Préparation à l'agrégation interne de mathématiques

Jean-Marie Monier

pour mercredi 16 novembre 2005

Thème: équations différentielles

Exercice 1

Résoudre l'équation différentielle :

$$y' = |y - x|,$$

d'inconnue $y: \mathbb{R} \longrightarrow \mathbb{R}$ supposée dérivable sur \mathbb{R} .

Exercice 2

a) Soient $n \in \mathbb{N}^*$, $A, B \in \mathbf{M}_n(\mathbb{C})$.

On considère l'équation différentielle X' = AXB, d'inconnue $X : \mathbb{R} \longrightarrow \mathbf{M}_n(\mathbb{C})$, supposée dérivable. Exprimer la solution générale par une série.

b) Exemple: Résoudre
$$\begin{cases} X' = AXB \\ X(0) = I_3 \end{cases}$$
, où $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 3

Soit $y_0 \in]0; \pi[$. On note y la solution maximale du problème de Cauchy $\begin{cases} y' = \cos y + \cos x \\ y(0) = y_0. \end{cases}$

Montrer que y est définie sur \mathbb{R} et que :

$$\forall x \in]0; +\infty[, 0 < y(x) < \pi.$$

Exercice 4

Résoudre l'équation différentielle

$$x^4y'' + 2x^3y' - y = e^{1/x},$$

d'inconnue $y:]0;+\infty[\longrightarrow \mathbb{R}$ supposée dérivable, en utilisant le changement de variable $t=\frac{1}{x}$.

Exercice 5

Soient $(a,b) \in \mathbb{R}^2$ tel que $a < b, f,g : [a;b] \longrightarrow \mathbb{R}$ continues. On considère l'équation différentielle

$$(E) y'' - fy = g,$$

d'inconnue $y:[a\,;b]\longrightarrow\mathbb{R}$ supposée deux fois dérivable.

On note

$$(E_0) y'' - fy = 0$$

l'équation différentielle linéaire sans second membre associée à (E).

a) Montrer qu'il existe un couple unique (u, v) de solutions de (E_0) tel que :

$$u(a) = v(b) = 0$$
 et $u'(a) = v'(b) = 1$.

b) Montrer que, si (u, v) est libre, alors il existe une solution et une seule y de (E) telle que :

$$y(a) = y(b) = 0.$$

Exercice 6

a) On note $E = C^2([0;1], \mathbb{R})$ et :

$$\varphi: E \times E \longrightarrow \mathbb{R}, \quad (f,g) \longmapsto \varphi(f,g) = \int_0^1 (fg + f'g').$$

Montrer que φ est un produit scalaire sur E.

b) On note:

$$E = \{ f \in E ; f(0) = f(1) = 0 \}$$
 et $G = \{ g \in E ; g'' = g \}.$

Établir que F et G sont deux sev de E supplémentaires orthogonaux dans E.

c) Soit $(\alpha, \beta) \in \mathbb{R}^2$. On note

$$E_{\alpha,\beta} = \{ h \in E ; h(0) = \alpha \text{ et } h(1) = \beta \}.$$

Déterminer $\inf_{h \in E_{\alpha,\beta}} \int_0^1 (h^2 + h'^2).$

* * * * * * * * * * * * * * * * * *