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On the non-abelian global class field theory

Kazimilhan Ikeda

—Dedicated to Robert Langlands for his 75th birthday —

Abstract. LetK be a global field. The aim of this speculative paper is to discuss
the possibility of constructing the non-abelian version of global class fielorth

of K by “glueing” the non-abelian local class field theorieKgfin the sense of
Koch, for eachv € bk, following Chevalley’s philosophy of iles, and further
discuss the relationship of this theory with the global reciprocity principle of
Langlands.

Mathematics Subject Classification (2010frimary 11R39; Secondary 11S37,
11F70.

Keywords. global fields, iéle groups, global class field theory, restricted free
products, non-abelian ée groups, non-abelian global class field theéigdic
representations, automorphic representatibtignctions, Langlands reciprocity
principle, global Langlands groups.

1. Non-abelian local class field theory in the sense of Koch

For details on non-abelian local class field theory (in thesseeof Koch), we refer
the reader to the papers [21, 23,24, 50] as well as Laubie’k [83]. For the basic
theory of local fields and for the standard notation that wal $bllow, we refer the
reader to [3, 39].

LetK be alocal field. That i« is a complete discrete valuation field with fi-
nite residue class fielek of q= p’ elements. We shall furthermore fix an extension
¢k of the Frobenius automorphisknk of K" to KS¢P. Namely, we fix d_ubin-Tate
splitting ¢x = ¢ overK.

The non-abelian local class field theory fidrestablishes an algebraic and
topological isomorphism

o) G = O
between the absolute Galois groBp of the local fieldK and a certain topological
groupD,(f) which depends oK and on the choice of the Lubin-Tate splittifigpver

The author and this work was partially supported lﬂBiTAK Project No. 107T728.
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- - )7t - <r(®)
K. In this paper, we shall denote the inve of the isomorphisn®,’”’ by
(K} : 0@ = Gy

The construction of the topological gromﬁ‘p) involves the theory oAPF-extensions

of K and the fields of norms construction of Fontaine and WinteggyeMoreover,

the isomorphismbf(‘”), which is called thenon-abelian local reciprocity law of K

is “natural” in the sense that properties such as “existerté@nctoriality” and a
certain “ramification theoretic” property are all satisfi@ithe isomorphisn{-,K}4
is called thenon-abelian local norm-residue symbol of K

Remarkl.1. We should point out that the non-abelian local class fieldéor
K works under a technical assumption on the local fl€ldThat is, the inclusion
U, (KS¢P) C K should be satisfied. Under this assumption, the image of dime n

abelian local reciprocity mafbf<¢) can be described explicitly. But, this restriction
on the local fielK can be dropped without any effect on the general theory. Name
for any local fieldK, we glue the non-abelian local class field theory for thelloca
field K(u) and the abelian local class field theory for the local cyctatoextension
K(u)/K, wherep is any primitivep" root of unity (for example, look at Section 8
of [23]).

So, “non-abelianization” of local class field theory in tlese proposed first
by Koch, and developed further by de Shalit, Fesenko, Geingtiaubie and others,
is now a complete and solid theory. Thus, it is then a natutah®t to construct
the non-abelian version of global class field theory of a gldield by “glueing” the
non-abelian local class field theories of respective cotiguie of this global field
following Chevalley’s philosophy of iées.

2. Non-abelian ickle group /% of a global fieldK

From now onK denotes a global field; that ik is a finite extension of) or a finite
extension off (T) (that is, the field of rational functions of a curve definedrove
a finite field F ). For details about global fields and the abelian globalsciasd
theory, we refer the reader to [39,46]. Let denote the set of all archimedean
primes ofK (so in case is a function field, themx = @). For eachv € hg, where
hk denotes the set of all henselian (=non-archimedean) pririhi€s let K,, denote
the completion oK with respect to ther-adic absolute value. Fixing a Lubin-Tate
splitting ¢k, overK,, the non-abelian local reciprocity law

ot s, = i

or equivalently the “Weil form” of the non-abelian local rpocity law

v

¢)E(‘]‘>/Kv) :\M(V l) ZDE((I:,KV)
of the local fieldK, is defined. HerezDEfv“V) is a certain dense subgroup of the

topological groupD,%KV) (for details, see [23]). Moreover, following [50], or Seari
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8 of [21] together with [24] for detailed account, for eaele hk, there exists the
0
subgrouplDf(‘tK"F of ZD%KV) satisfying the equality

)0

o (G, ) =108 2.2)

The following two tables summarize the abelian and the rmgiian local class field
theories oK, , wherev € hy :

Abelian local class field theory | Non-abelian local C'F'T‘ﬁf fi)xed)
G Ky G, Ok, "
WeY Ky Jand Wk ZD%KVL
Wz’ U, W2 O™
= - - : v- - v T
W, 8e(i—1i] | Uy, W, de(i-1i| 08

Recall that, the passage from abelian local class field yhteaabelian global
class field theory follows via the éde groupJk of the global fieldK, where the

topological groupJk is defined by the “restricted direct product”
Jk = |_|' (Ky 1 Uk,)

vehk Uaok

of the collectior{ K }vencuac With respect to the collectioflUk, }ven, . €quipped
with the restricted direct product topology. Namely, adeljlobal class field theory
for K establishes an algebraic and topological isomorphism

(- K) = Artt - KA\ Jk = Gal(K2/K)
or equivalently the “Weil form” of abelian global class fidglteory forK establishes
an algebraic and topological isomorphism
(- K) = Artg L K\ I = WP

satisfying certain “naturality” conditions. The noncorpgroupK*\Jk is called

the ickle class group ok ande denotes the profinite completion Kf\ Jk.

The construction of the global norm residue sympoK) or the Artin reci-
procity lawArtk of the global fieldK can roughly be sketched as follows : First, for
each finite abelian extensidn'K, consider the well-defined homomorphism

RL/K Jk — Gal(L/K)

defined by
Rk : (Xv)v I—l I—l(xv,Lu/Kv)

Vovlu

for every(xy)y € Jk. AlImost allv are unramified in the extensiaK which yields
the well-definedness of the m&p k. Next, pass to the projective limit

lim Ry : Jk — lim Gal(L/K) = Gal(K*"/K)
L/K L/K
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over all possible such/K. Finally, check that the morphisn("n_IiRL/K induces a
homomorphism e
K*\Jk — G&°
which factors as
KX \Jk = W — G,
Thus, it is natural to push this idea to the extreme, and dhice the non-
abelian ickle group_gk of K, following the analogy between the tables above and

taking into account the philosophy of Miyake [40,/ 41] (alsok at lwasawa [26]),
as follows.

Restricted free products. Let {G; }ic; be a collection of locally compact topolog-
ical groups and for all but finitely manye | let O; be a compact open subgroup of
Gi. Denote the finite subset btonsisting of ali € | for which O; is not defined by
l. For every finite subset of | satisfyingl., C S, define the topological group

Gsi= 5,07 (1)
as the free product of the topological groupsfori € | — S andG;, fori € S, which
exists in the category of topological groups (cf. Morris]43 hen, therestricted
free productof the collection{G;}ic; with respect to the collectiofO; }ic—i.,,
which is denoted by (G; : O;), is defined by the injective limit
*'(Gj: G) :=1limGg
iel <
S
defined over all possible su@& where the connecting morphism
14 :Gs— Gt

for SC T is defined naturally by thuniversal mapping property of free products”
(cf. Hilton-Wu [18] and Morris [43]). The topology or/,(G; : O;) is defined
by declaringX C ., (G; : O;) to be open ifX N Gs is open inGs for everyS. So,
endowed with this topology!,, (G; : O;) is a topological group.

Proposition 2.1. Let {G; }ic| be a collection of locally compact topological groups
and for all but finitely many € | let O; be a compact open subgroup of. ®enote
the finite subset of | consisting of akkil for which Q is not defined by.d. Assume
that, for each ie I, a continuous homomorphism

@:G—H
is given. Then, there exists a unique continuous homongrphi

¢s:Gs—H

L {Gi}iel is a collection of topological groups arde G; is the free product of this collection together
with the canonical embeddings : Gj, — e Gi, for eachi, € |, then the universal mapping property
of free products states that, if for eaighe I, @, : Gj, — H is a continuous homomorphism, then there
exists a unique continuous homomorphigmxic| G; — H, such thatpo 1;, = @,, for everyi, € I.
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defined for each finite subset S of | satisfyiggd S, and a unique continuous ho-
momorphism
@=limes: *ig(Gi:0) —H
s
satisfying
¢¥s= @ocs: Gs =S * o (Gi 1 O) LH,
where ¢: Gs — *i (G; : O;) is the canonical homomorphism, for every S.

Proof. The collection of continuous homomorphisfg : G; — H }ic| determines
a unique continuous homomorphisg: Gs — H, for eachS, by the universal map-
ping property of free products. Moreover, 8C T, the diagram

\\
//

is commutative, wher& = */_, (G; : O;), by the universality of direct limits. [

Notation 2.2 As a notation, for a topological grou@, the n-fold free product
n-copies

—N— .
Gx---x G of Gis denoted byc*".

Non-abelian idele group /g of the global field K. Now, the following definition
introduces the major object that we intend to study in thiskwo

Definition 2.3. For eachy e bk fix a Lubin-Tate splittingpk, and letp = { ¢k, }veny -
The topological grouij defined by the “restricted free product”

/ (Bry) . —(#k,)2

is called thenon-abelian i&le group of the global field Kin caseK is a number
field,

0
/I?: * ! (zml(((l\)/K") : 1|:|f<¢;K")) WL R W2,

vehg

where the finite (=henselian) paﬂ%h of /,? is defined by
o (ool . qk)®
Ak = Ve <ZDKV t1b, )’

and the infinite (=archimedean) p@a,%@ of /% by
/,%@ = Wi s W2,

Here, as usuat; andr, denote the number of real and the number of pairs of
complex-complex conjugate embeddings of the global feld C.
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The non-abelian igle group/,é£ of K is an “extremely large” topological
group, whose definition dependaly on the global field K

Remark2.4. The non-abelian local class field theory in the sense of Kah h
evolved in two directions (look at [23] and [37]). The nore&n ickle groups intro-
duced in Definition 2.8 are definedla Fesenkpnamely, the construction is based
on the work|[23]. However, it is also possible to start witiubie class field theory

and define the non-abeliangld groups accordingly. Taking into account the work

Laubi
[21], the latter construction produces nothing new. Momecizely, if/g P de-

notes the non-abelianéte group ofK constructed in terms of Laubie class field
Laubie . _
theory, then there exists a topological isomorphiyf{? e /,? by [21].

b
The¢following theorem describes the abelianizatiﬂ;fa of the topological
group _#.

b
Theorem 2.5. The abelianization/ié£a of the topological groupj}é£ is indeed
Jk.

Proof. The proof follows by first noting that the direct limit functes exact and
then by abelianizing free products of groups. O

3. Non-abelian global reciprocity law : A proposal

Forv € hg Uak, choose an embedding
ey KSeP— K5P

This embedding determines a continuous homomordﬂiém)k at [51] for details)
ey'el W, — Wik,

and therefore, for each € by, a continuous homomorphism

Weil {-Kv} Weil
NRE(‘I;K\/) ¢ .Zmﬁ};v ~¢Kv \IVKV €y \/\4<

Theorem 3.1 (Global non-abelian norm-residue symbol “Wealkiorm”). There
exists a well-defined continuous homomorphism

¢Wei| ¢
NRg : Z — Wk, (3.1)
which satisfies
¢Wei| ¢Wei| ¢ cs ¢ NR%WE"
(NRg  )s=NRg ocs:(Fx)s— I — Wk,

where, following Proposition 2/1,sc (/,?)s — jg is the canonical homomor-
phism defined for every finite subset $pfJ ok containingak.

2which is unique ifK is a function field and unique up to composition with an inneoeorphism of
Wk defined by an element of the connected compotéhof Wk if K is a number field.
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Proof. Proposition 2.1 applied to the collection of continuous bamrphisms

Weil .
{NRE™ oot wep U i
vehg veok

completes the proof. O

Weil
We conjecture that the continuous homomorpHNslh% : jg — Wk should
be considered as tlggobal non-abelian norm-residue symbol of More precisely,

Conjecture 3.2 (Global non-abelian norm-residue symbol “8ong form”). The
homomorphism

¢Wei| )
is open, continuous and surjective.
Regarding this conjecture, the following remark is in order

Remark3.3. The conjecture 3/2 seems to be related with :

(1) the well-known fact that the absolute Galois grdsgp of the global fieldQ is
topologically generated by the inertia subgroups;
(2) the “Riemann’s existence theorem” for global fields (etails, see [44]).

4. Local-global compatibility of the non-abelian norm residue
symbols

Clearly, for eactv € hx Uak, there exists a natural homomorphism

¢ ZDS(?/KV>7 Ve [hK ¢
v (v = Wk, VEOKR  — K>

W@, Veak,c

which is defined explicitly via the commutative triangle
[
(Jk)s
1o
¢
(A ‘s
\\\Tﬁ\\\\\ﬁ
[
K

whereS s a finite subset ofix U ok satisfyingox € Sandv € S Note that, the

definition of the continuous homomorphism : (_#)v — /}? does not depend
on the choice of. In fact, if T is another finite subset &k U ok satisfyingox C T



8 K. I. Ikeda

andv € T, then by the universal mapping property of free products landhe
definition of the connecting morphistg.; : (_#¢)s 1 — (_Z¢)s the diagram

¢
(K )sT
Sl
[ s
(v s
9
¢
(s
commutes. Thus,
cgrr ot = g0 5,70 15 = cg01l¥ = qu,
which also proves that
Cro l\(/T) = Cso I\(,S).

The next Theorem is th#ocal-global compatibility” of {.,K, } 4, and NR% for
v € bk.

Theorem 4.1. For eachv € h, the following square

q
o) 2 gt

{-Kv}ag, J JN RE"!

VVKV4>V\4<

e
is commutative.
Proof. Note that,
&0 [ Ky g, = NRE™
Now, to prove that
NR%WeiI oqy — NR%KV)WeiI’

firstrecall thaty, = CgOl\(,S), wherev € Sa finite subset dfix Uaok satisfyingok C S.
Then,

il il
NREY o g, = NRE™™ o (cs019)
Weil
R 5
(9!
= NRZW™,

which completes the commutativity of the square. O
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5. (-adic representations of the non-abelian iéle group jg of K

By Theoren 3.1, and also by Conjecture 3.2 as well, it is entitteat any representa-
tion o : Wk — GL(V) of the absolute Weil group of the global fidfdon anF- vector

spaceV defines naturally a representaua& /K — GL(V) of the non-abelian

¢ Weil

L s . . . NR~
idele groupj}é2 of K on theF-linear spac# via the composmomﬁﬂ: ,f R S

Wk = GL(V). Here,F denotes any field. Moreover, i is assumed to be a topo-

logical field and thd--representatiol of Wk is a continuous representation, then
Weil

the continuity of the non-abelian norm-residue synikbﬁ% j,? — Wk of K
yields the continuity of the corresponditigtrepresentatio of jz Thus, the

(continuous)F-representation theory of the topological grogk—@ is closely re-
lated to the (continuoudj-representation theory of the absolute Weil grovip of
the global fieldK.

In this work, we shall focus on theontinuous?-adic representations of the
non-abelian igle groupjK of K:and their basitanalytic invariants”, namely the
L-functionsand thee-factors attached to these representations, Whose definitions
will be made precise below. By the preceding paragraph, sejotesentations are
deeply connected with théadic representations of the absolute Weil graMp
of the global fieldK, or equivalently to the ¢-adic representations of the absolute
Galois groupGk of K.

Remark5.1 In fact, instead of considering thieadic representations of the non-
abelianicle group/,f of the global fieldK, we can, and we should, more generally
consider the ¢-adic Hecke-Langlands parameterg?’K — LH(Q,) of H, whereH

is any connected reductive group o¥ewith the dual groupH, which is a connected

3In fact, we have not seen any work on the representationyttafahe restricted free product of topo-
logical groups. The closest work in the mathematical litein this direction are the 1995 paper of
Mtotkowski [42] and the 2010 paper of Hebisch and Mtotkow[dl6].

“We reproduce the following observation of Brian Conrad :K éte a global field ank be the absolute
Weil group ofK equipped with the natural continuous homomorphismik — Gk with dense image
(look at [51]). LetH be a finite-typeR,-group. Then any continuous homomorphi§mWg — H(Q,)
factors continuously througBg as

Gk

In fact, the targeH (Q,) is totally-disconnected. Therefore, such an arfow\k — H(Q,) should kill
the identity componerit of Wk. In the number field casey : Wk — Gk is a surjective topological
quotient map with kerp) = W. In the function field casep : Wk — G is the inclusion and\k is a
dense subgroup @ . Thus, in both caseg,: Wk — H(Q,) uniquely defines, : Gk — H(Q).
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reductive group ovet, and-H (Q,) is theQ,-rational poin@ of theL-group“H :=

H x Wk of H. These continuous homomorphisms are closely related Wwéth -
adic Langlands parameters” \W— “H(Q,) of H, which are the' ¢-adic avatars”
of theLanglands parametersd— “H of H, wherelLx denotes the global Langlands
group ofK, which is a conjectural group in cageis a number field. For details,
look at [1/ 5] 14, 25, 49]. We shall return to this discussioSeéction 8.

Continuous ¢-adic representations of/l?. Let

¢
p: Ji¢—GLV)
be a continuous representation of the topological gr on ann-dimensional
vector spac® overQ,. Such a representatigp,V) of _#- is called acontinuous

¢-adic representatioof _#,~. Then, the natural homomorphisip: (jg)ve /,?
defines a local continuous representation

¢ ZD'(‘QDVKV)’ vehe | ¢ p
pv=podv:(Fxlvi=9 Wg, Vveag g — Sk —CLV)
W, V Eaok,c

of the local group(/g)v on the vector spac¥ over Q,, for eachv € ok Ubk.
Moreover, we have the following important theorem, whiclessentially the “rep-
resentation theoretic” incarnation of Proposition 2.1.

Theorem 5.2. For eachv € ok Uhg, let
¢
Py : (/I()V — GL(V)

be a continuous representation of the local grcégzg)\, on the vector space V over
Q- Then the collectiodpy }veqcuinc defines a unique continuous representation

¢
p: 7 — GLV)
on the vector space V ov&;, such that
[ v 9 p
pv i (S = FC = GLV),
for everyv € ok Uhk.

Proof. By Proposition 2.1, for the collectiofipy }vee Uiy, there exists a unique

continuous representatiges of (_7)s on the linear spac¥ over Q, defined for
each finite subse&d of ax Uk satisfyingok C S, and a unique continuous represen-

tationp of /g on the linear spacé overQ, satisfying

ps=pocs: (7= 7¢ L GLV)
for every such se$, which further satisfies
pv=pso1y’ =pocsory = poaqy,
for everyv € ax Uhk. O

5The complex reductive groug is defined ove. Thus, we can consider the the grouplgfrational
points of thel-group“H.
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This theorem immediately yields the following corollanh@se proof is straight-
forward.

Corollary 5.3. There exists a bijective correspondence
o - [
{{pv}veoKu[hK (/K v —V> GL(n Qé) } = Rep%;m n(/ﬁ)
between the set of all collectioR®y }vequne CONsisting of n-dimensional contin-
uous/-adic representationpy : (_Z¢)v — GL(n,Q,) for eachv € ox Uhk and the
setRepC‘;nt n(/¢) of all n-dimensional continuouéadic representations oyK
defined by Theorem 5.2.

Hecke-Weil L-functions. To simplify the discussion, from now on, fix an isomor-
phismQ, = C using the axiom of choice. ‘
Our aim now is to define the “Hecke-Weil-function LHecke-Well(g ) at

sc C attached the continuoudsadic representatiop of _#,~ on then-dimensional
vector spac¥ overQ,.

Definition 5.4. Let ’
p: /( — GL(V)
be a continuous representationﬁk on ann-dimensional vector spadeoverQ,.

The“Hecke Weil” L-function LHecke-Weilig 5) ats e € attached to the representa-
tionp: /K — GL(V) is defined (formally) by the Euler product

LHecke—WeiI(S,p) — |—| LHecke—WeiI(S,pv) |—| LHecke—WeiI(S,pv)

vehg vehg
tay tlay
« LHecke—WelI(S’ Pv)7 se Q
VeEak

where for eaclv € g, the cardinality of the resid_ue class fiedd, of K, is denoted
by qy. Thelocal “Hecke-Weil” L-factor LHecke-Weil(g o) ats e C is defined

— forv € hg with 21 qy, by
LHeck(,LWeiI(S pv) — LArtin7We|I(S pv oCD ¢KV ) seC

where the right-hand side is defined as the usual local Alfil-L-factor of
the local representatign, oCD(¢K") :Wg, — GL(V) of the local absolute Weil

groupW, of K, on the vector spacé overQ, atse C;
— for v € hg with 7| qy, again by

LHeckeWeiI(S pv) — LArtin7We|I(S pv oCD ¢KV ) seC

where this time, the right-hand side is deflned in term&Fohtaine’s Dpst-
functor” via the“p-adic Hodge theory’; which we shall not discuss in the
text, and refer the reader to [10, 11, 52];

— forv € ek, to be the‘gamma-factor” I (s, p,) defined explicitly for example
in [30], which we shall not discuss in the text, and refer tader to [30].
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Remark5.5. Deninger introduced a unified construction of lotaflactors of mo-
tives (pure as well as mixed motives) as a certain powersenénfinite-dimensional
cohomologies (for details, look at/[8]). It would be veryengsting to study Artin-
Weil and Hecke-WeilL-functions in the framework of Deninger’s theory.

Hecke-Weil e-factors. Next, we shall define the-factor eHecke-Well(s p) atse C
attached the continuodsadic representatiop of /}? on then-dimensional vector
spaceV over Q,. In order to do so, let us briefly review the construction d th
global e-factors of continuoug-adic representations of the absolute Weil grvp
of the global fielK introduced by Deligne, Dwork, and Langlands (look at [5X] fo
details). Let

o Wk — GL(V)

be a continuous representationVii on ann-dimensional vector spaag over Q,.
Let : Ak — C* be a non-trivial additive unitary characterit which is trivial on
K, namely,y is a non-trivialglobal additive character of KFor eachv € ax U,
the local componenp, : (K,)+ — C* is a non-trivial additive character of the local
fieldKy. Letd™ i be theHaar measuren A normalized byjy, ,, d* u(x) = 1. Fix

a decomposition ™ 4 = [, d* py of d* p, where for almost al the local measure
d*uy is a “normalized” additive Haar measure Kp, normalized in the sense that
vol(O, ) = 1. Now, theglobal e-factor eAin-Well(s o) of the (-adic representation
o of Wk onV atse C is defined by the product

Artin—Weil( Artin—WeiI(

€ S,G): |_| € S7O-V7‘1U\)7d+uv)

veak Uhk
of local factorseAt"~Well(s, g, g, d "y ).
Recall that, the local facta®tin-Weil( gy, d+pu,), for v € by, is defined
explicitly for the case din@& (V)=n=1hy
J ov(Artk, (X))t (x/c)d™ py (x)
Uk

|Uf oy (Artk, (X))~ (x/C)d* py () |

ghtin=Well g w,,d* ) = oy (Artg, (c))

where the arrovArtg, :W,E‘vb = K is the Artin reciprocity law oKy, andc € K
satisfiesv(c) = a(oy) + n(yy). Recall that, the number(yy, ) is the conductor of
the additive charactey, : (Ky)+ — C* anda(ogy) is the Artin conductor of the
quasi-charactew, : Wk, — C*. On the other hand, therei® explicit formula for
the locale-factor A" -Well(g,, i, d* py) in case ding, (V) = n> 1. The best we
have is the'existence and uniqueness theorem of Deligne, Dwork andlzanas
for local e-factors”.

Remark5.6. It seems possible to give an explicit formula for the loediactor
gAtin-Wel(g,, g, d"puy) for the general case dig(V) =n> 1 in terms of the

5Therefore, ifo, Wk, — GL(V) is a 1-dimensional represen_tations\lmtv on theQ,-linear spacé/,
then there exists an explicit expression of the lac#hctor éAtn-Weil(g, ), d*p,) in terms of the
local Artin reciprocity law ofK,.
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non-abelian local reciprocity Iaw(¢KV W, — ZD<¢KV) of the local fieldK,, (look
at[ 22]@ Also, for a naive attempt in this direction, look at [19].

Definition 5.7. Let o
p: g —GL(V)

be a continuous representation Ocﬁ,? on ann-dimensional vector spacé over
Q. Let @ : Ak — C* be a non-trivial global additive character Iéf For eachv €

ok U, the local component af is denoted by, : (K, ); — C*. Letdt u be the
Haar measure ofx normalized byfy 5, d*u(x) = 1. Fix a decompositiod* u =

My d*uy of d*u, where for almost alb the local measurd™ i, is a normalized
additive Haar measure dfy, normalized in the sense that Y0k, ) = 1. Theglobal

“Hecke-Weil” e-factor eHecke-Weil(s ) of the representatiop jg — GL(V) at

se C is defined (formally) by the product

sp):= [] ¢

veak Uhk

Hecke—WeiI( Hecke—WeiI(

€ S, pv, Yy, dT ), scC.

For eachv € ak Ulhg, thelocal “Hecke-Weil” e-factor gHecke-Wellig o,y d* )
atse C is defined by

Heck&Well(S Pv,lIJv,d L) = gArtin— W6I|(s onq) (¢xy) ,LIJV’CHUV) seC.

Remark5.8. Note that, Definition 5.7 is provisional. In fact, it seemattto define
the global Hecke-Weit-factors from the local factors properly in the light of R
mark 5.6, we have to construct ttreon-commutative Tamagawa measumeri _#y-
following the lines sketched in [28, 53].

The assignementy ~ aig). Now, let

0 :Wk — GL(V)

be a continuous representationif on ann-dimensional vector spaaé over Q.
Then we have the following theorem.

&

Theorem 5.9. The/-adic continuous representatian: Wx — GL(V) defines nat-
urally a continuous representation

ol /,? — GL(V)
of f,? on the n-dimensional space V ov@r via the composition
¢We||

q)N

/K gGL(V)7

7As Tate points out irf [51],

“..., we have no way to defingx, ¢, dx) without using the reciprocity law isomor-
phismF* wWFab. In fact it was his [Langlands’] idea about “nonabelian peotity
laws” relating representations of degmeef W to irreducible representatiorns
of GL(n,F), and the possibility of defining(r, ,dx) for the latter, which led
Langlands to conjecture and prove ...

13

e_
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which satisfies
va oCDEg‘)}K") —o, = GoeXVeiI7
for everyv € hg. Moreover, the following identities hold :

LArtianeiI(S O') — LHeck&WeiI(S O'ﬂ)

and

Artin—WeiI( Heck&WeiI( ¢)

£ s0)=¢ S, 0,).

Proof. By Theorem 4.1 on the local-global compatibility of non-kdn@norm residue
symbols, note that

Ugv = U»?OQV
¢ Weil
ZGONRK oQy

= Goe\‘ﬁve” o{.,Kv}g, -
That is,
a?, 0@V — goell — g,

Now the proof follows directly from Theorem 3.1 and Definit#®5.4 and 5.7. O

Weil
Notation5.10 Let f}? denote the image i(vNR% eI) of the global non-abelian
Weil
norm-residue symbd{IR% . /%—A/Vk of K.
Remark5.11 If 0, and g, aren-dimensional continuou&-adic representations of
Wk, then clearly by Theorem 5.9,

(o)t = () ea 2=zl 8.

Moreover,if Conjecture 3.2 holdsnamely, iff,;2 =Wk, then the assignement

g~ ag
introduced in Theore.g, wheteis the continuous representationt on the
n-dimensional spacé overQ, is aninjection

Remarks.12 If Conjecture 3.2 holdghen the assignement

g ~~ Gg
introduced in Theorem 5.9, wheeeis the continuous representationW on the
n-dimensional spacé overQ, clearlypreserves irreducibility and semi-simplicity
That is,

— o isirreducible= ag is irreducible;
— 0 is semi-simple=- g;- is semi-simple.

Note that, 1-dimensiondtadic representations of the absolute Weil grdvgp
of K can be identified with thé-adic Hecke charactersf K via abelian global
class field theory. Thus, an immediate consequence of Thesi@is the following
corollary, whose proof is straightforward.
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Corollary 5.13. An/-adic Hecke character
X K\Jk =@
of K defines naturally a continuodsdimensionaV-adic representation
xt: gl -
of the non-abelian idle group/K@ of K via the composition

X

RS-
Weil / \
R c X

A _
Xg:/g \/\4( an ngb rtg KX\J]K Q2<7

which satisfies

Ao

X,?VOQJWK") Xy *Xoexve'l

for everyv. Moreover, the following identities hold :
LArtin7WeiI(S X) — LHecke(S X) — LHeck&WeiI(s X;ﬁ)
and
SArtin—WeiI(S’X) _ gHecke(S X) _ £Hecke—WeiI(S Xg)

Thus, Hecke and Artin-Well-functions are special cases of Hecke-Weil
functions via Theorem 5.9 and its Corollary 5.13 as desdribe¢he following dia-
gram :

Hecke We|l
L functlons
non-abelian global CFT
Corollary'5.13 Theorem 5.9
Hecke Artm We|I
L funct|ons abelian global CFT L functlons

Also, Hecke and Artin-Weik-factors are special cases of Hecke-Véefhctors via
Theorem 5.9 and its Corollary 5.13 as described in the fotlgwiagram :

Hecke We|I
€- factors
non-abelian global CFT
Corollary/5.13 Theorem 5.9
Hecke Artln Well

e factors abelian global CFT g factors
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Analytic properties of Hecke-Weil L-functions. Note that, the assignement
¢
g ~ Oy

introduced in Theorem 5.9, wheteis the continuous representationViff on the
n-dimensional spac¥ over Q, that is under consideration, also sheds light on the
basic analytic properties of the Hecke-Weifunction LHecke-Weil(g a,?) attached
to the corresponding continuous representatk%nof /% on then-dimensional
spaceV overQ, .

In fact, it is well-known thatLA"N-Wel(s g) is a convergent product for
s € C satisfying Rés) > 0. Moreover, byBrauer’s induction theoremthe prod-
uct LAtn-Weills ) defines a meromorphic function in the whole complex plane,
and satisfies the functional equation

LArtin—Weil(S G) _ sArtin—WeiI(s O') LArtin—WeiI(l_ s GV)
Y t Y )

whereg" is thecontragardierﬁ of g.
Now, we shall single out the continuodésadic representations of the non-
abelian ictle groupf,;i of K that have nice “analytic invariants”.

Definition 5.14. An n-dimensional continuoué-adic representatiop of /,? is
. . . . Weil
calledGalois typeif it factors through the non-abelian norm-residue symNub% .

j}?—ﬂl\/k ofK as

¢ Weil
NRK py

s Wk ——GL(n, Q)

for somen-dimensional continuoué-adic representatiop? : Wk — GL(n,Q,) of

Wk .

Remarlks.15 Certainly, if o is a continuous representationdilf on ann-dimensional
spaceV overQy, then the continuou&adic representation;- of /}? onV assigned
by Theorem 5.9 is clearly of Galois type, and the following&lty holds
9y
Oy =0
(@) jp=01,0
by Remark 5.11. Moreoveif, Conjecture 3.2 holdghen the assignement

O'Wag

introduced in Theore.g, wheteis the continuous representation\; on the
n-dimensional spacé overQ, induces a bijective correspondence

Repe"™ (W) = RepfEM Mel(_zid)

8Recall that, the contragradient of a continuaedimensional-adic representatioa : Wk — GL(n, Q)
of W is defined to be the representatiof : Wk — GL(n, Q) of Wk defined byo" (w) =ta(w™1) for
everyw € Wk.
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between the sdiep%‘jm‘”(vw) of all n-dimensional continuoué-adic representa-
tions ofWk and the seRepg;”‘*”?Ga'( /,?) of all Galois typen-dimensional contin-
uoust-adic representations gﬂ?, which is a subset d?ep%;m*“(/,?). Note that,

by Remark 5.12, this bijective correspondence preservediicibility and semi-
simplicity. We shall return to this discussion within thearfmework of Tannakian
categories in Sectidn 6.

Theorem 5.16. Assume thap is an n-dimensional continuousadic Galois type
representation of 2. Then the attached Hecke-Weil L-functiofetke Weil(s p)

is a convergent product for s C satisfyingRe(s) > 0. Moreover, the product

L Hecke-Weil(g ) defines a meromorphic function in the whole complex plang, an
satisfies the functional equation

LHecke—Weil(S P) _ EHecke—Weil(S p)l_Hecke—WeiI(l_S p\/)

where p" is the contragradient of the representatipnof /,? on the Q,-linear
space V.

Proof. As then-dimensional continuousadic representation of /,? is of Galois
typey
¢
(pY) = p.
Now, by Theorem 5.9, the identity

LArtianeiI(S py) — LHeck&WeiI(S p)

follows. Thus, the Hecke-Weil-function LHecke-Well(s p) is a convergent product
for s € C satisfying Rés) > 0. Moreover, the produdtHecke-Wel(s p) defines a
meromorphic function in the whole complex plane, and sassdi functional equa-
tion

LHeckeLWeil(S P) _ gHeckeWeil(S p)LArtin—Weil(l_ s (py)\/)

where(p”)" is the contragradient of the representathof Wk on theQ,-linear
spaceV. Therefore, it suffices to prove that, for the representgpi@f #~ on the
Q,-linear space/, the identity

4
P’ = (P2
is satisfied. Then, by Theorem 5.9, the equality
LArtin—WeiI(s (py)v) _ LHeck(,LWeil(S p\/)

yields the functional equation

LHecke—WeiI(S P) _ SHecke—WeiI(S p)l_Hecke—WeiI(l_S PV).
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Now, for anyx € /,%

((o"") ) = ()" (NRE )
=t[<pV><NR%Wef'<x>*l>]
— (") (NRE™ ()Y
="p(x) Y]
='p(x7})
=p“(x),
which completes the proof. O

“Fine-tuning” Theorem 5.9. In the remaining of this section, we shall “fine-tune
Theoren 5.9 by specializing the continuous representationk — GL(V) of the
global Weil groupWk of K on then-dimensional linear spacé over Q, to the
following cases : Thex-dimensional-adic representatioa : Wk — GL(n,Q,) of
Wk

is assumed to be semi-simple;

has a model over some finite extensiooverQy;

is unramified at almost all places kf

in caseK is a number field, is B-admissible av in the sense of Fontaine”
(look at [10, 11]) for each henselian plaeeof K satisfying? | q,. That is,
for v | £ (so for such a place of K, the extensiorK, /Q, is finite), the local

Weil
representatiom, : Wk, &, Wk R GL(V) is “B-admissible in the sense of
Fontaine” (look at [10, 11]); and finally,
— is pure of weightv € Z.
Note that, except for the first two assumptions@nWk — GL(n,Q,), all the re-
maining ones on thé-adic representation are defined “locally”.

Remark5.17. We make these assumptions, because the global Langlands rec
procity principle for GL(n) over the global fielK asserts the existence of a unique
natural bijective correspondence between the collectiatl equivalence classes of
irreduciblen-dimensional-adic representations of the Weil growg of K satisfy-
ing these assumptions, which are called, in dasge assumed to be a number field,
“geometric Galois representationdly Fontaine and Mazur (for details, dradic
representations &k, look at [13] for the function field case, and [4, 10,11, 12, 54
for the number field case), and the collection of all equivedeclasses of cuspidal
automorphic representations of theslglgroup GI(n, Ak ), which are furthermore
“algebraic” in the sense of Clozel in caeis a number fielg|20 (for details on cus-
pidal automorphic representations of GLAk ), look at [13] for the function field

9For example Maass forms on @, Q) do not correspond to Galois representations.
10As Ngb points out in[[45],
“In the number fields case, only a part 6hdic representations & coming
from motives should correspond to a part of automorphic remtesions.”
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case, and [6] for the number field case). Moreover, this spordence satisfies cer-
tain “naturality” conditions meaning that the bijectiorositd recover abelian global
class field theory when = 1, should respect the correspondindunctions anck-
factors, should well-behave with respect to certaiaar algebraic operationsand
should satisfyocal-global compatibility

Now, let v € hk such that/ { gy,. A continuous¢-adic representatiow, :
Wk, — GL(V) of Wk, on an/-adic space/ is said to beFrobenius semi-simple
if the Q,-linear operatooy, (¢, lw, ) acts semi-simply ol for some fixed Frobe-
nius ¢, |WKV in Wk, . Recall that, there exits an equivalence of the followingliimn
categories :

Weil-Deligne representatior}s_ [ Continuous Frobenius semi-simple r¢p-
of K with coefficients inQ, | ~ | resentations ol on Q,-linear spaceg

Definition 5. 18 Letv € hg such that {qy. A continuous representatign: /K
GL(V) of /K on anf-adic spac® is calledFrobenius semi-simple at, if

(¢ky)

P
pyod) owy, 2 o) 2 gLy

is a Frobenius semi-simple representatiof onV. That is, the linear operator
Py o Py ¢KV (dx, lw, ) acts semi-simply on thé-adic linear spac¥.

}veo b€ @ collec-

Let {&: 200 GL(V)}VG[hK U{& Wk, — GL(V)

tion of continuoug-adic representations ah If &, : ZD%KV) — GL(V) is a contin-
(¢KV)
uous Frobenius semi-simple representation in the sens& thd®, ¢KV Wk, v,

ZDS’VKV) =% GL(V) is a Frobenius semi-simple representatiol\Rf onV for each

v € hk satisfying? { gy, then Theorerh 5.2 yields the existence of a unique con-
tinuous representation : _# — GL(V) of /,? on the/-adic spacé/ such that
pv = &y, for v € hg satisfying?  q,. Thus, we make the following definition.

Definition 5.19. The continuous representatign /,? — GL(V) of /,? on the
n-dimensional-adic spac® is calledFrobenius-admissibléf p is Frobenius semi-
simple atv for all v € hg satisfying/{qy.

Assume that the continuodsadic representatioa : Wk — GL(V) is further-

Weil
more semi-simple. Then the local representapn Wk, &5, W < GL(V) is
Frobenius semi-simple for eaehe hk satisfying{ g, by thelocal-global compat-
ibility of the Langlands correspondence fGiL(n) (look at [15] for details). Thus,
the following corollary follows now from Theorem 5.9, and fibitions[5.18 and
5.19.

Corollary 5.20. Let 0 : Wk — GL(V) be a continuoug-adic semi-simple repre-
sentation of ¢ on the n-dimensional linear space V ov@r. Then, the naturally
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defined continuous representation
ol 722 oLv)
of jg onV is Frobenius-admissible.

Recall that, a continuousdimensiona¥-adic representation : Wk — GL(n, Q)
has anodel over some finite extension E olerif the corresponding-adic Galois
representatiom, : Gk — GL(n,Q,) has amodel over some finite extension E over
Q. That is, if the continuous representatigg: Gk — GL(n,Q,) factors through a
continuous homomorphism, : Gk — GL(n,E) as

0o: Gk =% GL(n,E) — GL(n,Qy),

where the continuity of the arrow, is defined with respect to the Krull topology on
Gk and thel-adic topology on GIn, E). Thus, it is natural to make the following
definition.

Definition 5.21. A continuous representatign: /,? — GL(n, Q) is said to have a
finite model over some finite extension E olgr if it factors through a continuous
homomorphisnp, : /%a GL(n,E) as

p: AE 2 GLINE) — GLT)),
where the continuity of the arrow, is defined with respect to the restricted free

product topology on/iéi and thel-adic topology on GIn,E).

By Baire category theorenit follows that any continuous representat{eg —
GL(n,Q,) has a model over some finite extensBmover Q, (look at [25] and [29]
for details). Therefore, the following corollary immedigt follows from Theorem
[5.9 and from Definitioh 5.21.

Corollary 5.22. Leto : Wk — GL(n,Q,) be a continuoug-adic representation of
Wk . The naturally defined continuodsadic representation

¢ ¢ =
0.1 f¢ — GL(nQ)
of /,? has a model over some finite extension E dyer

More generally, the following proposition follows from Deiion[5.14 and
from Definition5.21 directly.

Proposition 5.23. Assume thap is an n-dimensional continuodsadic Galois type
representation of ,% Thenp has a model over some finite extension E dyer

Recall that, a continuousdimensional-adic representatioo : Wk — GL(n, Q)
of Wk is said to bainramified atv € b, if o, (lk,) = 1. Thus, we introduce the fol-
lowing type of ¢-adic representations of the non-abeliaﬁldﬂgroup/% of the
global fieldK.
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Definition 5.24. Let v € hg. A continuous representatign. /}?H GL(V) of /,?
on an/-adic spac¥ is calledunramified atv, if

0
o (98 1)) Doy (103 =1

that is, if the local representatiqy : ZD%KV) — GL(V) is unramified. Otherwise,
the representation is calledmified atv.

The continuousi-dimensionall-adic representatioo : Wi — GL(n,Q,) of
Wk is said to beunramified at almost all placesf K, if g, (lk,) = 1 for everyv ¢ S
for some finite subse®:= S(o) of hx. Thus, we mtroduce the following type of

(-adic representations of the non- abellaelernlgroup/K of the global fieldK.

Definition 5.25. The continuous representatign /,( — GL(V) of /,( on the
(-adic spac®/ is said to beunramified at almost all placesf K, if if there exists a
finite subse§(p) =: Sof hk such that, for each finite prime¢ S, the representation

p of _Z¢is unramified av.

Now, by Theorem 5]9, and by Definitiohs 5|24 and 5.25, thefdlhg result
follows immediately.

Corollary 5.26. Leto : Wk — GL(V) be a continuous representation okWn the
{-adic space V, which is unramified at almost all places of KerT;ithe naturally
defined continuous representation

o 72 GLv)
of /}? on the/-adic space V is unramified at almost all places of K.

Recall that, a continuousadic representatioa : Wk — GL(V) of Wk on the
spaceV is pure of weight we 7, if

— there exists a finite subsgof hk such that, for each finite prime¢ S, the lo-
cal representatioay, : Wk, — GL(V) is unramified namely,o, (I, ) is trivial;
and

— the eigenvalues af, (¢x, |w,) are algebraic integers whose complex conju-

v

gates have complex absolute vaﬁ%z.
Thus, we make the following definition.

Definition 5.27. A continuous representatiqm: /g — GL(V) of /,? on aQ,-
linear spac®/ is calledpure of weight we 7, if

— there exists a finite subs&p) =: S of hx such that, for each finite prime

v ¢ S the local representatiqu : ZDS’VM — GL(V) is unramified; that isp
is unramified av, and
— the eigenvalues g, ( o) (¢Kv Ik, )) are algebraic integers whose com-

plex conjugates have complex absolute vaﬂ;’/@.



22 K. I. Ikeda

Corollary 5.28. Assume that the continuodsdic representatiow : Wk — GL(V)
is pure of weight w. Then, the naturally defined represeoiati

ol j,% — GL(V)
of /g on the n-dimensional linear space V ovgris pure of weight w.

Proof. Follows from Theorem 5.9, Definitions 5.24, 5.25 and Corgla.26, and
Definition[5.27. O

Finally, in caseK is a number field, a continuousadic semi-simple repre-
sentationo : Wk — GL(V) of Wk on ann-dimensional vector spadé over Q, is
calledB-admissible av for each henselian place of K satisfying? | q,, whereB
denotes a topologicdl,-algebra endowed with a continuous linear actiorGef,
if a corresponding moded, : Gk — GL(V,) on an n-dimensional linear spacg V
over some finite extension E ov&rof degre€E : Q;] = n, is B-admissible av for
each henselian place of K satisfying/ | q,. That is,the local Galois representa-
tion (0. )y : Gk, — GL(V.) on the linear space Mover E isB-admissible for each
finite placev satisfying? | q,. Recall that, following closely [4, 10, 11for each
finite placev satisfyingl | v, (. )y : Gk, — GL(V.) is calledB-admissibleif the
following equality

dimgey, (De(Ve)) = dimg, (Ve)
holds, where
Dg (V) = (B ®q, Vo) O

is aBCkv -linear space (note th&C«v is a field).

Remark5.29 Note that, the definition oB-admissibility ofo : Wk — GL(V) atv
for each henselian plaaeof K satisfying? | q, doesnot depend on the choice of
a modela, : Gk — GL(V,.) on ann-dimensional linear spacé over some finite
extensiork overQy.

Thus, we make the following definition.

Definition 5.30. Let B denote a topologicdl,-algebra endowed Wlth a continuous
Ilnear action ofGq, . A continuousGalois typerepresentatiop : /K — GL(V) of
/K on aQ,-linear spac¥ is calledB-admissible av for each henselian place of
K satisfying/ | gy, if there exists a representatiph : Wk — GL(V) on theQ,-linear
spaceV satisfying

P

m
o NRy oY

I Wk GL(V)
and which isB-admissible av for each henselian plaaeof K satisfying? | q,.

Remarks.31 In fact, following [10, 11], it is possible to defirig-admissible repre-
sentations, at a hensellan placef K satisfying/ | qy, of _#¢- on aQ,-linear space

V for any regulan @y, (jK) )-ring B. However, for this work, it suffices to restrict
to the special case introduced in Definition 5.30.
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Certainly, by Theorem 519 and by Definition 5.30, the follog/icorollary fol-
lows directly.

Corollary 5.32. Leto : Wk — GL(V) be a continuous representation ok\Wn the
(-adic space V, which iB-admissible av for each henselian placeof K satisfying
¢ gy. Then, the naturally defined continuous representation

ol /,? — GL(V)

of /}? on thel-adic space V i8-admissible av for each henselian place of K
satisfying? | qy.

Remark5.33 In what follows, we are primarily interested in the céise: Byg.

That is, we have established the following table :

oW 2L GLY) |~ [ of: g 2 GLV)
semi-simple Frobenius-admissible
has a model over some has a model over some
finite extensiorE /Q, finite extensiorE/Q,
unramified at almost unramified at almost
all places oK = | all places oK
pure of weightw € Z pure of weightw € Z
(if K is a number field (if K is a number field
B-admissible at each B-admissible at each
vehgstl|qy vebhgstl|agy

6. Tannakian categories
Weil

Note that, the global non-abelian norm-residue syrrMR;% : /g — W of K

naturally produces a functor
G ﬂ
Repg™(Wk) — Rep"#{(_zc) (6.)

from the categor)Rep%’m(V\k) of ¢-adic continuous representations\Wg to the

categoryRep%‘Z““Ga'( ) of Galois type continuous representations d@’f? with

coefficientsQ, introduced by Definition 5.14, which is defined by pulling kac
representation o\ on aQ,-linear space/ to /}% Moreover, Theorem 5.9 states
that this functor
— preserves the respective representation spaces;
— preserves the respectikefunctions ance-factors;
and Corollaries 5.20, 5.26, and 5.28 state that it furtheemo
— sends semi-simpléadic continuous representations\iif to the Frobenius-
admissible representations of
— sendd-adic continuous representationsigf which are unramified at almost
all places oK to ¢-adic continuous representationsﬁ,;i which are unram-
ified at almost all places &f;
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— sendg-adic continuous pure representation¥\@f of weightw to /-adic con-
tinuous pure representations gf,- of weightw.

If K is a number field, Corollary 5.32 state that the fundtor (Gutthermore

— sendd-adic continuous representations/gf which areB- adm|SS|bIe ateach

v € bk such that | q, to ¢-adic continuous representatlonsﬁtr( which are
B-admissible at each € hg such that | g,.

Weil
Notation6.1 Let /V¢ denote the kernel ken\IR% e') of the global non-abelian
norm-residue symbd‘{IRK /K — Wk of K.

Remark6.2 Assume that Conjecture 3tlds Let
9
p: I —GLV)

be any (that is, not necessarily of Galois type !) continuous reprgation of /,?
on a vector spacé overQ,. Then the following conditions are clearly equivalent :

— we have an inclusiom/Kﬂ C ker(p);
— the representatiofp, V) of /};ﬂ factors through

o: jlf canccllnlcal% \fd) Po GL(V),

wheret/t/}\/}? %Wk under the global non-abelian norm-residue symbol
Ko

NRK of K.

— the representatiofp,V) of /K is of Galois type.

Thus, by Remark 6.2, we get an alternative description octzﬂmegoryRepCO”t 3y /,;ﬂ)
as follows.
Let Repcont( fK ) 4 o denote the category of continuoftadic representations

(p,V) of /K satisfying the‘congruence relation”
HEC ker(p).
Assuming the validity of Conjecture 3.2, Remark 6.2 yiehis ¢quality

¢
cont Gal(/K) Repcont(/K,)‘/V£

which is an alternative descrlptlon ofthe categBeyocont Ga| /,?). Moreover, com-
bining Remarks 5.15 and 6.2, there exist an equwalence

RepCOnt(VvK Repcont /K (/Vi

of the categor|e$Rep°°m(\/\4<) and Rep°°m( j() ¢ “natural” in the sense that
K

it preserves the respectlve representatlon spaces, yessaeducibility and semi-
simplicity, L-functions ande-factors. More precisely, we have the following theo-
rem.
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Theorem 6.3. Assume that Conjecture 3.2 holds. Then the functor
9
Repgy"(VWk ) — RepZ™(_7x)
defined by Theorem 5.9 induces an equivalence

[
Rep%;m(\NK) ~ Rep%(;m(/l()m(g (6.2)

between the categoriéfep%j“t(\/\k) and Rep%?”t( /}?) ¢ which preserves the re-
4 4 K

spective representation spaces, preserves irredugilahid semi-simplicity, as well
as the respective L-functions and théactors.

Proof. Following Remark 6.2, define the functor

4
Rep2( 8, » — RepM(Wk )

by
¢\
(p,V) = (Poo (NRg,)~%,V)
for every representatiofp,V) of /% satisfying the “congruence relation?l/Kg -
ker(p). Then, by Theorem 5.9,

(Poo (NRE) L V) 1 ((poo (NRE ) )., V),

where ] ’ .
Poo (NRRO)_l)* =pPgo (NRRD)_lo NRy
— poo (NRE ) Lo NRE o
= PooCk
=p,
which shows that the composition
4 ¢
Repg™(7ic) ¢ — Repg (W) — Rep™(7c) 0
. . . ¢
is the identity functor orRep%zm(/}()WKg.

Now, leto : Wk — GL(V) Ee any continuous representationV@{ on ann-
dimensional vector spadéoverQ,. Then, the corresponding continuous represen-
tation

ol 722 oLy

of the topological groupjg on then-dimensional vector spadé over Q, satis-
fies the “congruence relation’;;~ C ker(a?), asa € JVKQ yields o, (a) = 0o
NR%(C!) = 0(dw ) = 1v. Moreover,

(02.Vv) - (0 o (NRE )1 v),

where
¢ ¢ )7]_

U@O(NRRO =0,
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because for anw € Wk, there exists am, € /g such thaiN R%(aw) =w. There-
fore, 0% o (NRE. )1 (w) = 0 (AL aw) = 02 (aw) = 0o NRE (aw) = o/(w). Hence,
the composition

Repcont(\M<) N Repcont(j

is the identity functor orRepcom(WK).
Thus, there exists an equivalence

RepSoM(Wk) ~ Rep™( 7¢) | o
K

4 ) ¢ N Repcom(\/\k)

between the categoné&pm”t(\/\/k) and Rep°°”t( /,?) .4, which clearly preserves
K

the respective representatlon spaces, preserves irbdidycnd semi-simplicty, as

well as the respectivie-functions and the-factors. O

Remark6.4. Moreover, the equivalence (6.2) induces the equivalences :

Repcont(\M() NRepcont(f‘p)F/:/ogadm
K

between the full subcategoRepcom(WK)SS of RepEO”‘(VVK) whose objects are

the semi-simple objects ﬂfepci’”t(V\/k) and the full subcategoryepg, (/%5{/"#“’“
K

of Repc""‘(jK ) whose objects are the Frobenius-admissible objects of

Repcont( /K )

_ ¢
Repcont(v\k)nr aeN Repcont(/ )n/Lgae
<K

between the full subcategolzgepcom(\/\k)”r*ae of Rep%i”t(\/\/k) whose objects
are the objects dERepC"”t(Wk) wh|ch are unramified at almost all placeskof

and the full subcategorfepg, ( /K )" aeof RepCom /,;f) _» whose objects
K

are the objects dRepcom(/K*)JVKg WhICh are unramified at almost all places
of K;
cont purew cont ¢ purew
Repg, (k) Repg, (Jk) 8
between the full subcategoﬂepcont(\/\k)p“’e"" of Repcom(VVK) whose objects
are the objects dERe CO”t(\/\/k) WhICh are pure of Welghl&l and the full subcat-

egoryRepg, ( /K )p”rew of Re pcom( /() .4 Whose objects are the objects of
<K
Repcom(/K ) o WhICh are pure of weighw.

If K is furthermore assumed to be a number field, then

Rep%jnt(v\k)[BfadmN Repcont(jg)[ijzdm
: K
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between the full subcatego@ep%;”‘(vw)B‘admof Rep%‘;”‘(wk) whose objects
are the objects oIRepCO”t(V\k) which areB-admissible at each € hx satis-

fying ¢ | gy and the full subcategoriRepg, (/K )B adm qf RepCO”t(jg)WKg

whose objects are the objectsRﬁpCO”t( /K ) 48 WhICh areB-admissible at
K
eachv € hg satisfying? | qy.

7. On the global Langlands reciprocity principle

On the other hand, the proper generalization to the norigabsétting of the idle-
class character of abelian global class field theory is thiemof automorphic rep-
resentatiorof GL(n, Ak ) for 1 < n. So, it is natural to ask the relationship between
automorphic representations of GLAK) and then-dimensional-adic representa-
tions of the non-abelian é&le grouij of K.

Now, suppose thatr is anirreducible admissible smootrepresentation of
GL(n,Ak) (cf. [6]). Then, following Flath [9], there exists the rasted tensor prod-
uct decompositiont = ®y ' T, ® Tk, of 1T, where

— 11, is an irreducible admissible representation of the localgrGL(n,Ky),
for eachv € hg;

— 13, is an unramified representation of the local groupGK, ), for almost all
v € bhk.

Fix a rational prime/. We shall define the s& as usual by
S = {V € hg ‘ l | qV}U@K.

By the (non-archimedean) local Langlands reciprocity@ple for GL(n), which is
now a theorem of Laumon-Rapoport-Stuhler|[38], Harristdaj15] and Henniart
[17], for eachv € hk satisfyinglt gy, thatisv ¢ S, there is a correspondence

n\/ — féc)(n\)),

where B

20 () Wk, — GL(Qy)
is an (equivalence class afjdimensional Frobenius semi-simgladic representa-
tion of the Weil groupAk, of K, such that

LLangIandfS7 775\/) — LArtianeiI(S7 -iﬂK(n)(T[v))

and
gLanglands(s, 1, Yy, d ) = gArtin—Weil(S’ fén>(n\/)7 Wy, dt ).

v

Moreover, for almost alb € hg, as the local admissible representatiprof GL(n,K)
is unramified, the correspondirfgadic representatioriﬂé:)( ) of Wk, is unram-
ified as well. On the other hand, ¥f € hk satisfies? | gy, then for the time being
there is unfortunatelyo known well-formulated conjectural statement neither for
the “p-adic Langlands functoriality”nor for the“p-adic reciprocity principle for
any reductive group G"where only for the cas€ = GL(2) andK, = Q, some
results are known (look at [33] for the theory pfadic automorphic forms from a
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very general perspective). Thus, for this case and for tee wa& ok as well, we
shall “forget” the corresponding irreducible admissildpresentationt,. To sum
up, we have the following

Proposition 7.1. If rtis an irreducible admissible smooth representatio®bfn, Ak ),
then there exists a unique collection

{40 ) W, —eLn@)}

consisting of (equivalence classes of) n-dimensional émaks semi-simplé-adic
representations of W for finite primesv of K satisfyingl t gy, where almost all of
them are unramified.

Now, we can state the theorem.

Theorem 7.2. For any (equivalence class of) irreducible admissible sthoepre-
sentationirof GL(n, Ak ), there corresponds an (equivalence clasgedjlic contin-

uous Frobenius-admissible representat?qﬁq)(n) : /§—> GL(n,Q,) unramified at
almost allv € hg, satisfying

)\|((n>(n)VO¢I((q?,KV) _ g}é?)(m)
for everyv ¢ S, and the equalities
in— land
Lgtn e s A (m) = LSS )

and

Langlands(S 7T)
, TT).

£§rtin_HeCke(S,)\|£n)(7T)) = e§

Moreover the arrow
A N(GL(n.AK)) — Rep™ M(_7d)°

is bijective, wherel1(GL(n,Ak)) denotes the category of irreducible admissible

smooth representations GfL(n, Ak ) and Repg:m*“(/%)o denotes the category of

Frobenius-admissible n-dimension&abdic representations oy,? which are un-
ramified at almost alb € hg.

Proof. In fact, the injectivity of the arrow follows from th&strong multiplicity
one” theorem for GI(n, Ak ) of Piatetski-Shapiro (cf. [47]). For the surjectivity of

the arrow, note that, by the local (archimedean and nonirasztean) Langlands
cont-n

reciprocity for GL(n), anyp € Rep@ (/}?)0 yields a collection{ 1, }venyg ek
consisting of irreducible admissible representatiggsof GL(n, Ky ) asv runs over
finite and infinite places dk, where for almost all finite, 1, is unramified. Then,
by Flath’s theoremr= ®y-«'T, ® T is an irreducible admissible smooth repre-

sentation of Gl(n, Ak) satisfying)\é")(n) = p and the equalities
in— land
Lgrtm Hecke(sjp) _ Lgsmg an 5(57 7_[)

and _ L onaland
egrtlanecke(S,p) _ gsfng an 5(57 7-[)’
which completes the proof. O
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Note that, Theorem 7.2 has a very interesting consequeriiehwe state
now as the following corollary.

Corollary 7.3. For a finite subset S dfix Uagk satisfying $C S, Iet{Ev}V¢S be
a collection conS|st|ng of continuous n-dimensional Fmbe semi-simplé-adic
representationsy, : (/K )v — GL(n,Q,) of the local grou;i/K) forv ¢ S, where
almost all of then are unramified. Then, the collect{d® },¢s uniquely determines
a continuous n-dimensional Frobenius-admissibidic representation

p: gL —6LnG)

of the non-abelian idle group/,? of K, which is unramified at almost all € b,
and which satisfies

Pv =&y
foreveryv ¢ S.

Clearly, Theorem 7.2 is closely related with tiiebal Langlands reciprocity
principle for GL(n) (for details [6/ 7, 13, 14, 20, 36]). Lét,,(GL(n)) denote the
category of equivalence classes of automorphic represamaof GL(n, Ak ), and
let Misop(GL(N)) and Mcusg(GL(N)) denote the full subcategories Bfu(GL(N))
whose objects are the equivalence classésotfaricand the equivalence classes of
cuspidalautomorphic representations of Gi.Ax ) respectively. Following closely
[27,35], an automorphic representatiomof GL(n, Ax) is calledisobaric if 7~
mm A - - - # 1y, with eachrg acuspidalautomorphic representation of @k, A ), and
Ny +np+ - - -+ nNym = n. The automorphic representationt - - - B 17y, of GL(N, Ak),
called theLanglands sunof 3, - - - , T4, is defined to be the automorphic represen-
tation of GL(n, Ak ), which isunique up to equivalenceatisfying

Ls(s. BBy 7%) = rlLssm

The existence of the Langlands sum operafibnTisop(GL(N)) X Misop(GL(N)) —

Misob(GL(N)) follows from the theory of Eisenstein series. The globalpexity

principle of Langlands for G[n) predicts auniqueand“natural” bijective corre-
spondence

Misob(GL(N)) <> RepZ™ (W) %R Misob(GL(N)) <> Repg?™ "Wk )°

rlcusp<GL N Repcont n(V\k)p,dR ncusp(GL(n)) ‘ N Repcont n(\/\k)i?r

Irr

K : number field K : function field

between the categoylison(GL(N)) of equivalence classes of isobaric representa-
tions of GL(n, Ak ) and the categor[otep%‘;”t*”(VW)o (resp. the categorlyep%‘szn(VW)o’dR)
of equivalence classes ofdimensional continuous semi-simpleadic (resp.n-
dimensional continuous semi-simpleadic and de Rham) representationsVéf
unramified at almost alv € hx in caseK is a function field (resp. in cas€ is

a number field), inducing a bijective correspondence batwviiee full subcategory
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Meusg(GL(N)) of Mison(GL(N)) consisting of the cuspidal objects Bfson(GL(N))
and the fuIIsubcc";ltegorI?epC"nt "(Wk )2, (resp. Rep“’”t "W )29y of Repcc’nt (W )°
(resp. RepCont N(W )4R) conS|st|ng of the |rredu0|ble objects Bépcom (Wi )°

(resp. Repcom‘ (Wk)9R) which recovers abelian global class f|eld theory when
n=1, preserves the correspondindunctions and-factors, which is well-behaved
with respect to certain linear algebraic operations, anidimis compatible with the
local Langlands reciprocity principle for Gh). Altough the global reciprocity prin-
ciple for GL(n) is still conjectural ifK is a number field, in cad¢ is a function field
the global correspondence for @1) is now a theorem of L. Lafforgue [31]. Thus,
it would be very interesting to understand the followinggatam :

AP
- [

N(GL(n,Ak)) : Rep"™"(_7¢)°

)\(n)il

K
Mau(GL(N)) < N
Misob(GL(N)) ¢ >
I_lcusp(Gl- “““““““““““““ >

Definition 7.4. An n-dimensional continuoug-adic Frobenius-admissible repre-
sentationp of /K which is unramified at almost all € h is calledautomorphlc
type (resp.isobaric automorphic typecuspidal automorphic typeif p = )\K (m)
for some automorphic (resp. isobaric automorphic, cuspigmorphic) represen-
tation T of GL(n, Ak).

Now, assume that Conjecture Glds Let T be an irreducible admissible
smooth representation of G, Ak ) such that the corresponding continudeadic

Frobenius-admissible representatikﬁ(n) : /}? — GL(n,Q,) which is unrami-
fied at almost alb € hg satisfies thécongruence relation

A& ke A (m);

1IAs Arthur points out in [2],

“However, the condition thatr be automorphic is very rigid. It imposes deep and
interesting relationships among the componédmts} of 7"

Also, look at the Takagi Lectures of M. Harris [14] for a dé&diaccount on the non-abelian generaliza-
tion of the “congruence conditions” appearing in abeliavbgl class field theory.
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namely,A (m(n) is an object in the categor&ep°°”F“(j£)° ’ of n-dimensional

continuous/-adic Frobenius-admissible representatiprsf /K unramified at al-
most allv € hk and satisfying the congruence relation

& C ker(p).

Then, asRepCont “(/K) is equivalent to the categonyepCont "(Wk)° of n-

dimensional contmuou&adm semi-simple representationsvigg unram|f|ed at al-
most allv € b by Theorem 6.3 and Remark 6.4, there existsatimensional

continuous semi-simplé-adic representatioxiﬂém(n) of Wk which is unramified
at almost allv € hg corresponding td}gn)(n) and satisfying the equalities

Lgmanecke(sv)\én)(n)) — Léértianeil(& fén)("))
and

Sgrtin—Hecke(S,)\lgn)(n)) _ Sgrtin—WeiI(S’ .Zé”)(n)).
Thus, Theoremn 7.2 has the following important consequence.

Corollary 7.5. Assume that Conjectufe 3.2 holds. Then, there exists ativgec
arrow

Z"

- (0] -
M(GL(NAK)) o Rep™ "(AC)°, o~ Rep™ "(Wk)°
/\(n)’l equiv.(6.2) 1

K
defined by
g(n) . A (n) g(m
kT AT ()~ L (),
and satisfying the equalities

Lg?nglands(s’ ) = Lékrtin—Weil(S7 fé”)(n))

and
Langland

e s ) = 4N (s L7 (),

for eachmrfrom the category1(GL(n, Ak)) ¢ of all irreducible admissible smooth
K
representationst of GL(n, Ak ) satisfying the congruence relation

M C ker(A (m).
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To proceed our discussiofirst assume that K is a function fieldls the global
reciprocity principle for GI(n) over a function fielK is now a theorem of L. Laf-
forgue (cf. [31]), assuming that Conjectlre B@ds the diagram

N(GL(NAK) ¢

Corollary/.5

Rep%c;ntfn (V\4<)0

h

afforgue

nisob(GL(n))
and, taking into account Theorém 6.3 and Corollary 7.5, thgrdm

1
I_l(GL(n,AK))JVKg
Corollary/ .5

cont-n o
Rep@ (\M()irr

h

afforgue

Meusg(GL(N))

wherel‘l(GL(n,zz\K))l/Vﬂ denotes the full subcategory ﬂ(GL(n,AK))/VKg consist-
M .

ing of the objectstof M(GL(n,Ak)) , ¢ for which /\én)(n) is irreducible, yield the
K

following equivalences on a given irreducible admissibtiteosth representatiorr

of GL(n,Ak) :

Proposition 7.6. Let K be a function field. Assume thais an irreducible admis-
sible smooth representationof GL(n, Ak). Then,

TTis an isobaric representation @L(n, Ak ) < JVKf Cc ker()\,gn)(n)),
and

AL ke (m),

TTis a cuspidal representation &L (n, Ak ) <~
P P (A {A,ﬂn)(n) is irreducible

provided that Conjectute 3.2 holds.
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Next, assume that K is a number fieldssuming that Conjecture 3tblds
we then expect the following diagrams

M(GL(n A)) o ¢ S0OTS | pepontnpy e

Global Langlands

Repgont—n (\M()O’dR

Mison(GL(N)) Reciprocity for GL(n) @

and
I'I(GL(n,AK))l ‘ Corollarm Repcomﬁn(\/\k)o

Vs Q irr

Global Langlands cont—n 0,dR
—— Repg™™ "(Wk).
Reciprocity for GL(n) Qe irr

Meusd(GL(N))

wherel‘l(GL(n,AK))ivg is defined as in the function field case. It is then natural to

K
pose the following conjecture.

Conjecture 7.7. Let K be a number field. Assume that Conjecture 3.2 holdsirLet
be an admissible smooth representatioi@f n, Ax ). Then,
(1) The following statements are equivalent :

— 1Tis an isobaric representation @L(n, Ak );
— the Frobenius-admissible continuous n-dimensiohatlic representa-

tion /\é”)(n) of /% unramified at almost alb € hg satisfies
¢
A ker(a (m)

and isBgr-admissible at eachr € hg satisfying? | qy.
(2) The following statements are equivalent :
— 1ris a cuspidal representation @L(n, Ak );
— the Frobenius-admissible continuous n-dimensiohabic representa-

tion /\}2”)(7'[) of /};ﬂ unramified at almost ali € h is irreducible and
satisfies

A Ckera) (m)
and isBgqr-admissible at each € hg satisfying? | gy.

Certainly, Conjectures 3.2 ahd 7.7 imply the global Landfareciprocity for
GL(n) over number fields.
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8. Langlands groupLk of a number field K

In the remaining of the text, we shall closely follow the wadfkArthur [1].

It seems possible to apply the ideas developed in this wattket@onstruction
of the “hypothetical” Langlands grouyk of a given global field, especially to the
construction of the Langlands group in caseK is a number field, whose existence
is one of the major problems in the framework of the globaldlands reciprocity
and the global functoriality principles. In cakeis a function field, ther.x =Wk
and we have already covered this case in the previous sedfdhis work.

Therefore, we shall from now on assume tKais a number field. Then, for
eachv € hk Uak, the local Langlands grouyk, is defined by

WA, =Wk, x SL(2,C), if vehg;

\M<V7 if veao.
Note that, ifv € hk, instead of the traditional Weil-Deligne grow Dk, of the
non-archimedean local field,, we shall use the topological groMg, x SL(2,C),
which is denoted bV /A, and called théNeil-Arthur groupof K, (cf. Langlands
[32]).

Now, introduce the “thickened” versicwi’szf% of the non-abelian igle group

j}? of a number fielK as follows.

L, =

v

Definition 8.1. For eachv € hk fix a Lubin-Tate splittingpk, and letp = { ¢k, }veny -
The topological groud//%% defined by the “restricted free product”

0
WAt = * ! <ZDE<¢VK” x SL(2,C) 1 100" x SL(Z,C)) FWETL 5 W2
vehk
is called theWeil-Arthur ickle group of the number field.K he finite (=henselian)
party/ o/, of # .o/} is defined by
0
Wk, = ! <ZDE<¢VKV> x SL(2,0) 1100 x sL2, q:)) ,

and the infinite (=archimedean) psa&w%@ of “//.;zf% is defined by
Wﬂ%o =W kW2,
Here, as usuat; andr, denote the number of real and the number of pairs of
complex-complex conjugate embeddings of the global field C.
The topological groupf%a%% is an “extremely big” group, whose definition
depends only on K

b
The following theorem describes the abeIianizal“/«*jmf{%a of the topological
group# ,@/%
b
Theorem 8.2. The abelianizatiorW;zf%a of the topological grouwmz%% is in-
deedJk.

Proof. The proof follows by first noting that the direct limit functes exact and
then by abelianizing free products of groups. O
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Remark8.3. From now on, unless otherwise stated, we shall assume theese
of the global Langlands group of a number fielK.

Forv € hg Uak, as before, choose an embedding
ey KSP— K5°P
This embedding determines a continuous homomor;ﬁsm
e\I;angIands: LKV =L,
and therefore, for each € hg, a continuous homomorphism

{'vKV}¢KV XidSL(Z,C) eLangIands

WA, 2 Lg.

Langlands

NRE< ™ 08« sL(2,€)

Theorem 8.4 (Ultimate global non-abelian norm-residue syinol “Weak form”).
There exists a well-defined continuous homomorphism

¢Langlands ¢
NRy W ol — Lk, (8.1)
which satisfies
¢Langlands ¢Langlands ¢ cs p NR%Langlands
(NRg  )s=NRg  ocs: (W alg)s—> Wl L.

where, following Proposition 2.1,sc (W@f%)s — Wﬂ% is the canonical homo-
morphism defined for every finite subset $,0f ok containingak.

Langlands

We conjecture that the continuous homomorphhtﬁ% : “//;zf% — Lk
should be considered as thdtimate form” of the global non-abelian norm-residue
symbol of K More precisely, we pose the following conjecture (to becize the
following meta-conjecture).

Conjecture 8.5 (Ultimate global non-abelian norm-residuesymbol “Strong form”).

The homomorphism
¢Langlands

NRE Lk
is open, continuous and surjective.
Finally, we have the following remark.

Remark8.6. (1) Infact, viathe same lines of reasoning of this work, we stady
the relationship between the automorphic representatiarig general reduc-
tive groupG over the number fieldk with the global Langlands parameters
@ : Lx — "G of G, which is the content of thglobal reciprocity principle of
Langlands for a general reductive group G

(2) It would be interesting to compare Arthur’s construetiof L, which uses
the classification of automorphic representations of Langs in the sense
of “beyond endoscopy” [34], with the topological gro%;zf% constructed
in this paper. This comparison may revealwarconditionaldefinition of the
global Langlands groupg of the number field.

12yhich is unique up to conjugacy.
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