Préparation à l'agrégation interne de mathématiques Aide à la résolution pour les exercices du mercredi 13 juin 2007 Jean-Marie Monier

Exercice 1

- 1) Existence:
- L'application $f: x \longmapsto \frac{\operatorname{Arctan} x}{x^4}$ est continue sur $[1; +\infty[$.
- Prendre un équivalent en $+\infty$ pour conclure que f est intégrable sur $[1; +\infty[$.
- 2) Calcul:

Pour $X \in [1; +\infty[$, faire une ipp sur [1; X] pour obtenir :

$$\int_{1}^{X} \frac{\operatorname{Arctan} x}{x^{4}} \, \mathrm{d}x = -\frac{X^{-3}}{-3} + \frac{\pi}{12} + \frac{1}{3} \int_{1}^{X} \frac{1}{x^{3}(1+x^{2})} \, \mathrm{d}x.$$

Pour cette dernière intégrale, utiliser le changement de variable $y=x^2$ puis une décomposition en éléments simples.

Enfin, faire tendre X vers $+\infty$.

Réponse :
$$I = \frac{\pi}{12} + \frac{1 - \ln 2}{6}$$
.

Exercice 2

- 1) S'assurer d'abord de l'existence de $I_n = \int_0^{+\infty} \frac{1+x^n}{1+x^{n+2}} dx$, pour tout $n \in \mathbb{N}^*$.
- 2) Comme le comportement de x^n , pour $x \in [0; +\infty[$ fixé et n tendant vers l'infini, dépend de la position de x par rapport à 1, séparer I_n en $I_n = J_n + K_n$ par la relation de Chasles, avec le point intermédiaire 1.
- Comme, pour $x \in [0;1[$ fixé, $\frac{1+x^n}{1+x^{n+2}} \xrightarrow[n \infty]{} 1$, former $|J_n-1|$ et montrer que J_n-1 est négligeable devant $\frac{1}{n^2}$, par une majoration judicieuse.
- Raisonner de façon analogue pour K_n .

Conclure: $I_n = 2 + O\left(\frac{1}{n^2}\right)$.

Exercice 3

L'application $f:]0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto f(x) = \exp\left(\frac{\sin x}{\sqrt{x}}\right) - 1$ est continue sur $]0; +\infty[$.

Pour l'étude en $+\infty$, comme $\frac{\sin x}{\sqrt{x}} \xrightarrow[x \to +\infty]{} 0$, faire un développement limité et obtenir :

$$f(x) = \frac{\sin x}{\sqrt{x}} + \frac{1}{2} \frac{\sin^2 x}{x} + \underset{x \longrightarrow +\infty}{o} \left(\frac{\sin^2 x}{x}\right).$$

• Montrer que l'intégrale impropre $\int_1^{+\infty} \frac{\sin x}{\sqrt{x}} dx$ converge, en utilisant une ipp sur [1; X] puis faire $X \longrightarrow +\infty$.

• En notant $h(x) = f(x) - \frac{\sin x}{\sqrt{x}}$, on a $h(x) \underset{x \longrightarrow +\infty}{\sim} \frac{\sin^2 x}{x}$. Montrer, en utilisant une linéarisation, que l'intégrale impropre $\int_1^{+\infty} \frac{\sin^2 x}{x} \, \mathrm{d}x$ diverge.

En déduire que l'intégrale impropre proposée diverge à la borne $+\infty$.

Il est alors inutile de faire une étude à la borne 0.

Exercice 4

1) Ensemble de définition de f

Examiner les cas x < 0, x = 0, x > 0. Conclure: Def $(f) = [0; +\infty[$.

2) Continuité

Appliquer le théorème de continuité sous le signe \int_0^1 , avec hypothèse de domination locale, pour conclure que f est continue sur $[0;+\infty[$.

3) Dérivation

Appliquer le théorème de dérivation sous le signe \int_0^1 , avec hypothèse de domination locale, pour conclure que f est de classe C^1 sur $]0; +\infty[$ et que :

$$\forall x \in]0; +\infty[, f'(x) = \int_0^1 \frac{1}{(x+t)(1+t)} dt.$$

Calculer cette dernière intégrale à l'aide d'une décomposition en éléments simples, en séparant les cas $x \neq 1, \ x = 1$, pour obtenir :

$$\forall x \in]0; +\infty[, f'(x)] = \begin{cases} \frac{1}{1-x} \ln \frac{1+x}{2x} & \text{si } x \neq 1\\ \frac{1}{2} & \text{si } x = 1. \end{cases}$$

Montrer que f est strictement croissante sur $[0; +\infty[$.

4) Étude en 0

Montrer $f'(x) \xrightarrow[x \to 0]{} +\infty$ et conclure quant au graphique.

5) Étude en $+\infty$

À l'aide d'un encadrement, montrer $f(x) \underset{x \longrightarrow +\infty}{\sim} \ln 2 \ln x$.

En déduire $f(x) \xrightarrow[x \to +\infty]{} +\infty$ et la nature de la branche infinie.

- 6) Former le tableau de variation de f.
- 7) Concavité

Appliquer le théorème de dérivation sous le signe \int_0^1 pour obtenir f''(x) sous forme d'une intégrale et en déduire que f est concave.

8) Tracer la courbe représentative de f.

Exercice 5

a) Pour $x \in \mathbb{R}$ fixé, l'application $f_x : t \longmapsto t^{x-1}e^{-t}$ est continue sur $]0; +\infty[$.

En 0 : $f_x(t) \underset{t \longrightarrow 0}{\sim} t^{x-1}$, et utiliser l'exemple de Riemann en $+\infty$.

En
$$+\infty$$
, $t^2 f_x(t) \underset{t \longrightarrow +\infty}{\longrightarrow} 0$.

Conclure.

- b) 1) Ipp sur $[\varepsilon; X]$, puis $\varepsilon \longrightarrow 0$ et $X \longrightarrow +\infty$.
- 2) Récurrence sur n.
- c) Utiliser le théorème de dérivation sous le signe $\int_0^{+\infty}$ avec hypothèse de domination locale.

On obtient :

$$\forall k \in \mathbb{N}, \ \forall x \in]0; +\infty[, \ \Gamma^{(k)}(x) = \int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} dt.$$

d) Déduire de c) que Γ'' est à valeurs > 0.

$$e) \ \Gamma(x) = \frac{\Gamma(x+1)}{x} \underset{x \ \longrightarrow \ 0}{\sim} \frac{1}{x}.$$

f) Puisque $\Gamma''>0$, Γ' est strictement croissante. Remarquer que $\Gamma(1)=\Gamma(2)$ et appliquer le théorème de Rolle pour obtenir l'existence d'un $\alpha\in]1\,;2[$ tel que $\Gamma'(\alpha)=0$. En déduire les variations de Γ .

Pour
$$x \ge 2$$
: $\Gamma(x) \ge \Gamma(E(x)) = (E(x) - 1)! \xrightarrow{x \to +\infty} +\infty$.

g) Tracer la courbe représentative de Γ .
