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On the non-abelian global class field theory

Kâzımİlhan İkeda

–Dedicated to Robert Langlands for his 75th birthday –

Abstract. Let K be a global field. The aim of this speculative paper is to discuss
the possibility of constructing the non-abelian version of global class field theory
of K by “glueing” the non-abelian local class field theories ofKν in the sense of
Koch, for eachν ∈ hK , following Chevalley’s philosophy of id̀eles, and further
discuss the relationship of this theory with the global reciprocity principle of
Langlands.

Mathematics Subject Classification (2010).Primary 11R39; Secondary 11S37,
11F70.

Keywords. global fields, id̀ele groups, global class field theory, restricted free
products, non-abelian idèle groups, non-abelian global class field theory,ℓ-adic
representations, automorphic representations,L-functions, Langlands reciprocity
principle, global Langlands groups.

1. Non-abelian local class field theory in the sense of Koch

For details on non-abelian local class field theory (in the sense of Koch), we refer
the reader to the papers [21, 23, 24, 50] as well as Laubie’s work [37]. For the basic
theory of local fields and for the standard notation that we shall follow, we refer the
reader to [3, 39].

Let K be a local field. That is,K is a complete discrete valuation field with fi-
nite residue class fieldκK of q= pf elements. We shall furthermore fix an extension
ϕK of the Frobenius automorphismFrK of Knr to Ksep. Namely, we fix aLubin-Tate
splitting ϕK = ϕ overK.

The non-abelian local class field theory forK establishes an algebraic and
topological isomorphism

ΦΦΦ(ϕ)
K : GK

∼
−→ ∇(ϕ)

K

between the absolute Galois groupGK of the local fieldK and a certain topological

group∇(ϕ)
K which depends onK and on the choice of the Lubin-Tate splittingϕ over

The author and this work was partially supported by TÜBİTAK Project No. 107T728.



2 K. I. Ikeda

K. In this paper, we shall denote the inverseΦΦΦ(ϕ)
K

−1
of the isomorphismΦΦΦ(ϕ)

K by

{·,K}ϕ : ∇(ϕ)
K

∼
−→GK .

The construction of the topological group∇(ϕ)
K involves the theory ofAPF-extensions

of K and the fields of norms construction of Fontaine and Wintenberger. Moreover,

the isomorphismΦΦΦ(ϕ)
K , which is called thenon-abelian local reciprocity law of K,

is “natural” in the sense that properties such as “existence”, “functoriality” and a
certain “ramification theoretic” property are all satisfied. The isomorphism{·,K}ϕ
is called thenon-abelian local norm-residue symbol of K.

Remark1.1. We should point out that the non-abelian local class field theory for
K works under a technical assumption on the local fieldK. That is, the inclusion
µµµ p(Ksep) ⊂ K should be satisfied. Under this assumption, the image of the non-

abelian local reciprocity mapΦΦΦ(ϕ)
K can be described explicitly. But, this restriction

on the local fieldK can be dropped without any effect on the general theory. Namely,
for any local fieldK, we glue the non-abelian local class field theory for the local
field K(µ) and the abelian local class field theory for the local cyclotomic extension
K(µ)/K, whereµ is any primitivepth root of unity (for example, look at Section 8
of [23]).

So, “non-abelianization” of local class field theory in the sense proposed first
by Koch, and developed further by de Shalit, Fesenko, Gurevich, Laubie and others,
is now a complete and solid theory. Thus, it is then a natural attempt to construct
the non-abelian version of global class field theory of a global field by “glueing” the
non-abelian local class field theories of respective completions of this global field
following Chevalley’s philosophy of id̀eles.

2. Non-abelian id̀ele groupJ
ϕ
K of a global fieldK

From now onK denotes a global field; that is,K is a finite extension ofQ or a finite
extension ofFq(T) (that is, the field of rational functions of a curve defined over
a finite fieldFq). For details about global fields and the abelian global class field
theory, we refer the reader to [39, 46]. LetaK denote the set of all archimedean
primes ofK (so in caseK is a function field, thenaK = ∅). For eachν ∈ hK , where
hK denotes the set of all henselian (=non-archimedean) primesof K, let Kν denote
the completion ofK with respect to theν-adic absolute value. Fixing a Lubin-Tate
splitting ϕKν overKν , the non-abelian local reciprocity law

ΦΦΦ(ϕKν )
Kν

: GKν
∼
−→ ∇(ϕKν )

Kν

or equivalently the “Weil form” of the non-abelian local reciprocity law

ΦΦΦ(ϕKν )
Kν

: WKν
∼
−→ Z∇(ϕKν )

Kν

of the local fieldKν is defined. Here,Z∇(ϕKν )
Kν

is a certain dense subgroup of the

topological group∇(ϕKν )
Kν

(for details, see [23]). Moreover, following [50], or Section
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8 of [21] together with [24] for detailed account, for eachν ∈ hK , there exists the

subgroup1∇(ϕKν )
Kν

0
of Z∇(ϕKν )

Kν
satisfying the equality

ΦΦΦ(ϕKν )
Kν

(
G0

Kν

)
= 1∇(ϕKν )

Kν

0
. (2.1)

The following two tables summarize the abelian and the non-abelian local class field
theories ofKν , whereν ∈ hK :

Abelian local class field theory

Gab
Kν

K̂×ν
Wab

Kν
K×ν

Wab
Kν

0
UKν

Wab
Kν

δ
, δ ∈ (i−1, i] U i

Kν

and

Non-abelian local C.F.T. (ϕK fixed)

GKν ∇(ϕKν )
Kν

WKν Z∇(ϕKν )
Kν

W0
Kν 1∇(ϕKν )

Kν

0

Wδ
Kν

, δ ∈ (i−1, i] 1∇(ϕKν )
Kν

i

Recall that, the passage from abelian local class field theory to abelian global
class field theory follows via the idèle groupJK of the global fieldK, where the
topological groupJK is defined by the “restricted direct product”

JK := ∏′

ν∈hK∪aK

(
K×ν : UKν

)

of the collection{K×ν }ν∈hK∪aK with respect to the collection{UKν }ν∈hK , equipped
with the restricted direct product topology. Namely, abelian global class field theory
for K establishes an algebraic and topological isomorphism

(·,K) = Art−1
K : K̂×\JK

∼
−→Gal(Kab/K)

or equivalently the “Weil form” of abelian global class fieldtheory forK establishes
an algebraic and topological isomorphism

(·,K) = Art−1
K : K×\JK

∼
−→Wab

K

satisfying certain “naturality” conditions. The noncompact groupK×\JK is called

the id̀ele class group ofK andK̂×\JK denotes the profinite completion ofK×\JK .
The construction of the global norm residue symbol(·,K) or the Artin reci-

procity lawArtK of the global fieldK can roughly be sketched as follows : First, for
each finite abelian extensionL/K, consider the well-defined homomorphism

RL/K : JK →Gal(L/K)

defined by

RL/K : (xν)ν 7→∏
ν

∏
ν |µ

(xν ,Lµ/Kν)

for every(xν)ν ∈JK . Almost allν are unramified in the extensionL/K which yields
the well-definedness of the mapRL/K . Next, pass to the projective limit

lim
←−
L/K

RL/K : JK → lim
←−
L/K

Gal(L/K) = Gal(Kab/K)
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over all possible suchL/K. Finally, check that the morphism lim
←−
L/K

RL/K induces a

homomorphism

K×\JK → Gab
K

which factors as
K×\JK

∼
−→ Wab

K →Gab
K .

Thus, it is natural to push this idea to the extreme, and introduce the non-
abelian id̀ele groupJK of K, following the analogy between the tables above and
taking into account the philosophy of Miyake [40, 41] (also look at Iwasawa [26]),
as follows.

Restricted free products. Let {Gi}i∈I be a collection of locally compact topolog-
ical groups and for all but finitely manyi ∈ I let Oi be a compact open subgroup of
Gi . Denote the finite subset ofI consisting of alli ∈ I for whichOi is not defined by
I∞. For every finite subsetSof I satisfyingI∞ ⊆ S, define the topological group

GS := ∗
i /∈S

Oi ∗

(
∗

i∈S
Gi

)

as the free product of the topological groupsOi , for i ∈ I−S, andGi , for i ∈S, which
exists in the category of topological groups (cf. Morris [43]). Then, therestricted
free productof the collection{Gi}i∈I with respect to the collection{Oi}i∈I−I∞ ,
which is denoted by∗′i∈I (Gi : Oi), is defined by the injective limit

∗
i∈I

′(Gi : Oi) := lim
−→

S

GS

defined over all possible suchS, where the connecting morphism

τT
S : GS→GT

for S⊆ T is defined naturally by the“universal mapping property of free products”
1 (cf. Hilton-Wu [18] and Morris [43]). The topology on∗′i∈I (Gi : Oi) is defined
by declaringX ⊆ ∗′i∈I (Gi : Oi) to be open ifX∩GS is open inGS for everyS. So,
endowed with this topology,∗′i∈I (Gi : Oi) is a topological group.

Proposition 2.1. Let{Gi}i∈I be a collection of locally compact topological groups
and for all but finitely many i∈ I let Oi be a compact open subgroup of Gi . Denote
the finite subset of I consisting of all i∈ I for which Oi is not defined by I∞. Assume
that, for each i∈ I, a continuous homomorphism

φi : Gi → H

is given. Then, there exists a unique continuous homomorphism

φS : GS→ H

1If {Gi}i∈I is a collection of topological groups and∗i∈I Gi is the free product of this collection together
with the canonical embeddingsιio : Gio →֒ ∗i∈I Gi , for eachio ∈ I , then the universal mapping property
of free products states that, if for eachio ∈ I , φio : Gio → H is a continuous homomorphism, then there
exists a unique continuous homomorphismφ : ∗i∈I Gi → H, such thatφ ◦ ιio = φio , for everyio ∈ I .
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defined for each finite subset S of I satisfying I∞ ⊆ S, and a unique continuous ho-
momorphism

φ = lim
−→

S

φS : ∗′i∈I (Gi : Oi)→ H

satisfying

φS = φ ◦cS : GS
cS−→ ∗′i∈I (Gi : Oi)

φ
−→ H,

where cS : GS→ ∗′i∈I (Gi : Oi) is the canonical homomorphism, for every S.

Proof. The collection of continuous homomorphisms{φi : Gi → H}i∈I determines
a unique continuous homomorphismφS : GS→H, for eachS, by the universal map-
ping property of free products. Moreover, forS⊆ T, the diagram

GS

τT
S

��

cS

  
AA

AA
AA

AA φS

""

G
∃!φ

// H

GT

cT

>>}}}}}}}} φT

<<

is commutative, whereG = ∗′i∈I (Gi : Oi), by the universality of direct limits. �

Notation 2.2. As a notation, for a topological groupG, the n-fold free product
n-copies︷ ︸︸ ︷

G∗ · · · ∗G of G is denoted byG∗n.

Non-abelian idèle groupJ
ϕ
K of the global fieldK. Now, the following definition

introduces the major object that we intend to study in this work.

Definition 2.3. For eachν ∈hK fix a Lubin-Tate splittingϕKν and letϕ = {ϕKν }ν∈hK .

The topological groupJ
ϕ
K defined by the “restricted free product”

J
ϕ
K := ∗

ν∈hK∪aK

′

(
Z∇(ϕKν )

Kν
: 1∇(ϕKν )

Kν

0
)

is called thenon-abelian id̀ele group of the global field K. In caseK is a number
field,

J
ϕ
K = ∗

ν∈hK

′

(
Z∇(ϕKν )

Kν
: 1∇(ϕKν )

Kν

0
)
∗W∗r1

R ∗W∗r2
C ,

where the finite (=henselian) partJ
ϕ
K,h of J

ϕ
K is defined by

J
ϕ
K,h := ∗

ν∈hK

′

(
Z∇(ϕKν )

Kν
: 1∇(ϕKν )

Kν

0
)

,

and the infinite (=archimedean) partJ
ϕ
K,a of J

ϕ
K by

J
ϕ
K,a := W∗r1

R ∗W∗r2
C .

Here, as usualr1 and r2 denote the number of real and the number of pairs of
complex-complex conjugate embeddings of the global fieldK in C.
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The non-abelian id̀ele groupJ
ϕ
K of K is an “extremely large” topological

group, whose definition dependsonly on the global field K.

Remark2.4. The non-abelian local class field theory in the sense of Koch has
evolved in two directions (look at [23] and [37]). The non-abelian id̀ele groups intro-
duced in Definition 2.3 are defined̀a la Fesenko; namely, the construction is based
on the work [23]. However, it is also possible to start withLaubie class field theory,
and define the non-abelian idèle groups accordingly. Taking into account the work

[21], the latter construction produces nothing new. More precisely, ifJ
ϕ
K

Laubie
de-

notes the non-abelian idèle group ofK constructed in terms of Laubie class field

theory, then there exists a topological isomorphismJ
ϕ
K

Laubie ∼
−→J

ϕ
K by [21].

The following theorem describes the abelianizationJ
ϕ
K

ab
of the topological

groupJ
ϕ
K .

Theorem 2.5. The abelianizationJ
ϕ
K

ab
of the topological groupJ

ϕ
K is indeed

JK .

Proof. The proof follows by first noting that the direct limit functor is exact and
then by abelianizing free products of groups. �

3. Non-abelian global reciprocity law : A proposal

For ν ∈ hK ∪aK , choose an embedding

eν : Ksep →֒ Ksep
ν .

This embedding determines a continuous homomorphism2 (look at [51] for details)

eWeil
ν : WKν →WK ,

and therefore, for eachν ∈ hK , a continuous homomorphism

NR
(ϕKν )Weil

Kν
: Z∇ϕKν

Kν

{·,Kν}ϕKν−−−−−−→
∼

WKν
eWeil

ν−−→WK .

Theorem 3.1 (Global non-abelian norm-residue symbol “Weakform”). There
exists a well-defined continuous homomorphism

NR
ϕWeil

K : J
ϕ
K →WK , (3.1)

which satisfies

(NR
ϕWeil

K )S = NR
ϕWeil

K ◦cS : (J
ϕ
K )S

cS−→J
ϕ
K

NR
ϕWeil

K−−−−−→WK ,

where, following Proposition 2.1, cS : (J
ϕ
K )S→J

ϕ
K is the canonical homomor-

phism defined for every finite subset S ofhK ∪aK containingaK .

2which is unique ifK is a function field and unique up to composition with an inner automorphism of
WK defined by an element of the connected componentWo

K of WK if K is a number field.
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Proof. Proposition 2.1 applied to the collection of continuous homomorphisms
{

NR
(ϕKν )Weil

Kν
: Z∇ϕKν

Kν
→WK

}

ν∈hK

⋃{
eWeil

ν : WKν →WK

}

ν∈aK

completes the proof. �

We conjecture that the continuous homomorphismNR
ϕWeil

K : J
ϕ
K →WK should

be considered as theglobal non-abelian norm-residue symbol of K. More precisely,

Conjecture 3.2 (Global non-abelian norm-residue symbol “Strong form”). The
homomorphism

NR
ϕWeil

K : J
ϕ
K →WK

is open, continuous and surjective.

Regarding this conjecture, the following remark is in order.

Remark3.3. The conjecture 3.2 seems to be related with :

(1) the well-known fact that the absolute Galois groupGQ of the global fieldQ is
topologically generated by the inertia subgroups;

(2) the “Riemann’s existence theorem” for global fields (fordetails, see [44]).

4. Local-global compatibility of the non-abelian norm residue
symbols

Clearly, for eachν ∈ hK ∪aK , there exists a natural homomorphism

qν : (J
ϕ
K )ν :=





Z∇(ϕKν )

Kν
, ν ∈ hK

WR, ν ∈ aK,R
WC, ν ∈ aK,C




→J
ϕ
K ,

which is defined explicitly via the commutative triangle

(J
ϕ
K )S

cS

��

(J
ϕ
K )ν

ι(S)
ν

77nnnnnnnnnnnn

qν
''PPPPPPPPPPPPPP

J
ϕ
K

whereS is a finite subset ofhK ∪ aK satisfyingaK ⊆ S andν ∈ S. Note that, the
definition of the continuous homomorphismqν : (J

ϕ
K )ν →J

ϕ
K does not depend

on the choice ofS. In fact, if T is another finite subset ofhK ∪aK satisfyingaK ⊆ T
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and ν ∈ T, then by the universal mapping property of free products andby the
definition of the connecting morphismτS

S∩T : (J
ϕ
K )S∩T → (J

ϕ
K )S, the diagram

(J
ϕ
K )S∩T

τS
S∩T

��

(J
ϕ
K )ν

ι(S∩T)
ν

66nnnnnnnnnnnnn

ι(S)
ν ((QQQQQQQQQQQQQ

(J
ϕ
K )S

commutes. Thus,

cS∩T ◦ ι(S∩T)
ν = cS◦ τS

S∩T ◦ ι(S∩T)
ν = cS◦ ι(S)

ν = qν ,

which also proves that

cT ◦ ι(T)
ν = cS◦ ι(S)

ν .

The next Theorem is the“local-global compatibility” of {.,Kν}ϕKν andNR
ϕ
K for

ν ∈ hK .

Theorem 4.1. For eachν ∈ hK , the following square

Z∇(ϕKν )
Kν

qν
//

{.,Kν}ϕKν
��

J
ϕ
K

NR
ϕ
K

Weil

��

WKν
eWeil

ν

// WK

is commutative.

Proof. Note that,

eWeil
ν ◦{.,Kν}ϕKν = NR

(ϕKν )
Kν

Weil
.

Now, to prove that

NR
ϕ
K

Weil
◦qν = NR

(ϕKν )
Kν

Weil
,

first recall thatqν = cS◦ι(S)
ν , whereν ∈Sa finite subset ofhK∪aK satisfyingaK ⊂S.

Then,

NR
ϕ
K

Weil
◦qν = NR

ϕ
K

Weil
◦ (cS◦ ι(S)

ν )

= (NR
ϕ
K

Weil
)S◦ ι(S)

ν

= NR
(ϕKν )
Kν

Weil
,

which completes the commutativity of the square. �
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5. ℓ-adic representations of the non-abelian id̀ele groupJ
ϕ
K of K

By Theorem 3.1, and also by Conjecture 3.2 as well, it is evident that any representa-
tion σ :WK→GL(V) of the absolute Weil group of the global fieldK on anF- vector
spaceV defines naturally a representationσϕ

∗ : J
ϕ
K → GL(V) of the non-abelian

idèle groupJ
ϕ
K of K on theF-linear spaceV via the compositionσϕ

∗ : J
ϕ
K

NR
ϕ
K

Weil

−−−−−→

WK
σ
−→ GL(V). Here,F denotes any field. Moreover, ifF is assumed to be a topo-

logical field and theF-representationV of WK is a continuous representation, then

the continuity of the non-abelian norm-residue symbolNR
ϕ
K

Weil
: J

ϕ
K →WK of K

yields the continuity of the correspondingF-representationV of J
ϕ
K . Thus, the

(continuous)F-representation theory of the topological groupJ
ϕ
K

3 is closely re-
lated to the (continuous)F-representation theory of the absolute Weil groupWK of
the global fieldK.

In this work, we shall focus on thecontinuousℓ-adic representations of the
non-abelian id̀ele groupJ

ϕ
K of K and their basic“analytic invariants”, namely the

L-functionsand theε-factorsattached to these representations, whose definitions
will be made precise below. By the preceding paragraph, suchrepresentations are
deeply connected with theℓ-adic representations of the absolute Weil groupWK

of the global fieldK, or equivalently4 to theℓ-adic representations of the absolute
Galois groupGK of K.

Remark5.1. In fact, instead of considering theℓ-adic representations of the non-
abelian id̀ele groupJ

ϕ
K of the global fieldK, we can, and we should, more generally

consider the“ ℓ-adic Hecke-Langlands parameters”J
ϕ
K →

LH(Qℓ) of H, whereH
is any connected reductive group overK with the dual group̂H, which is a connected

3In fact, we have not seen any work on the representation theory of the restricted free product of topo-
logical groups. The closest work in the mathematical literature in this direction are the 1995 paper of
Młotkowski [42] and the 2010 paper of Hebisch and Młotkowski[16].
4We reproduce the following observation of Brian Conrad : LetK be a global field andWK be the absolute
Weil group ofK equipped with the natural continuous homomorphismφ : WK → GK with dense image
(look at [51]). LetH be a finite-typeQℓ-group. Then any continuous homomorphismξ : WK → H(Qℓ)
factors continuously throughGK as

GK

ξo

��

WK

φ

77nnnnnnnnnnnnnn

ξ
''OOOOOOOOOOOO

H(Qℓ).

In fact, the targetH(Qℓ) is totally-disconnected. Therefore, such an arrowξ : WK → H(Qℓ) should kill
the identity componentWo

K of WK . In the number field case,φ : WK → GK is a surjective topological
quotient map with ker(φ) = Wo

K . In the function field case,φ : WK → GK is the inclusion andWK is a
dense subgroup ofGK . Thus, in both cases,ξ : WK → H(Qℓ) uniquely definesξo : GK → H(Qℓ).
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reductive group overC, andLH(Qℓ) is theQℓ-rational points5 of theL-groupLH :=
Ĥ ⋊WK of H. These continuous homomorphisms are closely related with the “ ℓ-
adic Langlands parameters” WK → LH(Qℓ) of H, which are the“ ℓ-adic avatars”
of theLanglands parameters LK→

LH of H, whereLK denotes the global Langlands
group ofK, which is a conjectural group in caseK is a number field. For details,
look at [1, 5, 14, 25, 49]. We shall return to this discussion in Section 8.

Continuous ℓ-adic representations ofJ
ϕ
K . Let

ρ : J
ϕ
K →GL(V)

be a continuous representation of the topological groupJ
ϕ
K on ann-dimensional

vector spaceV overQℓ. Such a representation(ρ,V) of J
ϕ
K is called acontinuous

ℓ-adic representationof J
ϕ
K . Then, the natural homomorphismqν : (J

ϕ
K )ν→J

ϕ
K

defines a local continuous representation

ρν = ρ ◦qν : (J
ϕ
K )ν :=





Z∇(ϕKν )

Kν
, ν ∈ hK

WR, ν ∈ aK,R
WC, ν ∈ aK,C





qν
−→J

ϕ
K

ρ
−→GL(V)

of the local group(J
ϕ
K )ν on the vector spaceV overQℓ, for eachν ∈ aK ∪ hK .

Moreover, we have the following important theorem, which isessentially the “rep-
resentation theoretic” incarnation of Proposition 2.1.

Theorem 5.2. For eachν ∈ aK ∪hK , let

ρν : (J
ϕ
K )ν →GL(V)

be a continuous representation of the local group(J
ϕ
K )ν on the vector space V over

Qℓ. Then the collection{ρν}ν∈aK∪hK defines a unique continuous representation

ρ : J
ϕ
K →GL(V)

on the vector space V overQℓ, such that

ρν : (J
ϕ
K )ν

qν
−→J

ϕ
K

ρ
−→GL(V),

for everyν ∈ aK ∪hK .

Proof. By Proposition 2.1, for the collection{ρν}ν∈aK∪hK , there exists a unique

continuous representationρS of (J
ϕ
K )S on the linear spaceV overQℓ defined for

each finite subsetSof aK ∪hK satisfyingaK ⊆ S, and a unique continuous represen-
tationρ of J

ϕ
K on the linear spaceV overQℓ satisfying

ρS = ρ ◦cS : (J
ϕ
K )S

cS−→J
ϕ
K

ρ
−→GL(V)

for every such setS, which further satisfies

ρν = ρS◦ ι(S)
ν = ρ ◦cS◦ ι(S)

ν = ρ ◦qν ,

for everyν ∈ aK ∪hK . �

5The complex reductive group̂H is defined overZ. Thus, we can consider the the group ofQℓ-rational
points of theL-groupLH.
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This theorem immediately yields the following corollary, whose proof is straight-
forward.

Corollary 5.3. There exists a bijective correspondence
{
{ρν}ν∈aK∪hK : (J

ϕ
K )ν

ρν
−−→
cont.

GL(n,Qℓ),
∀ν

}
⇄ Repcont−n

Qℓ
(J

ϕ
K )

between the set of all collections{ρν}ν∈aK∪hK consisting of n-dimensional contin-

uousℓ-adic representationsρν : (J
ϕ
K )ν →GL(n,Qℓ) for eachν ∈ aK ∪hK and the

setRepcont−n
Qℓ

(J
ϕ
K ) of all n-dimensional continuousℓ-adic representations ofJ

ϕ
K

defined by Theorem 5.2.

Hecke-Weil L-functions. To simplify the discussion, from now on, fix an isomor-
phismQℓ

∼
−→ C using the axiom of choice.

Our aim now is to define the “Hecke-Weil”L-function LHecke−Weil(s,ρ) at
s∈ C attached the continuousℓ-adic representationρ of J

ϕ
K on then-dimensional

vector spaceV overQℓ.

Definition 5.4. Let
ρ : J

ϕ
K →GL(V)

be a continuous representation ofJ
ϕ
K on ann-dimensional vector spaceV overQℓ.

The “Hecke-Weil” L-function LHecke−Weil(s,ρ) at s∈ C attached to the representa-
tion ρ : J

ϕ
K →GL(V) is defined (formally) by the Euler product

LHecke−Weil(s,ρ) := ∏
ν∈hK
ℓ∤qν

LHecke−Weil(s,ρν) ∏
ν∈hK
ℓ|qν

LHecke−Weil(s,ρν)

× ∏
ν∈aK

LHecke−Weil(s,ρν), s∈ C,

where for eachν ∈ hK , the cardinality of the residue class fieldκKν of Kν is denoted
by qν . Thelocal “Hecke-Weil” L-factor LHecke−Weil(s,ρν) ats∈ C is defined

– for ν ∈ hK with ℓ ∤ qν , by

LHecke−Weil(s,ρν) := LArtin−Weil(s,ρν ◦ΦΦΦ(ϕKν )
Kν

), s∈ C,

where the right-hand side is defined as the usual local Artin-Weil L-factor of

the local representationρν ◦ΦΦΦ(ϕKν )
Kν

: WKν →GL(V) of the local absolute Weil

groupWKν of Kν on the vector spaceV overQℓ ats∈ C;
– for ν ∈ hK with ℓ | qν , again by

LHecke−Weil(s,ρν) := LArtin−Weil(s,ρν ◦ΦΦΦ(ϕKν )
Kν

), s∈ C,

where this time, the right-hand side is defined in terms of“Fontaine’s Dpst-
functor” via the “p-adic Hodge theory”, which we shall not discuss in the
text, and refer the reader to [10, 11, 52];

– for ν ∈ aK , to be the“gamma-factor” Γ(s,ρν) defined explicitly for example
in [30], which we shall not discuss in the text, and refer the reader to [30].
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Remark5.5. Deninger introduced a unified construction of localL-factors of mo-
tives (pure as well as mixed motives) as a certain power series on infinite-dimensional
cohomologies (for details, look at [8]). It would be very interesting to study Artin-
Weil and Hecke-WeilL-functions in the framework of Deninger’s theory.

Hecke-Weilε-factors. Next, we shall define theε-factor εHecke−Weil(s,ρ) ats∈ C
attached the continuousℓ-adic representationρ of J

ϕ
K on then-dimensional vector

spaceV over Qℓ. In order to do so, let us briefly review the construction of the
globalε-factors of continuousℓ-adic representations of the absolute Weil groupWK

of the global fieldK introduced by Deligne, Dwork, and Langlands (look at [51] for
details). Let

σ : WK →GL(V)

be a continuous representation ofWK on ann-dimensional vector spaceV overQℓ.
Let ψ : AK→C× be a non-trivial additive unitary character ofAK which is trivial on
K, namely,ψ is a non-trivialglobal additive character of K. For eachν ∈ aK ∪hk,
the local componentψν : (Kν)+→C× is a non-trivial additive character of the local
field Kν . Letd+µ be theHaar measureonAK normalized by

∫
K\AK

d+µ(x) = 1. Fix
a decompositiond+µ = ∏ν d+µν of d+µ , where for almost allν the local measure
d+µν is a “normalized” additive Haar measure onKν , normalized in the sense that
vol(OKν ) = 1. Now, theglobalε-factor εArtin−Weil(s,σ) of theℓ-adic representation
σ of WK onV ats∈ C is defined by the product

εArtin−Weil(s,σ) = ∏
ν∈aK∪hK

εArtin−Weil(s,σν ,ψν ,d+µν)

of local factorsεArtin−Weil(s,σν ,ψν ,d+µν).
Recall that, the local factorεArtin−Weil(σν ,ψν ,d+µν), for ν ∈ hK , is defined6

explicitly for the case dimQℓ
(V) = n = 1 by

εArtin−Weil(σν ,ψν ,d+µν) = σν(ArtKν (c))

∫

UK

σν(ArtKν (x))−1ψν(x/c)d+µν(x)

|
∫

UK

σν(ArtKν (x))−1ψν(x/c)d+µν(x) |
,

where the arrowArtKν : Wab
Kν
∼
−→ K×ν is the Artin reciprocity law ofKν , andc∈ K×ν

satisfiesν(c) = a(σν)+ n(ψν). Recall that, the numbern(ψν) is the conductor of
the additive characterψν : (Kν)+ → C× anda(σν) is the Artin conductor of the
quasi-characterσν : WKν → C×. On the other hand, there isno explicit formula for
the localε-factorεArtin−Weil(σν ,ψν ,d+µν) in case dimQℓ

(V) = n > 1. The best we
have is the“existence and uniqueness theorem of Deligne, Dwork and Langlands
for local ε-factors”.

Remark5.6. It seems possible to give an explicit formula for the localε-factor
εArtin−Weil(σν ,ψν ,d+µν) for the general case dimQℓ

(V) = n ≥ 1 in terms of the

6Therefore, ifσν : WKν → GL(V) is a 1-dimensional representations ofWKν on theQℓ-linear spaceV,
then there exists an explicit expression of the localε-factor εArtin−Weil(σν ,ψν ,d+µν ) in terms of the
local Artin reciprocity law ofKν .
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non-abelian local reciprocity lawΦΦΦ(ϕKν )
Kν

:WKν
∼
−→ Z∇(ϕKν )

Kν
of the local fieldKν (look

at [22])7. Also, for a naive attempt in this direction, look at [19].

Definition 5.7. Let
ρ : J

ϕ
K →GL(V)

be a continuous representation ofJ
ϕ
K on ann-dimensional vector spaceV over

Qℓ. Let ψ : AK → C× be a non-trivial global additive character ofK. For eachν ∈
aK ∪hk, the local component ofψ is denoted byψν : (Kν)+→ C×. Let d+µ be the
Haar measure onAK normalized by

∫
K\AK

d+µ(x) = 1. Fix a decompositiond+µ =

∏ν d+µν of d+µ , where for almost allν the local measured+µν is a normalized
additive Haar measure onKν , normalized in the sense that vol(OKν ) = 1. Theglobal

“Hecke-Weil” ε-factor εHecke−Weil(s,ρ) of the representationρ : J
ϕ
K →GL(V) at

s∈ C is defined (formally) by the product

εHecke−Weil(s,ρ) := ∏
ν∈aK∪hK

εHecke−Weil(s,ρν ,ψν ,d+µν), s∈ C.

For eachν ∈ aK ∪hK , thelocal “Hecke-Weil” ε-factor εHecke−Weil(s,ρν ,ψν ,d+µν)
ats∈ C is defined by

εHecke−Weil(s,ρν ,ψν ,d+µν) := εArtin−Weil(s,ρν ◦ΦΦΦ(ϕKν )
Kν

,ψν ,d+µν), s∈ C.

Remark5.8. Note that, Definition 5.7 is provisional. In fact, it seems that, to define
the global Hecke-Weilε-factors from the local factors properly in the light of Re-
mark 5.6, we have to construct the“non-commutative Tamagawa measure”onJ

ϕ
K

following the lines sketched in [28, 53].

The assignementσ  σ (ϕ)
∗ . Now, let

σ : WK →GL(V)

be a continuous representation ofWK on ann-dimensional vector spaceV overQℓ.
Then we have the following theorem.

Theorem 5.9. Theℓ-adic continuous representationσ : WK →GL(V) defines nat-
urally a continuous representation

σϕ
∗ : J

ϕ
K →GL(V)

of J
ϕ
K on the n-dimensional space V overQℓ via the composition

σϕ
∗ : J

ϕ
K

NR
ϕ
K

Weil

−−−−−→WK
σ
−→GL(V),

7As Tate points out in [51],

“..., we have no way to defineε(χ,ψ,dx) without using the reciprocity law isomor-
phismF∗ ≈Wab

F . In fact it was his [Langlands’] idea about “nonabelian reciprocity
laws” relating representations of degreen of WF to irreducible representationsπ
of GL(n,F), and the possibility of definingε(π,ψ,dx) for the latter, which led
Langlands to conjecture and prove ...”
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which satisfies

σϕ
∗ ν ◦ΦΦΦ(ϕKν )

Kν
= σν = σ ◦eWeil

ν ,

for everyν ∈ hK . Moreover, the following identities hold :

LArtin−Weil(s,σ) = LHecke−Weil(s,σϕ
∗ ).

and
εArtin−Weil(s,σ) = εHecke−Weil(s,σϕ

∗ ).

Proof. By Theorem 4.1 on the local-global compatibility of non-abelian norm residue
symbols, note that

σϕ
∗ ν = σϕ

∗ ◦qν

= σ ◦NR
ϕ
K

Weil
◦qν

= σ ◦eWeil
ν ◦{.,Kν}ϕKν .

That is,

σϕ
∗ ν ◦ΦΦΦ(ϕKν )

Kν
= σ ◦eWeil

ν = σν .

Now the proof follows directly from Theorem 3.1 and Definitions 5.4 and 5.7. �

Notation5.10. Let I
ϕ
K denote the image im(NR

ϕ
K

Weil
) of the global non-abelian

norm-residue symbolNR
ϕ
K

Weil
: J

ϕ
K →WK of K.

Remark5.11. If σ1 andσ2 aren-dimensional continuousℓ-adic representations of
WK , then clearly by Theorem 5.9,

(σ1)
ϕ
∗ = (σ2)

ϕ
∗ ⇔ σ1 |

I
ϕ
K
= σ2 |

I
ϕ
K

.

Moreover,if Conjecture 3.2 holds; namely, ifI
ϕ
K = WK , then the assignement

σ  σϕ
∗

introduced in Theorem 5.9, whereσ is the continuous representation ofWK on the
n-dimensional spaceV overQℓ is aninjection.

Remark5.12. If Conjecture 3.2 holds, then the assignement

σ  σϕ
∗

introduced in Theorem 5.9, whereσ is the continuous representation ofWK on the
n-dimensional spaceV overQℓ clearlypreserves irreducibility and semi-simplicity.
That is,

– σ is irreducible⇒ σϕ
∗ is irreducible;

– σ is semi-simple⇒ σϕ
∗ is semi-simple.

Note that, 1-dimensionalℓ-adic representations of the absolute Weil groupWK

of K can be identified with theℓ-adic Hecke charactersof K via abelian global
class field theory. Thus, an immediate consequence of Theorem 5.9 is the following
corollary, whose proof is straightforward.
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Corollary 5.13. An ℓ-adic Hecke character

χ : K×\JK → Q
×
ℓ

of K defines naturally a continuous1-dimensionalℓ-adic representation

X
ϕ
∗ : J

ϕ
K → Q

×
ℓ

of the non-abelian id̀ele groupJ
(ϕ)

K of K via the composition

X
ϕ
∗ : J

ϕ
K

NR
ϕ
K

Weil

//WK
can. //

X

%%
Wab

K
ArtK //K×\JK

χ
//Q
×
ℓ

,

which satisfies

X
ϕ
∗ ν ◦ΦΦΦ(ϕKν )

Kν
= Xν = X ◦eWeil

ν ,

for everyν . Moreover, the following identities hold :

LArtin−Weil(s,X) = LHecke(s,χ) = LHecke−Weil(s,X
ϕ
∗ ).

and
εArtin−Weil(s,X) = εHecke(s,χ) = εHecke−Weil(s,X

ϕ
∗ ).

Thus, Hecke and Artin-WeilL-functions are special cases of Hecke-WeilL-
functions via Theorem 5.9 and its Corollary 5.13 as described in the following dia-
gram :

{
Hecke-Weil
L-functions

}

{
Hecke

L-functions

}

Corollary 5.13

>>||||||||||||||||

abelian global CFT
//

{
Artin-Weil
L-functions

}
.

non-abelian global CFT
Theorem 5.9

aaBBBBBBBBBBBBBBBBB

Also, Hecke and Artin-Weilε-factors are special cases of Hecke-Weilε-factors via
Theorem 5.9 and its Corollary 5.13 as described in the following diagram :

{
Hecke-Weil

ε-factors

}

{
Hecke

ε-factors

}

Corollary 5.13

??~~~~~~~~~~~~~~~~

abelian global CFT
//

{
Artin-Weil
ε-factors

}
.

non-abelian global CFT
Theorem 5.9

``BBBBBBBBBBBBBBBBB
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Analytic properties of Hecke-Weil L-functions. Note that, the assignement

σ  σϕ
∗

introduced in Theorem 5.9, whereσ is the continuous representation ofWK on the
n-dimensional spaceV overQℓ that is under consideration, also sheds light on the
basic analytic properties of the Hecke-WeilL-functionLHecke−Weil(s,σϕ

∗ ) attached
to the corresponding continuous representationσϕ

∗ of J
ϕ
K on then-dimensional

spaceV overQℓ .
In fact, it is well-known that,LArtin−Weil(s,σ) is a convergent product for

s∈ C satisfying Re(s)≫ 0. Moreover, byBrauer’s induction theorem, the prod-
uct LArtin−Weil(s,σ) defines a meromorphic function in the whole complex plane,
and satisfies the functional equation

LArtin−Weil(s,σ) = εArtin−Weil(s,σ)LArtin−Weil(1−s,σ∨),

whereσ∨ is thecontragardient8 of σ .
Now, we shall single out the continuousℓ-adic representations of the non-

abelian id̀ele groupJ
ϕ
K of K that have nice “analytic invariants”.

Definition 5.14. An n-dimensional continuousℓ-adic representationρ of J
ϕ
K is

calledGalois type, if it factors through the non-abelian norm-residue symbolNR
ϕ
K

Weil
:

J
ϕ
K →WK of K as

J
ϕ
K

NR
ϕ
K

Weil

//

ρ

$$

WK
ργ

//GL(n,Qℓ)

for somen-dimensional continuousℓ-adic representationργ : WK → GL(n,Qℓ) of
WK .

Remark5.15. Certainly, ifσ is a continuous representation ofWK on ann-dimensional
spaceV overQℓ, then the continuousℓ-adic representationσϕ

∗ of J
ϕ
K onV assigned

by Theorem 5.9 is clearly of Galois type, and the following equality holds

(σϕ
∗ )γ |

I
ϕ
K
= σ |

I
ϕ
K

by Remark 5.11. Moreover,if Conjecture 3.2 holds, then the assignement

σ  σϕ
∗

introduced in Theorem 5.9, whereσ is the continuous representation ofWK on the
n-dimensional spaceV overQℓ induces a bijective correspondence

Repcont−n
Qℓ

(WK)⇄ Rep
cont−n;Gal
Qℓ

(J
ϕ
K )

8Recall that, the contragradient of a continuousn-dimensionalℓ-adic representationσ : WK→GL(n,Qℓ)

of WK is defined to be the representationσ∨ : WK →GL(n,Qℓ) of WK defined byσ∨(w) = tσ(w−1) for
everyw∈WK .
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between the setRepcont−n
Qℓ

(WK) of all n-dimensional continuousℓ-adic representa-

tions ofWK and the setRep
cont−n;Gal
Qℓ

(J
ϕ
K ) of all Galois typen-dimensional contin-

uousℓ-adic representations ofJ
ϕ
K , which is a subset ofRepcont−n

Qℓ
(J

ϕ
K ). Note that,

by Remark 5.12, this bijective correspondence preserves irreducibility and semi-
simplicity. We shall return to this discussion within the framework of Tannakian
categories in Section 6.

Theorem 5.16. Assume thatρ is an n-dimensional continuousℓ-adic Galois type
representation ofJ

ϕ
K . Then the attached Hecke-Weil L-function LHecke−Weil(s,ρ)

is a convergent product for s∈ C satisfyingRe(s) ≫ 0. Moreover, the product
LHecke−Weil(s,ρ) defines a meromorphic function in the whole complex plane, and
satisfies the functional equation

LHecke−Weil(s,ρ) = εHecke−Weil(s,ρ)LHecke−Weil(1−s,ρ∨),

whereρ∨ is the contragradient of the representationρ of J
ϕ
K on theQℓ-linear

space V.

Proof. As then-dimensional continuousℓ-adic representationρ of J
ϕ
K is of Galois

type,

(ργ)
ϕ
∗ = ρ.

Now, by Theorem 5.9, the identity

LArtin−Weil(s,ργ) = LHecke−Weil(s,ρ)

follows. Thus, the Hecke-WeilL-functionLHecke−Weil(s,ρ) is a convergent product
for s∈ C satisfying Re(s)≫ 0. Moreover, the productLHecke−Weil(s,ρ) defines a
meromorphic function in the whole complex plane, and satisfies a functional equa-
tion

LHecke−Weil(s,ρ) = εHecke−Weil(s,ρ)LArtin−Weil(1−s,(ργ)∨),

where(ργ)∨ is the contragradient of the representationργ of WK on theQℓ-linear
spaceV. Therefore, it suffices to prove that, for the representation ρ of J

ϕ
K on the

Qℓ-linear spaceV, the identity

ρ∨ = ((ργ)∨)
ϕ
∗

is satisfied. Then, by Theorem 5.9, the equality

LArtin−Weil(s,(ργ)∨) = LHecke−Weil(s,ρ∨)

yields the functional equation

LHecke−Weil(s,ρ) = εHecke−Weil(s,ρ)LHecke−Weil(1−s,ρ∨).
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Now, for anyx∈J
ϕ
K ,

((ργ)∨)
ϕ
∗ (x) = (ργ)∨(NR

ϕ
K

Weil
(x))

= t [(ργ)(NR
ϕ
K

Weil
(x)−1)]

= t [(ργ)(NR
ϕ
K

Weil
(x))−1]

= t [ρ(x)−1]

= tρ(x−1)

= ρ∨(x),
which completes the proof. �

“Fine-tuning” Theorem 5.9. In the remaining of this section, we shall “fine-tune”
Theorem 5.9 by specializing the continuous representationσ : WK →GL(V) of the
global Weil groupWK of K on then-dimensional linear spaceV over Qℓ to the
following cases : Then-dimensionalℓ-adic representationσ : WK → GL(n,Qℓ) of
WK

– is assumed to be semi-simple;
– has a model over some finite extensionE overQℓ;
– is unramified at almost all places ofK;
– in caseK is a number field, is “B-admissible atν in the sense of Fontaine”

(look at [10, 11]) for each henselian placeν of K satisfyingℓ | qν . That is,
for ν | ℓ (so for such a placeν of K, the extensionKν/Qℓ is finite), the local

representationσν : WKν
eWeil

ν−−→WK
σ
−→ GL(V) is “B-admissible in the sense of

Fontaine” (look at [10, 11]); and finally,
– is pure of weightw∈ Z.

Note that, except for the first two assumptions onσ : WK → GL(n,Qℓ), all the re-
maining ones on theℓ-adic representation are defined “locally”.

Remark5.17. We make these assumptions, because the global Langlands reci-
procity principle for GL(n) over the global fieldK asserts the existence of a unique
natural bijective correspondence between the collection of all equivalence classes of
irreduciblen-dimensionalℓ-adic representations of the Weil groupWK of K satisfy-
ing these assumptions, which are called, in caseK is assumed to be a number field,
“geometric Galois representations”by Fontaine and Mazur (for details, onℓ-adic
representations ofWK , look at [13] for the function field case, and [4, 10, 11, 12, 54]
for the number field case), and the collection of all equivalence classes of cuspidal
automorphic representations of the adèle group GL(n,AK), which are furthermore
“algebraic” in the sense of Clozel in caseK is a number field9 10 (for details on cus-
pidal automorphic representations of GL(n,AK), look at [13] for the function field

9For example Maass forms on GL(2,Q) do not correspond to Galois representations.
10As Ngô points out in [45],

“In the number fields case, only a part ofℓ-adic representations ofWK coming
from motives should correspond to a part of automorphic representations.”
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case, and [6] for the number field case). Moreover, this correspondence satisfies cer-
tain “naturality” conditions meaning that the bijection should recover abelian global
class field theory whenn = 1, should respect the correspondingL-functions andε-
factors, should well-behave with respect to certainlinear algebraic operations, and
should satisfylocal-global compatibility.

Now, let ν ∈ hK such thatℓ ∤ qν . A continuousℓ-adic representationσν :
WKν → GL(V) of WKν on anℓ-adic spaceV is said to beFrobenius semi-simple,
if theQℓ-linear operatorσν(ϕKν |WKν ) acts semi-simply onV, for some fixed Frobe-
niusϕKν |WKν in WKν . Recall that, there exits an equivalence of the following abelian
categories :
{

Weil-Deligne representations
of K with coefficients inQℓ

}
≈

{
Continuous Frobenius semi-simple rep-
resentations ofWK onQℓ-linear spaces

}
.

Definition 5.18. Let ν ∈ hK such thatℓ ∤ qν . A continuous representationρ : J
ϕ
K →

GL(V) of J
ϕ
K on anℓ-adic spaceV is calledFrobenius semi-simple atν , if

ρν ◦ΦΦΦ(ϕKν )
Kν

: WKν

ΦΦΦ
(ϕKν )

Kν−−−−→
∼

Z∇(ϕKν )
Kν

ρν
−→GL(V)

is a Frobenius semi-simple representation ofWKν onV. That is, the linear operator

ρν ◦ΦΦΦ(ϕKν )
Kν

(ϕKν |WKν ) acts semi-simply on theℓ-adic linear spaceV.

Let
{

ξν : Z∇(ϕKν )
Kν

→GL(V)
}

ν∈hK
∪ {ξν : WKν →GL(V)}ν∈aK

be a collec-

tion of continuousℓ-adic representations onV. If ξν : Z∇(ϕKν )
Kν

→GL(V) is a contin-

uous Frobenius semi-simple representation in the sense that ξν ◦ΦΦΦ
(ϕKν )
Kν

:WKν

ΦΦΦ
(ϕKν )

Kν−−−−→
∼

Z∇(ϕKν )
Kν

ξν
−→GL(V) is a Frobenius semi-simple representation ofWKν onV for each

ν ∈ hK satisfyingℓ ∤ qν , then Theorem 5.2 yields the existence of a unique con-
tinuous representationρ : J

ϕ
K → GL(V) of J

ϕ
K on theℓ-adic spaceV such that

ρν = ξν for ν ∈ hK satisfyingℓ ∤ qν . Thus, we make the following definition.

Definition 5.19. The continuous representationρ : J
ϕ
K → GL(V) of J

ϕ
K on the

n-dimensionalℓ-adic spaceV is calledFrobenius-admissible, if ρ is Frobenius semi-
simple atν for all ν ∈ hK satisfyingℓ ∤ qν .

Assume that the continuousℓ-adic representationσ : WK →GL(V) is further-

more semi-simple. Then the local representationσν : WKν
eWeil

ν−−→WK
σ
−→ GL(V) is

Frobenius semi-simple for eachν ∈ hK satisfyingℓ ∤ qν by thelocal-global compat-
ibility of the Langlands correspondence forGL(n) (look at [15] for details). Thus,
the following corollary follows now from Theorem 5.9, and Definitions 5.18 and
5.19.

Corollary 5.20. Let σ : WK → GL(V) be a continuousℓ-adic semi-simple repre-
sentation of WK on the n-dimensional linear space V overQℓ. Then, the naturally
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defined continuous representation

σϕ
∗ : J

ϕ
K →GL(V)

of J
ϕ
K on V is Frobenius-admissible.

Recall that, a continuousn-dimensionalℓ-adic representationσ :WK→GL(n,Qℓ)
has amodel over some finite extension E overQℓ, if the correspondingℓ-adic Galois
representationσo : GK → GL(n,Qℓ) has amodel over some finite extension E over
Qℓ. That is, if the continuous representationσo : GK →GL(n,Qℓ) factors through a
continuous homomorphismσ• : GK →GL(n,E) as

σo : GK
σ•−→GL(n,E) →֒GL(n,Qℓ),

where the continuity of the arrowσ• is defined with respect to the Krull topology on
GK and theℓ-adic topology on GL(n,E). Thus, it is natural to make the following
definition.

Definition 5.21. A continuous representationρ : J
ϕ
K →GL(n,Qℓ) is said to have a

finite model over some finite extension E overQℓ, if it factors through a continuous
homomorphismρ• : J

ϕ
K →GL(n,E) as

ρ : J
ϕ
K

ρ•
−→GL(n,E) →֒GL(n,Qℓ),

where the continuity of the arrowρ• is defined with respect to the restricted free
product topology onJ

ϕ
K and theℓ-adic topology on GL(n,E).

By Baire category theorem, it follows that any continuous representationGK→
GL(n,Qℓ) has a model over some finite extensionE overQℓ (look at [25] and [29]
for details). Therefore, the following corollary immediately follows from Theorem
5.9 and from Definition 5.21.

Corollary 5.22. Let σ : WK → GL(n,Qℓ) be a continuousℓ-adic representation of
WK . The naturally defined continuousℓ-adic representation

σϕ
∗ : J

ϕ
K →GL(n,Qℓ)

of J
ϕ
K has a model over some finite extension E overQℓ.

More generally, the following proposition follows from Definition 5.14 and
from Definition 5.21 directly.

Proposition 5.23. Assume thatρ is an n-dimensional continuousℓ-adic Galois type
representation ofJ

ϕ
K . Thenρ has a model over some finite extension E overQℓ.

Recall that, a continuousn-dimensionalℓ-adic representationσ :WK→GL(n,Qℓ)
of WK is said to beunramified atν ∈ hK , if σν(IKν ) = 1. Thus, we introduce the fol-
lowing type of ℓ-adic representations of the non-abelian idèle groupJ

ϕ
K of the

global fieldK.
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Definition 5.24. Let ν ∈ hK . A continuous representationρ : J
ϕ
K →GL(V) of J

ϕ
K

on anℓ-adic spaceV is calledunramified atν , if

ρν

(
ΦΦΦ(ϕKν )

Kν
(IKν )

)
(2.1)
= ρν

(
1∇(ϕKν )

Kν

0
)

= 1;

that is, if the local representationρν : Z∇(ϕKν )
Kν

→ GL(V) is unramified. Otherwise,
the representation is calledramified atν .

The continuousn-dimensionalℓ-adic representationσ : WK → GL(n,Qℓ) of
WK is said to beunramified at almost all placesof K, if σν(IKν ) = 1 for everyν /∈ S
for some finite subsetS := S(σ) of hK . Thus, we introduce the following type of
ℓ-adic representations of the non-abelian idèle groupJ

ϕ
K of the global fieldK.

Definition 5.25. The continuous representationρ : J
ϕ
K → GL(V) of J

ϕ
K on the

ℓ-adic spaceV is said to beunramified at almost all placesof K, if if there exists a
finite subsetS(ρ) =: Sof hK such that, for each finite primeν /∈S, the representation
ρ of J

ϕ
K is unramified atν .

Now, by Theorem 5.9, and by Definitions 5.24 and 5.25, the following result
follows immediately.

Corollary 5.26. Let σ : WK →GL(V) be a continuous representation of WK on the
ℓ-adic space V, which is unramified at almost all places of K. Then, the naturally
defined continuous representation

σϕ
∗ : J

ϕ
K →GL(V)

of J
ϕ
K on theℓ-adic space V is unramified at almost all places of K.

Recall that, a continuousℓ-adic representationσ : WK →GL(V) of WK on the
spaceV is pure of weight w∈ Z, if

– there exists a finite subsetSof hK such that, for each finite primeν /∈S, the lo-
cal representationσν : WKν →GL(V) is unramified; namely,σν(IKν ) is trivial;
and

– the eigenvalues ofσν(ϕKν |WKν ) are algebraic integers whose complex conju-

gates have complex absolute valueqw/2
ν .

Thus, we make the following definition.

Definition 5.27. A continuous representationρ : J
ϕ
K → GL(V) of J

ϕ
K on aQℓ-

linear spaceV is calledpure of weight w∈ Z, if

– there exists a finite subsetS(ρ) =: S of hK such that, for each finite prime

ν /∈ S, the local representationρν : Z∇(ϕKν )
Kν

→GL(V) is unramified; that is,ρ
is unramified atν , and

– the eigenvalues ofρν

(
ΦΦΦ(ϕKν )

Kν

(
ϕKν |WKν

))
are algebraic integers whose com-

plex conjugates have complex absolute valueqw/2
ν .
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Corollary 5.28. Assume that the continuousℓ-adic representationσ :WK→GL(V)
is pure of weight w. Then, the naturally defined representation

σϕ
∗ : J

ϕ
K →GL(V)

of J
ϕ
K on the n-dimensional linear space V overQℓ is pure of weight w.

Proof. Follows from Theorem 5.9, Definitions 5.24, 5.25 and Corollary 5.26, and
Definition 5.27. �

Finally, in caseK is a number field, a continuousℓ-adic semi-simple repre-
sentationσ : WK → GL(V) of WK on ann-dimensional vector spaceV overQℓ is
calledB-admissible atν for each henselian placeν of K satisfyingℓ | qν , whereB
denotes a topologicalQℓ-algebra endowed with a continuous linear action ofGQℓ

,
if a corresponding modelσ• : GK → GL(V•) on an n-dimensional linear space V•
over some finite extension E overQℓ of degree[E : Qℓ] = no isB-admissible atν for
each henselian placeν of K satisfyingℓ | qν . That is,the local Galois representa-
tion (σ•)ν : GKν → GL(V•) on the linear space V• over E isB-admissible for each
finite placeν satisfyingℓ | qν . Recall that, following closely [4, 10, 11],for each
finite placeν satisfyingℓ | qν , (σ•)ν : GKν →GL(V•) is calledB-admissible, if the
following equality

dimBGKν (DB(V•)) = dimQℓ
(V•)

holds, where
DB(V•) := (B⊗Qℓ

V•)
GKν

is aBGKν -linear space (note thatBGKν is a field).

Remark5.29. Note that, the definition ofB-admissibility ofσ : WK → GL(V) at ν
for each henselian placeν of K satisfyingℓ | qν doesnot depend on the choice of
a modelσ• : GK → GL(V•) on ann-dimensional linear spaceV• over some finite
extensionE overQℓ.

Thus, we make the following definition.

Definition 5.30. Let B denote a topologicalQℓ-algebra endowed with a continuous
linear action ofGQℓ

. A continuousGalois typerepresentationρ : J
ϕ
K →GL(V) of

J
ϕ
K on aQℓ-linear spaceV is calledB-admissible atν for each henselian placeν of

K satisfyingℓ | qν , if there exists a representationργ : WK→GL(V) on theQℓ-linear
spaceV satisfying

J
ϕ
K

NR
ϕ
K

Weil

//

ρ

##

WK
ργ

//GL(V)

and which isB-admissible atν for each henselian placeν of K satisfyingℓ | qν .

Remark5.31. In fact, following [10, 11], it is possible to defineB-admissible repre-
sentations, at a henselian placeν of K satisfyingℓ | qν , of J

ϕ
K on aQℓ-linear space

V for any regular(Qℓ,(J
ϕ
K )ν)-ringB. However, for this work, it suffices to restrict

to the special case introduced in Definition 5.30.
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Certainly, by Theorem 5.9 and by Definition 5.30, the following corollary fol-
lows directly.

Corollary 5.32. Let σ : WK →GL(V) be a continuous representation of WK on the
ℓ-adic space V, which isB-admissible atν for each henselian placeν of K satisfying
ℓ | qν . Then, the naturally defined continuous representation

σϕ
∗ : J

ϕ
K →GL(V)

of J
ϕ
K on theℓ-adic space V isB-admissible atν for each henselian placeν of K

satisfyingℓ | qν .

Remark5.33. In what follows, we are primarily interested in the caseB= BdR.

That is, we have established the following table :

σ : WK
cont.
−−→GL(V)

semi-simple
has a model over some
finite extensionE/Qℓ

unramified at almost
all places ofK
pure of weightw∈ Z
(if K is a number field)
B-admissible at each
ν ∈ hK s.t.ℓ | qν

 

=⇒

σϕ
∗ : J

ϕ
K

cont.
−−→GL(V)

Frobenius-admissible
has a model over some
finite extensionE/Qℓ

unramified at almost
all places ofK
pure of weightw∈ Z
(if K is a number field)
B-admissible at each
ν ∈ hK s.t.ℓ | qν

6. Tannakian categories

Note that, the global non-abelian norm-residue symbolNR
ϕ
K

Weil
: J

ϕ
K →WK of K

naturally produces a functor

Repcont
Qℓ

(WK)→ Rep
cont;Gal
Qℓ

(J
ϕ
K ) (6.1)

from the categoryRepcont
Qℓ

(WK) of ℓ-adic continuous representations ofWK to the

categoryRep
cont;Gal
Qℓ

(J
ϕ
K ) of Galois type continuous representations ofJ

ϕ
K with

coefficientsQℓ introduced by Definition 5.14, which is defined by pulling back a
representation ofWK on aQℓ-linear spaceV to J

ϕ
K . Moreover, Theorem 5.9 states

that this functor

– preserves the respective representation spaces;
– preserves the respectiveL-functions andε-factors;

and Corollaries 5.20, 5.26, and 5.28 state that it furthermore

– sends semi-simpleℓ-adic continuous representations ofWK to the Frobenius-
admissible representations ofJ

ϕ
K ;

– sendsℓ-adic continuous representations ofWK which are unramified at almost
all places ofK to ℓ-adic continuous representations ofJ

ϕ
K which are unram-

ified at almost all places ofK;
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– sendsℓ-adic continuous pure representations ofWK of weightw to ℓ-adic con-
tinuous pure representations ofJ

ϕ
K of weightw.

If K is a number field, Corollary 5.32 state that the functor (6.1)furthermore

– sendsℓ-adic continuous representations ofWK which areB-admissible at each
ν ∈ hK such thatℓ | qν to ℓ-adic continuous representations ofJ

ϕ
K which are

B-admissible at eachν ∈ hK such thatℓ | qν .

Notation6.1. Let N
ϕ

K denote the kernel ker(NR
ϕ
K

Weil
) of the global non-abelian

norm-residue symbolNR
ϕ
K

Weil
: J

ϕ
K →WK of K.

Remark6.2. Assume that Conjecture 3.2holds. Let

ρ : J
ϕ
K →GL(V)

beany (that is, not necessarily of Galois type !) continuous representation ofJ
ϕ
K

on a vector spaceV overQℓ. Then the following conditions are clearly equivalent :

– we have an inclusionN
ϕ

K ⊆ ker(ρ);

– the representation(ρ,V) of J
ϕ
K factors through

ρ : J
ϕ
K

canonical
−−−−−→

cK
N

ϕ
K \J

ϕ
K

ρo
−→GL(V),

whereN
ϕ

K \J
ϕ
K

∼
−−−→
NR

ϕ
Ko

WK under the global non-abelian norm-residue symbol

NR
ϕ
K of K.

– the representation(ρ,V) of J
ϕ
K is of Galois type.

Thus, by Remark 6.2, we get an alternative description of thecategoryRep
cont;Gal
Qℓ

(J
ϕ
K )

as follows.
Let Repcont

Qℓ
(J

ϕ
K )

N
ϕ

K
denote the category of continuousℓ-adic representations

(ρ,V) of J
ϕ
K satisfying the“congruence relation”

N
ϕ

K ⊆ ker(ρ).

Assuming the validity of Conjecture 3.2, Remark 6.2 yields the equality

Rep
cont;Gal
Qℓ

(J
ϕ
K ) = Repcont

Qℓ
(J

ϕ
K )

N
ϕ

K
,

which is an alternative description of the categoryRep
cont;Gal
Qℓ

(J
ϕ
K ). Moreover, com-

bining Remarks 5.15 and 6.2, there exist an equivalence

Repcont
Qℓ

(WK)≈ Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K

of the categoriesRepcont
Qℓ

(WK) and Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
, “natural” in the sense that

it preserves the respective representation spaces, preserves irreducibility and semi-
simplicity, L-functions andε-factors. More precisely, we have the following theo-
rem.
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Theorem 6.3. Assume that Conjecture 3.2 holds. Then the functor

Repcont
Qℓ

(WK)→ Repcont
Qℓ

(J
ϕ
K )

defined by Theorem 5.9 induces an equivalence

Repcont
Qℓ

(WK)≈ Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
(6.2)

between the categoriesRepcont
Qℓ

(WK) andRepcont
Qℓ

(J
ϕ
K )

N
ϕ

K
, which preserves the re-

spective representation spaces, preserves irreducibility and semi-simplicity, as well
as the respective L-functions and theε-factors.

Proof. Following Remark 6.2, define the functor

Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
→ Repcont

Qℓ
(WK)

by

(ρ,V) 7→ (ρo◦ (NR
ϕ
Ko

)−1,V)

for every representation(ρ,V) of J
ϕ
K satisfying the “congruence relation”N

ϕ
K ⊆

ker(ρ). Then, by Theorem 5.9,

(ρo◦ (NR
ϕ
Ko

)−1,V) 7→ ((ρo◦ (NR
ϕ
Ko

)−1)∗,V),

where
ρo◦ (NR

ϕ
Ko

)−1)∗ = ρo◦ (NR
ϕ
Ko

)−1◦NR
ϕ
K

= ρo◦ (NR
ϕ
Ko

)−1◦NR
ϕ
Ko
◦cK

= ρo◦cK

= ρ,

which shows that the composition

Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
→ Repcont

Qℓ
(WK)→ Repcont

Qℓ
(J

ϕ
K )

N
ϕ

K

is the identity functor onRepcont
Qℓ

(J
ϕ
K )

N
ϕ

K
.

Now, let σ : WK → GL(V) be any continuous representation ofWK on ann-
dimensional vector spaceV overQℓ. Then, the corresponding continuous represen-
tation

σϕ
∗ : J

ϕ
K →GL(V)

of the topological groupJ
ϕ
K on then-dimensional vector spaceV overQℓ satis-

fies the “congruence relation”N
ϕ

K ⊆ ker(σϕ
∗ ), asα ∈ N

ϕ
K yields σϕ

∗ (α) = σ ◦
NR

ϕ
K(α) = σ(1WK ) = 1V . Moreover,

(σϕ
∗ ,V) 7→ (σϕ

∗o ◦ (NR
ϕ
Ko

)−1,V),

where

σϕ
∗o ◦ (NR

ϕ
Ko

)−1 = σ ,
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because for anyw∈WK , there exists anαw ∈J
ϕ
K such thatNR

ϕ
K(αw) = w. There-

fore,σϕ
∗o ◦(NR

ϕ
Ko

)−1(w) = σϕ
∗o(N

ϕ
K αw) = σϕ

∗ (αw) = σ ◦NR
ϕ
K(αw) = σ(w). Hence,

the composition

Repcont
Qℓ

(WK)→ Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
→ Repcont

Qℓ
(WK)

is the identity functor onRepcont
Qℓ

(WK).
Thus, there exists an equivalence

Repcont
Qℓ

(WK)≈ Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K

between the categoriesRepcont
Qℓ

(WK) andRepcont
Qℓ

(J
ϕ
K )

N
ϕ

K
, which clearly preserves

the respective representation spaces, preserves irreducibility and semi-simplicty, as
well as the respectiveL-functions and theε-factors. �

Remark6.4. Moreover, the equivalence (6.2) induces the equivalences :

–
Repcont

Qℓ
(WK)ss≈ Repcont

Qℓ
(J

ϕ
K )Frob−adm

N
ϕ

K

between the full subcategoryRepcont
Qℓ

(WK)ss of Repcont
Qℓ

(WK) whose objects are

the semi-simple objects ofRepcont
Qℓ

(WK) and the full subcategoryRepQℓ
(J

ϕ
K )Frob−adm

N
ϕ

K

of Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
whose objects are the Frobenius-admissible objects of

Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
;

–
Repcont

Qℓ
(WK)nr−ae≈ Repcont

Qℓ
(J

ϕ
K )nr−ae

N
ϕ

K

between the full subcategoryRepcont
Qℓ

(WK)nr−ae of Repcont
Qℓ

(WK) whose objects

are the objects ofRepcont
Qℓ

(WK) which are unramified at almost all places ofK

and the full subcategoryRepQℓ
(J

ϕ
K )nr−ae

N
ϕ

K

of Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
whose objects

are the objects ofRepcont
Qℓ

(J
ϕ
K )

N
ϕ

K
which are unramified at almost all places

of K;
–

Repcont
Qℓ

(WK)pure,w≈ Repcont
Qℓ

(J
ϕ
K )

pure,w

N
ϕ

K

between the full subcategoryRepcont
Qℓ

(WK)pure,w of Repcont
Qℓ

(WK) whose objects

are the objects ofRepcont
Qℓ

(WK) which are pure of weightw and the full subcat-

egoryRepQℓ
(J

ϕ
K )

pure,w

N
ϕ

K

of Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
whose objects are the objects of

Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K
which are pure of weightw.

If K is furthermore assumed to be a number field, then

–
Repcont

Qℓ
(WK)B−adm≈ Repcont

Qℓ
(J

ϕ
K )B−adm

N
ϕ

K
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between the full subcategoryRepcont
Qℓ

(WK)B−admof Repcont
Qℓ

(WK) whose objects

are the objects ofRepcont
Qℓ

(WK) which areB-admissible at eachν ∈ hK satis-

fying ℓ | qν and the full subcategoryRepQℓ
(J

ϕ
K )B−adm

N
ϕ

K

of Repcont
Qℓ

(J
ϕ
K )

N
ϕ

K

whose objects are the objects ofRepcont
Qℓ

(J
ϕ
K )

N
ϕ

K
which areB-admissible at

eachν ∈ hK satisfyingℓ | qν .

7. On the global Langlands reciprocity principle

On the other hand, the proper generalization to the non-abelian setting of the id̀ele-
class character of abelian global class field theory is the notion of automorphic rep-
resentationof GL(n,AK) for 1≤ n. So, it is natural to ask the relationship between
automorphic representations of GL(n,AK) and then-dimensionalℓ-adic representa-
tions of the non-abelian id̀ele groupJ

ϕ
K of K.

Now, suppose thatπ is an irreducible admissible smoothrepresentation of
GL(n,AK) (cf. [6]). Then, following Flath [9], there exists the restricted tensor prod-
uct decompositionπ =⊗ν<∞

′πν ⊗π∞ of π, where

– πν is an irreducible admissible representation of the local group GL(n,Kν),
for eachν ∈ hK ;

– πν is an unramified representation of the local group GL(n,Kν), for almost all
ν ∈ hK .

Fix a rational primeℓ. We shall define the setSℓ as usual by

Sℓ := {ν ∈ hK | ℓ | qν}∪aK .

By the (non-archimedean) local Langlands reciprocity principle for GL(n), which is
now a theorem of Laumon-Rapoport-Stuhler [38], Harris-Taylor [15] and Henniart
[17], for eachν ∈ hK satisfyingℓ ∤ qν , that isν /∈ Sℓ, there is a correspondence

πν 7−→L
(n)
Kν

(πν),

where
L

(n)
Kν

(πν) : WKν →GL(n,Qℓ)

is an (equivalence class of)n-dimensional Frobenius semi-simpleℓ-adic representa-
tion of the Weil groupWKν of Kν such that

LLanglands(s,πν) = LArtin−Weil(s,L (n)
Kν

(πν))

and
εLanglands(s,πν ,ψν ,d+µν) = εArtin−Weil(s,L (n)

Kν
(πν),ψν ,d+µν).

Moreover, for almost allν ∈hK , as the local admissible representationπν of GL(n,Kν)

is unramified, the correspondingℓ-adic representationL (n)
Kν

(πν) of WKν is unram-
ified as well. On the other hand, ifν ∈ hK satisfiesℓ | qν , then for the time being
there is unfortunatelyno known well-formulated conjectural statement neither for
the “p-adic Langlands functoriality”nor for the“p-adic reciprocity principle for
any reductive group G”, where only for the caseG = GL(2) andKν = Qp some
results are known (look at [33] for the theory ofp-adic automorphic forms from a
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very general perspective). Thus, for this case and for the caseν ∈ aK as well, we
shall “forget” the corresponding irreducible admissible representationπν . To sum
up, we have the following

Proposition 7.1. If π is an irreducible admissible smooth representation ofGL(n,AK),
then there exists a unique collection

{
L

(n)
Kν

(πν) : WKν →GL(n,Qℓ)
}

ν /∈Sℓ

consisting of (equivalence classes of) n-dimensional Frobenius semi-simpleℓ-adic
representations of WKν for finite primesν of K satisfyingℓ ∤ qν , where almost all of
them are unramified.

Now, we can state the theorem.

Theorem 7.2. For any (equivalence class of) irreducible admissible smooth repre-
sentationπ of GL(n,AK), there corresponds an (equivalence class of)ℓ-adic contin-

uous Frobenius-admissible representationλ (n)
K (π) : J

ϕ
K →GL(n,Qℓ) unramified at

almost allν ∈ hK , satisfying

λ (n)
K (π)ν ◦ΦΦΦ(ϕKν )

Kν
= L

(n)
Kν

(πν)

for everyν /∈ Sℓ, and the equalities

LArtin−Hecke
Sℓ

(s,λ (n)
K (π)) = LLanglands

Sℓ
(s,π)

and
εArtin−Hecke

Sℓ
(s,λ (n)

K (π)) = εLanglands
Sℓ

(s,π).

Moreover the arrow

λ (n)
K : Π(GL(n,AK))→ Repcont−n

Qℓ
(J

ϕ
K )o

is bijective, whereΠ(GL(n,AK)) denotes the category of irreducible admissible
smooth representations ofGL(n,AK) andRepcont−n

Qℓ
(J

ϕ
K )o denotes the category of

Frobenius-admissible n-dimensionalℓ-adic representations ofJ
ϕ
K which are un-

ramified at almost allν ∈ hK .

Proof. In fact, the injectivity of the arrow follows from the“strong multiplicity
one” theorem for GL(n,AK) of Piatetski-Shapiro (cf. [47]). For the surjectivity of
the arrow, note that, by the local (archimedean and non-archimedean) Langlands
reciprocity for GL(n), anyρ ∈ Repcont−n

Qℓ
(J

ϕ
K )o yields a collection{πρν }ν∈hK∪aK

consisting of irreducible admissible representationsπρν of GL(n,Kν) asν runs over
finite and infinite places ofK, where for almost all finiteν , πν is unramified. Then,
by Flath’s theorem,π = ⊗ν<∞

′πν ⊗π∞ is an irreducible admissible smooth repre-

sentation of GL(n,AK) satisfyingλ (n)
K (π) = ρ and the equalities

LArtin−Hecke
Sℓ

(s,ρ) = LLanglands
Sℓ

(s,π)

and
εArtin−Hecke

Sℓ
(s,ρ) = εLanglands

Sℓ
(s,π),

which completes the proof. �
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Note that, Theorem 7.2 has a very interesting consequence, which we state
now as the following corollary.

Corollary 7.3. For a finite subset S ofhK ∪ aK satisfying Sℓ ⊆ S, let{ξν}ν /∈S be
a collection consisting of continuous n-dimensional Frobenius semi-simpleℓ-adic
representationsξν : (J

ϕ
K )ν→GL(n,Qℓ) of the local group(J

ϕ
K )ν for ν /∈S, where

almost all of then are unramified. Then, the collection{ξν}ν /∈S uniquely determines
a continuous n-dimensional Frobenius-admissibleℓ-adic representation

ρ : J
ϕ
K →GL(n,Qℓ)

of the non-abelian id̀ele groupJ
ϕ
K of K, which is unramified at almost allν ∈ hK ,

and which satisfies
ρν = ξν

for everyν /∈ Sℓ.

Clearly, Theorem 7.2 is closely related with theglobal Langlands reciprocity
principle for GL(n) (for details [6, 7, 13, 14, 20, 36]). LetΠaut(GL(n)) denote the
category of equivalence classes of automorphic representations of GL(n,AK), and
let Πisob(GL(n)) andΠcusp(GL(n)) denote the full subcategories ofΠaut(GL(n))
whose objects are the equivalence classes ofisobaricand the equivalence classes of
cuspidalautomorphic representations of GL(n,AK) respectively. Following closely
[27, 35], an automorphic representationπ of GL(n,AK) is calledisobaric, if π ≃
π1⊞ · · ·⊞πm with eachπi acuspidalautomorphic representation of GL(ni ,AK), and
n1 +n2 + · · ·+nm = n. The automorphic representationπ1⊞ · · ·⊞πm of GL(n,AK),
called theLanglands sumof π1, · · · ,πm, is defined to be the automorphic represen-
tation of GL(n,AK), which isunique up to equivalence, satisfying

LS(s,⊞
m
i=1πi) =

m

∏
i=1

LS(s,πi).

The existence of the Langlands sum operation⊞ : Πisob(GL(n))×Πisob(GL(n))→
Πisob(GL(n)) follows from the theory of Eisenstein series. The global reciprocity
principle of Langlands for GL(n) predicts auniqueand“natural” bijective corre-
spondence

Πisob(GL(n)) oo // Repcont−n
Qℓ

(WK)o,dR

Πcusp(GL(n)) oo //
� ?

OO

Repcont−n
Qℓ

(WK)o,dR
irr

� ?

OO
Πisob(GL(n)) oo // Repcont−n

Qℓ
(WK)o

Πcusp(GL(n)) oo //
� ?

OO

Repcont−n
Qℓ

(WK)o
irr

� ?

OO

K : number field K : function field

between the categoryΠisob(GL(n)) of equivalence classes of isobaric representa-
tions of GL(n,AK) and the categoryRepcont−n

Qℓ
(WK)o (resp. the categoryRepcont−n

Qℓ
(WK)o,dR)

of equivalence classes ofn-dimensional continuous semi-simpleℓ-adic (resp.n-
dimensional continuous semi-simpleℓ-adic and de Rham) representations ofWK

unramified at almost allν ∈ hK in caseK is a function field (resp. in caseK is
a number field), inducing a bijective correspondence between the full subcategory
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Πcusp(GL(n)) of Πisob(GL(n)) consisting of the cuspidal objects ofΠisob(GL(n))

and the full subcategoryRepcont−n
Qℓ

(WK)o
irr (resp.Repcont−n

Qℓ
(WK)o,dR

irr ) of Repcont−n
Qℓ

(WK)o

(resp.Repcont−n
Qℓ

(WK)o,dR) consisting of the irreducible objects ofRepcont−n
Qℓ

(WK)o

(resp.Repcont−n
Qℓ

(WK)o,dR) which recovers abelian global class field theory when
n= 1, preserves the correspondingL-functions andε-factors, which is well-behaved
with respect to certain linear algebraic operations, and which is compatible with the
local Langlands reciprocity principle for GL(n). Altough the global reciprocity prin-
ciple for GL(n) is still conjectural ifK is a number field, in caseK is a function field
the global correspondence for GL(n) is now a theorem of L. Lafforgue [31]. Thus,
it would be very interesting to understand the following diagram :

Π(GL(n,AK))

λ (n)
K //

Repcont−n
Qℓ

(J
ϕ
K )o

λ (n)
K

−1
oo

Πaut(GL(n)) oo //
� ?

OO

?
� ?

OO

Πisob(GL(n)) oo //
� ?

OO

?
� ?

OO

Πcusp(GL(n)) oo //
� ?

OO

?
� ?

OO

Definition 7.4. An n-dimensional continuousℓ-adic Frobenius-admissible repre-
sentationρ of J

ϕ
K which is unramified at almost allν ∈ hK is calledautomorphic

type(resp.isobaric automorphic type, cuspidal automorphic type), if ρ = λ (n)
K (π)

for some automorphic (resp. isobaric automorphic, cuspidal automorphic) represen-
tationπ of GL(n,AK).

Now, assume that Conjecture 3.2holds. Let π be an irreducible admissible
smooth representation of GL(n,AK) such that the corresponding continuousℓ-adic

Frobenius-admissible representationλ (n)
K (π) : J

ϕ
K → GL(n,Qℓ) which is unrami-

fied at almost allν ∈ hK satisfies the“congruence relation”11

N
ϕ

K ⊆ ker(λ (n)
K (π));

11As Arthur points out in [2],

“However, the condition thatπ be automorphic is very rigid. It imposes deep and
interesting relationships among the components{πν} of π.”

Also, look at the Takagi Lectures of M. Harris [14] for a detailed account on the non-abelian generaliza-
tion of the “congruence conditions” appearing in abelian global class field theory.
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namely,λ (n)
K (π) is an object in the categoryRepcont−n

Qℓ
(J

ϕ
K )o

N
ϕ

K

of n-dimensional

continuousℓ-adic Frobenius-admissible representationsρ of J
ϕ
K unramified at al-

most allν ∈ hK and satisfying the congruence relation

N
ϕ

K ⊆ ker(ρ).

Then, asRepcont−n
Qℓ

(J
ϕ
K )o

N
ϕ

K

is equivalent to the categoryRepcont−n
Qℓ

(WK)o of n-

dimensional continuousℓ-adic semi-simple representations ofWK unramified at al-
most all ν ∈ hK by Theorem 6.3 and Remark 6.4, there exists ann-dimensional

continuous semi-simpleℓ-adic representationL (n)
K (π) of WK which is unramified

at almost allν ∈ hK corresponding toλ (n)
K (π) and satisfying the equalities

LArtin−Hecke
Sℓ

(s,λ (n)
K (π)) = LArtin−Weil

Sℓ
(s,L (n)

K (π))

and

εArtin−Hecke
Sℓ

(s,λ (n)
K (π)) = εArtin−Weil

Sℓ
(s,L (n)

K (π)).

Thus, Theorem 7.2 has the following important consequence.

Corollary 7.5. Assume that Conjecture 3.2 holds. Then, there exists a bijective
arrow

Π(GL(n,AK))
N

ϕ
K

λ (n)
K //

L
(n)
K

''

Repcont−n
Qℓ

(J
ϕ
K )o

N
ϕ

K
λ (n)

K

−1
oo

equiv.(6.2)
//
Repcont−n

Qℓ
(WK)

o

equiv.(6.2)−1
oo

defined by

L
(n)
K : π  λ (n)

K (π) L
(n)
K (π),

and satisfying the equalities

LLanglands
Sℓ

(s,π) = LArtin−Weil
Sℓ

(s,L (n)
K (π))

and

εLanglands
Sℓ

(s,π) = εArtin−Weil
Sℓ

(s,L (n)
K (π)),

for eachπ from the categoryΠ(GL(n,AK))
N

ϕ
K

of all irreducible admissible smooth

representationsπ of GL(n,AK) satisfying the congruence relation

N
ϕ

K ⊆ ker(λ (n)
K (π)).
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To proceed our discussion,first assume that K is a function field. As the global
reciprocity principle for GL(n) over a function fieldK is now a theorem of L. Laf-
forgue (cf. [31]), assuming that Conjecture 3.2holds, the diagram

Π(GL(n,AK))
N

ϕ
Kii

Corollary7.5

))TTTTTTTTTTTTTTT

Repcont−n
Qℓ

(WK)
o

Πisob(GL(n))
tt

Lafforgue

44jjjjjjjjjjjjjjjj

and, taking into account Theorem 6.3 and Corollary 7.5, the diagram

Π(GL(n,AK))1
N

ϕ
K ii

Corollary7.5

))TTTTTTTTTTTTTTT

Repcont−n
Qℓ

(WK)
o

irr

Πcusp(GL(n))
tt

Lafforgue

44jjjjjjjjjjjjjjjj

whereΠ(GL(n,AK))1
N

ϕ
K

denotes the full subcategory ofΠ(GL(n,AK))
N

ϕ
K

consist-

ing of the objectsπ of Π(GL(n,AK))
N

ϕ
K

for which λ (n)
K (π) is irreducible, yield the

following equivalences on a given irreducible admissible smooth representationπ
of GL(n,AK) :

Proposition 7.6. Let K be a function field. Assume thatπ is an irreducible admis-
sible smooth representationπ of GL(n,AK). Then,

π is an isobaric representation ofGL(n,AK)⇐⇒N
ϕ

K ⊆ ker(λ (n)
K (π)),

and

π is a cuspidal representation ofGL(n,AK)⇐⇒

{
N

ϕ
K ⊆ ker(λ (n)

K (π)),

λ (n)
K (π) is irreducible

provided that Conjecture 3.2 holds.
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Next, assume that K is a number field. Assuming that Conjecture 3.2holds,
we then expect the following diagrams

Π(GL(n,AK))
N

ϕ
K

oo
Corollary7.5

// Repcont−n
Qℓ

(WK)
o

Πisob(GL(n)) oo
Global Langlands

Reciprocity for GL(n)
//

� ?

OO

Repcont−n
Qℓ

(WK)
o,dR

� ?

OO

and

Π(GL(n,AK))1
N

ϕ
K

oo
Corollary7.5

// Repcont−n
Qℓ

(WK)
o

irr

Πcusp(GL(n)) oo
Global Langlands

Reciprocity for GL(n)
//

� ?

OO

Repcont−n
Qℓ

(WK)
o,dR

irr

� ?

OO

whereΠ(GL(n,AK))1
N

ϕ
K

is defined as in the function field case. It is then natural to

pose the following conjecture.

Conjecture 7.7. Let K be a number field. Assume that Conjecture 3.2 holds. Letπ
be an admissible smooth representation ofGL(n,AK). Then,

(1) The following statements are equivalent :
– π is an isobaric representation ofGL(n,AK);
– the Frobenius-admissible continuous n-dimensionalℓ-adic representa-

tion λ (n)
K (π) of J

ϕ
K unramified at almost allν ∈ hK satisfies

N
ϕ

K ⊆ ker(λ (n)
K (π))

and isBdR-admissible at eachν ∈ hK satisfyingℓ | qν .
(2) The following statements are equivalent :

– π is a cuspidal representation ofGL(n,AK);
– the Frobenius-admissible continuous n-dimensionalℓ-adic representa-

tion λ (n)
K (π) of J

ϕ
K unramified at almost allν ∈ hK is irreducible and

satisfies

N
ϕ

K ⊆ ker(λ (n)
K (π))

and isBdR-admissible at eachν ∈ hK satisfyingℓ | qν .

Certainly, Conjectures 3.2 and 7.7 imply the global Langlands reciprocity for
GL(n) over number fields.
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8. Langlands groupLK of a number field K

In the remaining of the text, we shall closely follow the workof Arthur [1].
It seems possible to apply the ideas developed in this work tothe construction

of the “hypothetical” Langlands groupLK of a given global fieldK, especially to the
construction of the Langlands groupLK in caseK is a number field, whose existence
is one of the major problems in the framework of the global Langlands reciprocity
and the global functoriality principles. In caseK is a function field, thenLK = WK

and we have already covered this case in the previous sections of this work.
Therefore, we shall from now on assume thatK is a number field. Then, for

eachν ∈ hK ∪aK , the local Langlands groupLKν is defined by

LKν =

{
WAKν = WKν ×SL(2,C), if ν ∈ hK ;

WKν , if ν ∈ aK .

Note that, ifν ∈ hK , instead of the traditional Weil-Deligne groupWDKν of the
non-archimedean local fieldKν , we shall use the topological groupWKν ×SL(2,C),
which is denoted byWAKν and called theWeil-Arthur groupof Kν (cf. Langlands
[32]).

Now, introduce the “thickened” versionW A
ϕ
K of the non-abelian id̀ele group

J
ϕ
K of a number fieldK as follows.

Definition 8.1. For eachν ∈hK fix a Lubin-Tate splittingϕKν and letϕ = {ϕKν }ν∈hK .

The topological groupW A
ϕ
K defined by the “restricted free product”

W A
ϕ
K := ∗

ν∈hK

′

(
Z∇(ϕKν )

Kν
×SL(2,C) : 1∇(ϕKν )

Kν

0
×SL(2,C)

)
∗W∗r1

R ∗W∗r2
C

is called theWeil-Arthur id̀ele group of the number field K. The finite (=henselian)
partW A

ϕ
K,h of W A

ϕ
K is defined by

W A
ϕ
K,h := ∗

ν∈hK

′

(
Z∇(ϕKν )

Kν
×SL(2,C) : 1∇(ϕKν )

Kν

0
×SL(2,C)

)
,

and the infinite (=archimedean) partW A
ϕ
K,a of W A

ϕ
K is defined by

W A
ϕ
K,a := W∗r1

R ∗W∗r2
C .

Here, as usualr1 and r2 denote the number of real and the number of pairs of
complex-complex conjugate embeddings of the global fieldK in C.

The topological groupW A
ϕ
K is an “extremely big” group, whose definition

depends only on K.

The following theorem describes the abelianizationW A
ϕ
K

ab
of the topological

groupW A
ϕ
K .

Theorem 8.2. The abelianizationW A
ϕ
K

ab
of the topological groupW A

ϕ
K is in-

deedJK .

Proof. The proof follows by first noting that the direct limit functor is exact and
then by abelianizing free products of groups. �
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Remark8.3. From now on, unless otherwise stated, we shall assume the existence
of the global Langlands groupLK of a number fieldK.

For ν ∈ hK ∪aK , as before, choose an embedding

eν : Ksep →֒ Ksep
ν .

This embedding determines a continuous homomorphism12

eLanglands
ν : LKν → LK ,

and therefore, for eachν ∈ hK , a continuous homomorphism

NR
(ϕKν )Langlands

Kν
: Z∇ϕKν

Kν
×SL(2,C)

{·,Kν}ϕKν ×idSL(2,C)
−−−−−−−−−−−−→

∼
WAKν

eLanglands
ν−−−−−→ LK .

Theorem 8.4 (Ultimate global non-abelian norm-residue symbol “Weak form”).
There exists a well-defined continuous homomorphism

NR
ϕLanglands

K : W A
ϕ
K → LK , (8.1)

which satisfies

(NR
ϕLanglands

K )S = NR
ϕLanglands

K ◦cS : (W A
ϕ
K)S

cS−→W A
ϕ
K

NR
ϕLanglands

K−−−−−−−→ LK ,

where, following Proposition 2.1, cS : (W A
ϕ
K)S→ W A

ϕ
K is the canonical homo-

morphism defined for every finite subset S ofhK ∪aK containingaK .

We conjecture that the continuous homomorphismNR
ϕLanglands

K : W A
ϕ
K → LK

should be considered as the“ultimate form” of the global non-abelian norm-residue
symbol of K. More precisely, we pose the following conjecture (to be precise, the
following meta-conjecture).

Conjecture 8.5 (Ultimate global non-abelian norm-residuesymbol “Strong form”).
The homomorphism

NR
ϕLanglands

K : W A
ϕ
K → LK

is open, continuous and surjective.

Finally, we have the following remark.

Remark8.6. (1) In fact, via the same lines of reasoning of this work, we can study
the relationship between the automorphic representationsπ of a general reduc-
tive groupG over the number fieldK with the global Langlands parameters
φ : LK →

LG of G, which is the content of theglobal reciprocity principle of
Langlands for a general reductive group G.

(2) It would be interesting to compare Arthur’s construction of LK , which uses
the classification of automorphic representations of Langlands in the sense
of “beyond endoscopy” [34], with the topological groupW A

ϕ
K constructed

in this paper. This comparison may reveal anunconditionaldefinition of the
global Langlands groupLK of the number fieldK.

12which is unique up to conjugacy.
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[46] Ş. Özden,Abelian global class field theory, Workshop on Algebraic Number Theory
andL-functions, August 29-September 04 2010, AkdenizÜniversitesi Adrasan Ěgitim
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26 Aǧustos Yerleşimi
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