Préparation à l'agrégation interne de mathématiques

Jean-Marie Monier

Corrigé de la 2ème épreuve 2007

I. La fonction racine cubique

A. Dérivée au sens généralisé

1) • Montrons d'abord que g est continue sur I.

Raisonnons par l'absurde : s'il existait $a \in I$ tel que g ne soit pas continue en a, alors, comme g est croissante, on aurait $\lim_{a^+} g - \lim_{a^-} g > 0$, et donc g n'atteindrait pas les points de $\lim_{a^-} g : \lim_{a^+} g$, contradiction avec la surjectivité de g.

Ainsi, q est continue sur I.

- Puisque g est continue et strictement croissante sur l'intervalle I et que g(I) = J, d'après le théorème de la bijection monotone, l'application réciproque $g^{-1}: J \longrightarrow I$ est continue et strictement croissante.
- Soit $a \in J$. On vient de voir que g est continue en a. Notons $b = g^{-1}(a) \in I$ et :

$$\tau: I - \{b\} \longrightarrow \mathbb{R}, \ y \longmapsto \tau(y) = \frac{g(y) - g(b)}{y - b}.$$

On a, pour tout
$$x \in J - \{a\}$$
:
$$\frac{g^{-1}(x) - g^{-1}(a)}{x - a} = \left(\frac{x - a}{g^{-1}(x) - g^{-1}(a)}\right)^{-1} = \frac{1}{\tau(g^{-1}(x))}.$$

D'une part, puisque g^{-1} est continue en $a: g^{-1}(x) \xrightarrow[x \to a]{} g^{-1}(a) = b$.

D'autre part, puisque g est dérivable au sens généralisé en b, on a : $\tau(y) \underset{y \longrightarrow b}{\longrightarrow} g'(b) \in \overline{\mathbb{R}}$.

On a donc, par composition des limites : $\tau(g^{-1}(x)) \xrightarrow[x \to a]{} g'(b)$.

De plus, comme g est strictement croissante, τ est à valeurs >0, donc $g'(b)\in[0\,;+\infty]$.

Avec les conventions
$$\frac{1}{0^+} = +\infty$$
 et $\frac{1}{+\infty} = 0$, on a donc : $\frac{1}{\tau(g^{-1}(x))} \xrightarrow{x \longrightarrow a} \frac{1}{g'(b)}$.

Ainsi:
$$\frac{g^{-1}(x) - g^{-1}(a)}{x - a} \xrightarrow[x \to a]{} \frac{1}{g'(b)} \in [0; +\infty].$$

Ceci montre que g^{-1} est dérivable au sens généralisé en tout point a de J et que :

$$\forall a \in J, \ (g^{-1})'(a) = \frac{1}{g'(g^{-1}(a))}.$$

2) a) Puisque g admet un maximum local en c, il existe $\alpha > 0$ tel que :

$$\begin{aligned} |c-\alpha\,;c+\alpha[\subset I & \text{ et } & \forall\,x\in]c-\alpha\,;c+\alpha[,\ g(x)\leqslant g(c). \\ & \begin{cases} \forall\,x\in]c-\alpha\,;c[,\ \frac{g(x)-g(c)}{x-c}\geqslant 0 \\ \\ \forall\,x\in]c\,;c+\alpha[,\ \frac{g(x)-g(c)}{x-c}\leqslant 0, \end{cases} \end{aligned}$$

d'où, en passant à la limite dans $\overline{\mathbb{R}}$ lorsque x tend vers c, puisque g est dérivable au sens généralisé en c: $g'(c) \ge 0$ et $g'(c) \le 0$, donc g'(c) = 0.

1

2) b) Considérons l'application $h: I \longrightarrow \mathbb{R}$ définie par : $\forall x \in I, h(x) = g(x) - \frac{g(b) - g(a)}{b - a}(x - a).$

On a ainsi : h(b) = h(a) = g(a).

Puisque g est continue sur I, par opérations, h est continue sur I.

Il est immédiat, par opérations sur les limites, que h est dérivable au sens généralisé en tout point de I et que : $\forall x \in I, \ h'(x) = g'(x) - \frac{g(b) - g(a)}{b - a}, \quad \text{avec la convention}: \ \pm \infty + \lambda = \pm \infty.$

L'application h est continue sur le segment $[a\,;b]$, donc, d'après un théorème du Cours, h est bornée sur ce segment et y atteint ses bornes. Notons $m=\inf_{x\in[a;b]}h(x), \quad M=\sup_{x\in[a;b]}h(x).$

Si m = M, alors h est constante sur [a;b], donc, pour $c = \frac{a+b}{2}$, par exemple, on a h'(c) = 0, et donc $g'(c) = \frac{g(b) - g(a)}{b-a}$.

Supposons m < M. Comme h(a) = h(b), on a nécessairement $m \neq h(a)$ ou $M \neq h(a)$. Quitte à remplacer g par -g, on peut se ramener au cas $M \neq h(a) = h(b)$. On a alors $c \in]a; b[$. D'après 2)a), il en résulte h'(c) = 0, et donc $g'(c) = \frac{g(b) - g(a)}{b - a}$.

3) a) Puisque g est continue sur $\overline{J_x}$ et dérivable sur J_x , d'après le théorème des accroissements finis, il existe $c_x \in J_x$ tel que : $g'(c_x) = \frac{g(x) - g(a)}{x - a}$. Par définition de la borne inférieure et de la borne supérieure, on a alors, avec les conventions habituelles dans $\overline{\mathbb{R}}$:

$$\inf\{g'(y); y \in J_x\} \leqslant g'(c_x) \leqslant \sup\{g'(y); y \in J_x\}$$

d'où le résultat voulu.

3) b) Puisque $g'(y) \xrightarrow[y \longrightarrow a, y \neq a]{} \ell \in \overline{\mathbb{R}}$, on a:

$$\operatorname{Inf}\left\{g'(y)\,;\,y\in J_x\right\} \underset{x\longrightarrow a,\ x\neq a}{\longrightarrow} \ell \quad \text{ et } \quad \operatorname{Sup}\left\{g'(y)\,;\,y\in J_x\right\} \underset{x\longrightarrow a,\ x\neq a}{\longrightarrow} \ell,$$

et donc, d'après l'encadrement obtenu en a) dans $\overline{\mathbb{R}}: \frac{g(x)-g(a)}{x-a} \xrightarrow[x \to a, \ x \neq a]{} \ell.$

Ceci montre que g est dérivable au sens généralisé en a et que : $g'(a) = \ell$.

B. La fonction racine cubique

1) a) L'application $g: \mathbb{R} \longrightarrow \mathbb{R}, \ y \longmapsto g(y) = y^3$ est continue, strictement croissante, de limite $-\infty$ en $-\infty$, de limite $+\infty$ en $+\infty$, donc, d'après le théorème de la bijection monotone, g est bijective et l'application réciproque $f = g^{-1}: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \sqrt[3]{x}$ est continue, strictement croissante, de limite $-\infty$ en $-\infty$, de limite $+\infty$ en $+\infty$.

De plus, g est dérivable au sens généralisé en tout point de \mathbb{R} , donc, d'après A.1), f est dérivable au sens généralisé en tout point de \mathbb{R} et :

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{1}{g'(f(x))} = \frac{1}{3(f(x))^2}.$$

En particulier: $f'(0) = \frac{1}{g'(f(0))} = \frac{1}{0^+} = +\infty.$

Et:
$$\forall x \in \mathbb{R}^*, \ f'(x) = \frac{1}{3(\sqrt[3]{x})^2} = \frac{|x|^{-2/3}}{3}.$$

1) b) D'après a):

$$f': \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto \begin{cases} \frac{|x|^{-2/3}}{3} & \text{si } x \neq 0 \\ +\infty & \text{si } x = 0. \end{cases}$$

Ainsi, f' est paire et $f'|_{[0;+\infty[}$ est strictement décroissante. On a donc, pour tout $(s,t) \in (\mathbb{R}^*)^2$:

$$f'(s) \leqslant f'(t) \iff f'(|s|) \leqslant f'(|t|) \iff |s| \geqslant |t|.$$

De plus, le même raisonnement montre aussi que :

$$\forall (s,t) \in (\mathbb{R}^*)^2, \quad f'(s) < f'(t) \iff |s| > |t|,$$

ce qui nous servira dans la question c) suivante.

1) c) Par opérations, h est continue sur \mathbb{R} et dérivable en tout point de $\mathbb{R} - \{-a, a\}$ et :

$$\forall x \in \mathbb{R} - \{-a, a\}, h'(x) = f'(x+a) - f'(x-a).$$

Soit $x \in \mathbb{R} - \{-a, a\}$.

- Si x < 0, alors $|x+a| < |x| + |a| = (-x) + a = -(x-a) \le |x-a|$, donc, d'après b) : f'(x+a) > f'(x-a), d'où h'(x) > 0.
- Si x > 0, alors |x a| < |x| + |a| = |x + a|, donc, d'après b) : f'(x a) > f'(x + a), d'où h'(x) < 0.

Ceci montre que h est strictement croissante sur $]-\infty$; a[et sur]-a; 0[, et que h est strictement décroissante sur]0; a[et sur $]a; +\infty[$. Comme de plus h est continue sur \mathbb{R} , il en résulte que h est strictement croissante sur $]-\infty;0[$ et strictement décroissante sur $]0; +\infty[$, donc h atteint son maximum en $[0, +\infty[$).

1) d) Soit $(x, y) \in \mathbb{R}^2$.

Si x = y, alors l'inégalité demandée est triviale : $0 \le 2 |f(0)|$.

Supposons donc $x \neq y$. Notons $z = \frac{x+y}{2}$ et $a = \left| \frac{x-y}{2} \right|$, de sorte que :

$$\begin{cases} x = z + a \\ y = z - a \end{cases}$$
 ou
$$\begin{cases} x = z - a \\ y = z + a. \end{cases}$$

On a, dans les deux cas : |f(x) - f(y)| = |f(z+a) - f(z-a)|.

D'autre part, comme f est (strictement) croissante et que $z - a \le z + a$ (car a > 0), on a :

$$|f(z+a) - f(z-a)| = f(z+a) - f(z-a).$$

D'après c), on a :

$$f(z+a) - f(z-a) \le f(0+a) - f(0-a) = f(a) - f(-a).$$

Enfin, comme f est impaire :

$$f(a) - f(-a) = 2 f(a) = 2 f(\left|\frac{x-y}{2}\right|) = 2 \left|f(\frac{x-y}{2})\right|.$$

On conclut: $|f(x) - f(y)| \le 2 \left| f\left(\frac{x-y}{2}\right) \right|$.

1) e) Soit $\varepsilon > 0$ fixé. Puisque f est continue en 0, il existe $\eta > 0$ tel que :

$$\forall t \in [-\eta; \eta], |f(t)| = |f(t) - f(0)| \leq \varepsilon.$$

Soit $(x, y) \in \mathbb{R}^2$ tel que $|x - y| \le \eta$.

On a alors
$$\left|\frac{x-y}{2}\right| \leqslant \frac{\eta}{2} \leqslant \eta$$
, donc : $\left|f\left(\frac{x-y}{2}\right)\right| \leqslant \varepsilon$, puis, d'après d) : $|f(x)-f(y)| \leqslant \varepsilon$.

On a montré :

$$\forall \varepsilon > 0, \ \exists \, \eta > 0, \ \forall \, (x,y) \in \mathbb{R}^2, \quad \Big(\ |x-y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \varepsilon \, \Big),$$

et on conclut que f est uniformément continue sur \mathbb{R} .

Remarque : On peut montrer un peu plus simplement que f est uniformément continue sur \mathbb{R} , par exemple de la façon suivante.

• On a :

$$\forall (\alpha, \beta) \in (\mathbb{R}_{+}^{*})^{2}, \quad \sqrt[3]{\alpha + \beta} \leqslant \sqrt[3]{\alpha} + \sqrt[3]{\beta},$$

inégalité évidente par élévation aux cubes.

Soit $(x, y) \in \mathbb{R}^2$ tel que, par exemple, $x \leq y$.

* Si
$$x \ge 0$$
, alors $y \ge 0$, donc : $\sqrt[3]{y} \le \sqrt[3]{x} + \sqrt[3]{y-x}$, donc : $0 \le \sqrt[3]{y} - \sqrt[3]{x} \le \sqrt[3]{y-x}$, puis : $|\sqrt[3]{y} - \sqrt[3]{x}| \le \sqrt[3]{y-x}$.

* Si
$$y\leqslant 0$$
, en notant $X=-y,\ Y=-x,$ on a alors $0\leqslant X\leqslant Y,$ d'où, d'après le cas précédent : $|\sqrt[3]{Y}-\sqrt[3]{X}|\leqslant \sqrt[3]{Y-X},$ c'est-à-dire : $|-\sqrt[3]{x}+\sqrt[3]{y}|\leqslant \sqrt[3]{y-x}.$

* Si $x \leq 0$ et $y \geq 0$, alors $(-x, y) \in (\mathbb{R}_+)^2$, donc :

$$0 \leqslant \sqrt[3]{y-x} = \sqrt[3]{y+(-x)} \leqslant \sqrt[3]{y} + \sqrt[3]{-x} = \sqrt[3]{y} - \sqrt[3]{x}.$$

Finalement:

$$\forall (x,y) \in \mathbb{R}^2, \quad |\sqrt[3]{y} - \sqrt[3]{x}| \leqslant \sqrt[3]{|y-x|}.$$

• Soit $\varepsilon > 0$ fixé. Notons $\eta = \varepsilon^3$. On a alors, pour tout $(x,y) \in \mathbb{R}^2$:

$$|x-y|\leqslant \eta\iff |x-y|\leqslant \varepsilon^3\iff \sqrt[3]{|y-x|}\leqslant \varepsilon\implies |\sqrt[3]{y}-\sqrt[3]{x}|\leqslant \varepsilon,$$

ce qui montre que f est uniformément continue sur \mathbb{R} .

2) a) On a, pour tout $(x,y) \in \mathbb{R}^2$, par mise sous forme canonique d'un trinôme en y:

$$x^{2} + xy + y^{2} = \left(y + \frac{x}{2}\right)^{2} + \frac{3}{4}x^{2} \geqslant \frac{3}{4}x^{2}.$$

2) b) Soit $(x_0, x) \in \mathbb{R}^2$ tel que $x_0 \neq 0$ et $x \neq x_0$. Notons $y = f(x), y_0 = f(x_0)$. On a :

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{y - y_0}{y^3 - y_0^3} = \frac{1}{y^2 + yy_0 + y_0^2} \leqslant \frac{1}{\frac{3}{4}y_0^2} = \frac{4}{3y_0^2} = 4f'(x_0).$$

D'autre part, comme f est strictement croissante, on a : $\frac{f(x) - f(x_0)}{x - x_0} > 0$.

On conclut:

$$0 < \frac{f(x) - f(x_0)}{x - x_0} \leqslant 4f'(x_0).$$

C. Construction d'une suite dense

- 1) a) L'application $g \circ f$ est continue sur \mathbb{R} par opérations.
 - L'application g est dérivable sur \mathbb{R} et : $\forall t \in \mathbb{R}$, $g'(t) = \cos t t \sin t$.

L'application f est dérivable en tout point de \mathbb{R}^* et : $\forall x \in \mathbb{R}^*$, $f'(x) = \frac{1}{3(f(x))^2}$.

Par composition, $g \circ f$ est dérivable en tout point de \mathbb{R}^* et :

$$\forall x \in \mathbb{R}^*, (g \circ f)'(x) = g'(f(x))f'(x).$$

 $\bullet \text{ On a : } f'(x) \underset{x \longrightarrow 0}{\longrightarrow} +\infty \text{ et } g'\big(f(x)\big) \underset{x \longrightarrow 0}{\longrightarrow} 1, \text{ donc : } (g \circ f)'(x) \underset{x \longrightarrow 0}{\longrightarrow} +\infty.$

D'après A.3), on en déduit que $g \circ f$ est dérivable au sens généralisé en 0 et que $(g \circ f)'(0) = +\infty$.

1) b) On a, pour tout $x \in]0; +\infty[$:

$$(g \circ f)'(x) = g'(f(x))f'(x) = (\cos f(x) - f(x)\sin f(x))\frac{1}{3(f(x))^2} = \frac{\cos f(x)}{3(f(x))^2} - \frac{\sin f(x)}{3f(x)}.$$

Comme cos et sin sont bornées sur \mathbb{R} et que $f(x) \underset{x \longrightarrow +\infty}{\longrightarrow} +\infty$, il s'ensuit : $(g \circ f)'(x) \underset{x \longrightarrow +\infty}{\longrightarrow} 0$.

2) a) On a: $g(k\pi) = k\pi \cos k\pi = (-1)^k k\pi$, $g((k+1)\pi) = (-1)^{k+1} (k+1)\pi$.

Comme $k\pi \geqslant |x|$, x est entre $(-1)^k k\pi$ (au sens large) et $-(-1)^k (k+1)\pi$ (au sens strict). Comme g est continue sur l'intervalle joignant $(-1)^k \pi$ et $-(-1)^k (k+1)\pi$, d'après le théorème des valeurs intermédiaires, il existe donc $y(k,x) \in [k\pi; (k+1)\pi[$ tel que g(y(k,x)) = x.

2) b) On a: $x - a_{n_k} = g(y(k, x)) - g(f(n_k)) = (g \circ f)(y(k, x)^3) - (g \circ f)(n_k).$

D'après le théorème des accroissements finis, appliqué à $g \circ f$ sur $[n_k; y(k, x)^3]$, il existe $c_k \in]n_k; y(k, x)^3[$ tel que :

$$x - a_{n_k} = (y(k, x)^3 - n_k)(g \circ f)'(c_k).$$

Comme n_k est la partie entière de $y(k,x)^3$, on a : $0 \le y(k,x)^3 - n_k < 1$.

D'autre part, $c_k \ge n_k \ge y(k,x)^3 - 1 \ge (k\pi)^3 - 1 \xrightarrow[k\infty]{} +\infty$, et, d'après 1) b), $(g \circ f)'(x) \xrightarrow[x \to +\infty]{} 0$, donc, par composition des limites : $(g \circ f)'(c_k) \xrightarrow[k\infty]{} 0$.

Il s'ensuit, par opérations : $x - a_{n_k} \xrightarrow[k\infty]{} 0$, donc $a_{n_k} \xrightarrow[k\infty]{} x$.

- 3) D'après 2), pour tout $x \in \mathbb{R}$, il existe une suite $(n_k)_k$ d'entiers naturels telle que $a_{n_k} \xrightarrow[k\infty]{} x$, donc x est adhérent à l'ensemble $\{a_n : n \in \mathbb{N}\}$. Ceci montre que $\{a_n : n \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- 4) On a : $\forall n \in \mathbb{N}^*$, $0 \leqslant \lambda_n \leqslant \frac{1}{n^2}$. Comme la série numérique $\sum_{n\geqslant 1} \frac{1}{n^2}$ converge (exemple de Riemann,

2 > 1), par théorème de majoration pour des séries à termes réels $\geqslant 0$, la série numérique $\sum_{n \geqslant 1} \lambda_n$ converge.

• On a, pour tout $n \in \mathbb{N}^*$: $|a_n| = |n^{1/3} \cos(n^{1/3})| \le n^{1/3}$

donc:
$$|f(a_n)| = |\sqrt[3]{a_n}| = \sqrt[3]{|a_n|} \leqslant \sqrt[3]{n^{1/3}} = n^{1/9}$$
, puis: $|\lambda_n f(a_n)| \leqslant \frac{n^{1/9}}{n^2 + 1} \leqslant \frac{1}{n^{2 - \frac{1}{9}}}$.

Comme la série numérique $\sum_{n} \frac{1}{n^{2-\frac{1}{9}}}$ converge (exemple de Riemann, $2-\frac{1}{9}>1$), par théorème de ma-

5

joration pour des séries à termes réels $\geqslant 0$, la série numérique $\sum_{n\geqslant 1} |\lambda_n f(a_n)|$ converge.

Ainsi, la série $\sum_{n} \lambda_n f(a_n)$ est absolument convergente, donc convergente.

II. Construction de la fonction F

1) a) Soit K un compact de \mathbb{R} . Alors K est borné, donc il existe $A \in \mathbb{R}_+$ tel que $K \subset [-A; A]$. On a, d'après I.B.1)d):

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \left| f(x - a_n) - f(-a_n) \right| \le 2 \left| f\left(\frac{x}{2}\right) \right|.$$

En particulier:

$$\forall n \in \mathbb{N}, \ \forall x \in [-A; A], \ \left| f(x - a_n) - f(-a_n) \right| \leqslant 2f\left(\frac{A}{2}\right) = 2\left(\frac{A}{2}\right)^{\frac{1}{3}} = 2^{\frac{2}{3}}A^{\frac{1}{3}},$$

puis:

$$\forall n \in \mathbb{N}, \ \forall x \in [-A; A], \ \left| \lambda_n f(x - a_n) - \lambda_n f(-a_n) \right| \leqslant 2^{\frac{2}{3}} A^{\frac{1}{3}} \lambda_n.$$

Comme la série numérique $\sum_{n} \lambda_n$ converge, il en résulte, par définition de la convergence normale, que la série d'applications $\sum_{n} \left(x \longmapsto \left(\lambda_n f(x - a_n) - \lambda_n f(-a_n) \right) \right)$ est normalement convergente (donc uniformément convergente) sur [-A;A].

D'autre part :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ \lambda_n f(x - a_n) = \left(\lambda_n f(x - a_n) - \lambda_n f(-a_n)\right) + \lambda_n f(-a_n)$$

$$= \left(\lambda_n f(x - a_n) - \lambda_n f(-a_n)\right) - \lambda_n f(a_n).$$
f est impaire

Comme la série d'applications $\sum_n \left(x \longmapsto \left(\lambda_n f(x - a_n) - f(-a_n) \right) \right)$ converge uniformément sur [-A;A] et que la série numérique $\sum_n \lambda_n f(a_n)$ converge, par opération, la série d'applications $\sum_n \left(x \longmapsto f(x - a_n) \right)$ converge uniformément sur [-A;A], donc converge uniformément sur tout compact de \mathbb{R} .

- 1) b) Puisque, pour tout $n \in \mathbb{N}^*$, l'application $x \longmapsto \lambda_n f(x a_n)$ est continue sur \mathbb{R} , et que la série d'applications $\sum_n x \longmapsto f(x a_n)$ converge uniformément sur tout compact de \mathbb{R} , d'après un théorème du Cours, F est continue sur \mathbb{R} .
 - Soit $(x,y) \in \mathbb{R}^2$ tel que x < y. Puisque f est strictement croissante sur \mathbb{R} et que les λ_n sont tous > 0, on a :

$$\forall n \in \mathbb{N}, \ \lambda_n f(x - a_n) < \lambda_n f(y - a_n).$$

Par sommation infinie d'inégalités dont l'une au moins est stricte (elles sont toutes strictes ici), pour des séries convergentes, on a donc : F(x) < F(y), et on conclut que F est strictement croissante sur \mathbb{R} .

- 1) c) Soit $x \in \mathbb{R}$.
 - Supposons $x > a_0$. On a, comme ci-dessus, mais en sommant de 1 à l'infini (au lieu de 0 à l'infini) :

$$\sum_{n=1}^{+\infty} \lambda_n f(x - a_n) > \sum_{n=1}^{+\infty} \lambda_n f(a_0 - a_n),$$

c'est-à-dire : $F(x) - \lambda_0 f(x - a_0) > F(a_0)$, d'où : $F(x) - F(a_0) > \lambda_0 f(x - a_0)$.

• De même, si $x < a_0$, on obtient : $F(x) - F(a_0) < \lambda_0 f(x - a_0)$.

Remarque : Les inégalités strictes en conclusion, sont plus logiques que les inégalités larges demandées par l'énoncé.

- **1) d)** On a, pour $x > a_0$: $F(x) > F(a_0) + \lambda_0 f(x a_0) \xrightarrow[x \to +\infty]{} +\infty$, donc: $F(x) \xrightarrow[x \to +\infty]{} +\infty$. On a, pour $x < a_0$: $F(x) < F(a_0) + \lambda_0 f(x a_0) \xrightarrow[x \to -\infty]{} -\infty$, donc: $F(x) \xrightarrow[x \to -\infty]{} -\infty$.
- 1) e) On a vu que F est continue et strictement croissante sur $\mathbb R$ et que $F(x) \underset{x \longrightarrow -\infty}{\longrightarrow} -\infty$ et $F(x) \underset{x \longrightarrow +\infty}{\longrightarrow} +\infty$. D'après le théorème de la bijection monotone, on conclut que F est une bijection de $\mathbb R$ sur $\mathbb R$, que F^{-1} est continue et strictement croissante sur $\mathbb R$, et que $F^{-1}(y) \underset{y \longrightarrow -\infty}{\longrightarrow} -\infty$ et $F^{-1}(y) \underset{y \longrightarrow +\infty}{\longrightarrow} +\infty$.
- **2)** Soient $x, x_0 \in \mathbb{R}$ tels que $x \neq x_0$, et $n \in \mathbb{N}$. On a :

$$\frac{F(x) - F(x_0)}{x - x_0}$$

$$= \frac{1}{x - x_0} \left(\sum_{k=0}^{+\infty} \lambda_k f(x - a_k) - \sum_{k=0}^{+\infty} \lambda_k f(x_0 - a_k) \right)$$

$$= \sum_{k=0}^{+\infty} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0}$$

$$= \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0} + \sum_{k=n+1}^{+\infty} \underbrace{\lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0}}_{\geqslant 0}$$

$$\geqslant \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0},$$

car les λ_k sont tous > 0 et f est croissante.

3) D'après 2) appliqué à $x = a_n$, on a, pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R} - \{a_n\}$:

$$\frac{F(x) - F(a_n)}{x - a_n} \geqslant \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(a_n - a_k)}{x - a_n} = \sum_{k=0}^{n-1} \underbrace{\lambda_k \frac{f(x - a_k) - f(a_n - a_k)}{x - a_n}}_{\geqslant 0} + \lambda_n \frac{f(x - a_n) - f(a_n - a_n)}{x - a_n}$$

$$\geqslant \lambda_n \frac{f(x - a_n)}{x - a_n} = \lambda_n \frac{1}{f(x - a_n)^2} \xrightarrow[x \to a_n]{} + \infty.$$

Il en résulte : $\frac{F(x) - F(a_n)}{x - a_n} \xrightarrow[x \to a_n]{} +\infty$, donc F est dérivable au sens généralisé en a_n et $F'(a_n) = +\infty$.

4) a) L'application $S_n : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto S_n(x) = \sum_{k=0}^n \lambda_k f(x - a_k)$ est dérivable en x_0 , comme somme d'un nombre fini d'applications dérivables en x_0 , et : $S'_n(x_0) = \sum_{k=0}^n \lambda_k f'(x - a_k)$.

Il existe donc $\varepsilon > 0$ tel que :

$$\forall x \in]x_0 - \varepsilon; x_0 + \varepsilon[, \quad \left| \frac{S_n(x) - S_n(x_0)}{x - x_0} - S'_n(x_0) \right| \leqslant 1,$$

d'où:

$$1 + \sum_{k=0}^{n} \lambda_k \frac{x(x - a_k) - f(x_0 - a_k)}{x - x_0} = 1 + \frac{S_n(x) - S_n(x_0)}{x - x_0} \geqslant S'_n(x_0) = \sum_{k=0}^{n} \lambda_k f'(x_0 - a_k).$$

4) b) Soit $A \in \mathbb{R}_+$. Puisque la série numérique $\sum_{n \geqslant 0} \lambda_n f'(x - a_n)$ est divergente (hypothèse) et à termes $\geqslant 0$,

il existe $n \in \mathbb{N}$ tel que : $\sum_{k=0}^{n} \lambda_k f'(x - a_k) \geqslant A + 1$.

D'après a), il existe $\varepsilon>0$ tel que, pour tout $x\in\mathbb{R}$ tel que $0<|x-x_0|<\varepsilon$:

$$1 + \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0} \geqslant \sum_{k=0}^{n} \lambda_k f'(x - a_k) \geqslant A + 1,$$

donc:

$$\sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0} \geqslant A,$$

puis:

$$\frac{F(x) - F(x_0)}{x - x_0} \geqslant \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0} \geqslant A.$$

On a montré :

$$\forall A \geqslant 0, \ \exists \varepsilon > 0, \ \forall x \in]x_0 - \varepsilon; x_0 + \varepsilon[, \ \frac{F(x) - F(x_0)}{x - x_0} \geqslant A,$$

c'est-à-dire : $\frac{F(x) - F(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} +\infty.$

Ceci montre que F est dérivable au sens généralisé en x_0 et que $F'(x_0) = +\infty$.

5) a) Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$ tel que $x \neq x_0$. On a :

$$\frac{F(x) - F(x_0)}{x - x_0} = \sum_{k=0}^{+\infty} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0}$$

$$= \sum_{k=0}^{n} \lambda_k \frac{f(x-a_k) - f(x_0 - a_k)}{x - x_0} + \sum_{k=n+1}^{+\infty} \lambda_k \frac{f(x-a_k) - f(x_0 - a_k)}{x - x_0}.$$

On a, d'après I.B.2)b):

$$\forall k \ge n+1, \ 0 \le \frac{f(x-a_k) - f(x_0 - a_k)}{x - x_0} \le 4f'(x_0 - a_k),$$

d'où :

$$\frac{F(x) - F(x_0)}{x - x_0} \leqslant \sum_{k=0}^{n} \lambda_k \frac{f(x - a_k) - f(x_0 - a_k)}{x - x_0} + 4 \sum_{k=n+1}^{+\infty} \lambda_k f'(x_0 - a_k).$$

5) b) Soit $\varepsilon > 0$ fixé.

Puisque la série $\sum_{k\geqslant 0} \lambda_k f'(x-a_k)$ converge (hypothèse), il existe $n\in\mathbb{N}$ tel que : $\left|\sum_{k=n+1}^{+\infty} \lambda_k f'(x-a_k)\right|\leqslant \frac{\varepsilon}{4}$.

Notons
$$\beta = \sum_{k=n+1}^{+\infty} \lambda_k f'(x - a_k)$$
 et $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto \sum_{k=0}^{n} \lambda_k f(x - a_k)$.

Par opérations, φ est dérivable en x_0 et $\varphi'(x_0) = \sum_{k=0}^n \lambda_k f'(x_0 - a_k)$.

Puisque $\frac{\varphi(x) - \varphi(x_0)}{x - x_0} \xrightarrow[x \to x_0]{} \varphi'(x_0)$, il existe $\alpha > 0$ tel que :

$$\forall x \in]x_0 - \alpha; x_0 + \alpha[, \left| \frac{\varphi(x) - \varphi(x_0)}{x - x_0} - \varphi'(x_0) \right| \leqslant \frac{\varepsilon}{4}.$$

D'après 2) et 5)a), on a :

$$\frac{\varphi(x) - \varphi(x_0)}{x - x_0} \leqslant \frac{F(x) - F(x_0)}{x - x_0} \leqslant \frac{\varphi(x) - \varphi(x_0)}{x - x_0} + 4\beta.$$

Notons $\ell = \sum_{k=0}^{+\infty} \lambda_k f'(x - a_k) = \varphi'(x_0) + \beta$. On a:

$$\frac{\varphi(x) - \varphi(x_0)}{x - x_0} \geqslant \varphi'(x_0) - \frac{\varepsilon}{4} \geqslant \left(\ell - \frac{\varepsilon}{4}\right) - \frac{\varepsilon}{4} = \ell - \frac{\varepsilon}{2}$$

et

$$\frac{\varphi(x) - \varphi(x_0)}{x - x_0} + 4\beta \leqslant \varphi'(x_0) + \frac{\varepsilon}{4} + 4\beta = \ell + \frac{\varepsilon}{4} + 3\beta \leqslant \ell + \varepsilon.$$

On obtient:

$$\ell - \frac{\varepsilon}{2} \leqslant \frac{F(x) - F(x_0)}{x - x_0} \leqslant \ell + \varepsilon.$$

On a ainsi montré :

$$\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in]x_0 - \alpha; x_0 + \alpha[, \ \left| \frac{F(x) - F(x_0)}{x - x_0} - \ell \right| \leqslant \varepsilon,$$

et on conclut : $\frac{F(x) - F(x_0)}{x - x_0} \xrightarrow{x \longrightarrow x_0} \ell$.

Ceci établit que F est dérivable en x_0 et que : $F'(x_0) = \ell = \sum_{k=0}^{+\infty} \lambda_k f'(x - a_k)$.

6) D'après 3),4),5), F est dérivable au sens généralisé en tout point de \mathbb{R} .

D'après I.A.1), F^{-1} est alors dérivable au sens généralisé en tout point de \mathbb{R} .

De plus, d'après 3),4),5) : $\forall x \in \mathbb{R}$, $F'(x) \in]0$; $+\infty[$, donc : $\forall x \in \mathbb{R}$, $(F^{-1})'(x) \in [0; +\infty[$ et donc $\forall x \in \mathbb{R}$, $(F^{-1})'(x) \neq +\infty$.

Finalement : F^{-1} est dérivable en tout point de \mathbb{R} .

III. Parties denses de $\mathbb R$

A. Intersection d'ensembles ouverts denses

- 1) a) Récurrence sur n.
 - Comme V_0 et I sont ouverts, $I \cap V_0$ est ouvert.

Comme V_0 est dense dans \mathbb{R} et que I est un ouvert non vide de \mathbb{R} , $I \cap V_0$ est non vide.

Ainsi, $I \cap V_0$ est un ouvert non vide de \mathbb{R} . Il existe donc $u_0, v_0 \in \mathbb{R}$ tels que :

$$u_0 < v_0, \qquad [u_0; v_0] \subset I \cap V_0.$$

• Supposons construits $u_0, ..., u_n, v_0, ..., v_n$ convenant.

Comme V_{n+1} et $]u_n; v_n[$ sont ouverts, $]u_n; v_n[\cap V_{n+1}$ est un ouvert de \mathbb{R} .

Comme V_{n+1} est dense dans \mathbb{R} et que $]u_n; v_n[$ est un ouvert non vide de \mathbb{R} , $]u_n; v_n[\cap V_{n+1}]$ est non vide.

Ainsi, $]u_n; v_n[\cap V_{n+1}$ est un ouvert non vide de \mathbb{R} . Il existe donc $u_{n+1}, v_{n+1} \in \mathbb{R}$ tels que :

$$u_{n+1} < v_{n+1}, \qquad [u_{n+1}; v_{n+1}] \subset]u_n; v_n[\cap V_{n+1}.$$

On a ainsi défini, par récurrence, un couple de suites $((u_n)_{n\geqslant 0}, (v_n)_{n\geqslant 0})$ convenant.

1) b) On a, pour tout $n \in \mathbb{N}$:

$$u_0 \leqslant \cdots \leqslant u_n \leqslant u_{n+1} \leqslant v_{n+1} \leqslant v_n \leqslant \cdots \leqslant v_0.$$

La suite $(u_n)_{n\geq 0}$ est croissante et majorée (par v_0), donc converge vers un réel λ .

La suite $(v_n)_{n\geqslant 0}$ est décroissante et minorée (par u_0), donc converge vers un réel μ .

Comme $\forall n \in \mathbb{N}, u_n < v_n$, on a, par passage à la limite : $\lambda \leqslant \mu$.

Ainsi:

$$\forall n \in \mathbb{N}, \ u_n \leqslant \lambda \leqslant \mu \leqslant v_n.$$

D'où:

$$\forall n \in \mathbb{N}, \ \lambda \in [u_n : v_n] \subset [u_0 : v_0] \subset I$$

et:
$$\forall n \in \mathbb{N}, \ \lambda \in [u_n; v_n] \subset V_n, \text{ donc } \lambda \in \bigcap_{n \in \mathbb{N}} V_n = B.$$

On conclut : $\lambda \in I \cap B$, ce qui montre que $I \cap B$ n'est pas vide.

- 2) D'après 1), pour tout intervalle ouvert non vide I de \mathbb{R} , on a $I \cap B \neq \emptyset$, donc B est dense dans \mathbb{R} .
- 3) Notons, pour tout $n \in \mathbb{N}$: $V'_n = V_n \{x_n\}$.

D'une part, pour tout $n \in \mathbb{N}$, $V'_n = V_n \cap (\mathbb{R} - \{x_n\})$, donc V'_n est ouvert comme intersection de deux ouverts.

D'autre part, pour tout $n \in \mathbb{N}$, comme V_n est dense dans \mathbb{R} , V_n n'est évidemment pas un singleton, donc V'_n , obtenu à partir de V_n en lui enlevant un point, n'est pas vide.

Ainsi, V'_n est un ouvert non vide de \mathbb{R} , dense dans \mathbb{R} .

D'après 2), appliqué à $(V_n')_{n\geqslant 0}$ à la place de $(V_n)_{n\geqslant 0}$, l'ensemble $B'=\bigcap_{n\in\mathbb{N}}V_n'$ est dense dans \mathbb{R} . Mais :

$$B' = \bigcap_{n \in \mathbb{N}} \left(V_n \cap (\mathbb{R} - \{x_n\}) \right) = \left(\bigcap_{n \in \mathbb{N}} V_n \right) - \{a_n \, ; n \in \mathbb{N}\} = B - \{a_n \, ; n \in \mathbb{N}\}.$$

On conclut que $B' = B - \{a_n ; n \in \mathbb{N}\}$ est dense dans \mathbb{R} .

B. Parties de $\mathbb R$ contenant de gros ensembles compacts

1) a) La famille $(I_k)_{k\in\mathbb{N}}$ est un recouvrement ouvert de C, car : $\forall k\in\mathbb{N}, c_k\in I_k$.

Comme C est compact (hypothèse), d'après la caractérisation de Borel et Lebesgue de la compacité, il existe un sous-recouvrement ouvert de C, c'est-à-dire qu'il existe $n \in \mathbb{N}$ tel que : $C \subset \bigcup_{0 \le k \le n} I_k$.

1) b) Notons, pour tout $k \in \mathbb{N}$:

$$h_k: [a;b] \longrightarrow \mathbb{R}, \quad x \longmapsto h_k(x) = \text{Max}(0, \ \alpha_k - |x - c_k|).$$

Ainsi:

$$\forall k \in \mathbb{N}, \ \forall x \in [a; b], \ h_k(x) = \begin{cases} \alpha_k - |x - c_k| > 0 & \text{si } x \in I_k \\ 0 & \text{si } x \notin I_k. \end{cases}$$

Notons $h = \sum_{k=0}^{n} h_k$.

Il est clair que, pour tout $k \in \mathbb{N}$, h_k est continue sur \mathbb{R} et est ≥ 0 . Il en résulte, par addition, que h est continue sur \mathbb{R} et ≥ 0 . De plus :

$$\forall \, x \in [a\,;b], \quad \Big(h(x) > 0 \iff x \in \bigcup_{0 \leqslant k \leqslant n} I_k\Big).$$

 $\text{Comme } C \subset \bigcup_{0 \leqslant k \leqslant n} I_k, \text{ on a : } \forall \, x \in C, \ \ h(x) > 0.$

Ainsi, h est continue sur C et à valeurs > 0 sur C. Comme C est compact, h est minorée sur C et atteint sa borne inférieure. Notons $m = \inf\{h(x); x \in C\} > 0$. Notons :

$$g: [a; b] \longrightarrow \mathbb{R}, \ x \longmapsto \operatorname{Min}\left(1, \ \frac{h(x)}{m}\right) \leqslant 1.$$

Comme $h \ge 0$, on a : $\forall x \in [a; b], g(x) \ge 0$.

Ainsi, g est à valeurs dans [0;1].

D'autre part, comme $x \longmapsto 1$ et $x \longmapsto \frac{h(x)}{m}$ sont continues sur [a;b], par opération classique (minimum de deux fonctions continues), g est continue sur [a;b].

On a, pour tout $x \in C$, $h(x) \ge m$, donc $\frac{h(x)}{m} \ge 1$, d'où g(x) = 1.

Et, pour tout $x \in [a;b] - \bigcup_{0 \le k \le n} I_k$, on a h(x) = 0, donc g(x) = Min(1,0) = 0.

1) c) On a :

$$\int_{a}^{b} g(x) dx \leqslant \int_{0 \leqslant k \leqslant n} I_{k} g(x) dx \leqslant \sum_{g \geqslant 0} \sum_{k=0}^{n} \int_{I_{k}} g(x) dx$$

$$= \sum_{k=0}^{n} \text{Longueur}(I_k) = \sum_{k=0}^{n} 2\alpha_k \leqslant 2\sum_{k=0}^{+\infty} \alpha_k \leqslant \varepsilon.$$

2) a) Soit $(a, b) \in \mathbb{R}^2$ tel que a < b.

Par hypothèse, il existe un compact C tel que $C \subset A \cap [a;b]$ et il existe $\varepsilon > 0$ tel que, pour toute application continue $g:[a;b] \longrightarrow [0;1]$, satisfaisant g(x)=1 pour tout $x \in C$, on ait $\int_a^b g(x) \, \mathrm{d}x \ge \varepsilon$.

Supposons $A \cap [a;b]$ (au plus) dénombrable. Alors, C est (au plus) dénombrable. Il existe donc une suite $(c_n)_{n\in\mathbb{N}}$ dans $A \cap [a;b]$ telle que $C = \{c_n; n\in\mathbb{N}\}$.

D'après 1) appliqué à $\frac{\varepsilon}{2}$ à la place de ε , on aurait, pour la fonction g de 1)b) : $\int_a^b g(x) dx \leqslant \frac{\varepsilon}{2}$,

en contradiction avec $\int_a^b g(x) dx \ge \varepsilon$ de l'hypothèse.

Il en résulte que $A \cap [a;b]$ n'est pas (au plus) dénombrable.

2) b) D'après a), pour tout $(a,b) \in \mathbb{R}^2$ tel que a < b, $A \cap [a;b]$ n'est pas vide, donc A est dense dans \mathbb{R} . De plus, pour toute partie dénombrable D de A, comme $A \cap [a;b]$ n'est pas un singleton, $(A \cap [a;b]) - D$ n'est pas vide, ce qui montre que A - D est dense dans \mathbb{R} .

IV. Densité de l'ensemble des points de pente infinie

A. Densité de l'ensemble des points de pente infinie

- 1) a) Soit $x \in \mathbb{R}$. On a : $\forall n \in \mathbb{N}, \ 0 \leqslant \lambda_n g_T(x-a_n) \leqslant \lambda_n T$.

 Comme la série numérique $\sum_n \lambda_n$ converge, la série numérique $\sum_n \lambda_n T$ converge, donc, d'après le théorème de majoration pour des séries à termes réels $\geqslant 0$, la série numérique $\sum_n \lambda_n g_T(x-a_n)$ converge.
- 1) b) On a, pour tout $x \in \mathbb{R}$: $g_T(x) = \text{Inf}\left(T, f'(x)\right) = \text{Inf}\left(T, \frac{1}{3|x|^{2/3}}\right) = \begin{cases} T & \text{si } |x| \leqslant (3T)^{3/2} \\ \frac{1}{3|x|^{2/3}} & \text{si } |x| > (3T)^{3/2}. \end{cases}$

Il est alors clair que g_T est continue sur \mathbb{R} .

Donc, par opérations, pour tout $n \in \mathbb{N}$, l'application $x \longmapsto \lambda_n g_T(x - a_n)$ est continue sur \mathbb{R} .

• D'autre part :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |\lambda_n q_T(x - a_n)| \leq \lambda_n T$$

et la série numérique $\sum_n \lambda_n T$ converge, donc, par théorème de majoration pour des séries à termes réels $\geqslant 0$, la série d'applications $\sum_n x \longmapsto \lambda_n g_T(x-a_n)$ converge normalement (donc uniformément) sur \mathbb{R} .

Il en résulte, d'après un théorème du Cours, que G_T est continue sur \mathbb{R} .

1) c) • On a, par définition des g_T : $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ g_T(x-a_n) \leqslant f'(x-a_n),$ donc, puisque les λ_n sont tous $\geqslant 0$: $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \lambda_n g_T(x-a_n) \leqslant \lambda_n f'(x-a_n),$ puis, par sommation de séries convergentes, ou de séries divergentes à termes réels $\geqslant 0$ ou égaux à $+\infty$:

$$\forall x \in \mathbb{R}, \quad \sum_{n=0}^{+\infty} \lambda_n g_T(x - a_n) \leqslant \sum_{n=0}^{+\infty} \lambda_n f'(x - a_n),$$

c'est-à-dire, d'après II. : $\forall x \in \mathbb{R}, G_T(x) \leq F'(x).$

Il en résulte : $\forall x \in \mathbb{R}, \text{ Sup } \{G_T(x); T \in]0; +\infty[\} \leqslant F'(x).$

• Soient $x \in \mathbb{R}$, $M \in \mathbb{R}^*_+$ tel que M < F'(x).

Puisque
$$F'(x) = \sum_{k=0}^{+\infty} \lambda_k f'(x - a_k)$$
, il existe $n \in \mathbb{N}$ tel que : $\sum_{k=0}^{n} \lambda_k f'(x - a_k) > M$.

* Supposons qu'il existe $k_0 \in \{0, ..., n\}$ tel que $x = a_{k_0}$.

En notant
$$T = \frac{M+1}{\lambda_{k_0}}$$
, on a: $\lambda_{k_0} g_T(x - a_{k_0}) = M+1$, donc $G_T(x) \ge \lambda_{k_0} g_T(x - a_{k_0}) \ge M+1 > M$.

* Sinon, on a : $\forall k \in \{0, ..., n\}, x \neq a_k$.

Notons $M = \underset{0 \le k \le n}{\text{Max}} f'(x - a_k)$. On a alors :

$$\forall k \in \{0, ..., n\}, \quad f'(x - a_k) \leqslant T,$$

donc:

$$\forall k \in \{0, ..., n\}, g_T(x - a_k) = f'(x - a_k),$$

puis:

$$\sum_{k=0}^{n} \lambda_k g_T(x - a_k) = \sum_{k=0}^{n} \lambda_k f'(x - a_k) > M.$$

Ceci montre:

$$\exists T \in \mathbb{R}^*_{\perp}, \ G_T(x) > M$$

et donc M n'est pas un majorant de $\{G_T(x); t \in]0; +\infty[\}$, ce qui montre :

$$\operatorname{Sup}\left\{G_T(x); T \in \left]0; +\infty\right[\right\} \geqslant F'(x).$$

Finalement:

$$\sup \{G_T(x); T \in]0; +\infty[\} = F'(x).$$

- 2) a) \bullet Soit $x \in \mathbb{R}$.
 - * S'il existe $T \in]0; +\infty[$ tel que $G_T(x) > M$, comme $F'(x) \ge G_T(x)$, on a : F'(x) > M.
 - * Réciproquement, si F'(x) > M, alors,, comme $F'(x) = \sup \{G_T(x); T \in]0; +\infty[\}$, il existe $T \in]0; +\infty[$ tel que $G_T(x) > M$.
 - Ceci montre :

$$x \in U_M \iff F'(x) > M \iff \exists T \in]0; +\infty[, G_T(x) > M.$$

On a donc :

$$U_M = \bigcup_{T \in]0; +\infty[} \{x \in \mathbb{R}; G_T(x) > M\}.$$

- 2) b) Pour tout $T \in]0; +\infty[$, l'ensemble $\{x \in \mathbb{R}; G_T(x) > M\} = G_T^{-1}]M; +\infty[$) est ouvert, comme image réciproque d'un ouvert par l'application continue G_T .
 - On a :

$$\forall n \in \mathbb{N}, \quad F'(a_n) = +\infty > M,$$

donc:

$$\forall n \in \mathbb{N}, \ a_n \in U_M,$$

d'où : $U_M \supset D = \{a_n ; n \in \mathbb{N}\}.$

Comme D est dense dans \mathbb{R} , il en résulte que U_M (qui le contient) est dense dans \mathbb{R} .

3) On a:

$$\{x \in \mathbb{R}; F'(x) = +\infty\} = \{x \in \mathbb{R}; \forall M > 0, \ F'(x) > M\} = \{x \in \mathbb{R}; \forall M \in \mathbb{N}^*, \ F'(x) > M\} = \bigcap_{M \in \mathbb{N}^*} U_M.$$

Comme, pour tout $M \in \mathbb{N}^*$, U_M est un ouvert de \mathbb{R} dense dans \mathbb{R} , d'après III.A.2), $A = \bigcap_{M \in N} U_M$ est dense dans \mathbb{R} .

Comme Dest (au plus) dénombrable, d'après III.A.3), A-D est encore dense dans \mathbb{R} .

B. Densité de l'ensemble des points de pente finie

1) Soit $x \in [a; b]$.

Si $x \in C$, alors g(x) = 1.

Si $x \notin C$, alors il existe M > 0 tel que $x \in U_M$, donc F'(x) > M.

Ainsi:

$$\forall x \in [a; b], \quad (g(x) = 1 \quad \text{ou} \quad F'(x) > M),$$

donc:

$$\forall x \in [a;b], \quad Mg(x) + F'(x) \geqslant M.$$

Considérons $\phi: [a;b] \longrightarrow \mathbb{R}$, $x \longmapsto \phi(x) = M \int_a^x g(t) \, \mathrm{d}t + F(x)$. L'application ϕ est continue sur [a;b], dérivable au sens généralisé en tout point de]a;b[et :

$$\forall x \in [a; b[, \phi'(x) = Mg(x) + f'(x) \geqslant M.$$

D'après I.A.2)b), il en résulte : $\frac{\phi(b) - \phi(a)}{b - a} \geqslant M$.

Et:
$$\phi(b) = M \int_a^b g(t) dt + F(b), \quad \phi(a) = F(a), \text{ donc}: \quad M \int_a^b g(t) dt + F(b) - F(a) \ge M(b-a).$$

2) Soient $(a, b) \in \mathbb{R}^2$ tel que a < b, $\varepsilon > 0$ tel que $a + \varepsilon < b$.

Notons
$$M = \frac{F(b) - F(a)}{b - a - \varepsilon}$$
, $C = \{x \in [a; b]; x \notin U_M\} \subset B \cap [a; b]$.

Soit $g:[a;b] \longrightarrow [0;1]$ continue telle que g(x)=1 pour tout $x\in C$

On a, d'après 1):

$$\int_a^b g(t) dt \geqslant \frac{M(b-a) - F(b) + F(a)}{M} = b - a - \frac{F(b) - F(a)}{M} = n - a - (b - a - \varepsilon) = \varepsilon.$$

D'après III.B., il en résulte que, pour toute partie dénombrable N de \mathbb{R} , B-N est dense dans \mathbb{R} .