3. WEYL TRICK AND SCHUR’S LEMMA

1. COMPLETE REDUCIBILITY

1.1. Unitary representations. In this section we assume that (7, V') is a unitary representation of G.
This means that there exists a Hilbert structure on V' which is preserved by the action of G, in that

< 7m(g,m(g)w >=<v,w > VgeG, v,weV
Assume 7 is not irreducible. Then V has a proper G-invariant subspace W. But further reducing
W if necessary, we may assume that W itself is irreducible. Since 7 is unitary, it follows that W= is
G-ivnariant, for if u € W+ then (applying g~ 1)
< m(gu,w >=<u, (g Hw >=0, YweWw
showing that 7(g)u € W+.

Hence we can write: V = W @ W+, with both W and W+ G-invariant. If W' has proper G-
invariant subspaces, we can further decompose W= as a direct sum of (orthogonal) G-invariant subspaces.
Eventually this process has to stop (the dimension is lowering) and we end up with a decomposition

V=WegWed- - - W

where W;, 1 < j < k are mutually orthogonal, G-invariant, irreducible subspaces. We have thus the
following

1.2. Proposition. Unitary representations are completely decomposable.

1.3. Example. S3 acts unitary on C? (check!) and Lo = C- (1,1,1) is an invariant subspace. Then
Ly = U is G-invariant and C3 = Lo & U.

1.4. Example. In this example consider the following representation of G = R on C?:

m:R— GL(C?, n(x)= [ (1) 916 }
The one-dimensional subspace S = {(¢,0) : ¢ € C} is R-invariant, yet the representation = is not

completely reducible [homework].

2. WEYL TRICK

2.1. Question. Given a (finite) group G, which representations of G are unitary?

2.2. Theorem. Assume (m,V) is a representation of the finite group G. Then V admits a Hilbert
structure that is G-invariant.

2.2.1. Proof. Assume <, >( is a Hibert structure on V. Define:
1
<vw>= 5 QGZG < 7(g)v, m(g)w >¢

Then it is easy to see that <, > is a G-invariant inner product, and it is positive definite since < v,v >=
1 2
& Yeq Imgywlz = 0.
3. COMPLETE REDUCIBILITY REV.

3.1. Corollary. (G finite group): given an arbitrary (finite dimensional) representation of a finite group
G, there exist integer numbers mg(7) > 0 (possibly zero) such that

T = @ me(m)a

ae@

The decomposition is unique [homework].
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3.1.1. Equivalent formulation. Assume a = (mq,V,) € G, in other words V, is the space on which the
representation a occurs. Then there exists a intertwining isomorphism:

T: H Ve -V
ae@
Although the map T is not unique, the following things are unique (depending on 7 only):

e the indices m,, and implicitly the irreps a € G that actually occur in the decomposition (such
that mg(m) > 0)

e the a-isotypic component V(a) = T(V,™) of V. This is the direct sum of G-invariant irreducible
subspaces in the class of a.

3.2. Trace. In particular we have x» = > Ma(T)Xa-

4. SCHUR’S LEMMA

4.1. Theorem. Assume (7,V) and (o, W) are two irreducible representations of G, and T : V. — W a
G- intertwining operator. Then T' = 0, if 7 and ¢ are inequivalent G-representations, and a multiple of
the identity map, otherwise.

4.1.1. Proof. The proof is an immediate consequence of the observation that both the kernel and the
image of an intertwining map are G-invariant subspaces.

4.2. Corollary. Fora,b e (A?, Home (Va, Vi) = d4pC-1,. Equivalence classes of representations. Notation:
G collection of equivalence classes of irreducible representations. Notation: Homg(Vi, V2) intertwining
operators.

4.3. Isotypic vectors revisited.

4.3.1. Observation. If V.=V, & V5 is a direct sum of G-invariant subspaces, then the projection P : V —
V1 is an intertwining operator.

4.3.2. Uniqueness of decomposition. Assume V = &2, U; = ©7_;W; are two different complete decom-
position of V into irreducible (not necessarily mutually orthogonal) subspaces. Then the projections
Pj; : W; — V — U; are intertwining operators between irreducible subspaces. By Schur’s lemma each
such Pj; is either 0 or an isomorphism. A careful bookkeeping shows that one can relabel the irreducible
subspaces such that m =n and U; > W;, 1 <i <m.

4.3.3. A more "invariant” description of V' (a) is: the set of vectors that lie in the linear span of images
of all possibles maps T' € Homg(V,, V).
4.4. Example. V =C x C3, o - (z0,y) = (70,9,-1). Then

Vexo®xo®o=2-xo&0
with o the standard irreducible representation in dimension 2.
4.5. Abelian groups. Assume G is abelian. Since G consists of one-dimensional representations, it
means that every representation (m, V) of G can be decomposed as m = @I ;x, where x; are group

characters x : G — C*. In other words, there exists a basis B on V such that the action of m with respect
to this basis is given by matrices of type

x1(9)
m(g)p = , VYged@
Xn(g)
5. DUALITY IN HILBERT SPACES

5.1. Riesz representation theorem. V with Hilbert structure. For w € V, let A\, € V* given by
Aw(v) =< wv,w >. Then w — A, is a R-linear isomorphism V* ~ V. In particular, it is bijective.

Note that A is not an isomorphism of complex vector spaces since Ao, = €Ay, for w € V and ¢ € C.
5.2. Adjoint. Let V, W Hilbert spaces. The adjoint map * : L(V, W) — L(W, V) is defined by given by
< Av,w >=< v, A*w >.

Note that the operation is well defined due to the Riesz representation theorem.



3. WEYL TRICK AND SCHUR’S LEMMA 3

5.3. Skew-bilinear maps. Let V, W two finite dimensional Hilbert spaces. B : V x W — C with the
properties:

B(civy + covg, w) = ¢1 B(vy,w) + caB(vg,w), Ve; € Ciu; € Viwe W
B(v,ciwy + cows) = ¢ B(v,w1) + ¢aB(v,we), Ve; € Cio € Vw; € W

Then there exists linear map A : V' — W such that B(v,w) =< Av,w >.

5.3.1. Proof. For afixed w € W, the v — B(v,w) is in V*, so there exists T'(w) € V such that B(v,w) =<
v, A(w) >. Tt is easy to see that the map w — T'(w) is C-linear. Then B(v,w) =< v, T(w) >=< T*v,w >,
so A =T* is the map we’re after.



