## 3. WEYL TRICK AND SCHUR'S LEMMA

## 1. Complete reducibility

1.1. Unitary representations. In this section we assume that $(\pi, V)$ is a unitary representation of $G$. This means that there exists a Hilbert structure on $V$ which is preserved by the action of $G$, in that

$$
<\pi(g) v, \pi(g) w>=<v, w>, \quad \forall g \in G, v, w \in V
$$

Assume $\pi$ is not irreducible. Then $V$ has a proper $G$-invariant subspace $W$. But further reducing $W$ if necessary, we may assume that $W$ itself is irreducible. Since $\pi$ is unitary, it follows that $W^{\perp}$ is $G$-ivnariant, for if $u \in W^{\perp}$ then (applying $g^{-1}$ )

$$
<\pi(g) u, w>=<u, \pi\left(g^{-1}\right) w>=0, \quad \forall w \in W
$$

showing that $\pi(g) u \in W^{\perp}$.
Hence we can write: $V=W \oplus W^{\perp}$, with both $W$ and $W^{\perp} G$-invariant. If $W^{\perp}$ has proper $G$ invariant subspaces, we can further decompose $W^{\perp}$ as a direct sum of (orthogonal) $G$-invariant subspaces. Eventually this process has to stop (the dimension is lowering) and we end up with a decomposition

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}
$$

where $W_{j}, 1 \leq j \leq k$ are mutually orthogonal, $G$-invariant, irreducible subspaces. We have thus the following
1.2. Proposition. Unitary representations are completely decomposable.
1.3. Example. $S_{3}$ acts unitary on $\mathbb{C}^{3}$ (check!) and $L_{0}=\mathbb{C} \cdot(1,1,1)$ is an invariant subspace. Then $L_{0}^{\perp}=U$ is $G$-invariant and $\mathbb{C}^{3}=L_{0} \oplus U$.
1.4. Example. In this example consider the following representation of $G=\mathbb{R}$ on $\mathbb{C}^{2}$ :

$$
\pi: \mathbb{R} \rightarrow G L\left(\mathbb{C}^{2}\right), \quad \pi(x)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

The one-dimensional subspace $S=\{(t, 0): t \in \mathbb{C}\}$ is $\mathbb{R}$-invariant, yet the representation $\pi$ is not completely reducible [homework].

## 2. Weyl trick

2.1. Question. Given a (finite) group $G$, which representations of $G$ are unitary?
2.2. Theorem. Assume $(\pi, V)$ is a representation of the finite group $G$. Then $V$ admits a Hilbert structure that is $G$-invariant.
2.2.1. Proof. Assume $<,>_{0}$ is a Hibert structure on $V$. Define:

$$
<v, w>=\frac{1}{G} \sum_{g \in G}<\pi(g) v, \pi(g) w>_{0}
$$

Then it is easy to see that $<,>$ is a $G$-invariant inner product, and it is positive definite since $<v, v>=$ $\frac{1}{|G|} \sum_{g \in G}\|\pi(g) v\|_{0}^{2} \geq 0$.

## 3. Complete reducibility Rev.

3.1. Corollary. ( $G$ finite group): given an arbitrary (finite dimensional) representation of a finite group $G$, there exist integer numbers $m_{a}(\pi) \geq 0$ (possibly zero) such that

$$
\pi=\bigoplus_{a \in \widehat{G}} m_{a}(\pi) a
$$

The decomposition is unique [homework].
3.1.1. Equivalent formulation. Assume $a=\left(\pi_{a}, V_{a}\right) \in \widehat{G}$, in other words $V_{a}$ is the space on which the representation $a$ occurs. Then there exists a intertwining isomorphism:

$$
T: \prod_{a \in \widehat{G}} V_{a}^{m_{a}} \rightarrow V
$$

Although the map $T$ is not unique, the following things are unique (depending on $\pi$ only):

- the indices $m_{a}$, and implicitly the irreps $a \in \widehat{G}$ that actually occur in the decomposition (such that $m_{a}(\pi)>0$ )
- the $a$-isotypic component $V(a)=T\left(V_{a}^{m_{a}}\right)$ of $V$. This is the direct sum of $G$-invariant irreducible subspaces in the class of $a$.
3.2. Trace. In particular we have $\chi_{\pi}=\sum_{a \in \widehat{G}} m_{a}(\pi) \chi_{a}$.


## 4. Schur's Lemma

4.1. Theorem. Assume $(\pi, V)$ and $(\sigma, W)$ are two irreducible representations of $G$, and $T: V \rightarrow W$ a $G$ - intertwining operator. Then $T=0$, if $\pi$ and $\sigma$ are inequivalent $G$-representations, and a multiple of the identity map, otherwise.
4.1.1. Proof. The proof is an immediate consequence of the observation that both the kernel and the image of an intertwining map are $G$-invariant subspaces.
4.2. Corollary. For $a, b \in \widehat{G}, \operatorname{Hom}_{G}\left(V_{a}, V_{b}\right)=\delta_{a b} \mathbb{C} \cdot I_{a}$. Equivalence classes of representations. Notation: $\widehat{G}$ collection of equivalence classes of irreducible representations. Notation: $\operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ intertwining operators.

### 4.3. Isotypic vectors revisited.

4.3.1. Observation. If $V=V_{1} \oplus V_{2}$ is a direct sum of $G$-invariant subspaces, then the projection $P: V \rightarrow$ $V_{1}$ is an intertwining operator.
4.3.2. Uniqueness of decomposition. Assume $V=\oplus_{i=1}^{m} U_{i}=\oplus_{j=1}^{n} W_{j}$ are two different complete decomposition of $V$ into irreducible (not necessarily mutually orthogonal) subspaces. Then the projections $P_{j i}: W_{j} \hookrightarrow V \rightarrow U_{i}$ are intertwining operators between irreducible subspaces. By Schur's lemma each such $P_{j i}$ is either 0 or an isomorphism. A careful bookkeeping shows that one can relabel the irreducible subspaces such that $m=n$ and $U_{i} \simeq W_{i}, 1 \leq i \leq m$.
4.3.3. A more "invariant" description of $V(a)$ is: the set of vectors that lie in the linear span of images of all possibles maps $T \in \operatorname{Hom}_{G}\left(V_{a}, V\right)$.
4.4. Example. $V=\mathbb{C} \times \mathbb{C}^{3}, \sigma \cdot\left(x_{0}, y\right)=\left(x_{0}, y_{\sigma^{-1}}\right)$. Then

$$
V \simeq \chi_{0} \oplus \chi_{0} \oplus \sigma=2 \cdot \chi_{0} \oplus \sigma
$$

with $\sigma$ the standard irreducible representation in dimension 2 .
4.5. Abelian groups. Assume $G$ is abelian. Since $\widehat{G}$ consists of one-dimensional representations, it means that every representation $(\pi, V)$ of $G$ can be decomposed as $\pi=\oplus_{i=1}^{n} \chi$, where $\chi_{i}$ are group characters $\chi: G \rightarrow \mathbb{C}^{\times}$. In other words, there exists a basis $\mathcal{B}$ on $V$ such that the action of $\pi$ with respect to this basis is given by matrices of type

$$
\pi(g)_{\mathcal{B}}=\left[\begin{array}{ccc}
\chi_{1}(g) & & \\
& \ddots & \\
& & \chi_{n}(g)
\end{array}\right], \quad \forall g \in G
$$

## 5. Duality in Hilbert spaces

5.1. Riesz representation theorem. $V$ with Hilbert structure. For $w \in V$, let $\lambda_{w} \in V^{*}$ given by $\lambda_{w}(v)=<v, w>$. Then $w \mapsto \lambda_{w}$ is a $\mathbb{R}$-linear isomorphism $V^{*} \simeq V$. In particular, it is bijective.

Note that $\lambda$ is not an isomorphism of complex vector spaces since $\lambda_{c w}=\bar{c} \lambda_{w}$, for $w \in V$ and $c \in \mathbb{C}$.
5.2. Adjoint. Let $V, W$ Hilbert spaces. The adjoint map $*: \mathcal{L}(V, W) \rightarrow \mathcal{L}(W, V)$ is defined by given by $<A v, w>=<v, A^{*} w>$.

Note that the operation is well defined due to the Riesz representation theorem.
5.3. Skew-bilinear maps. Let $V, W$ two finite dimensional Hilbert spaces. $B: V \times W \rightarrow \mathbb{C}$ with the properties:

$$
\begin{cases}B\left(c_{1} v_{1}+c_{2} v_{2}, w\right)=c_{1} B\left(v_{1}, w\right)+c_{2} B\left(v_{2}, w\right), & \forall c_{i} \in \mathbb{C}, v_{i} \in V, w \in W \\ B\left(v, c_{1} w_{1}+c_{2} w_{2}\right)=\bar{c}_{1} B\left(v, w_{1}\right)+\bar{c}_{2} B\left(v, w_{2}\right), & \forall c_{i} \in \mathbb{C}, v \in V, w_{i} \in W\end{cases}
$$

Then there exists linear map $A: V \rightarrow W$ such that $B(v, w)=<A v, w>$.
5.3.1. Proof. For a fixed $w \in W$, the $v \mapsto B(v, w)$ is in $V^{*}$, so there exists $T(w) \in V$ such that $B(v, w)=<$ $v, A(w)>$. It is easy to see that the map $w \mapsto T(w)$ is $\mathbb{C}$-linear. Then $B(v, w)=<v, T(w)>=<T^{*} v, w>$, so $A=T^{*}$ is the map we're after.

