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HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS

MING-LUN HSIEH

ABsTrRACT. We construct the three-variable p-adic triple product L-functions attached to Hida families of
ellptic newforms and prove the explicit interpolation formulae at all critical specializations by establishing
explicit Ichino’s formulae for the trilinear period integrals of automorphic forms. Our formulae perfectly fit
the conjectural shape of p-adic L-functions predicted by Coates and Perrin-Riou. As an application, we prove
the factorization of certain unbalanced p-adic triple product L-functions into a product of anticyclotomic
p-adic L-functions for modular forms. By this factorization, we give a new construction of the anticyclotomic
p-adic L-functions for elliptic curves in the definite case via the diagonal cycle Euler system a la Darmon and
Rotger and obtain a Greenberg-Stevens style proof of anticyclotomic exceptional zero conjecture for elliptic
curves due to Bertolini and Darmon.
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1. INTRODUCTION

The aim of this paper is to construct the three-variable p-adic triple product L-functions attached to Hida
families of ellptic newforms in the unbalanced and balanced case with explicit interpolation formulae at all
critical specializations. Let p > 2 be a prime. Let O be a valuation ring finite flat over Z,. Let I be a normal
domain finite flat over the Iwasawa algebra A = O[I'] of the topological group I' = 1 + pZ,,. Let

F=(f,g,h)

be the triple of primitive Hida families of tame conductor (Np, N3, N3) and nebentypus (¢1,2,13) with
coefficients in I. Roughly speaking, we construct a three-variable Iwasawa function over the weight space of F'
interpolating the square root of the algebraic part of central values of the triple product L-function attached
to Fg and prove explicit interpolation formulae at all critical specializations. We would like to emphasize that
our formulae completely comply with the conjectural form described in [CPR89], [Coa89al] and [Coa89b| and
is compatible with other known p-adic L-functions. For example, when g and h are primitive Hida families of
CM forms by some imaginary quadratic field, we show that the unbalanced p-adic L-function is the product
of theta elements a la Bertolini-Darmon. In order to state our result precisely, we need to introduce some
notation from Hida theory for elliptic modular forms and technical items such as the modified Euler factors
at p and the canonical periods of Hida families in the theory of p-adic L-functions.
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1.1. Galois representations attached to Hida families. If 7 = ) _, a(n, F)q € I[¢] is a primitive

cuspidal Hida family of tame conductor Nz, let pr : Gq = Gal(Q/Q) — GLa(FracI) be the associated
big Galois representation such that Tr pr(Froby) = a(¢, F) for primes ¢ { Nz, where Frob, is the geometric
Frobenius at £ and let Vr denote the natural realization of pr inside the étale cohomology groups of modular
curves. Thus, Vr is a lattice in (FracI)® with the continuous Galois action via pr, and the Gal(Q,/Q,)-
invariant subspace Fil’ Vi := V;P fixed by the inertia group I, at p is free of rank one over I (JOLt00, Corollary,
page 558])). We recall the specialization of Vi at arithmetic points. If k is a positive integer and e : I' — Q;

is a finite order character, a point ) € Spec I(Qp) is called an arithmetic point of weight k& and finite part
eif QIr: T — AX&Q; is given by Q(x) = xF2eg(x) for some integer kg > 2 and a finite order character

eg:I'— Q; For an arithmetic point @, denote by kg the weight of ) and €¢ the finite part of Q). Let %fr be

the set of arithmetic points of I. For each arithmetic point Q) € %f , the specialization Vr, := Vr ®1,¢ Qp is
the geometric p-adic Galois representation associated with the eigenform Fg of constructed by Shimura and
Deligne.

1.2. Triple product L-functions. Let V = Vf@)OVg@th be the triple produtc Galois representation of
rank eight over R a finite extension of the three-variable Iwasawa algebra given by
R = IR0IRel.

Let %;% C Spec R(QP) be the weight space of arithmetic points of R given by

%72 = {Q = (Q1,Q2,Q3) € (%{)3 | ko, + kg, + ko, = 0 (mod 2)}
For each arithmetic point @ = (Q1,Q2,Q3) € f{;%, the specialization Vg = Vle ® VgQ2 ® Vhg, is a p-adic
geometric Galois representation of pure weight wq = kg, + kg, + kg, — 3. Let w : (Z/pZ)* — pp—1 be the
Teichmiiller character. We assume that N

(ev) P11hatps = w?? for some a € Z.

Then (Ew) implies that the determinant detV = X 2€Cyc, where ey is the p-adic cyclotomic character and

X is a R-adic p-ramified Galois character with X'(c) = (—1)® (c is the complex conjugation). Note that the
wQ+1

specialization of X at Q can be written as the product X = XngyC_T with a finite order character xqo. We
consider the critical twist

Vi=veax '
Then VT is self-dual in the sense that (VT)Y(1) = V. Next we briefly recall the complex L-function associated
with the specialization VTQ. For each place £, denote by Wq, the Weil-Deligne group of Q.. To the geometric

p-adic Galois representation VTQ, we can associate the Weil-Deligne representation WDy, (VTQ) of Wq, over Qp
(See [Tat79, (4.2.1)] for £ # p and (4.2.3)] for £ = p). Fixing an isomorphism ¢, : Q, ~ C, we define
the complex L-function of VTQ by the Euler product

L(Vh,s) =[] Le(VE,s)
B £<oo B
of the local L-factors Lg(VZ?, s) attached to WD@(VTQ) ®gq. .., C (IDel79 (1.2.2)], [Tay04, page 85]). On the
@ prtp

other hand, if we denote by?rf @ = ®uTrg v (resp. mgq @ 7ThQ3) the irreducible unitary cupsidal automorphic
representation of GLa(A) associated with fq (resp. gq,,hq,) and let

-1
HQ:ﬂ'le X Tgo, X Tha, ®XQ

be the irreducible unitary automorphic representation of GLa(A) x GL2(A) x GL2(A). Denote by L(s, IIg)
the automorphic L-function defined by Garrent, Piateski-Shapiro and Rallis attached to the triple product
Ilg. The analytic theory of L(s, IIo) such as functional equations and analytic continuation has been explored
extensively in the literature (¢f. [PSR87]), and thanks to [Ram00, Theorem 4.4.1], we have

1 ; ;
L(s+ 3 llg) = A(VQ, s) = Fvé(s) . L(VQ, s).
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Here FVTQ (s) is the archimedean L-factor of VI;) and is a finite product of four classical I'-functions (see (L4)).

Moreover, there is a positive integer N (VZ?) and the root number E(VTQ) € {£1} such that the complete

L-function A(Vg, s) satisfies the functional equation

A(VY.s) =e(Vh) - N(VH) ™ - AV, —s).

We thus have a good understanding of the complex analytic behavior of L(VTQ, s). In this article, we shall
investigate the arithmetic of the critical central value L(VTQ7 0) and study the p-adic analytic behavior of the

algebraic part of L(VTQ7 0) viewed as a function on the weight space %72 Note that the rationality of the

central L-values of triple product L-functions has been proved in [HK9I]. It is natural to first consider the
behavior of the root number E(VTQ) of VI;) (or HQ) over the weight space. The global root number

e(Vh) = I eWDe(v))
1<o0

is defined as the product of local constants, where £(?) is the local epsilon factor attached to a Weil-Deligne
representation (c¢f. [Tat79, page 21|) with respect to the standard choice of a non-trivial additive character of
Q, and measures on Q,, in [Del79, 5.3]. For each arithmetic point @ € X%, we put

Y(Q) = {E: prime factor of Ny NyNj | E(WDg(VTQ)) = —1} .

It is known that there is a subset ¥~ of prime factors of N such that ¥~ = £7(Q) for all Q € X%. For

the archimedean root number, we partition the weight space f{;% into %fz u f{% u f{% u %5’{‘1, where :{{z is the
unbalanced range dominated by f given by

Xk = {(Q1,Q2,Q3) € X% | ko, + kq, + kou < 2ko, }
(X% and X% are defined likewise), and X5 is the balanced range
X ={(Q1,Q2,Q3) € X} | kg, + kg, + ko, > 2kg, for all i =1,2,3}.
The union %%b = %{z Ux% U %% is called the unbalanced range. Then we know that
e(WD(V])) = +1if Q € X%
e(WDo(V])) = —1if @ € X",

1.3. The modified Euler factors at p. Let Gq, be the decomposition group at p. We consider the following

rank four Gq,-invariant subspaces of Vg :
1) Fil; V :=Fil’ V; ® Vy @ Vi;
' Filba V:=Fil’V} @ Fil’ V; ® Vi, + V3 @ Fil’ V; @ Fil° V3, + Fil’ Vy @ V ® Fil° V.

Let o € {f,bal}. Define the filtrations Fil] V1 := Fil, V.® X! ¢ V. The pair (Fil] VI, X%) satisfies the
Panchishkin condition in [Gre94, page 217]) in the sense that for each arithmetic point @ € X%, the Hodge-
Tate numbers of Fil] VTQ are all positive, while the Hodge-Tate numbers of V* / Fil} VI;) are all non—positiveEl
Now we can define the modified p-Euler factor by -

Ly(Fily V,,0) 1

(WD, (Filj V1)) - L,(VL/Fil} V§,0) L, (V5,0)

(1.2) &, (Fily VTQ) =

We note that this modified p-Euler factor is precisely the product of the factor El(jp ) (VTQ) in [Coa89h, page
109, (18)] and the reciprocal of the local L-factor Ly(0, VTQ)

IThe Hodge-Tate number of Qp(1) is one in our convention.
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1.4. Hida’s canonical periods. To make our interpolation formula meaningful, we must give the precise
definition of periods for the motive VZ?. We begin by recalling Hida’s canonical period of a I-adic primitive
cuspidal Hida family F of tame conductor Nz. Let my be the maximal ideal of I. For a subset ¥ of the
support of N, we consider the following

Hypothesis (CR, ). The residual Galois representation pr := pz (mod my) : Gq — GLa(F),):
(1) pr is absolutely irreducible,
(2) pr is p-distinguished,
(3) if £ € ¥ and ¢ = 1 (mod p), then pr is ramified at ¢.

When X = () is the empty set, we shall simply write (CR) for (CR, ). Recall that pr is p-distinguished if
the semi-simplication of the restriction of the residual Galois representation pz (mod my) to the decomposition
at p is a sum of two characters X} @ X7 with x} # X7 (mod my). Suppose that F satisfies (CR). The local
component of the universal cuspidal ordinary Hecke algebra corresponding to F is known to be Gorenstein
by [MWS6], Prop.2, §9] and [Wil95, Corollary 2, page 482|, and with this Gorenstein property, Hida proved in
|[Hid88al, Theorem 0.1] that the congruence module for F is isomorphic to I/(nx) for some non-zero element
nr € I. Moreover, for any arithmetic point @) € %;r , the specialization 1z, = Q(7r) generates the congruence
ideal of Fg. We denote by F¢ the normalized newform of weight kg, conductor Ng = Nzp"? with nebentypus
Xq corresponding to Fg. There is a unique decomposition xo = XX, (p)» Where X and xq,(p) are Dirichlet
characters modulo N and p"? respectively. Let ag = a(p, Fg). Define the modified Euler factor &,(Fg, Ad)
for adjoint motive of Fg by

(1 - ag’xe)p*)(1 = ag®xop)p*e™")  ifng =0,
gp(]:QvAd) = O‘é2nQ -1 if ng = 1=XQ,(p) =1 (SO kg = 2),
9(xQ.(m)XQ,m (1) if ng >0, xq,;p # 1.

Here g(xq,(p)) is the standard Gauss sum. Fixing a choice of the generator 1r and letting ||F§2||1%0(NQ) be the
usual Petersson norm of F¢), we define the canonical period Qx, of F at Q by

51,(]:@, Ad)
FQ

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arithmetic point @, up to a p-adic unit,
the period Q£ is equal to the product of the plus/minus canonical period Q(+;Fg)Q(—; Fg) introduced in

page 488].

1.5. Definitions of I'-factors and an exceptional finite set Y.... We recall the definition of I'-factors of
VTQ following the recipe in [Del79):

(1.3) Qrg =25 | PR3 (v - €C”.

w@+1 * * * ;
", _— Tco(s + “%—)Tcls+ 1 -k, )Te(s+ k5, )Ta(s + k5, if Q € X%;
. Vf S) =
Q w 1 * * : a
To(s + 2S5 Te(s + kg, T (s + k5, )Ta(s + k5, ) if Q € xbe.

Here T'c(s) = 2(2m)~*T'(s) and
_ kg, + kg, + kg,

kax_ 2 —in,i:1,2,3.

For each prime /, let 7q,, be the unique unramified quadratic character of Q). Let (f,g,h) = (fo. 90, hqs)
be the specialization of F' at @ and put

%9 =10 | 7y and m, , are supercuspidal; 7y, ¢ is spherical} ;
Spg ={l €Y, | mpe = 75 @ 71q,, ~ 7, ,® 0 for some ¢ unramified charcter} .
Define X4, and X4 likewise. We introduce the finite set
(15) Yexc = Eghl_lthl_lEfg.

It is known that this set Yoy does not depend on any particular choice of the specializations of (f, g, h).
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1.6. Statement of the main results. We impose the following technical assumption:
(sf) ged (N7, No, N3) is square-free.
Our first result is the construction of the unbalanced p-adic triple product L-functions:

Theorem A. In addition to @) and (&ll), we further suppose that

(1) = =0,

(2) f satisfies (CR).
Fiz a generator ng of the congruence ideal of f. There exists a unique element E; € R such that for every
Q=(Q3,Q2,Q3) € %fz in the unbalanced range dominated by f, we have

T
(L5(Q))? =Ty« (0) tVe )

gt v -1
Q1

L€ X exc

This p-adic L-function ﬁ;. is unique up to a choice of generators of the congruence ideal of f, i.e. it is
unique up to a unit in I, but the ratio E{,ﬂ /n¢ is a genuine p-adic L-function. From Theorem A, one also obtains
different p-adic L-functions £% and ﬁ’;. which interpolate central L-values at X% and 36% respectively. These
p-adic L-functions E{:, L9, and LR are called unbalanced p-adic triple product L-functions as they interpolate
a square root of the critical central L-values of the triple product L-function L(VZ?, s) for Q € %%’b at the
unbalanced range; from the interpolation formula, these p-adic L-functions are distinguished by the choices of
the modified Euler factor at p and the complex periods. In the literature, the one-variable unbalanced p-adic
triple product L-functions were first constructed by Harris and Tilouine in [HT01b] (when Ny = Ny = N3 = 1).
Darmon and Rotger in [DRI14] extended the method in [HTOID] to construct a three-variable power series
interpolating the global trilinear period of a triple of Hida families and proved the interpolation formulae
at the balanced range, which is in connection with the p-adic Abel-Jacobi image of diagonal cycles in a
triple product of modular curves. This is a p-adic analogue of the classical Gross-Zagier formula and has
obtained very significant arithmetic application to certain equivariant BSD conjectures in [DRI7]. On the
other hand, it is well known that the relation of the interpolation at the unbalanced range to central L-
values is suggested by the main identity of Harris and Kudla [HK91], or in general, Ichino’s formula [Ich08§],
but the interpolation formulae at the unbalanced range in the literature are not precise enough for more
refined arithmetic applications such as the formulation of corresponding Iwasawa-Greenberg main conjecture.
Therefore, Theorem A complements the literature by providing a precise relation of the values of p-adic triple
product L-functions at all arithmetic points in the unbalanced range to central L-values of the complex triple
product L-functions.

Our main motivation is to use Theorem A to prove the factorization of p-adic triple product L-functions
into a product of anticyclotomic p-adic L-functions. For example, according to Theorem A, if g and h are
primitive Hida families of CM forms associated with some imaginary quadratic field, then £§ is a product of
two anticyclotomic p-adic L-functions for modular forms constructed in [BD96] and [CHI6]; in contrast, if f
and g are primitive Hida families of CM forms, then Ef:. is a product of two anticyclotomic p-adic L-functions
in [BDP13] divided by some Katz p-adic L-function. The latter gives a strenghening of [DLRI5, Theorem
3.8] and [Col16]. With this factorization, we can easily show that the anticyclotomic p-adic L-functions in the
definite case can be recovered by the Euler system of generalized Kato classes [DR17] (See Remark B2) and
obtain a new proof of the anticyclotomic exceptional zero conjecture for elliptic curves. In an ongoing project
with F. Castella, we will explore this Euler system construction of the anticyclotomic p-adic L-functions and
deduce Rubin’s formulas for generalized Kato classes in the rank two case.

Next we state our second result about the balanced p-adic triple product L-functions. Let

N =lem(Ny, N2, N3); N~ = [] ¢
tex-
Theorem B. In addition to &%) and (8f), we further suppose that
(1) #(37) is odd,
(2) f,g and h satisfy (CR, ¥~ ),
(3) N=NtN~ with gcd(NT,N7)=1.
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Then there exists a unique element E%al € R satisfies the following interpolation property: for any arithmetic
point () € %%al, we have

L(V},0) - B
= &P, V) - [T a+e).

(£F'(Q) =Ty (0)
- LESexc

Qth QQQ2 QhQS
We must mention that the p-adic interpolation of global trilinear period integrals attached to a triple of
p-adic families of modular forms in the balanced range was first investigated by Greenberg and Seveso in a
pioneering work [GSI6]. Our construction is ostensibly different from theirs for their method heavily relies on
the theory of Ash-Stevens while our approach is built on classical Hida theory developed in [Hid88b|. Indeed,
their method treats more general setting, namely they do not restrict to the ordinary case, while our approach
is more well-suited for the future investigation on the arithmetic of the balanced p-adic L-functions such as
the p-invariants and the Iwasawa-Greenberg main conjecture. The situation is more or less similar to the two
different constructions of two-variable p-adic L-functions for Hida families given by Greenberg-Stevens and
Mazur-Kitagawa. In any case, it is definitely very interesting to compare these two different approaches in the
ordinary case.

Remark 1.1. We discuss the exceptional zero phenomenon for the balanced p-adic L-functions. By the
Ramanujan conjecture, the modified p-Euler factor 5,,(]5‘111;1 VTQ) never vanishes unless either of f¢ . g0,,hq;
is special at p. For example, suppose that F = (f,g,h) is the triple of primitive Hida families passing
through the p-stabilized newforms (f1, f2, f3) attached to elliptic curves (Eq, Fa, E3) over Q at the weight two
specialization Q. Let a; = a(p, f;) be the p-th Fourier coefficient of f; for ¢ = 1,2,3. Assume FE; is semi-stable
at p (i.e. a; = £1). Then the formula of the modified p-Euler factor reads

Ep(Filg 1 Vi ) = (1 — ajanas)? if F» and E3 are semi-stable at p,
Ate praz?(l— =221 - -2)2  otherwise.
102 (oY %}

We thus conclude that E‘%?l posseses an exceptional zero at ) when either (i) E» and E3 are semi-stable at p
and ayasag = 1 or (ii) B2 and E3 has good ordinary reduction at p and s = asap. In the case (i), we even
have the vanishing of the central value L(VZ—V)7 0) = L(Fy X Ey X E3,2) =0 as the global root number

e(V]) = e(WD, (V) = —arazas = —1,

so one might speculate about a p-adic Gross-Zaiger formula relating certain “second partial derivatives” of
ﬁt}fl at @ to the p-adic Abel-Jacobi image of diagonal cycle in the Shimura curve Xpy+ ,y- attached to the
quaternion algebra ramified precisely at pN~ as [BDOT, Theorem 1]. We hope to come back to this question
in the near future.

1.7. An outline of the proof. The construction of the unbalanced p-adic L-function is based on Hida’s p-
adic Rankin-Selberg convolution (¢f. [Hid93|). Denote by eS(N, x,I) C I[q] the space of ordinary I-adic cusp
forms with tame nebentypus x and by T(N, x, I) the universal ordinary cuspidal Hecke algebra. Decompose the

tame nebentypus 1 of f into a product of Dirichlet characters 1y ) and z/1§p )

and let y = ¢y (¢". Let f € eS(Ni,x,I) be the primitive Hida family of f twisted by ¢ and let
1 3 € T(Ny, x,I) ®1 FracI be the idempotent corresponding to j" By the definition of congruence ideals, one
can verify that 7y - 14 indeed belongs to T(N, x,I). In §3.6] (88), we construct an auxiliary R-adic modular
form H*™ € eS(N, x,I) ®1,;, R C R[q], where i1 : I — R is the homomorphism a — ¢ ® 1 ® 1, and then the
unbalanced p-adic L-function is defined to be

.,?Ff := the first Fourier coefficient of ny - 14 Tryw, (H*™) e R,

modulo p and N respectively

where Try,n, : €S(N, x,I) = eS(Ny, x, I) is the usual trace map.

In the balanced case, Hida theory for definite quaternion algebras plays an important role. Let D be
the definite quaternion algebra over Q of the absolute discriminant N, and for each positive integer m, let
X, be the definite Shimura curve of level T'y (p"N) associated with D as described in §2.1]. These
are curves of genus zero equipped with a natural finite covering map &, : )Zm — )?m,l. We let J,, =
Pic X’m ®z Z, and let Jo = ](illn%oo Jm be the inverse limit induced by a,,. Then J, is a A-module
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with Hecke action, and its ordinary part J2'¢ is equipped with the action of the ¥ ~-new quotient of the
universal ordinay cuspidal Hecke algebra of level I';(Np>). The I-module eSP(N,I) := Homy (J24 1) is
called the space of Hida families of definite quaternionic forms. Due to the lack of g-expansions, we do not
have the notion of primitive Hida families on definite quaternion algebras. Nonetheless, using the idea of
Pollack and Weston and Hida theory, for a primitive Hida family F satisfying (CR, ¥7), it can
be shown that there exists Hecke eigenform FP € eSP(N,I), unique up to a unit in I, characterized by
the following properties (i) P shares the same Hecke eigenvalues with F; (ii) P is non-zero modulo my
(Theorem EEH). We shall call 7P the primitive Jacquet-Langlands lift of F. Let Jo4 := Jor® 5 Jo & o Jord

and J24 = lim Jord Hence, with the assumption (2) in Theorem B, we obtain the primitive Jacquet-
m—00

Langlands lift FP = f” X g” X h” € Hom(J%4,R). On the other hand, in Definition B, we construct
a collection of regularized diagonal cycles Al in J9'4 which are compatible with respect to @&,, and thus
get the big diagonal cycle Al_ := ]'£1m_)OO Al € Jo4. In order to achieve the optimal integrality of p-adic

L-functions, we actually take a modification F”* € Hom(J%4, R) of F in Definition B8 and then define
the balanced p-adic L-function
Opp := FP*(Al ) eR

to be the value of the modified FP* at Al_. This p-adic L-function © gp is an analogue of theta elements &
la Bertolini and Darmon ([BD96]) in the triple product setting.

To obtain the interpolation formula in Theorem A and B, we first prove that the interpolation ZI{: (Q) at
Qe f{{z (resp. L x-(Q) at Q € %%ﬂl) is given by the global trilinear period integral of certain automorphic
forms in the cuspidal automorphic representation Il of GL2(AEg) (resp. the automorphic representation Hé’

of (D ® Ag)* via the Jacquet-Langlands transfer), where F = Q & Q & Q is the split étale cubic Q-algebra
(See Proposition [3.7] and [£9). Thanks to Ichino’s formula in [Ich08|, we can show that the square of this
global trilinear period integral is a product of the central L-value L(1/2, IIg) and certain local zeta integrals
I, (¢ ®¢%) (See S8 for definitions), which we shall call local Ichino integrals in the introduction. Hence, the
proof of the interpolation formulae boils down to the determination of the values of these local Ichino integrals.
In the literature, local Ichino integrals were only computed for some special cases [II10], and [Hul7].
Local Ichino integrals at the real place are completely determined in a recent work [CCI7], but the explicit
calculation of local Ichino integrals at non-archimedean places in the generality we need is a highly laborious
task and occupies a substantial part of this paper. The key ingredient in our computation is Proposition 5.1
a generalization of [MV10, Lemma 3.4.2] by removing several restrictive conditions therein, which reduces the
calculation of local Ichino integrals to that of certain local Rankin-Selberg integrals in [GJ78| (1.1.3)]. With
local theory of L-functions on GL(2) x GL(2) developed by Jacquet in [Jac72|, we are able to work out the
calculation of local Rankin-Selberg integrals under (sfl) and certain minimal hypothesis (See Hypothesis [6.1]).
This minimal hypothesis, roughly speaking, requires F' to be minimal in the sense that F' has the minimal
conductor among Dirichlet twists. It turns out that the modified p-Euler factor &, (Fily VI;)) is given by the
p-adic Ichino integral while local Ichino integrals at ramified places £ only contributes p-adic units if £ & Sexe
or (14 ¢71) if £ € Bexe. Therefore, taking a suitable Dirichlete twist F' = (f ® x1,9 ® X2, h ® x3) with
X1X2X3 = 1 which satisfies the minimal hypothesis, we obtain the desired p-adic L-functions
Ll = f;@”; Lo = Opp.

The interpolation formulae is a direct consequence of the explicit evaluation of local Ichino integrals and the
comparison between the canonical periods of F' and its Dirichlet twist F’. The method of this paper has been
extended by Ishikawa in [[sh17] to construct p-adic twisted triple product L-functions attached a Hida family
of Hilbert modular form over a real quadratic field and a Hida family of elliptic modular forms.

This paper is organized as follows. In §2] we recall basic definitions and facts about classical elliptic
modular forms and automorphic forms on GLy(A). In §8] we give the construction of the unbalanced p-adic
triple product L-functions .,?Ff The key items used in the construction of H™*, the test A-adic forms g*
and h*, are introduced in Definition The main formula is derived in Corollary [3.13] where we show the
interpolation of the square of ZFf at the unbalanced range is the product of the central L-value of the triple
product L-function and local Ichino integrals at the prime p and ramified primes. In §4 we consider the
balanced case. We review Hida’s theory for definite quaterninoic forms in §4.4] and §45 In particular, we
present a slightly explicit version of the control theorem in Theorem and explain the notion of primitive
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Jacquet-Langlands lifts in Theorem 25l The construction of the big diagonal cycle Al_ and the balanced p-adic
L-functions are given in §4.6l and §4£71 The relation between the interpolation of the square of our balanced
p-adic L-functions and the product of the central L-value and local Ichino integrals is given in Corollary 413
In §5l we prepare the tools for the computation of local Ichino integrals and carry out the calculations at the
p-adic place, and in §6] we elaborate the calculation of local Ichino integrals at ramified primes. In particular,
we show in §6.6] that the local Ichino integrals at ramified places can be interpolated into a unit in the ring
R of three-variable Iwasawa functions. In §71 we show that the canonical periods of a primitive Hida family
and its Dirichlet twists are equal up to a unit in I by the method of level-raising and prove the main results
(Theorem [])). Finally, we prove the factorization of anticyclotomic p-adic L-functions and give applications

in §8

Notation. The following notations will be used frequently throughout the paper. Let A be the ring of adeles
of Q. If v is a place of Q, let Q, be the completion of Q with respect to v, and for a € A*, let a, € Q) be
the v-component of a. Denote by |-|, (or simply |-| if there is no fear of confusion) the absolute value on Q,
normalized so that |-| is the usual absolute value on R if v = oo and |[¢|, = ¢! if v = { is finite. Let ||, be
the absolute value on A* given by |a|, =[], |av]|,- Let (,(s) be the usual local zeta function of Q,. Namely,

Cools) =778T(5): Gels) = (1= 7).

Define the global zeta function {q(s) of Q by (q(s) =[], (v(s). In particular, (q(2) = 7/6.

For a prime ¢, let v, : Q; — C* be the valuation normalized so that vy(¢) = 1. We shall regard Q, and
Q/ as subgroups of A and A* in a natural way. To avoid possible confusion, denote wy = (wy,) € A* by
the idele defined by wy ¢ = ¢ and wy, = 1 if v # L.

Let g : A/Q — C* be the additive character with the archimedean component ¥g () = exp(2my/—1z)
and let g, : Q¢ — C* be the local component of ¥ at /.

If R is a commutative ring and G = GLy(R), we denote by p the right translation of G on the space of
C-valued functions on G: p(g)f(¢9’) = f(¢'g) and by 1 : G — C the constant function 1(g) = 1. For a function
f: G — C and a character x : R* — C*, let f ® x : G — C denote the function f ® x(g9) = f(g)x(det g).

Let Gq = Gal(Q/Q) be the absolute Galois group of Q and if y : (Z/NZ)* — C* is Dirichlet character
modulo N, denote by c¢(x) < ve(NN) the £-exponent of the conductor of x. We shall identify x with the Galois
character x : Gq — C* via class field theory.

Ifw: Q*\AX — QX is a finite order Hecke character, we denote by w; : Q; — C* the local component
of w at £. On the other hand, we write w = w(g)w(é), where w(y) and w® are finite order Hecke characters of
conductor ¢-power and of prime-to-¢ conductor respectively.

2. CLASSICAL MODULAR FORMS AND AUTOMORPHIC FORMS

In this section, we recall basic definitions and facts about classical elliptic modular forms and automorphic
forms on GLo(A). The main purpose of this section is to set up the notation and introduce some Hecke
operators on the space of automorphic forms which will be frequently used in the construction of p-adic L-
functions.

2.1. Classical modular forms. Let C°($)) be the space of C-valued smooth functions on the upper half
complex plane $). Let k be any integer. Let v = (Z Z) € GLI(R) act on z € § by v(z) = Zzzig, and for

f=f(z) € C™(H), define

Fli(z) = F((2)) ez +d)*(det ).
Recall that the Maass-Shimura differential operators d; and € on C*°($)) are given by
0

1 7] k 1
)and € = — 2

Sk & (y=1Im(z))

= —|( — + B —

S A7 W oy 1" 0%
(¢f. [Hid93, (1a,1b) page 310]). Let N be a positive integer and x : (Z/NZ)* — C* be a Dirichlet character
modulo N. Let m be a non-negative integer. Denote by N, ,Lm] (N, x) the space of nearly holomorphic modular
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forms of weight k, level N and character x, consisting of slowly increasing functions f € C*°($)) such that

emtlf =0 and
el 0) =x@r o (40) €

c

(¢f. [Hid93| page 314]). Let N (N, x) = U, N,Lm] (N, x)-(cf. [Hid93, (1a), page 310]) By definition, ./\/,£O] (N,x) =
M(N, x) is the space of classical holomorphic modular forms of weight k, level N and character y. Denote
by Si(N, x) the space of holomorphic cusp forms in My(N, x). Let 6} = dpq2m—2 - Op20k. If f € Ni(N, x)

is a nearly holomorphic modular form of weight k, then 8" f € Nyy2., (N, x) has weight k4 2m ([Hid93, page
312]. For a positive integer d, define

-1

Vaf(z) =d- f(dz); Uaf(z) = é

J

Il
o

and recall that the classical Hecke operators Ty for primes £1 N are given by
Tof = Usf + x(O)2Vaf.
We say f € Ni(N,x) is a Hecke eigenform if f is an eigenfunction of the all Hecke operators Ty for £4 N and
the operators Uy for £ | N.
If fe Mp(N,x), let
flg) =Y a(n, flg"
n>0
be the g-expansion (at the infinity cusp). If x is a Dirichlet character modulo M, define f|[x] € My (NM?, xx?)
the twist of f by x to be the unique modular form with the g-expansion

AR@ = Y am s

n>0, (n,M)=1

2.2. Automorphic forms on GL2(A). Let N be a positive integer. Define open-compact subgroups of
GLy(Z) by

to() ={g € GLa@) [ 9= ;1) moa 82}

Ui (N) = {g € Up(N) | g= (z‘) D (mod Ni)}.

Let w : Q*\A* — C* be a finite order Hecke character of level N. We extend w to a character of Uy(V)
defined by w((ccl Z)) = [y we(de) for (i Z) € Up(N), where wy : Q, — C* is the f-component of w.
Denote by A(w) the space of automorphic forms on GL2(A) with central character w. For any integer k,
let A (N,w) C A(w) be the space of automorphic forms on GL2(A) of weight k, level N and character w.

Namely, Ay (N,w) consists of automorphic forms ¢ : GL2(A) — C such that

plaguseur) =p(g)eY ™ (ur)
(v € GL2(Q), uoo = <

cosf sinf
—sinf cosf

) , ug € Up(N)).

Let A (N,w) be the space of cusp forms in A (N,w).
Next we introduce important local Hecke operators on automorphic forms. At the archimedean place, let

Vit Ag(N,w) = Ag+2(N,w) be the normalized weight raising/lowering operator in [JL70, page 165] given by
1 1 0 0 1 .

The level-raising operator V; : Ag(N,w) — Ax(N{,w) at a finite prime ¢ by

viela) = o((%5 e
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If d = [, ¢**Y) is an positive integer, define V; : Ax(N,w) — Ax(Nd, x) by

Va= H V;e(d).
J4

Define the operator Uy on ¢ € Ai(N,w) by
w T
ve= 3 (7 e
TE€EZy 12y

Note that U,V = Ly and that if ¢ | N, then Uy € Endc Ax(N,w). For each prime ¢ { N, let T; €
Endc Ai (N, w) be the usual Hecke operator defined by

T, =U; + w(wz)Vg.

We introduce the twisting operator ¢ attached to a Dirichlet character £ of modulo ¢° for some s > 0. Let
¢™ be the conductor of k. If n > 0, define the Gauss sum g(x) by

aw)= Y & '(a)e

2€(Z /L)%

For ¢ € Ap(N,w), we define 6;¢ : GL2(A) — C by

—2n/—1x
s —

o — WU if n =0,

1 x/wp

o(k)” mE(Z%;"Z)X o (x)p(<0 1 )W ifn > 0.

2.3. We give a dictionary between modular forms and automorphic forms. For every Dirichlet character
X : (Z/NZ)* — C*, we let ya be the adelization of y, the unique finite order Hecke character xa :
Q*\AX/R (1 4+ NZ)* — C* of level N such that xa(w¢) = x(¢)~! for any prime ¢t N. Each nearly
holomorphic modular form f € Nj(N,x) defines a unique automorphic form &(f) € Ag(N,x,') by the
formula

(2.3) O(f)(agoou) := (flrgse) (V=1) - x4 (u)

for a € GLa(Q), goo € GLF (R) and u € Uy(N) (¢f. [Cas73, §3]). Conversely, we can recover the form f from
o(f) by

(24) flas v =t a(f 5))

(2:2) 07 =

The weight raising/lowering operators are the adelic avatar of the Maass-Shimura differential operators 4;"
and € on the space of automorphic forms. A direct computation shows that

(2.5) B} f) = VI B(f) and (=f) = V_o(f).

In particular, f is holomorphic if and only if V_ &(f) = 0. For a positive integer d, we have
(2:6) O(Vaf) = d' "2 Vad(f),

and for a finite prime ¢

(27 O(Tof) = €371 Te0(f);  S(ULf) = 37U d(f).

For f € My (N, x) and k a Dirichlet character modulo a ¢-power, one verifies that

(2.8) O(fl[s]) = 0 &(f) ® iy

2.4. Preliminaries on irreducible representations of GL2(Q,).
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2.4.1. Measures. We shall normalize the Haar measures on Q,, and Q) as follows. If v = oo, dz or dy denotes
the usual Lebesgue measure on R and the measure d*y on R* is |y|71 dy. If v =/ is a finite prime, denote by
dz the Haar measure on Qg with vol(Z, dz) = 1 and by d*y the Haar measure on Q with vol(Z;,d*y) = 1.
Define the compact subgroup K, of GL2(Q,) by K, = O(2,R) if v = 0o and K,, = GL2(Z,) if v is finite. Let
dk, be the Haar measure on K, so that vol(K,, dk,) = 1. Let dg, be the Haar measure on PGL2(Q,) given
by dgy = |yo| ! dzyd” yudk, for g, = <y0 ””1> key with 3, € QX, 2, € Q, and k, € K.

2.4.2. Representations. Denote by x B v the irreducible principal series representation of GL2(Q,) attached
to two characters x, v : QX — C* such that yv=! # ||jE If v = oo is the archimedean place and k£ > 1 is an
integer, denote by Dg (k) the discrete series of lowest weight k if & > 2 or the limit of discrete series if k =1
with central character sgn® (the k-the power of the sign function). If v is finite, denote by St the Steinberg
representation and by xSt the special representation St ® x o det.

2.4.3. L-functions and e-factors. For a character x : QX — C*, let L(s, x) be the complex L-function and
e(s,x) = €(s,x,¥q,) be the e-factor (cf. [Sch02, Section 1.1]). Define the y-factor

L(l -5 X_l)
L(s,x)
If 7 is an irreducible admissible generic representation of GL3(Q,), denote by L(s, ) the L-function and

by e(s,m) := e(s,m,9q,) the e-factor defined in [JL70, Theorem 2.18]. Let 7 denote the contragradient
representation of . Denote by L(s,, Ad) the adjoint L-function of 7 determined in [GI78§].

(2.9) Y(s,x) == ¢e(s,x) -

2.4.4. Conductors and new vectors. Let ¢ be a prime. Let (m,V;) be an irreducible admissible infinite dimen-
sional representation of GL2(Qy), where V,; a realization of w. For a non-negative integer n, let

ny __ Zl ZE
Z/ll(f ) = GLQ(Z[) N (ang 1+fnZg) .

c(m)
Let ¢(m) be the exponent of the conductor of 7. By definition, ¢(r) is the smallest integer such that V¥ 1)
the space of U; (¢°(™)-fixed vectors is non-zero. Define the subspace V2V by

pnew _ {5 eV, | w((‘c’ Z))g — ¢ for all (Z Z) E ul(e0<ﬂ>)} .

Proposition 2.1 (Multiplicity one for new vectors). We have dimgc V2V =1
ProoF. This is [Cas73, Theorem 1]. O

We shall call V2V the new line of .

2.4.5. Whittaker models. Every admissible irreducible infinite dimensional representation 7 of GL2(Q,) admits
a realization of the Whttaker model W(7) = W(m, 9 q, Jassociated with the additive character 1q . Recall
that W(m) is a subspace of smooth functions W : GL2(Q,) — C such that

. W((é Tf) 9) = tbq, (@)W (g) for all z € Q.

e if v = 0o is the archimedean place, there exists an integer M such that

0 1

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(m) via the right translation p. We introduce
the (normalized) local Whittaker newform W, in W(w) in the following cases. If v = co and = = Dy(k), then
the Whittaker local newform W, € W(r) is defined by

W, (= (gé i:) ( cosf  sin 9>) = In, (y) .yge_zﬂy -sgn(z)ki,bR(x)e\/jlke

w((y )= 0tal") us lal - .

(2.10) —sinf cosf

(y,2 € R*, z,0 € R).

Here Ir, (a) denotes the characteristic function of the set of positive real numbers. If v = £ is a finite prime,
then the local Whittaker newform W is the unique function in W(m)**" such that W, (1) = 1.
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2.5. Ordinary lines in irreducible representations of GL3(Q,). Let p be a prime. Let (m,V;) be an
irreducible admissible generic representation of GL2(Q,) with central character w : Q;f — C*. Let N(Z,) =

{ ((1) 916) |z € Zp}. Define the local Up-operator and the local level-raising operator V, in Endc( ,],V(Zp)) by

—1
. p . . D 0
(2.11) U= Y w((o 1>)£, Vol = w(< 0 1))5.
©€Zp/pZy
For a Dirichlet character x of conductor p™, we define the local twisting operator 6 € End V: by
5 - pflvapﬁ ifn= 0,
1 o3
k)™t > TN a)n( o/p e ifn > 0.
z€(Z/pnZ)* 0 1

For a character x : Q, — C*, define the subspace Vord (y) by

(2.12) ore =

Vgrd(x) = {g c Vfrv(zp) | Upg = X||7%(p) ’ 55 7T(<é ?))5 = X(t)€7 te Z;:} )

Proposition 2.2 (Multiplicity one for ordinary vectors). The space V' (x) is non-zero if and only if 7 is

1

either the principal series x H x~"w or the special representation X|-|7%St. In this case,

dimg Vo (x) = 1.
PRrROOF. Replacing m by 7 ® x_1|-|%, we may assume Y = ||% For each n, let
VU, —1]={€ eV, | Ut =&  m(u)é =& for all u € Uy (p™)} .

Let Vord = Vﬁrd(|-|%). Let ¢(w) be the exponent of the conductor of w and ¢* := max {1, ¢(w)}. Then it is
easy to see that

verd = | Vo, — 1),
n>c*

Suppose that m = ||% H w|~|_% or the Steinberg representation St. We claim that il [U, — 1] is non-zero

for some n. If w is ramified or 7 is Steinberg, then ¢(7) > ¢* and the new line V2V = VIe(™I[U, — 1] is not
zero. If w is unramified, then 7 is sphercial, and it is well known that dimc V7[Tl] = 2 and the characteristic
polynomial of U, on VI is given by (X — 1)(X —w(p)p), so 2 [Ug — 1] is non-zero.

Now suppose that Vo' # 0. Then 7 must be a principal series or special representation since U, is a

unipotent operator on V,[T"] if 7 is supercuspidal. For any u € U; (p™) with m > 1 and £ € V,, a straightforward
calculation shows that

m(u)UpE = Z w((g 117) ul 2, )¢ for some ul, € Uy (p™ ™), 2z, € 1+ p™Zy,.
©€Zp/PZp

It follows that if & € V™™ [Up, — 1], then £ € v [U, — 1] whenever m > ¢*. This implies that Vo4 =
V) £ 0, and hence ¢* > c(m) > c(w). If ¢* = c¢(w) > 0, then c(w) = ¢(n), and it follows that Vo4 = Ynew

is the new line in V, and 7 = p 8 g~ 'w with unramified character p. Since any new vector in p B p~lw is
1 1 1

an eigenvector of U, with the eigenvalue p|-|~ 2, we thus conclude that 7 = |-|? Bw|-| ?. If ¢(w) = 0, then

c*=1and Vord = ,[71] [Uy—1]. It follows that 7 is a unramified principal series or the Steinberg representation

St. If m = St, then V°'4 is the new line. If 7 is a unramified principal series, then the two dimensional vector
space fol(p) has a basis £¥ € View = VSLz(Zp) and V,£°%. Since U,V,£" = p&°, U, is not a scalar, and thus
dime Vord = dime VI[U, — 1] = 1. O

We shall call V*4(x) the ordinary line of m with respect to x whenever it is non-zero.
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Corollary 2.3. If 7 is either the irreducible principal series x B x 1w or the special representation x|- |7%St,

then the ordinary line W(m)°*4(x) in the Whittaker model is generated by the normalized ordinary Whittaker
function W characterized by

. 0 1
wed (5 9) =z o) e Q)
Here iz, is the characteristic function of Zy.

PrROOF. The proof of Proposition actually gives the recipe to construct the ordinary line. Indeed, let
W = W,y -1 be the Whittaker local newform of 7 ® x . Define W' € W(r @ x~') as follows: W' = W if

0
calculation shows that W1 @ x belongs to Wo'(x). By using the explicit formulas of Whittaker newforms

(JSch02, Section 2.4]), we find that W' ® X((O (1)>) = x|-|%(y)]lzp (y) as desired. O

7 ® x~ ! is not spherical and W1 = W — y~2w|- | (p)p (<p (1)>)W if 7@ x~! is spherical. An elementary

2.6. p-stabilized newforms. Let 7 be a cuspidal automorphic representation of GLy(A) and let A(7) be
the m-isotypic part in the space of automorphic forms on GLy(A). For ¢ € A(w), the Whittaker function of
¢ (with respect to the additive character g : A/Q — C*) is given by

Wap(g)_/A/Q@(<(1) x) 9)Pq(—x)dr (g € GLa(A)),

where dx is the Haar measure with vol(A/Q, dx) = 1. We have the Fourier expansion:
a 0
- > w((y V)o
acQX

(¢f. [Bum97, Theorem 3.5.5]). Let f(q) = >, a(n, f)¢" € Sk(N, x) be a normalized Hecke eigenform, we shall
denote by 7y = ®] 7y, the cuspidal automorphic representation of GL2(A) generated by the automorphic
form &(f) attached to f. Then 7y is irreducible and unitary with the central character x~!. If f is newform,
then the conductor of 7y is N, &(f) is the normalized new vector in Ay(ny) and the Mellin transform

zwamy= [ ou(f )t a = s

is the automorphic L-function of my. Here d*y is the product measure [, d*ys.

Definition 2.4 (p-stabilized newform). Let p be a prime and fix an isomorphism ¢, : C ~ Qp. We say that
a normalized Hecke eigenform f € Si(Np, x) is a (ordinary) p-stabilized newform (with respoect to ¢p) if f is
a new outside p and the eigenvalue of Uy, i.e. the p-th Fourier coefficient ¢,(a(p, f)), is a p-adic unit. The
prime-to-p part of the conductor of f is called the tame conductor of f.

Remark 2.5. Let f be a p-stabilized newform. By the multiplicity one for new and ordinary vectors, the
Whittaker function of &(f) is a product of local Whittaker functions in W(r,). To be precise,

W<15(f)( Word g'u H 7rf1, v g = (gv) S GLQ(A))
v#p

Comparing the Fourier expansions of @(f) and f via (24]), we find that

[SIE

(213) Wy V) =atne ez wet(h ) —atr

By Corollary 23, Wt € W(ry,)*(ay,), where g is the unramified character with oy, (p) = a(p, fpe .
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2.7. The bilinear form. Let A%(w) be the space of cusp forms in A(w). Let (,) denote the GLa(A)-
equivariant pairing between A°(w) and A°(w™!) defined by

(p,¢') = ©(9)¢'(9)d"g

/AX GL2(Q)\ GL2(A)

for ¢ € A%w), ¢’ € A%w™!), where d"g is the Tamagawa measure of PGLy(A). The following lemma is
well-known (¢f. [Wal85 page 217]), and we omit the proof.

Lemma 2.6. For cusp forms ¢ € AY(N,w) and ¢’ € A%, (N,w™!), we have
(X,¢) == (9, X¢') for X € Lie(GL2(R)),
(0, Ue) =t{Vip,¢") for L] N,
(Tep, ') =w(O)(p, Teg") for L4 N.

Let m = ®)m, be an irreducible unitary cuspidal automorphic reprensentation on GL2(A) with central
character w. Denote by 7 the contragredient representation of 7. By the multiplicity one theorem, the
pairing (, ) gives rise to the equality A(T) = A(r) ® w™!. For a place v of Q, define the non-degenerate
GL2(Qy)-equivariant pairing (, ) between W(m,) and W(7,) by

214 avavy = [ owi( (" Vpas

for W € W(m,) and W(7,). This integral converges absolutely as m, is unitarizable.

Proposition 2.7. Let ¢ € A(m) and ¢’ € A(7). Suppose that W, = [[, W, and W, = [[, W,, such that
W,(1) =W/(1) =1 for all but finitely many v. Then we have

. 2L(1,m, Ad )
<S07SD> CQ H C’U 1 WU,Ad) <W’U7WU>'

PrROOF. This is [Wal85, Proposition 6]. Note that W, = W, and W/ = Wz, are the normalized local
Whittaker newforms for all but finitely many v, and if 7, is spherical, then
G (DL(L, 7w, Ad)

C(2) ’

so the right hand side of the equation in the proposition is indeed a finite product. O

<W7Tu ’ Wﬁ:v> =

We give the formula of the local pairing of ordinary Whittaker functions.

Lemma 2.8. Let p be a prime. Suppose that m, is a principal series x H v or a special representation

x|-|_%St. Let W,‘r’:d € W(m)°"(x) be the normalized ordinary Whittaker function in Corollary 3. If
n > max{1,c(mp)}, then we have

0 o or or — — n —
WO O P e et o) (-0 ") 20, 0x g )
Here v = x"'w, and (s, —) is the y-factor defined in ([23).

—n

PROOF.  Let W = W2 and t,, = ( 0 » 01

0 > We first note that if n > max {1, ¢, ()}, then W ( <y 0) tn) =
0if y € Z,. Then we have

o = [ wi(l ) eow((Y ) ey

/Q W(<g ?) ta)xewy  (=9)| % (y)d ylomr.

® X
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By the local functional equation for GL(2) (cf. Theorem 4.7.5]), the last integral equals

ol el = s x T [ (G Do) (L o e

1—s,7®x ! —p2n

L(s,m® xw, ")
L(l—s,m®@x !

—wp (X (=X (™) - [P el — s, @ X7 6oL = )=

Using the formula

E(l_s,ﬂ-®x _|p|7S Cp(od]) lfﬂp:X||7%Sta

L(s,m@xw, ') {5(1 —s,ux 7Y Cp (&) L(sixv ) if m, =xHBo,
Cp(1—s)

1) (p(I=s)L(1—s,ux—1)
LA -s,m@x 1

we see that

Y(0,vx 1)) ifm, =x B,

w—l _ 1w —n % n K
{p(tn) W, W @ wy ) = x(=L)wp(p™")x]-[* (p ){—Ipl_lcp@) if ) = |-t

Finally, we note that if 7 = X|~|_%St, then v = x|-|~" and ¥(0,ox 1 (1) = — | (p(2). This finishes the
proof. O

2.8. Root numbers and Petersson norms. Let f € S;(N, x) be a normalized cuspidal newform of weight
k and conductor N. Put f.(z) := f(—%). Then it is a classical result that

(2.15) ey o) =ut

for some w(f) € C* with the modulus |w(f)| =1 (cf. Theorem 4.6.15]). This complex number w(f)
is called the root number of f. By [Hid88c, page 38|, we have

w(f) = [T e(1/2,75.0)-

<00

Recall that the Petersson norm of f is defined by
2 . dxdy
I = [l v
Lo (N)\H Y
For each integer M, define the matrix 757 = (7ar,,) € GL2(A) by

TM,oo:(_Ol (1)>, TM)g=1iff1'M;
(2.16) o
TMe = <_gvz(M) O) € GLo(Qy) if | M.

Let 7 = 7; be the cuspidal automorphic representation generated by @(f) with central character w(= y').
Define the local norm of the normalized Whittaker newform Wy, by

G(2)
Co(1)L(1, my, Ad)

(217) Bﬂ'v = <p(TN,v)W7rU7Wﬂ'U ®w;1>'

It is straightforward to verify that
Br.=2"1'1% B, =1if({N.
By Proposition 27 and ([2I5]), we have
[SL2(Z) : To(N)]
28 w(f)

(2.18) £ 1oy = L1, 7, Ad) - | [ B,

q|N
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3. THE UNBALANCED p-ADIC TRIPLE PRODUCT L-FUNCTIONS

3.1. Ordinary A-adic modular forms. Let p > 2 be a prime and let O be the ring of integers of a finite
extension of Q,. Let I be a normal domain finite flat over A = O[1 + pZ,]. A point Q) € Spec I(QP), a ring
homomorphism @ : T — Qp is said to be locally algebraic if Q[11,z, is a locally algebraic character in the
sense that Q(z) = 2¥2eg(z) with kg an integer and €g(z) € pp=. We shall call kg the weight of @ and eg
the finite part of Q). Let X1 be the set of locally algebraic points ) € Spec I(Qp) of weight kg > 1. A point
Q € Xy is called arithmetic if the weight kg > 2 and let %f be the set of arithmetic points. Let pg = Ker @
be the prime ideal of I corresponding to @ and O(Q) be the image of T under Q.

Fix an isomorphism ¢, : C, ~ C once and for all. Denote by w : (Z/pZ)* — u,—1 the p-adic Teichmiiller
character. Let N be a positive integer prime to p and let x : (Z/NpZ)* — O* be a Dirichlet character
modulo Np. Denote by S(N, x,I) the space of I-adic cusp forms of tame level N and (even) branch character
X, consisting of formal power series f(q) = >, -, a(n, f)¢" € I[q] with the following property: there exists an
integer ay such that for arithemtic points ) € f{f with kg > ay, the specialization fQ(q) is the g-expansion
of a cusp form f, € S, (Np®, xw? Fe €q). We call the character x is the branch character of f.

The space S(N, x,I) is equipped with the action of the usual Hecke operators Ty for £ 4 Np as in [Wil88|
page 537] and the operators Uy for £ | pN given by Uy(3", a(n, f)g™) = >, a(nl, f)q". For a positive integer
d prime to p, define Vy : S(N, x,I) — S(Nd, x,I) by Va(>, a(n, £)g") =d >, a(n, f)g". Recall that Hida’s
ordinary projector e is defined by

. |
e:= lim U".
n— o0 p

This ordinary projector e has a well-defined action on the space of classical modular forms preserving the
cuspidal part as well as on the space S(N, x,I) of I-adic cusp forms (c¢f. [Wil88| page 537 and Prop. 1.2.1]).
The space eS(N, x, I) is called the space of ordinary I-adic forms defined over I. A key result in Hida’s theory
of ordinary I-adic cusp forms is that if f € eS(N,x,I), then for every arithmetic points @ € X1, we have
Fo € eSkq (Np©, xw? Feeq). We say f € eS(N, x,I) is a primitive Hida family if for every arithmetic points
Q) € X1, fq is a p-stabilized cuspidal newform of tame conductor N. Let %i?ls be the set of classical points
(for f) given by

%fls = {Q € %fls | f¢ is the g-expansion of a classical modular form} .

Note that %‘1315 contains the set of arithmetic points %;r but may be strictly larger than %;r as we allow the
possibility of the points of weight one.

3.2. Galois representation attached to Hida families. Let (-) : Z, — 1+ pZ, be character defined by
(z) = zw~Y(z) and write z — [2]5 for the inclusion of group-like elements 1 + pZ, — O[1 + pZ,]* = A*.
For z € Z), denote by (z); € I* the image of [(2)]o in I under the structure morphism A — I. By
definition, Q({z);) = Q((z)) for Q € X1. Let ecyc : Gq — Z,; be the p-adic cyclotomic character and
let (gcye); : Gq — I* be the character (ecyc); (o) = (€cyc(0));. For each Dirichlet chatacter y, we define
x1 : Gq — I* by x1 == oy <€Cyc>_2 (€cyc)p» Where o is the Galois character which sends the geometric
Frobenious element Froby at £ to x(¢)~!.

If f € eS(IV,x,I) is primitive Hida family of tame conductor N, we let pf : Gq — GLa(FracI) be the
I-adic Galois representation attached to f characterized by

Tr(pg(Frobe)) = a(l, f);  det pg(Frobe) = xw?(£) () €1 (L1 N).

Note that det pg = x1 1. s;ylc. We have a complete knowledge of the description of the restriction of ps to the
local decomposition group Gq,. For ¢ = p, according to [Wil88, Theorem 2.2.1],

Pflcq, ~ (ap ’ )
7 ™ 0 aptxgteqh
where o, : Gq, — I the unramified character with o, (Frob,) = a(p, f)E For ¢ # p, enlarging I if necessary,
we have the following list of p¢|cq,-

20ur representation py is the dual of pg considered in [WilS8).
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(1) (Principal series) pf|Gq, is reducible and isomorphic to

agtell? (ecye)y 2 ® a7 el (ecye) ?

with a unramified characters oy : Gq, — I and a finite order characters &,¢&' : Gq, — QX with
€ =x"tw 2
(2) (Special) pg|cq, is indecomposable and

Eeeye (Ecye)y *
pslaq, ( 0 & (eeye)r?

with a finite order character £ : Gq, — QX such that €2 = y~lw™2
(3) (Supercuspidal) pg|aq, is irreducible and py ~ po ® <5Cyc>1—1/2 with po : Gq, — GL2(Q) irreducible

representation of finite image
(cf. [SUDE, page 639]).
Remark 3.1 (Rigidity of automorphic types). We recall the rigidity of automorphic types for a primitive Hida
family f in [FO12l Lemma 2.14|. Let £ # p be a prime. If for some arithmetic point ) the associated cuspidal
automorphic representation ¢ ot 18 principal series (resp. special, supercuspidal) of conductor ¢, then for
any arithmetic point Q', 7 ¢ 18 also principal series (resp. special, supercuspidal) of the same conductor ¢™.
This is a consequence of the above description of pf|GQe’ the Langlands correspondence and the Ramanujan
conjecture for elliptic modular forms (only needed in the case (Special)).

In addition, if ¢ olisa discrete series at any arithmetic point @ € %fr , then the Weil-Deligne representaion

associated with the specialization of py ® <€Cy0>i/2 |GQ2 at @ is independent of Q.

3.3. Hecke algebras and congruence numbers. If N is a positive integer and y a Dirichlet character
modulo N, we let Tx(N, x) be the O-subalgebra in Endc eSi (N, x) generated over O by the Hecke operators
Ty for £1 Np and the operators Uy for £ | Np. Suppose that N is prime to p. Let A = (Z/NpZ)* and A be
the group of Dirichlet characters modulo Np. Enlarging O if necessary, we assume that every x € A takes

value in O*. We are going to consider the Hecke algebra T(N,I) acting on the space of ordinary A-adic cusp
forms of tame level T'; (N) defined by

S(N, 1) := P eS(N, x. ).
XEE

In addition to the action of Hecke operators, denote by o4 the usual diamond operator for d € A acting on
S(N,1)° by 0d(f)ea = (X(d)f),cx- Then the ordinary I-adic cuspidal Hecke algebra T(N,I) is defined

to be the I-subalgebra of Endy S(INV,1)°*¢ generated over I by T} for ¢ | Np, U, for £ | Np and the diamond
operators o4 for d € A. Let Q € f{f be an arithmetic point. Every ¢t € T(N,I) commutes with the

specialization: (t - f)go = t- fgo. For x € ﬁNp, let g, be the ideal of T(N,I) generated by pg and
{oa —x(d)}4en- A classical result [Hid88b, Theorem 3.4] in Hida theory asserts that
T(N.D)/pqx = Tho (Np*, xw? "2 eq) ®0 O(Q).
Let f € eS(N, x,I) be a primitive Hida family of tame level N and character x and let Ay : T(N,I) — 1
be the corresponding homomorphism defined by A¢(T;) = a(¢, f) for £4 Np, A¢(U,) = a(¢, f) for £ | Np and
Ag(oq) = x(d) for d € A. Let my be the maximal of T(V,I) containing Ker Ay and let Ty, be the localization

of T(N,I) at mg. It is the local ring of T(NV,I) through which Ay factors. Recall that the congruence ideal
C(f) of the morphism Ay : Ty, — I is defined by

c(f) = )\f(AnnTmf (KerAf)) C L.

It is well known that Ty, is a reduced local finite flat A-alegba (c¢f. [DDT94, Prop. 4.7]), and there is an
algebra direct sum decomposition

(3.1) AT, ®rFracl ~ FracI @ %, t— A(t) = (Af(1), Ax(1)),
where 2 is some semi-simple (FracI)-algebra (JHid88bl, Corollaty 3.7]). Then by definition we have
C(f) = Af(Twm, N A" (FracI @ {0})).
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Now we impose the following
Hypothesis (CR). The residual Galois representation Py of pg is absolutely irreducible and p-distiniguished.

Under the above hypothesis, Ty, is Gorenstein by [Wil93, Corollay 2, page 482], and with this Gorenstein
property of Ty, ,, Hida in [Hid88al proved that the congruence ideal C(f) is generated by one element 75, called
the congruence number for f. Let 1% be the unique element in Tr, NA~" (FracT@{0}) such that A¢(1%) = 7y
Then 15 := n;ll} is the idempotent in Ty, ®r1 FracI corresponding to the direct summand FracTI of (B.1)).
Moreover, for each arithmetic point @, it is also shown by Hida that the specialization n¢(Q) € O(Q) is the
congruence number for f, and

1y := 77]:11} (mod py,0) € ’IFZ?(NpT,XwQ*erQ) ®o Frac O(Q)

is the idempotent with As(15) = 1.

For each Dirichlet character ¢ : (Z/Np"Z)* — C*, we have a unique decomposition ¢ = 1/1(17)1/1(1,),
where ¢®) and P (p) are Dirichlet characters modulo N and p" respectively. Let X = X! be the complex
conjugation of x. Denote by 5"' € eS(N, x(p)y(p),l) the primitive Hida family corresponding to the twist
FIXP)(q) = > N)=1 XP) (n)a(n, f)q" (cf. Lemma 6.1]). To be precise, the Fourier coefficients of

5"' are given by
alt, ) = {W (Da(t. f) if £f N,

a(l, f)"Ixpw(OC () if (| N.
by Theorem 4.6.16]. For every arithmetic point Q@ € X, }'Q is the p-stabilized newform attached
to fQ|[7<P>]. Moreover, the Atkin-Lehner involution 7, introduced in (4.6.21), page 168]) induces an
isomorphism 77, : Sp(Np", xw? *@eq) ~ Sp(Np", X" x(pmw? " 2eq) such that Tyn), = X (O)n, T, for £ N
([Miy06l (4.6.23)]). We thus obtain a A-algebra isomorphism [Y")] : T, =~ T, such that X®UT,) =
T, - X (¢) for £ N and Ajo [x®)] = As. Tt follows that

(3.2) L = [¥P)(13) and n; = ny.

3.4. The adjustment of levels for a triple of modular forms. For any positive integer M, let supp(M)
denote the support of M, i.e. the set of prime factors of M. If f is a p-stabilized newform of tame conductor
Ni, let ¢o(f) := c(my,) be the exponent of the ¢-component of Ny for each prime ¢ # p and set

Y%t ={¢: prime | 7/ is a principal series} ;
Y9 ={¢ : prime | 7/ is a discrete series} .

To a triple (f,g,h) of p-stabilized newforms of tame conductors (N1, No, N3), we are going to associate a
set of auxiliary integers, which we call the adjustment of levels for (f, g, h). This adjustment of levels is crucial
for the construction of our test A-adic modular forms (Definition and Definition [L8)) in order to obtain
the optimal value of the local zeta integrals in Ichino’s formula, and they are defined according to the choice
of good test vectors in the space of product of local representations of 7y ¢ X w4 ¢ X ¢ (¢f. §6.1)). Inevitably,
the definition is ad-hoc and may seem to be artificial at the first sight. The readers may skip the details and
come back until §6.I1 To begin with, let Ny, = gcd(N1, N2, N3) and N = lem(Ny, Na, N3). Put

™ = v(Nygn)
and let Yygp = E(} N Eg N Y. We introduce several disjoint subsets of supp(N):
2y ={t € T} UT; US| exlh) < min fer(F), cr(9)} )
S0 = {0 €N DY | L(s, mge @ The) # 1, ca(f) = 0},
E;Hb) ={ex)N) | L(s,mg0 @ mne) =1, L € X}, co(f) < min{ce(g), ce(h)}},
P = {6 . prime factor of Ny | coe(g) = co(h) = '™ < Cz(f)} )
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Define 25}}17 ES,Z, Eflna) ,Egllb), Y, ..., In the same manner. We set
dg}) _ H peefg)—ce(f) . H gw(fh)—Ce(f)’
text) tes)
dg(H) _ H ﬂ—ce(zgh)-‘ . H ch(gh)—ce(f)7
zex;““‘) EGE(be)
dr;lax _ H gcg(f)—czﬂi"'
Lexymax

Likewise we define df]I), df]II), ;™ dg), d;lH) and d;**. Finally, put
I) (I max ymax I) ymax 11
(3.3) dr=dPd{, d, =dPdr>dpe - d and d), = ddr> - di)".
By definition, we have
(3.4) d;| N/N1, dy|N/Na, dj|N/Ns.
3.5. Definitions of good test A-adic modular forms. Let O = Op for some finite extension F' of Q.
Fixing a topological generator vy of 1+ pZ,, we let A = O[1 + pZ,] = O[T] with T'= — 1. For i =1,2,3,

let I; be a normal domain finite flat over A and let ¢; : (Z/pN;Z)* — O* be Dirichlet characters with
1;(—1) = 1. Throughout this paper, we fix a triplet of primitive Hida families

F :=(f,g.h) € eS(N1,11,11) x eS(Nz,102,I3) x eS(N3,13,13)

of tame conductors N = (N1, Na, N3) and branch characters 1) = (11, 12,v3). We shall impose the following
running hypotheses

(ev) U11haths = w?? for some a € Z;

(sf) ged (N7, No, N3) is square-free.

Lemma 3.2. Let (Q1,Q2,Q3) € f{ﬂs X %ﬂs X f{ﬂs and (f,g,h) = Fq = (fg,,9q,  hq,) be the specialization
of F at Q. The adjustment of levels d},d; and dj for e € {(I), (IT),max} are independent of the choice of
any arithmetic point Q.

PROOF. The lemma is clear from the rigidity of automorphic types, the description of the restriction of
Pflcq, given in §3.2 and the Langlands correspondence for GL(2). O

Definition 3.3 (Test A-adic forms). Let N = lem(Ny, Na, N3). Put
200 = {¢e =™ | c(?) = 0} for 7 € {f,g,h}.

For each £ € E;{Eb) (resp. Zgéb), Eg}ob)), we fix once and for all aroot 8;(f) € Iy (resp. Be(g) € I, Be(h) € I)

of the Hecke polynomial Hy ((X) := X? — a(l, f)X + ¢nrw?(£)¢~" (£);, (resp. Hg¢(X), Hpe(X)). With the
above notation in the previous subsection, we define the pair (g*, h*) in eS(N, 12, I2) x eS(N,13,13) of the
ordinary A-adic cusp forms by

g@= >, )"Bi(g) " Va,/m,g,
chgflg'”)
R = Y (DB (R) WV, b,

ey

where ny = [[,c; ¢, B1(?) = [loe; Be(?) for 2 = f, g, h.
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3.6. The construction of the p-adic L-function in the unblanced case. We let
R =1R0L&ol;
be a finite extension over the three variable Iwasawa algebra
Ro :=ABoABoA = O[Ty, Tz, T4],
(M =Te1el,T,=10T®1, T3=11xT).

Define the multiplicative map © : Z(Xp )~ R* by

O(n) =1, gw () (] )y, )2
Define the R-adic twisting operator |[0©] : R[[g]] — R][q]] by
D_amgmlel= Y O(n)-an)".

n>0 n>0, pin

Here 9y (p) is the restriction of the branch character 11 of f to (Z/pZ)*. Define the power series H by
H :=g*-h*|[0] € R[q].
Lemma 3.4. The power series H belongs to S(N, wl)(p)m(p),ll)@nﬂz.
PRroOF.  The following proof is taken from Hida’s blue book [Hid93]. Put
X% ={Q = (Q1,Q2,Qs) € X{ x X, x X{. | kg, = kq, + kq., kg, > ko, +2}.
For Q € X%, put

B Cal1.1/2 —1/2 —1/2
ko_wlx(p)w ‘ €0, Q2 Qs -

Here e%/Z is the unique square root of e; taking value in 1 + pZ,. We verify that (h*[[©])g = hqg,|ko] €

Sk, (N, 2/1%7(;0)1/11711/1271662165;), and hence we find that for every @ € x%,
——(p)

(3.5) Hg = by, - hiy,|[Ko] € Sug, (N 1,1 Vw? 1 g, ).
We have Ry = O[T4,T2, Z] with Z = (1 +T1) (1 + T»)(1 + T3) — 1. Let Ly = FracRo and L = FracR
be a finite extension of Lg. Let aq,---,q, be a basis of R over Ry and write H = Z?Zl H(j)aj with

HY € Ro[q]. On the other hand, if we let {oz;f }j:1 ,, be the dual basis of {a;},_,  with respect to
the trace map Tr : L — Lo. Then HY) = Tr(Haj). Let u = 1+ p. By (3), we can write HY =

HY) Ty, Ty, Z) € O[T}, Ty, Z][q] so that

LN

(3.6) HO(ub¢ = 1,026 — 1,6 — 1) = Te(Hoai(Q)) € Spy (N, (T " w? ™)

for all but finite many positive integers k1, ko with k1 > ko+2 and ¢; € prp (i = 1,2,3), where Q = (Q1, Q2, Q3)
are some arithmetic points of weights (k1, k2, k1 — ko) and finite parts (e, , €g,, €0, ), €@ () is the finite order
character with eg, (u) = ¢;.

To prove the lemma, it suffices to show that

(3.7) H9(Ty, Ty, Z) € S800[Ty, Z], S = S(N, ¢y (r ", O[T]),

which in turn, by [Hid93, Lemma 1 in page 328], is equivalent to showing that HY (T}, Ty, ¢) € S®0O[(][T3]
for every ¢ € ppe. Now we repeat the arguments in [Hid93 page 226-227|. Let a be a positive integer such
that g is a classical modular form for all ) € Xy with kg = a. We define the power series inductively

Ho(Ty, To) =HY(T1,T,{ — 1), Yy, =To — (™! — 1) € pO[ T3],
Hpyp1(Th, To) — Hpy—1 (Ty,umta=1t — 1)
Yo

H,(T1,Ts) = € O[Ty, T>][q]
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for m = 1,2,.... Then (B.6]) implies that Ho(T1,u® — 1) € S ®p O[(] and by induction, we find easily that
Hp (T, u™ — 1) € S®p O[¢] for all m =0,1,.... On other hand, by construction we have

HO(T, Ty, ¢ = 1) = Y Hp(Ty,u™ 2 = 1) [] vi.
m=0 i=1
It is clear that the right hand side is a convergent power series and belongs to S&oO[(][T3]. O

The above lemma allows us to apply the ordinary projector e to H and obtain eH an ordinary A-adic

modualr form with coefficients in R. We define an auxiliary R-adic form H™ € eS(N, wly(p)m(p), 1,)®L,R
by

(3.8) H* = > (-1)

)
1cs®)

(V1) (na/dy) (nr/dy)y d

f
ﬂ[(f)n[ .Udf/nj(eH).

Now we are ready to define the p-adic L-function following the construction in [Hid85, (4.6)]. Denote by
Tra/n, : eS(N, wlﬁ(p)m(p),ll) — eS(Ny, wly(p)m(p), I;) the usual trace map (c¢f. [Hid88d, page 14]).

Definition 3.5. The unbalanced p-adic triple product L-function Zlf is defined by
Zf = a(l, 15 Teyn, (H™)) € R.

3.7. Global trilinear period integrals. Define the weight space for the triple (f, g, h) in the f-dominated
unbalanced range by

X% = {Q = (Q1,Q2,Qs) € X{ x X{5 x X{* | kg, > ko, + kqa. kq, = ko, + kg, (mod 2)} .

In this subsection, we relate the value of fpf (Q) at a point Q = (Q1,Q2,Q3) € %{z to a global trilinear period
integral of a test triple of modular forms. To this end, it is necessary to work in the framework of automorphic
forms. Let (ki, ko, k3) = (ko, , k., kq,) and let r be an integer greater than max {1, ¢,(€q, ), cp(€Q, ), cp(€Qs) }-
Recall that the specialization

(f,9:h) :=Fq=(fq,,90,hq.) € Ski (N1p", x1) X Sk (N2D", Xg) X Sky (N3D", X1)

are p-stabilized cuspidal newforms with characters modulo Np"

Xf = wltewQ*kl, Xg = 1/}26@2(4)27162 and yp = 1/}36(;)3(4)27]63.

Let o = @(f), vy = P(9) and ¢p, = P(h) be the associated automorphic cusp forms as in (Z3). Then
(wfa Sﬁga @h) € Agl (Nlprv wf) X ’Agg (NQprv wg) X ’Agg (N3prv wh)a

and the central characters wy,wgy,wy, are the adelizations
-1 -1 -1
wr = (X7 )a, wg = (xg )a, wn = (X )a-

Denote by (Be(f), Be(g), Be(h)) the specialization (8(£)(Q1), Be(g)(@2), Be(h)(@s)). For cach finite prime £,
define the polynomial Q;, € O[X] by

1 if ¢ ¢ n®
Qy(X) = Xvelds) 1M : i iy
(1= Be(f)~1#F1x1) ifres®)

g

We define Qg ¢(X) and 9, ¢(X) likewise. Set

(3.9) of = [[QreVo)es, @ =] Qoe(Vi)pg and @}, = [ Qn.e(Ve)ion.
4 4 14

By (26]), we see that

kQQ —1 kQS 1

<2 —% -

©y =dg? ?(gy,) and ¢, =d, P( *Qs)



22 MING-LUN HSIEH

Decompose wy = w fﬁ(p)w;p ), where wy (,,) and w}p ) are finite order Hecke characters of p-power conductor and
prime-to-p conductor respectively. By definition, wy ) is the adelization of x;}p), the restriction of X;l to
(Z/p"Z)*. Let f be the primitive Hida family corresponding to the twist f |[E(p)] and put

% 7 -1

gy = O(f) € A, (Nip", w5 wf (p))-

We introduce the modified p-Euler factor £,(f, Ad) for the adjoint motive attached to the p-stabilized
newform f. Let oy, : Q) — C* be the unramified character as in Remark 235 Let 87, := a?;wﬁp. Hence

the local component 7y, is either the principal series oy, B 3, or the special representation aj'1p|~|7%St.
Define the modified p-Euler factor &,(f, Ad) by

Ep(f, Ad) =e(1, ﬁfma;,;ln)l’(()? ﬁfﬁuai;lp)l’(lv Bf,pa;;;)
:a(p, f)_cp(ﬂ'f) . pcP(ﬂ'f)(kTI_l)g(l/2, ﬂ'f’p)

(3.10)
x {(1 —apwrpP)(L—aps@)p™") if ep(mp) =0,

1 if Cp(Trf) > 0.
Define J and t,, € GLy(A) by

(3.11) oo = (‘01 ;’) € GLo(R), t = (_(;n pg") € GL2(Q,) — GLs(A).

Lemma 3.6. Let notation be as above. We have

Ly @)™ W0l (=96 (2)

()7 SLa(Z) : To(N1)] (1)

PROOF. Let m = ®,m, be the irreducible automorphic cuspidal representation generated by ¢ = @(f) and
let w = w; be the central character of m. Let ¢’ = p(Jotn)pyr € .A(lel (Np",w) and ¢" = ¢ ® w;%p) €

(p(Tsotn)er, ¢y @uwy ) ”fOH%O(N}?) Ep(f,Ad) -

Ang (Np",w™1). Then ¢’ € A(r) and ¢” € A(r"). Since ¢ and @ are automorphic forms attached to
p-stabilized cuspidal newforms f and f, and wy () is unramified outside p, according to Remark 2.5 the
Whittaker functions W,» and W, have the factorizations
Wer = plta)Wert - p(Toc)Wee T Waro W =Wt @y Way T Way.
v#p,00 v#p,00
where Wﬁ;d € W,?;d (cyp) is the ordinary Whittaker functions attached to the character oy,. On the other hand,
let ©° = &(f°) be the normalized newform in A(7) and let ¢° € A(7") be the complex conjugation of ¢°.
Then p(Jwo)¢° is the normalized newform in A(7").
Let o = ay,p, 8 = Bf,p. Combining Proposition [277, Lemma [Z.8 and the formula
e(1/2,8) ifm,=aBp

_1 , _1
—al-|,>(p) if mp =], St

5(1/27 7T;D) = {

we find that
(¢, 0") _(pltn)Werd, Wed @ wy )
{¢°,¢°) (W, Wfrg>

(1= Ba”!-|,(p))(1 = fa~ (p)) (L +p7 )™ if e(mp) =0,
a™|2 (petm)) if c(mp) > 0.

=wp (=B, (") - £(1/2,7p) {

From above equation together with the following equation (|II10, page 1403])

o T3\ _ CQ(2)71 o2
<90 » P > _[SLQ(Z) . PO(NlpS)] ||f ||F0(Nfo)
:||foH2 CQ(2)71 1 if C(FP) =0
Fo(Nse) [SLy(Z) : To(N1)] p’(L+p H~ 1 if e(m,) >0,

we can directly deduce the lemma. O
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We may regard F := F = (f, g, h) as the modular form on $?* of weight (k1, k2, k3) given by F(z1, 22, 23) =
f(z1)g(2z2)h(z3). Let wp be the central character of F|g given by
Wp = WfWgeWh.

Let k be the Dirichlet character modulo p” defined by

(3.12) k = 4y w2 2 12,
By definition, k? = X%( )X 1X;1Xh Define the character wF/ by
(313) Wil = wplia =@ T G e
Then w}?/ % is a finite order Hecke character unramified outside p, and
(Wi?)? = wywgwn = wr
as the notation suggests. Let £ = Q & Q & Q be the split cubic étale algebra over Q. Let
k1 — ko — k3

2
Define the automorphic cusp form ¢ on GL2(Ag) by

b =(0(Too)} @ wpp' %) B oy RV
Sp(w1, 02, 23) =05 (21T00) - (@) - V0507 (23) - win P (det ).
Here 9“; is the twisting operator as in (Z2]). Put
ty, = (tn, 1,1) € GLa(E,).
We shall relate the the valuation of our p-adic L-function .Z,(Q) at @ to the global trilinear period I(p(t,)¢7})

defined by
I(p(tn)op) = / O (atn, z,2)d .
AX GL2(Q)\ GL2(A)

(3.14)

Put

(3.15) ds/? = d.:lz d, T d,T

Proposition 3.7. We have
o)~ @OISR@ TN &) 1
P = AR g fAd PR e T Ce® &

ProOOF. First of all, since le is a p-stabilized newform, by the multiplicity one for new and ordinary
vectors, we have

13, Ty (HQ™) = 21Q) - fo.-
It follows that

B16) (o Tocta)ps @iy E1) - L (@) = ooty © 71y T3 ey, UHE™)).
Since ©(n)(Q) = k(n)n™ for n € Z(Xp)7 from [Hid93, equation (2), page 330], we deduce that
(3.17) eHgq = e(g5,d™ (hg, |[k])) = eHol(gg, 05, (ho, |K])),

where d = qd% is Serre’s p-adic differential operator, Hol is the holomorphic projection as in [Hid93| (8a), page
314] and 5’,%3 is the Maass-Shimura differential operator. Put H = g7, ~5,’€’;3 0, |[k]. Using (Z3)), [2.6) and

[23), we see that

1-f2 1t Kk x
o= @(H)=d; >d, > ¢, V"0 @k,

Then H is a nearly holomorphic cusp form of weight kg, and px € Akl (Np",w 7 1%% (p)) has a decomposition

¢r = Hol(pn) + Vgl + V2o + - + VIgh,
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where Hol(pg) and {<P;}j:1
Let 1} € TorY(N1p*, x¢) and ny € O(Q1) denote the specializations of 1% and ny at @1 respectively.

,, are holomorphic automorphic forms. It follows that Hol(¢x) = @(Hol(H)).

As a consequence of strong multiplicity one theorem for modular forms, the idempotent 1 = n?ll} €
T Y(N1p®, x 1) ®o Frac O(Q1) is generated by the Hecke operators Ty for £ Np, so by Lemma and (3.2)),
the right hand side of (B16) equals

(818) (1} Tenyn, p(octn) oy ® Wik, BHES) = s [Ko(N) : Ko(N)] - {p(Tucti )y @y, BCHE™).

Note that for any prime £ # p, wy ) (@e) = Xy, p)(£) is the specialization of ¥y (,)(¢) (€);, at Q1. From the
definition (B.8), BI7) and Lemma 2:6] we find that the pairing in the right hand side of (BI]) equals

Fy

> (—1)I£Ef) X5, (n1/dy) - (p(Tectn)or @ Wy (. Ua, jn, eHol(or))
()

gh

k

NE

d

f

-k . _
=d; * (p(Tootn)$} ®wj.1%p),eHol(<pH)>.
On the other hand, it is straightforward to verify by Lemma that
(p(tn)Upp, ') =(p, Upg'),
(0(To)p: Vi) = = (p(To0) V-0, ¢")
(¢f. [Hid8E, (5.4)]), and together with ([B.I3)), it follows that
(P(Tootn) s © wy (1, eHOl(p ) =(p(Tootn) s ® wi ', 0 - VIR
=1(p(tn)oF)-
Combining the above equation with (ZI6) and BI8), we find that

(P(Tctn)ps, 0 @ Wy ) - ZF(Q) =ns[To(N1) : To(N))dz - I(p(tn)5)-
From Lemma the formula of the pairing in the left hand side, we obtain the lemma. O

3.8. Ichino’s period integral formula for triple products.

3.8.1. The setting. In this subsection, we apply Ichino’s formula to express I(p(t,)¢%) as a product of the
central value of the triple product L-function attached to F' and normalized local trilinear integrals. We retain
the notation in the previous subsection. Let

—1/2
T =7TfQuwp ", m =7 and 13 =mp,

g wgl, wy = wy and w3 = wy, respectively. Let

with central characters w; = w
HQ =T X v} X T3

be an irreducible unitary cuspidal automorphic representation of GL2(A ) and let A(llg) = A(m1) @ A(m2) @
A(7s) be the unique automorphic realization of IIg. For brevity, we simply write II for IIg. For each place
v, let Vi, = Vr, , @ Vi, , ® Vi, , denote a realization of II,, where Vr, , is a realization of m;, for i = 1,2, 3.

Then we have the factorizations
I~ I, A~ Vn,.

We let ¢ = 1 Ko K3 € A(I), where

—-1/2
o1=0r@uwp'? 2=, and g3 = pp.
Then we have a factorization ¢r = @), ¢, via the above isomorphism. Since ¢y, p, and ¢, are p-stabilized

newforms and wllp/2 is unramified outside p, we find that ¢, = @1, ® Y2, @ 3, € V" if v # p and

ord

p=P1,p Q@ P2,p @ p3,p € VHp .
® iy €V W is a new vector if v # p,
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® ©ip € V2 (xip) is an ordinary vector attached to the character y; , : Q) — C*, where

—1/2
(3.19) X1,p = af,pwp,p/ , X2,p = Qgp and X3 = up p
(az,p is the character attached to a p-stabilized newform ? defined in Remark 275).
For each finite prime ¢, define the polynomial Q; ((X) € O[X] by

1 if ¢ Z(Hb),
(320) Ql,E(X) — ng(df) . | an
(L= M) XY ifee i)

Set Q2 ¢(X) = Qg ¢(X) and Q3 ¢(X) = Opo(X). Let 8f =11, wge(df) € Q*. We put
ot =[] Queier = wi* (@) - o @ wp'?,
¢
P35 =95 3= ¢h
We give the factorization of the automorphic form ¢%. defined in ([3I4). By definition,
O = O p(Tx) i B3 IV 0503 (Cr = wp L*(—L)wp (d).

In view of [B3), we find that that ¢ = C1 - Q,, ¢}, where

1,00 (J50)P1,00 ® 92,00 @ V03 0 if v = oo,
(321) (b: = (pr ® @27;0 ® Hﬂ;gp&p lf v=0Dp,

Q1,i(Ve)p1,e @ Qao(Ve)pa,e ® Qae(Vi)pse ifv=1~1p.

Here 6} is the local twisting operator attached to k as in (2I2) and V; is the level-raising operator as in (Z.I1)).
Note that ¢} = ¢, is a new vector in Vi, for £ 1 pN.
Next we consider the contragredient representation I = m ® To ® 3. We put

Pi =i ®uw; !t and & = pf ®w; i =1,2,3.
Define ¢5 and g} € A(II) by
or =p1 R G2 B s,
O =p(Joo)P} B 35 R V0555,

Recall that N; is the tame conductor of ;. Take an isomorphism A(IT) ~ &, Vg, with Vg =Vz  @Vz, , ®
Vz,.,. We have a factorization 5F =Q, gv, where gv = P10 ® P20 ® P30,

i € Z Bip € V2 (Xipwo));
Biw € %iv”((—(z)vi (1)) YR i o £ p oo,
Moreover, (E} =Q, 5;, where
1,00 (J50)Pl,00 ® P2,00 @ V" 03,00 if v = oo,
(3.22) & = B1p ® B2 © OB if v =p,
él,z(VZ)@l,e ® éz,z(VZ)@u ® éS,Z(Vé)SZ&é ifv="~1p.

Here Q; ¢(X) = Qi ¢(w;  (we)X) for i = 1,2,3.
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3.8.2. Ichino’s formula. For N = (N1, Na, N3), we put
TN = (TNI,TNQ)TNg) S GLQ(AE)

Here T, is the matrix defined as in (ZI6). For each place v of Q, we choose a GLy(F ® Q,)-equivariant map
: Vi, ® Vi — C such that b, (¢y, dy) = 1 for all but finitely many v. We introduce certain local zeta
1ntegrals that appear in our application of Ichino’s formula. For each place v, we define the local zeta integral

L(1,1I,, Ad) / by, (11, (gv) P, ¢>*)
CU( )QL(1/25H'U) PGL2(Qu) b ( (TN v)¢v;¢v>

Here dg, is the Haar measure as in .41 At the place p, we will consider the local integral

L(1, IT,, Ad) / by, (1T, (gytn) 05, 1T, (t )¢*)
Cp(2)2L(1/27HP) PGL2(Qp) ( ( )¢p7¢p)

Remark 3.8. The integrals I, (¢} ® 51*)) and Igrd(gb; ® 5;, t,,) do not depend any choice of the realizations
Vi, Vi, , the pairing b, and the new or ordinary vector ¢, in virtue of the irreducibility of I, and the
multiplicity one for new vectors and ordinary vectors Proposition This allows us to evaluate these local
integrals by choosing favourable realizations of Vi, .

(3.23) L(¢y ® ¢y) =

v

(3.24) I @ @5, t,) = .

Definition 3.9. Define the set

S =L ETENEg N, | e(1/2, 1) = —1}.

From the rigidity of automorphic types in Remark Bl we can deduce that there is a subset ¥~ of primes
dividing N such that

X=Xy

ElegQZth = {6 : prime factos of N | E(WD[(VTQ)) = —1}

for any arithmetic point @ € 36%

Proposition 3.10. Suppose that ¥~ = (). Then

I(p(tn)d5)? _ (=" ¢q(2) .L(l
ORI, LA 2
(p(T N tn) @i, Pi)

D) I (6h @ 65, ta) - [ Lo(6 © 05)wil (dy).
v#£p

e

i=1

Proor. Note that B
I(p(tn)¢;')2 = Wl,oo(_l)‘[(p(tn)¢}:_‘) ’ I(p(tn)¢}:_‘)
Applying [Ich08, Theorem 1.1, Remark 1.3], we obtain the proposition immediately in view of the decom-

position of ¢} and 5} into pure tensors. We remark that w; o(—1) = (=1)** and the product measure
1, dgv = ¢q(2) - d"g (¢f. [III0, page 1403]), so the constant C' in Remark 1.3 loc.cit. equals (q(2)~ . O

Lemma 3.11. (1) If g1 N is a finite prime, then I,(¢; ® 5;) =1
(2) Ioo(9% ® G5,) = 2hrtho—hsl,
PrROOF.  Part (1) is [IchO8, Lemma 2.2|. Note that ¢} = ¢, is a new vector in Vyy, for a finite prime ¢t N.
The formula of the archimedean zeta integral in part (2) is proved in [CCI7]. For the reader’s convenience,
we sketch the proof. For ¢ = 1,2,3, let Wy, = W;,  be the Whittaker newform of the discrete series
Tico = Do(k;) in (2I0). Define the matrix coefficient @, : GL2(R) — C by
(0(9To) Wiy p(Toc) W) (p(9) Wiy, Wiy)  (87)*™ (p(g) V" Wi, , VI" W)
<p(jOO)Wk1aWk1> <p(\700)Wk2aWk2> <p(\700)Wk37Wk3>
(recall that m = w;*k*) Note that & is right SO(2)(R)-invariant, and a lengthy computation shows that

bl(§ 1)) ) EEEEIE 5 oy () (M) et

Poo(g) :=

i,j=0
(—y)kr—mti

(= a) — V=T (1 = )+ Tapr 2

X
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By definition,
L(1, I, Ad)
(oo (2)?L(1/2, ILc)

B RN

By a direct computation, we obtain

AT (ks +m)? & g () (m\  Tl(ks+i+j)
H@o) =y 227 (D) ey
22k +2m—i—j D(ki —m+i—1)I(ks —m+j)
(8:25) X2 T(ky — 2m + i+ )L (k)
At I‘ k3+m uk (ki —m+j) o
Dk Z ( ) [(ks + ) 7

Ino(0h, ® 0%) = - (8m) TH (Do),

where

Jj=

where
m

— i (m\T(ka+7+1) T(kr—m—1+19)
5 =Tl +m) 3(-1) <2) fatii) Mhomo1ed)

Applying the combinatorial identity [OrI87, Lemma 3| to S;, we find that

D(ks +j)0(ki —m—1) T(kr—ks—m) T(j+1)
T(ky —m+37) T(ky —ks—2m) T(j—m+1)

Substituting the above expression to the last line of [B.2H), we find that

L(ky —m — 1)I'(ks + m)I'(ks + m)I'(m + 1)

Sj = (=1)"-

[(®oe) = 4™ o mr

T (kT (b)Y (k)
Hence, part (2) follows from the above expression of I(®,) and
L(1, I, Ad) 73T c(k1)lc (k)T (ks)

(o(2)2L(1/2, 1) T a2 Pc(ki —m —1)Ic(ks +m)Tc(ke + m)Le(m+ 1) s

To distinguish the contributions from each term in the formula of flf (Q), we introduce the normalized
local zeta integrals. For each place v, define the local norm of Whittaker newforms for II, by

(3.26) By, = By, ,Bx, B

T1,0 7 T2,0 "~ T30
with By, , the local norm of m; , defined as in (m To each positive integer n, we associate the local norm

B%l]md of ordinary Whittaker functions for /I, given by
P

3
3.27 B[n] = Word Word -1
(3.27) E ((1)3L1H Ad) 1;[1 wi Wity @ ip)
We define the normalized local zeta integrals
Bl 2
~ Hord < (1)

(3.28) fu“b —Iord(¢* ® ¢*7 tn) — . op :

v ! j;lyaj p| | (=p*) Gp(2)?

* * e < _

(3.29) I, =I,(¢, ®¢,) - B, - L 'WFL(df)ld%lq for ¢ | N.

N7 ¢o(2)?

Definition 3.12 (The canonical periods of Hida families). Define the canonical period Q¢ Q of the specializa-
tion f at an arithmetic point () by
P(fQ7 Ad)

Qf = 2ke . ||fQ||r0(NQ) 77” )
Q

where f22 is the normalized newform associated with f of conductor N¢g and 7y o I8 the specialization of 7y
at Q and &,(f g, Ad) is the modified Euler factor in (B.10).
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We summarize our computation in the following
Corollary 3.13. Assume that ¥~ = (). For every Q = (Q1,Q2,Q3) € %{z, we have the interpolation formula
L(1/2, 1lg)

1 unb
1 (C1)Fe0? o 1.,
Ql q|N

Z5Q) =

PrOOF. By Waldspurger’s formula Proposition 2.7 and the equations
By, =2 (thethka) =3, pp —1if ¢f N,

we have

3

8L(1,1I,Ad n

H<P("'Nitn)80i7@> = (’773) -9~ (htkathe)=3 gl lrd HBH

e (a(2)

¢ qlN
We thus obtain the corollary by combining Proposition [3.7) Proposition B10, Lemma 311 and

[SL2(Z) O
“lmem |N | <q

q|N

4. THE BALANCED p-ADIC TRIPLE PRODUCT L-FUNCTIONS

4.1. Notation and conventions. Let D be an definite quaternion algebra over Q of the absolute discriminant
of N~. Let v: D* — Q* be the reduced norm. For any commutative Q-algebra R, put
D*(R) = (D ®q R)™.

If v is a place of Q, let D, = D ®q Q,. For x € D*(A), denote by =, € D) the local component of z at v.
We fix an isomorphism W = [ - ¥ : D*(QW 7)) ~ My(QW ™)) once and for all. Let Op be the maximal

order of D such that ¥,(Op ® Z,) = Ma(Z,) for all primes g f coN~. Let N be a positive integer prime to
N~ and let

N=NTN".
Denote by Ry the Eichler order of level Nt in D with respect to ¥. Put

*

() = {a =ty € B 10,0 = () 7) Gmod 2, for | 8.

b) € GLy(Q™W 7)) act on 2 € D* by

We shall frequently use the following notation in this section: let (CCL d

(o ()

Let d™x be the Tamagawa measure on A*\D*(A) with the volume vol(A*D*\D*(A),d"x) = 2. There
exists a positive rational number vol(RY) such that for any f € L'(D*\D*(A)/DZ R};), we have

(@.1) Lo f@F =) S @) )

[z]eDX\D* /Ry

where [z] means the double coset Dxxﬁﬁ and 'y, == (D* N xfif,x_l)QX/QX. By Eichler’s mass formula,
we have

_ 48
vol(R%) H G JTa+ahH
q\N* qIN+

— 48 1+q—1
"~ [SLa(Z) : To(N)] H T—q 1

(4.2)

q|N~
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For a non-negative integer x and a commutative ring A, let L.(A) := A[X,Y]qeg=« be the space of two
variable polynomials of degree x over A. Let p, : Ma(A4) — Endy Ly (A) be the morphism p,(g)P(X,Y) =
P((X,Y)g). Let (, )u : Lo(A)x L(A) — A[}] be the pairing defined by

(xiyei xoysdy = { GG i =
0 ifi+j # k.

Let g — ¢’ be the main involution of My(A) given by

a b\ (d —b
c d)  \—-c a)’
It is well-known that

(43) <Pn(9)P17 P2>n = <P17P~(9/)P2>~-

In this section, we shall freely identity Dirichelet characters y with finite order Hecke characters ya when
no confusion may arise.

4.2. p-adic modular forms on definite quaternion algebras. Let O C Oc, be a finite flat extension
of Z, containing all ¢(N)-th roots of unity. For an O-algebra A and a A-valued (even) Hecke character

X : QX\QX — A* | we let S£+2(N, X, A) be the space of p-adic modular forms on DX of weight k + 2, level
N and branch character y, consisting of vector-valued functions f : D* — L, (A) such that
flazuz) = p,i_,p(ugl)f(x)zg"x_l(z) for all « € DX, u € Uy(N*),z € Q*.

Here u,, is the p-component of u and py ,(up) = pr(¥p(up)). For each integer d prime to pN~, define the level
raising operator Vy : SP, (N, x, 4) = 82, ,(Nd, x, A) by

vaf@) =« () )

We recall the Hecke operators Tj, and the operators U, acting on f € S,?+2(N, X, A). For each prime q | N,
let wp, € Rywith v(wp,) = q. The Hecke operator T, for ¢ Np is given by

T,f(x) = f(a ((1) ! )) Y e (“{f Z{))
! b€Zq/qZ,
and the operator U, for ¢ | M N~ p is given by
) = 3 1 (G L) el Mgt e Uafta) = flamn,) for | N

beZ,/qZ,
U@ = Y (T I NsE (T )
P TPALO0 1 0o 1)”
beZ,/pZ,
Here wy = (wgy) € Q(Nf)x is the idele wy q = ¢ and wy¢ = 1 for £ N~ ¢. If A is p-adically complete, then
the ordinary projector e = lim,, o UZ! converges to an idempotent in Ende S£+2(N, X, A).
Inner products. Denote by ecyec : (Q_|r\(/.§\2X — Z the p-adic cyclotomic character defined by ecyc(a) = |al, ap.
Assuming 6 - k! € A%, we have a perfect pairing
('a )N S/1D+2(Na XvA) X S£+2(Na Xﬁla A) — A

given by
(f1, fo)n = Yo (@), fa(@)n - eeye(v(@)® - (H#Tna)

[z]eD*\Dx /R
Let 7§ = (TX,) € D* be the element with TNy =1ifgtNand 7y = \I!ql((_(}v (1)>) for ¢ | NT. Define
the Atkin-Lehner involution [rJ]: 82, (N, x, A) — SP o (N, x 1, A) by

[TR1f (@) = prp(TR ) (2T R)x(v(2)).
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We can define a new pairing (, ) : S, (N, x, 4) x S2 (N, x, A) — A by

(fi, f2)n = (f1,[TR]f2)N
It is well known that this new pairing is Hecke equivariant and perfect (¢f. [Hid06, Lemma 3.5]).

4.3. Automorphic forms on definite quaternion algebras. Fixing ¢, : C, ~ C once and for all, we
choose an imbedding ¥o, : Doy < M2 (C) such that ¥o, ( ) 1p(¥p(av)) for o« € D*. Define the unitarized

representation pl : DX — Aut L,(C) by pi(x)P = |v(g )|A pr(Poo(g))P for P € L,(C).

For a finite order Hecke character w modulo N, let AP, ,(N,w) be the space of L, (C)-valued automorphic
forms on D*(A) of weight s + 2, level N and character w. In other words, A2 ,(N,w) consists of functions
¢ : D*(A) = L,(C) such that

plavususz) = p(uzd)p(@)w(z)
(€ D*, ueo € DI, us € Uy (N), z € AX).
Here x; denotes the finite part of z. To each p-adic modular form f € S2 ,(N,x,0), we associate the
vector-valued automorphic form &(f) € AL, ,(N, x™!) defined by

(4.4) B(F)(@) = pa(Voo (22 tp(prp(@p) far) - (@)X, @ € D
Let AP (w) be the space of (scalar-valued) automorphic forms on D*(A) with central character w. For
0,0 € AP(w), define

(p') = / o(x)¢ (x)w ™ (v(z))d .
AXDX\DX(A)

Here d”x is the Tamagawa measure on A*\D*(A). For f € SP ,(N,w™*,C,) and u € L,(C,), let &(f)u €
AP (w) be the automorphic form given by ®(f)u(x) := (®(f)(z),u),. By (@I and Schur’s orthogonal relation,

we have
(4.5) (PRI s B()) = o EN)

m'<f7f>N'<u’v>n-

4.4. Hida theory for quaternionic modular forms. In this subsection, we recall Hida theory for modular
forms on definite quaternion algebras following [Hid88D]. Suppose that p{ N. For each positive integer «, let
X, be the finite set

Xo = D*\D* JUL(Np®)
and let O[X,] = @,cx, Or be the finitely generated O-module spanned by divisors of X,. Recall that
A = Ol +pZ,] = O[T], where T = (1+p), — 1. For z € 1+ pZ,, let (z), act on O[X,]| by (2), 2z =

x ((Z) 2) Let A = (Z/pN*tZ)*. For d € A, the diamond operator o4 acts on O[X,] as follows: decomposing

d = (dy,dsy) € (Z/pZ)* x(Z/NTZ)* and choosing an idele d € Z* such that the p-component dp =w(di) € Zy

is the Teichmiiller lifting of d; and the prime-to-p component d®) € Z®)* is a lifting of ds, we define o4 x := = zd.
Thus O[X,] is a finitely generated A[A]-module. Moreover, O[X,] is equipped with the usual Hecke operators

T, for ¢ { Np given by
B 1 0 wy b
ey g) 2 (01

beZ,/qZ,
the operator U, for ¢ | Np defined by

wg b . . _
Ujz = Z :c<0q 1> ifg| N*p; Ugz=uzwp, ifq| N,
beZ,/qZ,

The ordinary projector e = lim UZ! converges to an idempotent in Endy (O[X,]).

We introduce the space of A-adic modular forms on definite quaternion algebras. Let Xo := D*\D* /Uy (Np™),
where

b
Ul(Npoo): {gEUl(N)|gp: (g 1) , GEZ;,bEZP}.
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We have a natural quotient map Xoo — X3 — X, for § > a. Let P, be the principal ideal of A generated by
(1+T)P" —1.
Definition 4.1. Denote by S”(IV, A) the space of functions f: X,, — A such that
o f(zz)=f(x)(2)? <Z>X1 for z € 1 + pZ,;
e for any « sufficiently large, the function f (mod P,): Xo — A/P, factors through X,.
We call SP(N, A) the space of A-adic modular forms on D* of level N.

By definition, we have

(4.6) SP(N,A) = lim Homy (O[Xa], A/Pa) @, A,

where 15 : A — A is the O-algebra homomorphism given by 12(T) = (1 +7T)~2(1 +p)? — 1. It follows that we
can make S (N, A) a compact A-module with the natural Hecke action given by tf(x) = f(tz) for t = T,, U,
and the diamond operators o4. In addition, the ordinary projector e = lgln U;}! converges in Enda SP (N, A).

For a finite order Hecke character  : QX\QX — O modulo N*p, put
SP(N,x,A) :={f € SP(N,A) | oaf = x ' (d)f for d € A*}
—{£€ SN, A) | £(w2) = £(2) - X () (eeye(2))? (Eaye(2) " for 2 € Q.
Let I be a normal domain finite flat over A. We define SP(N,I) = SP(N,A) ®4 I and SP(N,x, 1) =
SP(N, x,A) @, L
Theorem 4.2 (Control Theorem). Let Ny := ", 1 x(d)og € O[A] and let Py be the ideal of A[A] generated
by {x(d) - 04 — 1} 4o A Suppose that p > 3. Then
(1) SP(N,x,1) is a free I-module, and the map N, : eSP (N, 1)/ P, ~ eSP (N, x,1I) is an isomorphism.
(2) For every arithmetic point Q) € f{i”, we have a Hecke equivariant isomorphism
eSP (N, x,I) ®11/pq =~ eSf, (Np*, xw’ 2 eq, 0(Q)),
f (mod pq) — fo,
where o = max {1, cp(eq)} and fg is the unique p-adic modular form such that
Q(f(z)) = (fo(x), X*e2), 5 for all z € D*.

PrROOF. This is a reformation of Hida’s control theorems for definite quaternion algebra. We give a sketch
of proofs in [Hid88D] for the reader’s convenience. We may assume I = A and O = O(Q). Let A, be the
p-Sylow subgroup of A. We first show that eSP(N, A) is a free A[A,]-module. For any abelian group A, let
H%(X,, A) be the space of A-valued functions on X,. Let #°'(N) := lim | ligﬁ eH(X,,p~?0/0O) be the
discrete A-module ¥ *4(0; Uy (N1)) defined in [Hid88b, Theorem 8.6]. Let Vord(N) := m e O[X,] be the
Pontryagin dual of 7°*4(N). In virtue of (&8,

eSP (N, A) = Homp (VO"Y(N), A) @p,,, A,

so it suffices to show that V°'4(N) is a free A[A,]-module. For any positive integer o and character ¢ :
(Z/N*tp*)* — Oj of p-power order with value in some finite extension K of Frac O, we define the Ok-
module

HO (X, &, A) i= {f € HO(Xu, A) | f(a2) = £(2)f (), 2 € Xu,z € ZX} ,A=K/Ok or Ox.
Since any finite order element in D* has order only divisible by 2 or 3 and p > 3, one verifies that the group
D* NaU;(Np®)x—! = {1} for any # € D* and that
HY(Xa. €, K/Ox) = H'(Xa, €, Ok) ® K/Ok.

In particular, H°(X,, ¢, K/Ok) is p-divisible. Hence, the A[A,]-freeness of V°'4(N) follows from [Hid88h|
Corollary 10.1] (and the proof therein). From the A[A,]-freeness of eSP(N,A), we deduce that the map
f — N, f induces an isomorphism

N, : eSP(N,A)/P, ~ eSP (N, A= = eSP(N, x, A).
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This proves part (1). We proceed to prove part (2). By [Hid88D, Theorem 9.4], we see that
eSP(N,x,A)/pg =~ eSP(N,A)/(Py, pq) ~ eS,f; (Np", xw* *eeq, 0).

The above isomorphism f — fg is given by the dual map to the one ¢ in [Hid88D, (8.10)], whose explicit
description is given in [Hid88Dl line 9-11, page 375|. This finishes the proof of part (2). O

A perfect paring on the space of ordinary A-adic forms. For each positive integer a, put
Xo(Np?) = DX\BX/E,;\(/;)D"
To each finite order character y : QX\QX — O, we associate a universal I-adic deformation defined by

XU QNQE 5 T, xa(2) = X(2) (€eye(2)) 2 (Eeye(2))y
For f,f' € eSP(N, x,1I), put
By.o(f,f) = Z U;O‘f(:rle\),pa)f/(x)XI(V(x)) . (#FNpaﬁz)fl (mod P,) € 1/P,.
[z]€ Xo(Np®)
One verifies that By o+1(f,f') = By o(f, f) (mod P,).
Definition 4.3. Let
By : eSP(N, x,I) x eSP (N, x, 1) = 1
be the Hecke-equivariant I-bilinear pairing defined by

By (f,f) = im By o(f, f') € lim /Py = 1.

For every @ € %f" with kg = 2, we have
By (f,f)(Q) =(U, “fq, f5) npe
for any o > max {1, ¢,(eqg)}. This in particular implies that the pairing By is perfect.
Lemma 4.4. For each arithmetic point Q in X{ and integer o > max {1, ¢,(eq)}, we have
By (f,1)(Q) = (U, “fo, o) npe.

PROOF.  Let k = kg —2and let xq = x1 (mod Q) = xw ™ "eqef,.. Let f=fg € eS,?Q (Np™, xw " eq, O(Q)).
We first claim that the value (U]; BEF) Np# is independent of any integer 5 > «. Choose a prime £ { Np such
that £+ 1 # 0 (mod p) and £ is inert in Q(v/=1) and Q(v/=3). Then DX Nz Ry, .2~ = {£1} for all z € D*,

It follows that (1+£) - (U, P f, f) npe equals

Yo (TR @), f@)n - xo (@)

[z]€Xo(NepP)

= Y Y R (e D)ol 9ot xole)

[z]eXo(NLp>) beZ)y /pP—Z,

= 0 ! B F(xrh 0 ! T . v(x
-z rl (5 e DU IR (5 ) F@e xalota)

S S natrB (o PO IR (5 7)) @) xalele)

[2]eDX\D* /R}, o bEZp/PP~*Zyp

= D ([rReJUL (@) f@)exow(@) = (L4 6) - (UL f, f)npe.

[x]€ X0 (NLp™)
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This verifies the claim. We let fl0(z) = (f(z), X*),, z € D* be the specialization of f(z) at Q. For any
positive integer m, there exists a sufficiently larger 8 > m + v, (x!) such that

By(f,£)(Q) (mod p™) =(1+ 07" > U f@rg o) fO)z)xq(v(x)) (mod p™)
[z]€Xo(NEpP)

WSS <U;Bfg<mﬁpa>,pn,p<(
[z]eXo(NIpP)

=(U, 7 f. f)nps (mod p™) = (U, *f, f)npe (mod p™).

This proves the lemma. O

0

W0 et xa (o) mod )

4.5. Hecke algebras and primitive A-adic forms. Let TP (N,I) be the sub-algebra of Endi(eSP(N,I))
generated by T,, U, and the diamond operators (d) over I and let T? (N, x,I) be the holomorphic image of
TP(N,I) in Endy(eSP(N, x,I)). Thanks to the Jacquet-Langlands correspondence, there is a surjective I-
algebra homomorphism JL: T(N,I) — TP (N,I) such that JL(T,) = T, for ¢t Np, JL(U,) = U, for ¢ | N*p,
JL(U,) = (-1)U, for ¢ | N~ and JL(0oq) = 04; moreover, for an ordinary A-adic newform f € eS(N, x,I) of
tame conductor N with supp N~ C E(}, the corresponding homomorphism Af : T(N,I) — I factors through
JL. We denote by A7 : T”(N,T) — TP (N, x,I) — T the morphism such that A\ = A¥ o JL. Put

eSP(N,D)[A7] = {f € eSP(N,I) [ t- £ = NP (t)f for t € TP (N,I)} .

The multiplicity one theorem for GL(2) implies that dimpyaca €SP (N, I) [/\? ] ®a FracA = 1, but we do not
have a notion of normalized eigenforms for quaternionic modular forms due to the lack of the g-expansion.
Nonetheless, we have the following

Theorem 4.5. If f satisfies the Hypothesis (CR, supp(N ™)) in {T.7), then the I-module eS” (N, T)[A}] is free
of rank one. In this case, a generator f2 of eSP(N,1) [A?] 1s called the primitive Jacquet-Langlands lift of f.

By definition, f¥ is unique up to a scalar in IX.

PROOF. Let m be the maximal ideal of T (N, I) containing Ker /\?. Under the Hypothesis (CR), we note

that eSP (N, 1)y, is a free TP (N, I),-module of rank one in virtue of [Wil95, Theorem, 2.1| and [Hel07, Corol-
lary 8.11and Remark 8.12] and Hida’s control theorem (cf. Proposition 6.4 and 6.5]). By Theorem A.2]
(1), we find that eSP(N, x,I)y is also a free TP (N, x,I)m-module of rank one which in turn implies that
TP (N, x,I)m is Gorenstein as eSP(N, x, 1)y is equipped with a Hecke-equivariant perfect pairing By. It
follows that eS” (N, TI)m[A7] = eSP (N, x, D)m[A}] = TP (N, x, Dm[A}] is a free of rank one T-module. O

4.6. Regularized diagonal cycles and theta elements. Recall that £ = Q & Q @ Q is the totally split
étale cubic algebra over Q. Let D = D & D @ D. For each positive integer n, let
Ug1(Np"™) :=U1(Np™) x Uy (Np™) x Uy (Np")
be an open-compact subgroup of ﬁg Define the finite set
Xy, :=DE\D/Up 1 (Np")Q
=(X, X X, x X,,)/Q*.

The set X, is a zero dimensional analogue of the triple product of modular curves. Consider the finitely gener-
ated Z,-module Z,[X,,] equipped with the operator Ug , := U, ® U, ® U, and the ordinary projector eg :=
e®e® e. For each (21,2, 23) € Dy, let [(z1,22,23)] denote the double coset D (z1, 22, 23)Up1(Np™)Q*.

0 1
Set Tpn 1= (—p" 0) € GL2(Qp).

Definition 4.6 (Regularized diagonal cycles). Let A,, € Z,[X,] be the twisted diagonal cycle given by

._ prob prob+z L0
A= > > [(:c<0 1),:10(0 ] >,prn<0 )
[z]€Xo(Np™) bEZy/p"Zp,
2€(Zp/p" Zp) "
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and define the regularized diagonal cycle Al by
Al = UL" (esly).
The following lemma allows us to define the A-adic diagonal cycle

AL = lim Al € lim Z,[X,],

n—oo n—roo

where the inverse limit is taken with respect to the natural homomorphism Ny, 11 ,, : Zp[X, 1] = Z,[X].
Lemma 4.7 (Distribution property). For every n > 1,
Nn+1,n(AL+1) = AL-
PROOF. By definition, it is equivalent to showing that
Not1,0(Ans1) = U pA,.
Let S, := (Z,/p"Z,) % (Z,/p"Z,)*. Then we have
Not1,n(Ans1)

o (0 )6 )

p" b+z\ (p b1+ 2z 1 0
T < 0 1 > <0 1 ) , TTpnt1 <0 ; )]
[z]€Xo(Npn+t) (b,2)E€Sn b1,21€2Zy /pZp

0
- Y Y ey e <p0” ;’),x<p" b?’*’),mpnﬂ <é g))]

[z]€Xo(Npnt1) (b,2)ESy
_ p" b+ =z 1 0 1 0
- Z Z Z (U, @ U, @ Id)[(z ( ,T ( 0 ] ) T (p"c 1) Tpnt1 (0 . )]
[z]€Xo(Np™) (b,z)ESy c€EZy /pZy,
p" b4z p —c 1 0
— Z Z Z (Up ® Up ® Id)[(m ( , L ( 0 1 ) ,,TTpn (O 1 ) Tpn+1 (0 2) )]
This proves the assertion. O

[z]€Xo(Np™) (b,z)ESn c€Zy/pZy
=(U, U, U,)A,.

Following the notation in §36 we let R = I;®0I,®0I5 be a finite extension of Ry = O[Ty, T», T5]. For a
triple of ordinary A-adic quaternionic forms

(fu g, h) € eSD(N7 wla Il) X GSD(N, 1/127 I?) X GSD(N, 1/137 13)7
welet F=fXgXh: DE\ZA)E — R be the triple product given by
F(:vl,:vg, ,Tg) = f(:cl) ® g(:vg) ® h($3)
Let x% : QX\QX — R be the reciprocal of a square root of the character (1)1, ® (¥2)1, ® (¥3)1, defined by

X (2) =W (2) (Eeye(2)) ™ (Eeye(2))1” (Eeye(2))1]” (Eeye(2))1)” € R
and set
F* (21,72, 23) := F(z1, 22, 23) - X (v(73)).
Then F* naturally induces a Z,[T1, T, T5]-linear map
F*: lim Z,[X,] = R.

n—oo
The theta element O attached to the triple product F is then defined by the evaluation of F* at the A-adic
diagonal cycle. In other words,
OF :=F* (Al ) e R.
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4.7. The construction of p-adic L-functions in the balanced case. We let F' = (f, g, h) be the triple
of primitive Hida families of tame conductor (N1, N2, N3) in §8.51 Recall that £~ is the finite subset of prime
factors of N = lem(N7, No, N3) in Definition Let N = [];ex- ¢ In the remainder of this section, we
assume that

o #(X7) is odd,
e f, g and h satisfy the Hypothesis (CR, ¥7);
e N~ and N/N~ are relatively prime.

Let D be the definite quaternion algebra over Q with the discriminant N~ and let
(F7.g”,h") € eSP(N1, 41, 11) x €SP (No, 102, ) x eS” (N3, 3, I3)

be the primitive Jacquet-Langlands lift of (f, g, h) constructed in Theorem

Definition 4.8. Let N;" = N;/N~ fori = 1,2,3 and let N* = lem(N;", Ny*, NJ7). Then N = N*TN~. Define
(£7%.97" hP*) € eSP(N, 91, 11) x e8P (N, 12, 1p) x e8P (N, 93, 1)

by
o= S OB T Vi g, 7
res(y
g” = > (-1)"Bi(9) ™ Va, 9",
ety
WPt i= 3 ()MB () Vi, B
ey

Define the triple product FP* : DE\ZA)E — R by
FPr.— fPr ) gP* R WP+,
Then FP* is an eigenfunction of the operator Ug , with the eigenvalue a,(F) := a(p, f)a(p,g)a(p,h). We

define the associated theta element © pp. to be the p-adic L-functions attached to the triple (f, g, h) in the
balanced range.

4.8. Global trilinear period integrals.

4.8.1. The setting. In this subsection, we relate the evaluations of the p-adic L-function © gp. at arithmetic
points in the balanced range to certain global trilinear period integral on Dy. The set xbal of arithmetic
points in the balanced range, consisting of arithmetic points Q = (Q1,Q2,@3) € %i”l X %i’; X %;g such that

kg, + kg, + kg, =0(mod 2); kg, + kg, + kg, > 2kg, for all i =1,2,3.
Let Q@ = (Q1,Q2,Q3) € f{%?l. Put
ki =kg, and k; = k; —2 fori =1,2,3.
We keep the notation in §8.8 Thus F' = (f,g,h) denotes the specialization Fq = (fg,,9¢,, hq,) of F at
Q and wllp/2 is the square root of the central character wp = wywywy, defined in BI3). Let II = Hg be the
automorphic representation of GL2(A ) defined by
Hg: Ty ®w;1/2 X7y X 7y,
Let (fP,g",hP) = (fg1 , 982, hgs) be the specializations in the sense of Theorem [£.2] (2). We have
(fP.97,h") € 87 12 (Nip™ w1, 0(Q)) x 7, 12 (Nap™,wy , O(Q)) x S22 (Nap™,wy, 1, O(Q)),

where

wp = z/Jl_lw'“ea, Wy = l/];leZEZ?i and wy, = w;lw“eé;.
Let oo = B(fP), p,0 = ¢(g”) and @0 = S(hP) be the associated vector-valued automorphic forms on
D*(A) as in [@4]). We have

(050,040, 0n0) € AL L5 (N1p™ wi) X AR o (Nap™, wy) x AL | 5(N3p™, wh).
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Let Q1,¢(X), Q2.0(X) and Q3 ¢(X) be the polynomials defined in (320) and put

4n P =[[u)pm @wi®), @b =[] QueVi)pgos oP* =[] QselVe)ono-
¢ Y4 ¢

Note that

or" =dy P (dy)  2(fG) @ wp

B =i d(gBr) Bt = di? a(hG)).

Let Ly(A) := Ly, (A) ® Ly, (A) ® Ly (A) for any commutative ring A and py = pr, @ pry ® pry. Define pj

and p, p likewise. For any Q-algebra R, let D (R) := D*(R) x D*(R) x D*(R) and let vz : D5 (R) — R*
be the map v (z1, 2, z3) = H?:l v(x;)" . Define the vector-valued automorphic form

(4.8)

¢P* : DE(A) = Ly(C),
GV (1,72, w3) = 9P (11) @ 97" (22) ® 0§ *(w3) (s € D*(A)),
Define P,, € L.(Z) by
P, =(X1Y2 — XoY1)" (X3V] — X1¥3)"2 (X3Y2 — XoV3)",
(4.9) K1+ K2 + K3

W= g — ki (i=1,2,3).

Then P, is a basis of the line L,(C) fixed by D, under the action of p;;. Define the automorphic form
2* . DX(A) — C,
(b?*(xl; I2a I3) = <$D*(x17 .IQ, .Ig), Pﬁ>£7

where (, )u = (, Y1 @ (, Yrs ® (, Yry. One verifies that

(4.10)

(4.11) PP (T1Uos, Tollo, T3lioo) = GR* (21,22, 23) for us € DX

4.8.2. The global trilinear period integrals. Let ng = max{c(eq,),c(e,),clegs), 1} and let n > ng be a
positive integer. Let t,, € D% (Qp) be the matrix given by

S N Ry

We shall relate the interpolation to the global trilinear period integral
i D\ __ Dx 1 p—n 0 p—n T
S R BT (AR N (R
D*AX\DX
Here d™z is the Tamagawa measure on A*\D}.

Proposition 4.9. For every n > ng, we have

1 w2y ) 1
Opri (Q) = ———— - I(p(i,)pRr) - E : — ,
ro @ o) == G ® @y

= vol(R})
where a,(F) = a(p, f)a(p, g)a(p, h) and di* = d;1/2d;2/2d23/2 defined in ([B.15).

PROOF.  We begin with some notation. Let Q(F"*) : DX\D} — Oc, denote the value of F”* at the point

Q € Spec R(Q,). Namely,
Q(F"*) (w1, w9, 23) = Q1(£7"(21))Q2(g"* (22))Q3(h"* (23)).

Let (fP*, gP* hP*) = (fgl*,gg,:, hg:) denote the specialization of (f*,g”*, h”*) as in Theorem (2).
Put
FP* = (PR gP RBP* FP* (11,20, m5) = [P (21) @ g% (w2) @ hP* (x3).
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By definition, we have
(4.12) Q(FD*)(xl,xQ,xg) = (ﬁD*(xl, x2,x3), X1 X532 X5%) k.
Define FP* : D (A) — L,(C) to be the function

FP*(2) = puplap)F* () (x € DE(A)).

Then one verifies that
1/2

* K/2 * K
(@) = di? - (FP* (@), Pu)s [V ()|
Let my, be the p-adic valuation of (k1 + k2 + k3)! and let m > my be a positive integer. For a number
A € C,, denote by A (mod p™) the residue class of A in C, modulo p™Oc,. By definition, for any sufficiently
large integer s > n+m + my > 1,
Opn+(Q) (mod p™) = Q((FP*)*)(Al) (mod p™)

— —s * ps b ps b+ z
413 :aP(F) Z Z Q(FD )(x<0 1),.’[](0 1 >7xTPS)
(4.13) [x]€X0(Np*) be(Zp/p*Zp),
2€(Zp/p°Zp) ™

X kh(z)z“§ . X*Q(V({E)) (mod p™),

where ky(2) := w;1/2wh(z) for z € Z; and g, is the specialization of x% at @

N ~1/2 . K1+ Ko+ ks ki 4+ ko + ks
XQ =Yg " Eeye (Tli = = - 3)
= 2 2
Putting
Wi = {(blabZ) € (Zp/pSZp)Q | by — b2 € (Z;D/pszp)x}v
we see from ([LI3) and (@I2) that
Opn:(Q) (mod p™) = ap(F)™* Y~ (b — ba) k(b1 — ba)x)(v(w))
z€Xo(Np®),
(bl,bz)EWS,
<@ (T ) o (%) o) o )
(4.14) -

=a,(F)™* ) > Yo k(b = ba)xg(v(@)

z€Xo(Np®) c€Ep"Zp/p*Zyp (b1,b2)EW]

D% ps bl ps b2 0 1 _ kY vkl VK2 VK3 m
X <F (LL' (Cps 1+b10>)7x (cps 1 +b20) ) L (_ps c )7(b1 b2) 3X1 X2 XS >ﬁ(m0dp )

To simplify the above expression, we note that by (@3],

(pu (VPP (2g1, 292, 293), P ) = (FP* (291,292, 793), (91 ® gh @ gh)P )

_ (P by _ (P bo (0 1
g1 = cps 1+ bie ) 92 = cps 1+ bac ) 93 = _ps c)’

we find the congruence relation

with

<pﬁ(xp_1)FD*(‘rgl y LG2, 1'93), PQ>Q

D+ 1 + blc —b1 1 + bQC —bQ c -1 m
gm0 ) o (N ) 0 ()Pl mod )

HDx 14+cbi —by K c —1 & c -1 " K1 v k2 VK3 m
(F7 (291,292, 293), (1+b20 —by 14bie —b 14 boe  —by X X2 X%, (mod p™)

(FP* (g1, 292, 2g3), (b — bo)"s X1 X52 X52) . (mod p™).
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Substituting the above to ([.I4), we see that © pp.(Q) (mod p™) equals

ap(F)~" Y > Yo knlb—ba)xg(v(@)

xE€Xo(Np™) c€Ep™Zy /p°Zy (by,b2)EW!

1\ pDxy., [ P’ by p* ba 0 1 m
X <pﬁ(xp )F (I (Cps 1 + blc> » T (Cps 1+ b20> y L (_ps c )7Pﬁ>ﬁ (mOd p )

=qp(F)™" > Yo kb = ba)xow(@))v(z,)

:EGX()(NP") (bl,bz)EWS/

D, (PP b1 p°®  ba p " —p"c m
X Z (F (:E(O 1),96(0 1>7pr"( 0 1 ))7P~>~(m0dp)

cepZy, /P32y
— F —-n k b _ b —1/2) 7. FD* pn bl pn b2 P d m
—ap( ) Z Z h( 1 2)wF ||A (V(‘T)) ’ < (LL' 0 1 )L 0 1 7xTP”)7 ﬁ>ﬁ (mo p )
IEXo(Np") (bl,bz)GWJL
The last congruence relation holds for any sufficiently large m, so we obtain the expression
—n —1/2) rye
Opp-(Q) =ap(F) ™" 3 o klbwr X ()

zE€Xo(Np™) bi€(Zp/p"Zyp) ",
(4.15) L

« <FD*($ (po by —i— b2) T (po b12> ,LL‘Tpn), Pﬁ>ﬁ.

By the definition (38,
e K — K 1/2
ng*(:zrl,:er,:zrg) = d;/Q . FD*(xl,xg,xg)wFl/2(u(a:1)) ‘VE(xl,.IQ,xg) A/

for (z1,x2,23) € ﬁg, and using ([@I1]), we obtain

- . N "obi+b "ob
Z wp P (@) - (FP* (2 (pO 1 1 2) " (p() 12) #7n), Pl

z€Xo(Np™)
1/2 n n|—Tx
w n n
Fp TP (f ) 1p"] 7 / g*(x <p b+ b2> T <p b2) , &Tpn )d .
vol(R, ) 0 1 0 1

AXD*\DX

Since kj, = w;1/2wh, we find that the right hand side of the equation ([@ID]) equals

1/2

w n n|—Tx n n
A )A“i . / S k)R (po le1er> . (po b12) e )d
ap (F) ol (R )l /2

b1€(Zp/P"Zp) ™,
AXDX\Dy lbz(eéﬁp"%i

" EETNN 2 D p——
P (1= p w2 () ] e (P* 1 0 :
= =~ )2 ol (,T O 1 , L O 1 ,,TTpn)d Z.
ap(F)" vol(Ry,,. ) dF AXD*\DX
Since V01(§]>\<,) = Vol(f%;,pn)(l + p~1)p", the proposition can be deduced from the last equation directly by
making change of variable. O

4.9. Ichino’s formula. We now apply Ichino’s formula to relate the global trilinear period I(p(f,)$R*) to

a product of central L-values of triple L-functions, the local zeta integrals I,(¢; ® ¢}) defined in (B23) at
primes ¢ # p and the following local zeta integral at p

S AD [ b(ehle o b)),
(2)2L(1/2,11y) JpaLy(q,) by, (I, (tn) p, p) !

Here we recall that ¢, is any non-zero vector in the ordinary line Vﬁfi (x1,p) ® V,?;’dp (X2,p) ® Vggi (x3,p) with

(4.16) 1Yy @ P, E) -

characters x;,, defined in 8I9) and ¢,, = (_On pO

» )) ED; — D7(Q,) for any integer n > ng. For each
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positive integer M, we shall use the notation M e QX to denote the idele with ]/\Zg = (v¢(M) at each finite
prime /.
Proposition 4.10. We have
~1/2/ 5 —1(n n
, wi' P (NY) - wip (™) (F)?
L(1, 1T, Ad) [T, [SL2(Z) : To(Nep™)|(N; pr)i/2
or T ¥ C 1)3 * e
X I8, ® 3 ta) [] o T (e @ ),

3
qen— a(2) N+

f Dx\2 R
71(@%7)1?%) =27 +lyol(OF)? - L(1/2,11)

where
<FD7 FD> :<Up_nfD7 fD>N1;D” <Up_ngD7 gD>N2;D” <Up_nhD7 hD>N3;D”'

PROOF. We begin with the explanation of the representation theoretic factorization for the automorphic

form ¢p*. Let (77,7}, 77) be the image of (mf, 7y, 74) under the Jacquet-Langlands correspondence and let

D

2
D / D Dandﬂ'??:wh.

_ D -1 _
T =T Qe T, Ty =T,

Let TP = 7P X 7P K 7P be the Jacquet-Langlands transfer of IT and let A(IT”) be the unique automorphic
realization of IT”. With the isomorphism ¥ : DN )% ~ GLy(Q® )), we have a factorization

(4.17) A(ITP) ~ K) Vir Q) Vi,
vEX D vE¥p
Here (I12,V;0) = (pi, Lx(C)) and for finite prime ¢ | N—, (I1,”, Vip) = (kg ov,Ceyy,) is the one dimen-
sional representation given by a unramified character up, = (p1,e, pi2,0, p13,0) * £ — C* with a basis ey, .
Consider ¢2 = pP P K P € A(IIP)® Ly(C). Let X&:= X1 X2 X5 € L,.(C) and define ¢, € A(IIP)
by
$Re(2) = (¢ (2), X5)s (v € D(A)).

Under the isomorphism ([@IT), we have the factorization ¢%,. = @,¢2, where

O =X X52X50, ¢ = ey, for | N7,

OF =10 ® P24 ® 3y for £ ¢ Tp

as in §3.811 Recall that o, o € V2V for £ # p is a new vector and ; , € Vo' (y; ,) is an ordinary vector. In

Ti,v Ti,p

view of the definition of ¢2* in ([@I0), we obtain the factorization ¢2* = ®,¢D*, where

P, € L,(C) if v = oo,

(4.18) P R fo=~£exm,
P1,p ® P2 @ P3,5(= dp) if v =p,
Q1.e(Vo)p1,6 @ Qae(Vie)p2,e @ Q3 e(Ve)pse)(=¢;) ifv=L¢{ptuUX~.

Now consider the contragradient representation I1°. Let P = P @w; ' and gP* = pP*@w; ! fori =1,2,3.
Let Y& =YrY*r2Y*s € L, (C). Define ¢2.. and ¢2* € A(IIP) by

Ops(x) = (P R PP R PP (@), Yo 0p* (@) = (oD W7 K EE* (@), Pu)s

for x € D} (A). Fixing an isomorphism

A(ITP) ~ ) Vio @ Vi,

vEX D vE¥p

we then have a similar description for the factorizations (;NS{:/’i = ®Uq~5{? and 5}9* = ®Uq~5{? * likewise.
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For v ¢ {oo} UX™, let by : Vi, x Vi — C be a non-degenerate GLa(E\ )-equivariant pairing such that
b, (6P, ¢P) = 1 for all but finitely many v. For v € {oo} U™, let b : Vip X Vip — C be a D(Q,)-
equivariant pairing and define

Iv((b{? ® 55) =

v

L(1, II,, Ad) / bUD(HD(xU)cﬁD* ¢D*)
C(2)?L(1/2,1L,) Jpx /q; bD (6D, 6P)

Here dz, is the Haar measure with vol(Of, /Z},dx,) = 1. In the notation of [Ich08 page 282], we have

I(p(E)62")* =1(p(Ea)PR") - T(p(Ea)OR").

Therefore, according to [[ch08, Theorem 1.1, Remark 1.3], we obtain

I(p(En)#R")?  vol(OF) (q(2)*L(1/2,1T)
(TR t)oRe, 00 8 L(1, 11, Ad)
<IYep @ 0p.t) [ L@l ool [ I(o;® e,
vE{oo}Un— qZ{p}ux-

From (L3 and (Z2), we find that (p (-rN+ )(b)’%,i,a{%) equals

: I(RY o)
—1/2, G4y, — D D 2n VO, pon
Wp (Nl )wF,p( ) <F F > O[p H N+ ) /Q(K,»L + 1)

4.19
(419 48w () (F)

u(1)°
H§:1<pr2”)m/2[SLz(Z):Fo(Ni)]il;[ m+1 1;[ (2)

1

=w, /2 (N )(FP, FP) -

We now proceed to compute the local zeta integrals I,(¢2 @ ¢P) for v € {00} UX~. Recall that the
archimedean L-factors are given by

L(s, Iy, Ad) =1 3T (s + k1 + 1)T'c(s + ko + 1)Tc(s + k3 + 1);
K1+ Ko+ K3+ 3
2

1 1 1
L(s,IIo) =T'c(s + ZTe(s+ k] + 5)1"0(5 + K5+ 5)1"0(5 + K5+ =

o

so we have

b ~p. L, I, Ad) (Pie(To0)Prs Pl
I°°(¢°o®¢°°)_gm(2)2L(1/2,Hoo)/ R)/R* [y (X5, Y5i),. (e
_ [(k1 + 2)T(kg + 2)T(k3 + 2) (PP,

Am?T(tzths 4 9 (kY + 1)T(k5 + 10 (k5 + 1)
:(471'2)71(1 + Iil)(l + Kg)(l + I€3).

The last equality follows from Lemma ELTTI] below. Now let ¢ be a prime in ¥~. According to [Pra90],
Ti,q = St for i = 1,2, 3 are unramified special representations with piqpops(g) = 1. Since

L(s, II;,Ad) = ¢, (s +1)%  L(s, II;) = (y(s + 1/2)%C(s + 3/2),
we obtain

~ Ad
109 ©30) = T )

T ¢(22L(1/2,10,) (1 + p1,hz,h3.4(0)) = 2G4(1) 72
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Substituting ([@I9) and the above computation of I,(¢} @ qu ) into Ichino’s formula, we obtain
L(p(tn)op")*
(FP, FP)wg(NT)
N~ (q(2)?-48° L(1/2,1) wpp(P" )ap(F)Q” H 2<q
48 8-4r?  L(L,II,Ad) T[_,[SLa(Z) : To(Nipn)](N;pn)i/2
X Igrd((bp ® (Epa{n) H Iq(¢; ® (,52)5
q&{p,00}Ux~

and the proposition follows. (]

= vol(@g)2 .

Lemma 4.11. We have
[(ftiethe 4 90 (k) + 1) (k5 + 1T (k5 + 1)
F(lﬂ + 1)F(I€2 + 1)1—‘(%3 + 1)

<P£7 P£>ﬁ =

ProOF. Let v1 = X' QY2 ® X;TY;; and v2 = V"' @ X5? ® XgSY;I. Let du be the Haar measure on
SU(2)(R) with the volume vol(SU(2)(R), du) = 1. More precisely, du is given by

2 27
/ u)du = — / / / ) sin 26 df dy do,
SU(2)(R > Am

(u= ( “ g) , o = cos0e'?, B = sin fe'?)
for ® € LY(SU(2)(R)). Write (, ) =

(4.20) Lo lpslunva)du (PauPu) = (01, ) - (P o)
SU(2)(R)

, ), for simplicity. Since L,(C)SUR®) = C.P,, we see that

By definition,

Z Z Z (:Z)( )(Zi)(_1)~i+~3+~;_n1_n2_n3

n1=0mn2=0n3=0

~ sz n2+n3Y1~3+n2—n3 ®X§3+"1—”3Y;1—"1+”3 ®X§1—n1+n2Y;2+n1—n2.
Then
ezt k) !
3 * 3
(002 = (147 () Pn) = (e (1)

kK2 k1
Let r = fibtzths — x4 g5 + k5. A direct computation shows that

—1 N1 .
/ <p£<u>v1,v2>du—<—1>( ) )( )—N " |55
SU(2)(R) SU@2)(R

i
() v

2
a1 (:2) ’11“(/@1 }L i+ f* +1) i < > <r;j>

=2(-1)"(2r+2)~

7=0
-1 * *
(1) (4 1) (Hi) Dk + DI(KkT +1) < r— kQ*)'
K} L(r+1) K1 — K}
Substituting the above to [{20), we obtain
PP, - L+ T(k; + DT(k3 +1) T(kj+ DTk + 1)
TR TP (ky + DD (kF 4 1) I'(k3+1) (kg +1) ’

and the lemma follows. O



42 MING-LUN HSIEH

Definition 4.12 (The Gross periods of Hida families). Suppose that F is a primitive I-adic Hida family which
satisfies (CR, ¥7). Let 7 be a primitive Jacquet-Langlands lift of 7 with the tame conductor Ny = N _N]J_C.
Put

nro := By, (FP,FP) €1,

where By, is the Hecke-equivariant perfect pairing defined in Definition For each arithmetic point
Qe 36;', writing NFR for the specialization of nr at @), define the Gross’ period Q]_-g of Fq by

51,(]:@, Ad)

e® (]: )7
nrs N

Qfg = 2kQH]:é”12“0(N;%) )
where &,(Fg, Ad) is the modified p-Euler factor in (3.10) and

B 2—kq _y
EE (]:Q) = H 5(1/2,7T]-‘Q)g)‘N;_:‘Z 2 S Z(p)
fNE

is the prime-to-%~ part of the root number of ]-"QE We will see from Remark[7.8 that the canonical period is an
integral multiple of the Gross period in the sense that there exists a non-zero u € I such that €2 FE= u(Q)-Qr,

for each arithmetic point Q.

Corollary 4.13. For each Q = (Q1,Q2,Q3) € f{bdl in the balanced range, we have the interpolation formula

L(1/2, Iy)
. #(ST)+H _ghbal
Op (Q) QfD Qo QhD HQp H ﬂHQq
Q2 Q3 g/ N+t

where ﬂ}%glp is the normalized p-adic zeta integrals given by

1/2 —n(ki1+ka+k
) o, "

w
491 _gbal (g, £, 'B[nlr  ZFp
2 fay =IO Bn) - B G 2

and J7, - are the local zeta integrals at q sdefined in (B.27).

Proor. To simplify our notation, we let f1 = f, fo = ¢ and f3 = h. For a finite prime ¢, we put
B, = Hle By, - By definition, we have B, , = w};/z(N;r)Bnq if ¢ # p and By, = 1if ¢ { pN. At the
place p, from Lemma [Z§ and the definition of &,(f;, Ad) in BI0), we see that

[n]
%m_uz_%ﬁ funl Z(0°") [SLa(Z) : Do)
iy € (1/2, 7y, ) (I+p~1

gp(fiu Ad)

3Here Qrp is called the Gross period for F as it first appeared in the Gross’ special value formula for modular forms over
Q

imaginary quadratic fields.
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Let f? be the associated newform of f; and ¢; = c(7y, ). Write || f?]|? for the Petersson norm |\ff||1%0(Nfo).
From the above equation and the Petersson norm formula (ZI8]), we find that
—1/2 /77 —n n
wpt (N )y (0~ oy (F)*
L(1, 1T, Ad) [[;_[SL2(Z) : To(Nip")| (N pr)ri/2

3
12 R “n 2n , [SLa(Z) : To(p®)]p~*"
=or N ewry o BV 11 Bre 1 g o o) (v gy

q|Np i=1
3

1/2, 35—, 1/2 2n [n] e(1/2, 75, p 1

=Wp (N )WF, (_1)041)( BHord H H O + " : %
' av i WU ”2 T (22 | £ 2, i, Ad)

1/2 [ ] w;/z(q)
=w B.a- || Bn, a

e 13 ;1[|_J[V H = ”25 (flvAd) !;[, 8(1/277T.f17q) (1/277Tf2,q)8(1/277rf3,q)

)l 2 n U, " P, fP) nipn

SRR NN | 0 | O

qIN 1=1 i
In the last equality, we have used Lemma [£.4] and the fact that for g € ¥,
—1/2
e(1/2, 1) = w2 (@)e (12,71, 0)e(1/2, 77, 0)e(1/2, 77, ) = —1.

Substituting the above equation and the definition of .7 in BZ1) to Proposition EI0, we deduce from
Proposition that

vol(OF)2 soono  L(/2,0) (1) l, Ca(2)
Opp: (Q)? =—=2_ . (=2)#* 2N I B, 7.
F - VOl(RX) QfDQ DQhD !;[7 2 3 |N+ )2
Therefore, we obtain the corollary by noting that
vol(O
vol RX IJ_VL N
and that for ¢ € X7,
3 3
G (2){p(Tg) W, 7W7r G(2) Cq(2)3
B = d 1 1 27 l, -1 :
o £[1 Cq(l) (177T17Ad Hl / q Cq(l) ( )Cq(l)g
This finishes the proof. O

5. THE CALCULATION OF LOCAL ZETA INTEGRALS (I)

5.1. Notation and conventions. Let ¢ be a finite prime. Let G = GL2(Qq) and Z = Q' be the center of
G. Let B be the group of the upper triangular matrices of G and let N be the unipotent radical of B. Let
K = GL3(Z,). Let w be an irreducible unitary generic admissible representation of G, define A(7) € R by

1

() Al if 7= x1|-|* B xe|-| " with x1, x2 unitary and A € R,
T) =
—5 if 7 is a discrete series.

Recall that W(r) = W(m,9q,) is the Whittaker model of 7 with respect to ¢q,. It is well known that for
any W € W(r) and € > 0, there exists a ®. € S(Q,) with

(1) wi(y ) =0 )

For characters x,v : Q; — C*, let B(x,v) denote the induced representation given by

B(x,v) = { smooth functions f : G — C | f((o Z) 9) = x(ay(d) |5 %f(g)}.
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Let (, ) : B(x,v) x B(x"*,v7!) — C be the G-invariant perfect pairing given by
)= [ s @

where dk is the Haar measure with vol(K,dk) = 1. If yo! # |-|7!, then we let B(x,v)o be the unique
irreducible sub-representation of B(x,v) and let B(v, x)° be the unique irreducible quotient of B(v,x). It is
well known that B(x,v)o = B(x,v) and B(v, x)° = B(v, x) unless yv~! = |-|. The above pairing (, ) induces
a G-invariant perfect paring (, ) : B(x,v)o x B(x " !,v™1)? — C.

Intertwining operator. Define the normalized intertwining operator M* (v, x, s) : B(v|-|*, x|-|7*) = B(x|-|"*,v||*)
by

o=@ [ (0 5) (5 1) ow weo.

Here 7(s, —) is the y-factor as in (Z9)), and the integral in the right hand side is convergent absolutely for Re s
sufficiently large and has analytic continuation to all s € C (¢f. [Bum97, Proposition 4.5.7]). Let § : G — Ry

be the function given by (5((8 Z) k) = |ad™!| for k € K. If xyu! # |-| ™", then M*(v,x, s)|s—o factors
through B(v, x)?, and hence we have a well-defined map M*(v, ) : B(v, x)? = B(x, v)o given by
(52) M*(UaX)f = M*(U5X7S)(f65)|520'

An integration formula. The following integration formula will be used frequently in our computation. For

F e LY(ZN\G),
JoaF@n=[ [ m (5 1) gte

ol AR GO | S Iy
(¢f. IMV10, 3.1.6, page 206]).

5.2. Local trilinear integrals and Rankin-Selberg integrals. Let 71,7 and w3 be irreducible unitary
generic admissible representation of G with central characters wy, w2 and ws. Suppose that wiwsows = 1 and
that 73 is a constituent (an irreducible subquotient) of B(xs,vs). Assume further that the following condition
holds for (7, mo; 73):

(Hb) )\(7T1)+/\(7T2)+|/\(7T3)| < 1/2

Put

-1 0
J = ( 0 1) S GLQ(QQ)
For (Wh, Wa, f3) € W(m1) x W(m2) x B(xs,vs), define the local Rankin-Selberg integrals by

YW, W, fa) = /Z o WA OWAT0) S3(0) o

YW Fo) = [ Wa(T9)Walo)Flo)do.
ZN\G

The above integrals converge absolutely under the assumption (HE). For W, € W(7), Wa € W(7,) and

f3 € B(x3",v3"), define the local trilinear integral by

Wi @Wo @ fa, W, @ Wa © f3) = /Z\G<p(g)W1, W1) (p(g)Wa, W) (p(g) f3, f3)dg.

The following result is a generalization of [MV10, Lemma 3.4.2]. We provide a different and more elementary
proof and replace the assumption on the temperedness with a much weaker hypothesis (HE).

Proposition 5.1. With the assumption ([HD) for (71, m2;73), we have

I (W @Wr® f3, W1 @ Wy ® Jg) = (1) - W (W1, Wa, f3) - \I’(WLW%E)'
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PROOF.  Denote by ¥ : ZN — C* the character wo X1)q,. Let ((,)) : L2(ZN\G, ¥)® L*(ZN\G,¥~') - C
be the G-equivariant bilinear pairing given by

(FF') = / o FOF o)

We put
Fi(g) =W1(9)f3(g), Walg) = Wa(g) € L*(ZN\G, ¥);

Fy(g) =W1(T9) f3(9), Walg) = Wa(Tg) € L*(ZN\G, ¥ 1).
Then one verifies that

(p(9)F1, Fo)) = (p(g)Wr, Wi)(p(9) f3, f3),

and hence, it is equivalent to showing that

Put

First we claim that if y1,y2 € Q;, then
—1 —1
x _ _
(5.4) (y20y1 y21 ) € ZK, < ¢ " <|y;'y| <q¢" and |2®| < ¢" |y112].

To see the claim, we note that if |z| <1 or |z| < |y|, then
y y 0
(6 ey B
YT ek vy 0 K
0 1 0o 1)

-1 -1
By the Cartan decomposition, we find (y20y1 y21 :v) € ZK, if and only if || < max{|y1], |y2|} and

and if |x| > 1 and |z| > |y|, then

qg "< |y2_1y1| < ¢" or |z| > max {|y1],|y2|} and ¢~ < }x‘zylyg} < 1, and this proves the claim.
Now we proceed to prove the equation (13]). Let I, be the characteristic function of ZK,, and set

7, - / (p(9)Fr. F2)) (o(g) W, Wik, (9)dg.
Z\G

By a formal computation, we obtain

7, = / / Fi(hg) Fa(h) - (p(g)Ws, Wil (9)dhdg
Z\G JZN\G
_ / Fi(hg) Fa(h) - (p(g)Wa, Wiy, (9)dgdh
ZN\G J2\G
/ / Fa(h) - (b~ ugWa, W) - Licy, (™" ug)dudgdh
(ZN\G)?

- L / ar(y eom( D ) wows st

Yy 'yr s d*y d*yo
x I dx — 22 dkdk
K%(( 0o 1 )) ] ] Crdhe

To justify the computation, it suffices to show that the integral

yi O\ (v2 O\y (v2'vr wa'@\ v 1o vty oyt , Ay ¥y
L Lt o D v (o e
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is absolutely convergent, where F{ = p(k1)F1, Fy = p(ka2)F5, Wi = p(k1)Ws5 and Wy = p(ke)W,. By (B4), we
can deduce that for any € > 0 there exist constants C. and M such that

oo o Jo (s ) D) s

1og—e , d¥y1 d*ys
< // 7 e (P R
L P R [l lye

L A —Aa—
<C€qn 3/27)\2)/ / |y1y2|2 A1—A3—2¢ de1de2-
ly1|[<M Jyz2| <M

For (g,h) € G x G, put

—1 —1 d* d>
Yo U1 Yg T Y1 o Y2
I dx
K2"(( 0 1 )) 1l [yel

tutah) = [ vty ) oW oW 67 (5 ) e

Then we have

(e (5 V)= vy ) momn (kM )

/ Wq,(1-v)z )W3((”gl 2) kl)m((”g2 2) ko)L, (2)d" vdz

v v 0 r—n
:/ y W3(< gl 1) kl)W4(( 30J2 1) kQ)HlJrqnfTZq (V) ‘q ‘dXV7
q

where 7 = LMJ Therefore, there exists a positive integer mq such that if v,(y1y2) < 2n — mg, then

,an((yol (1)> ki, (yo2 (1)> k2) = Cq(l)W3(<%l 2) kl)W4((y02 (1)) k2).

On the other hand, if v,(y1y1) > 2n — mg, we have

0 0 n—r 1 No—c —2Ap—2¢
‘"Q{"(<y01 1) kl’(y()2 1) F2)| Sypy e " /X W PR g, ()Y

q
We thus have

_ yi 0 y2 0 . yi 0 y2 0 d*y1d™ ys
A R L R R R ([

<Ce-qm/?. |3/1y2|%_/\2_6

0 0 d*y d*
=Cq(1)/ / / P W3((y1 ) k) Fy © W4((y2 ) fo) Y Y2 g ks + B,
KJK 0 1 0 1 ly1ya|
a2 <y <,
ly1y2|>|q|>™ ™0
where
|B| <C¢ / lyrya| 2N TR Py 0y,

a2 <|yys T <,
ly1ya|<|g*" ™0

<C// |q|2’ﬂ(%—)\1—)\2—>\3—26) (477/ + 1)'

It follows that
| ol P E o)W, Wiy = lim T, = G,(0) |
ZN\G 00 Z

This finishes the proof of ([B.3)). O

Fi(g)Ws(g)dg / Fy(h)Wy(h)dh.

N\G ZN\G
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Denote by L(s, 71 ® ma) the local L-factor and by &(s,m ® ma) := &(s, 711 @ 72, 1,qu) the e-factors attached
to m1 x mo defined in [GJ78|. Define the v-factor

L(l — 5,71 ® T2)
L(Saﬂ-l ®7T2)

(5.5) v(s,m ® m2) 1= e(s, M ® m2)

The following corollary is the core of our calculations of local zeta integrals I, (¢} ®$;) at the non-archimedean
places.

Corollary 5.2. Suppose that (771,772,7T3) satisfies (HD) and that x3vy ;A If W, =W, ®wt, Wy =
Wo @ wy ' and fs = M*(x3,v3)f3 @ws ', then

I W1 @ Wy ® fo, W1 @ Wy ® f3) =C,(V)x3(=1) - 7(1/2, 71 @ T2 @ x3) - W(Wy, Wa, f3)2.

PRrROOF.  This is an immediate consequence of the local functional equation of GL(2) x GL(2) in[Jac72]. With
the notation of [Jac72, page 12|, we may assume that

1
L(2s+1, x3vg

F3(9) = xal-1"T 2 (det g) - 2(xzos 1T p(9) @) - ryle0

is the Godement section attached to a Bruhat-Schwartz function ® on Qﬁ. Since X3U3_ # |-|, one verifies that

1

M*(xs, — el 752 (det a) - U2 500)B) -
(o) o) = sl "4 ot 20 7 ) ) -

|s:07

where ® is the Fourier transform of ® defined in [Jac72, Theorem 14.2 (3)]. Under the hypothesis (HE), we
have

U(s, Wh, W, ®)
U (W, Wa, s=05
(W1, W2, f5) = L(2s+1, ng_1)| 0

_ ) T(s, W, Wa, &
U(Wy, Wa, M™(x3,v3) f3) = (5, W1, Wo )|s 05

L(2s+1,x30v5 ")

where U (s, Wy, Wa, ®) and ®(s, Wy, Wy, ®) are defined in [Jac72, (14.5) and (14.6)].
Therefore, from [JacT2, Theorem 14.8] we can deduce that

\TJ(Wl, Wg,fg) =wi(—1)vz(—=1)¥ (W1, Wa, M*(x3,v3)f3)
=wiwavz(—1)y(1/2,m @ mp ® x3)V (Wi, Wa, f3). O

5.3. The calculation of the p-adic zeta integrals.

5.3.1. Preliminaries. We follow the notation in §8.7 Let (f,g,h) = (fg,,9¢,, hq,) be the specialization of the
triple of Hida families at a classical point Q = (Q1,Q2,@3) € %Clb : %Clb X %Clb X %Clb Let my =7y ®wF1/2,
Ty = Tgp and w3 = my, of the central characters w; = wy Zl,whp, Wy = wg,p and w3 = wp,, respectively. Let
Il , = m x m x 3. For ¢ = 1,2,3, since m;, contains a non-zero ordinary vector, by Proposition e

must be a constitute of the induced representation B(v;, x;) with V3*4(y;) # {0}. In view of the discussion in

Remark [Z5] we have x1 = o pwp p/ , X2 = agp and x3 = app with o, unramified characters defined there,
and the ordinary assumption implies that y;0; ! # |-|~'. Recall that if we let &; € Verd(x;) and & e Vrd (v )

be nonzero ordinary vectors for i = 1,2, 3, then

Op =& @& ®E3 and %zé@é ® &.

w = (_01 (1)) Doty = (-g” p0n> € SL2(Qy).

We introduce the normalized ordinary section in the induced representations and compute its local pairing.

Put
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Lemma 5.3. Let 7 be a constituent of the induced representation B(v, x) of GL2(Q,) with the central character

w. Suppose that xyv—' # |-|_1. Let for4 € B(v,x) be the unique section such that (i) fo¢ is supported in
BwN(Z,) (ii) fo*4(g) =1 for all g € wN(Z,). Then

Ford e B, x) (x)-
We call for9 the normalized ordinary section. Moreover, put
ford — M*(U,X)ford ®w—1 c B(U—I,X—l)ord(v—l).
For n > max {1, c¢(mp)}, we have
1
w(p™ )6 (2)x] -2 (0*")
(1)

In particular, if W' is the normalized ordinary Whittaker function in Corollary 23, then
(p(tn)Werd, Wl @ w™h)  x(=1)6(2)
(pltn) ford, ford) (1)
PROOF. It is straightforward to verify that ford € B°™d(v, x)°"(y) is an Up-eigenfunction with eigenvalue

x|-|7%. By the integration formula [MVTI0, (3.2) page 207], (p(tn) o™, ford) equals

ool D= [ (g e (g 1) (T e
S g (7 0))

(p(tn) ford, fordy = (0, ux 7).

(5.6)

(1) 0 p-
-n CP(2) 1/ on —1
=w(p™") == x| (p7") (0, 0x 7).
(1)
The ratio of local pairings of ordinary Whittaker functions and ordinary sections is computed by the above
and Lemma 2.8 O

5.3.2. The unbalanced case. Suppose that @ is in the unbalanced range f{fz We apply Corollary to
calculate the normalized p-adic zeta integral .# ﬁsb in (3223).

Proposition 5.4 (p-adic zeta integral in the unbalanced case). Define

Ef(Mg,p) = 1 CL(1/2,m @7 ®x1)
PP 12 memex) L1/2memeu)

Then

1
unb
ﬂHQ,p gf( Qyp) L(1/2, UQ,p)

Proor.  We write I, = Il , for brevity. It is equivalent to proving that

v ) @)
Bl G (1)

ord
HP

(5.7) L(1/2,IL,) - IS"(¢% @ 65, ) = €7 (I1,)

for n > max {c(m1), c(m2), c(w3), 1}, where 19" (¢} ® QNS;,,tn) is the local zeta integral defined in (B24]). We
first treat the case where either (i) m; is principal series or (ii) w2 or 73 is discrete series. Then it is known
that (me, m3; 71 ) satisfies (HD) since each 7; is a local component of a cuspidal automorphic representation of
GL2(A). Consider the realizations

Vi, = B, x1)° BW(m2) RW(m3); V= Bt xi o BW(72) B W(73)
of II, and the contragradient representation ﬁp. For i = 1,2,3, let W4 = Word € Word(m;)(xs) be the

normalized ordinary Whittaker functions such that Wﬁrd((g (1)>) = Xi|-|%(y)]lzp (y) in Corollary 23} let

Ford € B(uvi, xi)°(xs) be the normalized ordinary section in Lemma 53 and fr := M*(v;, xi) £ @ wte
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B(v; t x; Hgd(v; ). First consider the case where 7 is the principal series y; B v;. Let (f*)° be the
holomorphlc image of f{* in B(vy, x1)°. In view of [B21), we may take
(b ._(fi)rd)o ® Word ® Word ¢ ford ord Word
p ’ )
¢; ::( 1ord)O ord ® 91k ord, ¢ _ ford ord ® ekWord

where k is the Dirichlet character defined in (BI2) and 65 is the twisting operator in (ZI2). According to the
definition (324]) and Corollary 5.2 we find that

L(L Hp,Ad) /p( ( )W2ord ® ekWé)rd ® ford7 ( )Wé}rd ® ekw/ord ® ffrd)

(5.8)

ord e
1o @ ¢potn) =

GERPLAZ L) (p(t) W W5 (1) W3, W) p(t) . F77)
(5.9) .

B I . < ( )Word Word> . CP(Z)B . 1

BE’;!,M (p(tn) £, )y (1P L(1/2, 1)
where

. \I]( rd ekWord, (tn)flord)z-

* :Cp(l)vl(—l)’y(l/Q,WQ ® T3 @ v1)
i ((2)?

Note that the adelization ka = d}flw}/ 2; hence
-1 1/2 -1
k|z>< —ﬁp |Z>< = Uy |Z><

a 0

and a simple calculation shows that 9“;W§rd(<0 1

)) = v 1(“)Hz; (a). We proceed to calculate the local
Rankin-Selberg integral

wwsﬂ WS, p(ta) 770)

LG Dors(3 90 Prori ()6 7
_Cp(2)X1vl || /X W <g ?))oﬂéwgrd((_oy (1)>)vl|'|%(y)dxy
G (2)X12;1( I)I( } Word(<0 (1)>)dxy_ Cp(2)><1§71(1|)-|(—p").

We thus obtain
GMui(=1)  xaor [ [(P*)6p(2)*1(1/2,m2 @ 13 @ v1)

I; =

(5.10) @@ G(1)?
_xavy [PPMei(=1)  e(1/2,m @ w3 ® v1) L(1/2, 5 @ 73 ®X1)
(1) L(1/2,m ® m3 ® v1)

Substituting (5.6) and (Z.I0) to (B9) and noting that
£(1/2,m2 @ m3 @ v1)e(1/2,m2 @ M3 @ X1) = 1,
we immediately obtain (5.7]).

1. . o .
Now we treat the remaining case, i.e. m = x1|-|” 2St is special, and 79 and 73 are principal series. Thus
(71, m3; mo) satisfies (HD). Consider the realizations

Vi, = W(m) KW(m3) K B(va, x2); Vi, = W(T) BW(7s) B B(uy ', x5 )

P

By Corollary (5.2], we have
Gp(Dua(=1)7(1/2,m @ 3 ® v3)
L(1/2,IL,) - IS¢ @ 65, t) =2 -
’ Go(2)? - Bijh.s
(ol W™ W) (2)°
(ptn) f54, frd)  G(D*

\I/( ( )Word ekWord7 ord)
(5.11)
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We calculate the local Rankin-Selberg integral in the right hand side
( ( )Wlord kaord, ord)

LG e e ) toniny

_G@pavt le"erv(-1) i (U0 .
- G0 J O (s 1) ety

:Cp@)xlvlci.(ll(fnm(_1)7(1/2,m ® vix2) /Q; eﬂgWé’rd((g ?))vm(y)dxy
—1 n _
=St O 1 ).

Substituting the above equation and (5.6 into (5I1)) and using the formulae of the local L-factor and e-factor
of m1 ® m3 ® v in [GJITS, Proposition 1.4 (1.4.2)], we find that L(1/2, IT,) - I,(¢} ® ¢}) equals

L(1/2, T3 [0=9] X1U2)2
L(1/2, T3 X U1X2)2

X1 (PG (2)* e(1/2,m @13 ® v2) L(1/2,m1 ® 13 ® X2)
B%g:rdcp(l)Q L(1/2a771 & T3 ®U2)

e(1/2,m3 ® v1x2)?

_6%2? xavr (0 )waws (1) £(1/2,m2 ® 13 ® v1)L(1/2,m2 @ 73 D X1)

G(1)? Bg?lrd L(1/2,m ® m3 ® v1)
This proves (5.7)) in the remaining case. O

Remark 5.5. Replacing ¢ ® (;; with ¢, ® q~5p in (3:224), we define the improved p-adic zeta integral

Bl" 2
* .__gord - Hord C;D(l)
iy =l 00 @ G tn) T G G2
If 71 is principal series, then vy x2x3 # |-|7%, and
—_— 1 L(1/2,m @75 @ x1)

L(1/2,v1x2x3)%

54 = .
9.p 6(1/2,7T2®7T3 ®X1) L(1/2,7T2®7T3®U1)

if 71 is special and vy x2x3 = |-|7%, then
L 1 1)
g.» 5(1/2,7T2®7T3®’U1) L(1/2,U1X2’U3)L(1/2,’U1U2X3).

These equations will be used later for the interpolation formula of improved p-adic L-functions. It can be
obtained by the same computation in the above proposition. We omit the details.

5.3.3. The balanced case. Now suppose that @ is in the balanced range f{?—jl. We shall compute the normalized
p-adic zeta integral fﬁjl in (2ZI). Put

Un = <(1) v ) € SLa(Qy):  En = (un. 1.ty) € GLo(E,)

for n > max {c(m ), c(m2),c(ms), 1}. Observe that if L : m ® ma ® m3 — C is any GL2(Q))-invariant trilinear
form, then

L1 (un)ér, &2, m3(tn)E€3) =L(m1 (un)ér, m2(tn)2, €3)
=L (&, m2(un)é2, m3(tn)E3),

Thus we may assume that

(Hb) either m3 = y3 H v3 is principal series or each of 71, mo and 73 is special.
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Proposition 5.6 (p-adic zeta integral in the balanced case). Under the assumption (Hb), we put

£(1/2,v1v2x3) (L(1/27 X1X2U3)>2 . L(1/2,m ® ma ® x3)
6(1/2,X1X2U3) L(1/2,U1U2X3) 5(1/2,7T1 ®7T2®X3)L(1/2,7T1 ®7T2®U3)'

gbal(HQ,p) =

Then we have

1
fb‘“ =&a(lly ) ———.
<P L(1/2, 1Ig,)
PrROOF.  We write II, = Il p as before. By definition, this is equivalent to proving
ord on —1/2 2n nk1+ka+ks . . C;D(2)2 . 1
I (¢p ® ¢pa n) =ap(F) WrEp (=p™") [p"| Evar (1) Bl L(1/2,11,)
H;rd

2n 3n CP(2)2 1
=x1Xx2Xx3(=p~") [p[™" - Evar (1) - - ,
! Bgf;lrd L(1/2, 1I,)

where 197(¢, @ (E,,,‘En) is the local zeta integral in (ZI6). The assumption (HL]) implies that (7, 72;m3)
satisfies ([HB), so we consider the realizations

Vi, = W(m) BW(m) R B(vs, x3)*; Vg, = W(71) BW(72) B B(vs ", x5 o-

Let WO’rd WO’rd and W"’fd WO’rd ® w; ~! be the normalized ordinary Whittaker functions for i = 1, 2. Let

f574 be the normalized ordinary section in B(vs, x3)°*%(3) in Lemma[5.3]and let ford = M*(vs, x3) fS 4 @w; !
Letting (£$*)° be the holomorphic image of f$' in B(vs, x3)? as before, we may take

¢p = Wlord QW ord (ford) : gp _ Wlord ® W;rd ® f;(')rd'
From the definition ([@I6]), Corollary 5.2l and (5.6]), we deduce that
Iy © 6y, E)
_ Lo(plun) Wi @ W™ @ p(ta) £, plun) WP © W™ @ p(ta) f5°)  (p(tn) W™, W™ G(2)°

(5.12) G(22L(1/2,1,) - By, () f90, Ty Go(1)?
_ I* ) XS(_l)Cp(1)2 . Cp(2) . 1
=g &2 G L1/, 15,

Hord

where
= Mus(=1)7(1/2,m @ 2 ® vs)
! (p(2)?
The local Rankin-Selberg integral W(p(u, )W, Werd, p(t,,) f974) equals

/ZN\GWOM( <(1) pln)> (T 9) 15 (g < o pg">)dg
T AL [ e L e X R O i B

¢(2) [p*" st '(p )|| p~7") or (1 + apn) Tt ord/ [~y O _1
_5p ‘ ‘ 3 /Q /ZW1d y yp"( j p") VWS d( Oy . Yos|-| "% (y)dzd y

: \I](p(un)Wlordu WQOTdap(tn) grd)2'

(1)
G(2) [p" [ xav3 ' (P")x2 (= —n Lo
ARSI [ vt iz, st )
G2 [p" X33 (P")x2v3(=1) | L(1/2, xax2vs) IR PSR TN B
- =) 5(1/27X1X2U3)L(1/2,X1—1X2—1v3—1)/gﬂp"( 14p72,) (WXT X2 Vs 2 (y)d™y

Cp@) |Pn|X1X2X3(Pn)X2U3(_1) 1 71 -1 |P|%
0 W20 s ) T
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so we find that

L(1/2,7T1®772®x3)( 3n ITRERY
2)Ipl= ")y (1/2, )
L(1/2,m ® m ® v3) G(2) Ipl = xaxexs(P™) - v(1/2,x1 x5 vs )

=u3(=1)6(2)* - xaxaxs (™) P - xaxavs(—1)Evar (11)-
Substituting the above equation to (5I2]), we obtain the desired formula. O

I =vs(—1)e(1/2,m ® ™ @ vg)

Remark 5.7. Keep the notation in §I3 For e € {f,bal}, we put Uy := WD, (Fil] VI;)) Q. C be the
= < p?

Weil-Deligne representation of Wq, associated with Fil] VZ? by Fontaine (4.2.3)]. Tt is an easy exercise
to show that N

Eu(llo) L(0,Uq)
SLP T (UL, Ug)’
and hence
I = Ep(Fild VE).
For example, if ¢ = bal and m; = ;|- |7%St are special for 4 = 1,2, 3, then dim ngo = 3, where N is the mon-

odromy operator, and we have L(s — 3,Uq) = L(s, x1x2x3) L(s, x1x2v3)* and L(s — §,Ug) = L(s, vivax3)®.

6. THE CALCULATION OF LOCAL ZETA INTEGRALS (II)

6.1. Setting. We continue to let F' = (f, g,h) be the specialization of F' = (f,g,h) at a classical point @ =
(Q1,Q2,Q3). In this section, we assume the following hypothesis for the unitary automorphic representations
(mg,mg, ) attached to (f, g, h)

Hypothesis 6.1. For each prime ¢ | N, there exists an rearrangement { f1, f2, f3} of {f, g, h} such that

(1) eq(mp,) < min{eq(my, ), cq(ms,)},
(2) the local components 7y, 4 and 7y, , are minimal,
(3) either 7y, 4 is a principal series or 7y, 4 and 7y, 4 are both discrete series.

Recall that an irreducible admissible representation m of GL2(Q,) is minimal if the conductor c¢(w) is
minimal among the twists 7 ® x for all characters x : Q; — C*.

Remark 6.2. Note that if the above hypothesis holds for (f, g, h), then it also holds for specializations of
(f,g,h) at any classical point by Remark Bl Moreover, we observe that one can always find Dirichlet
characters x1, x2 and x3 modulo some M with M? | N such that x1x2x3 = 1 and (77 ® x1, Ty @ X2, Th @ X3)
satisfies Hypothesis

As before, we let m = 7y 4 ® w;zﬂ, Ty = Tgq and g = 7y q; let I, = Ig, = m X w2 X 3. Let ¢ be a
prime factor of N. Suppose that
e(1/2,I,) =+1 (¢&X7).
The purpose of this section is to evaluate the local zeta integral defined in (23]

* o Ik L(lquvAd) bq(nq(gq) 2,52)
I = h +
(09 © %) ((2)2L(1/2, 1) /pGL2<Qq> by (I,(Tn.q) g, bq) Ja

under Hypothesis For i = 1,2,3, let ¢; = ¢(m;) be the exponent of the conductors. Note that wllp/ 3 is
unramified, so under Hypothesis [6.1] and the condition (Ell), we may assume by symmetry that

¢1 <min{eg,c3,1}; w3 is minimal,

and that {7, e, w3} satisfies one of the following conditions:

e Case (Ia): m3 = x3 B w3 is a principal series with x3 unramified character of Q-

e Case (Ib): w1, m and 73 are discrete series.

e Case (ITa): 7 is a principal series; mo and 73 are discrete series with L(s, ma ® 73) # 1.
e Case (ITb): m is a principal series; 7y and 73 are discrete series with L(s,m ® m3) = 1.
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Fori=1,2,3, let & € Vi and & e 7i(7e; ) Va " be new vectors. Set
¢ = max{cz,c3} > 0.

We recall the following choices of local test vectors ¢7 € Vp, and 8; € Vj, in BZI) and B22) according to
the polynomials Q; ,(X) for ¢ = 1,2,3 in (320). Put

(0 1 (gt 0 (0 1
w—(_l O)’ 77—(0 1) andm-(_qn 0) for n € Z.

e Case (Ia) and (Ib):

¢y =61 @ma(n® )& ® m3(n” ),

05 =w2(q ™ ws (g ™) - & @ T )6 @ Fs (1) 8.
e Case (Ila): Let r = [$]. Then

pr=m)E®E®E, ¢f=wi(q") T1lN)E& ® & ®&.

kq—
e Case (IIb): If ¢; = 0, then let vy : QX — C* be the unramified character with vi(q) = 3,(f) |q|lTl,
where 3,(f) is the specialization of 3,(f) at @1 in Definition B3 and we have

@2 =(m ()& — o7 P (@m (e @ & @ &,
&t =wi(q) - G ()& — w1 E@F (7 HE) ® & ® &.

If ¢; > 0, then
P =mn” G &L RE, QZZ =wi(@® ™) T TG ® & &,
In what follows, we let W; = Wy, € W(m;)**" be the normalized Whittaker newforms and let WZ =W, Quw; !
for i = 1,2, 3. For a non-negative integer n, put
Us(q") = GLa(Zq) N <qf%q gz) .
6.2. The ramified case (Ia). In the case (Ia), m3 = x3 B vs is a principle series with ¢(y3) = 0.

Proposition 6.3. In case (Ia), we have

1G22
B, &)

PRrROOF. In this case, c3 = ¢(ws) = c(wiws) < ¢, 80 ¢* = ¢o. We use the realizations

Vi, = W(m) BW(r2) B B(xs,v3); Vi, = W(T) BW () KB(x; ' vz ).

I, (¢ ® 8) =e(1/2,m @ 7 @ x3) - X5 |- (@ Jws(—1)e(1/2,7m5)° -

Let f3 € B(xs, v3)™™ be the new section normalized so that f3(1) = 1 and f3 = M*(xs, v3)f3 ® wy . Let

fi= P(<q030_02 (1)) I3 fef = w3(q="?) 'P(<q030_02 (1)) f3 = M*(x3,v3)f35 ®w3_1.
We thus have B L B
¢; =W, @ W2 ® f3; ¢; =W @ Wy ® f3.

By Corollary £.2]

I (¢* ® (E*) :fQ(Wl & W2 & fguwl ® WQ & .]?;’f) . <p(7—03)W37W3> . Cq(2)3

R G(2)?L(1/2, 11;) - By, (p(1es) f3, f3)  Ca(1)?
_ 15 <P(TCS)W3,KV3> G(2)°

BHq <p(TC3)f3a f3> C‘J(l)?ﬂ

(6.1)

where

I G(D) - xa(=1)y(1/2,m ® m2 ® x3)

’ C(22L(1/2, 1T,) W (W1, W, fo)?
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There are three subcases:

(a) wvs is ramified,

(b) w3 is unramified and L(s, m2) = L(s, x2) for some unramified character x2,
(¢) vz is unramified and L(s,m2) = 1.

Subcase (a): In this case, f3 € B(xs,v3) is given by

AL D)=tz

r 1

by [SEH0Z Prop.2.1.2) We have Wa( (! 1)) =T,y () 1 Lisuma) = and Wal(§ ) = xal £ ()t ) i
L(s,ma) = L(s X2) for some unramified character y2. In any case, the integral W(Wy, Wa, f4) equals
5

et Lo ) (DY) (e wn(p e, ey

- ”X?" 'fgqc Do [l (Y Do

Note that 7 and 7o can not be both unramified special representations as ¢(m) < 1 and vs is ramified. A
standard calculation together with the recipe of local L-factors for GL(2) x GL(2) in [GJ78| Proposition 1.4]
shows that

/;Wl(g (1)))W2((_0y (1)>)X3"'_%<y)dxy:L<1/2=7ﬁ®7Tz®><3)-

We obtain )
Ga(2)xal-[2(g=~*) e

\IJ(W17W27f§): C( )

L(1/2,7T1 ®7T2 ®X3),

and hence
I; = x5 1(@%) - X3l 1(6%) - e(1/2,m @ m2 @ x3).
Substituting the above equation and the formula Lemma below to (6.I)), we obtain the expression of
I (95 @ 5;) as claimed in this subcase.
Subcase (b) and (c): Next we consider the case vs is unramified, so m; and 73 are spherical (¢; = ¢35 = 0).

Note that in Subcase (b) where L(s, m2) = L(s, x2) for x2 a unramified character, we must have mo = x2|- |_%St
is a unramified special representation. Define the function .# : ZN\G/K((¢°>) — C by

#a) =witowa( (3 ) ont (" 1)

We have
G(2) (O )t
LWL W2, ) <q<1>/ / e 1)
@ -
_Cq(l)(JO +J(j;+ ;Jn)u
where

Using the identity
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and the formula

y 0\, — —|W|X2|'|%(y)]lzq(y) in subcase (b),
WQ((O 1) ) {6(1/2,#2)-W2(q_02)]lqC2Z; (y) in subcase (c),

= [, 76 V)
=t [ w3 ) mt o

~1dl ~v71|-|%(q02) ' L(1/2,7m1 ® x2x3) in subcase (b),
3 0 in subcase (c).

we find that

On the other hand, it is easy to see that

) 0N\d*y 1 i ¢
=t [ 2(f G a2 m e me )
q

It remains to calculate J,, in subcase (c). We have

n= Y = lilaal Ba (el ena( . ] )ama,

meZ
(m) (1Y _ gy 0\ (1 0}, «
An (1) - /Z;< W2(< 0 1) (qn 1 )d Y.

By Lemma 6.5 below, we find that J,, = 0 unless n = ¢co — 1 and

where

Team1 = X3 112 (6) - X303 1| (9).

Combining the above calculations, in either subcase (b) or subcase (c), we obtain

9 ezl 3 L(1/2,7 @ @
v Wi 1) Sy a5+ 3 ) = SR ) OB o)
This shows that
o SGn(1/2memae X3) U (W, Wa, f3)*_ x3211(a2)e(1/2,m1 @ 2 ® x3)
? C(2)2L(1/2, 11,) Co(DL(1, x3v5 ")

The above equation with Lemma [6.4] below and (G.1) yield that

1G22
B, ((1)?
This completes the proof. O

I,(65 @ 03) = x5 °|+1(4°)e(1/2,m1 @ ™2 @ xs)

Lemma 6.4. Let 7 be a constitute of B(x,v) of central character w. Suppose that x is unramified. Let ¢ = ¢(m)
be the exponent of the conductor. Let Wy be the new vector in W(m)™*™ with W (1) =1 and Wy =Wyow !
Let f € B(v,x) and f = M*(x,v)f @ w™?

(1) Suppose that  is a principal series and f € B(x,v)*V is the new section with f(1) = 1. Then

(7o) W, Wi . 1y C(1)?
IV i) _ o g =0)e(1 /2, -1) - L1 o2 - AL
(p(1e)f, ) G(2)
(2) Suppose that m is a unramified special representation with yv=1 = |-|_1, ie. T = U|-|_%St. Let f be

the section in B(x,v)*@ with f(w) = 1. Then

(p(re)We, Wr) _ (1)
p(Tc)fa f> Cq(2)

—~
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ProoOF.  We first consider the case 7 is a principal series. Suppose that ¢ = 0. Then we have
_ L0, xv™Y)  L(1,x M)
M* 1y 0 1 ) — )
<f7 (va)f®w > 7( s XU )L(vafl) L(17XU71)7
L(1,7,Ad)¢, (1)
(2) ’

<W7ra WW) =

and hence

W We) iy etz G
v e ey
Suppose that ¢ > 0. Then v is ramified and f is supported in BUy(q°) (cf. |Sch02], Proposition 2.1.2]), and
hence () ) = 10 ) ol
[ $0Fr i = vola(a) - )
=vol(Uo(q°)) - w(g®) - M*(x,v) f(7: ")
ol -la) 10052 ))
=lgl” (1 +la)~'e(1/2,xv™") - x(¢%).-
In addition, (p(7c)Wr, ﬁ//ﬁ> =¢(1/2,m)(4(1), so we obtain that

(P(re) W, W) _ (1)
() fo ) @)

Now we consider the case 7 is a unramified special representation. Then ¢ = 1 and we may assume f(w) = 1,
i.e. f is supported in Buwldy(q). An elementary computation shows that

M*(x,0)f(1) = G(2)(L =gl ™) M*(x,0)f (w) = (,(2).
Then (p(r1)f, f) equals

X2l 1(a™)e(1/2,m) w(-1).

- . 2
/ flkr) f(k)dk = vol(Uo(q)) - f(m1)M™ (x,v) f(1) = (—v|-] *(q)) - Cq(2>2.
wlo(q) Gq(1)
Combined with the formulas
(1) Wi, W) = £(1/2,m)¢4(2) = (—0l-| % (q)) - ¢ (2),
the lemma in this case follows. O

Lemma 6.5. Let w is an irreducible admissible generic representation of GL2(Qq) and let W, € W(mw)W
be the normalized Whittaker newform with Wr(1) = 1. Let x : QF — C* with x(q) = 1. Suppose that
L(s,m)=L(s,7t®x) =1. Put

A = (1) (o xwes

If x # 1, then Aslm)(x) =0 unless m = ¢(m) — e(m @ x) and n = c(m) — ¢(x); in this case

c(m)—c(m 5(1/2,71')
A«(:(Er))fc(;)m))(X) =e(l,x)- S1/2 70y x(=1)¢(1).

If x =1 is the trivial character, then Aglm)(l) =0 unless m =0 and n > ¢(w) — 1; in this case,

AT (1) = =gl ¢(1) and AT (1) = 1if n > e(m).

Proor. Let AT = A(™ (x) and ¢ = ¢(m). Let pp(a) = WW(( ) ( ) ) for a € Q. Then ¢,

belongs to the Krillov model K(m) of m with respect to ¥q,. Since L(s,m) = 1, ¢ : I;x is a new vector
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in K(r) and K(7) (¢f. [Sch02 §2.4]). Then w((_(;c é))s@(a)w_l(a) = a - p(a) for some a € C*. By the

functional equation, we have

[ ertant@ ™ da= s o)™ [ awien(er @y @) ol da

q q

where

L(s,m®x)
Ll=s,7m@x e(s,m@X)

wtw)ene) =n((y ¥ ) whola) =va,(can((5 ) (L § et
= Yq,(—aq") - p(¢“a)w(a),
we find that o = £(1/2,7) and

Z/ en@d™y)x(y)d y - x(q™) g™ "2

meZ

=y(s, 7@ x)"'e(1/2,7) - |g°" 2 / vq, (= can) - (@)p(a)d*a.

Y(s,m@x) =

By the relation

Let t = |g|°. From the above equation, we deduce that

1 m
> AW x(@™) g T

meZ
0 ifc—n;éc(x)>Oorc—n22,c(x)=0,
_ 1 et e Jx(@DNe(1,X)¢ (1) ife—n=c(x) >0,
=1(sm@x) (/2 mx (=D e 17 4] femn<0, cy) =
= lal (1) ife—n=1,clx)=

Since L(s,7) = L(s, 7 ® x) = 1, we have
Y(s,m@x) " =e(0,m® x) e,

Comparing the coefficients of ¢, if x # 1, we find that A%m) # 0 only when c—n = ¢(x), and m = c—c(7®x).
In this case

AL = (g e00) g c(y2,m) 2y

£(0,m® x)
Ifx=1, and Al )*Ounlessm—O and
1, ifc—n<0
AD =4 —1dl¢(1), ife-n=1
0 ife—n>2.
This completes the proof. O

6.3. The case (Ib). In this case m = X1|-|_%St is a unramified special representation, and mo and 73 are
discrete series with the local root number £(1/2, IT,) = 1. We first remark that if L(s, mo ®m3) # 1, then by the
minimality of 75 combined with [GJ78| Proposition (1.2)], this implies that m3 = T2 ® o for some unramified
character o of qu and 7o is also minimal. Hence, in view of [Pra90, Proposition 8.5] mo and 73 must be
unramified special in case (Ib) if L(s,m ® m3) # 1.

Proposition 6.6. In case (Ib),
(1) if L(s,ma @ w3) = 1, then we have

1 G(2)7,
B, ((1)%

I(¢5 ® 3) = x31- (@ )e(1/2,m2 @ w3 @ v1)e(1/2, m2) e (1/2, 75)” -
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(2) if L(s,ma @ ms) # 1, then c1 = ca =c3 =1 and

2lal G(2)°
B, G(1)*

I,(65 @ 6%) = Iy(dg ® dg) =

_1 _
Proor.  Now we suppose that m = x1|-| St is unramified special. Let vy = x1|-| ', We use the realiza-
tions

Vi, = Bor, x1)° RW(me) RW(m3); Vi = Blor',xq o KBW(72) IW(7).

Here B(vy, x1)° is the unique irreducible quotient space of B(vy, x1) and B(v; *, x7 o is the unique irreducible
sub-representation of B(v; ', x7!) as in §511 Let fi € B(vy, x1)"@ be the unique function supported in
BwN(Z,) with f1(1) = 1. Then the holomorphic image f of fi in Vi, = B(v1,x1)? is a new vector. Let

(1)> YW3 and

C3—C2

fi = M (v, x1)f ®w; . We may assume that co > c3 (so ¢* = c2). Let Wi = p((q 0

Wg* = Wi ®@w;'. Then
(bZ:f?@WQ@W;a ¢q:fl®W2®W§.
By Corollary 52 and Lemma (2), we obtain
W@ Wi @ i, W @ Ws @ fi)  (p(re ) W1, Wh)  G4(2)°

6.2) il @ 90) = Ca(2)2L(1/2, L) - Bn, (p(re) 1, fr) - Ca(D)?
(/2,1 @ s @)U (Wo, Wy, f1)? 1
L(1/2,11,) Br,

In what follows, if L(s,m2 ®w3) # 1, then we write w2 = x2|- |_%St and 3 = Y3/ |_%St with 2, x3 unramified.
Using the integration formula

o= E0 fo Jo P 5) (o 2o

for F € LY(ZN\G), we find that ¥ (Ws, W5, f1) equals

<q / / ( )w<(1) :v>)W3(<O (1>)w(q0_ :16))U1|.|§(y)ﬂzq(:v)dx%

:—Cq( P [ () s (§ ) el it oy

2 1. 1 if L(s,mo ® w3) = 1,
@) @) - 21/2.m)e(1/2.m) f e
Ga(1) L(=1/2,xax2xs) if L(s,m ®m3) # 1.
If L(s,m ® m3) = 1, then one verifies easily that y(1/2,m @ m3 @ v1) = €(1/2,ma @ 73 ® v1) and L(s, II;) = 1
so we obtain the claimed expression of Iq(¢; ® ¢) in this case by substituting the above equation into 2.

Suppose that L(s,m2 @ m3) # 1. Then ¢ = ¢y =c3 =1 and £(1/2,m;) = —Xi|~|7%(q) for i = 1,2,3. Hence,
Ws = W3 and

2
W(Wa, Wi, f1)? = U(Wa, W, f1)* = |q|*- qu3§2 - L(=1/2, xax2x3)*-
q

On the other hand, by [Pra90, Proposition 8.6|, £(1/2, II,) = 1 implies that

3
xixzxs(q) = —lg|* -
By [GJI78, Proposition 1.4], £(1/2,m @ 73 ® v1) = || " and

L(1/2,ma @ m3 ® x1) _ L(1/2,x1x2x3) _
L(1/2,7T2®7T3®U1) L(—3/2,X1X2X3)

and a simple computation of the Langlands parameter for /I, shows

L(s, IT;) = L(s, x1x2x3)L(s — 1, x1x2x3)°.

2L(1/2, x1x2X3):
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We thus obtain
o L2 1)

L(=1/2, x1x2x3)*
The desired formula of 1,(¢; ® ¢7) = I,(¢q ® ¢¢) in this case can be deduced immediately by combining (G.2)
with the above formulae of U (W5, W, f1) and the v-factor. O

Y(1/2,m @ m3 ® v1) = 2|q

Remark 6.7. In the case where L(s, ma ® 73) # 1, i.e. m; are special unramified, the integral I, (¢; ® (;NSZ) was

computed in [[I10, page 1405-1406], from which we have I, (¢} ® 5;) = 2]q| (1 +|g|). Our computation agrees
with the result therein (note that By, = (4(2)3¢(1)73).

6.4. The ramified case (IIa). In this case, my, 73 are discrete series and L(s,m2 @ m3) # 1. As we have
remarked in the previous subsection, m3 ~ T3 ® ¢ for some unramified character o of Q. and m must be
spherical. Let 7Q,» be the quadratic character associated with the unramified quadratic field extension Q-
of Q4. We say a discrete series 7 is of type 1 if 7 ¥ 7 ® Q. and is of type 2 if 1 27T ® Q-

The following lemma for minimal supercuspidal representations should be well-known to experts. We
include a proof here for the reader’s convenience.
Lemma 6.8. Let m be a minimal supercuspidal representation with central character w.

(1) Let x be a charatcer of Q.- Then we have the following conductor formula

e(m) ife(m) > 2(x),
2e(x)  if e(m) < 2¢().

Here recall that ¢(?) denotes the exponent of the conductor of 7.
(2) If w is of type 1, then c(r) is even and L(s, 7 @ T) = (4(2s). If w is of type 2, then c(w) is odd and
Lis, 7@ 7) = ¢y(5).

PrROOF. Let ¢ = ¢(m) > 2. To prove the first assertion, we begin with an immediate consequence of [JL70L
Proposition 2.11 (i)]. Let xo = X|qu and wy = w|qu. If xowo # 1, then there exists a character o such that

(6.3) c(r®o)=c+c(r®yx) — 2¢(xw)
and if xo # 1, wy ! then either of the following condition holds:
(1) ol # L xo and

C(W®x)={

c(o) =c—clxw), clox™) = c(m @ x) — c(xw),
(i) ol =1, e(x) = el @ x) — c(xw) and () — ¢ = —1;
(iii) U|qu = X0, ¢(x) = ¢(m) — e¢(xw) and c¢(xw) — c¢(r @ x) > —1.
To see it, we set p = Xalwal, v= w&l, m = c(xw), p=m—c(r®yx) and n = m — ¢(m) in the equality proved
in [JL70, Proposition 2.11 (i)], from which we see immediately that the equality shows the existence of desired
o by noting that C,,(p~tw™1) # 0 if and only if n = ¢(7 ® p). Note that (63) implies that

e(m ® x) > 2¢(xw) for all
by the minimality of 7. In particular, ¢(w) < ¢/2. Suppose that ¢(x) > ¢/2. Then ¢(xw) = ¢(x) and o
satisfies either (i) or (ii). In case (ii), we have ¢(m ® x) = 2¢(x). In case (i), c(o0) = ¢ — ¢(x) < ¢/2, and
hence we also have ¢(7 ® x) = ¢(x) + c(ox™1) = 2¢(x). Now we suppose that c¢(x) < ¢/2. If xo = wy !, then
c(r @ x) = ¢(T) = ¢, so we may assume Yo # wy . It suffices to show ¢(7 ® x) < ¢. Note that c(yw) < ¢/2.
In case (iii), c(r @ x) < c(xw) + 1 < ¢, and in the case (ii), ¢(m ® x) = ¢(x) + ¢(xw) < ¢. We consider case (i).
We have c(0) = ¢ — c(xw) > ¢/2. If ¢(o) > ¢/2, then
c(r @ x) = c(xw) +c(07x) = c(xw) + c(0) = c.

If ¢(o) = ¢/2, then we also have ¢(r ® x) < ¢/2 + ¢/2 = ¢. This finishes the proof of the first assertion.

We proceed to show the second assertion. This is [Hid90, Proposition 6.1]. We give a more elementary
proof. The local L-factor of L(s, 7 ®T) is given in [GJ78| Corollary (1.3)]. To see the parity of the conductor,
we note that 7 ~ 7 ® 7q_, if and only if e(s,T@x) =¢e(s,7® XTqu) for all character x : Q; — C* as 7 is
supercuspidal. Since TQ,. 18 unramified, this is equivalent to saying (—1)C(T’®X) =1 for all x. It follows from
part (1) that 7 is of type 1 if and only if ¢() is even. O
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Proposition 6.9. Let r = {@] We have

2
_ 1 G(2)?* J(L+1ql) if m2 is of type 1,
I,(oF ® =i’ e(1/2,m @ T3 ® P
o(0g @ &) =x17[1(¢") - e(1/2,m ® 3 ® x1) Br, 12 1 if T is of type 2
PrROOF.  After a unramified twist, we may assume that m = x; B, with x1 = |'|S_% and v; = |'|%_S for

some s € C and 73 = 2. Let m = m2 be a minimal discrete series. We use the realizations as in (6.0]). Let f;

be the normalized new vector in B(|-|Sf%, |-|%7s) and let f; = p( (q
Corollary we obtain

0 (1)) )f1. As in the previous cases, by

L(# ® 3) _G(1) Fg(W2 ®2W3 O fWe@Ws® ff) <WW17WM> , Cq(2)z

(6.4) Cq(2) L(1/2=Hq)Bﬂq <f1,f1L Cq(l)
G2, m @ T @x1) - W(Wa, W, f1)2 (Way , W) 1 G(2)°
Cq(2)2L(1/2,11,) (fi,fi) B, G(1)*

Define the function W : ZN\G — C by

wio) = walawa( () ) o)

We compute U (Wa, W3, f7) in the following two subcases.
1
Subcase (a): m; = x;|-|” 2St are unramified special for ¢ = 2,3. Then 75 is of type 2 and r = 1. We have

W (Wa, W3, f1) =vol(Ko(q))(J1 + J2),

=l /Q Wy Dt
n= S [ oW 9) (6 1)t

wEZ/qZ

where

By a direct calculation, we find that

=1q|"° L(s, x2x3).
=gl -q-1a* x3'x3 -1 7%(@) - L(s, xaxz) = lal xax2 (g1 L(s, x2x3)-

Note that wows = x2x3|-| 7> = 1. Hence

1 N N
U (Wa, Ws, fT) 174 g™ (1 + xoxal- 7' (@)) - L(s, x2x3)

1
:C (2) | |1 s L(SaXQXB)L(S - 17X2X3)

Ge(1) Cq(2s)
Y (2)| -8 L(1/2, 73 ® 73 ® x1)
Cq( ) L(17X1U1_1) '

Subcase (b): w2 and 73 are supercuspidal. In this case,

w68 [y ) (- ot (L

0
G
—Gm 1T
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where
= /nzwi(g D (e sl )y
=10 1) 3 g At D Low (" 9) (g D
1@ =1 Xl A 3) T AL 0ALL 0N
meZ XEZX
where

my 0\ (1 0
Alm) ::/ Wi(q” )( )d.
wl,n(X) Zf; ( 0 1 qn 1 ) U

In the case x # 1, by Lemma [6.5, we have
AL COAT, (X (=1) = gl ¢(1)?
if n=c—¢(x) and

0 ifn>r,

2n—c ifn <,

m=c—c(r®x) = {
by Lemma [6.8] (2), and AWT,) (x )Agg)n(x_l) = 0 otherwise. If x = 1, then
ALY (AT, (1) = Jaf ¢ (1)?
if ¢ —n = 1. Therefore, if n < r, then
Tu =(1 = |ql) gl [g| "= g2 gl ¢ (1)2# {x | e(x) = ¢ — n}
=(1 Jq) Jg
If r<n<ec—1, then
Jn =(1—q])[a]"
If n=c—1, then
c—1 2 c—1
Jemr =1 =1al) g (lal (g =1 = 1) +|g")¢,(1)* = (1 = |q]) |a]
If n > ¢, then J>. = |¢|°. Combining the above equations, we find that (W, W3, f) equals

(2) | -rs _Ga(2) s [ - N
Lm ZJn—C o lal (JT_1+ZJW+JC>

nez q( ) n=1
q(2)

lal 7" (gl "% gl + gl — lgl® + lal)

(1)
q(2) g lg|2 (1+]q)) if ¢ is even (my is of type 1),
) g (14 |gI®)  if cis odd (m is of type 2).

On the other hand, when mo and 73 are supercuspidal, it is easy to see that

L(1/2,ma@m3®@x1) |1 if mo is of type 1,
L(laxlvfl)

We thus conclude that in either subcase (a) or subcase (b),

G(2) g %) L(1/2,ma@m3®x1) |1+ ]q| if m2 is of type 1,
Ga(1) L(L, x1v1 ")

1+1q|® if mo is of type 2.

(W, Ws, 1) =
(Wa, W3, fT) 1 if mo is of type 2.

61
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Substituting the above equation and Lemma [64] into (4], we obtain

TRy Cq(2)7(1/2=772®7T3®X1)'\I](W%WSaff) Cq( ) L(1, X1Vy )2

Cq(1)2L(1/2, ) q(2)
_ 1 (22 J(+]ql) ifmisof type 1,
=£(1/2, 72 @ T3 @ 21 (g™ s — 212
( / ) T3 Xl)XI | |(q ) BHq Cq(1>2 1 if o is of type 2
by noting that L(s, II;) = L(s, m2 @ m3 ® x1)L(s, T2 ® w3 ® v1). This finishes the proof. O

6.5. The ramified case (IIb). Finally, we consider the case where 75 and 73 are discrete series, 73 is minimal
and L(s,m ® m3) = 1. It is also assumed that m = x1 Bv; is a principal series with ¢(x1) = 0 and ¢(v1) < 1.

Proposition 6.10. Let ¢* = max {ca,c3}. We have

- P 1G22
* *\ 2 c 2
Iy (6 ® &) = wi(=1)xy~|-1(¢° )e(1/2,m1)" - e(1/2,m2 @ T3 ® X1) - B CZ(l)Q'
PrOOF. In this case, we use the realizations
(6.5) Vi, = B(x1,v1) EW(me) BW(m3); Vg = Bx1h o) BRW(Fe) BW(73).

Let f1 € B(x1,v1)™" be the new vector with f1(1) = 1. Define the section f{ € B(x1, vl)%(qc*) by

—c* 1 1—c*
f=ol(Ty Opn-ettE@e(?y Daite —de o

1—c*

and f; = P(<q 0 (1)>)f1 if ¢; = 1. Then f; is the section supported in the Bly(¢° ) with fy(1) =

1 . ~
X1l 12 (¢ L(1, xio; )7 Let fi = M*(x1,v1)f1 ®wy ' Then we have

—C

BTy PRt ot @a (T D))

=M"(x1,v1) 7 ®w1_1 if ¢; =0.

( DG (@) G puttws (g e
—ﬂggﬁ / (5 (Y Dral R waey

_G@xalem )

- CQ() (17X1U1 )

The last equality follows from the fact that either L(s,m2) =1 or L(s,m3) = 1 in case (IIb). By Corollary B.2]
the above equation and Lemma (1), we obatin

A direct computation shows that

U(Wo, Ws, f1) =

S Wa @ Ws @ ff, Wa @ W @ f1)  {p(re)) Wi, Wa) G(2)°

Cq( )2L(1/2’H)Bnq <p(7'01)f1af1> Cq(l)S
SRS 7(?/@; Xl))B(,Ij/Q’ War O™ 211 )e(1/2,m0)Pon (~1) L (1 o)
e(1/2,m@mex1) ((2)?

X @) I 2
— BH,, . Cq(1)2 ce(1/2,m) w1 (—1).

The lemma follows. O

I,(¢5 @ 0)) =
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6.6. The p-adic interpolation of normalized local zeta integrals f,’}Q . In this subsection, we com-
pute the normalized local zeta integrals .7 00 = fﬁq in 329) and show these integrals can be p-adically

interpolated by an Iwasawa function in @ € .'f;; We begin with recalling some facts. If F € I[q] is a primitive

Hida family of tame conductor N and @ € %f" be a classical point, as in the introduction we denote by
Vr, the associated p-adic Galois representation, and for each prime ¢, let WD,(Vx,) the representation of
the Weil-Deligne group Wé)e attached to Vz,. Let £ # p be a prime. On the automorphic side, denote by
Recq, the local Langlands reciprocity map from the set of isomorphism classes of irreducible representations
of GL,(Q¢) to the set of isomorphism classes of n-dimensional representations of Weil-Deligne group Wél

over Q,, ([HT0Ia]). Then

(6.6) Recq, (Trg.e |1y =) = WDe(Vig)s  ee(1/2,m7) = INJ,F e(WD(Viry).
We recall the standard fact for the p-adic interpolation of local constants in Hida families.
Lemma 6.11. There exists eo(F) € I* such that

eo(F)(Q) = e(WDq(Vry))

for every classical point () € .'fi" Moreover, if G € I[q] is another primitive Hida family, then there exists
e(F®G) € IReD)* such that

EE(J—" ® g)(Q17 QQ) - E(WDZ(V}-Ql ® Vng ))
for every classical points (Q1,Q2) € %;r X %;r

ProoOF. This is a simple consequence of the description of p f|GQe together with the rigidity of automorphic
types of Hida families in §3.21 We can actually make explicit the construction of £,(F) as follows. Let Q € Xj
be any arithmetic point. If TFg.¢ 18 a principal series, then pr , ® ((-scyc);/2 |GQ£ ~ af,gflei}/,g @ a]__-_llfgei}/,g

is reducible with &;,& : Gq, — QX finite order characters and ary : Gq, — I* unramified, and it is not
difficult to see that

eo(F) = £(0,)e(0,€") - ap o (Froby* ™) {eeye)y (Froby*™2) - e[y "2,

where ny = ¢(&1) and ne = ¢(&2). If mr ¢ is special, then pr ¢|cq, ® <€Cyc>i/2 is a non-split extension of £ by
€cyc for a finite order character € : Gq, — Q”, and letting n’ = c(€), we have
12 .o
. I L Sy
e(F) =¢(0,¢) <ECyC>1 Ecyc(Froby ) - {1 ! ifn' >0

If x4 ¢ is supercuspidal, then p]—‘j|GQE = po® (eCyC)I_l/2 for some irreducible representation pg : Gq, —

GL2(Q) of finite image and of conductor £, and we have

N[

e(F) = e(WDy(pp)) - {€cye) (Froby’).

The case pr ® pg can be treated in the same manner by the formulae of e-factors in [GJ78]. We omit the
details. 0

We recall that the finite set Yexe in (L) is given by

Yexe = {q € E;Ha) U Egna) U E;lna) | either of 7y, 7.4, Th,q is supercuspidal of type 1} .

Proposition 6.12. With Hypothesis[6.1}, for each g | N and q ¢ X, there exists a unique element Ip 4 € R*
such that

(1+¢7") i g€ Dexe,
1 otherwise.

f@@—hm@%{

for all Q € f{};
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ProoOF.  We shall express . 11, in terms of epsilon factors of Galois representation under the setting in §6.11

As before, let (f,g,h) = (fg,:90,:hq;) be p-stabilized newform of weight ki, ko, k3. Let xp: Gq — R* be

—1
cyc®

the unique character such that XE.Q = (det py @ det pg @ det pp)e
specialization of xr at @, then

Then xr is unramified at ¢q. If xr is the

—1/2, ke
ReCQq (wF ||q 2 ) = XFg|WQq'

As before, co = ¢4(7y), c3 = cq(mn) and ¢* = max {cz, c3}. Write |-| for |-[,. Recall that

1)2 B
7|N<|3(< )@2 wop ()]
q

Here df: = di'd;*d;? is a product of the adjustment of levels defined in §3.41 Let Frob, be the geometric
Frobenius element in the Weil group Waq, .

Case (Ia) and (Ib): Suppose we are in the situation of either §6.2l or §6.31 Then we have vy(ds) = 0,
vg(dy) = ¢* — ¢g and vy(dy,) = ¢* — c3. Thus

wWrg(dg) |d] = g 7T (g =y - 2).
In Case (Ia) with c3 = 0, by Proposition (.3l we obtain

ﬂﬁq = w2w3(qic2)€(1/277-r2)2 |q|("€372)02 )

Tis =18} © 33) - B,

Hence, we find that Ir , = det pg det ph(Frob;*) gl ., - €(g)?. Consider Case (Ta) with c3 > 0 (¢* = c2). Let

1—k
a;(h) : Wq, — T* be the unramified character sending Frob, to a(g, h) and let oy (h) = a(g, h) == x3|- |T3 (q).

By local Langlands correspondence for GL(2),
2— ki — ko

(WD, (V7 ® V) = (=

JTF @ Tg).
This implies that
£(1/2,m1 @ 12 © xa) = £(WD, (Vs © V) ® i (h)xr).
By Proposition and (6.0, we thus obtain
Ih = e(WDg(Vr @ V) @ o () xFg) - arg(h) 2 |q*” - det Vi (Arty(~1)) - (Vi)
Here Art : Q7 — W(‘sl; is the Artin map. Therefore, by Lemma [G.11] we find that

Ir,=c(f®g)- a;(h)xpg(Frobg/) - (h)€cyc (Frob, > ) det pp, (Art,y(~1)) - £(h)?,

where ¢’ is the exponent of the conductor of 7s, X 7y 4. In case (Ib) with L(s,m2 ® m3) = 1, we see from
Proposition that

jﬁq :E(WDP(‘/g & Vh) X a;(f)XFQ) . aq(f)gc*XF(qc*)
x e(WDy(Vy))?e(WDg(V4))? - |q|2(02+c3—2c*) '
It follows that
Ipg = E(g & h) . O‘:;(f)2XF(FrOb; ) . a;(f)XF(Fl“Ob; ) |q|2(C2+C372c ) 7
where ¢’ is the exponent of the conductor of 7, o X . If L(s, 74 ® mhq) # 1, then fﬁq =9 ‘q

We proceed to treat Case(Ila) and (IIb). So 7y 4 is principal series while 7, , and 7, 4 are discrete series.
Case (ITa): In the setting of §6.4] we have vy(dy) =1 = [%1 and vy(dg) = v4(dp) = 0; then

R1T

Wig(dy) |d|, = wrga™) la™"
By Proposition and ([G.0)), we find that
It = e(WDy(Vy ® Vi) © a} yxr) - f 4 (Froby ")
Case (IIb): In the setting of §6.51 we have vy(ds) = ¢* — ¢1 and v4(dy) = v4(dp) = 0. Then

wiy(dy) |di |, = wrg(g ) g™ 7.
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If ¢ > 0, we set aq(f) := a(q, f). If c1 =0, then set aq(f) := a(q, f) — B4(f), where 5(g, f) is a root of the
Hecke polynomial of f at ¢ fixed in Definition Define o} , : Wq, — Iy to be the unramified character

1=kQ,y

with a}  (Frobg) = a,4(f). By definition, Recq, (Xlwll;/2| |77 ) = a}, the specialization of o} , at Q1. From
Proposition [6.10, we obatin the following expression of .# o

T, =e(WDy(Vy ® Vi) @ a g xF) - f o (Frob, ™) - e (WD, (V4))? [q*

(1+1q|) if w2 is of type 1

x det Vi (Art,(—1 ’
et Vi (Arty( >>{1 if s is of type 2

In either case, it is easy to see by Lemma [6.1T] that

Ipq = eq(f ©9) - 0 oxr (Frobg ) - 4 (Frobg ) - £, (f)* det pg (Arty (=1)) g,

where ¢ is the exponent of the conductor of 7y 4 X 7, 4. This completes the proof in all cases. O

7. THE INTERPOLATION FORMULAE

7.1. Proof of the main results. We complete the proofs of the main results in this section. We retain the

weo —3
notation in the introduction. For @ = (Q1, Q2,@3), recall that w},ﬁf = w2 61Q/1261Q/2261Q/32 and that

In terms of L-functions attached to Galois representations in the introduction, we have

1
_ 1
L(S + 5, HQ) = FV& (8) . L(VQ, 8),

where Fvg (s) = L(s+ 3, 11g,) is the I-factor of VI;) in (L4). The set X~ in Definition B9 is given by

¥ = {E | N | E(WDg(VTQ)) = —1 for some Q € %;g}

Theorem 7.1. Suppose that p > 3, ®@0) and EI) hold. After enlarging the coefficient ring O to some finite
unramified extension over O, the following statements hold.
(1) If ¥~ = 0 and f satisfies the Hypothesis (CR), then there exists an element E; € R such that for
every Q = (Q1,Q2,Q3) € %fz in the unbalanced range dominated by f, we have

f 2 L(VTQ7 O) 1+ 1
(L£(Q)) :vag(o) : W '5p(F11f Vg) ‘ H (14+£77),

le L€ exc
where the period Qle is the period attached to the p-stabilized form fg, as in Definition [{. 12

(2) If #%~ is odd, f,g and h all satisfy Hypothesis (CR,X7), and N~ and N/N~ are relatively prime,
there exists a unique element E‘%?l € R such that for any arithmetic point Q € Xy in the balanced
range, we have

bal 2 L(VZ?’ 0) q+ —1
(£F'(Q)" =Ty (0)- — & (Fil, Vo) - [ (+e7h).
Q QfD QgD QhD
Q1 Q2 Q3 L€ X exc

PROOF. By the observation in Remark 6.2 there exists Drichlete characters x = (x1,x2,x3) modulo M
with M? | N such that y1x2x3 = 1 and the triple

F' = (f®x1,9® x2,h @ x3)

of primitive Hida families attached to the Dirichlet twists (f|[x1], g|[xz], |[x3]) satisfies Hypothesis [6.1] at all
classical points. Enlarging O if necessary, we may choose a square root \/Ig € R* of Ip := Hq|N/N* Ip
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defined in Proposition[6.121 On the other hand, by Proposition [Z.5land Proposition [.7in the next subsection,
there exist u; € I{ and up € R*™ such that for all arithmetic points Qe f{;%, we have the equalities

Qsone, =u(@) - Qg
.2
Qf&@xﬁg&@xﬁh&@m =u3(Q) - Qf319932 tha'

Now we define

—1 - -1
E; ::"g}‘;‘f’(@X1'2\/IF’ s U E%al = @F/D*'2_#22+1\/IF/ S UQ.
Then we can verify directly that Ef:. (resp. L£51) enjoys the desired interpolation formulae by Corollary B.I3]

(resp. Corollary LT3) combined with Proposition [612], the p-adic computation Proposition [5.4] (resp. Propo-
sition £.0) and Remark .71 O

Remark 7.2. The reason for the appearance of the fudge factor [[,c5 (1 + ¢=1) is not clear to the author,
but a similar factor Hy appeared in p-adic L-functions for adjoint representations [Hid88al Corollary 7.12].

7.2. The comparison between the canonical periods of Hida families with twists. Let f € eS(N, ¢, I)
be a primitive Hida family of tame conductor N and of brach character ¢». We assume that f satisfies (CR).
Let Q € %;r be an arithmetic point. Let f, € eSk, (Np*,pw?F2eq) be the specialization of f at @ and
T=Tg, be the unitary cuspidal automorphic representation of GL2(A) associated with JFo- Let ¢ # pbe a
prime number such that 7 is minimal at q. Let x be a Dirichlet character modulo a power of ¢. Let
FF=fox
be the primitive Hida family corresponding to the twist f|[x] and let N* be the tame conductor of ff We
assume that 7 ® x is not minimal at ¢g. Namely,
N* = Ng¢* for some ¢ > 0.

The goal of this subsection is to show the two periods Q¢ Q and () e defined in Definition [B.12] are equal up to
Q

a unit in I by the method of level-raising. We will also prove the same result for the periods of the primitive

Jacquet-Langlands lifts £ and fﬁD .

Remark 7.3. We recall some generalities on congruence ideals following the discussion in [Hid88al page 363-
366]. Let R be a domain. Let T be a finite reduced R-algebra with a R-algebra homomorphism A : ' — R.
For any T-module M, we denote

M :={xeM|rz=0forall r € KerA}.

Then
C(N) := MT[N\]) = AM(Annr(Ker \)).
Let H be a free T-module of rank d. Suppose that T is Gorenstein, i.e. T ~ Hompg(T, R) as T-modules and

that we have a perfect pairing (, ) : H x H — R such that (tx,y) = (z,ty) for t € T. Then T[)] is free
R-module of rank one and hence H[)\] is free R-module of rank d with a basis {e1,...,eq}. We have

C(/\)d = (det<61‘, 6j>).
Lemma 7.4. We have C(f*) = C(f) - E,(f), where
(a—D(ale, £)* = (@1 +9)?) if gt N,

B (f) = 1—¢t if mq s a ramified principal series,
? C)1- q? if mq is unramified special,
1 if mq s supercuspidal

(recall that vy is the I-adic character <€Cyc>_2 (Ecye)1)-

ProOF.  We shall follow the notation in §831 Let T := T(N¥ 1) and let m* be the maximal ideal of T*
containing the operator U,, {T, — a(q, f)}q)(Npq and {U, — a(q, f)}qINp g#q- The twisting morphism I
induces an isomorphism

) SV, D, = eS(NF, )i [U = 0]
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as T#-modules. Let 79 = 2if ¢{ N, 79 = 1 if ¢ | N and 7, is not supercuspidal and rq = 0 if 7, is supercuspidal.
For brevity, we put

S(Nq") := eS(Nq",1): @1 Fracl for r € Z>o.
According to the possible list of tame conductors of newforms in eS(N¢",I): page 436], all newforms
in eS(N¢",I)y: have tame conductor dividing N¢™. It follows hat U, = 0 on S(N¢™) and that

S(Ng"™) = S(N¢") @ V,S(Ng") if r > ro.
Here recall that V,(>" a,¢") = ¢ a,q?". Combined with the relation U,V, = ¢, the above facts implies that
eS(N¥,D)m,, @1 Fracl =~ S(Ng")[U, = 0] = S(N¢")[U, = 0] = S(N¢").
and hence

(7.1) T(N* D), = Th, = T(NG, I)pe.

g Tm
We are going to apply the discussion in Remark to compare the congruence ideals. For each positive
integer M not divisible by p, put

H,(M) = lim Hét(Xl(Mpn)/ﬁv Z,) ®z, O.
n—oo

Let {,},;: Hy(M) x H,(M) — A denote the Hecke-equivariant perfect pairing defined in [Oht95, Definition
(4.1.17)]. Let Hy(M)m = (Hp(M) @4 I)m. By [Wil95, Corollary 1 and 2, page 482, H,(M )y is a free
T (M, I)n-module of rank two and T(M,I)y, is Gorenstein under the Hypothesis (CR). Let H = H,(N )y, and
H! = H,(Ng"™):. Suppose that we have an injective I-linear map i, : H — H* such that

(1) iq(F[Af]) € HE[Apis

(ii) the I-submodule i,(H) is a direct summand of H¥.
Let i} be the adjoint map of i. Recall that i*: H* — H is the unique map such that {ig(@) ¥} ngro =

{a, i} (y)}N We have

(7.2) C(f)? = C(f)* det(iliglap,))-
We proceed to construct the map i, and compute the composition i4i;. Let A = A¢. For an integer d relatively
prime to Np, Sy denotes the Hecke operator [I'y <0 2) I'y]. Then we have Sy = 04 (d); (d)"? € T, where

o4 is the diamond operator.
Case ¢t N (rg = 2): Define i, : H — H* by

iq(z) = qv — VoTox — Sq‘/qQI.

Then one verifies directly that Ui, = 0, which implies (i). The property (ii) is a consequence of Ihara’s lemma
Theorem 4.1]. A direct computation shows that

5 _ 0 _ 20
’Lq :q[FNFNq] —Sq 1Tq[FN (g 1) FNq]+Sq1[FN (qo 1) FNq]a

and hence i}i4|p(y is a scalar given by

iyiqlupy = AMSq) T a(l = ))(MTY)* = (1 +@)*A(Sy)).-

Note that A(Sq) = ¥1(q).
Case ¢ | N (rg = 1): Define i, : H — Hf by

ig(2) =z — ¢ 'V, U,
A direct computation shows that the adjoint map i; is given by
. 0 -
g = T'n (g 1) Ingl —q qu[FNFNq]
and that
e _ 0 _
inig=—q " ([FN (g 1) InglVyg —q 1Uq[1“Nl“Nq]V;1) Uy,
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Let s = vg(N) and 74+ := 0 € GL2(Qg). It is easy to see that

g - [ONDnglVg - 73t = S U,
The restriction of [I'yI'ng|V, to H[A] is given by

_ _ _ if ¢, is a ramified principal series
AS) ™ (1 Uy =AU,y T ’
(S) (Tq a7 |H[)\f]) (Ga) 1 if 7y 4 is unramified special.

We thus find that

igiqlrpy = —a7 AUy (g — qil)‘(Uq))‘(Sqil)(TgquTq|H[A])) = —AMUg)Eq(1, Ad py).
The assertion follows from (Z2) and the above computation of i}i,|gy)- O
Proposition 7.5. There exists a unit u € I* such that for any arithmetic point Q, we have

QfQ = U(Q)quQ

PrROOF. Let fzg and fg be the newforms corresponding to f, and qu of conductors Np™ and N#p»
respectively. From (28], we see that

155 11E vepy _ [SLa(Z) : To(V9)]  £(1/2,7) Br,ex,
Folny,  BLa@) To(M] (1727, & xg)Bry

A direct computation shows that if ¢ ¥ N, then the right hand side equals

#
Ly A = 07 (0 (@ Eo(D)(@),

and if ¢ | N, then it is equal to

1—q ! ifg|N and 7, is a ramified principal series,

Nt )

R 1_q_

N if m, is special,

1 if m, is supercuspidal.
In any case, it is clear that there exists a unit v’ € I* such that

||f§5|\%0(mpn) ,
ITA . u'(Q) - Eq(f)(Q)
QT (Npm)

for all arithmetic points Q. Therefore, the assertion follows from the definitions of periods in Definition
and Lemma [T by noting that &,(fq, Ad) = &,(f5, Ad). O

The definite case. Now we consider periods of definite quaterninoic Hida families. Assume that f satisfies
Hypothesis (CR,%7). Let = eSP(N,4,1I) be the primitive Jacquet-Langlands lift of f. Let ¢¢ be the
conductor of x. Let P, be the element in the group ring O[GL2(Q,)] defined by

C1y— 1 bg
Pe=alx )™ D x) <0 ‘ >
bE(Za/q°%q) >
where g(y ') is the Gauss sum. We define
FPIN(@) = Py(F7)(@)x(v(2)) € eSP(NG*, 1),

Lemma 7.6. The quaternionic form fD|[X] is a primitive Jacquet-Langlands lift of fu. In other words,
Pl € eSP(N*, x2, I)[Asp] is a generator over 1.
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PrOOF.  We first note that U,(f”|[x]) = 0 as x is ramified. Since 7, ® , is not minimal, the operator U,

is nilpotent on V, ®;) and dimc VN(Z" ,[Ug = 0] = 1. This implies that FPlIx] € eSP(N¥ ¢x2, 1) [/\ff]'

To see that fD [[x] is primitive, it suﬂ"lces to show that f7|[x] is non-vanishing modulo the maximal ideal
myp of L. Let f/:= fD ® x o v (mod my) € SP(N*pt, %, F,) for some positive integer t. Define two operators
on 83 (N*p*, ¥x* Fy) by

L= ¥ wen(y ) = X xom(p O)

a€Zq/q°Zy be(Zq/q°Zq)>

Then
LaLy (£P[x] (mod my)) ZZ% (abg)p (1 “ql c>)f’

-1
:qu/ _ qcfl Z p( ((1) bql ))f/

beZy/qZy
—1
_c—1 _ q 0 /

Suppose that f2|[x] (mod my) = 0. Then we deduce from the above equation that either

(q— (qol ?) a(f,q)x(q)f =0if ¢ | N,

or

gt 0 2.0 .
(¢ —alf.q) —(q) )f' =0if g1 N.
1 0 1
In any case, this implies that f’ = 0 by Ihara’s lemma for definite quaternion algebras [CH16, Lemma 5.5]

and hence f” (mod my) = 0, which is a contradiction. O

Proposition 7.7. Let fﬁD be a primitive Jacquet-Langlands lift of fu. There exists u € I* such that for
every arithmetic point QQ € f{ , we have

Qfg = u2(Q) . Qfg)

Proor. Let f' := fP|[x]. Then f*¥ = u . f’ for some u € I*. Let f = Ug"fg and let ¢ = &(f) be the
vector-valued automorphic form associated with f. Let ¢, := Py¢ ® y ov. By Lemma L4l and ([@I), we have

ns(Q) (U, " fo, Fo)ntpr

S =575
nge(Q) (U™ £G. £Q)nw
where
kg2 . .
g (M) ® vol(RY) Sy = Xp(p )<P(T1€upn)90xﬂpg<>
N vol(R,) (p(TRpn s )
It is easy to see that
g, _ 1SLa(Z) : To(WHJ(N®) =
- kg—2 .
[SLy(Z) : To(N)|N~%
On the other hand,
S XN (p(1 R, )Py () Pu())
2 =

(p(TRpn) s ')
<p(T]?/vﬁpn7q),PX(WTrq )7 Px (qu) ® wq_l>

=x(N¥). -
<p(TJL\)fpn7q)W7Tq s W, @ wq 1>
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Note that ’PXqu((g (1)>) = I (a)x; '(a), so we get PyWr, @ xq = Wr,gx,, so we find that
So = x(N)- (T Npn ) Wrgons Wryox © Xg "0y 1) = x(N)- Bﬂq®xq..
<p(TN,q)W7ran7rq ®wt;1> Bﬁq
From the above computations of S; and Ss, we see that
~ kQ*Z
np(Q)  x(N)e(1/2,m ® xg)(N*) "2~ [SLa(Z) : To(N*)] €(1/2,74) Bryax,
@) e(1/2, 1 )N~ % [SL2(Z) : To(N)] (1/2, 74 @ Xq) B,
e (£ IF5IE
_ Q Qo (N¥) (b
- = : 5] Yy m)u
= Fo) Falym
and the lemma follows. O

Remark 7.8. If f satisfies (CR,X7), then 7;p indeed generates the congruence ideal associated with the
homomorphism Ag : TP (N,9,I) — I. This strengthens [CHI6, Prop. 6.1] by replacing (CRT) there with a
weaker hypothesis (CR, ¥7) here. Note that T? (N, 1, 1) is isomorphic to the N~ -new quotient of T(N,,T).
In particular, this implies that the congruence ideal (np) contains (1y) and (ngp) = (ny) if the residual
Galois representation py (mod my) is ramified at all ¢ € ¥~. This implies Hida’s canonical period of f is an
integral multiple of the Gross period of f.

8. APPLICATIONS TO ANTICYCLOTOMIC p-ADIC L-FUNCTIONS

8.1. Primitive Hida families of CM forms. In this section, we show that when g and h are primitive
Hida families of CM forms, then the unbalanced p-adic triple product L-function specializes to a product of
theta elements & la Bertolini and Darmon in [BD96]. As a consequence, the anticyclotomic exceptional zero
conjecture can be deduced from the theorem of Greenberg and Stevens. Let K be an imaginary quadratic
field over Q of the absolute discriminant Dy. Suppose that pOx = pp, where p is the prime induced by the
fixed embedding Q — C ~ Q,. Let Ko be the Z2-extension of K and let ', = Gal(K/K) be the Galois
group. Let K, be the p-ramified Z,-extension in Ko and I'ps = Gal(Kpe/K) be the Galois group. For
each ideal a prime to pe, define o4 € Gal(K (cp™)/K) be the image of a under the geometrically normalized
Artin map sending q to the geometric Frobenius Froby. For each place w of K, we let Art,, : K — G4
denote the restriction of the Artin map to K. Then Art, induces an embedding A — O[I'p~] given by
[2] = Arty(2)| Ko - Let Iy := Artp(1 + pZy)| K, C Tpoe. Let p® := [[yoe : I)Y]. Note that b = 0 if the class

number hg of K is prime to p. Fixing a topological generator 7, of I'ye such that ijb = Art, (1 +p)|KF,,o, let
l: Gal(Kw/K) — Z, be the logarithm defined by the equation

l
U|Kpoo = ’Yp(o)

For each variable S, let Wg : I'oo — O[S]* be the universal character defined by
Us(0) = (1+9), olr,e =237
For any p-adic character ¢ : G — O of conductor ¢p®>°, we define
0,(5)(@) = > ¥(oa) Vs (oa)g" € O[S][q].
(a,pc)=1
Let ¥ : Gq — G4 be the transfer map. If ¢ is geometric of weight (1,0), namely
Y(Arty(21)Artg(22)) = 21 for 21, 20 € Z; sufficiently close to 1,

then e_; ¢ o escends to a Dirichlet character, an 1s a primitive Hida families in e , , ,
h Lpov d d Dirichlet ch d 0y4(5) i imitive Hida families i SC’w}OS

cyc
where

CZ#(OK/C)DK; ’lﬂ;g = (Ec_ylcwoly/)-TK/Q.
Here 7x/q is the quadratic character associated with K/Q.
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8.2. Anticyclotomic p-adic L-functions for modular forms. Let N be a positive integer relatively prime
top. Let f € S»,(Np, 1) be a p-stabilized newform of weight 2 > 2, tame conductor N and trivial nebentypus
and let x be a ring class character of K with the conductor cOg. We recall the anticyclotomic p-adic L-
functions associated with (f,x) in the definite setting. Decompose N = N*TN~, where NT (resp. N~ ) is a
product of primes split (resp. non-split) in K. Suppose that

° (vacDK) = 17

e N~ is a square-free product of an odd number of primes,

o the residual Galois representation py,, satisfies (CR, supp N 7).

Let f° be the normalized newform of conductor N° = Np"» corresponding to f. Enlarging O so that it contains
all Fourier coefficients of f, let T := T9,(IN°,1) be the Hecke algebra of level I'o(N°) and let Ago : T — O
be the homomorphism induced by f°. Denote by Tx- be the N™-new quotient of the T. Then A. factors
through Ty -, and we denote by Ago n- the resulting morphism. Let 5o € O (resp. 7so y-) be the congruence
number corresponding to Ago (resp. Ago n-). It is clear that ns y- is a divisor of the congruence number
nypo of f°.

Let K__ be the anticyclotomic Z,-extension of K. Let c be the complex conjugation. We define the
logarithm [ : Tog — Z, by (o) := I(0'7°|k,). Then the map I factors through the Galois group I'y, :=

Gal(K/K) and induces an isomorphism [ : I', ~ Z, as Ky~ and the cyclotomic Z,-extension K1 are

oo

linearly disjoint. Let v_ be the generator of I'" such that {(y~) = 1. If { € pp is a p-power root of unity,
denote by € : 'y, — pp the character defined by e;(y~) = (. Fixing a factorization NTOx = 9N, by
[BDY6], [CH16, Thm. A] and [Hunl7, Thm. A], there exists a unique Iwasawa function Ly, (W) € O[W]
such that for each primitive p™-th root of unity (,

Ef/K,x(C _ 1)2 :(27T)_2TF(T)2 . L(foézK & XEC,T) . ap(f)—2np(2r—l)n . gp(f’ C)2—np
(8.1) FoN-

x Ui/ DieDY 2 xec(om) - ep(f°),

where

— ap(f) € O is the p-th Fourier coefficient of f,
~ L(f°/K ® xec, s) is the Rankin-Selberg L-function of f° and the CM form 6y, attached to xe,

— -1, r—1 —« r—1. (7 i —
£.0£.0) = {51 P57 ) (L = ap (Np" X (B) ié;

~ Qo n- is the Gross period of f° defined by
r o —1
Qpo n- = 227 || f ||12“0(Nfo) Mo N-

— ug = #(0F)/2 and €,(f°) € {£1} is the local root number of f° at p.
When x = 1 is the trivial character, we write Ly for Ly ;.

8.3. Factorization of p-adic triple product L-functions. Let f € eS(N,w" 2 1) be the primitve Hida
family passing through f at some arithmetic point ¢ of weight kg, = 2r and trivial finite part eg, = 1.
Fixing v € Z”" such that vP" =1+ p, let v = ¥y,_1 be a geometric p-adic character of G of weight (1,0).
Let £ 1 Np be a rational prime split in K and let x be a ring class character of conductor ™ Ok for some
m > 0. Let C = Dg/?>™ and put

g = wa(SQ) S 68(07“)717,}(/@, O[[SQ]D, h = 011’)(71 (Sg) S GS(O,wilTK/Q, O[[Sg]])

Let F = (f,g,h) be the triple of primitive Hida families and let Ef:. € R = I[S1,S2] be the associated
unbalanced p-adic L-function in Theorem [l with a = —r in (E¥).

Proposition 8.1. Set
Wy = vfl(l + 52)1/2(1 + 53)1/2 — 1, Ws=(1+ 52)1/2(1 + 53)71/2 1
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Then we have

L1(Q1,81,8:) =+ w - Ly (Wa) - Ly/xc 2 (W) - - e ¢ o8y, S,
fo,N—

where w = w(Wa, Ws) is a unit in O[S, S2] given by

w = ud DY R (o) - Uy, U, (0d77°).
Proor. For i = 2,3, taking (; primitive p"i-th roots of unity with n; > 0, we let Q2 = (2(sv — 1 and
Qs = <2C3_1V — 1,50 gg, and hq, are CM forms of weight one. Let @ = (Q1,Q2,Q3). Let

Xy = 9Ug U P oy G — O[S, o]
be a square root of det Vg det V3,. We have the decomposition of Galois representations

mdZ vx Vg @ IndZ vx 05! ® X7 =IndF U5 @ IndF 205

Following the notation in the introduction, this implies that

VTQ =Vi(r)® Indg e ®Vy(r)® Indg x2es;

T

. -1 —2 _—1
Fll} VTQ =0f pEcyc @ (6279 D €2.p D XEE&P D Xp 263,p)7
where €; = e¢,: ') — pp is the finite order character with €;(v~) = (;, i = 2, 3. Now we explicate the items

that appear in the formula of £§ (Q) in Theorem [Z.T¢
e The L-values

Ly (0)- L(V,5) =42m) "T(r)* - L(f°/K ® e2,7) - L(f°/ K ® X*e3,7),
e By definition, €5 and e3 are of conductors p2Of and p™3Of, so the modified Euler factor at p is
given by
1
e(r,appXdesp)e(r appXp 265 )e(r appeap)e(r agpes )
:ap(f)_2("2+"3) ’ |p|(172r)(n2+n3) ) 62,p(_1)€3,p(_1)
(f)—2(7l2+7l3) . |p|(1—27“)(712+713) )

&p(Fil} V) =

:ap

® Qf = 22T|‘fo||12"0(]\[0) ' 77;01 and 2cxc = @
Comparing with the interpolation formula of © in (81]), we find that

E{:‘(th@@ —1,vGeG 1) =w(Ge - 1,6 1) Lyr(G — 1)Ly ke (G — 1)
for all non-trivial p-power roots of unity (s, (3, and hence the proposition follows. O

Remark 8.2 (An Euler system construction for Ly, ). This anticyclotomic p-adic L-function Ly, in the
definite setting is constructed by using Gross points in definite quaternion algebras, and a priori there is no
obvious Euler system construction. Below we explain how L,k can be actually recovered by the Euler system
of generalized Kato classes a la Darmon and Rotger. Suppose that the weight kg, = 2. In [DRI7|, Darmon
and Rotger introduce a one-variable generalized Kato classes k(f,gh) € HY(Q, V; @ V, ®ors] V) and prove
that the image of k(f,gh) under certain Perrin-Riou’s big logarithm map, which we denote by £, is given by
the one-variable unbalanced p-adic L-function £%.(Q1,vS —1,vS — 1) (JDRI7, Theorem 5.3]). On the other
hand, in virtue of Proposition combined with a result of Vatsal on the non-vanishing of central L-values
with anticyclotoic twist, we conclude that when yx is sufficiently ramified,

L(k(f,gh)) = E;(Ql, vS —1,vS —1) = L,k (S) - (non-zero constant).

in a forthcoming work joint with F. Castella, we will apply the above observation to prove a Rubin’s formula
for generalized Kato classes.
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8.4. An improved p-adic L-fuction. Let
Z=(01+T)""(14T)(1+1T3) € Ro.

In this subsection, we introduce an “two-variable” improved p-adic L-function .Z5 € R/(Z) for F = (f,g,h)
a triple of primitive Hida families as in §3.51 We further assume that ¢ Lwlte is unramified at p. Let
ap(?) :=a(p,?) for 7 € {f, g, h} be the Up-eigenvalues. Then we have

Proposition 8.3. There exists an improved p-adic L-function L5 € R/(Z) such that

E; (mod Z) _ (1 _ wlwiail(p)ap(g)ap(h)) . E};

ap(f)
Moreover, let Q = (Q1,Q2,Q3) € %{3 with Z(Q) = 0, then
L(1/27 HQ)
* 2 X L ox
(EF(Q)) - (—1)]6@19% g (HQ,Z))7
Q1
where
Ly(Fil} V1, 0) Ly (U}, 5)?

£ (Ig,) = '
(1g.p) e(WD,(Fil} V) Ly(Vh/Fil; Vi, s)

where Ul = (Fil’ Vi )V @ Fil° Vg @ Fil Vi, @ ¢t

5=0,

PrROOF. Let G :=g*-h*(mod Z). Then the argument in Lemma B4 shows that

G e S(N7 1/)1)(1))%(1”)7 Il)@)hR/(Z)v
so we can define G*™ as H*"™ in (B.8)), replacing H by G and define .25 by
L= a(L 1 (Tray, (G™)) € R/(2).
In what follows, we shall keep the notation in §8.81 For each Q = (Q1,Q2,Q3) € %fz with R(Q) = 0, i.e.

kg, = ko, + kg, and €g, = €g,€qQ,, let F = (f,g,h) = (le,gQ;hQS). Applying the proof of Proposition B
to the improved p-adic L-function £, we obtain

62) LQ L@
' L(p(ta)dp) — 1(p(ta)d5")’

where ¢" 1= p(Joo )5 W @ B}, and I(p(t,)¢p") is the global trilinear period integral

I(p(tn>¢;*) =

o5 (xty, z, x)d .

/AX GL2(Q)\ GL2(A)

kQs

k
1/2 @1 — i
/ 1 7, one verifies that

. - _koy FQs _
Letting o1 = wy /“(p)a(p, f)p'~ 2, aa = a(p,g)p'~ = and as = a(p, h)p'

-1
¢}=1®1®(1—|p|0¢3'7m(<p0 (1)>))¢;“*

and that ,
I(p(tn)9™) = I(p(tn)dE") — Ipl* crazas - I(p(tn-1)05")
for n sufficiently large. From the above equation, ([82) and Proposition B7, we can deduce that

1 — *
LHQ) = (1= [pl? wo pwnp(p)ar " a205) - L5 (Q).
Now as in Theorem [[.I] we apply the above construction to a suitable Dirichlet twist F' of F and define
L= Ly 2T . Then L% clearly does the job.
To see the interpolation formula, applying the proof of Corollary B.13and Theorem[T.Ilto £f, we can show

that
1 L(1/2, 11,
(ZrQ) =7 (_i)ZTQ?)-%EWHIF,q(@- [T a+e,
Fao, qlN (€S oxe
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where .7} o.p 18 the improved p-adic zeta integral defined in Remark Then the interpolation formula
follows from the expression of .7} o.p 8iven in Remark O

Remark 8.4. The method used here can be also applied to the construction of improved p-adic L-functions
in the balanced case.

8.5. An alternative proof of anticyclotomic exceptional zero conjecture. We return to the setting in
82 and §8.31 Suppose that f = f° is the newform attached to an elliptic curve E/,q of conductor Np with
split multiplicative reduction at p. For a ring class character y, put

Ly(f/K®X,5):=Ls/g(v?—1) for s € Zy,.

Then we know L,(f/K,0) = 0. Write p"* = wOk with w € K* and let log/=: C; — C, be the
p-adic logarithm such that log ;= (w/@) = 0. We provide a Greenberg-Stevens style proof of the anityclotomic
exceptional zero conjecture for elliptic curves that was proved in [BD99].

Theorem 8.5 (Bertolini and Darmon). Let gg be the Tate period of E. Then we have

dl,(f/K,s) log/=(gm) L(E/K, 1)u2D}/?
ds ord,(qr) LTS

|s:0 =

Proor. By [CH16, Theorem D], we can choose a ring class character x of ¢-power conductor with £t Np
split in K such that £,(f/K ® x?,0) # 0. Let f = f(T) € Z,[T][q] be the primitive Hida family passing
through f at the weight two specialization 7' = u? — 1 with u:= 1+ p. Let F = (f(T),0yx(52), 0, -1(S53))
be the triple of Hida families and let £, = EIJ;(T, S, 53) be the unbalanced p-adic L-function attached to F'
in Theorem [Tl Fixing a lift EN} € R of L (mod Z), we define analytic functions on Z:

Ep(kl, kz, kg) Zzﬁiﬂ(ukl — 1,Vk2 — 1,Vk3 — 1);

Lk, ko, ks) :==Lp(uf —1,vk2 — 1, vk — 1)
for (k1, ko, k3) € Zg. Let af(k1) = ap(f)(uF — 1),

ag(k2) = a,(g) (V™ — 1) = x(Froby)v!(ebn)(1=F2) gy, (kg) = x ! (Frobg) v/ (rebw)) =),
It is clear that
ar@ =1 ag(lag(l) = 1.
By Proposition B3] there exists H (11,51, 59) € R and H(ky, ko, k3) = H(uF — 1,vF2 —1,v¥ — 1) such that
ag(kz)an (ks)

(1 - tatk2)onths)
ag(k1)
(the nebentypus 91 = 1, 13 = ¥3 = w™ ! and a = —1). We may assume L(f/K,1) # 0, so the root numbers
of f and its quadratic twist f @ 7x,q are +1. This in turns implies that the root numbers of f and f ® 7x/q

are —1, and hence the one-variable Iwasawa function £,(k1,1,1) vanishes identically. Taking the derivative
with respect to k1 on the both sides of ([83)), we find that

oL *
0= a_ki’(z, 1,1) = a(2) - £;(2,1,1) = H(2,1,1) - log,, u.

(8.3) Ly (k1 ko, ks)

) : E;(k]J k27 k?)) + H(kl, k27 k3) . (u_kl+k2+k3 _ 1)

This implies that
H(2,1,1) - log,u = a’f(2) L5(2,1,1);

By an elementary calculation and a theorem of Greenberg-Stevens [GS93, Theorem 3.18],

a1) = BT gy - -1 DlE)
9 hK 2 OI‘dp(qE)
It follows that
oL, oL, _ log, ™ .
8—I€2(27171) _8—1433(27171)_(_ hK )g (27171)+H(27171)10gpu

o logp @ _ l 1ng(qE)
hk 2 ord,(gr)

= ) L5(2,1,1).
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By Proposition Bl we have

ko + ks — 2 ko — k3

L(2, ko, k3) =v(ks, ks) - L, (f/K, 5L/ ® x>, —5)
for some nowhere vanishing analytic function v(ke, k3). Letting v = v(1,1) # 0, we find that
oL oL
L 2 0)=22 Z=p
v Ep(f/K’O)Ep(f/K®X 70) ak2 (27171)+ 8[{53 (27171)

1 2log @

(1) 0g,(qr) | 2o, @
ordy(qr) h
ord,(qr)

). £5(2,1,1)

—(-1) LL3(2,1,1).

On the other hand, the interpolation formula in Proposition shows that

—2L(f/K71)

* 2 _ .2
£3(2,1,1)2 =0 - (27) oy

-u%(\/DK Ly(f/K® X2,0)2.

Combining the above two equations, we obtain

(LK, 0))” = (1"&”/5(”)) LUK e

ord,(¢r) 420y N K
and the theorem follows. O
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