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I. There has recently been much interest, if not a tremendous amount of 

progress, in the arithmetic theory of automorphic forms. In this lecture I 

would like to present the views not of a number theorist but of a student of 

group representations on those of its problems that he finds most fascinating. 

To be more precise I want to formulate a series of questions which the reader 

may, if he likes, take as conjectures. I prefer to regard them as working 

hypotheses. They have already led to some interesting facts. Although they 

have stood up for a fair length of time to the most careful scrutiny I could 

give I am still not entirely easy about them. Indeed even at the beginning 

in the course of the definitions, which I want to make in complete generality, 

I am forced, for lack of time and technical competence, to make various 

assumptions. 

I should perhaps apologize for such a speculative lecture. However there 

are some interesting facts scattered amongst the questions. Moreover the un- 

solved problems in group representations arising from the theory of automorphic 

forms are much less technical than the solved ones and their significance can 

perhaps be more easily appreciated by the outsider. 

Suppose G is a connected reductive algebraic group defined over a 

global field F . F is then an algebraic number field or a function field 

in one variable over a finite field. Let /A(F) be the addle ring of F . 

G/A(F ) is a locally compact topological group with G F as a discrete subgroup. 

The group G/A(F )__ acts on the functions on GF~/A(F ) _  . In particular it acts 

on L2(GF~/A(F )) . It should be possible, although I have not done so and it 

is not important at this stage, to attach a precise meaning to the assertion 

that a given irreducible representation ~ of GI^(F )I ~ occurs in L2(G~G/A(F ) ) ~  \ 
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If G is abelian it would mean that ~ is a character of GF~/A(F ) . If G 

is not abelian it would be true for at least those representations which act on 

an irreducible invariant subspace of L2(GF~/A(F)) B 

If G is GL(1) then to each such ~ one, following Hecke, associates 

an L-function. If G is GL(2) then Hecke has also introduced, without ex- 

plicitly mentioning group representations, some L-functions. The problems I want 

to discuss center about the possibility of defining L-functions for all such 

and proving that they have the analytic properties we have grown used to expect- 

ing of such functions. I shall also comment on the possible relations of these 

new functions to the Artin L-functions and the L-functions attached to algebraic 

varieties. 

am going to introduce a complex analytic group GF - Given G I To each 

complex analytic representation o of GF and each ~ I want to attach an 

L-function L(s,o,~) . Let me say a few words about the general way in which 

I want to form the function. G/A(F ) is a restricted direct product ~ F ~ "  

The product is taken over the primes, finite and infinite, of F . It i~ rea- 

sonable to expect although to my knowledge it has not yet been proved in general 

that ~ can be represented as J ID~ where ~ is a unitary representation 

of G~. 

I would like to have first associated to any algebraic group G defined 

^ 

over F~ a complex analytic group GFj~ and to any complex analytic representa- 

tion ~ of GF and any unitary representation ~ of G F a local L-func- 

tion L(s,~,I) which, when j is non-archimedean, would ge of the form 

n i 
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where n is the degree of ~ . Some of the ai may be zero. For> infinite 

it would be, basically, a product of F-functions. L(s,~,J) would depend only 

on the equivalence classes of ~ and y . I would also like to have defined 

for every non-trivial additive character ~F of FJ a factor c(s,~,~,TJ 

which, as a function of s , has the form ~ae bs . 

There would be a complex analytic homomorphism of 

^ 

determined up to an inner automorphism of G F . Thus o 

a representation of of 

L(s,o,~) = I 

^ 

G~ . I want to define 

GF into GF 

d~termines for each 

Of course it has to be shown that the product converges in a half-plane. 

We shall see how to do this. Then we will want to prove that the function 

(A) 

can be analytically continued to a function meromorphic in the whole complex 

plane. Let PF be a non-trivial character of F~A(F) and let ~F be the 

l~for all restriction of PF to ~. We will want ~(s,~,~)to be 

but finitely many S " We will also want 

to be independent of ~F " The functional equation should be 

~u 

L(s,o,~) = e(s,o,~) L(I-s,o,~) 

if o is the representation contragredient to o . 

We are asking for too much too soon. What we should try to do is to 

define the L(s,g.~,~.~) and the ~(s,o,~,~.~,~ F ) when there is no ramification, 

verify that there is ramification at only a ~nite number of primes, and show 

that if the product in (A) is taken only over the unramified primes it 
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converges for Re s sufficiently large. As we learn how to prove the functional 

equations we shall be able to make the definitions at the unramified primes. 

By the way we introduce the additive characters, whose appearance must appear 

rather mysterious, only because we can indeed prove some things and know better 

than to leave them out. 

What does unramified mean in our context? First of all for~ to be 

unramified G will have to be quasi-split over F~ and split over an unramified 

extension. In that case there is, as we shall see, a canonical conjugacy class 

of maximal compact subgroups of GF~ .. For ~ to be unramified the restriction 

of ~ to any one of these groups will have to contain the identity representa- 

tion. There is also a condition to be imposed on P . Although it is not Fj~ 

very important I would like to mention it explicitly~If ~ is non-archimedean 

, the the largest ideal of F~ on which T~,~ is trivial will have to be OF. ~ 

ring of integers in F~.O If Fj is -~'-,R then T F (x) will have to be -~ e 
2~ix 

and if ~ is ~ then ~ (z) will have to be~e 4~i Rez . We want 

E's ~ ,~ ,~ ~ to be 1 ~f ~ is unramified. 

2. ~F can be defined for a connected reductive group over any field F e 

Take first a quasi-split group G over F which splits over the @alois ex- 

tension K . Choose a Borel subgroup B of G which is defined over F and 

let T be a maximal torus of B which is also defined over F . Let L be 

the group of rational characters of T . Write G as G~ 1 where G ~ is 

abelian and G 1 is semi-simple. Then G ~ G 1 is finite. If T ~ = G ~ and 

o T 1 = T N G 1 then T = T~ 1 . Let L+ be the group of rational characters of 

o which are 1 on T~ T 1 Let L + T ~ and let L ~ be the elements of L+ 

be the group generated by the roots of T 1 . If R is any field let 
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1 = L 1 L 1 1 Let ER -~Z R . The Weyl group ~ acts on _ and therefore on E R . 

1 
( -, .) be a non-degenerate bilinear form on Er which is invariant under ~ . 

1 
Suppose also that its restriction to E~ is positive definite. Let 

1 {~ s r 2 g �9 for all roots ~} L+ = Er (a,a) 

o 1 We may regard L as a sublattice of Set L = L ~ _ ~ L 1 _ and L+ = L+ @ L+ . 

L+ . It will contain L_ 

let 

Let al' "'" , a~ be the simple roots of T I with respect to B and 

(~i ,a~ ) 
(Aij) = 2 (ai,ai) 

be the Cartan matrix. If o belongs to ~(K/F) and X belongs to L then 

~% , where o%(t) = o(%(o-lt)) , also belongs to L . Thus ~(K/F) acts 

on L . It also acts on L_ and L+ and the actions on these three lattices 

are consistent. Moreover the roots el' "'" , a~ are permuted amongst them- 

selves and the Caftan matrix is left invariant. 

If R is any field containing ~ let E R = L ~ 

ER = H~ (ER~R) . The lattices 

R and let 

= ^i 
f+ Hom(L_, ~) = Hom(L ~ I) @ Hom(L I,_ Z) = f,+~ L+ 

= Hom(L, I) 

^i 
L_ = Horn(L+, ~) = Horn(L+, ~) ~ Hom(L I, ~) = ~o ~) L 

~r o = L o R then E R o ~ 1 may be regarded as subgroups of . If E R _ ~ ~ = E R E R �9 

^o and ^i ~ ^o ~ ^i Let With the obvious definitions of E R E R we have = E R E R . 
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i To ^i adjoint to the given form on Er ( �9 , �9 ) also denote the form on Er 

i ^i and be precise if X and ~ belong to Er , if X and ~ belong to E C , 

i then (X,~) = (X,~) . if <q,X~= (q,~) and <q,~>= (n,~) for all q in E c 

^i by the condition: If ~ is a root define its coroot ~ in Er 

(~) 
<X,g>= 2 ie~,c~) 

i The coroots generate ~i for all ~ in E C . _ . Moreover 

(~,B) 
(~,~) = 4 (~,~)(B,B) 

and 

2 (~'~) = 2 (~'~) 
(8,&) (B,~) 

Thus the matrix 

(Aij) = (2 (~i'gJ) ) 
(&i,&i) 

of ^i defined by is the transpose of (Aij) . The linear transformation Si Er 

^ ^ ^ ^ 

si(~ j) = ~. & = ~. - j - Aij i 3 Aji~i 

i defined by is contragredient to the linear transformation S i of E c 

Si(~ j) = =j - Aij~ i �9 

Thus the group ~ generated by {Sill ~ i ~ s is canonically isomorphic 

to the finite group ~ and, by a well-known theorem (cf. Chapter VII of [7]) 

^ ^l ^l 
(Aij) is the Cartan matrix of a simply-connected complex group G+ . Let B+ 

^i be a Cartan subgroup in Bl We be a Borel subgroup of G~ and let T+ 

^i ^ .. ~s and ^i with respect to B+ with ~i' identify the simple roots of T+ . , 
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^i We may the free vector space over r with basis {dl' "'" ' ~s with Er . 

^i 
also identify ~ and ~ . The roots of T+ are the vectors m~i ' m 6 ~ , 

i ~ i ~ s . If ~i = ~ then ~i = ~ because 

(~-ix'~i) (X'~ei) (I,~) 
<l,m~=<e-ll,~ = 2 = 2 (~1,mai) = 2 (~,~) 

(~i,ai) 

^i ^i then Thus the roots of T+ are just the coroots. If 1 belongs to Es 

2 (I,~) = <~,I > 
(g,g) 

so that 

^i ^i (~,~) 
L+ = {I E E C I 2 6 ~( for all coroots ~ } 

(~,&) 

^i 
and is therefore just the set of weights of T+ . 

Let 

^o ^o * 
G+ = Horn ~(L+, C ) . 

^o ^i If ^o ^o and 65 is a reductive complex Lie group. Set G+ = G+ • G+ . T+ = G+ 

^0 x ^i T+ = T+ T+ then L+ is the set of complex analytic characters of T+ . If 

= {t 6 T+ I l(t) = 1 for all 1 in s } 

then Z is a normal subgroup of G+ and G = G+ / Z is also a complex Lie 

group. ~(K/F) acts in a natural fashion on L_, L, and L+ The action 

leaves the set {41 ..... ~s invariant. ~(K/F) acts naturally on G~ . 

^i Choose I want to define an action on G+ and therefore an action on G+ . 

^I 
HI, ... , H E in the Lie algebra of T+ so that 

(Hi) =<~i'~> 



-26- 

^i Choose root vectors XI, ... , X~ belonging to the coroots for all % in L+ . 

~i' ~ , ~ and root vectors YI' "'" , Y~ belonging to their negatives. Sup- 

^ 

pose [Xi,Yi] = H i . If o belongs to ~(K/F) let ~ = ~o(i) There 

^i 
is (cf. Chapter VII of [7]) a unique isomorphism o of the Lie algebra of G+ 

so that 

~ = Ho(i) ' ~ = Xo(i) ' ~ = Yo(i) 

These isomorphisms clearly determine an action of ~(K/F) on the Lie algebra 

^i itself. Since ~(K/F) leaves L invariant its and therefore one on G+ 

6+ no ^i action on can be transferred to G . If B is the image of B+ = T+ x B+ 

and T the image of T+ in @ the action leaves B and T invariant. I 

want to define GF to be the semi-direct product G x ~(K/F) 

However GF as defined depends upon the choice of B, T, and 

XI, ... , X~ and GF comes provided with a Borel subgroup B of its con- 

nected component, a Cartan subgroup T of B , and a one-to-one correspondence 

between the simple roots of T with respect to B and those of T with 

respect to B . Suppose G' is another quasi-split group over F which is 

isomorphic to G over K by means of an isomorphism f such that ~-io(~) 

is inner for all o in %(K/F) , B' is a Borel subgroup of G' defined 

over F , and T' is a Cartan subgroup of B' also defined over F . There 

is an inner automorphism P of G which is defined over K so that ~ 

takes B to B' and T to T' ~ determines an isomorphism of L and 

! 

L' and a one-to-one correspondence between {~i' "'" , ~} and {~i .... ' ~} 

both of which depend only on ~ and, as is easily verified, commute with the 

^o 
action of ~(K/F) . There is then a natural isomorphism of G+ with (G)' 

^i with (G~)' associated to . Moreover there is a unique isomorphism of G+ 
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whose action on the Lie algebras takes H~ to H~I ' X.l to X i' , and Yi to 

' ^' If we assume Yi " The two together define an isomorphism of G+ with G+ . 

that ~. corresponds to ~ , 1 $ i ~ ~ this isomorphism takes Z to Z' 
i I 

and determines an isomorphism of G with G' which commutes with ~(K/F) . 

^' with GF In particular This in turn determines an isomorphism of G F 

taking G' = G and ~ to be the identity we see that GF is determined up to 

a canonical isomorphism�9 

Suppose G is any reductive group over F , K is a Galois extension 

T 

o f  F , G and  G a r e  q u a s i - s p l i t  g r o u p s  o v e r  F w h i c h  s p l i t  o v e r  K , and  

! T! 
~ : G ~ G , ~ : G ~G are isomorphisms defined over K such that 

C~-I~(~,) and ~-i (~) are inner for all ~ in ~(K/F) . Then (~-i~)-io(~-~) 

^~ ^i! 

i s  a l s o  i n n e r  s o  t h a t  t h e r e  i s  a c a n o n i c a l  i s o m o r p h i s m  o f  G F and  G F . We a r e  

thus free to set GF = GF " GF depends on K but there is no need to stress 

t h i s .  However  we s h a l l  s o m e t i m e s  w r i t e  GK/F i n s t e a d  o f  GF " 

3. Although it is a rather simple case it may be worthwhile to carry out 

the previous construction when G is GL(n) and K = F . We take T to be 

the diagonal and B to be the upper triangular matrices�9 G ~ is the group 

of non-zero scalar matrices and G 1 is SL(n) . If % belongs to L and 

t I 
O 

O 
t 
n 

m I m n 

t I �9 t n 

with m I , ... , mn in ~ we write ~ = (m I ..... mn) . Thus L is identi- 

fied with ~n . We may identify EIR with IR n and E~ with cn . If 

O 
belongs to L+ and 
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: tl ~ t m 

with m in ~' we write ~ = (m ..... m) Then L ~ _ which is a subgroup 

O 
of both L and L+ consists of the elements (m, . .. , m) with m in g 

The rank s is n-i and 

Thus 

al = (i, -I,0, ... , 0) 

a 2 = (0,i, -i,0, ... , 0) 

as = (0, ... , 0, i, -I) 

L 1 {(ml, . , mn) s L ] n - = "" ~i=l mi = 0} . 

i 
Er is the set of all (Zl, ... , z n) in E$ for which 

I may be taken as the restriction of the form The bilinear form on Er 

n 
(Z,W) = ~i=l ZiWi 

on Er . Thus 

i 
L+ = {(m I, "'' , m n) I ~ni=l mi = 0 and m i - mj 6 ~} �9 

We may use the given bilinear form to identify E~ with E~ . Then 

^ ^o = Horn(L+, C) the -operation leaves all lattices and all roots fixed. Thus G+ 

^o namely, Any non-singular complex scalar matrix tl defines an element of G+ , 

the homomorphism 
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[m m) m 
�9 ,, ~ ) t 

^o ^l 
We identify G+ with the group of scalar matrices. G+ is SL(n,r . 

^o ^i 
There is a natural map of G+ x G+ onto GL(n,C) It sends tl x A 

tA . The kernel is easily seen to be Z so that GF is GL(n,r . 

to 

4. To define the local L-functions, to prove that almost all primes are 

unramified, and to prove that the product of the local L-functions over the 

unramified primes converges for Re s sufficiently large we need some facts 

from the reduction theory for groups over local fields (cf. [i]). 

progress has been made in that theory but it is still incomplete. 

the particular facts we need do not seem to be in the literature. 

is lost at this stage if we just assume them. For the groups about which 

something definite can be said they are easily verified. 

Much 

Unfortunately 

Very little 

Suppose K is an unramified extension of the non-archimedean local 

field F and G is a quasi-split group over F which splits over K . Let 

B be a Borel subgroup of G and T a Cartan subgroup of B both of which 

are defined over F . Let v be the valuation on K . It is a homomorphism 

from K* , the multiplicative group of K , onto �9 whose kernel is the 

group of units. If t belongs to T F let v(t) in L be defined by 

<~,v(t)~= v(~(t)) for all ~ in L . If o belongs to ~(K/F) then 

~,ov(t)>= ~-l~,v(t)~ = v(o-l(~(ot))) = v(~(t)) 

v(~-la) * because at = t and = v(a) for all a in K Thus v is a 

homomorphism of T F into M , the group of invariants of ~(K/F) in L . 

It is in fact easily seen that it takes T F onto M . 
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We assume the following lemma. 

Lemma i. There is a Chevalley lattice in the Lie algebra of G whose 

stabilizer U K is invariant under ~(K/F) U K is its own normalizer. 

G K = BKU K , HI(~(KIF) , U K) = i , and HI(~(K/F) , BK~U K) = 1 . Moreover 

I 

If we choose two such Chevalley lattices with stabilizers U K and U K respect- 

! 

ively then U K is conjugate t__0_o U K i__nn G K . 

U 
if g belongs to G K and o belongs to (K/F) let g = o-l(g) . 

If g belongs to G F we may write it as g = bu with b in BK and u in 

U K Then gO b o o o -I b-O �9 = u and u u = b . By the lemma there is a v in 

BK~U K so that u ~ -I b-O v o -I u = b = v Then b = bv belongs to B F , 

v -i , = bVu' 
u = v u belongs to U F = GF~U K and g . Thus G F = BFU F . 

gUKg-i ' UK g-o If = U K for some g in G K then gO , = U K so that 

g g belongs to U K which is its own normalizer. By the lemma there is 

- 0  0 - 1  
u in U K so that g g = u u Then gl = gu lies in G F and 

! 

glUKg I-I = U K' . Thus U F and U F are conjugate in G F 

Let Cc(GF,UF) be the set of all compactly supported functions for 

G F such that f(gu) = f(ug) = f(g) for all u in U F and all g in G F . 

Ce(GF,U F) is an algebra under convolution�9 It is called the Hecke algebra. 

If N is the unipotent radical of B let dn be a Haar measure on N F and 

let d(bnb-l) 
dn 6(b) if b belongs to B F . If X belongs to M choose 

t in T F so that v(t) = % . If f belongs to Cc(GF,U F) set 

1/2 
~(~) = 6 

(t) { fNFN UF 
dn} -I fN F f(tn)dn . 
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The group ~(K/F) acts on ~ . Let ~o be the group of invariant elements. 

~o acts on M . Let A(~) be the group algebra of M over ~ and let A~ 

be the invariants of ~o in A(M) We also assume the following lemma 

(cf. [12]). 

Lemma 2. The map f > f is an isomorphism of Cc(GF,UF) and A~ . 

Suppose B is replaced by B I and T by T I . Observe that T = B/N 

and T I = BI/N I . If u in G F takes B to B I it takes N to N 1 and 

defines a map from T to T I . This map does not depend on u . It deter- 

mines ~(K/F) invariant maps from L I to L and from L to LI and thus 

maps from M to MI and from A~ to A~ ) . Suppose f goes to fl 

and X goes to 21 . If we choose, as we may, u in U F then 

1/2 

fl(Xl) = f(X) = ~ (t) [ fN F ~ UF dn} -I fN F f(tn)dn 

Let N F ~ U F = V . Denote the corresponding group associated to N 1 by V 1 . 

Then u Vu -I = V 1 . Choose d(unu -I) = dn I . Since f(ugu -I) = f(g) the 

expression on the right equals 

1/2 
6 (utu -I) {fv I dnl }-I fN F f(utu-lunu-l)dn 

-i 
If utu 

Moreover 

projects on t I in T 1 then ~(utu -I) = ~(tl) and v(t I) = i I . 

ff(utu-lunu-l)dn = ff(tlnl)dn I 

and the diagram 

Cc(G F, U F) 

J \ 
A ~ (M) , A ~ (M I) 
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is commutative. 

gUFg-i ' , f, f(g-lhg ) If = U F the map f -----+ f with (h) = is an 

! 

isomorphism of Cc(GF,UF) with Cc(GF,U F) . It does not depend on g . 

can take g in B F . Then 

1/2 
f'(%) = ~ (t) { fNFN UF dn} -I /N F f(g-ltng)dn ~ 

-i (t-lg-ltg)g-lng Since g tng= t the second integral is equal to 

/NF f(tg-lng )dn . 

Since 

d(g-lng)dn = { SN F , dn} -I 
N U F /NF~U F 

dn 

we conclude that f'(~) = f(f) and that the diagram 

! 

Cc(GF,U F) ~ Cc(GF,U F) 

"-,. / 
A ~ (~) 

We 

is commutative. 

I shall not explicitly mention the commutativity of these diagrams 

again. However they are important because they imply that the definitions 

to follow have the invariance properties which are required if they are to 

have any sense. 

If ~ is an irreducible unitary representation of G F on H whose 

restriction to U F contains the identity representation then 
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Ho = { x E H [ ~(u) x = x for all u in U F } 

is a one-dimensional subspace. If f belongs to Cc(GF,U F) then 

~(f) = fG f(g)#(g)dg 

maps Ho into itself. The representation of Cc(GF,U F) on Ho determines 

a homomorphism X of Cc(GF,UF) or of A~ into the ring of complex 

numbers. ~ is determined by X �9 To define the local L-functions we study 

'such homomorphisms. First of all observe that if X is associated to a 

unitary representation then 

l• l ~ fGF lf(g) Idg �9 

k ~ S i n c e  A(M) i s  a f i n i t e l y  g e n e r a t e d  modu le  o v e r  (M) any  homomor-  

ph i sm o f  A~ i n t o  r may be  e x t e n d e d  t o  a homomorphis~n o f  A(M) i n t o  

w h i c h  w i l l  n e c e s s a r i l y  be  o f  t h e  form 

E f ( ) , ) k  ' g ~ ( % ) ~ ( t )  (B) 

for some t in T . Conversely given t the formula (B) determines a 

homomorphism Xt ' of A~ into r . We shall show that Xt I = Xt2 if and 

only if t I x o F and t 2 x OF , where o F is the Frobenius substitution, 

are conjugate in GF " If t belongs to G and ~ belongs to ~(K/F) we 

shall abbreviate t x o to t o . It is known [4] that every semi-simple 

element of GF whose projection on ~(K/F) is a F is conjugate to some 

t a F with t in T . Thus there is a one-to-one correspondence between 

homomorphisms of the Hecke algebra into r and semi-simple conjugacy classes 

in GF whose projection on ~(K/F) is o F . 
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If P is a complex analytic representation of GF and • is the 

homomorphism of A~ into r associated to n we define the local 

L-function to be 

L(S,O,~) = 

det (l-p (tOF) I~F Is) 

if ~F generates the maximal ideal of O F . 

may be identified with Hom ~(L,C*) . The exact sequence 

2~i 
with ~(z) log[~Fl z and ~(z) = I~F l-z leads to the exact sequence 

0 ~L =Hom ~(L, ~) ~ >Er = Horn ~(L, C) ^ ^ ~T ~O o 

Let V~ be the invariants of ~(K/F) in Er and let We be the range of 

o F i . Then Er = Vr ~Wr . If w belongs to We and ~ belongs to 

then <w,%> = 0 and replacing t by t~ (w) does not change Xt 

If w = OFV - v and ~(v) = s then 

-i -i 
t~ (w) o F = ts OF(S) o F = s (t o F)S 

is conjugate to t o F . Thus we have to show that if t I = ~(v I) and 

t 2 = ~(v 2) with v I and v 2 in Vr then tlO F and t2o F are conjugate 

if and only if = 
Xt I Xt 2 

Some preliminary remarks are necessary. We also have a decomposition 

Er = Vr ~W~ and M = L~ V~ . Let Q be the elements of Vr obtained by 

projecting the positive coroots on Vr . If S is an orbit of ~(K/F) in 

the set of positive coroots every element in S has the same projection on 

V~ . Since E^ ~ belongs to V~ the projection must be 
s S 
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i a 
n(S) lg 6 S 

if n(S) is the number of elements in S . Let SI, ... , Sm be the orbits 

of ~(K/F) in {~i' "'" ' ~s and set 

~i n(Si ) E@ E S i 

Every element of Q is a linear combination of ~i' .... Bm with non-negative 

coefficients. Notice that if ~ belongs to ~o and e acts trivially on 

then ~ leaves each B i 

roots. Thus it is i . 

E~R to EIR and set 

fixed and therefore takes positive roots to positive 

If we extend the inner product in any way from 

= {x E V jR 1 (~i ,x) >~ 0 , i .< i .< m} 

and 

= {x s EIR I (~i,x) >. 0 , i .< i <. Z} 

then C = D (~ V IR " Consequently no two elements of 

orbit of ~o . 

belong to the same 

Let ~i be the subalgebra of the Lie algebra of G generated by the 
^ 

root vectors belonging to the coroots in Si and their negatives. ~i is 

fixed by ~(K/F) Let G'l be the corresponding analytic group and let 

= T NGi Let ~. be the unique element of the Weyl group of T. which 
i " i 1 

takes every positive root to a negative root. If a belongs to ~(K/F) then 

o(~i) has the same property so that o(~i ) = U i . Let w be any element in 

the normalizer of T whose image in ~ is ~i Then WOF(W -I) lies in T . 

Its image in @/~(Wr is independent of w . I claim that this image is i . 
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^ 

To see this write ~i as a direct sum 

[K:F] = n the stabilizer of ~il is 

~kil~ik of simple algebras. If 

{o FJni1̂ l u .< j .< n__n. } We may suppose that 
1 

If Gik is the analytic subroup of G with Lie algebra ~ik choose ^w I 

the normalizer of T~Gil so that w I takes the positive roots of ~i 

n�9 
the negative roots. We may choose w to be~O k OF(Wl) . Then 

2 -i ni-i n. 
= (WlOF(Wl-l))(OF(Wl)OF(W 1 ))...(o F (Wl)OF1(wl-l)) 

n �9 

= w I OFI(Wl -I) 

WOF(W-i ) 

in 

to 

^ ^ 

The Dynkin diagram of ~il is connected and the stabilizer of ~il in ~(K/F) 

acts transitively on it. This means that it is of type A I or A 2 . 

In the first case the diagram reduces to a point and the action of the 

n i 
stabilizer must be trivial so that w I = o F (Wl) . In the second case SL(3,r 

is the simply-connected covering group of Gil ; we may choose the covering map 

^ n. 

to be such that T (~Gil is the image of the diagonal matrices and OFt 

corresponds to the automorphism liol It1 oA 
-i 0 -i 

0 0 0 

of SL (3,~) . We may take w I to be the image of 

- 1  

0 
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n. 

Then OFl(Wl ) = w I . 

~i acts on V as the reflection in the hyperplane perpendicular to B i . 

Thus ~I' "'" ' ~m generate ~o . If m belongs to n ~ choose w in the 

normalizer of T whose image in ~ is m . The image of WOF(W -I) in 

T/~(W~) depends only on ~ . Call it 6 Then 

= -i -i - - (WloF(W[I)) = ml(6 i)6 1 6ml~ 2 WlW2~ w I ) = wI(W2OF(W21))Wl I 

Since ~ is i on a set of generators this relation shows that it is 

identically i . 

Returning to the original problem we show first that if Xtl = Xt 2 

there is an ~ in ~o so that ~(t I) = t 2 . Then if w lies in the normal- 

izer of T in G and its image in ~ is ~ we will have 

W(tlOF)W -I = t2WOF(w-l)oF . Since WoF(w-l) lies in ~(Wr the element 

on the right is conjugate to t2o F . 

If t belongs to T let Xt also denote the homomorphism 

E f(X)X > E f(l)X(t) 

of A(M) into r . If there were no ~ so that ~(tl) = t 2 there would 

be an f in A(M) so that 

# ^ 

Xt 2 Xm(t I) (f) 

for all m in n ~ Let 

I l(X-m(f)) = I n fk Xk 
k=o 



-38- 

Each fk belongs to A~ Applying and we find that 
Xt I Xt 2 

~T~(X-xm(t I) (~)) = ~:=oXtl(fk >Xk = ~:=oXt2(fk )Xk -~(X-xm(t 2)(i)) 

The polynomial on the right has • (f) as a root but that on the left does 
t 2 

not. This is a contradiction. 

of GF 

If tlO F and t20 F are conjugate then for every representation p 

trace P(tlOF) = trace P(t2o F) . 

Let p act on X and if ~ belongs to M let t% be the trace of 

p (o F) on 

X% = {x~ X I p(t)x = %(t)x for all t in T} 

If t belongs to ~(W~) then %(t) = i . If w belongs to n ~ and w in 

the normalizer of T has image m in ~ then Xw% = p (w)X% . Then t ~ is 

-i -i (w-laF (w) the trace of w OFW = w OF(W)O F on X k . Since % ) = i we have 

t % = t k and 

trace p(toF) = E%~ ~ t% (Epe S(%) �9 ~(t)) 

if S(%) is the orbit of % . If 

P ~: C E S(~)  ~ 

then f belongs to A O (M) and 
O 

trace p(toF) = Xt(f ) . 
P 



-39- 

All we need do is show that the elements f generate A~ as a vector 
P 

space. This is an easy induction argument because every ~ in C is the 

highest weight of a representation of GF whose restriction to G is 

irreducible. 

5. If t belongs to T there is a unique function Ct on G F which 

satisfies Ct(ug) = ~t(gu) = Ct(g) for all u in U F and all g in G F 

so that 

Xt(f) = fGF Ct (g)f(g)dg 
for all f in Cc(GF,UF) . A formula for Ct ' valid under very general 

assumptions, has been found by I. G. MacDonald. However, because of the 

present state of reduction theory, his assumptions do not cover the cases in 

which we are interested. I am going to assume that the obvious generalization 

of his theorem is valid. In stating it we may as well suppose that t belongs 

to ~(vr . 

Let N be the unipotent radical of B , let ~ be its Lie algebra, 

and let T be the representation of T x~(K/F) on ~. If t belongs 

to ~(V C) consider the function O t on M defined by 

- < p , ~ >  

0t(%) = ClnF[ Z ~e~o 
det(l- ]nFIT-l(~(t)aF)) ~-l(~(t)) . 

det(l - T-l(m(t)aF )) 

If n(~) is the number of positive roots projecting onto ~ in 

I1 n(B) <0,~> "t l -  I FI 
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As it stands @t(k) makes sense only when none of the eigenvalues of 

r(m(t)o F) are 1 for any ~ in ~o . However using the results of Kostant 

[8] we can write it in a form which makes sense for all t . Let ~ be 

one-half the sum of the positive coroots. $ belongs to V . If k belongs 

to M and k + p is non-singular, that is (l+p, ~) # 0 for all ~ in Q , 

let ~ in ~o take I + 0 to C and let X% be sgn ~ times the character 

of the representation of GF with highest weight ~(%+~) - ~ . If X + 

is singular let XI E 0 . If 

det(l-I~FIT-l(t~F)) = Z ~ b u(t) 

then 

- <0 ,k> 
@t(%) = c I~FI zu E~ b X _ X((tgF)) . 

Clearly b is 0 unless 

= _ Z&~ s 

where S is a subset of the set of positive coroots invariant under ~(K/F) . 

If U is the collection of such ~ then {D+~I~ EM} is invariant under ~o . 

Suppose p + ~ is non-singular and belongs to C . Since <~i' ~> = i and 

<~i,~> is integral, for i ~ i ~ s , U itself must belong to C . This 

can only happen if ~ is 0 . Thus if b # 0 either p + ~ is singular or 

+ ~ belongs to the orbit of p and X (g) ~ • i on GF " As a consequence 

so that Bi(to) I~F I- <0 '~i> @t(0) is independent of t . Choose t o = 

_~,-i~> 
for i $ i ~ m . The eigenvalues of T(m(to)OF) are the numbers ~I~FI 

where B belongs to Q and ~ is an n(~)th root of unity. If m # i 

-i^ 
there is a Bi so that ~ 8 = - Bi for some B in Q . Then 
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<0, -I~> = _<p,~i > = _ I and r (e(to)O F) has I~FI as an eigenvalue. 

Thus 

det (I- Izfl~-l(toaF )) 
(0) = c = l 

to det (I - ~-l(toOF)) 

We are going to assume that if t belongs to ~(Vr , a belongs to 

T F , and X = v(a) , then 

If 

~t(a) = ~t(~) 

IXt(f) I .< fGF IfCg) l dg 

for all f in Cc(GF, U F) then ~t is bounded. I want to show that if ~t 

is bounded, X belongs to L, ~" in D belongs to the orbit of X under 

, and t lies in ~(V~) . Then 

l~(t) l .< I~FI-~O'Y> 

Let t = P(v) . v is not determined by t but Re v is and 

Ik(t) I = l~FI-Re<v,~> 

We will show that if ~t is bounded then Re <v,X> .< <0,[> for all X 

in EIR . If ~ belongs to ~o and Re ~v lies in 6 then 

Re <~v,~%> = Re <v,%> . With no loss of generality we may suppose that 

v lies in C , the analogue of C . Then, as is well-known, 

Re .< Re Iv,r> 
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and we may as well assume that ~ = ~ . We want to show that 

Re <v,k> ~ <p,%> for all ~ in D . Since p and v both belong 

to V~ it is sufficient to verify it for ~ in C . The set of ~ in 

for which it is true is closed, convex, and positively homogeneous. There- 

fore if it contains M~Interior C it is C . 

Let S be the set of simple coroots d for which Re <v,~> = 0 . 

Let Z be the positive coroots which are linear combinations of the elements 
o 

of S and let E+ be the other positive coroots. If A~ ~ is the span of 

the root vectors associated to the coroots in E and ~+ is the span of 
o 

the root vectors associated to the coroots in E+ then r breaks up into 

the direct sum of a representation T on ~o and a representation ~+ on 
O 

^ 

4~ " Let ~ be the analytic subgroup of GF whose Lie algebra is generated 

by the root vectors associated to the coroots of Z and their negatives and 
o 

let D ~ be the subgroup of ~o consisting of those elements with representa- 

tives in H . If m belongs to n ~ and Re~v = Re v then m belongs 

to ~o . If Rely # Rev then Re<~v,X~ <Re~v,X~ for ~ in 

MOlnterior C . Write ~ = ~i + ~2 where %1 is a linear combination of 

the coroots in S and X 2 is orthogonal to these roots. If s = ~(u) with 

u in Vr consider 

! 

e (x)= 
S 

c I~FI <u-p,X~ det(l-lgFIT~l(soF)) 

det (I-~+ I (SOF)) 

I det(l_l~F~l(soF)) 

E~ O det(l_~l(saF )) 
I~ F I ~u-p ,~l> I. 

! 

The function e is not necessarily defined for all s . However the pre- 
s 

ceding discussion, applied to H rather than G , shows that it is defined 

e v 
at t and that t(0) r 0 A simple application of ~'Hospital's rule 
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! 

shows that, as a function of %, % t is the product of ]~F l<v-p'%> and a 

l i n e a r  combinat ion of p roduc ts  of polynomials  and pure ly  imaginary exponen t i a l s  

in %1 " Thus it does not vanish identically in any open cone. 

i !  I 1! 

Set Ot = Ot - et " @t is a linear combination of products of poly- 

nomials in X and an exponential [TrF ] <~v-p,X> with Re~v # Re v . Thus 

if k belongs to the interior of 

< p-v,nk> ,, 

lim [~F[ et(nX) = 0 

and 

<p-v, nk> <p-v,nk> 8' . 
lim [~rF[ e (nk)= lim [~F[ t(n%) 

n . .> _co t n + _oo 

If <p,k~ is less than Re<v,k> for some % in C then <p,k> is 

! 

less than Re<v,k> for a % in C for which e t (nl) does not vanish 

identically as a function of n . Since ~t is bounded 

< p-v,n%> , 

lim I~FI 9t(nX) = 0 
n -----+ _ co 

! 

But [ZFI <p-v,nk> 8t(n%) is a function of the form 

In oq (n)nk 

where ~k(n) is a linear combination of purely imaginary exponentials 

It is easy to see that it cannot approach 0 as n approaches - ~ . 

ixn 
e 

6. Suppose G is a group defined over the global field F . There is a 

! ! 

quasi-split group G over F and an isomorphism ~: G -----+ G defined over 

-1 
a Galois extension K of F so that, for every a in (K/F) , a ~ 
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! 

is an inner automorphism of G We assume that there is a lattice ~F 

! 

K~ is a Chevalley lattice. over O F i n  t h e  L i e  a l g e b r a  o f  G so  t h a t  0 OF 

If ~ is a finite prime of K and ~ is a prime of K dividing ./ 
! 

t h e  g roup  G o v e r  F O ~ i s  o b t a i n e d  f rom G by t w i s t i n g  by  t h e  r e s t r i c t i o n  
! ! 

of the cocycle {a } to ~(K~/F~) . Let G be the adjoint group of G 
__I 

K~ then, for almost all ~ , I f  UK.~ i s  t h e  s t a b i l i z e r  o f  t h e  l a t t i c e  O OF 

__ !  

a takes values in UK. If ~/F~ is also unramified then G is quasi-spilt 

�9 U = {1} . L e t  S be  t h e  s e t  o f  t h o s e  , 

I 

unramified in K , for which a takes values in UK . Let G act on a vector 

space X over F and let XOF be a lattice in X F . Let UF~ be the stabi- 

! ! 

lizer of O~XOF in GF~ and let UF/be the stabilizer of O~F in GF. 

! 

Then ~(UF ) = U ~ for almost all ~. If ~ is also in S choose u in 

~ 
U so that ~ ~ -- Ad u u for all o in . Then 

-i v 
is defined over F and ~ AdU(UF~) = UF . Consequently UF~ is one of the 

compact subgroups of the fourth paragraph. 

To show that almost all ~ are unramlfled all we need do is observe 

that if ~ occurs in L2(GF~/A(F)) , whatever the precise meaning of this 

is to be, and ~ = ~  then for almost all ~ the restriction of ~ to 

U~ contains the trivial representation. 
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If ~ is unramified let the homomorphism of Cc(G~,UF/ associated 

to ~ be Xt~ . To show that the product of the local L-functions converges 

in a half plane it would be enough to show that there is a positive constant a 

so that for all unramified ~ every eigenvalue of P(~o~)is bounded by 

,z~,-a . We may suppose that oF (~) = t~. If n = [K:F] then 

(~o~)n = t~ so that we need only show that the eigenvalues of p(t~) 

bounded by ]?I -a This we did in the previous paragraph. 

are 

7. Once the definitions are made we can begin to pose questions. My hope 

is that all these questions have affirmative answers. The first question is 

the one initially posed. 

Question i. Is it possible to define the local L-functions L(s,p,~) and 

the local factors g(s,p,~,~F) at the ramified primes so that if F is a 

$1obal field, ~ =~ ~, and 

--r--T- 
L(s,p,w) = { {#(s,P ,~ ) 

g 
then L(s,o,~) is meromorphic in the entire complex plane with only a finite 

number of poles and satisfies the functional equation 

L(s,p,~) = c(s,p,~)L(l-s,~,~) 

with 

c(s,p,~) =~E 
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The theory of Eisenstein series can be used [9] to give some novel 

instances in which this question has, in part, an affirmative answer. However 

that theory does not suggest any method of attacking the general problem. If 

G = GL(n) then GF = GL(n,r . The work of Godement and earlier writers allows 

one to hope that the methods of Hecke and Tare can, once the representation 

theory of the general linear group over a local field is understood, be used 

to answer the first question when G = GL(n) and p is the standard repre- 

sentation of GL(n,r The idea which led Artin to the general reciprocity 

law suggests that we try to answer it in general by answering a further series 

of questions. For the sake of precision, but not clarity, I write them down 

in an order opposite to that in which they suggest themselves. If G is 

defined over the local field F let ~(G F) be the set of equivalence classes 

of irreducible unitary representations of G F . 

Question 2. Suppose G and G are defined over the local field F , G is 

! ^! 

quasi-split and G is obtained from G by an inner twisting. Then GF = G F 

Is there a correspondence R 

rained in ~(GF) so that if 

representation p o_~f GF ? 

! 

whose domain is ~(G F) and whose ranse ' is con- 
! 

= R(~ ) then L(s,p,~) = L(s,p,~ for every 

Notice that R is not required to be a function. I do not know whether 

or not to expect that 

! 

~(s,p,~,~F) = E(s,p,~ ,~F ) . 

One should, but I have not yet done so, look carefully at this question when 

F is the field of real numbers. For this one will of course need the work of 

Harish-Chandra. 
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Supposing that the second question has an affirmative answer one can 

formulate a global version. 

Question 3.* Suppose that G and G' are defined over the global field F , 

G is quasi-split, and G is obtained from G by an inner twisting. Suppose 

(GF~(F)) . Choose for each a representation 

! 

~ of so that ~ = R(~) Does ~ = ~ occur in L2(GF~G/A(F)) ? 

Affirmative evidence is contained in papers of Eichler [3] and Shimizu 

[16] when G = GL(2) and G' is the group of invertible elements in a quater- 

nion algebra. Jacquet [6], whose work is not yet complete, is obtaining very 

general results for these groups. 

I 

Question 4. Suppose G and G are two Quasi-split groups over the local 
! ! ! 

f i e l d  F . L e t  G s p l i t  o v e r  K and  l e t  G s p l i t  o v e r  K w i t h  K ~ K  

Let ~ be the natural map ~(K'/F) ,~(K/F) Suppose ~ is a complex 

a n a l y t i c  h o m o m o r p h i s m  f r o m  G , t_~o GK/F w h i c h  makes  
K / F  

! T 

K'/F ~(K /F) 

I 
GK/F > ~ (K/F) 

T 

commutative, ls there a correspondence R~ with domain ~(G F) whose rang~ 

! 

is contained in ~(G F) so that if ~ = R ~ then, for every representation 

* The question, in this crude form, does not always have an affirmative 
answer (cf. [6]). The proper question is certainly more subtle but not 
basically different. 
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p of GF and every non-trivial additive character ~F' L(s,p,~) = L(s,po~,~') 

and ~(s,p,~,~ F) = e(s,p0~,~',~ F) ? 

R~ should of course be functorial and, in an unramified situation, if 

! ! ! 

is associated to the conjugacy class t x o F then ~ should be associated 

to ~(t' ' x OF) . I have not yet had a chance to look carefully at this question 

when F is the field of real numbers. 

The question has a global form. 

! 

Question 5. Suppose G and G are two quasi-split groups over the global 
; ! ! 

field F . Let G split over K and let G split over K with K ~ K 

Suppose ~ is  a complex ana ly t ic  homomorphism from GK,/F t_.oo GK/F which 

makes 

K /F > ~(K'/F) 

~K/F , ~(K/F) 

! 

is a prime of K 

K~,/F~ 

~', ' F~ 

If g = occurs in 

commutative. If p' 

determines a homomorphism 

commutative. 

let ~ =p'~ K and let ~ N F . 

~ G~/Ff which makes 

L2(GF~' /~(F)) choose for each 
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~ a_ ~= R (~) . If ~ = does ~ occur in L2(GF~/A(F)) ? 

An affirmative answer to the third and fifth questions would allow us 

to solve the first question by examining automorphic forms on the general 

linear groups. 

It is probably worthwhile to point out the difficulty of the fifth 

! ! 

question by giving some examples. Take G = {i} G = GL(1) , K any Galois 

extension of F , and K = F . The assertion that, in this case, the last 

two questions have affirmative answers is the Artin reciprocity law. 

! ^! 

Suppose G is quasi-split and G -- T . We may identify G F with 
! 

• ~(K/F) which is contained in GF ' Thus we take K = K . Let ~ be 

! v ! 

the imbedding. In this case ~ is a character of GF~ /A(F) " The fourth 

question is, with certain reservations, answered affirmatively by the theory 

of induced representations. The fifth question is, with similar reservations, 

answered by the theory of Eisenstein series. The reservations are not important. 

I only want to point out that the theory of Eisenstein series is a prerequisite 

to the solution of these problems. With G as before take G" = {i} and 

K" = K so that = (K/F) Let ~ take in (K/F) to o in GF D 

There is only one choice for ~" . The associated space of automorphic forms 

on GF~(F ) should be the space of automorphic forms associated to the 

! t 
trivial character of GF~ ~(F) For this character all the reservations 

apply. I point out that the space associated to ~" is not the obvious one. 

It is not the space of constant functions. To prove its existence will require 

the theory of Eisenstein series. 

Take G = GL(2) and let G' be the multiplicative group of a separable 

quadratic extension K' of F . Take K = F . Then GF is a semi-direct 
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product (r • r • If 

then o((tl,t2)) = (t2,t I) Let 

~: (tl,t 2) 

! 

o is the non-trivial element of ~(K /F) 

be defined by 

i I 

The existence of R~ in the local case is a known fact (see, for example, 

[6]) in the theory of representations of GL(2,F) An affirmative answer 

to the fifth question can be given by means of the Hecke theory [6] and by 

other means [15]. 

Let E be a separable extension of F and let G be the group over 

F obtained from GL(2) over E by restriction of scalars. Let G' be 

GL(2) over F and let K' = K be any Galois extension containing E . Let 

X be the homogeneous space ~(K/E)~(K/F) Then GF is the semi-direct 

product Of~x~X Ge(2,r and ~(K/F) If o belongs to ~(K/F) then 

~ Ax)~ =~x~X Bx 

with B x = Axo Define ~ by 

~(Axo) = (~X A)xo 

Although not much is known about the fifth question in this case the paper [2] 

of Doi and Naganuma is encouraging. 



-51- 

! 

Suppose G and K are given. Let G' = {i} and let K by any 

G a l o i s  e x t e n s i o n  o f  F c o n t a i n i n g  K . I f  F i s  a l o c a l  f i e l d  t h e  f o u r t h  

question asks that to every homomorphism ~ of ~(K'/F) into GF which 

makes 

~ '~(K ' /F )  (J~ ~ GF 

~ (K/F) 

commutative there be associated at least one irreducible unitary representation 

of G F . If F is global the fifth question asks thatf0~ there be associated 

a representation of G /A(F) occurring in L2(GF~/A(F)) 

The L-functions we have introduced have been so defined that they 

include the Artin L-functions. However Well [17] has generalized the notion 

of an Artin L-function. The preceding observations suggest a relation 

between the generalized Artin L-functlons and the L-functions of this paper. 

Weil's definition requires the introduction of some locally compact groups - 

the Weil groups. If F is a local field let C F be the multiplicative group 

of F . If F is a global field let C F be the idele class group. 

is a Galois extension of F the Weil group WK/F is an extension 

i 

If K 

C K > WK/F ~(K/F) ~ i 

of ~(K/F) by C K . There is a canonical homomorphism rK/F of WK/F onto 

C F . If F isaglobal field,~ aprimeof K , and/= FOpthere is 

a homomorphism 7: W~/F~ >WK/F . ~/ is determined up to an inner 

automorphism. If o is a ~ representation of y WK/F the class of ~ = o o 
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is independent of e~. By a representation ~ of 
fy 

finite dimensional complex representation such that 

for all w in WK/F . 

If F is a local field and 

F then for any representation a 

WK/F we understand a 

o(w) is semi-simple 

~F a non-trivial additive character of 

of WK/F we can define (cf. [ii]) a local 

L-function L(s,a) and a factor e(s,a,~ F) . If F is a global field and 

o is a representation of WK/F the associated L-function is 

e(s,g) =~L(s,a/) . 

The product is taken over all primes including the archimedean ones. If ~F 

is a non-trivial character of ~A(F)then E(s,~,~FjD) is i for almost 

F" ~k 
all / , 

~ (s,o)=~ (s,~,~FS 

is independent of ~F ' and 

L(s,a) = e(s,a)L(l-s,~) 

if o is contragredient to a . 

Question 6. Suppose G is quasi-split over the local field F and splits 

over the Galois extension K . Let O F be a maximal compact subgroup of GF " 
! 

Let K be a Galois extension of F which contains K and let R be a 

hom0morphism of W , into UF which makes 
-- K /F 

WK,/F ~(K'/F) 

U F 4 ~(K/F) 
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commutative. 

s__oo that, for every representation 

~(s,o,z(~),~ F) = e(s,o ~ ~, ~F ) ? 

Is there an irreducible unitary representation ~(~) of G F 

o of GF ' L(s,o,n(~)) = L(s,o o ~) and 

Changing ~ by an inner automorphism O F will not change ~(~) or 

at least not its equivalence class. If F in non-archimedean and K'/F is 

unramified the composition of v , the valuation on F , and T defines ! 

K /F 

a homomorphism m of WK/F onto 2 . If u = t ~o F belongs to U F 

could define ~ by 

(w) = u ~ (w) 

we 

Then ~(~) would be the representation associated to the homomorphism • 

of the Hecke algebra into C . 

We can also ask the question globally. 

Question 7. Suppose G i__ss quasi-split over the $1obal field 

! 

over K . Let K be a Galois extension of F containin$ K 

be a homomorphism of W , into O r which makes 
K /F 

commutative. 

W ! 

K /F 

U F 

If p' 

takes W , 

L2(GF~ ~(F) ) ? 

! 

,~(K /F) 

J 
~(K/F) 

! ! 

i~ a prime of K and S=~ 

int___~o UF/ . If ~(~) = ~  n(qO) __ 

O F 

does 

then 

F and splits 

and let 

occur in 
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Both questions have affirmative answers if G is abelian [i0] and the 

correspondence ~ ~ ~(~) is surjective. In this case our L-functions 

are all generalized Artin L-functions. If G = GL(2) and K = F it appears 

that the Hecke theory can be used to give an affirmative answer to both ques- 

tions if it is assumed that certain of the generalized Artin L-functions have 

the expected analytic properties. If all goes well the details will appear 

in [6]. 

I would like very much to end this series of questions with some 

reasonably precise questions about the relation of the L-functions of this 

paper to those associated to non-singular algebraic varieties. Unfortunately 

I am not competent to do so. Since it may be of interest I would like to ask 

one question about the L-functions associated to elliptic curves. If C is 

defined over a local field F of characteristic zero I am going to associate 

to it a representation ~(C/F) of GL(2,F) . If C is defined over a 

global field F which is also characteristic zero then, for each prime ~ , 

z(C/F~) is defined. Does ~ = ~  z(C/F~) occur in L 2(GL(2,F)~L(2, J-~(F)) ? 

d" d- 
If so L(s,o,z) , with o the standard representation of GL(2,r , whose 

analytic properties are known [6] will be one of the L-functions associated 

to the elliptic curve. There are examples on which the question can be tested. 

I hope to comment on them in [6]. 

To define ~(C/F) I use the results of Serre [14]. Suppose that F 

is non-archimedean and the j-invariant of C is integral. Take any prime 

different from the characteristic of the residue field and consider the 

s representation. There is a finit Galois extension K of F so that 

if A is the maximal unramified extension of K the Z-adic representation 
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can be regarded as a representation of ~(A/F) There is a homomorphism of 

WE/F into ~(A/F) . The ~-adic representation of ~(A/F) determines a 

representation ~ of WK/F in GL(2,R) where R is a finitely generated 

subfield of the ~-adic field ~$ . Let a be an isomorphism of R with a 

subfield of r . Then 

1/2 
v : w , ITK/F(W) I ~(w) 

is a representation of WK/F in a maximal compact subgroup of GL(2,~) . 

Let ~(C/F) be the representation ~(P) of Question 6. If C has good 

reduction the class of P is independent of ~ and o . I do not know if 

this is so in general. It does not matter because we do not demand that 

~(C/F) be uniquely determined by C . 

If the j-invariant is not integral the ~-adic representation can be 

put in the form 

11: 1 X2(a 

where • and X 2 are two representations of the Galois group of the alge- 

braic closure of F in the multiplicative group of @~ . If A is the 

maximal abelian extension of F then X 1 and X 2 may be regarded as 

representations of ~(A/F) There is a canonical map of F* , the multi- 

plicative group of F , into ~(A/F) . X 1 and X 2 thus define characters 

Pl and P2 of F* . ~i and ~2 take values in ~* and 

~l~2(x) = Pl~2-1(x) = Ix[ -I . In, for example, [6] there is associated 

to the pair of generalized characters x ~ Ixi 1/2 ~l(X) and 
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1/2 
x )Ixl ~2(x) a unitary representation of GL(2,F) , a so-called 

special representation. This we take as ~(C/F) 

If F is r take ~(C/F) to be the representation of GL(2,~) 

associated to the map 

Z Ii ~ 
of r = W~/r into GL(2,~) by Question 6. r is of index two in Ws . 

z_!_ r 
The representation of Wr induced from the character z ---+ Izl of 

has degree 2. If F = IR let ~(C/F) be the representation of GL(2, IR) 

associated to the induced representation by Question 6. 

8. I would like to finish up with some comments on the relation of the 

L-functions of this paper to Ramanujan's conjecture and its generalizations. 

Suppose ~ = ~  occurs in the space of cusp forms. The most general 

form of RamanuJan's conjecture would be that for all ~ the character of 

v 
~ is a tempered distribution [5]. However neither the notion of a character 

nor that of a tempered distribution has been defined for non-archimedean 

fields. A weaker question is whether or not at all unramified non-archimedean 

primes the conjugacy class in GF associated to ~ meets O F (cf. [13]). 

0- 
If this is so it should be reflected in the behavior of the L-functions. 

Suppose, to remove all ramification, that G is a Chevalley group and 

that K = F = ~ . Suppose also that each ~ is unramified. If p is 
d- 

non-archimedean there is associated to ~ a conJugacy class {t } in G~ . 
P P 
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We may take t in T . The conjecture is that, for all l in L , 
P 

I%(tp) I = i . 

Since there is no ramification at ~ one can, as in [9], associate to ~ 

a semi-simple conjugacy class {X~} in the Lie algebra of GQ . We may take 

X in the Lie algebra of T . The conjecture at = is that, for % in L , 

Re l(X) = 0 . 

If o is a complex analytic representation of G~ let m(k) be the 

multiplicity with which k occurs in o . Then 

=~k - (s+k (X)) +% X 1 
L(s,o,~) 2 F (tp) 

i - s 
P 

If the conjecture is true L(s,o,z) is analytic to the right of Re s = i 

for all o . 

Let F be any non-archimedean local field and G any quasi-split 

group over F which splits over an unramified extension field. If f belongs 

to Cc(GF,UF) let f (g) = ~(g-l) . If f and f* are the images of f 

* ^* 
and f in A~ then f (k) is the complex conjugate of f(-k) . If t 

belongs to T define t* by the condition that k(t*) = ~(t ~ -  ) for all k 

in L . The complex con juga te  of  •  i s  

E f(-%) ~ = I f(%) k(t*) = Xt,(f) 

If X t is the homomorphism associated to a unitary representation then 

Xt(f*) is the complex conjugate of Xt(f) for all f so that t x o F 
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^ 

is conjugate to t x o F and for any representation p of G F the complex 

conjugate of trace p(t x OF) is trace p(t x OF) if $ is the contra- 

gredient of p . In the case under consideration when K = F this means that 

trace p(tp) is the complex conjugate of trace $(tp) . A similar argument 

can be applied at the infinite prime to show that the eigenvalues of p(X ) 

are the complex conjugates of the eigenvalues of p(X ) . 

Suppose L(s,o,~) is analytic to the right of Re s = 1 for all o . 

Since the F-function has no zeros 

X (tp) 
i - 

S 

P 

m(k) 
(c) 

is also. Let o be p~ p . Then the logarithm of this Dirichlet series is 

g ~ 
p n=l 

trace on (tp) 

ns 

P 

Since 

trace on(tp) = trace pn(tp) trace sn(tp) = Itrace pn(tp) I2 

the series for the logarithm has positive coefficients. Thus the original 

series does too. By Landau's theorem it converges absolutely for Re s > 1 

and so does the series for its logarithm. In particular 

o(tp) 
det (1 - ) 

S 

P 

does not vanish for Re s > i so that the eigenvalues of O(tp) are all 

less than or equal to p in absolute value. If % is a weight choose p 
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so that ml occurs in p . Then mX(tp) = %(tp) m is an eigenvalue of p(tp) 

and %(tp) m is an eigenvalue of $ so that l%(tp)[ 2m is an eigenvalue 

of o and 

i 
2m 

I%(tp) I .< p 

for all m and all ~ . Thus I%(tp)I ~ i for all ~ . Replacing ~ by 

-% we see that ll(tp) I = i for all % . Since the function defined by 

(C) cannot vanish for Re s > i when a = p~p the function 

s + X(X) m(X) 

~%F( 2 ) 

must be analytic for Re s > i . This implies that 

Re %(X) >. - 1 

if m(%) > 0 . The same argument as before leads to the conclusion that 

Re %(X ) = 0 for all % . 

Granted the generalizations of Ramanujan's conjecture one can ask 

about the asymptotic distribution of the conjugacy classes {t } . I can 
P 

make no guesses about the answer. In general it is not possible to compute 

the eigenvalues of the Hecke operators in an elementary fashion. Thus 

Question 7 cannot be expected to lead by itself to elementary reciprocity 

laws. However when the groups GF~ at the infinite primes are abelian or 

compact these eigenvalues should have an elementary meaning. Thus Question 7 

together with some information on the range of the correspondences of Question 

3 may eventually lead to elementary, but extremely complicated, reciprocity 

laws. At the present it is impossible even to speculate. 
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