar products 
(17 .2) form an arbitrarily preassigned symmetric matrix, provided the quad
ratic form with this matrix of coefficients is positive definite. 

Here we prefer to give instead a direct algebraic proof based on induction 
from n - 1 ton, and valid in any number field. For this purpose we depend 
upon the following two simple lemmas concerning the vanishing of polynomials: 

1) A polynomial <P(t) of the variable t vanishes identically if <P(t + a) = 0, 
where a is a fixed number in the ring from which the coefficients of I(! are taken. 

2) A polynomial cp(ti , · · · , th) of h variables t; vanishes identically if 
<P(t~ , ... , t~) vanishes identically in t when the t~ are connected with the 
variables t; by a non-singular linear transformation 

h 

t~ = L aik tk , 
k=i 

det aik ~ 0. 

We assume Xi , · · · , Xn-i to be numerically given and linearly independent 
vectors in the subspace Pn-i of all vectors whose last component vanishes. 
Then the determinant ~ of the n - 1 vectors 

(17.3) 

in P n-i is ~ 0. We regard the remaining vector 

X = Xn = (ti , · • · , tn-i , t) 

as variable. Then (after substitution) 

(xXi) = L a;ktk 
k 

(xx) = t
2 + (t~ + · · · + t~-i). 

(i = 1, ... , n - 1) 

(i = 1, · · · , n - 1), 

We now carry out a "partial substitution," replacing the variables 

(17.4) (a, {3 = 1, · · · , n - 1) 

by the scalar products of the n 1 constant vectors (17 .3). The given poly
nomial F which now depends on the variables (xx) and (xxi) may be regarded 
as a polynomial in (xx) with coefficients lying in the ring of polynomials of 
the (xx;): 

(17.5) F = L (xx) 1 ipz((xxi), · · · , (XXn-i)). 
I 
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Putting 

ti + ... + t~-i =a, 

we have, since F vanishes after substitution, 

L (t
2 + a)

1
<Pi(t1, · · · , tn-1) 0. 

l 

Hence 

(17.6) F*(s + a) 0 

identically in the variable s, where 

F*(s) = L s1 <Pi(ti, · · · , tn-i). 
l 

The vanishing of the polynomial F*(s) now follows from (17.6) by the first 
lemma, and the vanishing of all its coefficients <Pi(ti, ... , tn-i) implies that of 
cpz(t1 , · · · , tn-i) identically in t according to the second lemma. 

The coefficients of the polynomial F of (xixn), · · · , (Xn-iXn), (XnXn) are poly
nomials fin (17.4). Concerning each such coefficient f, we have learned that 
it vanishes if one substitutes for (xa xil) the scalar products of n - 1 vectors 
Xa in the space Pn-i whose determinant ~ ~ 0. The restriction by this alge
braic inequality is irrelevant. On assuming the proposition under test to hold 
in Pn-i we are able to infer from the vanishing of f after this substitution its 
vanishing before the substitution, and that concludes the argument leading to 
the formal identity F = 0. 

In the second place, let us consider the group o+(n) of all proper orthogonal 
transformations. To the typical invariant (xy) one then has to add as a further 
fundamental invariant the bracket factor [xi · · · xn], and to the relations of 
type J = Ji the following two further types: 

(xn Yi) 

Ja = Lx ± [xi · · · Xn](xoy). 

The second main theorem asserts that this enumeration is exhaustive for the 
group o+(n). 

PROOF: A given relation R can first be reduced modulo type J 2 to such a 
form that no two bracket factors ever appear multiplied together, i.e. 

where F is a function of the 

(a, {3 = 1, · · · , n), 
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and G a linear combination of terms of the form 

[Xa 1 • • • Xa,J F* { (xax~) l. 
By means of an improper orthogonal transformation, for instance by changing 
the sign of the nth component of all m vectors, one realizes at once that F and G 
are themselves relations. The proof we have just carried through for the full 
orthogonal group then shows that, before the substitution, F must be congruent 
to 0 modulo type J 1 • The same consideration as carried through in §16 in 
case bracket factors occur will here show that the Capelli congruence holds for 
G modulo type J 3 • The relation (II), appearing there in addition to (I), 
does not come into play here because each term of G contains only one bracket 
factor. By means of Capelli's congruence the general G is reduced to a G 
involving not more than n Latin symbols x1 , • • • , Xn : 

G = [xi · · · Xn] · F*{ (XaX~) l. 
If G be a relation, the same is true for F* and we saw that under such circum
stances F* and hence G must vanish before the substitution. 

CHAPTER III 

MATRIC ALGEBRAS AND GROUP RINGS 

A. THEORY OF FULLY REDUCIBLE MATRIC ALGEBRAS 

1. Fundamental notions concerning matric algebras. The Schur lemma 

When dealing with any set ~ of matrices A in k it is natural to introduce its 
linear closure [~] in k consisting of all finite linear combinations 

a1A1 + · · · + a,A, 

of matrices A; in ~ by means of coefficients a; in k. Abstractly speaking, the 
linear closure is a linear set (or vector space) of a certain order h; h indicates 
the maximum number of matrices in ~ that are linearly independent in k. If 
a subspace of the n-dimensional vector space P (ink) on which the matrices A 
operate is invariant under ~!, then it is also invariant under [~]; in all considera
tions concerning invariant subspaces and reduction, it is therefore convenient 
to replace ~ by the linear closure [~!]. If ~ be a group, then [~] will be closed 
with respect to the following three operations: addition of two matrices, multi
plication of a matrix by a number in k, and multiplication of two matrices. 
Such a set is called a (matric) algebra in k and [~] the enveloping algebra of the 
group ~!. Our statement is true even when ~is merely a semi-group; by that 
we mean a set of matrices closed with respect to multiplication (omitting the 
additional assumptions characteristic for a group proper, that it contains the 
unit matrix, that every element A is non-singular, and that A-1 is a member 
together with A). If we start with an· arbitrary set ~ of matrices, we can 
first form its multiplicative closure consisting of all finite products II A, A in~' 
which is a semi-group, and then pass to its linear closure: by these two steps 
we ascend to the enveloping algebra . 

.Just as in passing from a group of (linear) transformations to the abstract 
group scheme, we may ignore the nature of the elements of which a matric 
algebra consists and fix our attention solely on the operations performed on 
them. An (abstract) algebra a in k then appears as a set of elements a for 
which three operations are defined: addition a + b and multiplication ab of 
two elements a, b, and multiplication 'Aa of an element a by a number 'A in k. 
But throughout this book we look upon the matric algebras as our primary 
object; the abstract schemes are merely a device serving to facilitate their 
management. We shall stick to the convention that corresponding types like A 
and a, ~1 and a of the upper and the lower case are used to mark the transition 
from matrices to abstract elements. Vice versa, the matric algebra ~ is a 
faithful representation a __, A of the abstract algebra a. Any correspondence 
a--> R(a) associating with the elements a of a given abstract algebra a matrices 

79 



80 THE CLASSICAL GROUPS 

R(a) of degree n is called a k-representation of a of degree n provided it preserves 
the fundamental operations: 

R(a + b) = R(a) + R(b), R(>-.a) = >-.R(a), R(ab) = R(a)-R(b), 

(a, b elements in a, >-.a number ink). 

The representation is faithful if different elements a are represented by differ~nt 
matrices R(a). The defining operations of an algebra a satisfy the followmg 
laws in which a, b, c designate arbitrary elements of a and >-. an arbitrary number 
ink: 

(1) All axioms characteristic for a vector space in k (of finite dimension h); 
(2) The distributive law for both factors, 

(a+ b)c = (ac) + (be), 

supplemented by 

c(a + b) = (ca) + (cb), 

>-.a· c = >-.(ac), 

(3) The associative law 

c->-.a = >-.(ca), 

(ab)c = a(bc). 

We say that the algebra contains the unit e if an element e is present satis
fying the relations 

ae = ea= a 

for all elements a. (The unit being uniquely determined, we are justified in 
using the definite article "the".) An algebra a containing the unit is called a 

. -I 
division algebra if every element a ~ 0 possesses an mverse a : 

-1 -I 
a-a =a ·a= e. 

If, moreover, the multiplication is commutative the division algebra will be a 
field finite over k. 

As in the case of groups, we may associate with each element a of a the linear 
transformation 

(a): x--> x' = ax 

operating on a variable element x in a. The algebra a of order h appears here 
in two roles: 1) as the set of elements a to which the transformations (a) corre
spond 2) as the h-dimensional vector space p in. which the transformations 
operate. The correspondence (a): a--> (a) defines a representation, the so-called 
regular representation, because 

b(ax) = (ba)x; 

the degree of the regular representation is the order of the algebra. With 
algebras we are in a much more fortunate position than with groups inasmuch 
as this process furnishes a veritable representation by linear transformations, 
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not merely a realization by some transformations in a general vague functional 
sense. The regular representation will be faithful if the algebra a contains the 
unit e or, more generally, if 0 is the only element a satisfying the relation 
ax = 0 for all elements x. 

A matrix A commuting with each member L of a given set 2 of matrices, 

AL= LA, 

is called a commutator of 2. Th::: commutators of 2 lying ink form a k-algebra W 
of matrices, the commutator algebra of 2 in k. Indeed 

AzL = LA2 

imply 

and 

AL= LA implies >-.A-L = L->-.A 

(>-.a number in k). Only the second implication needs a proof: 

(A2A 1)L = Az(A1L) = Az(LA1) = (A2L)A1 = (LA2)A1 = L(A2A1). 

E is always a commutator, and if A is a non-singular commutator so is A -I; 
for AL = LA may then be written as LA -I = A - 1L. The following statement 
due to I. Schur is of paramount importance :1 

LEMMA (3.1.A). If 2 is irreducible in k, then any commutator A of 2 in k 
is either zero or non-singular; in other words, the commutator algebra ~ of 2 in k 
is a division algebra. 

PROOF: The linear transformation i;' = Ai; will map our vector space P upon 
a subspace P', the set of all image vectors i;'. If t) = Li;, then t) 1 = Li;' for 
any L in 2, on account of the assumed commutability of A with all L. Hence 
P' is invariant under 2 and, according to the further assumption that 2 is 
irreducible, either zero or the full space P. In the former case A = 0, in the 
latter A is non-singular. 

The notion of commutators and this lemma have a direct bearing upon the 
problem of covariants of a given type @ discussed at the end of Chapter I. 
Let us suppose @ to be irreducible, so that our covariants f = (/1 , · · · , f n) 
are primitive quantities. The components are forms of pre-assigned degrees 
µ, v, · . · in some argument quantities x, y, . · · . All such forms make up a 
linear set, a vector space <P.v whose dimensionality N is given by (1.5.4). A 
first remark is this: the components f 1 , ..• , fn are either all zero or they are 
linearly independent. Indeed the sets of coefficients (a1 , · · · , an) constituting 
an identical relation 

aif1 + · · · + anf n = 0 

form a vector space invariant with respect to the representation contragredient 
to ®, and hence, because of the irreducibility of ®, either the whole space 
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(j; = 0) or the zero space (!; linearly independent). If we have several co
variants of type @, 

f = U1, .. · , fn), r = u; , · · . , J~), ... , 
the n components of each span an n-dimensional subspace P, P', · · . of <l>N • 
A space p<J> of this sequence is either completely contained in the sum of the 
preceding ones, P + P' + · · · + p<i-tl, or linearly independent of it. This is 
shown by a typical argument that will reoccur again and again in the future: 
the intersection of p<i> with that sum is invariant and consequently, because 
of the irreducibility of OJ, either zero or the whole p<i>. \Ve can therefore 
determine a complete set of covariants of type @, 

r = u; , .. · , J~), l') = u;Ti, ... , 1:.T\ 
such that all the nr components 

(i = 1, · · · , n; a = 1, · · · , r) 

are linearly independent, while the components of any covariant!= (!1, · · · 
of type @ are linear combinations of them: 

j = A'f' + A"f" + 
The ensuing equation 

sf = A'(sf') + A"(sf") + · · · 
reads more explicitly 

Sf = A'(Sf') + A"(Sj") + 
if S is the matrix corresponding to s in @. Thus 

S(A'f' + A"f" + ... ) = A'(Sf') + A"(Sj") + 
and hence, on account of the linear independence of all the Jia), 

SA'= A'S, SA" = A" S, · · · . 

In other words, A', A", · · · lie in the commutator algebra 2£ of the irreducible 
set @, and each of them is either zero or non-singular. In more symmetric 
shape we may state this result thus: 

THEOREM (3.1.B). Given a number of covariants j', f", · · · , fr> of irreducibf,e 
type @, either there exists n~ linear relation among all their nr components or else 
we have a relation 

A'f' + A"f" + ... + A (TfT) = 0 

where the A's lie in the comm·utator algebra of @ and at least one of them is ~ 0. 
Particularly simple conditions prevail if the reference field k is algebraically 

closed, i.e. if any k-polynomial 

<,?(X) = Xm + fJ1Xm-l + · · · + fJm 
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of a single indeterminate and of drgrPe rn ~ I has a root a in k and therefore 
splits into m linear factors (x - a 1) · · · (.r - a,,,). The so-called fundamental 
theorem of algebra assert:-; that thr domain of ordinary complex numbers is 
algebraically closed. In such a firld k Schur's lrmma takrs on the :,;impler form: 

LEMMA (;j.1.C). The only commutators A of a k-irreduciblr matric set ~1 in 
an algebraically closed field k are the numerical multiples aE of the unit matrix. 

Indeed, aE - A will be a <·ommutator if A is, whatever the number a. On 
determining a as a root of the characteristic equation, 

det (aE - A) = 0, 

this commutator will be ;;:ingular and hence by Schur's lemma = 0. 
Thrrefore, in an algebraically elm-rd field k, the components of several co

variants j', f", · · · of the samr primitin; type o; are either all linearly inde
pendent or 'We have a non-trivial relation of the form 

a'/ + a"/' + · · · = 0. 

In other words, there exist either n simultanrous relations 

a'f; + a"J'.' + · · · = 0 (i = 1, ... , n) 

or no relations at all among the components/,/', ... (excluding of course, 
in both cases, the trivial relation with all f'oefficients equal to zero). These 
considerations are clearly an indispensible supplement to the general concept 
of a covariant. 

There is another part to Schur's lemma dealing \\ ith two inequivalent irre
ducible matrir sets ~11 , ~b. \Ye operate in an arbitrary field k again. In 
order to establish in the most general way the correspondence between the 
two sets on which the notion of cqui rnlcnce depends, we assume that we are 
given an abstract ~et a of elPllll'11t:-: a and that to each a there corresponds a 
matrix A1(a) of degree n1 and another A2(a) of degree n2. Equivalence pre
vails if the degrees are equal, n1 = n2 , and if there exists a non-singular matrix 
B such that 

for all a in u. 

LEMMA (3.1.D). If the two sets A 1(a), A 2 (a) are irreducible and inequivalent, 
then there is no matrix B (of n1 rows and n2 columns) such that 

A1(a)B = BA2(a) 

holds identically in a, except B = 0. 
PROOF: Let P1 and P2 be the two vector spaces subject to the transformations 

A1(a) and Az(a) re1:3pectively. The matrix B can be interpreted as a linear 
mapping Xi = Bx2 of P2 into P 1 . The linear subspace of P1 consisting of all 
Vectors x1 of the form Bx2 is invariant, for A 1(a)x1 = Bx~ with x~ = A2(a)x2 . 
In view of the assumed irreducibility of P1 there are only two possibilities: 
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either Bx2 O for all x2 in P2 , i.e. B = 0, or the whole space P1 i,.; covered b 
the linear mapping B of P2 onto P1 . On the other hand, the set of all vecto 
x2 in p2 such that Bx2 = 0 is an invariant subspace of P2, for BA2(a)x2 
A 1(a)Bx2 = O. From the irreducibility of P2 we conclude: either Bx2 = 0 fo 
all x2 in p2 , i.e. B = O, or x2 = 0 is the only vector in P2 such that Bx2 = 0 
so that distinct vectors in P2 go into distinct vectors in P1 under the mapping B 
Hence if B ~ Owe conclude that B defines a one-to-one linear mapping of P 
onto P1 . But this means that B is a non-singular square matrix (n1 = 
and hence that A 1(a) and A2(a) are equivalent, contrary to hypothesis. 

Let 

@: f, !'' f"' . . . ; ,P: g', g", ... ; ... 

now be several sets of covariants of the given irreducible and inequivalent ty 
@ .p ... written in front of them, and let us suppose again that, with t 
o~ission off, all the components off', f", · · · ; g', g", · · · ; · · · are linear!' 
independent. Again there are only two possibilities: either every compone ; 
off is a linear combination of the components of the latter, or the table 
components consists of independent members even after the addition of 
In the first case we shall have a relation of the form 

f = (A'f' + A"f" + · · · ) + (B'g' + B"g" + · · · ) + 

If 

s - S(s) in@, s - T(s) in 4), · · · 

we obtain 

S(s)A' = A' S(s), · · · ; S(s)B' = B'T(s), · · · ; · · · . 

Hence A', A", ... lie in the commutator algebra of@ while B', B", · · · 
according to our new lemma (3.1.D) are all zero. The result may be stat 
in a more symmetric form: 

THEOREM (3.1.E). If j', f", ... ; g', g", ... ; . · · are sets of covariants 
given irreducible and inequivalent types @, ,P, . · · , their components are eit 
all linearly independent, or at least one of the sets, let us say the first 
@: f', f", . · · , is bound by a relation 

A'f' + A"f" + · · · = 0, 

where A', A", ... are commutators of@ one of which is ~ 0. 

2. Preliminaries 

We shall now embark upon a more thorough investigation of the struct . 
of matric algebras. Every such algebra 21 carries with it its commutator algeb 
SB and the simultaneous discussion of SB with 21 will throw much light upon 

A few preparatory observations, mostly about "degeneracy", wi~l clear o. 
path. We operate throughout in a given field k and all terms hke mat . 
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vector space, algebra, irreducible, are understood "in k". A given set 21 of 
matrices A may show two kinds of degeneracy: 

1) All matrices A map the vector space P upon one and the same proper 
subspace P', i.e. all images A~ (A in 21, ~ in P) lie in P': degeneracy of the first kind. 

2) There are vectors ~ 0 carried by all transformations A of 21 into zero: 
degeneracy of the second kind. 

If a matric set 21 = !Al shows the first kind of degeneracy, then the set 21* 
of the transposed matrices A* suffers from the second disease, and vice versa; 
for the assumption means that all vectors t) = (y1 , • • • , Yn) of form A~ satisfy 
a non-trivial condition 

a1Y1 + · · · + anYn = 0, 

and hence the contra variant vector (a1 , · • • , an) is carried into zero by all A*. 
For a single matrix, non-degenerate in either sense means non-singular. A 
matric set 21 containing the unit matrix or any non-singular matrix is degenerate 
in neither of the two senses. The vectors ~ satisfying the relation Ar = 0 
for all A in 21 and the vectors of form Ar (A in 21) evidently constitute invariant 
subspaces. Therefore if 21 is irreducible, 21 can not be degenerate of the first 
kind, unless Ar = 0 for all A in 21 and all vectors f· But then 21 consists of the 
one matrix A = 0 and on account of the irreducibility the degree must = 1. 
The matrix algebra 21 consisting solely of the one-rowed matrix 0 or the abstract 
algebra consisting of the single element 0 shall be called the null-algebra. Hence 
an irreducible matric algebra is non-degenerate of the first, and as one readily 
proves in the same manner, of the second kind unless it is the null-algebra. 

An irreducible matric algebra 21 when considered as an abstract algebra is 
called simple; or, twisted around the other way, a simple algebra a is one capable 
of a faithful irreducible representation 21: a - A. The null-algebra shall here 
be explicitly excluded. 

When dealing with a representation a - R(a) of an algebra a containing the 
unite, there will correspond toe an idempotent matrix T(e) = J, i.e. one satis
fying J J = J. In our vector space P we construct the subspaces Po and P1 
of those vectors fo and f1 for which 

Jr1 = r1 
hold respectively. They are linearly independent, and P' splits into Po + P1 , 

because 

r = fo +fl implies 

and thus leads to the desired unique decomposition 

(2.1) r1 = Jr, ro = r - Jr 

(Peirce's decomposition). In a coordinate system adapted to this decomposi
tion, J is the unit matrix surrounded by a rim of zeros: 

J =II~ ~II· 
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R(a) bears a rim of zeros of the same width on account of th 

AJ = JA =A 

reflecting ae = ea = a. Hence we may and shall limit ourselves to the no 
degenerate representations in which e is represented by the unit matrix E. Th 
most general representations arise from them by adding a rim of zeros to a 
matrices. 

The set of all k-matrices of degree n is called the complete matric algebra 9'.n,. . 
its order is n2

• 

From a given set ~ = {A } of matrices of degree n we can derive the two set 
t~ and ~t of degree nt consisting of all matrices 

A 0 0 
Au Alt 

0 A 0 (2.2) ............ 
. . . . . . . . . . . . . An Att 
0 0 A 

respectively (A in~!, A;k in~!). t~X and ~ft are algebras if 21: is so. We prove th 
LEMMA (3.2.A). 21:1 is irreduciole provided 21: is irreducible (and not the nul 1 

atgebra). 
The sub-index t thus indicates a formal process by which new simple algebr ' 

are derived from a given one. 
PROOF: The vectors in our tn-dimensional space Pt may be described as se 

(!1 , • • · , !e) of arbitrary vectors !; in the underlying n-dimensional space ' 
Let ~ 1 be a subspace of P1

, invariant under 2le and containing at least one vecto' 

C!L · · · , !~) -F (o, ... , o), 

and let us suppose !o = !~ -F 0. In performing on this vector the operatio 
(2.2) in which all A;k vanish save one AT1 = A in the first column we find tha· 

(0, · · · , A!
0

, • • • , O) 

lies in ~t. Since we excluded the degenerate case we may choose Ao m 
such that Ao!0 -F 0, and thus there is at least one vector of the form 

(0' ... ' !T ' ... ' O) 

-F 0 in ~ 1 . Let ATT = A vary in 21: and take all other A;k = 0. 
the irreducibility of ~{ we then see that each vector of the form 

(0, 0 0 0 

•, !T ' 0 0 0 

' 0) 

is contained in ~'. By summing over r = 1, ... , t we come to the conclusio ': 
that ~t coincides with P1

• , 

In this assemblage of disparate observations a last one may fix the typical\ 
argument already encountered in §1 and frequently reappearing later: 

LEMMA (3.2.B). Out of a given row of irreducibly invariant subspaces l:, 
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(j = 1, ... , m) one can select a subsequence all members of which are linearly 
independent and make up the same sum as the total sequence. 

We suppose of course that we operate in a vector space P with a given set 21: 
of matrices. The intersection of any 2::; of our row with the sum of the previous 
terms ~1 + ... + ~ 1_ 1 is an invariant subspace and hence either 0 or the 
whole ~ 1 • We drop ~ 1 in the second, we retain it in the first case. 

3. Representations of a simple algebra 2 

THEOREM (3.3.A). A d£vision algebra a is simple. Indeed its regitlar repre
sentation (a) is irreduci"ble as well as faithful. 

PROOF: a as a vector space is again denoted by p. A subspace p' of p, in
variant with respect to all operations x --+ ax and containing an element i -F 0, 
would contain every element of the form ai and hence every element c whatso

·-1 
ever: a = c-i . 

THEOREM (3.3.B). Every non-degenerate representation of a division algebra a 
is a multiple t(a) of its regular representation (a) . 

Let a--+ T(a) be the given non-degenerate representation in an n-dimensional 
vector space P whose generic vector is denoted by ! and which we span by a 
coordinate system e1 , • .. , en. We have T(e) = E. The terms invariant, 
irreducible, when applied to subspace:,; of P, refer to the algebra X of matrices 
T(a). An equation !' = a! is to be interpreted as meaning !' = T(a)!. Let 
P; be the subspace consisting of all vectors ! = xe; , one obtains when x varies 
over a. The correspondence x --+ ! thus established is a similitude, i.e. ax goes 
into a!; hence P; is invariant under the transformations T(a) of X. Either 
P, is zero or this mapping of p on P; is a one-to-one correspondence. Indeed, 
the elements x for which xe; = 0 form an invariant subspace of p; and as (a) 
is irreducible, either every x or no x except zero satisfies xe; = 0. The first 
case P; = O is here excluded because ee; =Ee; = e; -F 0. The sum P1 + · · · + P,. 
contains each of the basic vectors e1 , ... , en and therefore coincides with the 
whole space P. On applying Lemma (3.2.B) to the sequence P1 , · · · , P,. we 
split P into a number of linearly independent invariant subspaces P a 1 , • • • , P "' 
in each of which X induces a representation equivalent to (a). 

If X is allowed to degenerate it will be the direct sum of a multiple of the 
regular representation (a) and a multiple of the null-representation. 

THEOREM (3.3.C). A simple algebra a contains a unit element. Its regular 
representation is a multiple t of that faithful irreducible representation 21:: a --+ A 
by which a was defined. The order his a multiple of the degree g: h = gt. 

The matrices A of degree g are linear mappings in a g-dimensional vector 
space P. The regular representation (~) a:,;sociates with A the linear mapping 

(A): X --+ X' = AX 

whose argument X varies within the linear set 21: that here appears as an h-di
mensional vector space p. Let us pick out an irreducible invariant subspace 
P1 of p. p1 is similar to P under their respective transformations (A) and A. 
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Indeed, let A 0 be an element ~ 0 in p1 and e a vector in P such that A 0e ~ 
The formula~ = Xe (X in p1) maps p1 on an invariant subspace Pie of P by th 
similitude X----+ li for X----+ ~entails AX----+ Al. The subspace pie is either zer 
or the whole space P, because of the irreducibility of 21. The first possibilit 
is here excluded by A 0e ~ 0. In the remaining case the similitude X ----+ 

is a one-to-one correspondence between p1 and P due to the irreducibility of p1 

the X in p1 for which Xe = 0 form an invariant subspace of p1 , and therefo 
X = 0 is the only such element. This proves that any irreducible part of (~ 
is equivalent to the representation 21. 
. Since every vector~ in Pis representable in the form Xe (X in P1), there exis 
in particular an element 11 in p1 such that e = J1e. Because of the invarian 
of P1, the matrix XJ1 lies in p1 for every matrix X in p. Since both matric 1 

X and XJ1 change e into the same vector l = Xe they must coincide for an · 
lying in P1 ; in particular lil1 = 11 : the matrix 11 is a generating idempot ' 
of P1 in p. We now apply top the idea of the Peirce decomposition and intr, 
duce the invariant subspaces p1 and u1 of those X satisfying the equatio ' 
XI1 = X, Xl1 = 0 respectively. The first subspace is indeed that one pr 
viously designated as p1 • The uniqueness of the decomposition of any X in ' 
into a matrix X 1 in p1 and Y1 in u1 , 

(3.I) 

results by deriving 

(3.2) 

from (3.1). 

Repeating this process, we determine an irreducibly invariant subspace 
of <T1 , a generating idempotent I~ of p2 in u1 , and by means of it a decompos 
tion of u1 into p2 and a complementary invariant subspace cr2 : 

Yr = Yi!; + (Y1 - Yi!~) = X2 + Y2, 

Y1 in u1 ; X2 in P2 , Y2 in cr2 , i.e. Y2I~ = 0. 

On using the expression (3.2) of the generic matrix Y 1 in cr 1 we obtain 

(3.3) 

where 

I2 = I~ - Ii!~ . 

At the next step we break u2 into an irreducibly invariant subspace p3 generate 
in <T2 by the idempotent I~ and a complementary invariant subspace <T3 • 

consists of the matrices of the form Y2I~ (Y2 in cr2) which by (3.3) reduces t 

XI3 {X in p, I3 = I~ - (Id~ + Id~)} 
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The final result will be a decomposition of p into irreducibly invariant subspaces 
pi , .. · , Pt according to a formula 

X = XI1 + XI2 + · · · + XI1 (X in p). 

We already know that each irreducible part of the regular representation is 
equivalent to the representation 21; hence (a) is equivalent to the multiple t 
of 2I and h = tg. 

As XI a is the component x a of x lying in Pa we obtain in particular for 
X = I~ (whose (3th component is /~while all other components vanish) 

!~la = 0 for {3 ~ a, = Ia for {3 = a. 

The sum 

I = 11 + 12 + · · · + I 1 

satisfies the equation AI = A for all A in 21, in particular I· I = I. A vectoq 
carried by I into zero, 

(3.4) I~ 0, 

satisfies the equation 

A~ = 0 for all A in 2!, 

because A~ = AI~. Having excluded the trivial case of the null-algebra we are 
thus sure that only~ = 0 has the property (3.4). The Peirce decomposition 
(2.1) then shows at once that l = fl for every vector l, or that I is the unit 
matrix; thus 21 contai·ns the unit matrix E and hence a the unit element e repre
sented by E in 21. 

The method by which we obtained Theorem (3.3.B) may be used to prove a 
general statement worth mentioning although it will not figure as an indi:,;
pensable part in our theoretical construction. 

THEOREM (3.3.D). If the regular representation (a) of an algebra a splits into 
irreducible parts 2h , 212 , • • • then every representation that is non-degenerate of 
the first kind splits into irreducible parts each of which is equivalent to one of 
the 21; . 

PROOF: The hypothesis asserts that a, considered as the space p of the regular 
representation, decomposes into irreducibly invariant subspaces P1 , P2 , · · · , Pt . 

Let l be the generic vector and e1 , ••• , eg a coordinate system of the space P 
of the given representation 

21: a----+ T(a). 

Again, l' = al shall mean ~' = T(a)~ and Pae shall denote the set of all vectors 
~ = xe (x in p,,). We then form the table 
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to which we apply Lemma (3.2.B). The representation induced by 2l in any 
of the subspaces Pick we retain is equivalent to the representation induced by the 
regular one in Pi ; for such a p;ek does not vanish and stands in one-to-one simi
larity correspondence with Pi by means of the mapping x __, xek (x in p;). The 
sum ·of the whole table contains every vector aJ: (a in a, J; in P) and hence, · 
degeneracy of the first kind being explicitly excluded, any vector whatsoever. 

An immediate consequence of this and the previous proposition is 
THEOREM (3.3.E). Every non-degenerate representation of a simple algebra a 

is equivalent to a multiple of its faithful irreducible representation 2!. In particular, 
~! is the only irreducible representation of a. 

4. Wedderburn's theorem 

w· e now pass to the relationship of this analysis to the commutator idea. · 
It springs from the following source: . 

THEOREM (3.4.A). If an algebra a contains a unit element e, the only linear· 
transformations that commute with all transformations (a): x __, x' = ax are or 
the form (b)': x __, y = xb (ban element in a). 

Indeed, if y = B(x) is such a commutator, we must have by definition 

(4.1) B(ax) = a·B(x). 

Put B(e) = b and apply (4.1) to x = e; one thus gets the desired formula, 
B(a) = ab for every a. 

When we designate by a' the inverse algebra of a differing from a in that the: 
product of two elements a and b is now defined as ba rather than ab, we ma 
express our result thus: The commutator algebra of the regular representation of a 
is the regular representation of a'; the relationship is therefore mutual. 

1 

This applies in particular to a division algebra a; then both regular rcprescnta.! 
tions (a) and (a') arc irreducible. 

\V c take up again our simple algebra 2l or a. The commutator algebra 5B of ~· 
is in abstracto a division algebra b' (of order d), hence in concrcto a multiple 
t(b') of its regular representation (b'); thus the generic matrix of 5B has the form' 

(b)' 

(4.2) B 
(b)' 

where (b)' varies over all the operators 

x __, x' = xb 

belonging to the clements b of the inverse b. Hence g = d · t. 
tator algebra ~ of 5B consists of all matrices of the form 

(4.3) A = II (.a.1~): .. : : : '. . . (~'.1: 
(a11), · · ., (att) 
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"li1·n· ea<'h (aik) 1,.; an operator 

(a;k in b) 

0 [ tlw regular reprc,.;cntation (b) of the diYision algebra b; thus 

(4.4) ~ = (b)1. 

~. the commutator of the commutator of ~f. e\·idently contains ~{. We 
u·ish to rstablish the fact that it coincides with ~(. For that purpose we notice 
that the eommutator of the comnrntator of u~( certainly comprises u~, because 
the commutator algebra of u~1 is 5B,, . Hence were 2t actually larger than ~. 
the same \rnuld hold for u~(, in particular for that multiple of ~1, r~1, which 
by Theorem (3.3.C) is '"'-' (a). This, howewr, is contrary to our aboye remark 
that (a) is the commutator of the commutator (a') of (a). Thus we are enabled 
to replace the equality ( 4.4) by Weddcrburn's theorem*: 

(4.5) 2'( = (b)t. 

It shows that the order h of our simple algebra a is d. t2 

number r ju::;t mentioned equals t: 

(a) "" t~L 

g · t, and hence the 

Abstractly speaking, (4.5) states that our simple algebra is isomorphic to the 
algebra of t-rowed matrices 

(4.6) 

whose clements a;k are taken from a division algebra b. It goes beyond that 
abstract statement in telling us how to obtain the concrete matric form ~{ of a, 
namely by replacing each element aik in b by the d-rowed matrix (a;k). In 
terms of the normal form (4.6) of an arbitrary element a of a, the equation 

(a): x' = ax (a and x in a) 

reads: 

(a;k, X;k in b). 

Separation of the individual columns (xli , · · · , Xti) exhibits the way in which 
the regular representation (a) decomposes into t times 2!. The commutator 
algebra m, i.e. b', and hence b, are uniquely determined by ~. 

THEOREM (3.4.B). The relationship of an irreducible matric algebra 9( and 
its commutator algebra m is mutual: ~ is the full commutator algebra of 5B. m is 
expressed in terms of a uniquely determined division algebra b of order d as t · (b'), 
~as (b)1. Besides h = tg we have g = dt, hence h = dt2

• 

*This short-cut to Wedderburn's theorem was pointed out to me by R. Brauer. 
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We mention explicitly the following special case: 
THEOREM (3.4.C). An irreducible 2( of degree g whose only commutators are 

multiples a.E of the unit matrix E (case d = 1) is the complete matric algebra 
Wl 0 in k (and thenjore irreducible in any field over k-"absolute irreducibility"). 

If k is algebraically closed, the multiples of the unit matrix are the only 
commutators of 2( and hence 2( = Wl0 • In this form our theorem is due to 
Burnside, while the general criterion, Theorem (3.4.C), holding in any field k 
was given by Frobenius and I. Schur. 3 

Those elements a in a that commute with all elements x, 

(4.7) ax = xa, 

from the centrum 3 of a. The corresponding matrix A must be at 
time a matrix B of the commutator algebra, i.e. we must have 

(4.8) 

J 
in (4.3), (4.6) respectively, where z designates an element in the centrum of the· 
division algebra b. Hence the centrum of a = b1 is isomorphic to the centrum of· 
the division algebra b. Or one might argue a little more directly as follows .. 
On specializing x = II X;" II in the equation (4.7), i.e. in 

(4.9) 

to X;k = foe (fo numbers ink, e the unit element in b) one finds (4.8), namely 
II a;k II= zE, and then (4.9) shows that z in b must commute with every x in b.' 

The full reciprocity between algebra and commutator algebra is not reached: 
until we pass from the irreducible representation ~1 of our simple algebra a to a 
multiple s2!. For this algebra, s · (b )1, we readily find t · (b'). to be its commutator: 
algebra. The structure of the generic elements of our two algebras is indicated 
by the schemes 

I (au) ... (a11) (bu)' 0 I (br2)' . .. 0 

I (·a·t:» ·. ·. ·. · «~;t> 0 . . . . . . . . . . . . . ............. 
0 (bu)' 0 (b12)' 

(4.10) 
(au) (a1t) (b21)' 0 (b22)' 0 ... 

0 . . . . . . . . . . . . . ............ ............. 
I (an) . . . (au) 0 ... (b21)' 0 (b22)' 

where all (a;k) vary independently in (b), all (ba13)' in (b'); i, k 1, · · · , t; 
a., {3 = 1, · · . , s. On changing our notation, we are dealing with two al,gebras 

(4.11) 2{ "' s(b)1, Q3 "' t(b'), 
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which are mutually commutators of each other; the degrees of 1f and~ 1'qual d .
8
f, 

their respective orders are 

h11 = d·t
2 

and hill = rf.s~, 
hence 

(4.12) 

(4.11) are simultaneous equivalences in the sense that, in a coordinate :wstem 
common to both, 21: and SS are described by the schemes (4.10). 

5. The fully reducible matric algebra and its commutator algebra 

Our next concern is a natural generalization of matric algebras: the elements a 
may be v-uples 

(5.1) 

of matrices in k, each component Au being a matrix of prescribed degree gu. 
Such elements may be added and multiplied among each other and multiplied 
by numbers in k by performing these operations on the several components 
separately. We want to study algebras a in k consisting of such elements a. 
Each component like Ar = Ar(a) defines a representation ~Ir of a : a~ Ar. By 
the simple artifice of writing our elements in the form 

(5.2) 

Ar 0 0 'I 
0 A2 0 /, 

~···~· ··:::··.4J 
rather than (5.1) we could keep within the bounds of matric algebras. We 
prove: 

THEOREM (3.5.A). If the component representations ~1u of a v-uple matric 
al,gebra a are irreducible and inequivalent, then the v components Au are independent 
of each other. The regular representation of a is decomposable into irreducible parts 
each equivalent to one of the component representations. 

The asserted "independence" may be formulated in different manners. The 
simplest formulation is perhaps to say that if 

(5.3) , Av) 

is contained in a, then the same holds for 

ar = (Ar, 0, · · · , 0), 
(5.4) ................... 

av = (0, 0, · · · , Av). 

Or, with a varying over a, each component Au(a) varies independently over its 
Whole range ~... Or, a is the direct Rum of the algebras 21:,,. 

The proof follows exactly the lines laid out in the proof of Theorem (3.3.C). 
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a is a vector space p. In an irreducible invariant subspace P1 of p we again pick 
out an element a0 r5- 0. At least one of its v components A~, let us say A~, is r5- 0. 
Again we choose a vector e such that A ~e r5- 0, and conclude that Pi is similar to 
the first component space, i.e. to the representation space of 2!1 (or that the 
representation induced by the regular one in p1 is equivalent to 2!1). We now 
add this little remark: for no element a in p1 can the second component A2 be r5- 0. 
For then, starting with such an a instead of a0 \Ye should find that Pi is similar to 
the second component space, \Vhieh is impossible because of the inequivalence of 
~l1 and 2!2. After the decomposition of p into irreducibly invariant subspaces 
p1, p2, ... we unite those that are similar to the first component space, those 
similar to the second component space, and so on, and this, according to our 
last observation, means that (5.3) has been broken up into terms in a of the form 

( o, 0, 

0 ), 

0 ), 

But their sum equals (5.3), hence Au = Au, and thus we arrive at the desired 
result (5.4). 

We finally consider a k-algebra a of matrices in k. which is decomposable into 1 

irreducible parts. Writing the equivalent ones among them alike, the generic 
element a breaks up into "blocks" of the kind 

A,,(a) 

(u = 1, . ·. , v), 

where 

2lu : a ----t Au(a) 

are irreducible and mutually inequivalent representations. Lemma (3.1.D), 
the second part of Schur's lemma, shows that each commutator B of a breaks up 
into blocks of the same size. The situation prevalent for the individual block 
is taken care of by our analysis at the end of the previous section: to the block 
s,,. (buk of the given algebra 2{ corresponds the block tu. co:)," in the commutator 
algebra SS; bu is a certain division algebra. Our proposition (3.5.A) concerning 
v-uple matric algebras insures the given algebra 2f to be the direct sum of the 
blocks: 

" m = L Su(buk. 
u=l 

In the same sense we have 
v 

SS = L t,.(b:),u I 

u=l 
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and by applying to SS the same argument, namely essentially the Schur lemma, 
we readily see that 2f is the commutator algebra of SS. Were the several blocks 
of ~( not independent of each other, then the commutator algebra of SS would 
certainly have been larger than \Jl ! Our study thus culminates in the 

THEOREM (3.5.B). If a k-algebra ~! of matrices ink is decomposable into irre-
ducible parts, so is its commutator algebra SS. 2f is conversely the commutator 
algebra of SS. Their structure is described by the simultaneous equivalences 

v " 
(5.5) 2{ '"'"' L Su (bu) t,, , SS "--' L lu(b:),u 

u=l u=l 

where bu, o: are inverse (abstract) division algebras. 
It is hardly necessary to mention explicitly that 2f contains the unit matrix E. 

The degree g of Wand SS is = L du s,. tu if du denotes the order of bu; the respective 
u 

orders are 

and h)JJ L dus~. 

Therefore under all circumstances 

g2 ~ hr, ·h>JJ. 

As an abstract algebra, \Jl is identical with the algebra a of the v-uples 

a = (Ai, · · · , Av) 

where each Au varies independently within an irreducible matric set 2!,, of degree 
gu-- or, still more abstractly, 

a = (a1, ... ' av) 

where au varies in the simple algebra au (a direct sum of the au). In the same 
sense the centrum of a is the direct sum of the centra of au, which in their turn 
are isomorphic to the centra of the division algebras bu. According to the results 
gained for any irreducible set like Wu, the regular representation (a) splits into t1 
times ~( 1 plus t2 times ~(2 plus . . . . The number tu of times each irreducible 
constituent occurs is a divisor of its degree gu: 

(5.6) gu = dutu. 

On making use of the general propo,.;ition (3.3.D) we infer: 
THEOHEM (3.5.C). Any non-degenerate representation of the abstract scheme a 

of thr fully redvcible matric algebra ~( decomposes into irreducible constitvents each 
of which 1s equivalent to one of the ~L ( u = 1, · · · , v). In particular, the number 
of times this constituent occurs in the regular representation of a is the number t,; in 
Throrcm (:L5.B), a divisor of gu defined by equation (5.6). 

An immediate consequence of our final result (3.5.B) is the following criterion 
first put to use in a fruitful manner by R. Brauer: 

THEOHEM (3.5.D). The enveloping algebra of a fully redvciblc matric set 21 is 
the commutator algebra of the commutator algebra of W. 
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By fully reducible we mean that the set ~of matrices decomposes into irreduci
ble parts. Indeed, the enveloping algebra 21 of 2( splits in the same fashion as 
21: itself, and its parts, as they comprehend more than those of ~(, are a fortiori 
irreducible. Any commutator B of 2{ is a commutator of the enveloping ~
Consequently Theorem (3.5.B) is applicable, to the effect that fil is the com
mutator algebra of the set SS of all commutators B of 2!. 

B. THE RrnG OF A FrnrTE GROUP AND lTs COMMUTATOR ALGEBRA 

6. Stating the problem 

Part B shall deal with a "ituation dosely kindred to that of Part A, though less . 
general in scope>. It arose from the problem of decomposing tensor space into its . 
irreduci"ble components under the full linear group, and we go at it with this applica
tion in mind. Cnder the inftuen('e of any non-singular transformation A = . 
11 a(ik) ! I of the underlying n-dimensional vector space P, the components of an 1 

arbitrary tensor F(i1 · · · i1) of rank f undergo the transformation · 

(6.1) TIJ(i1) =AX AX··· X A (!factors) 

that is, Fis transformed into 

F'Ci1 · · · i.r) = L a(i1k1) · · · a(i1k1) -F(k1 · · · k1). 
"'· .... k1 

All arguments or indices i and k range over the integers from 1 ton. The tensors. 
of rank f form a n·etor space P / of n1 dimensions. We say that A induces II1(A) · 
in P1. Thr eo1Tespondence A --> II1(A) defines a representation of the group, 
GL(n) in P1. Examples for inYariant subspaces of P1 are the sets of all symmetric. 
or of all sknc-symmctric tensors; and, in obYious generalization of these most 
primitiY<' easf',;, the set of all trnsors satisfying certain symmetry conditions. In· 
ord<'r to dP,;crilw what a symmetry condition is we have first to explain what it 
means to apply a permutation s of the f sub-indices 1 · · . f upon a given tensor F. 
Ifs is the permutation 

(6.2) i --> l '' . . . ' f --> f'' 

we shall define F' sF by 

(6.3) 

This is the correet way if ,,.e want the desirable relation t(sF) = (ts)F to hold 
for any two permutations s: a --> a' and t: a' --> a" {a = 1, · · · , fl vd10se · 
cmnpo,.;ition ts i,.; defined to b<' a--> a". Incleed, composition in the right order 
i,; pre:o<crnd if with the permutations we associate the following (linear) trans
formation::;, fir,;t of the yariable,.; i into new Yariables i' and then of the function 
Finto a new function F': 
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The ensuing equation 

coincides with (6.3) if we replace the letter i' by i. The permutations s of f 
figures form the symmetric group 'Y = 'lrf of order f!. 

A linear symmetry condition imposed upon the tensor Fis a relation 

(6.4) L a(s).sF = 0 

with arbitrary coefficients a(s); it asserts that the symmetry operator 

a = L a(s)·s 

changes Finto 0: aF = 0. Symmetry operators may be added and multiplied 
by numbers in the obvious manner. .'.Vforeover, successive performance of 

a= L a(s)s, b = L b(s)s 

(first a, then b) gives rise to a new symmetry operator c, the product ba, defined by 

L b(t')a(t)t't = L c(s)s, 
t,t 1 

where 

(6.5) c(s) = L b(t')a(t) = L b(sC1)a(t) = L b(t)a(C1s). 
t't=• t t 

The rules by which addition and multiplication are carried out depend merely 
on the structure of the group and have nothing to do with the particular realiza
tion of the group elements s as linear transformations F--> sF in the space P1. 
Therefore it is appropriate to take the abstract viewpoint again: any finite group 
'Y of order h gives rise to an algebra of order h, the so-called group ring r in k 
consisting of all linear combinations of the group elrments s with coefficients 
a(s) ink: 

(6.6) a = L a(s) ·S. 

The sum is merely a sugge;;tive form of writing, the "quantity" a .of r.is nothing 
but the set of coefficients a(s) or the function a(s) defined on the group. \\'hat 
is essential is the definition of the three operation": If a has the coefficients a(s) 
and b the coefficients b(s), then a + b, Xa, ba have the coefficient:-; 

a(s) + b(s), ;\. a(s) and (6 .. S) 

respectively (X any number in k). _.\I! t!w axiom,.; clmractni:-;tic for an algebra 
are fulfilled; the associative law of multiplication i,; an immediate consequence 
of the same law for group elemenb. The group ring contains the unit I. 
Transition from the group to the group ring facilitate,.; its managpment con
siderably by extending the list of permi,;siblP opC'rations from mer<' multiplication 
ba to include a + b, Xa as well. 



98 THE CLASSICAL GROUPS 

On returning to the symmetric group IrJ of order f! and the realization of its 
elements and of the quantities a of the group ring by linear operators F ____, aF in 
tensor space one ought to observe that in general this realization is not an iso
morphic or faithful one. If we put Bs = + 1 or -1 according as the permutation 
sis even or odd, then the alternation L o,. swill carry every tensor Finto 0, 

L o,-sF = O, 

provided the rank f surpasses the dimensionality n. 
The group of the II1(A) induced in P1 by all non-singular transformations in 

P is suitably replaced by its enveloping algebra 

?(1 = [II1(A)]A inGL(n). 

It is easily seen and shall later be proved explicitly [Theorem ( 4.4. E)] that this 
algebra ~11 consists of all transformations 

(6.7) 

in tensor space which are symmetric in the sense that a(i1 • • • i1 ; k1 .. • k1) 

does not change if both rows of arguments i 1 • · · i1i k1 ... k1 arc submitted to 
the same arbitrary permutation s, (6.2): 

(6.8) 

As the term "symmetric" is used for so many other purposes, even in connection 
with linear transformations, I propose to substitute the word "bisymmctric" for 
the kind of symmetry here under investigation. A bisymmctric operator in 
tensor space can be described as one commuting with all the f ! symmetry opera
tors F ____, sF. Indeed, on putting 

a(i1· · · · i1·; k1· · · · k1·) = a 1(i1 · · · i1; k1 · · · k1), 

the equation 

leads by (6.3) to 

sG(i1 · · · i1) = L a 1(i1 · · · i1; ki · · · k1).sF(k1 · · · k1), 
k 

or, in easily understandable notation, 

s-1A; s = A1 or A; = sA1 s-1
. 

As the permutations s enter into the definition of the algebra ~(hit i" not ,.;urpris
ing at all that the study of tlw tensor space under the intluence nf the group 
GL(n) ties up \Yith the symmetric group Ir;. 

The idea of replacing the group II1(.4), A in GL(n), by the eunlopiug algebra 
2(1 of all bisymmetric A1 ·was first c;uggestcd to the author by the application of 
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these theories to quantum mechanics. 4 There a tensor F depicts the state of c 
physical system consisting of f similar particles, let us say f electrons. Eacl 
observable physical quantity is represented by a linear operator A1 in tenso1 
space, and the change F = dF /dt of the state Fin time t is in particular deter· 
mined by the operator H representing energy: 

F(i1 · · · i 1) = L h(i1 · · · i1; k1 · · · kr) .F(k1 · · · kr). 
k 

If all particles are alike, H will be bisymmetric in our sense, and hence no transi· 
tions are possible in time between several subspaces of the tensor space that an 
invariant with respect to the algebra ~r, whatever the forces acting between th1 
particles may be. The algebra ~1 rather than the group of the II1(A) plays th( 
decisive part in quantum mechanics. 

By now it should have become fairly obvious under what general problem tc 
subsume our question concerning tensors: the group Trf is replaced by an arbitrary 
finite group -y, the tensor space by any vector space whose generic vector we will 
call f and whose dimensionality may be denoted by n, the operators F ____, sF by 
any representation@? of the given group 'Y in that vector space, and finally ~J 
by the commutator algebra of @?. We shall establish a complete reciprocit'Jj 
between the regular representation of the group ring r of 'Y and the commutator al
gebra of the given representation. Once more and in fuller detail: 'Y is a finite 
group of order h, s denotes a typical element thereof, r is the corresponding 
group ring consisting of the quantities (6.6). Let a representation of the group 
be given in an n-dimensional vector space P: s ____, U(s) = II u;k(s) [[, 

(6.9) l = L u;k(s)fk (i, k = 1, · · · , n) or f' = U(s)f. 
k 

We abbreviate (6.9) as f' = sf and extend this representation to the group 
ring: 

f ~ f' = L a(s) ·sf = af represents L a(s) · s = a. 

The linear operators a form an algebra €; homomorphic with the group ring. ~ 
is the commutator algebra of the given representation or of the algebra @?;its 
members shall now be denoted by A = 11 a;k [ [. Hence 

(6.10) 

involves 

(6.11) 

J= Af, 

sJ = A ·sf or sf; = L a;k ·sf k 
k 

if A is in ~- The group ring is an h-dimensional vector space p that is considered 
as the substratum of the regular representation (r) of r associating with the 
quantity a the substitution 

(a): x ____,ax 
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in p, while our vector space P will be regarded as the substratum of the matrices 
of W (rather than @5); terms like invariant, irreducible, equivalent are to be 
interpreted accordingly. 

The first step will be to show that the regular representation of the group ring r 
is fully reducible and this will hold in any reference field k whatsoever.* Pre
suming this result we could devise the following procedure: from Theorem 
(3.3.D) and its proof one learns how @5 may be decomposed into irreducible 
parts, and then the general theorem (3.5.B) insures the full reducibility of the 
commutator algebra W. However, we shall here establish a much more com
plete and direct parallelism between (r) and & without passing through @5, and 
that by a much more elementary method which may also be gleaned from our 
special case dealing with tensors F. 

How did we propose to specify an invariant subspace within the tensor space 
P1? By imposing a number of symmetry conditions (6.4) on F. These con
ditions state that the "quantity" with the coefficients F(s) = sF lies in a certain 
linear subspace er of p. If the reader is loath to operate with symmetry quanti
ties whose coefficients are tensors rather than numbers, he will require each 
quantity x whose coefficients are 

x(s) = sF(i1 · · · i1) 

to lie in that subspace. Carrying over this remark to our general problem we 
win the following starting point. 

If f is a vector, then f;( ·) shall denote the quantity with the coefficients 

(6.12) 

and one might consider f( ·) = (!1( · ), · · · , fn( · )) as a vector whose components 
are quantities rather than numbers. Any subspace er in p determines a subspace 
1: = #er of the vector space P in this way: the vector f belongs to 1: if and only if 
each of then quantities f;( · ), (i = 1, · · ·, n), lies in er. It is nearly trivial that a 
1: constructed in this way is an invariant subspace of P (invariant with respect 
to the algebra &). Our chief aim is to make sure the converse, i.e. that each 1 

invariant 1: is of the form #er. The natural method to accomplish this is by 
constructing er out of 1:, and there is no doubt how to attempt it. Let ~be any 
subspace of P; we define er = q~ as the linear closure of all quantities of the form 
f;( ·) (Jin~' i = 1, · · ·, n). More explicitly,f"\a = 1, . · ·, m) being a basis of 
~'the corresponding q~ consists of all quantities of the form 

(6.13) x = 2: cpl") fl")<.) 
i,a 

* It wi!l hold even if k has characteristic p r! 0, provided pis not a divisor of the order h 
of the group-y. We remark that Part A of this chapter is valid for fields of any character
istic, and Part B for fields of characteristic v not dividing h. 
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with arbitrary coefficients cp;al. Again it is almost trivial that such a er = q ~ 
is invariant and moreover a subspace of 

(6.14) Po= qP 

(which need not be the full space p). With these limitations that ~is invariant in 
p and er invariant in Po, we want to show that the two operations # and q are inverse. 

7. Full reducibility of the group ring 

In carrying out the program delineated in the last section we first prove that 
the regular representation (r) of the group ring r is fully reducible. 5 

THEOREM (3.7.A). An invariant subspace er of p possesses an idempotent 
generator e; i.e. xe lies in er for every x, and xe = x for every x in er. 

The theorem implies that e = le is in er and hence ee = e .. 
Any linear mapping x ~ y carrying each "vector" x into a vector y in er and 

leaving the vectors x in er unchanged will appropriately be called a projection of p 

into u. If u is any linear subspace of g dimensions one constructs such a pro
jection easily enough: after adapting the coordinate system e1, · · · , eu; eu+i, · · · , 
eh to the subspace u one defines 

We have to prove that there exists a projection of the peculiar form 

x~y=xe 

provided u is an invariant subspace. 
We start with an arbitrary projection x ~ y: 

y(s) = L d(s, t)x(t), 
t 

On account of the invariance of u, 

ry = Drx 

y = Dx. 

defines another projection x ~ y whatever element of the group we choose for r; 
its explicit expression is 

y(r-1 s) = L d(s, t)x(r-1 t) or 
t 

y(s) = L d(rs, rt)x(t). 
t 

On forming the "average" of all our prt>jections 

e(s, t) = ~ ~ d(rs, rt), 

we obtain a projection again whose matrix e(s, t) satisfies the· relation 

e(r.~, rt) = e(s, t) 
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and is therefore of the form e(t-1s). Consequently our new projection is of the 
desired form, 

y(s) = L x(t)e(C' s) or y = xe. 

THEOREM (3.7.B). An invariant subspace u containing the invariant subspace 
u1 C u can be split according to u = u1 + u' into u1 and a complementary invariant 
subspace u'. 

The proof follows a scheme already used in the demonstration of Theorem 
(3.3.C). Let e1 be a generating idempotent of u1. Those x in u which satisfy 
xe1 = x form the subspace u1, those for which xe1 = 0 another invariant sub;.;pace 
u'. The Peirce decomposition yields u = u1 + u'. 

If an invariant u is decomposed into a number of linearly independent m
variant subspaces, 

U = U1 + U2 + · • · + <Yu, 

we have for each element x of u a unique decomposition 

(7.1) X = X1 + X2 + · · · + Xu 

in particular, f0r a generating idempotent e of u, 

(7.2) e = e1 + e2 + . . . + eu 

From (7.2) follows, for any x in u, 

(7.3) x = xe = xe1 + xen + ... + xeu. 

(x,,inu,,); 

(e,, in u,,). 

Since xe,, (as well as e,,) lies in u" because of the invariance of u "' (7 .3) is the 
decomposition (7.1), which thus proves to be an immediate consequence of (7.2). 
Applying our observation to x = e,, we see that 

e,, ef3 = e,, or 0 according as (3 = a or (3 >6- a. 

Such quantities e,, shall be called normal idempotents. An idempotent e is 
indecomposable or primitive if it allows no decomposition e = e1 + e2 into two 
normal idempotents e1, e2 save the trivial ones e = e + 0 and e = 0 + e. In i, 

carrying decomposition as far as possible we end by splitting a given idempotent 
e into mutually normal primitive idempotents. Indeed, if e1 can be split further, 

e;e~' = 0, 

e~ e~ = 0, 

one has 

for a > 1; hence the sequence e;, e~; e2 , ••• again consists of mutually normal 
idempotents. Our analysis shows that decomposition of the unit I into normal 
primitive idempotents will result in splitting up the total p into irreducible in
variant subspaces. 
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At this juncture we repair to the situation on which Lemma (3.1.D) was based 
in order to explain the general idea of similarity or equivalence. We have two 
sets of matrices, A 1(a) and A2(a), put in a certain correspondence by the param
eter a varying in an abstract set. P1 and P2 are the two vector spaces of di
mensionality g1 and g2 on whose vectors the transformations Al(a) and A2(a) 
operate. The equations ~1 = ai:1, ~2 = ai:2 for vectors ):1 in P1 and ):2 in P2 are to 
be interpreted as meaning ~1 = A,(a)i:1, ~2 = A2(a)i:2. Let ~1, ~2 be invariant 
subspaces of P1, P2 respectively. A linear mapping ):2 ~ i:1 associating a vector 
i:1 in ~1 with an arbitrary vector ):2 in ~2 is called a similarity mapping of ~2 upon 
~1 if it changes ai:2 into ai:1 (for every a). ~1 and ~2 are similar or equivalent if 
there exists a one-to-one similarity mapping ):2 +:± ):1 of ~2 on ~1· The term applies 
in particular to subspaces ~1 and ~2 of one and the same vector space P which 
is the substratum of a set of transformations A (a). 

THEOREM (3.7.C). A similarity mapping D: x ~ x' of an invariant subspace 
u upon u' is generated by aft multiplication with a quantity b: x' = xb. 

PROOF: Take as b the quantity into which a generating idempotent e of u 
is sent by D. This operation being a similarity mapping, it will send xe into 
xb whatever x may be; but x = xe if x is in u.-Proposition and proof are a 
slight modification of Theorem (3.4.A). 

By the general formula x' = xb the image of e will be eb; hence the b we con
structed here satisfies the relation eb = band, as a quantity in u', the further 
relation be' = b if e' is an idempotent generator of u'. Consider the particular 
case where u and u' are equivalent and thus mapped upon each other by a 
one-to-one similarity correspondence x ~ x'. It will be generated in the one 
direction by a quantity b: x' = xb satisfying the relations just mentioned, m 
the other direction by a quantity a: 

(7.4) x = x'a 

satisfying the analogous equations 

(7.5) ae = e'a =a; be' == eb = b. 

e is carried by the direct mapping into b and this by the inverse mapping into ba; 
hence 

(7.6) ba = e and ab = e'. 

Vice versa, if e and e' are given idempotents and a, b satisfy the equations 
(7.5), (7.6) then 

x' = xb, x = x'a 

establish inverse mappings x ~· x', x' ~ x of the invariant subspaces u, u' 
generated bye, e' into each other. . 

What we have somewhat carelessly described as invariant subspaces should 
perhaps more precisely be called left invariant subspaces, because the opera
tions are the left multiplications (a): x ~ ax by any elements a of our ring. 
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A subspace invariant with respect to right multiplications (a)': x--+ xa deserves 
the name of a right invariant subspace. While the former has a generating 
idempotent e to the right, in the sense that it consists of all quantities of the 
form xe, the latter will have a generating idempotent to the left. The proof 
could be carried through in the same fashion. There is, however, a general 
method of passing freely from left to right. When we define a by 

a(s) = a(s-1
) or a(s-1

) = a(s), 

then the following lemma holds. 
LEMMA (3.7.D). a = a1a2 implies a aza1. 
The roofing process therefore changes our algebra r into its "inverse" r'. 

If the two invariant subspaces generated by two idempotents e, e' are equiva
lent then the same holds fore, e'; indeed, the equations (7.5), (7.6) show that 
e, e' are tied together by a, b in the same fashion as e, e' by b, a. Hence the 
representation induced in u by the regular representation is, in the sense of 
equivalence, uniquely determined by that in <T, where <T, u denote the subspaces 
generated by c and e. The question as to the nature of this coupling of repre
sentations is answered by 

THEOREM (3.7.E). The representations induced in <T and u by the regular 
representation are contragredient to each other. 

The proof rests on the notion of trace: the unit component a(I) = tr (a) of a 
quantity a: a(s) is called its trace. The trace of the product of two variable 
quantities, 

(7.7) tr(xy) = L x(s)y(s-1) = L x(s-1)y(s), 
• 

is a symmetric bilinear non-degenerate form in p: a being given, tr(xa) = 0 
cannot hold identically in x unless a = 0. 

We compare the left and the right invariant subspaces <T and r consisting 
of the quantities xe and ex respectively. We assert that tr(xy) is non
degenerate if x and y vary in <T and r respectively. Indeed, if z is any element 
whatever and a in <T, then 

az = ae-z = a-ez = ay 

where y = ez is m r. Hence the assumption tr(ay) = 0 fol' y m 
tr(az) = 0 for all z, whence a = 0. Similarly for the second factor. 
refer <T and r each to a coordinate system ai and bk such that 

(7.8) 

r implies 
We now 

describe <T and r if the numbers ~ and 71 vary freely in k. From the non
degeneracy of tr(xy) for (7.8) follows readily the coincidence g' = g of the 
dimensions of <T and r and the possibility of adapting the coordinate system 
bk in r to the arbitrarily chosen coordinate system a; in <T such that 

(7.9) tr(xy) = ~17/1 + · · · + ~uT/u 
for x in u and y in r. 
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With Y varying in r, y ranges over u. The simultaneous substitutions 

x--+ sx (x in u), y--+ ys-1 (yin r) 

or 

(7.10) x--+ sx (x in u), y--+ sy (yin U-) 

leave (7.9) unaltered: 

(7.11) tr (sas-1) = tr (a), tr (sxys-1
) = tr(xy). 

In terms of the chosen coordinate systems the two substitutions (7.10) are 
therefore contragredient. 

A final remark is concerned with the character x(s) of the representation 
induced in u by the regular representation of r. We have to compute the 
trace L a(s)x(s) of the linear substitution 

(7.12) x--+ y = ax (x in u). 

'Yhen We adapt the coordinate system e1 1 • • • , e0 ; ea+l , · .. , eh to the u-dimen
s10nal subspace u we see at once that the substitution 

(7.13) 

has a matrix 

x-+y =axe 

~ 
~ 

(x in p) 

where the left upper square is occupied by the matrix of (7.12). Hence we 
may compute the trace of (7.13) or 

y(s) = L a(t)x(r)e(t') (trt' = s), 
which equals 

2;: a(t)e(t') = L a(t)e(s-1 t-1 s) = L a(t)x(t). 
tst -=s s,t t 

Therefore, by exchanging the letters s and t, 

(7.14) x(s) = L e(t-1s-1 t). 

. A function a(s) is a class function if it takes on equal values for elements s 
in the same class, i.e. for conjugate elements like s and C 1st: 

(7.15) a(C1st) = a(s). 

I~ this sense the character x(s) of any representation s --+ U(s) is a class func
tion because the trace of 

UCt-1st) = rr1(t). U(s). U(t) 
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coincides with that of ['(s). Formula (7.14) puts this in evidence for our 
representations contained in the regular one. a(s) is a class function if and 
only if the quantity a belongs to the centrum of the group ring. Indeed, 
ax = xa or 

(7.16) 

leads back to (7.15), 

a(st) = a(ts), 

when one equates the coefficients of both sides of (7.16). 

8. Formal lemmas 

After indulging in all these details about finite groups and their group rings, 
some of which are not needed for our immediate purpose, it is time to return 
to the problem formulated at the end of section 6. \Ve base the proof of the 
complete reciprocity between the regular representation (r) of the group ring r 
and the commutator algebra 21 on three simple lemmas. 6 

LEMMA (3.8.A). 

(8.1) 

with 

(8.2) II C'<ik II = L a(s)U-1(s). 
s 

PROOF: The s-coefficient of af( ·) is the Yector 

g(s) = L a(r) -r-'sf = L a(r) · ['- 1(r)f(s). 
r r 

LEMMA (3.8.B). fi( ·)a = gi( · ), where the vector g is defined by 

g = I: a(r-1
) -rf = a.r 

r 

In other words, if g = af then g( ·) = f( ·)a. 
PROOF: f,(. )a = x is indeed given by 

x(s) = L srf;·a(r-1
) sg;. 

LEMMA (3.8.C). An equation of the kind 
n 

(8.3) a(s) = L cp;·Sf; = cpL'(s)f, 
i=l 

where cp = (cp1 , ..• , 'Pn) is a row rather than a column of numbers (contravariant 
vector), entails 

n 

(8.4) a(s) = L f; · Scpi 
i=l 
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when Sep = <P(s) is defined as the row <PV-1(s). The linear transformation 

(8.5) II a;k II= 11 I: sf;·s<Pk II, i.e. 

(8.6) A L U(s)f<PU-1(s) 

commutes with the operators s. 
PROOF: (8.4) or 

a(s) = <Pu-1(s)f 

follows at once from (8.3) because u-1(s) = U(s-1
). Moreover 

U(t)AU-1(t) = L U(ts)f<PU-1(ts) = A. 

9. Reciprocity between group ring and commutator algebra 

With A I\ a;k 11 in the commutator algebra, the relation 

(9.1) J; = I: a;kfk 
k 

according to (6.11) entails 

(9.2) ];(.) 
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This remark proves #u to be invariant: J = Af lies in #u together with f because 
the quantities];(·), (9.2), lie in u if thefk( ·)do. On the other hand, by Lemma 
(3.8.A), q~ is invariant for any linear subspace ~ of P: a.j;(.) is a linear com
binati<m of the fk( ·) for any vector f in ~. Moreover, one has by definition 

q#u Cu, 

Our aim is to replace the inclusion C by equality = for invariant ~ C P and 
u C Po , and we therefore exhibit the complete reciprocity between Po and P 
as established by # and q in the following two theorems: 

THEOREM (3.9.A). If u (u', u1 , u2) are any invariant subspaces of Po and 
~ = #u, then 

u' C u, 

imply 

~I c ~' 

respectively, while conversely, 

<T = q~. 

THEOREM (3.9.B). If~ (~', ~1, ~z) are any invariant subspaces of P and 
u = q~, then 
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and 

:r;'c:r;, 

imply 

er' C er, er = er1 + er2 , 

respectively. 
Before proceeding to the proofs, we make this remark. If e is the idem

potent generator of an invariant er, then the corresponding :r; = #er consists 
of all vectors of the form ef. Indeed, g = ef lies in :r; because g;(.) = f;(.). e 
by Lemma (3.8.B), and for each fin :r; one has ef = f. 

We prove the first part of Theorem (3.9.A) by observing that when the 
decomposition er = er1 + er2 is applied to an idempotent generator e Of er, 
the resulting equation e = e1 + e2 leads to the following decomposition :r; = 
:r;1 + :r;2 of ~ = #er: 

f = ef = eif + ed = f'1
l + f <

2
l (fin ~). 

Lemma (3.7.D) allows us to shear all the roofs off the relations 

thus warranting the independence of the parts ~1 , ~2 : 

The similarity correspondence X1 ~ X2 between er1 and er2 described by 

gives rise to the mutually inverse transformations 

!'1) = af'2) 

between the vectors f 0l, f (2) of :r;1 = #er1 and :r;2 = #er2 . By (6.11) these for
mulas establish a similarity correspondence: 

f~1 ) = Af 0
) entails bf~1 ) = A(bf<1» {A in~}. 

To secure the last part of Theorem (3.9.A), er C q:r;, we construct q:r; by 
means of an idempotent generator e of er as follows: if g<al (a = 1, ... , n) 
ranges over a basis of the complete vector space P, all J'al = eg<al lie in :r; = #er 
and hence 

lies in q~. On introducing 

"'"" (a) f(a) ( ) y = L..J 'Pi . i . 
a,i 

a,i 

we have y = xe. So xe lies in q~ if x lies in Po = qP. But each x in er satisfies 
both conditions: x in Po and xe = x. 
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The converse theorem (3.9.B) exhibits the really important facts. 
tion that 

(9.3) implies 
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Its asser-

for any subspace :r; invariant under 2l is the backbone of the whole theory. 
Let e be an idempotent generator of er = q:r;. Like all elements of er it is of 
the form 

where 

e'(s) - "'"" (a) s·f (a) - L..J 'Pi . 'J i ' 
a,i 

f(a) = (f~a>, ... ,f~"» 

ranges over a basis of I;. Hence by Lemma (3.8.C) 

e(s) = L Scpka) .f k"l, 
a,k 

and any vector g ef of #er is given by 

(9.4) g; = ~ ~ ~ a;f)fka) ~ "'"" (a) 
L..J g; ' 

where 

Each term g<al of the sum (9.4), g = Lg<">, arises from /al by a linear trans-
a 

formation A (a) = 11 alf l I! which commutes with all s according to the same 
lemma. Hence :r;, being invariant with respect to the transformations A of 
the commutator algebra 21, contains g<al as well as l">. This proves our state
ment: g in :r; or #er C I;. 

The decomposition ): = :r;1 + :r;2 implies by definition that each quantity x 
in er = q:r; can be written as a sum X1 + X2, Xi in err = q:r;1, X2 in er2 = q:r;2. 
It remains to prove that er1 and er2 are linearly independent, or that the inter
section er* = err n er2 is empty provided ~* = :r;I n :r;2 be empty. But according 
to the part of Theorem (3.9.B) already proved, 

hence #er* C I;* and, by the last part of Theorem (3.9.A), er* C qI;*. 
The transition from :r;1 ,...._, :r;2 to er1 ,...._, er2 for er1 = q :r;1 , er2 = q :r;2 is to be based 

on the following statement, the proof of which is contained in Lemma (3.8.B): 
LEMMA (3.9.C). Po is right as well as left invariant. 
Therefore Po has an idempotent generator i to the left: i in Po , ix = x for 

every x in Po . 

Let lal be a basis for :r;1 and let the given similarity mapping of :r;1 on ~2 
send lal into g<"l. When we put 

X _ "'"" \a)j\a)( ) 
- L..J "'' • • ' a,i 

"'"" (a) (a) ( ) 
y = L..J "'' g; . { 'P;a> arbitrary numbers l 

a,i 
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the correspondence x -. y between an :r and a y \Yith the same coefficients 
<pl"l will establish a similarity mapping of er1 ~ L 1 on er2 = q L2 because, by 
Lemma (3.8.A), we obtain 

ax __ ",/,k(-a)fk(-a)(.), ",/,(a) (a)( ) L.. 'I' ay = L,, 'l'k gk · , with ,/,(a) " (a) 
'I' k = L,, </!i -<Xik. 

o:,k a,k 

This definition of x -. y howeycr goes through only if x = 0 implies y = 0. 
We first prove that 

:if = 0 implies yf = 0 

(for any vector f). By Lemma (3.8.C) the vector F = if is a sum of terms 
F<aJ the ath of which arises from /'"l by the transformation 

A (a) = II ai~) II = II L sf;· srpi") II. 
s 

Since A (a) is in 2( the given similarity mapping of L 1 on 2: 2 sends F(al into the 
corresponding part G(a) of G = yf and hence F into G. Therefore F = 0 
implies G = 0 and more especially: when the numbers rpj"l satisfy the equa
tion x = 0 we must have yf = 0 for every vector f, or by Lemma (3.8.B), 
f;(. )y = 0. Hence the given quantity y satisfies zy = 0 for every z in Po , 

in particular for z = i. But as y itself lies in p0 the ensuing equation iy = 0 
yields the desired result, y = 0. 

The complete reciprocity established by Theorems (3.9.A & B) involves the 
fact that the process # not only changes er = 0 into #er = 0 and a part er' C er 

into a part #er' C #er, but also a er ~ 0 into a #er ~ 0 and a proper part into a 
proper part, provided the er's are invariant subspaces of Po . The decomposition 
of Po into irreducibly invariant subspaces er a leads to a decomposition of P into 
subspaces La = eaP irreducibly invariant under the algebra 2f; and both decom
positions run absolutely parallel even as to the pertaining equivalences. 

We make the additional remark that any invariant subspace 2: of P breaks 
up into irreducible invariant subspaces each of which is similar to one of these 
parts La of P. This is true for any vector space which is fully reducible under 
a set of linear transformations, but the proof is especially simple in the present 
case. Indeed, e being a generating idempotent of L, we deduce from the 
decomposition P = L1 + Lz + · · · , or 

f = Lfa 
a 

the equation 

ef = L efa. 

As La is irreducible, the mapping fa -> ef" either carries every fa in La into 0 
or it is a one-to-one similarity mapping of La upon a subspace of L. 

THEOREM (3.9.D). p breaks up into irreducible parts La = eaP. Any 
invariant subspace L of P is decomposable into irreducible parts each of which is 
similar to one of the eaP. 

MATRIC ALGEBRAS AND GROUP RINGS 111 

For a full appreciation of this method (II) we compare it with the method 
(I) alluded to in §6, which passes from r to 0 by means of Theorem (3.3.D) 
and from 0 to 2( by Theorem (3.5.B) and by the constructions given in th€ 
proofs of both propositions. 7 They depend on the choice of a coordinat€ 
system of the space P, and neither of the two steps displays such a thorough
going parallelism as revealed here. Coincidence between the numbers of the 
equivalent parts is not to be expected. Contrary to the restriction of p to Po in (II), 
the procedure (I) replaces p by p modulo that two-sided invariant subspace / 
whose elements a satisfy the equation af = 0 identically in the vector f. Run
ning over the whole gamut of demonstrations again, one might condense the 
essence of the procedure (I) as follows: the unit I of r (or rather of r mod /) 
is decomposed into mutually normal primitive idempotents, 

(9.5) I = C1 + C2 + ... ; 
then 

(9.6) x = xe1 + xe2 + · · · and f = eif + ezf + · · · 
result in corresponding decompositions of p and P into irreducibly invariant 
subspaces (with respect to (r) and 2( respectively). Indeed, if 0, which is now 
to be identified with 58, is written as the direct sum of v simple algebras bu 
as in the proof of Theorem (3.5.B), and the elements of each simple constituent 
bu as s-rowed matrices 

(9.7) 

(s = s,,) whose elements lie in a division algebra b = bu , then one obtains the 
primitive idempotents P~ul by equating in (9.7) one of the diagonal elements 
baa to the unit e of b and all other elements to 0, including those in the other 
simple constituents bu' (u' ~ u). The number of terms in (9.5) is s1 + ... + s •. 
The coordinate system in our vector space breaks up into the parts discerned 
by the triple index 

j~l [u = 1, · · · , v; i = 1, ... , t,, ; a = 1, ... , s,,]. 

The vectors of the form ei1lf are those of which all components .vanish except 
the parts 

(I) (I) (1) 
11 ' 21 , • ' • , t I 

and these are submitted by ~{ to the transformation,, of the irreducible 
algebra 21'1 : 

A I :~!~~'.,• .. ' .. (~'.I~ (an), · · · , (att) 

lb 
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On putting it this way, the essential difference between methods (I) and 
(II) is that in (I) we match 

xe against ef, 

while in (II) 

xe is matched against ef. 

Only the second procedure establishes a correspondence independent of the 
choice of the generating idempotent e. So one may say that the more complete 
results attained by (II) are due to the presence of the operation " in a group 
ring, while missing in an arbitrary (semi-simple) algebra.8 

10. A generalization 

The simplest axioms of projective geometry (excluding those of order and 
continuity) show that the projective (n - 1)-space is isomorphic to the following 
algebraic model: any ratio of n numbers in a given field k, 

fi:f2: · · · :fn 

(with the exclusion of the n-uple 0:0: · · · :0), represents a point; the straight 
line joining two distinct points a; and b; is given by the parametric repre
sentation 

f; = ua; +vb; 

(with u: v ranging over all pairs in k except 0: 0). If one wants the field k to 
be commutative one has to admit some special case of Pascal's theorem among 
the axioms. A non-singular linear transformation 

n 

(IO.I) f; = L U;k/k, 
k~l 

represents a collineation, i.e. a mapping f -> f' by which points on a straight 
line pass into points of a straight line. The question arises as to whether this 
is the most general collineation. The answer was believed by all geometers 
to be in the affirmative, and this was established as the so-called fundamental 
theorem of projective geometry: any collineation leaving fixed the projective 
coordinate system is the identity. The projective coordinate system consists 
of the n vertices 

(1 :0:0: :0), (0: 1 :0: ... :0), ... ' (0:0:0: ... : 1) 

and the "unit point" 

(1:1:1: ... :1). 

The statement is true indeed if k is the real field but false for an unspecified k 
(false even when k is the continuum of all complex numbers in which the 
classical algebraic geometry operates). For any automorphism a -> a' of k 
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gives rise ~o a collineati?n f; -> f: leaving the coordinate system fixed. (An 
automorphism of a field is a one-to-one mapping a -> a' of the field upon itself 
which preserves the fundamental operations + and X: 

(a + {3)' = a' + {3', (af3)' = a'{3', 

and hence carries 0 into 0, 1 into 1.) The fundamental theorem of projective 
geometry in its universally valid form simply asserts that each collineation pre
serving the coordinate system is in this sense an automorphism of k. The proof 
rests on the fact that the concepts of a number in k, and of addition and multi
plication in k, are geometrically defined in terms of the fundamental notions 
entering into the projective geometric axioms. The most general collineation 
is a combination of an automorphism a-> a' with a linear substitution (IO.I): 

(10.2) f' = Uf'. 

As compared with these "semi-linear" substitutions, the linear substitutions 
proper, though not forced into abdication altogether, play merely a secondary 
role: they represent projectivities. Two (n - !)-dimensional hyperplanes im
mersed in .a projective n-space can be mapped upon each other by a perspec
tivity (central projection). A projectivity is brought about by any chain of 
perspectivities which ultimately returns to the initial hyperplane and thus 
effects a certain collinear mapping of that plane on itself; and it is this type of 
collineation, realizable by a chain of perspectivities in a higher dimensional 
space, which corresponds to the linear substitutions without automorphisms. 

In view of these conditions it seems natural to generalize the theory of repre
sentations of a finite group 1' so as to include semi-linear transformations. 
We therefore assume that with every element s of the given finite group 1' 

there is associated an automorphism of the field k, denoted by a -> a': 

(a')t = at•. 

All representations we are going to study are based on that correspondence 
given once for all; an individual representation of degree n represents s by a 
semi-linear operator of the following type: 

(10.3) !' = U(s)f'. 

The law of composition now reads 

U(st) = U(s). U'(t). 

On abbreviating (10.3) again by f' = sf, the operator associated with the 
quantity a = L a(s)-s of the group ring will be 

(10.4) f->f' = af = L a(s)-sf. 
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If multiplication of the ring elements a is to follow the mode in which the 
corresponding operators a are composed, c = ba must be given by 

c(s) = L b(t)a 1(t'). 
tt'=s 

This law defines a modified group ring r depending on what automorphisms are 
associated with the group elements s. 

The operators (10.4) corresponding to all quantities a of that group ring 
will form an algebra @5, although one will hesitate to call it a matric algebra. 
All ordinary linear transformations 

J = Aj, 

which commute with the h operators f ~ sf form a set ~ of matrices which 
we shall call the commutator algebra again although it is not an algebra in the 
strict sense, at least not in k. ~ is closed with respect to matrix addition and 
multiplication; of the membership of aA (a a number, A in ~), however, one 
can be sure only if a is a self-conjugate number in k, satisfying a' = a for all 
occurring automorphisms s. The self-conjugate numbers form a subfield ko 
over which k stands as a relative field of finite order w; the automorphisms s 
form the Galois group of k over ko . ~ is an algebra in ko , and for many pur
poses it might be convenient to consider k0 rather than k the ground field. 
By making use of a basis of k over ko , the operators f ~ af of ~ will then turn 
into ordinary linear operators in ko of degree nw. 

Whatever the merits of this standpoint may be, there is no need for accepting 
it when one sets out to carry the theory expounded in section B of this chapter 
over to the semi-linear case. All results will stand unimpaired, and only trivial 
modifications are necessary with the proofs. The roof operation should now 
be defined by 

a(s) = a'(s-1
). 

As to the trace, the form tr(xy) will not be symmetric and (7.11) is to be 
replaced by 

tr(sxs-1
) = tr'(x). 

In all that is to follow we shall never have occasion to fall back on semi
linear transformations. None. the less we were prompted by three reasons to 
mention this generalization: first, because it costs us almost no effort; second, 
it seems to indicate the natural scope of the method (II); and, finally, because 
the semi-linear transformations have come to the fore in a number of recent 
investigations in different contexts.9 

CHAPTER IV 

THE SYMMETRIC GROUP AND THE FULL LINEAR GROUP 

1. Representation of a finite group in an algebraically closed field 

The next step in carrying out the program laid down in §6 of the last chapter 
is the explicit decomposition of the regular representation of the symmetric 
group 1rf off figures into its irreducible constituents. This construction, while 
yielding a complete set of inequivalent irreducible representations of 1rf , will 
go through wholly within the rational ground field K. Nevertheless such results 
will be obtained as the general theory provides only for algebraically closed 
reference fields. The reason for this behavior lies in the fact, peculiar to the 
symmetric group, that the irreducible parts in K happen to be absolutely irre
ducible. For a full appreciation of our explicit and elementary construction we 
deem it advisable to remind the reader briefly of the essential facts concerning 
representations of a finite group in an algebraically closed field k. They are: 
orthogonality and completeness. 

1. Orthogonality. Let 

s ~ U(s) = II u;k(s) II and V(s) = II Vpq(s) II 
be two irreducible representations of degrees g and g' of the finite group I' of 
order h, (i, k = 1, · · · , g; p, q = 1, · · · , g'), and let II Vpq(s) II = II Vqp(s-1

) II 
be the contragredient matrix V of V. M. designating the mean value ~ ~· 
one then has 

(1.1) 

provided the two representations are inequivalent, while for V(s) 
averages are given by 

{

r 1/g for p = i, q = k, 
(1.2) M.{u;k(s)upq(s) l = 

0 othenvise. 

U(s) the 

The following simple proof is due to I. Schur.1 By means of an arbitrary 
matrix B = 11 b;p 11 of g rows and g' columns one forms 

L U(t)BV-1(t) = c, 
t 

the sum extending to all group elements t. One verifies at once 

U(s)CV-1(s) = C or U(s)C = CV(s); 

hence by Lemma (3.1.D), in case of inequivalence, C = 0: these are the rela
tions (1.1). In the other case, V(s) = U(s), Lemma (3.1.C) permits us in an 

115 
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algebraically closed field k to draw the conclusion C = µE, where the numberµ 
must depend linearly on the arbitrary B: 

Thus 

(1.3) 

µ = L J.'kqbkq· 
k,q 

L U;k(s)upq(s) = 8;pJ.'kq. 
• 

A matrix 11 u;k 11 and its contragredient 11 u;k 11 are related by the equations 

L U;kUiq = 8kq. 
i 

Hence by equating p with i and summing over i one gets 

h8kq = gµkq' 

and so (1.3) reduces to (1.2). 
For the characters 

x .. (s) = L u;;(s), x.(s) = L Vpp(s) 
i p 

one obtains 
_

1 
{ 0 if the two representations are inequivalent, 

(1.4) im.{x .. (s)x.(s ) l = . 
1 if they are eqmvalent. 

An immediate consequence of this orthogonality is the fact that all the 
components u;k(s), Vpq(s), ... of all the inequivalent irreducible representations 
of 'Y are linearly independent, and likewise their characters x .. (s), x.(s), · · · . 

2. Completeness states that they form a complete linear basis for all functions 
or for all class functions respectively, or in other words: the number of inequiva
lent irreducible representations is equal to the number of classes of conjugate 
elements in the group 'Y, and the. square sum g2 + g'2 + · · · of their degrees is 
equal to the order h of 'Y· While orthogonality assigns a property to any two 
given representations the proof of completeness obviously depends on the 
construction of a complete set of inequivalent irreducible representations. But 
the common source whence all these representations spring has been disclosed 
by Chapter III and found in the regular representation ( r) of the group ring r 
associating with each element 

a= L a(s)s 

of r the substitution 

(1.5) (a): x --+ y = ax (x variable in r). 

We know by §7 of that chapter that (r) is fully reducible, and hence according 
to Theorem (3.5.B) is a direct sum of simple algebras each of which is a complete 

·I 
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matric algebra in a certain division algebra over k. However in an algebraically 
closed field k there is no other division algebra than k itself. This follows from the 
same argument by which we specialized Schur's lemma for an algebraically 
closed field and found that the only commutators are multiples of the unit 
matrix. Hence in terms of an appropriate basis e;k, e~q, . . . the generic 
element a of our group ring appears as a number of matrices 

II a;k II, II a~q II, ... 
whose elements a;k, a~q, ... vary freely in k: 

(1.6) 

(1.7) a--+ II a;k II, a--+ II a~q II, · · · 
are the inequivalent irreducible representations contained in the regular one 
and if one writes (1.5) in the form ' 

1/ij = L a;khi, 
k 

I '""' I I 
1/pr = L..., apq~qr' ... 

q 

one realizes anew that each of them occurs as often (g, g', ... times) 
degree indicates (the number t in (3.5.6) related to g by the equation g 
now coincides with g, as the order d of the division algebra equals 1). 
implies the desired completeness: 

h = g2 + g'2 + 

as its 
= d·t 
(1.6) 

a(s) is a class function if a belongs to the centrum, and according to Chapter 
III, §4, these are obtained by specializing the matrices (1.7) to multiples 
aEu , a' Eu' , · · · of the unit matrices, or 

Thus 

(1.8) 

a = a 2:: e;; + a' L e~P + 
p 

E = Le;;, ' "'\""" ' E = L..., epp, • • • 

form a basis of the centrum. Their number is equal to that of all the irreducible 
:epresentations of "f. The e;;, e~P, ... furnish that full decomposition of I 
mto normal idempotent primitive parts we dealt with in §9, Chapter III. 

(1.9) I = E + E1 + ... 
is another normal idempotent decomposition of I which stops short with the 
irreducible two-sided invariant subspaces or the simple algebras of which ( r) 
is the direct sum: 

X =XE+ XE
1 + • · · 

XE = L ~ikeik, 
i.k 
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Here we could conclude. It will, however, help to clarify the situation when 
we add the following considerations. The rule for multiplying matrices is 
equivalent to the following multiplication table of our basis: 

(1.10) 
J e;keki = e;i, e~qe;, = e~, , · · · 

l all other products = 0. 

On computing the trace of the substitution (1.5) first in terms of the "natural 
basis" s, and then in terms of our new basis e;k , e~q , · · · , we find 

h·a(I) = h·tr(a) = g La;;+ g' L a~p + 
; p 

or 

tr(e;k) = 0 (i ~ k), tr(e;;) = g/h; 

The multiplication table (1.10) then shows that only the following products of 
basic elements have a trace ~ 0: 

(1.11) 

Therefore (1.6) leads to 

(1.12) 

But 

II a;k II = L a(s)U(s), a;k = L a(s)u;k(s) 
8 8 

yields the representation U(s) = II u;k(s) II of the group. Considering that 

tr(aek;) = L a(s)ek;(s-1
) 

8 

we thus infer from (1.12) the equations 

(1.13) h ( -!) = - ek; s , 
g 

in the light of which the relations (1.11) contain a new constructive proof of 
the orthogonality relations. 

Combining the formula (1.13) for the character xu(s) with the one (3.7.14) 
expressing it in terms of an idempotent e generating the corresponding invariant 
subspace, we see that 

(1.14) E(s) = ~ ~ eW
1 
st). 

We shall avail ourselves of the hint contained in this equation in the construc
tive decomposition of the regular representation of the symmetric group, to 
which we now proceed. 
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2. The Young symmetrizers. A combinatorial lemma 

We shall depict permutations s off figures 1, 2, · · · , fin the following way. 
We have a chess board consisting off "fields" labeled with the ciphers from 
1 to f, and f men which can be put on the f fields. There are f ! different posi
tions or ways to do this. The men may be made discernible by different colors 
or, if one is not afraid of possible confusions, again by the labels 1, 2, ... ,f. 
A move s is a transition from one such position to another one; it is described 
by the permutation 

(2.1) s: 1 ~ 1 ', 2 ~ 2', ... 

if the man in field 1 is moved by s into field 1', the man in field 2 into field 2', 
etc. What we wish to emphasize is that the permutation (2.1) should be read 
as moving the man in field 1 to field 1' and so forth, and not as replacing the 
man No. 1 in his field by man No. 1', · · · Hence the move shown in our 

board 

men 

11\2\3\4\5\61 

CD®®©®® 
figure is represented by the permutation 

J 11213\4\5\6/ 

®CD®©®® 

1 ~ 2, 2 ~ 5, 3 ~ 6, 4 ~ 4, 5 ~ 1, 6 ~ 3 

and not by the inverse 

1~5, 2 ~ 1, 3 ~ 6, 4 ~ 4, 5 ~ 2, 6 ~ 3. 

A mov.e s, (2.1), followed by the move 

t: 1' ~ 1", 2' ~ 2", ... 

results in the move called 

ts: 1 ~ 1 ", 2 ~ 2", . · · . 

Sometimes it is convenient to have both initial and final position of the men 
simultaneously before our eyes. Then we need two chess boards and two 
identical sets of men. All this seemingly superfluous pedantry amounts to an 
earnest effort to keep clear the order of composition of permutations. 

The problem we are to face is how to generate from an arbitrary tenso~ 
F(i1 · · · i1) of rank/ a tensor eF of "highest possible symmetry" by means of an 
idempotent symmetry operator e. Off hand we know two simple procedures 
of this kind, symmetrization and alternation: 

and 
1 
}'j ~ o,·S, 

generating the class of symmetric and of anti-symmetric tensors; o,, as may be 
remembered, is = + 1 or -1 according as the permutation s be even or odd. 
One can break the line of subindices 1, · · · , f into several sections of lengths 
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J1 , f2 , ... as indicated by the diagram T = T(f1 , f2 , · · ·) and perform sym
metrization with respect to the arguments ia in each row separately. The 
rows shall be arranged in order of decreasing lengths fk : 

(2.2) ft+ f2 + fs + = f. 

1 I 2 3 415 6[7\8 
-------

g 10 11 12 13 
- - - - -
14 15 16 17 18 

- - - - -
19 20 21 22 

-
24[ 23 

Diagram T corresponding to the partition 

24 = 8+5+5+4+2 

With respect to a given diagram T off fields we denote by p any permutation 
which does not exchange men standing in different rows of T, and by q any 
permutation which in the same sense preserves the columns. Our partial 
symmetrization is then expressed by the sum 

(2.3) 
p 

the result of its application on an arbitrary tensor is a tensor symmetric in the 
first f 1 arguments, in the next f 2 arguments, etc. We here suppose the fields 
of our chess board to be labeled by the figures 1, 2, · . · , f in their natural 
order. This process will not result in a primitive symmetry class, i.e. in a 
class of tensors of highest possible symmetry. In order to increase the sym
metry conditions we could follow symmetrization by alternation. If we perform 
alternation with respect to certain of the arguments or fields which we pick out 
at random on our chess board the result will certainly be zero if two of these 
arguments lie in the same row; for if F(ik) is symmetric then F(ik) - F(ki) 
is zero. Hence the best we can do is to select a field in each row, and without 
any essential loss of generality we assume them to be the fields in the first 
column. These considerations suggest the idea of following 1lhe symmetriza
tion (2.3) with alternation with respect to the columns: 

(2.4) 

The final process we associate with the diagram T will then be 

(2.5) c = ba = L Oq·qp. 
p.q 

These "symmetrizers" c were first invented by A. Young. In studying their 
properties we shall follow G. Frobenius or rather the simplified arrangement 
of Frobenius' proofs due to J. v. Neumann.2 We want to show three things: 
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1) that c is idempotent but for a numerical factorµ ~ 0, i.e. that we have an 
equation 

(2.6) cc = µc; 

2) that the idempotent c/ µ e is primitive, so that the set of all tensors cF 
is an irreducibly invariant subspace of tensor space with respect to the algebra 
~ of bisymmetric transformations, or that the set of quantities of the form 
xc is an irreducibly invariant subspace of the group ring considered as a !!
dimensional vector space; and 3) that invariant subspaces generated in this 
way by symmetrizers c and c' corresponding to distinct schemes T and T' are 
inequivalent. 

Is there any chance that we shall then obtain all irreducible representations 
of the symmetric group 'lrf ? The number of different schemes T equals the 
number of "partitions" off into summands f 1 , f2 ,' · · . : 
(2.2) f = f1 + f2 + ... ' !1 ~ f2 ~ ••• > 0. 

The distribution of permutations in classes of conjugate elements is ascertained 
by writing an arbitrary permutation s as the product of a number of disjoint 
cycles. A cycle like (1234) is the permutation carrying 1 -; 2, 2 -; 3, 3 -; 4, 
4 -; 1. The number and lengths of its several cycles describe the class of s: 
a conjugate element is obtained by entering the figures in a different order 
into the scheme of its cycles. For instance 

s = (1234)(56)(7)(8) and s' = (7251)(38)(4)(6) 

are conjugate: s' = rsr-1 where r is the permutation 

12345678 into 72513846. 

If there are a1 cycles of length 1, a2 cycles of length 2, · · · , then these numbers 
a1 , a2 , • • · satisfying the conditions a 1 ~ 0, a2 ~ 0, · · · and 

(2.7) f = la1 + 2a2 + 3as + · · · , 
describe the class. The number of classes is therefore equal to the number of 
solutions of (2.7) by non-negative integers. By putting 

the inequalities a, ~ 0 are changed into f 1 ~ f2 ~ ... and the equation (2.7) 
into f = f1 + f2 + · · · . Hence the number of classes is equal to the number 
of different diagrams. This fact holds out a fair promise that Young's con
struction will yield the full harvest of possible irreducible representations. 

The p's form a group (of order filf2 ! · · · ) and so do the q's. If a permuta
tion s can be put into the form qp then this decomposition into a p and a q 
is unique. Indeed 

qp = q'p' implies q'-1q = p'p-1
• 
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But a p can not equal a q unless it is the identical permutation I; for this is 
the only permutation exchanging men between neither rows nor columns of T. 
Hence 

p'p-1 = q'-1q = I or p = p', q = q'. 

Consequently the definition of c may be given in the form: 

(oq ifs = qp, 
c(s) = ' l 0 otherwise; 

all its coefficients are either 0 or ± 1. 
We might have labeled the fields of our diagram T by the figures 1, 2, · · · , f 

in a different order r1 , r 2 , ••• , r1 . The same move as described before by the 
permutation s would then be described by rsr-1 where r is the permutation 

1 -+ r1 1 2 -+ T2 , • • • 1 

and c is thus replaced by Cr = rcr-1 with the coefficients 

Cr(s) = c(r-1sr). 

The interpretation of the quantities x of our group ring r as operators on 
tensors was here used merely for heuristic purposes; we shall now forget about 
it and rather focus our attention on the fl-dimensional space r or p. The 
invariant subspace of all quantities xc shall be designated by PT = p(f1 , f2 , · · · ) 
and the corresponding representation of the ring r or the group 'lrf (induced in PT 

by the regular representation) by (p(f1 , f2 .. · )). It should be trivial that 
the labeling of the fields is without influence at least as far as equivalence is 
concerned. Indeed the subspace of the quantities y = xc is equivalent to the 
subspace of the quantities y' x'cr = (x'r-1)cr as is readily shown by the 
one-to-one similarity mapping 

y' =yr (x' = xr). 

The investigation of the Young symmetrizers will rest on a single combina
torial lemma dealing with two diagrams T, T'. We arrange all diagrams in 
alphabetic order such that T = (!1 , f2 , · · ·) precedes or stands higher than 
T' = (f~ , f~ , · · · ) if the first non-vanishing difference 

f1 - f~ ' f2 - f~ ' ... 

is positive. Any distribution of our f men over the f fields of T shall be denoted 
by { T}. The move changing a given { T} into a given { T' I is a permutation 

s: {T}-+ {T'}. 

The fields in each diagram T are supposed to be labeled by 1, 2, · · · , f in their 
natural order. 

LEMMA ( 4.2.A). Let { T} and { T'} be any distributions in the schemes T and T', 
and let T be not lower than T'. Then there are two possibilities: 

I 
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1) either there are two men standing in the same row of {Tl and in the same 
column of { T'} ; 

2) or T = T' and the permutation { T} -+ { T'} is of the form qp. 
PROOF. p', q' shall have the same significance with respect to T' a,,; p, q 

have for T. The f1 men occupying the first row of Tin {Tl must be distributed 
in some way over the f~ columns of T' in { T'}. If f 1 > f; , at least two of 
those men must lie in the same column of T': alternative I). If however 
fr = f~, and alternative I) is false, then each of them must lie in a different 
column of T'; by a permutation q' preserving the columns of ( T' l we can bring 
them to head their respective columns. We then omit these f 1 men which 
occupy the first row in {Tl as well as in the modified q' { T' l and cancel the 
first row in both schemes. We then argue in the same way for the second row 
which now has become the first row in the decapitated schemes T T' and 
continue this procedure. Either we shall encounter at some stage v' a l~nger 
row in T than in T': 

f f
l I I 

1 = 1 ' . . . ' f--1 = f •-1 ' f, > f' ' 

or T = T'. In the first case the same argument shows that the first alternative 
must hold, while in the second case this alternative can be avoided only if a 
?ertain q' causes. the modified q' { T'} to coincide with {Tl as to the men occupy
mg each row, with however no regard to their order therein. Hence a certain 
shuffling p of the men in the rows of {Tl together with the rearrangement 
q' of the men in the several columns of { T' l will bring the two distributions 
into full coincidence: 

T = T', p {Tl = q' { T' j. 

This equation, or { T' l = q'-
1
p { T), means that the permutation { T} -+ { T'} 

has the form qp. Indeed, since the numbers are attached to the fields rather 
than to the men, a q' is a q if T' = T. 

We restate our lemma in a second form now separating the two cases: T higher 
than T', and T = T'. In the latter case one should replace the notation { T'}, 
there meaning another position on the chess board T, by {T}'. If the first 
alternative 1) of Lemma (4.2.A) prevails we denote by u the transposition of 
the two men in their initial position in ! Tl and by v' the same for their final 
position in { T'). s again being the permutation { T} -+ { T' l we then have 

u is a p and v' a q'. 
su = v's; 

LEMMA (4.2.B). Let T be a given diagram. 
there are two transpositions u, v such that su = 
vis a q. 

If s is not of the form qp then 
vs and such that u is a p, while 

LEMMA (4.2.C). If Tis higher than T' ands is an arbitrary permutation, we 
can find a transposition. u of type p and another one v' of type q' such that su = v' s. 

Indeed we take any position {Tl and introduce that position ( T'} on the 
second chess board T' into which { T) passes bys. 
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3. The irreducible representations of the symmetric group 

The coefficients c(s) of c evidently satisfy the following relations: 

(3.1) c(sp) = c(s), c(qs) = Oq·C(s). 

LEMMA (4.3.A). Any quantity d satisfying the same conditions 

(3.2) d(sp) = d(s), d(qs) = Oq·d(s), 

is a numerical multiple of c: 

(3.3) d = "Ac, d(s) = "Ac(s); A = d(I). 

PROOF. From (3.2) we derive d(p) = d(I), then d(qp) = 8qd(p) = 8qd(I)• 
and so conclude the validity of (3.3) for permutations s of the form qp. 

If 8 is not of this form we make use of the two transpositions u, v supplied 
by Lemma (4.2.B) and thus obtain as a consequence of (3.2) 

d(su) = d(s), d(vs) = -d(s), 

which together with su = vs results in d(s) = -d(s) or d(s) = 0. . 
LEMMA (4.3.B). If Tis higher than T' any quantity dsatisfying the relations 

d(sp) = d(s), d(q's) = Oq'·d(s) 

is necessarily zero. 
PROOF by Lemma (4.2.C) following the same argument as in the second part 

of the previous proof. 
THEOREM (4.3.C). cxc is a multiple of c; in particular cc = µc. 

PROOF. The quantity d = cxc, 

d(s) = L c(t)x(r)c(t'), trt' = s, 

has the properties (3.2). 
THEOREM (4.3.D). T being higher than T', any quantity of the form c'xc is 

zero; in particular c' c = 0. 
PROOF analogous. 
In Chapter VII incidental use will be made of the slightly sharper relation 

(3.4) c'xa = 0 

involving a, (2. 3), instead of c. 
Theµ in Theorem (4.3.C).is the integer 

(3.5) µ = L c(s)c(s-
1
). 

It is important to know t{lat it is ~O. We prove that it is positive. ~ccording 
to (3.5) the numberµ tells us.how much oftener it occurs that a solution of the 

equation 
q1p1q2p2 = I 

has two q's, q1 and q2 , of equal parity 8q, = 8q2 than of opposite parity. 

SYMMETRIC GROL'P AND FULL LINEAR GROUP 125 

THEOREM (4.3.E). If g is the dimensionality of the subspace Pr, then 

(3.6) µg = f!. 

PROOF. Pr consists of all quantities of the form xc. The substitution 
x --7 x' = xc changes every quantity x into a quantity x' of Pr and within PT 

it is multiplication by µ: 

(xc)c = x(cc) = µ. (xe). 

If one adapts the coordinate system to the subspace Pr one sees at once that 
the trace of that substitution equals gµ. But by use of the natural basis, the 
permutations s, we find that the trace of 

x'(s) = L x(t)c(t-1s) 
t 

is equal to f!c(I) = f! 
Incidentally our theorem shows that g = g(fif2 · · · ), the degree of the repre

sentation (p(fJ2 · · ·) ), is a divisor of the order f! of our group. The corre
sponding statement in the general theory, that the degrees of absolutely 
irreducible representations of a finite group are divisors of its order, is true, as 
a matter of fact, but lies relatively deep; we therefore declined to prove it 
in §1. 

We now introduce the idempotent 

(3.7) 
1 g 

e=-c=-c 
µ f! 

and show: 
THEOREM (4.3.F). 
Indeed let 

e is a primitive idempotent. 

be a decomposition of e: 

e2e1 = 0, 

Then ee1 = e1 , ee1e = e1e = e1 , and hence by Theorem (4.3.C), e1 = Ae. Because 
e1 is idempotent the numerical factor A satisfies A2 = A. Therefore A is either 
1 or 0, and e = e + 0, e = O + e are the only possible derompoHitions of the 
idempotent e. 

THEOREM (4.3.G). If T ~ T', the two irreducibly invariant subspaces Pr, PT' 

are inequivalent. 
PROOF. Suppose T higher than T'. By Theorem (4.3.D) every quantity 

X = xe' in Pr• then satisfies the equation ex = 0 while in Pr there is at least the 
one quantity x = c for which ex ~ 0. This precludes the possibility of a one
to-one similarity mapping of Pr upon Pr· . 
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(1.14) leads us to introduce the quantity E by 

(3.8) t(s) = ! L e(C1st) = \ L c(C1st); 
µ t µ- t 

t(s) is evidently a class function, and hence t lies in the centrum of the group 
ring. 

LEMMA (4.3.H). t't = 0 or t according as E and t' belong to distinct diagrams 
T, T' or to the same diagram T. 

PROOF. We may write 

(3.9) 1 """' t -I E = - ,L,, Ct . 
µ2 t 

Hence the equation t' t 0 is an immediate consequence of Theorem (4.3.D) 
if T stands higher than T'. But as t lies in the centrum, t' E = EE'; hence EE' = 0 
under the same assumption, and finally t' E = 0 whether T stands higher or 
lower than T'. 

The product tc( = ct) equals 
(3.10) 

but for the factor/. By Theorem (4.3.C), ct-1c = A·C where 

;\ = L c(s)c(s'), sC1s' = I, 

or 
;\ = L c(ts-1)c(s) = cc(t) = µc(t). 

Hence (3.10) equals 

µc L c(t)t = µcc = µ2c, 

or 
EC= C. 

As t is in the centrum this implies 

ttct-1 tcC1 

and thus by summing over t 
EE = E. 

Our lemma implies the orthogonality relations for the characters 

(3.11) ( ) f! ( -!) ( -!) XS =-ES =µ·ES. 
g 

It shows that the class functions E(s), t'(s), ... corresponding to the different 
diagrams T, T', . . . are linearly independent. As the number of different 
diagrams is equal to the number of classes in 'Tr/ , every class function must be 
a linear combination of those basic functions. In particular an equation like 

I = A. E + ;\'. E1 + ... 
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must hold with numerical coefficients ;\, ;\', 
lemma yields 

On multiplying by E the 

E = A· E or ;\ 1. 

Hence we have the decomposition of I, 

(3.12) I= E + E
1 + 

which in its way, i.e. in the domain of class functions, is the utmost one can get. 
THEOREM (4.3.J). The unit element I of the group ring splits into the several 

central E which correspond to Young's symmetry diagrams T. 
(3.12) may be written as 

1 """' . + 1 """' ·' + X = -2 ,L,, XCr /2 ,L,, XCr • • • , 
µ r µ r 

and this shows that the sum of the invariant subspaces generated by all the 
c, , c; , · · · makes up the total f !-dimensional space. Because these subspaces 
are irreducible we can according to Lemma (3.2.B) pick out a certain number 
among them that are linearly independent and whose sum is the total space. 
This is the decomposition of the regular representation into irreducible constit
uents. We know a priori, and can deduce it anew from (3.12) when written 
in the form 

(3.13) f! l(s) = gx(s) + g'x'(s) + · · · , 
how often each irreducible component will appear: as often (g times) as its 
degree indicates. [In (3.13) the left side is the character of the regular repre
sentation.] However we shall not attempt to carry through this decomposition 
in the same explicit constructive manner as the decomposition (3.12) into the 
two-sided invariant subspaces. 3 The latter suffices for all important purposes 
and, involving no arbitrariness, has the advantage of uniqueness. 

4. Decomposition of tensor space 

As in Chapter III §6, we now denote by ~1 the algebra of all bisymmetric 
linear transformations 

A1 = II a(i1, · · · , i1; k1, · · · , k1) II 
in the tensor space P1 of rank f. 

THEOREM (4.4.A). P1 splits into a number of irreducible invariant subspaces 
};a with respect to the algebra ~1 in which ~1 induces the representations (~a). 
Any invariant subspace of P1 decomposes into irreducible parts each of which is 
similar to one of the subspaces };a . 

More generally: any representation of ~1 is fully reducible; if irreducible it is 
equivalent to one of the (~a). 

Not only did we prove the first part of this theorem [Theorem (3.9.D)), but 
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we have now given a quite elementary construction of the irreducible subspaces 
into which P1 splits. The tensors of each of them can be generated by a Young 
symmetrizer working on a perfectly arbitrary tensor. The second part follows 
from the general Theorem (3.5.C). 

In applying the method of part B in Chapter III one should know that two
sided invariant subspace po = ~P1 of p which is the linear closure of all quantities 
F(.; ii ... i1) with the coefficients F(s; ii · · · i1) = sF(ii · · · i1), (F any tensor, 
the ia having any values between 1 and n). For this purpose one ought to 
observe: 

LEMMA (4.4.B). cF = 0 for any tensor F if the diagram T of the Young sym
meterizer c contains more than n rows. In the opposite case there exists a tensor 
Fo such that cFo ~ 0. 

PROOF. cF is anti-symmetric in the arguments of the first column of T. 
Hence if this column is longer than n our tensor must vanish. 

If on the contrary T consists of m ~ n rows we introduce the tensor <Po all of 
whose components are zero except the one 

(4.1) q,0 (~ ••• ~. • • • • • 2 I) = 1. 

m ··· m 

The arguments ii, . · ·, i1 are here arranged according to the diagram T. This 
<Po is symmetric in the arguments of each row; the process c when applied to <Po 
effects only the alternation with respect to the columns. Hence Fo = c<Po is, 
but for a simple numerical factor ~ 0, that tensor which has the component oq 
for any argument values arising from those in (4.1) by a permutation q of the 
columns, and all other components zero. 

The lemma shows that the partitions that matter in tensor space are those 

(4.2) fi + f2 + · · · + f n = f, fi ~ f2 ~ · · · ~ f n ~ 0, 

into n summands, while in the analysis of the symmetric group all partitions 
whatsoever come in. The difference disappears if and only if n ~ f. Allowance 
for the possibility fn = 0 in (4.2) enables us to formulate the limitation as one 
to n rather than ~ n summands. 

In view of the definition (3.8), rP = 0 if 1: corresponds to one of the diagrams 
excluded by that restriction. Hence 

(4.3) F = 1:F + 1:' F + ... , 
where the sum ranges only over the diagrams of not more than n rows. 
any x in p0 we have in the same sense 

x =xi+ xi'+ ... ' 
or 

x = xi = ix 

For 
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where the sum 

(4.4) i = e + E' + ·. · 
extends only over those diagrams. i lies in the centrum of p. Incidentally, 
t = f and hence i = i, since s-1 is conjugate to sin the symmetric group (its 
cycles have the same length as those of s). We assert that i itself lies in Po 
and is therefore the unit element in po . To prove this we proceed as follows. 
The c belonging to a diagram of not more than n rows lies in Po . Indeed the 
set p~ of all quantities of the form xc with x in p0 is a (left-) inrnriant subspace 
contained in the space Pr of all quantities xc where x ranges freely over the whole 
p, since Po is left-invariant. Pr being irreducible, the part p ~ is either 0 or the 
whole Pr . The first possibility is excluded by the previous lemma, and hence 
P~ = Pr . Since Po is right- as well as left-invariant, p~, is contained in Po . 
As c = ( .c lies in Pr, this shows that c lies in Pc . Again making use of the 
two-sided invariance of Po we infer that €, (3.9), is in Po, and as this applies to 
any term in the sum (4.4), so does i. 

THEOREM (4.4.C). The sum 

i=f+i+ 
extending to all diagrams of not more than n rows is the unit in p0 • 

Thus we can specify the statement of Theorem (4.4.A) to this effect: 
THEOREM ( 4 .4 .D). If c is a Young symmetrizer corresponding to a partition 

(4.2) into n summands, then the tensors cF form a non-vanishing irreducibly 
invariant subspace P(frf2 · · · fn) of the tensor space P1. In the decomposition of 
P1 this part will occur as often as the dimensionality g of the subspace in p of all 
quantities of the form xc indicates, a number which is given by 

(4.5) f ! 
g = - ' 

µ 

Different diagrams give rise to inequivalent subspaces. Each irreducible invariant 
subspace is similar to one of the spaces P(f1 • . • fn). 

Long since we should have observed that the symmetric tensors as well as 
the anti-symmetric tensors form an irreducibly invariant subspace, though the 
latter is zero if f > n. They correspond to the partitions 

f = f and f = 1 + 1 + ... 
respectively. 

We still have to insert the cornerstone into this whole edifice by proving 
that W1 is the enveloping algebra of the group of all transformations 

II1(A) = A X A X · · · X A (f factors) 

induced in tensor space by the non-singular linear transformations A = 11 a(ik) 11 

in vector space. This was the observation that primarily set loose our whole 
flight of investigations from Chapter III, B, on. But with the same effort 
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we can accomplish more by taking into simultaneous consideration all the tensor 
spaces Po , P1 , · .. , P1 of any rank v ~ f. We introduce the algebra ~UJ whose 
elements 

A Ul = (A1 , A1-1 , · · · , Ao) 

are composed of arbitrary bisymmetric matrices 

Av = 11 a(i1 ... iv ; k1 ... k.) II 

in Pv, (v = f,J - I, · · · , 0). The A Ul induced by the non-singular A in vector 
space is defined as 

(4.6) n(f)(A) = (IT,(A), IT1-1(A), ... I Ilo(A)). 

THEOREM (4.4.E). ~UJ is the enveloping algebra of the group of the nul(A) 
induced by all non-singular linear transformations A in vector space. 

PROOF. Were the enveloping algebra ~UJ actually smaller than ~UJ there 
would be a linear relation 

! 

(4.7) 2: L -y(i1 · .. i.; k1 .. · k.)a(i1 ... i.; k1 ... k.) = 0 
v=-0 i, k 

with fixed "bisymmetric" coefficients 'Y holding for all elements of ~UJ or for 
all elements (4.6), i.e. the following polynomial of the n 2 variables a(ik), 

I 

2: 2: -y(i1 ... i.; k1 ... k.)a(i1k1) ... a(ivkv), 
v=O i,k 

vanishes for all values of the variables satisfying the algebraic inequality 

det (a(ik)) ~ 0. 

But then it vanishes identically. When we look upon the pair (ik) as a single 
index j we realize that the coefficients 'Y of this polynomial are written in sym
metric form and hence all the coefficients 'Y must vanish-contrary to our 
assumption of a non-trivial relation (4.7). In consequence of our last proposi
tion we can assert:4 

THEOREM (4.4.F). The statements (4.4.A) and (4.4.D) are true even when the 
terms invariant, irreducible, etc. are interpreted relatively to the group of trans
formations induced in tensor space by the group GL(n) in vector space. 

Any representation A -t T(A) of GL(n) where the elements of T(A) are forms 
of degree f with respect to the elements a(ik) of A is fully reducible, and its irreducible 
constituents are equivalent to those (P(f1 .. · fn)J that proceed from the decomposi
tion of P1 . (If the elements of T(A)" are polynomials of degree f, full reduction 
prernils likewise, and the irreducible constituents are equivalent to the (P(f1, · · ·, 
fn)J withf1 + ... + fn ~ f.) 

No two irreducible representations of GL(n) coming from tensor spaces of different 
rank are equivalent. 

(P(f1 ... fn)), of course, denotes that representation of the full linear group 
whose substratum is the tensor set P(f1 · · · fn). 
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\Ve have to add a proof of the last remark of our theorem. Let the two ranks 
bef and v < f. According to Theorem (4.4.E), we may consider (P1, P1_1, ... , Po) 
as the substratum of all the 

A UJ = (A1 , A1-1 , · · · , Ao) 

in ~en. Let the tensors F1 and F. of rank f and v range over irreducibly in
variant subspaces of P1 and P. respectively, and suppose we are given a one
to-one similarity mapping F1 ~ F. . The same mapping must match A 1F1 
against A.F. . But there is a particular A UJ for which A 1 is the unit matrix 
and A. = O; we then find that every F1 is matched against zero. Hence both 
subspaces must be the zero space. 

5. Quantities. Expansion 

Under GL(n) the manifold of all tensors in P(f1 · · . fn) is the range of a quantity 
of type (P(f1 · · · fn)J or, as we like to say, of signature (f1 , • •• , fn). We 
X-multiply two such quantities of signatures (!1 , ... , fn) and (g1 , ... , Un) 
respectively by considering all tensors 

F(i1 · · · i1 k1 · · · ku) 

of rank h = f + g which, as functions of the first f = f1 + · · . + f n arguments i, 
lie in P(f1 · · · fn), and as functions of the last g = g1 + · ·. + Un arguments 
k lie in P(g1 · · · Un). A basis for these tensors would be obtained from the 
product 

F(i1 · · · i1)G(k1 · · · kg) 

by letting F range over a basis of P(j1 -. · · fn) and Gover a basis of P(g1 ..• Un). 
Like every other invariant subspace of Ph it breaks up into irreducible invariant 
parts each of which is similar to a P(h1 .. · hn) with h1 + ... + hn = h. 

The class of primitive types with which we are concerned is therefore closed 
with respect to the operation of multiplication (followed by decomposition into 
primitive parts). If we admit the covariant vector as one type our class is 
obviously the smallest one fulfilling this requirement, because the tensor of 
rank f is the X-product off vectors. The contra variant vector ~ however, is a 
simple example of a type not falling under our scheme. Should we limit our
selves to unimodular substitutions A, then ~ would behave like the bracket 
product 

(5.1) 

of n - 1 convariant vectors which we used in Chapter II, §8, or as a skew-sym
metric tensor of rank n - 1, or as a quantity of signature (1, ... , 1, 0). But 
with respect to arbitrary elements A the law of transformation for ~ differs from 
that for (5.1) by a factor 

A-1
, A = det A. 
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This suggests the following general remark. From a given representation R(A) 
we can derive the representation 

(5.2) A -~ I A i' R(A) 

of the same degree; e denotes any integral exponent. If R(A) is the representa
tion of signature (!1 · · · fn) and e ~ 0, then (5.2) has the signature (!1 + e, · . · , 
fn + e). Indeed, put e columns of lengths n in front of the diagram T(f1 · .. f n) 
so as to obtain T(f1 + e, · · · , fn + e). Consider the tensors F skew-symmetric 
in the arguments of each of these columns and of the symmetry T(f1 · .. fn) in 
the rest of the arguments; they obviously form an irreducible invariant subspace 
which could be described as 

(5.3) P(e, · · · , e) X P(f1, · · · , fn). 

P(e + f1, · · · , e + fn) is part of (5.3) and hence, considering the latter's irreduci
bility, must coincide with it. The fact thus proved enables us to assign to the 
representation (5.2) the signature Cf1 + e, · · · ,fn + e), if R(A) is the representa
tion U1, · · · , fnJ, irrespective of whether e is ~ 0 or < O; for it depends on the 
sums f1 + e, · · · , f n + e only. The effect of this slight generalization is that the 
condition f n ~ 0 is removed: any integers fr, · · . , fn in decreasing order, 

(5.4) 

constitute a signature for a certain irreducible representation. We shall use the 
word quantic coined by Cayley for the corresponding primitive quantities. 
The contravariant vector is now included as the quantic of signature 
(0, 0, · · · , - 1). The X-product of two quantics of signatures (fr · · · fn), 
(gr · · · Un) breaks up into a certain number of independent quantics of certain 
signatures (hr · · · hn): the closure with respect to multiplication is not lost by 
our generalization. All types are obtained from the symmetry diagrams 
T(fr · · · fn-r 0) with n - 1 rows only by adding the factor Ll' with any integral 
exponent e. 

Beside the covariant tensors heretofore considered, one ought to consider 
the contravariant tensors <l>(ir · · · i1) whose transformation law differs from 
(3.6.1) by substituting the contragredient matrix II d(ik) II for II a(ik) II. What 
is the relationship between the covariant tensors of a given symmetry T(fr · · · f n) 
and the contravariant tensors of the same symmetry? I maintain: while the 
former constitute a primitive quantity of signature (!1 ... fn), the latter consti
tute one of signature ( - fn, . · · , - fr). In particular, a contravariant form of 
degree r, 

( ) "'"' r ! 'I 1· 
<{J X = L.J I ! <{Jr 1 ... ,.X1 • • • X,;• l rr . ... rn. 

is a primitive quantity of signature (0, ... , 0, - r). 
invariant multilinear forms 

L <l>(iri2 · · · i1) Xi 1Y; 2 • • • Z;1 

(r1 + · · · + rn = r) 

Let us consider the 
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depending on f covariant vectors x, y, .. · , z, where <I> ranges over the irreducible 
set P*(f1 · · • fn) of all contravariant tensors of symmetry T(fr · · · fn). By 
making the substitution similar to (5.1), 

X = [t(l) · • · t(n-r)J, · · · ' 

we obtain an invariant set l: of forms which depend linearly on (n - l)f contra
variant vectors, or of covariant tensors of rank (n - l)f. The corresponding 
representations differ by the factor Ll1 ; hence l: is irreducible just as P*Cfr · · · fn), 
and is therefore similar to some P(ft ... f~). This shows that the contra variant 
tensors of symmetry T(fr ... fn) constitute a primitive quantity of some 
signature 

u;, ... , 1~>; /=ft -f. 

In order to prove that 

(5.5) / = - fn+r-i 

I make formal use of characters. I shall be careful to arrange the argument so 
as to allow immediate transference to the orthogonal and other groups. Merely 
the "diagonal" transformations 

(5.6) 
I 

X; = t;X; 

in GL(n) will be considered. Each tensor component Fa 
on a factor, its "weight", 

F(ir · · · i1) takes 

under the influence of (5.6). Any invariant subspace l: of P1 is characterized by 
a certain number of linear equations among the n1 tensor components Fa· 
According to these equations a certain number of tensor components Ff! (of 
weights TJfJ) are linearly independent in l: whereas each tensor component Fa is 
linearly expressible by this basis Ff! within l:. Incidentally Fa can be a combina
tion of only such F 11 as are of the same weight as Fa· This is a special case of 
the general Theorem (3.1.E). We repeat the argument. Let 

(5.7) Fa = 2: b11F11 
/J 

be the relation holding for all tensors F in l:. As l: is invariant under the 
substitution (5.6), the tensor with the components riaF a also lies in l:: 

(5.8) T/aF a = 2: b11rifJF /J • 
/J 

On multiplying (5. 7) by T/a and subtracting from (5.8) one finds 

L b11(TJfJ - ria)Ff! = 0. 
fJ 

Consequently 
0 
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and hence bfl = 0 whenever 77/J ~ 17a· We therefore may determine the basis Fil 
by picking out a basis among the tensor components of each weight separately; 
the terms corresponding to distinct weights will be linearly independent by 
themselves. Using the basic Fil as coordinates in~' the transformation induced 
by (5.6) in ~ is also in diagonal form, and if km, · · · m,. is the number of basic 
components of weight 

17 = m1 mn 
E1 •• • En l 

then its trace, the character, is the polynomial 

'""" k m1 mn L....J m1 · · · mn Et · · • En 

with non-negative integral coefficients k. 
We arrange the terms of this polynomial in the familar lexicographic order. 

For ~ = P(f1 ••• fn) the highest possible weight is E{
1 

• • • E~" and according to 
Lemma (4.4.B) and its proof, there is exactly one linearly independent com
ponent of that weight, namely 

(

1 1 1 .. ") 

F ~ . . ~.::. . 
n ... 

Consequently the character begins with the term 

} . E{1 · · • E~". 

In the same manner one readily sees that the lowest term is E{" • · · E~1 • The 
result holds for the representation of signature (!1, · · · , fn) whether fn is ~ 0 or 
< 0. 

(5.6) is accompanied by the transformation 

I 1 
~i = - ~i 

E; 

for contravariant vectors ~. Hence the character of P*(f1 · · · fn) arises from 
that of P(j1 ••• fn) by replacing each E; by 1/ E;. This reverses the lexicographic 
order, and the highest term in the character of P*(f1 · · · fn) is therefore 

which proves our statement (5.5). 

L F(i1 ... i1)cJ>(i1 ... i,) 

being invariant, the representa;tions (P(f1 · · · fn)) and (P*(f1 · · · fn)) are con
tragredient to each other. Thus 

(!1, · · · , fn) and ( - f "' · · · , - fi) 

are contragredient types, and this remains true even if fn < 0. 
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THEOREM (4.5.A). The contravariant tensors of symmetry 

T(fi • · • f n) (Jn ~ 0) 

constitute a primitive quantity of signature ( - fn, · · · , - f 1). The irreducible 
representations of signatures 

(!1, · · · , f n) and ( - fn, · · · , - f1) 

are contragredient to each other (even if fn < 0). 
The generalization introduced by the factor A' with negative exponent e has 

the effect that the types of quantics are closed not only with respect to multipli
cation, but also under "conversion", the process of changing a type to its 
contragredient. 

At the very beginning of our investigation we established the Capelli identities 
and showed how to reduce inductively by means of them forms depending on 
any number of vector arguments to forms in not more than n or even n - 1 
arguments. We are now enabled to carry out that induction in a somewhat 
more explicit way. The "expansion" (4.3) may be looked upon as its result5

• 

With a tensor F(i1 • · · i1) we associate the multilinear form 

L(~(I) • ... , ~(/)) = I: F(i1 ... i1)~;:) ... ~w 
i l ... if 

off (contravariant) vectors ~<1 \ • •• , ~u;_ We carry out the operation c on F 
in two steps: first the symmetrization a = L p and then the alternation b = 
L Oq · q. The first step may be accomplished in two stages: we' identify the first 

f (I) t<ftl th h t f tUi+ll tUi+J,l -
i vectors ~ = · · · = ,, = ~. en t e nex 2, ,, = · · · = ,, - 11, 

etc., and then completely polarize the form Lo(~, 11, · · · ) thus obtained which 
does not depend on more than n arguments ~. 17, .. · • In view of (3.9) the 
equation (4.3) then states that L is a linear combination of forms which arise 
from forms Lo(~, 17, • • • ) of not more than n arguments by complete polarization; 
in the latter process the arguments ~<ll, . · · , ~(fl are used in all of their f ! possible 
arrangements, while L.o(~, 17, ••• ) originates from L by identifying its arguments 
~OJ, . · · , ~UJ in some way (among each other and) with the arguments ~' 11, · · · 
of L0 • If L is invariant with respect to a given group of linear transformations 
so will be each Lo(~, 11, · .. ) and the forms into which Lo changes by polarization. 

We may go one step further in agreement with what we called Capelli's 
special identity. If a diagram T contains e > 0 columns of length n, then T 
belongs to a partition 

(!1 + e, · · · ,fn-1 + e, e) 

and the tensors F of the symmetry T or the associated forms L are then of the 
type 

[e11 1 
• • • r'J · · · [~<·J11<•l · · · 1<•l] .L' 

where L' belongs to the diagram T(f1, • • • , f n-i, 0) of n - I rows only. Hence 
L' arises by polarization and alternation from a form of n - 1 arguments and 
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will at least be a relative invariant under the given linear group provided L is 
such (the weight having changed by a factor A-•). 

The importance of the full linear group GL(n) lies in the fact that any group 
I' of linear transformations is a subgroup of GL(n) and hence decomposition of 
tensor space with respect to GL(n) must precede decomposition relative to I'. 
One should, however, not overemphasize this relationship; for after all each 
group stands in its own right and does not deserve to be looked upon merely as 
a subgroup of something else, be it even Her All-embracing Majesty GL(n). 

CHAPTER V 

THE ORTHOGONAL GROUP 

A. THE ENVELOPING ALGEBRA AND THE ORTHOGONAL IDEAL 

1. Vector invariants of the unimodular gro'up again 

For each of the classical groups in n-space P like GL(n) and O(n) we shall 
find an appertaining algebra ~11 of bisymmetric transformations in tensor space 
P1. They are contained in the algebra of all bisymmetric transformations, and 
in this role of a common container the latter shall from now on be designated 
by .IT1 . 'Vhen we want to study all tensor spaces P. of rank v ~ f simultane
ously, we string together the bisymmetric transformations A. in P. to form the 
single matrix 

(1.1) 

A1 I: 
A1-1 Ii 

. 11· . I' 
. 11 

Ao 
1

1 

All the matrices A Ul with arbitrary bisymmetric components A. form the 
algebra St\ui_ 

Given any group I' of linear transformations A = lla(ik)ll in then-dimensional 
vector spare P, the corresponding product transformations 

II1(A) = A X A X · · · X A (A in r) 

in P1 form a group II1(r) homomorphic with I'. rr<fl(A) is the string (1.1) of 
matrices Av = IIv(A), and n<f\r) is the group over which rr<n(A) varies with A 
ranging over r. We set out to determine the enveloping algebra1 of II1(r) by 
making use of our general criterion, Theorem (3.5.D). For that purpose we 
are to consider the commutator algebra ~1 of II1(r). The matrix 

(1.2) 

commutes with all II1(A) if 

(1.3) (A-1 X ... X A-1)B(A X · · · X A) = B. 

(1.3) states that the form 

(1.4) L b(i1 ... i1; k1 ... k1 )~)~) ... ~;~) Yk~) ... YW 
i;k 

137 
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depending on f covariant and f contra variant vectors 

~(l)' • . • ' ~(/) 

is an invariant with respect to the group r. Hence the determination of the 
commutator algebra 581 is equivalent to the problem of vector invariants as 
solved by the first main theorem. When we turn to nu> (I') we are to ask under 
what conditions a matrix 

B11 Bio 
(1.5) B= 

Bo1 Boo 

commutes with all rru>(A), A in r. In the same manner we find that 

Buv = llb(i1 · · • i,,; k1 · · • kv)ll (O ;£ u, v ;£ f) 

is to be the coefficient matrix of an invariant 

(1.6) '°' b( 0 0 

• k k )t(l) t(u) (!) (v) £...J 21 • • • 2u' 1 • • • V <;i1 • • • <;iu Yk1 • • • Ykv 
i;k 

depending on u contravariant and v covariant vectors ~and y. 
In the case of the full linear group GL(n) we were able to find the enveloping 

algebras in the simplest way; they turned out to be st'1, stiu> respectively. Here 
we may therefore use our principle for proving anew the first main theorem con
cerning its vector invariants, as shall be done in the present section. In more 
intricate cases, however, and in particular for the orthogonal group, the same 
principle will allow us by means of Theorem (2.9.A) to deduce the enveloping 
algebra from the integrity basis for vector invariants. 

Within the linear set P1 of all tensors F(i1 ••• i1) of rank f in n-space, the 
symmetry operators a }:a(s) · s form a fully reducible matric algebra 10; the 
permutation 

(1.7) s: 1 ----'> l '' 2 ----'> 2', . . . ' f ----'> f' 
appears as the matrix 

(1.8) 

The commutator algebra of 0 is the algebra st'1 of all bisymmetric matrices A1 
[Theorem (4.4.E)]. Hence, according to Theorem (3.5.B), 0 is the commutator 
algebra of st'1. Consequently the coefficient matrix of any invariant (1.4) must 
be a linear combination of matrices of the form (1.8), to which the invariant 

(1.9) (~(l)y(l'))(~(2)y(2'1 ... (~(/)y(/')) 

corresponds. In other \•,;ords: any invariant depending linearly on f covariant 
and f contravariant vectors y and ~ is expressible in terms of the products of 
type (~y). In (1.9) the permutation (1.7) appears as matching f "male" 
symbols y with f "females" t. 
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From this one succeeds fairly easily in establishing again our old table 

[xy · · · z], (~x), [~11 ... S-l 
as a full set of typical basic invariants for the unimodular group. One has to 
consider invariants J depending on a number of Latin and Greek arguments. 
By complete polarization one may assume J to be linear in each argument. 
One then shows that the difference h between the number of Latin and Greek 
arguments must be a multiple of n, h = ng, and that J changes into au. J by a 
linear transformation of determinant a. Indeed, consider the effect on J of 
the following two substitutions: 

aE = 
a 

a 
and (a) = 

a 
1 

a · 1 

The first changes J into ah. J, the second into a sum L: a;· F;; the exponents h 
i 

and i are integers, though not necessarily positive. Replacing a by an in the 
second procedure, and considering that (an) and aE differ by a unimodular 
transformation Ao, 

one obtains the identity in a: 
h J '°' F ni a · = £...J ;·a . 

i 

This shows that on the right side but one term i = g is present and h = ng, 
Fu = J. Therefore the substitution (a), and consequently every substitution 
of determinant a, changes J into au· J. 

In the case g = 0, where one has the same number f of Latin and of Greek 
arguments, J is an absolute invariant and thus expressible in terms of the Ctx). 
If, however, the number of Latin arguments surpasses that of the Greek by 
n (g = 1) we introduce n auxiliary Greek arguments t', 11', · · ·, t', and express 
the absolute invariant 

(1.10) 

in terms of the (~x). (1.10) is skew-symmetric inf, 11', · · · , S-'; so if we perform 
all the n ! permutations of e' 171

, ••• ' s-' and form the alternating sum, we obtain 
an expression for 

n!J · [(11 1 
• • • S-'] 

where on the right side a factor like 

((x) · · · (S-'z) 

in each term has been replaced by the determinant 

((x), · · · , (S-'x) 

<ez), · · · , (t'z) 
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Since this determinant 

= [xy ... zJ.[e 77 1 
••• n 

one is able to cancel the auxiliary factor [~' 77 1 
• • • t']. This process is to be 

repeated if the number of Latin arguments surpasses that of the Greek by 2n or 
3n or · · · , and it is clear what to do when, conversely, the latter number sur
passes the former. 

2,. The enveloping algebra of the orthogonal group 

The following lemma is important in many instances: 
LEMMA (5.2.A). Any set of orthogonal transformations in a real fi.eld k is fully 

reducible. 

PROOF: Let P be the vector space on which the orthogonal transformations C 
of the given set {Cl operate. P' being any subspace of P invariant under {Cl 
we construct the subspace P" perpendicular to P' in P: a vector !" lies in P" if 
it is perpendicular to all vectors ( in P'. It is clear that P", as well as P', is 
invariant under all ~he orthogonal substitutions C. If n' be the dimensionality 
and C1, • • · , en' a basis of P', then the generic vector !"of P" is submitted to n' 
independent homogeneous linear equations 

(e1 !") = 0, · · · , (en'!") = 0. 

Hence the dimensionality of P" is n" = n - n', and the decomposition P = P' + P" 
is secured as soon as one knows that ( + !" ((in P', !"in P") can not be 
zero unless both summands vanish. But by scalar multiplication of 

( + !" = 0 

with !' one finds ( !' () = 0, and hence, by making use of the real nature of the 
underlying field, !' = 0. 

Let now A = 1la(ik)11 vary within the orthogonal group O(n). II1(A) will 
then vary in the group IT1(0) induced by O(n) in the tensor space P1 of rank f. 
In that tensor space we may introduce a metric by defining the scalar product 
of two tensors F and G as 

(2.1) (i1 , · · · , 1·1 = 1, · · · , n). 

We then make the observation that the matrix IT1(A) in P1 is orthogonal as well 
as A itself in P. Therefore our lemma proves that in a real field IT1(0) is fully 
reducible. 

The matrices A Ui = rrUl(A) induced by orthogonal A evidently satisfy the 
linear equations 

n 

<2.2;) L: a(i1i.i.i3 ... i.; kkk3 ... k.) = 0Ci1i2)·a(i3 ... i.; k3 ... k.), 
K=l 

n 

L: a(iii3 ... i.; k1k2k3 ... kv) = o(k1k.i.) -a(i3 ... i.; ka ... kv) 
i-1 
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for v = 2, ... , f. All matrices A u1, (1.1), in stUi which fulfill these conditions 
constitute a matric algebra ~Ui, as one readily verifies, and its leading terms A1 
an algebra* ~1 . We maintain: 

THEOREM (5.2.B). In a real Pythagorean field, ~Ul is the enveloping algebra 
of the group rrul(O). 

This proposition was first proved by the author (for the symplectic rather 
than the orthogonal group). 3 The simpler method followed here is due to R. 
Brauer, l.c. 1 As we observed at the beginning, the set rrul(O) is fully reducible 
and so the criterion of Theorem (3.5.D) can be brought into play. A matrix 
(1.5) commuting with the Ilu1 (A) consists of coefficient matrices Buv of invariants 

" ) (1) (u) (1) (v) ( 0 f) (2.4) L; b(i1 • · · iu ;k1 · · · kv X; 1 • • • X;u Yk 1 • • ' Yk, U, V = l • • • ' 
i,k 

depending linearly on u + v vectors 
(1) x(u). 

x ' ... ' ' y(l)' •.• ' y<•). 

The distinction between covariant and contravariant is absent in the case of the 
orthogonal group. 

Our proof of the main theorem for orthogonal invariants in its first form went 
through in a real Pythagorean field. Therefore, under the assumption in our 
theorem, we know that (2.4) is to be a linear combination of terms each of which 

(1) (u) (1) (v) • • t f l matches our u + v arguments x , .... x ; y , · · · , y m pairs o orm sea ar 
products. This time, however, there is no discrimination of two "sexes". 
After a suitable arrangement of the arguments. the term under consideration 
will be a product of a consecutive factors 

(x<1J x<2J) (x<Jl x<4l) 

of 'Y consecutive factors 

and of {3 consecutive factors 

( 
(u-1) (v-1)) ( (u) (v)) ... x y x y 

(u = 2a + {3, v = 2')' + {3). The corresponding B,,. is described by 

b(i1 ... iu; k1 ... k.) = o(i1i2) · · · •o(k1k2) · · · • · · · o(i,,k.). 

For an A (f) satisfying the equations (2.2), the matrix BuvAv as well as A,,Buv 
turns out to be 

llo(i1i2) ... o(k1k2) ... •a(i2a+l ... i,,; k2.Y+l ... k.)11. 

* ~I is readily shown to be defined by the equations2 

c2.a,) o(k,k2) L: a(i,i,i, ... i, ; kkk, ... k1) = o(i,i,) L: a(iii, ... i1 ; k,k2k, ... k1). 
k i 

This would be the appropriate formulation if one does not care to combine P/ with the 
tensor spaces of lower rank. 
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In computing the product BuvAv one makes use of the first set of those equa
tions, while in evaluating AuBuv one uses the second set. The postulate of 
bisymmetry takes care of the freedom of rearranging the order of indices i or k. 
Therefore each matrix AU> of our algebra ~UJ commutes with all the commu
tators Band hence the criterion (3.5.D) carries us to the goal. 

From a somewhat different aspect, what we have here accomplished may be 
described as the determination of all relations of degree f, 

I 

(2.5) L L 'Y(i1 • · · i.; k1 · · · k.)a(i1 k1) · · · a(i. k.) = 0, 
v-o i,k 

holding among orthogonal matrices I la(ik) 11. In such a relation we suppose the 
coefficients 'Y to be written in "bisymmetric" form. Then the corresponding 
relation 

I 

c2.6) I: I: ,,(i1 ... i,,; k1 ... k.)a(i1 ... i.; k1 ... k.) = o 
v-0 i,k 

must hold for all matrices A UJ of our algebra ~UJ. When we look upon all the 
quantities 

a(i1 · · · i.; k1 · · · k.) 

as independent variables, taking, however, the bisymmetry into account from 
the beginning, (2.6) must be a linear combination of the left sides of the equa
tions (2.2). This is an application of the well-known principle that if a linear 
form 

L(x) = l1x1 + · · · + lNxN 

vanishes for all values Xp that simultaneously annual linear forms L1, L2, • •• , 

then L is of necessity a linear combination of these forms. Considering now 
a(ik) as independent variables and specializing A UJ = IIUJ (A), we find that the 
left side of (2.5) is a linear combination of the polynomials 

In other words: 

{~ a(i1k)a(i2k) - B(i1h)}a(iaka) · · · a(i.k.), 

{ ~ a(ik1)a(i~) - o(k1 k2) }a(ia k3) •• • a(i.k.). 

THEOREM (5.2.C). Any polynomial <P(a(ik)) of formal degree f which vanishes 
for all orthogonal matrices lla(ik)ll is a combination 

of the n(n + 1) particular such polynomials of degree 2: 

Di1i2 = L a(i1k)a(i2k) - o(i1i2), 
k 

D:I k, = L a(ik1)a(i~) - o(k1 k2) 
i 

by means of coefficients L,
1
,., L:,k2 that are polynomials of formal degree f - 2. 
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3. Giving the result its formal setting 

Again we try to relax the conditions imposed upon the reference field and to 
formalize the set of "all" orthogonal transformations. Let us first operate in 
the rational ground-field K. Because of its reality, the IT1(A) induced by any 
set of rational orthogonal transformations A form a set fully reducible in "· 
The second point where the nature of the reference field plays a role is the 
invariant-theoretic main theorem. Here we take recourse to its formalized 
interpretation. We consider the set (£</J of all IIUJ (A) induced by rational non
exceptional proper orthogonal matrices 

(3.1) 
E-S 

A=-
E+S 

and by the one improper Jn, (2.9.3), and deduce from the formalized main 
theorem that its enveloping algebra in K is the same ~UJ as defined by our rela
tions (2.2). But as these are homogeneous linear relations with rational coeffi
cients, an element A UJ of ~<n lying in an arbitrary field k over K is a linear combi
nation of a finite number of (rational) elements in (£UJ We find it convenient 
to enunciate our result in two parts: 

THEOREM (5.3.A). Both propositions (5.2.B and C) hold in any field k of 
characteristic 0. 

SUPPLEMENT. Even the more restricted set (£<!> of those IIUJ (A) induced by J,. 
and the rational non-exceptional proper orthogonal A is sufficiently large to engender 
the whole ~<f) as its enveloping algebra. 

This supplement takes on a neater form in the language of Theorem (5.2.C). 
We consider polynomials <l>(A) = <l>(a(ik)) of all the n2 elements a(ik) of an 
arbitrary matrix A = I la(ik) 11 with coefficients taken from a field k of character
istic 0. Those <P that vanish after the substitution 

(3.2) 
E-S 

A= E + S' S = 11 s;k 11 skew-symmetric, 

identically in the ! n(n - 1) variables s;k (i < k) form an ideal o, the orthog
onal ideal (in k). o is a prime ideal. Indeed, if a product of two polynomials 
vanishes after the substitution (3.2) identically in S;k (i < k), so does one of the 
factors. 

THEOREM (5.3.B). For that part of the orthogonal prime ideal o in k whose 
elements <P satisfy the one further condition <P(J n) = 0, the polynomials D,, ,., D:,k., 
whose vanishing defines the orthogonal group, form a basis in the sense of Theorem 
(5.2.C). 

Let us point out the following implication: 
COROLLARY. A k-polynomial <P(A) annulled by A = J" and the substitution 

(3.2) identically in the skew-symmetric S vanishes for every orthogonal matrix A 
in k. 

With all restrictions as to the nature of the reference field out of the way, 
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there is no obstacle that prevents us from carrying over all results to an arbitrary 
non-degenerate metric ground-form 

L 'YikXiXk. 
i.k 

4. The orthogonal prime ideal 

The beauty of our last results is somewhat marred by the supplementary 
condition if>(J ,.) = 0 whose part it is to bring the improper orthogonal trans
formations into the fold. Our wish to include them came from the higher 
simplicity of the invariant-theoretic main theorem for the full orthogonal 
group. If we now begin to feel encumbered by it, there is no other way out 
than to examine the proper orthogonal group. 

A proper orthogonal matrix A = /I a(ik) II satisfies the relations 

(4.1) 

(4.2) n:I k2 '== I: a(ik1)a(ik2) - o(k1k2) = 0, 
i 

and 

a(ll), ... , a(ln) 
(4.3) - I= 0. 

a(nl), ... , a(nn) 

As a consequence we obtained the following generalization (1.3.6) of (4.3); 

(
i1 

(4.4) A k1 = 0. 

Here i1 · · ipt1 · · · '• and k1 · · · kpK1 · · · K, are even permutations of the row 
1, 2, · · · , n. Hence p + u = n and we may suppose without loss of generality 

(4.5) p ~ u and i1 < · · · < ip , 

For the A (f) induced by a proper orthogonal A, (4.4) leads to relations of 
the type 

(4.6) 

Again p ~ u and v ~ f, while i 1 · • . ipi1 .•• '• and k1 · · · kpK1 • •• K, are even 
permutations of 1, · · · , n. On the left side we have the alternating sum 
ranging over all permutations 1' ... p' of 1 .. · p, and similarly on the right , 
side. Owing to the bisymmetry of Av , the left side is skew-symmetric in 
i1 · · · ip , and so is the right side with respect to L1 • • • t, . The left side is 
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identical with what one obtains by performing the alternation on the row 
indices i: 

The equations (4.6) together with (2.2) define an algebra m.VJ within sru>. 
THEOREM (5.4.A). ~r.Vl as defined by (4.6) and (2.2) is the embedding algebra 

of the group 11(/) co+(n)). 
The proof follows the same lines as before. (2.4) being an invariant for 

proper orthogonal transformations, it is the sum of terms each of which may 
contain, besides the factors mentioned before, one factor of the type 

[xm · · · x<Ply<1
> · • · y<•)]. 

To show that every element A Ul of ~r.V) commutes with such a B, one has to 
make use of the equations (4.6). It is a piece of straight-forward calculation; 
I leave it to the reader because in print the burden of indices would make 
things look more complicated than they really are.* 

Again one is allowed to limit oneself within the group rr<fl(O+(n)) to the non
exceptional rational A; and thus results the 

THEOREM (5.4.B). Every polynomial of formal degree fin the orthogonal ideal 
o is a combination 

L L;1 ; 2 D;1 ; 2 + L L:, k, n:1 k, + r~z;_p A (~1

1 : : : ~:)A (~1 : : : ~:) 
of the basic polynomials (4.1), (4.2), (4.4) by means of coefficients 

A (i1 · · · ip) 
k1 ... kp 

which are polynomials of the formal degrees f -
One knows that the equations 

2, f - 2, f - p respectively. 

I A 12 = 1, 

are a consequence of the equations n:1k, = 0 which define orthogonality. Is 
this true not only in the numerical sense, but also in the formal sense of ideals? 
In other words, is it true that, for independent variables a(ik), 

I A 1
2 

- 1 = 0 and Di1i2 = 0 (modd n:1k2)? 

The answer is affirmative .. As to the first equation one merely has to repeat 
the numerical proof by considering I A 1

2 the determinant of A* A. Moreover 
D;1 ; 2 and n:1k, are the elements of the matrices AA* - E and A* A - E respec
tively, and with regard to them one argues as follmvs: 

A*(AA*· - E) = (A*A - E)A* = 0 

•The algebra of the first terms' would be defined by (2.31) for odd dimensionality n; 
if n be even, n = 2v, one has to add those of the equations (4.6) that correspond to v = f, 
p = "= v. 
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Using the minors of A* one infers from this congruence the further relations 

I A I· (AA*- E) = 0, 

I A 1
2

• (AA* - E) = 0 

and finally, by means of I A 1
2 = 1, 

AA* - E = 0 or D;1 ,- 2 = 0 

So each D = D;1; 2 is expressible as a sum 

L Lt1k2D:1k2 . 

(modd D:, k,), 

(modd D:,k,). 

However, this expression does not satisfy the requirement concerning formal 
degrees which was a characteristic feature of our theorems (5.2.C) and (5.4.B), 
and here would demand the L:,"• to be of degree 0 (the degree will rise to ;n, 
according to our proof). Therefore the D;

1
;

2 
are superfluous besides the Dk,k

2 

when we aim only at determining a basis of the ideal o; they are not redundant, 
though, if the condition about the formal degree is to be obser.ved. 

It is true in the same formal ideal sense that all the relat10ns ( 4.4) are a 
consequence of D:,k, = 0 together with I A I = 1. Let M = 11 A (ik) 11 be the 
matrix of the minors of degree n - 1 of A = 11 a ( ik) 11. Then 

M*A =I A IE 
is an identity in the a(ik) which leads to 

M*A = A*A 

hence with respect to the same module 

(M* - A*) I A I = 0 

and, taking into account I A I = I, 

(4.7) M* = A* or AI = A. 

This is the relation 

(4.8) Ll = 0. (
ii •. • in-I) _ 
k1 · · · kn-I 

(modd D:,k, , ~); 

The deduction of the lower il's from (4.7) briefly referred to i~ Chapter I, §3, 
holds good if equations are replaced by congruences (modd Dk,k, , ~). Hence 
by throwing away the subtler postulate about the formal degree, our theorem 
simplifies to the statement that 

(4.9) I: a(ik1)a(ik2) - o(k1k2), det (a(ik)) - 1 

is a basis of o. (Of course the D;,;2 may here take t?~ place of the D:,k, .) 
We have the choice between the following three defimt10ns of the orthogonal 

ideal o in the field k: 
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(1) cf> is in o if <P(A) vanishes after the substitution (3.2) identically in s;k. 

(2) cf> is in o if <P(A) vanishes for every proper orthogonal matrix A in k. 
(3) o is the ideal with the basis (4.9). 

When we first distinguish the three definitions by the symbols o
1 

, o
2 

, o
3 

we 
obviously have 

03 s;:; 02 c 0 l • 

But since we have now proved 01 = o" , all three agree. The most convenient 
arrangement is to start with the natural definition (2); (I) then shows that o 
is a prime ideal with (3.2) as its "generic zero" ("allgemeine ~ullstelle"-see 
van der W aerden, M oderne Algebra, vol. ii, p. 60) whereas (3) gives the finite 
ideal basis of o. 

THEOREM (5.4.C). The ideal o consisting of the k-polynomials <P(A) which 
vanish for all proper orthogonal matrices A in k is a prime ideal with the generic 
zero (3.2) and with the finite ideal basis ( 4.9). 

The first part, when expressed in "geometric" language means: the proper 
orthogonal group is an irreducible algebraic manifold in the n2-dimensional space of 
all matrices; and this holds good in any number field k of characteristic 0. 

The finer point comes out best when we pass to homogeneous variables by 
substituting a(ik)/a for a(ik). We then operate in the domain of n2 + 1 
variables a(ik), a and consider homogeneous forms of them. In particular we 
now write 

(4.10) 

(4.11) D:1 k, = La(ik1)a(ik2) - a'o(k1k2), 
i 

(4.12) 
a(t1 K1), · · · , a(t1 K,,) 

- ap-" ............... . 

a(i,,K1), · · ·, a(t,,K,,) 

with the conventions used in (4.4), including p ~ u. The orthogonal group 
has now been extended by the dilations; the extended group is an irreducible 
algebraic manifold in the n2-dimensional projective space with the n2 + 1 
homogeneous coordinates a(ik), a, and our Theorem (5.4.B) determines its 
natural basis: 

THEOREM (5.4.D). The ideal of forms of the n2 + 1 variables a(ik), a whose 
basis is made up by the quantities (4.10), (4.11), (4.12) is a prime ideal. For 
it contains all and only such forms <P(a(ik), a) as are annulled by the substitution 

a= 1, E-S 
A = E + S, S skew-symmetric. 

6. An abstract algebra related to the orthogonal group 

It is of some interest to define explicitly that abstract algebra which for the 
orthogonal group plays the same part as the group of permutations s for the 
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. . eared here in this disguise: we have f full linear group. The permutatwn:,;,~pp 
1 

,, b 
1
, t .. . ~1 and each 

" " b 1 and f fema e sym o :,; .:;1 ' ' ' 
male sym o s Yi , · · · ' Yt . . t h' g of them in hetero:,;exual . ) f th p rmg is a ma c m 

"unit" (basic element s 0 e grou. . · f t h nits 
8 

and t written in 
. ) . (1 9) Th compos1bon st o wo sue u 

pairs (~y ' as m . . . e . r hed by contracting a product like 
the letters ~y, 1JZ respectively, rn. accomp is operator in the domain of 
( )( ) · t (t ) When one mterprets s as an . ~y; 1J;Z m o .,z . " 1 " l to be interpreted as covariant and the 
tensors of rank f, the ma es Y iave . · · ( ) si nifies formation 
"females" ~ as contravariant vectors, while the p~u~n~ l ?1 ~ 'f the dimen
of their product. This representation, .however, I~·lla1t ~ ,u l~~e~/ dependences 
sionality n of our space is ~ f; otherwise there \\I anse 
among our units as, for example, 

(~1Y1), · · ·, (hy1) 
(5.1) = o, 

(~1Y1), ·: ·, (~1Y1) 

which are absent. in the. abstract domai~i. he case of the orthogonal group, 
The analogy is obvious. Let us, m t ·d th whole row 

h t ·x A rather than cons1 er e 
limit ourselves to t e one ma. n ~ th t B in the commuting 
A A . . . A and accordmgly pick out e par ff n 't 
I' 1-1' ' o, h B f algebra w every um 

matrices B, (1.5), as formerly defined. T e . ff .orm ~n s m£ols x and f 
of which may again be descr~be~ a.s a :natch:~g I~ pairs of !sitTon of two units 
symbols y but without any d1scnmmat10n of sex. Comp 1 . ·1 to 

' . 1 . omplished by a ru e s1m1 ar with the symbols xy and yz respective Y is ace 
the previous: a product like 

(uy;)(y;v) 

( ) h it arises in the course of the con-
is replaced by (uv), a product y;y; w en . 'th r Y and v either z or y. 

. b th number n Here u is e1 er x o 
tractmg process, Y e · f h d · hich the contractions 
The result of contraction is independent o t e or er I~ w 
are performed; for the only two possibilities are "chams" of type 

( ) (u v either x or z) ( uyi) (Y1Y2) · · · Y1-1V ' 

and "rings" of type 

which are to be contracted into 

(uv) and n 

. l . f dd length l links an x with an x or a z 
respectively. (Inc1den:ally a c iam oho. ·n an x with a z; rings are necessarily 
with a z whereas a cham of even lengt JOI s b t t quite so· the 

' Wh t btain is almost a group u no . 
of even length Z.) ' a· we 0 

. .t y be a unit multiplied by a 
product of two units instead of ?emg a u~at:~ of fact all those containing 
Power of n. and some of the umts, as a t. g one finds 

' · B an easy coun m "homosexual" pairs, have no mverse. Y · 

I 
I 

I 
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l ·3 ... (2/ - 1) to be the order of w/ . The number n plays a role in the 
definition of our algebra w/ from the beginning, whereas this was not the case 
for the permutation group 1rf • There n did not come in until we passed from 
the abstract algebra to its representation by operators in the tensor space P

1 
of rank f corresponding to the vector space P of n dimensions. The analogous 
representation of our present algebra w/ interprets the symbols x and y as 
vectors in an orthogonal n-space, and the coupling (xx), (xy) or (yy) as scalar 
products. w/ appeared heretofore only in this concrete form. The representa
tion is sure to be faithful when n ~ 2f; for the scalar products of 2/ vectors 
X1 , • · · , x1 , Yi , · · · , Yt are algebraically independent in a space of 2/ or more 
dimensions. It fails to be faithful if n < f, for then one has the relation (5.1) 
with x for ~. I shall not take the trouble to fill the gap left between these 
two limits.4 

More important is the question of full reducibility. 211 is the commutator 
algebra of w/ in its concrete form or representation 581 = {B

11
}. Suppose 

that we had at our disposal a theory of the algebra w/ of the same type as the 
theory of the symmetric group 1rf expounded in Chapter IV, in particular 
telling us that w/ is fully reducible in the ground-field K and that the irreducible 
parts stay irreducible in any field k over K. By the general theorems of Chapter 
III, Part A, we could then derive from it the decomposition of 211 into its 
(absolutely) irreducible constituents. We might even hope to obtain a more 
elementary and complete correspondence similar to that established in Chapter 
III, Part B. We shall actually embark upon a construction of the latter type, 
but by some simple prestidigitation we shall succeed in making contact with 
the familiar symmetric group Tr/ rather than with this somewhat enigmatic 
algebra wj . In all this the reader is asked to forget about 21cn being the 
enveloping algebra of IIC!)(O). 21cn is studied for its own sake, and only after 
this has been accomplished shall we return by means of that forgotten fact to 
the group O(n). 

When we replace A.r by the whole row (A1 , A1_1 , • • • , Ao) we are led to 
consider the algebra of matrices 

(u, v = f, f - 1, · · · , O) 

where buv is a linear combination of units defined by the pairwise matching of u 
symbols x and v symbols y and where the multiplication of such a unit euv with 
a unit e;,w is defined accordingly. 

B. THE IRREDUCIBLE REPRESENTATIONS 

6. Decomposition by the trace operation 

The object of our investigaLion will now be the tensor space P
1 

under the 
influence of the algebra ~{1 , or, should one prefer to consider all tensor spaces 
Pv of rank v ~ f simultaneously, the sum space pC!J = (P1 , P1_1 , · • • , Po) under 
the influence of ~en. Decomposition into irreducibly invariant subspaces once 
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having been accomplished under this algebra, the re>Jults of Part A will show it 
to be at the same time a full decomposition into irreducible subspaces under the 
orthogonal group. The trick mentioned at the end of the last section enabling 
us to shun the algebra w/ consists in the following simple idea. 

From any tensor F(i1i2 · · · i1) of rank f we can form the 12-trace 
n 

P\h3 ... i1) = L F(ii1'3 ... i1), 
i=l 

which is a tensor of rank f - 2. This process, usually called contraction 
(Verjungung) in Tensor Calculus, is invariant under the algebra nu': 

A <n = (A1 , A1-1 , A1-2 , · · · , Ao) 

being any element of ~(u', the trace F12 of F arises by A1_z from the trace 
Fi2 of F if A1 sends the tensor F of rank f into F; one has simply to apply 
the equation v = f of the second set (2.2). There are f(f - 1)/2 traces 
Fa/J (a < {3; a, {3 = 1, · · · ,f) of a tensor F of rank f. In P1 we consider the 
invariant subspace PJ of those tensors whose traces are all zero. Decomposition 
of P1 into PJ and a complementary invariant subspace is provided by 

THEOREM (5.6.A). Every tensor F(i1 · · · i1) can be uniquely decomposed into 
two summands the first of which, F0

, has all its traces = 0, while the second is of 
the form 

(6.1) (f(f - 1)/2 summands). 

Let P} be the manifold of all tensors of form (6.1). The requirement that a 
tensor F be perpendicular to P}, 

(F, <I>) = 0 for all <l>'s in P}, 

obviously means that all f(f - 1)/2 traces of F vanish. Hence the manifold 
PJ of all tensors F0 with vanishing traces is the subspace perpendicular to P}, 
and our proposition is an immediate consequence of Lemma (5.2.A). This 
argument assumes the reference field k to be real. 

Closer examination, however, reveals the fact that it goes through in any field 
whatsoever of characteristic 0, because it actually operates within the ground 
field K of rational numbers. We determine a basis of the subspace P} by 
assigning to one of the components of one of the f(f - 1)/2 tensors F12, .. · 
in (6.1) the value 1, to all others the value 0. The tf(f - 1). n1

-
2 basic <l>'s 

which we thus obtain by varying our choice in all possible manners may be 
arranged in a simple row and then those be dropped that are linearly dependent 
on the preceding ones. We thus find a basis <1>1, .. · , <l>M of the M-dimensional 
subspace P} consisting of linearly independent tensors whose components are 
rational integers. Construction of the part 

(6.2) 
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of a given tensor F then requires the solution of the set of 1· . 
(F <f> ) = (<I> <I> ) • mear equat10ns 

1 a , a , Le. 
(6.3) 

(F, <I>a) = L ea{JXfJ 
/J 

(a, f3 = 1. . . . M) 
' ' 

where the coefficients are the rational integers 

e«/J = (<f>cc' <f>IJ). 

For rational x., the quadratic form 

L eafJX.,X!J, a,/J 

be~gh the square (<I>, <I>) of the rational tensor (6.2), is > o unless all the x 
~ams . Consequently the det (ea/J), a rational integer is ~ 0 and remains s; 
m any fi~ld k over K. The solvability of the set of eq~ations (6 3) is th b 
ensured (m k). · ere y 

wi~h;e~;~~~foo~ti~~s~' = ;l + !} is sdo. important to us because P} is invariant 
1 . . as / · ccor mg to the equation v = j of the first 

set (2.2) the subst1tut10n A1 carries 

o(iii2) f 12
(i3 · · · i1) into o(iii2). F12(i3 ... i,) 

when A1-2 sends F 12 into F12. 

By rep~ating our. process on the tensors F 12, ... of rank f _ 2 in (6 l) 
finally spht the arbitrary tensor F(i1 ... i1) into summands of the form. ' we 

(6.4) o(i i ) ~c. . ) (. . 
«1 « 1 ' • • • u ia,ia,• ·<P i/J1 • • • i/J,) (2r + v = J), 

where the tensor <P(i1 ... iv) of rank v is in p 0 • h II · I I . • ' Le. as a its traces = o 
~i ai' · · · . a, a,' I f31 · · · f3v is any dissection of the row of indices 1 2 . . j 
~~t~ r Pt~rt~ons ~f l~ngth 2 and one of length v; the arrangement of the ; p~rtio~s 

eng l an . t e order of the individual members within each portion is 
immaterial. Fis decomposed into parts 

(6.5) F = Fo + Fi + Fz + ... 
each of a definite "valence" v = f f _ 2 f . . . 
unique; the res ective sub ~ i 'z - 4, . . . . This decompos1t1on is 
I d d . Th P spaces P1 ' P1 ' P1 ' ... of P1 are linearly independent. 
n ee ' m eorem (5.6.A) we proved that F° is unique. In the decomposition 

F = Gm + <I>o'; 0<1) = F° + F1, <1><1> = F2 + 
Gm has all its "double traces" of the type 

G12,34(i, ... i1) = L G(iikki5 ... i1) 
•,k 

0 h"l (l) • w I e <I> is a sum of terms of the type 

o(i"1i2)o(i3i4)F12·3\i5 ... i,). 
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By an argument similar to that used in Theorem _(5.6.A) we then recognize tha~ 
this decomposition, or G(l)' is uniquely determined; an~ s? _on. Much am 
biguity, however, is involved in splitting F into the ind1v1dual summands 

(6.4) of valence f - 2r. . 
In a certain way we have thus succeeded in replacing the te~so~ space P1 

h Po f t o .,..,1"th v = f f - 2 . . . . The substitutions Av of 
by t e spaces v o race " ' ' . o 

1 b 
<.wet> a e much more easily characterized withm thesP ::mbspaecs P, .. 

our a ge ra a r . p · tl 
We first observe that any permutation s: F -+ sF c~rncs a t:ns~r _wI. 

1 

vanishing traces into a tensor of the sam: k_ind ~ h~nce s IS a subst~tut10~ w1thI~ 
p 0 A is a bisymmetric substitution w1thm P1 , i.e. one commutmg with all f. 

1 
· t' t" ns s The following theorem states the complete converse thereof: 

permu a 10 . - o . o d · z t 
THEOREM (5.6.B). A given bisymmetric substitution A in P1 an ·a gwrn e .emen 

(6.6) A u-i> = (A1-1 , · · · , Ao) 

of the algebra ~u-1 > uniquely determine a substitution A1 in P1 such that A1 coin-

cides with A 0 within PJ and 

(6.7) Au> = (A1 , A1-1 , · · · , Ao) 

is an element of ~u>. . , . . . o _ _ 1 ) 
Or: if A~ is a given series of bisymmetric substitutions i~1f v ( v - f, f ' · .· · ; 0 

then there is a uniquely determined element (6.7) of ~1 such that Av coincides 

with the given A~ within P~ . . 
It is a matter of taste whether one prefers to prove the first formulat10n by 

means of the decomposition dealt with in Theorem (5.6.A), or to pr~v_e at once 
the second formulation by means of the more complete decompos1t10n (6.5). 
Let us keep to the first procedure! It is clear ho~v to constru:t the ,1 = A1 
earched for. Any tensor F of rank f is split into F j- <I> accor_?mg to I heorem 

s · b F-o + q, ,h F0 
- A0 (F0

) and (5.6.A), and its image A (F) IS defined to e , " ere -

<Ii = o(iii2)F12(i3 · · · i1) + · · · 
arises from (6.1) by applying the given Ai-2 to the individual terms F

12

, 

p12 = A1-2(F12)' .... 

The only trouble is to make certain that cl>_ is unambiguously determined by <I>; 

for this we must show that <I> = 0 implies 1> = 0. _ . 
1 

. 

From Theorem (5.6.A) we know that a tensor <I> m P1 vamshes whenever ~11 
its (simple) traces <I>afi (a < {3) do. Hence we try to show th~t the trace <P12 
arises from the corresponding trace <P12 of <P by A1-2 · On formmg the 12-trace 
we have to distinguish three types of terms in the sum (6.1): 

a) o(i1i2)F
12

(i3 · · · i1), 

b) o(i1ia)F1"(i2 · · · l · · · i,) 
{a~l,2}, 

c) 
{a and {3 ~ 1, 2}. 
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(A stroke like I indicates that the argument i" is missing.) The cases a) 

and b) are trivial. The 12-trace of a) is n · F12(i3 · . · i 1); the trace of b) is 
/i'1"(iai3 · · · ia-1ia+1 · · · i1) and since A1-2 is bisymmetric it makes no difference 
in the substitution if we rearrange the arguments in the order 

The 12-trace of c) is 

(6.8) o(iaif!) .Prf(i3 · ·. I ·. · I · ·. i1). 
" fJ 

According to the equation f - 2 of the first set (2.2) the 12-trace Prf of F"f! 
arises from Prf by the substitution A 1_4 ; hence according to the equation 
f - 2 of the second set (2.2) the tensor (6.8) arises from the corresponding 
tedsor without the bar by A1_ 2 , as we claimed. 

Our construction was such that the trace of <I> is changed into the trace of cl> 
by A1-2 , and as the traces of F 0 and P0 = A 0(F°) are zero the trace of any 
tensor F passes into that of its image P = A (F) by the substitution A 1_ 2 • 

Hence the substitution A1 we constructed has the following properties: 
1) it is bisymmetric; 
2) it coincides with A 0 within PJ ; 
3) it transforms the traces of tensors of rank f according to the given sub

stitution A1-2 ; 
4) it changes a tensor o(i1i2)F12(i3 ... i1) into o(i1i2)F12(ia ... i1) where P12 

proceeds from F12 by Ai-2. 
This is what we had to prove. While in the case of the full linear group 

the simultaneous consideration of the tensor spaces of lower rank along with 
P1 was perhaps an unnecessary complication, here we just cannot help com
bining the ranks f - 2, f - 4, . · · with f. 

7. The irreducible representations of the full orthogonal group 

In applying our general theory of Chapter III, B, to the case we encounter 
here, where 'Y is the symmetric group 1r'J, the vector space is the space PJ of all 
tensors of rank f with vanishing traces, and the given repres~ntation of 'Y in 
PJ is F -+ sF, we see how PJ can be split into irreducibly invariant subspaces 
with respect to the algebra ~J of the bisymmetric substitutions in PJ . The 
invariant subspace 

Po(T) = P0Cfif2 · · · ) 

corresponding to the diagram T whose rows are of lengths f 1 , f 2 , ••• respec
tively Cf1 ~ fz ~ · · · ) consists of the tensors cF where c is the Young sym
metrizer of T, and F ranges over all tensors of rank f = f1 + f2 + · · · and of 
vanishing traces. The prevailing conditions, even as to the number of times 
each irreducible constituent appears, will be perfectly clear as soon as we 
know which portion of the ring r of the symmetric group here plays the role 
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of Po . Po is defined as the linear closure of all quantities F( • ; i1 · · · i1) with 

the coefficients 

obtained by letting i 1 ... i 1 range independently from 1 to n and F over. all 
tensors with vanishing traces. This Po is more limited than the Po of ~h~ pw:10us 
chapter, where F yaried over all the t~nsor~, and hence may ~e d1st.rn~mshed 
by the notation poo . An irreducible mYanant subspa~e of P / cons1~ts of all 
tensors of form eF where e is a primitive idempotent m the group rmg of 1ff 

and F ranges over pJ . In particular we may choose e as the Y o.ung sym
metrizer corresponding to a diagram T or a partition off. From this connec
tion it is clear that when we first operate in the rational ground-field K and 
determine the irreducible parts in K these parts will be irreducible. in any field k 
onr K. \Ve shall know Poo when we know which Young s!m~etnzers c change 
enry tensor of vanishing traces into zero: cF = 0 for Fm P1 · 

THEOREM (5.7.A). p0(T) is empty unless the sum of the lengths of the first two 

columns of the symmetry scheme T is ~ n. 
This proposition is an immediate consequence of 
LEMMA (5.7.B). A tensor 

F (i1 · · · · ia) 
k1 ... kb 

skew-symmetric with respect to the arguments in each row lies in P!H if a + b 
surpasses n, and therefore vanishes if its traces vanish. 

A multilinear form like 

""" F (i1 · · · • ia) tC.l) ••• t(a) (!) (b) 
~ <;q <;•a 1'/ki ' ' ' 1'/kb > 
i,k k1 ... kb 

skew-symmetric in the a vectors ~Cal as well as in the b vectors 11 C~l, may be 

represented symbolically as 

(7.1) [~(!) • • · ~(n)] • (17(1) · · · 1'/(n)] 

by making use of n - a symbolic Yectors ~Ca+ll, • · · , ~Cnl and n - b symbolic 
vectors 

11
CHU, ... , 17 cnl (7.1) is the determinant of the scalar products 

(~(a)1'/(~)) (a, {3 = 1, ... 'n). 

Each term of the determinant is the product of n factor" (~11) • and since the 

number of symbolic Yectors 
(a+ll t(n) (l+ll (n) 

~ ,. . .,<; ;11 ,. . .,17 

1s < n, at least one factor in each term is a non-symbolical 

(~(a)1'/(~)) (a = 1, ... 'a; {3 = 1, ... 'b). 

(i1 .... i) 
Hence F k k a is 

1 ... b 

a sum of ab terms each of which contains a factor 

o(ia ' k~), q.e.d. 
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The proof evidently lends itself to the sharper statement that F lies in the 
space we ha Ye denoted by P~tt-n. Hence the vanishing of merely its (a+ b - n)
f old traces is a sufficient condition for the vanishing of F. The result could also 
be reached by a direct combinatorial approach. 

Diagrams whose first two columns have a total length ~ n shall be called 
permissible diagrams. One sees at once that one can arrange them in pairs of 
"associate" diagrams T, T' such that the length of the first column in T is a 
number m ~ tn and in T' is n - m, while the lengths of the other columns 
coincide for T and T'. Tis self-associate, T = T', if mis exactly = tn, which 
can happen only in case of even dimensionality. It is therefore convenient to 
distinguish between odd and even dimensionality: n = 211 + 1 or n = 211 
respectively. To T containing m ~ tn rows one might ascribe exactly 11 rows 
of lengths !1 , · · · , f. , 
(7.2) !1 ~ ... ~ f. ~ 0, !1 + ... + f. = f, 
on allowing some of the f;'s to be zero. We use the notation 

Po(T) = Po(f1 · · · f.), Po(T') = P~(f1 · · · f.). 

T consists off fields and T' of a larger number, unless Tis self-associate. With 
f1, · · · , f, varying over all integers satisfying (7.2) and with f taking on the 
values 0, 1, 2, . · · , the associates 

T = T(f1, · · · ,f,) and T' 

exhaust all permissible diagrams. In case of odd dimensionality, each one is 
obtained exactly once, while in the even case T and T' coincide, and hence 

P~(f1 · · · f.) = Po(f1 · · · f,), 
whenever Tactually contains 11 rows:f. > 0. The converse of Theorem (5.7.A) 
is also true: 

THEOREM (5.7.C). Po(T) is not empty if Tis a permissible diagram. 
Let T contain m ~ 11 rows, and denote the figures 1, 2, · ·. , n by 

1, 1*, · · ·, m, m*, m + 1, · · · , n - m. We define a tensor Go(iT) of the table 
of arguments 

(

iu · · · · · il/1) 

ZT = : • · • • • • • • 
Zml • • • • 

as follows. A component Go(iT) is zero unless a) all the arguments in the first 
row of Tare = 1 or 1 *, in the second row = 2 or 2*, ... , in the m1

h row = 
m or m*, and unless b) the numberµ of arguments taking on starred values is 
even; the value of Go for arguments satisfying these two conditions shall be 

(7.3) (-1)"12
• 

This tensor G0(iT) is symmetric in the arguments of each row and its traces are 
evidently zero. One obtains a similar tensor G° by changing (7.3) into 
( - l/"-1

l'
2

, requiring at the same time the number µ to be odd. Alternation 
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with respect to the columns carries Go (and G0
) into a non-vanishing tensor 

Fo (and F0
) of the desired kind. Verbal description of the simple picture 

which this tensor F0 presents becomes a little bit clumsy. A component 
Fo(iT) is = 0 unless the values in the first column of T arise from 1, .. · , m 
by permuting these figures and starring some of them, and unless similar condi
tions prevail for the other columns; besides, the numberµ of arguments taking 
on starred values has to be even. The "leading" component 

Fo(~ .~ .. 
m ... m 

whereas each transposition of two arguments in the same column, or each 
simultaneous starring of two arguments, changes the value Fo into - F0 • 

In order to accomplish the same for the associated scheme T' we use 

Go(iT') = Go(iT [ im+l, · · · , in-m) = Go(iT) ·<p(im+l, · · · , in-m) 

instead of Go(iT), where 

'PUm+l 1 ' ' ' , in-m) = ± 1 

according as im+1, · · · , in-m is an even or odd permutation of m + 1, ... , n, 
and 0 otherwise. 

Later on we shall have occasion to make use of the following process: 
F(i1 •.• ip) being a given skew-symmetric tensor of rank p ~ n we define a 
"complementary" skew-symmetric tensor aP of rank n - p by the equation 

(i.4) 

holding whenever i1 · · · ipip+l · · · in is an even permutation of 1 ... n. (We 
do not care for the moment whether this process is orthogonally invariant.) 
When we apply it to the arguments in the first column of a tensor F(iT') skew
symmetric in the arguments of each column of T', we obtain a tensor aP(iT) 
skew-symmetric in the arguments of each column of T: 

( ii l12 i111 
I 

(i.5) "I.::. ~~; 
I • 

i . 
I • 

lin-m 

r i1 ... in-m i7 ... i! any even permutation of 1 ... n}. 
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In particular our Fo(iT') changes by this process either into ±F0(iT) or into 
±F°(iT) according as m is even or odd, a remark that should be kept in mind 
for a future purpose. 

In the same way as Theorem (4.4.C) follows from Lemma (4.4.B) we now 
infer from Theorems (5.7.A and C): 

THEOREM (5.7.D). The sum 

i = E + E
1 + 

extending over all permissible symmetry diagrams is the unit I of Poo • 

Application of our general theory now culminates in the following 
THEOREM (5.7.E). PJ splits under m:J into irreducibly invariant subspaces P0(T) 

each defined by a permissible symmetry diagram T (and its corresponding sym
metrizer c). Different diagrams give rise to inequivalent subspaces. In the 
decomposition the diagram T shows up as often as the number g, defined in the 
previous chapter, formula (4.4.5), indicates. The partial spaces lie in K but are 
irreducible in any field k over K. 

Turning to the total tensor space, we first split P1 into the partial spaces 
PJ, P}, · · · of valences f, f - 2, · .. , equation (6.5). The generic tensor of 
valence v is a sum of terms (6.4) in which <p ranges over the whole space P~. 
This space decomposes into irreducibly invariant parts with respect to the 
algebra of all bisymmetric substitutions in P~ . The individual part consists 
of all tensors of form eiJ! where e is a primitive idempotent symmetry operator 
in v figures and "1 ranges over P~ . For 

(7.6) a1 , al' I · · · I a, , a,' I /31 · · · {3. 

we substitute all essentially different arrangements of 1 2 ... f. In this manner 
P.f appears as the sum of a number of irreducibly invariant subspaces with 
respect to our algebra m:, which in some order may be denoted by 2:A 
(A = 1, 2, · · · ). We apply the often-used Lemma (3.2.B) for dropping those 
among them that are redundant and thus obtain a genuine decomposition of 
P1 into independent irreducibly invariant subspaces with respect to our al
gebra m:,. 

THEOREM (5.7.F). P1 is decomposable into irreducibly invariant subspaces under 
the algebra m:,. An individual part contains all tensors of form (6.4), with 'P 
ranging over one of the irreducible subspaces Po(T) = P0(Jif2 · · · ) of P~. T is 
any permissible diagram in v = f 1 + f2 + · .. figures, and v takes on the 
values f, f - 2, · · · . The irreducible parts in K will stay irreducible in any field 
k over K. 

THEOREM (5.7.G). Any invariant subspace of P1 breaks up into irreducibly 
invariant parts each of which is similar to one of the spaces P0(f if2 ... ) mentioned 
in the previous theorem. 

More generally: any representation of m:(n is fully reducible, and if irreducible 
it is equivalent to a (Po(T)) = (P0Cf1f2 .. · )) that comes from a permissible diagram 
T of f1 + f2 + · · · = v ~ f figures. 
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The fact that the parts (6.4) of r corresponding to all possible arrangements 
(7.6) are not linearly independent prevents us from explicitly predicting how 
many equivalent irreducible constituents of earh sort (Po(fif2 · · · ) ) \Vil! appear 
in the decomposition of P1 . The statement as giYen in Theorem (5.7.E) still 
holds good for the Yalence v = f, but not so for the lower valences f - 2, · · · . 
In that respect our result is less complete than for the full linear group. One 
could think of decomposing P1 first with respect to the full algebra 5r1 of bisym
metric substitutions before one splits it into the finer pieces according to our 
more limited algebra 2!1 . From (6.5) one derives 

cF = cF0 + cF1 + ... 
where the right-hand summands again lie in PJ, P} , If c belongs to a 
permissible diagram this equation shows that the "rough" part consisting of 
all tensors cF contains the "finer" part of all tensors cF0 (F0 in PJ) exactly once. 
That explains why the diagrams of valence f occur as often here as in the rough 
decomposition under the full algebra .\11 , as far as they occur at all. 

The theory of decomposition as developed in Part B of this chapter does not 
depend on the result of Part A stating that ?I1 is the enveloping algebra of 
II1(0). By now making use of this fact we conclude:5 

THEOREM (5.7.H). For erich permissible diagram T the representation (P0(T)) 
of the orthogonal group is irreducible. Different di·agrams, whether of the same or 
different numbers of fields, lead to inequivalent representations. 

Theorems (5.7.F and G) still hnld good when the algebra 2!1 is replaced by the 
group II1(0). 

Concerning two diagrams of different numbers of fields, f and v < f, one ought 
to observe again that the enveloping algebra \){ui contains an element which is 
the identical transformation in PJ and the zero transformation in P~ . The 
last statement of Theorem (5.7.G) now refers to a representation R(A) of O(n) 
where the components of the representing matrix R(A) are polynomials of the 
components a(ik) of A of formal degree f. 

Thus we finally return to the statement from which our whole investigation in 
this chapter took its start, namely that II1(0) is fully reducible. However we 
are now in possession of an explicit description of its decomposition and have 
the additional information that the irreducible parts in K are absolutely irre
ducible. 

If one X-multiplies two quantities of the types (Po(fi/2 · · ·))we have constructed 
here, the product splits into a number of independent primitive quantities each 
of which is again described as a (Po(f1f2 · .. )). Since there is no difference 
between covariant and contravariant vectors in the case of the orthogonal 
group, the representation (Po(f1f2 · · · )) is contragredient to itself. So we have 
here the same properties of closure we encountered in Chapter IV, §5 for the 
quantities of the full linear group. 
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The circuitous manner in which we proved the full reducibility of 2!1 is indi
cated by the diagram 

(v = f, f - 2, · · · ) 

w/ +- 2!1 

where the arrow leading to w/ may first be disregarded. But by applying on 
2{1 the same general Theorem (3.5.B) by which one could have established the 
upper horizontal arrow one would find that its commutator algebra, i.e. w/ in its 
concrete form, is fully reducible. The concrete form being a faithful representa
tion in the case n ~ 2f, we infer from Theorem (3.5.C) that the abstract algebra 
wi , or rather its regular representation, is fully reducible in the rational ground
field K if n ~ 2f, and that the irreducible parts in K are absolutely irreducible. 
I find it hard to believe that the magnitude of n will affect the structure of w/ 
to such a degree as to cause the breakdown of our result for n < 2f, but the 
question must be left open. As far as full reduction is concerned, Theorem 
(3.5.B) allowed us to jump freely from a matric algebra to its commutator 
algebra as indicated by the horizontal arrows; could one make the vertical 
transition directly on the left side without jumping to and fro over the ditch 
one would probably be able to settle our question. As things stand now I could 
not allow the reader to abandon the subject without a prick of discontent in 
his heart. 

C. THE PROPER ORTHOGONAL GROUP 

8. Clifford's theorem 

From the full orthogonal group we now turn to the group o+(n) of all proper 
orthogonal transformations in n-space. The passage to this subgroup of 
index 2 is more easily carried out with the groups themselves than with the 
enveloping algebras, owing to a beautiful and general theorem which was dis
covered by A. H. Clifford in this context.6 

THEOREM (5.8.A). Let a group -y = Isl and an irreducible representation 
\){(-y) of -y: s -t A(s) be given in a number field k. Let, furthermore, -y' = ltl 
be a given invariant subgroup of -y. The representation 

2!(-y') of -y': t -t A (t) 

breaks up into "conjugate" irreducible representations of -y' of equal degrees. If 
the index (-y h') be finite, the number of irreducible components cannot surpass 
the index. 

The meaning of the adjective "conjugate" will be explained in the course of 
the demonstration. ! being a vector of the n-dimensional representation 
space P of \){(-y), !' = S! signifies the image !' = A(s)!. The letters, with or 
without index, always alludes to an element of 'Y and t to an element of -y'. 
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We choose an l-dimensional subspace A of P irreducibly invariant under 7', 
and as such the carrier of an irreducible representation t - B(t) of 'Y' of degree l. 
The letter ! henceforward shall be used for vectors in A only. With s being a 
fixed element in 'Y and ! varying in A, S! varies over a subspace sA, likewise 
invariant under 'Y 1 as is shown by the equation 

t(s!) = s(t'!) = S!'· 

In writing s-1ts = t' we made use of the fact that 'Y' is an invariant subgroup of 7. 
sA is the carrier of the conjugate representation: 

t - B(s-1 ts). 

A* being any subspace invariant under 'Y', those vectors ! in A for which S! is 
in A* form a subspace Ao of A invariant in the same sense: 

S!in A*, hence s(t!) = t"(s!) in A*. 

Since A is irreducible, there are only two possibilities: Ao = 0 or A; sA is either 
linearly independent of A* or contained in A*. 

In case of a finite index j, let 

sa' = 'Y
1

, s2'Y', · · · , s tr' 

be the cosets of 'Y' in 'Y· To the row of subspaces 

(8.1) s1A, s2A, · · ·, siA 

invariant under 'Y 1 we apply the argument of Lemma (3.2.B) and thus pick out a 
certain number among them, 

s1A, · · · , s,A, 

which are linearly independent and in whose sum 

s1A + · · · + s,A 

all the spaces (8.1) are contained. As this sum is then invariant under the 
entire group 'Y it must be the total space P, and the representation 2l('Y') has 
been decomposed into e conjugate irreducible representations 

(i = 1, ... , e). 

e is certainly a divisor of n, n = el, and ;;;;; j. 
Without the assumption of a finite index, one proceeds as follows. If s1A = A 

is not yet the whnle space, then there exists an element s = s2 such that sA 
is not contained in A; otherwise A would be invariant under all elements s of 7. 

We have proved that s2A is of necessity linearly independent of A. If the sum 
s1A + s2A does not exhaust the entire P, there is an s = s3 such that sA is not 
contained in s1.\. + s2A; s3A is then linearly independent of that sum. And 
so on. The process must come to a stop after n/l steps. 

{: 
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The theorem applies in particular to a subgroup 'Y' in 'Y of index 2: 

'Y = 'Y' + U'Y'· 

A given irreducible representation 

2l = 2l('Y): s -A(s) 
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either stays irreducible under restriction to 'Y' (first type), or it breaks up into 
two irreducible parts 2l1('Y'), 2l2('Y') conjugate and of equal degrees (second type): 

(8.2) A (t) = II A1(t) 0 11 
0 A2(t) 11. 

In the second case, where P is decomposed into A + uA, the substitution u 
carries the subspace A into uA and vice versa (u2 = c is an element of 'Y'). 
This means that u is represented in 2l by a matrix of the form 

(8.3) 

One may normalize the coordinate system in uA in terms of the coordinate 
system in A such that C2 becomes the unit matrix E; then 

t' = u-1tu. 

To the element u2 = c there correspond in 2!1('Y') and 2!2('Y') the matrices C1C2 

and C2C1 respectively. 
The relations 

s - A(s) or s - -A(s) 

according as sis in 'Y' or in the coset u'Y', define another irreducible representa
tion 2f'('Y) of 7 which we call associated with the given 2!(7). The decomposition 

2!('"1') = 2lh') + 2!2(7') 

can occur only if the associated 2l'('Y) is equivalent to 2l('Y). Indeed, m the 
associated representation we have parallel to (8.2), (8.3) 

t -II A~(t) A~(t) II· u -II ~C2 -~1 
II· 

and these change into (8.2), (8.3) by changing the signs of the coordinates in the 
second subspace. We summarize: 

THEOREM (5.8.B). Under limitation to a subgroup of index 2, a given irreducible 
representation either stays irreducible or breaks up into two irreducible conjugate 
parts of equal degree; the latter is possible only if the given representation is equivalent 
to its associate. 

The question of equivalence seems to be answerable in simple and general terms 
only in case of absolute irreducibility. Then the following two statements hold: 

THEOREM (5.8.C). Two absnlutely irreducib"le representations 2l('Y), 5B('Y) of the 
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first type lead to inequivalent representations W('y'), SB('y') of 'Y' provided SB('Y) is 
equivalent neither to W('Y) nor to the associate W'('f'). 

The parts Wh'), W2('Y') of an absolutely irreducible W('Y) of the second type are 
inequivalent. 

Were W('Y') and SB('Y') equivalent in the first part of the theorem, then we could 
assume that the matrices A(t) and B(t) in 

W: s ~ A(s) and SB: s ~ B(s) 

coincide for elements t in 'Y'· The matrices U and V which correspond to u in 
W and m respectively, must satisfy the relations 

u-1A(t)U = A(t'), U2 = A(c) 

with 

(8.4) u2 = c. 

According to Schur's lemma, applicable to absolutely irreducible sets of matrices 
like A(t), the first equation determines U except for a numerical factor; hence 
V = {3U. The second equation then yields {32 = 1: V = U or - U. Therefore 
m is either w or its associate. 

For the indirect proof of the second part, we assume that contrary to its state
ment W2('Y') coincides with W1('Y'): 

(8.5) II 
A1(t) 

A (t) = I 
' 0 

With (8.4) one then finds 

or 

o 1

1 :

1 

o 
A1(t) Iii C2 

f /A1 (t') 0 11 

:I 0 A1(t1
) J 

This leads to C2 = µC1 and, after multiplying the coordinates in the second sub
space by the numberµ, to C2 = C1 = C, without destroying the normal form (8.5). 
Denoting the coordinates in the two subspaces by 

W represents 

X;' Y• (i = 1, · · · , v; 2v = n), 

{
x' = A1x 

t by I A 
Y = 1Y {

x' =Cy 
and u by y' = Cx. 

Hence the whole vector space breaks up into two v-dimensional subspaces with 
the coordinates x; + Y• and x; - y; respectively, which are invariant under the 
full group 'Y: 
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in the first, and 

u~ -C 

in tLe second subspace. \\' c thus arrive at a contradiction to the supposed irre
ducibility of ~(('f'). 

To the statements contained in Theorem (5.8.C) we may add the more trivial 
THEOREM (5.8.D). C ndcr the hypothesis of absolute irreducibility, an ~t('Y') pro

ceeding from an ~t('Y) of the first type is never equivalent to one of the two parts .\B 1 ('Y'), 
SB2('Y') procerdi'ng from a SB('Y) of the second type. 

If ~(('Y), SB('Y) are tu·o inequivalent i'rreducible representations of the second type, 
then m:,,('Y') is not equivalent to SB1h') (a, {3 = 1, 2). 

PROOF. The fact that m~('Y') is not equivalent to SB1('Y') implies the impossi
bility of extending the representation t ~ B1(t) of 'Y' by a suitable correspondence 
u ~ C to become a representation of the whole 'Y, whereas the representation W('Y') 
of the first type is extensible according to its provenance from W('Y). 

For the second type we can suppose 

This shows at once that in an appropriate coordinate system the matrix corre
sponding to u is uniquely determined by W('Y'). 

9. Representations of the proper orthogonal grout> 

The equation (4.4) may be stated as follows as a proposition concerning the 
process (J' introduced by (7.4). The proper orthogonal substitution A = 11 a(ik) 11 

induces the same transformation in the space of all skew-symmetric tensors F of 
rank p as in the space of the corresponding tensors !J'F of rank n - p, while for 
improper orthogonal A's the two transformations are opposite (i.e. the one equals 
minus the other). Let T, 1" be two associate permissible diagrams, (7.2) being 
the lengths of the rows of T. If F runs over P0(T'), then !J'F as introduced by 
(7.5) will range over an invariant subspace IJ'P0(T'), and the corresponding repre
sentation (IJ'Po(T')) of the full orthogonal group is the associate of (Po(T')). We 
have observed that for at least one of the tensors Fin P0(T'), namely F0(ir•), the 
corresponding !J'F lies in the subspace P0(T) defined by the associated symmetry 
diagram T. Those F in Po(T') for which rJF lies in P0(T) obviously form an 
invariant subspace of Po(T'); because of the irreducibility of P0(T') this must be 
the whole space as it cannot be zero. In other words: the process !J' maps P0(T') 
upon Po(T) in a one-to-one fashion, and the representations (P0(T)) and (P0(T')) 
corresponding to associated diagrams are themselves associated. 

For even dimensionality n = 211, T may be a self-associate diagram. For such 
diagrams it is convenient to modify the definition of the process IJ', which now 
maps Po(T) upon itself, by inserti11g the factor i' on the left side of the defining 
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relation (7.4), i 
"even or odd" of 

V=J. Then u becomes involutorial since the character 

·* ·*. i, Z1 i, Z1 

is ( -1)' times the character of 

·* ·* i1 i, Z.1 i, . 

We arc now prepared to descend to the proper orthogonal group. According 
to th: re~ults Of.the last Section, an irreducible representation nT Of the full group 
remams ~rreduc1ble under limitation to the proper rotations provided 1' is not 
self-associate. But nT and ?f' corresponding to two associate diagrams T and 
]'' b ' T 

now ecome eqmvalent. The 21 of self-associate symmetry T break up into 
two parts. Indeed, every tensor F of the space P0(T) can be decomposed into 
an "even" and "odd" such tensor F1 , F2 by the equation 

F =HF+ O"F) +HF - O"F); uF1 = F1, uF2 = -F
2

• 

Both subspaces, that of. even and that of odd tensors, are invariant under proper 
orth~gonal transformat10ns whereas any improper transformation, for instance 
Jn.' mt<.'rchanges them. Hence both subspaces are of equal dimensionality and 
~either. is empty. From our general considerations follows the fact that they are 
Irre.ducible and in:quivalent under the proper group. Ko other equivalences 
besides those ment10ncd explicitly are created by descending to the proper group. 

By the way, the case of odd dimensionality, where no reduction occurs is 
capable of ~ much simpler treatment. For then - E is an improper orthog;nal 
transforma~10n commuting with all elements of our group. Since the rational 
re~resentat10ns of the full group which we constructed are absolutely irreducible, 
this eleme~t must, on ~ccount of Schur's lemma, be represented in any nf our 
representations by a multiple µ of the unit matrix, and the factor µ \Vil! be either 
+ 1 or -1 because ( - E)

2 = E leads to µ
2 = 1. We summarize as follows. 

T.HEOREM (5.9.A). [~nder limitation to the proper orthogonal group each frre
ducible represe~.tatwn ?1 of the full orthogonal group stays irreducible unless 1' is 
sev-associate ;. in this case ~f breaks up into two irreducible parts of equal degree' 
with the proviso, howrver, that V=J must be adjoined to the reference field if n = 2 
(mod 4).-Assocwted representations become equivalent but no other equivalences are 
created. 

~t the same time thi,.; theorem settles the question of the inequivalent irre
d~cible repres:ntations of tl1c algebra n.V1 defined by the equations (2.2) together 
with (4.6) which we found hard to attack directly. 7 

CHAPTER YI 

THE SYMPLECTIC GROUP 

1. Vector Invariants of the Symplectic Group* 

The study of the symplectic group, which has a rJo,.,e analogy to the ortho
gonal group, will afford an opportunity for recapitulating in accelerated tempo 
our whole development 8pread over all the pre\·ious chapter:::. 

'Vhereas the orthogonal group consists of all transformations lea Ying inrnriant 
a non-degenerate symmetric bilinear form (scalar product), the symplectic 
group Sp(n) is defined as the set of all linear transformations under "·hicl1 a 
given non-degenerate ske\v-symmetric bilinear from [xy] remains unaltered. \\~e 

may assume this "ske\v product" of the two vectors 

x = (x1 , x; , x2 , x~ , · · · , x, , x'.) and y 

to be given in the normalized form 

(1.1) 

such that the n = 2v fundamental vectors Ca, e:(a = 1, 
relations 

(1.2) 

v) satisfy the 

(symplectic coordinate system). The existence of a non-degenerate skew
symmetric form requires an even number n = 2v of dimensions. Indeed, any 
given such form [xy] is changed into (1.1) by a suitable choice of coi>rdinates; 
and contrary to the similar normalization of the scalar product, 

(xy) = X1Y1 + · · · + XnYn, 

the procedure here is completely rational, not even requiring the adjunction of 
square roots. We start with an arbitrary vector e1 ~ 0. [xy] being non
degenerate, we may choose a second one e; such that [e1c;] ~ 0 and then multiply 
it by a suitable numerical factor so as to make [e1c;] = 1. c1 and e; arc linearly 
independent because of [e1ei] = 0, and the Yectors x satisfying the simultaneous 
equations 

*The name "complex group" formerly advorated hy mr in allusion to line complexes, 
as these are defined hy the vanishing of anti~ymmetric hi linear forms, has hecome more and 
more embarrassing through collision with the word "complex" in the connotation of 
complex number. I therefore propose to replace it by the corr!'sponding Greek adjective 
"symplectic." Dickson calls the group the "Abelian linear group" in homage to Abel 
who first studied it. 

165 
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form a subspace P1 of two dimensions !cs,.:. E\·ery vector x whatsoever can be 
written in the form 

where x* is in P1 ; one has simply to take 

~1 = [xe;], ~; = -[xei]. 

Our statement is now readily proved by induction with respect to the dimension
ality n = 2v. At the same time 11·e have shmvn the existence of a symplectic 
coordirrnte sy,.:km whose first fundamental 1·ertor e1 is an arbitrarily preassigned 
vector ?"' 0- and this, to be sure, in any number field \\·h::i tsoe\·er (of rhar
acteristic 0). 

'Yhereas in the case of the orthogonal group only the square of a bracket 
factor is expressible by its scalar products, ire are here in the more fortunate 
position that the bracket factor itself, the determinant of n nctors [x1 

.. · x"], 
is an aggregate of skew-products. Therefore no such distinction as between 
proper and improper transformations makes its appearance hPre, and every 
symplectic transformation is of determinant 1. 

To pro,·e these two statements we form the alternating :-lum 

(1.3) 1 " [ I 2][ 3 4] [ n--l "] ;J 2~ L., ± :r x x :r .. · .r .r 

extending to all n ! permutations of the n independent \·ectors x', x2, xn. 
The factor l/v!2' has been added because each term occur" in v!2' equal copies 
arising from it by those permutations which do not sever any two arguments 
bracketed together by [] in that term. [xy] may here at first designate an 
arbitrary skew-symmetric form 

(1.4) 

The canonical form (1.1) shall be denoted by L t(ik)xiyk so that I = II t(ik) II 
is the matrix 

0 1 ' 0 
I= +· 

!
1 -1 0 -1 

(1.3) becomes 

. 0 
+ ,, 

,, 1 
,1-

1 fl 
( v summands). 

0 I 

with the inner sum running again oYcr all permutations of x', x2
, , xn. This 

inner sum vanishes unle,.;s 1·1 , • · · , in is a permutation s of 1, , n, and it 
equals ±[x1x2 

••• x"] according as sis an eyen or odd permutation. "'e are 
thus led to introduce the "Pfaffian" 

(1.5) 
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m which the sum runs alternatingly m·er all permutations i1i2 in-iin of 
1, ... , n. The Pfaffian plays the same rtile for the anti-symmetric form (1.4) 
as the determinant plays for symmetric forms. Our result is the formula 

(1.6) 

When (1.4) goes over into 
L -y'(ik)x~x~ 
i,k 

by a linear transformation 
x; = L a1ix;. 

j 

(to be cogrediently performed on x and y), (1.6) leads at once to the relation 

(1.7) Pf(-y'(ik)} = Pf{-y(ik)} .det(ai1). 

When the canonical form (1.1) is adopted for [xy], the Pfaffian Pf { <(ik)} 
becomes = 1. Hence (1.7) shows that a substitution A leaving this form [xy] 
unaltered, must be of determinant 1. That was the second point. And the first 
point: on clinging to the same canonical form for the skew product, the equation 
(1.6) simplifies to 

(1.8) 

and thus gives the desired expression of the bracket factor in terms of the skew 
products. 

THr;ORE'.\i (6.1.A). (First main theorem for the symplectic group.) All vector 
invariants of the symplcctic group depending on an arbitrary number of covariant 
and contravariant vrctors, x ... and ~ · · ·, are expressible in terms of the basic 
invariants of type 

(1.9) [xy], (~x), [~77]. 

P1woF.1 Let us first deal with covariant vectors x, · · · only. The prooi 
may be carried through along exactly the same lines as for the orthogonal group 
-- with the simplification arising from the redundancy of the bracket factor 
which eliminates at the same time the distinction of proper and improper 
transformations. There is, howryer, one further obsen·ation to be made lest 
thn induction with respect to the dimensionality n be stopped. \Vhen consider
ing an inYariant f depending on n - 1 yectors x, y, · · · one introduces a new 
symplectic coiirdinate system rnch that the first components x1 , Yi , · · · of 
:r, y, ... vanish relati,·ely to the new coiirclinate system. Here x, y, · · · are 
supposed to be numerirally gi\-en and liiwarly independent. After thus being 
led to introduce the function 

(

I I ) X1,:r2,.r2, ··· 

fo ~:.'.~2.'Y~.'.::: (

0, :r;, :r2, x~, · · ·) 

= f 0., .~:.'. ~2·'· ~~ '. : : : 
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we should get into trouble if the arguments x; , y;, · · · did not disappear from 
fo along with x1 , Yi , · · · ; the induction from 2(J1 - 1) dimensions to 2J1 would 
not work. Fortunately this obstacle can be overcome by the following simple 
reasoning. We shall not touch the components X2, x~, · · · , while on the only 
two we put in evidence, x1 , x; , we perform an arbitrary unimodular trans
formation 

(all - {fy 
I I 

Xr --+ ')'Xr + oxr 
1). 

As this is a symplectic transformation and fan invariant, we have 

(1.10) I I I f I I ) 
f(O, Xr ; 0, Yr ; · · ·) = f(f3xr , llxr ; f3Yr , lly1 ; · · · . 

(1.10) holds for arbitrary numbers {3 and /J if only /J ~ 0. For then we may 
choose a = 1/ll, 'Y = 0. The argument of the algebraic irrelevance of inequali
ties establishes (1.10) as an identity in the variables {3 and /J. Consequently 
(1.10) remains true for the values {3 = 0, /J = 0. The equation thus arising, 

f(O, x; ; 0, y;; .. ·) = f(O, O; 0, O; .. .), 

proves that fo(x; ; y; ; · · ·) is in fact independent of x; , y; , 
Introduction of contravariant beside the covariant argument vectors is 

hardly less trivial than m the case of the orthogonal group. Indeed, the 
relations 

(1.11) ' ' Xr = ~r , Xr = - ~r , · · · , 

tie up a covariant vector x = e with a given contravariant ~' because these 
equations can be summed up in the one relation 

[xy] = (~y) 

holding identically in the covariant argument y, and this relation is invariant 
under symplectic transformations. \Ve observe that 

[eyJ = (~v), [~'17'] = -[~71], 

and we thus obtain the other two types in the table (1.9) besides [xy]. 
THEOREM (6.1.B). (Second Main Theorem for the symplectic group.) Every 

relation between skew products is an algebraic consequence of relations of the f al
lowing JI types : 

J1 = L ±[X0Yo][xrx2] · · · [xn-rXn] = 0, 

J2 = L ±[xoyo][X1Yr][x2y2](x3X4] · · · [Xn-rXn] = 0, 

J, = L ±[xoyo][xryi] · · · [XnYn] = 0. 

The sum L: extends in each case alternatingly to all permutations of the 

~n!, ,1, :::::;",~ t~" ;,:!~;,; 1 ~ ; l~e:; n 1:;.'~ l'e~~t ~~,'.'~,~e~:~n'~~: ~';~;;:etci o mu! ti-1 
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The proof is essentially like that given in Chapter II, §17, for the full or
thogonal group. However, attention has to be paid to the possibility, now 
not excluded, that two of the "new symbols" x' may join in a single factor like 
[x~x;]; for this product is now skew-symmetric instead of symmetric, and hence 
not annihilated by alternation! This is the reason ·why, in addition to the 
relation J, that corresponds to the relation J in Theorem (2.17 .A), the types 
Jr, J 2 , ••. , J,_r appear. Again, Capclli's congruence reduces the theorem 
under examination to the fact that no relation holds among the skew-products 
of n vectors x; . This follows from the possibility of ascertaining n vectors x; 
such that the matrix of their skew-products [xixk] coincides with an arbitrarily 
preassigned skew-symmetric matrix; the construction of the Xi can be accom
plished in a purely rational way. But one may proceed also in a fashion 
analogous to the case of the orthogonal group. 

2. Parametrization and unitary restriction 

The first main theorem for symplectic invariants once established, we repeat 
the procedure followed in the case of the orthogonal group step by step, pointing 
out only such instances as demand modifications of a not altogether trivial sort. 

According to Lemma (2.10.A) the Cayley parametrization 

(2.1) A = (E - S)(E + S)-r, S = (E - A)(E + A)-r, 

applicable to non-exceptional matrices A (and S), changes the quadratic 
equation 

(2.2) A*IA I 

into the linear 

(2.3) S*I +IS= 0. 

For the rest of this section S may always designate an infinitesimal symplectic 
transformation, i.e. a matrix satisfying (2.3). On arranging the indices in the 
order 1, ... , JI, 1 ', ... , J1

1 one readily verifies that 

s = II S:p 
J; f af3 

ta$ 11, 

, I 
Sa{3 :: 

(a, {3 1, ... ' JI)' (2,4) 

where 

(2.5) II taf3 II, II t:13 II are symmetric and s:13 +Spa = O; 

the number of parameters on which S linearly depends amounts to 

(2.6) N = J1(2J1 + 1) = ~n(n + 1). 

Until now the symplectic case seemed of decidedly simpler nature than the 
orthogonal; things that were of quadratic character or needed extractions of 
square roots there, became linear or rational here. But at this juncture, where 
we are about to turn to the study of exceptional symplcctic A, we hit a snag. 
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The an::dogues of the real orthogonal transformations are in many respects the 
unitary rather than the real symplectic transformation;.;. "'e operate in the 
field Kt of all complex numbers or morr generally in a field kt = (k, v=1) 
arising from a real field k by acljunction of i = y--1. The numbers in k are 
the "rral" numbers of e. From 110\Y on a shall always designate the conjugate 
comple~c of tlw mm1ber '': 

(2.7) f! = (~ + 1(3, r7 = a - i/3 (a, /3 ink). 

A form of the type 

(2.8) 

is linear in y and "antilinear'' in x: 

G(x, y + y') 

G(x + x', y) 

G(x, y) + G(x, y'), 

G(x, y) + G(x', y), 

Its matrix G = ! ; gik 
11 

is changed into 

G(x, Xy) 

G(Xx, y) 

G' = A*GA 

XG(x, y) 

XG(x, y) 

by applying the same transformation x -----. kr on x and y. Lemma (2.10.A) 
and its proof carry on-r to this case '"ith the effect that (2.1) establishes a 
one-to-one corre,;pondencc between thr non-excrptional A and S satisfying the 
conditions 

(2.9) .I*GA = G, S*G +GS= o, 
respectively. (2.8) i,.; rallccl Hermitcan if 

G(y, x) = G(x---;,y) or gki 9ik, 

and 

(2.10) 

is then the corresponding lfermitean form whose Yalues arc real. On the unit 
form 

(2.11) (xx)H = .fi.r1 + · · · + inXn, 

one can base in the complex field kt a sort of modified Euelidcan vcrtor geometry 
by haYing (xy)H play the part of the scalar product. Unitary perpendicularity 
ns definrd by (xy)H = 0 i~ a reciprocal relationship, bemuse of 

(yx)H = (xy)H. 

The unitary transformations A leaYing (2.11) unchanged, 

..I*A. = E and consequently A.A.* = E, 

i. 
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form a group U(n) which in this geometry is the analogue of the orthogonal 
group. A unitary coordinate system e1 , · · · , en satisfies the equations 

(eiek)u = D;k . 

Any non-exceptional unitary A is expressed by (2.1) in terms of an "infinitesimal 
unitary" matrix, i.e. by a matrix S = : i Sik i 1 for which 

(2.12) S* + S = 0 or ski + S;k = 0. 

On account of the positive definite character of (xx)H, the space P" unitary
perpendicular to a giYen subspace P' is complemei:tar~ to P'. such that ~he 
whole vector space p splits into P' + P". The classical mductive construction 
of a unitary coiirdinate ,_ystem work:-; in the same fashion as in ordinary real 
Euclidean geometry. Lemma (5.2.A) is paralleled by _ 

LEMMA (6.2.A). Any set of unitary transformations in a field kt = (k, V -1) 

(k real) is fully reducible. 
We now consider the intersection CSp(n) of li(n) and Sp(n); the elements A 

of this group are at the same time symplectic and unitary. If A be non-excep
tional, the substitution (2.1) rarries it into an infinitesimal element S of the 
same group characterized by both relations (2.3) and (2.12). (2.12) imposes 
upon the parameter::; in (2.4) the restrictions 

SaJ + s3a = 0 (.~:J + s;a = 0) and taa + t:a = 0, 

or, on setting 

(taB = Va3 + y:..::j_ v:~, 
I 
) 

I I ) 
(vaa = Va3 1 V3a = VaB , 

(2.13) I . ;--
11 Saa = V -1 ' Uaa ; 

l 
the condition of reality upon the N parameters u. u', v, v': . 

Under the unitary group a coyariant wctor x = (x;) gives nse to th~ contra
gredient ~ = (ii). On combining thi,.; '"ith (1.11) ,\·e see that the relations 

(2.14) 11a = -.c~ u: .f:a (a = 1, · · · ' v) 

associate a (covariant) yertor u with any such Ycctor x in ~ ma~ner inYariant 
under U Sp(n). Indeed one may unite (2.14) into the one identity 

(uy)H [xy] 

ll1 y. 'Ve use the notation 

1l = i, x = - 'U 

and then have 
(iy)H = [xy], (xy)H = - [iy]; 

(2.15) (xy)H = - (yx)H or (if})H = (yx)H = (xy)H· 
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Given a vector c ~ o , .·11 · 1 .. · . which is at tl . ' \I It Je pos:o1ble to detrrn1111c a VPctor basis Ca, r: 
le same tune symplectic and unitary, 

( [' l [I I (2.16) ~ (aCp = CaCp] = o, [cac;] = - re:e13] = Oa13; 

l (eaetl)H = (e:e;)H = OaiJ (e e~) = (e' ) - 0 ' a ,._, H aef3 H -

and such that Ci coincides with e? Of course one will first h· . ' . 
such that (ec)u becomes = 1 ( ') b . .· a\ e to normalize c 

. Cl H emg a square sum m the real field '· .· 11., since 
- 2 2 aa = a + /3 for (2.7), 

this may be accompfod1ed by a p tha o .· 
reality of k. Let us theref y g rean extens10n of k not destroying the 

~ ore assume (ee) H = 1. The two vectors . 

Ci = e, e; = e 
then fulfill all the requirements (2 16) "t1 
P 

· i • · \\ 1 n a = /3 = 1 More th b 
i ot tne vectors x satisfying · • over e su space 

[eix] = 0, [e;x] = o 
or, what is the same 

) 

. (ex)H = 0, (ex)H = 0, 

is closed with respect to the o eraf - . 
enables us to carry on the indt~tive1~~n;tras :ollo\x.f•s hread1_ly !rom (2.15). This 
we wanted. · uc wn ° t e coordmate system which 

Let A = I! ai1c I! no_w be an exceptional element of L' 8 (n) 
the vectors x satisfymg P · The subspace p

0 

of 

x +Ax= O 

allows the operation - since y = Ax entails f = - . 
granted the freedom of Pythag d" . y Ax. One easily sees that 

orean a JUnct10ns to k ti · f ' 
choose a unitary sympletic ca·· d. t ' us act enables one to . or ma e system c e - · o 
rt to a similar system for the ·h 

1 
. · i, i, · · · 'ep, eP m P and to extend 

' ' " o e vector space p ~ · l 
onal group, one then obtains the . . s mt ie case of the orthog-

LEMMA (6.2.B). Any unitary s11mplectic A in (k V-- . 
commuting non-exceptional un ·t . l . '. -1) is the product of two 

Tl . z ary symp ectzc matrices Ai A 
1e notwn of a formal symplectic invariant i i '. 

2

. 
In order to prove that any such . . . . s ntroduced m the obvious manner. 

mvanant is expres ibl · t 
ucts, \Ye operate in the Gaussian field ( V-) s em erms of skew-prod-
If x1, . . . xn-i are n - 1 t . Kh, - 1 . Two remarks are essential. 

' Yee ors wit comp t · h 
termine a unitary symplect1"c .. d" t onen s ~n t at field, one can de-

coor ma e system e e ' h 
vector ei = e safo;fies all the 1 . , i, i ' ... ' e,, e, w ose first 

' n - equat10ns 

[ex1] = 0, ... ' [exn-i] = 0. 

The sorresponding unitary symplectic transformati . 
the Xi-component of the 1 i on, simultaneously annulling n - arguments x n-i ·11 ' · · · ' x , w1 , generally speaking, 
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demand Pythagorean extensions of K to a larger real field k. The second remark 
refers to a formf(x, x'; y, y'; ···)depending on binary vectors (x, x'), (y, y'), ... 
and formally invariant under the two-dimensional symplectic group;. and it 
states that f will be constant if it does not involve the second components x', 

y', . . . . Indeed, provided a ~ 0 and ~ - 1, 

is a non-exceptional symplectic transformation carrying 

f(x, O; y, O; · · · ) into f(ax, 'YX; ay, 'YY; · · · ). 

This equation will be an identity in a and 'Y and will thus hold even for a = 'Y = 0. 
Queerly enough, a real field k would have served us in all the preceding con

siderations as well as kt = (k, v=-1); the unitary symplectic matrices would 
then have been orthogonal and symplectic. (This group, the intersection of 
O(n) and 8p(n), perhaps deserves a little better than just this cursory mention.) 
For the determination of the enveloping algebra, however, it appears essential 
to use the unitary trick; its success depends on the simple observation that the 
unitary r0striction for 8, (2.4), amounts to a reality restriction for the para
meters invoked and hence is algebraically irrelevant. Indeed, according to 
Lemma (1.1.A) a given polynomial <P(S) depending on the N parameters 

ta$, t~$ (a ~ {3) and Sa$ (all a, /3) 

of 8, or on the parameters u, u', v, v' as introduced by (2.13), will vanish identi
cally if it vanishes for all real values of the latter (even all rational values would 

do) not annulling 
~(8) = det (E + 8). 

3. Embedding algebra and representations of the symplectic group 

S being the generic infinitesimal symplectic matrix (2.4), (2.5), with inde
terminate elements, we now ronsider the transformation IT1(A) which is induced 

in tensor space P1 by the transformation 
A = (E - 8) (E + S)-i. 

(3.1) 
We want to show that P1 is fully reducible with respect to IT1(A). We first 
operate in the ground field K. Let ~ be an invariant subspace of P1 spanned by 
the linearly independent rational tensors Fi , · · . , F w The subspace ~' 
orthogonal to 1: in the sense of the metric (5.2.1) will be spanned by a number 
of rational tensors F;, ... , F~; p + q = n1

. ·we now pass to the Gaussian field 
Kt = (K, v=-1) so that 2;, ~I consist of all linear rombinations of Fr' ... 'Fp 
and F~, · · · , F~ respectively with coefficient~ in Kt. Then each tensor F' in~' is 

also unitary-orthogonal to each tensor F in ~ : 
L F(i1 ... i1)F'(i1 .... i1) = o. 
(i) 
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The elements of the matrix describing the substitution II1(A) relatively to the 
coordinate system Fr, · · · , FP; F~, . · · , F; are rational functions of S with 
the denominator I E + S 11. Of its 2 X 2 parts into which it splits according to 
the decomposition P1 = ~ + 1:', the upper right rectangle is empty (invariance 
of l:). We maintain that so is the lower left rectangle; in other words: l:' is 
invariant too. To show this, we substitute for S an arbitrary numerical non
exceptional infinitesimal unitary symplectic matrix in (K, v=l). The cor
responding A is unitary, and so is II1(A); hence by Lemma (6.2.A) the elements • j 

of said rectangle vanish after this substitution. The concluding remark of the 
last section allows us to infer therefrom their identical disappearance. 

The road is now open for establishing all the theorems analogous to those 
proved for the orthogonal group.2 The algebra ~ru> within sru> is to be described 
by the following equations for v = 2, · . · , f: 

L E(k1k2)a(ir ···iv; k1 · · · kv) = E(i1i2) ·a(i3 ···iv; k3 · · · kv), 
k,, k2 

imposed upon the row AU> = (A1, A1_r , · · · , Ao) of bisymmetric matrices 

Av = II a(ir ... iv, kr ... kv) 11. 

THEOREM (6.3.A). 2lUl is the enveloping algebra of the group of all nu>(A) 
induced by the symplectic transformations A. This holds in any number field k of 
characteristic zero; one may even confine oneself within Sp(n) to rational non
exceptional A. 

Or, in another form: 
THEOREM (6.3.B). Let A = II a(ik) II be the generic matrix consisting of n 2 

independent variables a(ik) and let S be the generic infinitesimal symplectic matrix. 
Every polynomial <t>(A) of formal degree f of the n 2 variables a(ik) which vanishes 
formally by the substitution 

A = (E - S) (E + S)-r 

is a linear combination 

of the particular forms 

Di1i 2 = L E(k1k2)a(i1k1)a(i2k2) - E(iii2), 
k,, k, 

v:,1.2 = L E(i1i2)a(i1kr)aU2k2) - E(krk2) 
ii,i2 

by means of polynomial coefficients L off ormal degree f - 2. 
This theorem determines a basis for the symplectic prime ideal. If one sets no 

store by the restriction concerning the formal degree, one of the two basic sets 
Di1;,, n:,k, is redundant. 
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The (12)-trace of a tensor F(i1i2i3 ... i1) is now defined by 

L E(i1i2)F(i1i2i3 ... i1). 
i1.i2 
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T h tensors of rank f and of rnnishing traces form the space PJ. By imp~sing 
e · t · . d" gram T one obtams a on them the symmetry corresponding o a grv en ia , 

upb ace p (T) irreducibly invariant under the algebra ~{1 or under the group 
~ (~ (n)).

0 H~wever Po(T) will be empty u~iless. T c~nsists of not more than 
v f = !n rows (permissible diagrams). (This s1mphficat10n as compared to the 

h 1 · due to the fact that a single bracket factor, rather than the 
ort ogona case is h . .(5 7 1) is expressible in terms of skew products.) T 
product of two sue , as m · · ' . 

· h t · cl b the lengths! · · · f of its rows: will agam be c arac enze Y r , ' • 

fi ~ f2 ~ · · · ~ fv ~ 0. 

Po(T) = Po(f1 ... f,) is the substratum of an irreduci~le representa_tion 

<p (f ... f )) of Sp(n). Any invariant subspace of P1 1s full~ reducible, 
o 1 • • b p (f f) of p 0 with and if irreducible similar to one of the su spaces o 1 • • · • " 

v = fr + . . . + f • = f or f - 2 or f - 4 . . . . 

· / (f f )') · · ,, ]f ontragredient as (1.11) allows The representation 1,Po 1 · · · v Is ·· e -c . ' .. 
immediate transition from covariant to contravanant quant1t~es. . 

We leave it to the reader to formulate and prove in all details the same strmg 
of ropositions as were established for the orthogonal gr~up. Use of the same 
noiations for the sympk>ctic and the orthogonal group will not cause any con
fusion since it will be clear in each case with which of the two groups we are 

concern eel. 
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CHARACTERS 

1. Preliminaries about unitary transformations 

When full decomposition into absolutely irreducible constituents prevails, 
the characters may serve to uniquely characterize the representations (in the 
sense of equivalence). Indeed, under the assumption just mentioned, the 
characters x(s), x'(s), ·. · of inequivalent irreducible representations are linearly 
independent, and if any representation 2( of character X(s) splits into m times 
the first irreducible constituent, m' times the second, ... , then we obtain the 
tiquation 

(1.1) X(s) = mx(s) + m'x'(s) + · · ·. 
Hence the character X(s) unambiguously determines the coefficients m, m', ... of 
the expansion (1.1) in terms of the primitive characters x, x', ... ; and the 
multiplicities m, m', · · · fully describe the representation 2( under consideration. 
Upon this remark is based a calculatory treatment of representations by means 
of their characters. The simplification effected by such a shift is obvious; in 
particular the formal processes +, X as applied to representations are reflected 
in ordinary addition and multiplication of characters. Let us therefore set out 
in the present chapter to compute the characters of those representations of the 
full linear, the orthogonal, and the symplectic group, which we obtained in the 
previous chapters by red1;lcing tensor space. This procedure, despite its explicit 
algebraic nature, is far from yielding simple explicit formulas for the charactP,rs. 
In order to find such formulas we shall have to resort to transcendental methods, 
to processes of integration extending over the group manifold. 

Of course this will be feasible only provided the underlying number field is 
a continuum. We shall use the continuum Kt of ordinary complex numbers. 
Nevertheless our results will prove to be valid in any number field k of charac
teristic zero, the reason being the same as before: the results are such as to be 
enunciable within the rational ground field K which in its turn is embedded in 
the continuum Kt. Our investigation will thus provide a new instance of the 
application of analysis to purely rational algebraic questions. 

Integration over a manifold r is possible without any complicated restrictions 
concerning convergence if r is in the topological sense a closed or compact set. 
We therefore take refuge in what might be called the unitarian trick: each group 
is replaced by the subgroup of those elements that are unitary transformations. In 
the previous chapter we successfully applied this idea to the symplectic group. 
It was tacitly inherent in our treatment of the orthogonal group; indeed, the 
unitary are the real elements of O(n). In the case of the full linear group we 
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have so far gotten along without the unitarian device, but we shall now exemplif_! 
our method just by the group GL(n), the simplest of them all'. Its suc~es~ is 
due to the fact that nothing of algebraic import is lost .by unitary restriction. 

Algebraic irrelevance of the unitary restriction. We consider any of the groups 

r = GL(n), O(n), Sp(n) 

and an arbitrary polynomial .p(A) depending on the n
2 

variable components aik 

of the generic n-rowed matrix A = liaikll. . . . . 
LEMMA (7.1.A). .p(A) vanishes for all elements A of I' if it is annulled by its 

unitary elements. 
A is unitary if 

(1.2) A* A = E, 

while for infinitesimal substitutions S = i isikl I the unitary restriction is expressed 

by the relations 

(1.3) or Ski+ Sik = 0. 

On setting 

l 
S;; = y-1 Uii; 

(1.4) + _ ;---1 
/ + -;-1 ' for each pair i < k, 

Sik = O"ik V - O"ik1 Ski = - O"ik V - U;k 

(1.3) requires the parameters u to be real. The gen~ric infinitesimal element S 
of each of the groups r depends linearly on a certam number of paramete:s u 
and thus varies within a linear set g, the infinitesimal group. By appr?priate 
choice of its basis we can take care that the unitary S, (1.3), be those with real 

parameter values u. The familiar equation 

(1.5) A = (E - S)(E + S)-
1 

establishes a one-to-one correspondence between the non-e~cep~ion~l element~ 
A of the group rand the non-exceptional eleme?ts S of t~e i_nfimtes1mal group, 
on either side one is allowed to impose the umtary restnct10n (1.2) and (1.3) 

respectively. We invoke the following . . . 
LEMMA (7.1.B). .p(A) vanishes for all elements A of r if it is annull~d by the 

substitution (1.5) identically in the parameters u of S (and by the one improper 

substitution Jn, (2.9.3), in the case r = O(n)). . 
We proved this lemma explicitly for the orthogonal group by studymg t~e 

orthogonal ideal. The same way is to be followed for Sp(n). No pro~f is 
needed for GL(n) as the only limiting condition imposed by the hypothesis of 
the lemma upon the n2 arguments a;k in <t>(A) = 0, namely det (E + A) ~ 0, 

is at once removed in the familiar fashion. . . 
When .p(A) vanishes for all unitary elements A of r we have m particular the 

numerical equation 

(1.6) (E - S) ¢ -- = 0, 
E+8 
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together 11·ith ¢(Jn) 0 ,,·hrn r = O(n). holding for all real values <T for which 
~(<T) = det (E + S) 7- 0. But this implies that (1.6) holds identically in the 
variables <T, and hence Lemma (7.1.c\) i:-: obtained as a con,;cqnence of Lemma 
(7.1.B). 

Tlie algebraically ambitious 11·il! obseITc that the lemma liold,; good in any 
field O\'el' the Gaussian field "t = (IC, v --1), e\·en if the equation ¢(A) = 0 is 
assumed only for unitary matricc.~ A of r lying in "t· Equiva.Jent to the lemma 
is the statement that the cnn~loping algebra.~ ~(; and ~(U' of the substitutions 
II1 (A) and IIUJ(.·1) induced by the ell'mcnb .·l of the group r will not shrink 
if we impose the unitary rc~trirtion on .1. 

The parts P(f1 , · · · , f,,) into 11·hich we deeomposecl the tensor i:ipace P1 with 
respect to GL(n) will t hercfore stay irreduribk en~n under restriction of the 
full linear to the unitary group C(n). 

Compactnrss. ..\ unitary matrix A = i ;aik• ! in Kt "atisfies the relations 

(1.7) ..I*A = E, A..I* = E, 
or 

(1.8) 2.::: lhiak, = o,·,' L a,.,a,, Oi;. 
/, k 

Hence 

det :I. det A 1, 

or the determinant det A is of modulus 1. The equations (1.8) for i = j, 

ia1;t
2 + ia2i1

2 + · · · + ;ani[ 2 = 1, 

show that each a1ci is of modulus ;::; 1, and by the well-knmYn W cierstrass pro
cedure this implies the compactness of the unitary group: if a sequence 

A (p' (p = 1, 2 ... ) 

of unitary matricel:l is given, then there exists a unitary (limit) matrix A such 
that in every neighborhood of A there lies at least one of the matrices 

A (p), A (p+l), · . · , 

however large p is chosen. 

Transformation on principal axes. Let there be given a unitary mapping 
x -• x' =Ax, 

of P upon itself. We maintain that in an appropriate unitary coordinate system 
y arising from the original one by a unitary transformation C: x = ['y, this 
mapping takes on the "diagonal" form 

' Yi = EiYi 

where the coefficients Ei are of.modulus 1. In other words 

ri.u) c-1A c = 1 El 

: I 

l 

CHARACTERS 

becomes a diagonal unitary matrix 

E1 Q 

\El 0 <'2 

0 

0 

'I 0 0 En 'i 
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{ €1, €2, ' · ' ' €n} • 

THEOREM (7.1.C). A given unitary mapping A: x ___, x', when expressed in 
terms of appropriate unitary coordinates Xi, takes on the diagonal form 

I 

Xi = EiXi 

Or: within the unitary group each element A is conjugate to a diagonal element { E}. 
PnooF. Choose t. = E as a root of the characteristic equation 

lt.E - Al = 0. 

Then their exists a non-vanishing vector x = e such that 

ee = Ae. 

By the classical inductive construction we may ascertain a unitary coordinate 
system er , e2 , ... , en whose first fundamental vector er , but for a positive 
numerical factor, coincides with e. We then have 

Aer = Eer, 

Ae2 = cxr2er + · · · + lXn2en, 

i.e., in the new coordinate system er , • • • , en the matrix I lcx;kl I of the mapping A 
has as its first columR 

(au, cx2r, • • ·, CXnr) = (e, 0, · · · , 0). 

The square sum of the moduli of its terms must equal 1; hence I El = 1. At the 
same time the square sum of the moduli of the terms in the first row is to be = 1: 

IEl
2 + lcxr2l

2 + + lcx1nl
2 

= 1, or 

lcxr2l
2 + + lcxrnl

2 
= 0. 

This leads to 
£Xr2 = • · • = CXrn = 0, 

and consequently our matrix decompo.ses according to the scheme 

E 0 0 I 
0 CX22 lX2n 
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The matrix I 10'.ik,, where i, k run from 2 to n i.,., an (n - l )-dimensional unitary 
matrix. Our proposition for n-dime11sion:1l unitary matrire,; has thu,; lwcn 
reduced to the corresponding theorPrn for n - 1 dimc·n,.;ions. 

The element,., Ei of the diagonal nrntrix : d an• olffiou:-;[y the root,; of the 
characteristic equation 

det (t..E - A) = det (t..E - ! €)) = 0, 

and are thus, but for their order, uniquely determined by A. The order remains 
arbitrary indeed, i.e., two diagonal unitary matrices 

IE J = ( E1 , • • • , En J and ( E1 
J = ( E; , · · • , E~ J 

are conjugate if (and only if) the E; arise from the Ei by permutation. On :octting 

we introduce the n real "angle:-;" .,o1 , · .. , <Pn of A. An angle ha:-; to be taken 
mod. 1, i.e. <P ± 1, <P ± 2, ... all mean the same angle as .,o. 

Theorem (7.1.C) can be extended from a :oinglc unitary matrix to an arbitrary 
set 2! = 1 A J of unitary rnatricc:o, all elements A. of which commute with one 
another (commutative set): 

THEOREM (7.1.D). By means of an appropriate unitary coordinate system all 
unitary transf or mat ions of a commutative set may simultaneously be put in diagonal 
form. 

\Vhen we lump the "eigenvalue.~" or roots Ei of the unitary mapping A together 
into groups of equal ones, then the proposition (7.1.C) may be stated thus: P is 
decomposable into a number of perpendicular subspaces P1 + P2 + · · · :mch 
that 1) each P. is invariant under A, and 2) the operation A in P. is a mere 
multiplication of all vector::; by a certain number a,, the multipliers a, being 
distinct for the several P.. In P, lies every vector~ for which 

(1.10) 

Let B be an arbitrary (unitary) operator commuting with A; I maintain that 
the spaces P. are also invariant with respect to B. Indeed, if~ lies in P,, i.e. 
satisfies (1.10), then the same holds for B~: 

A(B~) = B(A~) = a,·B~. 

This observation enables us to carry over our proposition to any commutative 
set ~ of unitary operators A; in other words, P is decomposable into perpen
dicular subspaces P, 1) invariant under 2{, and 2) such that each operator A of 2{ 
is in P, a multiplication. Indeed, let P be decompo::;cd into invariant suLspaces 
P but assume that at least one operator A 0 in ~( in one of the subspaces, e.g. in p:' does not reduce to a mere multiplication. A 0 in P1 is a unitary operator and 

' I II 
hence P1 may be split into perpendicular subspaces P, + P, + · · · such that 
these are invariant under. A 0 and that A 0 in each of them amounts to a mere 
multiplicat~on (by distinct numbers a;, a~', · · · ). Then according to our 

i 
I 

:i'I 
l<, 
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observation, which is to be applied to P1 rather than to P, the parts P; , r;', ... 
are invariant with respect to all operators A of ~' as these commute with A 0• 

The operator A 
0 

not being a mere multiplication in P1 , the number of summands 
in the decomposition 

P1 = r; + P~' + ... 
is at least 2. Our decomposition of P into invariant subspaces has thus been 
refined, a procedure that necessarily must come to a stop after at most n steps. 

2. Character for symmetrization or alternation alone 

The manifold 'J:.(f) of the symmetric tensors of rank f is the substratum of a 
certain representation 

('J:.(f)): A -. (A)1 

of the full linear group which may be defined as follows. While the coordinates 
x; in the underlying n-dimensional vector space P undergo the linear transfor
mation 

(2.1) A = II aik II: I 

Xi 

all their monomials of degree f, 
(2.2) x~ 1 

• • • x~~ (r1 + ... + rn = f), 

undergo the corresponding linear transformation (A)J. It will be a good prepa
ration for more difficult problems of similar nature ahead of us if we compute 
the character of this representation (''L(f)). 

One may say that the substratum of ('J:.(f)) is the linear manifold of all forms 
of degree f of our variables x;. This formulation at once evinces the fact that 
the choice of the coordinate system in P is immaterial for the determination 
of our character. Indeed, changing the coordinates x; in P simply effects a 
change of the ("monomial") basis (2.2) for the forms of degree f, and one knows 
that the trace of a linear substitution is not affected by a change of basis. 

In accordance with the general plan of our investigation, we first restrict 
ourselves to unitary matrices A. We then are allowed to assume A in its normal 
form l d. Under the influence of A, each monomial (2.2) is multiplied by the 
factor 

i.e., the corresponding transformation (A)1 is also in diagonal form, and the 
trace of this substitution or the character 1/;J(A) is given by the sum 

(2.3) '""' r l Tn L.., E1 • • • En 

extending to all non-negative integers r1 , •.• , rn whose sum = f. As is readily 
seen from the formula 

"' 1/(1 - EZ) "\"" r r 
L..,EZ 1 
r-0 
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(2.3) is the coefficient of! in the Taylor expan"ion of 

(2.4) 1/(1 - t1Z) · · · (1 - tnZ). 

The expansion might be interpreted either in a formal way or as a numerical 
equation holding \Yithin the region of convergence i z 1 < 1 for the complex 
variable z. Tbe denominator in (2.4) i::; the characteristic polynomial 

(2.5) (qo = 1), 

and this observ ..ii.ion at once allows us to go bark from the normal form ! t l, which 
our unitary A took on in a coordinate system adapted to A, to its matrix A in the 
original coordinate system common to all elements A of U(n). 

For any linear substitution A : I a;k ] ! we therefore introduce the functions 
P1(A) by the formal expansion 

., 
(2.6) l/cp(z) = 1/i E - zA I = L P1·!. 

1~0 

This means that for every l ;:;;: 0 we shall have the congruence 

(1 - q1z + · · · ± qnzn) (po+ P1Z + · · · + pzz1
) = 1 (mod. z1+1

), 

"Lich allows determination of the pz's one after the other in a recurrent fashion: 

Po = 1, Pl - q1Pz-1 + · · · ± qnPl-n = 0 (l = 1, 2, ... ). 

The p with negative index, P-1, P-2, · · · , are to be put = 0. From this 
determination it follows that p1(A) is a homogeneous polynomial of degree l of 
the quantities a;k. The ensuing formula 

(2.7) 1/;J(A) = P1(A) 

was first proved only for unitary transformations A. However, according to 
their definition, both sides of the equation (2. 7) are polynomials in the variable 
elements a;k of A; consequently Lemma (7.1.A) carries the equality over to all 
elements A of GL(n). 

The method followed here will serve as a model for the future more complicated 
cases. But in view of the simple result one might ask oneself whether the 
formula (2.7) is not attainable without the detour via the unitary substitutions 
and their irrational normal form l t l depending on the solution of the character
istic equation. Indeed it is easy enough to avoid the first step. By solving the 
characteristic equation for an arbitrary mapping A one brings its matrix into 
the recurrent or triangular form 

]!a1 * 
11 

II o a2 

* 
* 

I'••.•.• ••• ••• •• 

II o o 
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(A)1 then takes on the same form and its trace is found to be 

""" r1 r,~ L.., a1 · · · an (r1 + · · · + rn = f). 

To avoid the transformation of A into a handy normal form seems somewhat 
less easy. I give an analytic procedure complying with our present demand of 
using the substitution A in its original form (2.1). The coefficient (r; p) of the 
linear transformation (A)1 : 

can be computed as the integral 

1 f f x'r1 ... X~rn 
(r; p) = --.- · · · 1 

l+Pn dxi · · · dxn, 
(27rz)n X~+P1 • • • Xn 

each integration extending over the unit circle I Xk I = 1 in the complex 
Xk-plane. Hence the expansion 

1 /IT (xk - zx~) = L Xi • • • Xn / I ( ')ri ( ')'" 
k X1 • • · Xn :r1 Xn 

(r1 + · · · + rn = f) 

involving the auxiliary variable z leads by the same process of integration to 
the formula 

(2.8) _1 __ f ... f d~i ... dxn ' = f, i/;/(A)z'. 
(27ri)n (x1 - zx1) • • • (Xn - ZXn) 1~0 

If the Xk vary on the unit circle I Xk I = 1 the absolute values of the quantities 

can not surpass a certain bound M, the biggest among then numbers 

I a;1 I + .,_ . . + I a;n I 
Convergence in (2.8) is secured if I z I < 1/M. 

The desired equation ., 
(2.9) L f1(A)! = 1/1 E - zA I 

1~0 

will be established within that circle by proving the following 
LEMMA (7.2.A). If 

A= II a;k II: 
is a linear substitution satisfying the inequalities 

l ~ : ::_:: ~ : ::: II :-. • :- .: ::_:_: ~ ~: 
- I an1 I - I an2 \ - · · · + I ann \ > 0. 

(2.10) 

(i = 1, · · · , n). 
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then its determinant det A is ,c. 0 and 

(2.11) 1. f f d:r1 ... dx,. - 1 , ·I t ' -- . . . - /< e """' 
(27ri)" YI · · · Yn 

the integration extending over the unit cfrcles I Xk I = 1. 
We proceed by induction with respect to the dimensionality n and first make 

the somewhat vague hypothesis that A is sufficiently near to the unit matrix. 
Consider l/y1 ••. Yn as a function of the variable X1 for fixed values of .rz , · · · , Xn 
on their circles I xk I = 1. Under our assumption the pole resulting from the 
equation Yi = 0: 

(2.12) 

will be small, whereas the other n - 1 poles annulling y2, · · · , Yn are large. 
Hence none but the first one lies within the unit circle, and Cauchy's integral 
formula gives 

(2.13) 

where 

(i, k = 2, . · · , n) 

are the linear forms arising from Yz , · · · , y. by .~ub,,tituting for X1 the value 
(2.12), or by subtracting from Yz, · · · , y,. those multiples, a2i/au, · · · , ani/au, 
of y 1 which annihilate the coefficients of .r1 . This subtraction does not change 
the determinant det A of the forms Yi, · · · , Yn; hence 

(2.14) 

Observe that 

(2.15) 

again is near to the identity. 
(2.13), 

det A = au· det A'. 

(i, k = 2, . · · , n) 

On comparing (2.14) with the integrated relation 

one proves inductively the equation (2.11 ). 
Simple calculation shows that the inequalities (2.10) imply (1) the desired 

position of the x1-zeros of Yi i Y2, · · · , Yn, namely inside and outside of the unit 
circle respectively, pro\·ided x2 , • • • , Xn lie on the unit circle, and (2) the same 
inequalities for A'. Hence we can claim the formula (2.11) under the more 
precise hypothesis of the lemma. 1 

After having thus determined in several ways the character of the representa
tion <T-(f)), we come nearer to our ultimate goal by dividing up the f arguments 
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of a tensor of rank f into several rows of lengths f1, fz, · · · , fr according to a 
symmetry diagram (!1 + fz + · · · + fr = f) and by considering all tensors 
which are symmetric in the arguments of each row. They form an invariant 
manifold T.(!1, · · · , fr) with its corresponding representation ("L.(!1, · · · , fr)) 
of GL(n). The representative of A being the Kronecker product 

its character -./;(!1 , , fr) is given by 

(2.16) -./;(!1, · · · , fr) = P1JA)p1,(A) · · · P1,(A). 

Thus we have solved the problem of characters when a diagram T(f1, f2, · · ·) 
is used as a basis for symmetrization 

(cf. Chapter IV, §2): 

Even simpler is the problem for alternation 

b = 2:0.,·r;. 
If we first limit ourselves to unitary transformations again, and use A in its 
normal form { E}, then the antisymmetric tensors of rank f form the substratum 
of the representation the character of which is equal to the jth elementary 
symmetric function of E1 , • • • , En, or to the coefficient q1 in the characteristic 
polynomial (2.5). The same result may be obtained in an absolutely elemen
tary way. For one sees at once that the trace of the substitution the skew
symmetric tensors undergo under the influence of A equals 

ai 1t1, ai 1t2, • : • , ai1iJ 

lli2iu ai2i2· · · · , ai2i1 

When the columns of the diagram are of lengths f7, f:, .. · , the tensors which 
are antisymmetric in the arguments of each column form the substratum of a 
representation the character of which equals 

(2.17) 

The real problem however is to determine the character in case both processes. 
symmetrization with respect to the rows, and alternation with respect to the 
columns, are applied one after the other. This task we oilrnll now approach 
by an essentially more transcendental method: quite independently of all of 
the foregoing investigations we shall try to compute the characters correspond
ing to all irreducible continuous representations of thr unitary group. 

3. Averaging over a group 

For the study of a finite group"! the process of averaging over all group clements 
s is a powerful instrument yielding unexpectedly far-rcar·hing results. \Ve 
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encountered this method before in Chapter III where we derived from it the 
existence of generating idempotents and the full reducibility of the regular and 
hence of every representation of a finite group. In order to familiarize our
selves with the process we give some further examples. 

Let there be given in the n-dimensional affine point space a finite group 'Y 

of affine transformations s. I maintain that the group has a fixed point that is 
left invariant by each transformation of the group. If P is the center of gravity 
of some positive masses µ1, · · · , µh at the points P1 , · · · , Ph and s is any 
affine transformation, then sP is the center of gravity of the same masses at 
the points sP1 , • • · , sPh . We now take an arbitrary point P and form the 
center of gravity Po of the h equivalent points sP which originate from P by 
the h transformations s of the given group, attaching the same mass or weight 1 
to each of these points: 

Po is a fixed point. Indeed, if a be any transformation of our group, we have 

aPo = I L asP = I L s' P 
h s h 

with 

s' =as. 

But s' ranges with s over all group elements; hence the last sum agam 
equals Po.-

Another important example much nearer to our present interests is concerned 
with invariants F(x, y, · · . ) of a given abstract finite group 'Y where the argu
ments x, y, . · . are generic vectors in the representation spaces of a number of 
given representations of 'Y (cf. Chapter I, §5). Let F be any polynomial of 
such vectors, homogeneous in the components of each of them. Again we 
form the average 

(3.1) [F] =I.I: sF 
h s 

on the group 'Y· Then [F] is an invariant. This averaging process [], which 
carries every polynomial into an invariant, is firstly a linear process and 
secondly leaves F unaltered if F itself is an invariant. :Moreover, J being an 
invariant, one has 

(3.2) [JF] = J[F]. 

We shall see (Chapter VIII, §14) that this process provides a simple proof for 
the first invariant-theoretic main theorem in the case of finite groups.-
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As a third example I prove 
TuEORE~r (7.3.A). Any finite group of homogeneous linear 

leaves invariant a certain positive definite H ermitean form. 
PROOF. A Hermitean form 

G(x) = L gikiiXk 

is positive definite if G(x) > 0 except for X1 = · · · 
an arbitrary such form G, e.g. with the unit form 

(3.3) 

The average 

satisfies our requirements. 

Tn = 0. 

18/ 

transformations 

One starts with 

By a suitable choice of coordinates, any positive definite Hermitean form 
G(x) may be changed into the unit form. This is accomplished by the classical 
inductive construction of a unitary coordinate system, taking 

G(x, y) = L (]ikXiYk 

as the scalar product in our unitary geometry. On applying this remark to Go 
one obtains this important 

COROLLARY (7.3.B). Any finite group of homogeneous linear transformations 
is equivalent to a group of unitary transformations. 

Taking into account Lemma (6.2.A), one derives anew the full reducibility 
of the representations of finite groups. Although this is a very quick way of 
establishing that fundamental truth, it has its disadvantages as compared with 
our former procedure in Chapter III. For while the latter went through in 
any number field, the proof here given operates in the ordinary field of all 
complex numbers. Even with the utmost generosity its scope may not be 
extended -beyond the fields of type kt = (k, ,/=l), where k is real. 

These examples may suffice. But 'vhat we really have in mind is to apply 
the averaging process to a compact continuous group rather than to a finite 
group. Let us suppose we are given a continuous group /', i.e. one whose 
elements s form a continuous manifold in the sense of topology. 'Ve shall 
naturally assume that the composite st of two elements s and t depends con
tinuously on both arguments s, t, and that s -i is a continuous function of s. 
\Ve shall even suppose that we can apply the differential geometric notion of 
line elements to our group manifold; in that case we speak of a Lie group. 
Nobody so far has succeeded in stating in a natural and satisfactory way the 
intrinsic requirements a manifold must meet so as to allow application of the 
idea of line elements and thus of Calculus ("differentiable manifold"); however, 
for all practical purposes this is what it amounts to. Corresponding to 
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each point of the manifold we have a clas;; of admissible coordinate systems 
(81, · · · , Sr); the transformation functions linking two admissible coordinate 
systems are not only continuous, but have continuous first derivatives and a 
non-vanishing functional determinant (in a certain neighborhood of the point). 
In this way a number of dimensions r is at once attached to the manifold. The 
"parameters" s; are assumed to vary in the domain of real numbers. For a 
more careful formulation we refer the reader to Veblen and Whitehead, The 
Foundations of Di.ff erential Geometry, Cambridge Tracts N" o. 29, 1932. In the 
case of a group, one needs to make thc;:;e requirements only for the unit point I. 
By means of the "left translation" a: 

(3.4) s ___, s' = as 

we can transport the neighborhood of I into the neighborhood of the arbitrary 
point a. \Ve must of course now assume that, for any two clements sand tin 
a sufficiently small neighborhood of I, the parameters of st are functions of the 
parameters of s and t with continuous first derivatives. 

The line elements as = (os 1 , • • • , osr) at the unit point I are the infinitesimal 
elements of the group; they form the r-dimensional tangent plane of the group 
manifold at I. r such line clements a' s, ... , 5<r> s at I span an infinitesimal 
parallelcpipedic volume element; as its volume we are to consider the absolute 
value of the determinant 

O(r) S1 • • • <(r)S 
1 ' U T 

If we change the system of parameters s1 , . · • , s, covering the neighborhood 
of I, all these volumes are multiplied by one and the same positive constant. 
Hence they are independent of the parameter system except for the choice of 
a unit. 

The process of averaging over a compact Lie group presuppose::; our ability 
to compare volume elements at different points of the group manifold. We 
must find the analogue of the equal weights attached to the several group 
elements in the case of a finite group. Our examples reveal at once the necessary 
condition which such a "good" volume measure is to satisfy: it must be invariant 
with respect to all left translations (3.4). But after defining the volume for 
elements at I this requirement is just sufficient to carry over the measure from 
the central bureau of standards at the point I to any other point: the transport 
takes place by left translation. A volume element dwa at a which arises from 
the volume element dw at I by the left translation a shall by definition haYc the 
same measure as dw. A line element els at s leads from s to an infinitely near 
point s + ds; by the left translation s -i it goeH over into a line element os at I 
defined by 

(3.5) I + os = s-1(s + els). 
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According to our definition these as are usecl for computing the volume of an 
infinitesimal par111Jelepipeclon dw,, at s (by means of the absolute determinant of 
the components of r such os which correspond to r line elements ds at s span
ning dws). 

Psing the volume measure thus defined we can average any continuous func
tion on a compact Lie group 'Y over the whole group.2 If we like we may fix 
the arbitrary unit for the measurement of volumes so as to make the volume 
of the total group = 1. We are now in a position to carry over from finite to 
compact Lie groups all the examples considered in this section. In particular 
any continuous representation of such a group leaves invariant a certain posi
tive definite Hermitean form, and hence is equivalent to a unitary representation. 
In its unitary normalization the representing matrix U(s) = 1

1

1 
U;k(s) \I satisfies 

the equations 

uk;(s-1) = tl;k(s) = il;k(s), 

and for the character x(s) we therefore have, under all circumstances, 

x(s-1
) = x(s). 

Any representation is decomposable into irreducible ones. 
I. Schur's proof of the orthogonality relations, Chapter IV, §1, goes through 

as well. 3 In particular, we obtain for the primitive characters the orthogonality 
relations: 

9Jl,(x(s)x'(s)l = lorO, 

according as the two irreducible representations of the characters x and x' are 
equivalent or not. The multiplicities m, m', · · · in the expansion of an arbi
trary charader X(s), equation (1.1), may therefore be determined by the mean 
values 

(3.6) m = 9)/,{X(s)x(s) l, · · · . 

Moreover one find;:; 

(3.7) 9)1,(X(s)X(s) l = rrl + m'
2 + · · · . 

This shows that a representation of character X(s) is irreducible if and only if the 
mean value of I X(s) \2 equals 1, a criterion often used by Frobenius. 

The completeness relation for a full set of inequivalent irreducible repre:.;<>nta
tions of a compact Lie group >ms established by F. Peter and the author; the 
construction, as it was known for a finite group, had to be twisted around some
what in adapting it to the compact continuous groups.4 

Sometimes we should be severely handicapped if our volume measure were 
not invariant with respect to right-hand as well as left-hand translations, i.e. 
under the operations 

s ----? s' = sa 
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We carry a volume Piemcnt dw at I to a by the left-hand translation a, and 
then back to I by the right-hand translation a-1

. The question is 'vhether the 
resulting operation, the "conjugation" a: 

(3.8) s' = asa-1
, 

leaves the volume of dw unaltered. Associating the operation (3.8) with the 
group element a establishes a realization of the group, the so-called adjoint 
realization \Vhose point field is the group manifold itself. Since (3.8) leaves I 

fixed, it carries an infinitesimal group element I + os into an infinitesimal one 
I + o's, and the transition from the line element OS to o's is naturally a linear 
transformation K(a); the correspondence a_, K(a) is the adjoint representation. 
We raised the question as to whether this representation is quasi-unimodular, 
that is to say- whether 

I det K(a) I = 1 

for all elements a. It is answered in the affirmative by the general 
LEMMA (7.3.C). A continuous representation of a compact group is necessarily 

quasi-unimodular. 
PROOF. Consider any element a of the compact group 'Y and its repre

sentative T(a). Suppose that 

The sequence an(n 
Because of 

I det T(a) I > 1. 

1, 2, .. · ) has a limit point b on the group manifold. 

T(an) = (T(a)r, 

I det T(an) I tends towards rJJ as n _, rJJ. This is in contradiction to the fact 
that for certain arbitrarily high n this number must come as close as one wishes 
to the finite value I det T(b) 1- In the same manner one discards the possibility 
I det T(a) I < 1 by considering the sequence a-n (n = 1, 2, ... ). 

The substitution 
' -1 s = s 

changes the line element os at I into -os and consequently leaves unaltered the 
volume of any infinitesimal parallelepiped at I. The same remains true for a 
volume element at any point a. For while s is submitted to the left-hand 
translation a: s _, as, the inverse element s -l undergoes the right-hand trans
lation a-1

: 

-I -1 -1 s _,s a. 

Thus our statement is an immediate consequence of the fact that volume is in
variant under both right-hand and left-hand translations. 

In the case of a group of linear transformations or matrices, the infinitesimal 
elements of the group form an r-dimensional linear set of matrices 

oA = OS1·K1 + ... + OSr·Kr' 

. I 

CHARACTERS 191 

of which Kr , · · · , Kr is an arbitrarily chosen basis. If A and A + dA are two 
infinitely near matrices of the group, oA = A -l · dA is the infinitesimal element 
defined by (3.5), and hence the components os; as introduced by 

(3.9) A-
1
-dA = OS1·K1 + · · • + OSr·Kr 

serve for computing the volume of an infinitely small parallelepipedon at A 
spanned by r line elements dA. 

The group U(n) of all unitary transformations is an n2-parameter compact 
Lie group. An infinitesimal unitary matrix OA = 11 oa;k 11 satisfies the 
conditions 

and its n2 real parameters os may be introduced by the substitution (1.4): 

oa;; = V=-i . OS;; (for each i = 1, ... , n); 

(for each pair i, k with i < k). 

This shows at once that in computing the volume of a volume element, the 
complex parameters oa;k may serve as well as the real ones os;k . 

The statement that the adjoint representation is quasi-unimodular, deduced 
before by a simple topological consideration for any abstract compact Lie 
group, is capable of an algebraic demonstration for Lie groups of unitary linear 
transformations. 

LEMMA (7.3.D). Let U be a un·itary matrix and 5r a linear set of order r of 
matrices K: 

(3.10) 

invariant under the transformation 

(3.11) K _, K' = UKU-1
: 

UKaU-
1 = L C13aK13 (a, {3 = 1, · · · , r). 

p 

Then this linear transformation 11 Cap 11 leaves invariant a certain positive definite 
Hermitean form. (Hence by proper choice of the basis Ka of sr the matrix 11 Caf3 11 

will become unitary and certainly have a determinant of modulus 1.) 
Every matrix A = I! a,k 11 has a "norm" 

n(A) = tr (A*A) = L I a;k /2, 
i, k 

positive except for A = 0. The norm is not altered by changing A into B 
U A rr 1 provided U be unitary: 
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Consequently 

n(K) = L g"13XaXi> 
a,{3 

is for the generic K, (3.10), a positive definite Hermitean form of the parameters X 
which is invariant under the substitution (3.11): 

x: = L CaiJAiJ • 
/3 

The simplest compact group is the group of plane rotations (or what is the 
same, the unitary group in 1 dimension). It is an Abelian 1-parameter group. 
If cp be the angle of rotation, then for any integer m, 

cp -* e2~im,,, = e(mcp) 

is obviously a unitary representation of degree 1. I maintain that these are 
the only irreducible continuous representations, and hence 

(3.12) x(cp) = e(mcp) 

the only primitive characters. This is a very natural approach to the theory 
of Fourier series. In particular, the Parseval equation 

e +oo I (1 12 lo I f(cp) 1
2 

dcp = m~OO )o f(cp)e( - mcp) dcp' ' 

holding for any continuous function f(cp) of period 1, come:-; out a,.; a special 
case of the group-theoretical completeness relation. To µrove our statement, 
we first observe that any representation is equivalent to a unitary one. Be
cause of the Abelian nature of our group and Theorem (7.1.D). the unitary 
representation breaks up into parts of degree 1. Therefore we have to look 
for continuous solutions x(cp) of the following functional equations: 

(3.13) x(cp + cp') = x(cp) ·x(cp'), l x (cp) l 1. 

Given such a function x we introduce the real function g(.p) by 

x(cp) = e(g(cp)); 

it will be uniquely determined not only mod 1, but even absolutely if we require 
g(O) = 0 and g(cp) to vary continuously with cp. The cong;i-uence 

g(cp + cp') = g(cp) + g(cp') (mod 1) 

may at once be replaced by the equation 

(3.14) g(cp + cp') = g(cp) + g(cp'). 

For the difference of left- and right-side is continuous in cp, always an integer 
and vanishes for cp = 0. (3.14) implies 

(3 .15) g(kcp) = k·g(cp) 

, •I 

\ I 
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for any positive integer k and 

(3.16) g(O) = 0, g(-cp) = -g(cp). 

As e(g(l)) 1, g(l) must be a certain integer m. We deduce the equation 

g(cp) = !ncp 

first for any aliquot part cp = 1/k of the full rotation by ::;etting cp = l/k in 
(3.15), and then from the same equation and (3.16) for any multiple k' (posi
tive, zero or negative) of this cp, i.e. for any rational angle k'/k, and finally by 
continuity for all. We thus arrive at the desired equation (3.12). 

Harald Bohr's theory of almost-periodic junctions may be looked upon as the 
theory of the Abelian group of one-dimensional translations, i.e., of the group 
of real numbers with addition as their composition. Bohr discovered that the 
essential facts of the theory of periodic functions, orthogonality and complete
ness, go through provided one restricts the notion of function in an appropriate 
manner. The author showed that the group theoretical interpretation leads 
to a much simpler deduction of the central theorem of completeness. 5 

By an ingenious device A. Haar succeeded in defining a "good" volume 
measure on every locally Euclidean compact group. 6 In other words, he got 
rid of the awkward assumptions of differentiability involved in the notion 
of a Lie group. 

With the theory of compact groups and Bohr's example of a non-compact 
group before his eyes, J. von Neumann established the theory of "almost
periodic" representations, their orthogonality and completeness, for any group 
whatsoever. 7 For this generality, to be sure, he had to pay heavily in limiting 
the notion of function to the often very narrow domain of almost-periodic 
functions. I shall try to give in a few words his fundamental idea. Even if 
our group should happen to be a topological group, we malevolently disregard 
its topology. Instead we introduce an artificial topology relative to a given 
function j(s) on the given group by defining: s has a distance ~ E from s0 pro
vided the inequalitie~ 

I f(st) - f(sot) ! ~ E, i f(ts) - f(tso) I ~ E 

hold for all group elements t. f is called almost-periodic if the grOLIP endowed 
with this topology is compact or finite, which means that however small E may 
be, the manifold may be covered by a finite number of circular disks of radius E. 

Von Neumann shows how to form the mean value of such a function. This 
once accomplished, the theory proceeds along ready-made channels. His 
theory is undeniably the culminating point of this whole trend of ideas, though 
by no means "the end of every man's desire," a::i is shockingly revealed by this 
remark: on the group GL(n) of all non-singular real transformations, the only 
almost-periodic function is the constant. Hence the simple representations 
(P(fif2 · · · )) of GL(n) which resulted from the decompos~tion of tensor space, 
nay, the representation of the group by itself: s -* s, lie beyond the scope of 
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von ::\ eumann's theory! We should be satisfied if the almost-periodic func
tions would allov.· distinguishing between distinct points; i.e., if for any two 
distinct elements there exists an almost-periodic function which takes on 
different values at these two points. But the only groups ou which the almost
periodic functions "satisfy" in this sense are the direct products of compact 
groups with a number of one-dimensional translations (H. Bohr's case). This 
result, due to H. Freudenthal,8 clearly indicates the limits of any "almost
periodic" theory. I should venture to say that only in combination with the 
unitarian trick can almost-periodicity give anything like a satisfactory solution 
of the problem. 

The group 'Y may be replaced by any point field on which the given group 
is realized by one-to-one transformations. The point field is homogeneous 
with respect to this group if any two points go over into each other by a suitable 
transformation of the group. What has been said about functions on a group 
remains true for this more general situation of functions on a homogeneous 
manifold, for which the spherical harmonics constitute the most representative 
and classical instance. 9 

The completeness of the primitive characters of Abelian groups has recently 
found important applications in general topology. 10 The ideas we discussed in 
this section seem to form a crossing point of a number of recent advances in 
different fields of mathematics. 

4. The volume element of the unitary group 

Let us study somewhat more closely the fundamental equation: 

(4.1) 

{ e} = diag. matr. I E1, · • • , en), 

(Theorem 7.1.C) holding for the elements A of the unitary group. We first 
infer from it: 

THEOREM (7.4.A). The unitary group is a connected compact manifold; it 
consists of one piece. 

Indeed, we keep U in (4.1) fixed while replacing the angles 'Pk in I el by T'fk 

where r is a real parameter. The element AT thus resulting varies from 
A ,~o = E to the given AT=l = A when r varies from 0 to 1. 

The diagonal elements { e} form an n-parameter Abelian subgroup 1\ of the 
unitary group. On using the angles 'Pk as parameters, the combination of two 
elements ('Pk) and ('P~) yields the element ('Pk + 'P~). 

In formula (4.1) the generic { e} depends on n real parameters, C on n2 

parameters. One might therefore expect that the resulting A, (4.1). would 
depend on n + n2 parameters, whereas the correct number is merely n2

• How 
is this apparent contradiction dissolved? In (4.1) U may be replaced by 
U(pl, where (p} is any element of A, without altering the reomlting A. It 
is therefore convenient to identify two U's, U, [\ , '"hich are right equivalent 
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mod A or belong to the same right co-set mod A, i.e. for which u-1[11 is in A. 
This process of identification changes the n2-dimensional manifold U(n) into 
an (n2 

- n)-dimensional one [U(n)]. U, as an element of [U(n)], is denoted 
by [U]. "·e shall use a suggestive geometric nomenclature by saying that two 
such elements C, [:1 which are right equivalent mod A lie on the same vertical. 

When we passed from an element U to a nearby element U + dU we attached 
to this transition the infinitesimal element oU = u-vu. In studying the 
process on [U(n)] we are free to replace 

u + dU by CL'+ dU)(l + 27l"i{dp}), 

where the second factor with the real infinitely small parameters dp is any 
infinitesimal element of A. Thus dU is changed into 

d'U = dU + 27l"iU{dp} 

and oU into 

o'U = oU + 27ri{dp}. 

Since the diagonal components ou;; of or.: are pure imaginary, one may assign 
to them by proper choice of the dp; any such values as one wants, whereas the 
lateral components are not affected by the arbitrariness of the dp. In particular, 
one may choose ou;; = 0; we shall then call n· a horizontal transition from the 
vertical [U] to the infinitely near vertical [C + dU] at the altitude U. A 
parallelepipedic fiber of verticals spanned by n2 

- n line elements at [U] on 
[U(n)] has a cross section determined by n2 

- n such horizontal oU at U. 
As the volume of this cross section, let us consider the absolute determinant of 
the lateral components ou;k (i =;t. k) of these H/'s. When we cut across the 
same fiber at another altitude, we have to replace r:, [_; + dU by 

UR and (U + dU)R 

respectively, where 

R = { P} = {Pr , · · · , Pn}, 

is any element of A. Hence oU = u-1dU is replaced by 

o'U = (UR)-1 .dU-R = R-1 .fiU·R 

with the components 

(4.2) o'u,k = Pk ou;k. 
p; 

If oU is horizontal so is o'C. Since the linear substitution (4.2) for the n
2 

- n 
lateral components ou;k is unimodular, the factors Pk/ p; , p;/ Pk of two associated 
pairs (i, k) and (k, i) canceling each other, the volume of the cross-section is 
independent of the altitude, and we have thus introduced a reasonable volume 
measure on the (n2 

- n)-dimensional manifold [U(n)]. 
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Is it true that no U leads to the 8ame A in ( 4.1) unless it is right equivalent 
mod A to the original U? In replacing U by CR the matrix A will stay un
altered if and only if R = 11 P>k 11 commutes with [El : 

Hence if all eigenvalues Ek are distinct, R has to be diagonal and the answer to 
our question is affirmative. An element A for which two eigenvalues Ek coin
cide, for example E1 = E2, may be called singular. The singular elements on the 
n

2
-dimensional unitary group form a manifold, not of one, as one might expect, 

but of three dimensions less. Indeed, our R is then allowed to be of the form 

Pl! PI2 

P21 P22 

Pa 

Pn 

and since a two-dimensional unitary transformation involves 4 parameters, it 
depends on 4 + (n - 2) = n + 2 real parameters. The number of essential 
parameters in U (modulo the subgroup of these R) is thus reduced to 
n

2 
- (n + 2) while the generic ( E J with E1 = E2 depends on n - 1 parameters. 

The sum is n 2 
- 3. 

We have given in §1 a direct algebraic proof for the equation (4.1). One 
could think of an analytic proof by the method of continuity: one would try 
to follow a given infinitesimal variation of A by corresponding increments of U 
and l E}. In more general cases, in the theory of semi-simple groups, this pro
cedure is forced upon us; but even here it is worth while to carry through the 
cal cul a ti on: 

A U = U l E} implies dA · U + A · d U = d U · l El + U ( E} · 27l'i · ( dcp} . 

Multiply with (A U)-1 = u-1A-1 on the left side and with the equal ( d-iu-1 

on the right side: 

u-1 .0A. u + oU = l El-10U( El + 27rv -1 ld<Pl. 

For 

we obtain the formulas 

(4.3) 
(i ~ k). 

Supposing l>A to be giYen, the first set of equations determines uniquely the 
increments dr.p; , the second set the increments of the lateral components 
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ou;k (i ~ k), while the diagonal components DUii remain free. The8e statements, 
bound to the assumption that A is non-singular, are in complete agreement 
with our previous considerations. In varying A it is possible to avoid the 
singular points, which form a manifold of three dimensions less. 

When one considers that the transition from 

OA = II oa;k II to oB = u-1 .M · C = II ob,k i! 
is a quasi-unimodular transformation, one derives from (4.3) the following 
formula for the volume element dwA over which (4.1) varies when [[:] on the 
manifold [U(n)] ranges over the volume element [dwu] and when the angles 

'Pk vary between 'Pk and 'Pk + dcpk : 

dwA = (27l'r.1
1
, II(~ - 1) 1

1

.[dwu]·dcpi · · · dcp,.. 
"'"k E, 

dwA and [dwu] stand here for the volumes of the respective elements. The 

factors 

occur in associated pairs: 

(Ek/ E;) - 1 and ( E;/ Ek) - 1 = (Ek/E;) - 1, 

and by joining them one obtains 
THEOREM (7.4.B). If A is defined in terms of [U] and (El by (4.1), the 

volumes of corresponding infinitesimal parts are related by the formula 

dwA = (27r rldwu] · .lt.d'{J1 · · · dr.p,. , 

where 

.l = II (E; - Ek) 
i<k 

is the difference product D(E1, · · · , En) of the Ei . 
After integrating over the whole [U(n)] and fixing the unit in a convenient 

manner one arrives at the following fundamental equation for the density of 
' classes in the (cp1 , · · · , <Pn)-space: 

THEOREM (7.4.C). The volurne of that part of the unitary group whose elements 

have their angles between the limits 'Pk and 'Pk + drpk is given by 

(4.4) 

The formula is not very surprising after all that went before. The singular 
elements for which e1 = E2 form a manifold of three dimensions less; cm1se
quently they are like the center of polar coordinates in three-dimensional ~pace. 
The formula for the volume element of three-space in terms of polar coi:irdmates 
contains the factor r2 which vanishes in second order at the origin. For the 
same reason the density here must vanish in second order with E1 - E2 , i.e. 
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it must contain the factor I Er - E2 j
2

• The same holds for ali other pairs E; , Ek • 

In the simplest fashion, equation (4.4) takes care of this requirement. 
Any class function f(A) on the unitary group is a symmetric function 

F(cp1 , · · · , 'Pn) of the angles 'Pk , periodic with the period 1 in all n arguments. 
Our result permits this new formulation: 

THEOREM (7.4.D). The mean value of any class function Fis given by 

1 11 11 - . . . . F . LlLl dcp1 · · · dcpn , 
Q 0 0 

where 

5. Computation of the characters 

After these preparations we can accomplish the computation of the characters 
of the unitary group U(n) in a few strokes. It rests upon three observations. 11 

Let us consider any continuous representation of degree N of U(n) and its 
character x. 

1) As a class function, x wiII be a continuous symmetric periodic function of 
the n angles 'Pk . In this way the formula (4.1) bears upon our problem. 

2) xis the trace of the matrix representing the diagonal element { Ej. Hence 
we may limit ourselves to the group A of the diagonal elements, which is a 
compact Abelian group of very simple structure. Its given representation is 
equivalent to a unitary one, and hence according to Theorem (7.1.D) breaks 
up into N unitary representations EK(cp1 , · . · , 'Pn) of degree 1 (K = 1, ... , N), 
each of which satisfies the functional equations 

I E(cp1 , · ' · , 'Pn) J = 1, 
(5.1) 

(5.2) 
E(cpi + cp~' ... ''Pn + cp:) = E(cp1' ... ''Pn) ·E(cp~' ... 'cp:). 

On putting 

E(cp, 0, · ·., 0) = f1(cp), E(O, cp, · · · , 0) = f2(cp), 
one obtains from (5.2): 

E(cpi ' ' ' ' ''Pn) = f1(cp1) '' 'fn('Pn). 

Each of the n functions f of a single variable is a solution of the functional 
equation (3.13), and hence is of the form e(mcp), where mis an integer. Conse
quently 

(5.3) E(cp1 ' ... ' 'Pn) = e(m1cp1 + ... + mn'Pn) = E'{'1 ••• /;:n. 

The trace, the sum of the N quantities EK , or our character x, is therefore 
a finite Fourier series with non-negative integral coefficients. 
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We always arrange the monomials 

in lexicographic order so that the term with exponents m1 , · · · , mn precedes 
that with the exponents m~ , ... , m: if the first of the non-vanishing differences 

is positive. 

3) The form (4.4) of the volume element occurring in the orthogonality rela
tions for the primitive characters induces us to associate the function 

(5.4) 

with every character X· This ~ will be an antisymmetric periodic function and 
again a finite Fourier series with integral coefficients. The coefficient of the 
highest term is the same as in x and therefore positive. 

The simplest antisymmetric periodic functions are the "elementary sums" 

(5.5) W1 , · · · , Zn) = L ± e(l1cp1 + · · · + lncpn), 

extending alternatingly to all permutations of <Pr, • • • , 'Pn (or of Zr, • • • , l,.). 
li are integers in the order 

(5.6) 

One may write (5.5) as a determinant 

I 11 . en I E , .. • 1 E 

of n rows arising from the one written down on replacing E successively by 
Et , • • • , En • 

If 

(5.7) (c > 0) 

is the highest term in the antisymmetric ~' then ~ must contain all terms 

± C·e(l~cpl + · · · + z:cpn) 

in which z; , ... , z: is any permutation of Z1 , . · · , ln . Hence the terms with 
the - sign, in particular those resulting from a transposition, must be actually 
lower than (5.7), or 

Zr > Z2 > · · · > Zn • 

After subtracting c. Hl1 , ••• , Zn) from ~ one can apply the same argument to 
the remainder and thus find an expansion proceeding to lower and lower terms 
of the kind: 

(5.8) 
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where the coefficients c, c', ... are integers and 

(5.9) c > 0. 

From 

11 
· · · 11 

e(m1<p1 + · · · + mn'Pn) ·e(m:<p1 + · · · + m:cpn) dcp1 · · · dcpn = 1 or 0 

according as 

or not, one readily deduces the relation 

(5.10) 11 

• · · 11 

W1 · · · ln)W~ ... z:) dcp1 ... dcpn = n! or o 
according as 

l1 = l~ , · · · , Zn = z: 
or not. W c obseITe that Ll itself is an elementary sum, namely 

Ll = Hn - 1, ... , 1, o); 

hence 

On applying the "orthogonality relations" (5.10) to the expansion (5.8), we 
therefore get 

9Jl.{x(s)x(s) l = - . . . xxLlLl dcp1 ... dcp,. = c2 + c'2 + .... 111 11 -
n o o 

If x is primitive this mean is to equal 1. Consequently the expansion consists 
of the first term only and c = ±1, or, on account of (5.9), c = I. 

THEOREM (7.5.A). Any primitive character of the unitary group is of the form 

I 11 z, 1. I 
E , E , • • • , E 

- [ En-1, • • • ' E ' 1 j 
(5.11) 

where l1 , · · · , Zn are descending integers. 
The leadir.g term of this finite Fourier series (.5.11) is 

where 

(5.12) f1 = l1 - (n - 1), · · · Jn-1 

and therefore 

(5.13) 

In 
En , 

ln-1 - 1, 

"\Ve denote the function (5.11) by x(f1 · •• fn). 
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To find the degree N we have to put <P1 = · · · = <Pn = 0. This cannot be 
done immediately because it would result in the quotient 0/0. Therefore we 

first set 
<Pl= (n - l)cp, ··· ,<Pn-1 = l·cp, <Pn = O·cp, 

whereby the numerator of (5.11) changes into the difference 
numbers e(l;cp), and since for small cp in first approximation 

one obtains 

(5.14) 

e(l;cp) - e(lkcp) "'"' 27rV -1 · (l; - lk)<P, 

N = N(f1 · · · fn) 
D(l1 , · · · , ln-1 , Zn) 
D(n - 1 · · · 1 0). 

' ' ' 

product of the 

So much for the transcendental part. In Chapter IV, §5, we bored the 
tunnel from the other side, showing that the algebraically constructed irre
ducible representation of signature Cf1 , · · · ,Jn)-which is (P(fi · ·: fn)) if 
f,. ~ 0-has as its character x a polynomial 

""' k m1 mn £..ii m 1 · · · mnEl · · · En 

with non-negative integral coefficients k, the highest term of which is 

Hence x can be nothing else than our xCf1 · · · fn). 
THEOREM (7.5.B). The irreducible representation of the unitary group of sig-

nature (!1 ' ... 'f n) has the character 

(5.15) 

and its degree is 

(5.14) N(f1 · · · fn) = D(l1 · · · l,.)/D(n - 1, · · · , 0), 

where 

(5.16) Z1 = f1 + (n - 1), · · · , ln-1 = fn-1 + 1, Zn = fn + 0. 

Theorem (7.5.A) then allows us to conclude: 
THEOREM (7.5.C). There are no other continuous irreducible representations of 

the unitary group beside those of signature 

)U1 , · · · Jn), f1 ~ ... ~ f,, .1 

What we called quantics are the only primitive quantities for the unitary 

group. 

6. The characters of GL(n). Enumeration of covariants 

From now on we make the harmless restriction fn ~ 0 so that the repre
sentation of signature (/1, · · · , f,,) is (P(/1 · · · fn)). 
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x(f1 · · · fn) is a symmetric polynomial of the variables e1 , ... , En and must 
hence be expressible in terms of the elementary symmetric functions, i.e., of 
the coefficients of the characteristic polynomial 

cp(z) = II (1 - ze,·) = det (E - zA) = 1 q z + ± n - 1 • · • qnz . 
i 

The explicit computation rests on Cauchy's 
LEMMA (7.6.A). 

det ( 1 ) = D(x1 · · · Xn) D(y1 ... Yn) 
1 - X;Yk II (1 - X;yk) 

(i, k = 1, ... , n). 

Proof by induction with respect to n. Subtract the first row from the second 
• · • , nth row of the determinant on the left side: ' 

1 

One obtains 

(6.1) (x2 - X1) · · · (xn - X1) 

tr (1 - X1Yk) 
k=l 

1 

1 1 ' ... ' 1 

............................. 

Subtract the first column from the second, ... , nth: this changes the first row 
into I 1, 0, · · · , 0 I while the fate of the others may be read from the equation 

Yk - Yi 1 
1 - X2Y1 1 - X2Yk . 

Therefore the determinant in (6.1) changes into 

1 0 0 

* 
1 1 

thus giving the desired result: 

det = ( 1 ) 
1 - X;Yk i, k~1 ..... n 

':,' 
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'\Ve take x; = e; and find 

(6.2) 

By developing 

D(e1 · · · En) ./)(z1 ···Zn) 
.. cp(Z1) · · · ;.;(zn) 

1 
1 - E;Zk, 

1/(1 - ez) = 1 + ez + iz2 + · · · 

203 

one sees that the expansion of the right side in powers of the zk contains the 
monomial 

(6.3) 

multiplied by the coefficient 

I I 1 In I 
€ ' •.• ' f . 

Thus we get for the right side the sum 

"" I 11 In I I 11 In I L.,, e , ... ,e · z , ... ,z 

extending over all non-negative integers l satisfying the inequalities (5.6). 
x(f1 • • · fn) is therefore the coefficient of (6.3) in the expansion of 

I zn-1, ... , z, 1 I 
cp(z1) · · · cp(zn) 

By introducing as before the polynomials Po , Pi , · · · by 

1/cp(z) = 1/I E - zA I = Po+ PiZ + p2z2 + · · · 
(6.4) 

(P-1 = P-2 = · · · = 0) 

one arrives at the formula12 

(6.5) xU1 · · · fn) I Pl-(n-1) ' ' ' ' ' Pl-1 l Pl 1. 
The determinant on the right side is to be interpreted as consisting of n rows 
arising from the one written down in replacing l successively by Z1 , l2 , · · · , ln . 

At this juncture we can return from the unitary to the full linear group. The 
character xU1 · · · fn) of the representation of GL(n) which springs from the 
diagram T(f1 · · · fn) is obviously a polynomial in the n 2 components a;k of the 
generic element A = 11 a,k 11 of the group. So is the right side of the equation 
(6.5). According to Lemma (7.1.A) the equation therefore holds good for 
all A ; and it lies in the nature of the formula to be valid in any field of char
acteristic 0. 

THEOREM (7.6.B). The character x(f1 · · · fn) of the representation (P(f1 · · · fn)) 
of GL(n) arising from the partition f = f1 + · · · + fn is given by the formula

13 

(6.5) xU1 ... f n) = I Pl-Cn-1) , ..• , Pl [, 

where l in the several rows of the determinant is to be replaced by 

Z1 = f1 + (n - 1), · · · , ln-1 = fn-1 + 1, l,. = fn, 
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and the Pt are the corfficients of the Taylor expansion: 

1 / f E - zA I = Po + P1Z + p2z2 + 
This re::;ult is only slightly less simple than the formula (2.16) for the char

acter of the representation (':i(fif2 •• ·fr)). We proceed next to the decom
position of the latter, in which the number r is arbitrary. 

Let f1 , , fr be any integers satisfying 

(6.6) f1 + · · · +fr= f, 

and let the l's be defined by 

l1 = f1 + (r - 1), · · · , lr-1 =fr-I + 1, lr =fr+ 0. 

The equation (6.5) prompts us to study the determinant 

(6.7) x(f1 , · · · , fr) = i Pt-<r-1) , · · · , P1-1 , Pz l 
of signature (!1, · · · , fr). In considering the case r > n we want to reduce 
the length r of our symbols x to n. First, when fr+i = 0, we have the obvious 
and simple reduction: 

xCJ1 ···fro) = xU1 ···fr). 

If, however, fr+1 > 0 then I maintain that 

x U1 · · · fr+1) = o. 
Indeed, let us write \O(z) as a polynomial of formal degree r: 

(6.8) \O(Z) = Co + C1Z + · · · + CrZr 

(Of course, with the notation (2.5), we have c; = (- l)'q, for i 
and c; = 0 for i > n.) The recursive relations 

(6.9) 
(o 

Copz + C1Pt-1 + · · · + CrPl-r = j 
l 1 

are just another form of the defining equation 

"" 
L P1Z

1 
·\O(z) = 1. 

1~0 

(co = 1). 

0, 1,. · · , n 

for l > 0 

for l = 0 

By taking l = l1, · · · , lr+1 in (6.9) we obtain r + 1 homogeneous linear equations 
with a non-vanishing solution Co, C1, · · · , Cr; hence their determinant x(J1 · · · fr-1 1) must be zero. 

All the symbols of length n are linearly independent, as is borne out by our 
expression (5.15) in terms of a diagonal matrix A: 

a;k = 0 for i ~ k, 

The f; are here no longer subject to the condition 
1 

Ei I = 1. meaningless in an 
arbitrary field, but are rather to be considered as independent variables. I 
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RuLE OF REDUCTION (7.6.C). For r ~ n we have 

XU1 · · · frfr+I) = 0 if fr+I > 0, 

x(f1 · · · fr 0) = x(f1 · · · fr) if fr+1 = 0. 

The symbols x(f1 · · · fn) of length n are linearly independent. 
We now engage in a purely combinatorial argument in which Po, P1, · · · are 

looked upon as independent quantities. The signatures (!1 , · · · , fr) of given 
rankf, 

f1 + ''' +fr= f, 

may be arranged in lexicographic order starting with the highest one (f, 0, · · · , 0). 
The determinant x(f1 · · · fr) is an aggregate of r! terms 

(6.10) Pt; .. · Pf~ = if;(j~ .. · f;) (f; ~ .. · ~ f; ~ 0) 

whose signatures (f; , . . . , f;) have the same rank f. The leading term is 
if;(f1 ••• fr), and I maintain that all other terms stand higher. Hence the linear 
relations linking the x(f1 •.• fr) to the if;(f1 · · · fr) of a given rankf are of the 
arithmetic recursive type. Equations between two sets of variables Xa , Ya with 
indices forming an ordered set, 

Ya= L k13aX13, 

are of this type if the integral coefficients kaa satisfy the conditions 

kaa = 1, k13a = 0 for {3 < a. 

Such a substitution has an inverse of the same type. Therefore: 
THEOREM (7.6.D). On considering the Pt as independent variables, the products 

Pt ... Pf, of a preassigned total rank f 1 + · · · + f,. = f arise f ram the determinants 
x (f 1 ••• f,) by a linear substitution of the arithmetic recursive type: 

(6.11) Pti · · · Pf, = L µ·x(f; · · · f;). 

Our statement concerning the recursive character is not quite as trivial as it 
may seem. By expanding the determinant (6.7) and writing the. factors i_n 
each term (6.10) in the order in which they come from the successive rows, it 
is clear indeed that (f; ... f;) is higher than (f1 · · · fr), i.e. that the first non
vanishing difference f; - f; (i = 1, ... , r) is positive. Howe;er, the numbers 
f; , . . . , f; might not occur in their proper order f; ~ · · · ~ fr. ~ut when we 
rearrange them in proper order: g1 ~ g2 ~ · · · ~ g,, one readily sees that 
(g1 ' g2' ... ' gr) cannot be lower than u; 'f~ ' ... 'f;). . 

We now express the Pf again by (6.4) in terms of an arbitrary n-rowe~ ~atnx 
A = II a;k II . If n = r the formula (6.1

1
1) exh,ibits the decompos1t~on of 

("1:-(f1 ... f,)) into its irreducible parts (P(J1 · · · fr)); hence the coefficientsµ 
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in (6.11) must be ~O. (6.11) has the same significance for n < rafter our rule 
of reduction has been applied: 

THEOREM (7.6.E). In the recursive formula (6.11) the coefficients µ are non
negative. The f orrnula exhibits the decomposition of (:c:, (!1 ..• fr)) into its irre
ducible parts, immediately when n = r, and after due reduction according to Rule 
(7.6.C) when n < r. 

Hence the decomposition is cum grano salis independent of the dimensionality 
n, and we can compute the multiplicities µ with which each constituent appears 
by a simple combinatory device, namely by the formulas (6.11) resulting from 
the inversion of the equations (6.7) which define x(f1 •.• fr) in terms of products 
P1; · · · P1; · 

The fact that (1:(e1 · · · er)) contains µ (e1 
... er) times the irreducible com

f1 · · · fn 
ponent (P(f1 · · · fn)) as expressed by our formula 

Pei ... Pe, = L µ (e1 
... er). xC!1 ... fn) 

f f1 · · · fn 
(6.12) 

means at the same time the existence of as many linearly independent covariant 
quantities of the type (P(f1 · · · fn)) which depend in the degrees e1 , ... , e, 
on r argument vectors. ·we may arrange the multiplicities µ in an (infinite) 
matrix where (er · · · e,) indicates the rows, (!1 . · . fn) the columns. When for 
a given type \P(f1 · · · f,.)) we wish to ascertain the numbers of covariant quan
tities simultaneously for all possible degrees (e1 , ... , er), we must compute the 
Cf1 · · · fn)-column of the µ-matrix while decomposition of (1:(e1 ... er)) re
quires the knowledgP of its (er · .. e,)-row. In a more explicit way than by our 
combinatorial device both problems may be solved through generating functions. 
Let us start with the first question and therefore ask for the "column-wise 
gennating function" 

<I>1i .. . 1Jz1 · · · Zr) = L µ(er ... e,) z~ 1 ••• z;', 
(e) f1 · · · fn 

(6.13) 

a formal power series of r auxiliary variables z1 . • . z 
' } T • 

We consider, for r ~ n, the function 

H(z1 · · · z,) = D(z1 · .. z,)/<P(z1) ... <P(Zr), 

and first develop a simple recur:-;ive formula for the transition r --. r + 1. In 
the determinant 

I 
r r-1 I 

Z , Z , · · • , 1 I 

forming the numerator of H(z1 · · · zr+_1) wc multiply the first r columns by the 
coeffiei;:nts Cr, · · · • r1 introduced in (6.8) and add them to the last column. 
After the last column has thus changed into .p(z) we expand in terms of that 
column and obtain (for r ;;;; n): 

(6.14) 

F . 

:'1 I 

~' 

' 
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The sum contains r + 1 alternating terms in which Zr+1 , Zr, , z1 are succes-
sively absent. 

Next we observe that for r = n 

l/<;?(Z1) ···<;?(Zn)= LP1 1 ••• P1.zi 1 ····Z~"; 
l 

hence 

H(z1 · · · z.) = L I PHn-1), · · · , P1 I zi 1 
.. • z~" 

We therefore 

xU1 · · · fn): 

(6.15) 

L I PHn-1), · · · , P1 I · I zli, · · · Z
1
" I 

<l1>· · '>ln;,;O) 

"'"" / zft+<n-1) 1.+o / (f f) L..J , •.• ,z- ·x 1··· n• 
<ft;;;·· ·;;;1.;;;ol 

find an expansion of H(z1 · · · Zr) in terms of the characters 

H(z1 ···Zr)= L Lft ... 1.(z).x(f1 · · · fn) 
(f) 

where the L's for each signature (f1 • • • 
1
fn) obey the same recursion rule (6.14) 

as H and for r = n reduce to: 

L ( ) ' ft+(n-1) . . . zf.+O I ft· .. fn Z1 ··•Zn = I Z , , . 

One readily verifies that the expressions 

(6.16) L ( ) I 
ft+<r-o z'"+<r-n) r-n-1 1 I ft .. ·In Zi " • Zr = Z 1 " • , Z , " · , z, 

fulfil both conditions and consequently they are the sought-for coefficients in 
(6.15). The generating functions <I> are by definition the coefficients, not de
pending on A, in the expansion 

l/<;?(Z1) · · · <;?(Zr) = L <I>1i ... 1.(z).x(f1 · · · fn), 
(/) 

and thPrefore come out as L/D. Since Lis skew-symmetric in its r arguments 
z1 •.• Zr, the quotient L/D is a polynomial, clearly of degree f1 + · · · + fn. 

THEOREM (7.6.F). The generating function <I>, (6.13), giving the numbers µof 
linearly independent covariants of type Cf1 · · · f n) depending in all possible degrees 
(e1 •.• er) on a given number r of argument vectors, is the quotient of the antisymmetric 
polynomial (6.16) by the difference product D(z1 · · · Zr). 

We have thus arrived at a very substantial, neat formula. In particular, on 
putting f 1 = · · · = f n = g it yields the numbers of linearly independent vector 
invariants of a given weight g and of any degrees e1 , ... , er . The generating 
function for invariants of weight g depending on n vectors x 1

, • • • , xn turns Out 
to be 

(z1 · · · Zn)°. 

In other words: there is no such invariant unless the degrees are e1 = · · · = er 
= g, and then there is exactly one (namely the g1

h power of the bracket factor 
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[x
1 

• • • xn]). In this way our formula yields a proof of the first invariant
theoretic main theorem for n vectors from which Capelli's general identity allows 
inference of the general case. According to that theorem one obtains a linear 
basis for the invariants of r vectors of given degrees e1 , • • • , er by forming all 
possible "monomials," i.e. all products of bracket factors in which the arguments 
x1, · · · , xr occur e1 , · · · , er times respectively. However, there will in general 
prevail linear relations among these monomials of which the second main theorem 
takes care. ~evertheless it does not enable one to predict just how many of 
the monomials, in view of those relations, will stay linearly independent. Thus 
the two main theorems on the one side, and our present formula on the other 
side, are, so to speak, the known ends of a chain, the intermediate links of which 
remain in the <lark. 14 

The column-wise generating function was obtained from the expressions (6.5) 
of thr, characters. The row-wise generator is at once gathered from (6.12) by 
using the expressions ( 5.15). In considering e1 , ... , En as n auxiliary variables, 
we writ\' for rlarity's sake p1 (e) for the symmetric functions of the e defined by 

l/IT (1 - e;z) = po(e) + P1(e)z + 
We ttwn havf• 

JJ(e1' ... 'En). p,,(e) ... p,,(e) = Lµ(fe1 ... fer). J /i+<n-1)' ... /• J 

I 1 ·" n ' ' 

and in thi:-; :-;ensP the polynomial of the indeterminates eon the left side is indeed 
the sought-for row-wise generating function: the µ put in evidence is the co
effieiPn t of 

U1 = f1 + (n - 1), • · · , ln = fn + 0) 

in that skew-symmetric polynomial. 
For the following cases, the symplectic and the orthogonal group, we shall 

treat only the column-wise generators, omitting the row-wise arrangements 
a!i well as the combinatorial procedure (with the p1 as indeterminates and a 
subsequent "rule of reduction"). 

Our results apply almost without modification to the group SL(n). The 
limitation to unimodular transformations has the effect that the character (5.15) 
depends merely on the differences of the f; , i.e., two signatures like 

CJ1' · · · , fn) and Cf1 + e, · · · , fn + e) 

are to bP considered the same. 

7. A purely algebraic apvrnach 

Our final result (6.5) ifl so simple that it should be possible to reach the goal 
by a shorter /oad. Here is one that follows closc>ly an ingenious paper by 
G. Frobenius. 0 
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Considering the complete reciproeity betwePn GL(11) and the symmetric 
group 1ff , we try to <lr,terminc the characters of the ;.;ymmPtric group, which we 
denote by the sanw letters as for GL(n). If distirn·tion lw nPf'ded. we add the 
index L for G/,(n) and 7f for 1ff . 

As in Chapter I\', let 

(7.1) a=d=LP 

be the operator of symmetrization lwlonging to tlw partition!= f1 + · · · + fn 
The invariant subspace of all symmetry quantitiPs of form .m may be designated 
by 7r(j1 · · · fn), the corresponding representation of -rr1 by (-rr(f1 · · · fn)). From 
formula (3.7.14) we see that its character equals 

··· __1~_ L a(C1 st) = i/;(f1 · · · fn; s), 
f1!N··· t 

or the number of elements t for which 

(7.2) 

divided by f 1 ! f 2 ! . . . The permutations, when decomposed into disjoint cycles, 
may conflist of a 1 cycles of length 1, a2 cycles of length 2, ... : 

la1 + 2a2 + · · · = f. 

The numbers a 1 , a 2 , .•• characterize the rlafls f of the element; we therefore 
write for any class function tf;(s): 

i/;(s) = i/;(f) = i/;(a1, a2, · · · ). 

The equation (7 .2) will ha\'C no solution t unles,.; we can compose lines of 
lengths f 1 , ... , fn out of. the cyrles of s. Let a•1 cycles of length 1, a;2 cycles 
of length 2, , contribute to the line of length f; . We then must have 

(7.3) la;1 + 2a;2 + · · · = f; and 

(7.4) 

The a 1 cycles of length 1 can be split in 

ai!/ au! a2i! · · · ani! 
different manners into groups of a 11 , a21 , · · · cycles respectively; the same for 
the other lengths. The !inc off; figures shall be made up by first writing down 
the a;1 cycles of length 1 in their natural or ~ome fixed order, then the cycles 
of length 2 in the same manner, etc. twill be a solution of (7.2) if by the substi
tution t the figure:-; in the fir>'t row of Iengt h f 1 change into the figun~s 1, 2. · · · , fi 
in any of thrir orders, the figmes in the ;.;pcond row change into any arrangement 
of f1 + 1, · · · , f 1 + h , etc. Hence the number of flolutions t of (7 .2) equals 
Ji! f2 ! · · · time:-; 

(7.5) " a1 ! a2! L.-J --- ----·- _____ I•--------- --
O'll ! a21 1 · · · a12 ! a22 ! · · · 
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the sum extending to all non-negative solutions a;1 , a;2 , · · · of the simultaneous 
equations (7.3), (7.4). The sum (7.5) itself is the charactrr if;(f1 · · · fn; 
a1., a2, ... ). By introducing n indcterminates E1, · · · , En we condense our 
combinatorial re::mlt into the more manageable formula 

(7.6) u(f) = u~' u~ 2 
• • • = L if;(fi · · · f,.; a1a2 · · · )E{' · · · E~>, 

(f) 

where u1 , u2 , · . · arc the power sums of the E's: 

O"r = E~ + · · · + E~. 
What is of chief importance to us is the fact that the coeffieienb of the expan
sions of the power productR u( f) in terms of the variables E are rharacters. 

We now form 

(7.7) • • • ' ti 1, I 

where 

(7.8) Wf 1 ···f,. = L ± if;(Z1 - r1, · · · , ln - r,,), 

the sum extending altl'rnatingly to all permutations r1 , · · · . r,, of 11 - l. · · · 1, 0. 

is, like the if;'s, a linear combination of primitin~ charactn,.; x. x', · · · with 
integral coefficients: 

(7.9) w(s) = rn·x(s) + rn' ·x'(s) + · · · ; 
but some of the coefficients might be negative, which would prevent w itself 
from being a character. Our next step is to show by direct calculation that the 
w's satisfy the same orthogonality relations as the primitive characters x. 
This is done by Cauchy's lemma. 

'Ye use a second set of variables z1, · · · , Zn with the power sums r1, r2, 

and start with Cauchy's relation ( eertainly rnli<l for I E; l < 1, ! z; I < 1) 

1 
(7.10) IT (l - E;Zk). 

i,k 

The logarithm of 

(7.11) equals L f f_; z~ = ~1~ + ud + 
i r~l r 1 2 

therefore the logarithm of the right side of (7.10) i,.; 

(J°l T! + 0"2T2 + 
1 2 

' 
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Hence the terms of degree !1 + · · · + f" = fin the product itself are the terms 
of that degree in the expansion of 

or the sum 

(
O"!T! , 0"2T2 + .. ·), exp -

1
- 1 2 

extending over all a1 , a2 , satisfying 

l a1 + 2a2 + · · · = f. 
As one readily sees, 

f!/l "1 2"2 
• • • ail a2 ! · · · 

is the number n( f) of group elements in the class f. Thus we find this form of 
Cauchy's relation: 

(7.12) 
"'IE\ ... ,Ez"l.lzz', ... ,zz"I 1 
,L., I En-1, ... ' 1 I I zn-1, ... ' 1 I =fl ~ n(f)u(f)r(f), 

where the sum on the left ranges over 

f1 ~ f2 ~ · · ' ~Jn ~ 0, f1 + · · · + fn = J, 
on the right over all classes f of Trf • 

On the other hand, if one multiplies the equation (7.7) for E with the corre
sponding one for the z's, one finds for the right side of (7.12) an expansion in 
terms of the products 

l l 1' 1' IE', ... ,E"I lz' ... ,z•i 
I En-1, . . . ' 1 1 · 1 zn-1, . . . ' 1 I ' 

where this product bears the coefficient 

Hence 

(7.13) Wl.\w(s)w'(s)} = 1 or 0 

according as w and w' are associated with the same or different signatures 

CJ1' · · · ,Jn)• 

together with (7.9) and the orthogonality relations for the primitive characters 
x(s), x'(s), · · · , leads to the result 

m
2 + m'

2 + · · · = 1 
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which shows that either +w(s) or -w(s) must be a primitive character. More
over one infers from (7 .13) that the ±w1i- .. 1,. for different signatures (f1 · · · /,.) 
are characters of inequivalent irreducible representations. 

There remain two things to prove: 
1) The + sign prevails for each signature; 
2) w11 .. ·In is the character of the representation (p(f1 · · · fn)) corresponding to 

the partition f = f1 + · · · + fn. 
I) The inverse of the equations (7 .8) reads: 

(7.14) i/;(f1 · · · fn) = L µ•Wfi···I~ = Wfi···ln + 
with the same coefficients µ as in Theorem (7.6.D). The dots stand here for 
a linear combination of terms w1; ... 1~ of higher rank (f~ · · · f:) than the leading 
term w1i .. ·In. This equation exhibits the decomposition of (7r(f1 · · · fn)) into 
its irreducible components. The leading term w1i .. ·In makes it impossible that 
-w1i .. -In should be the character because in terms of the characters the coefficients 
in (7 .14) cannot be negative. Thus we conclude two things: the character is 
+w1 1 •• ·In and the coefficientsµ are ~ 0. 

2) In Chapter IV, §3 we incidentally observed, equation (4.3.4), that 

(7.15) c'xa = 0 

if the diagram T' stands lower than T. If we write this in the form 

axe' = 0, 

it means that (7r(f1 · · · fn)) contains no irreducible (p(f~ · · · J:)) of lower rank 
than U1 · · · fn); but it certainly contains (p(f1 · · · fn)) since, in contrast to (7.15), 

ca =Ji! f2! · · · c ~ 0. 

Let us now assume that our statement about w1i .. ·In being the character of 
(p(f1 · · · fn)) had been proved for all partitions higher than the onef1 + · · · + fn 
under consideration. Then the formula (7.14) shows thatw1i .. -In must correspond 
to the one (p) that, besides those of higher rank than (f1 · · · fn), is certainly part 
of (.7r(f1 · · · fn)), namely to (p(f1 · · · fn)). 

The representation of GL(n) which correspond8 to the representation 
(7r(f1 , · · . , fn)) of 1ff is that induced in the space of all tensors of rank f of the 
form aF, so that the character of GL(n) corresponding to fr(f1, · · · , fn) is given 
by (2.16). Hence if we shift to the left side of (7.8) all terms occurring with 
a - sign on the right, pass to the corresponding equation for the characters of 
GL(n), and then shift these terms back, we find that the character of the repre
sentation (P(f1 , · · · , fn)) is 

or the determinant (6.5). We thus arrive at our former result. Besides this 
we have won the following simple formula for the computation of the primitive 
characters xU1 ... f n) of the symmetric group: 

'_,_· I ·' 

i I .t 
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THEOREM (7.7.A). 

(7.16) 

the. sum on the right side ranging over 

f1 ~ • · · ~ fn ~ 0, f1 + · · · + fn = f. 
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No more powerful instrument could be devised for that purpose; it yields 
xU1 · · · f n ; f) as the coefficient of 

(7.17) (l; = f; + (n - i); l1 > • · · > ln ~ 0) 

in the expansion of 

u(f).i En-I' • • • , 1 I. 
We give two easily obtainable consequences: 

1) The degree g = g(f1 · · · fn) of (p(f1 · · · fn)) is the coefficient of E~ 1 
..• E~n 

in the expansion of 

If we take the term 

of the second factor, r1 , · · · , rn being a permutation of n - 1, .. · , 0, we must 
select the term 

J! l1-r1 l2-r2 
·--- E1 E2 

(l1 - r1)!(~ - r2)! · · · 

of the first factor in order to obtain a contribution to the monomial (7 .17) in 
the product. Consequently 

g = f! 11/(l - n + 1)1, ... , 1/(l - 1)1, 1;z1 I 
f ! 

li! ... z" ! I ... , l(l - 1), z, 1 1. 

The last determinant is 

I zn-1, . . . ' l, 1 I = D(l1 ' ... ' ln). 

Therefore: 
THEOREM (7.7.B). The degree g(f1 . · · fn) of the irreducible representation 

(p(f1 · · · f n)) of the symmetric group off = f1 + · · · + fn figures i.~ 

=f' D(l1, · · ·, ln) 
• Z1 ! · ' · ln ! ' 

where, as always, 

l1 = f1 + (n - 1), · · ·, Zn = fn + 0. 

2) Let us suppose the permutation s to contain a cycle of length v (a. ~ 1). 
By dropping it we reduce s to a permutation of f - v figures whose class f' 
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is characterized by the same numbers a 1 , a2 , . · · as the class f of s, except that 
av is reduced to av - 1; whence the simple relation 

u(f) = u(f')·O"v = u(f')(E~ + · · · + E~). 
On writing for the moment the right side of (7.16) in the form 

ln 
• •• En' 

the sum ranging over all integers 11 , · · · , ln, we obtain 

{ l1 , Z2 , • · · , ln} r = 

{ li - v, 12, · · · , l,.} r • + { 11 , Z2 - V, · · · , Zn} r • + · · · + { 11 , Z2 , • • • , Zn - V} r' • 

Even if the Z1 , · • . , Zn follow the proper order 

Z1 > l2 > · · · > Zn ~ 0 

this may not be so for some of the brackets on the right side, e.g. for 

{ Zi , 12 - V, · • • , ln} . 

If l2 - v is = la the term is to be dropped; if 12 - v < la we interchange these 
two arguments: 

{ li , 12 - v, l3 , · · · l = - { Z1 , la , 12 - v, · · · } . 

When necessary we repeat this process until 12 - v finds its proper place. Should 
k - v be <O it will be pushed to the end of the row and the term is likewise 
to be canceled. On going back from the l's to the f's we obtain the following 
rule for the recurrent calculation of characters: 

THEOREM (7.7.C). If the class f contains a cycle of length v and if f' is the class 
arising by canceling this cycle, then 

x(f1 ... fn; f) = xU1 - v,f2, · · · ,fn; f') + xU1 ,/2 - v, · · · ,fn; f') + · · ·. 
While Ji ~ f2 ~ . . . ~ fn ~ 0, the indices of a x on the right side may deviate 
from this proper order at one place. For a x(/1 · · · f n) where this happens, the 
following reduction is to be performed: 

(1) If the discrepancy occurs at the last place, f n < 0, then x is to be canceled. 
(2) If it occurs at an earlier place, 

f1 ~ · · · ~ fi-1 ~ f;+1 ~ · · · ~ f n , but f; < fi+i , 

the same holds, provided the gap f;+i - f; = 1; 
(3) If, however, the gap f;+1 - f; is ~ 2, one replaces 

x(. · · , f;, f;+1, · · ·) by -x(. · · , f;+1 - 1, f; + 1, · · ·) 

(f, is increased by 1, f;+1 is lowered by 1, and the order exchai:iged). The dis
crepancy is thus either removed or moved on to the next place (with a lower gap). 

CHARACTERS 215 

This rule has often been used before for v = 1. In particular the recursive 
equation holds: 

(7.18) g(/1 'f2 ' ... ) = g(/1 - 1, f2' ... ) + g(f1 'f2 - 1, ... ) + ... ' 
where terms on the right side are to be dropped, whose arguments do not keep 
proper order. The general rule was only recently pointed out by Professor 
F. D. Murnaghan16 who found it very useful for the actual computation of 
characters. 

If one multiplies (7.16) by 

n( f)-x(/1 ... f n; f) 

and sums over f, making use of the orthogonality relations of the characters x, 
one arrives at the equation 

I Ell • • • Eln I 1 " 
I ~1 ' l J = ff L., n(f)u(f)x .. (/1 · · · fn; f). 

€n ' •. • ' • t 

On the left side we have the character XL(/1 · · · fn) of GL(n). This connection, 

(7.19) 
1 

XL = Ji. L n(f)u(f)x,.(f), 

evidently carries over from the irreducible representations to any linear combi
nations of them, and hence to all representations. It is indeed nothing else 
than the expression in terms of characters of the general reciprocity discussed 
in Chapter III, B. In this way, as has been done by the author, 17 the equation 
may be directly established through the same combinatorial considerations as 
led to Frobenius's equation (7.6). A particular case is the equation 

Pl = - L n(f)u(f) = L ~~ ~ 1 1 ( )al( )a2 
f ! a1 ! a2 ! · · · 1 2 

(la1 + 20:2 + · · · = f) 

which may also be derived from (7.11): 

£ P1Z1 = 1/ II (1 - E;Z) = exp (0"1

1

21 + u2

2
z2 + 

1~0 • 

If one is concerned with the symmetric group only, one might to some ad
vantage give this whole development the following turn. 18 By means of inde
pendent variables u1 , u2 , ••• one associates with each class f whose permutations 
consist of a 1 cycles of length 1, a 2 cycles of length 2, ... , the monomial 

u( f) = 

With each character x( f) of the symmetric group one associates the following 
polynomial 'lt(u1 , u2 , ... ) of the variables u1 , u2 , ... which Schur calls the 
characteristic: 

'lt(u1, u2, · • ·) = ~ ~ n(f)x(f)u(f). 
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The characteristic of the representation s ~ 1 whose character is x(f) 1 
may be denoted by Pt : 

1 
p1 =ff L n(f)u(f). 

The introduction of characteristics might formally be justified by observing 
that the product of two characteristics of Trf and Tr/' is a characteristic of Trf+f'. 

This statement takes the place of the combinatorial argument by which we 
derived Frobenius's formula (7.6), and is proved in similar fashion. [For us 
who are initiated and know that the characteristic is the corresponding char
acter of GL(n), all this is plain enough.] Hence the products 

P1iP12 

associated with arbitrary partitions f = f 1 + f2 + · · · +fr are characteristics; 
and so are the determinants 

1 I Pi-cr-1), · · · , P1-1, Pi I = fl L n(f)x(f1 · · · fr; f)u(f) 
. I 

(Z1 = f1 + (r - 1), · · · , lr = fr + O), 

and their coefficients x(f) are characters, at least in Frobenius's extended sense, 
meaning linear combinations of primitive characters with integral, not necessarily 
positive, coefficients. By means of the orthogonality relations r..nd a suitable 
form of Cauchy's lemma, one realizes that the x(f1 · · · fr; f) themselves are 
primitive characters. 

The absence of the number n alien to the symmetric group Tr/ may be counted 
as an advantage of this procedure. But whichever way one turns this theory, 
it always depends on three arguments, viz. the typical combinatorial considera
tion, Cauchy's lemma, and the orthogonality relations. And the determinant 
comes in, one does not know whence, as a deus ex machina. Not so in the 
analytic method where t. springs from the volume element of the unitary group. 
Thus, after due respect has been paid to the algebraic verifications in their 
various shapes, I am still convinced against all Puritan doctrines that the 
analytic method is the least artificial, affording the deepest insight and best in 
keeping with our program: to solve concrete problems by means of general 
ideas which shed light upon a much wider range of mathematical facts than were 
needed for our immediate purpose. One of the most conspicuous advantages 
of our analytic procedure is its being capable of immediate generalization to the 
symplectic and the orthogonal group. 

8. Characters of the symplectic group 

For the symplectic group Sp(n) the dimensionality n is even, 
vector components are designated as 

' ' ' X1, X1', X2, X2, · · ·, X,, X.-

2v. The 
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Lemma (7.1.A) justifies limitation to the unitary symplectic transformations 
which form the group USp(n). Similar to Theorem (7.1.C) one has: 

THEOREM (7.8.A). Within U Sp(n) each element A is conjugate to a diagonal 
element with the components 

(8.1) f I 
Et 1 E1 1 • • • 1 E, 1 E, 

where I E; I = 1 and E; = 1/E; = E; (i = 1, · · · , v). 
PROOF. From the theory of unitary matrices we know that the roots E of 

the characteristic equation 

are of modulus 1, and that the eigenspaces P(E) which consist of the vectors x 
satisfying the equation 

(8.2) EX= Ax 

are unitary perpendicular to each other for numerically different roots E, and 
yield as their sum the full space P. To each vector x there corresponds the 
vector denoted in Chapter VI, §2, by x, and the equation (8.2) entails 

EX= Ax. 
We now determine the basis in each P(E) in a particular way, and we distinguish 
two cases: 

1) E ~ ± 1. In P(E) we choose as before an arbitrary unitary-orthogonal 
basis e1 , .. · , eµ. The vectors x corresponding to the x in P( E) form the eigen
space P(E) and as its basis we choose 

Thus the eigenvalues E ~ ± 1 occur in pairs E, e = 1 / E of equal multiplicity; 
and the construction just indicated is carried through for each of these pairs 
independently. 

2) E = ± 1. The case E = - 1 was treated in Chapter VI, §2 and we suc
ceeded in constructing a basis of P( - 1) which is at the same time unitary
orthogonal and symplectic. The same construction goes through for E = + 1. 

If we combine the bases thus constructed for the different eigenspaces, we 
obtain a basis of the whole n-dimensional space which is at the same time unitary
orthogonal and symplectic. In this coordinate system the transformation takes 
on the diagonal form with the components (8.1). 

We put 

E; = e(<P;), E; = e(-<P;) (i = 1, · · · , v) 

and call <Pi , · · · , <Pv again the angles of A. They are uniquely determined mod. 1 
except for their order and their signs. We use the notation 

c(<P) = e(<P) + e(- <P), s(<P) = e(<P) - e(- <P). 
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THEOREM (7.8.B). The volume of that part of U Sp(n) the elements of which have 
angles within the infinitely near limits 

(<Pi, 'Pl + dip1), ... ' (ip,, ip, + dip,) 

is given by 

where 

(8.3) (i,k = 1, ... ,11). 

The proof is similar to that of Theorem (7.4.C). 
Each character of U Sp(n) is a class function and hence a function of the 

angles <P1, · · · , ip, periodic with period I in each argument and invariant under 
the" octahedral" group Q, of order 2• · 11 !, which consists of permutations of the 
arguments ip1 , • • · , ip, combined with arbitrarily distributed changes of signs. 
A is antisymmetric with respect to that group. The simplest antisymmetric 
functions are the elementary sums 

W1 · · · l,) = L: ± e(l1<P1 + · ·. + l,ip,), 

where the l's are integers satisfying the inequalities 

li > l2 > · · · > l, > 0 

and the sum extends alternatingly over the group Q, . 

W1, · · · , l,) = I s(Z1ip), · · · , s(l,ip) [. 

A is the lowest of these elementary sums: 

(8.4) A = w~, ... , l~), l~ = ,,, l~ = II - 1, ... , l~ = i. 

THEOREM (7.8.C). Each primitive character xUi · · · f,) of USp(n) is given by 
a quotient the numerator of which is 

(8.5) t (l l ) I 11 -11 1 , i;1···, = E -E 1 ••• 1 E -

and the denominator of which is H 11, 11 - 1 , · · · , 1). 
Its highest term is e{ 1 

• •• e{', where 

li - l~ = fi , · · · , l, - l~ = f, . 

The degree is determined by first setting 

<Pi = 11ip, <P2 = (11 - I )ip, ... , ip, = lip, 

whereby the numerator (8.5) changes into 

II s(lirp)- II {c(li<P) - c(lkip) l, 
i<k 

and then letting rp tend to zero: 

N(fi · · · f,) = P(li · · · l,)/P(l~ · .. l~), 

P(li ... l,) =II l;·II (l; - lk) (l; + lk). 
i i<k 

I 

I 
: 
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The identification with the algebraic construction in Chapter V reveals 
that (8.5) corresponds to the linear space Po(f1 ... f,) cut out from pJ 
(f = fi + · · · + f,) by the symmetry diagram T(f1 ·. · f,). 

THEOREM (7 .8 .D). With fi , · · · , f, ranging over all integers in the order 
fi ;:::; · · · ;:=:; f, ;:=:; 0 the representations (Po(f1 · · · f,)) constitute a full set of inequiva
lent continuous irreducible representations of the unitary symplectic group. 

We write Cauchy's lemma in the form 

I 
1 1. [ 1 . . . x•-1 I · I .,,v-1 . . . .1 I 

- ' ' ' .'J ' ' (i, k = 1, ... '11) 
Xi - Yk i - - --- II (;~-~ Yk-) ----

and now put 

Yi= Ei + -1 
Ei • 

Then 

1 
X; - Yk = - (1 

z 

We obtain 
I 1 [ [ v-1 + -(v-1) 1 'I [ v-1 v-2 + v 1 + 2>-2 [ I ,_e E ,···, ·z,z z,···, z 

1 
(1 - EkZi)(l - e/;

1
Zi) I - IT (1 - e1rz;)(l - e/;1zi) 

1 00 00 I -I 
_________ is L !ez-1 + El-3 + ... + E-U-1J} z1-1 = Le--=--:__. z1-1. 
(1 - ez)(l - e-1z) 1~1 1-1 e - e-1 

Hence with the abbreviations (8.4) and 

rp(z) = II (1 - EkZ) (1 - e/;
1z) = I E - zA I: 

k 

A I •-1 1 + 2•-2 r 
'-1" z ' ... ' z - ~ I 11 -11 I, -1, I 11-l 1,-1 
----'--~~----'--~-- - L.,, E - E 1 • • • , E - E Z1 · · · Z, . 

ip(z1) · · · ip(z,) 

When we again introduce the p1 by (6.4) we see that the character xU1 · · · f,) 
equals the coefficient of zi 1

-
1 

••• z!'-1 in 

I v-1 v-2 + v 1 + 2v-2 [/ ( ) ( ) Z 1 Z Z 1 • • • 1 Z <{! Z1 · · · <{! Z, 1 

or 

[ Pl-v, Pl-v+l + Pl-v-1, · · · , Pl-1 + Pl-2v+l [ · 

Now we may cast off the unitarian fetters. Wishing to supply a uniform nota
tion for GL(n) and Sp(n) we replace the symbol l here by l + 1. 

THEOREM (7.8.E). The character of the irreducible representation (Po(f1 · · · f,)) 
of the symplectic group is 

(8.6) xU1 ' ... 'f,) = I Pl-v+l' P1-v+2 + Pl-v' ... ' Pi + Pl-2v+2 [, 

the p1 being defined in terms of the arbitrary symplectic transformation A by 

l/[ E - zA I = LP1Z1 
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and 

(8.7) l1 = f1 + (v - 1), · · · , l. = f, + 0. 

Nowhere in this sweeping advance do we encounter the least resistance.u 
The characteristic polynomial 

<P(z) = I E - zA I 
of a symplectic transformation A: 

A*IA =I, 

has the property 

(8.8) 

Indeed 

(E - zA *)IA = I(A - zE) 

implies 

I E - zA * I = I A - zE I or I E - zA I 
because I A I = 1. We put 

1/tr(z) = <P(z) for r = v and 

1/tr(z) = {l + Z2(r-v)}<P(Z) for r > JJ. 

jzE - A I 

The polynomial iftr of degree 2r satisfies the equation analogous to (8.8): 

z2' ·iftr(l/z) = i/lr(z), 

and is therefore of the form 

(8.9) (Co = 1). 

Hence on forming 

(8.10) V'(z1 · · · Zr) I 
r-1 r-2 + r 1 + 2(r-ll j z 'z z' ... ' z 

the function 

will satisfy, for r ~ v, the recursive equation 

H(z1 ··· Zr+1) = H(z1 ··· Zr)Z1 ··· Zr{l + z;_\..';-'>} - + ··-, 
the factor { 1 + z;.\-'1-» l in the lowest case r = v to be replaced by 1. Moreover 

H(z1 ... z,) = L zi 1 
••• z!• I PHv-1)' ... 'Pl+ Pl-2(v-l) I 

L I zti+<•-n, · · ·, Z1
' I ·xU1 · · · f,). 

U1~···~f.~Ol 
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Hence by induction with respect tor starting with r = v: 

with 

H(z1 · · · z,) = L L1i ... 1.<z1 · · · Zr)· xU1 · · · f.) 
(f) 
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(8.11) 
I !1+(r-ll 

z ' 
J,+(r-v) : r->-1 r-•-2 + r-v 1 + 2(r-•-l) I ,z \Z ,z Z ,···, Z . 

The determinant 

V' = (z1 ... Zrr-l j 1, z + z-1, ... 'zr-l + z-r+l I 

is the difference product of the Z; + zi1 multiplied by (z1 · · · z,)'-1. As 

(zk + z; 1
) - (z; + zi1) = (z; - zk) (__!__ - 1) = (z; - Zk) (1 - z;zk)/z;zk, 

z,zk 

one finds 

V'(z1 • · · Zr) = D(z1 · · · z,) Il(l - Z;Zk)· 
i<k 

It is convenient to introduce the intermediate polynomials 

(8.12) L1i ... J,(Z1 · · · Zr)/D(z1 ···Zr) = A1i ... ,,(z). 

Then the result is: 
THEOREM (7.8.F). The generating functions 

<I>1i ... 1,(z) = A1i ... 1,(z)/IT (1 - z,zk) 
i<k 

(i, k = 1, · · · , r) 

= L µ (;: ". ·. ". ;.) z~ 1 
••• z~' 

as defined by (8.11), (8.12), on the one hand describe the decomposition of 
(2:(e1 ... er)) into irreducible parts (Po(/1 · · · f,)): 

(2:(e1 · · · er)) ""' L µ (fe: ... fer) · (Po(/1 · · · f,)), 
(/) 1 • • • • 

on the other hand determine the numbers of independent covariants of the prescribed 
type (P0(/1 ... f,)) depending in arbitrary degrees e1 , · · · , er on r argument vectors. 

It is not possible to condense in a neater form the abundance of information 
this formula contains. For f 1 = · · · = f, = 0 it gives the numbers of linearly 
independent vector invariants. Up to r = 2v, the numerator Loo ... o permits 
the simplified expression · 

I r-1 • i v-1 l j z , · · · , z I z , · · · , ; 

hence, for r = n, 

(8.13) cf>o ••• o(Z1 · · · Zn) (i, k = 1, · · · , n). 
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Let x
1

, • • • , xn be the n argument vectors and [x'xk] (i < k) their t n(n - 1) 
skew-products. (8.13) indicates that there are as many linearly independent 
invariants as "monomials" 

(8.14) 

of the preassigned degrees e;, e; = L eik· This of course is in perfect agreement 
k 

with the statements of the first and second main theorems, that all invariants 
are expressible in terms of skew-products, and that there is no algebraic relation 
among the skew-products of n vectors. On assuming either of these two proposi
tions, our formula would establish the other. We see now what the denominator 
II (1 - Z;Zk) in our formulas means; for the purpose of enumeration it takes 
i<k 

account of the obvious fact that multiplication of any covanant by an arbitrary 
monomial (8.14) leads to a covariant of the same type again. 

We formerly advocated the procedure of descending from GL(n) to the sub
group Sp(n) after having first decomposed (2:(e1 .•• er)) into its irreducible 
constituents (P(e1 · · · en)) under the regime of the full linear group: 

(8.15) "'""" (e1 · · · e ) (P(c1 · · · en)) '"'"' L.. µ* f Jn · (Po(f1 · · · f,) ). 
(/) I . . . • 

Considering the previous relations 

D(z1 · · · Zn)/ <P(Z1) · · · <P(Zn) "'""" I e,+(n-1) en I ( ) L.. z ' ... ' z . x e1 ... en 
(e) 

_ "'"""L1 1 ... 1,(z1 · · · Zn) s(f 1 ) 
- L,. . X I••• Ji (/) II (1 - Z;Zk) • ' 

where x and x
8 

indicate the characters of GL(n) and Sp(n) respectively, one 
arrives at this formula: 

THEOREM (7.8.G). The Taylor expansion of 

(8.16) (i, k = 1, · · · , n) 

is skew-symmetric in the n variables z1 , · · · , Zn and may hence be written in the 
form 

(
e1 · · · e ) "'""" * n I ei+(n-·l) •n I L.. µ . z ... z 

(e1f;···~en~O) f1 · · · JJJ 1 

' ' • 

As a generating function in this sense, (8.16) exhibits the multiplicitiesµ*, (8.15), 
with which the irreducible parts (Po(f1 · · · f.)) occur in (P(e1 · · . en)). 

9. Characters of the orthogonal group 

It was not without purpose that this time we gave the symplectic group pre
cedence over the orthogonal group. For the latter the situation is considerably 
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complicated by the distinction between proper and improper substitutions.20 

For the analytic investigation it proves convenient to separate the cases of odd 
and even dimensionality, n = 211 + 1 and n = 211, and to assume as the funda
mental quadratic form left invariant by the orthogonal transformations: 

(9.1) l
2(x1x~ + · · · + x.x;) + x~ (for n = 211 + 1), 

2(x1x~ + · · · + x.x~) (for n = 211) 
rather than 

(9.2) 

As the one changes into the other by means of the substitution 

(k = 1, ... ' 11) 

which is itself unitary, the group UO(n) of unitary transformations leaving 
(9.1) invariant is equivalent under this substitution to the group of unitary, i.e. 
real, transformations with the invariant form (9.2). With the fundamental 
form (9.1) the scalar product of two vectors x, y equals 

(xy) = (x1y~ + x;y1) + · · · + (x.y; + x;y.) ( + XoYo l, 
and thus the whole treatment will resemble more that of the symplectic group 
with the invariant skew product 

[xy] = (xiy~ - x~y1) + · · · + (x.y; - x;y.). 

The one improper orthogonal transformation Jn which we used in Chapter V 
for breaking up O(n) into o+(n) and its coset o-(n) will now be defined by: 

Let us first study the odd case n = 211 + 1 in a manner needing but little 
modification when we afterwards pass to the even case. Within UO(n) each 
proper or improper element is conjugate to a diagonal element 

(9.4) 

respectively, where E; = i; = 1/E;. We introduce the 11 angles <Pt by E; = e(<P;). 
Each class function, in particular each character x, is therefore a periodic func
tion x+(<Pi, • · • , <P•) on the proper, another x-(<P1, · · · , ip,) on the improper 
part, which are invariant under the octahedral group Q = Q. of order 2' · 11!. The 
diagonal elements of form (9.4) constitute an Abelian group and consequently 
we are able to bring their representing matrices in a given representation simul
taneously into diagonal form. We know that for the proper elements the matrix 
will consist of N terms 

~ = e(m1<P1 + · · · + m,,ip,) 
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along the diagonal. Let the one improper element Jn, (9.3), be represented by 
the diagonal matrix { aK}; because of J~ = E we obtain 

a~= 1, 

and then for the improper (9.4): 

E; = aK·e(m11.p1 + · · · + m,1.p,). 

Hence x+ = L EI and x- = L E; are finite Fourier series with integral 
coefficients: 

(9.5) !X+ = L k!, ... m, e(m11.p1 + · · · + m,1.p,), 

X- = L k-;;., ... m, e(m11p1 + ... + m.1.p.). 

The k + are non-negative and the k - satisfy the conditions 

(9.6) (mod 2). 

For the relative density of the classes we find A+ .i+, .i-.i- on the proper and 
improper part respectively, where 

(9.7) 
IA+ ~ I.I'(~') IX le(,,) - ,(,,)I, 

l.i- =If c(~')·}l (c(1.pi) - c(1.pk)}. 

These functions are double-valued in the manner that by following its continuous 
variation A changes into -A whenever one of the angles 'Pi describes the full 
circle while the others remain fixed. ~+ = A+ x +and C = .i-x - are finite Fourier 
series with integral coefficients in the modified sense that in the generic term 
e(m11.p1 + · · · + m.1.p,) the exponents m1 , ••• , m, are taken from the sequence 
of "half integers" 

... ' -3/2, -1/2, 1/2, 3/2, 

rather than from the sequence of integers 

... ' -2, -1, o, 1, 2, .... 

Hence they are linear combinations with integral coefficients of the elementary 
sums 

t(li, ... , z,) = .L: ± eCZ11.p1 + ... + z.1.p.), 

C(Z1 , · · · , l,) = L ± e(l11.p1 + · · · + l,1.p,). 

In ~+ the sum extends altPrna-tingly over Q, while in C the sum extends 
natingly over the permutations. but directly over the changes of signs. 
l's are half-integers satisfying 

Z1 > Z2 > · · · > l, > 0. 

(9.s+) ~+cz1, ... , z~) 1 t
1

' - f-
11 , ... , /· - E-l, 1 

I s(l11.p), · · · , s(l,1.p) \, 

I c(l11.p), · · · , c(l,1.p) \. 

alter
The 

CHARACTERS 

A+, .i- are the lowest~+, C with 

l~ = v - 1/2, ... ' l~ = 1/2. 

In exhibiting the individual terms in lexicographic order we must have 

~+ = C+·~+(l1 · · · l,) + · · · , 
C = c-CCZ1 · · · L) + 

where 

(9.9) C+ > 0, c_ = C+ (mod 2), I c_ I ~ C+. 
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Denoting by ffiC, 9)(+, 9)(- mean values over the whole group, its proper, and 
its improper part respectively, one has 

9JC = ~CffiC+ + mi-). 

If x is primitive, its square average 9JC I x [2 equals 1; hence the equation 

He~ + c'.:_) + · · · = 1 

which on account of (9.9) leaves two possibilities only: either 

(9.10) 

or 

x 
C(l1 · · · l,) 
ccz~ ... z~) 

+ tCZ1 · · · l,) 
(9.11) x = ~+cz~z~), 

-x = 
C(Z1 · · · l,) 

---o-·-o-· 
C(Z1 · · · l,) 

The highest term in (9.10) is 

(9.12) ui = zi - m 
for both x +and x-, while in (9.11) the leading terms are 

This is sufficient for the identification with the algebraic construction in Chapter 
V, §7, which we must adapt to the new shape (9.1) of the fundamental quadratic 
form. This slight change is only for the better: for a scheme T with m ~ v 
rows of lengths 

f1' · · · ,Jm Cfm+l = · · · = J, = 0) 

the only linearly independent component of the generic tensors in Po(f1 · · · f,) of 
highest weight is now 

(

1 1 ...... ) 

F ~-. -~ .. ::::. ' 

m m ··· 
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and this weight is (9.12) under both proper and improper transformations. For 
the associate diagram T' the corresponding component is obtained from the 
above on extending the first column by 

m + 1, .. · , v, 0, v', (v - l)', · · · , (m + l)'; 

it is of weight± E{' ... E:' according as we take the+ or - l:lign in (9.4). Hence 
(9.10) belongs to P0(f1 . ·. fv) and (9.11) to P~(f1 · · · f,). By applying Cauchy's 
lemma in the same form as for the symplectic group, x +and x - acquire a unified 
expression, and in replacing the symbol l by l + 1/2 we obtain with the old con
ventions (8.7), 

(9.13) xU1 ... f.) = I PHH) - PHv+l), ... ' Pz - Pl-2v I 
for Po(f1 · · · f.), and 

(9.14) 

for Po'(f1 · · · f,). 
x'Ui .. · f.) = I A I· xU1 .. · f.) 

'Ve have now reached the point where we may cast off the unitary restriction 
and the result will hold good in any number field (of characteristic zero). Hence 
there is no reason why we should not return to the metric ground form (9.2); 
then our considerations have proved that the algebraically constructed 

(Po(f1 · · · f,)), (P~(f1 · · · f,)) 

yield a complete set of inequivalent continuous irreducible representations of 
the real orthogonal group. 

The treatment of the odd case could have been simplified by using - E as 
the improper element rather than (9.3) for performing the transition from proper 
to improper elements. The unified expression (9.13) on proper and improper 
part is then perfectly plain. However, we followed our course because it serves 
as a model for the even case n = 2v. We shall briefly indicate the modifications. 

Instead of the normal form (9.4) of the elements of UO(n) we now get 
I ! I I I I 

X1----> E1X1, X1----> E1X1 1 • • • , Xv----> E,X,, X,----> E,X, 

for the proper and 
I I I I I I 

Xi----> E1X1, X1----> E1X1, ' XP-l ---? Ej.1-1 x.,_1, Xv-I ---? Ev-I'Xv-I, 

I I 

x. ----> x.' x. ----> x. 

for the improper elements. In the latter case we therefore have but v - 1 
angles <Pt , · · · , <Pv-1 . For the definition of Jn see (9.3). Instead of (9.6) we 
find that the same relations prevail for the coefficients of 

x.,_(ip1, · · · , <Pv-1, <P· = o) and x-C<P1, · · · , <P.-1). 

(9.7) has to be replaced by 

f A+ = g ic(ip;) - c(cpk) l (i, k = 1, · · · , v); 

(9.15) \ 
lA- = ~I s(cpi) · Jl !c(cpi) - c(ipk) l (i, k = 1, · · ·, v - 1). 

r .. , .. 

' 
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The elementary sums t(l1 ·. · Z,) are 

I c(l1cp), · · · , c(l,cp) I 
for l. > 0, but only half of it: 

I c(l1ip), · · · , c(l,_1ip), 1 I 

for L = 0. This has the consequence that 

11 
· · · 11 

I ~+(l1 · · · Z.) /
2 

dcpi · · · dip. = n or !n 

according as z. > 0 or Zv = 0, with Q = 2'. v ! , in particular 

11 
· · · l 1 

A+ A+dcp1 · · · dip, = !n 
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for A+ = ~+ (v - 1, · · · , 0). The elementary sums C (l1 • • • l,_1) are like those 
for the symplectic group: 

/ s(Z1cp), · · · , s(L-1cp) /, 

and A- = C(v - 1, · · · , 1). Using the notation 

(9.16) l~ = j/ - i, f; = l; - lL 
the resulting possibilities are: 

+ ~+(Z1 · · · l,) 
x = ~+(l~ ... l~)' with z. > O; 

+ ~+(l1 · · · l,_10) 
x = ~+(l~ .. · l~-1 0)' 

+ ~+(ll • '· lv-10) 
x = t(l~ ... l~-1 0)' 

x C(l1 · · · l.-1) 

C(l~ · · · Z~-1)' 

- C(l1 · · · l,_,) 
x = - _(lo lo ) 

~ 1 • • • v-1 

for z. = 0. They correspond to the tensor spaces 

(9.17) Po(f1 · · · f,) = P~(f1 · · · f,) 

Po(f1 · · · fv-1 O), 

P~(f1 · · · f.-1 O), 

(f. > 0), 

and 

respectively. Indeed in the even case we have the self-associate diagrams with 
exactly v rows,/. > 0, for which Po and P~ coincide. No wonder that the corre
sponding character is zero for the improper elements A; for the representation 
is equivalent to its associate so that 

x(A) = - x(A) for / A / = - 1. 

By means of Cauchy's lemma we finally arrive at the same result (9.13), 
(9.14) as for n = 2v + 1, both on the proper and improper part, and whether f. 
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is = 0 or > 0. 
(9.17), 

The only diffnence is that in thr latter ca,;P, in agreement with 

xU1 · · · f,) coincides with x'CJ1 · ·. f.). 

Indeed we shall prove in a moment that the drtermirnrnt (H.13) then vani;.;hes 
for improper orthogonal A. 

THEOREM (7.9.A). The characters of 

(Po(f1 · · · f,)) and (P~(j1 · · · f,)) 

are given by the determinants 

(9.18) x(f1 ... f,) = I PHv-1) - P!-(v+l)' ... ' Pz - Pl-2v I, 
x'CJ1 · · · f,) =I A l·xCJ1 · · · f,), 

the l being defined by (8.7). For a self-associate diagram, n = 2v, f. > 0, x and x' 
coincide. 

The formulas for the degrees can be as readily supplied as for GL(n) and Sp(n). 
THEOREM (7.9.B). The table 

(Po(J1 · · · f,)), (P~(J1 · · · f.)) 

(with the proviso that Po= P~ is taken only once for a self-associate diagram, n = 2v, 
f. > 0) contains a complete set of inequivalent continuous irreducible representations 
of the real orthogonal group. 

For any orthogonal matrix A, A* A = E, one readily verifies the fact that the 
characteristic polynomial 

ip(z) = I E - zA ! 

satisfies the functional equation 

Zn ·ip(l/z) = O·ip(z), 

where o is the sign (- lfl A j. In particular, if n is even, 
proper, I A I = - 1 : 

z2' ip(l/z) 

and consequently ip(z) has the form 

- ip(z), 

ip(z) = co(l - z2') + c1(z - z2
'-

1
) + · · . + c,_1(z'-1 

- z'+I) 

whence springs the recursive relation 

2v, and A 1m-

(co = 1), 

ro for l > 0 

[i for l = 0. 

This proves that (9.18) indeed vanishes if n = 2v, I A I = - 1, and all l's > 0. 
More generally, the polynomial 

1/tr(z) = {1 - oz2r-nl ip(z) (r > v) 
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of degree 2r satisfies 

z2' Y,,,(l/z) - Y,,r(z), 

and is therefore of the form 

Co(l - z2') + · · · + Cr-1(zr-I - z'+I) (Co = 1). 

This leads readily to formulas similar to those established for the symplectic 
21 group. 

THEOREM (7.9.C). In order to adapt Theorems (7.8.F) and (7.8.G) to the 
orthogonal group the fallowing changes are to be made: 

(1) Put 

L± _ 
1 

_/ 1+(r-l) . . . J,+(r-v) ! r-v-1 ± r-v .. , 1 ± z2r-n J 
Ji .. ·!, - Z- , , Z I Z Z , , 

Jorn= 211 + 1, and 

L ± = I !1+(r-l) • • • ! .+<r-v) l zr-v-1 +- zr-v+l . . . 1 + z2r-n I 
/1 • • ·/,. Z' 1 ' I J ' 

for n = 211. The £-functions for the types Po(f1 · · · f,) and P~(f1 · · · f.) are given by 

L = t(L+ + L-), L' = t(L+ - L-) 

except for a self-associate diagram (n = 211, f. > 0) where 

L(= L') = L+. 

(2) Change the denominator 

II (1 - z;zk) into II (1 - z;zk). 
i<k i~k 

The last modification is in agreement with the necessity of including the case 
i = k when forming the (symmetric) table of scalar products (x'xk) of a given 
number of vectors x1, · · · , x". 

10. Decomposition and X -multiplication 

Let us illustrate what we have in mind by the symplectic group, which is not 
quite so simple as GL(n) and not so complicated as O(n). Any invariant sub
space of p1 is the substratum of a representation '.ti of Sp(n), the character x('.tl) 
of which is a polynomial 

(IO.I) 

with non-negative integral coefficients km 1 •• ·m,, when expressed in terms of the 
diagonal elements of Sp(n): 

I -1 I 
Xa ~Ea Xa (a = 1, · · · , 11). 

The exponents m1 , •.• , m. are integral, no~ necessarily positive, numbers. 
The corresponding argument was explicitly carried out in Chapter IV, §5,forthe 
full linear group. The representation '.ti breaks up into rreducible representa
tions of the type 

(P(f1 .. · /.)) = 'o(/1 · · · /,). 
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\Ve want to determine how often each of these irreducible constituents occur in 
'.t', under the assumption that we know the coefficients km

1 
.. ·m, characterizing 

the given representation '.t'. 
A second important problem is the decomposition of the product b' X b of 

two irreducible representations b' and b into its irreducible constituents 
b(f1 · · · f,). We shall solve both problems together by giving a formula for thr 
number of times b(f; · · . /) occurs in the product 

(10.2) 

where the representation '.J) is defined by means of the coefficients km
1 

•• • ,,,, of 
its character. 

We prefer to think in terms of the unitarily restricted group Sp(n). Instead 
of the character 

(10.3) 

we might use the "~-function" of '.ti: 

H'.tl) = Ll·x('.tl) 

arising by multiplication with Ll, (8.3). x is symmetric, ~antisymmetric, under 
the octahedral group Q, operating on the angles <Pa. The ~-function of b(f1 ... f,) 
IS 

(10.4) 

with 
I 11 -11 

~ - ~ ' 

!1 ~ ... ~ f. ~ 0, la = J a + (11 - a + 1). 

We retain the definition (10.4) of W1 · · · l,) for arbitrary integers whether or 
not they satisfy the inequalities 

Z1 > · · · > l. > 0. 

(
!1 ... f,) 

The multiplicities m , , : 
fi ... f. 

:n x bCJ1 · · · J,),...., I: m (1~ ... 1:)·bCJ~ ... J;) 
(/') !1 ... f. 

are to be derived from the character: 

x('.tl) ·xC!1 · · · f,) "' I I L.J m-xU1 · · · f,) 
(f') 

or, after multiplication with Ll, from: 

x('.J))-Hli · · · z.) = I: m.w; ... z;). 
We propose to show that the left side, or the ~-function of '.ti X b(fi · · · f,), 
equals22 

(10.5) I 
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in other words, that it is obtained by substituting 

HZ1 + m1 , · ·. , l, + m,) for each term e(m1cp1 + · · · + m,cp,) 

in the Fourier expansion (10.3) of x('.rl). Indeed, let 

(10.6) ±e(l1cp; + · · · + l,cp;) 
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be any of the 2' · 11! terms making up HZ1 · · · l,); cp;, · · · , cp; arises from 
cp1 , ... , cp, by a substitution of the octahedral group. Since (10.3) is symmetric 
under that group, we might write 

x(:n) = I: km1···m,e(m1cp; + ... + m,cp;), 

and therefore the product of x('.rl) by the term (10.6) equals 

± L k,,. 1 ... m,e((m1 + Z1)cp; + · · · + (m, + l,)cp;). 
(m) 

Alternating summation over Q, leads to the formula (10.5). 
At first sight it seems to solve our problem without any ado: the irreducible 

constituent of signature f 1 + m1 , ... , f, + m, occurs with the multiplicity 
km 1 •• ·m,. But this would simplify matters a little bit too much, because the 
sum (10.5) will contain plenty of terms for which 

>-1 = l1 + m1 , · · · , t-, = l, + m, 

do not keep proper order. The correct conclusion to be drawn from (10.5) is 
thus: the irreducible representation b(f; · · · /) will occur in the product (10.2) 

L ± kx1-l1,· ··. x,-1, 

times, where the sum extends alternatingly over all sequences (>-1 , · · · , >-.) aris
ing from (z; , ... , 1;) by the operations of the group Q,, and where 

Z1 = f1 + 11, · · · , Z. = f, + 1; z; = 1: + 11, .•• , z; = J; + i. 
A form easier to keep in mind is obtained by using the symbolic notation 

Then the multiplicity in question is given by the symbolic expression 

(10.7) I kl! k-1; k1; - k-1; I ·k-11 k-1, 
i - ' ••• ' 1 ... p • 

This explicit formula includes as the special casef1 = · · · = f, = 0 the decompo
sition of '.ti itself into irreducible constituents. 

In the handy form (10.5) our result depended on nothing but the fact that 
x('.J)) is symmetric under the group Q which served to build up the elementary 
sums. Hence it will hold for the linear and the orthogonal group as well. 

THEOREM (7.10.A). Let '.J) be any representation of the (unitarily restricted) 
group Sp(n) with the character 

x('.I:i) = I:: km1···m,e(m1cp1 + ... + m,cp.). 
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The ~-function of the product of '.D and the irreducible representation b(f1 · · · f,) 
is then given by 

L km1···m,·W1 + m1' ... 'l., + m.). 
(m) 

Similarly for the linear and the orthogonal group. 

11. The Poincare polynomial 

In an n-dimensional vector space we form the 1-, 2-, 3-, · · · dimensional 
elements spanned by 1, 2, 3, · · · vectors x, y, z, · · · with the components 

X; Xk X1 

IX; Xk I (i < k < l), X;, (i < k), y; Yk Y1 
y; Yk 

Z; Zk Z1 

A linear substitution 

induces a linear substitution in the set of p-dimensional elements. Denoting 
its trace by lfp(A), we have the relation 

det (zE + A) = Zn + Zn-lif1(A) + · · · + lfn(A). 

Let there be given for a finite or a compact Lie group a representations-+ A (s) 
with the character X(s). It will be decomposable according to formula (1.1) 
into irreducible representations. By means of the orthogonality relations we 
found 

m = wes{X(s)x(s)j. 

In particular, the number of times the unit representation s -+ 1 is contained 
in the given one is the mean value 

9)(,{X(s)j; 

this is at the same time the number of linearly independent linear invariants 
in the representation space P. We wish to determine the number vv of in
variants 

(11.1) °"'f(. . ) (I) (p) 
L.., i1 · · · ip Xi 1 • • • Xip 

depending linearly on an arbitrary p-dimensional clement in P. (When written 
in the form (11.1) the coefficients f(i 1 ••• ip) will be ske\\·-symmetric.) Our 
remark above shows that the polynomial P(z) with the coefficients vP : 

P(z) = Zn + V1Zn-l + · · · + Vn 

IS 

we. I zE + A(s) [. I 
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With any Lie group of r parameters there is associated the adjoint repre
sentation 

J((s): x-+ sxs-1 

whose r-dimensional vector space consists of the infinitesimal elements x of 
the group. The polynomial 

P(z) = Zr + V1Zr-l + · · · + Vr, 

whose coefficient vP indicates the order of the linear set of all invariants 

°"'f(. . )• (1) • (p) 
L.., i1 · · · ip uX; 1 • · · uX;P 

depending in linear and antisymmetric fashion on p infinitesimal elements of 
our group, was called by E. Cartan its "Poincare polynomial." In the case 
of a compact group it is given by 

(11.2) P(z) = we. I zE + J((s) 1. 

We shall apply this formula in particular to our groups GL(n), O(n) and Sp(n) 
after having introduced the unitary restriction. In the next chapter we shall 
see that the coefficients vv have at the same time a deep topological significance 
for the group manifold. 

THEOREM (7.11.A). The Poincare polynomial of GL(n) is 

(11.3) (1 + z)(l + z3) · · · (1 + z2
n-

1
). 

To the diagonal element 

{ El = { E1 , • • • , En l 
of the unitary group there corresponds in the adjoint representation the fol
lowing linear transformation 

J({ej: X;k = E;X;kEk
1

• 

Hence the determinant in (11.2) equals 

II (z + e;/ek) = (1 + ztif(z)f(z), 
i,k 

where 

if (z) = IT (e; + Zek). 
i<k 

On using again the difference product 

Li = D(e1, 

and the integral of its squared modulus: 

11 

• · · 11 

Li/5,. dcp1 · · · dcpn = Q ( = n!), 
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one finds 

(11.4) P(z) = (1 + zr {1 
n }o 

Although one would hardly deem it difficult to compute the elementary integral 
(11.4), nobody so far has succeeded in doing this directly. R. Brauer pro
ceeded as follows. 23 By enumerating the invariants he showed that P(z) is 
majorized by the polynomial (11.3), 

i.e. 

(11.5) 

Po(z) = Zr + ll~Zr-I + · · . + ll~ 

< 0 
lip= lip. 

The formula (11.4) is used for the value z = 1 only, with the result 

(11.6) 

As this means that the values of P(z) and P0(z) coincide for z 1: 

I: lip= I: ll~ 
p p 

one infers from (11.5) the desired equations lip = ll~ • 

For z = 1 one finds in (11.4): .._ 

if(l)..:l = II (E; + Ek) (E; - Ek) = II (E; - EZ) = ..:l2. 
i<k i<k 

By the substitution 2<p; ---; If'; one realizes at once that the integral of ..:l23.2 over 
lf'1, · · · , lf'n from 0 to 1 is the same as for ..:l3.. Hence (11.6) as predicted. 

Next we must try actually to enumerate the invariants of the type in ques
tion. The element A of GL(n) induces the transformation 

(11.7) X' = AXA-1 

in the adjoint group, X = 11 X;k 11 denoting a variable matrix. A typical matrix 
is the product x~ of a column x with a row ~: X;k = x;~k. Indeed, under the 
influence of the linear transformation x' = Ax for the covariant vector x, the 
contravariant ~ changes into ~A-1 and hence 

x'~' = A(x~)A-1 • 

A form 

(11.8) 

which depends in linear and antisymmetric fashion on p matrices X and is 
invariant under the substitutions (11.7) may therefore without any danger of 
ambiguity be replaced by the invariant 

(11.9) "" (" k · k ) (I) (p) 1:(1) 1:<P) L..J W 'h 1, · · · , 'l-p 7) Xi 1 • · • Xip .;k 1 • • • ~kp 
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depending linearly on p covariant and p contravariant vectors 

(11.10) Xol . . . x<Pl I i:CIJ . . . i:<Pl 
' ' <;" ' '<;;" • 

This formulation affords an opportunity to bring in the invariant-theoretic 
main theorem: each such invariant is expressible in terms of products (~x), 
and hence is a linear combination of the invariants 

(11.11) (~<1Jx< 1 '))(~<2Jx< 2 ')) ·. · (~Cplx<v'J) 

each of which corresponds to a permutation 

u: 1 ---; 1', 2 ---; 2', · · · , p ---; p' 

of p figures. Using the symbol u for the "monomial" (11.11) as in Chapter V, 
§5, all our invariants are of the form 

(11.12) w = L a(u) · u. 

They must have the further property that they chan~e into ::±=w when b~th 
sequences (11.10) are submitted to the same permutat10n p, with the +_sign 
for the even, the - for the odd p's. As this process changes the mononual u 

into pup -i, one finds 

w = ±L a(u)·pup-1 = ±I: a(p-
1
up)·u, 

u 

and by summing over all p one obtains w as a linear combination of the special 

invariants 

(11.13) flu= L ±pup-I 

or as a combination (11.12) where 

(11.14) a(p-1up) = Op·a(u). 

Decompose u into distinct cycles: 

u = (1 2 ... h)(l * 2* ... k*) .... 

The cycle p = (1 2 ... h) commutes with u. If h is even then ~ is odd and 
(11.14) yields a(u) = O: u contributes no term to (11.12) unless its c.ycles are 
of odd lengths h, k, . . . . If k = h ! = 1 (mod 2) l the odd permutat10n 

p = (11 *) (22*) ... (hh*) 

commutes with u, and so this case h = k is ruled out. Arranging the different 
odd lengths in their natural order: 

(11.15) h < k < ... 
one finds that one will have as many special invariants (11.13) as there are 
partitions of p: 

p=h+k+ 
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into odd unequal addends (11.15). This would at once result in the inequality 
(11.5) provided cyclPs of length ;::;; 2n could be f orbiddcn. 

Up to now only the abstract scheme of permutations has mattered. The 
limitation concerning the lengths of cycles comes about by taking into account 
the representation of the permutation <J by the monomial (11.11) with vectors 
x and ~ in an n-dimensional space. 

When one multiplies two multilinear forms w and w' of the type (11.8) of 
orders p and q, the one depending on p matrices xm' ... ' x(p)' the other on 

th t · x<p+I> x<p+q) 1 ·1· f f d q o er ma rices , · · · , , one gets a mu ti mear orm o or er p + q. 
However, the coefficients of the product will not be antisymmetric like those 
of w and w'. On applying alternation to the arguments X: 

(11.16) 

the sum extending to all "mixtures" 

of the first p indices 1, · · · , p with the last q: p + 1, ... , p + q, this deficiency 
is removed. The form (11.16) shall now be denoted by w·w'. In this way 
!iv, (11.13), appears as a product nh.nk ... where nh is the alternating sum 

L ± (~1'x2')(~2'xa') ... (~h'xI') 

running over all permutations I' · · . h' of the figures 1 ... h. Hence we are 
called upon to prove: if p is odd, = 2q - 1, and q > n, then nP is expressible 
as a combination of such !iv as correspond to permutations <J of the p figures 
1 · · · p that break up into cycles of lengths < p. 

Take the identity 

(~i1 xk1), ... , (~i1 xk•) 
.................. =O 
(~i· xk1), ... , (~;;, xk•) 

with 

i1 ~ iq-1 iq k1 k2 kq-1 kq 

2, 4, p- 1, p 3, 5, p, 1 

and multiply by 

(~IX2)a3x4) • .. ce-2Xp-I); 

(11.17) L o,(~1x2)a2x' 1 ) ••• ce-2xp-l)ap-lx'q-l)(ex'•) = 0. 
T 

T' is the permutation 

p 

Tq-1 

, 

I 
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The corresponding term on the left is the monomial <J where 

<l - (1 2 3 4 p - 2' p - 1' p). 
2 T1 4 T2 p - 1 , T q-1 , T q 

From our equation ( 11.17) : 

L O,·<J = 0 
T 

one derives 

(11.18) 

7 -
1 

<J = cycle (1 2 3 ... p). If <J is also a cycle of length p then <J and T -l ~ are 
even; hence 7 even, 0, = +L Let us suppose that this event h~ppe~s N times; 
it happens at least once, viz., when T is the identity. When <J is a smgle cycle 
of length p, it is of the following type: 

(p, 2K1 - 1, 2K1 1 2K2 - 1, 2K2, • • · , 2Kq-I - 1, 2Kq-l), 

and 

-1 
7rCT7r 

with 7r denoting the permutation 

(p, 2K1 - 1, 2K1, 

p, 1, 2, 

(1, 2, ... 'p) 

2K2 - 1 1 2K2, 

3, 4, 

7r leaves p fixed and exchanges pairs (2K - 1, 2K). 

pairs like 

G 
2 3 :) 4 1 

'''). ... 

A transposition of two 

is even. Hence 7r is even, and all the N terms !iv correspondi~g to the cycli: u 
are = nP with the same sign. Consequently (11.18) is turned mto an equat10n 

N.np + · · · = 0 

where the dots indicate a number of !iv whose <J break up into several cycles 
of shorter lengths than p. 

In combination with (11.6) this not only proves our. t~eorei:n, but at ~he 
same time establishes the linear independence of the basic mvariants to which 
our construction leads: 

THEOREM (7.11.B). The invariants 
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corresponding to all partitions p = h1 + hz + . . . into odd unequal numbers 
h1, hz, · · · less than 2n: 

h1 < h2 < · · · ; ha = 1 (mod 2), 0 < ha < 2n, 

a1re hlinear.ly. independent and constitute a basis for the linear invariants of order p 
o t e adJoint group. 

~he. integral (11.4) is now evaluated as the polynomial (11.3) . 
. S~milar results may be derived for the orthogonal and symplectic group in a 

similar way. We content ourselves with stating the result:23 

THEOREM (7.11.C). The Poi'ncare polynomials of Sp(2v), 0(2v + 1) on the 
one hand, and of 0(2v) on the other hand, are 

(1 + z3)(1 + z1) ... (l + z4•-I) 
and 

respectively. 

:;' 

CHAPTER VIII 

GENERAL THEORY OF INVARIANTS 

A. ALGEBRAIC p ART 

1. Classic invariants and invariants of quantics. Gram's theorem 

In the classic theory of invariants1 one deals with the group GL(n) and con
siders an arbitrary (covariant) form u of given degree r depending on a contra
variant vector ~; we write it as 

(1.1) "'""' r ! 1:Tt 1:r• 
U = £....., I I Ur1···Tn'>l ''' <;n 

r1. · · · r,.. 
(r1+ ··· +rn=r). 

A homogeneous polynomial J(u) of the coefficients u of degreeµ is an invariant 
of weight g if 

J ( u') = t:,.O • J ( u) 
I 

where Ur 1 .. ·r· are the coefficients of the form into which u changes by the 
arbitrary substitution 

(1.2) 

and A denotes det(a;k). Instead of one form u serving as argument in J one 
might have several arbitrary ground forms u, v, · · · of given degrees r, r', · · · . 
If µ, µ', · .. are the degrees of J(u, v, ... ) with respect to u, v, ... one must 
have 

(1.3) ng = rµ + r'µ' + · · · 
as one realizes by comparing the degrees of both sides of the equation 

J(u', v', ···) = A0 .J(u, v, ···) 

with respect to the transformation coefficients a;k . For simplicity's sake we 
shall most of the time talk about one or two ground forms although we have 
an arbitrary .number in mind. 

If J depends on a contravariant vector ~besides u and v, and again 

J(u', v'; e) = A0 
• J(u, v; ~), 

J is called a covariant. J is supposed to be a homogeneous form of some degree 
min ~;then 

ng + m = rµ + r'µ'. 

g is now capable of negative values. The ground forms u, v themselves are 
absolute covariants or covariants of weight zero. 

239 
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Examples. (1) If u(l>, · · · , u<n> are n forms then the functional determinant 
or Jacobian 

au(l) au<1> 

a~1 ' a~.,. 

au(n) 

ah' 

is a covariant of weignt 1. Indeed 

(1) au<l) au<1> 
du = - d1:1 + · · · + - di: a~1 <; a~.,. <;n' 

............................... 
a (n) au(n) 

du(n) = :~l d~1 + ... + a~.,. d~.,. 

is a system of invariant linear forms of the differentials d~1 , ••• , d~.,. . Under 
the influence of a substitution 

the determinant of n such forms is multiplied by the transformation deter
minant A. 

(2) For a single form u the "Hessian" 

I a2u I 
a~, a~k 

is a covariant of weight 2, for the reason that 

"' a
2
u 

L.... a1:.a1: d~,d~k 
i,k "' <;k 

is an invariant quadratic form of the differentials d~; . 
The classical notion of a covariant lends itself to an immediate generalization 

by admitting several contravariant vectors ~' T/, ••• as arguments; we then 
speak of a multiple covariant. A system of equations 

(1.4) Ki(u, v) = 0, ... , Kp(u, v) = 0 

whose left sides are polynomials homogeneous in the coefficients Ur
1 

•• ·r,. of u 
as well as in those of v is of invariant significance providing each set of values 

satisfying (1.4) also satisfies the equations 

Ki(u', v') = 0, ... , Kp(u', v') = 0 

by whatever transformation (1.2) the u', v' arise from u, v. 
THEOREM (8.1.A). (Gram's theorem.) A system of relations (1.4) of invariant 
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significance can always be expressed by the vanishing of a number of multiple 
absolute covariants. 

The proof rests upon a simple formal device we describe as follows. Let 
T/1, ••• , T/.,. be any n contravariant vectors and replace the argument ~ in the 
form u = u(~) by 

with indeterminate t's: 

(1 5) (t 1 + + t n) _ '°' r! tTJ tr" * ( 1 ") . U 1 T/ • • • n T/ - L..., I I 1 • · · n Uri · . -r,. T/ , • • • , T/ • 
r1. · · · r,.. 

The whole expression is an absolute covariant and so is each coefficient 

(1.6) * ( 1 n) Uri .. •Tn T/ 1 • • • ' T/ • 

The same is true for any homogeneous polynomial depending on them. If 
one takes the unit vectors 

e
1 

= (1, 0, · · . , 0), · · · , en = (0, 0, ... ' 1) 

for T/1, • • • , T/n then the u~1 ...... change back into the given coefficients Ur 1 ••• ,,.. 

If T/1, • • • , T/n are linearly independent the equation 

{1.7) ~ = t1TJ
1 + • • · + t.,.TJn 

may be looked upon as a linear transformation introducing the new coordi
nates ti, · · · , t.,. instead of the components h, · · · , ~.,. of ~. 

Hence the assumption of invariant significance allows us to infer from (1.4) 
the ~quations 

(1.8) K1(u*, v*) = 0, · · · , 

which vice versa lead back to (1.4) by the specialization 
I 1 n n 

T/ =e,···,TJ =e. 

The system (1.8) is of the desired form: 

(1.9) Ci(u, v; T/1, • • • , TJn) = 0, · · · , Cp(u, v; T/1, • • • , TJn) = 0. 

The absolute covariants Ca are required to vanish for the given values of u, v 
identically with respect to the arguments T/1, • •• , TJn. 

Very likely the identity 

Ci(u, v; T/1, • • • , TJn) = 0 

will absorb a certain number of the equations (1.4) and not merely the first one. 
Then the number of identities (1.9) may be reduced accordingly. 

Our multiple covariants Ca depend on n vectors T/'· This however is by no 
means a surprising feature of our theorem. For even if the Ca involved any 
number of argument vectors T/ one could reduce their number to n by means of 
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Capelli's general identity. By application of the special identity one is even 
capable of bringing down that number ton - 1 provided one admits covariants 
of a weight ~ 0. 

An arbitrary form depending on two contravariant vectors ~ and 7'/ in given 
degrees r, r' is not a primitive quantity; it is rather the X-product of the primi
tive quantities of signatures 

(r, 0, · · · , O) and (r', 0, . · · , 0). 

One ought to replace it by the string of independent primitive quantities into 
which it may be split. For this reason we reject the notion of multiple co
variants as not genuine. It is reasonable to break up each of our equations 
(1.9) according to the several symmetry diagrams. Our critical attitude 
towards the classical concepts once aroused, we realize that we should not 
have limited ourselves to ground forms but should rather allow quantics of any 
signature (/1 , · · · , fn) to figure as arguments in our invariants.2 And when 
considering covariants we ought to take the term in the wide sense introduced 
in Chapter I, §5, as meaning a quantic J depending on a number of variable 
quantics u, v, ... of pre-assigned signatures 

I I 

(r1 ' ... ' r n)' .... 

This scheme comprises contravariant ground forms and even mixed "con
comitants" (depending on some contravariant and some covariant vectors) 
beside covariant forms. Assuming J(u, v, ... ) to be of the respective degrees 
µ, µ', ... one has the relation 

(1.10) f = rµ + r' µ' + ... 
between the degrees 

J = /1 + ''' + fn; r = r1 + · · · + r n , r' = r~ + · · · + r: , · · · 

of the quantics J; u, v, ... , generalizing (1.3), as follows readily from the fact 
that under the substitution 

I 
X; =ax; 

the components of a quantic of degree/ are multiplied by a1
. If for an argument 

u the signature (r1, · · · , rn) has a negative rn, one can replace the representa
tion according to which the components of u are transformed by the representa
tion of signature (r1 + e, ·. · , rn + e), choosing e such that rn + e ~ 0. Indeed 
this has merely the effect that the signature (/1 , ... , fn) of the dependent 
quantity J is changed into (/1 + µe, · · · , fn + µe). Hence we might assume 
without any essential loss of generality that rn ;?; 0, or that u ranges over all 
tensors of rank r and of symmetry T(r1 ••• rn). 

THEOREM (8.1.B). (Gram's generalized theorem.) A system of relations 

K1(u, v, · · · ) = 0, · · · , Kp(u, v, · · · ) = 0 
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between quantics u, v, ... of prescribed signatures (r1' ... 'rn), ... ' when of 
invariant significance, is equivalent to a system which states the vanishing of a 
number of covariants, i.e. of quantics depending on u, v, .... 

PROOF. We may assume rn ~ 0, or that u ranges over all tensors F(i1 ... ir) 
of a given rank rand given symmetry T = T(r1 • • • rn). In the invariant form 

(1.11) L F(i1 i2 • • • )~; 1 ~;, · • • 
i1,i2,.·· 

one substitutes for the contravariant vectors ~' ~', · · · linear combinations of n 
such vectors 7'/1, ••• , 7'/ n: 

~ = ti 7'/
1 + 

~I = t~ 7'/l + 

(1.11) is changed into a multilinear form of the sets of variables (t1 , ... , tn), 
(t~ ' ... 't:), ... : 

The coefficients 

F*(i1i2 · · · ; 7'/
1 · .. TJn) 

are absolutely invariant functions of the n contravariant arguments 7'/1, 

From here on the proof proceeds as before. 

2. The symbolic method 

n 
'7'/. 

The symbolic method is best illustrated by the classical example of an in
variant J(u) of degreeµ depending on an arbitrary covariant form u of degree r. 
On specializing u as the rth power of a linear form: 

(2.1) 

J(u) changes into an invariant j(u) depending on a covariant vector u = 
(u1, · · · , un). In this primitive form our method aiming at replacing form 
invariants by vector invariants is of no great avail because J(u) is not unam
biguously recognizable from its symbolic representative j(u). However this 
deficiency is repaired by first completely polarizing J(u). (Polarization as 
applied to arguments u is .called the Aronhold process.) The polarized form 
J(u(l), · · · , u<µ» depends !inearly onµ arbitrary forms u<0, ... , u<µl of degree r; 
it is moreover symmetric in its µ arguments and leads back to J(u) by the 
identification 

-u<1
> = · · · = u<µl = u. 

On substituting the rth power of µ linear forms for u <o, . . . , u <µ>, the form 
invariant J(u0 >, · · · , u<µ» is changed into an mvariant j(u(l), ... , u<µ>) de
pending on µ covariant vectors uY>, ... , u<µ>; in each of its arguments j is of 
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degree r. j is called the symbolic expression of J with the covariant vectors 
u Cl), • • • , u (µ) as µ equivalent symbols substituting for the same form u. One 
wins J(u0>, ... , u(µ» back from j(u0>, ... , uCµ» by observing that a linear 
form in the coefficients u,1 ••• rn of u: 

(T'r1···rn constants) 

is uniquely determined by its value for the specialized u, (2.1), viz. by 

-'T'!r 
~, 

If for the moment we designate the vector arguments in j by u, v, · · · rathre)r, ., .•.• '..~.-.•. : than by u 0 >, u czi, · · · : 

j(u, v, ... ) = L t.(r1 ... rn; S1 ... Sn; ... )u~ 1 ... u:nvl1 ... v~n .. . 

(r1 + ... + rn = 81 + ... + s,. = .. . 
?!; 

J(u) is produced from j(u, v, ... ), 

j(u, v, · · · ) ----> J(u), 

in this way: 

J(u) = L t.(r1 ... rn; S1 ... Sn; ... )ur1···rnU•1····· .... 

The process works even when j(u, v, · · · ) is not symmetric in its µ equivalent 
vector arguments u, v, .. · One has 

j(v, u, · · · ) ----> J(u) 

for any permutation v, u, · · · of the symbols u, v, 
By the first main theorem we know how to deal with vector invariants: they 

are all expressible in terms of bracket factors [uv . · · ]. Thus the symbolic 
method provides a rule for computing all invariants J(u) of given degree µ, 

as explicit and finitistic as anybody could desire: one forms all possible products 
of bracket factors of 11 vectors um, . . . , u CµJ that are of degree r in each of them 
and performs the translation j ----> J into non-symbolic form. Every invariant 
of degree µ is a linear combination with constant coefficients of the J's thus 
obtained. Great as this accomplishment is, one ought to point out, however, 
that the method is far from reducing the construction of a finite integrity basis 
for form invariants to the same for vector invariants. For the number of 
symbolic vector arguments um, · · · , uCµl we have to introduce is dependent on 
the degree of J(u), and we must have an unlimited supply of such symbols at 
our disposal when we are to take into account invariants J of all possible degrees. 

The generalization to invariants J(u, v, . · · ) depending on more than one 
form u, v, ... is immediate. When dealing with a covariant J(u, v; ~) the 

, symbolic expression 

GENERAL THEORY OF INVARIANTS 245 

will depend on a contravariant vector ~ besides the symbolic covariant vectors 
<1> (µ). v<1) v<µ') 

u ' ... ,u ' ' ... ' 

and hence will be expressible in terms of Latin bracket factors and products 

of type (~u) = ue ; vi ; · · · . 
Examples. (a) Discriminant 

(2.2) 

of a binary quadratic form 

(2.3) 

Polarization changes 2D into 

U11V22 + U22V11 - 2u12V12 

which by specialization becomes 

u~v~ + u~v~ - 2u1 U2V1V2 

Consequently 
t[uv]2 

is the symbolic expression of D. 
(b) The Jacobian of three ternary forms which we write symbolically as 

r' 
Ve ' 

r" We 

is easily found to be 
1 11 r-1 r'-:-1 r"-1[ ] rr r ue ve we uvw . 

No polarization is needed because the Jacobian is linear in the coefficients of 
the forms. 

(c) The Hessian of the ternary form 

1 = uec = ve = wE) 

is easily rendered into the symbolic expression 

ir3(r - l)3(uev;wer-2[u1".v]2. 

In order to secure a natural generality we now admit again as arguments 
u v ... in our invariants J variable quantics of any pre-assigned signatures 
(;1 ,' ... , rn), . . . . How are we to adapt the symbolic metho~ to this ~en~ral 
case? We saw before that to assume r n ~ 0 means no senous restnct10n. 
u then ranges over all tensors F(i1 · · · i,) of rank r = r1 + · · · + rn and of 
symmetry T(r1 ... rn). Let e be the generating idempotent of that symmetry 
class, a numerical multiple of the Young symmetrizer c. We replace the 
tensor F by eF so that F now varies over all tensors of rank r: 

J*(F, ... ) = J(eF, · · · ). 
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Because eF F for tensors F in P(r1 · · · rn), we have thus succeeded in con
structing an invariant J*(F, . · ·) defined for arbitrary tensors F, · · · which 
coincides with the given J(F, ... ) in the domain: 

Fin P(r1 · · · rn), · · · 

for which J was defined. After having removed any symmetry restriction we 
can now perform the Aronhold process on J* and then specialize F as the 
product of r variable covariant vectors u, v, ... , w: 

F(i1i2 · · • ir) = U; 1!J.i2 • • • W;, · 

The original invariant J is reproducible by a simple process from the vector 
invariant j thus obtained. 

When we pass from invariants to the study of covariant quantics Q(u, v, ... ) 
it is natural to assume that only the differences f; - fk in the signature 
(!1, · · · , fn) of Q are given; they characterize the behavior of Q under uni
modular transformations A. But for a factor A' (e = fn) in its transformation 
law, Q behaves as a tensor Q(i1 · · · i 1) of symmetry 

T(f1 - e, · · · , fn-1 - e, fn - e) If= Lf• - nel 
anci 

L, Q(i1 · · · i1Hi1 · · · r., 
is thPn an invariant of weight e depending on f contravariant vectors ~' · · · , t; 
in its dependence on u, v, . · · it lends itself readily to the symbolic treatment. 

3. The binary quadratic 

THEOREM (8.3.A). Every invariant of the binary quadratic is expressible in 
terms of the discriminant, every covariant (simple or multiple) in terms of the dis
criminant, the (polarized) form itself, and bracket factors. 

We take up this simple case as an illustration of how, despite our critical 
remarks, the symbolic method, when combined with arguments of a different 
order, may sometimes be used for the actual determination of an integrity basis. 

The symbolic expression of an invariant J(u) of degree µ for the quadratic 
(2.3) will be an invariant j(a, b, c, . · · ) depending on µ equivalent symbolic 
binary vectors a, b, c, ... and of degree 2 in each of them. j is expressible by 
bracket factors of the type 

[ab] = a1b2 - a2b1 . 

A product of such factors in which each argument occurs exactly twice breaks 
up into a number of closed chains like 

(3.1) [ab][bc][cd] · · · [ha] ---7 K 

where a, b, c, d, · .. , h are distinct. If the length of the chain is odd we obtain 
by reversing the order of arguments in each bracket: 

[ah] . · · [cb][ba] ---7 -K. 
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As the right side differs from (3.1) merely by the labels attached to the equiva
lent symbols one finds in this case for the actual invariant K symbolically 
expressed by (3.1): 

K = - K, hence K = 0. 

Let the length now be even = 2l. The lowest case of length 2 is settled by 
the relation 

[ab][ba] = -[ab]2 
---7 -2D 

In the higher cases we make use of the identity 

(3.2) 

Substituting 
[ab][cd] + [ca][bd] + [bc][ad] = 0. 

-[ca][bd] - [bc][ad] 

for the product [ab][cd] in (3.1) we get 

(D = discriminant). 

K = K 1 = -[ca][bd][bc][de] · · · -[bc]2[ad][de] · · · 

= -[ac][cb][bd][de] · · . -[bc]2 
• [ad][de] · · · 

or in passing to the non-symbolic entities: 

Ki= -Ki - 2D-K1-1 or Ki= -D.Ki-1. 

By induction with respect to l we thus find 

K = 0 or 2(-D/ 

according as the length of the chain is odd or even. This settles the question 
of invariants. 

In taking up covariants we replace the contravariant vector ~ = (~1, ~2) by 
the covariant vector 

f = (~2, -~1) 

according to (4 .• 5.1), thus changing the signature from (O, -1) to (1, 0). Be
sides closed chains one will now encounter chains joining two Greek symbols 
by Latin links: 

[f a][ab] · · · [gh][h71"}. 

The shortest chain, besides the bracket factor [f 71"] = [71~] itself, is 

-[fa](a71"] = a£· a~, 

and this is the symmetric bilinear form corresponding to the given quadratic; 
the longer ones, as far as they are not zero, arise from it by multiplication with 
powers of the discriminant. The treatment is the same as b_efore. . 

The symbolic method and its applications have found so widespread circula
tion through the current textbooks of invariant theory that we shall content 
ourselves with this one example. 
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4. Irrational methods 

The symbolic method, as a matter of fact, is far from being the only road 
along which one may successfully approach the determination of a finite integrity 
basis of invariants in concrete simple cases. Sometimes the use of appropriate 
irrationalities gives surprisingly quick returns. As an example we prove: 

THEOREM (8.4.A). Every invariant of a quadratic 

(4.1) 

in n variables is expressible in terms of the discriminant 

D = det(g;k). 

Let c be the value of the given invariant J for the unit form 

(4.2) ~i + ... + ~!. 
If it is of weight h, J will equal 

C· !:l 

for the form (4.1) proceeding from (4.2) by the linear substitution 

~i _, L: akih 

with the determinant fl 

one finds 

(4.3) 

det (aik). Since 

D = Ll
2 

Let now g;k gki be arbitrarily given values with a non-vanishing determi
nant D. After suitable quadratic extensions of the underlying field the form with 
these coefficients is transformable into the unit form. Hence (4.3) holds good 
for any such values gik and is therefore an identity. Taking into account 
that D is an irreducible polynomial of the ~n(n + 1) variables g;k one derives 
from (4.3) that J(g) itself must be a constant multiple of a powe"r of D, or that h 
is even and 

J(g) = C·Dht2. 

In order to prove the irreducibility of the symmetric determinant 

On, · • • ' 0In 
Dn = ·· ··· · · ··· 

gnl' · · • , Onn 

we make the inductive hypothesis that Dn-I is irreducible. Dn is a linear 
function of the variable gnn : 

Dn = Dn-1·gnn + Dn(Onn = 0). 
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Were D .. resolvable into two factors, one of them would be of degree 1 and the 
other of degree 0 in gnn : 

D .. = (Bg .... + B') .c 
(B, B', C independent of g .... ); or 

Dn-1 =BC, Dn(Ynn = 0) = B'C. 

Because Dn-I is irreducible, either B or C must be a constant independent of 
all the g;k . Since the second case does not lead to a real decomposition of D .. 
we may assume B = 1 and then get 

(4.4) Dn(gnn = 0) = B' · Dn-1 · 

The simple example 

with 
Dn-1 = a 

shows that Dn(Ynn 0) is not divisible by Dn-1, contrary to (4.4). 
The binary cubic 

f = Uo~~ + U1~i~2 + U2~1~; + U3~~ 
can easily be treated by a similar "irrational" procedure. On putting uo 
and ~ = h/ b one solves the cubic equation: 

~3 + U1e + U2~ + U3 = (~ - al)(~ - a2)(~ - a3). 

1 

An invariant J will thus become a symmetric polynomial of the roots al , 
a 2 a 3 • From the fact that the only projectively invariant relation between 
th;ee points a 1 , a 2 , a 3 on a straight line is coincidence, one realizes easily that 
the invariant must be a constant multiple of a power of the discriminant 

D = 27(a1 - a2)
2
(a2 - a3/(a3 - a1)2. 

The only absolute projective invariant depending on four points ~' a1, a2, a3 
is their cross ratio 

(~ - al)(a3 - a2)/(~ - a2)(a3 - al) = TJi/TJ2 = T/ 

which however takes on 6 values 

TJ, l/TJ, 1 - T/, 1/(1 - TJ), TJ/(TJ - 1), (TJ - l)/TJ 

under permutation of the three roots a 1 , a2 , a3 . Without much ado this leads 
to a complete list of the covariants. Beside the form f itself one obtains two 
other forms which are readiiy verified to be the Hessian - 4H of f, and the 
Jacobian t off and H. Among the four covariants D, f, H, t there is one rela
tion (syzygy) 

4H3 = t2 + Df. 



250 THE CLASSICAL GROUPS 

In the textbooks on invariants one finds these results derived by the symbolic 
method. 3 

5. Side remarks 

Before plunging into deep waters we skim the surface with one or two ob
servations about general invariants. We take up the situation as described in 
Chapter I, §5: given a group I' and a number of variable quantities x, y, · · · 
the types of which are defined by (irreducible) representations of/', we investi
gate relative invariants J of such arguments. As a polynomial of the com
ponents of x, y, ... , J(x, y, ... ) might be reducible; we factorize it into 
prime factors 

The question arises as to whether the prime polynomials J 1 , •• • , Jh will be 
relative invariants. This is true under a certain restriction concerning the 
nature of I': 

THEOREM (8.5.A). Under the assumption that the group I' has no subgroup of 
finite index (except itself), each prime factor of a relative invariant is a relative 
invariant. 

After the transformations 

x----> x', y----> y', ... 

induced by the group element s we have an equation 

J(x', y', · ·.) = )\.J(x, y, ... ) 

with °'/\ = °'A(s) as a multiplier, or 

J~ 1 (x'y' .. · )J;'(x'y' .. · ) · · · = )\. J?(xy · · · )J;'(xy · · · ) · · · . 

Hence J~ = Ji(x', y', · .. ) must be a product of the prime factors on the right 
side; the same for J~, .. · . In each case the number of factors (which is at 
least one) must be exactly one because otherwise the product on the left side 
would consist of more than e1 + e2 + .. · prime factors. Consequently we shall 
have equations like 

' J; = °'A;·Ja, 

where a1 , · · · , ah is a permutation of 1, · · · , h. Those elements s for which 
this permutation is the identity evidently constitute a subgroup of I' of an 
index ~ h!. 

For the full linear group and the classical case of form invariants J(u, v, · .. ) 
it is more convenient to consider the transform J(u', v', · . · ) as a polynomial 
of u, v, · · · and of the transformation coefficients a;k . The multiplier °'A(A) is 
= '1°. Operating in the domain just described we should find an equation like 

J1(U 1
1 V

1
1 • • • ) = t,.UI • J a(U, V, • • • ). 
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The specialization a;k = o;k shows at once that a = 1. Here we need not enter 
upon the structure of the group: 

THEOREM (8.5.B). In case of the full linear group each prime factor of an 
invariant depending on quantics u, v, · · · is again an invariant. 

As an application take the discriminant D of the binary cubic. Because 
there exists no invariant of lower degree it is of necessity irreducible. This 
fact has to be used in carrying out the sketch given above for the proof that 
every covariant is expressible in terms of the four basic covariants D, f, H, t. 

Our second remark aims in an entirely different direction. Let us suppose 
that the invariants to be considered depend among others on a number of 
quantities x, x', ... all of the same type as described by the representation A(s) 
of degree n. 

THEOREM (8.5.C). (Pascal's theorem.) Invariants depending on m quanti
ties x, x', . . . of the same type A ( s) of degree n can be expressed by means of polari
zation and linear combination in terms of invariants depending on not more than 
n such quantities. On making use of the relative invariant [xx' · · · J whose multi
plier = I A(s) I one may even reduce the number of arguments to n - 1. 

The proposition is an immediate consequence of Capelli's identities. For 
instance, in studying simultaneous invariants of a number of binary cubics 
one can limit oneself to four or even three such cubics. 

6. Hilbert's theorem on polynomial ideals 

As pointed out in Chapter II, §2, Hilbert founded the proof of the invariant
theoretical main theorems on a general proposition concerning polynomial 
ideals that is one of the simplest and most important in the whole of algebra. 
Let us consider a ring R in which every ideal has a finite ideal basis. A field k 
or the ring of ordinary integers may serve as examples. Hilbert's theorem 
states that this property is not lost under adjunction of an indeterminate. 

THEOREM (8.6.A). If every ideal in the ring R has a finite ideal basis then the 
same is true for the ring R[x]. 

In this modern generalized form the proposition at once suggests the steps 
one has to take in proving it. I refer the reader to van der Waerden's M oderne 
Algebra.4 Repeated application carries the theorem over to the ring R[x1 · · · Xn] 

of polynomials in R of any number of indeterminates X1 , · · • , Xn • If one 
specializes Reither as a field k or as the ring of all common integers one obtains 
the two propositions as formulated by Hilbert himself :4 

THEOREM (8.6.B). If k is any field, then every ideal in the ring k[x1 · · · Xn] has 
a finite ideal basis. The same hoids good if k be replaced by the ring of common 
integers. 

Take any set 13 
finite ideal basis. 

(6.1) 

= {a} of numbers a in a ring R in which every ideal has a 
All numbers of the form 
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where a 1 , a 2 , is any finite sequence of elements in 13 while the :\'s are arbi
trary elements of R, constitute an ideal (13), the smallest ideal containing 13. 
After determining an ideal basis for (13) and expressing each of its elements in 
the form (6.1) one gets a finite set of numbers a1 , a2 , , ah in £l such that 
every number in 13 is of the form 

(:\;in R). 

(However, 13 not being an ideal, one is not at all sure that conversely every 
number of this form will belong to 13.) 

7. Proof of the first main theorem for GL(n) 

For simplicity's sake we consider i1n-ariants J(u) depending on one variable 
form (1.1) of given degree r. In the ring k[u] of all polynomials depending on 
the variable coefficients Ur 1 .. ·r,. we consider the set .J consisting of all non-constant 
invariants J(u) (it is quite important to exclude the constants). According to 
the concluding observation of the preceding section we pick out a finite number 
of non-constant invariants 

such that every non-constant invariant J(u) appears as a linear combination 

(7.1) J(u) = L1(u)J1(u) + · · · + L,,(u)J"(u) 

with polynomial coefficients L;(u). Suppose that J; .11, · · · , J" are homogene
ous of degreesµ; µ1 , • · · , µh. The equation (7.1) will not break down if one 
cancels in L;(u) all terms that are not of degreeµ - µ; , so that we may assume 
the L;(u) to be homogeneous of the "right" degreesµ - µ;. (Forµ; > µ, the 
coefficient L;(u) will then be zero.) 

This first step is of universal significance and not at all limited to the classical 
case. We shall now endeavor to show that the invariants J;(u) just determined 
consti.tute an integrity basis for all invariants. This second step will be peculiar 
to the group GL(n). We make use of the same device which served to prove 
Gram's theorem. We substitute the absolute covariants 

(1.6) 

as defined in (1.5) for Uri···rn in the relation (7.1). 
weight g we have 

J(1l*) = Hg·J(u) 

where II is the determinant (11 1 
... 11n]. Hence 

For an invariant J(u) of 

(7.2) .fl 0 .J(u) = L1(u*)·Hg 1J1(u) + · · · + L"(u*)·II0h,h(u). 

His a covariant of weight -1; the factors Hg'L;(u*) arc therefore covariants of 
weight -g;. Cayley's Q-process 

r 
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a 
a n' 

1)1 

a 
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changes a covariant of weight g* depending 
111, · · · , 11" into a co\·ariant of weight g* + 1. 
Q-process g times upon (7.2) a relation 

on the n contravariant vectors 
Consequently if we perform the 

(7.3) C0 ·.f(u) = L7(u).Ji(u) + 
will ensue, where c0 is the constant 

Cg Q 0 (H0
) 

and 

are covariants of weight g - g; , or, as they no longer involve the variables 

71 1, ... , 17n, rather invariants of that weight. \Ye shall soon make sure that c0 

is 7"'0. Taking this important point for granted we divide (7.3) by Cg and thus 
succeed in normalizing the coefficients L;( u) in (7 .1) so as to make them invariant. 

The statement that any invariant J (1t) of degree µ is expressible in terms of 
J;(u) is now prond by induction with re:ipect to µ. The statement is trivial 
forµ = 0, where J(u) is a constant. Since each of the invariants .!;(u) is at 
least of degree 1, the invariant coefficirnts L;(u) in (7.1) we have just obtained 
by the n-process are of lower degree than µ; and if they are expressible in terms 
of the J;(u), so also is J(u). 

In order to tihow that r11 r" 0 we ob,_;ervc that II" is a form in the variables 

17 ~ with integral coefficients, and that n° is precisely the same form in the differ-

a .f ential opers,tors -----; . But 1 
a11k 

f(x1, · · · , x,) = L a(i1 · · · ir)x~ 1 · · · x~' 

then a simple calculation :ohows that 

(i1 + ... + i,. 

f (_!__ · · · !_) f(x1 · · · Xr) =' L i1! · • · ir! a~(i1 · · · ir). 
a:r1 

1 

' a:r r ' ' 

It follows that c" is in fact a positive integer. 
\Vhen we have to deal with invariants J depending on some quantics u, v, 

s) 

we may suppose without any loss of generality that the signatures (r1 , · · · , rn) 
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of these quantics satisfy the condition rn ~ 0. It is then obvious from the 
proof of Gram's generalized theorem how to introduce the analogue of the 
covariants (1.6). We summarize: 

THEOREM (8.7.A). The relative invariants J(u, v, ... ) for the full linear 
group. GL(n), i.e. the absolute invariants for SL(n), depending on a number of 
quantics u, v, · · · , possess a finite integrity basis. 

As was mentioned in Chapter II, §2 the second main theorem is contained 
in the following general algebraic statement: 

THEOREM (8.7.B). All relations holding among given polynomials are Glgebraic 
consequences of a finite number among them. 

Indeed 

J1(z1, · · · , zz) = J1(z), ·. ·, JP(z), 

?eing the given polynomials of any number of variables z1 , . . . , z1 , a relation 
is a polynomial R(ti , · · · , lp) of p independent variables ti such that 

R(J1(z), · · · , JP(z)) = 0. 

The rela~ion_s obviously form an ideal within the polynomial ring, and this ideal 
has a fimte ideal basis. 5 

The field kin which we operated throughout might be any field of character
istic 0. 

8. The adjunction argument 

Consider the group characteristic for the (n - 1)-dimensional affine geometry: 

{~l = ~~ 
(8.1) 

t = ai~~ + ~ aki~~ (i, k = 2, · · · , n) 

where the only restriction imposed upon the ai , a;k is 

det (a;k) = 1. 
i,k=2,· · ·,n 

The ~1, ~2, •• • • , ~n are homogeneous point coordinates. Affine geometry results 
from proJective geometry with the full unimodular group SL(n) by adjoining the 
"plane at infinity" 

n 

L e;t = l ·~1 + 0·~2 + · · · + O·~n = 0 
i=l 

as a~ absolute entity. An affine property of a geometric structure is a projective 
relat10n to the absolute plane. Hence this procedure for the formation of 
affine invariants of ground forms u, v, ... is suggested: We adjoin an arbitrary 
linear form 
(8.2) z: L: l,~. 

i 

to the ground forms and construct projective invariants J(u, v, ... ; l) for the 

r 
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system u, v, · · · ; l. Then J(u, v, · · · ; e) is obviously an absolute invariant 
under the affine group (8.1). The question is whether all affine invariants are 
obtained in this way. As far as invariants go, we should then be justified in 
treating the affine space as the projective space with an absolute plane. 6 

The affirmative answer to our question is readily arrived at by combining 
the symbolic method with the construction of an integrity basis of typical vector 
invariants for the affine group as accomplished in Chapter II, §7. The given 
affine invariant J(u, v, · · · ) is first replaced by its symbolic expression, an 
affine invariant j(u, u', · · · ; v, v', · · · ; ... ) depending on a lot of covariant 
vectors u, u', · · · , v, v', . j is expressible in terms of bracket factors 

[xy · · · Z]n and [x · · · Yln-1 = [ex · · · Y]n . 

We introduce the arbitrary linear form (8.2) and replace in this expression of j 
every factor 

[x · · · Yln-1 by [lx · · · y], 

thus changing the affine invariant j(uu' · · · , vv' · · · , · · · ) into a projective 
invariant* j*(l; uu' · · · , vv' · · · , · · · ). We then revert to the non-symbolic 
expression, which is possible because j* the same as j has the right degree in 
each of the arguments uu' . · · , vv' · · · , ... (equal to the degrees of the ground 
forms u, v, ... ). We thus obtain a projective invariant J*(l; u, v, · .. )for which 

J*(e; u, v, · · · ) = J(u, v, · · · ). 

In Chapter II, §7, we generalized the affine group to the case where the abso
lute consists of a linear manifold of n - 2 or n - 3 or · · · rather than of n - 1 
dimensions. Let us study the case n - 2. An (n - 2)-dimensional linear 
manifold Mn_2 is the intersection of two planes l and l': 

and has the anti-symmetric coordinates 

(8.3) 

A one-dimensional line ! ~' .,, l joining two points ~' .,, intersects Mn-2 if 

L: lik~i.,,k = o. 
i,k 

For an arbitrary anti-symnietric (covariant) tensor b of rank 2 thi;; equation 
defines a line complex. The "special" line complexes Mn-2 as described by (8.3) 
satisfy the quadratic relations 

(8.4) 

• j* might consist of several terms of different degr?es in I, each term being an invariant 
homogeneous in las well as in 1111' • • • , 1•1•' · · · , • · ·. 



256 THE CLASSICAL GROUPS 

(1, 2, 3, 4 standing for any four of then indices 1, 2, · · · , n). For the group 
we have in mind the absolute is such a special line complex M~-2 with 

l = e = (1, 0, 0, . · · , 0), l' = e' = (O, 1, 0, · · · , 0) 

or 

(8.5) l12 = - l21 = 1, all other l;k = 0. 

The symbolic expression j of invariants J(uv · · · ) for this group will involve 
the bracket factor [x · · · Yln-2 besides the total bracket [xy · · · z]n. We replace 
the former by the aJternating sum 

~ L ± l;I i2Xi3 • • • Yin 

extending to all permutations i1i2i3 · · · in of 1, · · · n, which is projectively 
invariant and turns back into [x · · · Yln-2 by the specialization (8.5). The 
result will be that an invariant J(uv ... ) of a number of ground forms uv · ·. 
in the affine space "of rank 2" is derived by the specialization (8.5) from a 
projective invariant involving an arbitrary anti-symmetric tensor l;k of rank 2 (or 
a line complex) besides the given system of ground forms. What we wish to 
emphasize in this case is the fact that one must introduce an arbitrary line 
complex as a new argument into the invariants; one must not be content with 
an arbitrary special line complex, although its characteristic conditions (8.4) 
are projectively invariant. 

When the ground forms involve Latin as well as Greek variables the list of 
typical basic vector invariants is to be extended by the Greek bracket factor 
and [~11h ' which we replace by L l;k~i1)k • As this replacement shows, the 
essential result holds good. 

The same adjunction argument is applicable to the important case of the 
orthogonal group. Through relativity theory one has become thoroughly familiar 
with treating orthogonal vector invariants as affine vector invariants after 
adjoining the metric ground form 

(8.6) 

which becomes the unit form, 

(8.7) 'Yik = o;k, 

in the Cartesian coordinate systems. The above considerations afford a justifi
cation of that procedure when we remark that any (even or odd) orthogonal 
vector invariant is expressible in terms of bracket factors [xy . · · z] and scalar 
products (xy). The first is invariant under the full linear group, and so is the 
scaiar product when written as 

(8.8) 

and considered as depending on an arbitrary (contravariant!) quadratic (8.6) 
in addition to the two covariant vectors x and y. The form invariants for 

I 
; I 

I 
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the orthogonal group arise from the form invariants under the full linear 
group when one first adjoins a contravariant quadratic (8.6) to the system of 
ground forms and then specializes by (8.7). When one wants to avoid the 
introduction of a contravariant quadratic (8.6) one might resort to a covariant 
quadratic 

(8.9) 

instead, and then replace the scalar product (xy) by the projective invariant 

(8.10) 

Y1 Yn 0 

[If 11 'Yik ii is the inverse of JI g;k II, then (8.10) is det(g;k) times (8.6).] 
Similarly for the symplectic group. In each case a finite integrity basis is 

ascertained by applying Theorem (8.7.A). There is no difficulty in replacing the 
ground forms by any quantics u, v, ... with respect to the full linear group. 
I summarize: 

THEOREM (8.8.A). For the group of step transformations, the orthogonal, and 
the symplectic group, every invariant J (u, v, · · . ) can be written as an invariant 
under the group SL(n) after adjoining a suitable "absolute entity" to the arguments 
u, v, ... provided u, v, ... are quantics defined under the group SL(n). 

I do not wish to detract from this triumphant attainment of the symbolic 
method. However, with regard to the first main theorem, the state of affairs 
as laid down in our proposition is still unsatisfactory, in so far as quantics for 
SL(n) arc not the primitive and not the most general quantities for the more 
limit~d groups we are dealing with. I do not see that much can be done about 
it in the affine case. As a matter of fact the representations of the affine group 
are not fully reducible and that complicates the survey of possible quantities 
under that group almost beyond repair. For the orthogonal and symplectic 
groups the outlook is much brighter. Indeed a "quantic" will here range over 
the tensors Fin one of the subspaces designated as Po(T), T being a permissible 
diagram. With e being the idempotent generator of that symmetry class T, 
we first replace the argument Fin our invariant J(F, · · · ) by eF: 

J*(F, ... ) = J(eF, · · · ) 

so that F now ranges over all tensors in P~ (removal of the symmetry restriction). 
Any tensor F of rank r may be uniquely decomposed according to Theorem 
(5.6.A), and the first part F0 of vanishing traces proceeds from F by a certain 
linear operator t: 

F
0 = tF, F0(i1 · · · ir) = L t(i1 · · · i, ; k1 · · · k,)F(k1 · · · kr) 

(k) 
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which is invariant under the orthogonal group or commutes with all operators 
in ~r ; it therefore lies in the algebra described in Chapter V, §5, as w~. t is 
evidently idempotent. The second step consists in replacing the argument F 
in J* ranging over all tensors of vanishing traces by tF: 

J*(tF, ... ) = J**(F, ·. · ). 

J** is now an orthogonal invariant defined for all tensors F of rank r whatsoever 
(removal of the trace condition). The adjunction argument then leads to a 
projective invariant J***(g;k ; F, .. · ) in which the quadratic (8.9) is added 
as an argument to the tensors F, · · · , and such that 

J***(g;k; F, ... ) = J(F, ... ) for g;k = o;k and Fin Po(r1 · · · rn), · · · . 

THEOREM (8.8.B). A finite integrity basis for the orthogonal invariants 
J(uv ... ) depending on some orthogonal quantics u, v, · · · is ascertained by 
constructing the integrity basis for projective invariants J(g;k ; F, · · · ) in which 
each argument u, · . . is replaced by a free tensor F of the corresponding rank and 
the quadratic (8.9) is added to the arguments. The same is true mutatis mutandis 
for the symplectic group. 

B. DIFFERENTIAL AND INTEGRAL METHODS 

9. Group germ and Lie algebras 

A neighborhood of the unit element I on a locally Euclidean continuous group 
is a topological image of Euclidean space in which composition applies only to 
elements sufficiently near to the center (. Let us call such a manifold a group 
germ provided composition as far as defined has the same properties as for a 
continuous group. 7 Whether every group germ is capable of blossoming forth 
into a full group (on which it forms a certain neighborhood of the unit element) 
is a difficult question beyond the pale of our present knowledge. The elements 
of the would-be-group could be introduced as arbitrary finite chains a1a2 · · · ah 
of elements a; of the group germ. The intricate point is to decide under what 
conditions two such chains are to be identified. 

However if there is a group 'Y with the given group germ 'Yo we can ascertain 
exactly to what extent it is determined by the germ. (If 'Y should consist of 
several disconnected pieces we take into regard only the piece containing the 
point I, which is a group in itself, called the proper part of 'Y; the other pieces, 
its cosets, are out of the game.) We simply face a particular case of the question 
how far a manifold is known in its whole extent when it is locally known at every 
point. 8 The universal covering manifold provides the answer to this sort of 
question; we shall prove in a moment that it is a continuous group with the 
same group germ 'Yo. This simply connected group we now call 'Y· Every 
group -y' with the germ 'Yo has 'Y as its universal covering manifold. In other 
words, every extension of the germ 'Yo into a full group 'Y 1 is obtained from the 
most "complete" one 'Y by a process of projection: one takes an arbitrary discrete 

--
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group !SJ of continuous automorphisms S:p ~ p' on 'Y without fixed points, 
and identifies points on 'Y equivalent under l S). Points p, p' are equivalent 
under l S) which arise from each other by a transformation S of the group 
IS l : p' = Sp . Discreteness means that no set of mutually equivalent points 
ever has a condensation point on 'Y· Absence of fixed points means that for no 
transformation S of l S l different from the identity there is a point p such that 
Sp = p. What we have to show is this: Let 'Y, 'Y' be two groups with a common 
germ 'Yo and let 'Y be simply· connected. Then there is a definite continuous 
homomorphic mapping p ~ p' of 'Y upon 'Y' which is the identity within the germ 
'Yo . The function p' '""' cp(p) is constructed by the familiar process of con
tinuation, first used by Weierstrass in the domain of analytic functions. If 
cp(p) = p' is known for a point Po we define it in the neighborhood of Po by 

cp(p~a) = p~ ·a 

where a is in the germ 'Yo . In this way by continuation along a path leading 
from I top we come to 11 definite image cp(p) = p' of the end point p. In general 
p' would depend on the path and not only on the end r.oint. However, if 'Y is 
simply connected, continuation along different paths from I to p necessarily 
leads to the same cp(p). On considering the point p' = cp(p) to be the "trace" 
of p, 'Y is molded into an (unbounded, unramified) covering manifold over 'Y' 

and the group of covering transformations S of 'Y over 'Y' is constructed in the 
familiar way. 

All this is nothing else than the ever-recurring topological device by which 
one links events in the small and in the large; only one point is peculiar to group 
theory, namely that the universal covering manifold .Y of a continuous group 'Y 

is a continuous group again. A point p of .Y is defined by means of a point p 
of 'Y and a path leading on 'Y from the center I to p. Two paths leading from 
I to p define the same point p on .Y if and only if they can be continuously de
formed into each other without moving the end points I and p (or if both paths 
lea\::l to the same end point on every unramified, unbounded manifold 'Y* over 
'Y provided one starts at the same point I* on 'Y*). A neighborhood of pis formed 
by hitching onto the path defining p all paths starting from p and lying in a 
given (Euclidean) neighborhood of p. A path is described by a continuous 
function p(>-..) whose argument >-.. ranges over the interval 0 ~ >-.. ~ 1 of real 
numbers while its value p(>-..) varies on 'Y; the path joins I and p if p(O) = I, 

p(l) = p. If p over p is given by the path p(>-..) and q over q by the path q(µ) 
we may define pij by the path consisting of p(>-..) I 0 ~ >-.. ~ 1 l followed by 
the path 

p·q(>-.. - 1) {1 ~ >-.. ~ 2l 

arising from q(µ) by the left translation p. The resulting path is obtained from 

p(>-..)·q(µ) {O ~ >-.. ~ 1, 0 ~ µ ~ ll 
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by letting the point (X, µ) in the Xµ-square describe the broken line 
(0,0) ----+ (1, 0) ----+ (1, 1). The result does not change on replacing it by the line 
(0, 0) ----+ (0, 1) ----+ (1, 1) since the one may be deformed into the other within 
the square. Another suitable choice would be the diagonal 

X = r, µ = r {O ~ T ~ l}. 

The first two ways show that pq is continuous in q uniformly with respect to p 
and continuous in p uniformly with respect to q. whence follows continuity in 
the pair (p, q). The diagonal definition proves the element p-1 as defined by 
p-1(X) to be the inverse of p. 

By the same argument we applied in constructing the function p' = cp(p) 
one concludes that any continuous realization, in particular any continuous 
representation, of the group germ 'Yo may be extended in a unique fashion to 
the whole simply connected group 'Y· However the resulting representation will 
in general not be single-valued on any "less complete" group 'Y' engendered 
by 'Yo. 

Granted certain diff'erentiability conditions the group germ is reducible to, 
and reproducible from, its infinitesimal elements a, b, . · · , which not only form a 
linear set, the tangent plane of the group 'Y at the origin I, but even a kind of 
algebra.9 Besides addition and multiplication by numbers satisfying the rules 
common to all linear sets, we have a multiplication [ab] (corresponding to the 
commutator sts-1C 1 of two group elements s, t) satisfying the distributive law 
in both factors: 

(9.1) 
[a+ a', b] = [ab] + [a'b] 

[Xa, b] = X[ab] 

[a, b + b'] = [ab] + [ab'] 

[a, Ab] = X[al?] 

(X any number). Instead of the associative law, however, we have anti
commutativity 

(9.2) [ba] -[ab] 

and the Jacobi rule 

(9.3) [a[bc]] + [b[ca]] + [c[ab]] = 0. 

The numbers are taken from the continuum K. In homage to Sophus Lie 
such an algebra is nowadays called a Lie algebra. The Lie algebra consisting 
of the infinitesimal elements of a group or a group germ may be called its 
nucleus. Every Lie algebra a in K engenders and uniquely determines a group 
germ with a as its nucleus. It remains doubtful however whether the group 
germ is extensible to a full group. 9

a Of this last point Lie himself had not been 
sufficiently aware, his interests being entirely concentrated on questions in the 
small. One ought to emphasize that apart from its significance for continuous 
groups the notion of a Lie algebra is applicable to any number field k; it is as 
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pur:ly algebra~c ~nd as worthy of an independent algebraic investigation as the 
not1~n of associative algebras. For a group of linear transformations or matrices 
the commutator product" of two infinitesimal elements A, B turns out to be 

(9.4) [AB] = AB - BA. 

Hence a ----+ A is a representation by matrices of the Lie algebra over which 
a varies if a ----+ A, b ----+ B en tail 

a + b ----+ A + B, Xa ____, XA, [ab] ----+ AB - BA 

{ X any number}. 

Agai~ this is a purely_ algebraic concept. Without the laws (9.1-3) any hope 
?f faithfully representmg the abstract Lie algebra would obviously be nipped 
m the bud. 

The formula C?.4) i~ th~ only point in the whole of Lie's theory that actually 
matt~r~ for our 1~ves~1ga.t10ns.. We therefore give the proof. By integral-like 
repet1t10n of the mfimtes1mal lmear transformation A one gets a one-parameter 
group X(s) of transformations; one has to integrate the differential equation 

dX/ds =AX 

with .the initial valu.e X:CO) = E. This is done by means of the exponential 
funct10n exp(sA) which 1s defined for matrices exactly as for numbers: 

exp (A) = Jim E + - = LI A'. ( A)" 00 

11-00 JJ v=O v! 
One has 

X(s + t) = X(s) ·X(t). 
With 

X(s) = exp(sA), 

we form the commutator 

Y(t) = exp(tB) 

Z(s, t) = X(s)Y(t)X-\s)Y- 1(t) = X(s)Y(t)X(-s)Y(-t) 

for which we want to show the limit relation 

(Z(s, t) - E)/st----+ AB - BA with (s, t)----+ (0, O). 

For a~y function f(s, t) vanishing for s = 0 identically in t and for t = O identi
cally m s one has 

f(s, t) = (' (' <lf dtds 
}o }o as<Jt ' 

provided the derivative under the integral exists and is continuous, and hence 

f(s, t)/st----+ ( a2J) with (s, t) ____, (0, O). 
asat o.o 
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In order to apply this to Z(s, t) - Ewe compute 

a2'Z_ = X'(s)Y'(t)X(-s)Y(-t) - X(s)Y'(t)X'(-s)Y(-t) 
a sat 

- X'(s)Y(t)X(-s)Y'(-t) + X(s)Y(t)X'(-s)Y'(-t) 

which for s = 0, t = 0 passes into 

AB - BA - AB+ AB= AB - BA. 

'Y' is an invariant subgroup of 'Y if for any t in 'Y 1 and any s in 'Y the element 
sts -r or the commutator sts -r C 1 lies in 'Y'. Accordingly for Lie algebras: the linear 
subspace a' of a is an invariant subalgebra of a if for any x in a' and any a in a the 
product [ax] lies in a'. The term "ideal in a" would also be an adequate descrip
tion of that situation. All elements of the form [ab] (a, bin a) and their linear 
combinations obviously form such an invariant subalgebra a' in a, corresponding 
to the commutator group in group theory; Lie called it the derived al,gebra. 

10. Differential equations for invariants. Absolute and relative invariants 

If f(x, x', ... ) is a polynomial depending in a homogeneous manner on the 
components of each of the vectors x, x', · · · and if 

(10.1) a = (A, A', · · ·) 

is a set of linear operators operating on the respective vector spaces, one can 
form the differential 

"' af "' af , daf = £...., -dx; + £....,a-, axi + 
; ax; i xi 

where one puts 

dx = Ax, dx' = A'x', · · · 

f is invariant with respect to the set a of infinitesimal transformations if daf = 0. 
Let b = (B, B', ... ) be another set of such transformations. With any two 
numbers "A and µ one can form 

A.a + µb = (A.A + µB, >..A' + µB', . · · ). 

Moreover one readily finds 
db(daf) - da(dbf) = drabif 

where [ab] is the set 

(AB - BA, A'B' - B'A', ... ). 
Hence if 

daf = 0, 

one must have at the same time 

dxa+,,d = O, 

dbf = 0 

drab] f = 0. 

r 
:11 
~ . 

r 
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This is perhaps the quickest way to establish the three fundamental operations 
of an infinitesimal group or a "Lie algebra". With a ranging over an abstract 
Lie algebra a, and on interpreting the matrices A, A', · · · in (10.1) as so many 
representations of a, the differential equations 

(10.2) 

characterize the invariants/. This again is a purely algebraic concept of which 
we already made use in Chapter II for the orthogonal group. 

A relative invariant is characterized by equations 

(10.3) 

The number Ka, the infinitesimal multiplier, is a linear function of a, and because 

daf = Ka·f, 

imply 

K[abJ vanishes, or the infinitesimal multiplier Ka disappears for all elements a of the 
derived Lie al,gebra. 

Examples. (1) 8L(n). The nucleus 8 l(n) consists of the n-rowed matrices 
of trace 0. The equations 

G ~1)(~ ~)-(~ ~)G ~1)=(~ ~), 
(~ ~) (~ ~) - (~ ~) (~ ~) = G ~ i) 

show that for n ~ 2 the derivative ·11 coincides with the whole Lie algebra "l. 
Bence there exist only absolute invariants. 

(2) O(n). Its nucleus o(n) consists of the skew-symmetric matrices. Denot
ing by 8;k 1 i -,,C kl the matrix having a + 1 at the place (ik) of the matrix, a -1 
at (ki) and zeros elsewhere, one readily verifies 

812 82a - 82a 812 = 8a1 . 

Hence for n ~ 3 the derivative o'(n) again is the whole o(n), and there exist no 
relative invariants. 

(3) The same is found to be true for 8p(n) with its nucleus fp(n). 
(4) Concerning GL(n) whose nucleus l consists of all n-rowed matrices A 

11 a;k 11 whatsoever, example (1) shows that the derivative l' is "l. Hence KA must 
be a multiple of the trace: 

(10.4) KA = g(a11 + · · · + ann). 

These results concerning the Lie algebras hold good in any number field k. 
In case k = K they have their consequences for the continuous groups. In 
studying our groups for arbitrary complex values of the components a,k of the 
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generic matrix one ought to observe that their real and imaginary parts are to be 
considered as separate parameters and the Lie algebra as one in K rather than in 
Kt unless we limit ourselves to analytic representations where differentiation 
with respect to the complex parameters is possible. Hence in example (4) one 
has to replace (10.4) by the statement that KA is a linear combination of the 
real and the imaginary part of the trace or by an equation 

(10.5) KA = g(au + · · · + ann) + g'(au + · · · + llnn) 

with two constants g, g'. A further remark is to the effect that from the infin
itesimal elements we can draw conclusions upon the proper part of the group 
only. With this in mind we may advance the statement that the groups of all 
real or unitary or complex unimodular transformations, the group of all real or 
complex proper orthogonal transformations and the group of all real or unitary 
or complex symplectic transformations have no relative invariants. For in 
each case the group indicated consists of one piece. For the whole orthogonal 
group comprising both the proper and the improper part one encounters the 
distinction between even and odd invariants. As to the group of all real linear 
transformations A with a positive determinant I A I or of all unitary transforma
tions we find that the multipliers of relative invariants are necessarily of the 
form J A Ju, while for the group of all non-singular complex linear transformations 

I A lul Alu' 

is their universal form; g (and g') are arbitrary real or complex constants. If one 
requires the representations and hence the multipliers to be single-valued on the 
whole group then none but integral values of g (and g') are admissible for the 
unitary and the total complex group. Topology thus casts its shadow on the 
algebraic scene. 

(5) We add one further example: the group of all real transformations of the 
form 

with positive determinants I Ar J, I A2 I (step transformations). The multiplier 
of a relative invariant is necessarily of the form 

I Ar J

01
J A2 1°2 

with two constant exponents g1 and g2. 
The method by which we obtained these results presupposes that we deal 

with representations satisfying the differentiability conditions which enable us 
to pass to the infinitesimal elements (Lie representations). This is a serious 
drawback of the infinitesimal approach from the standpoint of continuous 
groups. However if we study the Lie algebras as such, our results contain a 
complete algebraic answer to a straightforward algebraic question, leaving 
nothing to be desired. 
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11. The unitarian trick 

Determining the representations of the nuclei of the classical groups 

GL(n), SL(n), O(n), Sp(n) 

is an algebraic problem to the independent solution of which E. Cartan made the 
decisive contributions. It is more difficult than the simplest case of representa
tions of degree 1, as considered in the previous section, leads one to expect. 
However we are able to foretell the results, for the field K or Kt at least, from 
our treatment of the representations of the unitarily restricted groups by the 
integration method. 

Take the group SL(n). We shall soon find out that the group sU(n) of all 
unimodular unitary transformations is simply connected. Hence any irreduci
ble representation of its nucleus ·u(n) leads to a single-valuecl continuous repre
sentation of• [!(n) which must be equivalent to one of the representations 

(11.1) (P(fr · · · fn)) with f1 ~ f2 ~ · · · ~ fn = 0 

we constructed in Chapter IV [cf. Theorem (7.5.C)]. 
We now compare •u(n) with the Lie algebras 'f(n) and sr(n) of all complex 

and of all real matrices of vanishing trace. ·u(n) and sr(n) both arise from ·r(n) 
by reality restrictions. But these are immaterial for any linear problems. We 
face a special case of the following general situation. 

When we are given a Lie algebra a with the basis er , · · · , er in a field k we may 
extend the field k to a larger field K. a is then changed into a Lie algebra aK in K 
whose elements are all linear combinations 

(11.2) 

with coefficients A.; varying in K. (In our case k = K, K = Kt.) Let 

a = ( C1 , • • • , Cr), 

be two Lie algebras ink which coincide after the extension: aK = a~. This situa
tion arises if the e; are expressible in terms of the e; : 

(11.3) 

with coefficients 'Yik in Kand det('Y;k) ;;"' 0. We shall then have . 
A.~e~ + · · · + A.;e; = ArCr + · · · + ArCr 

when we tie the parameters A.;, A.'. together by the substitution 

L 'YikA.: = A.k. 

If the structure of a is described by the multiplication table for the basis: 
r 

[e;ek] = L a;k.1e1 
1~1 

{a;k,l in kl 
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then the transformation (11.3) must bring it about that the resulting coefficients 
a' in 

also lie in k. Any representation 

of n in K is associated with a representation of n' in K: 

and vice versa, such that both coincide after the extension of k into K. 
In our case we conclude that every representation of 'r(n) is fully reducible 

and that there are no other irreducible representations than those described by 
(11.1). From this result follows by integration: 

THEOREM (8.11.A). Every Lie representation of the group of all real unimodular 
transformations is fully reduci!Jle. There are no other irreducible such representa
tions than the rational ones formerly described as "quantics". 

More intricate is the question of deriving all representations in K of the Lie 
algebra llK from those of n if llK is considered as a Lie algebra in k. Let us keep 
closer to the case which interests us here by assuming K to be a quadratic field 
over k with the determining quadratic equation 

x2 
- t'J = 0 (t'J ink; 8 = v;1). 

Every number of K, 

>. = a + ,88 (a, ,8 ink), 

has its "k-components" a, ,8 and its conjugate X = a - ,88. When taken as a 
Lie algebra in k, aK is of order 2r with the basic elements e;, 8e;. In a given 
K-representation the representing matrix of the element (11.2) is a linear 
combination of the k-components of the coefficients X; or a linear combination of 
X; and X;: 

On setting up the condition 

[ab] --+AB - BA [AB] 

one finds that both 

(11.4) 

must constitute K-representations of n = ak commutable with each other: 

[A;A;] = 0. 

r 

I 
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Let us suppose that every K-representation of n breaks up into absolutely irre
ducible constituents. Then one sees that the pair of commutable representa
tions (11.4) must break up into blocks of the form 

~: e;--+ (A; X E'), 

where 

+ ArAr = S(a) 

and 

a--+ X1A~ + · · · + >-rA; = S'(a) 

are absolutely irreducible. E, E' are the unit matrices of correct degrees. 
Hence our representation of llK breaks up into parts of the form 

(11.5) (S(a) X E') + (E X S'(a)) 

a = X1e1 + · · · + Xrer). 

The enveloping (associative) algebra of the linear set of matrices S(a) is the 
complete matric algebra; the same for S'(a). The enveloping algebra of (11.5) 
contains every matrix of either of the forms 

(S(a) X E') and (E X S'(a)) 

and hence of the form S(a) X S'(a'). As the direct product of two complete 
matric algebras it is therefore itself a complete matric algebra, and (11.5) is 
absolutely irreducible. 

Returning to our special case and realizing by the differential equation 

d(x;yk) = dx;·Yk + X;·dYk 

that (11.5) describes the Kronecker multiplication in terms of the infinitesimal 
substitutions we can advance10 the 

THEOREM (8.11.B). Every Lie representation of the complex unimodular group 
is fully reducible. The irreducible parts are of the form 

(11.6) R(A) X R'(A) 

where Rand R' are two irreducible representations of the type (11.1). 
The same arguments as lead to Theorems (8.11.A) and (8.11.B) go through 

for the symplectic group because the unitarily restricted Sp(n) is also simply 
connected. However it must of necessity break down for GL(n). A representa
tion of the nucleus f(n) for n = 1 is just any individual matrix, and one knows 
matrices like 

II~ ~II 
which are not fully reducible. This could not happen if the universal covering 
manifold of U(n) were compact. As a matter of fact, U(n) is not simply 
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connected, and its universal covering manifold consists of infinitely many 
sheets. 

Nor is the group of real proper orthogonal transformations simply connected, 
but its universal covering manifold consists of two sheets only. Hence full 
reducibility will prevail here again although there is to be expected a whole set 
of representations of the nucleus o(n) leading to double-valued representations of 
the group. It is almost certain what the characters of these double-valued 
representations will be: the old formulas of the type (7.9.10) will hold for them 
also, but in the case n = 211 + 1 one will have to admit sets of integers (l1 , · · · , l,) 
besides sets of half-integers, while for n = 211 the reverse situation prevails. 11 

The equation (11.6) will give all the single-valued irreducible representations of 
the complex orthogonal group if R and R' are either two single-valued or two 
double-valued representations. Moreover the fact that the orthogonal group 
consists of two pieces has to be taken into proper account. The results for the 
real orthogonal group remain valid for the real transformations leaving invariant 
a non-degenerate quadratic form of any index of inertia. 

The differentiability assumptions indicated by Lie's name in Theorems 
(8.11.A) and (8.11.B) can be removed in replacing each of the basic infinitesimal 
transformations of the group by the one parameter group it engenders. I. 
Schur10 carried this out for SL(n), E. Mohr 12 for Sp(n). In the case of O(n) the 
double connectivity causes some difficulties which prevented R. Brauer, in his 
treatment of O(n) along such lines, from completely eliminating the topologic 
spectre.13 Another way of accomplishing the same ends is by appealing to 
general theorems concerning the Lie nature of linear groups. 14 

12. The Connectivity of the Classical Groups 

THEOREM (8.12.A). The group 'U(n) of all unimodular unitary transformations 
is simply connected. 

I give the sketch of a proof which I owe to an oral communication of Dr. 
Witold Hurewicz; but here, as in all other topological considerations, I shall 
not insist on complete details. 15 

'U(n) contains 'U(n - 1) as the subgroup of its matrices of the form 

1 0 0 

Un-1 0 * * 

0 * ... * 
Two elements A and A' of 'U(n) are left-equivalent modulo this subgroup, 
A' =A· Un_1 , i.e. they belong to the same coset of 'U(n - 1), if and only if they 
coincide in their first column 

which is a vector of length 1 : 

{12.1) I a1 !2 + I a2 1
2 + · · · + I an 1

2 
1. 
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As long as n ~ 2, any such vector a occurs as the first column in some element of 
'U(n); indeed, one can determine a unitary unimodular vector basis e1 , ••• , en 
of which a is the first member: e1 = a. Hence the manifold cf the cosets is 
topologically equivalent to the (2n - 1)-dimensional sphere (12.1) in a Euclidean 
space with the real coordinates mai' Sa;. The sphere is simply connected. A 
closed curve (cycle) C on 'U(n) is at the same time a cycle in the manifold of 
cosets. As such we may shrink it to the unit point (1, 0, ... , 0) and thus 
deform C into a cycle on the subgroup 'U(n - 1). The induction with respect 
ton thus started can be carried down ton = 1. As 'U(l) consists of the element 
I only, we have then succeeded in shrinking C step by step to the unit point on 
'U(n). 

It is exactly at this last instance that the argument fails for the complete 
group U(n). U(l) is the circle of all complex numbers of modulus 1, and a 
circle is of infinite connectivity: its universal covering manifold is a spiral with 
an infinity of coils. Every cycle C of U(n) is deformable into ("-') a multiple 
of the cycle Co which the element 

A = En-I + e(<p) 

describes with 'I' running from 0 to 1. The real function <Ii defined on U(n) by 
detA = e(<l>) (which is multivalued but unramified) shows at once that no 
multiple of Co is ""' 0. The universal covering manifold of U(n) consists of 
infinitely many "coils"; its group of covering transformations is the infinite 
discrete cyclic group. 

Hurewicz's argument applies to the proper real orthogonal group o+(n), 
proving that any cycle on o+(n) is""' a multiple of the cycle Co described by 

E +. ;
1

, cos""' 
n-2 I 0 

1 sm cp, 

. " -sm 'l''i 
cos 'P ii (0 ~ 'P ~ 27r). 

For n = 2 no such multiple is""' 0. On 0+(3), however, and a fortiori on o+(n) 
for n ~ 3, 2Co is ""' 0. One proves this either by the quaternion representation 
of the rotations in 3-space mapping the 3-dimensional sphere in 4-space on 
o+(3) so that antipodic points are identified, or by the following picture: Take 
two solid straight circular cones of aperture a with common vertex and touching 
each other along a generator, the one fixed in space, the other rolling on the first. 
The roller describes a closed motion which is 2C0 for a = 90° and approaches 
rest as a----> 180°. By continuous variation of the parameter a one thus deforms 
2Co into the point I. So far it would still be possible for Co itself to become ""' 0 
for some higher n. That this is not; the case is most easily proved by explicit 
construction of the simplest of the double-valued representations, the so-called 
spin representation, first discovered and infinitesimally described for any n by 
E. Cartan. Dirac found that the spinors for n = 4 (4-dimensional space-time
world) account in quantum theory for the spin of the electron; hence the name. 
The existence of spinors is such an important feature of the orthogonal group 
that we shall briefly give their algebraic description in the next section.16 
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The unitary symplectic group U Sp(n), n = 211, affords the best occasion for 
applying Hurewicz's argument; for here the induction leads straight down to 
n = 0. The first two columns 

a = ( ar ' . . . ' an)' b = (br 1 • • • 1 bn) 

of an element A of U Sp(n) characterize the coset to which it belongs modulo 
U Sp(n - 2). The conditions to be satisfied are 

(12.2) [ab] = 1; 

(aa)n = 1, (bb)n = 1, (ab)n = 0. 

On introducing ii by (6.2.14) one sees that the equation (12.2), or 

(iib)n = 1, 
is in agreement with 

(iiii)n = 1, (bb)n = 1 
only if b = ii. Indeed, 

(ii - b, ii - b )n = (iiii)H + (bb )n (iib)H - (bii)n = 1 + 1 - 1 - 1 = 0. 

Consequently we obtain as necessary and sufficient conditions 

(aa)H = I ar 1
2 + · · · + I an 1

2 = 1, b = ii. 

The cosets form a manifold topologically equivalent to the (2n - 1) = (411 - 1)
dimensional sphere. 

Incidentally Hurewicz's procedure is by far the simplest way to compute the 
number of dimensions of each of our groups. 

THEOREM (8.12.B). uo+(n) has a universal covering manifold of two sheets 
when n ~ 3, U Sp(n) is simply connected for every n = 211. 

13. Spinors 

We choose the same starting point as Dirac in his classical paper on the 
spinning electron by asking whether it is not possible to interpret the square 
sum of n variables x; as the square of a linear form :r7 

(13.1) xi + · · · + x! = (prXr + · · · + PnXn)2. 

The coefficients p; must then be quantities satisfying the relations 

(13.2) p~ = 1, (i ~ k). 

n quantities p; of this kind define a certain non-commutative associative abstract 
algebra p; as its basic elements we may take the 2n monomials 

where the exponents a; are integers mod 2. The rule of multiplication is 

Pa1···an"P/J1···/Jn = (-l)~"Pn···'Yn> 
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where 

'Y; = a; + {3; , o = L a;{3k. 
i>k 

We first consider the even case n = 211 and use the notation 

(13.3) Pr, qr, · · · , p., q, besides pr, · · · , Pn· 

A representation 

Pa--> Pa, (a = 1, · · · , 11) 

of degree 2' of our algebra is obtained by the following equations (familiar to the 
quantum theorist from the process of superquantization with Fermi statistics): 

Pa = l' X • · · X l' X II~ ~II X 1 X • · · X 1, 

Qa = 1' x ... x l' x II ~i ~ 11 x 1 x ... x 1. 

The number of factors is 11. The two matrices 

p =II~ ~II· 
appear at the a 11i place ; 1, 1' mean 

(i = v=J) 

respectively. The two rows and columns of our matrices may be marked by + 
and - . Hence the variables x. 1 •• .• , in our representation space bear combina
tions of signs u"' = ± as their indices. iP aQa = Ra equals 

1 x ... x 1 x 1' x 1 x ... x 1 

with 1' at the ath place. Thus 

HE± Ra), 

are of the form 

lX···XlXVXlX···Xl 

where V at the ath place is one of the four matrices 

II~ ~II· 
Consequently our representation of the algebra p yields the complete matric 
algebra in 2' dimensions. Because of coincidence of orders, 2" = (2') 2

, the 
correspondence is a one-to-one isomorphism. 
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We now perform an arbitr,iry orthogonal transformation o: 

Xi = L o(ik)x~, p; = L o(ki)Pk· 
k k 

The p; fulfill the same conditions (13.2) as the Pi ; hence 

(13.4) Pi - P; = L o(ki)Pk 
k 

is another irreducible representation of the algebra p. We know by Theorem 
(3.3.E) that there is only one such representation of the complete matric algebra 
in the sense of equivalence. In other words there exists a non-singular matrix 
S(o) uniquely determined but for a numerical factor such that 

(13.5) (i = 1, ... , n). 

For two orthogonal transformations o, o' one has 

{13.6) S(oo') = K S(o)S(o') 

with the numerical factor K depending on o and o'. Indeed from 

L o'(li)P1 = S(o')P;S-1(01
) 

I 

one deduces by forming (13.5): 

L: o'(li)P; = S(o)S(o')PiS-1(o')S-1(0), 
I 

and according to (13.4) the left side is 

L: oo'(ki)Pk 
k 

which, on the other hand, equals 

S(oo')PiS-1(00'). 

In brief, S(o) is a "projective" representation of O(n). 
So far all goes well in any field k to which one has adjoined V' -1. Now 

follows the attempt to normalize the arbitrary gauge factor in S(o) so as to turn 
the projective into an ordinary "affine" representation. The transposed 
matrices P: again satisfy the conditions (13.2), and hence there is a matrix C 
such that 

(13.7) 

Without much ado we may write down C explicitly: 

The equation (13.5) implies 

"'"" * • *~ 1 £...J o(ki)Pk = S(o)P; S- (o), 
k 

r 
1 

' 
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and on account of (13.7), 

c-1 S(o)C 

is another solution of the equations (13.5) for S(o). Hence 

S(o) = p·CS(o)C-1
• 

In replacing S(o) by XS(o), S(o) is multiplied by l/;\ and p replaced by p/;\2
• 

By choosing }.. = yp we normalize the gauge factor in such a way that S(o) 
satisfies the condition 

S(o) = CS(o)C-1 

The sign in ± S(o) still remains indeterminate. Because X 
S(oo') both satisfy the normalizing condition 

x = cxc-1, 

S(o)S(o') and 

the factor K in (13.6) is ± 1. Instead of the projective we have thus obtained 
an ordinary though double-valued representation ± S(o) of degree 2•, called the 
spin representation. 

The normalization requires the possibility of extracting square roots. The 
constructions in Euclidean geometry with ruler and compass are algebraically 
equivalent to the four species and the extraction of square roots. A field in 
which every quadratic equation x2 

- p = 0 is solvable may therefore be called 
a Euclidean field. Our result is then that in every Euclidean field we can construct 
the spin representation; the Euclidean nature of the field is essential. The 
orthogonal transformations are the automorphisms of Euclidean vector space. 
Only with the spinors do we strike that level in the theory of its representations 
on which Euclid himself, flourishing ruler and compass, so deftly moves in the 
realm of geometric figures. In some way Euclid's geometry must be deeply 
connected with the existence of the spin representation. 

When we operate in the field Kt, one readily verifies that the diagonal trans
formation o of UO(n): 

Pa ± iqa - e(± <Pa)· (pa ± iqa) 

is represented by the following diagonal S(o): 

Xvi····· - e(Hu1cp1 + ... + u.cp.)) ·Xv1···•.-

This shows that S(o) changes sign if we follow its continuous variation while o 
races over the cycle 

Co: cpo = · · · = <P•-1 = O; 0 ~ cp. ~ 1. 

Hence o+(n) is certainly not simply connected. The character of the spin repre
sentation turns out to be the sum 

L: e(H± '1'1 ± l{J2 ± ... ± cp.)) 
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extending over all combinations of signs, a formula which confirms our conjec
ture about the general nature of characters of the double-valued representations. 

The modifications needed for n = 211 + 1 are not very serious. To (13.3) we 
add one further p = Pn represented by 

Pn = 1' X 1' X · · · X 1'. 

The product of all the P's in the order P 1Q1 · .. P,Q.P n then equals i' E. Sup
plementing (13.2) by the one further relation 

reduces the order 2n = 2 · (2') 2 of the algebra p to (2') 2
, and our representation 

then maps it by a one-to-one isomorphism on the complete matric algebra of 
degree 2'. Since (13.4) entails 

P~ · · · P: = det(o(ik)) -P1 · · · Pn 

we are able to associate with any orthogonal o a matrix S(o) in 2' dimensions 
such that 

the + or - sign prevailing according as o is proper or improper. 
For further details, including the case of an indefinite metric ground-form so 

important for physics, see the paper by R. Brauer and the author, quoted above. 

14. Finite integrity basis for invariants of compact groups 

We now come to the essential point in Part B of the present chapter to which 
all its other considerations are subservient. 

THEOREM (8.14.A). The (absolute) invariants J(x, y, ... ) corresponding to a 
given set of representations of a finite or a compact Lie group have a finite integrity 
basis. 

By means of Hilbert's ideal theorem we first select a finite number among the 
non-constant invariants 

(14.1) 

such that all such invariants J(xy .. · ) are linear combinations of them with 
polynomial coefficients: 

It 

(14.2) J(xy ... ) L L.(xy · .. )J ;(xy ... ) . 
i=l 

The next step should be to devise a linear process w(L) which carries each poly
nomial L into an invariant and moreover satisfies the conditions 

w(l) = 1, w(L.J) = w(L) .J 

I I 

J 
i·' 
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for every invariant J. Once in possess1011 of such a process we deriYe from 
(14.2): 

J = L w(L;).J;. 

The w(L;) being invariants, induction with respect to the degree will prove that 
every invariant is expressible in terms of the basis (14.1). 

A process w of the desired· nature is given by averaging over the group manifold: 

w(L) = WC,(sL). 

It works for any finite group (provided the number field is not of a prime charac
teristic dividing the order of the group) and for any compact continuous Lie 
group. It works on all compact groups accessible to Haar's measure; finally, 
it works on any group whatsoever if one limits oneself to von ~ eumann's almost 
periodic representations. The most important example, besides the finite 
groups, is the real orthogonal group O(n) in the real field Kand its two-sheeted 
universal covering manifold. 

In the case of the classical groups in Kor Kt one applies the procedure after 
having introduced the unitary restriction. By means of the considerations in 
§11, one can get rid again of that restriction or replace it by some other reality 
condition, with the result: 

THEOREM (8.14.B). The invariants of the classical groups corresponding to any 
Lie representations in K have a finite integrity basis. 

As a matter of fact, we have proved this before by a detailed algebraic investiga
tion which rested on the explicit determination of all Lie representations, on 
the Cayley Q-process and the adjunction argument. But the advantages of 
the integration method, its directness and its generality with respect to the 
nature of the group, are obvious. Its great drawback is that it deals with the 
one field K only. Moreover, the group of step transformations which we were 
able to cover in some way by the adjunction argument is definitely out of its 
reach. For wherever the integration method applies, directly or indirectly 
through the unitarian trick, it establishes both full reducibility and a finite 
integrity basis for invariants. But the first statement is simply not true for 
the group just mentioned. We know of no single instance where the first main 
theorem about invariants fails, but a proof holding for all groups whatsoever is 
likewise unknown. 18 

15. The first main theorem for finite groups 

An elementary proof for finite groups not depending on Hilbert's general 
theorem on polynomial ideals was given by E. :N oether.19 Here is her straight
forward construction, as it applies to a given group of linear substitutions 

(15.1) A (a): x(a) = A (a)x, xi") :E aif)Xk (i, k = 1, ... 'n; a = 1, ... ' h). 
k 
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If J(x) is any invariant one writes 

J(x) = k; J(x<al). 

Consider the right side as a function of n · h independent variables x~"l. As 
such it is a symmetric function of the n vectors 

( 
(i) (h)) 

J;i = Xi , · · · , Xi , 

( 
(!) (h)) 

J;n = Xn , · · · , Xn 

in an h-dimensional vector space in the sense of Chapter II, §3, and thus ex
pressible in terms of the polarized elementary symmetric functions. With the 
arguments J;i , • • • , J;n put in in all possible combinations, we can define these 
functions as the coefficients G,1 ..••• in the product 

h n {u + u1xi") + ... + UnX~a)I = L u'ui' ... u~·G,, ..... (xl"» 
a-i 

(r + r1 + · · · + rn = h) 

involving the indeterminates u, ui , ... , Un besides the x~al. The functions 
one derives from 

G,1 ••. ,.(xla» 
by the substitution (15.1) constitute an integrity basis for our finite group. 
They are all of degree ~ h and their number is 

(h + 1) · · · (h + n)/1·2 ... n. 

One could not demand anything more explicit. 

16. Invariant differentials and Betti numbers of a compact Lie group 

One of the most beautiful applications of the integration method is E. Cartan's 
theory of invariant differentials on a compact Lie group. 20 In concluding this 
chapter we shall give a general outline of its leading ideas. 

On a differentiable manifold with coordinates Xi , ... , Xn we may consider a 
scalar field f(x), or a differential linear form 

(16.1) Lf;(x) dx; 
i 

depending on a line element dx, or a differential linear form of rank 2, 

Lf;k(x) dx;oxk, 
i,k 

which we suppose to be skew-symmetric so that it depends on the two-dimen
sional element with the components 

dx; oxk - ox; dxk 

which is spanned by the two line elements dx, ox. Thus we can go on forming 
"differentials" of rank p = 0, 1, 2, · · . , n. The differential forms indicate how 
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their coefficients f should be transformed under transition to other coordinates. 
There is a process of derivation that is independent of the coordinate system 
and quite familiar to anybody who ever studied Maxwell's theory of the electro
magnetic field: the derivative of the scalar f is the gradient 

f; = of /ox;., 

the derivative of the differential (16.1) of rank 1 is given by 

f ik = of k/ ox; - of;/ axk , 

and in general, the derivative w' of w with the skew-symmetric components 
f;, ... ;,, has the components 

(alternating sum of p + 1 terms). Derivation raises the rank by 1. A differ
ential w,, of rank p can be integrated over a p-chain C,,. Stokes's general 
theorem states that the integral of the derivative w~ over a (p + 1)-chain 
Cp+i equals the integral of wp over the p-cycle C~+i bounding CP+i. 

A differential w whose derivative vanishes is called exact. What we mean 
by w ,....., O (w homologous zero) may be explained in two ways:2

i either differ
entially as indicating that w is the derivative of a differential of next lower 
rank, or integrally as demanding that the integral of w over any cycle vanishes. 
Every differential "" 0 is exact; one readily proves this in both ways. "In the 
small" both notions, exact and ,....., 0, coincide, but not in the large. The study 
of exact differentials and their homologies is a dual or contragredient counter
part of that of cycles where the derivative takes the place of the boundary. 
Some recent advances in the foundations of topology were made by stressing the 
dual aspect and "topologizing" these operations with differentials. Anyhow, 
the Betti number BP may be explained as the number of exact differentials of 
rank p that are linearly independent in the sense of homology.22 

We now assume that our manifold is a compact Lie group. The differential w 

is called invariant if it stays unaltered under left and right translations: 

x ---? sx and x ---? xs. 

Since left translations carry the origin I into any other point it is sufficient to 
know an invariant differential at the origin, where it is a skew-symmetric multi
linear form 

(16.2) 

with constant coefficients a, depending on p infinitesimal group elements oix, 
... , opx. The requirement to be invariant also under right translations means 
that (16.2) is invariant under the adjoint group 

lix---? s-i·OX·S. 
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Hence the invariant differentials are exactly those invariants of the adjoint 
~roup which we considered in Chapter VII, §IL The numbers of the linearly 
mdependent ones among them for the several ranks p are the coefficients of 
the Poincare polynomial computable by (7.11.2). 

Three facts establish a close relationship between arbitrary exact differ-
entials under homology and invariant differentials under equality: 

LEMMA (8.16.A). (I) Every invariant differential is exact. 
(2) Every exact diff ere.ntial is homologous to an invariant one. 
(3) An invariant differential ""' 0 is necessarily = O. 
(1) is simply proved by explicit computation of the derivative of the invariant 

differential w. (2) can be obtained either in integral (a) or in differential 
(b) fashion. (a) Integrate sw, the differential arising from w by the left trans
lation s, over a given p-cycle C. One obviously has 

r SW= f W. )c s-lc 

s -ic arises by continuous deformation from C in passing from I to s -i along a 
continuous path. When integrated over any two cycles C, C' which are de
formable into each other, an exact differential w yields the same integral: 

r w = r w. 
}c }c' 

In particular 

r sw = f w = r w. le s-Ic }c 
Consequently the mean value 

1/; = WC.(sw) 

is ""'w. The differential 1/; is left-invariant. By performing right translations 
on 1/; in the same fashion one obtains 

m •• m.(sws') "-' w; 

the differential on the left is two-sided invariant. (b) For any infinitesimal s 
one can easily ascertain an infinitesimal differential ip of rank p - I such as 
to make sw - w = ip'. 

(3) If the invariant w is a derivative, w = ip', then w = sws' is the derivative 
of sips' and thus of the invariant 

1/; = m.,IJJl.(sips'). 

According to point (1), the derivative of an invariant differential if; is zero. 
From the lemma it follows that the Betti number, i.e. the number of exact 

r 
,~' 

j 
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differentials linearly independent in the sense of homology, equals the number of 
invariant differentials linearly independent in the sense of equality. Hence: 

THEOREM (8.16.B). The coefficients of the Poincare polynomial of a compact 
Lie group give its Betti numbers. 

From this relationship one can deduce quite a surprising amount of informa
tion about the Betti numbers B1 , B2, · · · of a compact Lie group of r param
eters. Since the number of linearly independent skew-symmetric multilinear 
forms (16.2), whether invariant under the adjoint group or not, equals the 

binomial coefficient (;), one has 

BP~(;). 
On the other hand, let 

(16.3) "' I "' (p) O £...., a;ox; , · · · , £...., a; uX; 
i i 

be any p of the invariant forms of rank 1. The equation 

(16.4) 
a\P> • • · a(pJ 

'1 ' ' 1.p 

then defines an invariant form of rank p. While each of the forms (16.3) 
varies in a linear manifold of B1 = {3 dimensions, these special forms (16.4) 

of rank p range over a manifold of (~) dimensions. Thus 

Further inequalities of the same type may be obtained by considering those 
among the linear invariants of rank p = p1 + p2 which arise by multiplication 
(as defined in Chapter VII, §11) from any pair of invariant forms of ranks 

Pi and P2. . . . 23 As to the unitarily restricted classical groups, their Betti numbers are deter
mined by the explicit formulas for their Poincare polynomials, Theorems (7.11.A) 
and (7.11.C). 



CHAPTER IX 

MATRIC ALGEBRAS RESUMED 

1. Automorphisms 

In order to round off our investigations we resume in this chapter the subject 
of Chapter III, Part A, the study of fully reducible matric algebras.1 The 
method used there can be applied to three important questions concerning them: 
automorphisms, cross multiplication, and extension of the underlying field k. 

Take a simple algebra a in k and its irreducible representation a ~ A (a). 
Let a ~ a' be an automorphism of a. Then a ~ A (a') defines another irre
ducible representation of a. But we have observed [Theorem (3.3.E)] that 
there is only one such representation in the sense of equivalence. Hence there 
exists a non-singular matrix H such that 

A(a') = H·A(a)·H-1 

for all elements a of a : 
LEMMA (9.1.A). Any automorphism A ~ A' of an irreducible matric algebra 

2I is generated by a constant non-singular matrix H: 

Consider any matric algebra & = IA). If a constant non-singular matrix H 
transforms every element A of & into an element 

(1.1) A'= HAH-1 

of&, then A ~A' is an automorphism of&. At the same time the equation 

B' = HBH-1 

turns every commutator B of & into a commutator and thus defines an auto
morphism in the commutator algebra .\8 as well. We are thus led to study 
simultaneous automorphisms of & and .\8. Let & be a fully reducible matric 
algebra, and .\8 its commutator algebra. .\8 is likewise fully reducible the rela
tionship of & and .\8 is mutual, and their structure is described by

1 

Theorem 
(3.5.B). The intersection B of & and .\8 is called the centrum; it consists of 
every element of & that commutes with all elements of &. If the centrum 
contains only the numerical multiples of the unit element E, then & is called 
normal. (and so is .\8). Our second formulation shows that this property may 
be ascribed to the abstract algebra. If a fixed non-singular matrix H generates 
two simultaneous automorphisms A ~A', B ~ B' in & and .\8, 

(1.2) A' = HAH-1
, B' = HBH-1, 

280 
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the two automorphisms obviously coincide within the centrum 3. Our aim 
is the inverse proposition: 

THEOREM (9.1.B). Any two simultaneous automorphisms 

(1.3) A ~A', B ~ B' 

of the fully reducible matric algebra & and its commutator algebra .\8 which coincide 
within the centrum B are generated by a common non-singular matrix H: 

(1.2) A' = HAH-1
, B' = HBH-1

• 

In our ascent in Chapter III, Part A, the first point where we reached full 
reciprocity between & and .\8 was at the end of §4: 

(1.4) & = s(b)i, .\8 = t(b'),. 

We then form the linear closure ~ = ~(.\8 of all productR 

C =AB= BA (A in &, Bin .\8). 

From the description (3.4.10) of the schemes of the generic matrices A and B 
one derives at once that 

~ = 1),1' 

where 1) = (b)(b') is the linear closure of all the transformations in b, 

(a)(b)': x' = axb, 

which correspond to arbitrary elements a, b of b. 1) is certainly irreducible as 
it contains the irreducible (b). A commutator of '.!:) commutes in particular 
with each (a): x ~ ax and is hence of the form x ~ xj, where j is the image 
of the unit of b. Because of its commutability with all (b )': x ~ xb, the given 
commutator is similarly found to be x ~ jx. Consequently jx = xj, or j lies 
in the centrum a of b. 3 is a commutative division algebra or a field of finite 
order o over k. On extending k to 3 we may look upon b as a division algebra 
of order m = d/o over the field 3. The centrum of 1) in its concrete form is 
m· (a), and by applying Theorem (3.4.B) to the irreducible '.tl it follows that 

(1.5) 

The centrum B of ~! and .\8 and their product ~ = WB are thus given by 

B = g. (3), [g = mst]. 

The situation for the pair of commuting algebras .8, ~ is considerably simpler 
than for & and .\8; compare (1.4). 

Let us first study the particular case where b (or & and .\8) are normal. Then 
formula (1.5) shows 1) to be the complete matric algebra filld : 

LEMMA (9.1.C). Let b be a normal division algebra. The linear closure of all 
the transformations in b, 

x' = axb, 

which correspond to arbitrary elements a, b of b is the complete matric algebra Wld · 
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~ is now the complete matric algebra 

~ = Wla 

of degree g = dst. This result is in keeping with the relation (3.4.12). Let 

Ax (A. = 1, · · · , dt2
), B" (µ = 1, ... , ds2

) 

be linear bases of m and Q3 respectively. we have found that the matrices 
AxBµ are linearly independent and constitute a basis for ~ = Wl . With our 
given automorphisms A ---+A', B---+ B' of~( and Q3 we construP.t a ~orresponding 
automorphism of Wl0 by 

L i:\µAxBµ---+ L txµA~B; (txµ any numbers) 

whic~1 associates A' B' with AB. By applying Lemma (9.1.A) to the complete 
matnc algebra Wl0 we find a constant non-singular matrix H generating this 
automorphism, · 

A'B' = H·AB·H-1, 

and thus satisfying in particular (B or A = E) the relations (1.2) for all A 
in 2( and Bin Q3. 

By t~e simple device of forming the products AB we have thus succeeded in 
sharpenmg Lemm.a (9.1.A) considerably, although it enters into our argument 
?nly _for the special case of the full matric algebra. When we combine the 
identical automorphism B' = B of Q3 with a given automorphism A _, A' 
of ~l, our H commutes with every B and hence lies in m. We express this 
beautiful result in abstract terms:2 

THEOREM (9.1.D). Any automorphism of a normal simple algebra is inner. 
The next step consists in removing the assumption that ~l and Q3 are normal. 

Ax (A. = 1, ... , mt2
) 

is a basis of 2( over .8 if every A_ in 2( is uniquely expressible as " z A with 
" ffi. "Z. L,..,, xx 
. coe. cients x m ,8. A;>. , Bµ being bases of 2( and Q3 over ,8, each matrix of cs: 
rn muquely expressible in the form 

L Z)\µAxBµ (Z;>.µ in ,8). 

If (1.3) arc given automorphisms in 2( and Q3 which coincide within ,8: z---+ Z' 
then ' 

L Z)\µA)\Bµ ---+ L Z~µA~B~ 
defines a corresponding au~omorp?ism in ~by which AB---+ A'B'. Applying 
the. lemma (9._l:A) to the irreducible matric algebra ~ = (3)

0 
we obtain the 

desired proposit10n (9.1.B) for the case where m and Q3 consist of one block only. 
In order to. pass to several blocks we must generalize Lemma (9.1.A) so as 

to cover the direct sum a = L au of v simple algebras au , in concrete form 

(1.6) m = 2r1 + . . . + ~r. , A= Ai+···+ A., 
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where each component A" varies independently over the irreducible matric 
algebra mu . By Theorem (3.5.C) any non-degenerate representation of a is 
a sum 

v 

(1.7) Lsu~u· 
H=l 

The representation (1.6), a---+ A(a), with each Su = 1, is faithful. Let a---+ a' 
be an automorphism of a and consider the representation a---+ A(a'). It must 
be equivalent to some (1.7); its faithfulness would be violated if one of the Su 

equaled 0, its degree would be too high if one of the s" were > 1. Consequently 
all the Su = 1, and the new representation is equiYalent to the old one, or there 
is a non-singular matrix H such that 

A(a') = ll ·A(a) .J-ri. 

LEMMA (9.1.E). Any automorphism A ---+A' of the direct sum m of irreducible 
matric algebras, 

m =mi+ ... + m., A= Ai+···+ Av, 

1:s generated by a constant non-singular matrix H: 

A'== HAH-i. 

We finally return to an arbitrary fully reducible matric algebra 2l and its 
commutator algebra Q3 as studied in Theorem (3.5.B). Again we form the 
linear closure G: of all matrices 

C =AB= BA (A in ~l, Bin ~), 

and using notations that hardly need to be explained ·we find 

By application of our last lemma to (£ (rather than to ~) and to the auto
morphism AB---+ A'B', we construct the matrix H whose existence was claimed 
by Theorem (9.1.B). 

Concerning the question of uniqueness, \Ve observe that H may be replaced 
by HZo where Zo is a rton-singular matrix in the centrum ,8. 

On associating the identical automorphism of~ with any automorphism of 21 
which leaves the central elements fixed, one gets in particular: 

THEOREM (9.1.F). Any automorphism of the direct sum a of v simple algebras 
au which does not touch the elements of the centrum 3 of a is inner. 

2. A lemma on multiplication 

If 21 = {A), ~ = { B} are two matric algebras whose elements A, B are 
transformations in an n- and JI-dimensional vector space Pn, P, respectively, 
then each 

(2.1) AXE (A in 21:, B in Q3) 
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operates on the product space PnP, of n11 dimensions. The reader may be 
warned that now the Kronecker product A X B and not, as in the last section, 
the ordinary product AB is studied, and that A and B are not commutators of 
each other. The linear closure of all the matrices (2.1) is an algebra [~ X 58] 
which we call the algebra product of ~ and 58. The process can be defined in 
terms of the abstract algebras a and b. If a of order m is referred to a basis 
a; (i = 1, ... , m) and b of orderµ to a basis b, (, = 1, · · · , µ) with the multi
plication rules 

then c = [a X b] has a basis c;, with the multiplication table 

c;,ck. = L a!A;B;.cz;i . . 
!,'A 

Transition to another basis in a and in b merely causes a change of basis in 
[a X b]. 

Notice that 

hence 

Let K be a field over k. Any k-linear set ~ of matrices A in k can be ex
tended to K by forming the linear closure ~x of ~ in K. If A 1 , • • • , Am is a 
basis of ~' then 

ranges over ~{ or ~x when the coefficients ~; vary in k or K respectively. If 
~is an algebra ink, so likewise is ~x in K. Again the process may be described 
in abstract terms: if a1 , . · · , am is a basis of the k-linear set a of order m, 

then ax consists of all formal sums f ~;a; with arbitrary coefficients ~; in K. 
i-=l 

Change of basis in a amounts to a particular change of basis in nx , namely to 
one in which the transformation coefficients lie in the subfield k. 

With 58 being the commutator algebra in k of the algebra ~ in k, .\Bx is the 
commutator algebra of ~x in K. Indeed, if A 1 , .•• , Am is a basis of ~. 

then a matrix Bin K belongs to 58x if it satisfies them equations 

BA;= A;B. 

These are homogeneous linear equations for B with coefficients in k. Conse
quently the solutions B have a basis B1 , • • • , B,,, consisting of matrices in k. 

111B1 + · · · + 11,,,B,,, 

yields all the commutators in k or K with 17; ranging over all numbers in k or K 
respectively. Moreover, the centrum of &x, i.e., the intersection of &x and 
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58x, is the extension Bx to K of the centrum B of ~ and 58. Indeed, 
A1 , ... , Am being a basis of ~. the elements 

Z = ~1A1 + • • · + ~mAm 
of Bx are obtained as solutions of the equations 

m 

L ~k(A;Ak - AkA;) = 0 
k-1 

by numbers h in K. They have a k-basis, because the coefficients of the equa
tions lie in k. In particular, if ~! is normal, so is ~x . 

Let b now be an abstract normal division algebra of order o and 58 = { B} 
an irreducible matric algebra of degree d. The operations 

(a) X B {a in b, B in 58} 

operate on the od-dimensional vector space bP". We. maint~in t.hat b!a under 
this set (b) X 58 of operators splits into a number u of irreduc1bl~ mvanant sub
spaces in each of which (a) X B induces the same transformat10n; or 

LEMMA (9.2.A). 

(2.2) (b) X 58 ,..._, U• S), 

where S) is an irreducible matric set. 
The vectors !' of bPa are expressed in terms of a basis r1, · · · , ra of Pc1 as: 

(2.3) !' = x1r1 + · · · + xc1rc1 (x; in b). 

Considering b as a "quasi-field" in which the coefficients x; vary freely, we 
define for any a in b: 

An invariant subspace ~ of bP" is certainly a subset of vectors !', (2.3), closed 
with respect to addition and front multiplication (!'---+ ai); for the latter oper~
tion is what we formerly denoted by (a) X Ea. Hence ~ has a b-bas1s 
Ii , ... , In in terms of which every !' in ~ is uniquely expressible as 

(y;inb), 

and the dimensionality on of ~ is a multiple of o. We assume~ to be irredu~ible. 
If b is a given quantity in b, the space ~b containing all vectors ib (!' m ~) 

is invariant with respect to (a) X B, as well as ~' and (a) X B induces therem 
the same transformation as in ~. By making use of a basis c1 = I, · · · 'C4 

of b we apply Lemma (3.2.B) to the row of irreducible invariant subspaces 

~2 = ~C2, • • • 1 
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and thus succeed in picking out a number among them which by a proper 
arrangement may be denoted by ~1 , • • • , ~" such that 1) ~1 , ••. , ~u are 
linearly independent, and 2) each ~. (i = 1, · . · , o) is contained in the sum 

~I + · · · + ~u = (~). 

The latter fact shows that (~) is also invariant with respect to back multiplica
tions: (~)c, is contained in (~) for, = 1, · · · , o. Consequently (~) is invariant 
with respect to all transformations of the type 

(a)(b)' X B, a and b varying over a basis of b, B in 5B, 

and thus, according to Lemma (9.1.C), with respect to 9)(6 X 5B. Lemma 
(3.2.A) then proves (~) to be the total space bPd, and this remark finishes our 
demonstration, at the same time yielding the equation 

d =nu: 
u is a divisor of d. 

3. Products of simple algebras 

The serious work is done with the proof of Lemma (9.2.A); it remains to 
evaluate and interpret the result in its bearings upon multiplication of simple 
algebras (§3) and adjunction (§4). 

From (2.2) there follow the equations 

[(b) X 5B] ,..., u[,P], [(b)v X 5BJ '"'-' u[,P]v. 

According to Lemma (3.2.A), the algebra [5)]. is irreducible since [5)] is; 
and in view of W edderburn's theorem we may put our result into the equivalence 

(3.1) (fil X 5B) '"'-' U·tl, ti irreducible, 

holding for any two irreducible matric algebras 2{ and m the first of which is 
normal. Our result implies the abstract statement: 

THEOREM (9.3.A). The algebra product of two simple algebras one of which is 
normal, is a simple algebra again. 

From this we could, by means of Theorem (3.3.E), infer our concrete propo
sition that [2! X 5B] is a certain multiple u of an irreducible matric algebra ti. 
Our proof here, however, aimed directly at this concrete statement and yielded 
the further result that u is a divisor of the degree d of m. 

Wedderburn's theorem makes transition from division algebras e to simple 
algebras 5B so easy that it is perhaps convenient to specialize our result (2.2) 
to the case m = (e), e a division algebra of order d, rather than to generalize 
it to (3.1). Hence let us write down the (special X special)-equation 

(3.2) (b) X (e) '""U· 5). 

This leads back to the (general X general)-result (3.1) in the form 

(3.3) ((b)v X (e)w] '"'-' U·[,P]vw. 

$ 
I 

~ 

' It···! ' : , I 
I 

I 

f i 

I 

l 
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Transition from (b) and (e) to 2! = (h). and 5B = (e),. leaves the multiplicity u 
unchanged, while replacing [,P] by the likewise irreducible [,P] • .,, , 

Concerning the (special X special)-case (3.2) I feel bound to make two addi
tional remarks. 

First remark. An invariant subspace ~ of be has a basis h , · · · , In relative 
to the quasi-field of coefficients in b. However, we may exchange the r6les 
of b and e and look upon b as a vector space and on e as a quasifield of multipliers 
or coefficients. ~ will then have an e-basis f1, · · · , f. in terms of which 

zif1 + · · · + z.f. 

describes ~ with the coefficients z, ranging over e. The dimensionality of ~ is 

no = vd, therefore d:o = n:v. 

As d = nu, we obtain the further relation o = vu and thus realize that u is a 
common divisor of d and o. The same relationship prevails in the (general X 
general)-case. For in passing from (b) to & = (b). and from (e) to 5B = (e).,,, 
the degrees o and d change into ov and dw respectively, while u is unchanged, 
equation (3.3). With this additional information on hand we give the con
crete counterpart of Theorem (9.3.A) as follows: 

THEOREM (9.3.B). The al,gebra product of two irreducible matric al,gebras ! 
and 5B one of which is normal, decomposes into a number u of equal irreducible 
components ti according to the equivalence 

(& X 58) ,..._, U·tl. 

The multiplicity u is a common divisor of the degrees of both factors. 
The u equal parts into which the generic matrix A X B of & X 58 decom

poses will occasionally be denoted by IT(A, B). In the special case & = (b) 
we simply write Il(a, B) instead of IT((a), B) and similarly when 58 is specialized 
into (e). 

Second remark. In the (special X special)-relation (3.2) or in 

((b) X (e)) ,..._, U· (,P) 

we apply Wedderburn's theorem to the irreducible [,P] and infer from it that 

[,P] = ({))., 

where the abstract division algebra {), called the Brauer product, 3 is uniquely 
determined by the factors b and e. Comparison of degrees and orders in the 
ensuing equivalence 

((b) X (e)) ,..._, U· (lJ)v 

leads to the relations 

od = uvh, od = v2h, 

h being the degree of ({)) = order of {). Hence v = u and 

d =nu, {j =vu, h = nv. 
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THEOREM (9.3.C). The algebra product of the regular representations (b) and 
(e) of two division algebras b and e of orders o and d decomposes according to 

((b) X (e)j "'U· (l))., 

provided b is normal. Putting 

d =nu, 

the order of the division algebra fJ equals nv. 

0 =vu, 

4. Adjunction 

(n and v integers) 

We have not as yet evaluated to the full the idea involved in our backbone 
proof that an invariant subspace~ of bPd can be referred to ab-basis {1 , ••• , fn . 
Let us now consider its implications for the case which is the other way around: 
2f X (e), 2f being a normal irreducible matric algebra, e an arbitrary division 
algebra. Let ~ be an invariant subspace of the vector space Pe upon which 
the operators A X (a) of 2£ X (e) work (A are operators in the a-dimensional 
space P, e is of order d). ~ has an e-basis I1 , ... , f. such that each ! of ~ is 
uniquely expressible as 

(4.1) ! = Y1f1 + · · · + y,f, (y, in e). 

We now look upon Pe = P, as the vector space P under extension of its field 
of multiplicators k into the quasi-field e. The elements of P, are rows ! of o 
quantities (x1 , · · · , x,) in e. Addition is defined in the obvious manner multi-

' plication by a quantity a of e as: 

a(x1, · · · , x,) = (ax1 , • • • , ax0). 

A linear subspace ~. of P, is a subset closed with respect to addition and multi
plication by any a in e. The subspace ~. has a basis h , ... , f, as indicated by 
equation (4.1). 

Each A is a linear substitution with ordinary numbers a., ink: 

(i, K = 1, · · • 1 o) 

and hence commutes with all the multiplications ! -+ a!. If·~, is invariant 
with respect to the transformations A of \!!, then each A : ! -+ !' carries the basic 
vectors h' ... 'r, into linear combinations of themselves: 

r: = I: a .. r. (i, K = 1, · · · , 11). 

Commuting as it does with the multiplications, A then carries (4.1) into 

f r' I I ! = YI I + ... + y,{, = Y1h + 
where 

(i, K = 1, · · · 1 11). 

'l 

' 

I 
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The correspondence A -+ 11 a .. 11 constitutes a representation of 2£ in e (by linear 
transformations in which the coefficients stand behind the variables). 

THEOREM (9.4.A). Under extension of k into a quasi-field e over k, a given 
normal matric algebra 2£, irreducible in k, breaks up into u equal irreducible repre
sentations of 2£ in e. 

This mode of visualizing the situation is related to our former viewpoint in 
the following manner. Adopting the coordinate system here used, II(A, I) 
arises from our representation A -+ 11 a.. 11 in replacing each a.. by the 
matrix (a .. )' (back multiplication!), whereas II(E,, a) is simply E, X (a). 

Of particular import is the case when e is a commutative field K. We then 
deduce from our theorem that a normal irreducible matric algebra 2£ in k splits 
into u equal irreducible matric algebras in K after extending the reference field k 
to a finite field K O'\ler k: 

2£K "'U·~. 

The matric algebra ~ in K is not only irreducible in K but at the same time 
normal. For we observed in §2 that normality is preserved under extension 
of the field. Let us consider again the special case ~! = (b). We then must 
have an equivalence like* 

(bx)"' U·('.D)v 

where'.!) is a normal division algebra in K. D being the degree = order of ('.D), 
comparison of degrees and orders leads to the relations 

o = uvD, 

hence 

u = v and o = u
2D. 

THEOREM (9.4.B). Under extension of the field k into a finite field K over k, 
a normal division algebra b in k breaks up according to the equation 

(bx)"" U·('.D),. 

where '.!) is a normal division algebra in K. 
Is it always possible by a suitable algebraic adjunction to effect reduction 

( u > 1), as long as b is not yet the underlying field k? Yes, indeed. We 
choose any element b0 in b which is not a numerical multiple of the unit e, and 
adjoin to k a root (J of the characteristic equation cp(z) = 0 of the substitution 

(bo)': x -+ xbo . 

The transformation (b0)' - OE is then singular, >6- 0, and commutes with all 
matrices (a) of (b). Hence, by Schur's lemma, (b) must reduce in k(O). 

• Cornered by conflicting claims I here violate the convention forbidding the use of 
German capitals for abstract algebras. M!Ly the God who watches over the right use of 
mathematical symbols, in manuscript, print, and on blackboard, forgive me this and my 
many other sins! 
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By repeating this process one obtains an algebraic extension K of k such that 

(bK) "-' U·ffiCu. 

THEOREM (9.4.C). There exist finite algebraic fields Kover k, so-called splitting 
fields, 4 in which a given normal division algebra b in k reduces according to 

(b g) ,....., u. 9)(,. . 

Hence the order of any normal division algebra is a square number u
2

• 

For any normal irreducible matric algebra ~( ""' (b) t in k one obtains in a 

splitting field of b: 

where v = ut is a multiple of u. The order of the simple algebra a is the 
square number v2

; the degree of ~ is uv. 
In the investigations of §§3 and 4 it was essential to suppose one of our 

factors to be normal. The unruly things happen in the commutative fields: 
the algebra product of two fields breaks up into inequivalent parts, and even to 
secure its full reducibility at all, assumptions concerning separability are 
needed.5 An analogous situation prevailed for the automorphisms: what am
biguity there is in the generating matrix H of Theorem (9.1.B) resulted from 
the central fields 3u . The whole superstructure of algebras over commutative 
fields is of a relatively simple nature when compared with the fields themselves. 

CHAPTER X 

SUPPLEMENTS 

A. SUPPLEMENT TO CHAPTER II, §§9-13, AND CHAPTER VI §1, CONCERNING 
INFINITESIMAL VECTOR INVARIANTS 

1. An identity for infinitesimal orthogonal invariants 

In Chapters II and VI the problem of vector invariants was approached 
for all groups that came under consideration bv the same method that 
combines the formal apparatus of Capelli's identities with such non-formal 
a.r~uments as since Euclid are in common use to prove the fundamental propo
s1t10ns about congruent figures. In a natural manner this method settled 
the question. for the orthogonal group in the field K of all real numbers (II, 9). 
The topological fact that the proper orthogonal group is a connected manifold 
shows that in this field the group may be replaced by the set of its infinitesimal 
elements. Actually I employed in II, §§10-11, 13, an algebraic equivalent 
for this topological argument, thus carrying by a somewhat devious pro
cedure the results over, first to "formal," then to "infinitesimal" invariants. 
Although no such difficulties arise in the case of the symplectic group, it seems 
preferable from an algebraic standpoint, to settle the question of infinitesimal 
invariants for the orthogonal and the symplectic groups by means of another 
formal identity of Capelli's type and without appealing to any "non-formal" 
arguments. I discovered this alternate procedure after the publication of the 
first edition of this book. 

Let f(x, y, · · · , z) be a polynomial homogeneous of a certain degree with 
respect to the components of each (covariant) argument vector. Let e be 
the number of argument vectors and r the degree of f with respect to x. In 
order to express invariance off under infinitesimal orthogonal transformations 
we introduce the matrix X = x~ with the elements X(ik) = x;~k composed of 
a covariant vector x (single column) and a contra variant one ~ (single row), and 
moreover the matrix X' = X - X* with the elements X'(ik) = x;~1.; - Xk~i· 

o . a n settmg ~; = ax; the numbers X(ik) and X'(ik) turn into differential oper-

ators d,,(ik) and d:(ik). Infinitesimal invariance off requires that the total 
di ff eren ti al 

df = ~i af dx; + ~i af dy; + ... 
dX; iJy; 

vanishes by virtue of the substitution dx = Sx dy = Sy · · · S being an 
b. ' ' ' ar itrary skew-symmetric matrix; it is thus expressed by the equations 
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or 

(1.1) (i, k = 1, · · · , n), 

the sum ~> extending over the e argument vecto:s off. .. 
The relation we wish to develop is a differential counterpart of the tnYial 

algebraic identity 

(1.2) I 
(xy) 
(~y) 

(x1I) I = tr(XY'). 
(~11) 

o a Put ~ = _, 11 = -· Then (x11) and (~y) become the polar operators D,,11 and 
ax ay 

D11 ,, respectively and (~11) the Laplacian operator 

a2 
8(x11l = zi-a a . 

X; y; 

Handling the operators D and d as if multiplication by x; and differentiation 
a . . 

- were commutative one would thus obtam from (1.2) the equation 
ax; 

(1.3) 

The assumption is of course incorrect; instead one has 

a a 
- (x;f) - X; -f = f 
ax; ax; 

(Schrodinger's well known quantum mechanical rule for the commutation 
of coordinate and momentum). Consequently a similar correction must be 
applied as in our derivation of Capelli's identity (II, 4). T~vo. case~ (i) a.nd 
(ii) are to be distinguished according to whether y is not or is identical with 

the argument x. 

(i) tr(d,,, d~f) = Z x; _aa (Yi _aa - Yk aa .) f 
i,k Xk Yk y, 

a2f 
=Zx;y;--z 

i,k axkayk i,k 

Dx11CD11xf) = z X; aa. (Yk aaf). 
i,k y, Xk 

The last sum equals Z; x;af/ax; = rf. Thus 

tr(d,,, d~f) + Dxy(D11J) = (xy) 8<"11>f + rf, 
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or (1.3) is to be replaced by 

(1.4) 

(ii) 

Since 

we find 

(1.5) 

(xy) · 8<"11>f - Dxy(D11xf) + rf = tr(d,,,, d~f). 

= ~ X; _j_ (x; _j_ - Xk _j_) = 
axk axk ax· 

a2 a a a2 

Zx~ - 2 + Zx;o;k- - nZx;- - Zx;xk --· 
i,k axle i,k axk i ax; i,k ax;axk 

af 
~;x;-a = rf, 

X; 

(xx) . 8<xx>f - (r + n - 2)rf = tr(d,,,, d:f). 

For an infinitesimal (inf.) invariant f the equation (1.1) holds and hence 
summation of (1.5) and the relations (1.4) corresponding to the e - 1 argu
ments y, · · · , z different from x yields 

FORMULA ( 10.1.A): 

Z 11 (xy) · 8(xylf - "f:11 DX1J(D11xf) = r(r + n - 1 - e)f 

where the sums zll, z~ range over all e arguments y off including or excluding 

the fixed argument x. 

2. First Main Theorem for the orthogonal group 

By means of this equation and the Capelli identities we now prove: 
THEOREM (10.2.A). Every inf. orthogonal invariant f can be built up in an 

integral rational fashion from bracket factors and scalar products. 
With f also D 11,,f, 8<,,11> fare inf. orthogonal invariants. The first observation 

permits us, by means of Capelli's general and special identities, to reduce the 
proof to the case where the number of arguments e ~ n - 1. Here the state
ment asserts that the invariant f can be built up from scalar products alone. 
Apply induction with respect to r and observe that D 11,,,f for y ~ x, and 8(xylf 
for y ~ x as well as y = x, are of degrees < r with respect to x. Since the 
numerical factor by which f is multiplied on the right side of Formula (10.1.A) 
cannot vanish fore ~ n - 1, r ~ 1, the theorem is thus proved for all possible 
degrees r = 0, 1, 2, · · · provided it holds for r = 0 But r = 0 means that f 
depends on the e - 1 argument vectors y, · · · , z only, and hence induction 
with respect to e concludes the demonstration. It clearly goes through in any 
field k of characteristic zero. 

Since f is built up from bracket factors and scalar products we see that 
infinitesimal invariance implies invariance with respect to all proper orthogonal 
transformations in k. The converse is far more obvious: A form f invariant 
under all proper orthogonal transformations is in particular invariant with 
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respect to A = ~ ~ ~ if S = \\s;k\\ is a non-exceptional numerical skew

symmetric matrix; consequently it is a formal invariant in the sense of II, 
§11. Whereupon the first trivial part of the proof of Theorem (2.13.A) on 
p. 69 shows that f is a fortiori an infinitesimal invariant. 

Since the product of two bracket factors is expressible in terms of scalar 
products every inf. invariant f is a sum of terms of the form <I> or [u · · · v] ·<I> 
where <I> stands for any aggregate of scalar products and u, · · · , v are any n 
of the e arguments off. Thus f breaks up into an even invariant, <I>, and an 
odd invariant which is a sum of terms of the form [u · · · v] ·<I>. The even 
part remains unaltered and the odd one changes sign under the influence of 
the substitution· Jn, (II, 9.3). Forms that are invariant under the full ortho
gonal group O(n) are even inf. invariants and hence can be built up from scalar 
products alone. 

3. The same for the symplectic group 

It is easy to see with what modifications our construction carries over to 
the symplectic group. The notations of Chapter VI will be used: the com
ponents of a vector x are Xa and ·X~ = Xa'; Greek indices run from 1 to v, 
italic indices from 1 ton = 2v. The matrix X has the same significance Xt as 
above, but X' is now defined by X' = X +IX*! or 

X'(a{3) = XatP - X~ta, 
X'(a'{3) = X~tp + X~ta, 

X'(a{3') = Xat~ + Xpt~, 
X'(a'{3') = X~t~ - Xpta· 

The algebraic identity (1.2) is replaced by 

I [xy] (x11) I = -tr(XY'). 
(tY) [t11] 

Substitution of!.._ fort changes X'(ik) into a differential operator d:(ik), and ax 
infinitesimal invariance off under the symplectic group is again expressed by 
equation ( 1.1). The analogue of the Laplacian operator is 

e[Zlli/ = Z" (a aa2 ' - a aa2 ,) f 
Xa Ya Ya Xa 

and instead of (10.1.A) we obtain for inf. symplectic invariants the 
FcmMuLA (10.3.A) = 

Zv [xy] . e[xvi! - z~ DZJl(Dy,,f) = r(r + n + 1 - e)f. 

We wish to prove: 
THEOREM (10.3.B). Every inf. symplectic invariant may be built up from 

skew products [xy]. 
It follows from the previous relation as long as the number of arguments 

e ::; n + 1. But Capelli's general identity enables us to increase the number 
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of arguments indefinitely once the stage of n arguments is reached. (There 
is an overlapping in as much as the increase of e from n to n + 1 may be 
effected either by that identity or by (10.3.A). Up to n + 1 arguments 
there are no algebraic relations between the skew products. No explicit 
use is made of the expression (6, 1.8) of the bracket factor in terms of skew 
products.) 

B. SUPPLEMENT TO CHAPTER v, §3, AND CHAPTER VI, §§2 AND 3, CONCERNING 
THE SYMPLECTIC AND ORTHOGONAL IDEALS 

4. A proposition on full reduction 

In V, §2, the full reducibility of II1(0) in a real field is inferred from the fact 
that IT1(A) is orthogonal if the matrix A is. While this is a perfectly natural 

E-S 
procedure, it becomes less satisfactory when in §3, A is replaced by ---

E + S 
and the elements s;k (i < k) of the skew-symmetric matrix S are treated as 
indeterminates. In the symplectic case the method can be worked only by 
resorting to the artifice of unitary restriction (cf. VI, §2). Instead we pro
pound here a general principle that holds in any real field k and in spite of its 
elementary character seems to have for a long time escaped the algebraists' 
notice: 

THEOREM (10.4.A). Let ~ be a set of linear transformations A of a vector 
space P such that the transpose A* is a member of~ whenever A is, and let Pa be 
a subspace of P that is invari·ant with respect to ~. Then the perpendicular 
subspace Pb is likewise invariant. In this precise sense reduction for ~ implies 
full reduction. 

The scalar product of two vectors (columns) a and bis defined by 

It should be noticed that because k is real Pa and Pb have no vector in com
mon except 0, and hence the total space P breaks up into Pa + Pb. Ou.r 
theorem will be used only for the case where k is the field K of all rational 
numbers. 

Proof. Let a, b be arbitrary vectors in Pa, Pb respectively and the matrix 
A be a member of~- Since A* is also in ~ and Pa invariant with respect to 
~. the vector A *a lies in Pa, hence b*(A *a) = 0, or after transposition 

a*Ab = 0. 

This means that Ab is perpendicular to every vector a .of Pa and therefore 
lies in Pb: consequently A carries every vector b of Pb into a vector of Pb. 

This theorem is closely related to the investigations of E. Fischer about 
invariants quoted in footnote 18 of Chapter VIII. 
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6. The symplectic ideal 

Because of the complications caused in the orthogonal case by the distinction 
between the proper and the full group we propose to apply Theorem (10.4.A) 
first to the symplectic ideal combining it with a more consistent use of inde
terminates. An infinitesimal operation dx = 8x of the symplectic group has 

a matrix 
S = II s(a{3), s(a{3') II 

s( a' (3), s( a' (3 1
) 

for which 

(5.1) s(a'(3') = -s((3a); s(a{3') = s((3a'), s(a'{3) = s((3'a). 

As its tn(n + 1) parameters s; we use 

all s(a{3); for a~ (3, s( a' (3) 

We refer to these conditions (5.1) by speaking of 
write the indeterminate S-matrix as L(s) = ~"> L;s;. 

The relationship 

for a ~ (3. 

an S-matrix. Thus we 

A = (E - S)(E + S)-1 = (E + S)- 1 (E - S) 

between finite and infinitesimal symplectic transformations, A and S, shows 

that the equation 
E - S E - S' E - S" 
E + S = E + S' . E + S" (5.2) 

defines an S-matrix S in terms of two indeterminate S-matrices S', S" with 
the parameters s~, s~'. The parameters si of Sare rational functions 1/li(s', s"). 

In this sense the expression E -
8

8 
involving the j-n ( n + 1) indeterminates si 

E+ 
constitutes a group. Writing (5.2) in the form 

2(E + S)- 1 - E = (E + S')- 1(E - S')(E - S")(E + S")- 1 

one finds at once 

or 

(E + S)-1 = (E + S')- 1 (E + S'S") (E + S")- 1 

E + S = (E + S")(E + S'S")- 1(E + S'). 

Hence the functions 1/li(s', s") have the determinant 

Ll = I E + S'S" I 
as their common denominator, and 

I E + s I = I E + S' I . I E + S" I . !J.-l. 

' 
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We derive the product matrix II1A in the tensor space p1 from 

(5.3) A = (E - S)(E + S)-1, S = L(s). 

Evidently it is of the following form 

(5.4) II1A = R(s)/ IE + S 1
1, 

where the numerator R(s) is a polynomial of formal degree nf of the parameters 
si with matric coefficients GP. Thus <Tp runs over the monomials of degree 
~ nf of the parameters si. The same holds for 

We maintain: 
THEOREM (10.5.A). The linear closure of (5.4) in K, i.e., the set ~1 of all 

linear combinations L XPC P with rational coefficients Xp, is an algebra in the field K. 

It contains the unit matrix and the transpose C* of every one of its members C. 
Proof. The unit matrix is the coefficient C0 of the monomial u0 = 1. 

Equation (5.2) entails 

rr, (! ~ ~) = rr, (! ~ ~:) · rr1 (! ~ ~'.:) 
or, because of (5.4), 

!J.f . '\°' c - '\°' c c I II £..; ,.q, - ,t_;P•q p q<fp<T q• 

After the substitution of i/li(s', s") for si each u, turns into a polynomial rp,(s' s") 
divided by Ll"'· Hence ' 

(5.5) !J.(n-l)/ . " c c .. ,/ <T
11 = " c "' (s' s") .i.fp,q p IJ."'p q L,jT TTT 1 • 

We now apply the following trivial algebraic 
LEMMA (10.5.B). Let rp = 1 + · · · be a given polynomial of some variables 

X1, · · · , x1 with the constant term 1. Then the coefficients of an arbitrary 
polynomial F of degree m may be linearly expressed by the coefficients of 
rpF = G. 

Arranging the terms of F in ascending lexicographic" order one obtains 
recursive linear equations for the unknown coefficients a of F with the coeffi-. ' c1ents b of G as the known right members (only terms of G of a degree not 
exceeding m enter). Denote by F"" the terms of degree µ in any polynomial 
F = F. + F1 + · · · . Putting rp = 1 - w and using the power series 
(1 - w)-1 one finds more explicitly 

F = L G,.w,. 1w,. 2 • • • 

(µ ~ O; µ1 ~ 1, µ2 ~ 1, · · · ; µ + µ1 + µ2 + · · · ~ m). 
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If rp has integral coefficients, then the coefficients of the linear combinations 
expressing Uie a in terms of the b are likewise integers. 

This lemma is of immediate application to the equation (5.5), in which ~ 
begins with the constant term 1. The products u'Pu'~ are monomials no two 
of which are equal, and thus we arrive at equations 

cpcq = ~,.,,~p, 

with rational coefficients 'Y~q· They prove the first part of our statement. 
The arithmetician may care to observe that the 'Y are not only rational but 
even rational integers. The same equations hold for the matrices C<.j> and thus 
the linear combinations ~ XPC<.j> form an algebra ~u>. 

If S is an S-matrix, so is its transpose S*. The following simple linear 

involutorial substitution of the parameters Si> 

(5.6) s(a{3) ~ s({3a), s(af3') ~ s(a'{3), s(a'{3) ~ s(af3') 

changes the indeterminate S = L(s) into S*, hence A, (5.3), into A*, IIrA into 
(II

1
A)*, and since IE +SI = IE+ S* I, also R(s) into R*(s). (5.6) induces 

an involutorial permutation among the monomials up, up~ Up•· Our argu-

ment shows that 

Thus the second part of our theorem is proved, and by means of (10.4.A) we 
conclude that the algebra ~r in K and hence ~u> are fully reducible. 

From here on we can follow the same road as on p. 174 to prove Theorem 
(6.3.A). Still operating in the field K we observe that a form g(x, y, · · · , z) 
that is invariant under the generic (5.3) is necessarily an infinitesimal invari
ant; apply the hypothesis to XS instead of Sand neglect all but t~e first po~ver 
of the parameter X. Hence, according to Theorem (10.3.B), g is expressible 
as a polynomial depending on the skew products [xy] of its arguments; and 
this means that the algebra described as ~u> on p. 17 4 is contained in the 

h 1 . «(!) 
commutator algebra of the commutator algebra of ~u>, and t ere ore in ~ · 

Indeed since ~u> contains the unit matrix and is fully reducible, Brauer's 
criterion (3.5.D) is applicable, to the effect that ~u> is the commutator algebra 
of its own commutator algebra. The algebra ~u> is defined by a system of 
linear equations with rational coefficients; hence the fact ~u> C ~u> remains 
true in any field k of characteristic zero. (The inverse relation ~u> C ~u> is 
trivial.) Any polynomial <l>(A) of degree! depending on the matrix A = I \a;k I I 
with n 2 variable components a;k proceeds from a linear form 'Y(A U>) of an 
arbitrary bisymmetric AU> by the substitution AU> = rru> A. If <l>(A) is 
annulled by the substitution (5.3) we must have .,,(c<j>) = 0, and therefore 
'Y(A U>) vanishes for all matrices AU> of ~U>, hence of ~r n. Thus results 
Theorem (6.3.B). In restating it I propose the following terminology for 
ideals of polynomials rp(x1, · · · , x 1). Elements rp1, · · · , 'Pm of a given ideal 
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3, whose degrees are fi, · · · , fm respectively, are said to constitute a form 
basis of 3 if any element rp of 3 of degree f may be obtained in the form 

where h; is a polynomial of degreef - f; (which implies, of course, the vanishing 
of h; whenever f - f; < 0). By introduction of homogeneous coordinates 3 
gives rise to an ideal 3 of homogeneous forms rp(xo, x1, · · · , x1) such that 
rp(x0, X1 · · · , x1) is in 3 if and only if rp(l, Xi, · • • , x1) is in 3. The state
ment "rp1, · • • , 'Pm constitute a form basis of 3" means that the correspond
ing homogeneous forms rp1, · · · , 'Pm of degrees f 1, · · · , f m constitute a basis 
of 3. 

With any group r of linear transformations A = 11 a;k 11 there is connected 
an ideal 3(r): it consists of all polynomials <I>(A) of the n 2 variables a;k which 
vanish for each element A of r. If r is the symplectic or the full or the proper 
orthogonal group we speak of the symplectic, the full and the proper ortho
gonal ideals respectively. We have arrived at the following proposition con
cerning the symplectic ideal, which holds in any field of characteristic zero: 

THEOREM (10.5.C). (1) Let A = I la;k 11 be the matrix with n 2 variable com
ponents a;k· The components of the two matrices A *IA - I and AJA* - I 
constitute a form basis, the components of either of them a basis, of the sympiectic 
ideal. 

(2) The symplectic ideal is a prime ideal, and the expression (5.3) a generic 
zero; i.e., a polynomial <l>(A) vanishes for all symplectic transformations A if it 
is annulled by the substitution (5.3). 

6. The full and the proper orthogonal ideals 

Whereas a form that is invariant under two substitutions A 1, A 2 is also 
invariant with respect to A 1A2, it is by no means true for a polynomial <l>(A) 
that its vanishing for A = A 1 and A = A 2 implies its vanishing for A 1A 2. 

For this reason the observation that the expression E - S constitutes a group 
E+S 

was essential for proving the fact that it is a generic zero of the symplectic 
ideal. 

In the orthogonal case the full and the proper orthogonal groups, 0 and 
o+, and hence the corresponding ideals 

~(0) = o, 3(0+) = o, 

have to be distinguished. Let now S = 11 S;k 11 be the generic skew-symmetric 
matrix with tn(n - 1) indeterminate components S;k (i < k). The two 
expressions 

(6.1) 
E-S ---, 
E+S 

E-S 
J,,. E+S 
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jointly constitute a group. Hence b:v the same procedure as carried through 
for the symplectic group we arri\·e at the following result for the full orthogonal 
ideal o which holds in any field k of characteristic 0: 

THEORFJM (10.6.A). The components of the two matrices A* A - E and 
AA* - E constitute a form basis, the components of eithfr of them a basis, of 
the full orthogonal ideal o. A polynomial <l>(A) vanishes for all orthogonal 
transformations A if it is annulled by the two substitutions 

E-S 
A=---

E + S 
and 

E-S 
A= Jn E +s· 

The statements on p. 143, Supplement to Theorem (5.3.A), Theorem 
(5.3.B), the Corollary and its repetition in Lemma (7.1.B) on p. 177, have to 
be corrected accordingly: the vanishing of the polynomial <I> should be required 

E-S 
not only for --- and Jn, but for (6.1). The ideal i'i is not prime, but the 

E+S 

proper orthogonal ideal o is because 1!_-:__§ is its generic zero: Theorems 
E+S 

(5.4.C and D) need no modification. 
The two supplements A, B together contain a strictly algebraic approach 

to the theory of vector invariants and of the ideal of a given group r of linear 
transformations in an arbitrary field, as far as the most important "classical 
groups" r = O(n), Q+(n) and Sp(n) are concerned. 

C. SUPPLEMENT TO CHAPTER VIII, §§7-8, CONCERNING: 

7. A modified proof of the main theorem on invariants 

Hilbert's application of Cayley's !!-process can be replaced by another 
purely algebraic process of a less formal nature that was discovered by Mena
hem Schiffer in 1933 and works for any group I' of linear transformations, all 
powers of which, II1(r) (f = 1, 2, 3, · · · ), are fully reducible. Mr. Schiffer, who 
never published his method, kindly gave me permission to have a description 
of it included in this book.* 

Under the influence of the linear transformation t E r of the underlying 
n-dimensional vector space P any tensor of rank f ( = vector in P 1) undergoes 
the transformation t1 = II1(t), while an "anti-tensor" undergoes the contra
gredient transformation l1 = II1(t). Full reducibility of the tensor space P / 
thus implies the same for the space of all anti-tensors of rank f. Let :Z be an 
invariant irreducible subspace of P / under the group II1(r); the vectors u in :Z 
are our quantics. Because of the basic assumption we may split P / into :Z and 
a supplementary invariant subspace and thus obtain a linear operator I chang
ing every vector x of P / into a quantic u and reproducing every quantic u 
(Ju = u). We investigate homogeneous polynomials P(u) of any degree m 

*His unpublished MS. also contains an explicit statement of Theorem (10.4.A). 

r1 

I 
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depending on a variable quantic u. Then F(x) = P(Ix) is a polynomial of 
degree m depending on an arbitrary tensor x and may therefore be written as 
:Za;k ... x;xk · · · with symmetric coefficients a;k... . The multilinear sym
metric form 

F(x, y, · · ·) = ~ a;k ... X;Yk • • • 

involving m independent tensors x, y, · · · may be used instead. Since every 
index i, k, · · ·here stands for an f-uple (i1, · · · i1), (k1, · · · , k1), · · · , the 
coefficients a;k ... constitute an anti-tensor of rank mf that has the following 
two properties: (1) F(x, y, · · · ) depends symmetrically on the m arguments 
x, y, · · · ; (2) F(Ix, ly, · · · ) = F(x, y, · · · ). Hence the polynomials P(u) 
of degree m can be identified with the anti-tensors F of rank mf which possess 
these two properties, P(u) = F(u, u, · · · ). They form an invariant subspace 
of the space of all anti-tensors of rank mf, and hence our basic hypothesis 
implies the fact that the space $ of homogeneous polynomials P(u) of given 
degree is fully reducible. The argument carries over to polynomials depending 
with given degrees on several quantics u, v, · · · of the same or different types. 

After this preliminary observation we are now going to construct a linear 
process n changing any homogeneous polynomial P(u) into an invariant 
nP(u) of the same degree, a process which reproduces P, QP = P, in case Pis 
an invariant, and which carries a polynomial P that is divisible by an invariant 
J into a polynomial nP likewise divisible by J. Because the process is linear, 
n(P1 + P2) = !ZP1 + nP2 for any two polynomials P1(u), P2(u) of equ!\1-
degrees. Once such a process n is known, (8. 7 .1) yields 

J(u) = n(L1J i) + · · · + n(LhJh); 

but n(LaJ a) is an invariant divisible by J a, hence of the form L:J a where L: is 
an invariant, and thus the relation (8.7.1) may be replaced by 

J(u) = L~(u)J1(u) + · · · + L:(u)Jh(u) 

with new coefficients L:(u) that are invariants; cf. (8.7.3). 
Schiffer's construction of the desired process n is as follows. The homo

geneous polynomials P(u) of degree m form a vector space $ in which the 
invariants of degree m constitute an invariant subspace ',j3i. Hence we can 
decompose ',j3 = ',j3i + $• so that the supplementary space $• is likewise 
invariant; it contains no invariant P except 0. We define QP as the invariant 
part pi in the decomposition P(u) = Pi(u) + P•(u) where Pi E $;and P• E $•. 
The only thing that remains to be shown is that if P is divisible by a given 
invariant J then nP is. This fact as well as the other that $• is uniquely 
determined is a consequence of the following 

LEMMA (10.7.A). Let n be an invariant subspace of $ and perform a 
similar decomposition ,Q = ,Qi + D• for ,Q as$ = l,j3i + l,j3• is for l,j3. Then 
OiC 1.13'. o• C 1.13•. 
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This lemma is actually implied in our results on p. 94 concerning commuta
tors of a fully reducible matric algebra. Here is a direct and independent 
proof. In terms of a basis of 113 and 0 the elements of these two spaces appear 
as vectors x and y (columns of their components) respectively. Each vector y 
of O is identical with a certain vector x = By of 113, B being a constant rec
tangular matrix. Under the influence of any substitution t of the group r the 
vectors x and y undergo certain linear transformations 

x' = U(t)x, y' = V(t)y, 
hence 

(7.1) U(t)B = BV(t). 

Use the bases adapted to the decompositions 113 = 113i + 113', 0 = ,Qi + O• 
into invariant subspaces and decompose the matrices accordingly: 

E stands for the unit matrix of as many rows as the dimensionalities of 113i and 
,Qi amount to. The elements of ,Qi are invariants; therefore OiC 113i, or B 
is of the form 

This (is)- part of the equation (7.1) yields 

B;, V,(t) = B;,. 

Hence every row b of B;, satisfies the equation 

b V,(t) = b 

identically for t E r. On the other hand the fact that no element of o· is an 
invariant signifies that no column c except 0 can satisfy the relation V,(t)c = c 
(for all t e r). 

LEMMA (10.7.B). Let m be a fully reducible set of matrices v in an n-dimen
sional space. If there is no column c except 0 satisfying the relation Ve = c 
for all v in m then there is no row b .,c. 0 satisfying the relation b v = b for all 
members v of the set m. 

Application of this lemma to the representation V,(t) in 113' yields the desired 
result B;, = 0, 0' C 113'. 

Proof of Lemma B. Suppose a row b .,t. 0 satisfies the equation b V = b for 
all v E m. The columns c for which be = 0 form an (n - 1) dimensional 
invariant subspace under Q3. Because of the assumed full reducibility there 

r 
' 
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exists therefore a column c not in this subspace, be .,t. 0, such that V c = Ac 
' the factor X depending on V. This relation yields bVc = X ·(be) whereas 

b V = b gives b V c = be, therefore X = 1 in view of be .,t. 0. The equation 
V c = c (c .,C. O) is contrary to the hypothesis. 

The polynomials P of degree m which are divisible by a given invariant J 
form an invariant subspace 0 of 113. Split such a polynomial P according to 
the decomposition 0 = O• + 0' into an i- and ans-part, both belonging to 
0. By Lemma A the i-part is in 113;, the s-part in \.13'; hence the former is by 
definition OP, and OP is thus shown to lie in 0. This completes the proof of 
our 

THEOREM (10.7.C). Provided all powers of a given group r of linear trans
formations are fully reducible, the first main theorem holds for invariants J(u, v, 
· · · ) under this group which depend on one or several quantics u, v, · · · . 

The groups SL(n), O(n), Sp(n) fall under this theorem, but not the non
homogeneous affine group treated in §8 by means of the adjunction argument. 
Even so the remark that wherever full reducibility prevails there the first 
main theorem holds, points out a fact of considerable interest. 

According to Theorem (10.4.A) any group r of linear transformations in a 
real field k that contains the transpose t* of any of its elements t satisfies the 
hypothesis of Schiffer's general proposition (10.7.C), and hence the latter 
implies E. Fischer's result (footnote 18 of Chap. VIII) concerning invariants 
of such groups. 

D. SUPPLEMENT TO CHAPTER IX, §4, ABOUT EXTENSION OF THE GROUND 
FIELD 

8. Effect of field extension on a division algebra 

In IX, §4, the extension of the ground field k to a field K over k was studied 
under the aspect of multiplication of a given simple algebra a by a (not neces
sarily commutative) division algebra. But the limitation to finite extensions 
which this procedure involves is only apparent. We repeat the argument here 
for any (commutative) field Kover k, dropping at the same time the assump
tion that a be normal. Heeding the warning sounded in the last lines on p. 290 
we suppose the ground field k to be of characteristic zero. 

The elements a of a simple algebra a of order d in k are at the same time 
the vectors of ad-dimensional vector space P, and multiplication x---+ y = ax 
of a variable element x by a fixed element a of a is a linear mapping A = (a) 

of that space. The matrices (a) corresponding to the elements a of a form 
the matric algebra (n) (regular representation). In restating Wedderburn's 
theorem (p. 91) let us denote by M,a the algebra of all t-rowed matrices 

au, ... ' au 

a11, ... ' a11 
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whose components aik are taken from a. The simple algebra a, its irreducible 
and its regular representations ~ and (a) are then expressed by 

(a) = t~ = t(b)i 

in terms of a certain division algebra b and a positive integer t. 
The algebra a in k is also an algebra a = aK of the same order in any field 

Kover k. But simple ink it may cease to be so in K. In view of Wedder
burn's theorem it is no essential restriction to assume a = b as a division 
algebra ink. Let 3 be the centrum of band d, v, m = d/v the orders of b, 3 and 

bh 
LEMMA (10.8.A). In K the algebra b becomes the direct sum of a number 

µ ::; v of simple algebras a1, · · · , aµ. 
The proof consists of three steps. 
(1) The centrum 3 of bis a field over k and as such has a determining element 

z. The latter will satisfy an irreducible algebraic equationf(z) = 0 of degree v 
in k, and the elements of 3 are the polynomials g(z) of z in k. Thus 3 itself 
is isomorphic to the field of all polynomials of an indeterminate z in k modulo 
f(z). In K the polynomial f(z) of the indeterminate z will split into a number 
of prime factors fi(z), · · · , fµ(z). The congruences 

g(z) = g1(z) (mod f1(z)), g(z) = gµ(z) (mod fµ(z)) 

establish a one-to-one correspondence between the polynomials g(z) in K 
mod f(z) and the µ-uples (g1(z), · · · , gµ(z)) each member gx(z) of which is a 
polynomial in K mod fx(z). This proves that 3 as an algebra in K splits into 
a direct sum of µ ::; v division algebras, 

3 = h + ... + 3µ· 

(2) Operating in k we found, (9.1.5), that for '!) 

B of (b) the relations hold 

(8.1) 

hence in K 

B = m(3), 
'!) = (3)m, 

(b) (b') = (3J)m + · · ' + (3µ)m. 

(b)(b') and the centrum 

(h)m, · · · , (3µ)m are irreducible matric algebras in K, and consequently the 
space P (over the field K) is split intoµ subspaces P 1, · · · , Pµ that are invariant 
and irreducible under the algebra (b) (b'). 

(3) As in the proof of Lemma (9.2.A) we pass from the algebra (b) (b') to (b) 
as follows. Let L be an invariant irreducible subspace of P 1 with respect to 
the matric algebra (b) and ~ the algebra of transformations induced by (b) in 
L. Let c1 = I, · · · , cd be a basis of b. Then Lc 1, • · · , Led are equivalent 
subspaces of P 1 in the sense that in each of them (b) induces the same irre
ducible 21. Hence we can pick out a certain number among them, say L1, · · · , 
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2;., which are linearly independent and such that each Le; is contained in their 
sum L* = 2;1 + · · · + Lv. Then 1:* is invariant under (b)(b') and hence 
the total space P1. There results a decomposition 

of (b) into irreducible components ~>., and thus b in K appears as the direct 
sum of µ simple algebras a, 

(8.2) b = U1 + · · · + U11 . 

After having proved Lemma (10.8.A) we make use of Wedderburn's theorem 
for the simple algebras U>. in K and thus find 

where bx are division algebras in K. Since (8.2) implies 

(b) = (a1) + · · · + (a11), 

the explicit decompositions 

(8.3) {
b = M,1b1 + · · · + M111bµ, 
(b) = t1(b1)11 + ... + tµ(bµ)tµ 

are obtained, and vx turns out to be the same number as tx. 
Let 3x, Bx; dx, vx, mx have the same significance for bx in K as 3, B; d, 

have for b in k. The centrum of (8.3) is, in abstracto and in concreto, * 

(8.4) 3 = h + ... + 3µ, 

B = tiB 1 + : · · + t!Bii· 
But by (8.1) 

B = m(3), 

The resulting relation 

m · (3) = tim1 · (31) + · · · + t!mii · (3µ) 

is to be compared with the relation 

(3) = (h) + ... + (3µ) 

implied in (8.4) and thus yields 

(8.5) (>. = 1, ... 'µ). 

Note moreover the equations implied in (8.4) and (8.3): 

v,m 

*One readily sees that the 3>- are the algebras denoted before by the same letters; this 
has, however, no bearing on the argument that follows. 
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V = Vt+ ... + Vµ, 

(8.6) d = tid1 + ... + t!dµ, 

[of which the second also follows from the first by means of d = vm, dx = vxmx 
and (8.5)]. 

In IX, §4, the formula (8.6) was applied to a normal division algebra, in 
which case v = 1 and hence µ = 1 : 

d = tid1. 

Choosing K as an algebraically closed field over k (d 1 = 1), or constructing 
by successive algebraic adjunctions a splitting field K of b, we thus proved, 
Theorem (9.4.C), that the order d of a normal division algebra is a square 
number. However, bh and bxhx are normal division algebras; therefore we 
must have 

and thus the fundamental relation (8.5) is reduced to 

The results are summarized in: 
THEOREM (10.8.B). The order of a division algebra b in k relative to its 

centrum 3 is a square number d/v = n 2• In afield Kover k the following parallel 
decompositions take place 

3 =At+ ... + 3,., 
b = M11b1 + · · · + M 1,.bµ, 

(b) = t1(b1)11 + ... + t,.(bµ)1,. 

where bx are division algebras in K and 3x is the centrum of bx. If bx is of order 
n~ relat1'.11e to bx, then 

In an algebraically closed field K over k one must have µ = v and 

n1 = · · · = n, = 1, 

and (b) decomposes into v direct summands n · m,.. The same will already 
happen in certain finite extensions K of k, the so-called splitting fields. In 
more explicit language, let c:."J denote the algebra consisting of all v-uples 
(Ci, · · · , C,) of n-rowed matrices Cx in K and ~:."J the corresponding matric 
algebra whose members are 

Ci 0 · · · 0 
0 C2 · · · 0 

0 0 ... c. 
Then b becomes isomorphic to c;."J in the splitting field K and (b) equivalent 
to n~:."J. 

T 
d 

l 
l 

ERRATA AND ADDENDA 

p. 96, after line 6: In formulating Theorem (3.5.D) the assumption that 
none of the irreducible parts of the matric set & is the null-algebra (p. 85) 
should have been repeated. This additional assumption is certainly fulfilled 
if the unit matrix is a member of &. 

p. 97, add at bottom of the page: The multiplication in a group ring does 
not fulfill the commutative law. Indeed it has become customary to apply 
the term ring (but not "field") also in the non-commutative case. 

p. 143, Supplement to Theorem (5.3.A), Theorem (5.3.B) and its Corollary: 
The vanishing of the polynomial «I>(A) should be required not only for (3.2) 
and Jn, but for 

E-S 
A=--

E+S 

Compare Chap. X, §6. 

and 
E-S 

A=J ·--· 
" E + S 

p. 177, Lemma (7.1.B): see correction to p. 143. 
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and 377 (Appendix, p. 789) the author combined Lie-Cartan's infinitesimal with Hurwitz
Schur's integral approach. Th(' first paper contains the determination of the class density 
and the characters of the unitary group by the integral method. 

u (203) The formula, equating the two expressions (5.15) and (6.5), is originally due to 
G. Jacobi; see Muir, Theory of beterminants I (1906), p. 341. About the later work of 
Trudi, N aegelsbach and Kotska, ibid. III (1920), p. 135 and IV (1923), p. 145. A recent 
generalization by Aitken, Proc. Edin. Math. Soc. 1, 1927, p. 55; 2, 1930, p. 164. 

u (203) First given by I. Schur in his Dissertation, Berlin, 1901. 
u (208) The proof of Theorem (7.6.F), as of the corresponding theorems for the other 

classical groups, is a simplified version of the procedure I followed in: Acta Math. 48, p. 255. 
a (208) Sitzungsber. Preuss. Akad. 1900, p. 516. For other direct algebraic methods see 

I. Schur's Dissertation, Berlin, 1901, his papers Sitzungsber. Preuss. Akad. 1908, P· 664, 
and 1927, p. 58. 
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16 (215) Am. Jour. of Math. 59, 1937, p. 437. Cf. also F. D. Murnaghan, Am. Jour. of 
Math. 59, 1937, p. 739; 60, 1938, p. 44, and G. de B. Robinson, Am. Jour. of Math. 60, 1938, 
p. 745. 

11 (215) Math. Zeitschr. 23, 1925, p. 300. 
" (215) I. Schur, Sitzungsber. Preuss. Akad. 1908, p. 664. Cf. the resume in W. Specht, 

Math. Zeitschr. 39, 1935, p. 696. Related investigations: A. Young, Proc. London .Math. 
Soc. (1), 34, 1902, p. 361. D. E. Littlewood and A. R. Richardson, Phil. Transact. Roy. 
Soc. (A), 233, 1934, p. 99; Quart. Jour. of l\Iath. (Oxford) 5, 1934, p. 269. D. E. Littlewood, 
Proc. London Math. Soc. (2), 39, 1936, p. 150; (2) 40, 1936, p. 49; (2) 43, 1937, p. 226. 

" (220) Cf. the second of my papers on the theory of representations of semisimple 
groups, Math. Zeitschr. 24, 1925, p. 328. 

20 (223) In Math. Zeitschr. 24, 1925, p. 328, I treated the proper orthogonal group. What 
I added in Acta :vrath. 48, p. 255, so as to cover the case of the full orthogonal group should 
be replaced by the development here given. A more algebraic deduction of the characters 
is the subject of R. Brauer's Dissertation, "Ueber die Darstellung der Drehungsgruppe 
durch Gruppen linearer Substitutionen," Berlin, 1925. 

21 (229) It is easy to carry over the combinatorial approach and the "row-wise" gen
erating function to both the symplectic and orthogonal groups. Cf. F. D. l\Iurnaghan, 
Kat. Ac. of Sciences 24, 1938, p. 184. The formula for the number of invariants Ua = O) 
is here as in the symplectic case, cf. (8.13), an immediate consequence of the first main 
theorem. I. Schur, in his papers Sitzungsber. Preuss. Akad. 1924, which inaugurated the 
application of the integration method to group theory, deduced from this equation the 
formulae (9.7), (9.15) for the volume measure on the orthogonal group which we secured 
by a direct geometric computation. 

22 (230) The formula for the orthogonal group was first given in R. Brauer's Disserta
tion, Berlin, 1925. Both of us have been aware for a long time that the same formula holds 
for any semisimple group; I give here my proof. Cf. Brauer's note, Comptes rend us, 204, 
1937, p. 1784. An explicit rule for the X-multiplication of the two irreducible representa
tions (P(f1 · · · f.n)), (p(.f' · · · fn)) of the full linear group in: D. E. Littlewood and A. R. 
Richardson, Phil. Trans. Roy. Soc. (A), 233, 1934, p. 99. Also F. D. l\1urnaghan, Am. 
Jour. of Math. 60, 1938, p. 761. 

23 (234) Comptes Rendus 201, 1935, p. 419. E. Cartan had guessed the correct result 
before: Ann. Soc. Polan. de Math. 8, 1929, p. 181. See R. Brauer's own detailed account 
in the mimeographed notes of my lectures On the Structure and Representations of Con
tinuous Groups II, Princeton, 1934-35. 

CHAPTER VIII 

1 (239) The following textbooks are in the classic tradition: I. H. Grace and A. Young, 
The Algebra of Invariants, Cambridge, 1903. Glenn, The Theory of Invariants, Boston, 
1915. L. E. Dickson, Algebraic Invariants, Xew York, 1913. A freer attitude as to the 
underlying group of transformations is taken in: R. Weitzenbock, Invariantentheorie, 
Groningen, 1923. 

2 (242) H. Wey!, Rend. Circ. l\Iat. Palermo 48, 1924, p. 29. 
3 (250) See e.g. I. H. Grace and A. Young, The Algebra of Invariants, Cambridge, 1903, 

pp. 89-91, 96-97. The result was first derived by Cayley in his :\Iemoirs on Quantics. 
• (251) D. Hilbert, :\lath. Ann. 36, 1890, pp. 473-534, = Gesammelte Abhandlungen II, 

Berlin, 1933, Xo. 16: "Ceber die Theorie der algebraischen Formen," Theorems I and II on 
pp. 199 and 211. van der Waerden, .:\Ioderne Algebra II, Berlin, 1931, pp. 23-24. The 
finiteness of an ideal basis for every ideal in R is equivalent to E. X aether's "Teilerketten
satz," cf. I.c., pp. 25-27. 

• (254) The decisive facts are given in Hilbert's paper quoted under', including the 
theory of syzygies into which we did not enter here. A more detailed study of the ring of 
invariants and its quotient field aiming at a more finitistic construction of the integrity 

I 
)! 

BIBLIOGRAPHY 313 

basis is contained in Hilbert's later paper "Ceber die vollen Invariantensysteme," Math. 
~nn. 42, 1893, PP·. 313-373,=Gesammelte Abhandlungen II, ~o. 19, pp. 287-344. For a 
simpler proof of his "zero theorem" (p. 294) see A. Rabinowitsch Math Ann 102 1929 
p. 518, and van der Waerden, Moderne Algebra II, p. 11. The "~ero m~nifold" c~nsist~ 
of the sets of values u, v · · · for which all non-constant invariants J(u v ... ) · h d . . . . , , vams , an 
its construct10n as the mtersect10n J 1 = 0, · · · , J h = 0 by means of a number of invariants 
J1 , · · · ! J h.whose weights can be limited a priori plays an important r6le. Useful in this 
connect10n is a general criterion of finiteness due to E. Noether: Nachr. Gott. Ges. Wis
sensch. 1926, p. 28. 

: (255) Th~ idea. of ~djunction was emphasized by F. Klein, Erlanger program, passim. 
(258) This not10n 1s due to 0. Schreier, Abh. Math. Sem. Hamburg 4, 1926, p. 15, and 

5, 1927, p. 233. 
8 ~258) See H. ~·eyl, Die Idee der Riemannschen Flache, Leipzig, 1913 (and 1923), §9. 

The 1d~a of the umversal covering manifold goes back to H. A. Schwarz and H. Poincare 
(H. Pomcare, Bull. Soc. Math. de France 11, 1883, pp. 113-114). For a genetic construction 
see~- Koe be, Jour .. reine angew. Math. 139, 1911, pp. 271-276. For the topological study of 
cont~nuous g;oups 1~ ge~eral see E. Carta.n's two pamphlets: La theorie des groupes finis et 
contmus et I Analysis situs, Mem. des Sciences Math. 42, Paris, 1930, and La topologie des 
groupes de Lie, Actual. Scient. 358, Paris, 1936. 

9 (260) Lie-Engel, Theorie der Transformationsgruppen, 3 vols., Leipzig, 1893. More 
rece~t presentations: _H. Wey!, Appendix 8 in Mathematische Analyse des Raumproblems, 
Berlm, 1923; L. P. Eisenhart, Continuous Groups of Transformations, Princeton, 1933; 
W. Mayer a~d T. Y. Thomas, Ann. of Math. 36, 1935, p. 770. For a simplified treatment 
of the most important parts of E. Cartan's work on infinitesimal groups (cf. Chap. Il8) 
se~ the author's papers in Math. Zeitschr. 23 and 24 (1925-26), and van der Waerden, Math'. 
Ze1tschr. 37, 19~3, p. 446. 1:he construction of all (semi-) simple Lie algebras in Kt (or 
more generally m a~ algebra1cally closed field) has been the pivot of these investigations, 
as far as they deal with the structure rather than with the representations of groups. The 
same problem in an arbitrary field has recently been successfully attacked by N. Jacobson, 
Ann. of Math. 36, 1935, p. 875; 38, 1937, p. 508; Proc. Nat. Ac. of Sciences23, 1937, p. 240, 
and by W. Landherr, Abh. Math. Sem. Hamburg 11, 1935, p. 41. Given an associative 
alg~br~ a = I a) with an involutorial anti-automOTphism J: a-> aJ, its J-skew elements a 
sat1sfymg aJ = -a.form. a Lie algebra under the multiplication [ab]= ab - ba: this pro
cedure of constructmg Lie algebras has proved of paramount importance. 

9
• (260) For Lie groups this doubt has been settled by E. Cartan, Actual. Scient. 358, 

1936, p. 19. 
10 (267) I. Schur, Sitzungsber. Preuss. Akad. 1928, p. 96. 
I! (268) H. Wey!, Math. Zeitschr. 24, 1926, pp. 348-353. 
12 (268) E. Mohr, Dissertation, Gottingen, 1933. 
13 (268) R. Brauer, Sitzungsber. Preuss. Akad., 1929, p. 3. 
14 (268) J. v. Keumann, Math. Zeitschr. 30, 1929, p. 3. E. Cartan, l\Iemor. Sc. l\fath. 

42, 1930, pp. 22-24. 
15 (268)_ The author's original derivation of the connectivity of the classical groups in 

Ma~h. Ze1tsch.r. _23, 1925, p. 291, and 24, 1925, pp. 337 and 346, is more complicated. For 
arbitrary sem1-s1mple groups see ibid. 24, 1925, p. 380; E. Cartan, Annali di Mat. (4) 4, 
1926-27, p. 209, and (4) 5, 1928, p. 253; Wey!, Mimeographed Kotes on the Structure and 
Representation of Continuous Groups II, Princeton, 1934-1935, pp. 155-185. 

16 (269) E. Cartan, Bull. Soc. Math. de France 41, 1913, p. 53. P.A. M. Dirac, Proc. 
Roy. Soc. (A), 117, 1927, p. 610; 118, 1928, p. 351. R. Brauer and H. Wey!, Am. Jour. of 
Math. 57, 1935, p. 425. A detailed geometric study of the problem is contained in the 
mimeographed notes On the Geometry of Complex Domains by 0. Veblen andJ. W. Givens, 
Princeton, 1935-36. 

17 (270) The algebra was introduced by W. K. Clifford as early as 1878: Am. Jour. of 
Math. 1, 1878, p. 350, = Math. Papers, p. 271. An interesting application of this algebra 
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was made by H. Witt for the study of quadratic forms in arbitrary fields, Jour. reine angew. 
Math. 176, 1937, p. 31. 

18 (275) Attempts which miscarried were made by L. :\Iaurer, Bayer. Akad. Wissensch. 
29, 1899, p. 147; .Math. Ann. 57, 1903, p. 265, and R. Weitzenbock, Acta :\Iath. 58, 1932, p. 231. 
Weitzenbiick's paper contains a correct proof for any individual linear transformation. 
By an interesting direct algebraic approach, E. Fischer, Jour. reine angew. :\Iath. 140, 
1911, p. 48, settles the question in Kt for each linear group which contains the transposed 
conjugate A* of any of its elements A. 

19 (275) E. :\oether, :\Tath. Ann. 77, 1916, p. 89. The same result for finite groups in a 
field of prime characteristic (dividing the order of the group): E. X oether, X achr. Gott. 
Ges. Wissensch. 1926, p. 28. Projective invariants mod p were treated before by L. E. 
Dickson and his school: On Invariants and the Theory of:\ umbers, :\fodison Colloquium, 
1913, and various papers during the following years in the Transact. Am. :\Iath. Soc. 

20 (276) E. Cartan, Le9ons sur les invariants integraux, Paris, 1922; Ann. Soc. Polon. de 
Math. 8, 1929, p. 181. E. Kahler, Einfiihrung in die Theorie der Systeme von Differential
gleichungen, Leipzig, 1934. J. H. C. Whitehead, Quart. Jour. of :\Iath. (Oxford) 8, 1937, 
p. 220. 

21 (277) The coincidence of both definitions was proved by G. de Rham in his These, 
Paris, 1931 (= Jour. Math. pures et appl. (9), 10, 1931, p. 165), where he carefully lays the 
foundation of this theory. 

22 (277) J. W. Alexander, Ann. of :\Iath. 37, 1936, p. 698. The same idea was presented 
by A. Kolmogoroff at the Topological Conference in :\foscow, Sept. 1935. Furthermore 
E. Cech, Ann. of Math. 37, 1936, p. 681. 

23 (279) A direct topological approach: L. Pontrjagin, Comptes Rendus 200, 1935, 
p. 1277. 

CHAPTER IX 

1 (280) I follow my own method as expounded in Ann. of :\Iath. 37, 1936, pp. 743-745, 
and 38, 1937, pp. 477-483. For the abstract treatment see: van der Waerden, i\Ioderne 
Algebra II, pp. 172-177, 207-211. Deuring, Algebren, Ergebn. :\Iath. 4, 1, Berlin, 1935, 
and the literature cited there. Particularly important: E. :\oether, :\Iath. Zeitschr. 37, 
1933, p. 514. 

2 (282) First proved by Th. Skolem, Shr. norske Vid.-Akad., Oslo, 1927. 
3 (287) R. Brauer, Jour. reine angew. Math. 166, 1932, p. 241; 168, 1932, p. 44. 
4 (290) Cf. R. Brauer and E. X oether, Sitzungsber. Preuss. Akad. 1927, p. 221. Con

cerning E. X oether's related "verschrankte Produkte" and R. Brauer's "Faktorensysteme" 
see: H. Hasse, Transact. Am. Math. Soc. 34, 1932, p. 171; R. Brauer, :\foth. Zeitschr. 28, 
1928, p. 677; 31, 1930, p. 733; also Wey!, Ann. of Math. 37, 1936, pp. 723-728, and Deming, 1.c. 

6 (290) van der \Vaerden, :\foderne Algebra II, p. 174. J. H. :\I. \Vedderburn, Ann. of 
Math. 38, 1937, p. 854. 

Supplementary Bibliography, mainly for the years 1940-1945 

Important books: A. A. Albert, Structure of algebras, Am. :\Iath. Soc. Coll. Publications 
24,. Kew York, 1939. E. Artin, C. J. Xesbitt, R. :\I. Thrall, Rings with minimum con
dition, Univ. of Mich. Pubs. in :\lath. 1, Ann Arbor, :\Iich., 1944. C. Chevalley, Theory 
of Lie groups, Princeton Math. Ser. 8, Princeton Cniversity Press, 1946. \Y. \'. D. 
Hodge, The theory and applications of harmonic integrals, Cambridge, Eng., 1941. ~. 
Jacobson, Theory of rings, Am. :\Iath. Soc. :\Iathematical Surveys 2, X ew York, 1943. 
D. E. Littlewood, The theory of group characters and matrix representations of groups. 
N"ew York, 1940. F. D. :\furnaghan, The theory of group representations, Baltimore, 
1938. Andre Weil, L'integration dans Jes groupes topologiques et ses applications, Paris, 
1938. 
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On modular representations, which are mentioned in the footnote on p. 100, extensive 
work has been done by R. Brauer and his collaborators: R. Brauer, Act. sci. et industr. 

.195, 1935. R. Brauer and C. Nesbitt, Toronto Studies, Math. Ser. 4, 1937. T. Naka
yama, Ann. of Math. 39, 1938, 361-369. R. Brauer, Proc. Natl. Acad. 25, 1939, 252-258; 
Ann. of Math. 42, 1941, 53-61; 926-958. R. Brauer and C. J .. Nesbitt, Ann. of Math. 
42, 1941, 556-590. 

For Chapters VII and VIII compare now: D. E. Littlewood, Proc. Camb. Phil. Soc. 
38, 1942, 394-396; ibid. 39, 1943, 197-199; Phil. Trans. Roy. Soc. London Ser. A, 23.9, 
1944, 305-365 and 387-417. 

About Hodge's theory of harmonic integrals, which fo related to the subject of Chap. 
VIII, §16, cf. H. Weyl, Ann. of Math. 44, 1945, 1-6. Pontrjagin's method for determining 
the Betti numbers of compact Lie groups [see Bibliography, Chap. VIIl, 23 ] is more fully 
developed in: Rec. Math., New Ser. (Mat. Sbornik) (6) 48, 1939, 389-422. Related papers: 
H. Hopf, Ann. of Math. 42, 1941, 22-52, and H. Samelson, ibid., 1093-1137. 

For the construction of all semi-simple Lie algebras compare, besides the papers men
tioned in the Bibliography, Chap. VIIl, 9 : E. Witt, Abh. Math. Sem. Hans. Univ. 14, 1941, 
289-322. 

For Chap. X, Suppl. A and B, cf. H. Wey!, Amer. Jour. of Math. 63, 1941, 779-784; for 
Suppl. D cf. N. Jacobson, Theory of Rings, Math. Surveys 2, 1943, Chapter 5. 
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ELEMENTARY sum, for the unitary 
group 199, orthogonal group 224, 227, 

symplectic group 218. 
enveloping algebra 79, of a fully reducible 

matric set 95, for the linear group 130, 
the orthogonal group 141, 143, 145, the 
symplectic group 174. 

equivalence 18. 
equivalent subspaces 103. 
Euclidean field 273. 
even and odd invariants 53. 
exact differential 277. 
exceptional matrix 58. 
expansions in the theory of invariants 135. 
extension of field 284, 289. 
- theorem 47. 

FAITHFUL 14, 80. 
field 1, real - 13, Pythagorean - 13, 

Euclidean - 273. 
first main theorem 30; see also under "in

variant" and "vector invariant". 
form 5. 
formal (orthogonal) invariant 63, (symplec

tic) 172. 
frame 17. 
fully reducible matric algebra and matric 

set 94, 95. 

GENERATING idempotent 88, 101. 
Gram's theorem 240, generalized 242. 

ground field 2. 
group 14, - of plane rotations 192; - of 
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group germ 258. 
group ring.97, its full reduction 101, modi
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HERMITEAN form 170. 
Hessian 240. 

Hilbert's theorem on ideal bases 36, 251. 
homology 277. 
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symplectic - 174, polynomial - 251. 
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improper orthogonal transformation 11. 
induced transformation 10, 96. 
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- rotations 67. 
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special and general 23, 24; infinitesimal 
-- 68, 262; formal - (orthogonal) 63, 
(symplectic) 172. 

invariants of the adjoint group 237, of the 
binary quadratic 246, binary cubic 249, 
quadratic 248, of the linear group 254, in 
affine space 257, of the orthogonal and 
symplectic groups 257-258, 275; for all 
classical groups and arbitrary Lie repre
sentations 275, for compact Lie groups 
274, finite groups 275. (Vector invariants 
see under that title.) 

invariant differential 277. 
- subspace 10, 18. 
inverse algebra 90. 
irreducible 19. 

jACOBIAK 240. 

KLEIJ\'S Erlanger program 14, 28. 
Kronecker product of matrices and 

representations 20, its decomposition in 
the case of the classical groups 232, - -
of algebras 286-288. 

LEFT and right invariant 103. 
Lie algebra 260. 

- group 187. 
- representation 264. 
linear closure 79. 
-form 8. 
- group 13, its invariants 254, 275, vector 

invariants 45-47, 138, their enumeration 
207, second main theorem 70; representa
tions 129-130, 266-267, character 203, 
enveloping algebra 130. 

- mapping 7. 
-set 6. 
Lorentz group 66. 

MATRIX 7. 
matric algebra 79. 

metric ground form 65. 
multiplication of algebras 286, - of repre

sentations 20, 232. 
multiplier 25, infinitesimal 263. 
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NORM of a matrix 191. 
normal idempotents 102. 

null algebra 85. 
null divisor 2. 

QCTAHEDRAL group 218. 
odd invariants 53. 

order of a linear set 7. 
orthogonal group, proper and improper, 13, 

Cayley's parametrization 56, with arbi
trary ground form 65, connectivity 269; 
volume element 224, 226; enveloping alge
bra 141, 143, 145; vector invariants 52, 
their enumeration 229, formal 63, in
finitesimal 68, second main theorem 75, 
77; invariants 257, 258, 275; representa
tions 157-158, 164, 228, 268, characters 
225, 227, 228, 268. 

- ideal 143, 147. 
- transformation 11, transformation to 

principal axes 223. 
orthogonality of representations 115. 

PARALLELISM between group ring and 
commutator algebra 107, 110. 

parametrization of the orthogonal group 57, 
of the symplectic group 169. 

Parseval equation 192. 
partition 120. 
Pascal's theorem 251. 
Peirce decomposition 85. 
permutation 119. 
Pfaffian 166. 
Poincare polynomial 233, of the linear group 

233, of the other classical groups 238. 
polarization 5. 
polynomial 3, - ideal 251. 
prime ideal 3. 
primitive idempotent 102. 
- quantity 19. 
principal axes 179, 217, 223. 
- ideal 3. 
projection 101. 
projective geometry 112-113. 
projectivity 113. 
proper orthogonal transformation 11. 
Pythagorean adjunction 60. 
- field 13. 

QUAN.TIC 132. 
quantity 17, 18. 

quantum mechanics 99. 

quasi-unimodular 190. 
quotient field 2. 

RANK of a ~ensor 21. 
real field 13. 

realization of a group 14. 
reduction 18. 
regular realization of a group 14. 
- representation of an algebra 80. 
relation 36. 
relative invariant 25, 263. 
relativity problem 16. 
representation of an algebra 80, (regular) 

80; of a group 14, identical - 18. 
representations of the linear group 129-130, 

266-267, of the full orthogonal group 
157-158, 228, 268, of the proper orthogonal 
group 164, 268, of the symmetric group 
124-127, of the symplectic group 174, 267. 

restituent and restitution 50. 
right and left invariant 103. 
ring 2. 

SCALAR product 12. 
Schur's lemma 81, 83. 

second main theorem 36, 254; for the linear 
group (vector invariants) 70, the ortho
gonal group 75, 77, the symolectic group 
168. 

semi-group 79. 
semi-invariant 49. 
semi-linear substitution 113. 
signature 131, 132. 
similarity mapping 103. 
similitude 15. 
simple algebra 85. 
singular element 196. 
spinor and spin representation 273. 
splitting field 290. 
step transformation 48. 
symbolic method 20, 243. 
symbolic vector 50. 
symmetric group 36, 97; its vector in

variants 36-39; representations 124-127, 
267, character 213; relationship to the 
linear group 98, 130. 

symmetrization 120. 
symmetry condition 97. 
- diagram 120. 
- operator 97. 
symplectic group 165, connectivity 270, 

volume element 218, enveloping algebra 
and representations 174, characters 218, 
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219; vector invariants 167, their enumera
tion 222, second main theorem 168; in
variants 257, 267. 

symplectic transformation 163, transforma
tion on principal axes 217. 

TENSOR 21. 
transposed matrix 10. 

trace of a matrix 8, of a quantity in a group 
ring 104, of a tensor 150, 175. 

translation (in a group) 188. 
type of a quantity 17. 
typical basic invariants 32, 44. 

LJNIMODULAR group 13; see under 
"linear group." 

unit of an algebra 80, of a group 14. 
unitarian trick 265. 
unitary group 171, compactness 178, con

nectivity 194, 268-269, volume element 
197, representations 178, 201, characters 
201. 

unitary restriction 171, 177. 

- transformation 170, transformation to 
principal axes 179. 

universal covering manifold 258. 

VECTOR 6, covariant and contravariant 
-10. 

vector invariant 24. 
vector invariants of the alternating group 

34, symmetric group 30, 36; of the linear 
group 45-47, 138, of the group of ~tep 
transformations 49, 52; of the orthogonal 
group 31-36, 53, in the formal sense 63, in
finitesimal 68; of the symplectic group 
167, in the formal sense 172. 

volume element ona group 188, of the ortho
gonal group 224, 226, of the symplectic 
group 218, of the unitary group 197. 

WEDDERBURN'S theorem 29, 91 
weight of relative invariants 26. 

youNG symmetrizer 120. 
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299. 
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