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PART I - LIE ALGEBRAS 

INTRODUCTION 

The main general theorems on Lie algebras are covered, 

roughly the content of Bourbaki's Chapter I. 

I have added some results on free Lie algebras, which are 

useful, both for Lie's theory itself (Campbell-Hausdorff formula) 

and for applications to pro-p-groups. 

Lack of time prevented me from including the more precise 

theory of semi-simple Lie algebras (roots, weights, etc.); but, 

at least, I have given, as a last Chapter, the typical case of 

sl 
n 

This part has been written with the help of F. Raggi and 

J. Tate. I want to thank them, and also Sue Golan, who did the 

typing for both parts. 

Jean-Pierre Serre 

Harvard, Fall l 964 
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CHAPTER I. Lie Algebras: Definition and examples-. 

Let k be a commutatiye ring with unit eleme1*i1 and let A be a k-module, 

then A is said to be a k-algebra if there is given a k-.bilinear map AX A ~ S 

(i.e. • a k-homomorphism A 8 k A ___,.. A). 

As usual we may define left, right and two-sided ideals and therefore 

quotients. 

Definition l. A Lie algebra over k is an algebra with the following 

properties: 

1). The map A CZ)k A ~-A admits a factorization 

z 
A .k A ___,.. A A ___,..A 

i. e. , if we denote the image of (x, y) by [x, y] under this map then the 

condition becomes 

(x, x] = 0 for all x € k. 

Z). [[x, y] • z] + ([y, z], x] + [[z, x]. y] = 0 

(Jacobi's identity) 

The condition 1) implit=s [x, y) = - [y, x] • 

Examples: (i). Let k be a complete field with respect to an absolute value, 

let G be an analytic group over k, and let 'f be the set of tangent vectors 

to G at the origin. There is a natural structure of Lie algebra on "/• 

(For an algebraic analogue of this, see example (v) below.) 

(ii) Let f1 be any k-module. Define [x, y) = 0 for all x, y G C1J. 
Such a "f is called a commutative Lie algebra. 

(iii) If in the preceding example we take and define 

LA 1.1 
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[x, y] = x " y 

[x, y" z] = 0 

[x." y, z] = 0 

(x I\ y, Z A t) = 0 

for all x, y, z, t ~ f.1I, then "J c&A C1 is a Lie algebra. 

(iii) Let A be an associative algeora over k and define [ x, y] = xy - yx, 

x, y € A. Clearly A with this pra:iuct satisfies the axioms 1) and Z). 

Definition. Z. Let A be an algebra over k. A derivation D : A___;;,... A 

is a k-linear map with the property D(x• y) = Ox• y + x• Dy • 

(iv) The set Der (A) of all derivations of an algebra A is a Lie 

algebra with the product ( D, D') = DD'. - 0 10 • 

We will prove it by computation. 

[D, D'J (x• y) = DD'(x• y) - D'D(x• y) 

= D(D'x• y + x• D'y) - D'{Dx• y + x· Dy) 

= DD'x· y + 0 1x• Dy+ Ox• D 1y + x• Dl)'y 

- D'Dx• y - Ox• D 1y- D'x • Dy - x01Dy 

= DD'x· y + x• 001y • D'Dx• y - x• D'Dy 

= [ D, D' J x• y + x• [D, D'J y 

Theorem 3. Let 'f ~!.~algebra. ~any x € '1 ~!.map 
adx: "S ..J--+- '1 ~ adx(y) = [x, yJ, ~: 

1) adx is ~derivation~ '1 · 
Z) The map x ~ adx!!_~Lie homomorphism~ '1' ~Der(~). 
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Proof. ad x [y, z] = [x. [y, z]] 

= - [y, [z. x]] - [z, [x, y]] 

= [[x, y], z] + [y, [x, z]] 

= (adx(y), z] + [y41 adx(z)] , 

hence, 1) is equivalent to the Jacobi idertity. 

Now ad [x, y] (z) = [[x, y], z] 

= - [[y, z], x] • [[z, x], y] 

= [x, [y, z]] - [y, [x, z]] 

= adx ad y(z) - ad y ad:x:(z) 

= [adx, ady](z), 

hence 2) is also equivalent to the Jacobi identity. 

(v) !.!!!..!:::!! algebra of a1,!..algebraic matrix group. 

Let k be a commutative ring and let A = Mn(k) be the algebra of 

n Jt n -matrices over k. 

Given a set 0£ polynomials Pa(Xij) 1 ~ i, j !S. n. a zero of (Pa) 

is a matrix x = (xij) such that xij C:: k, Pa(xij) = 0 for all a. 

Let G(k) denote the set of zeroes of (P ). lf k 1 is any auociative, a 
commut~tive k-algebra we have analogously G(k1) C Mn(k1). 

Definition 4. The set (Pa> defines an algebraic group over k if 

G(k1) ia a aubgroup of GL
11

(k1) for all asaociative, commutative k-algebras k'. 

The orthogonal group is an example of an algebraic group (equation:' 

lx· X = 1. where lx denotes the transpose of X). 

Now, let k' be the k-algebra which is free over k with basis £1, l} 
where L 2 = 0, i.e. , k 1 = k[ (.]. 
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Theorem 5. Let 'i' be the !.!! of matrices X € Mn(k) such that 

1 + l.X € G(k[£]). Then '1 is !.~subalgebra ~ Mn(k). 

We have to prove that X, Y € '1 implies XX + .,_y € ~, X, .,. C:: k 

and XY - YX € CJS. 
To prove that, note first that 

~ (1 + t X) = 0 for all a <::::::> X C:: '1 

and, since 2. £. = 0, we have 

But 1 € G(k), i.e. Pa ( 1) = O; "therefore 

Hence, Of is a submodule of Mn(k). 

We introduce now an auxiliary algebra k" given by k" = [ E., ! 1, ee ] 
where t:

2 = t•2 • 0 and ~·t = £t', i.e., k" = k(t)8kk[t'). 

Let X, Y € ~ • so we have 

g = 1 + £ X € G(k [ & ] ) C G{k") 

g' = 1 + 1.1 Y € G(k[ € ) ) C G(k ") 

gg' = (1 + c!:X)(l + t.'Y) = 1 + ex+ !'Y + Et•xy 

g'g = 1 + ex+ !'Y + 88 1YX. 

Write Z = [X, Y) : 

gg 1 = g 1g(l + ££ 1Z) 

Since gg', g'g € G(k") , it follows that 

l+ ££ 1Z€G(k"). 
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But the subalgebra k[ t. t. 1] of k 11 may be identified with k[ e] • It then 

follows that I + !Z ~ G( k[ £.] ), hence Z ~ CIJ., q. e. d. 

Example.· The Lie algebra of th.e orthogonal group is the set of matrices X 

such that (I+ LX)(l + t.(tX)) = 1, Le., X + tx = 0, 

(vi) Construction of Lie algebras from ~ ~· 

a) Let '1- be a Lie algebra and let JC~ an ideal, then Clf/J is a 

Lie algebra. 

b) Let ( ~ i)U;I be a family of Lie algebras 

Lie algebra. 

'fp then II cri 
i € I 

is a 

c) Suppose Clj is a Lie algebra, Cir C ~ is an ideal and d- is a 

subalgebra of ";s:, then '1 is called a semidirect product of 'I by Cl! 

if the natural map '1.:---;i.. CIJ/(IC induces an isomorphism -6 ~ t'/f/(I(. 
If so; and if x ~ '& 1 then ad x maps Vt: into (It so that, ad" x €Der ((It'), 

i.e. , we have a Lie homomorphism f:J : -&- ---:;.. Der (('I(). 

Theorem 6. The structure of "J' is determined by (/'( , ~ ~ f) , 

and these can be given arbitrarily. 

Proof. Since ".f is the direct sum of Ctr and ~ as a k·module and 

since multiplication is bilinear and anticommutative we have to consider 

the product [x, y) in the following three cases: 

x, y ~ "' 

In the first case [x, y] is given in. Qt , in the second one Jx, y] is 

given in { and in the last one we have 

[x, y] = ad x(y) = fJ(x)y . 
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Conversely, given the Lie algebras .elf and 6 and a Lie homomorphism 

8 : 'I~ Der (O'C) we can construct a Lie algebra GJ ~bich is a semidirect 

product of ~ by eJr · in such a way that 8(x) = aduc x, where adeir x is the 

restriction. to Qt of ad'1 x, for x € ~ • One bas to check that the Jacobi' s 

identity 

J(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 

holds. There are essentially four cases to be considered. 

(a) x, y, z € (J( then J(x, y, z) = 0 because l.X is a Lie algebra. 

(b) x, y, € f.X, z €: # - J(x, y, z) = 0 ~ B(z) is a derivation of CIC • 

(c) x € fX , y, z € /. - J(x, y, z) = 0 ~ 6([ y, z]) = 8(y)8(z) - 8(z)6(y). 

(d) x, y, z € /. - J(x, y, z) = 0 because ri is a Lie algebra. 



CHAPTER II. Filtered Grwps and Lie Algebras 

IH. Formulae on commutators 

Let G be a group and let x, y, z € G. We will use the following 

notations: 

· (1') y -l h t1... G -""G x = y xy, ence ae map __,......... given by x a--+- xY is 

an automorphism of G, and we have the relation (xy)z = xYZ • 

(ii) (x, y) = x -ly-l xy which is called the commutator of x and y. 

Proposition 1. 1. We have the idemities: 

1) Y ( ) Y ( ) ( ) 1 ( x) = (x, y) • l • xy = yx = yx x, y , x = x x, y , x, x = , y, 

Z) (x, yz) = (x, z)(x, y)z • 

21) (xy, z) = (x, z)Y(y, z) • 

3) (xY, (y, z))(yz, (z, x))(zx, (x, y)) = 1. 

Proof. (1) is trivial. 

(Z) From (i) and ( l) we have 

x(x, yz) = xyz 

= (x(x, y>J z 

and therefore (x, y~) = (x, z)(x, y)z • 

(2 1) xy(xy, z) = (xy)z = xzyz 

= x(x, z)y(y, z) 

= xy(x, z)Y(y, z) 

and therefore (xy, z) = (x, z)Y(y, z). 

LA 2.1 
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y -1 -1 -1 -1 -1 -1 -1 3) (x , (y •. z)) = y x yz y zyy xyy z yz 

-1 -1 -1 -1 -1 = y x yz y zxz yz . 

Put -1 u = zxz yz 

-1 
v = xyx zx 

-1 w = yzy xy 

y -1 then (x, (y, z))=w u. 

Analogously (by cyclic permutation) 

z -1 
(y , (z, x)) = u v 

x -1 
(z • (x, y)) = v w 

Hence (xY, (y. z))(yz, (z. x))(zx. (x, y)) = 1 q. e. d. 

Applications: 

Let A, B be subgroups of a group Q_ and let ('.A, B) denote the 

subgroup of G generated by the commutators (a, b) for all a €: A, b €: B. 

If A, B, C are normal subgroups of G, then (A, B) is so and we 

have the relation 

(A, (B, C)) C (B, (C, A))(C, (A, B)) 

which follows from 1. 1, (3). 

82. Filtration on '!...Group. 

Definition 2. 1. A filtration on a group G is a map w : G---,;.. R U {+ co} 

satisfying the following axioms: 

(1) w(l) =too. 

( 2) w(x) > 0 ~ x € G. 

(3) w(xy- 1).2:, inf {w(x), w(y)J. 
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(4) w((x, y)) 2: w(x) + w(y). 

It follows from (3) that w(y- 1) = w(y). If ). €: R+ we define 

G>.. = lx €: G I w(x) 2: >..} 

G: = { x €: G I w(x} > A J 

The condition (3) shows that G>.. • G: are subgroups of G. Moreover, if 

x·c;; GA, y €: G then xY=. x {mod G~) which follows from the relation 

w{{x, y)) 2: >.. + w(y) > >.. • 

This also proves that G>.. is a normal subgroup of G and since G~ = 

it follows that GA+ is also a normal subgroup of G. 

The family {GJ ··(resp. {G:J ) is decreasing, i.e.• >.. < µ 

implies G)I. ::) Gil (resp. G: j G: ). 
Definition 2. 2.. For all a 2: 0 we define gr G = G /G+ and a a a 

Prop?sition Z. 3. 1) graG is an abelia:n group. 

UG 
µ>l IJ. 

2.) If x €: Ga let x be its image in graG; one has 
.. 

(xY) x for all y €: G. 

· 3) The map ca, J3 : Ga X G/3 ~ Ga+ l3 , defined 

!?z x, y ..._..,.... (x, y} induces a bilinear map ca,f3:graGXgrf3G~ gra+/3G 

4) The maps ~. /3 can be extended by linearity 

.!.Q. c : grG X grG ~ grG and this defines a Lie algebra structure in grG. 

~· I) It follows from 2.. I, (4).· 
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i) It is already proved. 

3) Let x, x' b Ga, y, y' b GJ3 , then (x, y) c;: Ga+J3 and we have to 

prove that if u, v b G: then (xu, y) = (x, y) mod G;+ J3. (x, yv) = (x, y) 

+ 
mod Gat J3. 

Using 1. 1. 2 1) and (3) we have 

(xu;-y) -u (u;-y} = (x, y) = (x, y) + 

(x, yv) = (x, v) + (x-;-y)v = (X,-y) 

(xx', y) - x' -- -- (x', y) = (x, y) + (x1, y) = (x, y) + 

(x, y'y) = (X,-y) + (x, y') Y = (x, y) + (i;Y') . 

This proves 3). 

4). Let ~ b graG' 1] € grJ3G and choose elements x b Ga, x € GJ3 

such that x = ~, y = 1]. Then we have (x, y) = c f-!(~, 7]), which we a,,., 
also write [ii;, 1]] • 

Now if ~ b grG 

prove that [ii;, ~] = 0, 

then ~ = \ ~ where ~ b gr G. In order to L a a a , 
a 

it is sufficient to prove that [~a' ~a] = 0 and 

[(a' ~J3] = - aJ3' (a]. Let XO! c;: Ga such that XO!= ~a for all a. 

Th.en we have [~a, ~a] = (xa, xa) = r = 0, and 

In order to prove the Jacobi identity J((, 1], t> = 0, since J is 

trilinear, it is enough to consider the case ( ~ gra G, 1] € gr J3G and 

t € gr 'Y G. Now using the proposition 1.1(3) we have, for x € Ga, y ~ GJ3' 

z € G'Y such that x = ~, y =1] , z = t , 

J((, 1], t) = (xY, (y, z))(yz, (z, x))(zx, (x, y)) = T = 0 
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becauae x.Y = f. ·• ·yz = 1J, zx = t. q. e. d. 

83. Integral filtrations of a group. 

Proposition 3. 1. For any group G the following two objects are in a one-one 

correspondence: 

1) Filtrations w: G --+-lt U (+ coJ such that w(G)CN u {+co}. 

Z) Decreasing sequences (on) n(;lN of subgroups of G such that 

(i) G1 = G. 

(ii) (Gn, Gm)C Gn+m . 

Proof. ( 1) =-
(Z) ~· 

w: G -+-JR U {+ oo} 

(Z) is clear. 

( 1). Let x ~ G, then we define a filtration 

by w(x) = sup {n} • 
x'i: G 

n 

It is clear that w( 1) = +co and w(x) > 0 for all x 'i: G, also that 

-1 w(x) = w(x ). 

Now let w(x) = n, w(y) = m, i, e., x 'i: Gn' y GGm and x r/, Gn+l' 

yr/, Gm+l. Suppose n ~ m, then G CG and therefore xy·l ~ G , i.e., m n n 

w(xy-1) ~ Inf [ w(x), w(y) J 

In case n = +a:> or m = +en, we have obviously this inequality. 

Finally the inequality w((x, y)) ~ w(x) + w(y) follows from (ii), q. e. d. 

Examele. The Descending Central Series of G. 

Define G1 = G and by induction G.a+i= (G, Gn>• Then the sequence 

{ Gn1 satisfies the conditions (i) - (ii) of (Z) in the proposition 3.1. (i) is 

satisfied by definition, and we will prove (ii) by induction on !!. in the pair 
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(Gn' G~). 

Let first n = 1, then (G, Gm) C Gm+l by definition. Now suppose 

n > 1, then 

Conversely, if · [Hn} is a decreasing sequence of subgroups of G 

which verifies (2.), then H ) G for all n. The proof of this is also by n n • 

induction. Suppose n = 1, then by definition H1 ) G1 • · Now if n Z, 1, we 

have 

§4. Filtrations· in GL(n). 

Let k be a field with an ultrametric absolute value Ix I = a v(x). 

Let Av be the ri"' of v and let mv be the maximal ideal of Av' let 

k(v) = A.)mv . 

Let n be a positivfl integer and let G be the group of n X n-matrices 

with coefficients in A such that g = 1 mod m , i.e. , if g = (g .. ) then v v ~ 

gij = oij mod mv . 

If g €: G then g = 1 + x where x is a matrix with. coefficients in 

Clearly G is a group, because it can be described as G = 

Ker ( GL(n, Av) --;ii. GL(n, k(v)) J . 
Let X €: Mn(k), X ;:: (xij)' then define v(X) =Inf [v(xij>J . 

We can define a map w : G --;ii. JR u {+ml by w(g) = v(x), where 
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g = 1 + x. 

Theorem 4. 1. T.he map w iii a filtration on G. 

Proof. The conditions w(l) = +co and w{g) > 0 for all g (:; G 

are obvious. 

Let now GA = {g (:; Glw(g) .2: >.. J. If «A is defined by 

~ = [xix(:; k, v(x) .2:, >.. ~ , 

the set G>.. is the kernel of the canonical homomorphism 

--• GL( n, A/CIC.,_ ) • 

Hence G>.. is a subgroup of G, and this proves condition (3). 

To prove condition (4), i.e. , {G>.., Gf.L) C G>..+ tJ. , write g b GA., 

h b G in the form: 
tJ. 

g = 1 + x. h=l+. y. 

One must check that hg = gh mod GA+JL • But 

hg = l+x+y+yx 

gh = I + x + y + xy 

and the coefficient of xy and yx belong to Glt>..+JL . Hence hg and gh have 

the same image in GL(n, A/CIC>..+µ). and they are congruent mod G>..+ µ' q. e. d. 

Exercises •. -!) Determine the Lie algebra grG. 

Z) Prove that G = lim G/G>.. if k is complete. 
<~ 
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Take U"t = Telf/I, then we have: 

Theorem 1. 2. Let t. : ~---+- U~ be the composition· 

1 ' 
"/ ~ T '}--;ii. T°I ---+- U"f Then the pair (U"}, f:) is an universal 

algebra for 'If· 
In fact, let a be a Lie homomorphism of ~ into an associative 

algebra A. Since a is k-linear, it extends to a unique homomorphism 

\JI : T "f ____,;;,..A. It is clear that l/I (I) = O, hence l/I defines Cf : U"'f---+- A, 

and we have checked the universal property of u"f . 

Remark. Let E be a ~-module (i.e., a k-module with a 

bilinear product c:JSX E ---+- E such that [x, y] e = x(ye) - y(x. e) for 

x, y ~ '1 • e ~ E). The map '1 ---+- End(E, E) which defines the module 

structure of E is a Lie homomorphism. Hence it extends to an algebra 

homomorphism U'S- ___,.. End(E, E) and E becomes a U<lf ·left-module. 

It is easy to check that one obtains in this way an isomorphism of .the 

category of ~ -modules onto the category of U".f -left-modules. 

Exercise (:Sergman). Prove that U '1- = k ~ ':If = O. 

(Hint: use the adjoint representation.) 

12. Functorial Properties. 

1). l£ ~ '= ~ '1a, then tr~ = ~UC/fa. 

2). If ~ = "S1>< C/j2 , where °¥J and '12 comm ... te, then 

u~ = u"ft'' u~2 . 

3). Let k 1 be an extension of k and let "'i- 1 = CJS.®k k' , then 

u'f' = u~~k k'. 

Proof of 2). Consider the homomorphisms E.. : ~· ---+- UGf i=l, 2, 
l 1 . 

1 

£ : "S ~ u'f1 ® u<i'2 given by f(x) = E.(xl) .® 1 + l 0 .!(x2) where 
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x = x 1 + x 2 with x 1 Q "1i, x 2 €~2 • The map f is a Lie algebra 

homomorphism since "f1 commutes with ~ . Hence f induces an 

associative algebra homomorphism 1/1 : u'J. --;i.. u'f 
1 

GD u'fz . 

On the other hand we have the homomorphisms 

.i = I, 2. which induce homomorphisms 'f i : U 'Ji --;i.. U".f and since 

commutes with '1z. we have that 11(x1) <fz.(xz)= '°z<xz.) <Ji<x 1) for all 

·x1 Q ~l xz Q "fz. · 

Finally take ': u'11 ® Ucs2 --;i.. u~ given by <f(xl cl) Xz) = 

' 1(x1) Cf 2(x2), then we bav.e 1/1 o Cf = id and Cfo 1/1 = id. 

The proofs of 1) and 3) are similar. 

83. Symmetric algebra of a module. 

Let '1' be a k-module and definf' [ x, y] = 0 for all x, y Q '1· 
In this case, the universal algebra U '1' of <j. is .called the symmetric 

algebra of the k-module '1- and it is denoted by s"f. 

We can define S~ as the biggest commutative quotient of T"l'.-, 

i.e., S ~ = &o s; where s; = ( ® "J'.)/I where I is generated by 

the elements of the form a - tS' a where G' is a permutation of (1, n], 
n 

and a Q ® "i. 
We will consider the case where "J. is a free k-module .with 

basis (ei)ieI . 

Let f :'f--> k[(Xi)iel] be· the homomorphism given by 

f (ei) =Xi where k[(Xi)id] is the polynomial ring in the indeterminates 

X
1
., i Q I. Then ( f., k[(X.). 1)) bas the unive:ual. property of I. 1, i.e., 

1 18 

! is a k-linear map such that t.(x) £(y) = e.(>'.") £.(x) and if f: "S--;i.. A 

is a k-linear map with f(x)f(y) = f(y)f(x) for all x, y Q '1- where A is an 
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associative algebra, then there exists an associative algebra homomorphism 

f* : k[(Xi)] --+ A such that f*o £. = f. In fact if P(xi) b k[(Xi)] then 

i*(P) = P(f(e~). · This shows that we can identify S~ with the polynomial 

algebra k{(X.). 
1
]. 

i ie 

If we assume that I is totally ordered, then S"f bas for basis 

the set of monomials e. . • • 
11 

114. Filtration of U'S • 

i , n 2:, O •. 
n 

Let "l- be a Lie algebra over k, and let U"f be the universal 

algebra of "S-. We define a filtration of UVf as :follows: Let Un "1 
be the submodule of u'j generated by the products e.(xi) .• ·4(xm). m .s. n 

where xi E: "f · We have 

Uo"f = k 

u 1 US. = k a> el"f> 

and U ur C U ""C · · · C U 'i C U or C · · · 0 - I 1 I n n+l -" 

Now we define gr U'1 

The map: Up~ X Uq"f ~ Up+q°S given by (a, b) ...__.......ab defines, by 

passage to quotient, a bilinear map 

We then obtain a structure of graded algebra on grU~; with this structure 

gr U"6 is called the graded algebra associated to U~ • It is associative 

and has a unit. 
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Proposition 4. I. The algebra gr UCS. is generated by the image of 

'1 under the map induced by ~ : Ui ---+- U ~ • 

~:Let q € grnU"'i and let a€ Un"} be a representative of 

a, i.e.• a =a. Now, we have a = 2::, >.. µ €(x\µ)) l{x~) ). Thus 
m <n µ 

we have µ-

a = q. e. d. 

m =n 
µ 

.Theorem 4. 2. The algebra gr Uuy is commutative. 

Proof. Using 4. 1 it is enough to prove that £(x). e(y) commute 

in grzU~ for all x, y € ~· 

Since (. is a Lie algebra botnomorphism we have E:(x)f.(y) - €(y)€(x) 

f:([x, yJ ), but e.([x, y]) € U i"f so £(x) £.(y) = E(y) €(x) mod U 1 "'f. 
Therefore £(x) e(y) = e:{y) £(x). 

It follows from Theorem 4. 2 that the canonical map lo} ~ gr U? 

extends to a homomorphism 

"t : s"t----+ gr u '1-

where S"} is the symmetric algebra of '°1 (cf. I 3). 

Since gr U ~ is-generated by the image of "I• 'l is surjective. 

Theotem 4. 3. (Poincar~-Birkhoff-Witt). If 1 is a k-free 

module, then Z is an isomorphism. 

In order to prove the theorem we will prove first two lemmas. 

Let (.x.). 1 be a bas is of Cit and choose a total order in I. 
1 1e · 6 

Lemma 4. 4. The family of monomials E (x. ) • • • C:(x. ), 
- - l 1 1 m 

n 
i 1 .S • • • ~ im , m .S n generat! (~ k-module) U '1 . 

~ We proceed by ind:tction with respect.to n. 

For n = 0 the statement is trivial. 
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Supp~se now n > 0 and take ab Un '1 . Then its image ab grnU'1 

is a polynomial of degree n in the l'fXil• but this implies a is a linear 

combination of products 

n-1 
a 1 b U ~. 

C:.(x. ) • • • €(xi ), i 1 !S_ • • • !S_ in plus an element 
1 1 m 

By the hypothesis of induction a 1 is a lin~ar combination of products 

e.(xi ) • • • i(xi ), i 1 :!S, • •• !S_ im, m < n. q. e.d. 
1 m 

Lemma 4. S. The following statement is eguivalent to 4. 3: 

The familx; of monomials E(xi
1

) • • • e(x1n), i 1 ~ • • • ~in , n > O 

is a bas is of u"f . 

For M = (ii' .•. , im) with i 1 ::s, i 2 :!S, • • • :!S, im , write xM = 

'(x. ) • • • !(x. ), and denote the length of M by J(M) = m. For each 
ii lm 

n .2:. 0 the .elements xM with f(M) = n lie in Un 'If, and their images 

xM in grnU elf= Un "f/ Un-l'f are the images, under the map 

t: Sn~---;i.. grnU US- , of the monomial basis elements of Sn"f . Thus, 

the injectivity of t is equivalent to the non existence of a relation 

with some cM :I 0. By lemma 4. 4 this is the same as the non-existence 

of a relation 

with some cM o~ the left not zero. But any non·t~ivial k-l~near dependence 

relation among the xM can be put in the latter form. . Hence lemma 4. 5 

is true, and we can now procede to prove Theorem 4. 3 in the new form. 

To do so we can (and will) assume that I is well-ordered. Let 
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V be the free k-module with basis {zM~ where M runs through the set 

of all sequences (il' .•. , in) with n 2:. 0 and i1 ~ iz. .:S, • • • .:S. in· as 

above. If i € I and M = (i1, .•• , in)• we define i :::_ M <==t> i .:S, il' 

in which case we introduce the notation iM = (i, ip ••. , in). 

Main lemma. We can make V ~ '1-module in such a way that 

xiZM = ZiM whenever i .:S, M. 

We shall first define a k-bilinear map (x, v) ~ xv of '-1 X V 

into V, and will then prove that it makes V a "'f -module, that is, 

satisfies 

(1) xyv - yxv = [x, y] v, for x, y €: OJ.• and v €: V. 

To define xv it suffices to define xiZM for all i. and M, to define 

xiZM we may assume by induction that xjZN has been defined for all 

j €I when l(N) < 1.(M) and for j < i when .l(N) = .l(M). Moreover 

we assume that this has been done in such a way that the following holds: 

(*) xjZN is a k-linear combination of Z:x.,' s with £(L) ~ /(N)+ l. 

We then put 

( 2.) = 

This makes sense because, in the second case, xiZN is already defined 

as a linear combination of ZL' s with 1 (L) !S. i(N) + 1 = l(M), and 

[xi' xj] is a linear combination of xk . Moreover the concltion (*) holds 

with j and N replaced by i and M. 

To check ( 1) it suffices, by linearity, to slx>w 
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Suppose now n > 0 and take a€ Un "i . Then its image a~ grnU"l 

is a polynomial of degree n in the ll"i'iJ. but this implies a is a linear 

combination of products 

n-1 
a 1 ~ U ~. 

e:.(xi 
1
) • • • E'.(xim), i 1 !S. • • • !S. in plus an element 

By the hypothesis of induction a 1 is a lin~ar combination of products 

€.(xi ) • • • i(xi ), i 1 .:5, • • • .S. im , m < n.. q. e. d. 
1 m 

Lemma 4. 5. The following statement is equivalent to 4. 3: 

The family of monomials 

is a basis of. u"'f . 

For M = (il' .•. , im) with i 1 :s, i 2 :S, • • • :S. im , write xM = 

'(x. ) • • • e(x. ), and denote the length of M by .f (M) = m. For each 
11 im 

n .2:. 0 the .elements xM with ./l.(M) = n lie in Un "f, and their images 

iM in grnU"i = Un "f/ Un-l'f are the images, under the map 

t: sn~----;i.. grnU '1 , of the monomial basis elements of Sn"f . Thus, 

the injectivity of t is equivalent to the non existence of a relation 

with some cM -:#- 0. By lemma 4. 4 this is the same as the non-existence 

of a relation 

with some cM on the left not zero. But any non-trivial k-linear dependence 

relation among the xM can be put in the latter form •. Hence lemma 4. 5 

is true, and we can now procede to prove Theorem 4. 3 in the new form. 

To do so we can (and will) assume that I is well-ordered. Let 
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( l ') 

for all i, j ~nd N. Since both sides are skew symmetric and vanish when 

i = j, we may assume i > j. If j ~ N, then xjZN = ZjN and ( 11) follows 

from the second case of our inductive definition (Z) above. There remains 

the case N = kL, with i > j > k 1 when ( 11) becom~. 

(i j k) x.x.x. ZL - x.x.x.·ZL = [x., x.) x.. ZL . 
lJ.K Jl.K · 1 J K 

By inductio1'.1 on inf(i, j), we know this equation does hold ii we P.ermute 

ijk cyclically, that is the equations (jki) and (kij) are correct. On the 

other hand, by induction on I. (N) we can assume xyZL = yxZL + [x, yJ ZL 

for all x, y €: Of • Thus the right hand side of (ij k) can be rewritten: 

If we substitute this on the right of (ij k) and then add the three equations 

(ij h) + (j k i} + (k ij) we get an equation of the form 

Hence, (ij k) is true, and our main lemma is proved. 

Since V is a t1f. -module, it is also a U "I -left-module, 

cf. Remark at the end of 1!11. 

In particular we. have in V the element Z~ where ~ is the empty 

set. For all M we have xMZ~ = ZM . We will prove this by induction 

on .2(M). If l(M) = 0 then it is clear· because then xM = L If .l(M) > 0 

we write M = iN, i ~ N. Then xM =xi~ and xMZ~ = xi~Z~ = xiZN = 
Z.N = Z 

i M • 
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Finally, suppose we have ,E cMxM = O, then 

but this implies cM = 0 for all M. q. e. d. 

Corollary 1. If 'If is a free k-module then t: ~ ~ U 'i 

is injective. 

In fact, in this case "f ':It gr 1 U ~ • 

Corollary Z.. ~ '1 = ~l E9 "S z. where '1i ~ ~Z !:!,! 

subalgebras of "l and are free k-modules. Then the map U"f
1 
(/) U 'fz. --;i. Uc.;. 

_given by u 1 (8 u2 ~ u 1 u 2 is a k.-linear isomorphism. 

Proof. Let (x.). I , (y.). J be a basis of ur1 and cx.... respectively, 
--- 1 ie J Je -11 "i. 

then [(xi), ( yj) J is a bas is of "i . Take a total order in I u J such 

that every element of I is less than every element of 'J. Applying 4. 5 

we have that the families of monomials {c(x. ) • • • £ (x. ) J , 
11 ln 

t£(y. ) · • • E(y. ) J and tE(x. ) • • • £(x. ) c(y. ) · · • E(y. ) 2 for 
J1 Jm 1 1 1n J1 lm l 

,i 1 ~ · • · ~in and j 1 :S. • • • :S, jrp ,are basis of U "li • U '1z. and U elf 
respectively. Thus the map U "ll@ U "rz. --;i.. U'} given by 

u 1 ® u2 t---+ u 1uz. is a bijection on the basis of .u~1 d1I U'Sz. and U"tf.q• e.d. 

Notice that in this case we have also induced an isomorphism 

~ 
grU"ll ~ grU'f z. --;io. grU'°1 beca~se grU'1i = S'lfi and grU".f = 
s"'i ~ s'11 ® s'1z. . 

85. Diagonal mae. 

Let ~ be a Lie algebra over k and. suppose "} is free as a 

k-module. 

Definition 5. 1. The Lif:i<.algebra homomorphism A : '1--+- '1 K '} 
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given by x ....__,,.. (x, x) induces a homomorphism of associative algebras 

which is called the diagonal map. 

Proposition 5. Z. The diagonal map l::l. is characterized by the 

following two conditions: 

I) a is an algebra homomorphism. 

Z) l::l. x = x GP l + I ® x for all x b '1-

Notice that we identify x € "S with its image in U '1- . 

Definition 5. 3. An element a € U~ is called primitive if 

a a = a ® I. + l fl a . 

Hence every element x € '1 is primitive. 

Theorem 5. 4. Assume k is torsionfree (~Z-module) and '1 
is a free k-module. Then the set of primitive elements of U ~ coincides 

with '1· 
Case 1: "S abelian. In this case U '1 can be identified with the 

ring of polynomials k((Xi)J in variables Xi corresporiding to the basis 

elements xi of · ·0§ . The diagonal map can be interpreted as a homo

morphism !::.. : k[X.]-----;> k[{X!), (X!!)] where X! A# X. ~ I and X'! ,.., l©X., 
1 l 1 l 1 l l 

and is then given by /::l.f(Xi, X'i> = f(Xi +X'i ), because it sends 

.X. I--+ X! + X 1! for each i. Thus the primitive elements f(x) € k[(X
1
.)] 

1 l l 

are those which satisfy f(X! + X'!) = f(X!) + f(X".). If f is additive in 
1 l . 1 1 

this sense, then so is each homogeneous component f . If f is homogeneous 
n 

of degree n and additive then Znf(Xi) = f(ZXi) = f(Xi +Xi) = U(Xi)' so 

(Z0 
- Z)f = O. Since k is Z-torsion free, we mus~ have f = 0 if 0: =F 1. 
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Thus the only additive polynomials are the linear homogeneous ones. 

Case 2.. The general case. The map 1l.: U Uf ---+- UCif ®· U "J 

induces a map 

(see end of 84). On the other hard, we have grU<.f- ~ S"f • a;nd. the cor

responding map s"i----;i.. S'1® 5'1- is the same as the one discussed in the 

first case, as one sees by looking at its effect on elements of the form 

x € gr 1 U o; coming from elements x € '1 . 
Let x € Un c-; , and let x denote its image in gr nP '1 · If x is 

primitive. then x is primitive for gr A, hence, if n > 1, we have 

x = 0 by case 1. Iterating this, we conclude x € ·U l '1- , that is, x = A+ y, 

with A € k, y € "} , Then 

tl.x = At + y ® 1 + 1 ® y 

xeI+l®x = >..+ydl'>l+A+ l®y. 

Thus, if x is primitive,. then 2.A = A' hence A = 0, and x € ~ . 

Exercises 1. Let PU "l denote the set of primitive elements of 

U C1i • Show that PU "i is stable under (, ] • that is, if x and y € PU'1', 

so is xy - yx. 

2.. Suppose pk= 0 for some prime number p, and suppose 2J' 
is free, with basis (xi)i€ 1 . Show 

a) PU '1 is stable under the map y ~ yP . 
v 

b) The elements (xf ), i € I, 11 ~ I. form a k-basis for PU~ 

c) If x and y are in '1 , then (x + y)P - xP - yp € '-1 . 



CHAPTER IV. Free Lie Algebras 

In this chapter, k denotes a commutative and as soc iati ve ring, with 

a unit. All modules and algebras are taken over k. 

U. Free magmas. 

Definition I. I. A set M with a map 

MllM.~M 

denoted by (x, y) ~ xy is called a magma. 

Let X be a set and define inductively a family of sets Xn (n ~ I) as 

follows·: 

lL X IC Xq (n 2: 2) 
p+q=n p 

CX> 

(= disjoint union) 

Put M~ = Jh Xn and define Mx x MX ~ MX by means of 

Xp X Xq ~ Xp+q C Mx , where the arrow is the canonical incl us ion 

resulting from 2). 

The magma Mx its called the free magma on X. An element w of 

MX is called a non-associative word on X. Its length, /(.w), is the 

unique n such that w b X n 

Theorem l Z. Let N be any magma, and let f : X ~ N be any 

map. Then there exists a unique magma homomorphism F : Mx ~ N 

which extends f. 

Proof: Define F inductively by F(u, v) = F(u) · F(v) if u, YbXP X Xq 

Properties of the free magma MX : 

I) Mx is generated by X. 

2) m ~ Mx: - X ¢::::::::;'> m :;: u. v, with u, vb M; and u, v are uniquely 

determined by m. · 

LA 4.1 
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12.. Free algebra on X. 

Let Ax be the k-algebra of the free magma Mx. An element a€ Ax 

is a finite sum a = r cmm , with Cm €k ; .the multiplication in 
m€Mx 

Ax extends the multiplication in Mx • 

Definition 2.. 1. The algebra Ax is called the free algebra on X. 

This definition is justified by the following: 

Theorem z. z. Let B be a k-algebra and let. f : X ---;.. B be a map. 

There exists a unigue k~algebra homomorphism F : Ax ---;.. B which 

prolongs f. 

Proof: By 1. 2., we can ectend f to a magma homomorphism f 1 : MX ......;r.. B, 

where B is viewed as a magma under multiplication. This map extends 

by linearity to a k-linear map F : Ax ---;.. B. One checks easily that F 

is an algebra-homomorphism. The unicity of F follows frc:xn the fact 

that X generates Ax . 

Remark: AX is a graded algebra, the 'homogeneous elements of degree 

n being those which are linear combinations of words m €: MX of length n. 

13. Free Lie algebra 09 X. 

Let I be the two-sided ideal of AX generated by the elements of the 

form aa, a €: Ax and J(a, b, c), where a, b, c, €: Ax (J(a, b, c) = 
(ab)c + (bc)a + (ca)b). 

Definition 3. 1. The quotient algebra Ax:/I is called the free Lie algebra 

on X. 

This algebra will be denoted b:y Lx(k), or simply LX . 
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Functorial properties. 

I) If f : X ~ X' is any map, then there exists a unique map 

F : Lx ~ Lx• such that F Ix = f . 

l ') If f xa, i~ 1 is a direct system and X = ~ ~a then 

2) Let k 1 be an extensionof k, then 

L (k1) - L (k) ® k 1 x - x k 

3) I is a graded ideal of Ax , which implies LX has a natural structure 

of graded algebra. 

Proof of 3). Let 111 be the set of a € AX such that every homogeneous 

component of a belongs to I. Then I# is a two-sided ideal and l# C I. 
co 

Now let x b ~ , x = ~ xn, xn homogeneous. Then 
n=l 

x· x = ~xn2 + 2::. (xnxm + xmx
0

), but x
2 

E:I , x x + x x = 
~m n nm mn 

(x + x ) 
2 

- x 2 - x
2 

f; I , so that x· x €1# . For three elements, 
n m n m 

x = Z::x y = n • ~ y , and z = n L,z we have J(x, y, z) = 
n 

5"" J ( z ) r-1 11 
/...J XJ. ' y m ' "=' 

J,m,n n 
Thus I# = l, q. e. d. 

1 
4) The homogeneous component LX has basis X and the homogeneolS. 

component L~ has for basis the family of elements [x, y], x < y, x, y E: X, 

where we have chosen a total order in X. 

Proof: Clearly X generates Lx and [X, X] generate Li 

([X, XJ = (lx, y] , x < y, x, y f:X). Consider the module E = k(X) 

2 
and the Lie algebra E E9 /\ E = 9J' (example ii' of Chapter I). The 

canonical map X ~ '1 induces a Lie algebra homomorphism 
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One has: 

Proof of theorem 4. 2. 

1) is clear: the map X----;... ULX defines a homomorphism '11 of AssX 

into ULX, and fl o '11 = 1, 'l'•fl =I. 

Note also that q,, maps LX ~ the Lie subalgebra of AssX generated 

by X, so that (2) is equivalent to saying that q, is injective. Notice also that 

(3) ~ (2); for, if LX is free over k, the Birkhoff-Witt theorem shows that 

Lx ~ ULX is injective, and we can identify ULX with AssX • 

The rest of the proof is divided into four steps: 

Ffrst step: Assume k is a field and X is finite. 

Choose a homogeneo\Jil basis ('yi)i€I of Lx and a total order of I. 

Put d. = deg ('Y.). 
1 l 

Now the Birkhoff-Witt theorem implies that the family of elements 

e eil ei 
'Y = 'Y· •.. 'Y· s 

11 is 
with i 1 < 

Z:e. d .. 

• · · < is is a basis of ULX = AssX and 

we have deg( 'Ye) = 
1. l. 

Let 
J J 

a(n) be the rank of n 
Assx, then a(n) is equal to the number 

of families (e.) such that n = 
l r, eidi . 

This last statement is equivalent to the fact that the formal power 

series A(t) = l:a(n)tn may be expressed in the form 

A(t) = IT ~. 
iE:I 1 - t i 

1 d. 2d. 
because IT ---a; = IT (1 + t 1 + t 1 + • · · ) and the coefficient of tn 

i€1 1-t 
1 

iE:I 

in this product is precisely the number of families (e.) such that r..e.d. = n. 
l l l 

Now, for any positive integer m we have that in the product 



LA 4.6 

TI 1 
:--er; the number of factors such that d. = m is t.he rank 

i(;I 1-t i 1 

of L; , i.e., 

CD 

A(t) = IT 1 

m=l 

On the other hand, since AssX is the free associative algebra on 

X the family of monomials x. 
11 

n . .. x. , x. €: X is the basis of AssX 
in iv 

i.e. , 

This implies that a(n) = dn and therefore 

CD 

IT 
1 

.t cm> = 
m=l (1-tm) d 

1 

1-dt 

1 
1 - dt 

From the equality Log l~t 
a> 

= t. 
n=l 

1 
t

0 
we conclude that n 

l ~ fd\m)tmv 

m, v 

and hence, for each n, we have 

i. e. , 

dn = l m J..d(m) 

min 
which proves (4) in this case. 

Second Step: Assume k = Z. and X is a finite set. 

We will use the following lemma. 

Lemma 4. 3. g E is a finitely generated Z-module and dim{E ®z. IF p) 
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over IF = 'lt./pZ is independent of p, for all primes p, then E is a 
--p - - ----

Z-free module.with rank equal to the dimension of E 41z lF p · ~ IF P. 

This lemma is an easy consequence of the structure theorem of 

abelian groups. 

Now, since L~(Z) C>'lt. IF P = L~(IF P) and dim(L~(IF p)) = .f d(n) 

which is independent of p, it follows that L~ is Z -free with rank £ d(n). 

This proves the theorem in this case. 

Third step: Assume k = 'lt. and X is an arbitrary set, 

Let lYa} be the family of finite subsets of X, then X = ~ Ya. 
a 

We will first prove (2.). 

Using the second case, we have that the map 

is mjective for all a • 

Now <P = ~ <Pa and the inductive limit of a family of injective maps 

a 
is injective. This proves (Z). 

In particular (2.) implies that Lx and L~ are Z -submodules of 

n AssX , which is free, so Lx and LX are free for all n. 

This proves the theorem in the third case. 

Fourth Step: General case. 

The equality L~(k) = L~(Z) ®z k together with the third case imply 

L~(k) is k·free, i.e., (3) and therefore (2.) holds. 

On the other hand rk L~(k) = rk L~(Z) thus, if X. is finite, (4) 

holds. Q. E. D. 

85. P. Hall families. 

Definition S. I. Let X be a set. AP. Hall family in Mx , the free magma 

on X, is a totally ordered subset H of M such that• - - x . . 
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(1) X C H. 

(Z) ~ u, v Ci::H with .((u) < ..((v) ~n u. < v. 

(3) Let u Ci:: Mx - X and let u = vw be the unique decomposition of u 

~ v, w Ci:: Mx,. Then u (i H if and only if the following two conditions 

are satisfied. 

(a) v Ci:: H , w € H and v < w 

(b) either w Ci:: X or w = w'w" ~ w 1 € H, w" € H and w' .S. v. 

Lemma 5. Z. There exists a P. Hall family for any set X. 

Proof: We define by incilction Hn = H(l X . We take H1 = X, and 
~~- n 

l n-1 choose a total order on X. Suppose now H , ..• , H have been 

defined and totally ordered in such a way that (1), (Z), (3) hold for 

elements of length .S. n-1. The set Hn is then defined without ambiguity 

by condition ( 3) ; we choose any total order on Hn, and put u < v if 

u € Hi (i .S. n-1) and v E: Hn . This completes the induction process, 

and it is clear that H = U Hn is a P. Hall family. 

Example: Let X = {x, y} , with x =/= y. We can take H 1, 

as follows: 

Hl = '(x, Yl t x < y 

Hz = {x· yJ 

H3 = tx· (x• y), y• (x• y) J , x• (x• y) < y· ~x· y) 

H4 = ( x(x(xy)), y(x(xy)), y(y(xy))} 

HS = £ x(x(x(xy)H, y(x(x(xy))), y(y(x(xy))), y(y(y(xy))), 

(xy)(x(xy)), (xy)(y(xy))} 

... ' 

Theorem S. 3. g H is a P. Hall family in Mx , then the canonical images 

of the elements h € H in Lx make up a basis of Lx • 

Let h € H and denote by 1i' its image in Lx • Theorem 5. 3 is 

equivalent to: 
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( 1) The family £ti} , h b H, generate LX . 

(2) The elements [ti} , h b H, are linearly independent. 

We prove here only the (easier) part (1). For a proof of (2). the reader 

may look in M. Hall, The Theory of Groups, p. 170-171 , or E. Witt, 

Die Unterringe der freien Lieschen Ringe, Math. Zeit., 1956; M. Hall's 

proof is based on a counting argument ; Witt's proof is better (but longer). 

Proof of ( 1): Let L,k be the k-module generated by ii ; since L)( contains 

X, it will be enough to show that ~ is a Lie algebra • i.e •• that 

h 1,h2 €H impliesthat [l11,li2] is in L,k. 

We will carry the proof by a double induction, first on the length 

of h 1 + length of h 2 (which is the length n of h 1 h 2) and finally for a 

given n, by .decreasing induction on Inf(h 1, h2) ; in order that this 

induction process work • we will assume that X is finite; the general 

case will follow by passing to an inductive limit. 

We may suppose hi < h 2 (otherwise we use the relations 

[111, 112] = - [112 , 1l 1] and [ii, Ti] = O). 

First Case. Let h 2 b X, then h 1 c;; X since h 1 < h 2 , so we have 

h 1h 2 b H and therefore ~ = [Tip b.2] , q. e. cl. 

Second Case. h 2 ¢ X. Put hz = h
3

h 4 , h 3, h4 €: H and h 3 < h4 . 

We have the following subcases. 

b) h1 < h3 < h4 . 

Using the Jacobi identity we get 
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Now length 'of h
1
h

4 
< length of h 1hz, hence we can apply the 

induction hypothesis, i.e., [lil' li4] = '£ca lia where ha€ H • 

From tliis equality we obtain l{h ) = a 

.£(ha) > £(h 1), hence ha > h 1 •. Since we have h 1 < h 3 , we obtain 

Inf(h3, ha) > h 1 = Inf(hl' hz)· 

Applying the induction hypothesis we get that [ti
3

, ii
0
l is a linear 

combination of li 1s with h € H • 

Similarly, replacing h
3 

by h4 , we get that [li
4

, [li1, li3]] is also 

a linear combinatiQti of li 1s with h € H • Q. E. D. 

8 6. Free groups. 

(In this section, we take k = fr ). 
n 

Let X be a set and let F X be the free group on X. Let F X be 

the descending central se.ries of F X , defined hy F ~ = F X and F~ = 
n-1 

(F X , F X ), for n > 1. 

The associated graded group is, as we know, a Lie algebra, given by 

CX> 

F 2:""'\ nF nF = Fxn/Fxn+l . gr X = . gr X ' gr X 
n=l 

In particular, I 1 
gr F X = F X/(F X' F X), that is, gr F X is the free 

abelian group on X. 

Theorem 6. 1. The canonical map X ~ gr 1 F X induces an 

isomorphism of Lie algebras 

Corollary 6. 2. The groups F~/F~+l are free Z-modules and if 

X is finite with Card X = d, ~ rk(F~/F~+l) = id(n). 
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Now consider the free associative algebra AssX on X ; let Ass~ the 

component of degree n of Ass • The completion A~sX of Assx is 

defined as. the infinite product ft Ass~ • An element f 6 A~sX can be 
n=O 

be represented by a formal series f = f f • with fn 'i'; AssXn • 
n=O n 

,.. 
Define a homomorphism 8 : F X ~Ass~ by 9(x) = 1 + x where 

1ss~ is the multiplicative group of the inversible elements of A~sX (it ,. 
is clear that 1 + x is inversible in Assx , so it is in the multiplicative ,. 
group Ass~ ). 

,. " lln 
For any positive .integer n, define '7LnCAssX as ""'- = 

{flf= ]
0

fm and f0 =f=··· =fn_ 1 =o}, andput 'F~= o- 1(l+~n). 
Then g 6 Fx is in 'F~ if and only if 9(g) = I+ E 1J;n. 

m.2:,n 

Notice that 'F~ = FX and 'F~ C '~-l • 

Theorem 6. 3. 'Fn - Fn x - x. 
Now we will prove the theorems 6. 1 and 6. 3. 

a) It is clear that q, 1 : Lx ~ gr F X is surjective. 

b) (' F~) is a filtration of F X • In fact, we only have to check 

(IF~ • ' Fk) c I ,F~+p • 
m p Am 

To p:rove this, take g 6 IF x , h 6 IF x with e (g) = 1 + G, G 6 m ' 

8(h) = 1 + H, H € ~p • 

We have gh = hg(g, h) and 

8(gh) = 1 + G + H + GH 

8(hg) = 1 + G + H + HG 

Since 8 is a homomorphism we get 8(gh) = 8(hg)8((g, h)) i.e.,: 

(*) 8((g, h)) = l + (GH - HG) + higher terms. 

I 

I 



LA 4.12 

Therefore (g, h) € 'F~+p. 

'lbere is a natural map fJ : 1gr F X ~ AssX defined as follows: 

let E G 1grnF X , let g € 'F~ be a representative of E, and let 

9(g) = I + Gn + Gn+l + , with Gp€ Assi. 

We define fJ( U by: 

It is easy to see that this definition does not depend on the choice of the 

representative g. Formula (*) shows that 11 : 1gr F X---+- Assx is a 

Lie algebra homomorphism. 

Since 1F~ is a filtration we know that F~ C 'F~ ; which induces 

a homomorphism t/I : gr F X ~ 'gr F X • 

Now let us look at the composition 

where f/J 1 is surjective and 'Tl is injective. 

This composition is obviously the map 'P: Lx ~ AssX given in 

the theorem 4. 2 and we know it is injective. 

Hence q, 1 is injective and therefore is an isomorphism ; which 

proves Theorem 6. I. 

that 

This implies now that t/I is injective. Let us prove, by iruhction, 

F n = 'Fn x x· 
I 

If n= 1 then F X = 'F X by definition. 

Now suppose 'n > 1 , then we have 

= 'Fn-1 
x 
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and the injection grn-lFX ~ •_grn-lFX 

n-1/ n n-1/1 n h" h . 1. F x F x ~ F x F x ' w 1C imp 1es 

1!17. The Campbell-Hausdorff Formula, 

is the canQnical map 

F n = 'Fn d X X ' q. e. • 

In 887 and 8, the ground ring k is supposed to be a ~-algebra (for 

instance, a field of characteristic zero). 

Theorem 7. 1. Let X be a set, then the free Lie algebra Lx on X 

coincides with the set of primitive elemems of AssX (i.e., 

Lx = { w €: Assx l.O.w =well I + I QD w, where .0.: Assx-..;> Assx ® Assx 

is the diagonal map}. 

This follows from a theorem proved in Chapter III, since AssX may 

be identified to u Lx . 

" Define now, as in 16, the completion AssX of AssX and the 

" completion Lx of Lx by: 

a> 

II Ass~ , 
n=O 

"' a> 
Lx = II L~. 

n=O 

I\ "' "' Define similarly the completed tensor product Assx(8) Assx by: 

A A A " 
The diagonal map .0. extends to a map .0. : Assx ~ Assx 0 AssX and 

it is clear that theorem 7 .1 remains valid when Assx and AssX <3 Assx 

are r~placed by their completions. 

Theorem 7, 2.. Let ~ C A;sX be the ideal aenerated by X. Define 

maps 
,. A A A 

exp : m ~ 1 + m and log : 1 + m ~ m 

by the usual formulae: 



exp(x) = 2 xn / n ! 
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Cl) 

log(l+x) = 2 (-l)n+lx0 /n. 

n=l 

Then expo log = I ~ logo exp = I. 

Proof: Let us prove, for instance, that exp(log( I + y)) ·~ 1 + y if 

f\ 
y € m . If T is an indeterminate, the formula exp(log( l+T)) = T is 

known to be' true in the power series ring. ~[[T]] . But, since y belongs 

to m, there is a well-defined and continuous homomorphism f: £ [[T])--;;.. A~sX 

which transforms T into y. Applying f to the equality exp(log( l+T)) = T, 

we get exp(log( l+y)) = l+y, q. e. d, 

" Corollary 7. 3. The map exp defines a bijection of the set of a€ ~ 

with A a = a ® I + 1 ® a onto the set of /3 € I + ~ with Af3 = f.3 €) f3. 

Proof: Let a€:~ and J3 = ea. Since A comniules with the exponential 

map and a ® I commutes with I e a, we obtain 

= J3 CZ j3. 

Aa e 

Theorem 7. 4. (Campbell-Hausdorff). Let X = lx, y} x -::/:=- y, 

x y z ,. 
then e e = e with z € LX . 

Proof: Since ex, eY € I + ~ we have exey € I + rii and since 
A 

the exponential map is a bijection there is one and only one z € '>'M-

auch that ez = exey . 

We have the relation 

"" Applying 7. 3 we find that z is a primitive element and by 7. I 
,.. 

z € L x· q. e. d. 
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Now, let X be an arbitrary se tand let z(x, y) denote the element 

of ~ fx, yJ C LX such tha~ exey = ez(x, y) for all x, y € X. 

We have z(x, y) = £ z (x, y) where z (x, y) € L~ . 
n=l n n 

Explicitly, the values of the first three homogeneous components of 

z(x, y) are 

z 1(x, y) = x +y 

z
2
(x, y) = 1 Z [x, y] 

z
3

(x,_ 1 1 y) = n;[x, [x, y]] + u;[y, [y, x]] 

and it is clear that z(x, 0) = x, z(O, y) = y, and z(z(w, x), y) = z(w, z(x, y)). 

18. Explicit formula. 

Define a map • :""-~ Lx . ('flt. C Assx) as follows: 

where x. €X. 
l 

Now define 

Theorem 8. 1. 

q, I Lx = idi.. • 
x 

q,: Tn.---+ LX by </J(x1 ... xn) = r} <t(x1 • • • xn). 

The map q, is a ~etraction of '1ft. ~ Lx• i.e. , 

Proof: We have to prove that •(u) =nu if u € Lx0 
• 

~~- \ 

Let (J: AssX ---;;.. End(Lx) be the algebra homomorphism which 

extends the Lie algebra homomorphism ad : LX ~ End(Lx>· 

Lemma 8. 2. The relation &(uv) = (J (u)•(v) bolds for u € Assx 

and v € m. 

Proof of Lemma. Since 'I and (J are linear it is enough to consider 

the case u = x 1 · · · x ; x. €: X and we proceed by induction on n. n i 

If n = l then it is t.civial. 
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Now suppose n > l, then 

= 

This concludes the proof ofthe lemma. 

n 
Now we will prove that &(u) = nu for u <; LX by ind.lction on n. 

If n = 1 the property is obvious. 

Suppose n > 1, then u = [!, [ v., w.] and is encngh to prove this when 
1 l 

u = [ v, w] with v G L~ , w G Li , p+q = n, p, q > 0. 

Using the fact that 8(v) = adv and 6(w) = ad w we get 

4P([v, w]) = 4P(vw - wv) = 8 (v)Cl(w) - 8 (w)&(v) 

= q8{v)w - p8(w)v 

= q[v, wt-p[w, v] 

= (q + p)[v, w] = nu q. e. d. 

Finally, we are prepared to give the explicit formula for z(x, y) = 

log(exey) for x, y <; X. 
(l) 

As before let us write z = I!, zn with, zn b Li • 
t1.=l 

Since exey = ( l: ~) ( [; f:-) = I+ L x;r; 
p=O p. q=O q, p+q.2,1 p.q. 

we have 

z = 

so we obtain 

co 
= 2 (-1)=~1 

m=l 
( ~ ~\ m 

L p.q. ) 
p+q2:1 
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(-I)m+l 
m 

Applying the homomorphism & to the monomials which appear in this 

sum we get 

Pi ql Pm qm-l 
: ad(x) ad(y) , .. ad(x) ad(y) (y) 

if qm ~ 1, and: 

P1 ql pm P1 ql p - l 
&(x y ... x ) = ad(x) ad(y) •.. ad(x) m {x). ff q = 0. 

m 

Notice that this is zero if qm ~ Z, Ol" if qm = O, pm 2: Z. Hence, 

the only possibly non-zero terms are those where q = 1, or p = 1, q = 0. 
m m .. m 

Hence, using the identity zn = </>(zn)' we obtain the explicit Campbell-

Hausdorff formula {in Dynkin 1s form): 

where 

and: 

z' p,q 

z" p,q 

= 

= 

z 
n = I 

n 2 (z 1 + z 11 ) , 
p,q p,q 

p+q=n 

P1+ ..• +pm=p 

q 1 + .. ' +qm -1 =q - I 

pi+qi2: 1 

P > 1 m-

p I+ .. • + p m-1 =p- l 

q 1 + ... + qm - l =q 

P .+q. > 1 
l l -

(-l)m+l 
m 

P1 ql Pm 
ad(x) ad(y) .•. ad(x) (y) 

' q ' 1 Pr l' · • · Pm· 

P1 ql qm-1 
ad(x) ad(y) ••. ad(y) (x) 

I I I 
Pr q I' · · · qm - i · 
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Exercises 

I. Let X be a finite set, with Card(X) = d. Show that the number of 

elements of Mx of length n is equal to: 

2n- l dn l· 3· 5 · · · (Zn-3) 
n. 

Z. Show that L~ = [X, L~- l] for n 2:. Z. 

3. Show that the center of LX is 0 if Card(X)-::/::. 1, and that the center 

of Lx/ n~ L~ is equal to L~ • 

4. Let X be a the set with Card(X) 2:. a, and let ..!.'! be the set of all 

Hall families in MX . Show that Card(!:!) = zCard(X). 

,. * 5. Show that the homomorphism 9 : F X ---;... Assx defined in 8 6 is 

injective. 

' 



CHAPTER V. Nilpotent and Solvable Lie Algebras. 

In this chapter k denotes a field, and in IS, concerning the serious 

theorems on solvable Lie algebras, a field of characteristic 0. All Lie 

algebras and modules will be finite dimensional over k. 

Iii l. Complements on ~ -modules. Let "J be a Lie algebra over k. 

A-"1 -module is a vector space V over k together with a k-bilinear map 

Uf X V ----;.. V, denoted by (x, v) ~ xv, which satisfies the condition 

[x, y]v = xyv - yxv for all x <; f11J, y € "J , v ~ V . The corresponding 

Lie homomorphism o : tZ'J ~ End(V) is called a linear representation of YIJl'f' 

and V is called the space of the representation. 

An arbitrary vector space V can be made into a Ill/ module by 

putting xv = 0 for all v € V , x 'i ':f · We say then that "'/ acts trivially 

on V. Whenever we view k as a 1 -module we understand it with trivial 

action unless the contrary is stated. 

Let V 1 and V 2 be "/ ·-modules. The tensor product V 1 ® V 2 

can be made into a '1 -module in a unique way such that the rule 

'holds. This can be checked directly, or seen from the diagram 

t;,,. P1r/JP2 
U '1 --==-.;.. U UJ Q!') U "J > End V l C) End V z--;... End(V l Cl'O V 2), 

where l:l. is the diagonal map. The action ( 1) is sometimes called the 

diagonal action of '1 on V 1 (I) V 2 • 

Similarly, the space of k-linear maps Homk(V l' V z) becomes a 

"'J' -module if we put 

(2) (xf)(v1) = x(f(v1)) - f(xv 1), for· x € ~ , v 1 € V 1 . 

'LA 5.1 
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More generally, given a finite family of "1-modules Vi and V, we 

make the space of k-multilinear maps from IT Vi to V into a "/ -modl1.le 
i 

in the corresponding way. 

If V is a "'J -module,. an element v € V is "'1-invariant if xv = 0 

for all x "'bf· This seemingly weird terminology comes from the 

corresponding group situation; xv= 0 is equivalent to v = ( l+ t. x)v. 

The set of all '41 -invariant elements in V is a w1-subi:nodule of V, 

the largest submodule on which ""'f acts trivially. 

Example 1. A k·linear map f : V 1 .---;... V 2 is 4/ -inva:ti.ant for the 

action of "'1 on Homk(Vl' V2) described above if and only if f(xv 1) = xf(v1), 

that is, if and only if f is a homomorphism of -'1 -modules. 

Example Z. (Invariant bilinear forms). An invariant bilinear form 

B : V 1 ')( V z ~ k is one satisfying the identity 

(For g = l + fx this means B(gv1, gv2) = B(v1, v2).) Let V be a 

'1-module and p ·: '1 ~ End V the corresponding linear representation.· 

Define BP(x, y) = TrV(p(x)p(y)), where Trva denotes the trace of 

a k-linear transformation a: V --:;io. V • 

Proposition 1. 1: BP is a symmetric bilinear form on ""1X"'J' which is 

"'I -invariant for the adjoint representation of "1 ~ "'j. . 

The rule Try(a/3) = Try(/3a) shows the symmetry of BP. To prove 

its invariance we must show that the following expression 
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is zero. To do so we cancel the middle two terms· a-nd use again the 

symmetry rule above with a = p (x), and 13 = p(x 1)p(xz) • 

Definition 1. Z: The ~lling form is 1he invariant symmetric bilinear form 

B(x, y) = Tr( ad x ad y) ~ "'J which is obtained by taking p to be the 

adjoint representation in the preceding example. 

IZ. Nilpotent Lie Algebras 

Let OJ be a finite dimensional Lie algebra over a field k. The 

descendi ll.g central series of ideals of '1 is defined by c~ = .D/
and C~ = [.,, en-~] for n ,2:. 2.. (Here we write [V, W] for the 

image of v e w under the map (x e y) i-:--. [x, y] • we leave the proof . 
[ r s ] C r+s of the rule C ~ , C ~ C ·"'1 as an exercise for the reader.) 

Theorem Z. l. The following conditions are equivalent: 

(i) There exists an integer n such that C~ = (0). 

(ii) There exists an integer n such that 

for every n-tuple of elements (xi) in "'I. 
(iii) ~ is a succession of central extensions of abelian Lie algebras; 

that is, there exists a chain pf ideals '1 = ..llt1 ::> .bt.z ::> · · · ::> Pl.'n = (0) 

such that ht./ ..tlli+l is. h the center of 1 /.lH. i+l for each i, 

or in other words~ such that ["'1,J.I( i] C P'Ci+l for all i . 

... . 
The proof in the form (i) => (iii) => (ii) ::::::> (i) is completely trivial. 

Notice thatthe chain of ideals Cn~ is the most rapidly descending chain 

with the properties described in (iii). If (bt.'1) is as in (iii), then 

C n""1 C .Pt. n for all n. 
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Definition ·2. 2: If the conditions of Theorem 2. 1 are satisfied, "'/ is 

called nilpotent. 

Example. Let V be a vector space, and let F = (Vi) be a flag in V, 

that is a sequence of subspaces (0) = v 0 C v 1C ·•• C Vn = V E\UCh that 

dim V. = i. Let ""(Fl= [u ~End V I u V.C V. 1 for all i2: 1J. 
1 1 1- . 

Thus N(F) is the set of endomorphisms of V which carry each Vi into 

itself and induce the zero endomorphism on the quotient space VlVi-l 

for each i 2: 1 . Obviously, M"'(F) is an associative subalgebra of End V, 

and a fortiori it is a Lie subalgebra under the bracket [x, y] = xy - yx. 

In terms of a basis (v.) for V which is adapted to F in the sense that 
l 

V. = kv1 + · · · + kv. , the algebra K(F) consists of those endomorphisms 
l l 

whose matrix is. strictly superdiagonal, that is, has zeros on and below 

the main 'diagonal. To show that _,,,,(F) is nilpotent, define .All" k(F) = 

fu(;:;EndVI uviC vi-k} forall i2:k, note that ,,,,/kC,,y"k+l' and 

'k.M" C AV k+l , hence [.W, .M-'kJ C ~+l , he~ce -Uj is nilpotent because 

#k = 0 for large k. 

§3. Main theorems. 

The following theorem offers some justification for the terminology 

"nilpotent". 

Theorem 3 .. 1: ·.v; ·is nilpotent if and only if ad x is nilpotent for each 

' We will at the same time consider 

Theorem 3. 2:' (Engel) !:!! p : '1---;.. End V be a linear representation 

of '1 on the vector space V such that p(x) is nilpotent for each 

x (;:; 'I/· Then there exists a flag F =(Vi) in V such that p('1)C#(F). 
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The converse of theorem 3. 2 is trivial, because a strictly superdiagonal 

matrix is nilpotent. The meaning of theorem 3. Z is that if for each 

individual x 6 ur th~re exists a flag F = {v .J such that p(x)V C V (. l) -' x x, l x, l x, 1-

then there exists one flag F which works for all x simultaneously. 

Theorem 3. 2 is equivalent to 

Theorem 3. z•. Under the hypotheses of theorem 3. Z, if V :f. (0), then there 

exists a v c;; V , v # 0, such that p(x)v = 0 for all x c;; '1 . 
Indeed. if theorem 3. 2 1 holds. then theorem 3. 2 follows immediately 

by induction on _dim V. A flag F in V = V /kv lifts to a flag on V with 

the desired properties, if p (OJ' )v = 0. We shall now prove 3. 2 1 in seven 

steps: 

Step 1: Since both the hypothesis and the conclusion c<>:ncern only the 

image p(~) in End V, we can replace '1 by its image and assume 

'1 C End V. 

Step 2: Then ad x is nilpotent for each x c;; '1 Namely, we can write 

{ad x)y = L y - R y , where L and R are the k-linear endomorphisms x x x x 

of End V defined by a I---+ xa, and a t---+ ax. respectively. But Lx 

and R are nilpotent by hypothesis and commute. Hence L - R is x " x x 
m n m+n-1 nilpotent. (Show that if a = O, J3 = 0 and a J3 = J3a , then (a - /3) =O. ) 

Step 3: By induction on dim "1 • we may assume 3. Z' holds for all 

Lie algebras f such that dim ~ < dim '1 
Step 4: Let ~C '1 be a Lie subalgebra, ~ :f. Uf Let ..v= {xc;;e,-l<adx)-?C ~] 
be the normalizer of 1 in '1 , that is, the largest subalgebra of 'I] 
in which 4 is an ideal. Our aim is to prove All' is strictly larger than 4. 
(The reader familiar with the theory of p-groups will note the analogy.) 

The Lie algebra 1 operates on + and on "/ / f througi nilpotent 
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maps. Since dim~< dim#/ , there ill a non-zero vector i = x + -f 
in 'f / f invariant (i.e. killed) by f. For y €: f we have then 

(ad x)y = - (ad y)x €: i . because (ad y)x = 0. Thus x €: """ and our 

clq,im is proved. 

Step 5: If "/ =/= (0), there exists an ideal --$- in DJ of codimension I. 

Indeed, let f be a maximal Lie ·subalgebra of "J . different from '1 . 
Then, by step 4, the normalizer of' f is all of 'Pf • that is, 1- i& an 

ideal in "1 · The inverse image in ~ of a line in '1/4 is a subalgebra 

of 'If strictly bigger than 4, hence is all of '1 • and f/// f is 

the ref ore one dimensional. 

We now choose such an ideal "'1· 
Step 6: Let W = [ v €: VI 'f v = 0 } . Then W is stable by ti/, This 

depends only on the fact that ? is an ideal. For x b '/f • y €: 1- we 

have yxv = xyv - [x, y] v = 0 if v €: W. 

Step 7:. W + (0) by induction (dim 4 < dim '1>· Take y €: ~· y f, ~· 

Since y is nilpotent, y kills something -:I- 0 in W. This thing is then 

killed by "J = -f + ky • Q. E. D. 

We no'!\' prove theorem 3. 1. If '1 is nilpotent then ad x is nilpotent 

for each x €: 'IJ by condition (ii) of theorem Z. 1. Conversely, if adx 

is nilpotent for all x, then, applying Engel' s theorem to the adjoint 

representation, we see that there exists a flag (O)C-ut 1C ..ur:: 2 C· · ·C.«n = '1 · 
of subspaces of -'1 • such that ["'1 • f)L i] C .Qt i-l for all i, and 

consequently "1 is nilpotent by criterion (iii) of theorem Z. l. 

113* The group-theoretic analog of Engel's theorem. 

Let V be a finite dimensional vector apace over k. An element 

g €: GL(V) is called unipotent if it satisfies one and hence all of the following 
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three conditions, whose equivalence we leave as an exercise for the 

reader: 

( i) g = 1 + n with n nilpotent. 

(ii) In suitable coordinates g is represented by a matrix having l's 

on the main diagonal and zero below. 

(iii) All eigenvalues of g are 1. 

Theorem (Kolchin). Let G be a subgroup of GL(V) such that each element 

.g E.: G -is unipotent. Then there exists a flag F = f vJ ~ V such that 

GV. = V. for all i. 
l l 

In other words, there is a coordinate system in which all elements 

g E.: G are represented simultaneously by triangular ma1rices (and hence 

by triangular matrices with l 1s on the diagonal since the ,eigenvalues are 

all I by hypothesis. ). 

The theorem will follow by induction on dim V if we can show that, 

under the given hypothesis, if V ::/= (0) there exists a v € V, v -::fo 0, 

which is left fixed by G. The equations (g- l)v = 0, for g € G, are 

linear, and will therefore have a non-trivial s-olution v over k if and 

only if they have one over the alge·braic closure k of k, i.e. in V~ k. 

We may therefore suppose that k is algebraically -closed. Fµrthermore, 
' 

replacing V by a G-submodule we may suppose that V is a simple 

G-module. From the density theorem, or Burnside's theorem (Bourbaki, 

Alg. , Ch8, 84, #Z, 3) it follows that the elements of G span all of 

Endk(V) linearly, because Z:. kg i~ a k-subalgebra of Endk(V) . 
g€G 

On the other hand, for each g = 1 + n € G we have Try(g) = 

Try51) + Try(n) = Try( 1) because nilpotent endomorphisms have zero • 

eigenvalues hence zero trace. Thus, Trv(g) is independent of g € G , 

and for every g' € G we have Tr(ng') = Tr((g-l}g 1} = Tr(gg'-g') = 
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Tr(gg') - Tr(g') = 0. ·Since the g 1 span En_dk(V) it foliows that Try(na) = 0 

for all a € Enc:lk(V), and consequently n = 0, i.e. , g = 1. This is what 

we were trying to prove: G acts trivially on V. 

84. Solvable Lie algebras. 

The derived series (Dn"J) of ideals in "'1 is .defined inductively by 

1 n 
D ""1 = .US- , and D ~ 

n-1 n-1 ] ::::: [D ~ , D ~ for n > 1. 

Theorem 4. 1. The following conditions are equivalent: 

(i) Ther.e exists an integer n such that Dn-'1 = (0), 

(ii:) There exists an. integer n such that for every family of ztl 

elements xv b 1 we have 

[ [[ ..... ] [ ] ] [ [ ][ ]] ] = 0 

(iii) "] is a successive extension of abelian Lie algebras, that is, 

there exists a sequence of ideals "1 = -""l) ~Z) · · · ) -"'n = (0) 

such that ..JX/ .Qti+l is abelian, i.e. • [../X;., .QC.] c..uc.+l • for all i. 
1 1 1 ~~-

It is trivial that (i) ~ (iii) ~ (ii)"~ (i). 

Definition 4. 2. !!' ""J satisfies the three equivalent conditions of the 

preceding theorem, """f. .. is said to be a solvaple Lie algebra. 

Example. Let .F = (Vi) be a flag in a finite dimensional vector space V. 

Let b(F) = f x b End VI ~Vi C Vi for all i} . If we adapt the coordinate 

system to the flag. then b(F) consists of the triangular matrices. .It is 

easy to check that b(F)lw' (F) is abelian, and comequently b(F) is solvable. 
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85. Main Theorem. 

In this section ,our field k is of characteristic O. The main theorem 

on solvable Lie algebras is 

Theorem 5. I. (Lie) Let tlJ be a solvable Lie algebra over an algebraically 

closed field k of characteristic 0. Let p be a linear representation of 

'IJ with representation space V. 

such that p(~) e b(F). 

Then there exists a fiag F = (V.) in V 
l -

This reduces, by induction on dim V, to 

Theorem 5. 11• Under the hypotheses of Theorem 5. 1, if V =/= (0), there 
~ 

exists v <C: V, v ':f= O, such .that v is an eiSenvector for p(x) for all 

Note that if v is, such an eigenvector, it determines a map 

X: '.as ~ k such that p(x)v = X(x)v for all x b~. 

Main Lemma. Let "'1 be a Lie algebra, over a field k 'of characteristic 0, 

~ an ideal in -1' , V ~ 41-module, v <C: V, v -::/:- O, X : 1--..;i. k such that 

hv = X (h)v for all h <C: 1- . Then X ([x, h]) = 0 for x <C: '1 • h €: -f-. 
Take x.€ "1 . Let Vi be the subspace of V generated by the 

i-1 ' 
vectors. v, xv, ... ,x- v. Thus (0..) = v 0 e v 1e· · · e vie Vi+l' Let 

n be minimal > 0 such that V n = V n+l . Then dim V n = n, and 

xvnevn, and Vn = Vn+k for all k~O. Claim: For b €-f, 

hxiv = X (h)xiv (mod Vi), 'T/ i 2, 0, We prove this by induction on i. 

For = 0 this is the definition of "X . For i > 0, 

bxiv h i-1 h i-1 [ b]xi-lv. = xx v = x x v - x, 

Writing hxi-lv = X(h)xi-lv + v 1 with v' <C: V. 
1

, and using xV. 1ev. , 
1- 1- 1 

and 1. V. e V. , we are done. It follows that, with respect to the basis -r, 1 1 

v, xv, .•. , xn·lv, the endomorphism of V n produced by an element h € {-
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is represented by a triangular matrix with diagonal entries· X(h). Thus, 

Try fh) = nx (h). Replacing h by [x. h] we conclude nx ((x, h]) = 0, 
n 

because Try ([x, h]) = Try (xh - bx)= 0 (notice that xVriCYnJ. 
n n 

Using the lemma, we prove theorem 5. 11 by induction on dim "1· 
If dim '1 = 0 the statement is trivial. Assume dim "1' > O. Then, since 

A1J is solvable, D~ = [~, '11 '::/:: "'1 · Let 4 be a subspace of q 
of codimension 1, containing 0"'1. Then '4/D"'/ is an ideal in Lf /D..11/ 

because the latter is abelian, and consequently ..f is an ideal in Alj. 

Byinductionthereis v€V, v':/=O, and x:f~k such that 

hv = X(h)v for all h € -f. Let W = f w € Vlhw = X(h)w for all h €: ~}. 
By construction, W is a non-zero linear subsp11-ce of V, and using the 

main: JP.mma we can show that W is stable und·er "1 . If w € W, 

x € "1 , then for h € .f , 
hxw = xhw - (x, h)w = X (h)xw - X ([x. h] )w , 

and since the last term is zero, it follows that xw € W. 

Now let x € 'f, x t, ~ . Since x : W --;i.. W, and k is algebraically 
.. 

closed, there is an eigenvector v0 € W for x. This v0 is an eigenvector 

for kx + ~ = ""S . Q.E. D. 

To see that the theorem is false in characteristic '::/:: 0, consider the 

Lie algebra sJ. (2) of 2 )( 2 matrices with trace 0 in characteristic 2. It 

is nilpot~nt of dimension 3, but in its standard representation on the 

space of column vectors of length 2, there is no eigenvector. 

We close this section with two corollaries of Lie's Theorem. 

Corollary 5. 2. g "'1 . is a solvable Lie algebra over an algebraically 

closed field of characteristic zero, then there exists a flag of ideals in -UJ . 
We need only apply Lie's theorem to the adjoint representation. 
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Corollary 5. 3. !_! '1 is solvable and k of characteristic zero, then 

["1 • .qJ is nilpotent. 

Since the s.tatement is~' we can suppose that k is algebraically 

closed. (If k 1 is an extension field of k, and "1' = -.llJ oe, k 1
, then it is 

obvio\13 that q is solvable (resp. nilpotent) if and only if ~1 is 

solvable (resp. nilpotent), that ["1 • ~]' = [.If '•"1'], etc.) By the 

preceding corollary there is a flag <"f i> of ideals in -U/ 1 say 

'1:>~ 1 :> "1 z :) · · · :> "'1 n = 0. Let x ~ ["1 •"1J · Then ad x "[ i C""J i+l 

because End<""[./.I/ i+l) ~ k is commutative. Hence ad x is nilpotent 

on -'/ • and all the more so on ~ • .ql. By theqrem 3. l we ·conclude that 

['?' ·-'fJ is nilpotent. 

Remark. Conversely, if ~•-':fl is nilpotent, it is clear that ""J. is 

solvable. 

85* The group theoretic analog of Lie's theorem. 

A group G is called solvable if it "is" a finite sequence of extensions 

of abelian groups. One defin.es a sequence of subgroups G(n) of G by 

G( I) = G, and G(n) = (G(n- l), G(n- l» for n > I. Then the solvability of 

G is equivalent to G(n) = ( 1) for some n. 

Let G be a topological group and p: G ~ GL(V) a continuous 

homomorphism of G into the group of automorph~sms of a finite 

dimensional vector space V over <t. 

Theorem 5. I*. !! G is solvable and connected, there exists a flag F 

in V which is invariant by p(x) for all x ~ G. 

The representation p is called irreducible if V :I (0) and if V and 

(0) are the only subspaces of V which are invariant by p(x) for all 

x €: G. Theorem 5. l* implies obviously 
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Corollary 5. 2*. If G is solvable and connected, and the representation 

p is irreducible, then dim V = 1. 

Conversely, by induction on dim V, this corollary trivially implies 

the theorem. 

Corollary 5. 3*. A compact solvable topological group is abelian. 

By the Peter-Weyl theorem, for any compact group G there exists 

a family of irreducible representations p : G ~ GL(V ) such that a a 

the map G----;;.. IT GL(V a) is injective. 
a 

If dim V = l for each a, 
a 

it follows that G is abelian. 

In proving the theorem we will use the following t~minology: an 

element vb V is an eigenvector for a subgroup HC G if v ::/:. 0 and 

if hv b <tv for all h b H. An eigenvector v for H defines a character 

* Xv : H ~ <t such that p(h)v = X v(h)v for all h b H. Of course the 

function X is continuous because p is. The number of distinct 
v 

characters X of H arising from eigenvectors v <;: V is finite, and 
v . 

in fact ~ dim V. Indeed, s uppos~ that v 1, ... , v r is a maximal 

independent set of eigenvectors for H in V, and let 'X 1, .. '. •Xr 

be the corresponding characters. Then if v is an eigenvector with 

character X we have v= Z a. v. with a. b <t, and applying p(h) 
l l l 

we find a.;\(h) = a.x .(h) for each i. Hence X = X. for some i; because 
l l l l 

not all ai are zero. 

Main Lemma*. Suppose that G is connected. Let v be an eigenvector 

for a normal subgroup H. Then )( (x- 1hx) = X (h) for all x b G v v 

and h b H. 

Notice the analogy with the main lemma of the preceding section 

A simple computation shows that )('. (x -lhx) = X (h). As remarked above, 
v xv 

there is only a finite number of characters of H of the form X for x f: G. 
xv 
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Hence, the subgroup S = { x € GI X xv = Xv} is of finite index in q. But 

S is closed in G, since it is the set of common zeros of the continuous 

-1 
functiom x ~ X (x hx) ··- X {h) v v 

as h ranges over H. The 

decomposition of G into coRets of S is an expression of G as the 

disjoint union of a finite number of non-empty closed sets. Since G is 

connected, it follows that S = G which is what we were trying to prove. 

We now prove the theorem by induction on the smallest number n 

such that G{n) = 1. If n = 1 then G = ( 1) al'd the theorem is trivial. 

Suppose therefore that n > 1, so that G(Z) 1/: G( l) = G. By induction, 

we can assume the theorem is true for G(2.), because G(2.) is connected. 

Indeed, let C be the set of commutators in G. As image of G K G 

-1 -1 m under the map x X y _.... xyx y , C is connected. Let C denote 

the set of elements of G which can be expressed as the product of m 

elements in C. Cm is connected because it is the continuous image of 

C x C x ... X C (m times). -Sin,ce u € C implies u -l € C, the subgroup 

G(Z) generated by C is the union of the connected sets Cm, and is 

connected because the Cm have a common pbint, 1. 

B · d t" th · t · t for G(Z) 1"n V. y 1n uc ion, ere ex1s s an eigenvec or v0 Let 

X 0 : G{2.) ~ <r::* be the corresponding character. By the main lemma, 

the set of all v E: V such that p (h)v = x
0

(h)v for all h € G(Z) is 

invariant under p(G). 

Suppose p irreducible. It follows that p(h) = X(h)v for all v € V, 

h € G(2.). Now let x € G. Let H be the subgroup of G genei:ated by x 

and G{Z)_ Since H :J G(2.), H is normal in G. Since a: is algebraically 

closed, there exists an eigenvector v1 for the operator p(x). By the 

above, v
1 

is an eigenvector for G(2.), and hence for H. Let 

X 1 : H ~ a:* be the corresponding character. By the main lemma 
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again, the set of all v €: V such that p(h)v = X 1(h)v for all h € H 

is invariant under p(G) and henm is .all of V. Hence, in particular 

p(x)v E: <tv for each. v €: V. Since x was arbitrary in G, we conclude 

that dim V = l. Thus Corollary 5. Z* and Theorem 5. l* are proved. 

Remark: In fact, Lie's theorem and its group theoretic analog imply 

each other directly. Granting the group statement, we get:'the Lie 

algebra statement in case k = ([; , by considering the connected Lie group 

attached to a given Lie algebra. The case of an arbitrary algebraically 

closed k of characteristic zero is reduced to k = a: by the Lefschetz 

principle: Take a finitely generated subfield k 1 of k containing the 

structure constants for ·"J and for the action ~ 1C V ___,... V, and 

imbed k 1 in ct. The descent from a: to k'" is "easy". 

Conversely, if we grant Lie's theorem we can get the group 

statement by consideriag the closure of p(G) in GL(V) as a real 

Lie group and applying Lie 1s theorem to its Lie algebra. 

16. Lemmas on endomorphisms 
. t 

Let k be an algebraically closed field of characteristic zero, atXl 

let V be a finite dimensional vector space over k. An element u €: End V 

is called semisimple if its eigenvectors span V or, what is the same, if 

there exists a system of coordinates in which it is represented by a 

diagonal matrix. 

Lemma 6. I. For each u €: End V there exist a semisimple s and a 

nilpotent n ~ End V such that sn = ns ~ u = s + n, and s and n 

are uniquely determined by these conditions. Moreover, there exist 

polynomials S ~ N (depending on u) such that S(O) = 0 = N(O) ~ 

s = S(u) and n = N(u). 
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m· 
Let det(T - u) = IT (T-X.i) 1 be the factorization of the characteristic 

polynomial of u into a product of powers of distinct linear factors T->.. .. 
l 

m· 
For each i, let Vi be the kernel of the endomorphism (u->.. i) 

1 
: V ~ V. 

Then V = E;9 V- (direct sum), dim V. = m. , and uV. C v. . Suppose 
l l l 1 l 

u = s+n is a solution to our problem. Since 1;1 commutes with n. 
m· 

it commutes with u, hence with (u->...) 1 
• Therefore sV. CV. for 

l · ' 1 1 

each i. Since u-s is nilpotent, the eigenvalues of s on Vi are the 

same as those of u. But by construction, u has the unique eigenvalue 

>..i on Vi . Since s is semisimple, it follows that the restriction of 

s to V. is scalar multiplication by >... • On the other band, taking this 
l 1 

as definition of s, and putting n = u.-s (so that on V .• n. has the same 
l 1 

effect as u-)..) we obviously obtain a solution to the problem. Let S(T) 
l 

be a polynomial satisfying 

mi 
mod{T- >.. .) , and S(T) = 0 (mod T). 

1 

(Note the consistency of these two conditions in case >..i = 0 for some i) 

and put N(T) = T-S(T). Then S(O) = 0 = N(O) and s = S(u), n = N(u) 

as required. 

Consequence 6. Z. Let u = s + n as in the preceding lemma. Suppose 

A and B are subspaces of V such that ACB and uBC A. Then 

sBC A and nBC A. 

ID.deed if P(T) is any polynomial in T without constant term, 

then P(u)BC.A. 

Let V* = Homk(V, k) be the dual of V, and for p, q ~ 0 let 

v = v ® ... t& v ® v* e ... e> v* 
p. q '---v--' ~ 

p-times q-times 
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We view V as a module for the Lie algebra End V by means of the p,q 

diagonal action discussed in 11. For u €End V, we let u denote . . ~q 

the corresponding endomorphism of V • For example, p,q 

u 12 = u CID l C8> l - 1 GD u* C> 1 - 1 <I> 1 fP u•, 

where u* € End V* is the "transpose" of u, defined by (u*y• x) = (Yt ux'), 

if we write (y, x) instead of y(x) for y € v*, x € V. 

An important special case is that in which p = q = 1. There is a 

canonical isomorphism V l, 1 ~ End V which associates with x GD y 

the endomorph~sm x' ~ x <Y• x 1 ). • A simple computatio~ shows that 

under this isomorphism, the element u 1, 1 € End V !al corresponds to 

ad u € End(End V). 

Lemma 6. 3. If u = s + n is the canonical deoomposition of u ~ 

Lemma 6. 1, then u :, s +n is the canonical decomposition of 
p, q p, q e· q 

u for each p, q. p,q 

We have [s , n ] = [s, n] = 0 = 0, hence s and p, q p, q p, q p, q P• q 

n commute. p,q If (xi) is a basis, for V cbnsisting of eigenvectors of 

s, then the dual basis (xlJ') of v* consists of eigenvectors of s*, 
1 

the basis (x. cg) ••• cZ> x. ® x"!' ® •.. ® x"!' ) of V consists of 
11 lp J1 Jq p,q 

and 

eigenvectors for s ; hence s is semisimple. The endomorphism p,q p,q 

n is a sum of endomorphisms of the form 1 e · · · ® n Cl>·•· Qi) I or p,q 

I® • · · ® n* ® · ·. I> 1, each of which is nilpotent, and which commute 

with each other; hence n is nilpotent. We have u = s + n p, q p, q p, q p, q 

because the map u ·~ u is linear. The lemma now results from p,q 

the unicity of the canonical decomposition. 

Let s be a semi-simple element of End V, and let V = EB V. be 
1 
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the corresponding direct decomposition, with s IV. = >... . Let 
l l 

c/> : k ____,. k be a Gl -linear map. 

Definition 6. 4. c/>(s) is the semisimple endomorphism of V such that 

cj>(s) Iv. = cj>(>...). 
l l 

Thus, if s is represented by a diagonal matrix, the matrix representing 

cj>(s) is obtained by applying c/> to the entries of the matrix representing s. 

There is a polynomial P(T) (depending on c/> and s) such that P(O) = 0 

and P(s) = c/>(s). We need only solve the interpolation problem P(>...) = '/J(>...), 
1 1 

for each i, and P(O) = 0. So far we have only used the fact that q, 

maps k into k and 'f>(O) = 0. The linearity of q, is needed to prove 

Lemma 6. 5. We have (c/>(s)) • = cj>(s ) for each p, q. p,q p,q 

The space V is a direct sum of subspaces, the typical one of p,q 

which is v. ® ... ® v. e v.*e 
11 lp J 1 

On that subspace: 

s does scalar multpli. by: >... + · · · + >... - >... 
p, q . 11 lp J 1 

- >... , 
J q 

cp(s ) II 
p,q 

II II 

and ('fi(s)) 11 

p, q 
II II 

Consequence 6. 6. Suppose u = s + n is the canonical decomposition of 

u E: End V. Suppose A~ B are subspaces of V such that ACB p,q 

and u BC A. Then for each al-linear map q, : k ~ k we have 
-- p,q 

'/J(s) BCA. p,q 

By lemma 6. 3 and consequence 6. Z, we have s BC A. The p,q 

result follows now because '/J(s) ='/J(s ) is a polynomial in s p, q p, q p, q 

without constant term, as discussed in the remarks. preceding lemma 6. 5. 

Lemma 6. 7. Let u = s + n as in Lemma 6.1. If Tr(uc/>(s)) = 0 for all 

c/> ~ HomGl(k, k), ~ u is nilpotent. 
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With notation as in the proof of 6. 1, we have Tr(ulJ>(s)) = L:m.>...IJ>(>...) = 0 
1 1 l 

for all I/> ~ Homc.D(k, k). For those I/> with IJ>(k)C (D we can apply cp 

again, getting 0 = l:m.(IJ>(>...)) 2, and consequently IJ>(>...) = O for each i. 
1 l 1 

Since this last holds for every IJ> ~ Hom(k, <O) it follows that >... = 0 
1 

for each i, that is, s = 0, and u. = n as contended. [Variant, remarked 

by Bergman: If k = <!'.:, we need only assume Tr(ulJ>(s)) = 0 for one single 

cf>, namely the compex conjugation map.] 

The endomorphisms IJ>(s) are called replicas of s by Chevalley. 

We leave as an exercise the following characterization of their totality: 

Theorem 6. 7. Let s ~nd s 1 be semisimple elements of End V. Then 

s 1 is a replica of s (i.e. there exists a cp such that s 1 = l/l(s)) if and 

only if, for every p, q, every element of V which is killed by s p,q 

is also killed by s 1• 

There is another characterization in terms of algebraic groups 

which is even nicer: Let °l be the set of replicas of s. Then it can 

be shown that '1 is the Lie algebra of the smallest algebraic subgroup G, 

of GL(V) whose Lie cigebra contains s. Indeed the group G, or more 

properly, the group G(k) of points of G with coordinates in k, consists 

of the automorphisms x of V such that, for each i, xlVi is 

multiplication by a scalar x. ~ k*, these scalars being subject to the 
1 n. 

relation IT x. 
1 = 1 for every vector ( ... , n., ... ) of integers n. such that 

1 1 1 

!ni >..i = 0. [Cf. C. Chevalley, Theorie des Groupes de Lie, Tome II, 

Groupes algebriques, Ch II, 113-14, Hermann, Paris, 1951. Also 

Algebraic Lie Algebras, Annals of Math. Vol. 48, 19H, p. 91-100.] 
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17. Cartan1s criterion. 

The following criterion for solvability is useful. 

Theorem 7. 1. Let k be a field of characteristic zero, V a finite 

dimensional vector space over k, !.!!!! 1 a Lie subalgebra of End V. 

Then the following conditions are equivalent: 

(i) '1- is solvable. 

(ii) Tr(xy) = 0 for every. x € '1 ~ y € D(j = ['1, Oj:]. 

Note first· that the theorem; is linear, s-o that we can assume that k is 

algebraically closed (see the discussion after corollary 5. 3; by the 

"Lefschetz principle", that is, by cnoosing a finitely generated sul:iield 

k' C k over which V and '1 are defined and imbedding k 1 in a;, 

we could even reduce to the case k = ([; ). 

(i) =t> (ii) By Lie's theorem we can choose a flag (V.) in V 
1 

stable by l1r . Then Trv(xy) = [}, Try /V (xy) = 0 because an 
-; i i i+l 

element y € D~ must annihilate the one-dimensional 1 -modules 

V/Vi+l • 

(ii) =t> (i). Let u € D '1 . By· Engel's theorem, it suffices to 

show that u is nilpotent. Write u = s + n as in Lemma 6. l. Then, 

by Lemma 6. 7, it suffices to prove Tr(ul/J(s)) = 0 for all q, € Hom
0

(k, k). 

The problem is that ;(s) need not belong to C)( • Write u = [;. c [x , y ] 
I a a a 

with c €k, and x, y €1>f. Using the rule Tr([a,b]c)= Tr(b[c,a]), a a a 4 

we have Tr(u'/J(s)) = E c Tr([x , y ]lf>(s)) = E c Tr(y [ lf>(s), x ] ). 
a a a a a a 

Thus it suffices to show [ c/>(s), x
12

] € D "{. . To do this we use the 

canonical isomorphism End V ~ VCI v• = V l, I , and apply 

Consequence 6. 6 with p = q = l and with A = D~ and B = °S . 
Making the identification End v = vl, 1 we ha Ve u 1,lxl = ux-xu = [ u. x] • 
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as remarked before Lemma 6. 3, hence u1, 1 '1 C D ~ • By 6. 6 it 

.follows that !p{s)111 ~ C D, , that is, [ (j>(s), x] b DCf for each 

x b ~. Q. E. D. 

Exercises 

1. The class of nilpotent (resp. solvable) Lie algebras is closed under 

passage to quotients, subalgebras and products. What about extensions? 

Z. A nilpotent Lie ij.lgebra of dimension Z is abelian. A non-abelian 

Lie algebra of dimension Z has a basis (x. Y) such that [X, Y] = X. 

3. A non-abelian nilpotent Lie algebra of dimension 3 bas a basis 

{x. Y, z1 such that [X, Y] = Z, [X, Z] = [Y, Z] = 0. 



CHAPTER VI. Semi-simple Lie Algebras 

Throughout this chapter, k is a field of characteristic 0, and all 

algebras and modules are finite dimensional over k. 

8 l. The radical 

Let -"1 be a Lie algebra. If A and S are solvable ideals 

in ~' then """+ 6 is solvable, because it is an extension of ((J( + a )/...(IC ~ 

6/V;c. n b ) by .JI(.. It follows that there exists a solvable ideal in &.f 
which contains all othe\r solvable ideals. This largest solvable ideal is 

called the radic11.l of "f • and is often denoted by 1"". 

§Z. Semisimple Lie algebras. 

Let -'f be a Lie algebra. One says that 'J is semisimple 

if the radical "t' of "f is zero. An equivalent condition is that ~ 

contains no non-ze:ro abelian ideal, because if r' '# (0), then tQ.e last 

non-zero derived algebra of ~ is a non-zero abelian ideal of ""J.. 
Another criterion for semisimplicity is the following: 

Theorem 2. 1. ~ is semisimple if and only if its Killing form is non

degenerate. 

Let A#' be the space of all x '"-.-PJ. such that tr(ad x ad y) = 0 

for all y € "1 · It is trivial to check that A<. is an ideal in "'/ · 

For x € AY we have tr(ad x ad y) = 0 for all y €: -1' , hence in particular 

for y €: D..w • By Cartan' s criterion, it follows that ad:'J.,.... is a solvable 

Lie subalgebra of End"1 ). Since ad,f . .w' is the quotient of .,,,,,, by the 

center of ""/ • it follows that .AIV itself is solvable. Thus ./fHI = 0 if ., 

is semisimpl'f\I. 

To show the converse, we let .4'C. be an abelian ideal in -UJ and will 

prove that "1t. C .M' . Indeed, let <i = adx ady, for x (;: .,#'l, y € ""J · 

LA 6.1 
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Then (J"'"';f C..ut and <Tiit = (0). hence 0'2. = 0 and Tr a-= 0. 

Theore~ 2.. 2.: Let "'1- be semisimple and let ,,(/'(. be an ideal in ,UJ . 

.!:.!!. ,QCJ. be the orthogonal space to .llC. with respect to the Killing form 

of .q. ~ .Q(,. l is an ideal of "$ • and q =tit fl .l/t. 1 
, direct sum. 

A simple computation,. using the invariance of the Killing form, shows 

that .Q( l is an ideal. One can show that ,(I( n .«J. is solvable, using 

Cartan' s criterion, in the same way we showed Ar solvable in the proof 

of the preceding theorem. Hence .ucn .(/(. J. = (0), and the theorem follows. 

Definition z.. 1. A Lie a1gebra .&, is called simple if 

(i) 4J is non-abelian. 

(ii) .4J has no ideal other than (0) and 4.1. 
J. Notice that in the preceding theorem we have [«;.(I(. ] = O, because 

,,(I'(. and JJrf- are ideals in '""1 ; h~nce the decomposition "1 = .t/t. (JUA:.J. 

gives an isomorphism of Lie algebras .q '=' .,(/'(. )( A'CJ. • It follows that 

any ideal in .,u<. is an ideal in -"1 • and consequently ..Q-C. is semisimple. 

Also "f /.UC, ~ .DC.J. is semisimple. By induction on dim""/' one 

sees therefore 

Corollary 1 : A semi-simple Lie algebra is isomorphic to a product of 

simple Lie algebras. 

If .4J is a simple Lie algebra, then 04' = .4'. Hence 

Corollary 2. : ~ ~ is semisimple, then ""/ = l'>"S . 
In fact, the decomposition of "1 into a p:ioduct of simple algebras is 

unique, not only unique up to isomorphism : Let ~ = (P ~ , direct sum 

of simple ideals .OCa, and let cp: q~.J... be a surjective homo

morphism of -"J onto a simple Lie algebra ~. Let fl> a be the restriction 

of cp to .Q(..a. Claim: There is an index /3 such that q,
13 

: .a
13 

c:" .,/ is 
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an isomorphism, and q, = 0 for a -:/= 13 • For each a, the image of 
a 

If> a~ is an ideal in ~ , because If> is surjective and ~ an ideal in .llJ. 
Hence by the 'simplicity of .I, f>a is either surjective or zero. If it is 

surjective, then it is an isomorphism, by the simplicity of .,(,/( • The set 
a 

of a ' s for which q, is an isomorphism is not empty, because If> a 
is surjective. On the other bani that set does not contain two distinct 

indices a ,,. 13 • because [-'J(a. ~] = 0 would imply c;~ ,fi>Q(,13 1 = 
[...!. ~ = 0. 

Corollary ,3 : ~ .uj"= (B;t?(a is an expression for -'1 as a direct sum of 

simple ideals .Q(a, then any ideal of -'1 is a sum of certain of the ,,uca. 

Examples of semi-simple .Lie algebras: 

l) Al (V), the algebra of endomorphisms of V of trace zero is 

simple if dim V 2: 2. 

2) sp(V), the a]gebra of endomorphisms of V leaving invariant a non-

degenerate alternating form is simple if dim V = Zn, with n 2: l. 

3) ir(V), the algebra of endomorphisms of V leaving invariant a non-

degenerate symmetric form is semisimple for dim V 2: 3, and even simple 

except if dim V = 4, and the discriminant of the symmetric form is a square. 

ID. Complete reducibilitx;. 

Let 1-'1 be a Lie algebra, V a ~-module, and p : "1-+ EndV 

the corresponding representation. 

Definition: V (i2!. p) is called simple (or irreducible) if V :tJ:. (0) and V 

has no submodules other than (0) ~ V. 

V (i2!. p) is cciJJ.ed semi-simple (or completely reducible) g V 

is the direct sum of simple submodules, or, what is the same, if every· 

submodule of V has a supplementary submodule. 
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Danger! "'1 may be semisimple as a ..US- -module without being a 

semisimple Lie algebra; for exa.mple, .q = k. 

Theorem (H. Weyi). ~ ~ is semisimJie, all ~-modules (of finite 

dimension) are semisimple. 

Remark: Weyl used the "unitarian trick". Let k = a:; , let G be a 

connected and simply connected ~omplex Lie group corresponding to "1 • 
and let K be a maximal compact subgroup of G. One proves that any 

complex group submanifold of G containing K is equal to G. Hence 

G-submodules of V are the' same as K-submodules; since K is compact, 

there exists a K-invariant definite Hermitian form on V, with which to 

construct orthogonal supplementary subspaces. In case G = SL(n), one 

can take K = SU(n), the special unitary group ; hence the name "unitarian 

trick11
• A purely algebraic proof of Weyl's theorem was found only several 

years later. 

We now prove the theorem in a sequence of steps. 

Step 1. If -"I is semisimple, and p : ""'1 ~End V is injective, then 

the form B p(x, y) = Try(p(x)p(y)) is non-degenrate. Indeed, by Cartan' s 

criterion, the ideal of all x <e:.""1 such that Bp(x, y) = 0 for all y <e:. AIJ 
is solvable, hence 0. 

Step 2. Let B be a non-degenerate invariant symmetric bilinear form 

on a Lie algebra ""I· Let (ei) and (fj) be bases for ~ which are 

dual with respect to B, that is, such that B(e., f.) = i> •• (Kronecker delta). 
l J lJ 

Let b = z eifi in U""' Then b is in the center of U-'1, and is 
) 

independent of the choice of e., f.. 
l J 

for which x C')y ~ (z r-;.B{y, z)x) is an isomorphism because B 

is non-degenerate, and is a b.omomorphism of ~-modules as one readily 

checks. Moreover, it carries le.® £. onto the identity homomorphism I. 
1 1 
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Thus, the element b is the i.mage of l under the composition of the 

~ -homomorphisms 

Since l is killed by ./If• b is also, and since "'1- generates U""1, 

it follows that b is in the center of U""1 as contended. This element b 

is called the Casimir elem5t corresponding to B. 

Step 3. The situation being as in Step 1, let b be the Casimir element 

corresponding to B p • Then b defines an endomorphism of the "'S- module 

V, and we have TrV(b) = dim ""'J . Indeed, b commutes with the acticm 

of "1 on V because it is in the center of U "1 . To compute its trace 

we have Tr(b) = 2!.Tr~(e .)p (f.)) = l:B(e., f.) = dim .Df. 
l l l 1 ·4 

Step 4. If the ~-mod.tie V in Step 3 is simple, then p(b) is an 

automorphism of V, unless ""1- = 0 ( ir. which case V is one-dimensional. 

Indeed, by "Schur 1s lemma", an endomorphism of a simple module is either 

an automorphism, or zero, and p(b) is not zero unless '1=0 because 

Tr p(b) = dim "1 and k is of characteristic zero. 

Step 5. Let 0 --+ V ___,.. W ___,.. k ___,.. 0 be an exact sequence of "1-modules, 

with -'1 acting trivially on k (in fact, there is no other possibility sin~ 

~ = D~ ; we· are supposing -'1 semisimple). We shall prove that the 

sequence splits, that is, that there exists a line in W stable by "'1 and 

supplementary to V, i. e: , mapping onto k. This special case of the 

theorem, the so-called "raising of invariants" principle, is the critical 

case, to which the general case can be reduced by use of modules of 

homomorphisms (see below). We break this step 5 into three substeps. 
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Step Sa. Reduction to case V is, a simple ~-module. This is easily 

accomplished by induction on dim V. If V 1 C V, with 0 '¢ V 1, and V 1 '¢ V, 

then by consid~ring the sequence 0 ~ V /V 1 ~W/V 1 ~ k we would obtain 
N . 

a supplementary line V /V 1 to V /V 1 in W /V 1 , and then from the sequence 
N ~ 

0--+ V 1 ~ V--+ k ~ 0 we would obtain a supplementary line to V 1 in V 

which, by construction, would in fact be a supplementary line to V in W. 

Step Sb. Reduction to case ~ operates faithfully on V. Let 

,Q(. = Ker(~ ~ End V). For x b JI(, ·we have xWC V and xV = (0). 

Hence D~ kills W. But D..llt = At: , because an ideal in a semisimple 

~ is semisimple. Hence -'t /..pc acts on W, and by construction it 

acts faithftily on V. Of course, we have not lost the semisimplicity of 

'<1 , because a quotient of a semisimple algebra is semisimple. 

Step Sc. Assume V simple and p : ~~End V is injective. 

The associated bilinear form BP is non-degenerate; let b ~ U~ be 

the correspo-aiing Casimir element. It furnishes a -'1 -endomorphism of W, 

and bWC V because b kills k. If -1 = (0) there is no problem. 

Otherwise, by step 4, we have bV = V, and it follows that Ker(b : W ~ W) 

is a supplementary line to V in W stable by ~. 

Step 6. The general case. Let 0 ~E 1 ~E ~E2 ~O be an exact 

sequence of ""f -modules. We must show that it splits. Let W be the sub

space of Homk(E, E 1) consisting of the elements wh:>se restriction to E 1 

is a homothety, and let V be the subspace whose restriction to E 1 is zero. 

There results an exact sequ~nce 0 ~ V ~ W ~ k ~ 0 (unless E 1 = (0), 

in which case there is no problem anyway). Applying step S, we get ari 

element cf> ~ W which is invariant by ~ and maps onto 1 in k, that is 

a ~-homomorphism E ~ E 1 whose restriction to E 1 is 1. Q. E. D. 

From the point of view of homological algebra', step S amounts to 
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proving Ext~(k, V) = 0, where U = U ~ , and this is accomplished in 

case Sc by computing the action of the central element b on Ext 1 in 
• 

two ways. Since b kills k, it kills Ext 1, and since b is an automorphism 

of V, it gives an automorphism of Ext 1. Hence Ext 1 = O. In general, 

one defines Hr <"1 • V) = Ext~(k, V). Step 6 amounts to showing 

Ext~( El.' E 1) = H 
1 (~, Homk(E z.• E 1)) = O~ 

Corollary I. ~ ~ be a semisimple ideal in an ambied: Lie algebra -I}. 
Then there exists a unique ideal ~ ~ -1- such that j. = VJ- (jJ A 

(direct sum). 

Applying complete reducibility to -f as a 1 -module we get a 

k-subspace .UC of .f supplementary to "'1 and stable by ad x for x c;; "'1 . 
I claim [~ , Q(] = 0 ; indeed, ["1, P't'] C -'1 because ~ is an ideal, 

and ["'j , .QC] C DC because .J/C. is stable by ~· It follows that .4C 

consists exactly of those y € ~ such that [-1'., yJ = (O). because, 

writinr. y = x t a, with x € 1'. , a € ..#( , we have ["1, y] = ["1, x], 

and [~, x] = (0) implies x = 0 because the center of ~ of zero. This 

shows that .« is unique, even as ~ -submodule, and also that Cl'C. is an 

ideal in -f, because it is the annihilator of the -1' -modJ.le ~ . 

Corollary 2. g "1 is semisimple, then every derivation of ~ is of 

the form ad x, ~ x § ""'J. . 

Apply the preceding corollary with -?- = Der( "i ), the Lie algebra 

of derivations of "'f. It is true that ~ is an ideal in Der"'1), because 

for x €-"f and D €Der(~), we have [D, adx] = ad(Dx). Hence 

Der('1) = "19.«, where ~ consists of the derivations commuting with 

ad~ . Let D €.QC . Then ad(Dx) = [D, ad x] = 0. Hence Dx = 0, 

because the center of ~ is :zero. Hence .UC = 0. Q. E D. 
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§4. The Theorem of Levi. 

Let -'1'. be a Lie algebra. 

Theorem 4. 1 {Levi). Let cJ> : ~---+ .,,/ be a surjective homomorphism 

of q onto a semisimple Lie algebra .-tf . Then there exists a ho~-

morphism ~ : J--+ ~ such that cpttf. = 14-

Let ,()C. =Ker cJ> , and write -"' = "[/.UC. The crucial case of the 

theorem is that in which ,,(I( is abelian, and is a simple ""1 - {or ,j -) 

' module with non-trivial action. The first step of the proof is the reduction 

to the crucial case. Suppose de' 1 is an ideal in "j" , and 0 C ..(/'(. l C ,gr. . 

If we can find a supplementary subalgebra J 1 = 'if /()(1 to 

-1' /.4Cl' and a supplementary subalgebra ..J 2 to <?Ci in ~1· 

./.IC I uc 1 in 

then ,J2 

is supplementary to ~ in ~ . Hence, by induction on dim PC, we may 

suppose .QC is a simple l:J' -module. The radical ..,., of 1 is in ..UC.. 

If ~ = 0, then -"1 is semisimple, and we are done, by Theorem 2. 2. If 

r-1 = .,,/)!, then .QC is solvable, hence Q(. ':# [.(IC., tir]. But [.tk: ,P!] is an 

ideal in ~, so [.tit ,Q{.] = 0, i.e. , Jt( is abelian. If ~ acts trivially on 

.QC, then ...Q'( is in the center of -1', hence -'1 operates on ~ through 

"J / 4C ~ ..J , and q is completely reducible as anJ-module, so there 

is an ideal supplementary to 4/Z. 

Assume now we are in the crucial case : ~ abelian, and a simple 

4' -module with non-trivial action. If we had cohomology at our disposal, 

and knew that the extensions d. 4 by .fl(. were classified by H
2(..d.,bl:) = 

ExtiiA (k, ,r). we would be finished, because we could use a Casimir element 

to show that the ext group is zero. But not having cohomology, we 

resort to the following argument of Bourbaki: 

Lemma. Let W ~ ~-module. Suppose an element w E: W satisfies 

the conditions 
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a) the map a~ aw is a bijection ,,(It. ,_ii' Qt. w. 

b) "f w = .l/C, w. 

Let iw = { :ic ~ ~I xw = 0 J be the stabilizer of w. Then i is a Lie 
-- w 

subalgebra of "1 , and "'f = .,(/'( IB iw (direct sum as vector spaces). 

The lemma is completely trivial. Our problem now is to construct 

a suitable w. We let W =End ("f), viewed as ~-module in the usual way, 

the representation Ci : "1 ~ End W = End End ~ · being defined by 

(j(x)lf' = adxolf' -lf'•adx = (adx, If'). We define three subspaces 

PC QC RC W as follows: 

p = {ad"f a I ab .4C. J 
Q = {q, <:: w I </> cs c ..ui: and "'.UC= oj 
R = {</> € W I IP .tf C ..ur. and q, I a is a homothety j 

We leave to the reader the task of showing that these are "1-submodules 

of W. We have an ecact sequence of ~-·modules. 

where i is the inclusion, and p the map which associates with each 

r € R the scalar by which r multiplies elements of Ql. If x E: ..ur: 

and q, € R, then CT(x)lf' = adxoq, - q, oadx = ->.. adx, where >.. = p (tj)) € k. 

Thus, O"(x) RC P, for x € .ilC., and the exact sequence 

0 ---;.. Q/P ~ R/P ---'l.+ k ~ 0 

may be viewed as a sequence of .c:ii-modules. By the principle of 

raising invariants, there exists w € R/P such that p(w) = 1, and such that 

w is invariant by 4., Let w be an inverse image of 'W in R. We 

contend that w satisfies the conditions of the lemma above. 
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a) Let a€ QC • Then O"(a)w = - ad a. If <S"'(a)w = 0, then ad$ a = 0, 

that is, [a, x] = 0 for all x € ~ . This implies a = 0, because 4t 

is simple, and ~ acts non-trivially. 

b) Let x € -1'. We must show O"(x)w is of the form <::T(a)w 

for some a€ 4t . Since <T(a)w = - ad"Sa, this amounts to showing 

<T(x) w CC: P. But that is just the invariance of w . Q. E. D. 

Corollary 1. An arbitrary Lie algebra ."1 is the semi-direct product 

of its radical ..,.., and a semisimple subalgebra. 

One applies Theorem 4. l to 'j ---:;....11/ / T' 

Remark. This corollary has a complement, due to Malcev, which says 

that, if s 1 and s 2 are two subalgebras of ~ such that re si = -"S. 

there exists an automorphism () of ~ such that c.T(s 1) = s 2 [one can 

even ch1:1ose tT of the special form ead(a), where a € -r- , and ad( a) 

is nilpotent] . When '1"' is abelian, this amounts to the vanishing of 

H 
1
( 'f/'T, i); the general case follows by "devissage". See Bourbaki 

for more details. 

If ~ is a Lie algebra such that -'1 '4- D~, and if Qt. is a subspace 

of '1 of codimens ion 1 containing D"f, then .-<IC. is an ideal in ~, and 

we have ~ =,(IC S kx for any x ft ..dl. • Since kx is automatically a 

Lie subalgebra we see 

Corollary 2. A non-zero Lie algebra which is neither simple nor one-

dimensional abelian, is a semidirect product of two Lie algebras of 

smaller dimension. 

Iii S. Complete reducibility continued. 

The following theorem gives a criterion for the complete 

reducibility of a representation of a Lie algebra. 
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Theorem S. 1. Suppose k is algebraically closed. Let V be a vector 

space and let ~ be a Lie subalgebra of End V. Then V is completely 

reducible as a "f- -module if and only if the following two conditions are 

satisfied. 

a) ~ is a product c )I. ~ ~ c is abelian and 41 semisimple. 

b) the elements of c can be put in diagonal form by a suitable 

choice of basis for V. 

Remarks:. 'l) If k is not algebraically closed, the same statement holds if 

we replace the condition b) by the statement that elements of c are 

semisimple (i.e., diagonalizable over the algebraic closure!). 

2.) The ambiguity in statement b) is only apparent. If each element of c 

is individually diagonalizable, then they are all simultaneously diagonalizable, 

because c is commutative. 

Suppose V is completely reducible as <:t ~-module. Let ~ be the 

radical of .Gf. By Lie 1s, theorem (Chap. V, 85), there exists a line in V 

stable by T' (unless V = (0). in which case there is nothing to prove), 

or, what is •he same, there exists a linear form ~: f""---+ k such that 

its eigenspace V X = { v G: V j xv = X (x)v for all x €: 1" J is non-zero. By 

the "main lemma" used in the proof of Lie 1s theorem (loc. cit.), V X is 

stable under 'if . By complete reducibility, we conclude that there exist 

characters xi of r such that 

(*) (direct sum) 

From this decomposition it is clear first that i acts diagonally, and 

commutes with the action of ~. Thus, r' = c is the center of ~. 

To get 41, we can either quote Levi's theorem, or argue directly using 

the adjoint representation. 
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Conversely; suppose conditions a) and b) are satisfied. By b) we have 

a decomposition of the vector space V of the form (*), where the X. 's are 
l 

characters (linear forms) on c. Since c is in the center of 1= c ;t. ""1, 

the eigenapaces VXi are stable under ~. We are therefore reduced to 

the case V = V X. But then c X .4.1 - submodules are the same as 

.b-submodules, and we are done by Weyl's Theorem. 

Corollary 1. Suppose "1 = c X 41 ~ c abelian and ,,J,,, semisimple. 

A "'f-module W is semisimple if and only if c acts diagonally on W. 

Corollary Z. ~ ""f be an arbitrary Lie algebra, and V '!... 'f -module. 

U V is completely reducible, then so are all the tensor modules 

Indeed, the image ""'cf of ~ in End V is of the form c x 4', with c 

acting diagonally on V, and hence on all V . p,q 

Corollary 3. The ~nsor product of completely reducible "'tf-modules 

is completely reducible. 

Using these results we can prove 

Theorem 5. Z. ~ V be a finite dimensional vector space over k. Let 

"JC End V be a Lie algebra of endomorphisms of V . .!!. -"f is semisimple, 

then ~ is determined by its tensor invariants, that is, there exist some 

elements v ~ V (for various (p, q)' s ; we should write (p q )) a p, q a' a 

such that 1 = l x f; End V I xva = 0 for all a } . 

By a standard linear argument, we can reduce the question b the 

case where k is algebraically closed. Let ~ be the set of all 

x ~ End V such that xv= 0 for every v in some V such that p,q 

'1v = 0. Clearly ~ C? C End V, and ~ is a Lie algebra. Our task 

is to show 4 = ""f' . 
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Step l: If a linear map u : V ---;io. V is a tll' -homomorphism, then p, q r, s I 

it is an -1-homomorphism, because we can identify Homk(V p, q' V r, s> 

with V + + , as End V -modules, and for a linear map to be a 
q r,p s 

US -homomorphism is the same as for it to be killed by the action of 41'· 
Step 2: If a subspace WC V is stable under .Qf, it is stable under .~. p, q 4 ... r 
Indeed, since V is completely reducible as a -«-module, there is p,q I 

a .4 -endomorphism u of V projecting V into W. Since u is 
' p,q p,q 

also an .IJ -endomorphism, its image W is stable under -1- · 
Step 3: We have ~ = ..,- x c, where c is the center of -1· For, by 

Step 2, with W = ""'f·• and p = q = 1, we see. that ~ is an ideal in -1 · 
By corollary 1 of Weyl' s Theorem (83) we have 1 = ""1 ,x c, where c 

is an ideal in 4 com~gting with -'1'· By Step 1, it follows that c 

commutes with 4, that is, c is in the center of ~. 

Step 4: Let W be an irreducible 41-submodule of V. Then W is 

stable onder c, and by "Schur's Lemma", the elements of c act as 

homotheties on W. We must show that these homotheties are zero; since 

V is the direct sum of W 1s, this will show c = 0 ·and conclude our 

proof. Since we are in characteristic zero, we can show that a homothety 

is zero by sbowin-g that i'ts trace is zero. 

Lemma 5. 3: Let "1 be a Lie a~ebr;:i. and W ~ ...tf-module of dimension m. 

Then its m -th exteribl' power /\ W, as quotient space of ® W (~ 

as subspace in characteristic zero) is stable ~der -"f • and an element 

x b -US acts on the one-dimensional space (\ W by the scalar Trw(x). 

We leave the proof of this Lemma as· an exercise. Granting the 
m m m 

lemma, we argue as follows. ·We have /\wC®wC ® v = v 0• m, 

Since our semisimple "'f has no non-trivial one dimensional module 
m 

(D"f = "'J>. we conclude that /\ W is killed by ~. l{ence it is killed 

. .. -



LA 6.14 

by c. and hence Tr (x) = 0 for all x. 6 C. w 0. E. O. 

Corollary 5. 4. .!::.!.! "'JC End(V) be semisimple. Let x 6 'US and 

let x = n + s be the canonical decomposition of x, with n nilpotent, 

s semisimple and [n, s] = 0 (cf. Chap. V). Then: 

a) n .!.!l!! s belongs to <If . 
b) For any q, € ~omgk• k), '/>(s) belongs to ~. 

This follows from the fact that any element in V killed by ..tA is p,q , 

killed by x and henc.e also by n, s and '/>(s). 

Definition 5. 5. .!:::!!, "'J be a semisimple Lie algebra. An element x €: ~ 

is called semisimple (resp. nilpotent) if ad (x) is semisimple (resp. 

nilpotent). 

Theorem 5. 6. !! "'f. is semi-simple, any x c;:; -'j can be uniquely written 

x = n + s, with n €: "'f, s €: ~ , n nilpotent, s semisimple and [ n, s] = 0. 

This follows from Corollary 5. 4, applied to the adjoint representation 

(i.e., V = ~). 
Theorem 5. 7. If cp '°'fl~ "'fz is an homomorphism of semi.simple 

Lie algebras, and if x 6 ""/i is semisimple (resp. nilpotent),~ cp(x). 

Notice first that ~2 can be made into a "1-i -module .!!!!:.. cp. Let 

V be the product of the -1°I -modules ~l and ""f z· Applying 

Corollary 5.4 to V, we see that any x c;:; ~l can be written x = n+s, 

where n €: ~l' s ~ ~l , [ n, s] = 0, ad (n) and ad (cp(n)) nilpotent, 

ad (s) and ad (cp(s)) semisimple. If x is semisimple (resp. nilpotent), 

this implies n = 0 (resp. s = 0). hence '/>(x) is semisimple (resp. nilpotent). 
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86. Connection with compact Lie groups over R and (£ 

We begin wi.th 

Theorem 6. 1. Let G be a connected compact Lie group over (£ . Then 

<!$ is a complex torus. that is, ""' is of the form (£n /r . where r 
is a discrete subgroup of rank Zn .!.!!. (£ n . 

By the maximum principle, there is no non-constant analytic function 
z 

on G, and hence no non-constant analytic map of G into End<t4:f el a:0 

where n = dim -1' and "'$ is the Lie algebra of G. The inner automorphism 

-1 x ~ g X g induced by an element g b G induces an automorphism of -OJ 
z 

which is denoted by Ad g. The map g ~Ad g b G:n is analytic, hence 

constant, so Ad g =Ad 1 = 1 for all g b G. For x near zero in ~ 

we have g(expx)g-l = exp(Adg(x)h and since the exponential mapping is 

a homeomorphism of a neighborhood of zero in 'f onto a neighborhood 

of 1 in G, we conclude that G is locally abelian. Since G is connected, 

G is abelian. Hence the universal covering of G is G:n, and G !:t a;n /r, 

with r discrete, as contended. Since G is compact, r must be a 

lattice .of maximal rank Zn. 

Theorem 6. Z: ~ G be a compact Lie group -over lR with Lie algebra "'S · 
Then ~ ~ c X 4", ~ c is abelian, and 41 semisimple with 

negative definite Killing form. 

We shall also prove a converse: 

Theorem 6. 3: ~ -DJ is a Lie algebra over lR such that ~ct c I( 4; 

with c abelian and ,,4, semisimple with a definite Killing form then 

there exists a compact Lie group over lR giving ~. Moreover, if 

c = 0, then any connected G giving -"') is compact. 

Proof of Theorem 2: As discussed in the proof of Theorem 6. 1, G 
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acts on ~ by Ad, and, since· G is compact, there exists a Euclidean 

structure (positive definite quadratic form) on /"cf which is left fixed by 

G, and hence by ~ . Hence, ~ is completely reducible as a ~-module. 

It follows that ~ is the direct sum of minimal nori-zero ideals .QC. 
1 

and is therefore isomorphic to the product of the ..4(,,, 
1 

Each ..«i is either 

simple or one -dimensional abelian. Hence '-<1 di c tc ~ with c abelian 

and .OJ semisimple. It remains to show that the Killing form of ~ is 

negative definite. Let (x, y) denute the Euclidean inner product on -Of. 
For x c; b Let u =ad 4Jx. For y, .z c; -6' we have then (uy, z) + (y, uz) = 0, 

because the Euclidean structure on -/iJ is invariant. Putting z = uy, 

we find (y, u
2

y) = - (uy, uy). 

We have: 

2 Tr
41

(u ) = 

Let (y.) be an orthonormal basis for 
l 

If x =F 0, then u = ad(x.) =F 0 (because the center of .41 is zero), 

2 hence Tr,4..(u ) < 0.' This proves that the Killing form of .,,4.. is negative 

definite. 

Let us now prove Theorem 6. 3. As a compact Lie group over JR 

giving c we can take a real torus, (JR/IE.)n. To get one giving -4' , 

we take Aut 41 , which is a closed subgroup of the orthogonal group 

of linear transformations of A.I leav~ng fixed the Killing form of ,J, . 

Since that form is definite, the latter group, and hence Aut .41 , is compact. 

The Lie algebra of Aut .4, is the algebra of derivations of .J, , which 

is isomorphic to .4. by Corollary 2 of Weyl' s Theorem (§3). This 

proves the first part of Theorem 6. 3. 

Suppose now c = 0 (hence .Pf is semisimple) and let G be a 
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connected Lie groupwith Lie algebra -"J. We have a canonical homo

morphism: 

Ad : G ___,.. A\& ""/ . 

We have just seen that Aut -4J is a c orq>act Lie group with Lie algebra 

'OJ' ; hence Ad is &tale. Let H = Im(Ad) = connected component of 

Aut -'1- , and let Z = Ker(Ad). We have G/Z = H, Z is discrete, 

H is compact, and the commutator grcup (H, H) is dense. in H (this 

follows, via Lie theory, from the fact that "'I = [1', 'f'] ). Hence G 

is compact (cf. Bourbaki, Int., Chap. VII, 13, Prop. 5). 
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Exercises 

1. Let "'J be a Lie al ebra, let r be its radical, and let i be the 

intersection of the kernels of the irreducible repr~sentations of 1 · 

a) Show that i = [llJ. r] = .D"l(l r. (Hint: use Levi's theorem to 

prove that [t:S , r) = n'f n r.) 

b) Show that x G; r belongs to if and only if p(x) is nilpotent 

for every representation p of '1 . 

2. Let -"S be a Lie algebra and let B(x, y) be a non-degenerate invariant 

symmetric bilinear form on '1' . 
a) Let x, y €: .q . Show the equivalence of: 

(i) y €: Im. ad (x). 

(ii) B(y, z) = 0 for all z which commute with x. 

b) Assume 1 semisimple. Let x €: ~ be such that ad (x) is 

nilpotent. Show that there exists h <;; '1 such that [ h, x] = x. Use 

this to prove that p(x) is nilpotent for any representation p of ~ . 

3. Give an example of a Lie al1Zebra 1 , with a non -zero radical. and 

a non-degenerate invariant symmetric bilinear form. 

4. Let ~be a Lie algebra and let V be an irreducible 41-module. 

Let K be the ring of "'i-endomorphisms of V. Show that K is a field. 

Give an example where K is not commutative. 

5. Let "'I be a semisimple Lie algebra,. and let K be the ring of 

-<f -endomorphisms of .US. (with the adjoint representation). Let k be 

the algebraic closure of k. 

a) Assume k = k and -"S = (B s., where the s. are simple. Show 
i=l l l 

that K is isomorphic to the product of h copies of k. 

b) No assumption on k (except char. k = 0, of course), Show that 

l K : k] = h, where h is the number of simple components of ~~ k 
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Show that K is a product of m commutative fields, where m is the 

number of simP,e components of ~. 

c) One says that ."'1 is absolutely simple if "1CI> k is simple. 

Show that this is. equivalent to K :a k. Show that, if ~ is simple, K is 

a commutative field and 4f is absolutely simple for its natural structure 

of Lie algebra over K. 

d) Conversely, let K be a finiie extension of k,~ and let "f be 

an absolutely simple Lie algebra over K. Show that <:J is simple as 

a Lie algebra over k. 

e) Example : -"S = Lie algebra of the orthogonal group of a quadratic 

form in 4 variables, with discriril1nant d not a square. Show that K is 

the quadratic extension k(..Jd). 

6. Let G be a complex connected Lie group, let K be a real group

submanifold of G, and let "I and _!! be the corresponding Lie algebras 

{ JVt is over ~ , and !. over ~). 

a) Assume !! + i.!! = ~ . Show tha any complex group submanifold 

of G containing K is equal to G itself. 

b) Show that (a) is satisfied in the following cases: 

(i) G = SL(n, ~). K = SU(n) = special unitary group 

(ii) G = SO(n, ~), K = SO(n} = special real orthogonal group 

(iii) G = Sp(2n, ~), K = SU(2n) n G = quatern. unitary group. 

7. Assume k is algebraically closed; let .USi (i = 1, 2) be Lie algebras 

over k and let ~ = ..q1 X -cJS z · 

a) Let Vi be an irreducible Afi-module. Show that 

irreducible ~-module. 

vl ~ v 2 is an 

b) Show that any irreducible ~-module is isomorphic to some 

V 1 <I) V 2 as above. 
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c) What happens when k is not algebraically closed? 

8. Let ~ be a real Lie algebra whose Killing form is positive definite. 

Show that ~ ·= 0. 



CHAPTER VII. Representations of s!n 

In this chapter, k denotes an algebraically closed field of character-

istic zero. All Lie algebras and_ all mod.ules are supposed to be finite-

dimensional over k. 

81. Notations. 

Let n be an integer z. Z, and le·t '1 = sin : Lie algebra of 

nx n - matrices x = (x .. ) with Tr(x) = 0. Since the center of tJr. is lJ -o 
zero, and kn is an irreducible ~ -module, ~ is semi-simple 

(cf. Chapter VI - one could also check this by computing the Killing 

form of Of>· In fact, "1 is even simple (cf. Exer. I), but we will 

not have to use this. 

Define now: 

h = Lie algebra of diagonal matrices H = (>.. 1, .•. , >.. ) with Z >... = 0. 
n 1 

n+ = Lie algebra of strictly superdiagonal ma trices (i. e. matrices 

(a .. ) with x .. = 0 for i ~ j). 
lJ lJ 

n = Lie algebra of strictly infradiagonal matrices. 

This gives a direct sum decomposition of "l (as a vector space): 

Note that h is abelian, n+ and n_ are nilpotent (cf. p. 5. 4). For 

n = Z, one has: 

h = ( ~ -~ ) • - 0 * n+ - ( 0 0 ) ' n = ( ~ 0 
0 ) . 

We also put b = h 8 n+ ; b is a solvable subalgebra of ~ (the 

canonical "Borel subalgebra") ; its derived algebra [b, b] is n+· 

LA 7.1 
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Let h * be the dual of h. An element X <; h* can be written 

Since the 

a constant. 

u. 1s 
1 

are only determined up to the addition of 

Let R+ be the subset of h* made of the linear forms A· - A. (i < j) 
1 J 

and let R = R+ U (-R+ ). An element a of R (resp. R+) is called 

a ~t (resp. a positive root). 1be positive roots : 

are called the fundamental roots. Any positive root a = A. - A· (i < j) 
1 J 

can be written as a sum of fundamental roots: 

Let a= Ai - Aj (i -:/:: j) be a root. Define elements Ha and Xa of 

~ in the following way: 

X = matrix with (i, j)-entry equal to I, and all other entries zero. a 

H l t f h h .th d' . 1 .th d' 1 a = e emen o w ose 1 coor inate is , J coor inate - , 

and others zero. 

Note that a(H ) = Z. a 

Proposition 1. 1. (a) The X C:s (a E: R+) make a basis of n+ ; the 

X _ a's (a E: R+) make a basis of n . 

{b) If H E: h, a E: R , 

H a 

[H, XcJ = a(H) X . a 

Assertion (a) is clear. To prove (b), let (A 1, ... , An) be the diagonal 

terms of H ; if a is the linear form Ai - Aj , one finds that H. X a= Ai. X a 

and X • H = AJ·· X . Hence [ H, X ] =(A. _ A ) X = a(H). X . 
a a a 1 j a a 
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A similar computation proves (c}. 

Example 1. Z. For n = Z, there is just one positive root a = A 1 - A z . 

The elements 

0 
- l ) , 

make a basis of si. 2 . 

x = ( 0 
a 0 

12. Weights and primitive elements. 

l 
0 ) • x 

-a 
0 = ( l 

0 ) 
0 

Let y be a <of -module. If X ~ h* , we denote by V X the vector 

space of elements v ~ V such that H. v = }((H). v for all H ~ h ; 

such a v _is called an eigenvector of h of weight X. 

Proposition Z. 1. !f a ~R ~ v ~ V X , then Xa. v ~ VX+a • 

Indeed HX v = [ H, X ] v + X Hv a a a 

= a(H) Xa v + X (H) Xa v 

= ( X + a)(H) Xa v , 

hence X v is of weight X + a. 
a 

Proposition Z. Z. V is the direct sum of the V X 1s (~ X e h*). 

It is well known that non-zero eigenvectors of distinct eigenvalues 

are linearly independent. Hence, the sum W = L: V is a direct 
X.f: h* X 

sum. Proposition Z. I shows that W is stable by the X 1s ; since it is a 

also stable by h, it is stable by 'f. Hence (complete reducibility!) 

V is the direct sum of W and another Oj-submodule V'. Suppose 

V' =/= 0. Since h is abelian and k algebraically closed, there exists in V 1 

at least one non-zero eigenvector v of h. Such a v is contained in some 

V X, and this contradicts the fact that V' n W = 0. Hence V' = 0, and 

v = w. Q.E.D. 
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(c) Any element of V 1 which is of weight X is a multi2le of v. 

The univers~l algebra U ~ can be written 

U = Un_tl Ub , cf. Chap. III . 

Since v is an eigenvector of b, (Ub). v = k. v, hence V 1 = (U ":F ). v 

is equal to (UnJ. v. Applying Birkhoff-Witt to Un_ , we then see that 

v 1 is generated by elements of the form M. v, where M is a monomial 

in the X •s (a ~ R+ ). Prop. Z. 1 then shows that the M. v are eigen--a 

vectors of h of weight X - l! ~a, with ~ 2: 0 ; this implies {b). 
a>O 

Assertion (c) follows from the fact that the q •s can be all zero only 
a 

when M is of degree zero (i.e., M = 1)., and in that case M. v = v. To 

prove (a), suppose V 1 is decomposed into the direct sum of two '1 -modules 

V' and V" ,; let v = v• + v" be the corresponding decomposition of v. 

Since (V 1)X = VX (9 VX , v 1 and v" are both of weight X ; (c) then 

shows that they are multiples of v, and one of them must be zero, 

say v'' ; hence v' = v, and since v generates V 1, one has V' = V 1, 

v11 ·= o. Q.E.D. 

Theorem 3. Z. (1) Let V be an irreducible ~-module. The.n V 

contains only one primitive element (up to multiplication by a non-zero 

element of k) ; the weight of such an elemmt is called the highest weight 

of V. 

(Z) Two irreducible "S -modules with the same highest weight are 

isomorphic. 

If V is irreducible, it contains at least one primitive element v 

(cf. Prop. 2. 7) ; let X be the weight of v. Let now v' be another 

primitive element of V, and let X 1 be its weight. Since V is 

irreducible, v generates V, hence Theorem 3. 1 shows that 
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n-1 

X - X' = l mia i , with mi 2!', 0 for all i. 

i=l 

't\.-\. 

x• - x = i£. mi a i , with mi ~ 0 for all i . 

These two relations imply m. = m! = 0, i.e .• x = x•. and part (c) of 
1 1 

Theorem 3. I then shows that v 1 is a scalar multiple of v. This proves (1). 

Let now V 1, V z be two irreducible °l' -modules having primitive 

elements vi' v2 of the same weigh~ X· The element v = (v 1, v2) 

of V {I> V 2 is again primitive of weight X. By Theorem 3. 1, the 

"S -submodule W of V 1 X V 2 generated by v is irreducible. The 

projection map 11'i : w -;a. vi is non-zero (since 11'i(v) =vi)'. hence is 

an isomorphism, W and Vi being irreducible. This shows that VI 

and V 2 are both isomorphic to W. 

Remark. Theorem 3. Z reduces the classification of irreducible ~-modules 

to the determination of the elements X ~ h* which are "highest weights", 

i.e. , weights of primitive elements in some 'i -module. This 

determination will be made in 84. 

84 Determination of the highest weights. 

Theorem 4. 1. ~ X be an element of h*, and write X in the form 

There exists an irreducible "I -module with highest weight X if and only 

if ui - uj is a positive integer for all i < j . 
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(Of course, "positive" means ~ 0.) 

Proof of necessity. 

Note first that u
1
. - u. = X (H ) if a is the positive root >... - >.. .. 

J a i J 

Hence, we have to prove that X(Ha) is a positive intege_r (for a € R +> 

if X is the weight of a primitive element v. 

Proposition 4. Z. ~ v be a primitive element of weight X• and define 

va = (X )m v/m! for m > O, where (X )m is the mth i&erate of X 
m -a ------a--- -a 

Then, the following formulas hold: 

(i) x-a Va = (m + 1) v:i+l m 

(ii) Hv a 
= (X - ma )(H) va if H€h m m 

(iii) x a {X (H ) - m + a v = I) v 
1 

. 
am a m-

Formula (i) is obvious ; formula (ii) means that v a is of weight X - ma, 
m 

which follows from Prop. 2. 1. One proves (iii) by induction on m, the 

case m = 0 being t:rivial (it is understood that v~ 1 = 0 - note that 

this convention agrees with (i) for '7t\. = -1). If m ~ 1, one writes: 

m X a - X X a --. v - v 1 a m a -a m-
H va + X X va 

a m-1 -a a m-1 

with>..= X(Ha)-(m-l)a(H )+ (m-l){:X(H )-m +2). a a 

Using the fact that a(H ) = Z, one sees that >.. = m(X (H ) - m + 1), a a 

and this proves (iii). 

Corollary 4. 3. There exists m '0 such that v~ =/= 0 and v~+l = 0. 

One has X(H ) = m. a 

Since the va 1s have weights X - ma, and the number of possible m 
a 

weights of a given module is finite, one must have v m = 0 for large m, 
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hence the existence of m with v~ =fo 0, v~+ 1 = 0. Applying formula (iii) 

for mtl, one finds : 

Since va =fo 0, this implies X(H ) = m . m a 

This finishes the proof of the" necessity11 part. 

Proof of sufficiency. 

Let 11'1' ... ,11'n-l be the linear forms >.. 1, >.. 1 +>.. 2 , ... ,>.. 1 + •· +>..n-1 

The coalition of Theorem 4. 1 is equivalent to the following: 

n-1 

X can be written x = 2 
i=l 

where the m. 's are positive integers. 
l 

m. 1T i • l 

Proposition 4. 4. If X ~ X' are the highest weights of the irreducible 

modules v and V' I x + x' is the highest weight of an irreducible sub-

module of Ve V' . 

Let v and v 1 be primitive elements of V and V'. Then v @) v 1 

is a primitive element of V ® V' and its weight is X + X '· The 

~-submodule W generated by v GI) v' is irreducible (Theorem 3. 1), 

and its highest weight is X + X 1 • 

Corollary 4. 5. The set of highest weights is closed under addition. 

Hence, to prove that X is a highest weight, it is enough to prow 

that .the 11'.' s are highest weights .. We do this by giving explicitly the 
l 

corresponding irreducible ~ -modules: 

Proposition 4. 6. Let V be kn, viewed in a natural way as a ~ -module. 

For 1 .S. i .S. n-1 , let Vi be the exterior i th _power of V. 

an irreducible ':f -module of highest weight 1T i 

Then V. is 
l. -
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Let e 1 .... ,en be the canonical basis of V, and let vi= e 11\. ... A ei. 

A simple computation shows that vi is a '{>rimitive element of Vi' of 

weight 11'. ; moreover, by applying to v. a monomial in the X • s, one 
l l ~ 

can obtain any term of the form e /\ ... /\ e , m 1 < ... < m. ; hence 
· m 1 mi i 

V. is irreducible (Theorem 3. I). This concludes the proof of Theorem 4. 1. 
l 

Remarks. 

1. Analogous results are true for any semi-simple Lie algebra. In 

fact, all the proofs we have given <.except the last one - based on an 

explicit construction of irreducible modules) apply to the general case, 

once the fundamental properties of "Cartan subalgebras" and "roots" 

have been proved. 

2. Theorem 4. 1 shows that the classes of irreducible er -modules are 

in one-to-one correspondence with systems (m 1, ••• , mn_ 1) of n-1 

positive integers. For a.n explicit description of the module which cor-

responds to (m 1, ..• , mn-l). see for instance H. Weyl, The Classical 

Groups, Chapter IV. 

3. When n = 2, there is just one integer m, and the corresponding 

. d "bl d 1 . h th . f v k 2 irre uc:1 e mo u e is t e m -symmetric power o = . 

Exercises 

1. Suppose '1 = sJ.n is the product of two semi-simple Lie algebras 

'f 1 and cJ/ 2 . Prove that the 
n • 

~-module k = V is a tensor product 

v 1 ~ v2 , where Vi is an irreducible 'fi-module (cf. Chap. VI). If 

2 
ni = dim. Vi , one has n = n 1 n 2 , dim. 'cf' i .S. ni - 1. Show that this implies 

that one of the ni' s is equal to 1, hence 'fi = 0, and ~ is simple. 

2. Show that all the results of this Chapter hold when k is an arbitrary 

field of characteristic zero (Hint: use the face that, over the algebraic 

closure k' of k, all weights take rational values on the H • s ; this is 
a 
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enough to imply that Prop. 2. 2.and 2. 7 hold over k; the rest offers 

no difficulty. ) 

3. Let k = ~, field of complex numbers. The grmp G = SL(n, ~) 

contains the subgroup SU(n) of unitary matrices with det. = 1. Show that 

G/SU(n) is homeomorphic to an Euclidean space ~N (Hint: identity this 

homogeneous space with the space of all positive definite hermitian forms 

on ~n). Show that SU(n)/SU(n-1) is homeomorphic to the sphere § 2n-l 

Use this fact to prove (by induction on n ~ 2) that SU(n) and G are 

connected and simply connected. Hence, any linear representation of 

~ = L(G) corresponds to an analytic represertation of G, and conversely. 

4. Same notations and assumptions as in Exer. 3. Show that the sub

algebra h of '1 corresponds to a group submanifold of G which is 

isomorphic to a product of n-1 copies of ~* = ~/~ • Use this to give 

a direct proof of the fact that any weight of ~ is a linear combination 

(with integral coefficients) of the 11'.' s. 
1 

S. (a) Let P (resp. Q) be the subgroup of h* generated by the 

(resp. by the roots). Define an exact sequence: 

0 -i>- Q i...,,.. P -4 ~/n~ ~ 0 , 

where i is the inclusion map, and e('ll'i) = i for l ~ i ~ n-1. 

'Ir.' s 
1 

(b) Let V be an irreducible 'r -module. Show that all weights of V 

are elements of P, and have the same image bye ; let e(V) E.: ~/n~ be 

this image. 

(c) Assume k = ~ (cf. Exer. 3). Prove that the center C of 

G = SL(n, ¥) is a cyclic group of order n, made of the scalar matrices 

w, with wn = 1. Let V be an irreducible ur-module ; show that the 

image of w € C by the corresponding representation of G is a scalar 

which is equal to we(V). 
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(d) Using (c), prove that the irreducible representations of the 

projective group PGL(n, ~) = G/C correspond to the irreducible 'ff -modlles 

V with e(V) = 0. 

6. Let X be any element of h*. Let L)( be a one-dimensional b-module 

of weight )(. Let E)( = LX ® Uh U'1 be the corresponding "induced 

'f -module" - which is infinite-dimensional . Show that EX contains a 

primitive element v of weight X. What are the other weights of E)( ? 

Show that there is a largest submodule H of EX which does not contain ..,, 

The quotient V X = EX /H is irreducible ; show that it is finite dimensional 

if ?.nd only if X satisfies the conditions of Theorem 4. 1. Give an 

explicit description of V X when n = 2. 

7. Let n = 4, and let V be the irreducible q -module with highest 

weight 11' 2 (cf. Prop. ·1 6). Show that dim. V = 6, and that there is a non

degenerate invariant quadratic form on V. Use this to construct an 

isomorphism of s...{ 4 onto the Lie algebra of the orthogonal group in 6 

variables. 



PART II - LIE GROUPS 

INTRODUCTION 

This part is meant as an introduction to formal groups, 

analytic groups, and the correspondence between them and 

Lie algebras (Lie theory). Analytic groups are defined over 

any complete field (real, complex, or ultrametric); Lie 

theory applies equally well to both theae cases, provided the 

characteristic is zero. 

I have made an essential use of unpublished manuscripts 

of N. Bourbaki, both on analytic manifolds, and on Lie groups. 

Part II has been written by R. Rasala. I want to thank him 

for the good job he has done; many improvements on the oral 

exposition are due to him. 

Jean-Pierre Serre 

Harvard, Fall J 964 
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CHAPTER I. Complete Fields 

Definition. Let k be a comm~tative field. An absolute value on k 

is a function k ~ R + denQted by x ~ Ix j, x € k satisfying the · 

conditions: 

1. lxJ = 0 ~ -X = o. 

z. I xy I = Ix I I Y 1. 
3. 111 = I. 

4. Ix+ YI < lxl + jyj • 

Examples: 

(i) Define 
{ 

lxl = 0 

lxl = 1 

if x = 0 

The topology on k induced by this absolute value is discrete. 

From now on we will assume that the absolute value is non-trivial, 

i.e., there exists x € k with 0 < lxl < l . 

(ii) R, 0:: with the usual absolute values. 

(iii) If we replace condition 4) by 4 1
) Ix - YI.:$. sup { lxl, IYI}, 

such an absolute value is called ultrametric or non-archimedian. 

~· The condition 4 1) is equivalent to the following: 

For any E 2!, 0, the relation Ix - y I .:$. €. is an equivalence relation. 

Now suppose k is complete for an uitrametric absolute value. 

Theorem. Let {xnl be a sequence with xn € k • Then l xn 

converges if and only if x ---;i.. 0 . 
n 

The proof is immediate, 

Theorem. (Ostrowski). Let k be a complete field for an absolute 

value. Then either k = R or 0:: with the usual absolute value Ix F , 

LG 1.1 · 
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0 < a ~ 1 or the absolute value of k is ultrametric. 

For the proof, see for instance, Bourbaki, Alg. ~·, Chap. VI, §6, 

Let k again be a field with an ult ram etric absolute value Ix I and 

let a be a real number with 0 < a< 1. Define a real number v(x) by the 

formula Ix I = a v(x). Then v(x)_ satisfies the conditions: 

1. v(x) = + ro ~ x = O. 

2.. v(xy) = v(x) + v(y). 

3. v(l) = O. 

4. v(x + y) ~ inf (v(x). v(y)). 

The number v(x) is called the valua:tion of x. 

Examples: 

a. Let k = <t((T)) be the field of the power series in one variable T. 

Let a = I an Tn , an € <t , an = 0 for -n large enough. 

n>> -ro 

Define v(a) = smallest n such that an :/= O. 
n 

Then a = T (a 0 + a 1 T + • . • 

with a 0 :# O, n € :.!'.., i.e., v(a) 2: n ~ a = TnC'f with Cf€ <t [[T]]. 

Note that the field <t((T)) is complete. 

b. Let (D be the rational numbers and choose a prime number p. 
I 

For any a CC: (J2, a:# O, we write a= !. = pnfr where r', s' are integers s s 

prime to p. 

of a. 

The valuation defined by v(a) = n is called the p-adic absolute value 

The p-adic completion of (J2 is denoted by O and called the field of 
p 

p-adic numbers. 

Note that an---;... 0 in the p-adic sense if and only if an is divisible 

by a power of p, say p hn , where b --+ ·CD. 
- n 
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Definition. Let k _be-a field and.let v be a valuation of k. Then 

the set 

Av = { x I x ~ k, v(x) ~ 0} 

is a ring and it is called the ring of the valuation v. 

Example. Let k = Cllp and let v be the p-adic valuation, then Av = Zp 

is the ring of p:.adic integers. 

If a 2: 0 is a real number, then the sets 

Ia = { x Ix € Av , v(x) 2: a } 

I~ = {xix€ Av, v(x) > a} 

are ideals of Av • 

In particular, if a = 0 we have 

10 = mv = { x I vex> > o J 
which is the maximal ideal of Av. The field k(v) - A/mv is called the 

residue field of v. 

Examples: 

(i) Let k = <t((T)), then 

A = a; [[T]] 
v 

m = (T) 
v 

and k = A /m = a; . 
v v v 

(ii) Let k = mP, then 

Av = zP 

m = (p) = pZ v p 
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and k = IF = Z/pZ • v p 

Theorem. Let xa---;.. lxl be an ultrametric absolute value on O'l. 

Then either 

Ix I = 1 for all x '::/:: 0 

or the absolute value I I is tb:e p-adic value for some p. 

Proof. Suppose that there exist a rational number r € O'l such that 

0 < lrl < 1 

this implies that there exist a prime number ,P' such that IP I 1'" 1, i.e., 

0 < IPI < 1 (notice that if n € Z then lnl .S. 1). 

Let n € Z and assume (n, p) = 1, then there exist A, B € Z with 

An+ Bp = l; in the case lnl < 1 we get IAnl < I, but we know that 

IPI < I, i.e., IBPI < I which implies I I I 

to p. 

vp(r) n 
r = p nr Now take a= IPI and 

v (r) 
We have Ir I =·a p , q. e.d. 

< I, so we must have lnl = 1: 

, where n, n' €.: Z are n,.ime 

Corollary. If k is a complete field with respect to an ultrametric 

absolute value I I and the characteristic of k is zero then 

k ) O'l with the discrete topology 

or k ) Olp for I I. 



CHAPTER II: Analytic Functions 

We first fix some notation: 

1. k: field, complete with respect to a non trivial absolute value. 

k[[Xl' ••• , Xn]] : formal power series in n variables XI' ••• , Xn. 

2. We use: 

a. Greek letters a, /3 for n-tuples such as a = (a 1, ••• ,an)' ai .2:. O, €: Z. 

b. Latin letters r, s for n-tuples such as r = (r 1, ••• , rn)' ri > 0, (;; lR. 

c. Latin letters x, y for n-tuples such as x = (x1, ••• , xn)' xi E: k. 

3. We set: 

ra = al. an 
r I • • • r n 

(~)= 
a! 

/3!(a -13)! 

4. We define: 

We define similarly r' ~ r, r' < r, a' S. a , and a'< a. 

5. We set: 

P(r)(x) = { y : I y - x I S. r 1 = Polydisc of radius r about x. 

P0(r)(x) = { y : I y - x I < r J = Strict polydisc of radius r about x. 

P(r) = P(r){O) 

LG 2.1 
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Definition: Let f = l aaXa and let r be as above. 

1. The series f is said to be convergent in P(r) if 

2. The series f i~ said to be convergent in P 0(r) if it is convergent in 

P(r') for all r 1 < r . 

Lemma: Let f = L aa Xa and let r be as above. Then: 

1. If f converges in P(r), there is a constant M such that for all a 

(2) 

2. If there is a constant M such that (2) holds for all a, f converges in 

P0(r) and uniformly in P(r') for r' < r. 

Proof: ---
1. Take M = L I aa I ra which is finite by ( 1). 

2. Suppo.se r 1 < r. Then: 

r' 
= M IT o _2 r1 r. 

l 

This shows that f converges uniformly in P(r '). In particular, f converges 

in P0(r). 

The preceding lemma is known as Abel's Lemma. 
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Definition: Let f = l aa -x_'X. The series f is said to be convergent 

if it is convergent in P0(r) for some r > O. 

Let f = l aaxa be convergent in P0(r). For any x €: P0(r), the 

series -2 a Xa converges absolutely (and uniformly inany P(r 1) for r' < r); 
I Q' 

its sum fCx) is a continuous function of x. We have the following lemma; 

Lem ma: 't = 0 ~ f = O. 

Proof: 

n = 1: 

Suppose f -:/= O. Then: 

m~O. 

The series -2 c.Xi is convergent. The function this series defines is non-
' l 

zero at 0 'and hence non-zero in a neighborhood U of 0 by cottinuity. Now 

X m is a non-zero in U - [oJ so that f does not vanish identically on U. 

In fact if m > O, the zero of f at 0 is isolated. 

n > 1: 

We assume the lemma for n-1 and suppose f = 0. Write 

f = \' c.(X
1
, .•• , X 

1
)Xi 

~ l n- n 
i 

c. ·€: k [[X1, ••• , X 1]] • 
i n-

Since f is convergent in P0(r), the ci are convergent in (n-1)-dimensional 

polydis~ P0(s) where s = (r1, ..• , rn_1). By hypothesis, for y = (yl' ••• , yn-l) 

€: P0(s), the function g defined by 

is identically zero. Hence, by the case n = 1, all 'C.(y1, ••. , y 1) = 0. 
l n-
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Since this is true for all y €: P0(s), all ci = 0 by induction. Hence, f = O. 

By virtue of the above lemma, we may identifv a convergent power 

"" series f with its. associated function f. 

We shall now study analytic functions. 

Definition: Let U C kn be open and let q, : U ----+ k be a function 

Then q, is said U> be analytic in U if for each x €: U there is a formal 

power series f and a radius r > 0 such that: 

1. P0(r)(x) C U • 

2.. f converges in P0(r) and, for h € P0(r), '/>(x + h) = f(h). 

Remark: If q, is analytic in U and x €: U, then the power series 

f of the above definition is unique ar:d is called the local expansion of </> at x. 

Theorem: Let f = l aa Xa be convergent in P0(r) for r > O. Then 

f is an analytic function in P0(r). 

Proof: 

Let x €: P0(r). Then we may choose r 1 such that Ix I S. r' < r. 

Set s = r - r 1• Next note that: 

Hence: 

(x + h)a = I ( ~ )xa-13hi3. 

i3S. a 

f(x + h) = I aa ( l (~ )xa-13hi3), h €: P0(s). 

a j3 S,a 

To show that rearrangement of the above sum is permissible, we shall show 

that: 

(*) 
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Indeed, let I h I ~ s 1 < s. Then: 

We have used the fact that Ip I .s, p when p is a positive integer to estimate 

J ( ~ ) j • Thus: 

Hence an upper estimate for the sum (*) is: 

l j a a I ( r' + s ')a < CD • 

a 

This sum is less than infinity since f converges in P0(r) and r' + s' < r. 

What we have shown is the following lemma: 

Lemma: Let f = l aaXa be convergent in P0(r) and define 

DP£= L aa(~)Xa-/3. 
aZ,{3 

Then: 

I. DP£ is convergent in P0(r). 
~ 

2. For x b P0(r), tbe series ~ A Pf(x)bp 

3. For x E: P0(r) and h E: P0(r - lxl): 

converges in P0(r - l x I). 

l"-J 

"i(x + b) = ~ .oJlt(x)bp . 

Subproof: 

Indeed, 1 and 2 follow from (*) immediately. 3 also follows from (*) 

since (*) implies that: 
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This completes the proof of the lemma and clearly also he proof of the 

theorem. 

We now generalize the notion of analytic function to vector-valued 

functions. 

Definition: Let U C km be open and let q, = ('/>l' •••• cf>n) : U--;;... kn . 

Then q, is said to be analytic if q,i is analytic for l :S. i ~ n. 

The lemma of the preceding theorem is a special case of the following 

theorem: 

Theorem: Suppose U -4 V and V _&--;;.. W are analytic where 

U C km, V C kn, and WC kp are open. Then g • f is analytic. 

~: 

We must check that g • f has a local power series expansion about each point 

x (; U. Now, the lemma of the preceding theorem shows that the class of 

analytic functions defined on open subsets of some k!J. with values in some 

k 11 is invariant under translations of domain or range. Hence, we may 

assume that x = O, f(O) = O, g(O) = 0. Further, it follows from the definition 

of vector valued analytic functions that it suffices to consider the case p = 1. 

Let I bi3YJ3 be a local expansion of g at 0 valid in P0(s) where 

{3>0 

Let f = (f
1
, ••• , f ) and let \:°' a. Xa be a local expansion 

n ~ i,a 
a>O 

of fi. We may choose r = (r1, ••• , rm) so that: 

2 
a>O 

Then, for h €: P0(r): 

s. 
l 

2 
,l:S,i~n 



g 01(h) : l b/3 
/3 >0 
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( .... 2
.,..., 

a>O 

a /3 a. h , ••• ) i,a 

To complete the proof, we must show that the right band side defines a 

power series in h convergent in P0(r). Now, the right hand side does 

define a formal power series in h since formally there are only finitely 

many terms which contribute to coefficients of any ha. Indeed, terms where 

113 I > la I make no contribution (since all a. 0 = 0). Hence, it remains to 
l, . 

check the convergence 0£ the formal power series we obtain. This follows 

since: 

The proof of the theorem is therefore complete. 

Remark: 1) The reader may consult Bourbaki, Alg., Chap. IV, 

§5, n° 5, for a more detailed discussion of the step on the existence of a 

formal power series. 

2) There 'is a general method based on the theorem of Ostrowski which 

is useful for proving theorems such as the preceding one. One simply observes 

that it suffices to consider two cases: 

1. k = JR or ([; . 

2. k ultrametric. 

Let us illustrate this method by giving an alternate proof of the above 

theorem: 

Case I : k ;:: JR or <I: • 

a. k = ([; : 
It is known that: 

<f> is analytic ~ <f> is C 1 and D<f> is a complex linear map. 

Since the composite of C 1 maps is C 1, the composite of derivatives is the 
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derivative of the composite, and the composite of complex linear maps is 

complex linear, the theorem follows in this case. 

b. k .::::: Ill: 

We may locally extend real analytic functions to complex analytic by 

power series. Hence the theorem in the real case follows from the complex 

case. 

Case 2 : k ultrametric. 

We assume as in the original proof of the theorem that we are seeking 

a power series expansion of g• f about x = 0 and that f(O) = 0 and g(O) = O. 

We note that without loss of generality, we may replace g(Y) and f(X) by 

g( !) and µf( ~) respectively where 
µ. v µ., v-:#- O, € k. ·We shall choose now µ. 

and v so that the theorem is reduced to a trivial case. 

Let g = (g 1, •.• ,gp) and let gj = ~ bj,fly/3 be a local expansion of 

f-,o 
gj about O. Choose s so that each gj converges in P(s). By Abel's 

Lemma, we can find a constant N so that for all j and all (3, I bj, /31 s/3 ~ N. 

We let µ. be an element of k such that jµ.j > max 
j 

j and all (3: 

1 
s. 

J 
(l+N)). Then for all 

y 
Hence g { - ) has coefficients in the ring A of the valuation v of k and in 

µ. v 

particular g ( ~) converges in P0( 1). 

By applying the above argument to µ.f, we may find v € k so that the 

local expansions of the coordinate functions µ.f.( ~) of µf( ~) have coefficients 
1 v v 

We are therefore reduced to the case when the local expansions of the 

coordinate functions of f and g have coefficients in Av . But then the 
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formal series of the composite has coefficients in A and therefore conveq v 

in P0( 1). 

We now ~ake explicit some facts about differentiation and Taylor 

series implicit in our discussion of the theorem that a convergent power 

series defines an analytic function. 

Definition: Let cp : U ~ V be a function, where U C km and 

VC kn are open, and let x E: U. A linear function L : km -------.> kn is 

called a derivative of cp at x if: 

lcf>(xTu1-q>(x)-Lhl =o(lhj), lhj~O 

or, equivalently, if: 

lim 
lhl~o 

h~ 0 

Remarks: 

I p(x + h) - p(x) - Lh I 
lhl 

= 0. 

1. If !/> has a derivative L at x, then L is unique and is denoted by Dcp(x) 

2. If Dcp(x} is applied to the vector (0, .•. , 1, ... , 0) which has 1 in the 

i-th place and 0 in all other places, the vector obtained in kn is denoted by 

D.cp(x) and is called the i-th partial derivative of cp at x. 
l 

To study the differentiability of analytic functions, it sufilces first 

of all to restrict oneself to analytic functions with values in k and then to 

further restrict oneself to functions f where f is a convergent power 

series since differentiability is a local property. We shall let o. denote 
l 

the vector with I in the i-th place and 0 elsewhere. 
--. 

Theorem: Let f = L aaXa be a power series convergent in P0(r) 

for r > 0. Then f is differentiable at each x ~ P0(r) and we have: 
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,.. 
Df(x) = 

6 • 
t::.. nf(x) 

Hence, the derivative of an analytic function exists and is analytic, so that 

by induction an analytic function is infinitely differentiable. 

Proof: 

The theorem follows immediately from the explicit calculations of 

the lemma of page 2. 4 which show that f(x + h) - f(x) - Df(x)h is a power 

series which is convergent in P0(r) and whose terms of degree 0 and l 

vanish. 

Remarks: 

1. a ! t::..a = Da • 

2. The expansion f(x + h) = f tJlr(x)h~ i• just the Taylor series in charac

teristic O. 

We are now in a position to state: 

Inverse Function Theorem: Let f : U ~ kn be analytic where U is 

open in kn and suppose 0 € U and f(O) = 0. Then, if Df(O) : kn~ kn 

is a linear isomorphism, f is a local analytic isomorphism. 

Proof: 

The theorem is well known for k = JR or <t so we may assume by 

Ostrowski' s Theorem that k has an ultrametric absolute value. Let 

f = (£
1

, .•. , fn). By following f with Df(O)-l if necessary, we may 

assume that: 
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f.(X) = x. - 2-a. x!' = x
1
. - cp

1
.(X) 

i i 1, a 
a>l 

Then, replacing f(X) by fd ( ~) where I 11 I is sufficiently large, we ma 'f also 
11 

assume that a. €: A for all i and a where A is the ring of the valuation i,a v v 

of k. 

To invert f, we seek convergent power series '11'.(T) so that 
l 

X. = '11'.(T) solves the equations: 
l l 

(*) T. = X. - cp.(X), 1 ~ i !S, n • 
l 1 1 

We shall solve the problem in two steps: 

1. We shall show that(*) has a unique formal solution '11'. and we shall 
l 

describe the relation between the coefficients of '11'i and. those of cpi • 

2. We shall use two methods to show that the formal power series solution 

we have obtained converges. 

- (3 
Set 'ilti = 2 bi, (3 T and consider the equations: 

(3 > 0 

(**) 

We see immediately that b. A = 1 or 0 according as i = j or i ::fo j. More 
1, v. ' 

J . 

generally, for arbitrary (3, wesee that b. Q is a linear combination with 1,,.., 

positive integral coefficients of monomials in the coefficients of '11'. and cp 

of degree strictly less than {3. Moreover, the positive integral coefficients 

in this expression are independent of the {cfJJ and the {'iltJ. Hence, by 

induction. we see that: 

b. {3 1, 
= i p{3(a. ) 

J• a 
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where: 

1. p~ is a polynomial with positive integral coefficients independent of the f ipJ. 
2. p~ depends only on the a. 's for la I < I~ j. ,.., J,a 

The first method we give to prove convergence depends on the fact that 

we have assumed k ultrametric. By construction, b. a~ A 1,,.., v 
for all i and 

(3. Hence the {wi1 converge in P0( 1). 

The second method which we give, Cauchy's method of majorants, 

works in the cases k = R. or 0:: as well. Suppose that we can find real 

positive power series { ~J such that ii [~i J is the formal solution for the 

inversion problem for {;pi} then: 

I. 'Pi = l ai,axa and 

a>I 

~. = ~ b. a T{3 converge for I 5. i 5. n • 
i L i,,.., 

{3 >O 

2. For all i and a , I a. I 5. a. 
i, a i, a 

We shall then show that: 

3. For all i and {3; I b. n I ~ b. a • 1, ,.., l,,.., 
It will then follow from 1 and 3 that w. converges for l 5_·i 5. n . To· obtain 

1 

i 3 from 2, we simply not.e that since the pf3 have positive integer coefficients, 

we have: 

It therefore remains to construct functions cpi with the required properties • 

. For the case n = I and any positive integer m, a positive constant 

times the following function q;m will satisfy the first part of i as well as 2: 

~ = l (mX)i 

i>l 

(m > 0). 
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We may by renormalizing the problem assume that the positive constant is 1. 

Then we may explicitly compute the inverse .function zvr1 of ~ . Indeed, 

we must solve the equation: 

T - X - . (mX)2 
1 - mX 

Its solution is given by: 

im(T) = (1 + mT) -/{1+mT)
2 - 4(m

2
+m)T 

2(m 2 + m) 

~m(T) does indeed cohverge in a neighborhood of O. 

To solve the case for general n, we take ~i = 2 (X1 + •.. + Xn)j 

j>l 

Then the explicit solution '111 for ~i is: 

Indeed: 

1 = -n 

Since the '11i converge in a neighborhood of 0 the theorem is proved. 

"Tournants dangereux 11 

1. Suppose k is ultrametric. Then the function 'f> which is l on A and 0 v 

outside Av is everywhere analytic. This follows since A is both open and v 
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closed. 

2.. If k has characteristic p > 0, then for an analytic function q, defined 

on kn and for. la I ~ (p-1) n + 1, Da</> = O. In particular, the radius of con

vergence of the derivative of a function may be strictly greater than that of 

the function. 

3. If</> is analytic on U( kn, x€ U, and P0(r)(x) CU, then the local 

expansion of cp at x does not necessarily converge on all of P0(r). In 

general, this is true only for k = <I:. 



CHAPTER III: Analytic Manifolds 

We denote by k a field complete with respect to a non-trivial absolute 

value. 

§1: Charts and Atlases. 

Let X be a topological space. 

A chart c on X is a triple c = (U • ip, 'n) such that: 

1. UC X is open. 

Z. n £ Z and n > 0 • 
== -

3. .p : U ~ .pu C kn is open and q, is a homeomorphism. 

Notation: 

U = O(c) = Open set of c. 

tP = M(c) = Map of c. 

n = dimkc = Dimension of c . 

Let c = (U, ip, n) and c' = (U', ip', n 1) b·e charts on X. Then c 

and c' are said to be compatible if, setting V = u(l U', the maps tP'· '/>-
1 1 '/>(V) 

and 4> • q,•- 11 t;'(V) are analytic. 

If c and c' are compatible, then V -::/= ~ implies n = n 1• 

A family { ci1 iel of charts on X is said to cover X if U O{c.) = X. 
i£1 l 

An atlas A on X is a family of charts on X which covers X and 

such that the charts in the family are mutually compatible. 

LG3.l 
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Two atlases A and A' on X are said to be compatible if equivalently: 

I. A U A 1 is an atlas. 

2. If c €A and c 1 €A', then c and c 1 are compatible. 

Remark: Compatibility of atlases is an equivalence rela.tion. Indeed, 

the reflexive and symmetric properties of an equivalence are obvious. To 

check transitivity, let Al' Ai, and A 3 be atlases and let c 1 € A 1 and 

c 3 € A3 • We must show that c 1 and c 3 are compatible. Let V = 

O(c1)n O(c3) • Then, if V = ~ • then c1 and c 3 are trivially compatible. 

Suppose V ::/= J and let q,1 = M(c1) and q,3 = M(c 3). It suffices, by symmetry, 

to check that q. 3<> 'f>i1 is analytic on 1{>1(V). We shall check that this map is 

analytic at q,1(x) for each x€ V • Choose cz- = (U, 'f>, n) € A 2 such that 

x € U. Then: 

- 1 n n '/> ocp
1 

: cp1(U V) ___. '/>(U V) is analytic at cp1(x). 

q,
3
o q,-l : '/)(U (I V)----7'- q>.

3
(U (IV) is analytic at .p(x). 

§2. Definition of Analytic Manifolds. 

Let X be a topological space. 

An analytic manifold structure on X is an equivalence class of 

compatible atlases on X. 

An alternate definition may be given as follows. Say that an atlas 

A on X is full if whenever c is a chart on X su.::h that c is compatible 

with all charts c 1 € A then c €A. Then it is clear that each equivalence 

class of atlases on X contains exactly one full atlas. We may therefore 

define: 
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An analytic manifold structure on X is the choice of a full atlas 

on X. 

Henceforth, in this chapter, X will denote a topological space with 

a fixed analytic manifold structure. A(X) will denote its full atlas. A 

chart c on X will mean a chart belonging to A(X). 

If X is an analytic manifold, and x € X, dim X is defined as the 
x 

dimension of any chart c on X such that x f: O(c); it is called the 

dimension of X at x. The function x i----.;;.. dim X is locally constant 
x 

on X; if it is constant, and equal to n, one says that X is everywhere 

of dimension n. 

It is customary to introduce special terminology in the cases which 

are of greatest interest: 

When k = ~- , we say that X is a "real analytic" i:nanifold. 

When k = ~, we say that X is a "complex analytic" manifold. 

When k = Q , p prime in _z, we s~ that X is a "p-adic 
=P 

analytic" manifold. 

113. Topological Properties of Manifolds. 

n Let x f: k , n f: Z and n_? 0, and let r f: ~, r '> 0. Then the 

ball, B(r)(x), of radius r about x is the polydisc P(s)(x) where 

s = (r, .•• , r) • 

. Let B be a subset of X. Then B is said to be a~ if there is 

a chart c = (U, tp, n) such that BC U and cpB is a ball in kn • Then: 

1) Every point x-€: X has a neighborhood B which is a ball. In particular, 

X is locally a complete metric space (hence a Baire space). 

2) Suppose k locally compact, Then a ball in X: is compact. In 

particular, if X is Hausdorff, then X is locally compact. 



LG 3.4 

3) Suppose X is regular and k is ultrametric. Then each x: <:.: X has 

a basis of.neighborhoods wn1ch are both open and closed. 

The only property which is perhaps not immediately obvious is 3. To. 

prove 3, let B be a ball containing x and let c = (U, q,, n) be a chart 

such that BC U and rpB is a ball in kn • Now rpB is open in kn so that · ,. 

B is open in X. Hence, since X is regular, there is a neighborh9od V 

of x such that VCB and V is closed in X. Then the inverse image 

under q, of balls in rpV containing rpx is a fundamental system of 

neighborhoods of x which are both open and closed. 

Remark: In appendix: 1 to this chapter, an example due to George 

Bergman is given in which the conclusion of 3 fails when X is only 

Hausdorff. 

14. Elementary Examples of Manifolds. 

I) X = discrete space (n = 0). 

2) X = V, where V is a finite dimensional vector space over k, 

dimk V = n. Let A be the collection of charts c = (V, q,, n) on V 

where q, : V ----;;.. kn is a linear isomorphism. Then the charts in A 

are compatible so that A is an atlas. We give V the manifold structure 

determined by A. 

3) Let X be a manifold and let U be open in X. Let A = A(X). Define: 

Au= {c<:.:A:O(c)Cu). 

Then Au defines a full atlas on U. The space U together with this 

atlas is called an open submanifold of X. 

4) Let X be a topological space and let X = U U .• Suppose: 
i€I 1 



a. Ea~ U. is open in X. 
1 ' 
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b. On each U i , there is given a structure of anilytic manifold. 

c. For each i and j,. the manifold structures on U. (I U. induced 
1 J 

by the manifold r;itructures. on U i and. U j agree. 

Then, on X there is a unique manifold structure such that its restriction 

to each U i is the given one. 

5) The line with a "point doubled". 
0 

t : t t 
0 

• 

Let · k = R. Then we define a manifold 

X by identifying two copies of ~ 

at all points except O. We shall 

interpret this space as a quctient 

space. 

First consider the plane, ! Z , 

as being fibred by lines. Then the 

quotient space obtained by identifying 

the fibres is R. 
= 

Now suppose we remove the origin 

from R z and identify the connected = 
components of the fibres. Then we 

get precisely the line with 0 

"doubled". 

Note that the manifold in this example is not Hausdorff. 

15. Morphisms. 

Let X and Y be two analytic manifolds. A functiO'fl f : X _,.. Y is 

taid to be an analytic function or morphism if:. 

1. f is continuous. 
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2.. f is "locally given by analytic functions", that is, there exists atlases 

A of X and B of Y such that if c = (U, q,, m) (;:A and ~ = tV, l/J, n) (;: B, 

. -1 
then, setting W = un f V, the composite 

is analytic. 

Remarks: I) We describe condition2. by saying that f is "locally 

given by analytic functions" since, in coordinates, composites of the form 

l/lafoq,-l may be written as n-tuples of analytic functions of m variables. 

2.) Condition 2. is independent of the choice of atlases A and B, as is seen 

by an argument similar to the one showing that compatibility oi atlases 

is an eq ilivalence relation. 

The following formal properties of morphisms are easily verified: 

1) The composition of morphisms is a morphism. 

E) The identity map on a manifold is a morphism. 

3) Suppose f: X ~ Y and g: Y ~ X are maps such that g4>f =IX 

and f o g = ly • Then f is an isomorphism if and only if f and g are 

morphisms. 

Let us quote without proof a much deeper statement: 

Theorem: Assume k is algebraically closed of characteristic zero, and 

let f : X ~ Y be a morphism of analytic manifolds. If f is an home~-

morphism, then f is an analytic isomorphism. 

Remark: The conclusion of the theorem is false for k = ~ , as the 

example f : ~ ---.;... ~ given by f(x) = x3 demonstrates. 

86. Products and Sums. 

1) Products 

Let be a finite collection of manifolds and let A. be an 
1 
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atlas for X
1
. , for each i € I. Suppose c. € A. , ,for each i € I , 

1 l 

c. = (U ., 'fl., n.). 
1 l l 1 

Set: 

Define TI c. by: 
i.1~1 1 

< IT ui • 
i€I 

x = IT xi 
i€I 

Then X is a. topological space and A is an atlas on :X. The space X 

together with the manifold structure determined by A is called the product 

of lxJ i€I. The usual universal property for products, namely, for 

all manifolds Y, 

is easily verified. 

Mor(Y, IT Xi) = 
i€I 

2) Sums or Disjoint Unions. 

Let {xi1 i€I be an arbitrary collection of manifolds. Let ~ X
1
. 

i€I 

or II X. denote the disjoint union of the topological spaces X. . Then. 
~I 1 i 

by Example 4 of §4, there is a unique manifold structure on X = :r, X. 
i€I 1 

compatible with the manifold structure on each Xi and we furnish X with 

this manifold structure. X is then called the~ or disjont union of 

l xi} i€I . The usual universal property for sums, namely, for all 

manifolds Y, 

Mor( 11 xi. Y) = IT Mor(Xi' Y) 
i€I i€1 
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is easily verified. 

In appendix 2 to this chapter, the structure of compact manifold3 defined 

ever locally compact, ultrametric fields k is described in detail using 

the notion of disjoint union of manifolds. 

§7. Germs of A:ialytic Functions 

Let x ~ X and let F be the set of pairs (U, '/>) where 
x 

U is an 

open 11-~ighborh~od of x and cp is a:i analytic function on U. The set F -x 

is called the set of local functions at x. We introd•1ce an equivalence 

rehtion on F as follows: -x 
We say that two elements (U, tf>i and (V, 1J;) of .fl{. are equivalent 

if there is an open neighborhood w of x such that w c un v and 

!/>IW = lfliW. The set of equivalence classes of F is denoted H and --x -x 

is called either the set of ~~ of ~alytic functio~ at x or the local 

ring at x. 

We define addition and multii>lication in H as follows. Let f and 
-.x 

g oe germs of functions at x. Choose ( U, 'f') E: f and (V, If/) € g . Let 

W-=UflV. Thea f+g isdefii1ecltobetheclassof {W, flW+glW) 

while f•g isdefinedtobetheclassof (W, (flW)·(glW)). It is easily 

seen that these definition1:1 a·re independent of the choic..,s made. 

Tb.ere is a canonical map k ~ F which sends a €: k to (X, c ) . -x a 

wher~ ca is the co.1.atant function a on X. This map induces a canonical 

inclusion i • k -~ H which makes H a k-algebra. -x -x 

There is also a canouical map F ~ k which sends (U 1 c/>) ~ F -x -x 

to c/>(x). This map induces c::.. canonical ho"l1omorphism (} : H ~ k of -x 

H · onto k. For f €: H , we let f(x) d~mote (} (f) and we call f(x) --x -x 

+he value of f at x. The_ kerne:l m of a is a n .. '.ximal id~al. -x 
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Since 8 oi = ldk , there is a canonical decompositiOt;l. H = i(k) Ei m • -x -x 
We shall identify k with i(k) and suppress the mention of i. 

We shall now show that H is a local ring by means of the following -x 

stronger statement: 

Lemma: Let (U, ;. n) be a chart at x. Then q, induces, via com

position of functions, an isomorphism J: !!o ~ !!~ such that f<~0) = ~x. 

Here !!o is the ring of germs of functions at 0 in kn and ~O is its 

maximal ideal. !!o is isomorphic· to the local ring of convergent power 

series in n variables. 

~ 

All statements are clear except perhaps the statement that the ring 

of convergent power series in n variables is local. To prove this, we must 

show that if f is a convergent power series such that f(O) =F 0 then f is 

invertible. We may assume that f = I + 'fl where 'fl(O) = O. Then, since 

the map g{x) = ~ is analytic near 1, t = go£ is analytic near O. 

Suppose f =F 0, G H . • Then we define ord f to be the least integer -x x 
J.L such that f ¢ m.,._+ 1 • The preceding lemma shows that for any chart -x 

(U, f/J, n) ordxf is the least integer J.L such that J(f) has in its power 

series expansion a non-vanishing homogeneous term of total degree JJ.• 

18. Tangent and Cotangent Spaces. 

Let x € X • De.fine: 

z = m Im = cotangent space of X at x. 
-x'-x 

Tx·X = (mx/m!>* = tangent space of X at x . 

We shall give two alternate descriptiom of T:x?C : 

1) T X is canonically isomorphic to the space of derivations v :H ~ k x -x 
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Let v.£ TxX. Then v defines a linear form on m which vanishes -x 
2. 

on m • Extend v to a linear form on H i= k e m by settin.g v = 0 on -x -x -z; 

k. Then v is. a derivation on H • Indeed, .v is k-linear. Hence it -x 
remains to check that ·for f, g <a: H : -x 

v(fg) = (vf)g(x) + f(x)(vg) • 

Since both sides of the equation are bilinear, it suffices to check the 

equation' in three special cases: 

1. f, g € k. 

2.. f E: k and g € m or f £ m and g E: k. -x -x 
3. f, g € m • 

. -:x; 

Cases 1 and 3 follow since both sides of the equation are O. Case 2 is a 

consequence of the linearity of v and the fact that v vanishes on k. 
\ 

2 
Conversely, given a derivatj,on d of H , d vanishes on k and -x th. -x 

Hence d comes from a unique linear form on m /mz , that is, from 
-x -x 

a unique tangent vector v. This establishes the desired isomorphism. 

2.) TxX is canonically i1=1omorphic to the space C of "tangency classes of -x 
curves at x". 

We first define C precisely. Let F' be the set of pairs (N, l/I) -x -x 
where N is an open neighborhood of 0 ink and \/I: N __,.. X is ltuch that 

"'(O) = x. We define all equivalence relation in F' as follows. Let -x 
• (N., \/I.) E: F , i = 1, Z. Choose a chart (U, ; •. n) at x. Then, for 

l l -x 

i = 1, 2., '/) o!JI. is defined in the neighborhood N. (I 1Jl: 1(U) of O. We 
l 1 1 

say that (Np \/1 1) is equivalent to (N2, \/1 2) if D(tpo\/1 1)(0) = D(q.o\/J 2)(0). 

We let C denote the set of equivalence classes of elem~s of F' . -x -x 
Notice that the map which sends (N, \//) € F' to D(tp• \/J)(O) indu::es -x 

a bijection J : C __,.. L(k, kn) = kn • Hence C may be give~ the -x -x 
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structure of a vector space over k. 

It is easily verified that the definition of fk and the definition of 

the vector space structure on C are independent of the choice of -x 
(U, cp. n). Indeed, suppose (tf1, cp', n) is a second chart at x. Then, 

. for (N, 1/1) € !'~,. D(cp 1 •1/1 )(0) = D(cp'• ;·1)(0) oD('/> •lJ;)(O). It is clear 

from this formula that the equivalence defining C is independent of the -x 

choice of chart. From this formula, it then also follows that qi• = 

D('f> 1o cp • 1)(0) o qi , so that the vector space structure on C is well -x 
defined. 

We now define a bilinear pairing C x T*X ~ k by defining first -x x 
a pairing F' X F ~ k. The latter pairing sends (N, \II) ~ F' and ' -x -x -x 

(V, f) € F to D(f •l/.t(O) € k. This pairing clearly induc• a pairing -x 
C >< T*X~ k. -x x w is bilinear and establishes C as the dual of -x 
T*X. 

x 

Remarks: ( 1) Intuitively the pairing w is simply differentiation of 

a fl~nction in the direction of the tangent to a curve. 

( 2) The process of cJefining a linear space structure on C would -x 
fail i! we wished to construct a space of higher derivatives to curves. The 

reason is tha~ the higher derivatives ~f the composite of two functions are 

not bilinear in the derivatives of each of the functions. 

Example: X is a finite dimensional vector space V. Then: 

T V = L(k, V) = V x 

T*V = L{V, k) = V* • x 

We shall now define the related concepts of differentials of a 

function and .tangent map to a morphism. 
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Let £ € H • Then £ - f(x) <=: m • The image of £ - f(x) in -x -x 
m /m 2. = T*X is called the differential of f at x and is denoted df • -x -x x x 

Let v € T X • Then v applied to df is called the derivative of f x x 

in the direction v and is denoted < v, dfx> or v · fx ; we may think 

of dfx as a linear form on T xX • 

Let f be a function defined in a neighborhood of x. Then f defines 

an element of H at>.d hence a linear form df on T X • -x x x 

Let Y be a second manifold, let y € Y, and let ; : .X ___,... Y be 

a morphism such that '/>(x) = y. Define T x'P : T xx ___,... Ty Y by the 

formula: 

<T 4'/)(v), df > = <v, d(h..p) >, x y x 

for all v € T X and all f € H • Equivalently, we can define Tx..P by x -x 
defining its transpose T*'/> : T*Y ___,... T*X • For f € H , we define x y x -x 

T*..p(df ) = d(t'. ..p) • The linear map T 4'/) is called the tangent map of ..p. x y x x 

In the special case when Y = k and '/> is a function f, then 

Tf=df. x x 
We conclude this section by examining tangent spaces of products. Let 

X, Y, and Z be manifolds and let x € X. y € Y, and z € Z • Then: 

T X~Y=TX><TY x,y x y 

T* X >C Y = T*X x T*Y . x,y x y 

Let ..p : X X Y ___,... Z be a morphism such that 'f'(x, y) = z. Then 

T '/> defines TX ..p : T X ___,... T Z and Ty '1> : T Y ___,... T Z by x, .Y x, y x z x, y y z 

the conditions: 

T '/>(v, w) = TX '/>(v) + Ty lj)(w) • x, y x, y x, y 
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The maps TX'/) and Ty'/) ·are called the partial derivatives of '/)·along 

X and Y respectively. 

19. Inverse Function Theorem. 

Let x € X and let f 1, ••• , fm be analytic function on a neighborhood 

u of x. Let F(y) = (f1(y), ••• , fm(y)) ·for y € u. We say that {ta l:S.. i :S.. m 

defines a coordinate system at x if there exists an open neighborhood U' 

of x, contained in U, such that (U', Flu•, m) is a chart on X. 

Theorem 1: The following are equivalent: 

1. {fiJ defines a coordinate system at x. 

2. df. form a basis of T*X . 
lX X 

The or em I is a consequence of the following more general theorem: 

rheorem 2 : Let X and Y be manifolds, x € X and y € Y, and let 

'/) : X ---..;.. Y be a morphism such that 'i>(x) = y •. Then the following are 

equivalelt: 

1. ; is a local isomorphism at x. 

2. T x'i> is an isomorphism. 

2. 1• T*'i> is an isomorphism. x 

Proof: 

1 ::::::> 2 and 2 <::==:>- 2. 1 are obvious. 

Z ::::::> I: This is a local question and the result has been proved in the 

local case in chapter 2. 

Definition: A morphism ; satisfying the equivalent conditions of 

Theorem 2. at x is said to be etale at x. If ; is -'tale at x for all x € ,:X:, 

'/) is said to be 'tale. 
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110. Immersions, Submersions, and Subimmersions. 

Let X and Y be manifolds, x c; X and y €: Y, and let q, : X ----+ Y 

be a morphisUJ such that <PCx) = y. Let m = dimkx and n = dim.,.y. 

Definition: Let X and Y be manifolds, i' c; X and y c; Y, and let 

J: X~ Y be a morphism such that J('i) = y. Then (X, Y, x, y, '/') 

locally looks like (X, Y, x, y, J> if there exist open neighborhoods U 

of x, V of y, U of i', V of y and isomorphisms g~: U ----+ U and 

h : V ~ V such that:. 

1. qiu C V and ~ t?C V. 

~ g( x) = x and h( y) = y . 
3. The following diagram is commutative: 

} 
i • v 

Remai'k: We shall apply this definition mainly when Jf is a linear 

space E, Y is a linear space F, and J is a linear map. In this case, 

we will take x = 0 and y = 0 without explicit mention. 

1) Immersions 

Theorem: The following are equivalent: 

l. T x4' is injective. 

2.. There exist open neighborhoods U of x, V of y, and W of 0 (in 

kn-m) h ,,, v u· w h h and an isomorp ism .,, : ___,. 1' sue_ t at: 

a. qiuc v 

b. U i denotes the l nclusion U ___,.. U X {o} C U X W, then the 

following diagram is commutative: 
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u-.... f/1--v 

~ l~ 
U )IW • 

3. (X, Y, x, y, .P> locally looks like a linear injection qi : E --...;.. F where 

E and F are m a11d n dimensional vector spaces respectively. 

4. There exist coordinates {!J at x and {gjJ at y such that fi = gio.p 

for l~i~m and 0 =g.of/) for m+l;S.j~n. 
J 

5. There exist open neighborhoods U of x and V of y and a morphism 

~: v --;ii. u such that .puC v and a-o.p = Idu. 

Proof: 

The implications Z => 3 => 4 :::;:;:.. S => 1 are elementary. 

We show 1 ~ 2. Since the question is local, we may assume that the 

following conditions are satisfied: 

a. Y is an open subset of kn . 

b. c/>(x) = 0 and im Txc/> =km X {.o} C km X kn-m = kn. 

Let W be {o}xkn-mc kn. Define c/>': X xw ~ Y by lfJ'(x, w) = 

c/>(x) + w. Then by the inverse function theorem, c/>' is a local isomorphism 

at x. Hence, by shrinking x, y, and W, we may assume that f/> 1 is an 

isomorphism. The inverse lJI of .p• satisfies the conditions of 2.. 

Definition: A morphism 'fl satisfying the equivalent conditions of the 

preceding theorem at x is called an immersion at x. A morphism .p 

which is an immersion at all x b X is called an immersioo. 

2) SubmersiODS 

Theorem: The following are equivalent: 

1. T x'P is surjective. 

2. There exist open neighborhoods U of x, V of y, and W of 0 in 
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km-n) ,,, V h "' and an isomorphism .,, : U ...-;i.. )CW sue t.,..at: 

a. ;u = v. 
b. If p denotes the projection V X W--;... V, then the following 

diagram is commutative: 

3. (X, Y, x, y, 4'> locally looks like a linear surjection ~ : E --;... F 

where E and F are m and n dimensional vector spaces respectively. 

4. There exist coordinates {fiJ at x and [gj} at y such that fi = gi o '/> 

for 1 Si Sn. 

5. There exist open neighborhoods U of x and V of y and a morphism 

<:r : V -----;... U such that q,u C V and q,o (1 = Idy • 

Proof: 

The proof is quite similar to the corresponding theorem on immersions 

and is left as an exercise for the reader. 

Definition: A morphism '/> satisfying the equivalent conditiODS of the 

preceding theorem at x is called a submersion at x. A morphism cp which 

is a submersion at all x € X is called a submersion. 

3) Remarks: 1. Etale is equivalent to immersion and submersion. 

Z. The use of the word "immersion" is relatively common (Whitney, 

Smale). "Submersion" is a Bourbaki innovation, reproduced in Lang's 

book. Sottletimes the phrase "'/> bas maximal rank" (meaning T q, is x 

injective if m :S, n and Txf/> is surjective if m ~ n) is used to include 

both concepts. 
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3. An embedding is a morphism ; such that: 

a. tf> is an immersion. 

b. X ~ (j>(X) is a homeomorphism. 

4) Subimmersions 

Definition: '1> is a subimmErsion at x if the following equivalent conditions 

are satisfied: 

I. '/> locally looks like a composition X-4 Z ___!__;,. Y where s is a 

submersion and i is an immersion. 

z. '/> locally looks like a linear map J : E ---;.. F where E and F are 

vector spaces of dimension m and n respectively. 

A morphism ; which is a subimmersion at all x €: X is called a 

subimmersion. 

Remarks: 1. The set of points x '> X where a, morphism '/> : X ---;.. Y 

is an immersion (resp. a submersion. a subimmersion) is open in X. 

z. The composition of t.vo immersions (resp. submersions) is an immersion 

(resp. a submersion). The analogous statement for subimmersions is 

false. 

Theorem: Assume char k a O. Then the fo4owing are equivalent: 

I. '/> is a subimmersion at x. 

z. rank T ,; is constant for x 1 Ci; U and U some neighborhood of x. x 

Proof: 

I =C> Z: Clear. · 

z =C> 1: 

Let p = dimk im T x'1> • Then, since the question is local, we may 

assume that the following conditions are satisfied: 

a. Y = V 
1 

11< V 
2 

is open in kp ">( kn-p • 
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b. cp(x) = 0 and im Tx~ = kp X lo} . 

Let 7r : kp x kn-p---..;... kp be the projection on the first factor. Then 'lf'•c/> 

is a submersion. Hence we may further assume that: 

U . . p km-p c. X = V 1 X 2 is open tu k ~ • 

d. rocp: V 1 X u2 ~V1 is the projection on the first factor. 

The morphism cp then has the following form: 

Finally since T ,cp has locally constant rank we may assume that the x 

rankof Tx,cp isinfact·constanton v1 xu2 (rank =p). 

We contend that l/I must be independent of x 2 in a neighborhood of zero. 

Indeed, D21/I (x1, x 2) = 0 since otherwis.e cp would have rank greater than 

p at (x1, x 2). Our contention is therefore a consequence of the following 

lemma: 

Lemma: Let f : U >< V ----;.. k be a function such that D2f is 

identically 0. Then, char k = 0 implies that f is rlocally independent 

of the V coordinate. 

Proof: 

Write f locally as a power series l?, fa (y)xa. Then n2f = 0 implies 

D.,f = 0 for all a. We must show f = c where c is a constant. 
'"a a a a 

We have therefore reduced the theorem to the case f = f • Write a 

f = L b/3yl3 • Then Df = 0 implies f3ibf3 = 0 where f3 = ({31, ••• , /3r) 

and 1 :5, i :5, r. Hence, since char k = 0, b f3 = 0 for f3 ~ O. Hence f 

is constant. 

We conclude the proof of the theorem by noting that cp may now be 

written as V 1 /. u2 ----;.. V 1 ~ V 1 x V 2 where the first map is pr 1 and 
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the second is ldy X V,, • The first map is a submersion and the second is an 
1 

immersion. 

Corollary 1: Assume char k = O. The set of points x ~ X where 4> 

is a subimmersion is dense in X. 

Let X' be this set, and put f(x) = rank T 'fl. By the previous x 

theorem, X' is the set of elements of X where f is locally constant. 

The fact that X' is dense follows then immedi<!-tely from the following 

two properties of f : 

a) f takes integral values, and is. locally bounded. 

b) f is lower semi-continuous. 

Corollary Z: Assume char k=O and 'fl is injective. The set of points 

x ~ X where .p is an imma:sion is dense in X. 

This follows from Cor. I and the fact that an injective subimmersion 

is an immersion. 

111 : Construction of Manifolds : Inverse Images. 

I) A Uniqueness Principle 

Theorem: Let X be a topological space, let A and B be full 

atlases on X, and let X A (resp. XB) denote the manifold whose underlying 

space is X that is determined by A (resp. B). Then the following are 

equivalent: 

I. XA = XB , that is, A = B . 

Z. For all manifolds Y 1 Mor(X A 1 Y) = Mor(XB. Y). 

3. For all manifolds Y, Mor(Y, XA) =Mor(Y, XB). 
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~: 

The theorem is a special case of the theorem which states that an 

object which represents a functor is deteroined up to a unique isomorphism. 

Nevertheless, we indicate the proof in this case. 

1 ~ 2: Trivial t 

l::::;:;. I: Setting Y = XA' we see that Id"X: XB----+ XA is a morphism. 

Similarly, IdX : XA-----+ XB is a morphism. A and B are therefore 

compatible atlases and hence A = B sinoe A and B are full. 

The proof of 1 ~ 3 is equally simple. 

We shall state two lemmas which we will use in the application of the 

precedi~ theorem. We let X and Y be manifolds and f : X----+ Y be 

a morphism. 

Lemma I: Suppose f is an immersion. Then: 

g E: Mor(Z, X) ~ a. g is continuous 

b. fog E: Mor(Z, Y) 

Lemma 2.: Suppose f is a submersion. Then: 

1. f is an open map. In particular. f(X) is open in Y. 

2. Suppose that f(X) = Y. Then: 

g E: Mor(Y, Z) <====> g • f E: Mor(X, Z) 

Lemmas 1 and Z are an immediate consequence of the local descrip

tions of immersions and submersions which we have given in tHO. 

Z) Inverse Image Constructions 

Let X be a topological space, Y be a manifold, and f : X ~ Y 

be a continuous q:>ap. 

Theorem 1: If there exists a manifold structure on X such that f 

is an immersion then this manifold structure is unique. 
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~: 

By lemma l of #1, for all Z, Mor(Z, X) is determined by the 

topological structure of X and the manifold structure of Y. Hence, by the 

theorem of §1, the manifold structure on X is unique. 

Let x €: X • We say that (X, £) satisfies (Im) at x if the following 

condition is satisfied: 

(Im): There exists an open neighborhood U of x in X, a chart c = 
(V, q>, n) of Y. and a linear subspace E of kn such that: 

a. f(U)C V and f is a homeomorphism of U onto f(U). 

b. c/>(f(U)) = En c/>(V). 

We say that (X, £) satisfies (Im) if (X, f) satisfies (Im) at all x €: X • 

Theorem 2.: The following are equivalett: 

f. There exists a manifold structure on X such that f is an immersion. 

Z. The pair (X, f) satisfies (Im). 

Proof: 

1 => 2.: Part 3 of the theorem of 1!110, n°1. 

2. ==t> 1: Choose an open covering {ui1 iel of ·X such that, for each i €: I, 
n· 

there exists a chart ci = (Vi' t/Ji' ni) and a linear subspace Ei of k 
1 

satisfying: 

a. f(U;)C Vi and f is a homeomorphism of Ui onto f(Ui). 

b. t/J.(f(U.)) = E. (I (j>.(V.). 
1 1 l . l 1 

Then there exists a manifold structure on u1 such that flUi is an immersion. 

Moreover, on U i (I U j , the manifold structures induced from U i and U j 

agree, by Theorem 1. Hence, by 84, n°4, there is a manifold structure on 

X compatible with the manifold structure on each U.-. Clearly, f is 
l 

an immersion with respect to this manifold structure. 
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Suppose that (X, f) satisfies (Im). Then Theorems l and 2. together 

show that there is a unique manifold structure on X such that f is an 

immersion. We call this structure on X the inverse image structure on X 

relative to f or simply the induced structure on X. .We write Xf if we 

wish to make explicit the dependence of this structure on f. 

We now give several applications of the above resul18. 

A) Submanifolds. 

Supp.ose X is a subspace of Y (with the induced topology) and let 

i : X ___:;,.. Y be the inclusion map. If (X, i) satisfies (Im) we say that 

X is a submanifold of Y ; note that this implies that X is locally closed 

in Y. 

Let x ~ X • One says that ·x is locally a submanifold of Y at x if 

the following equivalent conditions are satisfied: 

1. (X, i) satisfies (Im) at x. 

2. ~is an open neighborhood u of x in y such that u n x 

is a submanifold of U • 

3. There exist a coordinate system x1, ... , xn at x and an integer 

p ~ n such that X is given by = x = 0 p 
in a neighborhood of x. 

B) Local homeomorphisms 

When f is a local homeomorphism, (X, f) satisfies (Im). In this 

case, the morphism f : Xf ---;i.. Y is ~tale. 

C) Inverse images of points 

Let X and Y be manifolds, f : X ---;i.. Y be a morphism, and b E:: Y • 

Set Xb = f- 1(b) and let ab Xb . We shall study XbC X in a neighborhood 

of a. 

Theorem: The set Xb is locally a submanifold of X at a if any one 

of the following three conditions is satisfied: 
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1. f is a subjmmersion in a neiglt>orhood of a. 

2.. There exil,ts a submanifold W of X such that: 

l) w C xb. 

3. (Weil) There. exists a manifold Z, a point c € Z, and a moi;phism 

g : Z ----;... X such that: 

l) For all z € Z, f•g(z) = b. 

2.) g(c) = a. 

Proof: 

1. The proof is an immediate consequence of the definition of a subimmersion. 

2. We shall prove the following stronger statement: There exists an open 

neighborhood u of a in x such that u nxb = u n w . 
The statement is local so we may assume that X is an open neighborhood 

of a= 0 in km and that X = W ;< V. Define F : X ~ W 1< Y by the 

formula: F(w, v) =- (w,f(w, v)). Then F is an immersion at 0 so by 

shrinking X we may also assume F injective. Then Xb C F-1(W X (b}) = 

w ~ fo} = w. 

3. We shall prove the fe>llowi:ig stronger statement: There exist open 

'neighborhoods W cf c in Z and U of a in X, a decomposition 

W = w1 X W 2 , and a morphism 'fJ: W 1 ~ X such that: 

a. q, ts an isomorphism of W 1 onto a submanifold q,w 1 of X. 

b. The map g factors as: 

c. U () Xb = g(W). 
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ln particular, this will show that g is a sub immersion at c. 

The statement is local so we may assume that Z is anopen neighborhood 
. w 

of c = 0 in kp and that Z = W 1 X W 3 where T l(g) is an isomorphism at 

0 and TW3 (g) is zero at O. Let ; = glW1 • Then ; is an immersion at 

0 so we may assume by shrinking W 1 that ; is an isomorphism of W 1 

onto a submanifold of X. Then, by 1) and 3), ;w 1 satisfies the hypotheses 

of part 2. Hence there is au open neighborhood U of a in X such that 

unxb = un;(w1). 
There is an open neighborhood W of 0 in W 1 X vi 3 such that 

g(W) C U (')Xb • Then, g : W ____. 'PW l and this map is a subnersion at O. 

Hence by shrinking W and WI' we may find a product decomposition 

W = W i"' W z. · such that corxlitions a) and b) are both satisfied. Finally 

we can shrink U so that c) is also true. Q. E. D. 

D) Transversal submanifolds 

Let X be a manifold, Y 1 and Y z. be submanifolds of X, and 

xE:Y 1(')Y2 • 

Theorem: The following are equivalent: 

l. TxX = TxYl + TxY z.. 
2. There is a chart c = (U, ;, n) at x such that: 

3. 

;u = v1 x v 2 x w 

tP(U(')Y1) =V1 x {oj X W 

tP(U(') Y z.) = [o} X V z. 't W. 

There exists a coordinate system Xl' • • •' x at x and integers 
n 

p, q ~ 0 with p + q :S, n such that: 

Y1 is given by x1 = · · • = xp = 0 in a neighborhood of x, 
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Y 2 is given by xp+l = · • • = xp+q = 0 in a neighborhood of x. 

Proof: 

2. <==e> 3 ·and 2. =I> 1 : Obvious. 

1 =1>3: 

Since Y 1 and Y 2 are submanifolds of X, we can (after suitably 

shrinking X) find submersions 

au.ch that Yi = fi
1
(0), i = 1, 2.. Let (xl' ••• , ~) and (xp+l' ••• , xp+q> 

bli the components of f 1 and f 2 • Asaumption 1 implies that the map 

(fl' f 2) : X ---;i.. kp Jt kq is a. submersion at x. This means that 

(xl' •.• , xp+q> is part of a coordinate system (xp •.• , xn) at x. 

Hence l =I> 3. 

If Y 1 and Y 2 satisfy the equivalent conditions of the preceding 

theorem at x, we say that Y 1 and Y 2., are transversal at x. 

Corollary: Suppose Y 1 aid Y 2 are transversal at x. Then: 

1. .Y 1 and Y 2. are transversal in a neighborhood of x. 

2.. Y 1 () Y z is locally· a s ubmanifold of X at x. 

l,,_ Tx<Y1()Yz) = TxYl()TxYz. 

E) Transversal morphil!!ms 

Consider a pair of morphisms fi : Yi ~ X, 

i = 1, Z. Define: 

y 1 l<x y z =(<Yl" Yz) € y 1 )( y 2. : f1<Y1l = fz(Yz.>1 

This is called the fibre product of Y 1 and 

Y z. over X. Let pi : Y 1 XX Y z. ---;i.. Yi be the restriction of pr 1 .to 
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Let (Yp Yz) € Y 1 ~ Yz and let x=f(y1, y2). We say that f 1 and 

f 2 are tra,nsversal at y = (y1, y2) if T X =Im T £1 +Im T f 2 . 
x Y1 Y2 

Theorem: Suppose f 1 and £2 are transversal at y. Then: 

1. £1 and £2 are transversal at points in a neighborhood o! y in Y 1 ~ Y 2. • 

2. Y 1 XX Y 2 is locally a submanifold of Y 1 If Y 2 at y. 

3. Ty(Yl "x Y2> = TY1<Y1> XTX(X) TYz(Y2>· 

Sketch of proof: 

Set Y = Y 1 >e Y 2 and Z = Y 1 xx Y 2 • Let 0.: Y ~ Y K X be 
1 

( 1, f. •pr.). i = 1, 2, and let o = o. jz. Then deduce the theorem from: 
l l l 

a. o 1 and Oz are isomorphisms of Y onto submanifolds of Y ac X. 

b. o1(Y) ~nd o2(Y) are transversal at o(y). 

c. o(Z) = 01(Y) n Oz(Y). 

The details are left to the reader. 

Remark: If one of the maps fi is a submersion, then f1 and £2 

are everywhere transversal. 

F) Mixed transversality 

If, in the situation of E), f1 is an inclusion of a submanifold Y1 

into X, we also say that fl is transversal over Y1 at y if f1 and f2. 

are transversal at y. 

ill. Construction of Manifolds : Quotients. 

Let x be a manifold and RC x ;t. x be an equivalence relation. Let 

X/R be the set of equivalence classes of elements of X under R and let 

p : X ---+ X/R be the projection. Give X/R the usual quotient topology, 

namely, let UC X/R be open if and only if p-1(U)Cx is open. 
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Theorem 1: If there exists a manifold structure on X/R such that p 

is a sul:xnersion then this manifold structure is unique. 

Proof: 

By lemma 2of§11, for all Z, Mor(X/R, Z) is determined by the 

manifold structure of X. Hence, by the theorem of § 11 the manifold 

str11cture on X/R is unique. 

When a manifold structure can be defined on X/R such that p is a 

submersion, then we give X/R this uniquely determined structure and say 

that X/R. is a quotient manifold of X, or simply a manifold; the relation 

R is then called a regular equivalence relation on X. 

Theorem 2: (Godement) The following are equivalent: 

l: X/R is a manifold, that is, R is regular. 

2: 1) R is a submanifold of X X X. 

2) pr 2 : R-+ X is a submersion. 

Proof: 

1 ::::> 2: The set R is equal to X XX/R X • Since p 

pr 
R _.l..;.. X 

is a submersion, R is a submanifold of.Xx X, 

cf. ~11, n°z, E). Moreover, if (x, y) €:R 

and z = p(x) = p(y), one has: 

This formula implies that T- (R) -+ T (X) is surjective, hence the 
I z y 

restriction of pr 2 to R is a submersion (cf. exer. 5). 

2 ::;:;::> l: 

We shall give a sequence of six lemmas which together yield 2 =::::> 1. 

Suppose U is a subset of X. Set Ru = Rfl(U x U). Also, recall 

that U is said to be saturated with respect to R if U = p -lp(U). 

Lemma 1: Assume X = U U. where, for i (; I, U. is an open 
it: I i i 

saturated subset of X such that U ./Ru is a manifold. Then X/R is a 
l . 

l 
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manifold. 

Proof: 

By hypothesis, for i E: I, U. _...,,.. U./RlJ 
1 l . 

is a submersion. Hence, 
1 

for i, j Ci:: I, the manifold structures induced on (uinuj}/R(u.nu.) by 
1 J 

U /Ru. and U ./Ru agree (Theorem 1). Hence there is a unique manifold 
l J j 

structure on X/R compatible with the given structure on U./RU . Finally, 
l . 

l 

p is a submersion since PIUi is a oubmersion for all i. 

-1 Lemma Z: The map pis open, that is, U open in X =====- p p(U) open 

in X. 

Proof: 

We have that p-lp(U) = I>-rz(U X xnR) which is open if U is open 

because pr 2 is a submersion (ill, Lemma 2). 

-1 Lemma 3: Let U be open in X and suppose that p p(U) = X and 

that U/Ru is a manifold. Then X/R is a manifold. 

Proof: 

The canonical map a: U/Ru--+- X/R is bijective. Hence, if 

we show that {3 = a -Ip : X---;;.. U/Ru is a submersion, we will obtain by 

transporting· the structure of U/Ru to X/R that X/R has a manifold 

structure such that p is a submersion. Consider the following commutative 

diagram: 

Then ({31 U) •(pr 1) = {3 o (pr 2) is a submersion. Hence, since' pr 2 ·is a . 

submersion, {3 is a morphism and in fact a submersion (Ill 11, Lemma 2). 
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Combining Lemmas 1, 2, and 3, we obtain immediately: 

Lemma 4.: Assume X = U U. where, for i <:: I, U. is an open 
i<::I 1 1 

subset of X such that U ./Ru is a manifold. Then X/R is a manifold. 
1 . 

1 

The effect of .Lemma 4 is to make the construction of a manifold structure 

on X /R such that p is· a submersion into a local problem. In Lemmas 5 

and 6, we show that the local problem is solvable, that is, for x 0 <:: X, 

there is a neighborhood U of x 0 in X such that U/Ru b.as a manifold 

structure such that U--+ U/Ru is a submersion. 

Lemma 5: Let x 0 <:: X . Then there exists an open neighborhood 

U of x0 , a submanifold W of U, and a morphism r : U ~ W such that 

if u <:: U then r(u) is the unique point of W equivalent to u mod. R. 

Proof: 

Let N be the set of tangent vectors ~ 6 T (X) such that 
XO 

(C 0) <:: T (R). 
xo.~o 

Choose a submanifold W' of X such that x 0 <:: W' 

and K = T W1 is a complementary subspace to N in 
XO 

I! = (W' )( x>nR . 
We contend that: 

1. ~ is a submanifold of R. 

2. pr 2 : I! --+ x is etale at (xo· xo>· 

Then define 

The first assertio•1 follows since I!.. = lj.t- 1(W 1) where ljl denotes the 

submersion pr 1 : R--+ X. Note that we have used the results of Iii l, E) 

and applied the hypothesis that pr2 is a submersion together with the fact 

that R is an equivalence relation which shows that pr
1 

is also a submersion. 

Next, ker(T(pr 2)) at (x0, x 0) is Nn K = 0. Hence T(pr2) is 

injective. On the other hand, let 1J <::. T X and choose ( <:: T X such that xo xo 
((,, 71) <:: T R. Write t = f. 1 + (., where t 1 <:: N and ~., <:: K. Then, it 

XO' XO " " 
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is also true that (i, Z' 11) € T R s iuce ·NC T R. But (f. 2, 11) then xo,xo xo.xo 
belongs to T w• >t T X ('\ T R = T !: and this element 

XO XO x 0 • x 0 x 0 • x 0 

also maps onto 11. Hence T(pr2) is surjective. 

It follows that there exists a pair of open neighborhoods . u 1 and U 2 

of x0 such that pr 2 : 2: ('\ (U1 t U1)--;i.. U2 is an isomorphism. Let f 

denote the inverse. Then f must have the form: f(x) = (r(x), x). Notice 

that U2C ul and that if x € uz.nw• then r(x) = x. The last statement 

follows from the fact that (x, x) and (r(x), x) are two points in 

t ('\(u1 X u 1) with the same image in u 2 and hence are equal. 

Finally, set U = { x : x € u 2 and r(x) € u 2(l W' J and set W = U('\ W'. 

We contend that U, W, and r are as required in the statement of the lemma. 

We must show that: 

1. r(U)Cw. 

2. r(x) is the only element of W .equivalent to x, for x € U. 

'CO prove 1, we must show that, for x € U, r(x) € U, that is, that r(x)€U 2 

which is obvious and that r(r(x)) € U z ('\ W ' • The last s-fatement follows 

since r(r(x)) = r(x) € u 2 ('\W". To prove 2., we simply note that there 

is exactly one point in R('\(W llC U) mapping by pr2 onto x, namely, 

(r(x), x). 

This completes the proof of the lemma • 

.Lemma 6: If (U, W, r) satisfy the conditions described in Lemma 5, 

then U/Ru is a manifold. 

Proof: 

The morphism r : U--+ W has a right inverse (the inclusion of 

W into U); hence it is a submersion. In the commutative diagram: 
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the map a is a bijection. Transporting the manifold structure of W 

to U/Ru , we have the lemma. Q.E.D. 

Remark: If R is regular, X/R is Hausdorff if and only if R is 

closerl in X K X (this follows from Lemma Z above). 

Exercises. 

1. Let G be a finite group of automorphisms of a manifold X, and let 

XG Le the set of fixed points of G. Assume the orde1· of G is prime 

to the characteristic of k. Show: 

(a) J.1 x b XG , there is a system of local coordinates at x with 

respect to which G acts linearly. 

(b) XG 'is a submanifold of X, and, if x € xG , T (XG) is equal to 
x 

~. Assume k is a perfect field of characteristic p # 0. Let X be a 

manifold over k. Show that there exists on the topological space X a 

unique structur!'l of manifold (denoted by xP) with the following property: 

If 'l is any manifold, Mor(XP, Y) is equal to the set of morphisms 

f : X _...,.. Y such that T (£) = 0 for all x Ii X . x 

A map f : X -...;.. k is an xP-morphism if and only if its p-th root 

is an X-morphism. 
-1 

Show the existence of xP 
-1 

such that (Xp )p = X, and ".l.efine 

inductively Xq for q = pn , with n b ~ • Show that Mor(Xq, Yq) = 

Mor(X, Y). One has Xq = X if and only if q = 1 or X is discrete 

(i.e., of dimension 0). 
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3. Assume k is locally compact ultrametric; let A be its valuation v 

ring, m = 1TA the maximal ideal 0£ A , k(v) = A /m , and q = Card. k(v). v v v v v 

Let B = (A )N be the unit ball of some di mens ion N, and put B = (Av/7T11A )N, . v n v 

Let X be a non-empty submanifold of B; assume so that B = lim. B 
n -

X is everywhere of dimension d. Let Xn be the image of X in B~ , 

and c = Card(X ). Show: n n 

(a) There exist n0 ~ 0 and A > 0 such that: 

nd 
c = A.q n 

(b) Let a~ ~/(q-1)~ be the invariant of X defined in Appendix 2 

(assuming now th.at d 2:, 1) ; one has A= a mod. (q-1). 

4. Let X be a manifold, Xi be submanifolds of X, and x (;; n Xi • 

Assume that the T (X.) are !in.early independent in T (X) (i.e., the x l x 

sum of the T x(Xi) is a direct 'sum). Show that there exists a chart 

c = (U, cp, n) on X, with x €: U, such that cp(U jx.) is the inters~ction 
1 

of cp(U) wi.th a line~r :::iubvariety of kn . 

5. Let fi (i = 1, 2) : Xi---+ X be transversal morphisms, and let 

pi : X 1 Xx Xz----;... Xi be the projection morphisms. Show that, if fl 

is a submersion (resp. an immersion, a subimmersion), the same is 

true ior Pz . 

6. Let f: X ~ Y be a morphism. Assume f is open and the 

characteristic <>f k is zero. Show that the set of points of X where f 

is a submersion is dense in X. 
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Appendix l: An example of a Hausdorff manifold over an ultrametric 

field k which has a point which does not have a fundamental system of 

open and closed neighborhoods. The example is due to George Ilergrnan. 

Let k be a complete ultrametric field and let A be its valuation 

ring. · Suppose there exists x €: A such that x # 0 and A/xA is infinite. 

Then we contend that A is analytically isomorphic to A - (o J. To show 

this, we shall show that A and A - [o} may both be represented as the 

disjoint union of the same cardinal number of copies of A. First· note that 

if .,._ is a positive integer then the cosets of xµA are isomorphic to A. 

Then note that A is the disjoint union of the cosets of xA while A - f oJ 
is the disjoint union of the following collection of cosets of x .,._A wher.e 

µ ranges over the, positive integers: 

l. The cosets of xA excepting xA itself. 

z . The cosets of xz A in xA excepting xz A itself. 

..... 

Since A/xA is infinite, it is clear that both sets of cosets which we 

have described have the same cardinality. 

We may view the above construction' as a smoothly attaching a point 

P to the ball A : AC AU [PJ ~ A 1, and P is the point 0 in the 

latter copy of A. This attaching process bas three important properties: 

1. AU {PJ is a Hausdorff analytic manifold. 

Z. P is in the closure of A. 

3. P is not in the closure of any coset of the maximal ideal m of A. 

This last property is a consequence of the fact that 0 is "far away" from 

any of the co sets we have used t~ describe A - { oJ as a disjoint union of 
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copies of A. 

We are now going to do this attaching process a countable number of 

times. Attach in the above manner a point P 0 to A. Since xA~ A, attach 

a point P 1 in the above manner to xA. Property 3 says that the point P 1 

is "far away" from P 0 so that we again have a Hausdorff manifold. Suppose 

. ~ now that we have attached points P 0 , ••• , P µ to A, ••• , x. A • Then 

attach a point P µ+I to xu+IA. Now pass to the limit. We give the limit 

the topology such that each of the subsets X, P 0 , ..•• , P µ is open and has 

its own original topology. 

Since the points we have attached are "far away" from sch other, it 

is clear that the manifold. X we obtain in the limit is Hausdorff, However 

the point 0 €A does not have a fundamental system of neighborhoods 

which are open and closed. Indeed the powers (x'""A} are a fundamental 

system of neighborhoods of 0. If we had a fundamental system of 

neighborhoods of 0 which was open and closed we could·find one such neigh

borhood U contained in A. Then find xf-LA CU. The closure of xµA 

contains P f, A. Contradiction. 
µ 

Remark: The reader should verify that there exists x €A such that 

x # 0 and A/xA is infinite if and only if one of the following two conditions 

is satisfied: 

I. The residue field of k is infinite; 

2. The valuation of k takes on a non-discrete set of values. 

The only ultrametric fields not satisfying one of these conditions are 

the finite extensions of the p-adic fields ~p and the fields F((X)) 

where F is a finite field. 
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Appendix. 2.: Structure of p-adic manifolds. 

We shall use the notion of disjoint union to study manifolds in the 

case when k is locally compact and ultrametric . We let n € ~, n2:,0, 

and we assume that X is everywhere of dimension n. We also assume 

that X is Hausdorff, and non-empty. 

Lemma 1: Let r E: ~ , r > O, and let x E: kn . Then B(r)(x) is 

compact and open. Hence every ball in X is compact and open. 

Proof: 

I. Compactness: 

Since k is locally cc:mpaSCt, there iB' a positive real number £such 

that any b~ of radius s < €r about x in kn is contained in a compact 

neighborhood of x. Since these balls are closed in kn , they are compact. 

Since the' absolute value on k is non trivial, we may choose a :f! 0, E: k, 

such that la I < E"; • Then the transformation f(y) ::: x + a(y - x) is a 

topological isomorphism of B(r)(x) onto B( la I r)(x). Hence B(r)(x) is 

compact. 

2.. Openness: 

We contend that if y E: B(r)(x) then B(r)(y) = B(r)(x) so that B(r)(x) 

is a neighborhood of y. Since x E: B(r)(y), it suffices by symm<ltry to 

show B(r)(y)C B(r)(x). Let z G B(r)(y). Then: 

I z - x I ~ Max( I z - y j , I y - x I ) ~ r 

Thus, z € B(r)(x) as desired. Note that we have used here the fact that 

k is ultrametric. 

Remark: An analogous argument sho•.vs th;::.t, if B. are balls of 
l 

radius rp i ..., 1, 2, and r 1 ~ r 2 • then B 1 is contained in Bz. or 

i.:; disjoint from B..., • ... 
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Lemma ~: Let U be a closed and open set of a ball B in kn . Then 

there is a positive radius r smaller than the radiua of B such that U is 

the disjoint union of a finite number of balls of radius r. 

Proof: 

Lei V = B - tJ, Then [u, v] is an open covering of th.e compact metric 

space B. Hence there is a radius r less than the radius of B such that, 

for all x: 6 B, the ball of radius r about x in B is contained in either 

U 'Or V. By the preceding rem(!.rk, we see that a ball of radius r in B 

is a ball of radius r in kn . Hence U is the union of balls of radius r 

in k
11 

• This union is disjoint by the preceding remark and therefore 

finite since U is compact. 

Remark: From the l~mma, we see that if B is a ball in X and U 

is an open and closed set in B, then U is the disjoint union of a finite 

number of balls in X. 

Theorem 1: The :fJllowing are equivalent: 

l. X is a paracomp..:.ct. 

2. X is the dicjoint union of balls. 

Proof: 

2 => 1: 

A disjoint union of compact spaces is a paracompact .. 

1 =:> Z: 

We shall first show that X has a locally finite covering by balls. 

We know that X has a covering {u>..l >..f:L by balls. Choose a locally 

finite open refinement fv µl µ6 M of this covering. Then choose a locally 

finite closed refinen1ent lw 1. of this covering. Let rp : M __..,,.. L vl116N 

and l/I: N ~ M be such that Vµ C U<f>(f.1) and W vC Vl/l(ll) • Let vf:N. 

Then: 
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wv C vl/l(v) C u'/Jl/l(v) . 

Since W v is closed am U<P.l/l{v) is compact, W JJ is compact. Then, since 

V cf>(v) is open, we may cover WV by a finite number of balls Bv, i , i ~ 1
11

, 

such that B . C V "'( ) for all i. Then the covering fB .1 ,..N .,...1 II, l 'I' V 1.: II, l Voe. 1 1.:. V 

consists of balls and is locally finite since any ball B . meets at most 
11,1 

finitely many V~ and hence only finitely many B
11

,, i' . 

We will now simplify notation and let · fui1i~I denote the locally finite 

covering of X by balls which we have ol:tained above. Then each U. is 
l 

open and compact and meets only finitely many U j • Let F(I) denote the 

finite subsets of I. Then, if J E: F(I), define: 

u.n <x - u u.). 
l j¢J J 

The set (X - U U .) is open and compact. Indeed,· if J = ~. this is 
j¢J J 

obvious, while if i E:J, then this set is the finite intersection of open and 

compact sets, namely, n (U. - U .), where the j's may be restricted 
j¢;J l J 

to the finite set of indices for which u. n u. # p. It follows that when u. 
J l J 

is non-empty then U J is an open, compact subset of a ball, hence a. finite 

union of balls. However, by definition, the U J' J E: F(I) are disjoint. 

Thus we have the theorem using the covering { U J 1 JE:F(I) • 

Theorem Z: Let q be the number of elements of the residue field 

of k. Suppose X is compact, non-empty, and everywhere of the same 

dimension d ~ 1. Then: 

1. X is the disjoint union of a finite number of balls. 

Z. The number of balls in a decomposition of X into a disjoint union 

of a finite number of balls is determined mod. (q-1). 

{Hence,. such an X is determined, up to an isomorphism, by an 
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element of Z/(q-l)Z:.) = -
Sketch of proof: 

1. Follows immediately from Theorem 1 and the compactness of X. 

Z. We stall state a sequence of reduction steps and then shall prove the 

statement that the theorem is finally reduced to. Each of the reduction 

steps is based on the philosophy that one may divide a ball into qi balls, 

where i is a positive integer, without disturbing cow:gruence mod (q-1). 

Suppose X is given with two decompositions {ui1 ibl and f vj] jbJ 

where I and J are finite and (ui} and {v;J are made up of disjoint 

balls. Then we want to a.how that card(I) = card(J) mod(q-1). 

Step 1: Reduce to the case when (ui} iQ is a rE!finement-of fv;J j<iJ • 

Step Z: Reduce to the case when X = Vj and J = fr} . Then we have 

the following explicit situation: 

a. X is a ball in kn • 

b. U. is a ball in J.s:n for i E:I. 
1 

c. There exist analytic isomorphisms cpi' i E: I, of Ui into X. 

such that X is the disjoint union of [<PiUJ . 

Step 3: Reduce to the case when each cpi ·is given by a convergent power 

series. 

Step 4: Reduce to the case q,. = L.O W, where L. is a linear isomorphism 
l 1 l l 

and I/Ii is an isomorphism of a ball onto a ball. We can then assume that 

q,i = Li . 

Step 5: We contend that it suffices to prove that there are radii r 1 such 

that, for any radii s. S. r., L.U. is the disjoint union of radius s
1
• and 

l l 1 l 

such that the number of such balls is a power of q. For, if this is so, 

we take r = min(r.). Then X is decomposed in qm balls of radius r 
1 
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m· 
while each LiUi is decomposed into q 

1 
balls of radius r. Then: 

This is precisely what has to be proved in this special case. 

We are therefore reduced to showing that if U is a ball and L is a 

linear isomorphism then there is a radius r such that: 

l. If 0 < s .5, r, then LU is the disjoint union of balls of radius s. 

2. The number of such balls is a power of q. 

By translation and multiplication by scalars, we may assume U =A 
v 

and L €: M (A ), where A is the valuation ring of k. We let m denote n v v v 

the maximal ideal of A and we note that numoer of cosets of mµ , where µ 
v v 

is a positive integer, is equal to the number of elements in Ajm~ which is 

, where q is the number of elements in A /m . . v v 

The existence of a radius r satisfying l is guaranteed by J.,.emma 2. 

We contend that this radius also satisfies 2. Indeed let 0 < s ~ l' 'lnd 

let h be the number of balls of radius s in U. Now, An is the disjo:it 
v 

union of a finite number h 1 of translates of U, so that h h 1 is exactly 

the number of balls of radius s in A 11 
• Let µ be the positive integer 

v 

such that the ideal mµ is precisely the ball of radius s in A Then v v 

(mµ)n is the ball of radius s in An about 0. Hence there are precisely v v 

(qfl )n balls of radius s in An . However, h' is als'o a power of q. 
v 

This follows s:lnce h' = card(A~U) and since A~/U is a torsion module over 
µ. 

Av and hence a direct sum of modules of tl;ie form Ajmv1 each of wh"ich 

has cardinality equal to a power of q. Thus, finally, h is a power of q. Q. E. D. 

Remark: For a different proof of Theorem 2 (using integration of 

differential forms) see a forthcoming issue of 11 TofDlogy11
• 
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Appendix 3. The transfinite p-adic line 

Apropos of theorem 1, there exist non paracompact Hausdorff manifolds 

over any locally compact ultrametric field k.. We give here an example of 

such a manifold which is due to George Bergman. 

We shall construct a directed system [ x'YJ of spaces indexed by the 

elements of the first uncountable ordinal and our example of a non-pa1·a-

compact manifold will be given by X = lim X 
--;;... 'Y 

The manifolds X will all be taken to be copies of the valuation ring A 
'Y 

of k. We shall define the maps X 0 

1) I' ;:: 0 • 

X for o < 'Y by induction on 'Y· 
I' 

The condition O < I' is vacuous in this c,.ase. 

2) I';:: 'Y 1 + 1, for some ordinal I''· 

Let 11' be a fixed generator of the maximal ideal m of Z. Let 

X 1 ~ X be multiplication by 11'. 
I' 'Y 

For arbitrary o < I' , let X 0 --;;.. X be the composite 

x .It~ x ,____,,. x . 
v 'Y 'Y 

3) 'Y is an initial ordinal. 

Let Y = lim X 0 . Then Y is the union of the countable family of 
I' o<;'Y I' 

open, compact subspaces x 0 ( O < /') and is therefore paracompact. By 

Theorem 1, it is the disjoint union of balls. The number of such balls 

must be countable in number since a disjoint union is locally finite and 

only finitely many elements of any locally finite covering can meet any 

given x0 . Since A - {o} is also the union of a countable number of 

balls, we may choose an analytic isomorphism cf> : Y ___,... A - f 0 l . 
I' I' 

Then , for O < I' , the map X 0 ~ XI' is defined to be the composite: 

x0 ~ YI' '1>y > A - fo}C A = XI' . The inductive definition of the 

maps x 0 -----?> X 'Y for c5 < 'Y is now complete. 
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The space X so constructed has the following two properties: 

( 1) Any denumerable family (Kn) of compact subsets of X is caitained 

in a compact set. 

( Z) X is not compact. 

Proof of (1): Since K = U (K n X ), and X is open, there exists a 
. n n 'Y 'Y 

'Y with K C X ; choosing 'Y such that 'Y < 'Y for all n, we have n n -y
0 

n -

K C X , and X is compact. 
n 'Y 'Y 

Proof of (Z~: Follows from X'Y '# X for all 'Y· 

We leave to the reader the verification of the fact that a locally compact 

space X with properties (1) and (Z) is not paracompact. 



Chapter IV : Analytic Groups 

We denote by k a field complete with respect to a non-trivial absolute 

value. 

81. Definition of Analytic Groups 

Let G be a topological group and an analytic manifold over k. Then 

G is said to be an analytic group ora Lie group over k if the following 

conditions are satisfied: 

I. The map (x, y) ~ xy of G x G into G is a morphism. 

2.. -1 The map x ~ x of G into G is a ·morphism. 

Remarks: 1) Suppose G is an analytic group. Then: 

a. G is Hausdorff. 

b. G is metrizable. 

c. G is complete for the left or right uniform structures. 

Indeed, a) follows since a topological group is Hausdorff if and only 

if the intersection of the neighborhoods of the identity equals {e} . ·See 

Bourbaki, Top. Gen., ch.· 3, fl 1, #2., Cor. of Prop. 2.. The second con•. 

dition is satisfied in this case since G is locally isomorphic to an open 

subset of kn for some integer n. 

Statement b) is a consequence of the fact that a' is Hausdorff and that 

e has a denumerable fundamental system of neighborhoods. See Bourbaki, 

Top. Gen., ch. 9, 83, #1, Prop. I. 

To show statement c), it suffices to consider only the right uniform 

structure. Furthermore, it suffices-to show that there is a neighborhood 

V of e which is complete in the induced uniform structure. See Bourbaki, 

I 
Top. Gen., ch. 3, 13, #3, Prop. 4. We construct such a neighborhood V 

of e as fi;>llows. Let (U, cp, n) be a chart at e such that cf>(e) = 0 and 

LG 4.1 
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let V 1 be a neighborhood of e such that V 1 ·V1 C U. Then the law of 

composition on v
1 

is; induced via cf> from an a_nalytic map F: cpV1X cpV1~ cf>U. 

For y S f/>V 1, F(y, 0) :c~ F(O, 0) = y - 0 = y. Then, since F is analytic, 

there is a closed neighborhood V of e in VI such that for {Y, x) e c/>V x cf>V 

we have: 

i I-YI s. IF{y, X) - F(O, X) I s. 21-YI • 

We shall show that V is complete by showing that the uniform structure 

on v agrees with the uniform structure induced via I/> from the unuorm 

structure on c/>V given by the additive structure of kn • Now, a fundamental 

system of entourages of the uniform structure of V is given by sets of the 

form vwC v xv where: 

1. W is a neighborhood of e in V and c/>W is a ball of radius e about 0. 

2. Yw= {<w.x, x) :x€V,w€W, w.x€V}. 

On the other hand, let NB = f (y, X) £ c/>V x cf>V : IY' - xis. l) l where B > o. 

The sets NB form a fundamental system of entourages for the uniform 

structure on c/>V induced from the additive structure of kn . Now, with W 

as above: 

Hence the two uniform structures on V agree. Since the uniform structure 

induced by the additive structure of kn is complete because V is closed, 

statement c) is proved. 

Notice: We have shown that the left or right uniform structures locally 

agree with the uniform structures induced by charts. 

2) Concerning the axioms of analytic groups: 
I" 

a. Axiom 1 implies that for fixed x € G the map y ~ xy is an 
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isomorphism (for the manifold structure of G). 

b. Axiom 1 implies Axiom Z. 

c. Axion::i Z implies that the map x ~ x - I is an isomorphism. 

Indeed, let </> : G x G ___,... G denote the map (x, y) ___,... xy, let 

<f>x : G ___,... G denote the map defined by cf>x(y) = cp(x, y), and let 

l 1 z ljl: G _., G denote the map x ...__,.. x- . Let T cf> and T cf> be the 

first and second partial derivatives of cf> (see ch. 3, lll8). 

Then, statement a) is a consequence of the fact that </> is the x 

composite of the morphism y .___,.. (x, y) of G into G X G with </> which 

shows that </> is t' morphism and the fact that </> has an inverse, namely, x x 

</> -1· Note that T </> : T G ___,... T G may be identified with x y x y xy 

T 2 </> : T G-.;... T G. In particular, T
2

</> is an isomorphism .. x,y y xy 

Statement b) is shown as follows. Consider the morphism 9 :GI< G~Gx G 

defined by 9(x, y) = (x, xy) = (x, </>(x, y)). Then e is bijective and etale at 

each point (x, y) of G >< G. Indeed, at (x, y), T9 has the form: 

Thus, T8 is an isomorphism. It follows that 8 is an isomorphism. Let 

CJ' = 8- 1. Then, for all x E: G, CS"(x, e) = (x, x - I) = (x, ljlx). Hence 1/1 is 

a morphism. 

Statement c) is a consequence of the fact that ljl 2 = I which shows that 

1" has an inverse and is therefore an isomorphism. 

fiZ. Elementary Examples of Analytic Groups 

I) General Linear Groups 

Let R be an associative algebra with unit which is finite dimensional 

over k. The general linear group over R is the group Gm(R) of invertible 
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elements of R. We contend that G (R) is an analytic group which is 
m 

open as a subset of R. To show that Gm(R) is open in R it suffices to 

show that there is a neighborhood of 1 contained in Gm(R). Now, there 

existit an open neighborhood U of 0 in R such that for x ~ U the series 

Exn converges. It follows that V = {1 - x : x (;:: U J C Gm(R) and V is 

a neighborhood of 1. To show that Gm(R) is an analytic group it remains 

to show that multiplication is a morphism .. This follows since multiplication 

in R is bilinear. 

In the special case where R is the endomorphism rirtg E(V) of a 

finite dimensional vector space V over k, we call G (R) the general m 

linear group of V and denote it by GL(V). When V =kn we write 

GL(V) = GLfn, k). An element a G GL(n, k) may be represented as an 

n by n invertible matrix a = (a ... ). Hence GL(n, k) is called the 
lJ 

general linear group of n by n matrices over k. 

Suppose now that k is ultra metric and that A is the valuation ri tg 

of k. Then, for a = (a .. ) G GL(n, k), the following are equivalent: 
lJ 

1. a defines an automorphism of An . 

2. a. The coefficients a.. of a lie in A. 
lJ 

b. The determinant of a is a unit in A. 

Let GL(n, A) denote the set of a € GL(n, k) satisfying the above conditions. 

Then, by condition 2, GL(n, A) is an open and closed subset of the set of 

n by n matrices with coefficients in A. Hence, in particular, GL(n, A) 

is open and closed in E(kn). By condition 1, GL(n, A) is a group. Hence, 

we have that GL(n, A) is an analytic group. We call GL(n, A) the general 

linear group of n by n matrices over A. 

Suppose further that k is locally compact. Then GL(n, A) is a compact 

open subgroup of GL(n, k). In appendix 1, we shall show: 
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Theorem: GL(n, A) is a maximal compact subgroup of GL(n, k) and, 

if G is a maximal compact subgroup of GL(n, k), then G is a conjugate 

of GL(n, A). 

2.) Induced Analytic Groups 

Let G be an analytic group, H a topological group, and i : H ---;... G 

a continuous homomo.rphism. Suppose that (H, i) satisfies condition (Im) 

of Chap. 3, 81 I. Then H is a manifold w.ith its induced structure. We 

contend that H is an analytic group. In.deed, let q,G and q,
8 

denote the 

multiplication maps in G and H respectively. Th en the following.diagram 

is commutative: 

q,H 
HXH-=-,,..)H 

ix i I~ Ji 
~ q,G 

G x G -=-,,..) G 

Then q,G'(iX i) is a morphism; hence q,8 is a morphism since 

immersion. Therefore H is an analytic group. 

is an 

Remarks: 1) To verify that (H, i) satisfies (Im), it suffices to verify 

that (H, i} satisfies (Im) at e8 • lndeed, suppose that (H, i) satisfies 

(Im) at e8 and that h ~ H and g = i(h). Let q, : H ___,,. H and I/I : G ---;... G 

be defined by q,(x) = h - lx and l/J(y) = gy. Then, q, (h) = e8 , l/J(eG) = g, and 

i = I/Io. i•q,. Since I/I is an analytic isomorphism and i saHsfies (Im) at e8 , 

tJ! • i satisfies (Im) at e8 • Then, since q, is a homeomorphism, i 

satisfies (Im) at h. 

2.) We know, in particular, that (H, i) satisfies (Im) when i is a 

local homeomorphism (Ch. ·3, 111, #2., B). If, moreover, i is surjective 

and k = i or ~, we say that H is a covering grcup of G. 
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3) Group Submanifolds 

Suppose G is an analytic group and H is a subgroup of G which is at 

the same time a submanifold of G. Then H is an analytic group. This is 

a special case of 1#2 since the inclusion i : H ----;.. G is a continuous 

homomorphism which is an immersion. We say in this case that H is a 

group submanifold of G. 

Remark: Suppose that H is a group submanifold of G. Then H is 

closed in G. Indeed, this follows from: 

1. A submanifold is locally closed in the manifold in which it lies. 

2.. A locally closed subgroup of a topological group is closed. See 

Bourbaki, Top. G:n. , ch 3, Ii Z, I# 1, Prop. !. 

§3. Group chunks 

A topological group chunk is a topological space X together with a 

distinguished element e ~ X, an open neighborhood U of e in X, and a 

pair of maps q,: U ~ U ~ X and I/I: U ____,... U such that: 

1. For some neighborhood Y 1 of e in U, x € V 1 implies that x ::;: '/>(x, e) = 

(jl(e, x). 

Z. For some neighborhood V 2 of e in U, x b V 2 implies that e = f/> (x, l.jlx) 

'/>(l/I x, x). 

3. For some neighborhood V 3 of e in .U, q,(V 
3 

x V 3)C U and, for all 

x, y, z in V 3, </>(x, t;(y, z)) = !p(<f'(x, y). z). 

We say that we have a strict group chunk if the equations in 1, Z, and 3 

hold whenever both sides ,are defined. We can always obtain a strict 

group chunk from a group chunk by shrinking the open neighborhood U. 

Weshalloftenwrite f/>(x,y)=xy and lj.l(x)=x-l if no confusion is 

·possible. 
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Let X and Y be group chunks. A local homomorphism f : X - - - -> Y 

is a continuous map f : U ____,... Y where U ~s a neighborhood of ex , 

such tha.t f(eX) = ey and f(xy) = f(x)f(y) in a neighborhood of eX . 

Two local homomorphisms f, f' : X - ---> Y are called equivalent 

if they agree in some neighborhood of ex . 

The group chunks X and Y are said to be equivalent if there exist 

local homomorphisms f: X ----> Y and g : Y ----> X such that f • g 

is equivalent to Idy and gd is equivalent to IdX . 

We make analogous definitions in the analytic case by requiring all 

spaces to be manifolds and all maps to be morphisms. 

~mple: Let G be a topofogical group and let X be an open 

neighborhood of e with the obvious group chunk structure. X is a group 

chunk which is equivalent to a topological group. 

One may ask whether every group chunk is equivalent to a topological 

group. The answer is I!!. in the following two cases: a) finite dimensional 

analytic group chunks, b) metrizable locally compact group chunks (see 

R. Jacoby, Annals of Maths., 66, 1957). The answer is ~ for analytic 

group chunks modeled on Banach spaces (see W. van Est and Th. Korthagen, 

Proc. Neder. Akad. , 67, 1964). 

84. Prolongation. of Subgroup Chunks 

Let G be a topological group and let X be a subset of G containing 

e. Then X is said to be a subgroup chunk of G if there exists a neigh

borhood U of e ~ X such that x, y € U implies xy € X and x - l € X. 

Suppose X is a subgroup chunk of G. Define a subgroup N of G 

as follows: 

N = f g € G: For some open neighborhood U of e in G, un X = un g-1xg}. 
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It is clear that N is a subgroup of G and that there is a neighborhood U 

of e in X such that UC N. Let i : N--+ G be the inclusion. We have: 

Theorem: Let F = {un N: U is a neighborhood of e in X} . Then: 

1. F satisfies the axioms for a filter base of neighborhoods of e in N 

compatible with the group structure in N. 

2. Suppose N is given the topology defined by F. The·n i is continuous 

and establishes the equivalence of the group chunks N and X. 

Proof: 

I. 
I 

We verify axioms (GVj), (GVh>• (GVjn> of Bourbaki, Top. Gen., ch. 3., 

§1, #2. 

We may suppose that all neighborhoods U of e in X are contained 

in N by the remark preceding the theorem. Then what we must show is: 

a. 

b. 

c. 

Given U c;;F, there exists Vb F such that V· V C U 

Given U b F, there exists V c;;F such that v-1C U. 

Given U b F and g c;; N, there exists V b F such that vC gUg-l 

Now, statements a) and b) are an immediate consequence of the fact that 

the maps (x, y) f--+ xy and x ~ x - l are continuous in G and hence 

in X. Statemmt c) is a consequence of the definition of N. 

2. It is clear from the definition of the topology in N that i is a local 

homeomorphism of a neighborhood of e in N onto a neighborhood of 

e in X. In particular, i is continuous ·as a map N ~ G at e, hence, 

is continuous everywhere. 
. ,, 

See Bourbaki, Top. Gen. , ch. 3, 82, #8, Prop. 23. 

The theorem shows in particular that every subgroup chunk is esuivalent 

to a topological group. 

Remark: In general, i is not a homeomorphism of N onto iN. Indeed, 

in the case X = { e3 , N = G with the discrete topology. 

Suppose now that G is an analytic group and that X is an analytic 
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subgroup chunk of G. Then, since N is locally homeomorphic to X at 

eN and since X is a submanifold of G, (N, i) satisfies (Im) at eN . 

Hence, (N, i) satisfies (Im) by 82, #2, :R~mark 1. We may therefore 

give N the unique structure of analytic group such that i is an analytic 

group homomo'rphism and an immersion. In particular, N and X are 

locally equivalent as analytic group chunks. 

Let us examine in more detail the case where k = J} or ~. Then N 

is locally connected so that the connected component H of eN in N is an 

open and closed group submanifold of N. We call H the analytic group 

generated by X. 

Suppose i(H) is closed in G. Then, we contend that i is a 

homeomorphism, so that H is in fact a group submanifold of G. Indeed, 

i(H) is closed in G and is therefore a Baire space. Further, H is locally 

compact and connected, therefore, a denumerable union of compact sets. 

Our contention is thus a consequence of: 

Lemma 1: Let A and B be topological groups. Suppose: 

1. A is l:>cally compact and a denumerable union of compact sets. 

2. B is a Ba ire space. 

3. A map i : A__,,,.. B is a continuous bijective homomorphism. 

Then, i is a homeomorphism. 

In turn, Lemma 1 is a consequence of: 

Lemma 2: Suppose: 

I. A is a locally compact topological group which is a denumerable 

union of compact sets. 

2. B is a Baire space. 

3. cp: A X B __,,,.. B is a continuous transitive operation of the group A on B. 

Then, for any b ~ B, cp induces a homeomorphism of A/Nb onto B where 
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Nb is the stabilizer of b (Nb= fx .£A: </J{x, b) = bj ). 

~ . 
~: See Bourbaki, Integration, ch. 7, app. I. 

85. Homogeneous Spaces and Orbits 

Let G be an analytic group, H a group submanifold of G, and 

form the left coset space G/H. Then G/H is the quotient space of G 

defined by the equivalence relation R = ( (x, y) £ G x G : x - ly £ HJ . 

Theorem l: R is a regular equivalence relation so that G/H has 

a unique manifold structure making G ____.!_;., G/H a submersion. 

Proo.£: 

By ch. 3, Iii 12, we must verify that: 

1. R is a submanifold of G >< G. 

2. pr
2

: R ~ G is a submersion. 

-1 To show 1), first define p : G .X G ~ G by p(x, y) = x y . Then, 

-1 . 
R = p H. Hence, by ch. 3, fill!, #2, F, it suffices to show that. p is 

everywhere a submersion. Let (x, y) £ G x G. Let ip: G ~ G'< G be 

"' -1 defined by lj>(z) = (x, xz). Then ,.(x y) = (x, y) and p</J = IdG • Hence p 

is a submersion at (x, y) by ch. 3, § 10, #2. 
w pr2 

To show 2). coosider the composition G )( H ~ R ~ G where 

l/l(x, h) = (xh, x) for (x, h) £ G )( H. Then, pr .,_I/I is the projection on G 

which ~s a submersion. Since I/I is surjective, pr 2 is a submersion. 

Remarks: I) The natural operation of G on G/H is analytic. Indeed, 

we have the following commutative diagram; 

GXG ----;;... G 

ldd~ 1f J- J 1f 

G X G/H --- G/H 

The vertical maps are surjective submersions and the top map is analytic. 
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Hence the bottom map is analytic. 

2) Suppose H is a normal subgroup of G. Then G/H is an analytic 

group. To show this, use a diagram similar to that in I) to verify that 

multiplication is analytic. 

Let G be an analytic group, X an analytic manifold, and. q,: G.it X--..;:.. X 

a morphism. We say that G operates on X via q, if: 

1. For all x € X, <f>(e, x) = x. 

2. For all x b X and all g, h bG, '/>(g, '/>(h,x)) = qi(gh, x). 

Suppose that G operates on X via qi. Then, we shall often use the 

notation '/>(g, x) = gx. Let us introduce for convenience the following 

morphisms: 

1. For gE:G:L 
g 

: G---;;... G defined by h 1--o;.. gh. 

M ·X--+X g. defined by x ~gx. 

For XbX : </> :G--o;..X defined by g !-->'" gx . x 2. 

Note that Lg and M are analytic isomorphisms and that </> = M o qi • L -1. g x g x g 

We obtain from t_his formula for <Px the following homogeneity principle: 

(HP) Let P be a local property. 

cp possesses P at one point of G. x 

Then qi possesses P if and only if x 

In particular, <P is an immersion (submersion, subimmersion) if and only x 

if it is one at a single point. 

We shall fix xoE: x and let H = [h <;;G hxo =XO) =stabilizer of XO. 

Also, we let q,0 = q, . 
XO 

Theorem 2: Suppose q, 0 is a subimmersion. Then: 

1. H is a group submanifold of G. 

2. The induced map (/)0 : G/H--+ X is an immersion. 

Proof: 

l. This is a consequence of the definition of a subimmersion: ch. 3, 110, #4. 
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2. Let g ~ G. Then ker T q,0 = T (gH). g g Hence TrgJO is fojective. 

Hence J 0 is an immersion. 

Corollary: Let \II:~ -;;... Gz be a homomorphism of analytic groups 

which is a subimmersion. Let K = ker ljl. Then: 

1. K is a normal group submanifold of G. 

2. The induced analytic group homomorphism ljl : G 1/K--+ G 2 is an 

immersion. 

Theorem 3: Suppose char k = 0. Then q,0 is a subimmersion. 

~: 

Let g0~ G be such that the rank n of Tl/>o at g0 is maximal. 

The-n the rank of Tl/> equals n in a neighborhood u0 of g 0 . Let Pg be 

the following property of a point g in G: 

(Pg) There exists a neighborhood U of g such that rank Tq,0 = n in U. 

Then Pg is a local property and Pg is true for g = g 0 . By the homogeneity 

principle P is valid for all g ~ G. Thus, q> has constant rank and is a g 

subimmersion since char k = 0 : ch. 3, I 10, #4, Th. 

Theorem 4: Suppose that G is locally compact and a denumerable union 

of compact sets and that </)(G) = Gx0 is locally closed in X. Then: 

I. The induced map 'fio : G/H ~ Gx0 is a homeomorphism. 

Z. Suppose q,0 is a subimmersion. Then Gx0 is a submanifold of X 

and 'fio is an isomorphism of manifolds. 

~: 

Apply Lemma Z of 14. 

Corollary: Suppose char k = 0. Then Gx0 is a submanifold of X if 

and only if Gx0 is locally closed in X. 

We shall now study the case of principal G bundles We shall assume 

that: 
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I. For all x (;:; X, cp is an injective immersion. x 

2. We are given an analytic map 1JI: X __..,,. B where B is an analytic 

-1 manifold such that, for all x G X, Gx = 1JI ljl(x), and such that ,IJI is 

surjective. We let R = {(y, x) (;:; X >< X : y = gx for some g (;:; G} . Then 

R is an equivalence relation and 'lj.I induces a bijection 'ifi : X/R __..,,. B 

which is continuous. 

In the system (X,cp,G,lJ!,B), we shall speak of X as the total space, 

G as the fibre, and B as the~· Par abus de nctation, we shall 

sometimes write X instead of the entire system (X, cp, G, lJI, B). 

Theorem 5: The following conditions on (X, cp,G, IJ.t, B) are equivalent: 

1. iJ; is a submersion. 

2. R is a reg\llar equivalence relation and 'i[i is an analytic isomorphism. 

3. For all b (;:; B, there is a neighborhood Ub of b in B and an analytic 

-1 
map <Tb: ub--.:;,..IJI ub such that 'lj.locrb = Idu . 

b 

4. For all bf; B, there is a neighborhood Uh of b in B and an analytic 

isomo~phism 

a. The following diagram is commutative: 

~: 

l~ 2: 

This is an immediate consequence of Godement' s Theorem: ch. 3, !HZ. 

1 :::;;:. 3: 

This is a consequence of the 5th equ~valent form of the definition 
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of a submersion: ch. 3, Iii IO, #2.. 

3 :::::;> 4: 

Define 

Then l\ is a bijective morphism whic.h satisfies 4a) and 4b). To show 

that eb is an isomorphism, we must sh.ow that Ob is etale at all (g, a) bG x Ub. 

Let x =6b(g, a) = g· crb(a) and let q- = Mg0 a-b = g· o-b. Then since 

ljl •a- = ldu , 1jl is a submersion at x. In addition. T O"' is injective 
b a 

and T X is the direct sum of imT cp and kerT 1Jt. But, since x , a x 
-1 

~ a= Gx and since lj) is an immersion, kerT \/; = T (Gx) = imT cp • x x x e x 

Finally, however, 

T 6 =Tn. XTO"' g,a b e~x a 

Hence (;j b is etale at (g, a). 

4 ~ 1: 

Trivial. 

Definition: Suppose the £Onditions of the preceding theorem are 

satisfied by (X, ip, G, lj.-, B). Then X is said to be a principal G-bundle 

over the base B. 

Re.mark: We have been considering G as acting on X on the left. 

Thus, we have defined what is known as a left principal bundle. A similar 

definition is made when G acts on the right. 

Theorem 6: Let G be an analytic group and H be a group submanifold 

of G. Let 'ff : G -+ G/H be the projection of G onto the left coset space of 

H and ·let cp : G X H __,,. G be the multiplication map. Then G is a 

right principal H-bundle over the base G/H. 

Proof: 

This is a special case of Theo.rem 5. 
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16. Formal Groups: Definition and Elementary Examples 

Let R be a commutative ring with unit and consider the formal power 

ser-ies ring R[[X l' ... , Xn]] = R[[X]] in n variables. Let Y = (Y 
1
, ... , Y n) 

be a second set of n variables. 

Definition: A formal group law in n variables is an n-tuple F = (F.) 
l 

of formal power series, F. E. R[[x; Y]], such that: 
l 

1. F(X, 0) = X and F(O, Y) = Y. 

2. F(U, F(V, W)) = F(F(U, V), W). 

Let us give some examples: 

1) Additive group: Fi (X, Y) = Xi + Yi · 

2) · Multiplicative group (n = I) : F(X, Y) = X + Y + XY . Note that we 

obtain this group law by translating the ordinary multiplicative group law 

from I to 0: {I+ X)(l + Y) = 1 + X + Y +XY. 

3) Special Case of Witt Groups for Prime p and n = 2: 

Fl(Xl,X2,Yl,Y2) =XI +YI 

F 2<XpX2· y l' y 2> = x2 + y 2 + ! (Xl + yl - (XI+ y l)P). . p 

We next give some elementary properties of formal groups: 

1) Each F. has the form: 
l 

F.(X, Y) = X. + Y. + 
l l 1 

This is an immed~ate consequence of Axiom 1 of a formal group. 

2) There exists a unique l/>(X) = ('/> 1(X), .•. , l/>n(X)) with l/>i(X) € R[[X]], 

such that l/>(O) = 0 and: 
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F(X, cp(X)) = 0 = F(cp(x), X). 

The existence of a unique cp(X) such that cf> (0) = 0 and such that the 

first equation is satisfied is a consequence of D
2

F(O) = IdR n. See 

Bourbaki, Alg., ch. 4, §5, #9, Prop. 10. The second equation can 

likewise be solved uniquely by some l/l(X) such that iri(O) = 0. Then: 

l/l(X) ::: F(l/l(X), 0) = F(l/l(X}, F(X, cf> (X))) = F(F(l/l(X), X), cp(X)) 

= F(O, ~X)) = cp(X). 

Remark: Let us indicate how formal groups will be of interest to us. 

There are two cases of importance: 

1. R = k, where k is a complete field. 

2. R = A, where A is the valuation ring of a complete ultrametric field. 

In case 1, we shall define a natural functor: 

Analytic Groups 
T Lie Algebras 

We ·shall want to define a functor S in the opposite direction such that 

To S = Id. The problem of constructing S is just the problem of construe-

ting an analytic group having a given Lie algebra. It will be useful to know 

that, over a field of characteristic zero, there is an equivalence of 

categories: 

Lie Algebras <:---~Formal Groups 

The study of case 2 will be a useful tool when we want to study analytic 

groups over a complete ultrametric field k. We shall haw a commutative 

dia~a:m of functors: 

Analytic Groups/k Formal Groups/k 

~ 
Formal Groups/A 
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What we will have in this case is that every analytic group is locally 

just a formal group/ A. 

117. Formal Groups: Formulae 

We shall use the notation O(d0 ~ n) to stand for a formal power series 

whose homogeneous parts vanish in degree strictly less than n. We will 

let F(X, Y) denote a formal group law over a ring R except as otherwise 

stated. 

1) F(X. Y) = X + Y + B(X, Y) + O(dO ~ 3). where B is a bilinear form. 

This is an immediate consequence of the basic expression for a formal 

group law since the coefficients c a vanish unless la I and 113 I G I. 
<l!, fJ 

We shall set [X, Y] = B(X, Y) - B(Y, X). 

Z) Let c/>(X) be the formal inverse corresponding to F. Then: 

c/>(X) = -X + B(X; X) + O(dO ~ 3). 

Indeed, write c/>(X) = ct> 1(X) + c/>z(X) +. · · • where c/>i(X) is homogeneous 

of degree i. Then: 

0 = F(X.c/>(X)) = x + c/>1(X) + O(d0 ~ Z). 

Hence, c/> 1(X) = -X. Using this result, we find: 

0 = F(X. c/> (X)-) = X + (-X + c/>z(X) + .•. ) + B(X, -X + ... ) + 

= '1>z(X) - B(X, X) + O(d0
' 3). 

Hence, c/>z(X) = B(X, X). 

3) XYX-l = Y + [X, Y] + O(d0 2 3). 

Indeed: 

-1 
XYX = (X + Y + B(X, Y) + ... ) 
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+ ( -X + B(X, X) + .•.. ) 

+ B(X + Y + ... , -X + •.• ) 

+ •.. 

= Y + [X Y) + O(d0 ,?: 3). 

In this case, it will later be convenient to have a notation for the 

higher order terms. We set: 

where the range of a and 13 in the sum is: la I.?:: 1, 113I~1, la I+ 113 I ~. 3. 

4) y- 1xY = x + [x. Y) + O(do ~ 3). 

The proof is similar to that of formula 3. 

5) x-ly- 1xY = [X, Y] + O(d0 ~ 3). 

Use formula 4 and apply the same technique of proof as in formula 3. 

6) Jacobi: [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y)] = 0. 

We shall apply the identity of P. Hall (See LA, ch. 2., 81): 

y z ' x 
(X , (Y, Z))(Y , (Z, X))(Z , (X, Y)) = 0. 

We contend that: 

(XY, (Y,Z)) = [X, [Y,Z]) + O(d0_?: 4) 

z (Y , (Z,X)) = [ Y,[Z,X]] + O(d0_? 4) 

x (Z , (X, Y)) = [Z, [ X, Y]) + O(do..? 4). 

Indeed, it suffices by symmetry to check the first of the three formulae. 

To do that, we note that: 

X y = X + O(d0 ~2) (Formula 4) 

(Y, Z) = [ Y, Z] + O(dO ,?:3) (Formula 5) 
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Hence, applying again formula 5, we find: 

y 
(X .• (Y,Z)) = [X, [~.z]] + O(d0 ~4). 

Finally, examining the P. Hall identitt up to order 3 and using the formulae 

we have just obtain, we a:rrive at the Jacobi identity. 

7) The m -th power map: 

Define f 0(X) = 0 and f mt 1(X) = F(X, f m(X)). Note that these con

ditions determine f m for both positive and negative m. Equivalently, 

f = 4> • f , where m denotes a positive integer. By induction, we 
-m 'tn 

find that: 

More generally, we have: 

Theorem (Lazard): There exist unique power series: 

( 1) ( n) 1'-' 1 (X) = <1'-' 1 (X) I • • • • 1'-' 1 (X) ) 

. ( 1) (n) 
'II i(X) = (lf! i (X) I ••• ' 1'-' i (X)) 

such that: 

I. 1Jl 1(X) = X. 

2. lJI i(X) is of order ~ i . 

Proof: 

The uniqueness statement is obvious from property 3 applied to 

m = l, Z,... . To prove existence, we reformulate the theorem. Suppose 
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F(X, Y) is a system of n formal power series such that: 

a. F(X, Y) = X + Y + O(d0 ~ Z). 

b. F(O.Y)=Y. 

Define fm (for m b ~) by f 0 = 0 and fm+l(X) = F(X, fm(X)). Write: 

fm(X) = l aa (m) xa 
a 

where a~ is a map of ~ into Rx ... X R (n factors). We contend that, 

for each a, a is a "binomial polynomial function of degree ~ la j 11, a 
i that is, that there exist elements a b R }( .•. >< R such that: 
a 

a (m) a = for all m b ~. 

Note that the contention proves the theorem since we may take 

We prove the contention by induction on la I. 

/al = 0: 

We have a = 0, since the f 's have zero constant term. a m 

lal ~ 1: 

:Assume.the result for l/31 < laj. Now, we wish to show that a (m) is a 

a binomial polynomial in m of degree at most la I· It is well known that 

to do this it suffices to show that (A a )( m) = a ( m + 1) - a ( m) is a 
a a a 

binomial polynomial in m of degree at most la I - 1. Write: 

F{X, Y> = x + Y + ) c 
0

x'Yy 6 
L.J 'Y 

Then, by the hypotpeses on F, the range of 'Y and 6 in the sum is: 

I 'YI 2! 1 and I 'YI + IOI Z'.: Z. Now: 
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If la I :a: 1, aa(m + 1) = aa(m) and we are done. If la f > 1, we 

find, by comparison, that aa(m +l) = aa f m) + Sa( m·), where Sa( m) is. 

the sum of the coefficients of Xa appearing in each of the .terms: 

c .c:X y (f {X))b. 
'Yv m 

Since bl ~ I, the only terms which contribute to 

Sa(m) are those for which I ol < lal. 
0 

Look at (~rJX)) for such o. 
Then the coefficient of Xa- 'Y in that plDduct has coordinates which are 

sums of products of the following form: IT bi ( 'm), where b. ( m) is a 
v v 1v 

coordinate of a coefficient in fm with total degree i
1
,- By induction. 

b. is a binomial polynomial of degree !S, i
11

• 
111 

But it is easy to see 

that a product of binomial polynomials is again a binomial polynomial 

(cf. Exer. 2, for instance); moreover, the inequality !Ji
11 

=I al - hi < la I 

shows that IT bi has degree < la I. It then follows that S = !}. a is a 
II i 

a a 

binomial polynomial of degree < la I ; hence a is a binomial polynomial 
a 

of degree $. la I. Q. E. D. 

Corollary: Let p be a prime number. 

particular, f has order ~ p mod. p. 
p 

Then f = 1/1 mod p._ In 
p p 

§8. Formal Groaps over a complete Val~tion. Ring 

Let k be a complete ultrametric field, let A be the valuation 

ring of k, and let 'R.. be the maximal ideal of A. Let F(X, Y) be a 

formal group law over A. Let G = {<xi' ... , xn) : xi E: 7rt.] = P 0( 1, .. ·., 1). 

We define a multiplication on G by the formula: xy = F(x, y). We contend 

that G is a·n analytic group. We must verify: 

I. Associative law. 
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2. Existence of unit elEment : 0 will be the unit. 

3. Existence of an inverse: </>(x) will be x - I, where <P is the unique 

formal power s Eries such that F(X, cf>(X)) = 0 = F(</>(X), X). 

Each of these statement is a consequence of the corresponding rule for 

the formal group F as is shown by the following lemma: 

Lemma: Suppose f c;;; A[[Xl' •.• ,Xp]] and gic;;; A[[Y 1, .•• , Yq]], 

1 ~ i ~ p, and suppose gi(O) = 0 for all i. Let h = f(g 1, ... ,gp) c;;;A[[Y 1, ... , Y qll. 

Then, for xi' ..• , xqc;;;·u, we have: 

Proof: See Bourbaki, Alg. Comm., ch .. 3, §4, #5, Cor. of Prop. 6. 

Definition: A group G constructed in the aQove manner will be 

called standard. 

Theorem: Any analytic group chunk contains an open subgroup which 

is standard. 

Proof: Let G be an analytic group chunk. By shrinking G and 

choosing local coordinates, we may assume that G is an open neighborhood 

of 0 in kn and that the multiplication in G is given by a power series 

F(X, Y) such that F converges on the ball of radius< b. Write 

F(X, Y) = X + Y + £ c Xa yf3 . Here, la I and 113 I are equal to a, {3 

or greater than I and the coefficients c fl are vectors in kn . We , a,"' 
shall change coordinates by multiplication by µ c;;; k. Specifically, if 

x, y c;;; G are such that z = xy is defined, set x 1 = µx, y 1 = µ y, arrl 

z 1 =µz. Then: 

z 1 = x 1 + y' + l 
Hence, the group law F in the new coordinates bas coefficients 

µ 
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c 
a, 13 I I __ ......., ___ • By choosing µ so µ 

lad+l~l-1 µ 

is sufficiently large, we can 

insure that the coefficients of F lie in An and that Iµ le; ?, 1 so that 
µ 

F converges in the ball of radius 1. In the coordinate system defined by 

µ, the strict unit ball is a standard subgroup of G. 

Corqllary 1: Any analytic group chunk is equivalent to an analytic 

group. 

Corollary Z: Any analytic group chun:k has a basis of neighborhoods 

of e consisting of open subgroups. 

89. Filtrations on Standard Groupa 

The notation and assumptions of 89 will be used throughout this section. 

In addition, we let w : k ~ ~ u (oo} be the valuation of, k, that is, for 

some. a€ !} , 0 < a< I, we have, for all x€; k: 

jxj = aw(x) • 

n For x = (x 1, ••• , xn) €: k , we let w(x) = inf (w(x.)). For >,. ,2:. 0, we let: 
i l 

G~ = {x €: G : w(x) > >..} 

More generally, for an ideal dt of A, we let: 

GA = {x € G : xi € dl for I :S. i ~ n} 

G!c, = fx € G : xi €: O'L. m for 1 ~ i :S. n} 

Thus, if d't>,. = {x € A : w(x)?. >..} , we have G>,. = GA 
>,. 

G °'x. m 

Theorem 1: For all ideals dt of A, Glll ,and G'tr_ are normal 11ubgro·ups 

of G. Moreover, if x, y € G, the relation x = y mod. G"- is equivalent 
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to xi= yi mod. Ot for 1 .s, i .s, n. 

Proof: 

Let" G(A/ot) be the group of systems x = (x l, ... , xn) where 

xi € m/(I(., the multiplication being given by the reduction F of F mod.OC. • 

If x € G, the reduction x of x mod. Qt is defined and x t---;i.. x is a 

surjective homomorphism rp(J!. : G ~ G(A/ PC). The kernel of rl><Jt is 

G O't ; this proves theorem 1 for Got. The assertions about G'tt, follow 

since G~ = G ,,. . ...... m 

(Alternate proof : use formula 1) of 16 and formulae 2), 3) of 17.) 

Corollary: The subsets f G>..} define a filtration of G. 

Proof: 

We must verify the axioms of a filtration (cf. LA, ch. 2, 12): 

1. w(O) = oo. 

2.. For all x € G, w(x) > 0. 

3. For all x, y € G, w(xy - l) ~ inf f w(x), w(y)} . 

·4. For all x, y €G, w((x, y)),::: w(x) + w(y). 

Axioms 1 and 2 are obvious from the,definition of G. Axiom 3 is 

equivalent to the assertion that G>.. is a subgroup of G for all >... 

Axiom 4 is equivalent to the assertion that (G>.., Gl-)C G>..+µ. In fact, 

if x € G>.. and y € Gu., we have: 

1) [x, y] € G>..+µ . 

2) (x, y) = [x, y] (mod a:+µ). 

Now 1) is clear, and 2) follows from theorem land formula 5) of 17. 

Theorem 2: Let Ot and ti. be ideals of A such that at"::;) .g "::;) d'f. 2. 

The reduction map r/>g : d -;i.. G(A/ € ) induces an isomorphism of the 

group Gt<../Gg onto the additive group (ut/f )n. 
2 

Proof: Formula 1) of 16 shows that, if x, y € G""", F(x, y) = x+ Y mod.A · 

The theorem follows from this and from Theorem 1. 
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Corollary 1: L~t >.. {;:; w(m). >.. I a:>. Then G>.. /G: is isomorphic 

to the additive group (A/m)n. 

~: 

Choose a~ m such that w(a) = >.. and let (ft= (a). Then, by 

Theorem 2, G°'-/Gtt, is isomorphic to (c1t/cte.m)n. However, the map: 

a t---;> a a defines an isomorphism of (A/m) onto ( 6'C. /« m) which 

proves the corollary. 

Corollary 2: Suppose that k is locally compact and that p = char(A/m). 

Then: 

1. For all 

2. For all 

>.. <:: w(m), >.. + oo, G>.. /G: is a commutative finite p-group. 

+ >.. G: w(m), >.. + a:>, G/G>.. is a p-group. 

3. G is a projective limit of p-groups ("pro-p-group"). 

Proof: 

We note that since k is locally compact: 

I) A/m is compact and discrete, hence finite. 

2) m is compact so that w takes on a minimum value on some element. 

ab m. 

Then m = (a) so that A is a discrete valuation ring. 

Statement 1) is then a consequence of Corollary 1 and 1) above. Statement 

2) is a consequence of statement I) and 2) above. Statement 3) is a 

consequence of statement 2). 

We shall now use the filtration £a>..} of G to study the r -th power 

maps fr (cf, 17). We let k = A/m be the residue field of k and let 

p =char k. 

Theorem 3: Suppose r is relatively prime to p .. Then, for all 

>.. ~ w(m), >.. # oo, fr defines an analytic manifold isomorphism of G>.. 

onto G>... 
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Proof: 

The image of r in k is a unit in k so that r is a unit in A. 

Hence, f is an invertible formal power series in A[[X]]. 
r 

-1 
Let (} =fr . 

Then 0 
:; 

is absolu1ely con'.ve rgent on G and f o (} = 0 of = Id by the --, r r 

lemma quoted in §8. Since fr and (} preserve GA, fr is a bijectio'n 

on G>... Finally, the deritative of f at each x ~ G is congruent 
r 

mod m to r. Id and hence is invertible. Thus, f is e'tale and hence is 
r 

an analytic isomorphism on GA. 

Theorem 4: Suppose char k = 0 and that p =/::. 0. Let µ. = w(p). 
I 

Then, for all Ab w(m), -LI < A < co, f is an analytic manifold p- p 

isomorphism of GA onto GA+µ. 

Proof: 

By Lazard's Theorem, fp(X) = p(X + </>(X)) + ~(X), where 

ord </> ~ 2 and ord ~ ~ p. Now, for x b GA and for a with Ja ! ~ I, 

we have that: w(xa) ~ A )a j. 

In particular: 

1) w(f/>(x)) > A • 

2) w(W(x)) ~ PA ~ A + (p-l)A > A + µ.. 

To show that f is an analytic isomorphisrr 
p 

of G>.. onto G>..+µ' we choose a b G such that w(a) = A and consider the 

function F : An~ An defined by F(x) = -1- f (ax). Then: 
ap p 

F(X) = X + _al </> (aX) + -1 
lJ.t(aX). ap 

I lp-l 
Let r b~, 0 < r < 1, l>e such that jaj,ajpj < p-1 r . Then: 

1) The coefficients of degree i ~ 2 - in ~ <f>(aX) have absolute value less 

I Ii-I i-1 
than or equal to: a ~ r . 

..!.. IJ!(aX) 
ap 

Z) The coefficients of degree i ~ p in 

less than or equal to: lali-p lalp-l i-1 
~r . 

IPI 

have absolute value 
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We shall see in appendix 2 that these conditions imply that F and its 

formal inverse 8 converge absolutely on An. In particular, we may 

actually compose 'F and (j on An. This shows that F is an analytic 

isomorphism of An onto An. It is then immediate that fp : GA---;... GA+ f..L 

is an analytic isomorphism. 

Theorem 5: Let G be an analytic group o:ver k. Then. there exists 

an open subgroup U which contains no finite subgroup H such that 

ord H is prime to char k. 

Proof: 

Since G contains an open subgroup which is standard, the 

theorem is reduced to Theorems 3 and 4. 

Remark: In particular, when char k = 0, Theorem 5 asserts that G 

contains no "small" finite suqi:roups. 

We shall give some applications of Theorem 5 in Appendix 3. 
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Exercises 

I. Let k be locally compact, and let A be a compact analytic group 

over k. 

a) Let G be a finite group of order prime to the characteristic of k. 

Assume G acts analytically on A. Defin~ as usual the ist_cohomology 

set H 1(G, A) (resp. the higher cohomology groq:>s Hq(G, A) if A is 

abelian). Prove that H 1(G, A) ·is finite (Hint: use the manifold structure 

of the cocycles). Prove the analogous results for Hq(G,A), q ~ l, when 

A is abelian. 

b) Using a), prove that the finite subgroups of A of given order 

(prime to char. k) are in finite number, up to conjugation. 

2. Let i, j be two positive integers. 

a) Prove a priori that ( ':1>< j>. as a function of m, is equal to a 

linear combination of binomials ( ~) , with 'i, j ~ k .S i + j. 

b) Prove the identity: 

L <~H~) = 
1 J 

i, j .s k ~ i+j 

k! m 
~~~~~---·~ (k). 
(k-i)!(k-j)!(i+ j - k). 

(Hint: compute in two ways the series (l+X)m(l+Y)m; wh_ere X and Y 

are indeterminates.) 

3. Notations being tho~e of 87, 7) (Lazard1s theorem) consider the case 

of an F(X, Y) with property a (F(X, Y) = X + Y .mod. deg Z), but not 

property b (F(O, Y) = Y). Show that it is still possible to write the f 's 
m 

in the form E< ~)tr· , but that it is not true in general that ord(1'1.) ~ i. 
1 1 1 

4. Show that Lemma 2 of 84 remains true if hypothesis ( 1) is replaced by: 

( 11) - A is a complete Hausdorff topological group (for both uniform 

structures), and its topology can be defined by a denumerable family of open sets. 

(Hint: imitate the proof of Banach's closed graph theorem.) 
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5. Let k be a ·iocally compact ultra metric field. and let G be a standard 

group of dimension n over k. Let dx be a Haar measure on the 

additive group kn. Show that the restrictions of dx to G (which is open 

in kn) is a left and right Haar measure on G. (Higt: use the fact that 

G = lim . G/G)., and that a Haar measure on G is an inverse limit 
«-

of Haar measures on the finite groups G/GA }. 

6. a) Let F(X, Y) = X + Y + XY be the "multiplicative" formal group 

law in one variable. Show that the l#I ·' s of Lazard' s theorem are just 
1 

the monomials x1. 

· b) Assume moreover that k is ultrametric. of characteristic zero 

and residue characteristic p. Show 'that the following are equiralent: 

1) fp(x) = 0 

Z) 1 + x is a p-tb root of unity in k. 

Using the theorem 4 o£ §9, show that this implies w{x) ~ w(p)/(p-1). Show 

that it is in fact an equality if x =/= 0 (i.e. if 1 + x is a primitive 

p-th root of unity). 

7. Let F and F' be two gro~ laws over a field k of cllaracteristic 

p and let x 1 = fb(x) be a formal homomorphism of F into F 1 (i.e. 

cf>(F(x, y)) = F'(cf>(x), cf>(y)}). Assume the terms of degree one in cf> are 

all zero. Show that q, is a pow er series in xP. (Hint: use the 

differential equation 

to show that cf>'(x) = O. ) Interpret this result as a factorization of cf> 

through a 11Frobenius map" F --+ F(p). when k is perfect. 
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ApPendix l : Maximal compact subgroups of GL(n, k). 

We prove here the theorem· stated in 12, #I. 

Let k be a locally compact ultrametric field, A be the valuation 

ring of k, m be the maximal ideal of A, and G = GL(n, A) for some 

n > 0, n € ~. 

Lemma I: Let L. be an A-submodule of kn . Then, the following 

are equivalent: 

l. 
n L is finitely generated over A and L generates k over k. 

2. L is free of rank n over A. 

l ~ 2: Since A is a principal ideal domait\ L is free; rankAL = n, 

since L generates kn over A. 

2 ~ I: Trivial. 

An A-submodule L of kn satisfying the equivalent conditions 

of Lemma I is called a lattice in kn . 

Lemma 2: Let L 1, ... , Lr be lattices in kn and let L be the 

n A-submodule of k generated by L 1, ..• , Lr Then L is a lattice 

in kn 

Proof: 

We verify I) of Lemma 1. n Clearly L generates k over k since 

each L. does. Since, moreover, each L. is finitely generated over A, 
l l 

the module L which they generate over A is finitely generated over A. 

Lemma 3; n 
Let L be a lattice in k and let KL be the subgroup 

of GL(n, k) which sends L onto L. Then, for some a € GL(n, k), 

-1 
KL= aGa 

Proof: 

In particular, KL is compact and open. 

By Z) of Lemma l, we may choose a€ GL(n, k) such that a(A 0 ) = L. 
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-1 Then, by the definition of GL(n, A) = G, KL =a• G ·a • We have 

already no.ted that G is compact and open ; hence, KL is compact 

and open. 

Lemma 4: Let L and L' be two lattices in kn and suppose 

KLC KL'. Then, there exists >.. (;; k* such that L' = >... L, and KL= KL'' 

Proof: 

It is clear that KL' does not change when L' is replaced by 

>... L' , with >.. € k*. We can then suppose that L'C L and L' (l m. L. 

Let V = L/mL and V' = (L'+ mL)/mL ; V' is a non-zero vector 

subspace of V (over the residue field A/m). Moreover, since 

KL C KL' , the lattice L' is invariant by KL , hence its image V' 

in V is invariant by KL , i.e. by GL(V). Since V' -:::/= 0, this implies 

v• = V, hence L' + mL = L and, by a standard argument (Nakayama's 

lemma!) L' = L. Q.E.D. 

Theorem 1: Let H be a compact subgroup of GL(n, k). Then: 

l. There exists a lattice M in kn such that H sends M onto M. 

C -1 2. There exists a t GL(n, k) such that H_ a· G· a . 

Proof: 

1. Choose any lattice· L in kn, for example, L =An. Then 

HL = H(')KL is exactly the subgroup of H which sends L onto L. 

Since KL is open in GL(n, k), HL is open in H. Hence HL has 

finite index in H since H/HL is compact and discrete, therefore, 

finite. Therefore, the number of translates a L of L, CF(;; H , is 

finite. Let M be the A-submodule generated by {crLJ<J€H • It is 

clear that H sends M onto M and it follows from Lemma Z that M 

is a lattice. 

2. This statement follows immediately from 1) and Lemma 3. 
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Theorem Z: 1. G is a maximal compact subgroup of GL(n, k). 

l. The maximal compact subgroups of GL(n; k) are precisely the 

conjugates of G. 

3. Every compact subgroup of GL(n, k) is contained in a maximal 

compact subgroup of GL(n, k). 

Proof: 

1. Suppose G is contained in a compact subgroup H of GL(n, k). 

Theorem 1 shows that there exists a lattice M such that HC KM . 

Hence GC KM' and, by lemma 4, G =KM . Hence G is maximal. 

Assertions l and 3 follow from 1 and theorem l. 
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Appendix Z: Some Convergence Lemmas: 

Suppose that F(X) = (F.(X)) is a system of n formal power series in 
' 1 

n variables and suppose that each Fi(X) has the form: 

F.(X) = X. - ~ ai 'XX = X. - lf>.(X). 
i i a 1 1 

la >Z 

We have seen in the proof of the Inverse Fu~ction Theorem that the system 

F is formally invertible and that we may write the formal inverse system 

8(X).= (8i(X)) where each ei(X) bas the form: 

Suppose r r. ~ and 0 < r < 1. Consider the ccnditions: 

(B ) For all 
r 

I 13 I -I r . 

Lemma I (Ar) =O> F converges absolutely on An . 

(Br) =O> 0 converges absolutely on An . 

Proof: 

It suffices to remark that: 

Lemma Z: (Ar) ~ (Br). 

Proof: 

I 

( 1-r) 
< (]) . 

n 

It suffices by symmetry to show that (Ar) ~ (Br). We show this by 

induction on lt3 I. that is, we assume the statement true for f3 1
, 

113' I < lt3 I. and .:ive prove it for f3. Now: 

X. = F.f;l(X)) = 8.(X) - lf>.f) (X)). 
1 1 l 1 
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Comparing the coefficients of x/3, we find that b~ is the sum of the 

coefficients of x/3 in '/>i(8(X)). Since k is ultrametric, it suffices to show 

that each time xf3 occurs in '/>i(8(X)) its coefficient satisfies the estimate 

desired for b~ . Now: 

<f>.f} (X)) = 
l 

and 

A typical monomial term in 8(X)a has the form: 

a· n l 

IIIT(bi x'Yi,j) 
i=Ij=l 'Yi,j 

We are interested in terms where [;, y. . = /3. Then, we can estimate 
l,J 

the product of all the coefficients in that product by: 

IT rl-Yi,jl-l = rl/31-lal 

i, j 

Since lai I ~rlal- 1 , weobtainthedesiredfinalestimate of rl/31-I 
a 

for the coefficients of x/3 in <f>.(8(X)). 
l 

Corollary: (Ar) ~ F is an analytic isomorphism of An onto An . 

Proof: 

By Lemma 2, we have both (A ) and (B ). Then, from Lemma 1, 
r r 

for x~ An, x= (£•8Xx) = f(8(x)) = (8of)(x) = 9(£(x)). 
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Appendix 3: Applications of 89 : "Filtrations on Standard Groups" 

Theorem 1 : For .each n > 0, n G ~ , there exists N > 0, NG~ , such that 

any finite subgroup of GL(n,9) has order !S,N. 

Proof: 

1. We prove first the corresponding statement for the p-adic 

integers Z, , for any prime p. By Theorem 5 of 69, there exists an open -p 

normal subgroup U of GL(n, Z ) such that U contains no non-trivial 
=p 

finite subgroups. Then, if HC GL(n, ~p) is a finite group, HC GL(n, Zp)/U 

and order H ~ N where N =order GL(n, Zp)/U. 

2. We reduce the theorem to the statement we have prowd in 1). 

We use two different methods: 

Method 1: 

Let HC GL(n, Q) be finite. Let p be a prime and consider HCGL(n,Q ). 
-p 

Then, H is compact, so some conjugate of H is contained in GL(n, ~p) 

by Theorem 1 of App. 1. Hence, order H ~ N, where N is the bound of 1). 

Method Z: 

Note that Lemmas11 and 2 of App. l are valid for k = 9 and A = §. • 

We have, in addition, the following statements: 

1. Let L be a lattice in Qn. Then the subgroup of GL(n, Q> which sends 

L onto L is a conjugate of GL(n, ~). 

2. If H is a finite subgroup of GL(n, q), there exists a lattice M which 

H sends onto itself. 

We prove statement 1) in exactly the way the corresponding statement in 

Lemma 3 of App. 1 is proved. To prove statement Z), let L be any 

lattice and define M to be the lattice generated by the finite set of lattices: 

(er L} O"G H • Then H sends M onto M as des ired. 

Combining statements :t and 2), we see that if H is a finite subgroup 
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of GL(n, Q), then H has a conjugate in GL(n, ~). hence to prove the 

theorem it suffices to consider finite subgroups of GL(n, ~). Now, 

GL(n, ~) C GL(n, ~p) so we mav again reduce the theorem to what we 

have already shown. 

We may obtain explicit estimates for the integer N in Theorem 1 

by taking the gcd of the estimfl.teS at each prime p. Consider: 

1. p odd: 

Then 1 > ;_1 so we may take U = G 1 = ( y: y = l+x, x = (xij)'xijc; m}. 

Then GL(n, Z )/U = GL(n, F ) where F is the field with p elements. 
=P -p =p, 

We can compute the order of GL(n, F ) explicitly: it is simply the number 
-p 

of distinct sets of o:niet'ed bases in Fn. This number is: 
=p 

n n ( n n-1) (p -l)(p -p) • . . p -p • 

2. p = 2: 

Then 2 > pl- I so we may take U = G~. Then GL(n, Z. )/U = GL(n,.Z./4i). 
" -p - -

We have an exact sequence: 

2 
0-..;... (2~/4~)n ---+ GL(n, ~/4~)---+ GL(n, ~/2~) ----;.. 1. 

Hence, the number of elements in GL(n, ~/4~) is: 

Let us look more closely at the case n = 2: 

1. p odd: 

2 2 2 The number computed above b.ecomes: (p - l)(p -p) =(p -1) p(p + 1) .. 

Now, for p odd, we have: 

a. p 2 - l =· 0 (mod 8), . ·. (p2 -l)(p2-p) = 0 (-mod 16). 
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b, (p- l)p(p+ I) = 0 (mod 3). 

Hence, the number computed above is cor.gruent to 0 mod 48. When p = 3, 

2 2 we have that: (p - l)(p -p) = 48. 

2 :·p=2. 
2 

The number 22 (22 -1)(22 -2) = 96. 

Hence, by the above method, the best estimate we obtain for the order of 

finite subgroups of GL(2, 9) is 48. The situation is in fact somewhat 

better. We first note that any finite subgroup of GL(2, g) is contained 

in the set of matrices of determinant -1:. l = G0 . We have an exact 

sequence: 

Hence to obtain an estimate for the order of the finite subgroups of G0 , 

we need only multiply the correspcnding estimate for SL(2, Q) by 2.

We shall show that: 

l. Every finite subgroup of SL(2, Q) is a subgroup of a rotation group 

on the plane and is t~erefore cyclic. 

2. Only cycUc groups of order I, 2, 3, 4, 6 occur in SL(2, ~). 

Proof: 

1. Let H C SL(2, Q) be finite and let B be any positive definite 

bilinear form on g2. Let B(x, y) = I: B(crx, ay). 
O'GH 

Then, B is positive 

definite and H leaves B invariant. Since the elements of H have 

determinant I, H is a subset of the rotations of ~ 2 with respect to 

the scalar product B. 

2. Let a be an element of finite order in SL(n, Q). We pass to ~ 

and put a in Jordan canonical form: 
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Case 1: a has the form: 

a = (: )· 

Then, an easy calculation shows that a does not have finite order which is 

a contradiction. 

Case Z: a has the form: 

Let N = order (a). The.n µ N =- J'l = 1. Hence µ and v are roots of 

unity. We also know that µ and 11 lie in a quadratic extension of Q since 

they satisfy the characteristic polynomial of a. In fact if either µ or II 

is not in ~ ', both of them are not in ~ and they are complex conjugates. 

Hence, we can have only the following cases: 

a. µ =II = 1 or µ = 11 = -1. 

b · · 't' Nth t of 't . µ is a prim1 ive -roo uni y, N > Z, and II = µ. Since 

the Nth -cyclotom ic field is of degree !p(N) over Q (!p being Euler's 

function), we have !p(N) = Z, hence N = 3, 4 or 6. This proves the 

second statement. 

Let us explicitly give elements of order 4 and order 6 in SL(Z, ~). 

In each case we shall find the appropriate matrix by considering a 

quadratic extension K = ~(x) of ~ and representing multiplication by x 

using the basis (1,x] of Kover Q· 

I. An element of order 4: 

Take x to be a primitive 4-th root of unity. Then multiplication by 

x has order 4 and is represented by the matrix: 
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?.. An elemett of order 6: 

Take x to be a primitive 6-th root of unity. Then multiplication by 

x has order 6 and is represented by the matrix: 

*** 
Let k be a locally compact ultrametric field, A be the valuation ring 

of k, m be the maximal ideal of A, p = char k, and q = card(A/m). Let 

w be the canonical valuation of k, that is, w : k---+- ~ U (m j with 

w(k*) = ~ . Then the canonical absolute value on k is defined equivalently 

as follows: 

1. For x €A, II x II = card(A/xA) - l 

2. For x € k, lbcll = q -w(x). 

3. Multiplication by x alters the Haar measure on k by II xii. 

Suppose r is relatively prime to p. Consider f •A* ---+- A* r . 

Let s = card(Ker f ) = number of roots of unity in k with exponent r 

dividing r. 

Theorem 2: card(A* /A *r) = II r11 • 1. s. 

We shall obtain Theorem 2 as a consequence of a more general theorem 

on analytic groups over k. So let G be a commutative compact analitic 

~ over k and define: 

We shall see in Theorem 3 that hr(G) is well defined, that is, that both 

numbers on the right hand side are finite, and we shall compute h (G). 
r 

We shall let n = dimkG. 

Theorem 3 : The number hr(G) is well defined and equals II rll-n . 
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Proof: 

We shall prove the following three statements which imply the theorem: 

l. The theorem is true if G = H >.., where H is a standard group and 

},. >> 0. 

Z. The theorem is true if G is a finite group. 

3. The theorem is true for G if G contains a normal subgroup manifold 

H such that the theorem is true for H and G/H. 

We shall prove the statements in reverse order: 

3. Consider the commutative diagram with exact rows: 

1-;..H~G-...;o.G/H~ I 

cp 1 t <P z! <P 31 
1 _.....;... H ___,,.. G -- G/H ___.,. 

where cp 1 =fr on H, cp 2 =fr on G, and '!> 3 =fr on G/H. Then, 

there exists an exact sequence (Bourbaki, Alg. Comm., ch. 1, 81, #4): 

Aside from 0, all the maps are defined in the obvious manner. We define 

0 as follows: let x" € ker cp
3 

and choose x (;; G such that x maps to x" 

mod H ; then, x" ~ ker cp
3 

implies xr € H : define O(x") = image of xr 

in coker '/> r It is left to the reader to verify that 0 is well defined and 

that <*> is exact. 

Since the theorem is assumed true for H and G/H, we have that 

ker '/> 1, ker cp 3, coker cp 1, and coker cp 3 are finite. Therefore, ker cp 2 

and coker <Pz are finite since (*) is ex:act. Abbreviate card by c. Then, 

the exactness of(*) implies i~ addition that: 
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In other words: 

Finally, to obtain the explicit formula for hr(G), let m = dimkH. Then, 

we have also that: n - m = dimkG/H. Then: 

Since by hypothesis.: h (H) ·= llrll-m and h (G/H) = llrll-(n-m>, we obtain 
r r 

by comparing the above two formulae that: h (G) = II r 11 ·n • as desired. 
r 

2. We have an exact sequence: 

l~Ker f ~ G----;.. G--+ Coke'!' f ~ 1 
r r 

Then, since G is finite, Ker f and Coker f are finite, n = O, arxl: 
r r 

a. 1 = c(Coker fr)c(G)- 1c(G)c(Ker fr)-l = hr(G). 

b. l=llrll-n. 

This demonstrates 2. 

I. We need only prove this part for large >.. E ~ . Hence, by Theorems 3 

and 4 of 19, we may assume that >.. lies in the range such that 

fr : G>.. ~ G>..+w(r) is an isomorphism. Then: 

a. c(Ker fr) = 1. 

b. c(Coker f ) = (q w(r» n = II rll -n . 
r 

This demonstrates l and the theorem as well. 

Exercise: Using, for example, Haar mee.sure, one may show that 

if G -4 G, where q, is an analytic -'tale group endomorphism of G, 

then: 

I. Ker q, and Coker q, are finite. 

2. hq, = c(Coker !p)/c(Ker !p) = II det Te!pll-l 



CHAPTER V : Lie Theory 

Unless otherwise specified, k will denote a field complete with 

respect to a non-trivial absolute value. 

11 : The Lie Algebra of an Analytic Group Chunk 

that: 

Suppose F(X. Y) is a formal group law over k. Then we have seen 

l. F(X. Y) = X + Y + B(X. Y) + 0 (d0 ~ 3), where B(X. Y) is a biiinear 

form on kn (Ch. 4, §7, #1). 

2. Define [X, YJ F = B(X, Y) - B(Y, X). Then [X. Y] F defines on 

. kn a Lie algebra structure (Ch. 4, 87, #6). 

We say that [X. Y] is the Lie algebra associated to the formal group F. 
F 

Now suppose that G is an analytic group chunk over k. Let L(G) = C-:S = 

Te G. We define a canonical Lie algebra structure on 41 as follows. 

Choose a chart c = (U, cp, n) of G at e. Then the group law on G is 

induced via 4' from a formal group law F on kn . Let qi: '1__,,.. kn 

be the isomorphism which is determined by cp. Then, for .~ y 6 -'1 • 
define: 

We contend that [x; y] is in fact independent of the choice of c. To show c 

this, we prove the followhg lemma: 

Lemma I : Let G and G' be analytic group chunks. c and c' charts 

at e and e 1, .and f : G - - - -> G' a local homomorphism. Then 

T ef : -US-+ ~· is a Lie algebra homomorphism with respect to the 

structures [ Jc and [ 

Proof: 

The proof is immediately reduced to: 

LG 5.1 
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Lem ma 2: Let F(X, Y) and F 1(X 1, Y') be two formal group laws and 

let f be a formal homomorphism from F to F 1• Let f
1 

be the linear 

part of f. Then: 

Proof: 

From ch. 4, 17, #5, we hav.e: 

+ O(d0 .2:. 3) 

Comparing the terms of degree 2, we obtain the lemma. 

£efinition: In the above setting, we say that "'] together with its canonical 

Lie algebra structure is the· Lie algebra of G. 

Remark: Lemma 1 shows that the construction of the Lie algebra of a 

group chunk is functorial. 

12 : Elementary Examples and Properties. 

1) The Lie Algebra of a General Linear Group 

Suppose R is an associative algebra with unit which is finite 

dimensional over k. We have seen (Ch. 4, 82, #1) that G (R) is an 
m 

analytic group which is an open subset of R. Hence T 1Gm(R) = R. 

Multiplication in Gm(R) has the form: 

( 1 + x)( 1 + y) = 1 + x + y + xy . 

This law of multiplication corresponds to the formal group law: 

F(x, y) = x + y + xy . 

Hence, the Lie algebra structure on T 1Gm(R) = R is given by : 
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[x, y] = xy - yx . 

In particular, we obtain the usual Lie algebra structure when R is the 

endomorphism ring E(V) of a finite dimensional vector space V. 

Z) The Lie Algebra of a Product 

Suppose G 1 and G 2 are analytic groups. Then the linear iso

morphism of. Te(G 1 X G 2) with Te
1
G 1 X TeZGz is a Lie algebra isomorphism. 

Indeed, let c. be a chart at e. on G. and let c = c 1 J( c 2 be the 
l l 1 

product of the charts ci . Then, the product of the Lie algebras [ ]c. 

is ] c . 

3) The Lie Algebra of a Group Submanifold 

Suppose G and H are analytic groups and that f : H--...;.. G 

is an analytic grcup homomorphism which is an immersion. Then 

L(f) : L(H) _,... L(G) is injective_. Hence L(H) is identified with a Lie 

subalgebra of L(G). In particular, we may apply this remarkwhe~ H 

is a group submanifold of G and f is the inclusion. 

Let us consider in more detail the case where char k = 0. 

Theorem: Suppose char k = 0 and let H 1 and Hz be group sub

manifolds of G. Then H1n Hz is a group submanifold of G and 

L{H1 n Hz) = L(H1) n L(H 2). 

Proof: 

By Theorem 1 of Ch. 4, 15, G/H1 is a manifold. Let x be the 

coset H1 in G/H1 . Then Hz operates on G/H1 and the stabilizer of x 

is H1 n H 2 . Since char k = v, H1n Hz is a group submanifold of G 

(Ch. 4, §5, Thms. Zand 3). Finally, L(H1n H
2

) is identified with its 

image in L(G) which is the kernel of the map : T eH z --+ Te G/T eH 1 , 

that is, with L(H
1
) n L(H2). 

l 



LG 5.4 

Corollary 1: Suppose L{H1)C L(H2). Then, in a neighborhood of e, 

H1C H 2 . 

Proof: 

Indeed, Te(H1n Hz)= L(H1)n L(Hz) =L(H1) = Te(H1). and 

H)n Hz C H1 . Hence, H1n H 2 and H1 agree in a neighborhood of e, 

that is, H1C Hz in a neighborhood of e. 

Corollary Z: Suppose L(H 1) = L(Hzl· Then, in a neighborhood of e, 

H l = Hz. • 

Corollary 3: Let G 1 and Gz be analytic groups and let 1/,1. l/I: G1 ~ Gz 

be analytic group homomorphisms. Then, 1/,1 and l/I agree in a neighborhood 

of e 1 if and only if L(l/,l) = L(l/I). 

Proof: 

The graphs Gq, and Gl/I of f and l/I in G 1 G 2 are group sub

manifolds. Now, using the identification of #2., we have that: 

L(Gq,L= {ex. y) € L(Gl x Gz): y= L(if>)(x)} 

L(Gl/I) = [<x,y) 6 L(G 1 X G 2): y = L(~)(x)J 

Hence, by Corollary Z, the following statements are equivalent: 

a. </> and I/I agree in a neighborhood of· e 1 . 

b. Gq, and Gl/I agree in a neighborhood of (e 1, e 2). 

c. L(cp) = L(lJI). 

This proves the corollary. 

4) The Lie Algebra of a Kernel 

Suppose G and H are analytic groups and 1/,1 : G __;;.. H is an 

analytic group homomorphism which is a subimmersion. Let K = ker 1/,1. 

Then, we have seen, in Ch. 4, 85, Cor. of Thm. 2, that K is a group 



LG 5.5 

submanifold of G. Moreover, we have that: 

L(K) = kerTe'/> = { x €: L(G) : L((/>){x) = 0 J. 

13 : Linear Representations 

Let G be an analytic group and V be a vector space. Then, a linear 

representation of G in V is an analytic group homomorphism 

CS': G--..;.. GL(V). The group G acts on V via t:1' : 

g· v = O"(g)(v) • 

We obtain from a' an induced representation of L(G) via the induced 

homomorphism Cf : L(G) ~ E(V) of Lie algebras. 

l) Basic EJC.amples: 

1. The identity representation: GL(V) ~ GL(V). 

2.. Let V* denote the dual of V. Define * : GL(V) --..;.. GL(V*) to be 

t -1 the map u J---;.i.. u . Then, * is an analytic group isomorphism. Let 

1 = Idv and l* = Idy* We have in a neighborhood of 1: 

CD 

. t 1 \' t 
*(I + x) = (l* + x) - = /..., (-1)µ ( x)µ = 

µ=O 

In particular: 

L(*)(x) = t -x. 

3. Let VI' ... , V n be vector spaces and set V = V 1 • ... Cli> V n . Define: 

by 

n 

Then, 8 induces an analytic group homomorphism of IT GL(V.) to 
l=l l 
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GL(V). In a neighborhood of 1 in G = fi GL(Vi)' we have: 

i=l 

n 

6(1 + Xi_• ••• , l + xn) = 1 + i~ 118> ... OJ xi Cl ••• QD 1 + O(do '2.). 

In particular: 

n 

L6(xl, ... ,xn) = i~ lQJ ... <» xic& ... e 1. 

~: Let v1, ... , V n and W be vector spaces and set V = L(V 1, ••• , V n ; W) 

n 
and G = ( fI GL(V i)) >' GL(W). Then, 'V is canonically isomorphic to 

i=l 

~ 9 ... 1) V~ C8) W. We may therefore apply examples ~and_! to obtain 

a map 6 : G ~ GL(V). This map is given explicitly by: 

Translating our previous results, we find that: 

n 

LO (xl' ...• xn, z)(y) = z oy - i~ yo (le ... e xie ... 8> 1). 

~· Let G = GL(V) and consider the analytic homomorphism det : G ____... Gm(k), 

where det denotes the determinant map and we have viewed k* as 

Gm(k). In a neighborhood of 1 in G, we haw: 

det(l + x)"' 1 + tr(x) + ... + det(x) = 1 + tr(x) + 0 (dO 2:, Z), 

where tr denotes the trace map. In particular: 

L(det)(x) = tr(x). 



LG 5.7 

2) Kernels of Representations 

We may apply example 4) of 12 whenever a linear representation is a 

subimmersion. In particular, let us apply it to 2. of #1. The determinant 

map is a submersion (if V =/= 0) so that the hypothesis is satisfied. 

We define: 

SL(V) = special linear group =ker(det). 

In particular, combining the calculations of § 1. #4, and #1, 2_, above, we 

obtain: 

L(SL(V)) = {.x <;; E(V) : tr(x) = 0 } . 

3) Stabilizer Subgroups 

Assume char k = 0. Then we have seen that if G acts on X and x € X, 

the stapilizer Gx = f g € G : g· x = x) of x is a group submanifold of G 

(Ch. 4, 85, Thms. 2 and 3). We now apply this to representations. 

1. Let '1": G ___..., ,GL(V) be a linear representation of an analytic group G 

in a vector space V and let v € V. Considering the action of G on 

V induced by <:r , we have that Gv is a group su,bmanifc;>ld of G and: 

L(Gv) = {x <; L(G) : if (x)(v) = 0 J 

Indeed, let q, : GL(V) ~ V be the map u ,__.. u(v). Then 

T q,: E(V) ·~ V is the map y ~ y(v). Since T G = ker(T (cf><r)) = e · e v e 

ker(Tecf> oit ), the desired result is proved. 

2. With notation as in.!• let f <;; v* and cot:Bider the stabilizer subgroup 

Gf with respect to the representation * o~ : G----;.. GL(V*). Then: 
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Gf = {g (:"; G : f o G"'(g) = f} 

L(Gf) = (x (:"; L(G) : fo cr(x) = 0 J . 

To prove the first statement, it suffices, since Gf is a group,_ to show that 

g - l €: G if and only if f ocr(g) = f. But: 

The result is then a consequence of the definition of Gf . To prove the 

second statement, it suffices from .! to show that L(* a er )(:i..)(f) = 0 is 

equivalent to f o tT(x) = 0. But, by# 1, 2., we have: 

t- -L(* o O")(x)(f) = - <S'(x)(f) = - f • (J" (x). 

The desired equivalence is clear. 

A particular kind of group which may be obtained in the above manner 

is the affine group A(V) of a vector space V. We identify V with the 

group of translations on V. Then, A(V) is the semi-direct product of V 

and GL(V). ·The group law is given by: 

We may identify A(V) with the subgroup G of GL(V X k) of transformations 

which leave hyperplanes parallel to V invariant.. We do this using a map 

tr : A(V) --G which is defined as follows: 

cr(v,g)(w,a) = (av+gw, a). 

The group G is however just the group GL(V JC k)f with respect to the 

form f : V )I. k ---;> k defined by f(w, a)= a. 
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3. Let ti': G --;i.. GL(V) be a linear representation of an analytic group 

G in a vector space V and let /3 € (Ve V)*. Let 9 : GL(V)Z ---;;... GL(Ve V) 
I 

be the analytic homomorphism defined in #1, l• when V = v 1 = Vz. Con-

sider the composite representation T = 9 o (er x CS") of G into GL(V GD V). 

Then, applying _£, we obtain: 

G/3 = (g € G : /3 (G"(g) x <T(g)) = /3 J 

L(G/3) = {x € L(G) : f3((f (x) CS> I + I GP ir(x)) = 0}. 

The condition defining L(Gf3) is equivalent to: 

8( ;o(x)v, w) + /3(v, 0:- (x)w) = 0, for all v, w € V. 

There are two applications of the preceding discussion to the case 

when G = GL(V), fS" is the identity representation, and V = k' .. , which are 

01 particular interest: 

A) Orthogonal Group: 

Take /3 to be the bilinear form on kt\ defined by: 

n 

(3(x 1' ... • xn ; y 1' ... • Yn) = "\' x. y. . L i i 

i=l 

The gr9up G/3 is called the orthogonal group of kn. 11Let us determine G/3 

and L(G/3) explicitly. First note that for u € E(kn): 

B t n (ux, y) = /3(x, uy), for all x, y € k . 

n Thus, we find that for x, y (;'; k : 

a. For g (;'; GL(kn), (3 (gx, gy) = /3(x, y) ~ /3(x, tggy) "" /3{x, y) 

b. For u € E(kn), (3(ux, y) + (3(x, uy) = 0 <:;=> /3(x, (tu + u)y) = O. 

Since (3 is non-degenerate, we obtain: 



LG 5.10 

G/3 = {g € GL(kn) : tg g = 1 J 

L(GJ3) = { u € E(kn) : tu + u ::: 0} . 

B) Symplectic Group: 

Take n =Zm and take (3 to be the bilinear form defined by: 

m 

13lx1 •.•. , x., ; y 1 •.•. • y., ) = ~ (x.y +· - x +·Y·) . ... m wm l m 1 m 1 i 

i= 

The group G/3 is caned the symplectic group of kzm . We shall indjcate 

how to determine Gf3 and L(G/3) expli~itly. We identify E(km X km) and 

E(kn). Thus, we may write a linear map u : kn-----;.. kn in the form: 

where A, B, C, D € E(km). Given a matrix u as above, define u 1 by: 

u' = c: -:: ) 
Then, it is easy to verify that for x, y € kn: 

J3(ux, y) = J3(x, u'y) 

Using this fact,and the fact that f3 is non-degenerate, it is then easy to 

show that: 

GJ3 = {g € GL(k
0

) : g'g = 1} 

L{G/3) = [u € E(kn): u 1 + u = o}. 

The conditions defining L(G J3) can be shown to be equivalent to the three 

conditiot1B: tA + D == o ; tB = B ; tc = C. 
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4. The method of stabilizer subgroups can be applied whenever one combines 

several representations using the basic representations of I# 1. We leave 

the formulation of the general statement to the reader and instead present 

one additional example of its use. Let A be a finite dimensional algebra 

over k and let /3 : A C> A -A be the multiplication map. Let G = GL(A). 

Then, the following statements are equivalent> for g c; A: 

a. 

b. 

c. 

g <;: G/3 . 

For all x, y€:A:g/3(g- 1x, g-1y) =/3(x, y). 

For all x, y c; A : g(xy) = (gx)(gy). 

Indeed, a) and b} are equivalent by definition; the equivalence of. b) and 

c) follows from replacing x by gx and y by gy in b) to obtain c). Hence, 

G/3 is just the group of automorphisms of the algebra A. We shall now show 

that L(G/3) is the space of derivations of A into A. Indeed, the statement 

that d €: L(G/3) amounts to: 

For all x, y €:A : d/3(x, y) - /3(dx, y) - /3(x, dy) = O. 

The formula in the above condition is simply: d(xy) = (dx)y + x(dy), which 

proves the contention. 

4) Adjoint Representation 

Let G be an analytic group and consider, for each g €: G, the inner 

automorphism !p : G ----+ G defined by x ~ g x g - l 
g Let Cf= L(G) 

and let Ad : G ~GL(DJ) be the map : g ~ T etPg . Clearly, Ad is 

a group homomorphism and we shall see in a moment that Ad is analytic . 

Hence, we can consider L(Ad): 'j ~ E(~). We shall show that this 

map is just the map ad : CS~ E(t1') which may be defined in general 

for Lie algebras. 

Since Ad is a group homomorphism, we need only check that Ad is 
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analytic at e to show that Ad is analytic everywb:lre. We shall codipute 

Ad in a neighborhood of e in local coordinates. By Ch. 4, 87, #3, we have: 

where la I 2: 1, lf:3 I ~ 1, la I + 113 I ~ 3. Hence, Ad(g) = T '/' is the map: e g 

x i---;i.. x + [g, x:] + 

This shows that Ad is analytic at e. Moreover, since lf:3 I = 1 in tb.e last 

sum, lal i:z in the last sum. Hence, TeAd(y) is the map: x't--;o- [y, ~]. 

Thus, L(.Ad)(y) = TeAd(y) = ad(y), as desired. 

84: The Convergence of the Campbell-Hausdorff Formula 

Theorem 1: Let char k = 0 and let '1 be a finite dimensional Lie 

algebra over k. Then qr is the Lie algebra of an analytic group clunk. 

Proof: 

Let n =dim We shall make use of the .Campbell-Hausdorff 

formula (LA, ch .. 4, H 7 and 8) to define a formal group law F in n 

variables satisfying: 

1. F is convergent. 

Z. 'f is isomorphic to the Lie algebra kn under [ , ]F • 

We divide the proof ·into several steps: 

1) Let x
1
, ••• , xn be a basis of 'f . Then, there exist unique "structure 

constants" 'Y~j = 'Y~j(xl' .•• , xn) such that, for all i and j: 

n 

= l 
h=l 
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Define 'Y = -y(x 1, .•• ,xn):: max h~jl· We observe bow 'Yt and 'Y behave 

under the change of basis defined by multiplication by >.. :/: o; ~ k: 

Z) Let R = k[[X, Y]] = k[[X 1, ••• , Xn• Y 1, •.• , Y n]] and let E = Rn. 

Corresponding to the basis xi' •.. , xn of '1 , define a Lie algebra structure 

on E by the formula: 

n n 

= ( 2 l 
i=l j=l 

h 
'Y·. f.g. ) • 

lJ l J 

In particular, let us consider ad(X) and ad(Y) where X = (Xl' ..• , Xn) and 

Y=(Y 1, ••• ,Ynh 

We say that P =(Pl' •• , Pn) E: E is a homogeneous polynomial of 

degree r if each P. is a homogeneous polynomial of degree r. We let 
l 

II Pll be the maximum of the absolute value of the coefficients of the Pi 

in this case. 

Lemma 1: Suppose P € E is homogeneous .of degree r. Then, if 

Z = X or Y, ad(Z)(P) is homogeneous of degree (r+l) and II ad(Z)(P)ll ~ 

z ·. 
n 'Y II Pll. 

Proof: 

Consider~ for example; Z = X. Let ad(X)(P) = (a 1, ... , an) and 

let Pj = l, a!, /3 x_'l y/3 and Qh = ~ b~, /3 -x.'l y/3 . Then: 

ah = ~ 'Y~· x . P. L lJ i J 

Hence, each ah is homogeneous of degree (r+ 1) and in particular: 
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'J>h 
a, (3 

Thus: jb!,(31S. n
2
'YllPll. 

Let ~ denote the maximal ideal of R. Then: 

Corollary: Let Z = X or Y and let r z. 0. Then ad(Z)(~rE) C 1?!.r+lE 

3) Let S = {x, Y'} be a set with two elements and consider the free Lie 
I\ CD 

algebra Ls on S and its completion LS = IT L~ (LA,. ch 4, H 3 and 7) . 
• r=O 

Let I) be the canonical Lie algebra homomorphism from Ls to E such 

that x ~ X and y ~ Y. 

Lemma Z: For r > 0, 8(L~) C mrE. 

Proof: 

This follows immediately from the corollary to Lemma 1 of #Z. 

In particular, I) extends uniquely to a Lie algebra homomorphism of 

Iii. 

Ls into E. 
A 

Now, let z € LS be the unique element such that 
z = e 

ch. 4, 117, Thm. 7. 4). We let F = 9(z). It follows easily from the 

(LA, 

remarks at the end of 17 of ch. 4 of LA and from arguments similar to 

those of Lemma Z that: 

1. F is a formal group law in X and Y. 

Z. B(X, Y) = i [X, Y] . 

1 1 
In particular: [X, Y]F = Z' [X, Y] - Z' [Y, X] = [X, Y]. 

We now prove: 

Theorem Z: F is convergent. 

Proof: 

We shall need two elementary lemmas: 

Lemma 3: The following sum is convergent for t sufficiently small: 
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t 
!:p. + 2:) q. 

l l 

Proof: 

The above formal sum may be written as: 

For t < 1, the term in parenthesis converges to a where: 

a = I I 
~-. 

For t sufficiently small, ~ < 1. Then, the first sum is just a geometric 

series with ratio less than I, hence, it converges. 

Lemma 4: There exists a constant a, 0 < a:::_ 1, such that: 

(n € ~ , n > 0). 

We consider three cases: 

A) k is archimediar) 

Take a = 1. 

B) k is ultrametric and the restriction of the absolute value to Q is 

trivial. 

Take a = 1. 

C) k is ultrametric and the restriction of the absolute value to g is 
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somep-adic absolllte value. 

First note that the second inequality follows from the first since 

we have: l<n-1)! I !S, I, for all n ~ 1. Then take a= IPI l/(p-1). We 

have: 

However: 

v (n!) = [ !!. ] + ( ~] +. . . . < n + 
p p p"' p 

n ;z + ... = n 
p:-r 

We now prove Theorem Z which will at the same time complete the 

proof of Theorem l. 

We note first that since change of coordinates by multiplication by a 

non-zero constant does not effect convergence we may assume that the 

basis xl' ... , xn of ':}' has been replaced by a basis >..x 1, ... , >..xn of 

Of so that: 

I 
;z 

We use the old notation xi' ..• , xn for the new basis xl' •.. , xn. We 

then have from Lemma 1: 

Lemma I': Suppose P ~ E is homogeneous of degree r. Then, 

if Z = X or Y, ad(Z)(P) is homogeneous of degree (r+l) and 

II ad(Z)(P)ll ~ II Pll. 

Next, we use Dynkin' s formula (LA, ch. 4, 88) to write down 

explicitly F = 9(z). We find that F(X, Y) = l:£11(X, Y) where the 
II 

homogeneous part f
11 

of F of degree 11. may be written as: 

"\' (f' (X, Y) + £" (X, Y) ) . L p,q p,q 
p+ q= II 

Here: 
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L (-1)?1+1 
P1 q 

f' = 
ad~X} ad(Y) 1 ... ad(X)Pm(Y) 

p I I p I p.q p + ... +p =p m I' ql. · · • m· 
. 1 m 

q + ... + q =q-1 
1 m-1 

pi+ qi 2:. I 

Pm.?:. 1 

L (-l)m+l 
. P1 ql ad~Yl qm - l~X} 

f" = ad~X} ad~Y) .•. 
p t I I p,q 

P1+· '+pm-l=p- l 
m l' q l' ... qm-1' 

q l + · • + qm -1 =q 

pi+ qi 2:. 1 

By Lemma 11, each of the numerators in the above expressions is a 

homogeneous polynomial of degree 11 whose coefficients have absolute 

value equal to or less than 1. Also, using the expression for [ , ] we 

see by induction that the number of monomials actually appearing in each 

2.11 numerator is equal to or less than n Hence, we can majorize each 

numerator by a real polynomial of degree 11 in X and Y which is the 

sum of nl. 11 monomials each of which has coefficient 1. Such a real 

polynomial is estimated at a radius vector (s •... • s) b ~ 2.n by: 

On the other hand, by Lemma 3, the integers which appear in the 

denominator can be estimated by: 

I v I .?:. a 11 = ap+q 

lml 2:. 
m .?:. ap+q a 

I I ' 

P ! I ~ EP· + l3q. P1· ql ... • ap+q • m 2:. a i i = 
I I I qm-1 ! I P1·q1·. ·• 
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Hence, setting t = (n2s/a3). we see that the components of the formal group 

law F can be majorized by twice the formal sum in Lemma 3. Since that 

sum converges for t sufficiently small, F converges for s sufficiently 

small as was to be shown. 

Remarks: 1) When ~ is a nilpotent Lie algebra (LA, ch. 5, liZ), 

then .F is a polynomial so that convergence is ·t.rivial. 

2) To obtain an estimate for the r.adius of convergence, one might 

estimate the constants in the proo~, namely: 

1. The constant a in Lemma 4. 

2. The radius of convergence of the series in Lemma 3. 

In fact, it is easy to see that the series in Lemma 3 converges for: 

t < 

Hence, F converges on every polydisc of radius (R, •.• , R) where R satisfies: 

R < 
3 a 

-z 
n 

.J2 - 1 

.J2 

This est.imate is not particularly good and no good estimate is known 

when k = ~ or ~ . 

Suppose that k is ultrametric and that the restriction of the 

absolute value to Q is some p-adic absolute value. Suppose that ~ is 

a Lie subalgebra of L(G (R)) where R is finite dimensional 
m 

associative algebra with unit over k, that is, 'i C R and [x, y] = 

xy - yx 6 '1 for all x, y €: -'1 . Assume, for simplicity, that the 

multiplication on R satisfies jxyj ~ jxj jyj. We may then define 

the exponential series: 

z x 
~ + ..• 
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Then the exponential defines an isomorphism of an open additive subgroup 

M onto itself where M is defined by: 

M = { x b R : v(x) < v~~)l } 

We may define a group law on M by setting G(x. y) equal to the unique 

z b M such that: exey = ez . It is clear from the construction of the 

Campbell-Hausdorff formula (LA. ch. 4, 87 • Thm. 7. 4) that this 

formula agrees with the Campbell-Hausdorff formula where the latter 

converges. Lazard· has shown that the Campbell-Hausdorff formula 

converges in fact on M. In particular, by restriction, we obtain 

convergence of the Campbell-Hausdorff formula on M (I """S • 
3) Since we have shown in Ch. 4, 18, that, when k is ultrametric, 

every analytic group chunk corresponds to an analytic group, we have: 

Corollary: Suppose k is ultrametric of characteristic zero. Then 

~ is the Lie algebra of an analytic group over k. 

85 : Point Distributions 

In this section, we shall intrcrluce "distributions whose support is 

concentrated at a single point". We shall use this concept as a technical 

tool in' the next section where we prove the equivalence of the category of 

formal groups with the category of Lie algebras. 

In considering "formal" questions, we shall assume that k is 

simply a commutative ring with unit or perhaps a Q-algebra, while in 

considering "convergence" questions we shall assume as usual that k 

is a field complete with respect to a non-trivial absolute value. 

I) Let X be a manifold and let P b X. Recall that in Ch. 3, 17, 

we defined the local ring H of X at P and we let mp denote its -p -
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maximal ideal. We showed there that if n = dimpX then !:!p is 

isomorphic to the ring of convergent power series in n variables. We 

shall give !:!p the topology defined by letting the powers of ~ be a 

basis of the neighborhoods of 0. Nole that k C !Jp inherits the discrete 

topology. We now define a point distribution on !:!p to be a linear 

form u : !:!p---+ k such that the following equivalent conditions are 

satisfied: 

1. u vanishes on some power of ~p . 

2. u is continuous on !:!p with respect to the discrete topology on k. 

By extension, we may also consider u as a linear form on the completion 
A /\ 
!:!p of !:!p • Note that !:!p is isomorphic to the formal power series 

ring in n variables over k. 

2) Now let k be a commutative ring with unit and let H = k[LX 1, ... , Xnll 

be the formal power series ring in n variables over k. Let m be the ideal 

generated by x
1

, ..• ,Xn and, for any, positive integer r, let Hr= H/mr+l. 

Also let U = H* = L(H k). Then, as above, we say that a linear r r r' 

form u on H is a point distribution if the following equivalent conditions 

are satisfied: 

1. r+l For some int~ger r, u vanishes on m , that is, u factors 

through the projection H --..:.;:.. Hr . 

2. u is continuous on H. 

Let U C H* be the subspace of point distributions. 

Consider the projection H .._,,. Hr . Dualizing, we obtain an injection 

U ..-;i.. H* . Then U may be identified with the union of the images of 
r 

{uJ 
Let us consider in more detail the k-module structures of H and U. 

By definition, H is the product: IT k· Xa . We may define, for each a, 
(l 
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a = f3 

a "# f3. 

The elements A a of U are clearly linearly independent over k. 

Moreover, since each element u c;: U vanishes on some power of m, 

we may write u as a finite linear combination over k of elements of 

the form Aa. Therefore: 

Lemma 1 : U = E& k•Aa 
a 

Also: 

Lemma 2 u* = H • 

Proof: 

Since U C H* , we have a map H --+- H** --+- u* . Under this. 

map, Xa is identified wih the linear form on U which is 1 on Aa and 

0 on Af3 , f3 '# a. Then: 

u* = L( E0 k· A a , k) = IT L( k· A a , k) = IT k· Y!l = H . 
a a a 

Remark: The distribution £ = AO is called the llrac distribution. 

Now let us consider the structure which the multiplication map 

IL : He H---+- H induces on U. In the ring H c& H, consider the 

ideal ~ = m 8 H + H CJ m. We let H 6) H have the topology defined 

by the powers of ~. It then follows that IL is continuous so that IL 

" extends to the completion H Cl H of H CS) H. Let !! be the space of 

" point distributions on H® H or equivalently on H ffJ H. Then the dual 

" ...,* : H*---+- (HCIJ H)* induces by restriction a diagonal map 0: U--+- y. 

The· terminology "diagonal" is justified by: 

Lemma 3: l. The canonical map U e U---+- _!:! is an isomorphism. 

Z. (Leibniz's Formula) 6(Aa) = 'IJ A/38 A"Y. 
/3 +-y=a 
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Proof: 

Let X. ~ l = Y. and l ® X. = Z. for l :S. i S. n. Then the canonical 
l ' l l l 

inclusion: He H----;:.. k([Y 1, ... ,·y , Z l' ... , Z ]] = H extends to an 
n . n -

/\ 

isomorphism of H" H and H • Under this identification, V has a 

canonical basis ll.a' f3 defined by: 

a•·~(v•zb) = {; 
if a = a and f3 = b 

otherwise 

The Map U ® U ~ ~ identifies the basis element Aa ® Af3 of U ~ U 

with the basis element Aa,{3 of U. This proves statement 1. 

To prove statement 2, we consider the operation of c5 (Aa) on a 

typical monomial yf3 z'Y • Then: c5(Aa )(YJ3z'Y) = Aa(µ (Yf3 z'Y)) = Aa(xf3 +'Y) • 

We see that this is 1 if f3 + 'Y = a and is 0 otherwise. This proves 

Leibniz's Formula. 

Finally, since H = k Ea m, we may generalize the notion of tangent 

vector to the algebraic situation we have been studying. We say that u E: U 

is a tangent v.ector if the following equivalent comitions are satisfied: 

l. u : H ~ k is a derivation. 

2. u vanishes on k and m 2 . 

3. u is a primitive element for 0, that is, c5(u) = u® I + l@ u. 

The equivalence of l and 2 follows just as ir.. Ch. 3, §8, #1 ; the 

equivalence of l and 3 follows from the Leibniz formula. 

§6 : The Bialgebra Associated to a Formal Group 

We sh<lll motivate the study of the "formal" case by first considel'ing 

briefly the "convergent" case. 

1) Let G be an analytic group. Let H be the local ring of G 
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" at e, m the maximal ideal of H, H the completion of H with respect 
II 

to the topology defined by m, and U the. point distributions on H .or H. 

Then, by the formal theory oi ·ss, #2, we have defined a diagonal map 

O : U ~ U ® U. We shall now define a multiplication 9: U®U __.,... U 

using the group law on G. Indeed, let q, : G X G-..;.. G denote the 

group law. Then, we may define a map 

f ~f•f/> Here H = H and H -e -e, e 

G >< G. 
I\ 

We induce from (.'i a map <:r : 

<f' : H --..;.. H by : -e -e, e 

is the local ring at (e, e) on 
A /\ All/\ 
H--..;.. H = H ti H. Dualizing e,e 

o-. we obtain the desired map e:u~u--;i..u. We shall see in 

the "formal" discussion that U is an associative algebra under 9 with 

unit equal to the Dirac distribution. 

2) We use the same notationand assumptions as in 85, #2. In 

addition, we let _!:! = k[[Y 1, ... , Y n' Z 1, ... , Zn]] and we let F € Hn 

be a formal group law in n variables over k. Recall that we noted 
I\ 

in the proof of Lemma 3 of 85, #2, that H = H C> H. We shall let 
,.. I\ 

m =meH+H®m. 

Since F is without constant term, given f € H, we may form 

the composite f o F € _!:! (Bourbaki, Alg., Ch. 4, !15, #5). Let 

CS": H ~ ,!i denote the map: f ~ fo F. l'hen, G'(mr) C ~r so that 

CS' is continuous with respect to the topologies defin.ed by m and ~· Hence tr' 

induces a map fJ: U C8) U---+ U by dualizing. 

Lemma 1 : 9 makes U into an associative algebra with unit 

equal to the Dirac distribution. 

Proof: 

We shall be concerned with the power series ring !J = k[[Y, Z]] 

and with the power series ring ~ = k[[Y, Z, W]] where W = (W 1, ... , Wn>· 

We shall let .o.""y, .O.~ , .o.i denote the elements dual to the mon:.mials 
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ya , zl3 , w'Y respectively. Then, for example, the product a~ a~ ai 

is dual to ya zl3 w 'Y • 

We now prove the associative .law for 9. Let If' Q) af3ea 'Y 

be a typical basis element of U CZ U ® U. Let f E: H . Then: 

9{aa, a (af3, a 'Y))f =a~ a,f, ai(f o F(Y, F{Z, W))) 

9(6(aa, a/3), a 'Y)f =a~ a~ ai(f o F(F{Y, Z}. W)) . 

The associativity oJ (J therefore follows from the associativity of F. 

We conclude the lemma by showing that Dirac distribution t is a 

unit for the multiplication in U. Let If' E: U and f E: H . Then: 

This shows that O(t, aa) =aa. Hence, E. is a left unit, and it is 

shown in a similar way that £ is a right unit. 

Lemma 2: The diagonal map o : U-..;... U e U is an algebra 

homomorphism. 

We must show that the following diagram is commutative: 

ueu 

eJ 
u 6 

(U e U) e (Ul>U) 

~ eee 
ueu 

Since all the modules appearing in the diagram are free, it suffices to 

show that the dualized diagram is commutative: 
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I\ "' " (Hf.?H)®(H®H) 

H <: µ. 

lcr®cr 
"' H~H 

~1 
T 

Since all maps are continuous with respect to the appropriate 
II 

topologies, it suffices. to check commutativity on elements of H ® H 

of the form f ® g where f, g E; H . But: 

G" (µ(f e g)) = ~(fg) = (fg) 0 F = (f 0 F)(g 0 F)= ~(c:r® er {f fO g)). 

This proves the lemma. 

The space U together with the diagonal map 0 : U ~ U ® U and 

the multiplication map (} : U C>u ~ U is called the bialgebra associated 

to the formal group F. W.e use the notations: {}(u, v) = u*v and [u, v] * = 

u*v - v*u. 

Lemma3: For all a and [3, l::i.a*t} = (a:f3)t::i.a+f3+ Ea,[3' where 

the error term E a is a linear combination of t::i. 'Y with 0 < h I < I a+ J3 I. a,,., 
Proof: 

We must show that if h I~ la+f31 then l::i.a*l::i.[3 and (a+J3)t::i.a+{3 
a 

agree on x'Y and that E [3 vanishes on k. But: a, 

and 

x'YOF(Y,Z) = (F(Y,Z))'Y = (Y+ z)'Y + O(d0 > h'I>' 

< y + z > 'Y = I < -:.. > y>.. z µ. 

>..+µ=-y 
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if 'Y = a + f3] 
otherwise "' 

This proves the assertion about the action of tf1 * 1::i.J3 and (a+ f3) l::J.a+ f3 a 

on x'Y if I 'YI> la+ {3j. We also see that both elements give 1 on x 0 

when a+ {3 = 0 and 0 otherwise so that E Q always vanishes on k. a,..., 
Let '1 be the Lie algebra associated to the fol'mal group F (§I). 

Then, the vector space underlying 'f is kn . We let D. be the i-th 
l 

standard basis vector of kn and define 6· I/I : tlJ ~ u by : IP(Di) = l::J. l . 

Then, by definition, ljl is a linear isomorphiRm of t;r onto the set of 

u f; U such that u vanishes on k and 
2 

m 

Lemma 4: Let x, y f; 'f and let f f; H be a linear function. Then: 

IPH>e• y) )f = f(B(x, y) - B(y, x)) . 

Proof: 

Since, by definition, [x, y] = B(x, y) - B(y, x), we must prove: 

IP([x, y) )f = f([x, y]) . 

Then, since both sides of this equation are trilinear in x, y, f, it 

suffices to consider the case when x = Di' y = Dj, and f = Xk . Thtrn, 
k ,,. 

both sides ot the equation reduce to the structure constant 'Yij(D:f' ... , Dn)' 

which proves the lemma. 

Theorem I: ljl is a Lie algebra homomorphism: IP([x, y]) = [I/Ix, lf!Y] *' 
Proof: 

We know that IJt([x, y)) vanishes on k and m 2 and it follows 

from Lemma 3 that [i.rx, 't'Y]* vanishes on k and m 2 . Hence, to 

prove the desired equality, it suffices to show that ip([x, y)) and [ipx, "'y]* 
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agree on a set of coset representatives of m/m 2 , for example, the 

linear functions. Let f c;;: H be a linear function. Then: 

(lJlx, l/IYJ*f = (l/lxfOljly - \Jly If) lJtx)(f o F(X, Y)) 

= (l/lx®\Jly; - l/lytl\j/:K.)(f · X + f· Y + f· B(X, Y) + ... ) 

= (\j/x 41> \Jly - \j/y Cl IJ;x)(f· B(X, Y)) 

= f(B( x, y) - B(y, x)) . 

The desired equality follows now from Lemma 4. 

Henceforth, we assume that k 1!...!:..9 -algebra. Par abus de 

notation, we let I/I : U 'f ___,,.. U denote tla.e map induced by I/I : 'f----.> U 

(LA, ch. 3, ·u, Def. 1. 1). 

Theorem 2: \JI : U~ ___,,.. U is a bialgebra isomorphism. 

We have defined filtrations on U"f (LA, ch. 3, 14) and on U (85, 

#2). We verify immediately that 1Jt is compatible with these filtrations 

and that the filtration on U'f (resp. U) is separated, exhaustive, and 

makes U'3'° (resp. U) discrete. Hence, by Bourbaki, Alg. ~· , 

ch. 3, 82, #8, Cor. 3 of Thm. 1, it suffices to show that gr(~) is 

bijective to prove that \JI is bijective. 

We know from the Poincarl-Birkhoff-Witt Theorem (LA; ch. 3, 1!14, 

Thm. 4. 3) that Utf is a free k-module with basis Da = oi . . . o:n 

Since k is an algebra over q , we know that U is a free k-module 

with basis Da = b-D.a . By Lemma Z, \j/(Da) and Q.a agree in gr(U). 
a. 

Hence gr( \JI) is bijective so that \JI is bijective. 

We know that \JI is an algebra homomorph_ism so that to show it 

is a bialgebra homomorphism it remains to show that the followin2 

diagram commutes: 
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We know, by LA, ch. 3, §5, Prop. 5. Z, by 85, HZ, Lemma 3, and by 

Lemma Z above, that: 

1. ~ and o are algebra homomorphisms. 

Z. For u € 'f CU 'S°•ijle""\~(u) = IJ;u®l + l®IJ;u = ooljl(u). 

Since, ~ generates the algebra U'S (LA, ch. 3, 14, Prop. 4. 1), 

1f1 o ~ = o O\JI on all of U~ , as desired. 

Theorem 3: Let T : (FG) ~ (LA) be the functor from the category 

of formal groups over k to the category of finite dimensional Lie algebras 

over k defined in 1!11. Then, T is an equivalence of categories, that is: 

1. For Fl' F z €: (FG). the map: Hom(F l' F z) --+ Hom(TF l' TF z) 

is a bijection. 

·Z. Given ~ € (LA). there exists F € (FG) such that TF is isomorphic 

to 'f . (Recall that k is supposed to be a Q-algebra.} 

Proof: 

l. For i = 1, Z, let Fi be a formal group law in ni variables 

over k, Hi be the formal power series ring: k[[Xl' .•. , Xn.ll, Ui 
l 

be the bialgebra of point distributions on Hi, ~i be the Lie algebra 

associated to F., and U. be the universal algebra of ~ 1. ; use 
l -1 d 

the notations: 
A 

a. IJ.i : Hi ®Hi --.-;i.. Hi 

s.: u. eu.--+ u. 
l 1 l l 

multiplication. maps 

8. : u. GP u.---.;;... u. 
-1 -1 --1 -1 
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b. <Ji : Hi___,,. Hi cl> Hi 

o.:u.~u.~u. 
1 l l l 

o. : u. ___,,. u. eu. 
-1 -1 -1 -1 
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diagonal maps 

c. If.I. : U . ....---.> U. : the isomorphism of Theorem Z. 
l -1 l 

Then, given a Lie algebra homomorphism t : q1 ---;;.. ~Z , we want 

to show there exists a unique formal group homomorphism T: F 1 --_.;;,. F z• 

• such that T(T) = t . 

We will show that the map : Hom(F l' F z) ~ Hom(TF l' TF z) 

can be decompcsed into a series of maps each of which is a bijection. 

0) We begin with a preliminary step. Let: 

HomAL(Hz, H 1) = continuous algebra homomorphisms 

S = space of T 

mapping mz into m 1 (such an homomorphism 

will be called admissible - it is cominuous 

for the natural topologies of Hz 

= (T 1, .•. ,T ) ~ 
nz 

nz 
H

1 
such that 

Ti(O) = 0 for all i . 

Let T €: S. Then, given g €: Hz , we may form the composite go T, 

and the map <Pr : Hz---;.. H 1 defined by g ~ g T is an admis:;;ible 

algebra homomorphism (Bourbaki, Alg. , ch. 4, !5, #5, Prop. 3). 

Lemma5: The map T ~ <1>
7 

is a bijection of S onto HomAL(H 2,H 1J. 

~: 

The map is certaiil.ly injective since </>T(Xi) = Ti . To prove that it 

is su~ctive, let </>:Hz---;;.. H 1 be an admissible algebra homomorphism 

and let T be defined by 1i. = </>(Xi). Then, since </> and </>T are algebra 

homomorphisms, </> and Since this 

subring is dense in Hz• <I> = </> T on Hz by contmuity. 
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I) Let: 

HomBA(Hz, H 1) = admissible bialgeb:ra homomorphisms 

Proof: 

The statement that cp
7 

€: HomBA(H 2 , HI) amounts by virtue 

of Lemma 5 to the commutativity ci. the following diagra;;n: 

6z 
Hz __ ..,,..> Hz® Hz 

<I> l 6 1 J<I>; ©<I>; 
HI H 1 Cl HI 

This diagram commutes if and only if for all g C:: Hz : 

This equation holds for all g C:: Hz if and only if : TDF 1 (X, Y) = F z(TX, TY), 

that is, if and only if T is a formal group homomorphism. 

2) Let: 

Hom BA (U I' U 2) = bialgebra horr.omorphis ms 

" " 

Lemma 7: Dualization defines. an isomorphism HomBA(H 2, H 1) !::I 

HomBA(U l' U 2). 

Proof: 

Given </>: H 2 --;:o.,H 1, </> an admissibl~ bialgebra homomorphism, 

and u €: U 1, we obtain u o </> C:: U 2 . This fellows since the U i are the 

conti.nuuus duals of the Hi . Hence we have a map: Hom BA (H 2, H 1) ---» 
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Given 1/1: U 1 ~ U 2 and g E: H 2 , we obtain g o I/I f.: H 1 . This 

follows from Lemma 2. of 85, #2.. The fact that I/I is a bialgebra homo-

morphism s.hows (by duality) that g ~ g.• I/I is a. bialgebra homomorphism. 

Moreover, since l}(t. 1) = £2 , g E: m 2 =>got/IE: m 1 . Hence 

g ~ gol.jl is admissible, and we have defined a map: IiomBA(U 1,U 2)----;.. 

HomBA (H 2 , H 1). 

It is easily checked that the two ma.ps we have defined are inverse to 

one another. 

3) By Theorem. 2.: 

Lemma 8: The maps I/Ii define an isomorphism: Hom BA (U 1, U 2) ~ 

4) From the definition of the universal algebra and the definition 

of the diagonal map for the universal algebra, we have: 

5) It remains to put the bijections of Lemmas 6, 7, 8, 9 together 

and to see that they in fact give the functor T. 

and write: 

T(X) = '£ t.(X), 
. l 
l 

where ti(X) is homogeneous of degree i. Then T(T) = t 
1

. Let 

t E: HomLA('11' 'f 2) be the element corresponding to T under the above 

bijections. We must show that t = t 1 . 

Let u E: 'f1 . To see whether t(u) = t 1(u), it suffices to test by 

applying linear functions g E: H
2 

to both sides. We have: 

g(t(u)) = t(u)g = u(ljl
7

(g)) = u(goT) = u( .?gti) = u(gt 1). 
l 
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The first line is simply unwinding the isomorphisms of Lemmas 6, 7, 8, 9, 

while the second is the identification we have made of '1i with a subset 

of U. via \J; . . ·Comparing, we obtain the des ired equality. 
l l 

2. We associate to °if~ (LA) the Campbell-Hausdorff formal group with 

~ as Lie algebra. The details of this association were essentially 

carried out in the first part of the proof of Theorem l of §4. The proof 

there was entirely "formal'' and used only the fact that k is a g-algebra. 

Remark. One could also prove part 2) of Theorem 3 by showing 

directly that the dual of the bialgebra U '1 is isomorphic (as a 

k-algebra) to a formal power series ring k[[X 1, ... , Xn]] , with 

n = dim. ~ ; the diagonal structure of this algebra is given by an 

F(X, Y) which is the desired formal gro}lp law. 

§7. The Convergence of Formal Homomorphisms 

We assume that k ifl a complete field with respect to a nm-trivial 

absolute value, and that char k = 0. 

Theorem l: For i = l, 2, let G. be an analytic group clunk 
l 

n· 
and F. be the formal group law induced in k 1 by a chart c. of G. at 

l 1 1 

ei Let T: F 
1 

____,.. F 
2 

be a formal group homomorphisms. Then, T 

is convergent, that is, T induces a local homomorphism of group 

chunks 'T: G 1 -----> G 2 . 

Proof: 

For i = l, 2, F. is convergent sinc.e it is obtained by passage 
l 

to local coordinates from the convergent multiplication law on Gi 

since the conclusion of the theorem is local, we may assume that Gi 
. n· 

is an open neighborhood of 0 in k 1 with multiplication defined by Fi. 
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1) Special Case: G 1 = k, F 1 :: "+", and Gz = G, F 2 = F. 

To say that T is a formal group homomorphism reduces, 

in this case, to. the formal equations: 

T(s t t) = F(T(s), T(t)) and T(O) = 0. 

Differentiating formally with respect to t and setting t = O, we find 

that T satisfies the following formal differential equation: 

T1(s) = DzF(T(s), 0)7 1(0). 

Since Dz.F(T(O), 0) = D 2F(O, 0) = Idkn, the above equation is formally 

consist£.nt at s = 0. Let </>(X) = o2F(X, 0) T 1(0) where T1(0) is any 

fixed vector in kn . Then, the convergence of T is a consequence of the 

following theorem which we prove in the appendix to this chapter. 

Theorem 2: Suppose </> ., (</> 1, ... , </>n) is a system of n 

convergent power series in n variables. Then, the formal differential 

equation: T'(s) = </>(T(s)), T(O) = 0, possesses a unique formal solution. 

This solution is in fact cmvergent. 

2) General Case: 

Let F be a convergent formal group law corresponding to a 

group chunk G and let X € '1'. = L(G). Then there is a unique Lie 

algebra homomorphism LX : k---;... 'f such that Lx( I) = X. By 

Theorem 3 of §6, there is a unique 
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formal homomorphism lf>x : k+-+ F such that lf>:k (0) = X. By 

case 1). <Px is convergent. 

Let -qi = L(Gi) and let t = L(T) : 1} -..;... -..q-2 . Then the construction 

of lf>x bas the following functorial property: 

For X E: 1 l and Y = t( X) : lf>y = To q,X formally. 

For convenience, set n = n 1 and m = n 2. Then, choose -a basis 

of Af 1 and let Y µ = 

by the formulae: 

t(X ). 
µ 

Define local morphisms: 

The map L(</I 1) : kn --+ ~ 1 is just the isomorphism of kn with °"1 l 
defined by sending the µ-th standard basis vector of kn onto X . Hence 

µ 

If> 1 is etale at 0 and hence is a local isomorphism in a neighborhood of 0. 

-1 Now, formally, To If> 1 = q, 2, hence .• formally, T = q, 2 o ij> 1 . But 

the right hand side of this equation is convergent by what we have just 

shown. Hence T is convergent, as desired. 

Corollary l: Let G 1 and G 2 be analytic group chunks such 

that L(G 1) and L(Gz) are isomorphic. Then: 

1. Any isomorphism of L(G 1) with L(Gz) induces a local isomorphism 

of G 1 with a 2 . 

2. In the ultrametric case, G 1 and G 2 have open subgroups which 

are isomorphic. 
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l. This follows immediately from Theorem l and from Theorem 3, §6. 

2. This follows immediately from I) and from the theorem of 

ch. 4, 98 . 

Corollary 2: Let G be an analytic group chunk, ~ = L(G). and 

CH("'r) =Campbell-Hausdorff group chunk associated to ~ (§4). 

Then, there exists a unique local isomorphism exp : CH(1>---;;... G 

such that L(exp} = Id. 

Remark: Suppose G = GL(V) whe.re V is a vector space over k. 

Then let: 
2 

ex = 1 + x x rr+z:+··· 

We contend that exp( x) = ex in a neighborhood .of 0 in -"J' = E(V). 

Indeed, by the construction of the Campbell-Hausdorff formula, eX 

defines a formal homomorphism from CH("'f} to G and we have 

L(eX) = Id. Hence, we obtain: exp(X) = ex , by uniqueness. 

Now let us ·study the map exp in the case k = ~ or ~ and G 

is an· analytic group. Since fri(X) = nX in CH~}, we will be able to 

extend exp to all of -1' · Indeed, let x €: ~ . Then, since 

k = ~ or Q, for some integer n > 0, 1 - x ~ Dom(exp). 
n 

(*) exp(x) 1 n exp(- x) . 
n 

Define: 

We obtain the same definition if we replace n by a multiple mn of n. 

This shows that we obtain a unique definition independent of the choice 

of n, since any two clx>ices may be compared by means of their product. 

For fixed x 0 and some n, the formula (*) is valid in a 

neighborhood of x 0 , which shows that exp is analytic. We know 
, 

that exp is etale at 0 but in general exp is not everywhere etale 

and is not bijective. 
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C<:n:olla-ry '3~ Su\)\)Ose k = ~ o-r ~ . Let G be an anal'jt\.c 

group over ~ and let ~ = L(G). Then: 

1. Suppose G is connected and ~ is abelian. Then, G is abelian. 

2. More generally, if 1" is abelian, then G has an open abelien 

subgroup. 

Proof: 

Clearly, 1 => 2. To show l, we note first that, since Af is 

abelian, CH(-4") = ~ with the additive group structure. We contend 

exp defines a group homomorphism. Indeed, given x, y <; ~ , 

1 I 1 
choose an integer n so large that - x, - y, - (x+ y) lie in the domain n n n 

where exp is a local homomorphism. Then: 

exp( *x)exp( *y) = exp( *(x+y)) = exp( *y)exp( *x) . 

Noting the commutability of exp( lx) and exp( .!.y), we obtain, by 
n n 

raising ton-th powers: 

exp(x)exp(y) = exp(x+y) . 

It follows that exp(~) is an open abelian subgroup of G, hence is 

equal to G, since G is connected. 

Corollary 4: Suppose k is ultrametric and let A be the 

corresponding valuation ring. Let G be an analytic group over k of 

dimension n such that '41 L(G) is abelian. Then, G bas an open 

abelian subgroup isomorphic to An . 

~ 

We have that CH("") is the additive group "1 and that CH("1> 

contains an open subgroup isomorphic to an open subgroup of G., whence 

the result. 
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Example of Corollary 4: G = group of points of an abelian 

variety defined over g 
-p 

§8. The Third Theorem of Lie 

Throughout this section. k = ~ or ~. 

Theorem l: Let G be a connected. simply connected analytic group 

over k. Let G 1 be any analytic group over k. Let ""i = L(G) and 

~· = L(G'). Then, the map: Hc.mA G(G,G') ~HomLA(,,,~ 1 ) is bijec

tive. 

Proof: 

Let t : ~;~-"/' be a Lie algebra homomorphism. We must 

~how that t = L(f/>) for a unique analytic group homomorphism 

q, : G--..:,;.. G 1• We know that t extends uniquely to a local homomorphism 

f: G -----> GJ (86. Thm. 3; 87, Thm. 1). Then, the graph rfC G X G' 

of f is an analytic subgroup chunk. Let (H, i) be the analytic group 

generated by rf (Ch, 4, § 4 ). Consider the diagram: 

Then, \fl is a local isomorphism, and, since H is connected and G is 

simply connected, 1/-' is an isomorphism onto an open subgroup of G. 

Since G is connected, lj,I is surjective Let 
. -1 tp = pr 2 o 1 • 1/1 • 

Then, q, agrees with f in a neighborhood of e. This shows existence. 

Uniqueness follows sine...: two homomorphisms .p 1 and .p2 whose 

derivative at e is equal to t must locally agree with f so that the 

set of points on which they agree is open and closeti, therefore, equal 

to all of G. 
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Theorem 2: The category of connected, simply connected 

analytic groups over k = ~ or ~ is equivalent to the category of finite 

dimensional Lie algebras. 

Proof: 

We have proved in Theorem l, the required bijection on maps. 

What remains to be done is to show: 

Theorem 3: (Third Theorem of Lie) For any finite c!imensional 

Lie algebra ~ , there exists a connected, simply connected analytic 

group G such that L(G) = '<f 
Proof: 

This tht::orem was first proved completely by Elie Cartan. We 

shall sketch Cartan' s original proof after giving a shorter prod based 

on the powerful Theorem of Ado. 

We remark atthe outset that it suffices to find an analytic group 

G such that L(G) = 4r since taking the connected component H o~ e 

in G and then taking the simply connected covering group of' H, we 

obtain the desired connected, simply connected analytic group with Lie 

algebra "'1· . 
Proof 1: 

We quote Ado's Theorem (Bourbaki, Alg. de Lie, ch. 1, §7, 

#3, Th m. 3, or Jacobson, Lie Algebras, ch. 6, 112, p. 202): 

TheorP.m (Ado): Every finite dimensional Lie algebra has a 

faithful finite dimensicrial representation. 

Now, let H be the Campbell-Hausdorff group chunk corresponding 

to -1' and let t: ~----;;.. E(V) be a faithful representation. Then t 

induces a local homomorphism f: H ----> GL(V). Since t is faithful, 

f is an immersion at e, that is, H corresponds to a subgroup chunk 

of GL(V). But then, H is equivc1.lent to an analytic group (ch. 4, 8 !). 
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Proof 2: 

l) The theorem is true in the following cases: 

I. "J is semi-simple. 

2. -"J is abelian. 

In case 1, ad :~----;.. E<-'1) is injective. We may apply the 

method of proof I without having to invoke Ado's Theorem. Alternatively, 

we note that im(ad) = Der(~). Hence, -'1 = L(Aut~)) (i3, #4, !). 

Case 2 is trivial since we may take G =additive group of ~. 

2) General case: 

We use induction .on dim ~ If .dJ falls in cases 1 or 2, we 

are done. Otherwise, we know that ~ is a semi-direct product 

1'i X -1' 2 , where "1 l is an ideal of '1 • 4(2 a subalgebra of "'f, 
and dim 1' i < dim ~ (cf. LA, ch. 6, 1!14) 

Let ~ : ""J 2 _,.. Der(""J 1) define the semi-direct product structure 

on -1 l X ~2 . By induction, let Gi be a connected, simply connected 

analyti~ group such that "'f i = L(Gi)' i = I, 2. We will show that 

..tlf = L(G) where G is a semi-direct product of G 1 and G 2 . 

The main steps in the proof are: 

l. Der(°";f 1) = L(A 1) where A 1 = Aut(.q1) {IB, #4, 4 ). 

2. A 1 = Aut(G 1). by Theorem l. 

3. A 1 acts analytically on G 1 . 

Indeed, given a <;; A 1 and g G G, we want to find a neighborhood 

N of a in A 1 and U of g in G 1 such 1hat the action: NX U--+ G is 

analytic. Let W 1 C ~be a neighborhood of 0 in -c?[1 on which the 

Campbell-Hausdorff formula converges. Choose neighborhoods N of a 

in A1 and W 2 of 0 in w1 so that the action of NC Aut(-<f 1> on W 2 

takes values in w1 . Let V = exp(W 2 ). We then have that the action 

of N C Aut(G1) on V is induced by the action of N C Aut(";f 1 ) 
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on W 2 . Since the elements of Aut( t1J1) act linearly on the Campbell

Hausdorff formula, the action of N on W 
2 

is analytic. Thus, the action 

of N on V is analytic. 

Now, since G 1 is connected, there exists an integer n > 0 such 

n n 
that g ~ V , where V denotes the set of products of n elements of V. 

We may assume that V is open. Then Vn , which is the union of translates 

of V, is open. Take U = Vn . Let 8: A 1 K G 1 __,... G 1 be the action of 

A
1 

on G
1 

; . write 8(b; h} = bh. We must show that 8 is analytic on 

NJ( U. Let y(n) be the n-fold product of V and let µ. : V(n) --.;... U be 

multiplication. Also, let 9 : N )t y(n) ----;.. G be defined by:· 

8(b, gl •...• g ) = {bgl) .•. (bg ) 
- n n 

Then, the following diagram is commutative: 

Since 8 is analytic, to prove that 8 is analytic, it suffices to remark 

that t1 : y(n) ~ U is a surjective submersion. 

4. Since G 2 is simply connected and connected, cp induces !JI : G2 -+A 1 

We define a semi-direct product structure on the set G 1 X G 2 by: 

-1 (0, h)(g, 0)(0, h) = (IJ;(h)g, 0) . 

This group structure is analytic since !JI is analytic and since A 1 acts 

on G 1 analytically. 

It is now a simple verification that L(G 1 ~ G 2) = ~ • 
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Theorem 4: Let. G be a connected, simply connected analytic 

group. Let "'1 = L(G) and let ( C 1' be an ideal. Then: 

1. There is a closed connected analytic subgr.oup H of G such that 

L(H) = 1 . 
2. H is simply connected• 

Proof: 

1. Let K be an analytic group such that L(K) = Afl// 1 . The 

projection of "1 on A'IJ' / ( induces an analytic homomorphism 

cp : G--+ K since G is connected, and simply connected. Take H 

to be the connected component of e in ker cp. Then H has the required 

properties. 

2. We use the fact that since G/H is an analytic group then 1t 2(~/H) = O. 

Then, in the homotopy exact sequence, we have: 

••• --;.. 1tz(G/H) ___,.. 1t
1
(H)---;;.. 1t

1
(G) 

II II 
0 0 

Hence, 1t 1(H) = 0. 

Remark: It seems likely that no "simple" proof of Lie's Third 

Theorem exists. For, if a "simple" proof did exist, then, unless it made 

essential use of the local compactness of ~ and ¥, it would extend to 

Banach analytic groups. But in the Banach space ·setting, the Third 

Theorem is false (as remarked recently by van Est and others). Indeed, 

Theorem 4, 1 itself (which is a formal consequen.ce of Theorem 3) is false: 

The example is the following. Take G = GL(H) ~ GL(H) where H 

is an infinite dimensional Banach space. It is a fact that GL(H) is connected 

and simply connected. 

We let Z = S 1 X S 1 . 

1 1 
The center of G contains ~ )(. ~ and hence S X S 

Then the Lie algebra ~ of Z is contained in the 
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center of the Lie algebra of G and hence any one dimensional subspace 

~ C ~ is .an ideal in GL(G). To obtain the desired counterexample, 

take 1 to be the Lie algebra corresponding to th~ subgroup 

f (.,_, v) : v = a.,. JC s1 
x s1 

, where a is irrational. This subgroup 

is connected and simply connected but not closed in G. 

ll9 Cartan' s Theorems 

Suppose k = B. = 0 , that is, suppose 0_ is dense in k, char k = 0. 
- -p 

Theorem 1: Suppose G is an analytic group over k and that 

H C G is a topologically closed subgroup chunk. Then, H is analytic. 

Corollary: A closed subgroup of an analytic group over §.. or ~ p 

is an analytic group. 

Theorem 2: For i = 1, Z, let Gi be an analytic group over k. I'hen 

any continuous homomorphism cp : G 1 _..,.. Gz. is analytic. 

Proofs: 

1. Theorem 1 ~ Theorem 2.: 

Since cp is continuous, the graph r q,C a1 x Gz of cp is a closed 

subgroup. Hence, by Theorem I, r cp is analytic. Let p = pr I Ir cp· Then 

p is an analytic. homomorphism with trivial kernel. Hence, L(p) is 

injective and p is an immersion. Topologically, p is an isomorphism. 

It follows that pis an analytic isomorphism. Since cp = pr
2
6p-l, cp 

is analytic. 

z. Theorem ·i when k = n • '!!p • 

Let '<If= L(G). Then, by taking a sufficiently small open subgroup 

of G, we may assume that G is isomorphic to an open subgroup U of 

.-'f under the Campbell-Hausdorff formula and that H is a closed sub

group of G (ch. 4, §8, Cor. Z of Thm. ; ch. 5, §7, Cor. of Thm. 1). 



LG 5.43 

We identify G with U. We then have that, for x b H and n €: ~ 

n· x = f (x) ·€ H . Since H is closed. we have the same statement 
n 

for n E.: Z, • -p 
Choose x

1
, •.. , xm ~ H such that xl' ... , xm are linearly independent 

over Q and maximal with this prq>erty. 
-p 

Let V be the vector space 

generated by the {xJ . Then, H C V, since otherwise xl' .•. , xm 

would not be a maximal linearly independent set in H. To prove the 

theorem, it will suffice to show that H contains a neighborhood of 0 

in V. Consider the map: 

defined by: 

f. zm ~ v • =p 

Then, f is analytic, and Df(O) is bijective by construction; hence 

f is i:ftale at 0. But im(f)C H which shows that H contains a neighborhood 

of 0 in V. 

3. Theorem 1 when k = ~ . 

Let ~ = L(G). We may assume that H is a closed subgroup 

chunk of U where U C ~ is an open subgroup chunk under the Campbell-

Hausdorff formula. We may also assume that His strict in U, that is: 

a. 

b. 

x. y E: H and xy €: U =- xy €: H 

x E.: H =-x-l €: H. 

Let V = { x E.: ~: tx E.: H, for small t } • that is, V consists of the 

points x in ~ such that an inlerval about 0 on the ray through x lies 

in H. Then, we contend: 

Lemma: 1. V is a Lie subalgebra of ~ . 
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2.. Suppose x ~ H, x =f=. 0. Let D 
n n n be the line in 41 containing 

Suppose x -;.. 0 and D -;.. D as n -.;.. <D. Then, D ( V. n n 

2. Fix e. so that the ball of radius €.. about 0 is contained 

e. = ~ 
m m 

in U. Let m be a positive integer and let Define: 

Case : m = 2 

converges to a point in S. n D. 
l 

Si= [ x:(i-1) £.m S..~ lxl .S. i!m J 

In particular, S 1 is the ball of radius E.m. 

For some constant K , x <::: S 1 for all-
m n 

n Z, Km Consider any i such that 

1 < i .S. m. Then, for every n Z. Km 

i there exists an integral multipl~ yn 

of xn lying in Si . Since Dn _.,.. D, 

i as n __,.. co, a subsequence of y 
n 

This point also lies in H since yi E: H 
n 

by a) above and since H is closed. Hence we have shown: 

(*) For any integer m > 0 and any integer i such that 1 < i .S. m, there 

is an element x E: H n D such that (i-1) 'm .s. Ix I s.. i em . 

Statement(*) shows that H is dense in at least one of the two half intervals 

of length l with endpoint 0 in D. By b) above, we see that H is dense 

in the symmetric interval of length 2t. about 0 in D and since H is 

closed we see that in fact H n D contains this interval. This shows 

that DC V. 

1. We use 2) to show that V is closed under addition and brackets. 

Let x, y E: V, x, y '¢ 0. Then, by the Campbell-Hausdorff formula: 

lim n [ ( .!.. x)· (ly)}= x + y 
n~<D n n 

2( 1 l·} lim n [( -x), ( -y)] = [x, y] 
n-oii-oo n n 

(See also ch. 4, !17, #5). The first formula shows that the line through 
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x + y satisfies the cot:rlitions of 2) while the second shows that the line 

through [x, y] satisfies these conditions. 

Since V is a Lie subalgebra of -'f• Vil U is an analytic subgroup 

chunk of U under the Campbell-Hausdorff formula. Using the assumptions 

of strictness of H, we see that H ::::> V (I U. The proof will therefore be 

complete if we show that H is contained in V in a neighborhood of O. 

We suppose· the contrary is true, that is, that there exists a seq,uence {xJ 

such that: x b H - V, x ~ 0 as n ~ c:o. Choose a complement W .n n . 

of V in 1'. Then since exp is a local isomorphism at 0, we may write 

x
0 

= wnvn , wn (; W and vn b V, at least for n >> 0. By strictness, 

wn (; H for n >> 0. Hence, we can assume the original sequence ~nS 
belonged to W. Let D be the line through x . By the compactness n n 

of the projective space J;(W), a subsequence of ~nl· converges, say, 

to D. Then, by 2) of the Lemma, D C V which is absurd; 

Remark: Theorem 2 may be expressed by saying that the category of 

analytic groups over k = B. or Q is a full subcategory of the category 
- -p 

of all ~')Cally compact topological groups. 

We may then a:sk: "When is a locally compact topological group a real 

or p-adic analytic group?" This question makes sense because Theorem 2 

shows that if the structure of analytic group exists on a focally compact 

topological group, then it is unique. 

The answers are: 

1. Real case (Gleason-Montgomery-Zippin-Yamabe): 1'he group G 

must contain no small subgroups (i.e., there is a neighborhood U of e 

such that any subgroup of G contained in U is equal to ~ J ). 
2. p-adic case (Lazard): The group G must cortain an open sub-

group U with the following properties: 
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(a) U is a finitely generated pro-p-group. 
- l 

(b) The commutator subgroup (U, U) is contained in uP = set of 

2 
p powers. 

In both cases, the necessity of the condition is easy (cf. Exer. 4). 

Exercises 

I. Let k be a field of char. p -:/::. 0, let F be a formal group law over 

k, and let U (resp. -"1 ) be the corresponding bialgebra of point diGtri

butions (resp. the corresponding Lie algebra). One has ~ C U. 

(a) If n = dim. ""1 , show that -1 generates a subalgebra of U 

n of rank p . 

(b) Show that x E: ~ ~ xP €: "'f-, where xP denotes the pth_power 

of x in U. Show that ad(xp) = ad(x)p . 

(c) Let a be an element of k which does not belong to the prime 

field f p . Let -f be the Lie algebra with basis [x. Y, Z J and relations 

[X, Y] = Y, [X,Z] = aZ, (Y, Z] = 0. Show that tl:).ere is no element 

y E: f such that ad(y) = ad(X)P. Prove that -} cannot be the Lie 

algebra of a formal group. 

2. Let H l = k([X]] and Hz "' k[[Y]) 

(a) Suppose k is a field. Show that any algebra homomorphism 

If> : Hz__,.. H 1 is admissible (cf. §6). 

(b) Suppose k has no nilpotent elements(except 0). Show that 

any continuous algebra homomorphism If>: rl2 __,..H 1 is admissible. 

3. Let k = ~ or ~, and let s be a semi-simple subalgebra of the 

Lie algebra of GL(n, k). Show that s corresponds to a group sub-

manifold of GL(n, k). (Hint: use LA, Chap. 6, Theorem 5. Z.) 

4. Let G be a standard p-adic group (cf. Chap. 4), and let (G
0

} be 
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its canonical filtration. Show that, if U = Gn with n Z, Z, one has: 

n 
(U, U) C Up 

5. Let G be a real Lie group, with Lie algebra ""1 • let ~ be a 

subalgebra of "1- , and let H be the Lie subgroup of G corresponding 

to -f. Assume that H is dense in G. 

(a) Show that Ad(g) 1 = ; for all g ~ G, and that f is an 

ideal of -1' . 
(b) Let ~ be the universal covering of G, let Z be the kernel of 

G --;i.. G, and let H be the Lie subgroup of ff corresponding to 1; 
~ N N """ 
.ti is closed in G (18, Theorem 4). Show that H. Z is derise in G, 

and that G/fi is abelian, hence that ""/ / f is abelian. 

"" N n (c) Suppose ""!- is semi-simple. Show that G = H X ~ for some n. 

Show that n = 0 (hence G = H) if the center of H is finite. 

(d) Let H 0 = SL(Z, ~). Show that r 1(H0 ) = ~. Show that the 

universal covering H of H 0 can be imbedded as a dense Lie subgroup 

in a Lie group G of arbitrary dimension ~ 3. 

6. Let G be a real Lie group, )Vith Lie algebra ""J=· For any subalgebra 

1 of "'/-, let H be the corresponding Lie subgroup of G. The 

adherence H of H is a closed Lie subgroup of G (by Cartan' s theorem); 

let f be its Lie algebra. 

- .:::: - -
(a) Show that 1 C .f , 1- = ~ , fl h f z C fl n f z 

(b) Show that f is an ideal in f , and that f / f is abelian 

(use Exer. 5). 
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Appendix : Existence Theorem for 0-t'dinary Differential Equat.ions. 

We assume char k = 0. 

Theorem: Suppose cf> =(c/>l' ... , c/>n) is a system of n convergent 

power series in n variables. Then: 

l. The formal differential equation 

T '(s) = c/>(T (s)) and 

possesses a unique solution T. 

2. T is convergent. 

~: 

Case l : k = ~ or ~ . 

1. Write: 

T(s) = n a s 
n, 

\' c,.,,Xa c/>(X) = L ... 

T(O) = 0 , 

Then, the formal differential equation ta~es the form: 

n-1 na s 
n 

= 

Then, there exist unique polynomials Q (c , a ). la j, m < n, with n a m 

positive int~ra.l coefficients such that: 

a 
n 

This shows the uniqueness of the formal solution, by induction on n. 

2. To show convergence, we use the method of majorants. Suppose 

I ca I s da where { da~ consists of noo-negative real numbers. Let 

'T(s) = .£ b tn be the formal solution of the differential equation cor -
n 
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responding to qi (X) = Zda ~. Then: 

Lemma I: T convergent ~ T convergent. More precisely, T is a 

majorant for T. 

Proof: By induction: 

la I= l!I lo (c , a )Is !o <le I. la j) < !o (da• b ) = b. n n na m nn a m-nn m n 

Note that we have used the fact that k = ~ or ~ to obtain the equality: 

= l -n 

To apply Lemma 1, we must construct an appropriate, qi and compute 

the corresponding T explicitly. Since <f> ·is convergent, we may find 

constants M, R > 0 such that: 

Lt d = M 
e a Ria I Clearly, I c I S d , and we have that: a a 

M 

By the uniqueness statement, 'i(s) = (G"(s), ... , <5'(s)) where <5"(s) is 

the formal solution of the single differential equation: 

c::r'(s) M = ( 1 _ <r( s) ) n 
R 

We have an explicit computation for <T(s) which shows that c::r(s) is 

convergent: 

<S'(s) .. R( I - { l - (n+l)M· -R_ } n+l ) . 

Indeed: 
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1 

{ 1 - (n+l)M· -~} n+l 

Differentiating <:T(s) and using the above formula, one sees that cr(s) 

does satisfy the desired differential equation. 

Case Z: k ultrametric. 

Since tp is convergent, we may assume, by change of coordinates~ 

a homotbety, that the coefficients of rp lie in the valuation ring A of k. 

1. Write: 

T(s) 

tp(X) ·= 

n 
8 

ii"! 

Then, the formal differential equatic;m takes the form: 

= 

Then, using the fact ttlat the binomial coefficients lie in ~ , Vie see thai 

there exist unique polynomials Qn(ca , am). la I. m 5< n, with .positive 

integral coefficients such that: 

a = Q (c , a ) • n n a m 

This shows the uniqueness of the formal solution. 

Z. By induction on n, a €: A since by assumption all c € A. Hence, 
n a 

by Lemma 4 of .14,. for some real constant a, 0 < a !:, 1, T(s) is majorized by: 

2 :: 
Since this ~ (4f.9tnetric series, it conveJ:ges for small r, so that 'f is 

;.,f,-": ' 

convergent. 
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